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Preface

This thesis “SAR Polarimetry for Characterization and Retrieval of Earth and Lunar Surface”
explores the utilization of polarimetric Synthetic Aperture Radar (SAR) data for extracting
constructive information in the form of polarimetric parameters to be used in various
applications, like land cover identification, classification, and surface parameter retrieval for
Earth and lunar surface. The main objective of the thesis is to pursue these tasks by using
concepts of SAR polarimetry and electromagnetic wave modelling with emphasis on
developing algorithms, which may require minimum or no ‘a priori’ information.

Four tasks have been carried out in this thesis; (i) Study of model based decomposition
methods and its analysis to visualize the effect of decomposition and deorientation for
enhancement of land cover identification using polarimetric SAR data, (ii) Development of
adaptive land cover classification algorithm using spatial statistics of polarimetric indices, (iii)
Application of transmission line theory for development of algorithm for retrieval of soil
moisture in bare soil and vegetation covered soil using minimum or no ‘a priori’ information,
and (iv) Study and analysis of hybrid polarimetric MiniSAR data, and the development of
algorithm for possible existence of water-ice deposits on lunar surface.

Fully polarimetric ALOS PALSAR and/or Radarsat-2 data of Roorkee city in the state of
Uttarakhand, India, have been used for characterization and soil moisture retrieval of Earth
surface. The characterization of lunar surface in terms of identification of possible water-ice
deposits has been performed by using hybrid polarimetric MiniSAR data of Peary and
Rozhdestvenskiy craters.

The thesis includes seven chapters. Chapter one presents the introduction, which consists
of motivation, scope, and objectives of the thesis.

In Chapter two, the state-of-the-art in the fields of advances made in SAR polarimetry,
land cover classification methods, and soil moisture retrieval approaches has been briefly
described. This chapter also elucidates the theoretical background for the presence of water-ice
deposits on lunar surface. Critical reviews of presently available approaches for identifying

regions having possible water-ice deposits on lunar surface have been presented, along with the



discussion of limitations and challenges associated with them.

In Chapter three, the study of incoherent model based decomposition methods with and
without applying deorientation has been performed. The advantage of model based
decomposition methods is their ability to extract polarimetric information from SAR data by
expressing average scattering mechanism as the summation of individual scattering
components, such as volume (Py), surface (Ps), double-bounce (P4), and/or helix component
(Pc). In literature, there are several three- and four component model based decomposition
methods. However, it is observed that due to similar polarimetric response, several land covers
such as vegetation and oriented building blocks, decomposed into same volume scattering
component by model based decomposition methods. In order to overcome this problem, it is
suggested to apply deorientation i.e., rotation of target matrix (coherency or covariance) by
radar line-of-sight, prior to decomposition. The deorientation effect results in getting same
scattering response from differently oriented similar targets, and different scattering response
from distinct targets, which might be producing same response before deorientation. Thus, this
chapter analyses seven different three- and four-component model based decomposition
methods, in which two methods are without deorientation, and other five are with deorientation.
The methods without deorientation are, three component model based decomposition (TCM)
proposed by Freeman and Durden in 1998 and four component model based decomposition
(FCM) proposed by Yajima et al. in 2008. Model based decomposition methods with
deorientation are, three component model based decomposition method with deorientation
(TCMD) proposed by An et al. in 2010; three component model based decomposition method
with double deorientation and adaptive volume scattering model (TCMDDA) proposed by Cui
et al. in 2012; four component model based decomposition method with deorientation (FCMD)
proposed by Yamaguchi et al. in 2011; four component model based decomposition with
deorientation and additional volume scattering model (FCMDA) proposed by Sato et al. in
2012; and four component model based decomposition method with double deorientation
(unitary transformation along with rotation) (FCMDD) proposed by Singh et al. in 2013. The
results of these decomposition methods have been evaluated by performing visual and
quantitative analyses for ALOS PALSAR data sets of Roorkee, Meerut, and Delhi cities of
India. Two types of quantitative analysis have been performed; first, by analysing the variation
in number of pixels for each scattering contribution; and second, by observing the scattering
behaviour in terms of percentage of scattering power for different land covers. First quantitative

Vi



analysis shows that in TCMD and TCMDDA, the pixel percentages of Ps and Pq increase as
compared with TCM. In FCMD, FCMDA, and FCMDD, P4 increases drastically in terms of
pixel percentage as compared with FCM. The pixel percentage of Ps is incremented by
approximately 2% in FCMDA, and is invariant in FCMDD, as compared with FCMD. Pixel
percentage having helix contribution (i.e., Pc) is increased by 2% in FCMD as compared with
FCM, and is invariant in both FCMDA and FCMDDA. By second quantitative analysis, it has
been observed that uncertainty always lies in the description of scattering mechanism of urban,
tall vegetation, and short vegetation regions, because there is no distinct scattering mechanism
which is dominant for these land covers in all decomposition methods. Only bare soil provides
distinct pattern by having very strong contribution of surface scattering. After deorientation,
double-bounce power is definitely enhanced, however, it is not the dominant scattering
mechanism in urban area. This may occur due to the presence of large amount of vegetation
within urban area (Roorkee city).

In Chapter four, the problems associated with fixed-threshold based land cover
classification algorithms and the need for the development of adaptive classification algorithm
have been discussed. This chapter presents the development procedure for image statistics
(median and standard deviation) based adaptive land cover classification algorithm by using
best-selected polarimetric indices on the basis of separability index criterion. The algorithm
provides optimum value of polarimetric indices on the basis of user-specific requirements (i.e.,
overall accuracy). The algorithm has been developed and validated on two different ALOS
PALSAR data of same site i.e., Roorkee. For first ALOS PALSAR data, the overall accuracy is
obtained as 87.59%, whereas producer accuracy is obtained as 98%, 71%, 86%, 92% and 95%
for bare soil, water, tall vegetation, short vegetation, and urban, respectively, For second ALOS
PALSAR data, the overall accuracy is obtained as 78.43%, whereas producer accuracy is
obtained as 98%, 57%, 66%, 84%, and 97% for bare soil, water, tall vegetation, short
vegetation, and urban, respectively.

In Chapter five, the key issues related to the problems involved with the retrieval of soil
moisture under vegetation cover by SAR data have been discussed. Considering the limitations
of currently available soil moisture retrieval algorithms, this chapter presents multilayer model
for retrieval of soil moisture in both bare soil and vegetation covered soil using the classical
concept of transmission line theory. In this chapter, two different models have been developed
for characterization of scattering from vegetation and bare soil regions. In case of vegetation,

Vii



three layer model having one layer of vegetation canopy and two layers of soil have been
considered, whereas in case of bare soil, due to exclusion of vegetation layer the model consists
of only two layers of soil. For both the models, calculated backscattering coefficients have been
obtained as a function of complex dielectric constant and thickness of each layer involved in
respective models. The observation depth for retrieval of soil moisture varies from one tenth of
wavelength to one quarter wavelength. Therefore, the first layer of soil is considered to have
thickness of 5 cm and second layer of soil is taken as infinite. In case of three layer model, the
thickness of vegetation-air mixed layer is considered to have thickness in the range 5 cm to 400
cm, assuming all agricultural vegetation fall within this range. Now, the complex dielectric
constant of each layer involved in respective models are retrieved though Genetic Algorithm
(GA) approach by minimizing cost function. The cost function is formed by taking
backscattering coefficient calculated by each model and HH polarized backscattering
coefficient measured by SAR data. The developed algorithm has been applied on two data sets
of ALOS PALSAR and one data set of Radarsat-2 of Roorkee city, and quite satisfactory
results have been obtained by comparing the retrieved soil moisture values with observed soil
moisture values. The advantages of the proposed approach are its capability to estimate soil
moisture with good accuracy and requirement of minimum ‘a priori’ information.

In Chapter six, a decision tree algorithm has been developed for finding the possibilities
of water-ice deposits on lunar surface using MiniSAR data. In radar based missions, high value
of received radar circular polarization ratio (uc >1) has been traditionally used as a key criterion
for determining the evidences of possible water-ice deposits in cold dark permanently
shadowed regions. However, rough and dry surfaces containing rocks, lava flows, ejecta etc.,
also represent uc >1 due to double-bounce effect. Differentiation on the basis of criterion uc > 1
is very challenging because of two different phenomenon associated with lunar surface, namely
volume scattering caused due to presence of planetary water-ice, and surface roughness caused
by ejecta, rocks, or lava flows. Therefore, in this chapter, the information of two different
approaches has been fused which are polarimetric approach (m-6 and m-y decomposition) and
fractal approach (fractal dimension ‘D’). The polarimetric approach helps in obtaining
scattering information of lunar surface, whereas fractal dimension ‘D’ helps in retrieving
roughness information. After exhaustive study, various criteria have been obtained and
incorporated in a decision tree. In this decision tree, the criteria for icy craters proposed by

Thompson et al., have also included in order to provide confidence about regions having
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possibility of water-ice deposits. It has been observed that there are certain common regions
inside anomalous craters on the floor of Peary and Rozhdestvenskiy craters which satisfy all the
conditions of proposed approach. In this chapter, the study of electrical and physical properties
like, dielectric constant of lunar surface (e= ¢’-j ¢”’), loss tangent (zan o), and regolith bulk
density (po), has also been performed.

Finally, the work carried out in this thesis has been concluded in Chapter seven. This
chapter presents the contributions of the thesis and the prospects of extending the tasks of thesis

in future.
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Chapter 1

Introduction

Synthetic Aperture Radar (SAR) polarimetry is an important tool for land cover
characterization and surface parameter (soil moisture, surface roughness, electrical, and
physical, etc.,) retrieval of Earth and other planetary surfaces such as Moon. SAR polarimetry
Is related to transmission of known polarization and reception of modified polarization in the
form of backscattered wave received from different scatterers. The interaction of propagating
electromagnetic (EM) waves with these scatterers produces unique signature by representing
distinct scattering mechanisms. Polarized backscattered wave contains crucial information
related to scattering behaviour as well as geometrical, physical, and electrical properties of
scatterers. Thus, SAR polarimetry provides a way to explore and characterize different land
covers because of its capability of providing large spatial coverage and high resolution images.

Polarimetric SAR sensors exploit abundant information about scatterers than
conventional radars by measuring phase along with amplitude for multi-polarization
acquisitions. This multidimensional information (phase and amplitude of different
polarizations) obtained from polarimetric SAR images helps in resolving the uncertainties
about the source of scattering [437]. These characteristics have made SAR polarimetry a crucial
science for land cover identification, characterization, and retrieval of surface parameters.
There are several reasons for which land cover characterization and parameter retrieval is
required, which are as follows:

e Land cover identification and classification is required for proper planning and
management of resources available on Earth’s surface. Changes appearing over Earth’s
surface owing to increase in population, change in environmental conditions,
occurrence of disasters (e.g., flood, earthquake, drought, etc.,) require continuous
monitoring.

e One of the most important surface parameters of Earth is soil moisture, which plays an
important role for improving hydrologic, weather, and climate modelling. The soil
moisture represents only 0.00012% of volume of water as compared to total water

present on the Earth’s surface [402]. Still, it plays an important role in determining the



prospective of infiltration, surface run-off, flood, overland flow, erosion, etc., [94]. In
agronomy, soil moisture is beneficial in prediction of plant water requirement,
vegetation growth, productivity, irrigation requirement, and cultivation time [402].

e Lunar surface characterization is required for exploring the possibility of resources such
as minerals, water-ice deposits, etc., available over the surface of Moon. It is required to
determine radio-physical and electrical properties of lunar surface for understanding the
nature of lunar surface and its scattering behaviour. Due to its proximity to Earth, the
study carried out over Moon may act as an archetype for exploring other planetary

surfaces.

The property of SAR sensors to provide day-night acquisition independent of weather
conditions, and their capability to collect scattering response from surfaces and sub-surfaces
due to penetration capability of EM waves [437] help in above mentioned surface monitoring

applications.

1.1. Motivation

The polarimetric SAR carries out measurement in multiple polarizations, multiple frequencies,
and multiple incidence angles. Therefore, it has become possible to retrieve detailed
information about scattering mechanisms for identification of different scatterers. By
controlling the polarization of the incident wave, and measuring the full polarization properties
of backscattered wave, the fully polarimetric SAR system can be used to obtain more
information about the targets than by using a single and dual polarized SAR systems.

SAR polarimetry is renowned for the extraction of constructive information in the form
of polarimetric parameters, to be utilized in various applications, such as land cover
identification, classification, and retrieval of surface parameters. Researchers have developed
various methods for land cover identification, classification, and surface parameter retrieval, by
using polarimetric SAR data. However, challenges still persist in performing aforesaid tasks
with requirement of minimum or no ‘a priori’ information.

The fully polarimetric SAR systems measure four complex polarization combinations,
which are HH (horizontal transmit-horizontal receive), HV (horizontal transmit-vertical

receive), VV (vertical transmit-vertical receive), and VH (vertical transmit-horizontal receive).



The full vector nature of polarimetric SAR data allows it to be synthesized into any non-linear
polarizations (Appendix-A).These non-linear polarizations are, circular (LL: left transmit-left
received, LR: left transmit-right received, RL: right transmit-left received, and RR: right
transmit-right received), linear 45° (45C: co-polarized elliptical, and 45X: cross-polarized
elliptical), and hybrid (LH: left transmit-horizontal received, LV: left transmit-vertical
received, RH: right transmit-horizontal received, and RV: right transmit-vertical received)
polarizations. Thus, by fully polarimetric SAR data, advantages of any polarization can be
obtained. This is beneficial in describing scattering mechanisms (e.g., volume, surface, and
double-bounce scattering) of various targets due to sensitivity of scattering response of targets
to polarization. Still challenges occur in discriminating targets on the basis of scattering
mechanisms due to complex nature of targets, which produce combination of various scattering
mechanisms [27].

Model based decomposition methods have been developed with the aim to separate
scattering mechanisms obtained from different targets [138, 425, 426, 428]. However, it is
observed that some similarly oriented different targets produce same scattering response. For
example, oriented building blocks in urban area decompose into volume scattering component,
as in vegetation, instead of exhibiting double-bounce scattering. In order to resolve this
ambiguity, the concept of rotation of coherency matrix around radar line-of-sight, also known
as deorientation process [210], has been suggested to be applied prior to decomposition for
enhancing the performance of decomposition methods in terms of scattering response [10, 42,
90, 325, 344, 427]. However, still major concern is segregation of various land covers by
scattering mechanisms. Thus, contemplative study is required to visualize the effect of
decomposition and deorientation in enhancing the identification of various land covers from
point of view of scattering mechanisms.

The fully polarimetric information can be exploited usefully in terms of polarimetric
indices (parameters), which describe scattering, physical, and electrical behaviour of different
targets. There exist several classification approaches that use fixed value of polarimetric indices
as in [27, 129, 130, 250, 293, 306, 351]. The problem in these classification approaches is that
the value of polarimetric indices usually vary in accordance with change in environmental
conditions, observational sites, and satellite images. Another problem in these classification
approaches is the selection of appropriate polarimetric index that provide separation of two

different classes accurately. In order to overcome these problems, there is a need to develop



such a classification algorithm that is able to select polarimetric indices capable of segregating
various land covers, and then, may use adaptive threshold of these polarimetric indices. In a
nutshell, there is a requirement of developing an adaptive classification method that provides
automated segregation of different land covers.

Soil moisture is one of the most important surface parameters of Earth, for which
significant amount of research has been carried out by researchers all over the world using
polarimetric SAR data. The sensitivity of backscattered wave to dielectric constant allows the
retrieval of soil moisture by polarimetric SAR data [388]. Several soil moisture retrieval
algorithms have been developed using theoretical/physical [46, 228, 353, 354, 401, 407, 436],
empirical [17, 255, 409, 410, 445], and semi-empirical approaches [115, 231, 273, 274, 333,
353]. Most of these algorithms perform well only for retrieval of soil moisture in bare soil
region, and under-estimate soil moisture in vegetated region. This happens due to complex
scattering phenomenon associated with vegetation structure, in which the scattering from bare
soil surface is very much influenced by the vegetation canopy layer that attenuates the
scattering from soil, while adding its own contribution [175]. The requirement of large amount
of ‘a priori’ information by most of these algorithms, for their implementation, is also one of
the major limitations. The retrieval of soil moisture under vegetation cover requires isolation or
minimization of backscattering response obtained from soil underneath vegetation. This task
requires a lot of efforts. Therefore, attention is needed to develop an algorithm for retrieval of
soil moisture in vegetated region that may require minimum or no ‘a priori’ information.

Radar polarimetry has got new dimensions with the inception of hybrid polarimetry, in
which transmission is done at circular polarization (right/left handed), while reception is done
at two linear polarizations (horizontal and vertical) in coherent manner [308]. This unique
architecture provides information comparable to fully polarimetric SAR, but with wider swath
coverage, reduced system complexity (mass and power consumption), and absence of range
ambiguity and Faraday rotation. Thus, hybrid polarimetry is not only an optimum design for
exploring planetary surfaces, but also is a worthy choice for future Earth monitoring SAR
missions [308]. MiniSAR on-board Chandrayaan-1 mission, India’s first lunar exploration
mission launched by Indian Space Research Organisation (ISRO), was one such attempt. It was
the first polarimetric SAR flown outside the Earth’s orbit. The objective of this mission was to
characterize lunar surface, and to find the possible evidences of water-ice deposits on lunar

surface [252, 359]. This is very challenging yet fascinating task, which requires a lot of



attention.

The summary of above discussion has been presented below, keeping in mind the tasks

where more attention is required:

>

Critical analysis of model based decomposition methods and deorientation
process for characterization of land covers.

Investigating the effect of deorientation on scattering mechanisms associated
with distinct land covers.

Identifying the role of various polarimetric indices for classification of various
land covers.

Development of adaptive land cover classification approach providing optimum
classification accuracy.

Development of algorithm for retrieval of soil moisture under vegetation cover
with minimum usage of prior information about test site.

Critical analysis of hybrid polarimetric SAR data for characterization of lunar
surface.

Study of hybrid polarimetry for identification and characterization of various
land covers.

Development of algorithm to find the possible evidences of water-ice deposits
on lunar surface by using hybrid polarimetric SAR data.

Estimation of electrical and physical properties of lunar surface.

1.2. Problem Statement

The objective of this thesis is to extract polarimetric parameters from polarimetric SAR data for

identification, classification, characterization, and parameter retrieval of Earth and Moon

surfaces. In the present research work, emphasis has been given to develop algorithms for land

cover characterization and surface parameter retrieval with the use of minimum or no ‘a priori’

information. The discussion in section 1.1, followed by careful engrossment, actuated the

present work, which consists of following tasks that have been carried out in this thesis;

1)  To investigate the role of model based decomposition methods, and to critically analyse

the effect of decomposition and deorientation in enhancement of land cover

identification.



2)

3)

4)

To develop adaptive land cover classification algorithm using spatial statistics of
polarimetric indices.

To explore the use classical transmission line theory for retrieval of soil moisture in bare
soil and vegetation covered soil by using minimum ‘a priori’ information.

To develop an algorithm for possible presence of water-ice deposits on lunar surface
using polarimetric and fractal based approach, and to estimate electrical and physical

properties of lunar surface by using hybrid polarimetric MiniSAR data of Chandrayaan-1.

Characterization of Earth Surface Characterization of Lunar Surface
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1.3. Framework of Research

The framework of research is presented in Figure 1.1. The research work is divided into two

parts- (i) polarimetric approach for characterization and soil moisture retrieval of Earth’s

surface, and (ii) polarimetric approach for possible water-ice detection and surface parameters

(electrical and physical) retrieval of lunar surface.

The research work for both the parts i.e., Earth and Moon, was carried out in four stages-

1.

2
3.
4

Data acquisition and pre-processing.
Development of surface characterization algorithm.
Retrieval of surface parameters.

Validation and comparison of proposed algorithms.

Following subtasks have been carried out for completing the considered four tasks, as

discussed in section 1.2:

>

Review of literature corresponding to each task and suggesting proposal of
appropriate methodologies stating the limitations of existing approaches.
Pre-processing of ALOS PALSAR data and extraction of coherency matrix.

Analysis of scattering components, obtained by model based decomposition methods
with and without deorientation, for their usefulness in characterization of different
land covers.

Extraction of various polarimetric indices from pre-processed data.

Selection of polarimetric indices, providing best separation between two class pair,
based on separability index criterion.

Development of adaptive land cover classification algorithm.

Validation of proposed classification algorithm by another ALOS PALSAR data.
Masking of water and urban area in classified image, so as to obtain only bare soil
and vegetation region.

Development of soil moisture retrieval algorithm.

Application of proposed soil moisture algorithm on another ALOS PALSAR data
and C-band Radarsat-2 data.

Selection of hybrid polarimetric MiniSAR data of Peary crater for characterization of
lunar surface.

Pre-processing of MiniSAR data, and extraction of polarimetric parameters of hybrid



SAR, known as child parameters.

> Critical analysis of all the child parameters for obtaining the criteria satisfying
possibility of water-ice deposits on lunar surface.

> Critical analysis of fractal dimension for obtaining roughness information.

> Development of algorithm incorporating all the conditions for possible presence of
water-ice.

> Estimation of electrical and physical properties of lunar surface.

> Application of proposed algorithm developed, on another MiniSAR data of

Rozhdestvenskiy crater.

1.4. Organisation of Thesis

The thesis includes seven chapters.

Chapter two provides the brief literature review of the tasks undertaken in the thesis. The
review related to advancements made in the field of SAR polarimetry, target decomposition
methods, classification methods, and soil moisture estimation methods has been provided. The
limitations of existing approaches, and need of developing new algorithms, has also been
discussed. The theory of water-ice deposits on lunar surface, and state-of-the-art methods for
possible existence of water-ice deposits on lunar surface, have been discussed.

Chapter three deals with the task of studying seven different three and four component
model based target decomposition methods, with and without applying deorientation approach.
This chapter analyses the role of deorientation in improving the scattering response of various
land covers. The analysis has been performed by both visual and quantitative methods.

Chapter four presents an adaptive land cover classification algorithm. The algorithm has
been developed by using spatial statistics (i.e., median and standard deviation) of best-selected
polarimetric indices on the basis of separability index criterion. The algorithm uses optimized
values of polarimetric indices based on overall classification accuracy as required by the end
user.

Chapter five includes the development of multilayer model based on transmission line
theory for retrieving soil moisture in bare soil and vegetation underlying soil, by using fully
polarimetric SAR data with minimum requirement of ‘a priori’ information. This model is

based on conventional transmission line theory which facilitates the estimation of impedance,



and hence, backscattering coefficient as a function of dielectric constant and thickness of each
layer in the model. The dielectric constant in turn has been used for retrieval of soil moisture
for 5 cm depth of soil.

Chapter six explores the use of hybrid polarimetric MiniSAR data of Chandrayaan-1 for
lunar surface characterization, and finding the possibility of water-ice deposits on lunar surface.
In this chapter, an algorithm has been proposed for identifying the regions having possible
presence of water-ice deposits on lunar surface by fusing polarimetric and fractal-based
approach. After obtaining possible locations of water-ice deposits on lunar surface, the
electrical and physical properties, such as dielectric constant of lunar surface, loss tangent, and
regolith bulk density have been computed.

Finally, Chapter seven provides the summary of obtained results and enlists the major
contributions made in the thesis. The perspectives of future investigation, utilizing the current

results, is also discussed.
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Chapter 2

Background and State-of-the-Art

This chapter starts with the brief literature review related to the advancements made in the field
of SAR polarimetry and its applications. Now SAR polarimetry is a well-known concept to all.
Therefore, the description related to basics of SAR polarimetry is avoided in this chapter.
However, the basic concepts of SAR polarimetry, polarization, and mathematical formulations
for describing scattering behaviour are discussed in Appendix-A. This chapter only meditates
upon the literature review, which is relevant to the tasks commenced in the thesis.

Firstly, the literature review of target decomposition theorems along with the need of
analysing existing decomposition theorems with and without applying the concept of
deorientation using polarimetric SAR data, has been discussed. Secondly, literatures related to
land cover classification approaches based on polarimetric SAR data have been reviewed. In
this section, the limitations of existing fixed decision threshold based classification algorithms,
and the need of further development of adaptive classification algorithm have been discussed.
Thirdly, the application of SAR polarimetry for retrieval of soil moisture along with the brief
review of existing theoretical, empirical, and semi-empirical soil moisture retrieval approaches,
has been discussed. Based on this review, requirement for development of soil moisture
retrieval algorithm for bare soil and vegetation underlying soil by using minimum ‘a priori’
knowledge has been debated in this section. Finally, the review of theoretical concept of
possible water-ice deposits on the surface of Moon has been presented. This section comprises
the review of work exhibiting possibility of water-ice deposits on lunar surface using radar-
based and other methods, like spectroscopic methods. Thereafter, based on the review of
aforesaid SAR polarimetric applications, this chapter has been concluded for further scope of

research.

2.1. Review Related to Background and Advances in SAR

Polarimetry

The ability of microwaves to provide radio-physical information of ground and beneath the
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ground make them suitable choice for extracting information from various land covers. This
information extraction is performed by both active and passive way. Active illumination system
IS equipped with a transmitting system, and a receiving system to accept the signal
backscattered from the illuminated surface, unlike passive illumination system, which makes
use of radiation naturally emitted (i.e. sunlight) or reflected by Earth [345]. Passive microwave
sensors, like radiometers are used in several applications, such as meteorology [198, 235, 397-
399], oceanography [21, 288, 300], and hydrology [22, 366]. Although passive sensors
(infrared and visible radiometers) provide fine surface spatial resolution and excellent spectral
details, their use is limited due to lack of independent source of radiation, and their inability to
penetrate cloud and fog covering the area of interest. Active microwave sensors belong to
imaging and non-imaging category. Non-imaging microwave sensors are scatterometer and
altimeter, which are used in several applications, such as soil moisture estimation, rainfall
estimation, weather forecasting, hydrological modelling, etc., [31, 104, 154, 222, 287, 302, 303,
312, 342, 343, 346]. However, their only drawback is that they provide information for
particular area and specific land cover type. Active imaging sensors, mostly realized by radar
systems, overcome these limitations. In conventional radar systems, usually referred to as Real
Aperture Radars (RARS), the information about the target was taken in the form of magnitude
only, and any information on phase was ignored due to static radar system. The main limitation
of these sensors is the poor azimuth resolution. The only solution to this problem was to use
short radar pulses of very high energy achievable only with very large aperture antenna, which
was practically not feasible. The development of Synthetic Aperture Radar (SAR) sensors was
a revolution in this field. In SAR system, forward motion of actual antenna is used to
synthesize a very long antenna, and thus, high resolution is achieved even with antenna
structure of reasonable size. SAR systems, being coherent, are capable of recording both
magnitude and phase values. This quality of SAR sensors leads to the concept of SAR
polarimetry [277].

SAR polarimetry is the science of acquiring, processing, analysing, and characterizing the
polarization state of electromagnetic (EM) wave. The time-varying behaviour of transverse EM
wave leads to the formation of an ellipse in the plane perpendicular to propagation, which is
one of the most significant phenomenon affecting the interaction of EM wave with any object
and medium of propagation. The propagation of EM wave through a medium having varying
refractive index, changes the polarization state of EM wave upon reflection. This polarization
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transformation behaviour is designated as Ellipsometry in optical imaging, and Polarimetry in
radar imaging [165, 219, 377].

SAR polarimetry exploits the concept of polarization to describe the change of
polarization state by measuring backscattered wave through vector measurement in order to
utilize full polarization information. This allows measurement of both amplitude and phase of
backscattered wave for any assumed combination of transmitted and received polarization. In
linear basis, four complex polarization combinations are calculated- HH, HV, VV, and VH for
each resolution cell of image [122]. Due to this full vector nature of linearly polarized
components, it is possible to retrieve components in any other polarization basis i.e., circular
and elliptical, by using simple mathematical formulations as discussed in Appendix-A. Thus,
advantages of any polarization can be exploited by fully polarimetric SAR data for
discrimination of different targets because of dependence of backscattering coefficient on
polarization. Although a distributed target represents several scattering mechanisms, one of the
scattering mechanisms—surface, double-bounce, or diffuse/volume scattering, always
dominates [245], which can be described by different polarizations. For VV backscatter greater
than or equal to HH backscatter, and RL backscatter (circular cross-polarized) significantly
greater than RR (circular co-polarized) backscatter, represent dominant surface scattering (e.g.,
in bare soil) [27]. Linear cross polarized returns (i.e., HV) represent multiple scattering from
rough surfaces, or volume scattering due to depolarization of targets [165]. Linear cross-
polarized backscatter (HV) and depolarization ratios (HV/VV, HV/HH) maximize the
difference between surface and volume scattering, and therefore, have the capability to
discriminate bare soil and vegetation. The low values of HV/VV and HV/HH represent
scattering from smooth surfaces, like bare soil [306]. For double-bounce scattering, HH
backscatter is larger than VV and HV backscatter, and there is a very small difference between
RR and RL backscatter [27, 162]. Thus, concept of SAR polarimetry helps in identification,
detection, and classification of various targets.

The era of radar polarimetry was started in late 19" century and early 20" century. In
1920s, Wiener described the polarization properties of EM waves, which inspired Jones to
introduce 2x2 Jones forward scattering matrix [182], and Mueller to introduce 4x4 averaged
power density Mueller matrix for forward scattering case. At the inception of dual polarized
antenna technology in 1940s [185], Sinclair claimed that transmitted and received polarization
state are different, and therefore, he developed 2x2 Sinclair matrix for representing radar cross-
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section of coherent targets by assuming four different combinations of transmitted and received
polarization states [339]. Advancing the work of Deschamps [102], who emphasized on using
Poincare sphere as a tool for representing polarization states of EM wave (Figure A.3 in
Appendix-A), Kennaugh formulated the radar backscattering concept by defining
“characteristic polarization states” for the components of Sinclair matrix, and developed 4x4
averaged power density Kennaugh matrix [185] for backscattering scenario. In this regards,
subtle but remarkable contributions were made by Deschamps [102], Rumsey [320], Graves
[156], Kales [183], Copeland [83] etc., until 1960 when Huynen introduced the concept of
“Phenomenological Approach to Radar Polarimetry” [170, 171] in backscattering case. He
modelled nine physical parameters, which became significant tool in identification and
determination of geometrical, electrical, and physical characteristics of targets. For defining the
characteristic polarization states of various targets, he developed the theory of “Polarization
Fork” or “Huynen Fork” [171] elucidating that a fork is formed on Poincare sphere by joining
co-polarized and cross-polarized nulls to the center of sphere. After this scientific contribution,
the field of radar polarimetry was reinvented with keen interest of researchers all over the
world.

In 1980s, lonnidis revealed that polarization helps in segregating radar response from
targets and background clutter [173]. Another concept of polarization wave synthesis and
polarization signature was given by van Zyl for implementation of polarimetric imaging radars
[396]. Polarization signatures were used to graphically represent the radar cross-section in
terms of ellipticity and orientation angles of transmit antenna, and to describe complete
polarimetric behaviour of scattering properties [116, 437, 438]. In 1980s and 90s, remarkable
contributions were made by Boerner and his co-researcher by augmenting the work of
Kennaugh and Huynen in target decomposition [3, 40, 95, 134], proposing several polarimetric
observables, such as polarization ratios [38], inverse problems for defining polarimetric
properties of scattering [37, 39, 134], and target identification approaches [3, 37, 39, 192-194].

The field of polarimetry remained undervalued until the end of 1980's, due to
technological constraints, restricting practical application and implementation of polarimetric
radars. SAR polarimetry reached at pinnacle in 1985 with the development of first polarimetric
airborne SAR launched by National Aeronautics and Space Administration (NASA) and Jet
Propulsion Laboratory (JPL). It was a L-band (1.225 GHz) quad polarimetric SAR providing

the measurement of all the components of scattering matrix [84]. Since then various airborne
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SAR sensors have been developed, such as Environmental Research Institute of Michigan
(ERIM) at P-, L-, C-, and X-bands; Consolidated vultee aircraft (Convair-580) at X-, C-, and
P-bands; Experimental Synthetic Aperture Radar (ESAR) at P-, L-, and S-bands; Phased Array
Universal SAR (PHARUS) at C-band; Electromagnetics Institute’s SAR (EMISAR) at L- and
C-bands; Polarimetric and interferometric Synthetic Aperture Radar (PiSAR) at L-band; and
ONERA’s RAMSES (Radar Aéroporté Multi-spectral d'Etude des Signatures) at P-, L-, S-,
C-, X-, and Ku-bands [219].

The era of space-borne polarimetric SAR was marked in 1994, with the launch of Shuttle
Imaging Radar-C/X band SAR (SIR-C/X) on-board the Space Shuttles having capability to
measure single polarization at X-band and quad polarization at L- and C- bands. Earlier to this
endeavour, several SAR sensors were launched, such as single polarimetric (HH) SEASAT at
L-band in 1978; single polarimetric (HH) SIR-A and SIR-B at L-band in 1981 and 1984,
respectively; single polarimetric (VV) European Remote Sensing (ERS) satellites: ERS-1/2 at
C-band in 1991/1995; single polarimetric (HH) Japanese Earth Resources Satellite-1 (JERS-1)
at L-band in 1992; single polarimetric (HH) RADARSAT at C-band in 1995; and single/dual
polarimetric Environmental Satellite/Advanced Synthetic Aperture Radar (ENVISAT/ASAR)
at C-band in 2002. In 2006, new beginning of fully polarimetric space-borne SAR systems was
started with the launch of single/dual/fully polarimetric ALOS (Advanced Land Observing
Satellite) PALSAR (Phased Array L-band Synthetic Aperture Radar) at L-band. Since then
several fully polarimetric SAR satellites have been launched which are X-band SAR-Lupe in
2006; C-band RADARSAT-2 in 2007; X-band Constellation of small Satellites for
the Mediterranean basin Observation (Cosmo) SkyMed in 2007; X-band TerraSAR-X in 2007;
X-band TanDEM-X in 2009 [219, 280]. In 2012, a new satellite named Radar Imaging
Satellite-1 (RISAT-1) has been launched, which has the capability of imaging in linear and
circular (or hybrid) polarizations at C-band [251].

From architectural viewpoint, fully polarimetric SAR systems appear more complex as
compared with single and dual polarimetric SAR. Despite several advantages, certain
limitations exist in fully polarimetric systems, such as increased pulse repetition frequency
(prf), reduced coverage (swath), increased complexity, increased cost, requirement of twice the
average power, and limited choice of incidence angles [63]. Thus, the concept of partial
polarimetry (compact/hybrid polarimetry) was introduced, which was based on the

transmission of non-linear polarization (linear 45° or circular) and reception of linear
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polarization coherently [308, 309, 355, 356]. This unique architecture is considered to provide
several advantages, like wider swath coverage, reduced system complexity (mass and power
consumption), absence of range ambiguity and Faraday rotation, which not only is an optimum
design for exploring planetary surfaces but also is a worthy choice for future Earth monitoring
SAR missions. It is difficult to replace quad polarimetry by hybrid polarimetry because of
complete polarimetric information provided by fully polarimetric SAR systems [63]. However,
it has been reported by Panigrahi et al. [289], that information obtained from both quad and
hybrid polarimetric systems is comparable, and hybrid polarimetric SAR systems are required
in situations where wider swath coverage is required, like in astronomy and planetary
exploration [360]. A complete comparison of these systems is provided by Touzi [375]. Based
on the concept of hybrid polarimetry, polarimetric imaging radars outside the Earth orbit are
Miniature Synthetic Aperture Radar (MiniSAR) on-board Chandrayaan-1 [357] and Miniature
Radio Frequency (Mini-RF) on-board Lunar Reconnaissance Orbiter (LRO) [311] for
characterization of lunar surface. Earth observing hybrid polarimetric satellite is RISAT-1
[251].

One inherent problem occurring in SAR images is presence of speckle. For point
scatterers, scattering matrix completely describes the scattering response associated with target.
However, for distributed scatterers, scattering matrix becomes random due to coherent nature
of SAR imaging systems. This non-deterministic behaviour of SAR data is known as speckle
[208]. Speckle noise causes granular appearance of SAR images, and thus, making it difficult
to interpret, analyse, and classify SAR data for discrimination of various targets. Assuming the
multiplicative nature of noise, several speckle filters have been developed, namely Lee’s filter
based on local statistics [206, 208] and refined local statistics [207], Frost’s filter [141, 142],
Kuan’s filter [197], Sigma filter [209], Gamma filter, and Maximum a Posteriori (MAP) filter
[196]. The applicability of these filters is limited to single polarized SAR data. Therefore,
polarimetric filters, which are able to preserve fully polarimetric information and statistical
relationships between individual polarizations, have been developed. Some of the notable
filters are, Boxcar or Multilook filter, Lee filter [216], Refined Lee filter, Scattering Model
Based filter [217], Wishart Gamma MAP filter [232], Distribution Entropy MAP (DE MAP)
filter [263], Trace Based filter [136], etc. Speckles in SAR images can also be reduced by
ensemble averaging or multilook process [296]. There exist several polarimetric filters.
However, MAP filters (Wishart Gamma MAP and DE-MAP filter) work well by preserving
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polarimetric information and very acute details of SAR image [117].

A lot of research has been done in the field of SAR polarimetry in last seven decades and
still advancements are in progress on in this field. A brief review, and other theoretical and
practical aspects of SAR polarimetry [35, 36, 41, 377] are described in Appendix-A.

