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Preface 

 

 

This thesis “SAR Polarimetry for Characterization and Retrieval of Earth and Lunar Surface” 

explores the utilization of polarimetric Synthetic Aperture Radar (SAR) data for extracting 

constructive information in the form of polarimetric parameters to be used in various 

applications, like land cover identification, classification, and surface parameter retrieval for 

Earth and lunar surface. The main objective of the thesis is to pursue these tasks by using 

concepts of SAR polarimetry and electromagnetic wave modelling with emphasis on 

developing algorithms, which may require minimum or no ‘a priori’ information. 

 Four tasks have been carried out in this thesis; (i) Study of model based decomposition 

methods and its analysis to visualize the effect of decomposition and deorientation for 

enhancement of land cover identification using polarimetric SAR data, (ii) Development of 

adaptive land cover classification algorithm using spatial statistics of polarimetric indices, (iii) 

Application of transmission line theory for development of algorithm for retrieval of soil 

moisture in bare soil and vegetation covered soil using minimum or no ‘a priori’ information, 

and (iv) Study and analysis of hybrid polarimetric MiniSAR data, and the development of 

algorithm for possible existence of water-ice deposits on lunar surface. 

 Fully polarimetric ALOS PALSAR and/or Radarsat-2 data of Roorkee city in the state of 

Uttarakhand, India, have been used for characterization and soil moisture retrieval of Earth 

surface. The characterization of lunar surface in terms of identification of possible water-ice 

deposits has been performed by using hybrid polarimetric MiniSAR data of Peary and 

Rozhdestvenskiy craters.  

 The thesis includes seven chapters. Chapter one presents the introduction, which consists 

of motivation, scope, and objectives of the thesis.   

 In Chapter two, the state-of-the-art in the fields of advances made in SAR polarimetry, 

land cover classification methods, and soil moisture retrieval approaches has been briefly 

described. This chapter also elucidates the theoretical background for the presence of water-ice 

deposits on lunar surface. Critical reviews of presently available approaches for identifying 

regions having possible water-ice deposits on lunar surface have been presented, along with the 
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discussion of limitations and challenges associated with them.  

 In Chapter three, the study of incoherent model based decomposition methods with and 

without applying deorientation has been performed. The advantage of model based 

decomposition methods is their ability to extract polarimetric information from SAR data by 

expressing average scattering mechanism as the summation of individual scattering 

components, such as volume (Pv), surface (Ps), double-bounce (Pd), and/or helix component 

(Pc). In literature, there are several three- and four component model based decomposition 

methods. However, it is observed that due to similar polarimetric response, several land covers 

such as vegetation and oriented building blocks, decomposed into same volume scattering 

component by model based decomposition methods. In order to overcome this problem, it is 

suggested to apply deorientation i.e., rotation of target matrix (coherency or covariance) by 

radar line-of-sight, prior to decomposition. The deorientation effect results in getting same 

scattering response from differently oriented similar targets, and different scattering response 

from distinct targets, which might be producing same response before deorientation. Thus, this 

chapter analyses seven different three- and four-component model based decomposition 

methods, in which two methods are without deorientation, and other five are with deorientation. 

The methods without deorientation are, three component model based decomposition (TCM) 

proposed by Freeman and Durden in 1998 and four component model based decomposition 

(FCM) proposed by Yajima et al. in 2008. Model based decomposition methods with 

deorientation are, three component model based decomposition method with deorientation 

(TCMD) proposed by An et al. in 2010; three component model based decomposition method 

with double deorientation and adaptive volume scattering model (TCMDDA) proposed by Cui 

et al. in 2012; four component model based decomposition method with deorientation (FCMD) 

proposed by Yamaguchi et al. in 2011; four component model based decomposition with 

deorientation and additional volume scattering model (FCMDA) proposed by Sato et al. in 

2012; and four component model based decomposition method with double deorientation 

(unitary transformation along with rotation) (FCMDD) proposed by Singh et al. in 2013. The 

results of these decomposition methods have been evaluated by performing visual and 

quantitative analyses for ALOS PALSAR data sets of Roorkee, Meerut, and Delhi cities of 

India. Two types of quantitative analysis have been performed; first, by analysing the variation 

in number of pixels for each scattering contribution; and second, by observing the scattering 

behaviour in terms of percentage of scattering power for different land covers. First quantitative 
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analysis shows that in TCMD and TCMDDA, the pixel percentages of Ps and Pd increase as 

compared with TCM. In FCMD, FCMDA, and FCMDD, Pd increases drastically in terms of 

pixel percentage as compared with FCM. The pixel percentage of Ps is incremented by 

approximately 2% in FCMDA, and is invariant in FCMDD, as compared with FCMD. Pixel 

percentage having helix contribution (i.e., Pc) is increased by 2% in FCMD as compared with 

FCM, and is invariant in both FCMDA and FCMDDA. By second quantitative analysis, it has 

been observed that uncertainty always lies in the description of scattering mechanism of urban, 

tall vegetation, and short vegetation regions, because there is no distinct scattering mechanism 

which is dominant for these land covers in all decomposition methods. Only bare soil provides 

distinct pattern by having very strong contribution of surface scattering. After deorientation, 

double-bounce power is definitely enhanced, however, it is not the dominant scattering 

mechanism in urban area. This may occur due to the presence of large amount of vegetation 

within urban area (Roorkee city). 

 In Chapter four, the problems associated with fixed-threshold based land cover 

classification algorithms and the need for the development of adaptive classification algorithm 

have been discussed. This chapter presents the development procedure for image statistics 

(median and standard deviation) based adaptive land cover classification algorithm by using 

best-selected polarimetric indices on the basis of separability index criterion. The algorithm 

provides optimum value of polarimetric indices on the basis of user-specific requirements (i.e., 

overall accuracy).  The algorithm has been developed and validated on two different ALOS 

PALSAR data of same site i.e., Roorkee. For first ALOS PALSAR data, the overall accuracy is 

obtained as 87.59%, whereas producer accuracy is obtained as 98%, 71%, 86%, 92% and 95% 

for bare soil, water, tall vegetation, short vegetation, and urban, respectively, For second ALOS 

PALSAR data, the overall accuracy is obtained as 78.43%,  whereas producer accuracy is 

obtained as 98%, 57%, 66%, 84%, and 97% for bare soil, water, tall vegetation, short 

vegetation, and urban, respectively. 

 In Chapter five, the key issues related to the problems involved with the retrieval of soil 

moisture under vegetation cover by SAR data have been discussed. Considering the limitations 

of currently available soil moisture retrieval algorithms, this chapter presents multilayer model 

for retrieval of soil moisture in both bare soil and vegetation covered soil using the classical 

concept of transmission line theory. In this chapter, two different models have been developed 

for characterization of scattering from vegetation and bare soil regions. In case of vegetation, 
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three layer model having one layer of vegetation canopy and two layers of soil have been 

considered, whereas in case of bare soil, due to exclusion of vegetation layer the model consists 

of only two layers of soil. For both the models, calculated backscattering coefficients have been 

obtained as a function of complex dielectric constant and thickness of each layer involved in 

respective models. The observation depth for retrieval of soil moisture varies from one tenth of 

wavelength to one quarter wavelength. Therefore, the first layer of soil is considered to have 

thickness of 5 cm and second layer of soil is taken as infinite. In case of three layer model, the 

thickness of vegetation-air mixed layer is considered to have thickness in the range 5 cm to 400 

cm, assuming all agricultural vegetation fall within this range. Now, the complex dielectric 

constant of each layer involved in respective models are retrieved though Genetic Algorithm 

(GA) approach by minimizing cost function. The cost function is formed by taking 

backscattering coefficient calculated by each model and HH polarized backscattering 

coefficient measured by SAR data. The developed algorithm has been applied on two data sets 

of ALOS PALSAR and one data set of Radarsat-2 of Roorkee city, and quite satisfactory 

results have been obtained by comparing the retrieved soil moisture values with observed soil 

moisture values. The advantages of the proposed approach are its capability to estimate soil 

moisture with good accuracy and requirement of minimum ‘a priori’ information. 

 In Chapter six, a decision tree algorithm has been developed for finding the possibilities 

of water-ice deposits on lunar surface using MiniSAR data. In radar based missions, high value 

of received radar circular polarization ratio (μc >1) has been traditionally used as a key criterion 

for determining the evidences of possible water-ice deposits in cold dark permanently 

shadowed regions. However, rough and dry surfaces containing rocks, lava flows, ejecta etc., 

also represent μc >1 due to double-bounce effect. Differentiation on the basis of criterion μc > 1 

is very challenging because of two different phenomenon associated with lunar surface, namely 

volume scattering caused due to presence of planetary water-ice, and surface roughness caused 

by ejecta, rocks, or lava flows. Therefore, in this chapter, the information of two different 

approaches has been fused which are polarimetric approach (m-  and m-χ decomposition) and 

fractal approach (fractal dimension ‘D’).  The polarimetric approach helps in obtaining 

scattering information of lunar surface, whereas fractal dimension ‘D’ helps in retrieving 

roughness information. After exhaustive study, various criteria have been obtained and 

incorporated in a decision tree. In this decision tree, the criteria for icy craters proposed by 

Thompson et al., have also included in order to provide confidence about regions having 
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possibility of water-ice deposits. It has been observed that there are certain common regions 

inside anomalous craters on the floor of Peary and Rozhdestvenskiy craters which satisfy all the 

conditions of proposed approach. In this chapter, the study of electrical and physical properties 

like, dielectric constant of lunar surface (ε= ε’-j ε’’), loss tangent (tan δ), and regolith bulk 

density (ρ0), has also been performed. 

 Finally, the work carried out in this thesis has been concluded in Chapter seven. This 

chapter presents the contributions of the thesis and the prospects of extending the tasks of thesis 

in future.  
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Chapter 1  

Introduction 

 

Synthetic Aperture Radar (SAR) polarimetry is an important tool for land cover 

characterization and surface parameter (soil moisture, surface roughness, electrical, and 

physical, etc.,) retrieval of Earth and other planetary surfaces such as Moon. SAR polarimetry 

is related to transmission of known polarization and reception of modified polarization in the 

form of backscattered wave received from different scatterers. The interaction of propagating 

electromagnetic (EM) waves with these scatterers produces unique signature by representing 

distinct scattering mechanisms. Polarized backscattered wave contains crucial information 

related to scattering behaviour as well as geometrical, physical, and electrical properties of 

scatterers. Thus, SAR polarimetry provides a way to explore and characterize different land 

covers because of its capability of providing large spatial coverage and high resolution images.   

 Polarimetric SAR sensors exploit abundant information about scatterers than 

conventional radars by measuring phase along with amplitude for multi-polarization 

acquisitions. This multidimensional information (phase and amplitude of different 

polarizations) obtained from polarimetric SAR images helps in resolving the uncertainties 

about the source of scattering [437]. These characteristics have made SAR polarimetry a crucial 

science for land cover identification, characterization, and retrieval of surface parameters. 

There are several reasons for which land cover characterization and parameter retrieval is 

required, which are as follows: 

 Land cover identification and classification is required for proper planning and 

management of resources available on Earth’s surface. Changes appearing over Earth’s 

surface owing to increase in population, change in environmental conditions, 

occurrence of disasters (e.g., flood, earthquake, drought, etc.,) require continuous 

monitoring. 

 One of the most important surface parameters of Earth is soil moisture, which plays an 

important role for improving hydrologic, weather, and climate modelling. The soil 

moisture represents only 0.00012% of volume of water as compared to total water 

present on the Earth’s surface [402]. Still, it plays an important role in determining the 
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prospective of infiltration, surface run-off, flood, overland flow, erosion, etc., [94]. In 

agronomy, soil moisture is beneficial in prediction of plant water requirement, 

vegetation growth, productivity, irrigation requirement, and cultivation time [402].  

 Lunar surface characterization is required for exploring the possibility of resources such 

as minerals, water-ice deposits, etc., available over the surface of Moon. It is required to 

determine radio-physical and electrical properties of lunar surface for understanding the 

nature of lunar surface and its scattering behaviour. Due to its proximity to Earth, the 

study carried out over Moon may act as an archetype for exploring other planetary 

surfaces.  

 

 The property of SAR sensors to provide day-night acquisition independent of weather 

conditions, and their capability to collect scattering response from surfaces and sub-surfaces 

due to penetration capability of EM waves [437] help in above mentioned surface monitoring 

applications. 

 

1.1.   Motivation  

The polarimetric SAR carries out measurement in multiple polarizations, multiple frequencies, 

and multiple incidence angles. Therefore, it has become possible to retrieve detailed 

information about scattering mechanisms for identification of different scatterers. By 

controlling the polarization of the incident wave, and measuring the full polarization properties 

of backscattered wave, the fully polarimetric SAR system can be used to obtain more 

information about the targets than by using a single and dual polarized SAR systems.  

 SAR polarimetry is renowned for the extraction of constructive information in the form 

of polarimetric parameters, to be utilized in various applications, such as land cover 

identification, classification, and retrieval of surface parameters. Researchers have developed 

various methods for land cover identification, classification, and surface parameter retrieval, by 

using polarimetric SAR data. However, challenges still persist in performing aforesaid tasks 

with requirement of minimum or no ‘a priori’ information.  

 The fully polarimetric SAR systems measure four complex polarization combinations, 

which are HH (horizontal transmit-horizontal receive), HV (horizontal transmit-vertical 

receive), VV (vertical transmit-vertical receive), and VH (vertical transmit-horizontal receive). 
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The full vector nature of polarimetric SAR data allows it to be synthesized into any non-linear 

polarizations (Appendix-A).These non-linear polarizations are, circular (LL: left transmit-left 

received, LR: left transmit-right received, RL: right transmit-left received, and RR: right 

transmit-right received), linear 45° (45C: co-polarized elliptical, and 45X: cross-polarized 

elliptical), and hybrid (LH: left transmit-horizontal received, LV: left transmit-vertical 

received, RH: right transmit-horizontal received, and RV: right transmit-vertical received) 

polarizations. Thus, by fully polarimetric SAR data, advantages of any polarization can be 

obtained. This is beneficial in describing scattering mechanisms (e.g., volume, surface, and 

double-bounce scattering) of various targets due to sensitivity of scattering response of targets 

to polarization. Still challenges occur in discriminating targets on the basis of scattering 

mechanisms due to complex nature of targets, which produce combination of various scattering 

mechanisms [27].  

 Model based decomposition methods have been developed with the aim to separate 

scattering mechanisms obtained from different targets [138, 425, 426, 428]. However, it is 

observed that some similarly oriented different targets produce same scattering response. For 

example, oriented building blocks in urban area decompose into volume scattering component, 

as in vegetation, instead of exhibiting double-bounce scattering. In order to resolve this 

ambiguity, the concept of rotation of coherency matrix around radar line-of-sight, also known 

as deorientation process [210], has been suggested to be applied prior to decomposition for 

enhancing the performance of decomposition methods in terms of scattering response [10, 42, 

90, 325, 344, 427]. However, still major concern is segregation of various land covers by 

scattering mechanisms. Thus, contemplative study is required to visualize the effect of 

decomposition and deorientation in enhancing the identification of various land covers from 

point of view of scattering mechanisms.  

 The fully polarimetric information can be exploited usefully in terms of polarimetric 

indices (parameters), which describe scattering, physical, and electrical behaviour of different 

targets. There exist several classification approaches that use fixed value of polarimetric indices 

as in [27, 129, 130, 250, 293, 306, 351]. The problem in these classification approaches is that 

the value of polarimetric indices usually vary in accordance with change in environmental 

conditions, observational sites, and satellite images. Another problem in these classification 

approaches is the selection of appropriate polarimetric index that provide separation of two 

different classes accurately. In order to overcome these problems, there is a need to develop 
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such a classification algorithm that is able to select polarimetric indices capable of segregating 

various land covers, and then, may use adaptive threshold of these polarimetric indices. In a 

nutshell, there is a requirement of developing an adaptive classification method that provides 

automated segregation of different land covers. 

 Soil moisture is one of the most important surface parameters of Earth, for which 

significant amount of research has been carried out by researchers all over the world using 

polarimetric SAR data. The sensitivity of backscattered wave to dielectric constant allows the 

retrieval of soil moisture by polarimetric SAR data [388]. Several soil moisture retrieval 

algorithms have been developed using theoretical/physical [46, 228, 353, 354, 401, 407, 436], 

empirical [17, 255, 409, 410, 445], and semi-empirical approaches [115, 231, 273, 274, 333, 

353]. Most of these algorithms perform well only for retrieval of soil moisture in bare soil 

region, and under-estimate soil moisture in vegetated region. This happens due to complex 

scattering phenomenon associated with vegetation structure, in which the scattering from bare 

soil surface is very much influenced by the vegetation canopy layer that attenuates the 

scattering from soil, while adding its own contribution [175]. The requirement of large amount 

of ‘a priori’ information by most of these algorithms, for their implementation, is also one of 

the major limitations. The retrieval of soil moisture under vegetation cover requires isolation or 

minimization of backscattering response obtained from soil underneath vegetation. This task 

requires a lot of efforts. Therefore, attention is needed to develop an algorithm for retrieval of 

soil moisture in vegetated region that may require minimum or no ‘a priori’ information.  

 Radar polarimetry has got new dimensions with the inception of hybrid polarimetry, in 

which transmission is done at circular polarization (right/left handed), while reception is done 

at two linear polarizations (horizontal and vertical) in coherent manner [308]. This unique 

architecture provides information comparable to fully polarimetric SAR, but with wider swath 

coverage, reduced system complexity (mass and power consumption), and absence of range 

ambiguity and Faraday rotation. Thus, hybrid polarimetry is not only an optimum design for 

exploring planetary surfaces, but also is a worthy choice for future Earth monitoring SAR 

missions [308]. MiniSAR on-board Chandrayaan-1 mission, India’s first lunar exploration 

mission launched by Indian Space Research Organisation (ISRO), was one such attempt. It was 

the first polarimetric SAR flown outside the Earth’s orbit. The objective of this mission was to 

characterize lunar surface, and to find the possible evidences of water-ice deposits on lunar 

surface [252, 359]. This is very challenging yet fascinating task, which requires a lot of 



 

 5 

attention. 

 The summary of above discussion has been presented below, keeping in mind the tasks 

where more attention is required: 

 Critical analysis of model based decomposition methods and deorientation 

process for characterization of land covers. 

 Investigating the effect of deorientation on scattering mechanisms associated 

with distinct land covers. 

 Identifying the role of various polarimetric indices for classification of various 

land covers.  

 Development of adaptive land cover classification approach providing optimum 

classification accuracy.  

 Development of algorithm for retrieval of soil moisture under vegetation cover 

with minimum usage of prior information about test site. 

 Critical analysis of hybrid polarimetric SAR data for characterization of lunar 

surface.  

 Study of hybrid polarimetry for identification and characterization of various 

land covers.  

 Development of algorithm to find the possible evidences of water-ice deposits 

on lunar surface by using hybrid polarimetric SAR data.    

 Estimation of electrical and physical properties of lunar surface. 

 

1.2.  Problem Statement 

The objective of this thesis is to extract polarimetric parameters from polarimetric SAR data for 

identification, classification, characterization, and parameter retrieval of Earth and Moon 

surfaces. In the present research work, emphasis has been given to develop algorithms for land 

cover characterization and surface parameter retrieval with the use of minimum or no ‘a priori’ 

information. The discussion in section 1.1, followed by careful engrossment, actuated the 

present work, which consists of following tasks that have been carried out in this thesis;  

1) To investigate the role of model based decomposition methods, and to critically analyse 

the effect of decomposition and deorientation in enhancement of land cover 

identification.  
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2) To develop adaptive land cover classification algorithm using spatial statistics of 

polarimetric indices.  

3) To explore the use classical transmission line theory for retrieval of soil moisture in bare 

soil and vegetation covered soil by using minimum ‘a priori’ information.  

4) To develop an algorithm for possible presence of water-ice deposits on lunar surface 

using polarimetric and fractal based approach, and to estimate electrical and physical 

properties of lunar surface by using hybrid polarimetric MiniSAR data of Chandrayaan-1.  

 

 

Characterization of Earth Surface Characterization of Lunar Surface

Fully polarimetric ALOS PALSAR data 

of Roorkee

Pre-processing

Extraction of 

polarimetric 

indices

Extraction of 

coherency matrix

Hybrid polarimetric MiniSAR data of 

Peary crater

Pre-processing

Extraction of polarimetric parameters 

(child parameters) and fractal dimension

Analysis of 

decomposition 

methods with 

and without 

deorientation
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separability index
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adaptive 

classification 

algorithm
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Masking of 
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Application of 
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Figure 1.1:  Flowchart for research framework. 
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1.3.  Framework of Research 

The framework of research is presented in Figure 1.1. The research work is divided into two 

parts- (i) polarimetric approach for characterization and soil moisture retrieval of Earth’s 

surface, and (ii) polarimetric approach for possible water-ice detection and surface parameters 

(electrical and physical) retrieval of lunar surface.  

The research work for both the parts i.e., Earth and Moon, was carried out in four stages-    

1.  Data acquisition and pre-processing. 

2.  Development of surface characterization algorithm. 

3. Retrieval of surface parameters. 

4. Validation and comparison of proposed algorithms. 

 

 Following subtasks have been carried out for completing the considered four tasks, as 

discussed in section 1.2:  

  Review of literature corresponding to each task and suggesting proposal of 

appropriate methodologies stating the limitations of existing approaches.  