2.2. Review Related to Target Decomposition Methods

With the advancements in SAR polarimetry, the requirement of evaluating and understanding
the scattering phenomenon of ground targets and determining their dominant characteristics,
was increased. Due to amalgamation of various scattering mechanisms in backscatter response
from distributed targets, it was required to separate these scattering mechanisms in order to
infer geophysical properties of those targets. Therefore, the concept of target decomposition has
been devised, which plays an important role in land cover monitoring. The parameters
extracted from decomposition theorem have extensively been used by many researchers for
analysing the characteristics of various land covers. Decomposition methods represent average
scattering mechanism as the weighted sum of distinct independent scattering mechanisms
which are modelled by physical interpretation [377]. The idea of target decomposition was
proposed by Huynen [171], which had its origins in the work of Chandrashekhar, who
exhibited that scattering by a cloud of small anisotropic elements can be decomposed into the
summation of a Rayleigh scattering and randomly polarized noise [62]. Since then, great
interest has been shown in this field, and these decomposition methods are classified as
follows:

1. Coherent decomposition methods.

2. Target dichotomy based decomposition methods.

3. Incoherent decomposition methods.
1.  Coherent decomposition methods

Coherent target decomposition performs the decomposition of the first-order matrix i.e.,

scattering matrix for characterization of the scattering from coherent or point targets only. This
can be possible only in the case, when both incident and scattered EM waves are completely
polarized. Some common coherent target decomposition techniques are Pauli, Krogager, and
Cameron decompositions. The well-known Pauli decomposition forms the basis of coherency

matrix by expressing scattering matrix in the form of Pauli vector by using Pauli basis [78, 152,
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322, 323]. This decomposition method works well for detection of natural targets, whereas it is
difficult to detect man-made objects by this method [439]. The Krogager decomposition
performs the decomposition of symmetric first-order scattering matrix into three coherent
components exhibiting the scattering from spherical, dihedral, and helix scatterers [195].
Hence, it is also called SDH (Sphere-Diplane-Helix) decomposition. This decomposition
method satisfactorily distinguishes man-made targets from natural targets, but exhibits inability
to differentiate two different types of man-made targets [439]. Cameron decomposition
decomposes the scattering matrix into six canonical scattering mechanisms including dipole, di-
plane, trihedral, quarter-wave device, cylinder, and narrow di-plane [51]. This method works
well for symmetric or point targets due to maximization of symmetric scattering component.
However, the performance of this decomposition method degrades in the presence of
asymmetric targets [439]. The detailed description of these decomposition methods has been
given in [219, 439]. The additive nature and non-requirement of estimating second-order matrix
i.e., target coherency or covariance matrix, make aforesaid decomposition methods prone to
speckle noise, which is multiplicative in nature. Therefore, a multiplicative decomposition
termed as Polar decomposition was proposed for reducing the effect of speckle noise [55]. The
major problem with aforesaid decomposition methods is their inability to provide unique and
basis-invariant decomposition without having prior knowledge [80, 219]. Therefore, an
improvement in Cameron decomposition was proposed by Touzi [374], to develop unique and
basis-invariant coherent decomposition method for detecting scattering from coherent (or pure)
targets.
2.  Target dichotomy based decomposition methods

Huynen decomposition falls in this category of decomposition. Huynen postulated the
concept of phenomenological theory of radar targets for extracting physical and geometrical
properties of coherent radar targets by nine ‘Huynen parameters’[171]. He proposed the
concept of target dichotomy by expressing Mueller matrix (or Kennaugh matrix) as the
summation of single target (coherent or point target) and N-target (distributed target). The
retrieval of coherent target was easy. However, in case of distributed targets (section A2.4 in
Appendix-A), the retrieval was difficult due to their non-symmetrical and time-invariant nature
caused by noise or clutter in the environment. Thus, it was required to perform statistical
averaging in order to obtain expected value of Mueller matrix. Branes-Holm decomposition

was based on this concept [219]. This decomposition was easy and had physical basis.
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However, limitations of this decomposition method were its non-unique, unstable nature, and
rotation-invariance of Mueller matrix corresponding to N-target. Some modifications have been
introduced in order to improve the Huynen decomposition. For example, Yang modified
Huynen decomposition by simple transform of Kennaugh matrix [430], Li proposed
generalized concept of Huynen target dichotomy [224], and You proposed the method of
decomposing Kennaugh matrix in order to extract coherent targets from non-coherent targets
[431].

3. Incoherent decomposition methods

Incoherent target decomposition deals with the decomposition of coherency or covariance
matrix (second-order matrices derived from scattering matrix). The decomposition of
polarimetric SAR covariance/coherency matrices has received significant attention in
extraction of geophysical parameters due to its ability to emphasize radar backscatter from
particular scattering mechanism. These matrices characterize the scattering process from
distributed targets. Consequently, incoherent target decomposition deals with partially
polarized case. Incoherent target decomposition methods can be categorized in two ways:
eigenvalue decomposition methods [80, 81, 374] and model based decomposition methods [8-
10, 12-14, 69-71, 88-90, 138, 213, 330, 344, 394, 395, 425-428, 440, 442].

Cloude and Pottier [77, 80] proposed eigenvalue decomposition for determining the
dominant scattering by extracting largest eigenvalue. He introduced four parameters, namely,
anisotropy ‘A’, entropy ‘H’, alpha ‘a’ (scattering type parameter), and beta ‘4’ (orientation
angle) for expressing dominant scattering mechanism among volume, double-bounce, and
surface scattering components. Therefore, these parameters emerged out as standard tool for
target identification and characterization due to their ability of describing physical
characteristic of targets [81, 132, 215]. Holm proposed a hybrid decomposition method based
on eigenvector analysis [77] and Huynen decomposition [171], by expressing average
scattering mechanism as a summation of scattering from pure target, mixed target, and noise
[169]. The eigenvalue decomposition method proposed by Cloude was unique, however, some
approximations required to be undertaken for interpretation of scattering mechanisms, as
indicated by van Zyl who used eigenvector analysis of hermitian covariance matrix to express
scattering from azimuthally symmetric media, like natural terrain [393]. Touzi indicated the
change in some of the parameters, like B with change in polarization basis for asymmetrical

targets. In order to overcome this limitation, he developed a roll-invariant decomposition
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method by performing eigenvector analysis of scattering vector [374, 376]. A theoretical
evaluation of multilook effect indicated that entropy was underestimated, anisotropy was
overestimated, and alpha was either underestimated or overestimated due to speckle effect
[233]. Therefore, an algorithm for removing this bias was proposed in [211]. An approach
providing an alternative to entropy and alpha was given in [301].

Second category of incoherent decomposition was model based decomposition. The first
model based decomposition was proposed by Freeman and Durden [138] for expressing
average scattering mechanism as the linear sum of three physically based independent
scattering mechanisms, namely volume, double-bounce, and surface scattering. This method
works well for detection of natural targets such as forests, flooded and non-flooded regions,
etc., [219]. The limitation of this approach is assumption of reflection symmetry condition,
which results in occurrence of negative powers. In order to avoid this limitation, Yamaguchi
[426, 428] and Yajima [425], proposed four component model based decomposition by adding
another model representing helix scattering, as obtained from complex man-made targets in
urban area. This method is quite good, and is able to detect both natural as well as man-made
targets. Still, a problem occurs due to ambiguous nature of scattering in oriented building
blocks of urban area, which exhibits volume scattering instead of double-bounce scattering. In
order to overcome this limitation, four component decomposition with rotation of coherency
matrix (deorientation process) was proposed by Yamaguchi [427]. Several modifications in
three and four component model based decomposition methods have been made in terms of
using different models of volume scattering, rotation of coherency matrix, unitary
transformation of rotated coherency matrix, and generalization of decomposition methods [4, 8-
10, 13, 14, 69, 71, 88-90, 213, 328, 344, 394, 442].

A large number of decomposition methods have been developed [14, 69, 80, 88, 89, 195,
213, 284, 344, 394, 425, 430, 440, 442] due to their popularity and their dependence on
physical modelling of scattering mechanisms. Still there is need to analyse these decomposition
methods and the effect of deorientation, quantitatively and qualitatively, for enhancement of the

scattering mechanisms of various land covers.

2.3. Review Related to Land Cover Classification Methods

Classifying remotely sensed data is one of the most popular ways of land cover monitoring.

Researchers have used classification methods for various applications involving land cover
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monitoring, such as crop classification, forest mapping, oil spill detection, sea ice monitoring,
etc. The intent of the classification process is to categorize all the pixels in an image into one of
the several land cover classes. This categorized data may be used to produce thematic maps of
the land covers present in an image. There are two main types of classification techniques,
namely parametric and non-parametric. Parametric classifiers are again of two types:
supervised and unsupervised. Supervised classification involves using ‘a priori” knowledge of
data to “train” the classifier for identifying categories in an image [227]. Supervised methods
require the user to collect samples to “train” or teach the classifier for determining decision
boundaries in feature space, and such decision boundaries are significantly affected by the
properties and the size of the samples used to train the classifier. On the other hand,
unsupervised classifiers “learn” the characteristics of each class (and possibly even the number
of classes) directly from the input data. Decision trees [283, 338, 433], artificial neural
networks [26, 64, 147, 235, 347-350], or Support Vector Machines (SVM) [2, 302, 441] fall
under the second category of classification, i.e., non-parametric classification, which does not
involve estimation of statistical parameters prior to classification [227].

The classification of polarimetric SAR data has been performed by using several
approaches. The initial work in classification was done by considering probability distribution
function (pdf) of polarimetric SAR data. For polarimetric SAR (PolSAR), data it has
commonly been assumed that the scattering coefficients measured at different combinations of
transmitted and received polarizations are jointly Gaussian [155]. Therefore, until mid-90's
classification of remotely sensed data was performed through Gaussian based conventional
statistical techniques. For example, Kong [219] developed a supervised classification method
for single-look polarimetric SAR image by estimating distance measure based on maximum-
likelihood test. This classification method was extended by using normalized polarimetric SAR
image by Yueh et al. [434], and Lim et al., [233]. Further extension of this approach was
carried out by Lee et al., for multi-look polarimetric SAR image assuming Wishart distribution
[214]. First unsupervised classification method was introduced by van Zyl, which was based on
scattering mechanisms [392]. Rignot et al., developed a supervised classification method using
conditional distribution combined with Markov Random Field (MRF) and Maximum A
Posteriori (MAP) estimate [317]. Rignot et al. also developed unsupervised classification
method based on fuzzy clustering [318]. Cloude and Pottier proposed unsupervised
classification method [81] based on parameters obtained by eigenvalue decomposition (H/A/c).
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Lee et al., extended this algorithm by proposing iterative Wishart classifier [215]. Ferro-Famil
further extended this approach for multi-frequency and interferometric polarimetric SAR image
[131, 132]. Recently, Daboor et al. developed an unsupervised method by measuring Chernoff
distance assuming Wishart distribution [92]. The estimation of distance measure was performed
in several classification approaches, like Fuzzy c-mean classification [113], neural network
method [65, 384], expectation maximization method [186], and wavelet transform [112].

The aforementioned traditional classification approaches perform well; however, their
general ability for resolving interclass confusion is limited. Pixel-wise analysis of SAR imagery
is generally complicated due to the presence of speckle, and requires statistical modelling to be
employed. It is well known that in some circumstances, radar complex scattering coefficients
are non-Gaussian in distribution. For this reason, various non-Gaussian models have been
proposed to represent SAR data, and many of these have been extended to the polarimetric
SAR (PolSAR) case. The multivariate K-distributions [221, 262, 434], G-distributions [139],
and K-Wishart distribution [109], have been successful for modelling PoISAR data, and
highlighting the importance of non-Gaussianity.

The classification of SAR images have been performed by using target decomposition.
An iterative classification based on combined use of three component model based
decomposition and eigenvalue decomposition was proposed by Li-wen et al. [223]. A decision
tree classification approach based on decomposition methods (Pauli, Barnes, Holm, Korgager,
Freeman, and H/A/a decompositions), SAR interferometry, and object oriented analysis, has
been proposed by Qi et al. [305]. An unsupervised method based on scattering similarity using
H/A/a. decomposition has been proposed by Chen et al. [68]. Bhattacharya et al. have proposed
generic SVM classifier based on Touzi decomposition [25]. Shimoni emphasized on using
different methods of decomposition for classification purpose because each decomposition
method highlights different land cover [334].

Another way of classifying polarimetric SAR images is knowledge-based classification
methods, which use backscattering coefficient and their ratios of different polarizations for
segregation of different land covers [27, 106, 129, 130, 250, 293, 306, 351, 386]. In these
methods, the threshold of backscattering coefficients and their ratios for classification are
obtained by experimental evaluation and validation. The advantage of these classification
approaches is that they do not require prior assumption about distribution of SAR data. Some
other polarimetric parameters, such as Ratio Vegetation Index (RVI) [12, 187], correlation
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coefficient, Cross Polarization Ratio (CPR) [380], Weighted Polarization Sum (WPS) [85],
Normalized Difference Polarization Index (NDPI) [435] etc., have been used for segregating or
identifying different land covers. These parameters can be used in knowledge-based methods
for improving their performance.

A good progress in SAR image classification using textural measures has been made. In
context of SAR image classification grey level co-occurrence probability based texture
measures [121, 172, 319, 441], wavelet based texture measures [61, 74, 133, 338], random field
models [137, 317], and fractal based textural measures [2, 157, 290, 364] have been vastly
used. Other textural features, like semivariogram [54] and lacunarity [166] have also been used
for contextual classification of SAR images.

In recent years, various classification methods have been developed. Some of them are,
region-based unsupervised Wishart classification [421], classification based on Collective
Network of Binary Classifier (CNBC) based on divide and conquer approach [189],
Polarimetric Iterative Region Growing with Semantics (PollIGRS) classification based on
Wishart distribution [432], statistical classification model based on Spherically Invariant
Random Vector (SIRV) model [135], spectral graph partitioning based classification [120],
Radial Basis Function (RBF) based supervised classifier [172], super-pixel based contextual
classification method having adaptive number of classes [229], a contextual classification based
on multi-scale modified Pappas adaptive clustering and adaptive Markov Random Field [265],
and supervised classification method by integrating colour as a visual feature extracted from
pseudo-colour coded images obtained from decomposition [385, 386]. Some machine learning
methods, like adaboost [180, 331] and random forest [390, 444] methods, have also been
incorporated in SAR image classification.

Most of the above mentioned classification approaches either require estimation of
statistical distribution [215], or use complex mathematical and image processing methods, like
neural network, SVM, etc., except knowledge-based methods [27, 106, 129, 130, 250, 293,
306, 351, 386]. There exist some other knowledge based methods depending upon data-mining
techniques using optical data, which are proved to be efficient classification methods [257-259,
282]. The statistics based and target decomposition based classification methods are pixel
based methods, which exhibit high computational complexity, and have limited option for
incorporating more polarimetric characteristics [444]. After reviewing these methods,
knowledge-based methods provide good prospect for classification due to their dependence on
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polarimetric SAR observables. The only limitation of this approach is the use of fixed value of
polarimetric variables used in classification procedure, which hinders the performance of these
classifiers in case of their application in different study area with different environmental
condition and different sensor parameters of SAR image. A classification approach based on

adaptive threshold would provide solution to this problem.

2.4. Review Related to Retrieval of Soil Moisture with SAR Data

Retrieval of Earth’s surface parameters with SAR data is gaining so much attention by
researchers due to sensitivity of radar backscatter to surface roughness, soil moisture, surface
dielectric constant, and other biophysical parameters, like vegetation biomass, plant water
content, etc., [412]. This is possible because of capability of EM wave to penetrate into
surfaces, and gather their electrical and physical properties in terms of received radar echoes
i.e., backscattering coefficient. Among these parameters, soil moisture is very important
parameter because of its influence in several environmental applications [43, 101, 110, 111,
246, 327]. Retrieval of soil moisture is still very challenging because of perplexing effect of
roughness and vegetation cover. The challenges in retrieval of soil moisture by SAR data occur
due to complexities involved in developing robust methods, considering spatial and temporal
variability of soil moisture [176].

Traditionally, soil moisture represents water contained in unsaturated zone (known as
vadose zone) of aeration caused by pores within soil [45]. Technically, soil moisture is defined
as the ratio of volume of water in soil to the total volume of soil (including water). It is known
as volumetric soil moisture (cm®cm?) [327]. Soil moisture is usually measured at the top
surface of soil (first 5 cm of soil depth) [151], because of increase in attenuation of EM wave
with increase in soil depth.

Soil moisture is directly related to its dielectric constant, which varies significantly with
change in moisture content of soil medium. The dielectric constant in turn is related to radar
backscattering coefficient, which inspired researchers to develop soil moisture retrieval
algorithms using backscattering models [388]. The soil moisture retrieval algorithms by using
radar backscatter can be categorized as: theoretical, empirical, and semi-empirical. The brief

review of work related to these categories is presented below:
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1.  Theoretical models

Theoretical models are physical models having their basis in diffraction phenomenon
related to interaction between EM wave and observed media. These models provide
mathematical-physical relationship of backscattering coefficient as a function of radar
configuration (polarization, frequency, and incidence angle) and surface characteristics
(dielectric constant and surface roughness: standard deviation of the height s and the correlation
length 1) [145]. Due to lack of direct solution for randomly rough surface, it was required to
take approximations in theoretical models. Therefore, theoretical models are generally
restricted to be applied for limited range of surface roughness.

The standard theoretical models are Kirchhoff Approximation (KA) model, Small
Perturbation Model (SPM), and Integral Equation Model (IEM). The KA model uses Stationary
Phase Approximation also known as Geometrical Optics (GO) model for characterizing very
rough surface, and Kirchhoff Scalar Approximation also known as Physical Optics (PO) model
for defining medium rough surface [387]. Based on the formulations of KA, Tangential Plane
Approximation was performed to characterize both slightly rough and very rough surfaces
[103]. The SPM model was applicable for smooth surfaces only. The gap between GO and PO
was filled by Small Slope Approximation (SSA) [404]. Fung proposed Integral Equation Model
(IEM) in which only surface scattering terms were considered, neglecting second-order
statistics [145]. The modification of this approach was given by Fung et al. by introducing
multiple scattering effects in KA [144]. IEM approaches to GO for very rough surface. The
validity conditions of this model, covering wider range of surface roughness and simple
approximations, provide rather easy yet accurate solution, which became inspiration for
development of various versions of IEM, namely second version of Integral Equation Model
(IEMM) [73], Integral Equation Model for Second-Order Multiple Scattering (IEM2M) [7],
Improved Integral Equation Model (IIEM) [146], and Advanced Integral Equation Model
(AIEM) [66, 419, 446], by exhibiting improvement in roughness description. These integral
equation models approach GO for very rough surface and high frequency range (X- and C-
bands). In case of slightly rough surface and low frequency (L- and S-bands), IEM approaches
SPM [420]. Although a lot of development has been made in IEM, the original model is
generally preferred by researchers [19].

The above mentioned theoretical models have been utilized by several researchers for
retrieval of soil moisture [46, 228, 353, 354, 401, 407, 436]. The dielectric constant, and hence
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soil moisture, have been retrieved by mathematical inversion of these backscatter models.
However, the inversions of these models require certain restraining assumptions because of
difficulty in finding closed form solution [294, 411]. Therefore, dielectric constant and surface
roughness cannot be determined individually without using ‘a priori’ information. The
retrieval of soil moisture is difficult with theoretical models by using single polarized, single
frequency, and singl-pass SAR data [403]. Due to development of these models in laboratory
environment, sometimes inconsistent results are obtained for natural surfaces [19], because of
spatial variability of surface roughness.

2. Empirical models

Empirical models require large amount of experimental soil moisture and corresponding
backscatter data to develop empirical relationship by regression analysis in order to retrieve soil
moisture. Various sophisticated empirical models have been developed for retrieval of soil
moisture in bare soil region [17, 255, 409, 410, 445]. The advantages of these models are their
simplicity and their practical applicability, which allow them to be used in vegetated area for
retrieval of soil moisture [239, 367, 381].

Single frequency and single polarization SAR data does not produce satisfactory results
of soil moisture in most circumstances [405]. The coefficients of empirical relationships
generally vary with change in study area, time, and different data sets [115]. Thus, data and
site dependency of these models are the major limiting factors, which restrict their application
on large scale unless surface roughness is neglected.

3. Semi-empirical models

Semi-empirical models provide a compromise between complexity involved in
theoretical models and simplicity related to empirical models. Unlike empirical models, semi-
empirical models start with physical basis, and then, simplify theoretical backscattering models
by simulation or experimental data sets. The most popular semi-empirical models were
proposed by Oh et al. [273] and Dubois et al [115]. Oh model in [143], shows limitation in
terms of incidence angle by producing erroneous results for low incidence angle particularly at
low frequency. The Dubois model is valid for medium rough surface (ks<2.5) and incidence
angle greater than 30° [115]. Other semi-empirical models are developed by Shi et al. [333],
Loew and Mauser [231], Song et al. [353], and Oh et al., [274], etc. The advantages of semi-
empirical models are their transferability to different study area and soil conditions. However,

their applicability is limited to bare soil or sparsely vegetated soil. These methods produce
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inconsistent results in presence of vegetation by underestimating soil moisture [19].

2.4.1. Soil Moisture Retrieval under Vegetation Cover

The retrieval of soil moisture is complicated in vegetated areas due to scattering and attenuation
effects take place in canopy layer, and it changes with the variation in dielectric (e.g.,
vegetation water content) and physical characteristics (e.g., structure and type) of vegetation
[191]. The vegetation canopy typically represents multiple scattering effect because of direct
scattering from vegetation components, direct scattering from underlying soil attenuated by
canopy, and double-bounce scattering by interaction between trunk and ground (soil) [23]. The
retrieval of soil moisture under vegetation cover requires isolation of scattering contribution of
underlying soil from multiple scattering of vegetation [33, 191].

In order to measure soil moisture under vegetation cover, models using Radiative
Transfer (RT) theory have been proposed [23, 98, 105, 228]. One of the most popular RT
model is MIchigan Mlcrowave Canopy Scattering (MIMICS) model proposed by Ulaby et al.
[389], which provides first-order solution of RT for three layer model consisting ground layer,
trunk layer, and canopy layer. Several algorithm have been developed by using MIMICS model
for retrieval of soil moisture under vegetation cover [98, 105, 228, 362]. These models are
difficult to invert because of complexity caused by additional canopy parameters.

Semi-empirical models are generally developed by using Water-Cloud model (WCM),
which exhibits vegetation layer as a cloud of uniformly distributed spherical particles [16]. The
simplicity of WCM, motivated several researchers to model vegetation scattering [6, 33, 34,
153, 226, 337, 411].

In order to implement these models, it is required to use ‘a priori’ information of
vegetation parameters, like vegetation water content, canopy height, etc., [23, 191]. Therefore,
it is difficult to generalize these models. Due to large number of parameters involved in these
models, certain assumptions (e.g., constant canopy height and surface roughness) are required
to be taken so as to reduce the number of unknown parameters [153]. These models require
parameterization of vegetation canopy, and more specifically, different vegetation classes
require separate parameterization [23, 33, 226]. Therefore, frequent field visits are required due
to spatial variability of vegetation.

Due to difficulty related to parameterization of vegetation parameters in RT based

models, change detection methods have been used for retrieval of soil moisture in vegetated
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regions [254, 260, 266, 268, 275]. The change detection methods generally assume that
temporal variability of surface roughness and vegetation parameters is large as compared to soil
moisture [255]. Therefore, change in backscatter response between repeated acquisitions of
satellite represents change in soil moisture. This assumption of time-invariance nature of
scattering from vegetation, limits the application of change detection methods for retrieval of
soil moisture.

After reviewing the related literatures, it is observed that retrieving soil moisture under
vegetation cover is still challenging and requires contemplative study. It is noticed that physical
based model may provide an alternate way to retrieve soil moisture under vegetation cover. In
literatures, it has been found that transmission line theory based impedance approaches have
been agreeably used for determining topsoil thickness [5] and burnt coal seam [368, 369]. This
method bears great potential, and therefore, it has to be explored for soil moisture retrieval

under vegetation cover with polarimetric SAR data.

2.5. Review Related to Lunar Surface Characterization

2.5.1. Theory Related to Water-Ice on Lunar Surface

The possibility of finding the evidences of water-ice deposits on lunar surface has been one of
the most controversial subjects among researchers. The subject of origin and source for
possible presence of water-ice on lunar surface has been hypothesised by several theories. One
hypothesis is that during the formation of Moon by impact between Earth and giant
astronomical Mars-sized body, early Moon got heated due to this catastrophic impact, that
might have created lunar magmatic ocean [167]. Water may be transported to Moon by
spallation process of comets, meteorites, micro-meteorites, asteroids, etc., [15, 230, 295]. The
reaction of proton in solar wind with oxygenated minerals on lunar soils may also have formed
water [75, 241, 295, 321, 365]. There are some circumstantial evidences for endogenous
sources of water-ice (or hydroxyl) in lunar soil. Recent study of volcanic glasses obtained by
volcanic eruptions (fire-fountains), has detected the possible evidences of water (specifically,
46 parts per million) within lunar magma [321]. Water (hydroxyl) has been identified in apatite
grains of basalt samples from Apollo missions [44, 242]. Lunar outgassing may also be one of
the reasons for possible presence of water [86, 87].

The postulation of cold trapped area in permanently shadowed regions was given for
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explaining the stability of possible water-ice on lunar surface [414]. The permanently
shadowed regions exist on Moon due to low obliquity caused by 1.6° tilt of lunar rotational axis
with respect to normal to the ecliptic [15]. Therefore, during rotation of Moon, deep craters in
polar region would not receive sunlight at all for billions of years. This means that floor and
inner walls of these craters would remain in permanent shadow, which would result in very low
temperature (<100K) inside these craters. Water molecules brought on the surface of Moon
may undergo destructive phenomena, like photo-dissociation [256], meteoric bombardment
[15], or solar wind sputtering [204]. However, there is a possibility that some of the molecules
might eventually reach to permanently shadowed regions by ballistic trajectories, and got
trapped in these cold dark regions [15]. Still, there was disagreement with this theory that
water-ice deposits may remain stable in these cold-traps. Therefore, thermal analysis was
performed by several researchers, who indicated that in some of the Polar Regions on Moon,
temperature could be as low as 26 K [15, 204, 256], which is suitable for water-ice to remain
stable. Still, questions arose about evaporation rate of water-ice in these cold-dark permanently
shadowed regions. Based on equation given by Watson [414], Butler [48] suggested that it
takes billions of years to evaporate 1.0 centimetre cube of water-ice at 100 K. McGovern has
shown that very large area on both Polar Regions of Moon exist in permanent shadow [243],

where possibility of water-ice would be high.

2.5.2. Review of Work Related to Finding the Possible Existence of Water-

Ice Deposits on Lunar Surface

There have been several missions to Moon for finding possible presence of water-ice deposits
on its surface. First radar-based mission to Moon was NASA’s Clementine bistatic radar
launched in 1994. It was a circularly polarized bistatic radar, by which it was postulated that
water-ice depoists exhibit two chracteristics. One was high same sense (SC) to opposite sense
(OC) circular polarization, or high circular polarization ratio (uc). Second property was
Coherent Backscatter Opposition Effect (CBOE), which cause uc to become maximum at
bistatic angle £=0° [270]. Based on this concept, Nozette indicated the possible presence of
water-ice in paermanent shadowed region of Shakleton crater in lunar South Pole [271]. Later,
contradictory results were obtained by Arecibo radar, a bistatic circularly polarized radar at
fixed bistatic angle g of 0.37°. Arecibo radar exhibited high uc in ejecta of young craters in

South Pole of Moon. Thus, it was claimed that high value of xc in South Polar region of Moon
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is caused due to surface roughness not by water-ice [53, 361].

A ray of hope was shown by the results of Lunar Prospector Neutron Spectrometer
(LPNS), which indicated the presence of excess hydrogen by measuring low level of epithermal
neutron flux within 0.5 m surafce of both the lunar poles [126-128]. The results of LPNS were
validated by Lunar Explorer Neutron Detector (LPND) on-board Lunar Reconnaissance Orbitor
(LRO) mission [240]. Later, Lunar Crater Observation and Sensing Satellite (LCROSS)
crashed the Cabeus crater of South Polar Region of Moon by spent rocket stage, and revealed
the presence of water and other volatiles by observing the debris [82]. Moon Mineralogy
Mapper (M3), a spectrometer on-board Chandrayaan-1 mission, has also detected the possible
evidences of excessive hydroxyl (OH) and water (H.0O) molecules on lunar surface [241, 295].

The spectrometers have successfully revealed the possible existence of water-ice deposits
on lunar surface [127, 241, 295]. However, from radar point of view, it is still an unresolved
problem because mixed results were obained by earlier radar based missions, Clementine and
Arecibo. In 2008, Indian Space Research Organisation (ISRO) launched Chandrayaan-1
mission carrying MiniSAR (Miniature Synthetic Aperture Radar), and in 2009 [357], National
Aeronautics and Space Administration (NASA) launched Lunar Reconnaissance Orbitor (LRO)
carrying MiniRF SAR (Miniature Radio Frequency Synthetic Aperture Radar) [311]. Both
were hybrid polarimetric SAR with transmission of circular polarization and reception of
coherent linear polarizations (Horizontal:H and Vertical:V). One of the purposes of these
missions was to image lunar surface, which may be helpful to find possibility of water-ice
deposits in permanently shadowed regions of Moon.

SAR is a powerful tool for detection of water-ice deposits because of its three important
characteristics: (1) SAR can actually “see into dark” regions of permanently shadowed areas
unlike passive sensors, which require Sun for illumination purpose [359], (ii) SAR can be used
for detecting volatile deposits underneath the surface of Moon due to penetration capability of
electromagnetic (EM) wave [59], (ii) SAR provides full polarimetric response of backscatter
from lunar surface and indicates a unique polarimetric signature (high circular polarization
ratio) from water-ice deposits which is different from surrounding regolith area [372]. As
mentioned earlier, high value of circular polarization ratio (u«) is the prime indicator for
possible presence of water-ice deposits. However, ambiguity exist due to similar response
obtained from rough ejecta region and rocky surface [261]. Therefore, contemplative studies
are needed to resolve this ambiguity.
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2.6. Conclusion

In this chapter, review of advances made in the field of SAR polarimetry and state-of-the art for
target decomposition methods, classification methods, soil moisture retrieval techniques, and
lunar surface characterization methods, have been discussed. Following conclusions have been

drawn after comprehensive study of these methods:

»  Distinct land covers describe different scattering mechanisms. Thus, characterization of
various land covers is possible by defining scattering mechanisms. For this purpose,
several decomposition methods have been developed. Model based decomposition
methods have some advantages as compared to other existing decomposition methods
due to their dependence on physical based modelling of scattering mechanisms. There is
a need to study these decomposition methods and analyse the effect of deorientation in
improving the scattering response from different land covers.

»  SAR polarimetry is a promising science for land cover characterization because of
providing fully polarimetric backscatter information of any target (or land cover). By
providing full vector nature of EM wave, SAR polarimetry enables fully polarimetric
linear scattering matrix to be synthesized into any other polarization, like circular and
linear 45° (elliptical). Therefore, by extracting different polarimetric parameters which
have strong relationship with targets, it may be possible to develop an adaptive land cover
classification method with fully polarimetric SAR data.

»  Several techniques have been developed for retrieval of soil moisture with SAR data.
These methods either require a lot of ‘a priori’ information, or behave well for the area
for which they have implemented. Some of these methods assume time invariant nature
of vegetation and are very complex. Thus, there is need to explore the possibility of
developing a soil moisture retrieval method, which may be based on physical
understanding and requires minimum or no ‘a priori’ information.

»  Spectroscopic and albedo based technique have positively indicated the possibility of
water-ice on the surface of Moon. By utilizing properties of SAR, characterization of

lunar surface can be performed, and therefore, it needs an exhaustive study.
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Chapter 3

Study of Model Based Incoherent Polarimetric
Decomposition Methods and Investigation of

Deorientation Effect

The interpretation of SAR backscattered data for identification and classification of various
land covers requires the knowledge of scattering mechanisms related to different targets. Basic
scattering mechanisms are categorized as: volume, surface, and double-bounce scattering
mechanisms. One possible way to characterize SAR data by means of scattering mechanisms is
target decomposition methods. Over the years, several types of decomposition methods have
been developed. However, model based decomposition methods have gained much popularity
due to their inclination towards description of scattering mechanisms by physical based models.
The model based decomposition expresses the coherency matrix in terms of various scattering
components (like, volume, surface, double-bounce, and (or) helix component), which is helpful
in segregation of different land covers more efficiently. In spite of this decomposition, still the
major concern is characterization and labelling of various land cover classes. Therefore, in this
chapter, comprehensive study of various model based decomposition methods has been
performed. The investigation of deorientation process, which is expected to improve the

performance of decomposition in terms of scattering behaviour, is also performed.

3.1. Introduction

Polarimetric target decomposition methods are helpful in extraction of polarimetric information
from satellite data. The polarimetric target decomposition method articulates the average
scattering mechanism as the summation of independent scattering mechanisms representing
physical phenomenon associated with them for efficient identification of various targets. Thus,
any decomposition technique decomposes the elements of scattering matrix with the objective
to provide more descriptive and discriminative information of target parameters. At present,

target decomposition can be performed by two distinct approaches, namely coherent target
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decomposition and incoherent target decomposition.

Coherent target decomposition deals with the decomposition of the scattering matrix, and
therefore, works well for characterization of coherent or point targets. These methods are prone
to complications, like speckle noise because they do not require estimating second-order matrix
i.e., target coherency (or, covariance) matrix. The examples of coherent target decomposition
techniques are Pauli [152], Krogager [195], and Cameron [51] decompositions. Incoherent
target decomposition decomposes second-order coherency or covariance matrices, and deals
with the characterization of distributed targets. There are two types of incoherent target
decomposition methods, namely eigenvalue decomposition methods [81, 284, 374] and model
based decomposition methods [8-10, 12-14, 25, 70, 71, 88-90, 213, 247, 325, 328, 329, 344,
393-395, 425-428, 431, 442]. The review of these methods has been presented in section 2.2 of
Chapter 2.

In this chapter, we have emphasized on model based decomposition methods because
these methods effectively describe the scattering mechanisms, which may be justified by their
physical interpretation. The first model based decomposition is three component model based
decomposition (TCM) that provides the decomposition of covariance (or, coherency matrix)
into three scattering components, namely, surface, dihedral (double-bounce), and volume
scattering [138]. This model assumes reflection symmetry condition (<Shh Shv >=<Sw Sh/ >=0)
due to which non-negligible powers in off-diagonal terms of covariance matrix are ignored.
This assumption resulted in occurrence of negative powers in surface and double-bounce power
terms due to overestimation of volume scattering. In order to avoid this limitation, Yamaguchi
et.al., introduced additional component called helix scattering, which is best suited to analyse
man-made structures in urban areas [425, 426, 428]. They used two volume components by
changing probability distribution function (pdf) as sine function for associated orientation
angles corresponding to horizontal and vertical distribution besides using volume component
for uniform probability distribution function as in TCM. This decomposition method is known
as four component model based decomposition method (FCM). The visual representation of all
of these scattering mechanisms is given in Figure 3.1. The concept of three component model
based decomposition was extended into multiple component decomposition by Zhang et al.
[440] with addition of helix and wire scattering to TCM. They emphasized that dihedral
structure formed by floor and walls of buildings induce double-bounce (dihedral) scattering;

complex form of man-made structures (like, bridges) induce helix scattering; and linear
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structures, like boundaries, window casings, and roof spaces induce wire scattering. In order to
avoid the occurrence of negative powers, decomposition models with non-negative eigenvalue
constraints have also been developed [394]. However, their implementation and solution

depends on rotation symmetry assumption.

(a) (b) (c) (d)

Figure 3.1:  Representation of scattering mechanisms; (a) single-bounce (surface) scattering,
(b) double-bounce scattering, (c) volume scattering, and (d) helix scattering.

In model based decomposition methods, it is observed that due to similar polarimetric
response, vegetation and oriented building blocks decompose into same volume scattering
component by FCM. Therefore, the concept of rotation of coherency matrix around radar line-
of-sight, also known as deorientation process, has been suggested to be applied prior to
decomposition in order to identify oriented building blocks correctly [210, 218, 220, 326, 424].
This concept of rotation in model based decomposition has been applied by several researchers
for improvement in scattering response [9, 71, 90, 328, 344, 427].

Various techniques for decomposition have been developed, but still the problem rests
with volume scattering model. The possible limitation of three and four component model
based scattering decomposition methods is their assumption of volume scattering model for
vegetation as canopy of thin dipoles, while vegetation has to be characterized by more complex
structure. Therefore, by extending the concept of non-negative eigenvalue decomposition [12,
394, 395], a new adaptive model based decomposition technique has been proposed by Arii et
al. [13]. In this model, generalized volume scattering component has been proposed, by not
assuming reflection symmetry condition in order to make it applicable to large range of
vegetation types. Another general model based decomposition method has been developed by

making use of variable volume scattering model [213] and adaptive volume scattering model
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based on PolInSAR coherence [70]. Recently, a general four component model based
decomposition has been proposed by double rotation of coherency matrix and utilizing
additional volume scattering component for oriented dihedral structure along with traditional
volume scattering models (for uniform, horizontal, and vertical distributions) [344].

The widespread popularity of model based decomposition methods accentuate the task of
analysing the effect of decomposition methods on scattering mechanisms of various land
covers. Therefore, in this chapter seven different three and four-component model based
decomposition methods have been analysed, in which two are without deorientation and other
five are with deorientation. These methods are (i) three component model based decomposition
(TCM) [138] (without deorientation method); (ii) four component model based decomposition
method (FCM) [425] (without deorientation method); (iii) three component model based
decomposition method with deorientation (TCMD) [210], (iv) three component model based
decomposition method with double deorientation (orthogonal rotation and unitary
transformation) and adaptive volume scattering component (TCMDDA) [90]; (v) four
component model based decomposition method with deorientation (FCMD) [427]; (vi) four
component model based decomposition with deorientation and additional volume scattering
component (FCMDA) [325], and (vii) four component model based decomposition method with
double deorientation (FCMDD) [344]. The main purpose of this study is to visualize the effect
of decomposition and deorientation on scattering response of various land covers. This analysis
may explain the influence of deorientation effect on different scattering mechanisms obtained
by various land covers. In this chapter, various quantitative analyses have been performed in
order to check the effect of decomposition and deorientation in identification of several land
covers, and for finding the possibility of using scattering components of different
decomposition methods for labelling of land covers.

This chapter is organised as follows: in the section 3.2, the description of study area,
SAR data and ground truth data is provided. In section 3.3, the mathematical models for all
elementary scattering mechanisms are presented. Section 3.4 describes the process of
orientation angle compensation (or deorientation process) and its need in decomposition
methods. Section 3.5 gives the elaborated description of three and four component model based
decomposition methods. Further, in section 3.6, several variants of model based decomposition
methods with deorientation are discussed. The results of decomposition methods and their

comprehensive analysis is reported and discussed in section 3.7. Finally, the concluding
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remarks of the analysis are given in section 3.8.

3.2. Study Area and Data Description

3.2.1. Study Area

The study of model based decomposition methods and deorientation has been performed on
city of Roorkee (Region-1) in the state Uttarakhand, India, having center latitude 29° 51' 45" N
and longitude 77° 52' 51.03"E. The study area includes various land covers such as water
(source: Ganga canal, Solani River, a rain-fed river, most part of which remains dry in
summers), urban (source: Roorkee), tall vegetation (source: dense tree cover in city of
Roorkee), bare soil and short vegetation (source: cropland and grassland).

The study has also been performed on Meerut city in the state Uttar Pradesh, India and
New Delhi, the capital city of India. The study area in Meerut city (Region-2) mainly consist of
urban, bare soil, and short vegetation regions with center latitude and longitude as 28° 58' 32" N
and 77° 42' 20" E, respectively. The study area in New Delhi (Region-3) incorporates densely
populated urban region as a major land cover having center latitude and longitude as 29° 39'

23" N and 77° 23' 30" E, respectively.

3.2.2. SAR Data

The study of decomposition methods on Region-1 (Roorkee) has been performed on fully
polarimetric ALOS PALSAR L-band level 1.1 data in VEXCEL format (Data ID-
PASL110904061711260908110063: Region-1-Roorkee) which has been acquired on April 6,
2009. The product has single number of looks in range and azimuth. The default off-nadir angle
for polarimetric acquisition mode is 21.5° and incidence angle is 24°. The data has been
provided by Earth Remote Sensing Data Analysis Center (ERSDAC).

For decomposition study on Region-2 fully polarimetric ALOS PALSAR data (Data ID-
PASL1100904231713261001150001: Region-2-Meerut) acquired on April 23, 2009, has been
taken. The acquisition of data for Region-3 (Data ID- PASL1100911101716261001150005:
Region-3-New Delhi) has been performed on April 23, 2009. Figure 3.2 shows the RGB colour
composite ALOS PALSAR image of Region-1 (Roorkee) exhibiting HH, HV, and VV as red,

green, and blue colours, respectively.
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Figure 3.2:  RGB colour composite image (HH-red, HV-green, VV-blue) of ALOS
PALSAR data (Data ID-PASL110904061711260908110063) of Region-1: Roorkee.

In this chapter, the results of Region-1 i.e., Roorkee has been reported. The results of

Region-2 (Meerut) and Region-3 (New Delhi) are shown in Appendix-C.