 Pre-processing of ALOS PALSAR data and extraction of coherency matrix. 

 Analysis of scattering components, obtained by model based decomposition methods 

with and without deorientation, for their usefulness in characterization of different 

land covers. 

 Extraction of various polarimetric indices from pre-processed data. 

 Selection of polarimetric indices, providing best separation between two class pair, 

based on separability index criterion. 

 Development of adaptive land cover classification algorithm. 

 Validation of proposed classification algorithm by another ALOS PALSAR data. 

 Masking of water and urban area in classified image, so as to obtain only bare soil 

and vegetation region. 

 Development of soil moisture retrieval algorithm. 

 Application of proposed soil moisture algorithm on another ALOS PALSAR data 

and C-band Radarsat-2 data. 

 Selection of hybrid polarimetric MiniSAR data of Peary crater for characterization of 

lunar surface. 

 Pre-processing of MiniSAR data, and extraction of polarimetric parameters of hybrid 
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SAR, known as child parameters.  

 Critical analysis of all the child parameters for obtaining the criteria satisfying 

possibility of water-ice deposits on lunar surface. 

 Critical analysis of fractal dimension for obtaining roughness information. 

 Development of algorithm incorporating all the conditions for possible presence of 

water-ice. 

 Estimation of electrical and physical properties of lunar surface. 

 Application of proposed algorithm developed, on another MiniSAR data of 

Rozhdestvenskiy crater. 

  

1.4.  Organisation of Thesis 

The thesis includes seven chapters.  

 Chapter two provides the brief literature review of the tasks undertaken in the thesis. The 

review related to advancements made in the field of SAR polarimetry, target decomposition 

methods, classification methods, and soil moisture estimation methods has been provided. The 

limitations of existing approaches, and need of developing new algorithms, has also been 

discussed. The theory of water-ice deposits on lunar surface, and state-of-the-art methods for 

possible existence of water-ice deposits on lunar surface, have been discussed.    

  Chapter three deals with the task of studying seven different three and four component 

model based target decomposition methods, with and without applying deorientation approach. 

This chapter analyses the role of deorientation in improving the scattering response of various 

land covers. The analysis has been performed by both visual and quantitative methods. 

 Chapter four presents an adaptive land cover classification algorithm. The algorithm has 

been developed by using spatial statistics (i.e., median and standard deviation) of best-selected 

polarimetric indices on the basis of separability index criterion. The algorithm uses optimized 

values of polarimetric indices based on overall classification accuracy as required by the end 

user.  

 Chapter five includes the development of multilayer model based on transmission line 

theory for retrieving soil moisture in bare soil and vegetation underlying soil, by using fully 

polarimetric SAR data with minimum requirement of ‘a priori’ information. This model is 

based on conventional transmission line theory which facilitates the estimation of impedance, 
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and hence, backscattering coefficient as a function of dielectric constant and thickness of each 

layer in the model. The dielectric constant in turn has been used for retrieval of soil moisture 

for 5 cm depth of soil.  

 Chapter six explores the use of hybrid polarimetric MiniSAR data of Chandrayaan-1 for 

lunar surface characterization, and finding the possibility of water-ice deposits on lunar surface. 

In this chapter, an algorithm has been proposed for identifying the regions having possible 

presence of water-ice deposits on lunar surface by fusing polarimetric and fractal-based 

approach. After obtaining possible locations of water-ice deposits on lunar surface, the 

electrical and physical properties, such as dielectric constant of lunar surface, loss tangent, and 

regolith bulk density have been computed. 

 Finally, Chapter seven provides the summary of obtained results and enlists the major 

contributions made in the thesis. The perspectives of future investigation, utilizing the current 

results, is also discussed. 
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Chapter 2  

Background and State-of-the-Art 

 

This chapter starts with the brief literature review related to the advancements made in the field 

of SAR polarimetry and its applications. Now SAR polarimetry is a well-known concept to all. 

Therefore, the description related to basics of SAR polarimetry is avoided in this chapter. 

However, the basic concepts of SAR polarimetry, polarization, and mathematical formulations 

for describing scattering behaviour are discussed in Appendix-A. This chapter only meditates 

upon the literature review, which is relevant to the tasks commenced in the thesis.  

 Firstly, the literature review of target decomposition theorems along with the need of 

analysing existing decomposition theorems with and without applying the concept of 

deorientation using polarimetric SAR data, has been discussed. Secondly, literatures related to 

land cover classification approaches based on polarimetric SAR data have been reviewed. In 

this section, the limitations of existing fixed decision threshold based classification algorithms, 

and the need of further development of adaptive classification algorithm have been discussed. 

Thirdly, the application of SAR polarimetry for retrieval of soil moisture along with the brief 

review of existing theoretical, empirical, and semi-empirical soil moisture retrieval approaches, 

has been discussed. Based on this review, requirement for development of soil moisture 

retrieval algorithm for bare soil and vegetation underlying soil by using minimum ‘a priori’ 

knowledge has been debated in this section.  Finally, the review of theoretical concept of 

possible water-ice deposits on the surface of Moon has been presented. This section comprises 

the review of work exhibiting possibility of water-ice deposits on lunar surface using radar-

based and other methods, like spectroscopic methods. Thereafter, based on the review of 

aforesaid SAR polarimetric applications, this chapter has been concluded for further scope of 

research.   

 

2.1.  Review Related to Background and Advances in SAR 

Polarimetry 

The ability of microwaves to provide radio-physical information of ground and beneath the 
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ground make them suitable choice for extracting information from various land covers. This 

information extraction is performed by both active and passive way. Active illumination system 

is equipped with a transmitting system, and a receiving system to accept the signal 

backscattered from the illuminated surface, unlike passive illumination system, which makes 

use of radiation naturally emitted (i.e. sunlight) or reflected by Earth [345]. Passive microwave 

sensors, like radiometers are used in several applications, such as meteorology [198, 235, 397-

399], oceanography [21, 288, 300], and hydrology [22, 366]. Although passive sensors 

(infrared and visible radiometers) provide fine surface spatial resolution and excellent spectral 

details, their use is limited due to lack of independent source of radiation, and their inability to 

penetrate cloud and fog covering the area of interest. Active microwave sensors belong to 

imaging and non-imaging category. Non-imaging microwave sensors are scatterometer and 

altimeter, which are used in several applications, such as soil moisture estimation, rainfall 

estimation, weather forecasting, hydrological modelling, etc., [31, 104, 154, 222, 287, 302, 303, 

312, 342, 343, 346]. However, their only drawback is that they provide information for 

particular area and specific land cover type. Active imaging sensors, mostly realized by radar 

systems, overcome these limitations. In conventional radar systems, usually referred to as Real 

Aperture Radars (RARs), the information about the target was taken in the form of magnitude 

only, and any information on phase was ignored due to static radar system. The main limitation 

of these sensors is the poor azimuth resolution. The only solution to this problem was to use 

short radar pulses of very high energy achievable only with very large aperture antenna, which 

was practically not feasible. The development of Synthetic Aperture Radar (SAR) sensors was 

a revolution in this field. In SAR system, forward motion of actual antenna is used to 

synthesize a very long antenna, and thus, high resolution is achieved even with antenna 

structure of reasonable size. SAR systems, being coherent, are capable of recording both 

magnitude and phase values. This quality of SAR sensors leads to the concept of SAR 

polarimetry [277]. 

 SAR polarimetry is the science of acquiring, processing, analysing, and characterizing the 

polarization state of electromagnetic (EM) wave. The time-varying behaviour of transverse EM 

wave leads to the formation of an ellipse in the plane perpendicular to propagation, which is 

one of the most significant phenomenon affecting the interaction of EM wave with any object 

and medium of propagation. The propagation of EM wave through a medium having varying 

refractive index, changes the polarization state of EM wave upon reflection. This polarization 



 

 13 

transformation behaviour is designated as Ellipsometry in optical imaging, and Polarimetry in 

radar imaging [165, 219, 377].  

 SAR polarimetry exploits the concept of polarization to describe the change of 

polarization state by measuring backscattered wave through vector measurement in order to 

utilize full polarization information. This allows measurement of both amplitude and phase of 

backscattered wave for any assumed combination of transmitted and received polarization. In 

linear basis, four complex polarization combinations are calculated- HH, HV, VV, and VH for 

each resolution cell of image [122]. Due to this full vector nature of linearly polarized 

components, it is possible to retrieve components in any other polarization basis i.e., circular 

and elliptical, by using simple mathematical formulations as discussed in Appendix-A. Thus, 

advantages of any polarization can be exploited by fully polarimetric SAR data for 

discrimination of different targets because of dependence of backscattering coefficient on 

polarization. Although a distributed target represents several scattering mechanisms, one of the 

scattering mechanisms—surface, double-bounce, or diffuse/volume scattering, always 

dominates [245], which can be described by different polarizations. For VV backscatter greater 

than or equal to HH backscatter, and RL backscatter (circular cross-polarized) significantly 

greater than RR (circular co-polarized) backscatter, represent dominant surface scattering (e.g., 

in bare soil) [27]. Linear cross polarized returns (i.e., HV) represent multiple scattering from 

rough surfaces, or volume scattering due to depolarization of targets [165]. Linear cross-

polarized backscatter (HV) and depolarization ratios (HV/VV, HV/HH) maximize the 

difference between surface and volume scattering, and therefore, have the capability to 

discriminate bare soil and vegetation. The low values of HV/VV and HV/HH represent 

scattering from smooth surfaces, like bare soil [306]. For double-bounce scattering, HH 

backscatter is larger than VV and HV backscatter, and there is a very small difference between 

RR and RL backscatter [27, 162]. Thus, concept of SAR polarimetry helps in identification, 

detection, and classification of various targets.  

 The era of radar polarimetry was started in late 19th century and early 20th century. In 

1920s, Wiener described the polarization properties of EM waves, which inspired Jones to 

introduce 2×2 Jones forward scattering matrix [182], and Mueller to introduce 4×4 averaged 

power density Mueller matrix for forward scattering case.  At the inception of dual polarized 

antenna technology in 1940s [185], Sinclair claimed that transmitted and received polarization 

state are different, and therefore, he developed 2×2 Sinclair matrix for representing radar cross-
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section of coherent targets by assuming four different combinations of transmitted and received 

polarization states [339]. Advancing the work of Deschamps [102], who emphasized on using 

Poincare sphere as a tool for representing polarization states of EM wave (Figure A.3 in 

Appendix-A), Kennaugh formulated the radar backscattering concept by defining 

“characteristic polarization states” for the components of Sinclair matrix, and developed 4×4 

averaged power density Kennaugh matrix [185] for backscattering scenario.  In this regards, 

subtle but remarkable contributions were made by Deschamps [102], Rumsey [320], Graves 

[156], Kales [183], Copeland [83] etc., until 1960 when Huynen introduced the concept of 

“Phenomenological Approach to Radar Polarimetry” [170, 171] in backscattering case. He 

modelled nine physical parameters, which became significant tool in identification and 

determination of geometrical, electrical, and physical characteristics of targets. For defining the 

characteristic polarization states of various targets, he developed the theory of “Polarization 

Fork” or “Huynen Fork” [171] elucidating that a fork is formed on Poincare sphere by joining 

co-polarized and cross-polarized nulls to the center of sphere. After this scientific contribution, 

the field of radar polarimetry was reinvented with keen interest of researchers all over the 

world.  

 In 1980s, Ionnidis revealed that polarization helps in segregating radar response from 

targets and background clutter [173]. Another concept of polarization wave synthesis and 

polarization signature was given by van Zyl for implementation of polarimetric imaging radars 

[396]. Polarization signatures were used to graphically represent the radar cross-section in 

terms of ellipticity and orientation angles of transmit antenna, and to describe complete 

polarimetric behaviour of scattering properties [116, 437, 438]. In 1980s and 90s, remarkable 

contributions were made by Boerner and his co-researcher by augmenting the work of 

Kennaugh and Huynen in target decomposition [3, 40, 95, 134], proposing several polarimetric 

observables, such as polarization ratios [38], inverse problems for defining polarimetric 

properties of scattering [37, 39, 134], and target identification approaches [3, 37, 39, 192-194].  

 The field of polarimetry remained undervalued until the end of 1980's, due to 

technological constraints, restricting practical application and implementation of polarimetric 

radars. SAR polarimetry reached at pinnacle in 1985 with the development of first polarimetric 

airborne SAR launched by National Aeronautics and Space Administration (NASA) and Jet 

Propulsion Laboratory (JPL). It was a L-band (1.225 GHz) quad polarimetric SAR providing 

the measurement of all the components of scattering matrix [84]. Since then various airborne 
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SAR sensors have been developed, such as Environmental Research Institute of Michigan 

(ERIM) at P-, L-, C-, and X-bands; Consolidated vultee aircraft (Convair-580) at X-, C-, and  

P-bands; Experimental Synthetic Aperture Radar (ESAR)  at P-, L-, and S-bands; Phased Array 

Universal SAR (PHARUS) at C-band; Electromagnetics Institute’s SAR (EMISAR) at L- and 

C-bands; Polarimetric and interferometric Synthetic Aperture Radar (PiSAR) at L-band; and 

ONERA’s RAMSES (Radar Aéroporté Multi-spectral d'Etude des Signatures) at P-, L-, S-,    

C-, X-, and Ku-bands [219].  

 The era of space-borne polarimetric SAR was marked in 1994, with the launch of Shuttle 

Imaging Radar-C/X band SAR (SIR-C/X) on-board the Space Shuttles having capability to 

measure single polarization at X-band and quad polarization at L- and C- bands. Earlier to this 

endeavour, several SAR sensors were launched, such as single polarimetric (HH) SEASAT at 

L-band in 1978; single polarimetric (HH) SIR-A and SIR-B at L-band in 1981 and 1984, 

respectively; single polarimetric (VV) European Remote Sensing (ERS) satellites: ERS-1/2 at 

C-band in 1991/1995; single polarimetric (HH) Japanese Earth Resources Satellite-1 (JERS-1) 

at L-band in 1992; single polarimetric (HH) RADARSAT at C-band in 1995; and single/dual 

polarimetric Environmental Satellite/Advanced Synthetic Aperture Radar (ENVISAT/ASAR) 

at C-band in 2002. In 2006, new beginning of fully polarimetric space-borne SAR systems was 

started with the launch of single/dual/fully polarimetric ALOS (Advanced Land Observing 

Satellite) PALSAR (Phased Array L-band Synthetic Aperture Radar) at L-band. Since then 

several fully polarimetric SAR satellites have been launched which are X-band SAR-Lupe in 

2006; C-band RADARSAT-2 in 2007; X-band Constellation of small Satellites for 

the Mediterranean basin Observation (Cosmo) SkyMed in 2007; X-band TerraSAR-X in 2007; 

X-band TanDEM-X in 2009 [219, 280]. In 2012, a new satellite named Radar Imaging 

Satellite-1 (RISAT-1) has been launched, which has the capability of imaging in linear and 

circular (or hybrid) polarizations at C-band [251].   

 From architectural viewpoint, fully polarimetric SAR systems appear more complex as 

compared with single and dual polarimetric SAR. Despite several advantages, certain 

limitations exist in fully polarimetric systems, such as increased pulse repetition frequency 

(prf), reduced coverage (swath), increased complexity, increased cost, requirement of twice the 

average power, and limited choice of incidence angles [63]. Thus, the concept of partial 

polarimetry (compact/hybrid polarimetry) was introduced, which was based on the 

transmission of non-linear polarization (linear 45° or circular) and reception of linear 
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polarization coherently [308, 309, 355, 356]. This unique architecture is considered to provide 

several advantages, like wider swath coverage, reduced system complexity (mass and power 

consumption), absence of range ambiguity and Faraday rotation, which not only is an optimum 

design for exploring planetary surfaces but also is a worthy choice for future Earth monitoring 

SAR missions. It is difficult to replace quad polarimetry by hybrid polarimetry because of 

complete polarimetric information provided by fully polarimetric SAR systems [63]. However, 

it has been reported by Panigrahi et al. [289], that information obtained from both quad and 

hybrid polarimetric systems is comparable, and hybrid polarimetric SAR systems are required 

in situations where wider swath coverage is required, like in astronomy and planetary 

exploration [360]. A complete comparison of these systems is provided by Touzi [375]. Based 

on the concept of hybrid polarimetry, polarimetric imaging radars outside the Earth orbit are 

Miniature Synthetic Aperture Radar (MiniSAR) on-board Chandrayaan-1 [357] and Miniature 

Radio Frequency (Mini-RF) on-board Lunar Reconnaissance Orbiter (LRO) [311] for 

characterization of lunar surface. Earth observing hybrid polarimetric satellite is RISAT-1 

[251]. 

 One inherent problem occurring in SAR images is presence of speckle. For point 

scatterers, scattering matrix completely describes the scattering response associated with target. 

However, for distributed scatterers, scattering matrix becomes random due to coherent nature 

of SAR imaging systems. This non-deterministic behaviour of SAR data is known as speckle 

[208]. Speckle noise causes granular appearance of SAR images, and thus, making it difficult 

to interpret, analyse, and classify SAR data for discrimination of various targets. Assuming the 

multiplicative nature of noise, several speckle filters have been developed, namely Lee’s filter 

based on local statistics [206, 208] and refined local statistics [207], Frost’s filter [141, 142], 

Kuan’s filter [197], Sigma filter [209], Gamma filter, and Maximum a Posteriori (MAP) filter 

[196]. The applicability of these filters is limited to single polarized SAR data. Therefore, 

polarimetric filters, which are able to preserve fully polarimetric information and statistical 

relationships between individual polarizations, have been developed. Some of the notable  

filters are, Boxcar or Multilook filter, Lee filter [216], Refined Lee filter, Scattering Model 

Based filter [217], Wishart Gamma MAP filter [232], Distribution Entropy MAP (DE MAP) 

filter [263], Trace Based filter [136], etc. Speckles in SAR images can also be reduced by 

ensemble averaging or multilook process [296]. There exist several polarimetric filters. 

However, MAP filters (Wishart Gamma MAP and DE-MAP filter) work well by preserving 



 

 17 

polarimetric information and very acute details of SAR image [117]. 

 A lot of research has been done in the field of SAR polarimetry in last seven decades and 

still advancements are in progress on in this field. A brief review, and other theoretical and 

practical aspects of SAR polarimetry [35, 36, 41, 377] are described in Appendix-A.  

 

2.2.  Review Related to Target Decomposition Methods 

With the advancements in SAR polarimetry, the requirement of evaluating and understanding 

the scattering phenomenon of ground targets and determining their dominant characteristics, 

was increased. Due to amalgamation of various scattering mechanisms in backscatter response 

from distributed targets, it was required to separate these scattering mechanisms in order to 

infer geophysical properties of those targets. Therefore, the concept of target decomposition has 

been devised, which plays an important role in land cover monitoring. The parameters 

extracted from decomposition theorem have extensively been used by many researchers for 

analysing the characteristics of various land covers. Decomposition methods represent average 

scattering mechanism as the weighted sum of distinct independent scattering mechanisms 

which are modelled by physical interpretation [377]. The idea of target decomposition was 

proposed by Huynen [171], which had its origins in the work of Chandrashekhar, who 

exhibited that scattering by a cloud of small anisotropic elements can be decomposed into the 

summation of a Rayleigh scattering and randomly polarized noise [62].  Since then, great 

interest has been shown in this field, and these decomposition methods are classified as 

follows: 

1. Coherent decomposition methods. 

2. Target dichotomy based decomposition methods. 

3. Incoherent decomposition methods. 

1. Coherent decomposition methods 

 Coherent target decomposition performs the decomposition of the first-order matrix i.e., 

scattering matrix for characterization of the scattering from coherent or point targets only. This 

can be possible only in the case, when both incident and scattered EM waves are completely 

polarized. Some common coherent target decomposition techniques are Pauli, Krogager, and 

Cameron decompositions. The well-known Pauli decomposition forms the basis of coherency 

matrix by expressing scattering matrix in the form of Pauli vector by using Pauli basis [78, 152, 
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322, 323]. This decomposition method works well for detection of natural targets, whereas it is 

difficult to detect man-made objects by this method [439]. The Krogager decomposition 

performs the decomposition of symmetric first-order scattering matrix into three coherent 

components exhibiting the scattering from spherical, dihedral, and helix scatterers [195]. 

Hence, it is also called SDH (Sphere-Diplane-Helix) decomposition. This decomposition 

method satisfactorily distinguishes man-made targets from natural targets, but exhibits inability 

to differentiate two different types of man-made targets [439]. Cameron decomposition 

decomposes the scattering matrix into six canonical scattering mechanisms including dipole, di-

plane, trihedral, quarter-wave device, cylinder, and narrow di-plane [51].  This method works 

well for symmetric or point targets due to maximization of symmetric scattering component. 

However, the performance of this decomposition method degrades in the presence of 

asymmetric targets [439]. The detailed description of these decomposition methods has been 

given in [219, 439]. The additive nature and non-requirement of estimating second-order matrix 

i.e., target coherency or covariance matrix, make aforesaid decomposition methods prone to 

speckle noise, which is multiplicative in nature. Therefore, a multiplicative decomposition 

termed as Polar decomposition was proposed for reducing the effect of speckle noise [55]. The 

major problem with aforesaid decomposition methods is their inability to provide unique and 

basis-invariant decomposition without having prior knowledge [80, 219]. Therefore, an 

improvement in Cameron decomposition was proposed by Touzi [374], to develop unique and 

basis-invariant coherent decomposition method for detecting scattering from coherent (or pure) 

targets. 

2. Target dichotomy based decomposition methods 

 Huynen decomposition falls in this category of decomposition. Huynen postulated the 

concept of phenomenological theory of radar targets for extracting physical and geometrical 

properties of coherent radar targets by nine ‘Huynen parameters’[171]. He proposed the 

concept of target dichotomy by expressing Mueller matrix (or Kennaugh matrix) as the 

summation of single target (coherent or point target) and N-target (distributed target). The 

retrieval of coherent target was easy. However, in case of distributed targets (section A2.4 in 

Appendix-A), the retrieval was difficult due to their non-symmetrical and time-invariant nature 

caused by noise or clutter in the environment. Thus, it was required to perform statistical 

averaging in order to obtain expected value of Mueller matrix. Branes-Holm decomposition 

was based on this concept [219]. This decomposition was easy and had physical basis. 
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However, limitations of this decomposition method were its non-unique, unstable nature, and 

rotation-invariance of Mueller matrix corresponding to N-target. Some modifications have been 

introduced in order to improve the Huynen decomposition. For example, Yang modified 

Huynen decomposition by simple transform of Kennaugh matrix [430], Li proposed 

generalized concept of Huynen target dichotomy [224], and You proposed the method of 

decomposing Kennaugh matrix in order to extract coherent targets from non-coherent targets 

[431].  

3. Incoherent decomposition methods 

 Incoherent target decomposition deals with the decomposition of coherency or covariance 

matrix (second-order matrices derived from scattering matrix). The decomposition of 

polarimetric SAR covariance/coherency matrices has received significant attention in 

extraction of geophysical parameters due to its ability to emphasize radar backscatter from 

particular scattering mechanism. These matrices characterize the scattering process from 

distributed targets. Consequently, incoherent target decomposition deals with partially 

polarized case. Incoherent target decomposition methods can be categorized in two ways: 

eigenvalue decomposition methods [80, 81, 374] and model based decomposition methods [8-

10, 12-14, 69-71, 88-90, 138, 213, 330, 344, 394, 395, 425-428, 440, 442]. 

 Cloude and Pottier [77, 80] proposed eigenvalue decomposition for determining the 

dominant scattering by extracting largest eigenvalue. He introduced four parameters, namely, 

anisotropy ‘A’, entropy ‘H’, alpha ‘α’ (scattering type parameter), and beta ‘β’ (orientation 

angle) for expressing dominant scattering mechanism among volume, double-bounce, and 

surface scattering components. Therefore, these parameters emerged out as standard tool for 

target identification and characterization due to their ability of describing physical 

characteristic of targets [81, 132, 215].  Holm proposed a hybrid decomposition method based 

on eigenvector analysis [77] and Huynen decomposition [171], by expressing average 

scattering mechanism as a summation of scattering from pure target, mixed target, and noise 

[169]. The eigenvalue decomposition method proposed by Cloude was unique, however, some 

approximations required to be undertaken for interpretation of scattering mechanisms, as 

indicated by van Zyl who used eigenvector analysis of hermitian covariance matrix to express 

scattering from azimuthally symmetric media, like natural terrain [393]. Touzi indicated the 

change in some of the parameters, like β with change in polarization basis for asymmetrical 

targets. In order to overcome this limitation, he developed a roll-invariant decomposition 
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method by performing eigenvector analysis of scattering vector [374, 376]. A theoretical 

evaluation of multilook effect indicated that entropy was underestimated, anisotropy was 

overestimated, and alpha was either underestimated or overestimated due to speckle effect 

[233]. Therefore, an algorithm for removing this bias was proposed in [211]. An approach 

providing an alternative to entropy and alpha was given in [301]. 

 Second category of incoherent decomposition was model based decomposition. The first 

model based decomposition was proposed by Freeman and Durden [138] for expressing 

average scattering mechanism as the linear sum of three physically based independent 

scattering mechanisms, namely volume, double-bounce, and surface scattering. This method 

works well for detection of natural targets such as forests, flooded and non-flooded regions, 

etc., [219]. The limitation of this approach is assumption of reflection symmetry condition, 

which results in occurrence of negative powers. In order to avoid this limitation, Yamaguchi 

[426, 428] and Yajima [425], proposed four component model based decomposition by adding 

another model representing helix scattering, as obtained from complex man-made targets in 

urban area. This method is quite good, and is able to detect both natural as well as man-made 

targets. Still, a problem occurs due to ambiguous nature of scattering in oriented building 

blocks of urban area, which exhibits volume scattering instead of double-bounce scattering. In 

order to overcome this limitation, four component decomposition with rotation of coherency 

matrix (deorientation process) was proposed by Yamaguchi [427]. Several modifications in 

three and four component model based decomposition methods have been made in terms of 

using different models of volume scattering, rotation of coherency matrix, unitary 

transformation of rotated coherency matrix, and generalization of decomposition methods [4, 8-

10, 13, 14, 69, 71, 88-90, 213, 328, 344, 394, 442].  

 A large number of decomposition methods have been developed [14, 69, 80, 88, 89, 195, 

213, 284, 344, 394, 425, 430, 440, 442]  due to their popularity and their dependence on 

physical modelling of scattering mechanisms. Still there is need to analyse these decomposition 

methods and the effect of deorientation, quantitatively and qualitatively, for enhancement of the 

scattering mechanisms of various land covers. 

 

2.3.  Review Related to Land Cover Classification Methods  

Classifying remotely sensed data is one of the most popular ways of land cover monitoring. 

Researchers have used classification methods for various applications involving land cover 
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monitoring, such as crop classification, forest mapping, oil spill detection, sea ice monitoring, 

etc. The intent of the classification process is to categorize all the pixels in an image into one of 

the several land cover classes. This categorized data may be used to produce thematic maps of 

the land covers present in an image. There are two main types of classification techniques, 

namely parametric and non-parametric. Parametric classifiers are again of two types: 

supervised and unsupervised. Supervised classification involves using ‘a priori’ knowledge of 

data to “train” the classifier for identifying categories in an image [227]. Supervised methods 

require the user to collect samples to “train” or teach the classifier for determining decision 

boundaries in feature space, and such decision boundaries are significantly affected by the 

properties and the size of the samples used to train the classifier. On the other hand, 

unsupervised classifiers “learn” the characteristics of each class (and possibly even the number 

of classes) directly from the input data. Decision trees [283, 338, 433], artificial neural 

networks [26, 64, 147, 235, 347-350], or Support Vector Machines (SVM) [2, 302, 441] fall 

under the second category of classification, i.e., non-parametric classification, which does not 

involve estimation of statistical parameters prior to classification [227].  

  The classification of polarimetric SAR data has been performed by using several 

approaches. The initial work in classification was done by considering probability distribution 

function (pdf) of polarimetric SAR data. For polarimetric SAR (PolSAR), data it has 

commonly been assumed that the scattering coefficients measured at different combinations of 

transmitted and received polarizations are jointly Gaussian [155]. Therefore, until mid-90's 

classification of remotely sensed data was performed through Gaussian based conventional 

statistical techniques. For example, Kong [219] developed a supervised classification method 

for single-look polarimetric SAR image by estimating distance measure based on maximum-

likelihood test. This classification method was extended by using normalized polarimetric SAR 

image by Yueh et al. [434], and Lim et al., [233]. Further extension of this approach was 

carried out by Lee et al., for multi-look polarimetric SAR image assuming Wishart distribution 

[214]. First unsupervised classification method was introduced by van Zyl, which was based on 

scattering mechanisms [392]. Rignot et al., developed a supervised classification method using 

conditional distribution combined with Markov Random Field (MRF) and Maximum A 

Posteriori (MAP) estimate [317].  Rignot et al. also developed unsupervised classification 

method based on fuzzy clustering [318]. Cloude and Pottier proposed unsupervised 

classification method [81] based on parameters obtained by eigenvalue decomposition (H/A/α). 
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Lee et al., extended this algorithm by proposing iterative Wishart classifier [215]. Ferro-Famil 

further extended this approach for multi-frequency and interferometric polarimetric SAR image 

[131, 132]. Recently, Daboor et al. developed an unsupervised method by measuring Chernoff 

distance assuming Wishart distribution [92]. The estimation of distance measure was performed 

in several classification approaches, like Fuzzy c-mean classification [113], neural network 

method [65, 384], expectation maximization method [186], and wavelet transform [112].  

 The aforementioned traditional classification approaches perform well; however, their 

general ability for resolving interclass confusion is limited. Pixel-wise analysis of SAR imagery 

is generally complicated due to the presence of speckle, and requires statistical modelling to be 

employed. It is well known that in some circumstances, radar complex scattering coefficients 

are non-Gaussian in distribution. For this reason, various non-Gaussian models have been 

proposed to represent SAR data, and many of these have been extended to the polarimetric 

SAR (PolSAR) case. The multivariate K-distributions [221, 262, 434], G-distributions [139], 

and K-Wishart distribution [109], have been successful for modelling PolSAR data, and 

highlighting the importance of non-Gaussianity. 

 The classification of SAR images have been performed by using target decomposition.  

An iterative classification based on combined use of three component model based 

decomposition and eigenvalue decomposition was proposed by Li-wen et al. [223]. A decision 

tree classification approach based on decomposition methods (Pauli, Barnes, Holm, Korgager, 

Freeman, and H/A/α decompositions), SAR interferometry, and object oriented analysis, has 

been proposed by Qi et al. [305]. An unsupervised method based on scattering similarity using 

H/A/α decomposition has been proposed by Chen et al. [68]. Bhattacharya et al. have proposed 

generic SVM classifier based on Touzi decomposition [25]. Shimoni emphasized on using 

different methods of decomposition for classification purpose because each decomposition 

method highlights different land cover [334].    

 Another way of classifying polarimetric SAR images is knowledge-based classification 

methods, which use backscattering coefficient and their ratios of different polarizations for 

segregation of different land covers [27, 106, 129, 130, 250, 293, 306, 351, 386]. In these 

methods, the threshold of backscattering coefficients and their ratios for classification are 

obtained by experimental evaluation and validation. The advantage of these classification 

approaches is that they do not require prior assumption about distribution of SAR data. Some 

other polarimetric parameters, such as Ratio Vegetation Index (RVI) [12, 187], correlation 
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coefficient, Cross Polarization Ratio (CPR) [380], Weighted Polarization Sum (WPS) [85], 

Normalized Difference Polarization Index (NDPI) [435] etc., have been used for segregating or 

identifying different land covers. These parameters can be used in knowledge-based methods 

for improving their performance.  

 A good progress in SAR image classification using textural measures has been made. In 

context of SAR image classification grey level co-occurrence probability based texture 

measures [121, 172, 319, 441], wavelet based texture measures [61, 74, 133, 338], random field 

models [137, 317], and fractal based textural measures [2, 157, 290, 364] have been vastly 

used. Other textural features, like semivariogram [54] and lacunarity [166] have also been used 

for contextual classification of SAR images.  

 In recent years, various classification methods have been developed. Some of them are, 

region-based unsupervised Wishart classification [421], classification based on Collective 

Network of Binary Classifier (CNBC) based on divide and conquer approach [189], 

Polarimetric Iterative Region Growing with Semantics (PolIGRS) classification based on 

Wishart distribution [432], statistical classification model based on Spherically Invariant 

Random Vector (SIRV) model [135], spectral graph partitioning based classification [120], 

Radial Basis Function (RBF) based supervised classifier [172], super-pixel based contextual 

classification method having adaptive number of classes [229], a contextual classification based 

on multi-scale modified Pappas adaptive clustering and adaptive Markov Random Field [265], 

and supervised classification method by integrating colour as a visual feature extracted from 

pseudo-colour coded images obtained from decomposition [385, 386]. Some machine learning 

methods, like adaboost [180, 331] and random forest [390, 444] methods, have also been 

incorporated in SAR image classification. 

 Most of the above mentioned classification approaches either require estimation of 

statistical distribution [215], or use complex mathematical and image processing methods, like 

neural network, SVM, etc., except knowledge-based methods [27, 106, 129, 130, 250, 293, 

306, 351, 386]. There exist some other knowledge based methods depending upon data-mining 

techniques using optical data, which are proved to be efficient classification methods [257-259, 

282]. The statistics based and target decomposition based classification methods are pixel 

based methods, which exhibit high computational complexity, and have limited option for 

incorporating more polarimetric characteristics [444]. After reviewing these methods, 

knowledge-based methods provide good prospect for classification due to their dependence on 
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polarimetric SAR observables. The only limitation of this approach is the use of fixed value of 

polarimetric variables used in classification procedure, which hinders the performance of these 

classifiers in case of their application in different study area with different environmental 

condition and different sensor parameters of SAR image. A classification approach based on 

adaptive threshold would provide solution to this problem. 

 

2.4.   Review Related to Retrieval of Soil Moisture with SAR Data 

Retrieval of Earth’s surface parameters with SAR data is gaining so much attention by 

researchers due to sensitivity of radar backscatter to surface roughness, soil moisture, surface 

dielectric constant, and other biophysical parameters, like vegetation biomass, plant water 

content, etc., [412]. This is possible because of capability of EM wave to penetrate into 

surfaces, and gather their electrical and physical properties in terms of received radar echoes 

i.e., backscattering coefficient. Among these parameters, soil moisture is very important 

parameter because of its influence in several environmental applications [43, 101, 110, 111, 

246, 327]. Retrieval of soil moisture is still very challenging because of perplexing effect of 

roughness and vegetation cover. The challenges in retrieval of soil moisture by SAR data occur 

due to complexities involved in developing robust methods, considering spatial and temporal 

variability of soil moisture [176].     

          Traditionally, soil moisture represents water contained in unsaturated zone (known as 

vadose zone) of aeration caused by pores within soil [45]. Technically, soil moisture is defined 

as the ratio of volume of water in soil to the total volume of soil (including water). It is known 

as volumetric soil moisture (cm3/cm3) [327]. Soil moisture is usually measured at the top 

surface of soil (first 5 cm of soil depth) [151], because of increase in attenuation of EM wave 

with increase in soil depth. 

 Soil moisture is directly related to its dielectric constant, which varies significantly with 

change in moisture content of soil medium. The dielectric constant in turn is related to radar 

backscattering coefficient, which inspired researchers to develop soil moisture retrieval 

algorithms using backscattering models [388]. The soil moisture retrieval algorithms by using 

radar backscatter can be categorized as: theoretical, empirical, and semi-empirical. The brief 

review of work related to these categories is presented below: 
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1. Theoretical models 

 Theoretical models are physical models having their basis in diffraction phenomenon 

related to interaction between EM wave and observed media. These models provide 

mathematical-physical relationship of backscattering coefficient as a function of radar 

configuration (polarization, frequency, and incidence angle) and surface characteristics 

(dielectric constant and surface roughness: standard deviation of the height s and the correlation 

length l) [145]. Due to lack of direct solution for randomly rough surface, it was required to 

take approximations in theoretical models. Therefore, theoretical models are generally 

restricted to be applied for limited range of surface roughness. 

 The standard theoretical models are Kirchhoff Approximation (KA) model, Small 

Perturbation Model (SPM), and Integral Equation Model (IEM). The KA model uses Stationary 

Phase Approximation also known as Geometrical Optics (GO) model for characterizing very 

rough surface, and Kirchhoff Scalar Approximation also known as Physical Optics (PO) model 

for defining medium rough surface [387]. Based on the formulations of KA, Tangential Plane 

Approximation was performed to characterize both slightly rough and very rough surfaces 

[103]. The SPM model was applicable for smooth surfaces only. The gap between GO and PO 

was filled by Small Slope Approximation (SSA) [404]. Fung proposed Integral Equation Model 

(IEM) in which only surface scattering terms were considered, neglecting second-order 

statistics [145]. The modification of this approach was given by Fung et al. by introducing 

multiple scattering effects in KA [144]. IEM approaches to GO for very rough surface. The 

validity conditions of this model, covering wider range of surface roughness and simple 

approximations, provide rather easy yet accurate solution, which became inspiration for 

development of various versions of IEM, namely second version of Integral Equation Model 

(IEMM) [73], Integral Equation Model for Second-Order Multiple Scattering (IEM2M) [7], 

Improved Integral Equation Model (IIEM) [146], and Advanced Integral Equation Model 

(AIEM) [66, 419, 446], by exhibiting improvement in roughness description. These integral 

equation models approach GO for very rough surface and high frequency range (X- and C- 

bands).  In case of slightly rough surface and low frequency (L- and S-bands), IEM approaches 

SPM [420]. Although a lot of development has been made in IEM, the original model is 

generally preferred by researchers [19]. 

 The above mentioned theoretical models have been utilized by several researchers for 

retrieval of soil moisture [46, 228, 353, 354, 401, 407, 436]. The dielectric constant, and hence 
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soil moisture, have been retrieved by mathematical inversion of these backscatter models. 

However, the inversions of these models require certain restraining assumptions because of 

difficulty in finding closed form solution [294, 411]. Therefore, dielectric constant and surface 

roughness cannot be determined individually without using ‘a priori’ information.  The 

retrieval of soil moisture is difficult with theoretical models by using single polarized, single 

frequency, and singl-pass SAR data [403]. Due to development of these models in laboratory 

environment, sometimes inconsistent results are obtained for natural surfaces [19], because of 

spatial variability of surface roughness.   

2.  Empirical models 

Empirical models require large amount of experimental soil moisture and corresponding 

backscatter data to develop empirical relationship by regression analysis in order to retrieve soil 

moisture. Various sophisticated empirical models have been developed for retrieval of soil 

moisture in bare soil region [17, 255, 409, 410, 445]. The advantages of these models are their 

simplicity and their practical applicability, which allow them to be used in vegetated area for 

retrieval of soil moisture [239, 367, 381].  

Single frequency and single polarization SAR data does not produce satisfactory results 

of soil moisture in most circumstances [405]. The coefficients of empirical relationships 

generally vary with change in study area, time, and different data sets [115].  Thus, data and 

site dependency of these models are the major limiting factors, which restrict their application 

on large scale unless surface roughness is neglected. 

3. Semi-empirical models 

 Semi-empirical models provide a compromise between complexity involved in 

theoretical models and simplicity related to empirical models. Unlike empirical models, semi-

empirical models start with physical basis, and then, simplify theoretical backscattering models 

by simulation or experimental data sets. The most popular semi-empirical models were 

proposed by Oh et al. [273] and Dubois et al [115]. Oh model in [143], shows limitation in 

terms of incidence angle by producing erroneous results for low incidence angle particularly at 

low frequency. The Dubois model is valid for medium rough surface (ks<2.5) and incidence 

angle greater than 30° [115].  Other semi-empirical models are developed by Shi et al. [333], 

Loew and Mauser [231], Song et al. [353], and Oh et al., [274], etc. The advantages of semi-

empirical models are their transferability to different study area and soil conditions. However, 

their applicability is limited to bare soil or sparsely vegetated soil. These methods produce 
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inconsistent results in presence of vegetation by underestimating soil moisture [19].  

2.4.1.  Soil Moisture Retrieval under Vegetation Cover  

The retrieval of soil moisture is complicated in vegetated areas due to scattering and attenuation 

effects take place in canopy layer, and it changes with the variation in dielectric (e.g., 

vegetation water content) and physical characteristics (e.g., structure and type) of vegetation 

[191]. The vegetation canopy typically represents multiple scattering effect because of direct 

scattering from vegetation components, direct scattering from underlying soil attenuated by 

canopy, and double-bounce scattering by interaction between trunk and ground (soil) [23]. The 

retrieval of soil moisture under vegetation cover requires isolation of scattering contribution of 

underlying soil from multiple scattering of vegetation [33, 191].  

 In order to measure soil moisture under vegetation cover, models using Radiative 

Transfer (RT) theory have been proposed [23, 98, 105, 228]. One of the most popular RT 

model is MIchigan MIcrowave Canopy Scattering (MIMICS) model proposed by Ulaby et al. 

[389], which provides first-order solution of RT for three layer model consisting ground layer, 

trunk layer, and canopy layer. Several algorithm have been developed by using MIMICS model 

for retrieval of soil moisture under vegetation cover [98, 105, 228, 362]. These models are 

difficult to invert because of complexity caused by additional canopy parameters. 

 Semi-empirical models are generally developed by using Water-Cloud model (WCM), 

which exhibits vegetation layer as a cloud of uniformly distributed spherical particles [16]. The 

simplicity of WCM, motivated several researchers to model vegetation scattering [6, 33, 34, 

153, 226, 337, 411].   

 In order to implement these models, it is required to use ‘a priori’ information of 

vegetation parameters, like vegetation water content, canopy height, etc., [23, 191]. Therefore, 

it is difficult to generalize these models. Due to large number of parameters involved in these 

models, certain assumptions (e.g., constant canopy height and surface roughness) are required 

to be taken so as to reduce the number of unknown parameters [153]. These models require 

parameterization of vegetation canopy, and more specifically, different vegetation classes 

require separate parameterization [23, 33, 226]. Therefore, frequent field visits are required due 

to spatial variability of vegetation.  

 Due to difficulty related to parameterization of vegetation parameters in RT based 

models, change detection methods have been used for retrieval of soil moisture in vegetated 
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regions [254, 260, 266, 268, 275]. The change detection methods generally assume that 

temporal variability of surface roughness and vegetation parameters is large as compared to soil 

moisture [255]. Therefore, change in backscatter response between repeated acquisitions of 

satellite represents change in soil moisture. This assumption of time-invariance nature of 

scattering from vegetation, limits the application of change detection methods for retrieval of 

soil moisture.  