3.2.3. Ground Data

Based on ground truth survey performed by Global Positioning System (GPS) over Region-1
(Roorkee) on April 04, 2009, eight areas have been selected, as shown in Figure 3.2. These
areas are designated by numbers 1 to 8. Number 1, 2, and 3 are three separate portions of urban
area in the city of Roorkee titled as urban-1, urban-2, and urban-3, respectively. Number 4
represents bare ground labelled as bare soil-1. Number 5 represents tall vegetation. Number 6
denotes Ganga canal designated as water. Number 7 is a mixture of tall vegetation and short
vegetation. Number 8 is actually Solani River, which was dry at the time of acquisition in

April, 2009, and hence designated as bare soil-2.
3.3. Elementary Scattering Mechanisms

The model description of surface, double-bounce, volume, and helix scattering contributions is

as follows:
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3.3.1. Surface Scattering Model

The modelling of surface (single-bounce) scattering is performed by first-order Bragg surface
scattering model for characterization of scattering from slightly rough surfaces, which have

negligible cross-polarized components [138]. The scattering matrix for surface scattering is of

[Ss]{Rh ° } 3.1)

the form,

0 R,

where Rn and Ry are Bragg reflection coefficients for horizontally and vertically polarized EM

waves, respectively. These coefficients are of the form,

. =cos'9—\/gr—sin20 (3.22)

" C0sO++[e, —sin® |

_ (& —1)(sin2 0-¢, (1+sin2 49))
(Er COSO+4/ &, —sinza)2

where g is the relative dielectric constant of the surface, and @ is the local incidence angle. In

R

(3.2b)

v

general, natural surfaces have Re(er)>>Im(er), which enables to assume that er, Ry, and Ry are
approximately real [70].
The coherency matrix obtained for surface scattering is presented as,

1 g0
[rl=|8 |8 of, (3.3)
0O 0 O
where £ is the real ratio defined as,
Rh_Rv
= ’ <1, 34
B R TR, | B (3.4)

3.3.2. Dihedral (Double-Bounce) Scattering Model

The double-bounce scattering is demonstrated as anisotropic dihedral scattering, in which total
scattering from dihedral corner reflector is represented as the product of scattering obtained
from two orthogonal Bragg-surfaces having same or different dielectric constants [138]. The

double-bounce scattering is represented in the form of first-order scattering matrix as,
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[S4]= RaRue ™" ° | (3.5)
0 Ry, Ry €'
where yn and yy are the propagation constants for horizontally and vertically polarized EM
waves, respectively. They account for attenuation caused due to propagation of radar wave
from SAR sensor to target, and then, back again to SAR sensor.
The parameters Rsh and Rsy [Equation (3.5)], corresponding to horizontally and vertically

polarized Fresnel reflection coefficients, respectively, for horizontal surface, are of the form,
. c0sf— /&, —sin® (3.62)
h = y .
" c0sO++/e, —sin?6
R 5 Cosf /&, —sin* @ (3.60)
Y £,C080+ /g, —sin26

where &sis the dielectric constant of horizontal surface.

The parameters Ry and Ry [Equation (3.5)] are horizontally and vertically polarized
reflection coefficients, respectively, for vertical surface, which are of the form,

. c0s0—+/&, —sin’ @ (3.72)
th = ' :
oSO ++/&, —sin’ @
R % cos6 —+/g, —sin’ 0 (3.7b)
tv — ) .
£,C080 ++/&, —sin’ @

where & is the dielectric constant of vertical surface.

The scattering matrix given in Equation (3.5) leads to coherency matrix as,

2

|a a 0
T, )=l 2" 1 0], (3.8)
0O 0O
where a is the contribution for double-bounce scattering, and is of the form,
i2yn i2yy
o= Rsh Rthe + RSV Rtve , | a |<1’ (39)

Rsh Rthe 12 Rsv Rtve 127

3.3.3. Volume Scattering Model

For volume scattering, several models have been proposed based on the incorporation of HV

backscattering components, which is dominant for volume scattering phenomenon. Considering
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a general case, where scatterers might be oriented, and the scattering matrix can be written as
[138],
[S]{Shh Sh”} (3.10)
Shv SW
For incorporation of orientation of scatterers, the scattering matrix in Equation (3.10) is
rotated by angle 4 about radar line-of-sight as [138]
[S@O)]=[ROISIR (O (3.12)
where R2(6)is rotation matrix. The “*T’ indicates conjugate transpose of rotation matrix R2(6).
The oriented scattering matrix in Equation (3.11) leads to formation of oriented Pauli
scattering vector as,
Kp(0) =[S (0)+54,(0), S(0)—Sw(6), 25,,(6)], (3.12)
The coherency matrix for oriented volume scatterers is obtained as,

[T,1=[#,(0)- %, (0)p(6)do, (3.13)
where p(®) is probability distribution function (pdf), which takes into account the orientation of
scatterers instigating volume scattering. For representing volume scatterers in different
orientation, distinct pdfs (uniform, sine, cosine, etc.,) can be chosen. The widely used scattering
models for volume scattering based on different pdf are described as follows:

a.  For uniform distribution [138]
The uniform distribution is assumed to represent radar scattering from canopy of
randomly oriented dipoles. For uniformly distributed scatterers, the probability

distribution function is taken as,
27
p(0) =1/2x, 0<0<2r with jp(@)d@:l, (3.14)
0

Assuming very thin cylindrical scatterers, the scattering matrices for horizontal and

vertical dipoles are obtained as,

[Sv ]horizontal_dipole _ {é 8} 1 (3.15a)
[Sv ]vertical_dipole _ |:8 ;j , (3.15b)
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The coherency matrix using Equations (3.12), (3.13), and any of (3.15) is obtained as,

2 00
[-I-V]uniform :% 0 1 0}, (3.16)
0 01

b.  For horizontal distribution [425, 426, 428]
For horizontally distributed scatterers cosine distribution is assumed, i.e.,

p(o) = %cos@, 0<0<2r, (3.17)

By using Equation (3.13), (3.15a) and (3.17), the coherency matrix is obtained as,

15 -5 0
[Tv]horizontal :i -5 7 0|, (3.18)
0O 0 8

c.  For vertical distribution [425, 426, 428]
In case of vertical distribution of scatterers, sine distribution is taken as,

p(é)):%sine, 0<O<2r, (3.19)

The coherency matrix thus obtained by using Equations (3.13), (3.15b), and (3.19) as,

15 5 0
] =25 7 o, (3.20)
30
0 0 8

d.  For oriented dihedral scattering [325]
In some special cases such as right angle dihedral structures (e.g., buildings and their
walls, and river and bridge, etc.,), it may happen that one of the surfaces of dihedral
construction is oriented with respect to radar illumination, which makes HV
backscattering component to appear in dominance. Thus, in order to incorporate HV
component by oriented dihedral construction, pdf p(@) is chosen as a function having its
peak value at zero degree, and is represented as,

1 T T
¢) = —cosd, ——<f<—, 3.21
p(o) > 5 5 (3.21)

This gives the coherency matrix, by using Equations (3.13) and (3.21) as,

0 0O
[Tv]dihedralzi 07 0l (3.22)

15
0 0 8
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3.3.4. Helix Scattering Model

The helix scattering component is generated in heterogeneous areas, like urban and other
complex man-made targets. This component is generated by helicity of targets, which generates
left or right circular polarization for all the incident linearly polarized waves [425, 426, 428].
The scattering matrices for left and right helix, and their corresponding coherency matrix is
given by [425, 426, 428],

[S]right—helix _ e/? 1_ . and [S]Ieft—helix =ﬂ l J , (3.233)
2 |-j -1 2 ] -1
1 0O 0 O
[TC]:E 0 1 +£j|, (3.23b)
0 £ 1

3.4. Orientation Angle Compensation

SAR imaging in rugged terrain leads to scattering matrix values of fully polarimetric SAR data
to be changed due to shift in polarization orientation angle 6, which is the angle of rotation of
surface normal to the incidence plane by radar line-of-sight. The shift in polarization
orientation angle is a function of range slope, azimuth slope, and radar look angle [210], and is
given as,

/L — (3.24)
—tan ycos¢g +sing

where,
tan w=Azimuth slope,
tan y = Slope in ground range,

¢ = Radar look angle.

Due to this shift in orientation angle, rotation of incidence plane about radar line-of-
sight to the surface normal takes place which increases the cross-polarized radar response, and
makes coherency matrix reflection symmetric. This shift in polarization orientation angle leads
to befuddled classification due to ambiguous scattering response obtained from randomly
distributed targets. The compensation of this effect is performed by deorientation process [210,

424], which transforms the target scattering vector by rotation about the radar line-of-sight.
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This process enhances co-polarization response and reduces the effect of randomly fluctuating
orientation, and therefore, it resolves the ambiguity in scattering between two randomly
oriented targets. The deorientation effects resulted in getting same scattering response from
differently oriented similar targets, and different scattering response from distinct targets which
might be producing same response without deorientation.
For implementation of deorientation effect, first it is required to rotate the coherency
matrix about radar line-of-sight by angle 6 as [427],
Tll(e) T12 (9) T13(0)
T(O) =[ROITIREOTT =|T2(0) Tp(6) Tu(9) |, (3.25)
Ti3(0) Tp(0) Tss(0)
where, R(0) is the orthogonal rotation matrix defined as,
1 0 0

R(@)=|0 cos260 sin20 |, (3.26)
0 -sin26 cos26

The terms of oriented coherency matrix are represented as,

T11(60) =T, (3.27a)
T12(6) =Ty c0s260 +Ty35in 26, (3.27b)
Ty3(0) = T13€0520 Ty, 5in 26, (3.27c)
Ty3(0) = jIm(Ty3), (3.27d)
Ty (8) =Ty COS? 20 + Ta35in° 20+ Re(T,3)sin46, (3.27¢)
Ta3(6) = Ta3C05% 20+ Ty, 5in% 20— Re(T,3)sin40, (3.27f)

The interpretation for the component of coherency matrix is given in section A2.4 of
Appendix- A.

The aim of deorientation is to minimize cross-polarized radar response, which is obtained
from T3 component of rotated coherency matrix [Equation (3.27f)]. Now, for obtaining the
minimum of Ts3(8), the derivative of Ts3(@) is equated to zero, and the polarization orientation
angle @ is obtained as [210],

0= ltan_l[ZRe—(w], (3.28)
Tyo =T33
In general, for azimuthal symmetric media, T2 is greater than Tzs. Thus, in specific cases,

where numerator is zero, arctangent becomes approximately equal to +n. However, Equation
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(3.28) shows that @ is in the range of —m/4 to + n/4. In order to obtain useful information, it is
required to remove bias by adding m for matching the orientation angle corresponding to

azimuth slope angle as [210],

7= l{tan_l(—z Re(T. 23)]+ ﬂ} (3.29)
4 Tyo —Ts3
Now, the correct orientation angle becomes,
; if n<nad
0=1" L= (3.30)
n—rl2, if n > 4

3.5. Model Based Basic Incoherent Polarimetric Decomposition

Approaches

Model based incoherent decomposition methods make use of physical models for representing
various scattering components, and determining their parameters using physical interpretation.
The most important task of model based decomposition methods is to represent scattering
components associated with targets mathematically, and to provide their interpretation based on
physical basis [79]. The description of basic polarimetric decompositions i.e., three and four

component model based decomposition methods has been discussed as follows:

3.5.1. Three Component Model Based Decomposition (TCM)

The three-component model based decomposition, proposed by Freeman, represents the
coherency matrix T as the sum of three independent scattering mechanisms, namely surface
scattering modelled by first-order Bragg scattering from rough surface, volume scattering
modelled by thin randomly oriented cylindrical particles, and double-bounce scattering
modelled by dihedral reflector with orthogonal surfaces of materials having different dielectric

constants [138]. Decomposed coherency matrix T can be expressed as [138],

[T]: fs[Ts]+ 1:d [Td]+ 1:v[Tv]v (3318.)
I f|a|2a0f200

M1=—=—|p |8 o+ dza*10+?"010, (3.31b)
A0 0 of Mo 0 0 00 1

where [Ts], [Ta], and [Ty] are coherency matrices representing surface (Equation 3.3), double-
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bounce (Equation 3.8) , and volume scattering (Equation 3.16), respectively, and fs, fq, and f, are
expansion coefficients representing power of single-bounce, double-bounce, and volume
scattering, respectively.

The Freeman decomposition (or TCM) exhibits five unknowns (fs, fq, fv, a, B) and four
equations, thus utilizing only five polarimetric parameters i.e., T11, T2z, Ts3, Re(T12), and
Im(T12), as evident from Equation 3.31. Therefore following constraint need to be applied in
order to decide the dominance of surface or double-bounce scattering [9, 392]:

If,

Re(SySw) Of T, —T,, —Ta3 >0 e =0: Surfacescatteringdominant , (3.32a)

Re(Syyy Sy ) Or Ty, =T, —Tay <0 : 8 =0: Double - bounce scatteringdominant,  (3.32b)

Finally, powers corresponding to surface (Ps), double-bounce (P4), and volume scattering
(Pv) components can be represented as,

P, = f,0+|A), (3.33a)
Py = fa@+a]), (3.33h)
P, =f, =4Ty;, (3.33¢)

The total power or span is now given by,
SPAN =P, +Py + P, =(| Sy, I 42/ S, [* +1 S 7). (3.34)

The TCM has been hypothesized by considering reflection symmetry condition
(<ShhShy >=<SwShv >=0), which is not applicable for urban area [426]. However, the ease of
implementation, its simplicity, and dependence on physical significance of radar returns make
it popular choice of decomposition in natural terrain [219, 426]. The flowchart of TCM is

shown in Figure B.1 of Appendix-B.

3.5.2. Four Component Model Based Decomposition (FCM)

Four-component model based decomposition (FCM) is an extension of TCM (as discussed in
section 3.5.1) with an additional component called helix scattering term corresponding to non-
reflection symmetry condition (<ShnShv >#0 and <SwSh/>#0) [426, 428]. The helix scattering
term is obtained from heterogeneous areas, like sharp targets and man-made structures.

Assuming no correlation between surface, double-bounce, volume, and helix scattering
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components, the decomposition of coherency matrix T can be carried out in following manner
[425],

T = f[Ts1+ fq[Ta 1+ fy [Ty ]+ felTel, (3.35)

where fs, fq, fy, and fc are expansion coefficients representing power of surface, double-bounce,
volume, and helix scattering, respectively.

The interpretation of surface and double-bounce scattering matrices (Ts and Tq,
respectively) is same as in TCM [138], according to Equations (3.3) and (3.8). The helix
scattering is interpreted as described in Equation (3.23). Unlike TCM, in which uniform
probability distribution function has been considered for canopy scattering [Equation (3.16)],
sinusoidal probability distribution function is proposed [426] for considering angle distribution
associated with different tree-trunk and branches. The coherency matrices corresponding to
volume scattering obtained by considering this probability distribution function are given in
Equations (3.18) and (3.20) corresponding to horizontally and vertically oriented targets,
respectively. The choice between symmetric (uniform distribution as in Equation (3.16)) and
asymmetric (sine distribution as in Equations (3.18) and (3.20)) cases for volume scattering are
selected according to the value of 10log(<|Sw|>>/<|Snn[>>), which is less than —2dB for
horizontal distribution; greater than +2 dB for vertical distribution; and lies in between —2 dB
and +2 dB for uniform distribution.

The four component decomposition yields five equations and six unknowns. Thus, only
six polarimetric parameters [T11, T2z, Ta3, Im(T23), Re(T12), and Im(T12)] are used out of nine
parameters in coherency matrix [Ti1, T2z, Ta3, Re(T23), Im(T23), Re(T12), Im(T12), Re(T13), and
Im(T13)]. The helix scattering power P is directly determined as,

R =fc=2[Im(Ty3) |, (3.36)

Now, four component model based decomposition incorporates four equations and five
unknowns. The volume scattering power Py is determined after selection based on the value of
10log(<|Sw|*>/<|Sm|*>>), as discussed above. The dominance of surface and double-bounce
scattering is determined on the basis of the sign of Real part of (Swn S'w), the conditions of
which are described as follows,

If, Re(SpySw) 0r Ty Ty __T33 + |.Dc >0 ’ (3.37a)
a =0: Surface scatteringdominant
Re(S;;Sw) 0Ty —Tpy — Tz + P, <0

) _ , (3.37b)
£ =0: Double bounce scatteringdominant
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At last, the power corresponding to surface and double-bounce scattering terms (i.e., Ps,
and Py, respectively) are determined by Equations (3.33 a, b).

This decomposition method is improved by adding some ad hoc power constraints for
avoiding the occurrence of negative surface, double-bounce, and volume scattering powers.

These constraints are described as follows [425]:

i. If, P, <0,set P, =0, (3.38a)
ii. If, P, >SPAN,set P, = SPAN , (3.38b)
iii. If, P, +P, >SPAN,set P, = SPAN — P, (3.38¢)
iv. If, P,<0,set P,=0and P, =SPAN-P, —P,, (3.38d)
v. If, P,<0,set P, =0and P, =SPAN —P, —P,, (3.38¢)

The detailed procedure of FCM is presented in the form of flowchart shown in Figure B.2

of Appendix-B.

3.6. Model Based Decomposition Methods after Deorientation

Three and four component model based decomposition methods, as discussed in section 3.5,
suffer from two problems: one is occurrence of negative powers for surface, double-bounce,
and volume scattering, and second is occurrence of same scattering response (i.e., volume
scattering) obtained from oriented urban structures and vegetation [427]. In order to overcome
this problem, it was suggested to rotate the target coherency matrix about radar line-of-sight to
compensate orientation effect by a process called deorientation, as discussed in section 3.4.
Therefore, several model based decomposition methods have been proposed by using the
concept of deorientation theory for improving the scattering response. Some of these methods,

which have been studied in this chapter, are described as follows:

3.6.1. Three component Model Based Decomposition with Deorientation
(TCMD)

In this case, first the deorientation of coherency matrix is performed in order to obtain rotated
coherency matrix 7(8), as defined by Equation (3.25). Now, three component model based

decomposition is performed in the same manner, as discussed in section 3.5.1, but with the use
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of T(8) matrix. The decomposition of 7(#) can be done as,

[T(O)]= fs[TsI+ fq[Tq 1+ f [TV ], (3.39)

In Equation (3.39), [Ts], [Ta], and [Ty] are modelled according to TCM, and by Equations
(3.3), (3.8) and (3.16), respectively. Even after deorientation, this method of decomposition
uses only five polarimetric parameters, which are Ti11(0), T2(0), T33(0), Re(T12(0)), and
Im(T12(6)). The complete flowchart of this decomposition is exhibited in Figure B.3 of

Appendix-B.

3.6.2. Three Component Model Based Decomposition with Double
Deorientation and Adaptive Volume Scattering Model (TCMDDA)

This method uses double rotation of coherency matrix in order to ensure more accurate
description of scattering mechanisms. The first rotation is done by method described in section
3.4. After this rotation, called as orthogonal rotation, rotated coherency matrix 7(6) is obtained
as given in Equation (3.25). The elements of this matrix are given by Equation (3.27). The
rotation angle, as given in Equation (3.28), is derived by minimizing Ts3(6d) component
[Equation (3.27f)], which resulted in condition T22(8)> Ts3(6). In [9], it is shown that negative
surface and double-bounce powers in TCM occur due to T22(0)< Tz3(6). Thus, rotation helps in
improving decomposition by reducing the occurrence of negative powers.
The second rotation called unitary transformation is performed on T(@) matrix as [90,
344],
Tiu(@) T () Tis(e)

T(9) =[ROIT ORI =|Ti(9) Tp(0) Tule) |, (3.40)
T1§(¢’) T2*3(¢7) T33(9)

where, R(p) is unitary transformation matrix defined as,

1 0 0

R(p)=|0 cos2p jsin2¢|, (3.41)
0 jsin2¢p cos2¢

The terms of oriented coherency matrix, after unitary transformation according to Equation
(3.40), are represented as,
T11(p) =Ty, (0) =Ty, (3.42a)
T, (@) =T,,(8)cos2¢p — jT,5(6)sin2¢, (3.42Db)
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Ti3(@) =Ti3(0)cos2p — jT1,(0)sin2¢, (3.42¢)

To3(9) =Re(T5(0)) =0, (3.42d)
Ty (@) =Ty, (0) COS? 200+ T3 (0) SiN? 200+ IM(T 15 (6))sin4gp, (3. 42e)
Ta3(9) = Ta3(0) c0S? 200 + T, (0) sin? 200 — IM(T,5(0))sin4e (3. 42f)

The angle ¢ is derived in a similar manner, as described in section 3.4, by minimizing

Tas(p) component provided in Equation (3.42f) , and is given as [90, 344],

¢:£tan1[ 21m(T,5(9)) j (343
4 T, (0) —T33(0)

The unitary transformation resulted in Ta2(p)>Ts3(p) due to minimization of Ts3(p)

component, and thus, ensuring again the reduction in negative powers after decomposition. The
negative powers in TCM, as discussed in section 3.5.1, also occur due to T11<2Ts3. To
overcome this problem, an adaptive volume scattering model has been proposed in [90], which
is of the form,

y 0 0
fr,peertive — L 1o g o, (3. 44)
y+2
00 1

where y is an adaptive parameter, which changes the type of volume scattering with change in
its value. More specifically, y=2 corresponds to volume scattering by canopy of randomly
oriented dipoles, as given in Equation (3.16). The value y=0 corresponds to volume scattering
model due to oriented dihedral scattering, as provided in Equation (3.22). The condition y=1,
represents volume scattering model having maximum entropy (randomness), which is of the
form [90],

[Tv ]max_ entropy _ (3.45)

Wl
o O K
o - O
-, O O

The adaptive parameter y is determined by using the concept of similarity parameter, and
is modelled as [11],
. ([T (@} oeetve)

y =arg max — (3.46)
o<r=2| [T ()] [T 10
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The solution of Equation (3.46) is obtained as,

* 2T11(p)
T T T =y = , 3.47
11(9) < T2 () +T33(0) = 7 T (@) +T23(@) (3.47a)
T11(9) > Ta(9) +Ta3(9) = 7 =2, (3.47b)

The decomposition of unitary transformed matrix 7(yp) is performed in following manner

[90, 344],
[T(p)]= fs[Ts1+ fq[Ta 1+ fy[Tv], (3.48)
The modelling of [Ts], [Ta], and [Tv] are done by using Equations (3.3), (3.8), and (3.44),
respectively. The only non-negative solution of Equation (3.48) exists for the following

condition:

(Te1(@) — 7 Tas(9)) (T2 () ~Taz () > Moo (@), (3.49)

(M1(0) =7 Taz(0)) > (T22(0) ~Tz3(0)) (3.49b)
After applying these conditions, the contributory powers of surface (Ps) and double-bounce
(Pq) scattering are obtained according to Equations (3.33 a, b) and volume scattering power is
obtained as,

R = fy=(2+7 )Tas(e), (3.50)

The flowchart of methodology of this algorithm is shown in Figure B.4 of Appendix-B.

3.6.3. Four Component Model Based Decomposition with Deorientation
(FCMD)

In four component model based decomposition, as described in section 3.5.2, a problem in
scattering response from oriented urban occurs [427]. It is observed in urban area that oriented
building blocks and other man-made objects having oblique orientation with respect to radar
illumination, exhibit volume scattering response (like vegetation) after four component
decomposition. In order to overcome this problem, the deorientation has been suggested to be
applied prior to decomposition. The decomposed rotated coherency matrix 7(6) is presented as
[427],

[T(O)]= fs[Ts]1+ fq[Tq1+ f[Ty 1+ felTc], (3.51)

The matrices [Ts], [Ta], [Tv], and [Tc] are interpreted in the same manner as in FCM, as

described in section 3.5.2. The matrices [Ts], [Tq], and [Tc] are modelled according to Equations
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(3.3), (3.8), and (3.23), respectively. The volume scattering matrix is obtained from Equations
(3.16), (3.18), and (3.20), respectively, corresponding to uniform, horizontal, and vertical
distribution, respectively. The decomposition process is same as FCM except the use of 7(6)
instead of T. The flowchart of FCMD is demonstrated in Figure B.5 of Appendix-B.

3.6.4. Four Component Model Based Decomposition with Deorientation and
Additional Oriented Dihedral Volume Scattering Model (FCMDA)

This decomposition method utilizes the concept of deorientation as discussed in section 3.4,
and then uses additional volume scattering component corresponding to oriented dihedral
structure according to Equation (3.22) in decomposition process. The decomposition of
deoriented coherency matrix 7(6) is performed by Equation (3.51). The modelling of [Ts], [Ta],
and [T¢] is done by using Equations (3.3), (3.8), and (3.23), respectively. For volume scattering
component, all four models presented in section 3.3.3, are used. The helix scattering power in
this case is directly determined by using Equation (3.36) utilizing T23(8) instead of T23. In order
to discriminate volume scattering from vegetation and oriented dihedral structure following

condition has been applied [325]:

If, T,1(0)—-T,,(6) +% f. >0 : Vegetationinduced volume scattering, (3.52a)

T,,(6)-T,,(0) +% f. <0 : Dihedral induced volume scattering, (3.52b)

Now, discrimination between volume scattering from vegetation is done by factor
10log(<|Sw|*>/<|Snn|>>), as described in section 3.5.2. After, retrieving power corresponding to
volume scattering i.e., Py, surface and double-bounce powers (Ps and Pgq, respectively) are
determined by using Equations (3.33a,b) and conditions (3.37a,b). The detailed description of
this algorithm has been presented in Figure B.6 of Appendix-B.

3.6.5. Four Component Decomposition with Double Deorientation (FCMDD)

This method uses the concept of both orthogonal and unitary transformation of coherency
matrix, as discussed in sections 3.4 and 3.6.2, respectively, before applying four component
model based decomposition. After double rotation of coherency matrix, T2z element becomes
zero, thus providing seven independent polarimetric parameters [T11(p), T22(p), Tas(e),
Re(T12(p)), Im(T12(p)), Re(T13(p)), and Im(T13(p)]. Unlike, above mentioned all decomposition
methods, this decomposition method uses all available seven polarimetric parameters. The
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decomposition of double rotated coherency matrix 7(p) is performed in following manner
[344],

[T(p)]= fs[Ts]l+ fa[Tq 1+ £y [Ty ]+ fc[Tc], (3.53)
where matrices [Ts], [Ta], and [T¢] are modelled according to Equations (3.3), (3.8), and (3.23),
respectively. The coherency matrix for volume scattering [Ty] is modelled by all four models
described in section 3.3.3. Rest of the process is same as discussed in section 3.6.4, rather by

using T(p).The flowchart of algorithm is presented in Figure B.7 of Appendix-B.

3.7. Results and Discussion

3.7.1. Pre-processing of Polarimetric SAR (ALOS PALSAR) Data

Pre-processing of ALOS PALSAR data has been performed using SARscape (version 4.3)
software, which works in integration with Environment for Visualizing Images (ENVI)
(version 4.8). The pre-processing steps are provided in flowchart shown in Figure 3.3. The

step-wise description of pre-processing of ALOS PALSAR data is as follows:

Polarimetric SAR data
A 4
Data impot F—————-— t
I
A I
[
Multilooking v
Digital Elevation
\ 4 MOdell(DEM)
Filtering |
I
I
3 I
I

Geocoding and radiometric
calibration

Figure 3.3:  Flowchart for pre-processing of polarimetric SAR data.
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Step-1: Data Import: The ALOS PALSAR data provided by ERSDAC is a single look slant
range fully polarimetric complex data having four polarization channels as HH, HV, VH, and
VV. This data is already focused and calibrated in order to avoid imperfect characteristics of
fully polarimetric SAR acquisition system caused due to imbalance and cross-talk. Therefore,
as a first step, data is imported by SARscape, which provides four single look complex files of
HH, HV, VH, and VV polarizations.

Step-2: Multilooking: The speckle noise inherently occurring in SAR images can be reduced by
averaging multiple looks, which are produced by taking average of azimuth and/or range
resolution cell. This procedure is called multilooking. The main purpose of multilooking is to
obtain approximately squared pixels. Therefore, multilooking increases radiometric resolution
at the cost of degraded spatial resolution. Numbers of looks are calculated by following
procedure [1]:

pixel spacing range

Ground range resolution= ————
sin(incidence angle)

, (3.54)

Ground range resolution
line spacing (azimuth)

Number of looks ~ : (3.55)

For ALOS PALSAR data, pixel spacing, line spacing, and incidence angle are 9.36 m,

3.54 m, and 24°, respectively. Therefore, multilook factor is obtained as 7.

Step-3: Filtering: For speckle suppression, polarimetric filter, namely Wishart Gamma MAP filter
[232], has been used in order to preserve polarimetric information of quad-polarimetric SAR data.
It is a polarimetric filter which is suitable for polarimetric data, as discussed in section 2.1 of
Chapter 2. The filter operates under the assumption of target reciprocity (i.e. HV=VH) [1]. Thus
only three filtered complex images are produced (HH, HV, VV). It performs well in the presence of
regular texture and moderate relief. The output speckle filtered covariance matrix terms [Shn.Shn",
Sw.Sw’, Shv.Shv', Re(Shh.Shv'), IM(Shn.Shv’), Re(Shn.Sw’), IM(Shn.Sw’), Re(Sw.Snv’), IM(Sw.Sh')]

contain all the polarimetric information required for further computation.
Step-4: Geocoding and radiometric calibration: Geocoding is the process of geometrically

correcting SAR images against terrain induced distortions by transforming slant range
projection to a cartographic reference system using appropriate map-projections and digital
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elevation model (DEM) [67]. DEM represents the topography of ground surface in digital
format. In this study, DEM has been extracted by GTOPO 30 technique (using SARscape
module) which provides global DEM map with a horizontal grid spacing of 30 arc seconds
(approximately 1 km). Thus, SARscape automatically performs geocoding with the help of
DEM without any user intervention. Simultaneously, radiometric calibration has been
performed to rectify SAR image by providing corrections for antenna gain, system loss,
antenna effective aperture, range spread loss, etc., [93]. After radiometric calibration
dimensionless calibrated backscattering values have been obtained in terms of sigma naught.

The backscatter value in logarithmic scale can be obtained as,
oy, =10log(DN? + DN{), (3.56)

where DN; and DNq are digital numbers (DNs) corresponding to real (i) and imaginary (q) parts
of complex SAR data.

After pre-processing of SAR data according to Figure 3.3, following steps have been
carried out to perform decomposition methods:

> All the filtered terms obtained in stpe-3 [i.e., (Shh.Shh", Sw.Sw™, Shv.Shv", Re(Shn.Sn"),
IM(Shh.Shv"), Re(Shn.Sw), IM(Shh.Sw’), Re(Sw.Shv"), Im(Sw.Snv" )] have been geocoded and
radio-metrically calibrated to obtain dimensionless calibrated terms.

» These geocoded terms have been used to form coherency matrixm which has been used
for development of decomposition algorithm. All of these processing have been
performed using MATLAB (matrix laboratory) 2010.

> Further, the decomposition methods have been applied on ALOS PALSAR data sets of
Roorkee (Region-1: Data ID-PASL110904061711260908110063), Meerut (Region-2:
Data ID-PASL1100904231713261001150001), and Delhi (Region-3: Data ID-
PASL1100911101716261001150005). This chapter reports the results of ALOS
PALSAR data of Roorkee i.e., Region-1. The results of Region-2 (Meerut) and Region-3
(Delhi) are given in Appendix-C.

In the following sections, the analysis of studied decomposition approaches has been

presented.
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3.7.2. Visual Analysis

After applying decomposition algorithm on ALOS PALSAR data of city Roorkee (Region-1),
the scattering power terms related to surface (Ps), double-bounce (Pg), volume (Py), and/or
helix scattering (Pc) have been obtained.

First, the decomposition methods without deorientation i.e., three component model
based decomposition (TCM) and four component model based decomposition (FCM), have
been applied according to flowcharts of algorithms given in Figures B.1 and B.2 of Appendix-
B, respectively. The visual representation of these decomposition methods are shown in Figure
3.4(a,b), which are RGB colour composite images with representation of double-bounce
scattering power (Pg) as red, volume scattering power (Py) as green, and surface scattering
power (Ps) as blue colours. This figure shows that volume scattering (green colour) is reduced
in FCM as compared to TCM within urban area (city of Roorkee). Pink colour caused due to
combination of surface and double-bounce scattering is more in urban area for FCM as shown
in Figure 3.4 (b). Water represented by Ganga canal (as marked in Figure 3.2), appears black in
both the methods. This indicates occurrence of specular scattering phenomenon. Solani River
(as marked in Figure 3.2), appears blue in both the maps of Figure 3.4, which indicates

presence of surface scattering.

77°52'E 77°54°E 77°52'E 77°54'E

29°52'N
NiZG8e62
29°52'N
N:ZSe62

29°50'N
N.0Ge62
29°50'N
N.0Ge6T

77°52'E 77°54°E

Ps
Figure 3.4: RGB colour composite images with P4 (double-bounce power) as red, Py
(volume scattering power) as green, and Ps (surface scattering power) as blue colours for: (a)

three component model based decomposition (TCM), and (b) four component model based
decomposition (FCM).
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In a similar manner, as described above, the decomposition methods with deorientation
i.e., three component model based decomposition with deorientation (TCMD), three component
model based decomposition with double deorientation and adaptive volume scattering
(TCMDDA), four component model based decomposition with deorientation (FCMD), four
component model based decomposition with deorientation and additional oriented dihedral
volume scattering (FCMDA), and four component model based decomposition with double
deorientation (FCMDD), have been applied according to the flowcharts given in Figures B.3-
B.7, respectively. The results of these decomposition methods are shown in Figure 3.5, which
appear similar by visual inspection of RGB colour composite images. However, the results
obtained by decomposition with deorientation are visually different as compared to that of
methods without deorientation. The volume scattering appears to be decreased in TCMD and
TCMDDA [see Figures 3.5 (a) and (b), respectively] as compared to TCM [Figure 3.4 (a)].
Similar behaviour is observed in FCMD, FCMDA, and FCMDD [Figures 3.5 (c), (d), and (e),
respectively] while comparing them with FCM [Figure 3.4 (b)]. In all the decomposition
methods, Ganga canal appears black in correspondence with specular scattering. Solani River
appears blue exhibiting surface scattering. This behaviour of river is obtained due to its dryness
and dominance of sand at the time of ALOS PALSAR data acquisition.

The analysis of decomposition maps presented in Figures 3.4 and 3.5 for all the eight

areas represented in Figure 3.2 and described in section 3.2.3 is as follows:

e In urban-1 (number-1 in Figure 3.2), volume scattering is dominant in all the
decomposition methods. However, it looks that volume scattering is reduced in all
the decomposition methods after deorientation (i.e., TCMD, TCDDA, FCMD,
FCMDA, FCMDD), as exhibited in Figure 3.5.

e In urban-2 (number-2 in Figure 3.2), combination of surface and double-bounce
(pink colour) is present. Pink colour appears bright in FCM as shown in Figure 3.4
(b) exhibiting increment in double-bounce. The results of decomposition methods
after deorientation in Figure 3.5 again appear same for urban-2.

e In urban-3 (number-3 in Figure 3.2), change in scattering response occur from
volume scattering (green) in TCM [ Figure 3.4 (a)] to mixture of surface and double-
bounce (pink) in FCM [Figure 3.4 (b)]. In Figure 3.5, all the decomposition methods
with deorientation exhibit combination of surface and double-bounce scattering.

e In bare soil-1 (number-4 in Figure 3.2), specular scattering (black colour) is
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dominant for all the decomposition methods exhibited in Figures 3.4 and 3.5.

In tall-vegetation class (number-5 in Figure 3.2), volume scattering appears dominant
for all the decomposition results presented in Figures 3.4 and 3.5.

In water (number-6 in Figure 3.2), specular scattering (black colour) is present for all
the decomposition results exhibited in Figures 3.4 and 3.5.

In mixed tall vegetation and short vegetation class (number-7 in Figure 3.2), all three
scattering components i.e., surface, double-bounce, and volume scattering are
present. In FCM [Figure 3.4 (b)], combined scattering due to surface and double-
bounce appear dominant.

In bare soil-2 (number-8 in Figure 3.2), surface scattering (blue colour) is present in
all the decomposition methods without deorientation and with deorientation as

exhibited in Figures 3.4 and 3.5, respectively.

The visual analysis performed in this section, indicates that decomposition methods work

nicely in exhibiting scattering responses of various land covers. Deorientation process improves

the scattering response of urban area by reducing volume scattering, as obtained in

decomposition without deorientation. The above analysis shows that it is very cumbersome

process to visually analyse the decomposition result in order to indicate the scattering

behaviour of various land covers. Thus, there is a need to quantitatively analyse the

decomposition results. For this purpose two types of quantitative analyses, namely pixel-wise

analysis and power-wise analysis, which are described in following sections.
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Figure 3.5:  RGB colour composite images with Pq (double-bounce power) as red, Py
(volume scattering power) as green, and Ps (surface scattering power) as blue for: (a) three
component model based decomposition with deorientation (TCMD), (b) three component

model based decomposition with double deorientation and adaptive volume scattering
(TCMDDA), (c) four component model based decomposition with deorientation (FCMD), (d)
four component model based decomposition with deorientation and additional oriented dihedral
volume scattering (FCMDA), and (e) four component model based decomposition with double
deorientation (FCMDD).
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3.7.3. Pixel Wise Quantitative Analysis for Whole Image

First, the decomposition powers representing different scattering mechanisms (Ps, Pq, Py,
or/and P¢) have been calculated for all the methods, i.e., TCM, TCMD, TCMDDA, FCM,
FCMD, FCMDA, and FCMDD, according to algorithms presented in Figures B.1 to B.7 of
Appendix-B, respectively. Further, the quantitative analysis has been performed by calculating
the number of pixels (in percentage) representing each scattering mechanisms for all the
decomposition methods. This analysis has been performed on whole images of all scattering
contributions.

First, the comparison of quantitative analysis for three component model based
decomposition methods with and without deorientation i.e., TCM, TCMD, and TCMDDA
[Figures B.1, B.3, and B.4 in Appendix-B, respectively], has been performed. This analysis is
as follows:

» Itis observed that number of pixels (in percentage) representing Pq and Ps increase in

TCMD and TCMDDA as compared with TCM.

» The increment in number of pixels for Pq is 34% in TCMD and 45% in TCMDDA as
compared with TCM.

» The pixel percentage for Ps is increased by 13% and 21% in TCMD and TCMDDA,
respectively, as compared with TCM.

» The pixel percentage for Py remains almost same (>95%) in all the decomposition
methods.

» Pixels having all scattering contributions (i.e., P4, Pv, and Ps) in common increase
from 44% in TCM to 76% in TCMD to 80% in TCMDD. This indicates that a lot of
effort is required to segregate the land covers in terms of scattering response due to
large number of common pixels representing all the scattering mechanisms with
TCMD and TCMDDA.

Further, the comparison of all four component decomposition methods with and without
deorientation methods i.e., FCM, FCMD, FCMDA, and FCMDD, according to Figures B.2,
B.5-B.7 in Appendix-B, respectively, has been performed. The analysis of these methods is as
follows:

» Number of pixels representing Pq drastically increase in FCMD, FCMDA, and

FCMDD as compared with FCM. Theoretically, it is known that deorientation
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process increases double-bounce power. This analysis shows that number of pixels
representing double-bounce power also increase.

In FCMD, pixels in P4 and Ps increase by 34% and 7%, respectively, as compared
with FCM.

The pixel percentage of Py remains same (91%) in both FCMD and FCMDA,
whereas it reduces to 81% in FCMDD.

The pixel percentage of Ps is incremented by only 2% in FCMDA, and is invariant in
FCMDD, as compared with FCMD.

The pixel percentage for Py is approximately equal (>95%) in all the decomposition
methods with or without deorientation.

Pixel percentage having helix contribution (i.e., Pc) is increases by only 2% in FCMD
as compared with FCM, and is invariant in both FCMDA and FCMDD.

Pixels representing all four scattering mechanisms are more than 50% in all the
decomposition methods, i.e., FCM, FCMD, FCMDA, and FCMDD.

Pixel percentage of all the scattering contributions are almost same in FCMD and
FCMDA, which indicate that there is no effect of adding volume scattering due to
oriented dihedral in FCMDA.

This pixel-wise quantitative analysis has been performed over 8 regions selected in

Figure 3.2. The analysis of each region is described as follows:

In urban-1, number of pixels (in percentage) for Pq and Ps increase considerably in
decomposition methods with deorientation as compared with that of without
deorientation. Pixel percentage of P¢ (in four component methods) increases in FCMD,
FCMDA, and FCMDD as compared with FCM, and it remains unaltered in FCMD,
FCMDA, and FCMDD. In this region, number of pixels representing Ps are more than
that of Pg.

In urban-2, very slight change is observed in pixel percentages of Psand Pgq, in all the
decomposition methods after deorientation. In all the decomposition methods number
of pixels remain almost same (>90%). Pixels percentage of P. reduces after
deorientation.

In urban-3, pixel percentages of Psand Pq are same (76%) for TCM. However, pixel

percentage of Ps and Pqg is more in all other methods as compared with TCM. Pixel
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percentage of P¢ reduces after deorientation and remain same in FCMD, FCMDA, and
FCMDD.

e Inbare soil-1, number of pixels representing Ps is more than that of P4 and/or P for all
the decomposition methods. Pixel percentage for Pc increases by 2% (94% to 96%)
after deorientation.

e In tall vegetation, number of pixels representing Pc is quite high (>85%) for four
component decompositions. The pixel percentage of Psis more than that of Pq in all
the decomposition methods.

e In water, moderate change in the pixel percentage of Psand P4 has been observed after
deorientation. The pixel percentage of Ps and P4 remain almost equal for all the
decomposition methods. Pixel percentage for Pc reduces by 4% (90% to 86%) after
deorientation.

e In mixed short and tall vegetation, pixel percentage for P remains unaltered (84%)
after deorientation. The pixel percentages of Psand Pq increase after deorientation.

e In bare soil-2, number of pixels representing Ps are quite high (>98%) as compared to
Pg. In methods after deorientation (i.e., TCMD, TCMDDA FCMD, FCMDA, and
FCMDD), pixel percentage of P¢, Psand Pq is almost same (>90%).

General discussion:

In general, it can be said that after deorientation, number of pixels representing Ps and Pqg
increase after deorientation. The number of pixels representing Py are almost same in all the
decomposition methods. No general pattern for P¢ has been observed. The main purpose of this
analysis was to check the change in number of pixels representing each scattering mechanism
after deorientation. It has been observed that before deorientation pixel percentages of Psand
Pq are quite low, which increase significantly after deorientation. Thus, deorientation helps in

improving scattering response in terms of number of pixels for Psand Pq.

3.7.4. Power Wise Quantitative Analysis

Further, the quantitative analysis is performed by visualising scattering contribution in terms of
power percentage for each land cover in study area. The analysis has been performed on eight
areas which are designated by numbers 1 to 8 in Figures 3.2, 3.4 and 3.5, representing class
urban-1, urban-2, urban-3, bare soil-1, tall vegetation, water, mixture of tall and short

vegetation, and bare soil-2, respectively. For these land covers, the contribution of each
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scattering mechanism (i.e., Pq, Py, Ps, and (or) and P¢) has been measured in terms of power for
all studied decomposition methods (i.e., TCM, TCMD, TCMDDA, FCM, FCMD, FCMDA and
FCMDD) and expressed in Figure 3.6. The analysis for each of the area is discussed as follows:

In urban-1 (number-1 in Figures 3.2, 3.4, and 3.5), the contribution of volume scattering
Py, is more as compared to other scattering mechanisms in methods before deorientation
(i.e., TCM and FCM), and in FCMDD, as observed in Figure 3.6 (a). This figure shows
that in TCMD, the total scattering in urban-1 is influenced almost equally by both Py
and Ps. In TCMDDA, FCMD and FCMDA, Psdominates Pg and Py.

In urban-2 (number-2 Figures 3.2, 3.4, and 3.5), the contribution of Ps is large as
compared to Pq and Py, as indicated by Figure 3.6 (b).The influence of Pyand Pc is very
small in this region.

In urban-3 (number-3 in Figures 3.2, 3.4, and 3.5), the contribution of all elementary
scattering mechanisms (i.e., P4, Py, Ps) is significant for TCM. However, in rest of the
decomposition methods, scattering is almost equally influencse by Pq4 and Ps with very
small contribution of Py and negligible contribution of P, as observed from Figure 3.6
(©).

In bare soil-1 (number-4 in Figures 3.2, 3.4, and 3.5), as visualized from Figure 3.6 (d),
surface scattering (Ps) dominates over other scattering mechanisms for all the
decomposition methods. Significant role of volume scattering (Py) is also observed in
this area.

In case of tall vegetation (Figures 3.2, 3.4, and 3.5), the influence of Py is large as
compared to other scattering types for all three component decomposition methods (i.e.,
TCM, TCMD, and TCMDDA) and four component decomposition (FCM), as shown in
Figure 3.6(e). However, in FCMD, FCMDD, and FCMDA, the contribution of Ps is
more as compared to other scattering mechanisms.

Water (number-6 in Figures 3.2, 3.4, and 3.5), exhibits dominance of surface scattering
(Ps) for all the decomposition methods except for TCM in which volume scattering (Py)
appears larger than other scattering mechanisms [Figure 3.6 (f)].

In mixed tall vegetation and short vegetation area (number-7 in Figures 3.2, 3.4, and
3.5), the contribution of Py is more than other scattering mechanisms in TCM, TCMD
and FCM, as represented in Figure 3.6(g). However, in FCMD, FCMDA, and FCMDD,
the influence of Ps is more than others (Py, P4, and Pc¢), with significant contribution of
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Py and Py.
e In bare soil-2 (number-8 in Figures 3.2, 3.4, and 3.5), surface scattering Ps has very
strong participation (more than 80%) than other scattering types for all the

decomposition methods, as observed from Figure 3.6(h).
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Figure 3.6:  Result of power wise analysis for studied decomposition methods : (a) urban-1,
(b) urban-2, (c) urban-3, (d) bare soil-1, (e) tall vegetation, (f) water, (g) mixed tall and short
vegettaion, and (h) bare soil-2 regions represented by number 1 to 8, respectively, in Figure 3.2.
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General discussion:

The main aim of this analysis is to observe the change in power of scattering components after
deorientation. The quantitative analysis performed in this section shows that after deorientation,
double-bounce power considerably increases and volume scattering considerably reduces as
compared with methods without deorientation. The above analysis shows that in case of urban,
short vegetation, and tall vegetation, it is difficult to generalize the scattering behaviour they
produce because of complexities involved in their structures. Only bare soil exhibits strong
contribution of surface scattering by all decomposition methods. After deorientation, double-
bounce power is definitely increasing, however, it is not the dominant scattering mechanism in
urban area. This may occur due to the presence of large amount of vegetation within urban area
(Roorkee city). Therefore, the results, as obtained in [325, 344, 427], have not been observed in
our study area (Region-1 Roorkee).

3.8. Conclusion

In this chapter, seven different model based decomposition methods have been studied
extensively. These decomposition methods are, three component decomposition (TCM), four
component decomposition (FCM); three component decomposition with deorientation
(TCMD); three component decomposition with double deorientation and adaptive volume
scattering (TCMDDA); four component decomposition with deorientation (FCMD); four
component decomposition with deorientation and additional volume scattering (TCMDA); and
four component decomposition with double deorientation (FCMDD).

Initially, the visual analysis of the results of all decomposition methods has been
performed, by which it is very difficult to analyse scattering behaviour of different land covers.
Generally, researches analyse the performance of decomposition methods by observing change
in power of various scattering mechanisms. However, in this chapter, both pixel-wise and
power-wise analysis have been carried out. In pixel-wise analysis, the relationship among
scattering contributions has been visualized in terms of pixel percentage. In power-wise
analysis, scattering behaviour for different land covers has been observed in terms of
percentage of scattering power. Pixel wise analysis shows that number of pixels representing Ps
and Pgq increase significantly after deorientation. In power-wise analysis, it has been observed

that power of Py reduces, whereas powers of Ps and Pq increase after deorientation.
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Conclusively, it can be said that decomposition methods work well in describing
scattering behaviour of various land covers. After deorientation, scattering behaviour of these
land covers improves in terms of number of pixels representing scattering mechanisms and

scattering power.
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Chapter 4

An Adaptive Land Cover Classification Algorithm
Based on Spatial Statistics of Polarimetric SAR

Indices

The polarimetric information contained in polarimetric SAR images represents great potential
for characterization of natural and urban surfaces. However, it is still challenging to identify
different land cover classes with polarimetric data. Most of the classification algorithms
presented earlier have used fixed value of polarimetric indices for segregation of particular land
cover type from other classes. However, the value of these polarimetric indices may change in
accordance with the change in observation site, temporal acquisition, environmental conditions,
and calibration differences among various systems, etc. Thus, the value of polarimetric indices
for segregation of each land cover type has to be tuned in order to cope up with these changes.
Therefore, in this chapter, a decision tree based adaptive land cover classification technique has

been proposed for labelling of different clusters to their respective classes.

4.1. Introduction

SAR polarimetry is renowned for its application in land cover classification for the extraction
of constructive information from satellite data in order to distinguish among various targets.
Classification techniques are broadly divided into two categories- parametric and non-
parametric classification methods. Parametric classifiers (e.g., supervised and unsupervised)
involve estimation of statistical parameters prior to classification unlike, non-parametric
classifiers. Each of these classification techniques have their inherent merits and demerits. The
major disadvantage of supervised classifier is that analyst imposes the classification structure
upon the data by selection of training areas which may not encompass and subsequently
represent unique categories that do not fit the information classes. Unsupervised classification,
or clustering also suffers from certain limitations and disadvantages. One of the major

disadvantages of unsupervised classification is that natural grouping obtained as a result of
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iterations in classifier, may not necessarily correspond nicely with desired informational
classes, and analyst has limited control over the classes chosen by the classification process
[119, 433]. There is another category of classification namely, semi-supervised classification,
which falls between supervised and unsupervised classification category, by making use of
both labelled and unlabelled data for training [443]. One limitation has been pointed in [234]
that semi supervised classification cannot outperform supervised classification unless the
analyst is absolutely certain that there is some non-trivial relationship between labels and the
unlabelled distribution. Thus, it would be advantageous to opt for non-parametric classifiers,
such as a decision tree classifier, which has the capability to handle not only non-normal, non-
homogeneous, and noisy data, but also non-linear relations between features and classes,
missing values, and numerical and categorical inputs [244]. Recently, some parametric models
of sparse learning have been proposed which can also handle missing values and noisy data
[100, 417]. Sparse representation classification performs the comparison of residual norms of
different classes for labelling of testing samples into a particular class. Since each feature has a
different contribution in classification, equal weighing of residual norms may limit the
performance of classification. Classification based on sparse representation works well only
when there is no similarity in training samples of submatrices of different classes. This
assumption does not hold in any of the cases where various features behave in a similar manner
for different classes [148]. Considering all aspects, present work uses the concept of decision
tree for development of such a technique that may provide the labelling of different clusters
without making any prior assumption about data. Several researchers have also shown that
decision tree algorithms consistently outperform supervised and unsupervised classification
techniques [106, 140, 283] .

Fully polarimetric data has been considered because of a well-known fact that fully
polarimetric information plays an important role in describing scattering behaviour (Table 4.1)
and physical information about the targets such as shape, orientation, symmetry, non-
symmetry, or irregularity of the targets. Thus, polarimetric parameters which can physically
interpret the scattering behaviour of different targets may prove useful in land cover
classification of those sites, where sufficient 'a priori' information is not available. Different
polarimetric indices have been used by researchers for various applications such as
backscattering coefficients of different polarizations (linear- HH,HV,VV; circular- LL, RR, RL

and linear 45°-45C,45X) and their ratios have widely been wused for crop
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classification/vegetation identification [18, 27, 129, 130, 165, 293, 351], bare soil/vegetation
discrimination [130, 162, 306, 351], and wetland/water discrimination from other classes [351];
Normalized Difference Polarization Index (NDPI) has been used for hazard monitoring [435];
Ratio Vegetation Index (RVI) for canopy characterization [12, 187]; Weighted Polarization
Sum (WPS) for urban mapping [85], and Cross-Polarization Ratio (CPR) [380] for separation

of bare or sparsely vegetated fields and forested areas, etc.

Table 4.1 Effect of polarized backscattering coefficients in given references

Feature Remarks References
> " Dominant surface scattering (e.g., from bare soil) [27]
o’n>c% | Dominant surface scattering (e.g., from bare soil) [27]
h Dominant multiple scattering from rough surface (e.g., | [27, 162, 165,

from vegetation) 293]
"/ w, eMaximize the difference between surface and volume
v/ % scattering therefore have the capability to discriminate | [162, 165]

bare soil and vegetation
eVery low value for smooth surfaces e.g., bare soil

" > 0% Dominant double bounce scattering (obtained from | [27, 162, 351]
vertical structure)

"nh > 6%y Dominant double bounce scattering [27, 162]

o= % Dominant double bounce scattering [27, 162]

Researchers have used various polarimetric indices, which are well described in [12, 18,
27, 85, 129, 130, 162, 165, 187, 293, 306, 351, 380, 435]. However, there is a need to explore
the use of maximum polarimetric indices together in order to utilize their effect in classification
of different land cover types and in the development of an adaptive land cover classification
approach. Therefore, an exhaustive study was carried out for land cover classification, and a
knowledge-based decision tree classification method was proposed using backscattering
coefficients (6%, c°hn, 6®w, %r, %, i, 0%sc, 6%sx), cross-pol ratios (6°/o%n, o nilc®w, and
®nlc’nn ) and co-pol ratio (¢°wn/aw) in [250]. The limitation of this approach is that it uses
fixed values of polarimetric indices for classification of different land cover types and these

values may not be same for different observation sites and satellite images. In several other

69



classification methods, fixed values of polarimetric indices have been used for segregation of
different classes [27, 129, 130, 250, 293, 306, 351]. Although these methods have been
successfully used for classification purpose, few limitations have been found in these fixed
decision criterion (threshold) based classification approaches, as these classification methods
are not able to adapt themselves according to different observation sites, temporal acquisition
of satellite images, environmental conditions, and calibration differences among various
systems, etc. Considering these limitations, an attempt was made to identify the role of several
polarimetric indices (backscattering coefficients and their ratios, NDPI, WPS, entropy, RVI,
and correlation coefficient) using spatial statistics for land cover classification [248]. It was
observed in [248] that the developed method was potentially good for land cover classification
using fully polarimetric data. However, based on experimental evaluation it was visualized that
assigning the range of values to polarimetric indices in order to create a decision boundary for
segregation of different land cover classes was difficult as these values were very much site
dependent. Some other researchers [149, 150] have also presented the image- statistics-based
approach using optical data for segregation of only two classes. However, in the present study,
image-statistics-based approach has been proposed using fully polarimetric SAR data for
labelling and classification of five distinct land covers, such as water, bare soil, urban, tall
vegetation, and short vegetation.

This chapter deals with the task of developing an adaptive land cover classification
approach, which is based on the principle of decision tree algorithm. Decision boundaries of
different classes have been decided by using spatial statistics (i.e., median and standard
deviation) of the best-selected polarimetric indices on the basis of separability index criterion.
In order to make the algorithm adaptive in nature, unknown terms are included along with
spatial statistics, for creating the decision criterion for segregation of different classes. An
empirical relationship between Overall Accuracy (OA) and spatial-statistics-dependent
unknown variables has been developed, which is helpful in finding the value of polarimetric
indices for segregation of various classes. The obtained empirical relationship is non-linear in
nature. Therefore, a Genetic Algorithm (GA)-based optimization approach has been applied to
retrieve the unknown variables. The optimization has been designed in such a way that user-
specific requirements (i.e., OA) have been fulfilled. The obtained unknown variables are
optimum values of polarimetric indices that can be directly used in decision tree classification

algorithm. The dependence of unknown variables on image statistics makes the proposed
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algorithm adaptive in nature.

This chapter is organised as follows: section 4.2 provides a brief description about the test
site and data used in the study. The development of proposed adaptive classification method
along with the role of various polarimetric indices in labelling and classification of different
land covers has been provided in section 4.3. Section 4.4 provides the discussion about the
results obtained by testing and validation of proposed algorithm. The final remarks and

conclusions are given in section 4.5.

4.2. Study Area and Data Used

4.2.1. Study Area

The study is carried out in city of Roorkee in the state of Uttarakhand, India. The detailed
description of study area is given in section 3.2.1 of Chapter-3. As mentioned in Chapter 3, that
study area has variety of land covers such as urban, bare soil, water, tall vegetation, and short
vegetation.

In urban area (i.e., city Roorkee), a lot of vegetation exists. Therefore, it is worth
mentioning here that the trees in urban area may behave in a different manner as compared with
the trees in natural forests, and their signatures may be influenced by buildings and other man-
made structures in urban area [85]. Trees in urban area may represent combination of scattering
i.e., volume scattering from tree canopy and double-bounce scattering from buildings, while
strong volume scattering is represented by trees in forest. Thus, if tall vegetation class (i.e.,
forest) is located separately from urban, both classes can be distinguished well. However,
segregation of tall vegetation within urban areas is challenging because in this situation,
segregation of both the classes may be hampered by each other. Therefore, caution must be

taken in extending the algorithm to other areas.

4.2.2. SAR Data

The development and testing of proposed classification algorithm has been performed on
same fully polarimetric ALOS PALSAR data as used in Chapter 3. In this chapter, this data is
designated as “Data-1" (Data ID-PASL110904061711260908110063). Further, the validation
of proposed algorithm has been performed on another ALOS PALSAR data (Data ID-
PASL1100904061711181001150003: Data-2) acquired on same date (i.e., April 6, 2009) but at
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a different time.

4.2.3. Ground Data

In order to develop the algorithm Region-of-Interest (ROI) points are required for performing
two tasks; first, for training the classifier during development process, and second, for
evaluating the performance of classifier by calculating the classification accuracy. Thus,
extensive ground truth survey has been carried out using Global Positioning System (GPS) over
the whole study region on April 4, 2009. Some ROI points have also been chosen from Google
Earth imagery and topographic map of city of Roorkee. Out of total 1062 ROIs, 635 ROIs have
been used for training and development of proposed adaptive classification algorithm, and
remaining 427 ROIs have been used for testing and validation of the proposed algorithm. All of

these points are listed in Table 4.2.

4.3. Methodology

Traditional classification methods such as K-means, minimum distance, maximum likelihood,
and some other methods such as commute-time-guided transformation [99], logistic regression
[72], linear discriminant analysis [114], Bayes classification [238], etc., make prior assumption
about the probability density function of data set, and require large number of training samples
in order to improve the classification accuracy. Thus, in this chapter, an adaptive land cover
classification algorithm is proposed which does not require making assumption about the

probability density function of data.

Table 4.2 Region of interest points
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Class Total Training Testing
Water 197 90 107
Urban 295 175 120

Tall 300 200 100
Short 125 75 50

Bare soil 145 95 50

Total 1062 635 427




Forward modelling approach is adopted for development of classification algorithm,
which is carried out in three major steps-(1) Selection of polarimetric indices having capability
to separate two classes, (2) Experimental evaluation of obtained polarimetric indices in order to
develop the algorithm, which is based on spatial statistics such as median and standard
deviation of whole image for labelling of various clusters to their own classes, (3) Retrieval of
optimized value of polarimetric indices using Genetic Algorithm (GA). The detailed

description is as follows:

4.3.1. Data Pre-processing

The pre-processing of ALOS PALSAR data is performed according to description presented in
section 3.7.1 of Chapter 3. The flowchart of pre-processing is presented in Figure 3.3. This
processed data is then used for the development of algorithm.

4.3.2. Extraction of Polarimetric Indices

The polarimetric SAR carries out measurement in multiple polarizations (HH, VV, HV, and
VH), which generally defines the scattering properties of various targets. The polarimetric
indices are polarimetric SAR observables extracted from polarimetric SAR data having
physical meanings that describe the scattering behaviour of different targets. It has been
observed that researchers have used different polarimetric indices for several applications [12,
18, 27, 85, 129, 130, 162, 187, 248, 250, 293, 306, 351, 380, 435]. Out of these polarimetric
indices, backscattering coefficients of different polarizations have widely been used by several
researchers for diverse applications. Backscattering coefficient plays a major role in
characterization of targets due to its dependence on electromagnetic wave parameters, such as
wave frequency, polarization, and incidence angle. It also depends upon the target
characteristics such as surface geometry (size, shape, orientation distribution, and spatial
arrangement of objects), physical property (symmetry, non-symmetry, or irregularity of the
target), and dielectric characteristics of the medium. Since fully polarimetric data can easily be
synthesized into nonlinear polarizations such as circular and elliptical, the advantage of these
polarizations can be exploited by backscattering coefficient because each polarization of
polarimetric SAR backscattering data effectively describes scattering from certain land cover
type [27, 162, 165, 245, 293, 306, 351]. The effect of polarized backscatter coefficient on
different land cover types has been summarized in Table 4.1.

A knowledge-based decision tree classification method was proposed in [250]. In this
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method it was demonstrated quantitatively that standard polarimetric parameters such as
polarized backscattering coefficients (¢°hv, a°hh, 6%, ", 6%, 6®n, 6%sc, o%sx), cross-pol ratios
(6°rlc%1, %lc®w, and ¢ n/c®n), and co-pol ratio (¢°m/c’w) could be used as information
bearing features for making decision boundaries for classification of different land cover types
such as water, bare soil, tall vegetation, short vegetation, and urban. It was found in [248] that
inclusion of some more polarimetric parameters might lead to the development of effective
classification algorithms. Based on above discussion, polarized backscatter coefficient of
different polarizations and their ratios are extracted from polarimetric data along with some
other polarimetric indices, such as NDPI [435]; RVI [12, 187]; WPS [85], and CPR [380], for
development of proposed adaptive classification technique. These parameters are described as
follows:

a) Normalized Difference Polarization Index (NDPI) is used to analyze the surface types

including vegetation cover, soil type and roughness [435] , and is defined as,

0 0
NDP| = 2w Chv

0 0o’
Oyy t Ohy

(4.1)

High roughness areas represent high NDPI values.

b) Ratio Vegetation Index (RVI) weights the contribution of the cross-polarized returns to
total power. This parameter is sensitive to biomass level, and used for estimation of
vegetation cover [12, 187]. The RVI generally varies between zero and one, and is defined

as,

807(])\,

RVI = , (4.2)

Ohh + 0\9\, + 20}?\,
For diffuse scattering (volume scattering) from vegetation its value is relatively high.
c) Weighted Polarization Sum (WPS) is a function of absolute value of polarimetric terms
HH, HV, and VV, and is defined as [85],

WPS =1000(HH| +|HV|+ V|, (4.3)

This feature is used to classify land covers/land use (mainly in urban area) based on their
roughness. It exhibits low value for smooth surfaces while high value for rough surfaces
[85].
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d) Cross-Polarization Ratio (CPR) is used to discriminate between bare and sparsely

vegetated fields and forested areas [380], and is defined as,

0
CPR = — "MV, (4.4)
Ohh +Chy

4.3.3. Selection of Polarimetric Indices Based on Separability Index
Criterion

A total of sixteen polarimetric parameters (¢%r, ¢°n, ¢, 6®v, °nh, 6®w, %sc, 0%sx, o%n/c%n,

/6w, °n/chh, ®mn/a®w, WPS, RVI, NDPI, and CPR) are considered for development of
adaptive classification algorithm on Data-1 (Data ID-PASL110904061711260908110063). It
will be a tedious task to select the suitable features for classification. Therefore, in order to
check the separability between class pairs, a measure, which is called a separability index, has
been calculated for all the polarimetric indices. The main attribute required for a feature chosen
for classification depends on how well the feature distinguishes between the two classes in the
classification process. Based on this concept, a feature is said to offer fine separation between
two classes, if the difference between the mean values of two classes is large as compared to
the sum of standard deviations of those classes for that particular feature [91, 250, 418]. This

index is defined as,

‘ﬂi_ﬂj‘

Sl =
YOS+

, (4.5)

where L and S are the mean values and standard deviations, respectively, of classes i and j for a
particular feature. In particular, value of Sl;; that lies between 0.8 to 1.5, indicates an authentic
feature for separation of two classes i and j, whereas Sl;j; that is greater than 2, represents feature
for almost complete class pair separation. Sljj that is below 0.8, represents the feature worth for
rejection of those particular classes [91, 250, 418].

Initially, the concept of feature separation has been applied to five class pairs, namely, (i)
water and others (urban, tall vegetation, bare soil, and short vegetation),(ii) bare soil and
others (urban, tall vegetation, water, and short vegetation),(iii) tall vegetation and others
(urban, water, bare soil, and short vegetation), (iv) short vegetation and others (urban, tall
vegetation, bare soil, and water) and (v) urban and others (water, tall vegetation, bare soil,

and short vegetation). Separability index values (SI) of these class pairs for all sixteen class
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pairs are shown in Figure 4.1. It shows that bare soil has good separation capability from other
classes by features 6%/c°n, 6°w/a®w, 6%la’nn, CPR, NDPI, and RVI, with SI > 2. Water can be
best separated from other classes by WPS only with SI > 2, as shown in Figure 4.1. Other
authentic acceptable features that can separate water from other classes with condition
1.5 < Sl < 2 are 6%, 6%, a1, v, 6%n, a°w, a%asc, and o%sx. It is observed in this figure that
there is no feature with SI > 2 (or 1.5) for the categories tall vegetation and others, urban and
others, and short vegetation and others; hence, these classes cannot be taken as the first member
to be segregated from other classes. Although the water class shows good separation capability
by several features as mentioned above, bare soil has been chosen as the first member to be
separated from other classes due to its better separation capability (in terms of Sl value) as

compared to class pair “water and others”.

N
N n
1 1

Separability Index

1 o
0.5 |
0 -
S C & @ & &R R S O O &
& & & & \& N\ & & O\ bf;\'\‘\Q Qt\qu &
&N & 6
& & &
B Water and others B Bare soil and others
B Tall vegetation and others B Short vegetation and others

M Urban and others

Figure 4.1:  Measured separability index for class pair separation by various polarimetric
features for separation of class water, bare soil, tall vegetation, short vegetation, and urban,
respectively, from other remaining classes.
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After selecting bare soil as the first class to be segregated from other classes, four classes
(i.e., water, short vegetation, tall vegetation, and urban) are left to be separated in classification
procedure. Thus, separation of remaining classes is done in following manner:
> Separation of water with tall vegetation, short vegetation and urban: Since water shows
good separation capability from other classes after bare soil by features WPS, ¢%r, %1, &%,
v, °hh, %W, 6%sc, and o%sx, as shown in Figure 4.1, it is selected as the next member to be
segregated from other classes after excluding bare soil.
> Separation of short vegetation with tall vegetation and urban: After excluding classes
water and bare soil, three classes i.e., short vegetation, tall vegetation, and urban, are left to
be segregated in the classification procedure. Earlier, various techniques have been developed
for segregation of tall vegetation from short vegetation and urban [106, 293], or vegetated
areas from urban [123, 396, 438]. It has been found by some researchers [27, 293, 351] that
o is the best feature for segregation of tall vegetation from other classes. However, it has
been observed in [248, 250] that it is difficult to segregate tall vegetation from other classes
in presence of urban. In [293], it has been shown that ¢%, has ability to segregate tall
vegetation from other classes (i.e., bare soil, short vegetation, and water) only when urban has
already been separated using texture feature. In [106], segregation of classes tall vegetation,
short vegetation, and surfaces has been performed in the site where urban class is negligible
(much less than 1% of total imaged area). Thus, in order to select next member to be
segregated in adaptive classification procedure, an analysis is performed to observe the
behaviour of each remaining class (i.e., short vegetation, tall vegetation, and urban) for all the

polarimetric indices.

In order to demonstrate the scattering behaviour for all the polarimetric indices, 75 ROIls
of each class i.e., tall vegetation, short vegetation, and urban, are considered from training ROIs
listed in Table 4.2. The profiles of these classes for all 16 polarimetric features (¢°r, o°n, &%,
v, 0°hh, 6®w, 0%sc, 0%asx, Orld®n, ®nlc®w, PP, Phnlc®w, WPS, RVI, NDPI, and CPR) are
shown in Figure 4.2. Figure 4.2(a) shows that urban and tall vegetation do not have much
difference in the value of ¢, whereas short vegetation is clearly distinguished from both tall
vegetation and urban. The features ¢° [Figure 4.2(g)], o% [Figure 4.2(i)], and WPS [Figure
4.2(m)] show almost similar behaviour for tall vegetation and urban. The characteristic of short
vegetation is overlapped with the characteristics of tall vegetation and urban at some of the
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ROIs. Based on this analysis, ¢%, appears to be the best feature for separation of short
vegetation from tall vegetation and urban.

The characteristics of short vegetation is overlapped with tall vegetation and urban at
several ROIs for features ¢° [Figure 4.2(b)], ¢ [Figure 4.2(c)], o°w/c®w [Figure 4.2(d)],
o’ c%n [Figure 4.2(e)], ¢°n [Figure 4.2(h)], 6°/c®n [Figure 4.2(j)], 6%sc [Figure 4.2(K)], o%sx
[Figure 4.2(D], RVI [Figure 4.2(n)], and CPR [Figure 4.2(p)]. It is found that almost complete
overlapping of short vegetation, tall vegetation, and urban occurs for features ¢°nn/a°w [Figure
4.2(f)] and NDPI [Figure 4.2(0)]. Therefore, there does not exist any clear boundary by which
these classes can be separated using all of these features. The polarimetric feature ¢%+/c%
[Figure 4.2(j)] shows a unique behaviour in which tall vegetation and urban are clearly
distinguished, whereas short vegetation is overlapped with urban at some ROIs. Therefore,
urban and tall vegetation are considered as the same class, whereas short vegetation as another
class in the present analysis.
> Separation of tall vegetation and urban: After segregation of short vegetation in

classification procedure, tall vegetation can be separated from urban by feature ¢°/c"n as
shown in Figure 4.2(j).

In order to validate the analysis shown in Figure 4.2, the concept of separability index is
used in order to select the features for segregation of classes tall vegetation, short vegetation,
and urban in classification procedure. Thus, three class pairs, namely, (i) water and others (i.e.
tall vegetation, short vegetation, and urban), (ii) short vegetation and others (i.e., tall
vegetation and urban), and (iii) tall vegetation and urban, are formed for calculating
separability index. Separability index for these class pairs is shown in Figure 4.3. This figure
exhibits that all the backscattering coefficients (i.e., o, 6%, 6%, 6%, o 6%, o%sc, and 6%sx)
and WPS have capability to separate water from tall vegetation, short vegetation, and urban,
with SI > 2 for all of these features. Some acceptable features (with SI > 1) for separation of
short vegetation from urban and tall vegetation are ¢%r, ¢%, ¢%v, and WPS, Urban and tall
vegetation are separated by only 6%/ ¢%: with SI > 2. Thus, separability index criteria (Figure
4.3) clearly confirms our previous analysis (Figure 4.2).The list of features obtained by feature

separation criterion for identification of each land cover type is given in Table 4.3.
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Plots showing the effect of different polarimetric indices on classes tall
vegetation, urban and short vegetation. These plots [(a)-(p)] are created by taking 75 ground
truth points of each class.
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Figure 4.3:  Separability index for class pair separation by various features, for separation of
(class water from tall vegetation, short vegetation and urban), (class short vegetation from tall
vegetation and urban), and (class tall vegetation and urban).

Table 4.3 Selected features for different land cover classes based on separability index

criterion
Land cover type Selected feature
Bare soil °rld®n, il c®w, ®hla®n ,RVI, CPR, NDPI
Water °rr, 0°r1, 0%, 6%y, 0°nh, °w, 0%asc , 0%asx, WPS
Short vegetation °r, 6°1, °hv, WPS
Urban el
Tall vegetation e 1%
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4.3.4. Model Development

The task of labelling of different land cover types with adaptive decision criterion is very
challenging. Therefore, an image-statistics-based adaptive decision tree classification technique
has been proposed, which utilizes local information i.e., spatial statistics: median and standard
deviation, of whole images of polarimetric indices in order to create decision boundary for
segregation of two classes. The process of model development is carried out in following steps:

a) Calculation of spatial statistics of image.

b) Creation of decision criterion in terms of image statistics for segregation of each class.
c) Development of decision tree classifier.

d) Performance evaluation of proposed classification method.

4.3.4.1 Calculation of spatial statistics of image

The spatial statistics of whole image i.e., median and standard deviation, are calculated for
making a decision boundary in order to classify particular land cover type. Median describes
the central tendency of distribution. It's less sensitivity to extreme values of distribution makes
it appropriate option as compared to mean. Standard deviation is a measure of the dispersion of
a set of data from its average value (median). The information about image statistics
(minimum, maximum, median, and standard deviation) for whole images of all 16 polarimetric
features extracted from Data-1 is listed in Table 4.4.

By using separability index criterion, polarimetric indices providing better separation
between two classes (Table 4.3) have been obtained. The image statistics of these indices are
calculated for the respective classes defined by training ROI (enlisted in Table 4.2). The
statistics of these selected features are provided in Tables 4.5-4.9 for bare soil, water, short
vegetation, tall vegetation, and urban, respectively. After analysing these Tables, it is observed
that it is quite difficult to use a fixed value of any polarimetric index in the decision boundary
for segregation of any class. For example, the image statistics i.e., minimum, maximum,
median, and standard deviation, for feature ¢%+/ % calculated by using training ROI of bare
soil are obtained as —19.24, —5.51, —12.96 and 2.35 dB, respectively as given in Table 4.5,
whereas for the whole image of feature o%+/c% the image statistics are obtained as —20.23,
14.73, —3.61 and 2.98 dB, respectively as given in Table 4.4. These values infer that required
deciding value of feature ¢°/c% to segregate bare soil cannot be obtained by using either the

median or the standard deviation of its whole image.
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Table 4.4 Image statistics of polarimetric indices for whole image of Data-1

Feature Minimum Maximum Median Standard deviation
Ohv —37.53 —5.99 —23.81 4.40
ow —30.97 6.98 —14.99 2.83
Ohh —29.94 6.98 —14.668 3.21
Ohv/Ow —30.14 6.68 -8.52 2.94
Ohv/Ohh —30.08 5.38 —9.05 2.70
ohn/ow —11.39 19.89 0.42 1.45
045X —-34.51 6.34 —22.49 4.06
045C —32.85 6.98 —15.38 3.09
Orr —36.00 6.57 —20.23 4.40
orl —31.91 6.98 —15.99 2.92
all —33.29 6.27 —19.94 4.31
Orr/ovl —20.23 14.73 -3.61 2.98
WPS 993.93 1002.31 997.29 0.69
RVI 0.0038 3.05 0.47 0.27
NDPI —0.64 0.99 0.74 0.15
CPR 0.00098 0.78 0.11 0.067

separability index

Feature Minimum Maximum Median Standard deviation
ot/ orl -19.24 —5.51 —12.96 2.3537
ohv/ Ohh —26.182 —13.77 —17.28 2.7828
on/ ow —26.54 —14.26 —17.85 2.8578
RVI 0.0092 0.1523 0.0702 0.035
NDPI 0.9277 0.9956 0.9677 0.0176
CPR 0.0024 0.0402 0.00937 0.0184

Table 4.5 Image statistics of class bare soil (defined by training ROI) for features obtained by

83



Table 4.6 Image statistics of class water (defined by training ROI) for features obtained by

separability index

Feature | Minimum Maximum Median Standard deviation

Ohy —35.85 —26.67 -31.712 2.0192

ow —29.63 —13.62 -21.88 3.9983

Ohh —29.95 —13.76 —22.356 3.2726

ol —31.05 —20.99 —27.032 1917

G —33.73 —22.68 —28.208 | 2.3083

orl -31.35 —14.55 —22.43 4.02

045X —32.18 —23.59 —29.206 1.7479

045C —30.35 —15.92 —21.978 3.97

WPS 994.27 997.56 995.74 0.7739

Table 4.7 Image statistics of class short vegetation (defined by training ROI) for features
obtained by separability index

Feature Minimum Maximum | Median | Standard deviation
Ohv —27.52 —20.95 —23.91 1.4455

all —24.98 —15.09 —19.52 2.0538

Grr —25.47 —15.26 —-19.533 | 2.18

WPS 996.34 998.27 997.27 0.4295

Table 4.8 Image statistics of class tall vegetation (defined by training ROI) for features
obtained by separability index

Feature Minimum Maximum Median Standard deviation
Chv -23.11 —15.04 -18.17 1.8395
o/ o1l 0.031 6.28 0.9814 1.1955

Table 4.9 Image statistics of class urban (defined by training ROI) for features obtained by

separability index

Feature Minimum Maximum Median Standard deviation
Ohv —-17.53 —9.66 —14.548 1.1217
o/ ol —4.81 —0.366 —1.5268 1.2088
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4.3.4.2 Decision criterion for segregation of each class

An extensive and exhaustive study is performed for selecting the decision criterion required to
classify a particular land cover type using image statistics (i.e., median '‘M' and standard
deviation 'S") of polarimetric indices chosen by separability index criterion. It is observed that
the required decision criterion for segregation of any class cannot be easily obtained by using
median and standard deviation of whole image separately or together (i.e., M £ S). It is known
that image statistics may not be same for two images of similar sites, and hence, it is
impractical to consider expression M + S as decision criterion of selected feature for separation
of any class. Therefore, in order to make the algorithm adaptive, an unknown term 'ni" is
included to form different mathematical expressions (e.g., Mni, M = ni, M £ n;S, M £ (ni—1)S,...)
using image statistics of selected polarimetric observable. The subscript “i” denotes any value
1, 2, 3...,, and so on, depending upon the number of mathematical expressions for selected
polarimetric indices. The principle of selecting mathematical expressions for development of

classification algorithm is as follows:

Principle of forming mathematical expressions for development of classification algorithm

By using the concept of separability index criterion, bare soil is obtained as the first entity to be
separated in the classification process, and six polarimetric indices (6°r/c’n, 6°n/c®w, 6°nw/c®nn,
RVI, CPR, and NDPI) are obtained for separation of bare soil from other classes. Using all of
these features in making decision boundary will increase the complexity of algorithm.
Therefore, only two features ¢%/o% and o°w/c®w have been used due to their empirical
evidence and experimental validation [27, 165, 293, 380]. One can take ¢n/c’n instead of
a’n/c® because both possess same characteristics. The procedure of selecting mathematical
expressions of polarimetric feature 6%/’ for segregation of bare soil from other classes is as

follows:

e First the spatial statistics (i.e., minimum, maximum, median, and standard deviation) of
whole image (Table 4.4) are compared with that of particular class, i.e., bare soil (Table 4.5)
for feature 6%/ o%n.

e After comparison, it is observed that minimum value of feature ¢°/ ¢% for whole image
(—20.23 dB) and bare soil (—19.24 dB) are almost the same. Based on this fact, the
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expression "o%/ 6% < (mathematical formulation)" is chosen for making decision criterion
S0 as to separate bare soil from other classes in the whole image.

e Now, in order to segregate bare soil from the whole image, mathematical expression (M % S)
is tested for feature 6%+ ¢°n. For Data-1, it is observed that up to some extent separation of
bare soil is possible using expression 6%/ 6% < (M7 o1 — Solrrr o), where Moy o1 =
—3.61 dB and S,%w .’ =2.98 dB for the whole image of feature 6%/ o°.