 After reviewing the related literatures, it is observed that retrieving soil moisture under 

vegetation cover is still challenging and requires contemplative study. It is noticed that physical 

based model may provide an alternate way to retrieve soil moisture under vegetation cover. In 

literatures, it has been found that transmission line theory based impedance approaches have 

been agreeably used for determining topsoil thickness [5] and burnt coal seam [368, 369]. This 

method bears great potential, and therefore, it has to be explored for soil moisture retrieval 

under vegetation cover with polarimetric SAR data. 

 

2.5.  Review Related to Lunar Surface Characterization  

2.5.1.  Theory Related to Water-Ice on Lunar Surface 

The possibility of finding the evidences of water-ice deposits on lunar surface has been one of 

the most controversial subjects among researchers. The subject of origin and source for 

possible presence of water-ice on lunar surface has been hypothesised by several theories. One 

hypothesis is that during the formation of Moon by impact between Earth and giant 

astronomical Mars-sized body, early Moon got heated due to this catastrophic impact, that 

might have created lunar magmatic ocean [167]. Water may be transported to Moon by 

spallation process of comets, meteorites, micro-meteorites, asteroids, etc., [15, 230, 295]. The 

reaction of proton in solar wind with oxygenated minerals on lunar soils may also have formed 

water [75, 241, 295, 321, 365]. There are some circumstantial evidences for endogenous 

sources of water-ice (or hydroxyl) in lunar soil. Recent study of volcanic glasses obtained by 

volcanic eruptions (fire-fountains), has detected the possible evidences of water (specifically, 

46 parts per million) within lunar magma [321]. Water (hydroxyl) has been identified in apatite 

grains of basalt samples from Apollo missions [44, 242]. Lunar outgassing may also be one of 

the reasons for possible presence of water [86, 87]. 

 The postulation of cold trapped area in permanently shadowed regions was given for 
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explaining the stability of possible water-ice on lunar surface [414]. The permanently 

shadowed regions exist on Moon due to low obliquity caused by 1.6° tilt of lunar rotational axis 

with respect to normal to the ecliptic [15]. Therefore, during rotation of Moon, deep craters in 

polar region would not receive sunlight at all for billions of years. This means that floor and 

inner walls of these craters would remain in permanent shadow, which would result in very low 

temperature (<100K) inside these craters. Water molecules brought on the surface of Moon 

may undergo destructive phenomena, like photo-dissociation [256], meteoric bombardment 

[15], or solar wind sputtering [204]. However, there is a possibility that some of the molecules 

might eventually reach to permanently shadowed regions by ballistic trajectories, and got 

trapped in these cold dark regions [15]. Still, there was disagreement with this theory that 

water-ice deposits may remain stable in these cold-traps. Therefore, thermal analysis was 

performed by several researchers, who indicated that in some of the Polar Regions on Moon, 

temperature could be as low as 26 K [15, 204, 256], which is suitable for water-ice to remain 

stable. Still, questions arose about evaporation rate of water-ice in these cold-dark permanently 

shadowed regions. Based on equation given by Watson [414], Butler [48] suggested that it 

takes billions of years to evaporate 1.0 centimetre cube of water-ice at 100 K. McGovern has 

shown that very large area on both Polar Regions of Moon exist in permanent shadow [243], 

where possibility of water-ice would be high.  

2.5.2.  Review of Work Related to Finding the Possible Existence of Water-

Ice Deposits on Lunar Surface 

There have been several missions to Moon for finding possible presence of water-ice deposits 

on its surface. First radar-based mission to Moon was NASA’s Clementine bistatic radar 

launched in 1994. It was a circularly polarized bistatic radar, by which it was postulated that 

water-ice depoists exhibit two chracteristics. One was high same sense (SC) to opposite sense 

(OC) circular polarization, or high circular polarization ratio (μc). Second property was 

Coherent Backscatter Opposition Effect (CBOE), which cause μc to become maximum at 

bistatic angle β=0° [270]. Based on this concept, Nozette indicated the possible presence of 

water-ice in paermanent shadowed region of Shakleton crater in lunar South Pole [271]. Later, 

contradictory results were obtained by Arecibo radar, a bistatic circularly polarized radar at 

fixed bistatic angle β of 0.37°. Arecibo radar exhibited high μc in ejecta of young craters in 

South Pole of Moon. Thus, it was claimed that high value of μc in South Polar region of Moon 
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is caused due to surface roughness not by water-ice [53, 361].  

 A ray of hope was shown by the results of Lunar Prospector Neutron Spectrometer 

(LPNS), which indicated the presence of excess hydrogen by measuring low level of epithermal 

neutron flux within 0.5 m surafce of both the lunar poles [126-128]. The results of LPNS were 

validated by Lunar Explorer Neutron Detector (LPND) on-board Lunar Reconnaissance Orbitor 

(LRO) mission [240]. Later, Lunar Crater Observation and Sensing Satellite (LCROSS) 

crashed the Cabeus crater of South Polar Region of Moon by spent rocket stage, and revealed 

the presence of water and other volatiles by observing the debris [82]. Moon Mineralogy 

Mapper (M3), a spectrometer on-board Chandrayaan-1 mission, has also detected the possible 

evidences of excessive hydroxyl (OH) and water (H2O) molecules on lunar surface [241, 295].  

 The spectrometers have successfully revealed the possible existence of water-ice deposits 

on lunar surface [127, 241, 295]. However, from radar point of view, it is still an unresolved 

problem because mixed results were obained by earlier radar based missions, Clementine and 

Arecibo. In 2008, Indian Space Research Organisation (ISRO) launched Chandrayaan-1 

mission carrying MiniSAR (Miniature Synthetic Aperture Radar), and in 2009 [357], National 

Aeronautics and Space Administration (NASA) launched Lunar Reconnaissance Orbitor (LRO) 

carrying MiniRF SAR (Miniature Radio Frequency Synthetic Aperture Radar) [311]. Both 

were hybrid polarimetric SAR with transmission of circular polarization and reception of 

coherent linear polarizations (Horizontal:H and Vertical:V). One of the purposes of these 

missions was to image lunar surface, which may be helpful to find possibility of water-ice 

deposits in permanently shadowed regions of Moon.  

 SAR is a powerful tool for detection of water-ice deposits because of its three important 

characteristics: (i) SAR can actually “see into dark” regions of permanently shadowed areas 

unlike passive sensors, which require Sun for illumination purpose [359], (ii) SAR can be used 

for  detecting volatile deposits underneath the surface of Moon due to penetration capability of 

electromagnetic (EM) wave [59], (ii) SAR provides full polarimetric response of backscatter 

from lunar surface and indicates a unique polarimetric signature (high circular polarization 

ratio) from water-ice deposits which is different from surrounding regolith area [372]. As 

mentioned earlier, high value of circular polarization ratio (μc) is the prime indicator for 

possible presence of water-ice deposits. However, ambiguity exist due to similar response 

obtained from rough ejecta region and rocky surface [261]. Therefore, contemplative studies 

are needed to resolve this ambiguity.  
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2.6.   Conclusion  

In this chapter, review of advances made in the field of SAR polarimetry and state-of-the art for 

target decomposition methods, classification methods, soil moisture retrieval techniques, and 

lunar surface characterization methods, have been discussed. Following conclusions have been 

drawn after comprehensive study of these methods: 

  

 Distinct land covers describe different scattering mechanisms. Thus, characterization of 

various land covers is possible by defining scattering mechanisms. For this purpose, 

several decomposition methods have been developed. Model based decomposition 

methods have some advantages as compared to other existing decomposition methods 

due to their dependence on physical based modelling of scattering mechanisms. There is 

a need to study these decomposition methods and analyse the effect of deorientation in 

improving the scattering response from different land covers.  

 SAR polarimetry is a promising science for land cover characterization because of 

providing fully polarimetric backscatter information of any target (or land cover). By 

providing full vector nature of EM wave, SAR polarimetry enables fully polarimetric 

linear scattering matrix to be synthesized into any other polarization, like circular and 

linear 45° (elliptical). Therefore, by extracting different polarimetric parameters which 

have strong relationship with targets, it may be possible to develop an adaptive land cover 

classification method with fully polarimetric SAR data.  

 Several techniques have been developed for retrieval of soil moisture with SAR data. 

These methods either require a lot of ‘a priori’ information, or behave well for the area 

for which they have implemented. Some of these methods assume time invariant nature 

of vegetation and are very complex. Thus, there is need to explore the possibility of 

developing a soil moisture retrieval method, which may be based on physical 

understanding and requires minimum or no ‘a priori’ information.  

 Spectroscopic and albedo based technique have positively indicated the possibility of 

water-ice on the surface of Moon. By utilizing properties of SAR, characterization of 

lunar surface can be performed, and therefore, it needs an exhaustive study. 
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Chapter 3  

Study of Model Based Incoherent Polarimetric 

Decomposition Methods and Investigation of 

Deorientation Effect  

 

The interpretation of SAR backscattered data for identification and classification of various 

land covers requires the knowledge of scattering mechanisms related to different targets. Basic 

scattering mechanisms are categorized as: volume, surface, and double-bounce scattering 

mechanisms. One possible way to characterize SAR data by means of scattering mechanisms is 

target decomposition methods. Over the years, several types of decomposition methods have 

been developed. However, model based decomposition methods have gained much popularity 

due to their inclination towards description of scattering mechanisms by physical based models. 

The model based decomposition expresses the coherency matrix in terms of various scattering 

components (like, volume, surface, double-bounce, and (or) helix component), which is helpful 

in segregation of different land covers more efficiently. In spite of this decomposition, still the 

major concern is characterization and labelling of various land cover classes. Therefore, in this 

chapter, comprehensive study of various model based decomposition methods has been 

performed. The investigation of deorientation process, which is expected to improve the 

performance of decomposition in terms of scattering behaviour, is also performed. 

 

3.1.  Introduction  

Polarimetric target decomposition methods are helpful in extraction of polarimetric information 

from satellite data. The polarimetric target decomposition method articulates the average 

scattering mechanism as the summation of independent scattering mechanisms representing 

physical phenomenon associated with them for efficient identification of various targets. Thus, 

any decomposition technique decomposes the elements of scattering matrix with the objective 

to provide more descriptive and discriminative information of target parameters. At present, 

target decomposition can be performed by two distinct approaches, namely coherent target 
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decomposition and incoherent target decomposition.  

 Coherent target decomposition deals with the decomposition of the scattering matrix, and 

therefore, works well for characterization of coherent or point targets. These methods are prone 

to complications, like speckle noise because they do not require estimating second-order matrix 

i.e., target coherency (or, covariance) matrix.  The examples of  coherent target decomposition 

techniques are Pauli [152], Krogager [195], and Cameron [51] decompositions. Incoherent 

target decomposition decomposes second-order coherency or covariance matrices, and deals 

with the characterization of distributed targets. There are two types of incoherent target 

decomposition methods, namely eigenvalue decomposition methods [81, 284, 374] and model 

based decomposition methods [8-10, 12-14, 25, 70, 71, 88-90, 213, 247, 325, 328, 329, 344, 

393-395, 425-428, 431, 442]. The review of these methods has been presented in section 2.2 of 

Chapter 2.  

 In this chapter, we have emphasized on model based decomposition methods because 

these methods effectively describe the scattering mechanisms, which may be justified by their 

physical interpretation. The first model based decomposition is three component model based 

decomposition (TCM) that provides the decomposition of covariance (or, coherency matrix) 

into three scattering components, namely, surface, dihedral (double-bounce), and volume 

scattering [138]. This model assumes reflection symmetry condition (<Shh Shv
*>=<Svv Shv

*>=0) 

due to which non-negligible powers in off-diagonal terms of covariance matrix are ignored. 

This assumption resulted in occurrence of negative powers in surface and double-bounce power 

terms due to overestimation of volume scattering. In order to avoid this limitation, Yamaguchi 

et.al., introduced additional component called helix scattering, which is best suited to analyse 

man-made structures in urban areas [425, 426, 428]. They used two volume components by 

changing probability distribution function (pdf) as sine function for associated orientation 

angles corresponding to horizontal and vertical distribution besides using volume component 

for uniform probability distribution function as in TCM. This decomposition method is known 

as four component model based decomposition method (FCM). The visual representation of all 

of these scattering mechanisms is given in Figure 3.1. The concept of three component model 

based decomposition was extended into multiple component decomposition by Zhang et al. 

[440] with addition of helix and wire scattering to TCM. They emphasized that dihedral 

structure formed by floor and walls of buildings induce double-bounce (dihedral) scattering; 

complex form of man-made structures (like, bridges) induce helix scattering; and linear 
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structures, like boundaries, window casings, and roof spaces induce wire scattering. In order to 

avoid the occurrence of negative powers, decomposition models with non-negative eigenvalue 

constraints have also been developed [394]. However, their implementation and solution 

depends on rotation symmetry assumption. 

 

    

   (a)   (b)   (c)         (d) 

Figure 3.1:  Representation of scattering mechanisms; (a) single-bounce (surface) scattering, 

(b) double-bounce scattering, (c) volume scattering, and (d) helix scattering.  

 

In model based decomposition methods, it is observed that due to similar polarimetric 

response, vegetation and oriented building blocks decompose into same volume scattering 

component by FCM. Therefore, the concept of rotation of coherency matrix around radar line- 

of-sight, also known as deorientation process, has been suggested to be applied prior to 

decomposition in order to identify oriented building blocks correctly [210, 218, 220, 326, 424]. 

This concept of rotation in model based decomposition has been applied by several researchers 

for improvement in scattering response [9, 71, 90, 328, 344, 427]. 

 Various techniques for decomposition have been developed, but still the problem rests 

with volume scattering model. The possible limitation of three and four component model 

based scattering decomposition methods is their assumption of volume scattering model for 

vegetation as canopy of thin dipoles, while vegetation has to be characterized by more complex 

structure. Therefore, by extending the concept of non-negative eigenvalue decomposition [12, 

394, 395], a new adaptive model based decomposition technique has been proposed by Arii et 

al. [13]. In this model, generalized volume scattering component has been proposed, by not 

assuming reflection symmetry condition in order to make it applicable to large range of 

vegetation types. Another general model based decomposition method has been developed by 

making use of variable volume scattering model [213] and adaptive volume scattering model 
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based on PolInSAR coherence [70]. Recently, a general four component model based 

decomposition has been proposed by double rotation of coherency matrix and utilizing 

additional volume scattering component for oriented dihedral structure along with traditional 

volume scattering models (for uniform, horizontal, and vertical distributions) [344].   

 The widespread popularity of model based decomposition methods accentuate the task of 

analysing the effect of decomposition methods on scattering mechanisms of various land 

covers. Therefore, in this chapter seven different three and four-component model based 

decomposition methods have been analysed, in which two are without deorientation and other 

five are with deorientation. These methods are (i) three component model based decomposition 

(TCM) [138] (without deorientation method); (ii) four component model based decomposition 

method (FCM) [425] (without deorientation method); (iii) three component model based 

decomposition method with deorientation (TCMD) [210], (iv) three component model based 

decomposition method with double deorientation (orthogonal rotation and unitary 

transformation) and adaptive volume scattering component (TCMDDA) [90]; (v) four 

component model based decomposition method with deorientation (FCMD) [427]; (vi) four 

component model based decomposition with deorientation and additional volume scattering 

component (FCMDA) [325], and (vii) four component model based decomposition method with 

double deorientation (FCMDD) [344]. The main purpose of this study is to visualize the effect 

of decomposition and deorientation on scattering response of various land covers. This analysis 

may explain the influence of deorientation effect on different scattering mechanisms obtained 

by various land covers. In this chapter, various quantitative analyses have been performed in 

order to check the effect of decomposition and deorientation in identification of several land 

covers, and for finding the possibility of using scattering components of different 

decomposition methods for labelling of land covers.  

  This chapter is organised as follows: in the section 3.2, the description of study area, 

SAR data and ground truth data is provided. In section 3.3, the mathematical models for all 

elementary scattering mechanisms are presented. Section 3.4 describes the process of 

orientation angle compensation (or deorientation process) and its need in decomposition 

methods. Section 3.5 gives the elaborated description of three and four component model based 

decomposition methods. Further, in section 3.6, several variants of model based decomposition 

methods with deorientation are discussed. The results of decomposition methods and their 

comprehensive analysis is reported and discussed in section 3.7. Finally, the concluding 
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remarks of the analysis are given in section 3.8. 

 

3.2.  Study Area and Data Description 

3.2.1.  Study Area 

The study of model based decomposition methods and deorientation has been performed on 

city of Roorkee (Region-1) in the state Uttarakhand, India, having center latitude 29° 51' 45'' N 

and longitude 77° 52' 51.03''E. The study area includes various land covers such as water 

(source: Ganga canal, Solani River, a rain-fed river, most part of which remains dry in 

summers), urban (source: Roorkee), tall vegetation (source: dense tree cover in city of 

Roorkee), bare soil and short vegetation (source: cropland and grassland).  

 The study has also been performed on Meerut city in the state Uttar Pradesh, India and 

New Delhi, the capital city of India. The study area in Meerut city (Region-2) mainly consist of 

urban, bare soil, and short vegetation regions with center latitude and longitude as 28° 58' 32'' N 

and 77° 42' 20'' E, respectively. The study area in New Delhi (Region-3) incorporates densely 

populated urban region as a major land cover having center latitude and longitude as 29° 39' 

23'' N and 77° 23' 30'' E, respectively.  

3.2.2.  SAR Data  

The study of decomposition methods on Region-1 (Roorkee) has been performed on fully 

polarimetric ALOS PALSAR L-band level 1.1 data in VEXCEL format (Data ID-

PASL110904061711260908110063: Region-1-Roorkee) which has been acquired on April 6, 

2009. The product has single number of looks in range and azimuth. The default off-nadir angle 

for polarimetric acquisition mode is 21.5° and incidence angle is 24°. The data has been 

provided by Earth Remote Sensing Data Analysis Center (ERSDAC). 

 For decomposition study on Region-2 fully polarimetric ALOS PALSAR data (Data ID-

PASL1100904231713261001150001: Region-2-Meerut) acquired on April 23, 2009, has been 

taken. The acquisition of data for Region-3 (Data ID- PASL1100911101716261001150005: 

Region-3-New Delhi) has been performed on April 23, 2009. Figure 3.2 shows the RGB colour 

composite ALOS PALSAR image of Region-1 (Roorkee) exhibiting HH, HV, and VV as red, 

green, and blue colours, respectively.  
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Figure 3.2: RGB colour composite image (HH-red, HV-green, VV-blue) of ALOS 

PALSAR data (Data ID-PASL110904061711260908110063) of Region-1: Roorkee. 

 

 In this chapter, the results of Region-1 i.e., Roorkee has been reported. The results of 

Region-2 (Meerut) and Region-3 (New Delhi) are shown in Appendix-C. 

3.2.3.   Ground Data 

Based on ground truth survey performed by Global Positioning System (GPS) over Region-1 

(Roorkee) on April 04, 2009, eight areas have been selected, as shown in Figure 3.2. These 

areas are designated by numbers 1 to 8. Number 1, 2, and 3 are three separate portions of urban 

area in the city of Roorkee titled as urban-1, urban-2, and urban-3, respectively. Number 4 

represents bare ground labelled as bare soil-1. Number 5 represents tall vegetation. Number 6 

denotes Ganga canal designated as water. Number 7 is a mixture of tall vegetation and short 

vegetation. Number 8 is actually Solani River, which was dry at the time of acquisition in 

April, 2009, and hence designated as bare soil-2.  

  

3.3.  Elementary Scattering Mechanisms 

The model description of surface, double-bounce, volume, and helix scattering contributions is 

as follows: 
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3.3.1.  Surface Scattering Model 

The modelling of surface (single-bounce) scattering is performed by first-order Bragg surface 

scattering model for characterization of scattering from slightly rough surfaces, which have 

negligible cross-polarized components [138]. The scattering matrix for surface scattering is of 

the form,  
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where Rh and Rv are Bragg reflection coefficients for horizontally and vertically polarized EM 

waves, respectively. These coefficients are of the form, 
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where εr is the relative dielectric constant of the surface, and θ is the local incidence angle. In 

general, natural surfaces have Re(εr)>>Im(εr), which enables to assume that εr, Rh, and Rv are 

approximately real [70]. 

The coherency matrix obtained for surface scattering is presented as, 
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where β is the real ratio defined as,  

               1||     , 
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3.3.2.  Dihedral (Double-Bounce) Scattering Model 

The double-bounce scattering is demonstrated as anisotropic dihedral scattering, in which total 

scattering from dihedral corner reflector is represented as the product of scattering obtained 

from two orthogonal Bragg-surfaces having same or different dielectric constants [138]. The 

double-bounce scattering is represented in the form of first-order scattering matrix as,  
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where γh and γv are the propagation constants for horizontally and vertically polarized EM 

waves, respectively. They account for attenuation caused due to propagation of radar wave 

from SAR sensor to target, and then, back again to SAR sensor. 

 The parameters Rsh and Rsv [Equation (3.5)], corresponding to horizontally and vertically 

polarized Fresnel reflection coefficients, respectively, for horizontal surface, are of the form, 
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where εs is the dielectric constant of horizontal surface. 

 The parameters Rth and Rtv [Equation (3.5)] are horizontally and vertically polarized 

reflection coefficients, respectively, for vertical surface, which are of the form, 
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where εt is the dielectric constant of vertical surface. 