This is to be noted that if expression “c°n/ %< (Moorr o — Sl oon)” accurately
classifies bare soil from other classes for any image, it does not mean that the same
expression will be suitable for segregation of same class for different image of same site

because of the fact that spatial statistics may be different for different images.

e In order to resolve above mentioned problem and to make algorithm adaptive in nature, an
unknown term, for example, “n1” is considered to be included in mathematical expression by
which separation of bare soil from remaining classes may become possible.

¢ Now, the image statistics (median and standard deviation) of whole image are arranged in
such a way that satisfactory results with good accuracy are obtained for separation of bare
soil from other classes at certain value of “ny”.

e In order to select suitable mathematical expression, different combinations of image
statistics (e.9., Mo’r/ ot N1; Mo 0% + N1; MoPrey ot & N1 Sorri®rt; Motres ot £ (N1—1) Serrsolr,
Meorr/ ot £ (N1—2) Se°rrisn,...) are evaluated for creation of decision boundary.

e Itis observed that each of the expressions [Merr/o1 — N1 Se®rric®rl], [Mo®rrio®nt — (11—1) Soreiori],
[Mortio't £ (N1—1) Seorrion],..., 1S giving satisfactory results at different values of “ni”.
However, we have selected the expression [Me%rrien —(N1—1) So°rrior]; the reason of particular

selection will be discussed later in the following section.

Similarly, the mathematical expression for ¢’w/c®w is obtained as
" O/ < [MShulw — (m2—1) Soohw ow]™ for segregation of bare soil from other classes.
Similar procedure has been adopted for deciding the mathematical expressions of selected

polarimetric indices for creation of decision boundary between different classes.

4.3.4.3 Development of decision tree classifier

The best-obtained relations for the selected polarimetric indices are used in the development of

decision tree classification algorithm, which is shown in Figure 4.4. The terms used in decision
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tree classifier shown in Figure 4.4 are described as follows:

M s/t Median of feature 6%/ % for whole image.
Se’r/arl Standard deviation of feature ¢°+/ ¢°n for whole image.
Merv/w Median of feature 6%/ ¢° for whole image.
Se®hw o'w Standard deviation of feature ¢°n/ 6% for whole image.
°hv Median of feature ¢° for whole image.
o’hv Standard deviation of feature ¢° for whole image.
Mweps Median of feature WPS for whole image.
Swes Standard deviation of feature WPS for whole image.

The algorithm as shown in Figure 4.4, starts with discrimination between bare soil and

other classes (urban, tall vegetation, short vegetation, and water), based on feature separation

criterion discussed in section 4.3.3. In the decision criterion for the classification of bare soil

from other classes, features ¢°%/c% and o%w/c’w are taken because distinct relations are

obtained with these features, and they also have empirical evidences [27, 165, 248, 250].

0 0
(? rr/cg < [Moorr/oorl '(nl'l)soorr/oorl]
o hv/G w < [Moohv/oovv '(nZ'l)soohv/oovv]

|1

No Yes
4 v
WPS < [Mwps -(n3-1)Swps] Bare soil
Oohv < [Mcohv'(n4'1)soohv]
[ 2
No Yes
v L 4
cyohv< [MgOhy+ns | Water
+—No | Yes +
0 0 0
0 > [Moohy-(ns-1)Scon] o0 n/0<0
5 4
;No Yes v *—No——Yesw
lassified Short Tl
Unclassifie vegetation vegetation Urban

Figure 4.4:  Proposed adaptive decision tree classification algorithm.
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For the separation of water from other classes (after excluding bare soil), features WPS
and all the backscattering coefficients (5%'s) are obtained using separability index criterion. It is
observed that all the backscattering coefficients show almost same value for water, therefore,
based on empirical evidence [351] and experimental validation (i.e., 6%y < —30dB for water for
the L-band [250]), only &%y has been taken besides WPS. Taking into consideration the
statistics (i.e., minimum, maximum, median, and standard deviation) of WPS and ¢°n for whole
image (Table 4.4) and water (Table 4.6), the expressions “WPS < [Mwps — (n3—1) Swps]” and
“ 6% < [Moy — (1a—1) S,ny]” are obtained by the similar procedure, as discussed earlier.

For the separation of tall vegetation and urban from short vegetation, only ¢%y is chosen
because other features, such as ¢°, ¢%, and WPS, have separability index value that is very
close to 1, which may increase the false alarm and have the potential to degrade the
classification performance. Another reason for taking ¢° in decision criterion for segregation
of short vegetation from tall vegetation and urban is empirical evidence and experimental
validation carried out in previous research (i.e., at L-band ¢ > —18dB for tall vegetation and
urban [129, 250] and ¢%w> —27dB for short vegetation [293]). As shown in Figure 4.4 (node-3)
the expression “c®hw > [M,%y + ns]” is found suitable for segregation of tall vegetation and urban
from short vegetation. Further, short vegetation is clustered by using expression " ¢°n> [Mshy —
(na—1) Senv]".

For the segregation of tall vegetation and urban, only ¢°+/c% is considered on the basis
of separability index criterion shown in Figure 4.3, the scatter plot shown in Figure 4.2(j), and
experimental validation [250].

The proposed decision tree classification algorithm is shown in Figure 4.4, in which
different unknown terms (i.e., n1, Nz, N3, ns, ns), are used in all the mathematical expressions.
The only exception is expression for ¢, that is used in making decision criterion for
clustering of water and short vegetation at node-2 and node-5 respectively, in Figure 4.4, where
same unknown term i.e., 'ns' is used because mathematical expression is same except the
inequality in decision criterion.

Figure 4.4 exhibits that the term (ni—1) multiplied by standard deviation ““S” is subtracted
from median “M” in expression for segregation of bare soil, water, and short vegetation, where
ni represents n1, nz, n3, and ns in the corresponding expressions. The term (n; —1) is found to be
the most suitable among terms ni, (ni —1), (ni —2), (ni —3),..., for preserving the characteristics

of respective classes observed from training ROIs for reasonable range of “n;”. Experimentally,
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it is investigated that any of the terms ni, (ni —1), (ni —2), (ni —3),..., can be taken in the
algorithm, because decision criterion to segregate any class will always be obtained at certain
value of “n;” using successive terms ni, (ni —1), (ni—2),..., in the corresponding expressions.
Considering the same value of unknown term in each expression of decision tree, it is observed
that maximum overall classification accuracy is obtained at n=1.2 by using n1=n,=nz=ns=ns=n
in the corresponding expressions of Figure 4.4, whereas maximum overall classification
accuracy is obtained at n equals to 2.2 by using (n—1), and 3.2 by using (n—2) in the
expressions. Nevertheless, we have considered term (ni —1), so that value of unknown term
“n;” can be restricted between 1 and some other value where any class starts dominating the

other classes.

4.3.4.4 Performance evaluation of proposed classification method

The performance of proposed classification algorithm (Figure 4.4) is evaluated by calculating
confusion matrix (or the error matrix), which compares the classification result with ground
truth information (or ROI points) and reports overall accuracy (OA), kappa coefficient,
producer accuracy, and user accuracy. Out of these parameters, OA is considered. In order to
make the algorithm adaptive in nature, it is required to relate OA with image statistics of
polarimetric indices used in the expressions of decision tree. Therefore, in order to make
unknown terms depending on image statistics, five variables are formed corresponding to
mathematical expressions of polarimetric indices used in a decision tree classification

algorithm, as shown in Figure 4.4. These variables are presented as follows:

X = Maﬂ P —(ny —1)50_2 /60 (4.6)
Xo=M g o (DS, o 4.7)
X3 =Myps — (N5 =1)Syps 1 (4.8)
X =M_o ~(n~DS (4.9)
X5 = Maﬁ’v +Ng (4.10)

Computation of OA in terms of X1, X», X3, X4, and Xs

It is observed that OA is quite dependent on unknown terms ni, nz, nz, ns, and ns.Since there are
five unknown terms (i.e., ni, nz, N3, ns, ns), and it seems difficult to relate OA with these
unknowns directly, therefore, first it is considered that all the unknowns are the same (n;=

n2=n3=ns=ns=n), and then OA is computed for different values of “n” using proposed
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classification algorithm, as shown in Figure 4.4. The plot of OA with respect to “n” is shown in

Figure 4.5 (a), which shows that OA significantly changes with change in value of “n”’.
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Figure 4.5:  (a) Overall accuracy vs. n, (b) Overall accuracy vs. x1 , (c) Overall accuracy vs.

X2 , (d) Overall accuracy vs. x3, (e) Overall accuracy vs. x4, (f) Overall accuracy vs. Xs .
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Table 4.10 Mathematical formulations of Overall Accuracy (OA) with corresponding R? values

Performance parameter | Mathematical formulation with constant values R?
OA(xy) = y1 +age D ((x —c1) /by )? 098
OAXa) y1= 37.61;a1=48.85; b1=5.99; c1 = —6.96
OA(xp) = y2 +aze M2 ((xg —cp) /b )2 | 098
OARXz) yo= 37.61;2,=48.85; h,=5.91; ¢, = —11.82
OA(xg) = y3 +age” &/ ((x3 —c3) /b3 )’ 0.98
OA
(x3) ya= 37.61:25=48.85; bs=1.387; C3 = 996.52
OA(x4) =g +age D (x4 —cq) /bg)? | OB
OA(xa) ya4= 37.61;24=48.85; b,=8.843; ¢, = —28.75
OA(x) = s +ase D ((xs —c5)/bs)2 | 098
OA
(xs) ys= 37.61:a5=48.85; bs=2.01; cs = —21.69

Now we have the values of “n” and its corresponding values of OA. These values of “n”’

are put in Equations (4.6)-(4.10) for obtaining the values of xi, X2, X3, Xs, and Xs. After

computing Xz, X2, X3, X4, and xs, OA is correlated to these variables. The plots of OA vs. these

variables are shown in Figure 4.5((b)-(f)).

To obtain the relation between spatial-statistics-based expressions of particular

polarimetric index (i.e., X1, X2, X3, Xs, Xs5) and OA, the curve fitting method is adopted. The

obtained expressions with a very high R? value (coefficient of determination) are represented in

Table 4.10. In this Table, y1, Y2, ¥3, Y4, Vs, a1, @z, as, as, as, by, b2, bs, bs, bs, 1, c2, €3, C4, and cs,

are constants.

In order to determine the significance of these relationships, the Kolmogorov-Smirnov
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(KS) test is performed with 5% significance level. The KS value and its corresponding p-value
are obtained as 0.1013 and 0.77, respectively, for all the relationships. The critical value for 5%
significance level and 19 number of samples (19 observations are made) is 0.27136. The
obtained KS value is less than the critical value, and the p-value is greater than 0.05 (5%
significance level). This indicates that the proposed relationships for OA are statistically

significant.

4.3.4.5 Optimization algorithm to obtain the value of unknown terms

The obtained relationships of OA, as provided in Table 4.10, are non-linear functions of
unknown variables i.e., X1, X2, X3, X4, Xs. Therefore, in order to retrieve all the unknowns from
nonlinear equations of OA, it is required to perform optimization. The problem statement for
optimization of the proposed classification algorithm can be defined as:
"Find design variables (i.e., X1, X2, X3, X4, X5) that optimize the objective function OA( X1,
X2, X3, X4, X5) (Soft objective) such that OA( X1, X2, X3, X4, Xs) IS maximized. This optimum
value must satisfy user-specified constraints. These constraints are hard objectives,
which need to be satisfied before the optimization of the soft objectives takes place. The
constraint for hard objective is that OA as a function of individual design variable should
be greater than respective user-specified lower limit and less than respective user-
specified upper limit."
The aforementioned optimization problem involves optimization of single objective
subjected to several nonlinear constraints, which can be represented mathematically as,

min f(Xl, X2, X3, X4, X5) (411)
where

(X0 Xa0 X5, X4, X5) = —OA(KG, X, X3, Xy, Xs5)
= —{OA(x) + OA(X;) + OA(X;) + OA(X,) + OA(X5)]/5

; , (4.12)
= —(Z OA(xi)J/S
i=1
Subject to constraints
Ib _ ub
OA,’ <OA(%) < OAL | (4.13)
Ib <X <ub, i=1,2,..,5 (4.14)
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The mathematical expressions for OA (xi) are provided in Table 4.10. The terms Ib and

ub in superscripts of Equation (4.13) and Equation (4.14) represent lower bound and upper
bound, respectively. The terms OA® and OAY are lower and upper bounds of OA(Xi),

respectively, where i=1,2,3,4,5 corresponding to unknown variables given in equations (4.6)-
(4.10).In this mathematical formulation, both the constraints equations (4.13)-(4.14) must be
satisfied in order to find a feasible solution. These constraints are provided to ensure that the
performance of proposed adaptive classification technique always meets the requirements of
end user (i.e., lower and upper bounds on OA). If it happens that there exist no feasible solution
for user specified constraints, then user has to provide some other values of constraints in order
to optimize the algorithm.

The optimization has been performed through Genetic Algorithm (GA), which is a
globally iterative, numerical optimization method. It has been selected due to its several
advantages over other traditional optimization methods, which obtain best solution using
gradient and random guesses. One of the most important aspects of GA is that it is global
because it has random components that test for solutions outside the current minimum, while
the algorithm converges [257, 366, 447]. In this problem, lower bound and upper bound for all
the constraints of OA given in Equation (4.13) are taken as 80% and 100%, respectively. The
limits of design variables x; (i.e., X1, X2... Xs) given in Equation (4.14) are decided on the basis of
Figure 4.5. These limits, which are enlisted in Table 4.11, are selected for criterion OA > 60%

in order to cover large range of values for all the variables.

Table 4.11 Lower and upper bounds for variables (xi)

Variables | Lower bound (Ib) Upper bound (ub)
X1 —-15 -1

X2 =20 -5

X3 994 999

X4 —40 =20

Xs —24 —-18
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The optimization of Equation (4.12) is performed through GA after applying the
constraints in Equation (4.13) and Equation (4.14) by taking OA" and OAY as 80% and 100%,

respectively, and Ib; and ub; of xi (i=1,2,3...5) according to Table 4.11. The optimum value of
design variables x1, X2, X3, X4, and Xs are retrieved as —6.96, —11.82, 996.52, —28.75, and —21.69,
respectively. The values of image statistics (from Table 4.4) and optimum value of design
variables are substituted in Equations (4.6)-(4.10) in order to get the values of respective
unknown terms, which are obtained as ni1= 2.1208, n»=2.122, n3=2.116, n4=2.123, and ns =2.12.

4.4. Results and Discussion

This section presents the result of proposed adaptive classification algorithm on two different
ALOS PALSAR data sets, as described in section 4.2. The process adopted for implementation
and testing of proposed classification algorithm is summarized in the form of flowchart in
Figure 4.6.

4.4.1. Implementation and Testing

The optimum value of unknown terms n, nz, nz, n4, and ns are obtained as 2.1208, 2.122, 2.116,
2.123, and 2.12 respectively, after optimization of Equation (4.12) by GA in which constraints
of OA(x;) are taken as 80% and 100%, whereas constraints of x; are taken from Table 4.11. The
proposed algorithm, as shown in Figure 4.4, is implemented on pixel-by-pixel basis on Data-1
(Data ID-PASL110904061711260908110063) after putting the optimum value of unknown
terms (i.e., ni= 2.1208, np=2.122, n3=2.116, ns=2.123, ns =2.12) in the corresponding
expressions. Obtained result at optimum value of unknown terms is shown in Figure 4.7. The
result shows that most of the pixels belonging to specific class are classified as the same
category. In Figure 4.7, Solani River appears in bare soil category, which is expected because it
is rain-fed river and it was almost dry during data acquisition in April 2009. The performance
of this classification map is evaluated by computing confusion matrix using testing ROI given
in Table 4.2. The overall accuracy is estimated as 87.59% and kappa coefficient as 0.85. The
estimates of producer accuracy (in percent) and user accuracy (in percent) of classification are
enlisted in Table 4.12.
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Figure 4.6:
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Flowchart for implementation and testing of proposed classification algorithm.
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Figure 4.7:  Result of proposed decision tree algorithm (water- blue; bare soil-yellow, urban-
red, tall vegetation- cyan; short vegetation- green) for Data-1 at n1=2.1208, n,=2.122, nz=
2.116, n4= 2.123, ns=2.12.

Table 4.12 Producer and user accuracy estimates (in percent) relative to classification of Data-
1 using testing ROLI.

Class Producer accuracy (%) | User accuracy (%)
Bare soil 98 85
Water 71 98
Tall vegetation 86 92
Short vegetation 92 67
Urban 95 89

4.4.2. Validation of Algorithm

The performance of proposed adaptive classification technique is validated on another
PALSAR data "Data-2" (Data ID- PASL1100904061711181001150003) acquired on date
April 6, 2009. For same constraints, as applied for algorithm development, the optimum value

of design variables i.e., X1, X2, X3, X4, and xs are obtained as —6.96, —11.82, 996.52, —28.75, and
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—21.69, respectively, using optimization by GA. The image statistics of Data-2 for required

polarimetric indices are enlisted in Table 4.13. After putting these image statistics and optimum

value of design variables (i.e., X1, X2, X3, X4, and xs) in Equations (4.6)-(4.10), corresponding
unknown terms are obtained as n1=2.301, n»=2.176, n3=2.114, n4=2.138, and ns=2.03. These

optimum values of unknown terms are used in Figure 4.4 in order to produce classification

result, which is shown in Figure 4.8. The performance of this classification map is evaluated by

calculating confusion matrix using testing ROI, as listed in Table 4.2. The overall accuracy is

estimated as 78.43% and kappa coefficient as 0.72. The estimates of producer accuracy (in

percent) and user accuracy (in percent) of classification are enlisted in Table 4.14.

Table 4.13 Image statistics of polarimetric indices for whole image of Data-2

Feature Minimum Maximum Median Standard deviation
hy —-37.29 —4.45 -23.72 4.42
v/ % —28.48 5.19 —-8.35 2.95
c°rr /6% -19.78 10.98 -3.41 2.72
WPS 993.88 1002.3 997.30 0.7
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Figure 4.8:  Result of proposed decision tree algorithm (water: blue; bare soil-yellow, urban-
red, tall vegetation- cyan; short vegetation- green) for Data-2 at n1=2.301, n,= 2.176, nz= 2.114,
ns= 2.138, and ns=2.03.
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Table 4.14 Producer and user accuracy estimates (in percent) relative to classification of Data-
2 using testing ROI.

Class Producer accuracy (%) | User accuracy (%)
Bare soil 98 85
Water S7 98
Tall vegetation 66 94
Short vegetation 84 55
Urban 97 72

4.5. Conclusion

An image statistics based adaptive land cover classification technique has been proposed. The
presented method exhibits the role of various polarimetric indices (6%, 6%, ¢, 6%, 6%, 6%,
d%sc, 0%asx, A rla®, ®hlc®w, Pnlchn, %/ 6%, WPS, RVI, NDPI, and CPR) extracted from
polarimetric data for segregation and labelling of different land cover types. The concept of
separability index has been used to select polarimetric indices able to separate each class from
other remaining classes. Then mathematical formulations have been formed for those indices in
terms of image statistics. These expressions have been used in development of decision tree
classifier. The dependence of proposed adaptive cluster labelling/classification method on
statistical parameters (median and standard deviation) to select the values of polarimetric
indices in order to create a decision boundary for a particular class by using the genetic
algorithm approach makes the proposed algorithm adaptive in nature. The performance of
proposed algorithm has been optimized in order to meet end user specific requirement (i.e.,
OA).

The algorithm has been developed and validated on two different ALOS PALSAR data.
Two advantages of proposed method have been observed: firstly, there is no need to optimize
polarimetric parameters again for running the algorithm for different images of the same site or
similar sites, and secondly, no need to make any prior assumption about the distribution of data

for the development of classification algorithm.
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Chapter 5

Transmission Line Theory Based Impedance

Approach for Retrieval of Soil Moisture

Soil moisture retrieval under vegetation cover is a contemplative task because of complexities
involved in isolation of scattering responses of underlying soil from backscattering coefficient
of vegetated region. In this chapter, an attempt has been made to take up this challenge of soil
moisture retrieval under vegetation cover by developing multilayer model based on impedance
approach of classical transmission line theory. The foundation of proposed approach lies in the
principle of transmission line theory, which allows estimation of backscattering coefficient as a
function of complex dielectric constant and thickness of concerned medium. A multilayer
model has been developed for characterization of scattering from vegetation canopy and bare
soil regions. The multilayer model for vegetation consists of one layer of vegetation and two
layers of soil, whereas for bare soil, it consists two layers of soil. The soil moisture has been
retrieved for upper layer of soil having depth of 5 cm. Most of the available soil moisture
retrieval approaches require ‘a priori’ information. However, the proposed approach requires
minimum or no ‘a priori’ information. This quality seems to make this algorithm a good choice

for soil moisture retrieval with polarimetric SAR data.

5.1. Introduction

Soil moisture is an important land surface parameter that monitors the interaction between land
surface and atmosphere by controlling the distribution of water, energy, and carbon fluxes [125,
201, 202]. It maintains water balance at local, regional, and global scale by regulating surface
run-off, infiltration, evaporation, and percolation in soil [94]. These characteristics of soil
moisture make it key input parameter in several disciplinary applications, such as weather
forecasting [111], climate change modelling [110, 327], flood monitoring [101], draught
monitoring [43], and agriculture monitoring [43, 246], etc.

Soil moisture retrieval methods can be categorized as ground based/in situ method and

99



airborne/satellite based method [291]. Conventionally, ground-based/ in situ measurement of
soil moisture is done by gravimetric method, which comprises collection of soil samples at
sampled locations, weighing of samples before and after drying (oven drying) followed by
estimation of moisture content [181]. Due to high spatial and temporal fluctuations in soil
moisture, it is required to take multiple samples from test sites, which is very time consuming,
and cumbersome task [415]. These limitations can be compensated by the use of
airborne/satellite based methods that can estimate soil moisture at much larger scale with
frequent and vast spatial coverage and high spatial resolution [286, 340].The retrieval of soil
moisture by using satellites or more specifically, microwave sensors, has gained much attention
in past years with passive [174, 175, 291] and active [28, 101, 107, 286] methods at different
frequency bands. The central idea of retrieving soil moisture by microwave sensors is
established on the fact that there is a large difference in the value of dielectric constant of water
(~80) and dry soil (3-5), which creates a direct relationship between soil moisture and dielectric
constant of soil-water mixture due to increment in soil moisture value with increase in
dielectric constant. Thus, retrieval of soil moisture can be done after measuring dielectric
constant of soil, which consecutively is related to backscattering coefficient of microwave
sensor [108, 266, 388]. The sensitivity of microwave sensors to variation in soil moisture and
their transparency to atmosphere (>90%), make them perfect choice for soil moisture retrieval
[29].

Over the past years, numerous theoretical [28, 66, 145, 315, 353], empirical [168, 205,
406], and semi-empirical methods [115, 274, 333] have been developed for retrieval of soil
moisture using microwave sensors. Despite their wide use, their applicability is limited due to
certain reasons. Theoretical models, such as Kirchhoff’s Approximation [388], Small
Perturbation Model (SPM) [315], Integral Equation Model (IEM) [145], and Advanced Integral
Equation Model (AIEM) [66], have limited applicability due to small domain of validity and
complexity involved in their implementation. Thus, a lot of effort is required for inversion of
soil moisture from backscattering coefficient [333]. Empirical methods are easy to handle and
mostly produce accurate results for the sites, datasets, and environmental conditions, under
which they have been developed. However, their non-robust nature, and their need for requiring
adequate amount of reference data for derivation of empirical relationships, are the main
reasons for their restricted applications [20, 28, 298]. Semi-empirical models in [115, 274],

tend to overestimate the radar response, and produce inconsistent results for other data sets
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[19]. Application of these algorithms over vegetated surfaces causes under-estimation of soil
moisture [332] because vegetated surface represents multiple scattering effect i.e., diffuse
scattering from vegetation, surface scattering from underlying soil, and multiple scattering due
to interaction between vegetation and underlying soil [33]. In other terms, for vegetation
covered soil, the scattering from bare soil surface is very much influenced by the vegetation
canopy layer, which attenuates the scattering from soil while adding its own contribution [175].
Thus, it is required to separate the scattering contribution of underlying soil from
backscattering coefficient of vegetated region. Conclusively, it can be said that soil moisture
retrieval under vegetation cover is still an onerous task, which needs proper attention.

There exist some methods, namely Water-Cloud model [16, 33, 304], change detection
methods [254, 260, 275], and decomposition based methods [161, 177], for retrieving soil
moisture in vegetated areas. The Water-Cloud model works well for retrieving soil moisture in
vegetation layer, and is easy to implement. However, its implementation requires ‘a priori’
knowledge of vegetation parameters, such as Plant Water Content (PWC), vegetation height,
Leaf Area Index (LAI), etc., for characterization of scattering from vegetation canopy
(vegetation-air mixed medium). It would be cumbersome to acquire these vegetation
parameters each time for implementation of this approach, considering temporal variability of
vegetation. Another limitation of this approach is the requirement of certain assumptions, such
as invariability of surface roughness and plant height, for optimum and efficient inversion of
soil moisture from backscattering data. The limitation of change detection methods [254, 260,
275] is that these methods assume time-invariance nature of vegetation for characterization of
canopy layer. Thus, application of these methods is restricted for vegetation having narrow
cycle of growth. The performance of decomposition based approaches is quite satisfactory.
However, the application of these approaches requires selection of appropriate model for
vegetation layer [161, 177]. In order to characterize vegetation canopy, some researchers have
used optical data, and after fusing the information of optical data with microwave data (more
specifically, SAR data), they have estimated soil moisture [269, 299, 408]. The application of
these methods requires large amount of ‘a priori’ information for their implementation. Thus,
there is a need to develop such an approach that requires minimum or no ‘a priori’ information.
Considering this aspect, in this chapter, transmission line theory based multilayer layer model
has been proposed for soil moisture retrieval in both bare soil and vegetation covered soil.

Some researchers have used transmission line theory based approach for different applications,
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such as estimation of thickness of burnt coal seam [368, 369] and topsoil in semiarid area [5].

It is well known that soil moisture is sensitive to various sensor parameters, such as
frequency (or wavelength), incidence angle, and polarization. It has been found in literature that
at low incidence angle, HH or HV polarization is better suited for soil moisture retrieval [168,
388]. As far as frequency is concerned, low range of frequencies from 1 GHz to 5 GHz
(wavelength 30 cm to 5 cm) are more appropriate than higher range of frequencies (above X-
band or wavelength below 3 cm), for assessment of soil moisture. It has been found that longer
wavelengths at low incidence angles reduce the effect of surface roughness [168, 388].
Therefore, L-band ALOS PALSAR fully polarimetric data, which has low incidence angle
(24°), has is good prospect for soil moisture retrieval. In this chapter, HH polarization has been
used for retrieving soil moisture by applying multilayer model because at steep incidence angle
(around 20°), HH polarization is better than VV and HV, for retrieval of soil moisture [285].
The proposed approach has also been applied on C-band Radarsat-2 data. For both the bands,
retrieved soil moisture value is in good agreement with the observed soil moisture value.

The multilayer model developed in this chapter consists of two separate models that deal
with retrieval of soil moisture in vegetated and bare soil regions separately. Multilayer model
for vegetated region consists of three layers with one layer of vegetation (which is actually a
mixture of vegetation and air) and two layers of soil, whereas multilayer model for bare soil
region consists of only two layers of soil. In each of these models, impedance of each layer has
been calculated in terms of their dielectric constant (¢ =¢’—j&”) and thickness (t) by using the
transmission line theory. The impedance in turn is related to backscattering coefficient.
Therefore, backscattering coefficient is obtained as a non-linear function of dielectric constant
and thickness of each layer involved in respective models. It is known that the propagation of
electromagnetic waves in soil layer leads to their attenuation, which increases with the increase
in depth of soil layers. Therefore, for retrieval of soil moisture, the observation depth is only
first few centimetres of soil surface, and more specifically, lies in between one tenth of
wavelength to one quarter wavelength [391, 406, 407]. For this purpose, the first layer of soil
has been taken as 5 cm, and second layer of soil has been assumed to be extended up to infinite
length. Since most of the vegetation (short and tall agricultural vegetation) usually reach up to
400 cm. Therefore, in this chapter, thickness of vegetation-air mixed layer in multilayer model
of vegetation has been considered as 5 cm to 400 cm, which probably covers short as well as

long vegetation regions. It physically infers that the backscattering coefficient becomes the
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function of dielectric constant of each layer in respective model. Due to non-linearity of
backscattering function, Genetic Algorithm (GA) optimization technique has been used to
retrieve the dielectric constant of each layer with backscattering data, which is obtained by
satellite SAR data. Genetic algorithm is optimization based approach, which is used to
determine maximum or minimum of any arbitrary function depending upon the nature of
problem [257, 382]. It is heuristic solution search based optimization method based on the
concept of Darwinian theory of natural evolution involving biological techniques, such as
inheritance, mutation, selection, and crossover [163, 179]. By applying GA on three and two
layer models for vegetation and bare soil, respectively, real and imaginary parts of dielectric
constants of bare soil and vegetation covered soil have been retrieved. Finally, soil moisture
values have been retrieved from soil dielectric constant by using widely accepted polynomial
relationship proposed by Topp et al. [373].

The chapter is organized as follows: section 5.2 gives the description about study area
and SAR data sets used for development of proposed methodology. Section 5.3 describes the
theory of transmission line based impedance model for multilayer modelling approach. In
section 5.4, methodology of proposed model has been discussed. The results of proposed soil
moisture retrieval algorithm have been reported in section 5.5 followed by section 5.6, which

includes concluding remarks.

5.2. Study Area and Data Used

5.2.1. Study Area

The proposed approach has been developed and validated on same study area i.e., Roorkee, as

described in section 3.2.1 in Chapter 3.

5.2.2. SAR Data

5.2.2.1 L-band SAR data

The development and testing of proposed algorithm has been performed on L-band
ALOS PALSAR data sets. The description of these data sets i.e., Data-1 (Data ID-
PASL110904061711260908110063) and Data-2 (Data ID- PASL11009040617111810011-
50003), has been given in section 4.2 of Chapter-4.
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5.2.2.2 C-band SAR data

In order to check the validity of proposed approach on C-band (5.45 GHz), Radarsat-2
fully polarimetric data (Data ID- PDS_01679480) has been used. The acquisition of this dataset
was carried out on May 31, 2011 at incidence angle of 34°. The study area is similar to that

discussed in section 4.2.

5.2.3. Ground Data

5.2.3.1 For L-band ALOS PALSAR data

Ground truth survey was carried out on April 04, 2009 (2 days before the acquisition of ALOS
PALSAR data sets) for 20 sites. From each of the sites, eight to ten samples were collected for
in situ measurement of soil moisture. The average soil moisture data from all of these 20 sites
have been used for testing and validating the algorithm on Data-1 and Data-2. The observed

soil moisture range varied from 0.15 cm® cm to 0.35 cm® cm™®,

5.2.3.2 For C-band Radarsat-2 data

The survey was carried out on May 31, 2011 (day of Radarsat-2 acquisition in order to collect
soil moisture samples from all 20 sites that have been used for ALOS PALSAR data sets. The
observed soil moisture range varied from 0.15 cm® cm to 0.40 cm® cm for samples collected
on May 31, 2011.

For classification of Radarsat-2 data, required training and testing samples for classes,
water, urban, vegetation, and bare soil, were also collected during ground survey. These ground

truth points are enlisted in Table 5.1.

Table 5.1 Ground truth points

Class Training Samples | Testing samples
Water 201 165
Urban 203 158
Bare soil 185 104
Vegetation | 105 102
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5.3. Theoretical Background

5.3.1. Multilayer Model Using Transmission Line Theory Based Impedance

Approach

The multilayer model utilizes the concept of transmission line theory which computes
impedance of each layer in terms of complex dielectric constant and thickness of that layer
[168]. In order to develop the model, it has been assumed that media is composed of infinite
length of air and n layers of different (or same) media having diverse complex dielectric
constant and thickness. The two-dimensional model of this scenario is shown in Figure 5.1. It
is shown in this figure that a plane wave having transverse magnetic (TM) mode is incident on
p™ layer at an incidence angle of 6. In TM mode, wave propagation from air to p™ layer is
shown in Figure 5.2. In this case, electric field lies in xz plane and incident fields in air medium

can be represented by referring Figure 5.2 as [297],
H. =H _e—jkl(xc059i+zsinz9i) ~ (5 18.)
I yi ’ .
E; = ZyH,;(sinG,% — cos@,z)e” Falxeosdrzend) (5.1b)
where Ky = w\/pgeg and Zo are the wave number and intrinsic wave impedance of free space

(i.e., 377 ohms),respectively. The term w is represented as 2mtf with f symbolizing operating
frequency. The terms H; and E; represent incident magnetic and electric field intensities,

respectively, and Hyi represents y-component of incident magnetic field intensity.

Air
&0, Ho

Layer 1
&1, 1

Layer p
€p, Hp

Layer n
€n, Un

Figure 5.1: Two dimensional model [5].
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Figure 5.2: Representation of wave propagation in two different media.

In a similar manner, the reflected and transmitted fields can be represented as [297],

_ —jkq (—=xcosé, +zsin 6, )
H =H,e ' '

E, = ZoH,, (sin, %+ cosg, 2)e falxeosbrzsnér)

_ —Jkp (xcosOy +zsin G )
Hip = Hype Y,

. . o 515~ JKp (xCOSEy, +25in Gy)
Ep =ZpHp (SING,X —cosb,7)e :

(5.2a)
(5.2b)
(5.33)

(5.3b)

H h
where k,=w /u,e, and Zp are the wave number and wave impedance of p™ layer,

respectively. The terms H; and E represent reflected magnetic and electric field intensities,

respectively, and Hy and Eyp, represent transmitted magnetic and electric field intensities in p™

layer, respectively. The term Hyr and Hytp represents y-component of reflected and transmitted

magnetic field intensity, respectively.

Based on transmission line concept, p™" layer of thickness t, in Figure 5.1 is said to have

an impedance of Zp. Therefore, Figure 5.1 can be represented by an equivalent circuit as

presented in Figure 5.3, where Zcp, Zip, tp, and &p, indicate the effective series impedance

(characteristics impedance), parallel impedance, thickness, and complex dielectric constant,

respectively, of p!" layer of media. The complex permeability (Hp) is assumed to be constant
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(or, unity) for all the layers. Zr represents total input impedance seen looking towards the
media. Considering the last layer (n™" layer) of model having infinite thickness, the parallel
impedance Z.» can be taken as zero assuming earth as a perfect conductor. In order to reduce

the complexity of analysis, the parallel impedances of other layers i.e., Z.p are neglected [5].

Air Zr

€o, Mo l

Layer 1 T T

e1, la Zc1 |t le
fu * f

Layer p

€, Hp Zep T Zf
e b

Layer n

En, Un Zn
ZLn

Figure 5.3: Equivalent circuit for multilayer model.

Based on transmission line theory, the total input impedance Zr seen looking towards 1%

layer is determined by,

n
ZT = zzp ) (54)
p=1
Z . +Z~ tanh ..t
Z7,=2g, 2 0 0w (5.5)
Zey +Z ptanh yeot

where ycpand t, are propagation constant and thickness, respectively, of p" layer of media.
At the boundary between the air and p™ layer of media, Snell’s law is applied in order to

give following relationship,
siné, = /& 4y, SING, (5.6)

where erp, Urp, and Gy are complex dielectric constant, complex permeability, and transmission

angle of p" layer of media, as exhibited in Figure 5.1. In whole analysis, prp has been
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considered as 1.0, and &rp is represented as &'rp—je”rp, Where &’yp and &”yp are real and imaginary
part of complex dielectric constant, respectively.
Considering incidence of plane wave from air to media as represented in Figure 5.1, the

propagation constant can be derived from Maxwell’s equation as [5],

Yep = J@ & by COSO, = ja)\/grp,urp —sin® 6, (5.7)
The effective series impedance of p™ layer of media is obtained by taking the component
of electromagnetic fields which are perpendicular to axis of propagation (i.e., X-axis), and can

be measured as,

-E4 A,
Zey=—"=7,c086, =Z, g—mcosetp, (5.8)
ytp m
Thus, Equation (5.5) can be represented as
Z : 2t :
Z, :8—0\/5rp,urp —sin®6, tanh(JT'D\/grp,urp —sin®6, j (5.9)
p

After substituting Equation (5.9) into Equation (5.4), total input impedance Zr can be

obtained. The reflection coefficient can then be obtained as,

Z; +Z,c086,
Finally, the backscattering coefficient is obtained as,
oo = 20log(L), (5.11)

Thus, backscattering coefficient obtained by Equation (5.11) is a function of complex

dielectric constant and thickness of each layer.

5.4. Model Development

The flowchart of developed method is shown in Figure 5.4. It indicates that first it is required
to segregate bare soil and vegetation region, by performing classification of fully polarimetric
SAR data. After obtaining these regions, two separate models for vegetation and bare soil
regions are developed based on approach described in section 5.3. The procedure for
development of proposed model has been described below:
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Figure 5.4:

Flowchart for development of soil moisture retrieval algorithm.
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5.4.1. Three Layer Model for Vegetation

For vegetated region, multilayer model, as discussed in section 5.3, having n=3 number of
layers, hence, designated as three layer model, has been developed. In order to develop three
layer model for vegetation, it has been assumed that media is composed of infinite length of air,
one layer of vegetation-air mixture, and two layers of soil. Referring Figure 5.1 and 5.3, it can
be visualized that topmost layer (or layer-1) is vegetation-air mixed layer having thickness t;
(or tv, where V7’ stands for vegetation-air mixed layer), and next two layers (layer 2 and 3) are
soil layers having thicknesses t. (or ts1, where 'S/’ stands for soil layer 1), and ts (or ts2, where
‘S2” stands for soil layer 2), respectively. The impedances of vegetation-air mixed layer and
soil layers are Z; (or Zv), Z> (or, Zs1), and Z3 (or, Zs2), respectively, which are calculated by

using Equation (5.9) as,

YA - .27t )
Z,=2, =—°\/5rvﬂrv —sin’ 6 tanh(J /1" \/grvﬂrv —sin? 6 j (5.12a)

Ery

Z : . 2rt -
Ly=Lg = _O\/5r51ﬂr51 —sin® 4, tanh(J 7 > \/8r81ﬂr81 —sin’ g j ’ (5.12b)

€rs1

Z : 2t :
Ly=Ls, :g_o\/grszﬂrsz —sin”4 tanh(; /152 \/‘9rszﬂrsz —sin’¢ j’ (5.12c)
rS2

where, e, ers1, and ers2 are complex dielectric constants, and pry, Hrs1, and Hrs2 are complex
permeabilities of vegetation canopy and soil layers (layer 2 and 3), respectively. In this
analysis, Mrv, Hrs1, and prs2 are taken as 1.0.
The total impedance seen looking into vegetation layer can be measured by using
Equations (5.4) and (5.12) as,
Zy vog=Z1+Zy+Zs, (5.13)

After obtaining total input impedance Zr veg in Equation (5.13), reflection coefficient

(T _veg) in vegetated area is measured by Equation (5.10) as,

ro- Zr yeg —ZyCOSH,

= ) 5.14
~9 Zo e +Z, COSO. G.14)

T _veg
At last, the backscattering coefficient in vegetated area (i.e., 0%al veg) Can be calculated
using Equations (5.11) and (5.14) as,

G(?al_veg =20 Iogqr_veg‘) y (515)
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The Equation (5.15) indicates that ¢%ai veq is non-linearly related to complex dielectric
constant and thickness of all three layers of vegetation model (or three layer model). As
discussed in section 5.1, thickness of first and second layers of soil (ts1 and tsz, respectively)
have been taken as 5 cm and infinite, respectively. The thickness of vegetation-air mixed layer
has been varied from 5 cm to 400 cm because it is assumed that most agricultural vegetation

would be covered in this range.

5.4.2. Two Layer Model for Bare Soil

In case of bare soil, multilayer model having n=2 numbers of layer (i.e., two layer model) has
been developed. This model includes infinite layer of air and two layers of soil (soil layers 1
and 2). Thus, this model is similar to three layer model, as discussed in section 5.4.1, except
exclusion of vegetation-air mixed layer. As exhibited in Figures 5.1 and 5.3, thickness of soil
layers 1 and 2 are t1 (or, ts1) and t2 (or, ts2), respectively, and their respective impedances are Zs;
and Zs, respectively. The total impedance seen looking into soil layers can be determined by

using Equations (5.4) and (5.9) as,

Ly s =Lsitisy (5.16a)
YA - 2t .
Zsy= _O\/5r51#r51 —sin’ 4, tanh(l > \/5r51ﬂr51 —sin® g, J ’ (5.16b)
&rs1 A
Z : 2t -
Zszzg_o\/grszﬂrsz_s'nzei tanh(j /152 \/‘9r82ﬂr82_8|n29i}n (5.16¢)
rS2

In a similar manner, as discussed in section 5.4.1, reflection coefficient (I" soit) and
backscattering coefficient in bare soil region (i.e., 6%al_soit) are calculated by using Equations
(5.10) and (5.11), respectively, as,

Z & —Z,C0SE

F_soil _ ZT_soH 0 i 1 (5.17)
T _soil + ZO COSQi

O-gal_soil = 2Olog(lr_soil ‘) , (5.18)

After taking ts; and ts2 as 5 cm and infinite respectively, Equation (5.18) that calculates
backscattering coefficient for bare soil (¢ ca soit) becomes function of complex dielectric

constant of soil layers 1 and 2.
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5.4.3. Retrieval of Complex Dielectric Constant of Soil Layers Using Genetic
Algorithm

The backscattering coefficients in Equations (5.15) and (5.18) represent a non-linear problem
involving multiple unknowns (more than two). The well proven ability of Genetic Algorithm
(GA) in handling multiple parameters together, and in production of optimal solution of any
problem in any search space, makes it reliable choice to solve our problem. The most critical
step of genetic algorithm is proper selection of cost function to accurately determine the
solution close to optimal results. In this particular case, the cost function is formulated by
backscattering coefficient calculated in multilayer model, particularly in three layer model
using Equation (5.15) for vegetation (i.e., 6%l veg), and in two layer model using Equation
(5.18) for bare soil (i.e., 6%al_soit). Through GA, optimum solution for unknown parameters has
been obtained by minimizing the cost function [179, 341]. The retrieval process of unknown
parameter using GA for three and two layer models has been discussed as:

5.4.3.1 Retrieval of dielectric constant of soil layers in three layer model

Equation (5.15) shows that backscattering coefficient of vegetated area is related to complex
dielectric constants of each layer. Considering real and imaginary part of complex dielectric
constant as individual variables, 6%ai veg becomes the function of six unknowns which are &%,
€”w, €'rs1, €”rs1, €'rs2, and €”rs2. This problem for retrieval of real and imaginary part of
complex dielectric constant of vegetation-air mixed layer and soil layers, has been solved by
GA. The construction of cost function for GA is done by taking calculated backscattering
coefficient of Equation (5.15) and observed value of backscattering coefficient (¢bs veg ) USiNg

HH polarized SAR data as,
Cost FUNCion =| 6% veg — Cobs_veg | » (5.19)

where 6%ps_ veg is Observed value of backscattering coefficient in vegetated area which is

retrieved from HH polarization channel of SAR data.

5.4.3.2 Retrieval of dielectric constant of soil layers in two layer model

The backscattering coefficient of bare soil (i.e., 6%l soir) in two layer model [Equation (5.18) in
section 5.4.2] is a non-linear function of real and imaginary parts of dielectric constant of two

layers of soil i.e., €’rs1, €”rs1, €'rs2, and €”rs2. The retrieval of these four unknowns has been
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done by using GA by minimizing the cost function, which is defined as,
Cost Function=| G(?al_soil - O-gbs_soil |2! (5.20)

where ¢%bs soil is the backscattering coefficient of bare soil which is retrieved from HH
polarized channel of SAR data.

5.4.4. Retrieval of Soil Moisture

Application of GA in Equations (5.19) and (5.20), helps in retrieval of real and imaginary parts
of complex dielectric constant of both the layers of soil (i.e., €’rs1, €”rs1, €’rs2, and €”rs2) for
vegetated area using three layer model, as discussed in section 5.4.1, and for bare soil region
using two layer model, as discussed in section 5.4.2. In this analysis, soil moisture value has
been retrieved by using well-known polynomial relation between volumetric soil moisture and
real part of complex dielectric constant of soil, which was proposed by Topp et al. [373]. Based
on this relationship, volumetric soil moisture for top layer of soil (first 5 cm) in both the regions

(i.e., vegetation and bare soil) can be estimated as,

Mo = 5.3x102 1 2.92x10 26cr ~55x10 4ecr” +43x10 8ser.  (5.21
v =—. : rs1 —9.9% &gy +4.3x &s1 . (5.21)

5.5. Results and Discussion

This section presents the result of proposed soil moisture retrieval algorithm of two different L-
band ALOS PALSAR data sets and one Radarsat-2 data. The results are discussed as follows:

5.5.1. Implementation of Algorithm on Data-1

The steps for implementation of the algorithm have been described in Figure 5.4. The algorithm
has been implemented and tested on Data-1 (Data ID-PASL110904061711260908110063). The
step-wise description of implementation procedure has been given as follows:

1. In first step, classification of SAR data is performed, for which the adaptive
classification algorithm, as developed in Chapter 4, has been used. The classified image
of Data-1 has been shown in Figure 4.7, which exhibits five different classes, such as
water, urban, tall vegetation, short vegetation, and bare soil in blue, red, cyan, green,
and yellow colours, respectively. In this analysis, short vegetation and tall vegetation

classes have been considered as single entity called vegetation.
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In second step, urban and water classes have been masked in order to obtain only
vegetation and bare soil classes. The masked classified image of Data-1 has been shown
in Figure 5.5, in which vegetation and bare soil classes are represented in green and
yellow colours, respectively, whereas masked urban and water classes are shown in
black colour.

Now, in case of vegetation, three layer model, as discussed in section 5.4.1, has been
applied, whereas in case of bare soil, two layer model, as discussed in section 5.4.2, has
been applied. Using these models, backscattering coefficients have been calculated for
both vegetated and bare soil regions i.e., 6%al veg and o%al_soil, @S given in Equations
(5.15) and (5.18), respectively.

Next step is to measure backscattering coefficient for HH polarization using Data-
1.This data is obtained after performing pre-processing, as described in Chapter 3
(Figure 3.3). The observed backscattering coefficient for vegetation class and bare soil
class has been designated as o°obs veg and o%ps soil, respectively.

In MATLAB, the code for GA has been implemented, which is based on the concept of
evolution optimization [447]. In this algorithm, population of distinct solutions are
repeatedly modified in order to improve the fitness, and to obtain optimal solution of
the problem by minimizing cost function.

In case of vegetation, there are six unknowns consisting real and imaginary parts of
dielectric constants of vegetation-air mixed layer and soil layers (i.e., €’rv, €, €’rs1,
€”rs1, €'rs2, and €”rs2). These unknowns are retrieved by minimizing the cost function, as
given in Equation (5.19), using GA. Since retrieval of soil moisture is generally
performed for first few centimeters of soil layer, the thickness of first layer of soil i.e.,
ts1, has been considered up to 5 cm (as discussed earlier that penetration depends upon
the used radar wavelength). The thickness of second layer of soil (ts2) has been taken as
infinite, whereas thickness of vegetation-air mixed layer (tv) has been varied from 5 cm-
400 cm.

In a similar manner, for bare soil class, GA has been applied over the cost function, as
given in Equation (5.20), for retrieving 4 unknowns consisting real and imaginary parts
of dielectric constants of soil (i.e., €’rs1, €”rs1, €’rs2, and €”’rs2). In this case, ts; Is again
set as 5 cm in order to retrieve soil moisture in first few centimetres of soil depth, and

ts2 is considered as infinite.



8. The next step is to estimate the soil moisture for both bare soil and vegetation-covered
bare soil. After applying GA in three layer model for vegetation and two layer model
for bare soil, the value of real parts of dielectric constants for top layer of soil (i.e., €’rs1)
have been retrieved for both models. These values of £’rs1 have been used for retrieving
volumetric soil moisture in top layer of soil (my) in both the regions i.e., bare soil and
vegetation underlying soil, by using Equation (5.21). Figure 5.6 shows the moisture
map for top layer of soil.

9. Figure 5.7 shows the graph of retrieved volumetric soil moisture for top layer of soil
(my) obtained by proposed approach versus observed volumetric soil moisture for Data-
1. The coefficient of determination (R?) and Root Mean Square Error (RMSE) has been
obtained as 0.74 and 0.027, respectively. Small RMSE and moderate R? value indicates

quite good performance of proposed methodology.
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Figure 5.5:  Classified masked image of Data-1 exhibiting vegetation and bare soil classes in
green and yellow colours, respectively. Black region shows masked urban and water classes.
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Figure 5.6:  Soil moisture map for top layer of soil (my) using Data-1.
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Figure 5.7:  Retrieved volumetric soil moisture (my) versus observed volumetric soil
moisture for Data-1.
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5.5.2. Testing of Algorithm on Data-2

The algorithm has been tested on different ALOS PALSAR data (i.e., Data-2: Data ID-
PASL1100904061711181001150003) for similar region (i.e. Roorkee). After classifying the
image of Data-2 using method proposed in Chapter 4, masking of urban and water classes in
classified image (Figure 4.8) has been performed. This masked classified image of data-2 has
been shown in Figure 5.8, which displays vegetation in green and bare soil in yellow colour.
Now, GA has been applied for retrieving six unknowns (&’rv, €”rv, €’rs1, €”rs1, €’rs2, and
€”’rs2) of three layer model for vegetation and four unknowns (€’rs1, €”rs1, €’rs2, and €”’rs2) of two
layer model for bare soil by minimizing the cost functions, as given in Equations (5.19) and
(5.20), respectively. The optimum values of £’rs; obtained from both three and two layer models
for vegetation and bare soil, respectively, have been used to estimate volumetric soil moisture
for top layer of soil (i.e., my) by Equation (5.21). The generated soil moisture map for bare soil

as well as crop covered soil is shown in Figure 5.9.
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Figure 5.8:  Classified masked image of Data-2 exhibiting vegetation and bare soil classes in
green and yellow colours, respectively. Black region shows masked urban and water classes.
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For Data-2, the quantitative result of retrieved volumetric soil moisture for top layer of
soil (myy) for Data-2 versus observed volumetric soil moisture has been presented in Figure
5.10. The R? and RMSE error for this relationship is 0.70 and 0.039, respectively. The result of

retrieved soil moisture shows good agreement with the observed value of soil moisture.
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Figure 5.9:  Soil moisture map for top layer of soil (my) using Data-2.
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Figure 5.10: Retrieved volumetric soil moisture (my1) versus observed volumetric soil
moisture for Data-2.
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5.5.3. Application of Proposed Approach on C-Band Radarsat-2 Data

For the purpose of evaluating the performance of proposed soil moisture retrieval approach on
C-band, Radarsat-2 data has been used. The pre-processing of Radarsat-2 data is performed in a
similar manner, as described in section 3.7.1 (Figure 3.3) in Chapter 3. The application of
proposed soil moisture algorithm requires masking of urban and water classes. For ALOS
PALSAR data, the masking of these regions has been done after classifying data by adaptive
classification algorithm proposed in Chapter 4. Since this algorithm has been developed for L-
band ALOS PALSAR data. Thus, in this chapter, classification of Radarsat-2 has been carried
out by supervised maximum likelihood method. This classification has been performed on layer
stacked HH-HV-VV polarized bands by using training samples for water, urban, vegetation,
and bare soil regions. The ground truth points for training and testing samples required for
classification have been enlisted in Table-5.1. The overall classification accuracy measured by
taking testing samples of all four classes has been obtained as 87%. The classified image of
Radarsat-2 data exhibiting water, urban, vegetation and bare soil regions in blue, red, green and
yellow colours, respectively, and its corresponding masked classified image exhibiting urban

and water classes in black colour, is shown in Figure 5.11.
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Figure 5.11: (a) Classified image of Radarsat-2 data exhibiting water, urban, bare soil and
vegetation classes in blue, red, yellow, and green colours, respectively, and (b) Masked
classified image exhibiting urban and water classes in black colours.
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The same procedure has been adopted, as in section 5.5.1 and 5.5.2, for retrieval of
unknowns associated with two and three layer models for bare soil and vegetation, respectively
by minimizing the cost functions (Equation (5.20) and (5.19), respectively) using GA. Finally,
soil moisture for top layer of soil and vegetation covered soil has been retrieved by Equation
(5.21). This moisture map (i.e., my) has been shown in Figure 5.12.

The retrieval of volumetric soil moisture for top layer of soil (my) using Radarsat-2 data
shows good agreement with the observed volumetric soil moisture as represented in Figure
5.13. The R? and RMSE have been obtained as 0.75 and 0.041, respectively. The retrieved

volumetric soil moisture is in good agreement with the observed soil moisture.
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Figure 5.12:  Soil moisture map for top layer of soil (m,) using Radarsat-2 data.
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Figure 5.13: Retrieved volumetric soil moisture (my) versus observed volumetric soil
moisture for Radarsat-2.
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5.6. Conclusion

In this chapter, multilayer model based on the principle of transmission line theory has been
proposed for retrieval of soil moisture in bare soil and vegetation covered soil. For vegetation
and bare soil regions, three and two layer models, respectively, have been developed. Three
layer model for vegetation canopy has one extra layer of vegetation as compared to that of two
layer model for bare soil consisting only two layers of soil. This method estimates
backscattering coefficient as a function of complex dielectric constant and thickness of each
layer. In the proposed approach, the first and second layers of soil in both the models are taken
as 5 cm and infinite, respectively. The vegetation layer (in three layer model) is considered to
have thickness varying from 5 cm to 400 cm, assuming all the agricultural vegetation covering
this range. The real and imaginary parts of dielectric constants for both bare soil and vegetated
regions have been retrieved by genetic algorithm approach after minimizing cost function,
which is formed by calculated backscattering coefficients in each model and HH polarized
backscattering coefficient from SAR data. Further, volumetric soil moisture has been retrieved
by using polynomial relation proposed by Topp et al. [373].

The proposed approach has the capability to retrieve soil moisture without having any
prior knowledge about test sites. For L-band ALOS PALSAR data sets (Data-1 and Data-2),
retrieved soil moisture values by proposed method exhibit good agreement with the observed
(i.e., ground truth) soil moisture. The proposed approach has also been applied on C-band
Radarsat-2 data, which is classified by using maximum likelihood supervised classification
method. After, retrieving bare soil and vegetated regions by classification, soil moisture has
been retrieved by proposed approach for top layer of soil (5 cm) and satisfactory results have

been obtained for even for C-band.
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Chapter 6

Study and Analysis of Hybrid Polarimetric
Chandrayaan-1’s MiniSAR Data for

Characterization of Lunar Surface

With the advent of hybrid polarimetry, radar polarimetry has got its new dimension. It is a
unique architecture in which transmitted polarization is one of the circular polarizations (left
‘L’/right circular ‘R”), and the received polarization is H & V linear. This configuration
provides several advantages in terms of reductions in pulse repetition frequency, data volume,
and system power needs, and increment in swath width [308]. These advantages provide
optimum conditions for exploration of planetary surfaces. MiniSAR onboard Chandrayaan-1’s
mission of Indian Space Research Organisation (ISRO), India, was one such sensor. The
objective of this mission was to explore lunar surface for the presence of water-ice deposits, to
characterize radio-physical properties of lunar regolith, and to investigate scattering response of
lunar surface [357]. On lunar surface, investigating the possibility of water-ice deposits has
been a very challenging, yet fascinating task, which requires meticulous efforts.
Conceptualization of MiniSAR was a breakthrough in this field for imaging permanently
shadowed regions, where possibility of water- ice might be high. This chapter deals with the
task of characterizing lunar surface by developing an algorithm for possible detection of water-

ice, and determining its electrical and physical properties by using MiniSAR data.

6.1. Introduction

There have been several missions for lunar exploration in order to collect data of lunar surface
for studying its various properties, such as dielectric constant, surface roughness, mineral
composition, chemical composition (e.g., H2, OH™, He, etc.,), regolith density, regolith layer
thickness, etc., [188, 253, 276, 336, 413]. The presence of water-ice deposits or its constituents
on lunar surface has been one of the most intense matters of research by various past lunar

exploration missions. Various theoretical studies and observations have been carried out in past
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for discussing the presence (or absence) of water-ice or water molecules (hydroxyl) on lunar
surface [15, 126-128, 414]. It was hypothesized that water or water molecules may be delivered
to Moon through bombardment of water-bearing impactors such as comets, asteroids,
meteorites, and micro-meteorites [15, 230, 295], or can be created by reaction between protons
derived by solar wind and oxygenated minerals on lunar soil [75, 241, 295, 365]. Water can
also be present on surface of Moon by various other sources, such as endogenous sources (fire
fountains, apatite, outgassing) [86, 321], giant interstellar clouds, interplanetary dust particles,
and solar wind[241, 278]. These volatiles (water or water molecules) can be transported
through ballistic trajectories, and after reaching permanently shadowed regions, they become
cold trapped [15]. It has been believed that these volatile deposits might be there for billions of
years in permanently shadowed polar regions of Moon, which have average surface
temperature less than 40K due to absence of solar illumination [15, 281]. Recent study by
Moon Mineralogy Mapper (M%) has detected the presence of magmatic water under lunar
surface that may be generated from interiors of Moon by unknown sources [32, 190].

The possibility of finding water-ice deposits is more in permanently shadowed regions of
Moon. SAR provides a possible way of imaging these regions and analyses their scattering
behaviour. MiniSAR was theorized to achieve this particular goal. It was the first polarimetric
SAR outside the Earth orbit, on-board India's Chandrayaan-1 mission launched by Indian Space
Research Organisation (ISRO) [359]. The aim of this mission was to gather valuable facts and
evidences about scattering properties of both the regions of lunar poles lying either in
illumination, or in permanent shadow [357]. In radar based missions, received radar circular
polarization ratio (uc), which is defined as the ratio of same sense circular polarization (SC) to
opposite sense circular polarization (OC), has been traditionally used as a key parameter for
determining the evidences of possible water-ice deposits in cold dark permanently shadowed
regions. Several radar based experiments have detected the presence of water-ice after
obtaining high circular polarization ratio (uc >1) received from polar regions of Mercury [24,
48], Jupiter [279], Mars [60], and Moon [225, 272]. High value of circular polarization ratio (uc
>1), is caused due to density variations, particles, and voids in weakly absorbing media, like
water-ice [400]. In weakly absorbing media, like ice, there exist wavelength sized forward
scatterers in the form of dust, silicate rocks, voids, etc., which cause incident electromagnetic
wave to undergo multiple forward scattering within the ice matrix. These multiple scattered

waves interfere constructively with waves scattered in time-reversed direction (or backscatter
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direction) leading to increase in SC backscatter, and hence, circular polarization ratio [261,
359]. Thus, this process known as Coherent Backscatter Opposition Effect (CBOE), which
takes place in ice-matrix, gives rise to high value of uc. However, further studies revealed that
e >1 may also occur due to double-bounce effect, which takes place in rough, dry surfaces
containing rocks, blocky lava flows, etc., [53, 361]. Thus, uc >1 assumption, is also an indicator
of surface roughness. These two situations which cause high uc values are depicted in Figure
6.1.

High CPR caused by surface roughness High CPR caused by ice/volume scattering
scattering
LCP returned LCP LCP returned LCP
after second transmitted after multiple transmitted
bounce bounce
Ice surface
o Redks T Linar R RRRRRRRRRRAR:
o | 2 sutace

e i
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Figure 6.1:  Situations depicting reasons for high circular polarization ratio [358].

Differentiation of two regions on the basis of criterion wuc >1, is very challenging because
two different phenomena are associated with lunar surface, which are volume scattering caused
by dielectric mixing due to presence of planetary water-ice, and double-bounce scattering
caused by surface roughness due to ejecta, rocks, or lava flows on lunar surface. Therefore, it is
required to develop such an approach that may differentiate these two regions. One feasible
way of differentiating these regions is determination of textural (or roughness) information
along with scattering phenomenon associated with these regions. Therefore, in this chapter,
information of two different approaches (i.e., polarimetric and fractal) have been fused for
segregating craters having higher possibility of containing water-ice deposits (or dielectric
mixing) from rough regions. The polarimetric approaches, ‘m-6’ decomposition [308] and ‘m-
x’ decomposition [310], help in studying scattering phenomena associated with lunar surface,
while fractal approach helps in identifying surfaces on the basis of their irregularity and
roughness [158, 383]. Fractal based approach determines the roughness of any surface with the
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renowned measure called fractal dimension ('D"), which has values lie in the range 2.0 to 3.0
for any surface. Characterization of lunar surface is possible by using fractal-based approach,
which creates one-to-one relation between the values of fractal dimension 'D' and texture (or
roughness) measure of surfaces. It has been observed that value of D increases with increase in
surface roughness [236, 292]. The fractal approach performs the clustering of pixels into
different classes in terms of their roughness; however, it does not provide any additional
information about the classes [199, 200, 249] .

Therefore, the objective of this chapter is to identify such regions on the lunar surface
which have prominent volume scattering due to dielectric mixing rather than due to surface
roughness, and to compute the dielectric properties of the identified region. For this purpose, in
this chapter, a decision tree algorithm has been proposed for studying the possibility of volatile
deposits on lunar surface by segregation of smooth regions from rough regions based on fractal
dimension 'D', and then, applying favourable conditions for likelihood of dielectric mixing due
to water-ice deposits on the basis of uc >1 and volume scattering phenomenon. The decision
criteria in the proposed algorithm have been obtained by analysing ¢, m-6 decomposition, m-y
decomposition, and fractal dimension 'D'. The criteria for possible existence of water-ice
obtained by proposed approach have been combined with the criteria for possible icy craters
proposed by Thompson et al. [371], and it has been observed that there are certain regions
inside anomalous craters which satisfy the conditions proposed by both the approaches i.e.,
proposed approach and Thompson's approach. In these common regions, the possibility of
finding water-ice deposits might be high. After obtaining possible locations of water-ice
deposits on lunar surface by combined approach (proposed approach and Thomson’s
approach), the study of electrical and physical properties such as dielectric constant of lunar
surface (e= ¢’-j ¢”’) [52, 413], loss tangent (tan o) [413], and regolith bulk density (po) [124],
has been performed.

The chapter is organized as follows: section 6.2 gives the description about study area
and data used. The detailed description of MiniSAR data has also been discussed in this
section. Section 6.3 includes the theoretical background related to child parameters,
decomposition approaches, and fractal approach. The description of electrical and physical
parameters has also been given in this section. In section 6.4, proposed methodology has been
discussed. In section 6.5, the results of proposed algorithm using data of Peary crater have been

presented. The proposed algorithm has been applied on another MiniSAR data of
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Rozhdestvenskiy crater, the results of which are discussed in section 6.6. The concluding

remarks have been given in section 6.7.

6.2. Study Area and Data Used

6.2.1. Study Area

For development and testing of proposed algorithm, MiniSAR data of Peary (Data-P) crater on
lunar North Pole has been considered. Peary crater is large irregular shaped impact crater
(diameter 77.7 km) located at 88.6° N, 33° E.

The proposed algorithm has also been tested on another MiniSAR data of
Rozhdestvenskiy crater (Data-R) on North Polar Region of Moon. Rozhdestvenskiy crater is a
bowl shaped large crater (diameter 177 km) located just opposite to Peary crater at 155° W,
85.2° N [359].

Illumination studies at these two craters suggest that most of the area around the higher
rim lies in permanent sun illumination, while small anomalous craters (diameter <10-20 km) on
the floor of these craters experience permanent shadow [47, 237, 267, 359]. Thus, possibility
for presence of water-ice within these craters may be large as compared to areas around higher
rim [47, 237, 267].

6.2.2. Data Description

MiniSAR was a single frequency (S-band-2.38GHz) hybrid polarity imaging radar having
unique architecture among planetary radars. This sensor illuminated the lunar surface by left
circular polarization (LCP) and received lunar backscatter in mutually coherent horizontal (H)
and vertical (V) polarizations. In MiniSAR, the illumination of lunar surface was performed at
incidence angle of 35° and ground range resolution of 150 m.

MiniSAR, being a dual polarimetric hybrid SAR system, provided four channel raw data
as |Ecnf?, |Ev/, Real (Eun ELv’), and Imaginary (Etn Erv®) without any processing, where E
represents complex voltage. The former two channels are horizontal and vertical receive
amplitude images, while latter two channels are real and imaginary part of complex cross-
product of horizontal and vertical receive polarizations [308]. These four channels are basic
building blocks for construction of Stokes vector g, which preserves overall information of

backscattered electromagnetic field, and can be represented as,
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In second column of Equation (6.1), g1 represents total backscattered power, g» represents
difference of in-phase and quadrature phase received power, gz and g4 are real and imaginary
parts of cross-channel received power, respectively (refer Appendix-A for more details on
Stokes vector). In third column of Equation (6.1), Stokes parameters (g1, g2, g3, g4) are
expressed in terms of complex voltage E measured in hybrid polarimetric manner. In these
expressions Re and Im represent real and imaginary parts, respectively, <...> represents
multilooking (or spatial averaging), and ™*' represents complex conjugate. In forth column,
Stokes parameters are expressed in terms of Poincare variables y and y , which are ellipticity
and orientation angles, respectively, of polarization ellipse, as shown in Figure A.2 in
Appendix-A [310].

6.3. Theoretical Background

Traditionally, uc >1 has been widely accepted criterion for identification of potential water-ice
deposits on lunar surface [225, 272] and various other planetary surfaces [24, 48, 60].
However, circular polarization ratio (uc) alone may not be useful for finding the possible
evidences for presence of water-ice deposits on lunar surface. The regions having volatile
deposits exhibit uc >1 due to volume scattering phenomenon, as shown in Figure 6.1 [261, 359].
Thus, information about scattering mechanism may provide some additional information. Since
SAR has the capability to obtain scattering information by using decomposition approaches,
segregation of volume scattering dominant regions from other regions may be possible by
decomposition of MiniSAR data. It is believed that x«c >1 may also occur due to surface
roughness resulted by rocks, cracks, lava flow, ejecta, etc., on lunar surface. These rough
surfaces mainly contribute single and double-bounce scattering [53, 361]. However, little
contribution of volume scattering may also occur due to multiple reflections on rough rocky
surfaces. Thus, if roughness information is obtained by some means, it might aid in finding the

possible presence of volumetric water-ice deposits on lunar surface. It is known that fractal
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dimension 'D' is capable of identifying rough and smooth surfaces based on 'D' values [199,
200, 249, 292] . For example, 2-dimensional surfaces exhibit D values in between 2.0 to 3.0
with lower range corresponds to smooth surfaces and higher range corresponds to rough
surfaces [292]. Therefore, fusing the information of fractal dimension 'D' with scattering
information, MiniSAR data may provide regions exhibiting volume scattering due to dielectric
mixing (by water-ice) rather than due to surface roughness. Thus, in this chapter, an attempt has
been made to develop an algorithm, using scattering information obtained from decomposition
approaches and roughness information from fractal dimension 'D', for identifying volume
scattering regions due to dielectric mixing. Therefore, in this section review of methods related

to information extraction about scattering mechanisms and roughness, has been presented.

6.3.1. Extracting Information of Scattering Mechanisms by Polarimetric

Approaches

The information about scattering mechanisms can be obtained by using either child parameters
or decomposition parameters. They are discussed as follows:

6.3.1.1 Child parameter extraction

The Stokes parameters are used in formation of various useful quantitative measures called
child parameters, which not only describe the scattering mechanisms of different targets but
also provide information related to the geophysical properties, such as dielectric permittivity,
density, surface roughness, geometric shape, size, and EM penetration capability [57, 58, 311].
These child parameters are: degree of polarization (DoP or m), circular polarization ratio (uc),
linear polarization ratio (u.), degree of circular polarization (mc), degree of linear polarization
(mv), relative LH-LV phase difference (0), and ellipticity parameter (y) [308, 310]. In the
proposed approach, only some of the child parameters i.e., uc, m,8, and y, have been used
because of their experimental validation done in earlier research, in which these parameters
show capability to retrieve scattering behaviour of targets [252, 308, 310]. The detailed

description of all the parameters has been presented below:
a) Degree of polarization (m)

The degree of polarization helps in determining the state of polarization of electromagnetic
waves by characterizing the amount of depolarization in polarimetric SAR images [335]. It can

be mathematically represented as [308],
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where m=0 denotes completely depolarized wave, m=1 denotes fully polarized wave, and

, 0<m«<1, (6.2)

0<m<1 denotes partially polarized wave [335]. Therefore, lower m values correspond to
volume scattering, whereas higher m values correspond to surface or double-bounce scattering
[252].

b)  Circular Polarization Ratio (xc)

The circular polarization ratio is defined as the ratio of the same sense circular polarization

(SC) to the opposite sense circular polarization (OC), given as [308],

He :M He 20, (6.3)

(91 + 94),
The criterion uc>1 has been a prime indicator for detection of planetary water-ice deposits [271,
272, 352].

c) Relative LH-LV phase (5)

It is defined as the relative phase between two linearly polarized backscattered electric field
vectors, which is given by [308],
S = tan 1(ij . —180° <5 <180°, (6.4)
g3
where ‘—* sign in numerator represents transmission of left circular polarization. It is sensitive
indicator of scattering mechanisms associated with the target. The ¢ value clustered around
+90° and around -90° reflect double-bounce and surface scattering, respectively, whereas

distributed ¢ represents dominant volume scattering [252, 308].
d)  Ellipticity angle (y) [310]

It preserves the sense of rotation of polarization ellipse (i.e., even versus odd-bounce) for
transmission of electromagnetic field in circular or elliptical polarization. It is basically a shape
parameter, which determines the degree up to which shape of polarization ellipse is oval [310].

It can be defined as,

x= %sin‘{_—g“j , (6.5)
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e)  Degree of circular polarization (mc)
It is an indicator of obtaining the power contained in circularly polarized component of
received radar echo. It is defined as [311],

m, = 94 (6.6)
0;

f)  Degree of linear polarization (m)

It is an indicator of multiple scattering versus subsurface scattering. In case of subsurface
scattering, backscatter response will have partially polarized linear waves. In received radar
response, the degree of linear polarization is defined as [311],

2 2y1/2
m ={92¥8) " (6.7)

g:
g) Linear polarization ratio (uL)
It gives ratio of polarized power contained in horizontal component and in vertical component,
and is defined as [357],

:(91_92) 6.8
= (91"‘92)’ (©8)

6.3.1.2  Polarimetric decomposition approaches for segregation of scattering mechanisms

The polarimetric decomposition methods utilize polarimetric data in optimum manner by
identification of two or more independent components, which assist in classifying physical
scattering phenomenon associated with the observed region [3, 250, 310]. There are two
polarimetric decomposition methods based on hybrid polarimetric SAR data, namely m-o
decomposition [308] and m-y decomposition [310]. These decomposition methods provide
three scattering mechanisms, i.e., volume scattering, surface scattering, and double-bounce
scattering. These methods are described as follows:

a) The m-0 Decomposition

The m-6 decomposition makes use of degree of polarization (m), relative LH-LV phase
difference (o), and first Stokes vector (g1) as decomposition parameters, and provides fractional

power related to three scattering components, which are expressed as [308],
fourtace = \/0'5[glm(1_3in5)]a (6.9a)

fyoubte = /0-5[g;M(L+sinS)], (6.9b)
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where fsurface, fdaouble, and fvoume represent power terms related to surface scattering, double-
bounce scattering, and volume scattering, respectively.

b)  The m-y decomposition

In m-y decomposition, degree of polarization (m), ellipticity parameter (y), and first Stokes
vector (gi1) are taken as decomposition parameters. The after-products of m-y decomposition,

I.e., three scattering component can be expressed as [310],
fourtace = \/0'5[glm(1_5in2}()] , (6.10a)

faoupie =/0-5[9:M(L+sin27)], (6.10b)

fvotume = v g;(1-m), (6.10c)

6.3.2. Extraction of Roughness Information Using Fractal Approach

The concept of fractal geometry was introduced by Mandelbrot in 1967 for describing self-
similar geometries, such as Von Koch curve, Cantor's dust, etc., for representing the
characteristic of complex and irregular natural objects that cannot be analysed easily by
classical Euclidean concepts [236]. Fractal based approach has been used by several researcher
for determining textural features of surfaces [157-159]. In fractal geometry, fractal dimension
'D' is the key parameter, which generalizes the concept of Euclidean geometry. Although, most
natural surfaces are non-fractals, 'D' has been represented as useful index for surface
characterization [96, 313, 314]. The fractal dimension, also known as shape's similarity
dimension, can be defined mathematically as [236],

log@/r)’ '

where, N represents the number of similar parts of an object scaled down by the ratio r. The
above formula is applicable to strictly self-similar objects.

Fractal dimension 'D, is a scale-independent quantity, which is used for explaining the
fractional gap of geometrical structure over limited scale [203, 364]. The value of fractal
dimension is always greater than the topological dimension of any object [236]. In traditional
Euclidean space, a point is topologically zero-dimensional, a line is one-dimensional (1D), an
area is two-dimensional (2D), and a volume is three-dimensional (3D). Thus, topological

dimension of irregular natural objects cannot be represented by Euclidean geometry. Fractal
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dimension 'D’, being a non-integer quantity, helps in measuring geometric complexity and
irregularity of imaged objects. A point pattern represents fractal dimension value ‘D" in between
0 and 1.0; a curve, between 1.0 and 2.0; and a surface, between 2.0 and 3.0 [236]. In general,
irregularity or complexity of any object is directly proportional to the value of 'D'. Thus, it was
suggested that fractal dimension is the perfect indicator of surface roughness [292, 364]. For
2D surfaces or images, various land covers can be mapped in terms of roughness, like smooth,
rough, medium rough, highly rough, and so on. Fractal dimension 'D' can map these terms in
the range between 2.0 to 3.0 [292]. Smooth 2D surfaces exhibit 'D' value equals to 2.0, and
with the increase in surface roughness, value of 'D' increases and reaches at value 3.0 for
extremely rough surfaces.

In literature, there are numerous methods for estimation of fractal dimension 'D’, which
are Box Counting Method [184, 324, 364];Triangular Prism Surface Area Method (TPSAM)
[76, 97, 118, 178, 314, 363, 364]; Variogram Method [30, 97, 178, 364]; Isarithm Method [178,
364]; Fourier Spectrum Method [292, 364]; Two Dimensional Variation Method (2DVM) [30].
Among these methods, TPSAM is widely acknowledged method for producing accurate results
[203].

Therefore, in this chapter, fractal dimension ‘D’ has been estimated with TPSAM [363].
It can be assumed that there is non-strict direct relation between texture of land cover type and
value of fractal dimension 'D"; i.e., different land covers have unique values of fractal
dimension 'D' based on their roughness/texture behaviour [292]. Thus, in this chapter, an
attempt has been made to segregate smooth and rough lunar surfaces on the basis of ‘D’ value
in order to resolve the confusion caused by uc >1 assumption, so as to obtain the regions having
volume scattering due to possibility of dielectric mixing resulted by volatile deposits rather
than due to rough surface. The description of TPSAM method has been provided below:

6.3.2.1 Triangular Prism Surface Area Method (TPSAM)

Triangular Prism Surface Area Method is one of the most widely acclaimed approach for
estimation of fractal dimension ‘D’ [76, 178, 363]. In this method, three dimensional triangular
prisms are formed by locating four adjacent pixels for an analysis window in the image. The
intensity of these pixels are considered as height of corners of the prism, while the center pixel
which is the average of four pixels forming the corners of prism, becomes the height of top of
the prism. This structure in 3D space provides four triangular surfaces, the surface area of

which are estimated by Heron’s formula [76]. Figure 6.2 exhibits an example of triangular
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prism formed by considering a square array having four pixels at its corner which are separated
by distance (step size) A and are located at coordinates (i, j), (itA, j), (i+A, j+A), and (i, j+A)
having pixels values a, b, c, and d, respectively. These pixel values are considered as the height
of the edges of the prism, while their average e is considered as the height of the top of prism.
After joining these five points, a prism is formed having four triangular facets A, B, C, and D,
at its top surface. At this point total area of upper surface of prism (sum of areas of A, B, C, and
D) and area of base (Ax A) are calculated. This process is repeated by increasing the step size
in power of 2 and estimating total upper surface area of prism until whole image is taken for
construction of prism. The base area as x-axis and upper surface area of the prism as y-axis,
estimated at each step, are plotted on log-log scale. The least square estimation of this plot is
used to calculate fractal dimension ‘D’ by subtracting slope of least square fit from 2.0, as,
D =2.0-Slope, (6.12)
It is observed that for very rough surface having large variation in grey scale values, the
prism surface area varies drastically with change in base area. Due to this large variation, slope
becomes drastically negative, and thus, resulted in fractal dimension ‘D’ approaching the value
of 3.0. However, for very smooth surface having almost no variation in their grey scale values,
there is very small change in prism area with respect to change in base area. The regression
slope in this case is almost zero, and this resulted in D values near 2.0. In order to obtain
comparable results of fractal dimension ‘D’ for variant surfaces, the data values have been

normalized between 0 and 255.
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Figure 6.2:  Three dimensional view of triangular prism formed with four pixels [76].
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6.3.3. Thompson’s Approach

For segregation of possible icy and non-icy regions on lunar surface, Thompson et al. have
proposed an empirical scattering model [370, 371], which is based on collaborating effect of
specular and diffuse scattering mechanisms. The model postulates that specular scattering on
lunar surface is obtained from smooth (or flat) surfaces and sub-surfaces which are oriented in
the direction perpendicular to the radar line-of-sight. The smoothness of these surfaces is
considered at a scale of more than tenth of wavelengths of radar for enormous region. The
diffuse scattering is assumed to be obtained from rough surfaces or sub-surfaces. The
roughness of these areas is considered at a scale of one wavelength. This type of scattering is
obtained from wavelength sized rocks, or dielectric-mixing due to ice. The backscattering
response of these rough regions is proportional to cosine of incidence angle. In regions having
specular scattering, opposite sense circular (OC) echo is present, whereas in regions having
diffuse scattering both opposite sense circular (OC) and same sense circular (SC) echoes are
present. Therefore, based on the values of these SC and OC increments, this scattering model,
proposes three unique surface conditions which may cause high value of circular polarization
ratio («c) on lunar surface. These conditions are, (a) roughness due to fresh young craters, (b)
ice or dielectric composition, and (c) double-bounce craters. The segregation of these surface
conditions has been provided by the values of increment in SC and OC echoes. In this chapter,
the conditions for segregating icy craters proposed by Thompson et al. [371], have been used

for the analysis. These conditions are described as follows:

a>10, (6.13)
0.5<y<1.25, (6.14)
Ratio(e/y) >1.5, (6.15)
0.5 <WeightedSum< 1.0, (6.16)

where a is increment in same sense circularly polarized (SC) echoes, y is increment in opposite
sense circularly polarized (OC) echoes, and weighted sum is increment in total power. These

terms are defined as [370],

- (91709 (6.17)
(gl - g4)avg

y= (91 +94) ’ (6.18)
(91+94)avg
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Weighted Sum=[0.12« +0.88y], (6.19)
where denominator in Equations (6.17) and (6.18), represents the averaged value of respective
quantities over selected area of interest on lunar surface. The Equations (6.17) and (6.18)
indicate that increment in SC and OC echoes (i.e., a and vy, respectively) represent the ratio of
detected backscattered powers inside crater to the power in immediate background region in
Moon [370]. The ratio (a/y) acts as a substitute of circular polarization ratio uc. It can be
obtained by using Equations (6.17), (6.18), and (6.3) as,

a__H (6.20)
7 (He)ayg

6.3.4. Estimation of Electrical and Physical Parameters of Lunar Surface

The real part of dielectric constant of lunar surface has been determined by using Campbell’s
approach [52], which is based on normalized ratio of horizontal and vertical polarizations as,

2

0 0.25
g =|sing/ sin cos{%‘*} -6 |, (6.21)
O

where 6, ¢°n, and ¢°Lv are incidence angle, backscattering coefficients for LH and LV
polarizations, respectively. For MiniSAR data, the incidence angle is 35°. The Equation (6.21)
was originally developed with linear polarizations (i.e., HH and VV) for determining dielectric
constant over Mars equivalent environment on Earth surface [52]. However, several studies
have been performed by taking LH and LV polarizations, and encouraging results have been
obtained [49, 50, 164, 307].