 The scattering matrix given in Equation (3.5) leads to coherency matrix as, 
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where α is the contribution for double-bounce scattering, and is of the form, 
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3.3.3.  Volume Scattering Model 

For volume scattering, several models have been proposed based on the incorporation of HV 

backscattering components, which is dominant for volume scattering phenomenon. Considering 
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a general case, where scatterers might be oriented, and the scattering matrix can be written as 

[138],  
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 For incorporation of orientation of scatterers, the scattering matrix in Equation (3.10) is 

rotated by angle θ about radar line-of-sight as [138]  

     TRSRS *
22 )](][)][([)(   ,                     (3.11) 

where  R2(θ)is rotation matrix. The ‘*T’ indicates conjugate transpose of rotation matrix R2(θ). 

  The oriented scattering matrix in Equation (3.11) leads to formation of oriented Pauli 

scattering vector as,  

    )(2),()(),()()(  hvvvhhvvhhp SSSSS  ,           (3.12) 

 The coherency matrix for oriented volume scatterers is obtained as,  

    dpT T
ppv )()()(][ *

  ,                  (3.13) 

where p(θ) is probability distribution function (pdf), which takes into account the orientation of 

scatterers instigating volume scattering. For representing volume scatterers in different 

orientation, distinct pdfs (uniform, sine, cosine, etc.,) can be chosen. The widely used scattering 

models for volume scattering based on different pdf are described as follows: 

a. For uniform distribution [138] 

The uniform distribution is assumed to represent radar scattering from canopy of 

randomly oriented dipoles. For uniformly distributed scatterers, the probability 

distribution function is taken as,  

1)dp(        with20          ,2/1)(

2
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p ,        (3.14) 

 Assuming very thin cylindrical scatterers, the scattering matrices for horizontal and 

vertical dipoles are obtained as,  
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The coherency matrix using Equations (3.12), (3.13), and any of (3.15) is obtained as,  
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b. For horizontal distribution [425, 426, 428] 

For horizontally distributed scatterers cosine distribution is assumed, i.e., 
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 By using Equation (3.13), (3.15a) and (3.17), the coherency matrix is obtained as,  
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c. For vertical distribution [425, 426, 428] 

In case of vertical distribution of scatterers, sine distribution is taken as,  
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The coherency matrix thus obtained by using Equations (3.13), (3.15b), and (3.19) as,  
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d. For oriented dihedral scattering [325] 

In some special cases such as right angle dihedral structures (e.g., buildings and their 

walls, and river and bridge, etc.,), it may happen that one of the surfaces of dihedral 

construction is oriented with respect to radar illumination, which makes HV 

backscattering component to appear in dominance. Thus, in order to incorporate HV 

component by oriented dihedral construction, pdf p(θ) is chosen as a function having its 

peak value at zero degree, and is represented as,  
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This gives the coherency matrix, by using Equations (3.13) and (3.21) as,  
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3.3.4.  Helix Scattering Model 

The helix scattering component is generated in heterogeneous areas, like urban and other 

complex man-made targets. This component is generated by helicity of targets, which generates 

left or right circular polarization for all the incident linearly polarized waves [425, 426, 428]. 

The scattering matrices for left and right helix, and their corresponding coherency matrix is 

given by [425, 426, 428], 
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3.4.   Orientation Angle Compensation  

SAR imaging in rugged terrain leads to scattering matrix values of fully polarimetric SAR data 

to be changed due to shift in polarization orientation angle θ, which is the angle of rotation of 

surface normal to the incidence plane by radar line-of-sight. The shift in polarization 

orientation angle is a function of range slope, azimuth slope, and radar look angle [210], and is 

given as,  

     





sincostan

tan
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 ,          (3.24) 

where,  

tan ω=Azimuth slope, 

tan γ = Slope in ground range, 

ϕ      = Radar look angle. 

  

 Due to this shift in orientation angle, rotation of incidence plane about radar line-of- 

sight to the surface normal takes place which increases the cross-polarized radar response, and 

makes coherency matrix reflection symmetric. This shift in polarization orientation angle leads 

to befuddled classification due to ambiguous scattering response obtained from randomly 

distributed targets. The compensation of this effect is performed by deorientation process [210, 

424], which transforms the target scattering vector by rotation about the radar line-of-sight. 
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This process enhances co-polarization response and reduces the effect of randomly fluctuating 

orientation, and therefore, it resolves the ambiguity in scattering between two randomly 

oriented targets. The deorientation effects resulted in getting same scattering response from 

differently oriented similar targets, and different scattering response from distinct targets which 

might be producing same response without deorientation.  

For implementation of deorientation effect, first it is required to rotate the coherency 

matrix about radar line-of-sight by angle θ as [427],  

   



















)()()(

)()()(

)()()(

)](][)][([)(

33
*
23

*
13

2322
*

12

131211

*









TTT

TTT

TTT

RTRT T ,             (3.25) 

where, R(θ) is the orthogonal rotation matrix defined as,  
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 The terms of oriented coherency matrix are represented as,  
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 The interpretation for the component of coherency matrix is given in section A2.4 of 

Appendix- A. 

The aim of deorientation is to minimize cross-polarized radar response, which is obtained 

from T33 component of rotated coherency matrix [Equation (3.27f)]. Now, for obtaining the 

minimum of T33(θ), the derivative of T33(θ) is equated to zero, and the polarization orientation 

angle θ is obtained as [210],  

  











 

3322

231 )Re(2
tan

4

1

TT

T
 ,                  (3.28) 

In general, for azimuthal symmetric media, T22 is greater than T33. Thus, in specific cases, 

where numerator is zero, arctangent becomes approximately equal to ±π. However, Equation 
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(3.28) shows that θ is in the range of –π/4 to + π/4. In order to obtain useful information, it is 

required to remove bias by adding π for matching the orientation angle corresponding to 

azimuth slope angle as [210],  
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Now, the correct orientation angle becomes,  
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3.5.  Model Based Basic Incoherent Polarimetric Decomposition 

Approaches 

Model based incoherent decomposition methods make use of physical models for representing 

various scattering components, and determining their parameters using physical interpretation. 

The most important task of model based decomposition methods is to represent scattering 

components associated with targets mathematically, and to provide their interpretation based on 

physical basis [79]. The description of basic polarimetric decompositions i.e., three and four 

component model based decomposition methods has been discussed as follows: 

3.5.1.  Three Component Model Based Decomposition (TCM) 

The three-component model based decomposition, proposed by Freeman, represents the 

coherency matrix T as the sum of three independent scattering mechanisms, namely surface 

scattering modelled by first-order Bragg scattering from rough surface, volume scattering 

modelled by thin randomly oriented cylindrical particles, and double-bounce scattering 

modelled by dihedral reflector with orthogonal surfaces of materials having different dielectric 

constants [138]. Decomposed coherency matrix T can be expressed as [138], 
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where [Ts], [Td], and [Tv] are coherency matrices representing surface (Equation 3.3), double- 
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bounce (Equation 3.8) , and volume scattering (Equation 3.16), respectively, and fs, fd, and fv are 

expansion coefficients representing power of single-bounce, double-bounce, and volume 

scattering, respectively.  

 The Freeman decomposition (or TCM) exhibits five unknowns (fs, fd, fv, α, β) and four 

equations, thus utilizing only five polarimetric parameters i.e., T11, T22, T33, Re(T12), and 

Im(T12), as evident from Equation 3.31. Therefore following constraint need to be applied in 

order to decide the dominance of surface or double-bounce scattering [9, 392]: 

If,  

dominant scattering Surface  :0 :    0or    )Re( 332211
*  TTTSS VVHH ,                 (3.32a) 

     dominant scattering bounce-Double  :0 :    0or  )Re( 332211
*  TTTSS VVHH ,    (3.32b) 

 

 Finally, powers corresponding to surface (Ps), double-bounce (Pd), and volume scattering 

(Pv) components can be represented as, 

   )1(
2

 ss fP ,              (3.33a) 

     )1(
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 dd fP ,               (3.33b) 

   334TfP vv  ,              (3.33c) 

 The total power or span is now given by,  

   222 ||||2|| vvhvhhvds SSSPPPSPAN  ,                      (3.34) 

 The TCM has been hypothesized by considering reflection symmetry condition 

(<ShhShv
*>=<SvvShv

*>=0), which is not applicable for urban area [426]. However, the ease of 

implementation, its simplicity, and dependence on physical significance of radar returns make 

it popular choice of decomposition in natural terrain [219, 426]. The flowchart of TCM is 

shown in Figure B.1 of Appendix-B. 

3.5.2.  Four Component Model Based Decomposition (FCM) 

Four-component model based decomposition (FCM) is an extension of TCM (as discussed in 

section 3.5.1) with an additional component called helix scattering term corresponding to non-

reflection symmetry condition (<ShhShv
*>≠0 and <SvvShv

*>≠0) [426, 428]. The helix scattering 

term is obtained from heterogeneous areas, like sharp targets and man-made structures. 

Assuming no correlation between surface, double-bounce, volume, and helix scattering 
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components, the decomposition of coherency matrix T can be carried out in following manner 

[425], 

   ][][][][ ccvvddss TfTfTfTfT  ,                 (3.35) 

where fs, fd, fv, and fc  are expansion coefficients representing power of surface, double-bounce, 

volume,  and helix scattering, respectively. 

 The interpretation of surface and double-bounce scattering matrices (Ts and Td, 

respectively) is same as in TCM [138], according to Equations (3.3) and (3.8). The helix 

scattering is interpreted as described in Equation (3.23). Unlike TCM, in which uniform 

probability distribution function has been considered for canopy scattering [Equation (3.16)], 

sinusoidal probability distribution function is proposed [426] for considering angle distribution 

associated with different tree-trunk and branches. The coherency matrices corresponding to 

volume scattering obtained by considering this probability distribution function are given in 

Equations (3.18) and (3.20) corresponding to horizontally and vertically oriented targets, 

respectively. The choice between symmetric (uniform distribution as in Equation (3.16)) and 

asymmetric (sine distribution as in Equations (3.18) and (3.20)) cases for volume scattering are 

selected according to the value of 10log(<|Svv|
2>/<|Shh|

2>), which is less than −2dB for 

horizontal distribution; greater than +2 dB for vertical distribution; and lies in between −2 dB 

and +2 dB for uniform distribution.   

 The four component decomposition yields five equations and six unknowns. Thus, only 

six polarimetric parameters [T11, T22, T33, Im(T23), Re(T12), and Im(T12)] are used out of nine 

parameters in coherency matrix [T11, T22, T33, Re(T23), Im(T23), Re(T12), Im(T12), Re(T13), and 

Im(T13)]. The helix scattering power Pc is directly determined as, 

   |)Im(|2 23TfP cc  ,                 (3.36) 

 Now, four component model based decomposition incorporates four equations and five 

unknowns. The volume scattering power Pv is determined after selection based on the value of 

10log(<|Svv|
2>/<|Shh|

2>), as discussed above. The dominance of surface and double-bounce 

scattering is determined on the basis of the sign of Real part of (Shh S*
vv), the conditions of 

which are described as follows, 
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 At last, the power corresponding to surface and double-bounce scattering terms (i.e., Ps, 

and Pd, respectively) are determined by Equations (3.33 a, b).  

 This decomposition method is improved by adding some ad hoc power constraints for 

avoiding the occurrence of negative surface, double-bounce, and volume scattering powers. 

These constraints are described as follows [425]: 

i. If, 0  ,0  cv PsetP ,      (3.38a) 

ii. If,  SPANPsetSPANP vv    , ,    (3.38b) 

iii. If, cvcv PSPANPsetSPANPP    , ,   (3.38c) 

iv. If,  cvdss PPSPANPPsetP   and 0  ,0 ,  (3.38d) 

v. If,  cvsdd PPSPANPPsetP   and 0  ,0 ,  (3.38e) 

The detailed procedure of FCM is presented in the form of flowchart shown in Figure B.2 

of Appendix-B. 

 

3.6.  Model Based Decomposition Methods after Deorientation 

Three and four component model based decomposition methods, as discussed in section 3.5, 

suffer from two problems: one is occurrence of negative powers for surface, double-bounce, 

and volume scattering, and second is occurrence of same scattering response (i.e., volume 

scattering) obtained from oriented urban structures and vegetation [427]. In order to overcome 

this problem, it was suggested to rotate the target coherency matrix about radar line-of-sight to 

compensate orientation effect by a process called deorientation, as discussed in section 3.4. 

Therefore, several model based decomposition methods have been proposed by using the 

concept of deorientation theory for improving the scattering response. Some of these methods, 

which have been studied in this chapter, are described as follows: 

3.6.1.  Three component Model Based Decomposition with Deorientation 

(TCMD) 

In this case, first the deorientation of coherency matrix is performed in order to obtain rotated 

coherency matrix T(θ), as defined by Equation (3.25). Now, three component model based 

decomposition is performed in the same manner, as discussed in section 3.5.1, but with the use 
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of T(θ) matrix.  The decomposition of T(θ) can be done as , 

   ][][][)]([ vvddss TfTfTfT  ,              (3.39) 

 In Equation (3.39), [Ts], [Td], and [Tv] are modelled according to TCM, and by Equations 

(3.3), (3.8) and (3.16), respectively. Even after deorientation, this method of decomposition 

uses only five polarimetric parameters, which are T11(θ), T22(θ), T33(θ), Re(T12(θ)), and 

Im(T12(θ)). The complete flowchart of this decomposition is exhibited in Figure B.3 of 

Appendix-B. 

3.6.2.   Three Component Model Based Decomposition with Double 

Deorientation and Adaptive Volume Scattering Model (TCMDDA) 

This method uses double rotation of coherency matrix in order to ensure more accurate 

description of scattering mechanisms. The first rotation is done by method described in section 

3.4. After this rotation, called as orthogonal rotation, rotated coherency matrix T(θ) is obtained 

as given in Equation (3.25). The elements of this matrix are given by Equation (3.27). The 

rotation angle, as given in Equation (3.28), is derived by minimizing T33(θ) component 

[Equation (3.27f)], which resulted in condition T22(θ)> T33(θ). In [9], it is shown that negative 

surface and double-bounce powers in TCM occur due to T22(θ)< T33(θ). Thus, rotation helps in 

improving decomposition by reducing the occurrence of negative powers. 

 The second rotation called unitary transformation is performed on T(θ) matrix as [90, 

344],  
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where, R(φ) is unitary transformation matrix defined as,  

  























2cos2sin0

2sin2cos0

001

)(

j

jR ,                        (3.41) 

The terms of oriented coherency matrix, after unitary transformation according to Equation 

(3.40), are represented as,  

  111111 )()( TTT   ,                (3.42a) 

   2sin)(2cos)()( 131212 jTTT  ,             (3.42b) 
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The angle φ is derived in a similar manner, as described in section 3.4, by minimizing 

T33(φ) component provided in Equation (3.42f) , and is given as [90, 344], 

  











 

)()(

))(Im(2
tan

4

1

3322

231






TT

T
,           (3.43) 

 The unitary transformation resulted in T22(φ)>T33(φ) due to minimization of T33(φ) 

component, and thus, ensuring again the reduction in negative powers after decomposition. The 

negative powers in TCM, as discussed in section 3.5.1, also occur due to T11<2T33. To 

overcome this problem, an adaptive volume scattering model has been proposed in [90], which 

is of the form, 
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where γ is an adaptive parameter, which changes the type of volume scattering with change in 

its value. More specifically, γ=2 corresponds to volume scattering by canopy of randomly 

oriented dipoles, as given in Equation (3.16). The value γ=0 corresponds to volume scattering 

model due to oriented dihedral scattering, as provided in Equation (3.22). The condition γ=1, 

represents volume scattering model having maximum entropy (randomness), which is of the 

form [90], 
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 The adaptive parameter γ is determined by using the concept of similarity parameter, and 

is modelled as [11],  
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 The solution of Equation (3.46) is obtained as,  
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 The decomposition of unitary transformed matrix T(φ) is performed in following manner 

[90, 344],  

   ][][][)]([ vvddss TfTfTfT  ,                             (3.48) 

The modelling of [Ts], [Td], and [Tv] are done by using Equations (3.3), (3.8), and (3.44), 

respectively. The only non-negative solution of Equation (3.48) exists for the following 

condition: 
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After applying these conditions, the contributory powers of surface (Ps) and double-bounce 

(Pd) scattering are obtained according to Equations (3.33 a, b) and volume scattering power is 

obtained as,  

   )()2( 33
*  TfP vv  ,                                  (3.50) 

The flowchart of methodology of this algorithm is shown in Figure B.4 of Appendix-B. 

3.6.3.  Four Component Model Based Decomposition with Deorientation 

(FCMD) 

In four component model based decomposition, as described in section 3.5.2, a problem in 

scattering response from oriented urban occurs [427]. It is observed in urban area that oriented 

building blocks and other man-made objects having oblique orientation with respect to radar 

illumination, exhibit volume scattering response (like vegetation) after four component 

decomposition. In order to overcome this problem, the deorientation has been suggested to be 

applied prior to decomposition. The decomposed rotated coherency matrix T(θ) is presented as 

[427],  

   ][][][][)]([ ccvvddss TfTfTfTfT  ,                                (3.51) 

The matrices [Ts], [Td], [Tv], and [Tc] are interpreted in the same manner as in FCM, as 

described in section 3.5.2. The matrices [Ts], [Td], and [Tc] are modelled according to Equations 
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(3.3), (3.8), and (3.23), respectively. The volume scattering matrix is obtained from Equations 

(3.16), (3.18), and (3.20), respectively, corresponding to uniform, horizontal, and vertical 

distribution, respectively. The decomposition process is same as FCM except the use of T(θ) 

instead of T. The flowchart of FCMD is demonstrated in Figure B.5 of Appendix-B. 

3.6.4.  Four Component Model Based Decomposition with Deorientation and 

Additional Oriented Dihedral Volume Scattering Model (FCMDA) 

This decomposition method utilizes the concept of deorientation as discussed in section 3.4, 

and then uses additional volume scattering component corresponding to oriented dihedral 

structure according to Equation (3.22) in decomposition process. The decomposition of 

deoriented coherency matrix T(θ) is performed by Equation (3.51). The modelling of [Ts], [Td], 

and [Tc] is done by using Equations (3.3), (3.8), and (3.23), respectively. For volume scattering 

component, all four models presented in section 3.3.3, are used. The helix scattering power in 

this case is directly determined by using Equation (3.36) utilizing T23(θ) instead of T23. In order 

to discriminate volume scattering from vegetation and oriented dihedral structure following 

condition has been applied [325]: 

If,   scattering  volumeinduced Vegetation  :    0
2

1
)()( 2211  cfTT  ,        (3.52a) 

   scattering  volumeinduced Dihedral  :    0
2

1
)()( 2211  cfTT  ,          (3.52b) 

 Now, discrimination between volume scattering from vegetation is done by factor 

10log(<|Svv|
2>/<|Shh|

2>), as described in section 3.5.2. After, retrieving power corresponding to 

volume scattering i.e., Pv, surface and double-bounce powers (Ps and Pd, respectively) are 

determined by using Equations (3.33a,b) and conditions (3.37a,b). The detailed description of 

this algorithm has been presented in Figure B.6 of Appendix-B. 

3.6.5.  Four Component Decomposition with Double Deorientation (FCMDD) 

This method uses the concept of both orthogonal and unitary transformation of coherency 

matrix, as discussed in sections 3.4 and 3.6.2, respectively, before applying four component 

model based decomposition. After double rotation of coherency matrix, T23 element becomes 

zero, thus providing seven independent polarimetric parameters [T11(φ), T22(φ), T33(φ), 

Re(T12(φ)), Im(T12(φ)), Re(T13(φ)), and Im(T13(φ)]. Unlike, above mentioned all decomposition 

methods, this decomposition method uses all available seven polarimetric parameters. The 
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decomposition of double rotated coherency matrix T(φ) is performed in following manner 

[344],  

   ][][][][)]([ TcfTfTfTfT cvvddss  ,                      (3.53) 

where matrices [Ts], [Td], and [Tc] are modelled according to Equations (3.3), (3.8), and (3.23), 

respectively. The coherency matrix for volume scattering [Tv] is modelled by all four models 

described in section 3.3.3. Rest of the process is same as discussed in section 3.6.4, rather by 

using T(φ).The flowchart of algorithm is presented in Figure B.7 of Appendix-B. 

 

3.7.  Results and Discussion  

3.7.1.  Pre-processing of Polarimetric SAR (ALOS PALSAR) Data 

Pre-processing of ALOS PALSAR data has been performed using SARscape (version 4.3) 

software, which works in integration with Environment for Visualizing Images (ENVI) 

(version 4.8). The pre-processing steps are provided in flowchart shown in Figure 3.3. The 

step-wise description of pre-processing of ALOS PALSAR data is as follows: 

 

Polarimetric SAR data

 Data import 

Multilooking

Filtering

Geocoding and radiometric

calibration 

Digital Elevation 

Model (DEM) 

 

Figure 3.3: Flowchart for pre-processing of polarimetric SAR data. 
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Step-1: Data Import: The ALOS PALSAR data provided by ERSDAC is a single look slant 

range fully polarimetric complex data having four polarization channels as HH, HV, VH, and 

VV. This data is already focused and calibrated in order to avoid imperfect characteristics of 

fully polarimetric SAR acquisition system caused due to imbalance and cross-talk. Therefore, 

as a first step, data is imported by SARscape, which provides four single look complex files of 

HH, HV, VH, and VV polarizations.  

 

Step-2: Multilooking: The speckle noise inherently occurring in SAR images can be reduced by 

averaging multiple looks, which are produced by taking average of azimuth and/or range 

resolution cell. This procedure is called multilooking. The main purpose of multilooking is to 

obtain approximately squared pixels. Therefore, multilooking increases radiometric resolution 

at the cost of degraded spatial resolution. Numbers of looks are calculated by following 

procedure [1]: 

                            
angle) ncesin(incide

  range spacing pixel 
resolution range Ground        ,           (3.54) 

(azimuth) spacing line

 resolution range Ground
looks ofNumber          ,                         (3.55) 

 

 For ALOS PALSAR data, pixel spacing, line spacing, and incidence angle are 9.36 m, 

3.54 m, and 24°, respectively. Therefore, multilook factor is obtained as 7.  

 

Step-3: Filtering: For speckle suppression, polarimetric filter, namely Wishart Gamma MAP filter 

[232], has been used in order to preserve polarimetric information of quad-polarimetric SAR data.  

It is a polarimetric filter which is suitable for polarimetric data, as discussed in section 2.1 of 

Chapter 2. The filter operates under the assumption of target reciprocity (i.e. HV=VH) [1]. Thus 

only three filtered complex images are produced (HH, HV, VV). It performs well in the presence of 

regular texture and moderate relief. The output speckle filtered covariance matrix terms [Shh.Shh
*, 

Svv.Svv
*, Shv.Shv

*, Re(Shh.Shv
*), Im(Shh.Shv

*), Re(Shh.Svv
*), Im(Shh.Svv

*), Re(Svv.Shv
*), Im(Svv.Shv

*)] 

contain all the polarimetric information required for further computation. 

 

Step-4: Geocoding and radiometric calibration: Geocoding is the process of geometrically 

correcting SAR images against terrain induced distortions by transforming slant range 

projection to a cartographic reference system using appropriate map-projections and digital 
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elevation model (DEM) [67].  DEM represents the topography of ground surface in digital 

format. In this study, DEM has been extracted by GTOPO 30 technique (using SARscape 

module) which provides global DEM map with a horizontal grid spacing of 30 arc seconds 

(approximately 1 km). Thus, SARscape automatically performs geocoding with the help of 

DEM without any user intervention. Simultaneously, radiometric calibration has been 

performed to rectify SAR image by providing corrections for antenna gain, system loss, 

antenna effective aperture, range spread loss, etc., [93].  After radiometric calibration 

dimensionless calibrated backscattering values have been obtained in terms of sigma naught. 

The backscatter value in logarithmic scale can be obtained as,  

    )log(10 220
qixy DNDN  ,           (3.56) 

where DNi and DNq are digital numbers (DNs) corresponding to real (i) and imaginary (q) parts 

of complex SAR data.   

 

 After pre-processing of SAR data according to Figure 3.3, following steps have been 

carried out to perform decomposition methods:    

 All the filtered terms obtained in stpe-3 [i.e., (Shh.Shh
*, Svv.Svv

*, Shv.Shv
*, Re(Shh.Shv

*), 

Im(Shh.Shv
*), Re(Shh.Svv

*), Im(Shh.Svv
*), Re(Svv.Shv

*), Im(Svv.Shv
* )] have been geocoded and 

radio-metrically calibrated to obtain dimensionless calibrated terms. 

  These geocoded terms have been used to form coherency matrixm which has been used 

for development of decomposition algorithm. All of these processing have been 

performed using MATLAB (matrix laboratory) 2010. 

  Further, the decomposition methods have been applied on ALOS PALSAR data sets of 

Roorkee (Region-1: Data ID-PASL110904061711260908110063), Meerut (Region-2: 

Data ID-PASL1100904231713261001150001), and Delhi (Region-3: Data ID- 

PASL1100911101716261001150005). This chapter reports the results of ALOS 

PALSAR data of Roorkee i.e., Region-1. The results of Region-2 (Meerut) and Region-3 

(Delhi) are given in Appendix-C. 

 

  In the following sections, the analysis of studied decomposition approaches has been 

presented. 
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3.7.2.  Visual Analysis 

After applying decomposition algorithm on ALOS PALSAR data of city Roorkee (Region-1), 

the scattering power terms related to surface (Ps), double-bounce (Pd), volume (Pv), and/or 

helix scattering (Pc) have been obtained.  

 First, the decomposition methods without deorientation i.e., three component model 

based decomposition (TCM) and four component model based decomposition (FCM), have 

been applied according to flowcharts of algorithms given in Figures B.1 and B.2 of Appendix-

B, respectively.  The visual representation of these decomposition methods are shown in Figure 

3.4(a,b), which are RGB colour composite images with representation of double-bounce 

scattering power (Pd) as red, volume scattering power (Pv) as green, and surface scattering 

power (Ps) as blue colours. This figure shows that volume scattering (green colour) is reduced 

in FCM as compared to TCM within urban area (city of Roorkee). Pink colour caused due to 

combination of surface and double-bounce scattering is more in urban area for FCM as shown 

in Figure 3.4 (b). Water represented by Ganga canal (as marked in Figure 3.2), appears black in 

both the methods. This indicates occurrence of specular scattering phenomenon. Solani River 

(as marked in Figure 3.2), appears blue in both the maps of Figure 3.4, which indicates 

presence of surface scattering.  

 

(a)                                                     (b) 

 
Figure 3.4:  RGB colour composite images with Pd (double-bounce power) as red, Pv 

(volume scattering power) as green, and Ps (surface scattering power) as blue colours for: (a) 

three component model based decomposition (TCM), and (b) four component model based 

decomposition (FCM). 
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  In a similar manner, as described above, the decomposition methods with deorientation 

i.e., three component model based decomposition with deorientation (TCMD), three component 

model based decomposition with double deorientation and adaptive volume scattering 

(TCMDDA), four component model based decomposition with deorientation (FCMD), four 

component model based decomposition with deorientation and additional oriented dihedral 

volume scattering (FCMDA), and four component model based decomposition with double 

deorientation (FCMDD), have been applied according to the flowcharts given in Figures B.3-

B.7, respectively. The results of these decomposition methods are shown in Figure 3.5, which 

appear similar by visual inspection of RGB colour composite images. However, the results 

obtained by decomposition with deorientation are visually different as compared to that of 

methods without deorientation. The volume scattering appears to be decreased in TCMD and 

TCMDDA [see Figures 3.5 (a) and (b), respectively] as compared to TCM [Figure 3.4 (a)]. 

Similar behaviour is observed in FCMD, FCMDA, and FCMDD [Figures 3.5 (c), (d), and (e), 

respectively] while comparing them with FCM [Figure 3.4 (b)]. In all the decomposition 

methods, Ganga canal appears black in correspondence with specular scattering. Solani River 

appears blue exhibiting surface scattering. This behaviour of river is obtained due to its dryness 

and dominance of sand at the time of ALOS PALSAR data acquisition. 

 The analysis of decomposition maps presented in Figures 3.4 and 3.5 for all the eight 

areas represented in Figure 3.2 and described in section 3.2.3 is as follows: 

 In urban-1 (number-1 in Figure 3.2), volume scattering is dominant in all the 

decomposition methods. However, it looks that volume scattering is reduced in all 

the decomposition methods after deorientation (i.e., TCMD, TCDDA, FCMD, 

FCMDA, FCMDD), as exhibited in Figure 3.5. 

 In urban-2 (number-2 in Figure 3.2), combination of surface and double-bounce 

(pink colour) is present. Pink colour appears bright in FCM as shown in Figure 3.4 

(b) exhibiting increment in double-bounce. The results of decomposition methods 

after deorientation in Figure 3.5 again appear same for urban-2. 

 In urban-3 (number-3 in Figure 3.2), change in scattering response occur from 

volume scattering (green) in TCM [ Figure 3.4 (a)] to mixture of surface and double-

bounce (pink) in FCM [Figure 3.4 (b)]. In Figure 3.5, all the decomposition methods 

with deorientation exhibit combination of surface and double-bounce scattering. 

 In bare soil-1 (number-4 in Figure 3.2), specular scattering (black colour) is 
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dominant for all the decomposition methods exhibited in Figures 3.4 and 3.5. 

 In tall-vegetation class (number-5 in Figure 3.2), volume scattering appears dominant 

for all the decomposition results presented in Figures 3.4 and 3.5. 

 In water (number-6 in Figure 3.2), specular scattering (black colour) is present for all 

the decomposition results exhibited in Figures 3.4 and 3.5.  

 In mixed tall vegetation and short vegetation class (number-7 in Figure 3.2), all three 

scattering components i.e., surface, double-bounce, and volume scattering are 

present. In FCM [Figure 3.4 (b)], combined scattering due to surface and double-

bounce appear dominant.  

 In bare soil-2 (number-8 in Figure 3.2), surface scattering (blue colour) is present in 

all the decomposition methods without deorientation and with deorientation as 

exhibited in Figures 3.4 and 3.5, respectively. 

 

 The visual analysis performed in this section, indicates that decomposition methods work 

nicely in exhibiting scattering responses of various land covers. Deorientation process improves 

the scattering response of urban area by reducing volume scattering, as obtained in 

decomposition without deorientation. The above analysis shows that it is very cumbersome 

process to visually analyse the decomposition result in order to indicate the scattering 

behaviour of various land covers. Thus, there is a need to quantitatively analyse the 

decomposition results. For this purpose two types of quantitative analyses, namely pixel-wise 

analysis and power-wise analysis, which are described in following sections. 
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    (a)       (b) 

  
    (c)      (d) 

    
     (e) 

Figure 3.5:   RGB colour composite images with Pd (double-bounce power) as red, Pv 

(volume scattering power) as green, and Ps (surface scattering power) as blue for: (a) three 

component model based decomposition with deorientation (TCMD), (b) three component 

model based decomposition with double deorientation and adaptive volume scattering 

(TCMDDA), (c) four component model based decomposition with deorientation (FCMD), (d) 

four component model based decomposition with deorientation and additional oriented dihedral 

volume scattering (FCMDA), and (e) four component model based decomposition with double 

deorientation (FCMDD). 
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3.7.3.  Pixel Wise Quantitative Analysis for Whole Image 

First, the decomposition powers representing different scattering mechanisms (Ps, Pd, Pv, 

or/and Pc) have been calculated for all the methods, i.e., TCM, TCMD, TCMDDA, FCM, 

FCMD, FCMDA, and FCMDD, according to algorithms presented in Figures B.1 to B.7 of 

Appendix-B, respectively. Further, the quantitative analysis has been performed by calculating 

the number of pixels (in percentage) representing each scattering mechanisms for all the 

decomposition methods. This analysis has been performed on whole images of all scattering 

contributions.  

 First, the comparison of quantitative analysis for three component model based 

decomposition methods with and without deorientation i.e., TCM, TCMD, and TCMDDA        

[Figures B.1, B.3, and B.4 in Appendix-B, respectively], has been performed. This analysis is 

as follows: 

 It is observed that number of pixels (in percentage) representing Pd and Ps increase in 

TCMD and TCMDDA as compared with TCM.  

 The increment in number of pixels for Pd  is 34% in TCMD and 45% in TCMDDA as 

compared with TCM.  

 The pixel percentage for Ps is increased by 13% and 21% in TCMD and TCMDDA, 

respectively, as compared with TCM.  

 The pixel percentage for Pv remains almost same (>95%) in all the decomposition 

methods. 

 Pixels having all scattering contributions (i.e., Pd, Pv, and Ps) in common increase 

from 44% in TCM to 76% in TCMD to 80% in TCMDD. This indicates that a lot of 

effort is required to segregate the land covers in terms of scattering response due to 

large number of common pixels representing all the scattering mechanisms with 

TCMD and TCMDDA.  

  

 Further, the comparison of all four component decomposition methods with and without 

deorientation methods i.e., FCM, FCMD, FCMDA, and FCMDD, according to Figures B.2, 

B.5-B.7 in Appendix-B, respectively, has been performed. The analysis of these methods is as 

follows: 

 Number of pixels representing Pd drastically increase in FCMD, FCMDA, and 

FCMDD as compared with FCM. Theoretically, it is known that deorientation 
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process increases double-bounce power. This analysis shows that number of pixels 

representing double-bounce power also increase.  

 In FCMD, pixels in Pd and Ps increase by 34% and 7%, respectively, as compared 

with FCM.  

 The pixel percentage of Pd remains same (91%) in both FCMD and FCMDA, 

whereas it reduces to 81% in FCMDD.  

 The pixel percentage of Ps is incremented by only 2% in FCMDA, and is invariant in 

FCMDD, as compared with FCMD.  

 The pixel percentage for Pv is approximately equal (>95%) in all the decomposition 

methods with or without deorientation. 

 Pixel percentage having helix contribution (i.e., Pc) is increases by only 2% in FCMD 

as compared with FCM, and is invariant in both FCMDA and FCMDD. 

 Pixels representing all four scattering mechanisms are more than 50% in all the 

decomposition methods, i.e., FCM, FCMD, FCMDA, and FCMDD. 

 Pixel percentage of all the scattering contributions are almost same in FCMD and 

FCMDA, which indicate that there is no effect of adding volume scattering due to 

oriented dihedral in FCMDA.  

 

 This pixel-wise quantitative analysis has been performed over 8 regions selected in 

Figure 3.2.  The analysis of each region is described as follows: 

 In urban-1, number of pixels (in percentage) for Pd and Ps increase considerably in 

decomposition methods with deorientation as compared with that of without 

deorientation. Pixel percentage of Pc (in four component methods) increases in FCMD, 

FCMDA, and FCMDD as compared with FCM, and it remains unaltered in FCMD, 

FCMDA, and FCMDD. In this region, number of pixels representing Ps are more than 

that of Pd. 

 In urban-2, very slight change is observed in pixel percentages of Ps and Pd , in all the 

decomposition methods after deorientation. In all the decomposition methods number 

of pixels remain almost same (>90%). Pixels percentage of Pc reduces after 

deorientation. 

 In urban-3, pixel percentages of Ps and Pd  are same (76%) for TCM.  However, pixel 

percentage of Ps and Pd is more in all other methods as compared with TCM. Pixel 
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percentage of Pc reduces after deorientation and remain same in FCMD, FCMDA, and 

FCMDD. 

 In bare soil-1, number of pixels representing Ps is more than that of Pd  and/or Pc for all 

the decomposition methods. Pixel percentage for Pc increases by 2% (94% to 96%) 

after deorientation.  

 In tall vegetation, number of pixels representing Pc is quite high (>85%) for four 

component decompositions. The pixel percentage of Ps is more than that of Pd in all 

the decomposition methods.  

 In water, moderate change in the pixel percentage of Ps and Pd  has been observed after 

deorientation. The pixel percentage of Ps and Pd remain almost equal for all the 

decomposition methods. Pixel percentage for Pc reduces by 4% (90% to 86%) after 

deorientation.  

 In mixed short and tall vegetation, pixel percentage for Pc remains unaltered (84%) 

after deorientation. The pixel percentages of Ps and Pd increase after deorientation.  

 In bare soil-2, number of pixels representing Ps are quite high (>98%) as compared to 

Pd. In methods after deorientation (i.e., TCMD, TCMDDA FCMD, FCMDA, and 

FCMDD), pixel percentage of Pc, Ps and Pd  is almost same (>90%). 

General discussion: 

In general, it can be said that after deorientation, number of pixels representing Ps and Pd 

increase after deorientation. The number of pixels representing Pv are almost same in all the 

decomposition methods. No general pattern for Pc has been observed. The main purpose of this 

analysis was to check the change in number of pixels representing each scattering mechanism 

after deorientation.  It has been observed that before deorientation pixel percentages of Ps and 

Pd  are quite low, which increase significantly after deorientation. Thus, deorientation helps in 

improving scattering response in terms of number of pixels for Ps and Pd. 

3.7.4.  Power Wise Quantitative Analysis  

Further, the quantitative analysis is performed by visualising scattering contribution in terms of 

power percentage for each land cover in study area. The analysis has been performed on eight 

areas which are designated by numbers 1 to 8 in Figures 3.2, 3.4 and 3.5, representing class 

urban-1, urban-2, urban-3, bare soil-1, tall vegetation, water, mixture of tall and short 

vegetation, and bare soil-2, respectively. For these land covers, the contribution of each 
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scattering mechanism (i.e., Pd, Pv, Ps, and (or) and Pc) has been measured in terms of power for 

all studied decomposition methods (i.e., TCM, TCMD, TCMDDA, FCM, FCMD, FCMDA and 

FCMDD) and expressed in Figure 3.6. The analysis for each of the area is discussed as follows: 

 In urban-1 (number-1 in Figures 3.2, 3.4, and 3.5), the contribution of volume scattering 

Pv, is more as compared to other scattering mechanisms in methods before deorientation 

(i.e., TCM and FCM), and in FCMDD, as observed in Figure 3.6 (a). This figure shows 

that in TCMD, the total scattering in urban-1 is influenced almost equally by both Pv 

and Ps. In TCMDDA, FCMD and FCMDA, Ps dominates Pd and Pv.  

 In urban-2 (number-2 Figures 3.2, 3.4, and 3.5), the contribution of Ps is large as 

compared to Pd and Pv, as indicated by Figure 3.6 (b).The influence of Pv and Pc is very 

small in this region.  

 In urban-3 (number-3 in Figures 3.2, 3.4, and 3.5), the contribution of all elementary 

scattering mechanisms (i.e., Pd, Pv, Ps) is significant for TCM. However, in rest of the 

decomposition methods, scattering is almost equally influencse by Pd and Ps with very 

small contribution of Pv and negligible contribution of Pc, as observed from Figure 3.6 

(c). 

 In bare soil-1 (number-4 in Figures 3.2, 3.4, and 3.5), as visualized from Figure 3.6 (d), 

surface scattering (Ps) dominates over other scattering mechanisms for all the 

decomposition methods. Significant role of volume scattering (Pv) is also observed in 

this area.  

 In case of tall vegetation (Figures 3.2, 3.4, and 3.5), the influence of Pv is large as 

compared to other scattering types for all three component decomposition methods (i.e., 

TCM, TCMD, and TCMDDA) and four component decomposition (FCM), as shown in 

Figure 3.6(e). However, in FCMD, FCMDD, and FCMDA, the contribution of Ps is 

more as compared to other scattering mechanisms.  

 Water (number-6 in Figures 3.2, 3.4, and 3.5), exhibits dominance of surface scattering 

(Ps) for all the decomposition methods except for TCM in which volume scattering (Pv) 

appears larger than other scattering mechanisms [Figure 3.6 (f)].  

 In mixed tall vegetation and short vegetation area (number-7 in Figures 3.2, 3.4, and 

3.5), the contribution of Pv is more than other scattering mechanisms in TCM, TCMD 

and FCM, as represented in Figure 3.6(g). However, in FCMD, FCMDA, and FCMDD, 

the influence of Ps is more than others (Pv, Pd, and Pc), with significant contribution of 
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Pv and Pd.  

 In bare soil-2 (number-8 in Figures 3.2, 3.4, and 3.5), surface scattering Ps has very 

strong participation (more than 80%) than other scattering types for all the 

decomposition methods, as observed from Figure 3.6(h). 

 

  
(a)      (b) 

  
(c)      (d) 

  
(e)      (f) 

  
(g)      (h) 

Figure 3.6:   Result of power wise analysis for studied decomposition methods : (a) urban-1, 

(b) urban-2, (c) urban-3, (d) bare soil-1, (e) tall vegetation, (f) water, (g) mixed tall and short 

vegettaion, and (h) bare soil-2 regions represented by number 1 to 8, respectively, in Figure 3.2. 
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 General discussion: 

The main aim of this analysis is to observe the change in power of scattering components after 

deorientation. The quantitative analysis performed in this section shows that after deorientation, 

double-bounce power considerably increases and volume scattering considerably reduces as 

compared with methods without deorientation. The above analysis shows that in case of urban, 

short vegetation, and tall vegetation, it is difficult to generalize the scattering behaviour they 

produce because of complexities involved in their structures. Only bare soil exhibits strong 

contribution of surface scattering by all decomposition methods. After deorientation, double-

bounce power is definitely increasing, however, it is not the dominant scattering mechanism in 

urban area. This may occur due to the presence of large amount of vegetation within urban area 

(Roorkee city). Therefore, the results, as obtained in [325, 344, 427], have not been observed in 

our study area (Region-1 Roorkee). 

   

3.8.   Conclusion 

In this chapter, seven different model based decomposition methods have been studied 

extensively. These decomposition methods are, three component decomposition (TCM), four 

component decomposition (FCM); three component decomposition with deorientation 

(TCMD); three component decomposition with double deorientation and adaptive volume 

scattering (TCMDDA); four component decomposition with deorientation (FCMD); four 

component decomposition with deorientation and additional volume scattering (TCMDA); and 

four component decomposition with double deorientation (FCMDD).  

 Initially, the visual analysis of the results of all decomposition methods has been 

performed, by which it is very difficult to analyse scattering behaviour of different land covers. 