Most of the lunar surface mainly consists of regolith layer, which is formed due to
constant impacts by terrestrial objects on lunar surface. This regolith layer consists of dust,
rock, minerals, and glass particles. The regolith bulk density is defined as “the mass of the
material contained within a given volume”. It is expressed in grams per cubic centimeter [56].
Experimentally, it has been found that regolith bulk density is strongly related to real part of
dielectric constant as [124],

po =3.53loge’, (6.22)

The Equation (6.22) shows that regolith bulk density is independent of chemical
compositions within regolith layer. The dependency of regolith bulk density on temperature
and frequency is also negligible.
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According to Wang et al., loss tangent can be expressed in terms of regolith bulk density
as [413],

Imaginary part of dielectric constant can be determined as [124],
g'=¢g'tano, (6.24)
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Figure 6.3:  Flowchart for analysis and study of MiniSAR data.
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6.4. Algorithm Development and Implementation

Based on the theoretical concept, as discussed in section 6.3, an algorithm is proposed for
detection of possible water-ice deposits on lunar surface. The course of steps followed for
implementation and development of algorithm, and determination of electrical and physical
properties of lunar surface are presented by flowchart in Figure 6.3. This section also includes
the description of pre-processing of MiniSAR data. The algorithm is developed and
implemented on MiniSAR data of Peary crater (Data-P).

6.4.1. Data Pre-processing

In MiniSAR data, the transmission of left circular polarization causes the relative LH-LV phase
‘0’ to be +90°. After reflection, due to change in sense of polarization, relative LH-LV phase
‘0’ should be —90° [311]. However, in MiniSAR data, it has been found that relative LH-LV
phase (o) undergoes a phase shift of 45° (or —135°) in counter-clockwise direction, which
makes all the lunar surface to exhibit volume scattering. Thus, phase calibration of MiniSAR
data is performed prior to Stokes vector formulation. There is no need to calibrate first and
second bands of MiniSAR data (i.e., |[ELn|* and |Evvf?, respectively). However, the phase
calibration of third and fourth bands of MiniSAR data [Real (E.+ Erv’) and Imaginary (Evx
EvLv')] has been performed as follows [311]:

Re(E 4 E,y)=Re(EE,,)cos45°—Im(E ,E,, )sin45°, (6.25a)

Im(E,, E,y ) =Re(E 4 E,y )sin45°+ Im(E , E,, ) cos45°, (6.25b)

The histograms for relative LH-LV phase ‘0’ of uncalibrated and calibrated MiniSAR
data are shown in Figure 6.4. These histograms indicate that uncalibrated MiniSAR data
(Data-P: Peary crater) shows mean relative LH-LV phase ‘0’ at —135°, while calibrated data

has mean relative LH-LV phase ‘0’ at —90°.
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Figure 6.4:  Histograms of relative LH-LH phase (3): (a) before, and (b) after, phase
calibration of MiniSAR data of Peary crater (Data-P).

After phase correction, Stokes vector have been generated by Equation (6.1). The maps
of Stokes parameters i.e., g1, g2, g3, and g4 are presented in Figure 6.5. For the purpose of
analysis, 12 region of interests (ROIs) have been selected over the floor of Peary crater
(Data-P). These ROls are represented as numbered rectangles on g: image as shown in Figure
6.5 (a). ROIs representing numbers 1 to 8, are anomalous craters on the floor of Peary crater,
whereas 9-12 represent regions outside the anomalous craters.The Stokes parameters have been
used for the extraction of child parameters specifically, degree of polarization (m), circular
polarization ratio (uc), relative LH-LV phase (6), and ellipticity angle (x) by Equations (6.2)-
(6.5), respectively. The maps of these child parameters i.e., uc, m, 6, and x, are presented in
Figure 6.6. These child parameters have been further used to develop proposed algorithm for
possible water-ice detection, and to obtain electrical and physical parameters of lunar surface
(Figure 6.3).
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Figure 6.5:  Images of Stokes vector (a) gz, (b) gz, (c) g3, and (d) g4. The region of interest
areas (ROIs) on the floor of Peary crater are exhibited in (a).
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Figure 6.6:  Images of child parameters: (a) circular polarization ratio («c), (b) degree of
polarization (m), (c) relative LH-LV phase (o), and (d) ellipticity angle (x) for MiniSAR data of
Peary crater (Data-P).
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6.4.2. Algorithm Development for Possible Existence of Water-lIce Deposits

It has been observed that identification of such regions is required that have dominant volume
scattering due to dielectric mixing because they are more likely to have water-ice deposits, as
elucidated in above sections. For obtaining such type of regions, several tests have to be
performed i.e., segregation of regions having dominant volume scattering, segregation of
smooth and rough surfaces, etc. This type of critical test can be performed by decision tree
algorithm with much better way. Therefore, a decision tree algorithm has been proposed for
retrieving regions exhibiting dominant volume scattering phenomenon due to dielectric mixing
that may represent possibility of water-ice deposits. The decision criteria have been obtained by
critically analysing child parameters [Equations (6.2)-(6.5)], decomposition parameters
[Equations (6.9)-(6.10)], and fractal dimension 'D" (section 6.3.2.1) for whole image of
MiniSAR data of Peary crater, i.e., Data-P. These decision criteria have been combined with
the criteria for icy craters, proposed by Thompson [Equations (6.13)-(6.16)]. The steps for
development of algorithm are discussed as follows:

Step 1: Obtaining regions with pc>1: The criterion uc>1 has been well-acknowledged to
obtain the possible existence of volatile deposits in the form of water-ice. Therefore, regions
with uc >1 have been obtained for inspecting the feasibility of dielectric mixing due to water-
ice deposits on lunar surface. However, it may not confirm the presence of dielectric mixing
due to water-ice, since uc >1 may also occur due to surface roughness [53, 361]. This scenario
has already been depicted in Figure 6.1. Regions, which are having uc >1, are shown in the

form of red pixels overlaid on g1 image in Figure 6.7.

Step 2: Obtaining regions with dominant volume scattering: Dominant volume scattering is
expected to be obtained either from rough surface (i.e., rock, rough blocky lava flows), or due
to dielectric mixing (i.e., water-ice) [48, 361]. The regions with dominant volume scattering
may be obtained by using following two methods:

1) Using Relative LH-LV phase 6

It is known that the values of relative LH-LV phase indicator '6' are near —90° for surface
scattering, near +90° for dihedral scattering, and distributed between —180° and +180° for
volume scattering [252]. Therefore, segregation of different scattering mechanisms on the basis
of o is possible.
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Figure 6.7:  The regions with ¢ >1 in form of red pixels overlaid on g: image using
MiniSAR data of Peary crater (Data-P).

2) Using decomposition approach
The regions with dominant volume scattering will satisfy following condition,
1tvolume > (fdouble—bounce + fsun‘ace) ' (6.26)

In order to satisfy inequality in Equation (6.26), decomposition parameters extracted from
m-o and m-y decomposition approaches may be used. Putting Equations (6.9) and (6.10),
respectively, in Equations (6.26), we get,

\/(1—sin5) +\/(1+sin5) <\/(1—m)1 (6.273)
2 2 m

\/(1—sin2;c) +\/(1+Sin2ﬂ() <\/(1—m), (6.27b)
2 2 m

Equations (6.27a) and (6.27b) satisfy for the value of m < 0.33, however, m < 0.35 has been
taken as threshold value to determine dominant volume scattering mechanism [199]. The
regions having distributed 6 and m<0.35, are shown in the form of red pixels overlaid on g:

image in Figure 6.8.
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Figure 6.8:  Red pixels exhibiting regions with (a) distributed ¢, and (b) m<0.35, on g; image
using MiniSAR data of Peary crater (Data-P).

Thus, based on the analysis performed in steps 1 and 2, a conclusion can be made that a
region on lunar surface may have prospects for presence of water-ice deposits, if pixels of those
regions satisfy the conditions uc>1, m<0.35, and distributed 6. However, one may not provide
the assurance about it because uc>1 can still be caused due to surface roughness. The use of
fractal concept may help in solving this problem, which might be able to differentiate rough

region from region having water-ice deposit by measuring fractal dimension 'D'.

Step 3: Obtaining roughness information using fractal dimension ‘D’: Surface roughness
can be measured by calculating fractal dimension ‘D’, which has the value between 2.0 to 3.0
for any surface. Typically, ‘D’ value increases in correspondence with increment in surface
roughness. More specifically, D=2.0 indicates extremely smooth surface, whereas D=3.0
indicates drastically rough surface [199, 200, 249, 290, 292]. Map of local fractal dimension
‘D' has been generated for g: image by moving local window over the area of interest (AOI)
using Triangular Prism Surface Area Method (TPSAM), as discussed in section 6.3.2.1 [199,
200, 249]. For generation of fractal dimension ‘D’ map, g1 image has been chosen since it

contains total backscattered information of imaged region.
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Table 6.1 The values of ‘D’ for different window size for MiniSAR data of
Peary crater (Data-P)

Window | Minimum | Maximum | Mean(Mep) Standard deviation(op)
5 1.536 3.356 2.151 0.1163
7 1.536 3.356 2.151 0.1163
9 1.596 3.126 2.173 0.092
11 1.596 3.126 2.173 0.092
13 1.596 3.126 2.173 0.093
15 1.596 3.126 2.173 0.093

Window size plays an important role for representing texture measure using fractal

2

dimension ‘D’. Therefore, effect of window size on ‘D’ values has been studied. The initial
window size has been taken as 5x5, which has been incremented by step of 2 up to window
size 15x15. The statistics (i.e., minimum, maximum, mean, and standard deviation) of ‘D’
values, obtained for each window size, has been enlisted in Table 6.1, which shows that there is
no change in statistics of D for window sizes 5x5 and 7x7. At window size 9x9, statistics of D
change which remain almost same up to window size 15x15. The minimum values of D are
less than 2.0 and maximum values are greater than 3.0, because natural scenes modelled as
fractals are not truly self-similar, but statistically self-similar [290]. Since standard deviation
values are small for window size 9x9 and window size 11x11, therefore, window size 9x9 has
been selected for retrieving roughness information of lunar surface using MiniSAR data. In
order to make ‘D’ image compatible to all the images, warping of ‘D’ image has been
performed, by taking first degree polynomial warp with nearest neighbour re-sampling method
using ENVI 4.8.

The 'D' image for window size 9x9, has been classified by using unsupervised k-means
classification algorithm in order to cluster lunar surface into two classes, rough and smooth
[249]. The unsupervised classification approach identifies two clusters on the basis of ‘D’
values [423]. As discussed above, the regions with lower D values correspond to smooth
region, whereas those with higher D values correspond to rough region. Therefore, for both the
classes, corresponding D values have been calculated. The spatial statistics (i.e., mean and

standard deviation) of D values, for these two clusters obtained by k-means algorithm, have
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been presented in Table 6.2. This table shows that cluster-1 belongs to regions having lower
range of D, whereas cluster-2 belongs to higher range of D. Therefore, cluster-1 and cluster-2
are designated as smooth and rough surfaces, respectively. By observing minimum and
maximum D values of both the classes in Table 6.2, it can be visualized that distinction
between both the classes starts at D=2.17, which is also the mean value of whole ‘D’ image
(i.e., Mep) measured at window size 9x9, as given in Table 6.1. Thus, the criterion D < Mep
has been taken to segregate smooth class from rough class.

The D-map and its classified image for “Data-P” is shown in Figure 6.9, where red regions
exhibit smooth surface, and green regions exhibit rough surface. From the classified image in
Figure 6.9(b), it has been observed that ROIs 1-8 (except ROI 5) and ROI 11,as exhibited in
Figure 6.5(a), have more than 55% area occurring in smooth class, whereas ROIs 5, 9, 10 and
12 have more than 55% area occurring in rough region.

Step-4: Obtaining icy regions with Thompson’s criteria: The performance of Thompson’s
approach for obtaining possible icy regions has been evaluated by applying Thompson’s
criteria given in Equations (6.13)-(6.16) on MiniSAR data of Peary crater i.e., Data-P. The
result of Thompson’s approach has been shown in Figure 6.10, in which red pixels overlaid on
01 image represent regions satisfying Thompson’s criteria for possible icy regions, as given in

Equations (6.13)-(6.16).

Table 6.2 Spatial statistics of 'D" values for Data-P using window 9x9 for cluster-1 and cluster-
2 obtained by k-means classification

Statistics Smooth class | Rough class
Minimum 1.596 2.1735
Maximum 2.1734 3.1267
Mean 2.1069 2.2511
Standard deviation | 0.0497 0.0681
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Figure 6.9:  The (a) fractal dimension ‘D’ map, (b) its corresponding k-means classified
image measured at 9x9 window size. Red and green colours in (b) represent smooth and rough
classes, respectively, for MiniSAR data of Peary crater (Data-P).
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Figure 6.10: Result of Thompson’s approach in which red pixels overlaid on g1 image of
Peary crater are regions satisfying Thompson’s criteria for icy craters.
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Step-5: Fusing all the criteria obtained in above steps for development of decision tree
algorithm: The criteria obtained by critical analysis performed in steps 1-4 i.e., uc>1, scattering
mechanism information by decomposition methods, roughness information by fractal
dimension ‘D’, and possible icy crater criteria of Thompson, have been taken altogether by
developing a decision tree algorithm. This algorithm helps in extraction of volume scattering
regions having possibility of dielectric mixing (i.e., water-ice) from region exhibiting volume
scattering due to surface roughness. The proposed decision tree algorithm has been shown in
Figure 6.11 incorporating these boundary conditions.

In the decision tree algorithm, as shown in Figure 6.11, first, the parameter 6 has been
chosen for segregation of regions exhibiting surface and double-bounce scattering. The regions
with ¢ in close proximity of —90° and +90° are said to exhibit surface scattering and double-
bounce scattering, respectively [252, 308]. Thus, in the proposed decision tree approach, at
node-1, the criterion —100°<6<—80° has been taken for representing surface scattering, and at
node-2, the criterion 80°<6<100° has been taken for representing dihedral (double-bounce)
scattering. Now, remaining region of lunar surface will exhibit dominant volume scattering.
This volume scattering may be caused either due to presence of volatile deposits (i.e., dielectric
mixing), or due to surface roughness. Therefore, at node-3 of proposed decision tree, fractal
dimension 'D' has been chosen for segregating rough and smooth surfaces by using criterion
D < (Mep), where Mep is mean value of whole D image, as obtained in step-3 of section 6.4.2.
For Data-P, this condition has been obtained as D < 2.17. After obtaining smooth region
representing volume scattering, Thompson’s criteria given in Equations (6.13)-(6.16) have been
added along with the conditions uc >1 and m < 0.35 (as obtained in step-2 of section
6.4.2).These conditions at node-4 are the prime indicators for determining the presence of
dielectric mixing due to water-ice deposits. Pixels satisfying the conditions at node-4 have
higher possibility of containing water-ice deposits because in these regions uc > 1 is occurring
within smooth surface, and thus, volume scattering may be occurring due to dielectric mixing

(i.e., water-ice) only.
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Figure 6.11:  Decision tree for possible water-ice detection.

6.4.3. Determination of Electrical and Physical Properties of Lunar Surface

The electrical and physical properties of lunar surface have been evaluated by calculating real
part of dielectric constant (¢’), regolith bulk density (po), loss tangent (zan J), and imaginary

part of dielectric constant (¢’’) by using Equations (6.21)-(6.24), respectively.

6.5. Results and Discussion

The proposed algorithm has been implemented on MiniSAR data of Peary crater i.e., Data-P.

The results of this data are presented below:

6.5.1. Analysis of Child Parameters and Fractal Dimension ‘D’

In section 6.4.2 (step-3), window size 9x9 has been selected for obtaining the value of fractal
dimension ‘D’. Therefore, all the child parameter i.e., degree of polarization ‘m’, circular
polarization ratio ‘uc’, relative LH-LV phase ‘6’, and ellipticity angle ‘y’, as obtained by
Equations (6.2)-(6.5), have been estimated for window size 9x9 in order to make them
compatible with fractal dimension ‘D’. The evaluation of all the child parameters, i.e., uc, m, 9,

x, and D, measured at window size 9x9, has been performed for all 12 ROIs selected on the
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floor

of Peary crater (Data-P) in Figure 6.5(a). The statistical representation exhibiting

maximum, minimum, mean, and standard deviation, of these parameters (uc, m, 4, yx, and D)

have been presented in Figure 6.12 for all 12 ROIs selected in Figure 6.5(a).

The analyses for each of the parameter i.e., uc, m, 6, y and D, for studying the decision

tree as given in Figure 6.11, are as follows:
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Figure 6.12 (a) shows that maximum value of uc is greater than 2.0 for all the ROIs
except ROIs 4, 9,10,11, and 12. ROl 9, which is the region outside anomalous crater,
has maximum value of xc as 0.9. Thus, possibility of having water-ice is negligible in
this region. However, in remaining ROIs (i.e., ROIs 1-12 except ROl 9), there may be
possibility of water-ice deposits because maximum value of uc is greater than 1
(criterion obtained in step-1 of section 6.4.2).

The degree of polarization m is found to have mean values around 0.4 with standard
deviation of around 0.1 for all the ROIs except ROIs 9-12, for which average m value
varies between 0.5 to 0.7, as shown in Figure 6.12 (b). Thus, the criterion for dominant
volume scattering i.e., m<0.35 as obtained in step-2 of section 6.4.2, is completely
fulfilled by ROIs 1-8.

The statistics of relative LH-LV phase ¢ have been presented in Figure 6.12(c), which
indicates that & is distributed between —180° (approx.) to +180° (approx.) for all the
ROIs except ROI 9. For ROIs 1 to 8, average ¢ value ranges from —27° to —68°, and for
ROI 9, it is obtained as —90°. The average ¢ value at ROl 9, represents the presence of
surface scattering, whereas those of ROIs 1 to 8 represent the occurrence of volume
scattering, as discussed in step-2 of section 6.4.2. Therefore, based on characteristics of
o value, the possibility of water-ice deposits in these ROIs (1 to 8) will be high. ROIs
10-12 have average & value between —81° to —88°, which is close to —90°. Thus, these
regions will have dominant surface scattering, and hence, have minimum possibility of
water-ice.

In Figure 6.12 (d), the statistical representation of ellipticity angle  for all the ROIs has
been shown. It shows that y varies from —45° (approx.) to +45° (approx.) for ROIs 1 to
8, from —45° to —5° for ROI 9, from —45° to 13° for ROIs 10 and 12, and from —45° to
28° for ROI 11.

The statistics of fractal dimension D measured at 9x9 window have been presented in

Figure 6.12(e) for all the ROIls. This figure shows that mean value of D is less than 2.17



for all the ROIs except ROIs 5, 9, 10, and 12, for which mean value of D is found to be

2.2 (approximately). Based on the criterion D < 2.17 for segregating smooth regions, as

obtained in step-3 of section 6.4.2, it is visualized from Figure 6.12(e) that all the ROIs

have minimum value less than 2.17.

Therefore, in regions satisfying criterion D < 2.17, smoothness is relatively

higher. If in these regions (with D < 2.17), all conditions obtained in section 6.4.2 i.e.,

uc>1,m<0.35, and o distributed are satisfied, the possibility for presence of water-ice

deposits might be high.
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Figure 6.12:  Statistics of (a) ¢, (b) m, (c) J, (d) x, and (e) D, for window size 9x9, for all 12

ROIs selected in Figure 6.5 (a).
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Figure 6.13: RGB composite image of (a) m- ¢, and (b) m-y decompositions, with single
bounce, double-bounce and volume scattering, as red, green, and blue colours respectively, for
MiniSAR data of Peary crater (Data-P).
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6.5.2. Analysis of Decomposition Methods

This section evaluates the performance of m-o and m-y decomposition methods (as discussed
in section 6.3.1.2), which provides the information about the scattering behaviour of lunar
surface. The visual representation of these two decomposition methods has been provided in
Figure 6.13. This figure shows RGB colour composite images of m-6 and m-y decomposition
methods by taking respective faouble, fvolume, and fsurface COMponents, as red, green, and blue
colours, respectively.

Figure 6.13 shows that ROIs 1-8 show dominance of volume scattering by both the
decomposition methods. ROl 9 shows surface scattering (blue colour) and combination of
surface and double-bounce scattering mechanisms, by m-¢o [Figure 6.13 (a)] and m-y [Figure
6.13(b)] decomposition methods, respectively. ROI 10 exhibits both surface and volume
scattering by m-o decomposition [Figure 6.13(a)]. However, by m-y decomposition [Figure
6.13 (b)], some portion of ROI 10 exhibits volume scattering while other shows mixed surface

and double-bounce scattering. ROl 11 shows dominance of surface scattering by m-o
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decomposition, and mixed surface and double-bounce scattering by m-y decomposition. Major

part of ROI 12 shows the dominance of double-bounce scattering. Surface scattering is also

present in this ROI. Thus, based on the analysis of decomposition methods, it is possible to find

water-ice deposits in ROIs 1-8 due to dominance of volume scattering in these regions.

Table 6.3 Mean value of decomposition terms over selected ROIs on Data-P (Peary crater)

ROI | Methods | faouste | fuolume | Fourface
1 |mo 0.0671 |0.2238 |0.1496
m-y 0.0906 |0.2238 | 0.1449
2 |mo 0.0606 |0.2045 |0.1234
m-y 0.0741 |0.2045 |0.1219
3 |mo 0.1454 |0.4134 |0.2799
m-y 0.1869 |0.4134 |0.2764
4 |mo 0.0581 |0.2176 |0.1426
m-y 0.0794 |0.2176 |0.1372
5 |m-o 0.1192 |0.3252 |0.1768
m-y 0.1422 |0.3252 |0.1768
6 |mo 0.0335 |0.1597 |0.1085
m-y 0.0424 |0.1597 |0.1067
7 |mo 0.0595 |0.1911 |0.0988
m-y 0.0711 |0.1911 |0.0985
8 |mo 0.0908 |0.2571 |0.1279
m-y 0.0992 |0.2571 |0.1303
9 |mo 0.0201 |0.1462 |0.2081
m-y 0.0632 |0.1462 |0.1991
10 | m-o 0.0451 |0.2663 |0.2621
m-y 0.0999 |0.2663 |0.2473
11 | m-o 0.0407 |0.2259 |0.2422
m-y 0.0932 |0.2259 |0.2283
12 | m-s 0.0673 |0.1792 |0.1951
m-y 0.1180 |0.1792 |0.1771
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Further, for more specific discussion, the quantitative analysis has been performed for
both the decomposition methods by observing the contribution of each decomposition term,
i.e., fdouble, fvolume, and fsurface [Obtained in Equations (6.9) and (6.10)], for all 12 ROIs selected in
Figure 6.5 (a). The results are presented in Table 6.3. It indicates that volume scattering term
is invariant for both the decomposition methods, as also evident from Equations (6.9¢) and
(6.10c). For ROIs 1 to 8 and 10, the contribution of volume scattering is more as compared to
single and double-bounce scattering, for both the decomposition methods. In ROIs 9 and 11,
surface scattering is more as compared to volume and double-bounce scattering. This result for
ROI 9 and 11 is acceptable because ejecta or region outside anomalous crater is expected to
give more single-bounce (or surface) scattering. In ROl 12, the contribution of volume
scattering is more as compared to single and double-bounce scattering for m-y decomposition,
whereas the contribution of surface scattering is more as compared to volume and double-
bounce scattering, for m-& decomposition. This quantitative analysis also suggests the presence
of water-ice deposits in ROIs 1 to 8 because of more volume scattering as compared to surface

and double-bounce scattering, in these regions.

6.5.3. Analysis of Proposed Decision Tree Algorithm (Figure 6.11)

This section presents the analysis of all the conditions for obtaining possible locations of water-
ice deposits, as presented in proposed decision tree algorithm (Figure 6.11). Since all the
criteria, as obtained in section-6.4.2, have been incorporated in proposed algorithm, possible
locations having dielectric-mixing due to presence of water-ice deposits, may possibly be
identified. For this purpose, the percentage of pixels satisfying these criteria (as obtained in
steps 1-4 of section 6.4.2), which are uc> 1, m < 0.35, J distributed, D < 2.17, and Thompson’s
criteria, have been calculated, and analysed for all the ROIs selected in Figure 6.5(a). The result
of proposed algorithm and all the criterions obtained in step 1-4 of section-6.4.2 have been
summarized in Table 6.4. Table 6.4 shows that ROIs 1-8 have significant percentage of pixels
satisfying criterion  uc > 1. For these ROIs, more than 45% pixels satisfy criterion m < 0.35,
which indicates the occurrence of volume scattering mechanism. All the ROIs from 1-8, except
ROI 5, have more than 65% pixels satisfying criterion D < 2.17, the necessary condition for
representing smooth region. The relative LH-LV phase ¢ has been found to be distributed in
ROIs 1-8, as also evident from Figure 6.12(c). ROI 9 has no pixel satisfying criteria wuc > 1.

Thus, for this ROI, there is no possibility of having dielectric-mixing due to water-ice.

154



Table 6.4 Analysis based on criteria obtained in section 6.4.2 and proposed decision tree

(Figure 6.11)

N 5 = S 28
Lo | z o 25
|21 E ]S ; sg% | 2Es | 2ER
ol 8| § | = sS85 | 258 S =2
S| 3 | B a2 | 85 8%
X X X - o 3
Q o o S ©
1 | 19% | 45% | 67% Distributed 17.40% 0.93% Yes
2 | 16% | 54% | 79% Distributed 11.96% 0.74% Yes
3 | 33% | 50% | 65% Distributed 12 71% 2 9% Yes
4 | 14% | 47% | 75% Distributed 13.93% 0.61% Yes
5 132% | 57% | 39% Distributed 26.24% 2.02% Yes
6 8% | 46% | 78% Distributed 4.08% 0.18% Yes
7 | 27% | 63% | 69% Distributed 14.31% 0.21% Yes
8 [ 30% | 70% | 73% Distributed 30.74% 4.35% Yes
9 | 0% | 2% | 30% Non Distributed 0.71% 0% No
10 | 1% | 12% | 22% Distributed 8.5% 0.14% Negligible
11 | 3% | 12% | 57% Distributed 12 27% 0.15% Negligible
12 | 7% | 1% | 49% Distributed 24.38% 0% Negligible

The percentage of pixels satisfying Thompson’s criteria (>4%) is quite good for all the

ROIs except ROI 9. For ROI 9, very less percentage of pixels satisfy Thompson’s criteria.

Appreciable pixels (>8%) satisfy Thompson criteria for ROIs 10, 11, and 12, which are regions

outside anomalous craters. In these regions, very less pixels (< 7%) satisfy criteria x> 1, which

is favourable condition for dielectric-mixing. Based on m-¢ and m-y decomposition method

(Table 6.3), it has been observed that ROI 11 exhibits dominant surface scattering, which is not

the favourable condition for dielectric-mixing. However, Thompson’s approach shows that

12.27% pixels in ROI 11 represent possibility of water-ice. On the other hand, proposed

approach (Figure 6.11) shows that only 0.15% pixels, which is almost negligible, have
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possibility of dielectric mixing in ROI 11. According to illumination study carried out in [47,
237, 267, 359], the regions outside anomalous craters may be illuminated by sun. Thus, the
probability for existence of water-ice deposits may be less in these regions (ROIs 9-12). Unlike
Thompson’s approach, proposed decision tree method (Figure 6.11) has identified that these
regions (ROIs 9-12) have very less possibility of water-ice deposits. Thus, the result of
proposed decision tree algorithm (Figure 6.11) in Table 6.4, indicates there is more possibility
of water-ice deposits to be present in ROIs 1-8 as compared to ROIs 9-12. The visual
representation for the result of proposed decision tree (Figure 6.11), is expressed in Figure 6.14,
which exhibits red pixels overlaid on g: image. These red pixels indicate regions having

possibility of water-ice deposits.

N.OC.L8

87°30'N

17°30'E 23°20'E 29°10°E

Figure 6.14: Result of decision tree (Figure 6.11) exhibiting regions having possibility of
water-ice deposits in the form of red pixels overlaid on g: image using MiniSAR data of Peary
crater.
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6.5.4. Estimation of Electrical and Physical Properties

The maps of electrical and physical parameter i.e., real part of dielectric constant i.e., ¢’
(Equation 6.21), imaginary part of dielectric constant i.e., ¢’ (Equation 6.24), loss tangent i.e.,
tan o (Equation 6.23), and regolith bulk density i.e., po (Equation 6.22), are presented in Figure
6.15. These values are estimated for possible icy regions (Figure 6.14) obtained by proposed
approach (Figure 6.11). The mean value of ¢’ for possible icy regions has been obtained as

3.01. The mean values of ¢”, tan J, and po for possible icy regions have been obtained as 0.034,
0.008, and 1.97 g/cm?.
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Figure 6.15:  Visual representation of (a) real part of dielectric constant (¢°), (b) imaginary
part of dielectric constant (&), (c) loss tangent (tan d), and (d) Regolith bulk density (po).

157



6.5.5. Application of Proposed Algorithm on another MiniSAR Data

The proposed algorithm has also been applied on MiniSAR data of Rozhdestvenskiy crater
(Data-R), as described in section 6.2. After pre-processing, as described in section 6.4.1 and
Figure 6.3, Stokes vector (g1, g2, 93, and g4) and child parameters (uc, m,o, and y) have been
generated for window size 9x9, as discussed in section 6.4.2 (step-3). The 'D' image has been
generated by using local window size 9x9 through TPSAM method, as discussed in section
6.3.2.1, and then classified into two classes: rough and smooth by k-means algorithm. For
“Data-R”, the mean value of ‘D’ i.e., Mep has been obtained as 2.15.

The g1 image of Data-R has been shown in Figure 6.16, in which 8 ROIs on the floor of
Rozhdestvenskiy crater have been selected for the analysis. ROIs 1 and 2 are anomalous
craters, whereas ROIs 3-8 are regions outside the anomalous craters on the floor of

Rozhdestvenskiy crater.

84°N

144°W  150°W 156°W 162°W 168°W 174°W

Figure 6.16: The g1 image representing selected ROIs on the floor of Rozhdestvenskiy crater.

The result of Thompson’s approach as given in Equations (6.13)-(6.16), and decision tree
as shown in Figure 6.11, have been presented in Table 6.5. Comparing the results of these two
methods in Table 6.5, it is observed that ROIs 1 and 2 have appreciable percentage of pixels
satisfying criteria for possible presence of water-ice deposits. Table 6.5 shows that ROIs 3-6
show good percentage of pixels (>8%) exhibiting icy regions by Thompson’s approach.
However, the result of proposed approach (Figure 6.11) show very less percentage of pixels

(<2%) satisfying the criteria for possible presence of water-ice. ROIs 7 and 8 show almost
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negligible percentage of pixels (<0.3%) fulfilling the criteria of possible icy regions by both the
methods. Thus, ROIs 1 and 2 show evidences of water-ice by proposed approach (Figure 6.11),
whereas potential of having volatile deposits is negligible for ROIs 3-8, as depicted in Table
6.5. In this section, the visual representation for the ROIs having possibility of water-ice i.e.,
ROIs 1 and 2 has been provided. Figure 6.17, represent possible locations of water-ice deposits
in ROI-1 and ROI-2, respectively, for method presented in Figures 6.11. In these figures, red

pixels overlaid on g: image are the results of proposed algorithm (Figure 6.11).

Table 6.5 Results of Thompson's approach [Equations (6.13)-(6.16)], and proposed decision
tree approach (Figure 6.11), for MiniSAR data of Rozhdestvenskiy crater (Data-R)

ROI Pixel % : Pixel % : Pixel % : Possibility of
Thompson’s Modified dielectric mixing due to
approach decision tree in water ice
Figure 6.11
1 23.76% 1.65% Yes
2 7.05% 1.07% Yes
3 8.1% 0.03% Negligible
4 8.64% 0.06% Negligible
5 22.46% 0.64% Negligible
6 15.61% 0.21% Negligible
7 0.27% 0% No
8 0.13% 0.003% Negligible

170°% 1 EEDW

MetH

170%W 17zow 1747w 196™ 158™Y

(a) (b)
Figure 6.17: Red pixels exhibiting possible locations for water-ice deposits on g: image for
(@) ROI-1, and (b) ROI-2, using proposed algorithm (Figure 6.11).
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Further, the electrical and physical parameter i.e., real part of dielectric constant i.e., ¢’
(Equation 6.21), imaginary part of dielectric constant i.e., ¢’’ (Equation 6.24), loss tangent i.e.,
tan ¢ (Equation 6.23), and regolith bulk density i.e., po (Equation 6.22), have been computed
for icy regions obtained by proposed approach. The mean value of ¢, ¢, tan ¢ and po for icy
regions are obtained as 2.9, 0.038, 0.006, and 0.98 g/cm?, respectively.

6.6. Conclusion

In this chapter, a decision tree method has been proposed, which has attempted to resolve the
ambiguity caused by uc >1 assumption. The criterion uc >1 creates ambiguity in a sense that it
not only provides indication of possible presence of water-ice deposits but also indicates the
presence of surface roughness. Therefore, the principle of fractals has been utilized, for
obtaining roughness information through a parameter called fractal dimension D. It is expected
that dielectric mixing due to water-ice deposits exhibits volume scattering. Therefore, in this
chapter, scattering information has been retrieved by using m-6 and m-y decomposition
approaches. The exhaustive study has been carried out by analysing uc, m-o6, and m-y
decomposition approaches, and fractal dimension D, in order to obtain criteria for possible
water-ice detection. The proposed decision tree approach utilizes the criteria for possible icy
regions suggested by Thompson et al. along with criteria based on u, m-6 and m-y
decomposition approaches, and fractal dimension D. This decision tree provides segregation of
regions representing volume scattering resulted from volatile deposits rather than surface
roughness. By visualizing the results of proposed approach, it can be concluded that the
proposed approach has the capability to minimize the ambiguity created due to characterization
by using uc alone. After retrieving regions having possible existence of water-ice deposits on
lunar surface, the electrical and physical characteristics such as real part of dielectric constant
(¢”), imaginary part of dielectric constant (¢’’), loss tangent (tan o), and regolith bulk density

(po), are estimated for possible icy regions.
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Chapter 7

Conclusions and Future Scope

The objective of this thesis is to project shortcomings and provide solutions for classification
and retrieval of surface parameters of Earth and Moon by polarimetric SAR data. The
polarimetric properties of SAR data are utilized in well-defined manner by extracting
polarimetric parameters. Polarimetric parameters have great potential for describing scattering
behaviour, electrical properties, and physical properties such as shape, orientation, size,
symmetry, non-symmetry, or irregularity of targets. Therefore, in this thesis, emphasis is given
to utilize polarimetric parameters to characterize and retrieve surface parameters of Earth and
lunar surface by using minimum or no ‘a priori’ information. This chapter concludes the

contributions made in the thesis followed by recommendations for further scope of research.

7.1. Contributions of the Thesis

The thesis is divided into two parts-first part is related to critical analysis of fully polarimetric
SAR data (ALOS PALSAR and/or Radarsat-2) for characterization and surface parameter
retrieval of Earth’s surface. In this part, three tasks have been performed: analysis of model
based decomposition and deorientation; identification and classification of different land covers
by adaptive approach; and retrieval of soil moisture under vegetation cover by transmission line
theory based model. The second part of thesis deals with the characterization of lunar surface
using hybrid polarimetric SAR data (MiniSAR). The tasks carried out in this part are, analysis
of scattering behaviour of lunar surface by critical observation of polarimetric parameters and
decomposition parameters based on hybrid polarimetry; development of algorithm for possible
water-ice detection; and estimation of electrical and physical parameters of lunar surface.
Chapter three, contributes in the field of model based target decomposition theorems, and
provides an elaborated analysis of scattering mechanisms (surface ‘Ps’, double-bounce ‘Pq’,
volume ‘Py’ and/or helix ‘P¢’ scattering) obtained from different land covers after applying
deorientation. Analysed methods without deorientation are three component decomposition
(TCM) [138] and four component decomposition method (FCM) [425]. Analysed methods with
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single deorientation (orthogonal rotation) are three component decomposition method with
deorientation (TCMD) [210], four component decomposition method with deorientation
(FCMD) [427], and four component decomposition with deorientation and additional volume
scattering model (FCMDA) [325]. Two methods with double deorientation (orthogonal rotation
and unitary transformation) are analysed, which are three component decomposition method
with double deorientation and adaptive volume scattering (TCMDDA) [90] and four
component decomposition method with double deorientation (FCMDD) [344]. Key issues
addressed in this chapter are as follows:

e Visual analysis of decomposition methods is quite helpful in observing scattering
response of different land covers. Certain land covers such as urban exhibit
improvement in scattering response after deorientation. It has been observed that after
deorientation, volume scattering considerably reduces in urban area. Change in
scattering response is observed after deorientation. However, the decomposition results
of all the methods with deorientation appear almost same.

e Pixel wise quantitative analysis of scattering terms indicates that pixel percentages for
P4 and Ps increase after deorientation. Number of pixels representing Py remain almost
same for all the decomposition methods with or without deorientation. Number of
pixels having all scattering mechanisms in common also increase in decomposition
methods with deorientation.

e Power wise gquantitative analysis of scattering terms indicates that power of Py reduces
after deorientation. The increment in powers of Pq and Ps has been observed after
deorientation. This analysis shows that characterization of urban and vegetation (short
and tall) is difficult because of different scattering responses obtained by each
decomposition methods. Bare soil exhibit strong surface scattering power by all the
decomposition methods.