Generally, researches analyse the performance of decomposition methods by observing change 

in power of various scattering mechanisms. However, in this chapter, both pixel-wise and 

power-wise analysis have been carried out. In pixel-wise analysis, the relationship among 

scattering contributions has been visualized in terms of pixel percentage. In power-wise 

analysis, scattering behaviour for different land covers has been observed in terms of 

percentage of scattering power. Pixel wise analysis shows that number of pixels representing Ps 

and Pd increase significantly after deorientation. In power-wise analysis, it has been observed 

that power of Pv reduces, whereas powers of Ps and Pd increase after deorientation.   
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 Conclusively, it can be said that decomposition methods work well in describing 

scattering behaviour of various land covers. After deorientation, scattering behaviour of these 

land covers improves in terms of number of pixels representing scattering mechanisms and 

scattering power.  
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Chapter 4  

An Adaptive Land Cover Classification Algorithm 

Based on Spatial Statistics of Polarimetric SAR 

Indices 

 

The polarimetric information contained in polarimetric SAR images represents great potential 

for characterization of natural and urban surfaces. However, it is still challenging to identify 

different land cover classes with polarimetric data. Most of the classification algorithms 

presented earlier have used fixed value of polarimetric indices for segregation of particular land 

cover type from other classes. However, the value of these polarimetric indices may change in 

accordance with the change in observation site, temporal acquisition, environmental conditions, 

and calibration differences among various systems, etc. Thus, the value of polarimetric indices 

for segregation of each land cover type has to be tuned in order to cope up with these changes. 

Therefore, in this chapter, a decision tree based adaptive land cover classification technique has 

been proposed for labelling of different clusters to their respective classes.  

 

4.1.  Introduction 

SAR polarimetry is renowned for its application in land cover classification for the extraction 

of constructive information from satellite data in order to distinguish among various targets. 

Classification techniques are broadly divided into two categories- parametric and non-

parametric classification methods. Parametric classifiers (e.g., supervised and unsupervised) 

involve estimation of statistical parameters prior to classification unlike, non-parametric 

classifiers. Each of these classification techniques have their inherent merits and demerits. The 

major disadvantage of supervised classifier is that analyst imposes the classification structure 

upon the data by selection of training areas which may not encompass and subsequently 

represent unique categories that do not fit the information classes. Unsupervised classification, 

or clustering also suffers from certain limitations and disadvantages. One of the major 

disadvantages of unsupervised classification is that natural grouping obtained as a result of 
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iterations in classifier, may not necessarily correspond nicely with desired informational 

classes, and analyst has limited control over the classes chosen by the classification process 

[119, 433]. There is another category of classification namely, semi-supervised classification, 

which falls between supervised and unsupervised classification category, by making use of 

both labelled and unlabelled data for training [443]. One limitation has been pointed in [234] 

that semi supervised classification cannot outperform supervised classification unless the 

analyst is absolutely certain that there is some non-trivial relationship between labels and the 

unlabelled distribution. Thus, it would be advantageous to opt for non-parametric classifiers, 

such as a decision tree classifier, which has the capability to handle not only non-normal, non-

homogeneous, and noisy data, but also non-linear relations between features and classes, 

missing values, and numerical and categorical inputs [244]. Recently, some parametric models 

of sparse learning have been proposed which can also handle missing values and noisy data 

[100, 417]. Sparse representation classification performs the comparison of residual norms of 

different classes for labelling of testing samples into a particular class. Since each feature has a 

different contribution in classification, equal weighing of residual norms may limit the 

performance of classification. Classification based on sparse representation works well only 

when there is no similarity in training samples of submatrices of different classes. This 

assumption does not hold in any of the cases where various features behave in a similar manner 

for different classes [148]. Considering all aspects, present work uses the concept of decision 

tree for development of such a technique that may provide the labelling of different clusters 

without making any prior assumption about data. Several researchers have also shown that 

decision tree algorithms consistently outperform supervised and unsupervised classification 

techniques [106, 140, 283] . 

  Fully polarimetric data has been considered because of a well-known fact that fully 

polarimetric information plays an important role in describing scattering behaviour (Table 4.1) 

and physical information about the targets such as shape, orientation, symmetry, non-

symmetry, or irregularity of the targets. Thus, polarimetric parameters which can physically 

interpret the scattering behaviour of different targets may prove useful in land cover 

classification of those sites, where sufficient 'a priori' information is not available. Different 

polarimetric indices have been used by researchers for various applications such as 

backscattering coefficients of different polarizations (linear- HH,HV,VV; circular- LL, RR, RL 

and linear 45°-45C,45X) and their ratios have widely been used for crop 
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classification/vegetation identification [18, 27, 129, 130, 165, 293, 351], bare soil/vegetation 

discrimination [130, 162, 306, 351], and wetland/water discrimination from other classes [351]; 

Normalized Difference Polarization Index (NDPI) has been used for hazard monitoring [435]; 

Ratio Vegetation Index (RVI) for canopy characterization [12, 187]; Weighted Polarization 

Sum (WPS) for urban mapping [85], and Cross-Polarization Ratio (CPR) [380] for separation 

of bare or sparsely vegetated fields and forested areas, etc.  

 

Table 4.1  Effect of polarized backscattering coefficients in given references 

Feature Remarks References 

σ0
vv ≥ σ0

hh  Dominant surface scattering (e.g., from bare soil)             [27] 

σ0
rl ≥ σ0

rr  Dominant surface scattering (e.g., from bare soil) [27] 

σ0
hv  Dominant multiple scattering from rough surface  (e.g., 

from vegetation) 

[27, 162, 165, 

293] 

 

σ0
hv/ σ

0
vv, 

 σ0
hv/ σ

0
hh 

 Maximize the difference between surface and volume 

scattering therefore have the capability to discriminate 

bare soil and vegetation 

 Very low value for smooth surfaces e.g., bare soil 

 

[162, 165] 

σ0
hh ≥ σ0

vv Dominant double bounce scattering (obtained from 

vertical structure) 

[27, 162, 351] 

σ0
hh ≥ σ0

hv Dominant double bounce scattering  [27, 162] 

σ0
rl ≈ σ0

rr Dominant double bounce scattering [27, 162] 

 

 

 Researchers have used various polarimetric indices, which are well described in [12, 18, 

27, 85, 129, 130, 162, 165, 187, 293, 306, 351, 380, 435]. However, there is a need to explore 

the use of maximum polarimetric indices together in order to utilize their effect in classification 

of different land cover types and in the development of an adaptive land cover classification 

approach. Therefore, an exhaustive study was carried out for land cover classification, and a 

knowledge-based decision tree classification method was proposed using backscattering 

coefficients (σ0
hv, σ0

hh, σ
0

vv, σ0
rr, σ0

rl, σ0
ll, σ

0
45C, σ0

45X), cross-pol ratios (σ0
rr/σ

0
rl, σ0

hv/σ
0
vv, and 

σ0
hv/σ

0
hh ) and co-pol ratio (σ0

hh/σ
0

vv) in [250]. The limitation of this approach is that it uses 

fixed values of polarimetric indices for classification of different land cover types and these 

values may not be same for different observation sites and satellite images. In several other 
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classification methods, fixed values of polarimetric indices have been used for segregation of 

different classes [27, 129, 130, 250, 293, 306, 351]. Although these methods have been 

successfully used for classification purpose, few limitations have been found in these fixed 

decision criterion (threshold) based classification approaches, as these classification methods 

are not able to adapt themselves according to different observation sites, temporal acquisition 

of satellite images, environmental conditions, and calibration differences among various 

systems, etc. Considering these limitations, an attempt was made to identify the role of several 

polarimetric indices (backscattering coefficients and their ratios, NDPI, WPS, entropy, RVI, 

and correlation coefficient) using spatial statistics for land cover classification [248]. It was 

observed in [248] that the developed method was potentially good for land cover classification 

using fully polarimetric data. However, based on experimental evaluation it was visualized that 

assigning the range of values to polarimetric indices in order to create a decision boundary for 

segregation of different land cover classes was difficult as these values were very much site 

dependent. Some other researchers [149, 150] have also presented the image- statistics-based 

approach using optical data for segregation of only two classes. However, in the present study, 

image-statistics-based approach has been proposed using fully polarimetric SAR data for 

labelling and classification of five distinct land covers, such as water, bare soil, urban, tall 

vegetation, and short vegetation.  

 This chapter deals with the task of developing an adaptive land cover classification 

approach, which is based on the principle of decision tree algorithm. Decision boundaries of 

different classes have been decided by using spatial statistics (i.e., median and standard 

deviation) of the best-selected polarimetric indices on the basis of separability index criterion. 

In order to make the algorithm adaptive in nature, unknown terms are included along with 

spatial statistics, for creating the decision criterion for segregation of different classes. An 

empirical relationship between Overall Accuracy (OA) and spatial-statistics-dependent 

unknown variables has been developed, which is helpful in finding the value of polarimetric 

indices for segregation of various classes. The obtained empirical relationship is non-linear in 

nature. Therefore, a Genetic Algorithm (GA)-based optimization approach has been applied to 

retrieve the unknown variables. The optimization has been designed in such a way that user-

specific requirements (i.e., OA) have been fulfilled.  The obtained unknown variables are 

optimum values of polarimetric indices that can be directly used in decision tree classification 

algorithm. The dependence of unknown variables on image statistics makes the proposed 
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algorithm adaptive in nature.    

 This chapter is organised as follows: section 4.2 provides a brief description about the test 

site and data used in the study. The development of proposed adaptive classification method 

along with the role of various polarimetric indices in labelling and classification of different 

land covers has been provided in section 4.3. Section 4.4 provides the discussion about the 

results obtained by testing and validation of proposed algorithm. The final remarks and 

conclusions are given in section 4.5.    

 

4.2.  Study Area and Data Used 

4.2.1.  Study Area  

The study is carried out in city of Roorkee in the state of Uttarakhand, India. The detailed 

description of study area is given in section 3.2.1 of Chapter-3. As mentioned in Chapter 3, that 

study area has variety of land covers such as urban, bare soil, water, tall vegetation, and short 

vegetation.  

 In urban area (i.e., city Roorkee), a lot of vegetation exists. Therefore, it is worth 

mentioning here that the trees in urban area may behave in a different manner as compared with 

the trees in natural forests, and their signatures may be influenced by buildings and other man-

made structures in urban area [85]. Trees in urban area may represent combination of scattering 

i.e., volume scattering from tree canopy and double-bounce scattering from buildings, while 

strong volume scattering is represented by trees in forest. Thus, if tall vegetation class (i.e., 

forest) is located separately from urban, both classes can be distinguished well. However, 

segregation of tall vegetation within urban areas is challenging because in this situation, 

segregation of both the classes may be hampered by each other. Therefore, caution must be 

taken in extending the algorithm to other areas. 

4.2.2.  SAR Data 

The development and testing of proposed classification algorithm has been performed on 

same fully polarimetric ALOS PALSAR data as used in Chapter 3. In this chapter, this data is 

designated as “Data-1” (Data ID-PASL110904061711260908110063). Further, the validation 

of proposed algorithm has been performed on another ALOS PALSAR data (Data ID- 

PASL1100904061711181001150003: Data-2) acquired on same date (i.e., April 6, 2009) but at 



 

 72 

a different time. 

4.2.3.  Ground Data 

In order to develop the algorithm Region-of-Interest (ROI) points are required for performing 

two tasks; first, for training the classifier during development process, and second, for 

evaluating the performance of classifier by calculating the classification accuracy. Thus, 

extensive ground truth survey has been carried out using Global Positioning System (GPS) over 

the whole study region on April 4, 2009. Some ROI points have also been chosen from Google 

Earth imagery and topographic map of city of Roorkee. Out of total 1062 ROIs, 635 ROIs have 

been used for training and development of proposed adaptive classification algorithm, and 

remaining 427 ROIs have been used for testing and validation of the proposed algorithm. All of 

these points are listed in Table 4.2.  

 

4.3.  Methodology 

Traditional classification methods such as K-means, minimum distance, maximum likelihood, 

and  some other methods such as commute-time-guided transformation [99], logistic regression 

[72], linear discriminant analysis [114], Bayes classification [238], etc.,  make prior assumption 

about the probability density function of data set, and require large number of training samples 

in order to improve the classification accuracy. Thus, in this chapter, an adaptive land cover 

classification algorithm is proposed which does not require making assumption about the 

probability density function of data.  

 

Table 4.2   Region of interest points 

Class Total 

ROI  

Training 

ROI 

Testing 

ROI Water   197 90 107 

Urban  295 175 120 

Tall 

vegetation  

300 200 100 

Short 

vegetation  

125 75 50 

Bare soil  145 95 50 

Total   1062 635 427 
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 Forward modelling approach is adopted for development of classification algorithm, 

which is carried out in three major steps-(1) Selection of polarimetric indices having capability 

to separate two classes, (2) Experimental evaluation of obtained polarimetric indices in order to 

develop the algorithm, which is based on spatial statistics such as median and standard 

deviation of whole image for labelling of various clusters to their own classes, (3) Retrieval of 

optimized value of polarimetric indices using Genetic Algorithm (GA). The detailed 

description is as follows:  

4.3.1.  Data Pre-processing 

The pre-processing of ALOS PALSAR data is performed according to description presented in 

section 3.7.1 of Chapter 3. The flowchart of pre-processing is presented in Figure 3.3. This 

processed data is then used for the development of algorithm. 

4.3.2.  Extraction of Polarimetric Indices 

The polarimetric SAR carries out measurement in multiple polarizations (HH, VV, HV, and 

VH), which generally defines the scattering properties of various targets. The polarimetric 

indices are polarimetric SAR observables extracted from polarimetric SAR data having 

physical meanings that describe the scattering behaviour of different targets. It has been 

observed that researchers have used different polarimetric indices for several applications [12, 

18, 27, 85, 129, 130, 162, 187, 248, 250, 293, 306, 351, 380, 435]. Out of these polarimetric 

indices, backscattering coefficients of different polarizations have widely been used by several 

researchers for diverse applications. Backscattering coefficient plays a major role in 

characterization of targets due to its dependence on electromagnetic wave parameters, such as 

wave frequency, polarization, and incidence angle. It also depends upon the target 

characteristics such as surface geometry (size, shape, orientation distribution, and spatial 

arrangement of objects), physical property (symmetry, non-symmetry, or irregularity of the 

target), and dielectric characteristics of the medium. Since fully polarimetric data can easily be 

synthesized into nonlinear polarizations such as circular and elliptical, the advantage of these 

polarizations can be exploited by backscattering coefficient because each polarization of 

polarimetric SAR backscattering data effectively describes scattering from certain land cover 

type [27, 162, 165, 245, 293, 306, 351]. The effect of polarized backscatter coefficient on 

different land cover types has been summarized in Table 4.1. 

 A knowledge-based decision tree classification method was proposed in  [250]. In this 
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method it was demonstrated quantitatively that standard polarimetric parameters such as 

polarized backscattering coefficients (σ0
hv, σ

0
hh, σ

0
vv, σ

0
rr, σ

0
rl, σ

0
ll, σ

0
45C, σ0

45X), cross-pol ratios    

(σ0
rr/σ

0
rl, σ0

hv/σ
0
vv, and σ0

hv/σ
0
hh), and co-pol ratio (σ0

hh/σ
0
vv) could be used as information 

bearing features for making decision boundaries for classification of different land cover types 

such as water, bare soil, tall vegetation, short vegetation, and urban. It was found in [248] that 

inclusion of some more polarimetric parameters might lead to the development of effective 

classification algorithms. Based on above discussion, polarized backscatter coefficient of 

different polarizations and their ratios are extracted from polarimetric data along with some 

other polarimetric indices, such as NDPI [435]; RVI [12, 187]; WPS [85], and CPR [380], for 

development of proposed adaptive classification technique. These parameters are described as 

follows: 

a) Normalized Difference Polarization Index (NDPI) is used to analyze the surface types 

including vegetation cover, soil type and roughness [435] , and is defined as, 

   
00

00

hvvv

hvvvNDPI







  ,                 (4.1)                                                                

       High roughness areas represent high NDPI values. 

b) Ratio Vegetation Index (RVI) weights the contribution of the cross-polarized returns to 

total power. This parameter is sensitive to biomass level, and used for estimation of 

vegetation cover [12, 187]. The RVI generally varies between zero and one, and is defined 

as, 

                       
000

0

2

8

hvvvhh

hvRVI





  ,                                             (4.2)      

      For diffuse scattering (volume scattering) from vegetation its value is relatively high. 

c) Weighted Polarization Sum (WPS) is a function of absolute value of polarimetric terms 

HH, HV, and VV, and is defined as [85],  

     001.0
1000 VVHVHHWPS  ,                  (4.3) 

This feature is used to classify land covers/land use (mainly in urban area) based on their 

roughness. It exhibits low value for smooth surfaces while high value for rough surfaces 

[85]. 
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d) Cross-Polarization Ratio (CPR) is used to discriminate between bare and sparsely 

vegetated fields and forested areas [380], and is defined as, 

   
00

0

hvhh

hvCPR





  ,                                                     (4.4) 

4.3.3.  Selection of Polarimetric Indices Based on Separability Index 

Criterion 

A total of sixteen polarimetric parameters (σ0
rr, σ0

rl, σ0
ll, σ

0
hv, σ0

hh, σ
0

vv, σ0
45C, σ0

45X, σ0
rr/σ

0
rl, 

σ0
hv/σ

0
vv, σ0

hv/σ
0
hh, σ0

hh/σ
0

vv, WPS, RVI, NDPI, and CPR) are considered for development of 

adaptive classification algorithm on Data-1 (Data ID-PASL110904061711260908110063). It 

will be a tedious task to select the suitable features for classification. Therefore, in order to 

check the separability between class pairs, a measure, which is called a separability index, has 

been calculated for all the polarimetric indices. The main attribute required for a feature chosen 

for classification depends on how well the feature distinguishes between the two classes in the 

classification process. Based on this concept, a feature is said to offer fine separation between 

two classes, if the difference between the mean values of two classes is large as compared to 

the sum of standard deviations of those classes for that particular feature [91, 250, 418]. This 

index is defined as,  

    
ji

ji

ij
SS

SI






  ,                         (4.5)                                                                   

where µ and S are the mean values and standard deviations, respectively, of classes i and j for a 

particular feature. In particular, value of SIij that lies between 0.8 to 1.5, indicates an authentic 

feature for separation of two classes i and j, whereas SIij that is greater than 2, represents feature 

for almost complete class pair separation. SIij that is below 0.8, represents the feature worth for 

rejection of those particular classes [91, 250, 418]. 

 Initially, the concept of feature separation has been applied to five class pairs,  namely, (i) 

water and others (urban, tall vegetation, bare soil, and short vegetation),(ii) bare soil and 

others (urban, tall vegetation, water, and short vegetation),(iii) tall vegetation and others 

(urban, water, bare soil, and short vegetation), (iv) short vegetation and others (urban, tall 

vegetation, bare soil, and water) and (v) urban and others (water, tall vegetation, bare soil, 

and short vegetation). Separability index values (SI) of these class pairs for all sixteen class 
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pairs are shown in Figure 4.1.  It shows that bare soil has good separation capability from other 

classes by features σ0
rr/σ

0
rl, σ

0
hv/σ

0
vv, σ

0
hv/σ

0
hh, CPR, NDPI, and RVI, with SI > 2. Water can be 

best separated from other classes by WPS only with SI > 2, as shown in Figure 4.1. Other 

authentic acceptable features that can separate water from other classes with condition            

1.5 < SI < 2 are σ0
rr, σ

0
rl, σ

0
ll, σ

0
hv, σ

0
hh, σ

0
vv, σ

0
45C, and σ0

45X. It is observed in this figure that 

there is no feature with SI > 2 (or 1.5) for the categories tall vegetation and others, urban and 

others, and short vegetation and others; hence, these classes cannot be taken as the first member 

to be segregated from other classes. Although the water class shows good separation capability 

by several features as mentioned above, bare soil has been chosen as the first member to be 

separated from other classes due to its better separation capability (in terms of SI value) as 

compared to class pair “water and others”.  

 

 

 

Figure 4.1:  Measured separability index for class pair separation by various polarimetric 

features for separation of class water, bare soil, tall vegetation, short vegetation, and urban, 

respectively, from other remaining classes. 

 

 



 

 77 

 After selecting bare soil as the first class to be segregated from other classes, four classes 

(i.e., water, short vegetation, tall vegetation, and urban) are left to be separated in classification 

procedure. Thus, separation of remaining classes is done in following manner:  

 Separation of water with tall vegetation, short vegetation and urban: Since water shows 

good separation capability from other classes after bare soil by features WPS, σ0
rr, σ

0
rl, σ

0
ll, 

σ0
hv, σ

0
hh, σ

0
vv, σ

0
45C, and σ0

45X,  as shown in Figure 4.1, it is selected as the next member to be 

segregated from other classes after excluding bare soil. 

 Separation of short vegetation with tall vegetation and urban: After excluding classes 

water and bare soil, three classes i.e., short vegetation, tall vegetation, and urban, are left to 

be segregated in the classification procedure. Earlier, various techniques have been developed 

for segregation of tall vegetation from short vegetation and urban [106, 293], or vegetated 

areas from urban [123, 396, 438]. It has been found by some researchers [27, 293, 351] that 

σ0
hv is the best feature for segregation of tall vegetation from other classes. However, it has 

been observed in [248, 250] that it is difficult to segregate tall vegetation from other classes 

in presence of urban. In [293], it has been shown that σ0
hv has ability to segregate tall 

vegetation from other classes (i.e., bare soil, short vegetation, and water) only when urban has 

already been separated using texture feature. In [106], segregation of classes tall vegetation, 

short vegetation, and surfaces has been performed in the site where urban class is negligible 

(much less than 1% of total imaged area). Thus, in order to select next member to be 

segregated in adaptive classification procedure, an analysis is performed to observe the 

behaviour of each remaining class (i.e., short vegetation, tall vegetation, and urban) for all the 

polarimetric indices.  