Chapter four, presents an adaptive decision tree based land cover classification approach,
in which decision criterion are formed by utilizing spatial statistics (median and standard
deviation) based adaptive threshold of polarimetric indices. The algorithm is based on
obtaining optimum threshold of polarimetric indices based on overall accuracy provided by end
user using genetic algorithm (GA). The contributions made in this chapter are as follows:

e The chapter provides an exhaustive analysis of sixteen polarimetric indices (6%, ¢,
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%, 6%y, 6%, ®w, d%asc, aPasx, Ol A n, 6%n/c®w, °n/c hn, o%m/a®w, WPS, RVI, NDPI,
and CPR). The role of these polarimetric indices has been observed and analysed in
characterization and segregation of different land covers.

The chapter presents a systematic way to obtain polarimetric indices providing best
separation between two different classes by using the concept of separability index.
The algorithm has been tested and validated on two different ALOS PALSAR data of
Roorkee. After optimization of algorithm for classification accuracy between 80% and
100% by GA, classification maps for both data sets have been generated. The
estimation of confusion matrix based on ROIs collected during ground survey shows
overall accuracy and kappa coefficient for first data as 87.59% and 0.85, respectively,
and for second data as 78.43% and 0.72, respectively.

The algorithm does not use fixed threshold and is adaptive in nature by making use of
spatial statistics (median and standard deviation) of polarimetric indices. Based on end
user requirement of overall classification accuracy, the algorithm adapts itself to tune
threshold of polarimetric indices used in classification algorithm.

The proposed adaptive classification algorithm works well for similar sites and
satellite sensors without any further need of tuning the threshold of polarimetric

indices.

Chapter five, addresses the problem of retrieving soil moisture under vegetation cover.

This problem has been solved by developing multilayer model for bare soil (two layers of soil)

and vegetated regions (two layers of soil and one layer for vegetation-air mixture) on the basis

of conventional transmission line theory, which allows the estimation of impedance or

backscattering coefficient in terms of complex dielectric constants of considered media at

constant thickness (depth in case of soil and height in case of vegetation). The thickness of first

layer of soil has been taken as 5 cm, and second layer as infinite. The thickness of vegetation-

air mixed layer has been considered to be varied from 5 cm to 400 cm, assuming most of the

agricultural vegetation covered in this range. The value of dielectric constant of each layer have

been retrieved by GA and soil moisture for first layer of soil has been estimated by relationship

given by Topp et al. [373]. Following inferences have been drawn in this chapter:

The proposed soil moisture algorithm works well for both bare soil and vegetated

regions. The main highlight of this algorithm is its ability to estimate soil moisture for

163



vegetation having height up to 400 cm.

The soil moisture values retrieved by proposed approach shows good agreement with
the observed value of soil moisture for both frequency bands L and C, by suing ALOS
PALSAR data and Radarsat-2 data, respectively.

The advantage of this method lies in its simplicity and dependence on physical
concept of transmission line theory.

The proposed soil moisture retrieval algorithm requires minimum amount of ‘a priori’

knowledge about test site.

Chapter six, represents second part of the thesis in which an algorithm for possible

detection of water-ice on lunar surface has been developed. The study has been performed on

hybrid polarimetric MiniSAR data of Peary and Rozhdestvenskiy craters on North Polar

Region of Moon. The key issue addressed in this chapter is the ambiguity resulted by uc >1

criterion, which represents scattering from both possible icy regions and rough regions. The

water-ice deposits on lunar surface are expected to produce volume scattering. Therefore, the

main objective of this chapter is to obtain volume scattering in smooth regions having uc >1

criterion. Further, the electrical and physical parameters i.e., real part of dielectric constant (&),

imaginary part of dielectric constant (¢”’), loss tangent (fan ), and regolith bulk density (po)

have been computed. The contributions made in this chapter are as follows:
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In this chapter, confusion caused by uc >1 criterion, has been resolved by using fractal
dimension ‘D’, which exhibits one-to-one relationship with surface roughness.

Based on fractal dimension ‘D’, the criterion for obtaining smooth regions has been
estimated as D < Mep, where Mep represents mean value of D.

The chapter uses polarimetric approaches (m-6 and m-y decomposition methods) for
obtaining scattering response. The criterion for dominant volume scattering (as
expected from water-ice) has been estimated as m < 0.35.

Based on ¢ value, criteria for surface and double-bounce scattering mechanisms have
been selected as —100 < 6 <—80 and 80 <6 <100, respectively. The volume scattering is
exhibited by remaining region on lunar surface.

The decision tree formed by combining all the above mentioned criteria and
Thompson’s criteria [371] for possible icy craters, show possibility of having water-ice

on some of the anomalous craters on the floor of Peary and Rozhdestvenskiy craters.



In a nutshell, the contributions of proposed research work are as follows:

>

First contribution of the thesis is to provide both pixel wise and power wise elaborated
analyses of model based decomposition methods and deorientation effect for various land
COVers.

Second contribution of the present research work is to provide a new way to use
polarimetric parameters for characterization land covers using adaptive and scene-
independent classification algorithm.

Third contribution is the use of classical concept of transmission line theory for retrieval
of soil moisture in both vegetated and bare soil areas requiring minimum ‘a priori’
information about sites. The algorithm works well for both L- and C- frequency bands.
Fourth major contribution is the development of algorithm for determining possible
presence of water-ice deposits on lunar surface. This algorithm resolves the ambiguity
caused due to same scattering response presented by both rough and icy regions through
high value of circular polarization ratio, by using the concept of fractal dimension, a
concept used for representing roughness.

Thus, present research work covers variant applications of SAR polarimetry with

emphasis on requiring negligible prior information about study area.

7.2.

Future Scope

Present thesis work has the scope and possibilities to extend it further. A few major ones are

listed as follows:

The present research work provides the solution of adaptive classification of various
land covers using L-band ALOS PALSAR data. The design strategies of proposed
classification algorithm can be utilized for application based on different SAR sensors
operating at different frequency.

Currently available Indian satellite RISAT-1 provides huge scope in extending proposed
classification algorithm for C-band because of providing amplitude, phase, and
polarization state of backscattered wave in both linear and hybrid polarimetric mode.

Therefore, beneficial features of some more polarimetric parameters can be exploited
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for characterization of various land covers.

Differentiation of scattering response obtained from urban and tall vegetation (trees) is
still an open challenge.

Fusion of several satellite sensors will provide more parameters for discrimination of
different land covers. Therefore, proposed classification algorithm can be generalized to
make it scene and sensor independent.

Further analysis is required to check the feasibility of proposed soil moisture retrieval
algorithm for application in forest region.

Some scattering models based on IEM, SPM, PO etc., are required to be developed for
estimating lunar surface parameters such as dielectric constant, roughness, and regolith

thickness, for parameterization of surface and subsurface properties.



Appendix- A
Foundation of SAR Polarimetry

Al. Wave Polarimetry

Al.1. Polarization of Electromagnetic Wave
Considering an orthogonal coordinate system (h, v, k) as shown in Figure A.l, a
monochromatic plane EM wave propagating in positive direction k through loss-less medium
can be expressed in terms of location vector r and time t as [40],
E(r,t) = E, (r,)h+E, (r,t)¥

= E,, cos{(wt —Kkr) + &, }h + Eq, cos{(et —kr) + 5,30 (A.D)
where Eonh and Eoy are the amplitudes of horizontally and vertically polarized EM waves. The
terms on and oy are the phases of these two orthogonal components and w is angular frequency

[37]. The elimination of the term (wz-kr) leads to the following equation of ellipse by using

some trigonometric identities:

2 2
En + Ey -2 En | B 0SS =sin® S
Eon Eov Eon \ Eov ! (A-2)
where 6 denotes the phase difference between En and Ey and is defined as,
6=0,-96,, (A.3)

Figure A.1:  Description of coordinate system [160].
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The extremity of electric field vector of a harmonic plane EM wave describes an elliptical

locus in equiphase plane (plane perpendicular to direction of propagation) over time at fixed

point in space, as shown in Figure A.2. This property of EM wave is known as polarization

[165].

The polarization state of EM wave is expressed by orientation, shape, and size of the

polarization ellipse accompanied by the sense of rotation of electric field vector, while

observing the wave in such a way that it travels away from observer [165]. These parameters

are defined as follows:
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The size of polarization ellipse is defined by semi-major axis a and semi-minor axis b of

polarization ellipse, which are related to amplitude of EM wave components as [42],

A=va+b? = [E2 +E., | (A.4)

The orientation angle w is defined as the angle between the major axis of the

polarization ellipse and positive h - axis. This parameter describes the inclination of the
ellipse, and is given by relation [102],

tan 2y = (tan2a) coso, O<w<m, (A.5)

where « is a constructive variable representing absolute phase angle, which is defined

as,
EOV T
tanag = —X, O<a<=—, (A.6)
Eon 2
Therefore,
tan 2y :Zzlzoiogcos&, O<w<r, (A7)
Eoh —Eov

The ellipticity angle y is defined as the ratio of minor and major semi-axes of

polarization ellipse. It describes the shape of the ellipse, and is represented as [102],

tan y :J_rE, (A.8)
a
or,
sinZ;(:(sinZa)sincS:%sin& Ty (A.9)
EOh"'EOv 4 4

The sense of rotation of electric field vector is described by the sign of ellipticity angle
x- The positive value represents left-handed polarizations, whereas negative value

represents right-handed polarizations [165].



In general, the EM wave is elliptically polarized. However, two extreme cases occur

when ellipse collapses to a line and a circle. These two particular cases are [377]:

e Linear polarization :
0=0,—-0,=Nx, Nn= 01,2,3..}
7=0 . (A10)
w = 0: horizontal polarization, y = % - vertical polarization

e Circular polarization:

§=0,-3,= i(2n7r+%), n=0123..
Eon = Eoy , (A.11)

i
4

x=%

Figure A.2:  Polarization ellipse [165].
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Al.2. Stokes Vector

Stokes vector represents the polarization of EM wave in terms of power quantities directly
observed by radar systems [42, 102]. The Stokes vector can be defined as [416],

01 Egh + Egh

2 2

g=|92|=| Eon=Eon | (A.12)

93 2EqEq, COSO

g4 _2E0hE0VSin5_

The Stokes parameters are useful in defining the polarization, amplitude, and phase of
EM wave. The Stokes parameter g: represents the total power in polarized EM wave; g
represents the power contained in horizontally or vertically polarized EM wave; g3 represents
power contained in linearly polarized EM wave oriented at 45° or 135°; and g4 represents the
power contained in right or left circularly polarized EM wave. The non-zero value of any of the
parameter i.e., g2, g3, Or g4 represents the existence of polarized part of EM wave [42].

The term degree of polarization, which describes the correlation between Ex and Ey is

expressed as the ratio of power in completely polarized wave to the total power, and is defined

as [416],
J95 +95+g°
m=1-2 -3 =4 (A.13)

01

For completely polarized wave m=1 and for polarized wave 0<m<1.

Al1.3. Poincare Sphere

The Stokes vector can be represented as a Cartesian coordinates of a point on a sphere known
as Poincare sphere, which helps in graphical representation of polarization states of wave [42,
165]. The Stokes vector is related to canonical angular variables (y and ) of polarization
ellipse, as defined in Equations (A.7) and (A.9), by following relation,

tan2y = 93 | (A.14)
92
sin2y = —— 942 _, (A.15)
\/92+93+92

Therefore, the Stokes vector represented in Equation (A.12) is expressed as [165],
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01 1

g C0S2 y COS2y
03 C0S2ysin2y
g4 sin2y

Figure A.3 represents Poincare sphere, in which (g2, g3, g4) represents a spherical
coordinate of a point on sphere of radius gi. The Poincare sphere provides an exclusive
representation of each polarization state on the surface of sphere. The angles 2y and 2y are the
latitude and longitude of each polarization state. The Poincare sphere provides mapping of
linear polarizations at the equator (y =0°) and circular polarization at the poles. The portion of
Poincare sphere above the equator i.e., y > 0°, represents left-handed polarizations, and below
the equator i.e., y < 0° represents right-handed polarizations. Thus, the Poincare sphere

provides one-to-one mapping of all possible polarization states and points on sphere [42, 102].

. Linear 45
Linear 135 >

X RHC
Figure A.3: Poincare sphere [165].

Al.4. Polarization Ratio
Polarization ratio is defined as the ratio of orthogonal components of electric field vector E as
[42],

pzizﬁejé —tangel?,

(A.17)
En  Eon
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where o and ¢ are known as Deschamps parameters for defining the polarization states of EM
wave [see Equation (A.6)]. The polarization ratio p can also be expressed in terms of
orientation angle y and ellipticity angle y by [422],

_ tany + jtan y
1- jtanytan y '

(A.18)

Therefore, polarization ratio p changes with change in polarization basis.

Al1.5. Jones Vector

Jones vector represents the wave polarization of plane monochromatic electric field by utilizing
least possible information [219].

Equation (A.1) can be written as,

ion ] . .
E(rD) = {EOh cos(at — kr+5h)} _ Re{EOheJ_ h }ejkreja)t} _ Re{E(r)e‘“’t } (A19)

Egy COS(awt —Kkr+3,) Eo\/ej&

The Jones vector can then be defined as,
E=E(),_, = E“} - {EEOherZC] (A.20)
v ov®
Thus, Jones vector determines the amplitude and phase of electric field vector.
In general, the polarization state of electric field expressed by Jones vector can be
represented in any arbitrary orthogonal basis (m, n) as,
E=E,M+E., (A.21)
Jones vector [Equation (A.21)] can be expressed in terms of polarization ratio given in
Equation (A.17) as,

_ Em _ jom 1
SRS "

n

After some manipulations Equation (A.22) can be written as,

- 1
E = |Ele!om 1 , A.23
e V1+ pps L} AZ)
with
E|=VEnEn +EqEy’ = A, (A.24)
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Table A.1 provides the value of polarization basis for different bases [42].The

information provided by Jones vector is equivalent to that of polarization ellipse parameters.

Jones vector in terms of polarization ellipse parameters (y and ) and initial phase (v) can be

represented as,

E:Ae"{

COs ycosy — jsinysiny | A
cos ysiny + jsin ycosy |

. j{cosy/

siny

—siny
cosy

cosy
jsiny

(A.25)

|

Table A. 1 Polarization state description in terms of orientation angle v, ellipticity angle y,
polarization ratio p, and Jones vector E [42]

Polarization Linear Linear Linear 45 Linear Left Right
horizontal vertical 135 circular circular
x 0 0 0 0 /4 —n/4
W 0 /2 /4 —T/4 Otom Otom
p O o0 1 —1 ] _j
IR HE
0 1 J2 J2[ 1 va2li] | V2|-]
Al.6. Special Unitary Group
Jones vector in Equation (A.25) can be written as [40],
. lcosy  —sin coS jsiny |1
Eer,U[_ v w}{z j z}”
siny cosy | jsiny cosy O
- A_cos:// —sing [ cosy jsinyfelv o |1
~lsiny cosy | jsiny cosy | 0 e|O0], (A.26)
B A_cos:// —sing [ cosy jsinygfel® o0 _rﬁ
~lsiny cosy | jsiny cosy | 0 ev|
= AU (1) U(2) U(0)rh

2

where m=h represents unit vector corresponding to horizontal polarization. The matrices

Uz(w), Uz(x), and Uz(v) are the rotation matrices of special unitary group corresponding to

orientation angle y, ellipticity angle y, and absolute phase v, respectively [219, 416, 422]. After

combining these unitary rotation matrices, Equation (A.26) can be written as,
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E=AUy(y, y,0)Mm, (A.27)
These unitary matrices satisfy following conditions [316]:
U, =U, " and U,| =1, (A.28)

In a similar way, Equation (A.23) can be written as [416],
I N
Sy LY (A.29)
V+pp|lp 1| 0 e

where,
o =0— tan_l(tan wtan y), (A.30)

This angle oi corresponds to reference phase of transformed polarization basis. After comparing
Equations (A.26) and (A.29), it can be written as [416],

U __L 1 e 0 A3l
2(W,Z,U)—mp 1 0 e_j(gi ) (A.31)

Al.7. Change in Polarization Basis

Transformation of polarization basis is very important concept of SAR polarimetry. Two
conditions need to be followed for polarization basis transformation: (a) amplitude should
remain invariant, and (b) ortho-normality conditions must be preserved. A monochromatic
plane wave can be expressed as a linear sum of orthogonal components of electric field
obtained in any reference polarization basis [416]. There exist numerous numbers of
polarization bases. Let’s suppose, polarization states in an arbitrary orthogonal basis (X, y) are
required to be converted in another polarization basis (a, b). The Jones vector in these bases can
be represented as,

E=E&+E,y=Ea+Epp, (A.32)
The corresponding Jones vector in these two bases are obtained as,
EX Ea
Eyy = E, and Egp = £, | (A.33)

By using unitary transformation matrices Ux(y, y, v),
E =EU, (v 7,0)%+EU, (v, 7.0)¥, (A.34)

which can be expressed as,
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Ex
Fa} =U2(W,Z,U)_1{E } , (A.35)

Ep y
or,
Eap =U(yvoa) E, (A.36)
where
Ugooom) =Up(w, 2,0) " =Up(-9)U, (- 1)U (-0), (A.37)

Al1.8. Polarization Description for Partially Polarized Wave

The electric field vector represented in Equation (A.1) is completely polarized monochromatic
plane wave tracing well defined fixed polarization ellipse. However, there exists another class
of waves known as quasi-monochromatic or partially polarized waves having time-varying
amplitude and phase parameters, which do not define well defined polarization ellipse. These
waves occur due to interaction of monochromatic plane EM wave with time-dependent
scatterers [219].

The quasi-monochromatic plane wave at fixed point in space can be represented as,

J6h (1) ) R . _
E(t) = E“ gq = th 82;2 (t)} = [EOh (e’ Oh+E,, (te 15v<‘)\7]e ot (A.38)
v Ov

where o is the mean wave frequency. Since, transmission in SAR is done at narrowband,

wave frequency w satisfies following condition [42]:

5—%Aa)£a)£5+%Aa), with 22 <1, (A.39)
[0

where Aw represents the spread in wave frequency. The time varying nature of Eon(t), Eov(t),
and () resulted in spectral spread of Af such that Af<<w/2z. If the reception of narrowband
scattered wave is done in time interval z such that t<<2z/ Af, the parameters Eon(t), Eov(t), and
o(t) are assumed to be constant over time. This characteristics corresponds to behaviour of
monochromatic plane wave having mean wave frequency of w . The second case is when the
reception of scattered wave is done in longer time interval such that >>2z/ Af. In this case, the
parameters Eon(t), Eov(t), and ¢z) no longer remain constant over time [378]. Such types of
waves are known as partially polarized waves. Due to time dependence nature of these waves,

their characterization is possible by time-averaged statistics. Therefore, the concept of wave
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coherency matrix was introduced [429]. The wave coherency matrix is time-averaged product

of Jones vector with its conjugate transpose, and can be expressed as,

J=(EET)

J_{w <ahv>}_ (E?) (E.E)) (Aa0)
) (EE) <|Ev|2>

where <...> represents ensemble averaging or time averaging. Equation (A.40) can be written

in terms of Stokes vector (Equation (A.12)) as,

] _l{<<91>+<92> <93>_ J.<g4>:|’ (A.41)

2|(gs)+i(9s)  (91)—(92)
The Stokes vector in Equation (A.12) thus can be expressed for partially polarized wave as,

Jon + 9w
Jin—J
g=| "™ ™| (A42)
‘]hv+‘]vh
j(‘th_‘]vh)
Equation (A.42) can be represented as the sum of completely polarized and completely

unpolarized components of wave by [194],

(1-m)g, mg,
0
g- 4 %2 (A43)
0 03
0 04

where mgz is the completely polarized part, and (1-m) gz is the unpolarized part of EM wave.
The wave coherency matrix J is hermitian positive semi-definite matrix having non-

negative eigenvalues, and it satisfies following condition [416]:
2 2 2 2
(30 =0, or,  {g:)"2(9)" +(9s)" +(ga)", (A.44)
Due to hermitian matrix characteristics defined in Equation (A.44), trace (sum of
diagonal elements) and determinant of matrix remains constant irrespective of unitary

transformation. Therefore, Stokes vector will also be basis-invariant along with total power and

degree of polarization.
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A2. Scattering Polarimetry

In scattering scenario, it is required to relate polarization behaviour of transmitted and scattered
wave. This section provides the polarization description of scatterer by defining different

matrices which are as follows:
A2.1. Scattering Matrix

The illumination of a scatterer by EM wave changes the polarization state and degree of
polarization of incident wave depending upon the geometrical properties of targets. For
deterministic and time-invariant targets, this transformation behaviour is expressed by 2x2
complex matrix called scattering matrix [339]. This matrix is known as Sinclair matrix in
backscattering scenario, and Jones matrix in forward scattering scenario. The scattering matrix
relates Jones vector of incident and scattered wave as [379, 429],

eJkr

ES="—][S]E’

r

. —_ A.45
Ef | ﬁ S Sw || Ep, ( )
E\f r Svh va E\i,

where r is the distance between target and antenna. The term e/ accounts for phase shift
caused due to propagation of wave from transmitter to scatterer, and the term r* accounts for
attenuation between incident and scattered wave due to spherical nature of wave [165]. The
first subscript in [S] matrix in Equation (A.45) denote the transmitted polarization and the
second subscript denote the received polarization. This matrix forms the basis of SAR
polarimetry. In case of reciprocal target, scattering matrix is symmetrical with Spy=Svh.

A2.2. Polarimetric Scattering Phenomenon

Figure A.4 shows the coordinate system of a scattering problem in which fully polarized EM

wave E' is incident on a scatterer in the direction ki. The receiver accepts the scattered wave E’

from the direction ks. At receiver location there are two conventions for representing coordinate
systems. The representation of scattered field in (hls, Vi, kls) coordinate system is called Back-

Scatter Alignment (BSA), and in (h2’, v, k2') coordinate system is called Forward Scatter
Alignment (FSA). BSA is generally used in radar mono-static case for characterizing

backscattering, whereas FSA is used in bi-static cases [165].
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Figure A.4:  Coordinate system and scattering geometry.

A2.3. Scattering Target Vector for Backscattering Cases

The scattering target vector help in describing scattering performance of distributed scatterers.
In order to extract physical constructive information from 2x2 scattering matrix [Equation
(A.45)], vectorization of scattering matrix is performed for obtaining scattering target vector

[80]. Mathematically, target vector can be expressed as,
k=V(s)= %Trace([s J¥), (A.26)

where V(.) denotes the vectorization operator. The term ¥ represents 2x2 complex basis matrix
which is orthonormal under hermitian inner product, and x represents target vector, which is
expressed as,
K= [Kl, Ky, Kz, Ky ]T , (A.47)
In SAR polarimetry, two basis matrices are used in general which are, lexicographic basis
1 and Pauli basis ¥p.

The lexicographic basis W is represented by [80],

weefo offo ofs oflo 5] o

Vectorization of [S] by ¥. using Equation (A.46) gives lexicographic scattering vector .
defined by,

KL:[Shh’ Shvs Svhs SVV]T’ (A.49)
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The Pauli basis Pp is related to Pauli spin matrix as [80],

1 0[{1 0|0 1|0 —j
wo =24l | 1o i (A50)
0 1[|0 -1||1 of|j O
After vectorization by Equation (A.46) leads to Pauli scattering vector xp of the form,
Kp = [shh +Sws Shh—=Sw, Spt+Su, (S - shv)]T ; (A.51)

The components of Pauli scattering vector are related to physical mechanisms which are

described as follows [78]:

e Spht+ Sw @ Isotropic surface scattering.
e Snh—Sw : Isotropic dihedral scattering.
e Snt Sw : Isotropic dihedral scattering having relative phase shift of z/4 with respect

to horizontal.
e j(Svh —Snv) : Isotropic cross-polarizer, which transforms the incident wave into their
orthogonal polarization states. This term appears in backscatter case only in

the presence of Faraday rotation.

In backscattering scenario, for reciprocal scatterer having Sn=Sw, the scattering vectors
in Equations (A.49) and (A.51) can be written as [322],

k=[S V28, Su|T, (A.52)
Kp :[Shh +Sw, Sph—Sw, ZShV]T’ (A.53)

In Equation (A.52), +/2 is multiplied to cross-polar terms in order to satisfy conservation
of norm (equals span or total power of scattering matrix) under polarization unitary basis
transformation [80, 378].

A2.4. Matrices for Distributed Targets

The scattering matrix expressed in Equation (A.45) is useful in characterization of scattering
from point targets or stationary targets. However, in nature most of the scatterers usually vary
with time and/or space. Therefore, there scatterers cannot be completely described by single
scattering matrix. These targets are known as partial scatterers or distributed targets or
depolarizing targets. Besides natural motion of scatterers, like growth of vegetation, motion of
water surface, etc., artificial motions like movement of antenna in SAR systems resulted in
illumination of scatterer with respect to time and/or space. Due to spatial and/or time variations

of these scatterers, statistical averaging is required for describing polarization behaviour of
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these targets. The most popular matrices in SAR polarimetry in this category are covariance
and coherency matrices [219].

A polarimetric covariance matrix is formed by taking the outer product of lexicographic
scattering vector [Equation (A.52)] with its transposed complex conjugate as [379],

[C]=<K‘L.K‘L*T> , (A.54)
<|SHH|2> \/§<SHHSHV*> <SHHSW*> ]
[C]= ‘/§<SHVSHH*> 2<|SHV|2> ‘/§<SHVSW*>
i <SWSHH*> ‘/§<SWSHV*> <|SW|2>

where <...> indicates spatial averaging, assuming homogeneous nature of the arbitrary

(A.55)

scattering medium.
The outer product of Pauli scattering vector [Equation (A.53)] with its transposed
complex conjugate gives polarimetric coherency matrix, defined as [80],

[T1=(xprc, ) | (A.56)
which can be represented as [219]
%<|SHH +Sw |2> %<(SHH +Sw NS —Sw )*> <SHV*(SHH +Sw )>_
[T]= %<(SHH ~Sw XSun +Sw )*> %<|SHH —va|2> <SHV*(SHH —Sw )> )
<SHV (St +Sw )*> <SHV (St —Sw )*> 2<|SHV |2>
(A.57)

The interpretation of diagonal terms of coherency matrix is similar to component of Pauli
vector, as described in section A2.3. The off-diagonal terms represent complex cross-

correlation terms. The interpretation of these terms is as follows [212]:

1 . .
> T, = E<|SHH +Sw |2> . Single-bounce scattering.
1 2 .
> Ty = §<|SHH —Sw | > : Double-bounce scattering.
> Tpy = 2<|SHV |2> : Volume scattering.
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> Tps= <SHV*(S an + Sw )> : Co-and cross polarized correlation affected by azimuth
surface tilt.

> T, = <(SHH +Suw NSu = Sw )*> : Correlation between double and single bounce scattering
> Im(T,;) = Im<SHV*(SHH — Sy )> : Helix scattering.

> Re(Ty,) = Re<SHV*(SHH -Sw )> . Effect of azimuth terrain slope.

The covariance and coherency matrices defined in Equations (A.55) and (A.57) are
positive semi-definite hermitian matrices, and have same eigenvalues [80]. These matrices are

related to each other as,
[C1=U; [TV, or  [T]=U,[ClU,T, (A.58)

where Us is special unitary matrix defined as,

. 1 0 1
Uj=—=|1 0 -1, (A.59)
V2 0 V2 0

A2.5. Basis Transformation for Scattering Matrix

Considering basis transformation from (x,y) to (a,b) as in section Al.7, redefining scattering
matrix Equation (A.45) as [192],

ES, =[Sy JExy (A.60)

Eab = [Sab]Eab: (A.61)
The incident Jones vector in (x,y) basis is transformed to (a,b) basis according to Equation
(A.36) as,

Exp =U,(y—ab) E (A.62)

Xy
In mono-static or in in backscattering scenario (BSA convention), the scattered wave
propagates in the direction opposite to that of incident wave. Therefore, scattered Jones vector

in (a, b) basis can be written as,

S

E;b =U 2 (xy—>ab)*EXy ,

(A.63)

where conjugate (*) sign occurs due to inversion of coordinate system. By using Equations
(A.62) and (A.63), Equation (A.60) can be written as [219],
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* -1 i
(Uz(xy—>ab) y Egb :[Sxy]Jz(xy%ab) lE;b

o (A.64)
Eeslb = U2(XY—>ab)*[Sxy]J2(XY—>ab) _1E;1b
which implies that,
[Sap]=Usem [Sxy }J 20yom) (A.65)
By using the properties of unitary matrix, it can be written as,
[Saw]=Us(w. 2,2)" [Sxy]JZ(t//,;c,a) : (A.66)

This transformation is known as “con-similarity transformation” [219]. The scattering matrix
obtained in new basis should satisfy invariant conditions (i.e., invariant span and determinant)
under unitary transformation. The elements of transformed scattering matrix in (a, b) basis can
be written as [3, 37, 422],
Saa = (L+ 0*) (S —20* Sy + p** Sy )¢V

Sap = Spa = (1+ 09*) (S + L= pp*)Syy — P*Sy), (A67)
Sp = (L+ p0*) (0 Sy + 2055, + Sy )67’

Let’s consider change of polarization basis from linear (h, v) to circular (I, r) basis.
Referring Table-A.1, for left circular polarization p=; is introduced in Equation (A.67) for

obtaining elements of scattering matrix in circular polarization as,
1 .
Sy = E(Shh +2Shy +Sw)
1,. .
S =S = E(Jshh +1iSw) (A.68)

1 .
Srr = E(_Shh + 2JShv + va)

A2.6. Symmetry Properties

Symmetry usually exists in all geophysical scatterers. The scattering behaviour of scatterers are
completely described by scattering components of covariance/coherency matrices. Symmetry
conditions impose some restrictions on number of independent components in
covariance/coherency matrices based on the assumption that transformations after application
of symmetry conditions remain invariant. Thus, symmetry conditions simplify the scattering

problems by describing scattering behaviour of scatterers quantitatively [264]. Three symmetry
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conditions observed in scatterers are reflection, rotation, and azimuthal symmetries (Figure

A.5), which are described as follows:

A A A
v
A A A
(a) (b) (c)
Figure A.5:  (a) Reflection symmetry, (b) rotation symmetry, and (c) azimuthal symmetry
[160].

a.  Reflection symmetry
The assumption of reflection symmetry is that any scatterer located at P has similar

scatterer located in the direction just opposite to it say, Q, about scattering plane AA’. Axis
AA’ includes the direction of radar line-of-sight, and has the possibility to be rotated by an
angle 6 about radar line-of-sight. This symmetry condition is depicted in Figure A.5(a).

In alignment condition (6=0°), scattering matrix and Pauli scattering vectors [Equation

(A.53)] at location P, and its mirrored location Q, are of the form [264]:

Spn S
SP:th Shv} = &5 =[Sp+Sws Stn—Sws 2Sn] (A.69)
hv w
| Smh —Sw _ T
So = = &p =[Spn+Sw: Shh—Sw: —2Sn]', (A.69D)
_Shv Sw

Observed coherency matrix is determined as the summation of coherency matrices
obtained at P and Q as [264],
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[T1=[Tp]+[To]

by bty s t, b, —Us, (A.70)
[Tl={t, tyn tyu|+| t tn —ty
ts 3 I3 —t3 —l g

Equation (A.70) implies that after application of reflection symmetry condition, number
of independent scattering components are reduced to five as compared to nine in original
coherency matrix. As evident from Equation (A.70) that there is no correlation between co-

polarized and cross-polarized scattering components, i.e.,
(Shn + va)shv* = (Sp — Sw)shv* =0, (A.71)
Reflection symmetry usually appear in smooth surface, such as water, tilled fields in the

at right angle to row direction, etc., [264].

b.  Rotation symmetry
Rotation symmetry assumes invariance of covariance/coherency matrix under random

rotation of plane of polarization about radar line-of-sight, as presented in Figure A.5(b).
Rotated coherency matrix with rotation about radar line-of sight by angle 6 [80],
T(0) =RO)TIRO) ", (A.72)

where R(8) is orthogonal rotation matrix defined as,

1 0 0
R(@)=|0 cos260 sin20 |, (A.73)
0 -sin20 cos20

The rotation invariance condition in mathematical terms, assumes target scattering
vectors (Pauli vectors for coherency matrix) to be equivalent to eigenvectors of rotation matrix

R(6). These eigenvectors are represented as [80],
u].: 0’ u2:— 1’ U3:_ 1 s (A.74)

The rotation invariant coherency matrix is described by linear summation of outer

product of eigenvectors given in Equation (A.74) as,
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T =a(u.u, ' )+b(uyu, ) +cUsus ')
100 [0 0 0O 0 0 0

=a0 0 O|+bl0 1/2 i/2|+cl0 1/2 —-il2], (A.75)
0 0O 0 —-i/l2 1/2 0 i/2 1/2
a 0 0

0 (b+c)/2 i(b-c)/2
0 i(-b+c)/2 (b+c)/2

where a, b, and c, are eigenvalues of T. The inferences drawn from equation (A.75) are as
follows [160]:

e Two of the diagonal terms are equal, i.e.,

|Shh - va|2 = 2|Shv ?

, (A.76)

e The term (Shn+Sw) is not correlated to any of the term (Shh—Sw) or Shy, i.e.,

(S +Sw)(Shn = Sw)” = (Spn + Sw)Shy =0, (A.77)

e Correlation between (Shn—Sw) and Shv remains intact after rotation symmetry,
i.e.,

(Shh—Sw)Shy #0, (A.78)

Rotation symmetry exists in random gyro-tropic media, like Earth’s ionosphere and
helical shaped targets [264].

c.  Azimuthal symmetry
Azimuthal symmetry is general symmetry property, which assumes that reflection symmetry

exists for all the scattering planes at all rotation angles 6 [264]. Thus, it possesses the
characteristics of both reflection and rotation symmetry, as visualized from Figure A.5 (c).
The Equation corresponding to azimuthal symmetry is obtained by applying the concept

of reflection symmetry on rotation symmetry condition defined by Equation (A.75) as,
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a 0 0 a 0 0
T=|0 (b+c)/2 i(b-c)/2|+|0 (b+c)/2 —i(b-c)/2
0 i(-b+c)/2 (b+c)/2 0 —i(-b+c)/2 (b+c)/2 | (AT9)
2a 0 0
=1 0 (b+c) 0
0 0 (b+c)

The Equation (A.79) indicates that by application of azimuthal symmetry, number of
independent parameters reduce to two, as two of the diagonal terms are equal, as presented in
Equation (A.79).
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Appendix-B

Flowcharts of Model Based Decomposition Methods

B1. Three Component Model Based Decomposition (TCM)

L &3

Ty Ty Tss

al EE}

Iy In Iz
[T1=|Ty; Ty To

\ 4
P, = 4T,
Xy =Ty — 2T 4

a3

X9 = Ty — Ty

EE]

a=0; 8 T B=0 o = T2
X1 X212
P = X + |T12 | P = Xy — |T1A |
Xyt X2
Py =2xy — |TL P;=xy + T12|
Xy I

Figure B.1:  Flowchart of algorithm for three component model based decomposition
(TCM) [9].
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B2. Four Component Model Based Decomposition (FCM)
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Figure B.2:  Flowchart of algorithm for four component model based decomposition (FCM)
[425].
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B.3. Three Component Model Based Decomposition with Deorientation (TCMD)

Thhw T Ins
[T1=|Ty T, T

Iy Iy I

A 4

g In@ L8| RrR@)=
T6)=[ROITIRE)] =|T12(8) T(6) Tx(6)

T3(6) Ty(6) Ty(6) )
i 6':—1tan_l‘Re<153}

4 Dy L
iy =1,(8)- 2T (9)
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Figure B.3:  Flowchart of algorithm for three component model based decomposition with

deorientation (TCMD).
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B4. Three Component Model Based Decomposition with Double Deorientation and
Adaptive Volume Scattering Component (TCMDDA)

10 0
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Figure B.4:  Flowchart of algorithm for three component model based decomposition with
double deorientation and adaptive volume scattering component (TCMDDA) [90].
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B5. Four Component Model Based Decomposition with Deorientation (FCMD)
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Figure B.5:  Flowchart of algorithm for four component model based decomposition with

deorientation (FCMD) [427].
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B6. Four Component Decomposition with Deorientation and Additional

Scattering Model (FCMDA)
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Flowchart of algorithm for four component decomposition with deorientation
and additional volume scattering model (FCMDA) [325].



B7. Four Component Model Based Decomposition Method with Double Deorientation
(Unitary Transformation) (FCMDD)
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Figure B.7: Flowchart of algorithm for four component model based decomposition

method with double deorientation (unitary transformation) (FCMDD) [344].
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Appendix-C
Results of Model Based Decomposition Methods

C1. For Region- 2: Meerut

Data ID- PASL1100904231713261001150001
Center latitude- 28° 58' 32" N

Center longitude -77° 42' 20" E

In this region, five areas are selected for the analysis. In Figure C.1, numbers 1 to 4 represent
urban areas designated as urban-1, urban-2, urban-3, and urban-4, respectively. White rectangle

in Figure C.1, represent tall vegetation.
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a) Visual analysis
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Figure C.1:  RGB colour composite images with Pq as red component, Py as green
component, and Ps as blue colours for Region-2 (Meerut) : (a) TCM, (b) FCM, (c) TCMD, (d)
TCMDDA, (e) FCMD, (f) FCMDA, and (g) FCMDD.
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b) Power-wise quantitative analysis
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Figure C.2:  Result of power wise analysis for studied decomposition methods for Region-2
(Meerut): (a) urban-1, (b) urban-2, (c) urban-3, (d) urban-4, and (e) tall vegetation, regions
represented by number 1 to 4 and white rectangle, respectively, in Figure C.1.
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C2. For Region-3: New Delhi
Data ID- PASL1100904231713261001150001
Center latitude- 28° 58' 32" N
Center longitude -77° 42' 20" E
In this region, six areas have been selected for the analysis. Numbers 1 to 5 in Figure C.3
represent urban areas designated as urban-1, urban-2, urban-3, urban-4, and urban-5,

respectively. Number 6 represent bridge over the river.

a) Visual analysis
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Figure C.3:  RGB colour composite images with Pq as red colour, Py as green colour, and Ps
as blue colour for Region-3 (New Delhi): (a) TCM, (b) FCM, (c) TCMD, (d) TCMDDA, (e)
FCMD, (f) FCMDA, and (g) FCMDD.
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b) Power-wise quantitative analysis
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Figure C.4:  Result for power wise analysis of studied decomposition methods for Region-3
(New Delhi): (a) urban-1, (b) urban-2, (c) urban-3, (d) urban-4, (e) urban-5, and (f) bridge,
represented by number 1 to 6, respectively, in Figure C.3.
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