 

 In order to demonstrate the scattering behaviour for all the polarimetric indices, 75 ROIs 

of each class i.e., tall vegetation, short vegetation, and urban, are considered from training ROIs 

listed in Table 4.2. The profiles of these classes for all 16 polarimetric features (σ0
rr, σ

0
rl, σ

0
ll, 

σ0
hv, σ

0
hh, σ

0
vv, σ

0
45C, σ0

45X, σ0
rr/σ

0
rl, σ

0
hv/σ

0
vv, σ

0
hv/σ

0
hh, σ

0
hh/σ

0
vv, WPS, RVI, NDPI, and CPR) are 

shown in Figure 4.2. Figure 4.2(a) shows that urban and tall vegetation do not have much 

difference in the value of σ0
hv, whereas short vegetation is clearly distinguished from both tall 

vegetation and urban. The features σ0
rr [Figure 4.2(g)], σ0

ll [Figure 4.2(i)], and WPS [Figure 

4.2(m)] show almost similar behaviour for tall vegetation and urban. The characteristic of short 

vegetation is overlapped with the characteristics of tall vegetation and urban at some of the 
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ROIs. Based on this analysis, σ0
hv appears to be the best feature for separation of short 

vegetation from tall vegetation and urban.  

 The characteristics of short vegetation is overlapped with tall vegetation and urban at 

several ROIs for features σ0
vv [Figure 4.2(b)], σ0

hh [Figure 4.2(c)], σ0
hv/σ

0
vv [Figure 4.2(d)], 

σ0
hv/σ

0
hh [Figure 4.2(e)], σ0

rl [Figure 4.2(h)], σ0
rr/σ

0
rl [Figure 4.2(j)], σ0

45C [Figure 4.2(k)], σ0
45X 

[Figure 4.2(l)], RVI  [Figure 4.2(n)], and CPR [Figure 4.2(p)]. It is found that almost complete 

overlapping of short vegetation, tall vegetation, and urban occurs for features σ0
hh/σ

0
vv [Figure 

4.2(f)] and NDPI [Figure 4.2(o)]. Therefore, there does not exist any clear boundary by which 

these classes can be separated using all of these features. The polarimetric feature σ0
rr/σ

0
rl           

[Figure 4.2(j)] shows a unique behaviour in which tall vegetation and urban are clearly 

distinguished, whereas short vegetation is overlapped with urban at some ROIs. Therefore, 

urban and tall vegetation are considered as the same class, whereas short vegetation as another 

class in the present analysis. 

 Separation of tall vegetation and urban: After segregation of short vegetation in 

classification procedure, tall vegetation can be separated from urban by feature σ0
rr/σ

0
rl as 

shown in Figure 4.2(j).  

 

 In order to validate the analysis shown in Figure 4.2, the concept of separability index is 

used in order to select the features for segregation of classes tall vegetation, short vegetation, 

and urban in classification procedure. Thus, three class pairs, namely, (i) water and others (i.e. 

tall vegetation, short vegetation, and urban), (ii) short vegetation and others (i.e., tall 

vegetation and urban), and (iii) tall vegetation and urban, are formed for calculating 

separability index. Separability index for these class pairs is shown in Figure 4.3. This figure 

exhibits that all the backscattering coefficients (i.e., σ0
rr, σ

0
rl, σ

0
ll, σ

0
hv, σ

0
hh, σ

0
vv, σ

0
45C, and σ0

45X) 

and WPS have capability to separate water from tall vegetation, short vegetation, and urban, 

with SI > 2 for all of these features. Some acceptable features (with SI > 1) for separation of 

short vegetation from urban and tall vegetation are σ0
rr, σ0

ll, σ
0
hv, and WPS. Urban and tall 

vegetation are separated by only σ0
rr/ σ

0
rl with SI > 2. Thus, separability index criteria (Figure 

4.3) clearly confirms our previous analysis (Figure 4.2).The list of features obtained by feature 

separation criterion for identification of each land cover type is given in Table 4.3. 
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     (a)      (b) 

  
     (c)      (d) 

  
     (e )      (f) 

  
     (g)      (h) 

 

 

 

             (contd…) 
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     (i)      (j) 

  
     (k)      (l) 

  
     (m)      (n) 

  
     (o)      (p) 

Figure 4.2: Plots showing the effect of different polarimetric indices on classes tall 

vegetation, urban and short vegetation. These plots [(a)-(p)] are created by taking 75 ground 

truth points of each class. 
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Figure 4.3: Separability index for class pair separation by various features, for separation of 

(class water from tall vegetation, short vegetation and urban), (class short vegetation from tall 

vegetation and urban), and (class tall vegetation and urban). 
 

 

 

 

Table 4.3  Selected features for different land cover classes based on separability index 

criterion 

Land cover type  Selected feature  

Bare soil  

 

σ0
rr/σ

0
rl, σ

0
hv/σ

0
vv, σ

0
hv/σ

0
hh ,RVI, CPR, NDPI 

Water  σ0
rr, σ

0
rl, σ

0
ll, σ

0
hv, σ

0
hh, σ

0
vv, σ

0
45C , σ

0
45X, WPS 

Short vegetation  σ0
rr, σ

0
ll, σ

0
hv, WPS 

Urban  σ0
rr/σ

0
rl 

Tall vegetation  σ0
rr /σ

0
rl 
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4.3.4.  Model Development 

The task of labelling of different land cover types with adaptive decision criterion is very 

challenging. Therefore, an image-statistics-based adaptive decision tree classification technique 

has been proposed, which utilizes local information i.e., spatial statistics: median and standard 

deviation, of whole images of polarimetric indices in order to create decision boundary for 

segregation of two classes. The process of model development is carried out in following steps: 

a) Calculation of spatial statistics of image. 

b) Creation of decision criterion in terms of image statistics for segregation of each class. 

c) Development of decision tree classifier. 

d) Performance evaluation of proposed classification method. 

4.3.4.1 Calculation of spatial statistics of image 

The spatial statistics of whole image i.e., median and standard deviation, are calculated for 

making a decision boundary in order to classify particular land cover type. Median describes 

the central tendency of distribution. It's less sensitivity to extreme values of distribution makes 

it appropriate option as compared to mean.  Standard deviation is a measure of the dispersion of 

a set of data from its average value (median). The information about image statistics 

(minimum, maximum, median, and standard deviation) for whole images of all 16 polarimetric 

features extracted from Data-1 is listed in Table 4.4.  

 By using separability index criterion, polarimetric indices providing better separation 

between two classes (Table 4.3) have been obtained. The image statistics of these indices are 

calculated for the respective classes defined by training ROI (enlisted in Table 4.2). The 

statistics of these selected features are provided in Tables 4.5-4.9 for bare soil, water, short 

vegetation, tall vegetation, and urban, respectively. After analysing these Tables, it is observed 

that it is quite difficult to use a fixed value of any polarimetric index in the decision boundary 

for segregation of any class. For example, the image statistics i.e., minimum, maximum, 

median, and standard deviation, for feature σ0
rr/ σ

0
rl calculated by using training ROI of bare 

soil are obtained as −19.24, −5.51, −12.96 and 2.35 dB, respectively as given in Table 4.5, 

whereas for the whole image of feature σ0
rr/σ

0
rl the image statistics are obtained as −20.23, 

14.73, −3.61 and 2.98 dB, respectively as given in Table 4.4. These values infer that required 

deciding value of feature σ0
rr/σ

0
rl to segregate bare soil cannot be obtained by using either the 

median or the standard deviation of its whole image. 
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Table 4.4    Image statistics of polarimetric indices for whole image of Data-1 

Feature Minimum Maximum Median Standard deviation 

σhv −37.53 −5.99 −23.81 4.40 

σvv −30.97 6.98 −14.99 2.83 

σhh −29.94 6.98 −14.668 3.21 

σhv/σvv −30.14 6.68 -8.52 2.94 

σhv/σhh −30.08 5.38 −9.05 2.70 

σhh/σvv −11.39 19.89 0.42 1.45 

σ45X −34.51 6.34 −22.49 4.06 

σ45C −32.85 6.98 −15.38 3.09 

σrr −36.00 6.57 −20.23 4.40 

σrl −31.91 6.98 −15.99 2.92 

σll −33.29 6.27 −19.94 4.31 

σrr/σrl −20.23 14.73 −3.61 2.98 

WPS 993.93 1002.31 997.29 0.69 

RVI 0.0038 3.05 0.47 0.27 

NDPI −0.64 0.99 0.74 0.15 

CPR 0.00098 0.78 0.11 0.067 
 

 

 

   

 

Table 4.5   Image statistics of class bare soil (defined by training ROI) for features obtained by 

separability index 

Feature Minimum Maximum Median Standard deviation 

σrr/ σrl −19.24 −5.51 −12.96 

 

2.3537 

 
σhv/ σhh −26.182 −13.77 −17.28 

 

2.7828 

 
σhv/ σvv −26.54 −14.26 −17.85 

 

2.8578 

 
RVI 0.0092 0.1523 0.0702 

 

0.035 

NDPI 0.9277 0.9956 0.9677 0.0176 

CPR 0.0024 0.0402 0.00937 0.0184 
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Table 4.6   Image statistics of class water (defined by training ROI) for features obtained by 

separability index 

Feature Minimum Maximum  Median  Standard deviation 

σhv −35.85 −26.67 −31.712 2.0192 

σvv −29.63 −13.62 -21.88 3.9983 

σhh −29.95 −13.76 −22.356 3.2726 

σll −31.05 −20.99 −27.032 

 

1.917 

 
σrr −33.73 −22.68 −28.208 2.3083 

σrl −31.35 −14.55 −22.43 4.02 

σ45X −32.18 −23.59 −29.206 1.7479 

σ45C −30.35 −15.92 −21.978 3.97 

WPS 994.27 997.56 995.74 

 

0.7739 

 
 

 

Table 4.7   Image statistics of class short vegetation (defined by training ROI) for features 

obtained by separability index 

Feature  Minimum Maximum  Median  Standard deviation 

σhv −27.52 −20.95 −23.91 

 

1.4455 

 σll −24.98 −15.09 −19.52 

 

2.0538 

 σrr −25.47 −15.26 −19.533 

 

2.18 

 
WPS 996.34 998.27 997.27 

 

0.4295 

 
 

Table 4.8   Image statistics of class tall vegetation (defined by training ROI) for features 

obtained by separability index 

Feature  Minimum Maximum  Median  Standard deviation 

σhv −23.11 −15.04 −18.17 

 

1.8395 

 
σrr/ σrl 0.031 6.28 0.9814 

 

1.1955 

 
 

Table 4.9   Image statistics of class urban (defined by training ROI) for features obtained by 

separability index 

Feature Minimum Maximum Median Standard deviation 

σhv −17.53 −9.66 −14.548 

 

1.1217 

 
σrr/ σrl −4.81 −0.366 −1.5268 

 

1.2088 
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4.3.4.2 Decision criterion for segregation of each class 

An extensive and exhaustive study is performed for selecting the decision criterion required to 

classify a particular land cover type using image statistics (i.e., median 'M' and standard 

deviation 'S') of polarimetric indices chosen by separability index criterion. It is observed that 

the required decision criterion for segregation of any class cannot be easily obtained by using 

median and standard deviation of whole image separately or together (i.e., M ± S). It is known 

that image statistics may not be same for two images of similar sites, and hence, it is 

impractical to consider expression M ± S as decision criterion of selected feature for separation 

of any class.  Therefore, in order to make the algorithm adaptive, an unknown term 'ni' is 

included to form different mathematical expressions (e.g., Mni, M ± ni, M ± niS, M ± (ni−1)S,...) 

using image statistics of selected polarimetric observable. The subscript “i” denotes any value 

1, 2, 3..., and so on, depending upon the number of mathematical expressions for selected 

polarimetric indices. The principle of selecting mathematical expressions for development of 

classification algorithm is as follows: 

 

Principle of forming mathematical expressions for development of classification algorithm 

By using the concept of separability index criterion, bare soil is obtained as the first entity to be 

separated in the classification process, and six polarimetric indices (σ0
rr/σ

0
rl, σ

0
hv/σ

0
vv, σ

0
hv/σ

0
hh, 

RVI, CPR, and NDPI) are obtained for separation of bare soil from other classes. Using all of 

these features in making decision boundary will increase the complexity of algorithm. 

Therefore, only two features σ0
rr/σ

0
rl and σ0

hv/σ
0

vv have been used due to their empirical 

evidence and experimental validation [27, 165, 293, 380]. One can take σ0
hv/σ

0
hh instead of 

σ0
hv/σ

0
vv because both possess same characteristics. The procedure of selecting mathematical 

expressions of polarimetric feature 'σ0
rr/σ

0
rl' for segregation of bare soil from other classes is as 

follows: 

 

 First the spatial statistics (i.e., minimum, maximum, median, and standard deviation) of 

whole image (Table 4.4) are compared with that of particular class, i.e., bare soil (Table 4.5) 

for feature σ0
rr/ σ

0
rl.  

 After comparison, it is observed that minimum value of feature σ0
rr/ σ

0
rl for whole image 

(−20.23 dB) and bare soil (−19.24 dB) are almost the same. Based on this fact, the 
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expression "σ0
rr/ σ

0
rl ≤ (mathematical formulation)" is chosen for making decision criterion 

so as to separate bare soil from other classes in the whole image.  

 Now, in order to segregate bare soil from the whole image, mathematical expression (M ± S) 

is tested for feature σ0
rr/ σ

0
rl. For Data-1, it is observed that up to some extent separation of 

bare soil is possible using expression σ0
rr/ σ0

rl ≤ (Mσ
0

rr/ σ
0

rl – Sσ
0

rr/ σ
0

rl), where Mσ
0

rr/ σ
0

rl = 

−3.61 dB and Sσ
0

rr/ σ
0

rl =2.98 dB for the whole image of feature σ0
rr/ σ

0
rl. 

 This is to be noted that if expression “σ0
rr/ σ0

rl≤ (Mσ
0

rr/ σ
0

rl – Sσ
0

rr/ σ
0

rl)” accurately 

classifies bare soil from other classes for any image, it does not mean that the same 

expression will be suitable for segregation of same class for different image of same site 

because of the fact that spatial statistics may be different for different images.   

 In order to resolve above mentioned problem and to make algorithm adaptive in nature, an 

unknown term, for example, “n1” is considered to be included in mathematical expression by 

which separation of bare soil from remaining classes may become possible.  

 Now, the image statistics (median and standard deviation) of whole image are arranged in 

such a way that satisfactory results with good accuracy are obtained for separation of bare 

soil from other classes at certain value of “n1”.  

 In order to select suitable mathematical expression, different combinations of image 

statistics (e.g., Mσ
0
rr/ σ0rl n1; Mσ

0
rr/ σ

0
rl + n1; Mσ

0
rr/ σ

0
rl ± n1 Sσ

0
rr/σ

0
rl; Mσ

0
rr/ σ

0
rl ± (n1−1) Sσ

0
rr/σ

0
rl, 

Mσ
0
rr/ σ

0
rl ± (n1−2) Sσ

0
rr/σ

0
rl,…) are evaluated for creation of decision boundary. 

  It is observed that each of the expressions [Mσ
0
rr/σ

0
rl – n1 Sσ

0
rr/σ

0
rl], [Mσ

0
rr/σ

0
rl − (n1−1) Sσ

0
rr/σ

0
rl], 

[Mσ
0
rr/σ

0
rl ± (n1−1) Sσ

0
rr/σ

0
rl],..., is giving satisfactory results at different values of “n1”. 

However, we have selected the expression [Mσ
0
rr/σ

0
rl −(n1−1) Sσ

0
rr/σ

0
rl]; the reason of particular 

selection will be discussed later in the following section.  

 

  Similarly, the mathematical expression for σ0
hv/σ

0
vv is obtained as                                     

" σ0
hv/σ

0
vv ≤ [Mσ

0
hv/σ

0
vv − (n2−1) Sσ

0
hv/ σ

0
vv]" for segregation of bare soil from other classes. 

Similar procedure has been adopted for deciding the mathematical expressions of selected 

polarimetric indices for creation of decision boundary between different classes.  

4.3.4.3 Development of decision tree classifier 

The best-obtained relations for the selected polarimetric indices are used in the development of 

decision tree classification algorithm, which is shown in Figure 4.4. The terms used in decision 
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tree classifier shown in Figure 4.4 are described as follows: 

Mσ
0
rr/σ

0
rl    Median of feature σ0

rr/ σ
0
rl for whole image. 

Sσ
0
rr/σ

0
rl      Standard deviation of feature σ0

rr/ σ
0

rl for whole image. 

Mσ
0
hv/σ

0
vv    Median of feature σ0

hv/ σ
0
vv for whole image. 

Sσ
0
hv/ σ

0
vv     Standard deviation of feature σ0

hv/ σ
0
vv for whole image. 

Mσ
0
hv        Median of feature σ0

hv for whole image. 

Sσ
0
hv             Standard deviation of feature σ0

hv for whole image. 

MWPS       Median of feature WPS for whole image. 

SWPS          Standard deviation of feature WPS for whole image. 

 

  

 The algorithm as shown in Figure 4.4, starts with discrimination between bare soil and 

other classes (urban, tall vegetation, short vegetation, and water), based on feature separation 

criterion discussed in section 4.3.3. In the decision criterion for the classification of bare soil 

from other classes, features σ0
rr/σ

0
rl and σ0

hv/σ
0
vv are taken because distinct relations are 

obtained with these features, and they also have empirical evidences [27, 165, 248, 250]. 

 

σ0
rr/σ

0
rl < [Mσ0rr/σ0rl -(n1-1)Sσ0rr/σ0rl] 

σ0
hv/σ

0
vv < [Mσ0hv/σ0vv -(n2-1)Sσ0hv/σ0vv] 

Bare soil WPS < [MWPS -(n3-1)SWPS] 
σ0

hv < [Mσ0hv-(n4-1)Sσ0hv] 

Water 

No 

1

2
Yes 

σ0
hv < [Mσ0hv+n5 ]

σ0
rr/σ

0
rl < 0

Yes 

σ0
hv > [Mσ0hv-(n4-1)Sσ0hv] 

No 

Short 
vegetationUnclassified 

3

Yes No 
5

Urban 

Yes 

Tall 
vegetation

No 
4

No Yes 

 

Figure 4.4: Proposed adaptive decision tree classification algorithm. 
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 For the separation of water from other classes (after excluding bare soil), features WPS 

and all the backscattering coefficients (σ0's) are obtained using separability index criterion. It is 

observed that all the backscattering coefficients show almost same value for water, therefore, 

based on empirical evidence [351] and experimental validation (i.e., σ0
hv ≤ −30dB for water for 

the L-band [250]), only σ0
hv has been taken besides WPS. Taking into consideration the 

statistics (i.e., minimum, maximum, median, and standard deviation) of WPS and σ0
hv for whole 

image (Table 4.4) and water (Table 4.6), the expressions “WPS ≤ [MWPS − (n3−1) SWPS]” and     

“ σ0
hv ≤ [Mσ

0
hv − (n4−1) Sσ

0
hv]” are obtained by the similar procedure, as discussed earlier.    

 For the separation of tall vegetation and urban from short vegetation, only σ0
hv is chosen 

because other features, such as σ0
rr, σ

0
ll, and WPS, have separability index value that is very 

close to 1, which may increase the false alarm and have the potential to degrade the 

classification performance. Another reason for taking σ0
hv in decision criterion for segregation 

of short vegetation from tall vegetation and urban is empirical evidence and experimental 

validation carried out in previous research (i.e., at L-band σ0
hv ≥ −18dB for tall vegetation and 

urban [129, 250] and σ0
hv> −27dB for short vegetation [293]). As shown in Figure 4.4 (node-3) 

the expression “σ0
hv > [Mσ

0
hv + n5]” is found suitable for segregation of tall vegetation and urban 

from short vegetation. Further, short vegetation is clustered by using expression " σ0
hv> [Mσ

0
hv − 

(n4−1) Sσ
0
hv]". 

 For the segregation of tall vegetation and urban, only σ0
rr/σ

0
rl  is considered on the basis 

of  separability index criterion shown in Figure 4.3, the scatter plot shown in Figure 4.2(j), and 

experimental validation [250].    

 The proposed decision tree classification algorithm is shown in Figure 4.4, in which 

different unknown terms (i.e., n1, n2, n3, n4, n5), are used in all the mathematical expressions. 

The only exception is expression for σ0
hv, that is used in making decision criterion for 

clustering of water and short vegetation at node-2 and node-5 respectively, in Figure 4.4, where 

same unknown term i.e., 'n4' is used because mathematical expression is same except the 

inequality in decision criterion. 

 Figure 4.4 exhibits that the term (ni−1) multiplied by standard deviation “S” is subtracted 

from median “M” in expression for segregation of bare soil, water, and short vegetation, where 

ni represents n1, n2, n3, and n4 in the corresponding expressions. The term (ni −1) is found to be 

the most suitable among terms ni, (ni −1), (ni −2), (ni −3),..., for preserving the characteristics 

of respective classes observed from training ROIs for reasonable range of “ni”. Experimentally, 
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it is investigated that any of the terms ni, (ni −1), (ni −2), (ni −3),..., can be taken in the 

algorithm, because decision criterion to segregate any class will always be obtained at certain 

value of “ni” using successive terms ni, (ni −1), (ni−2),..., in the corresponding expressions. 

Considering the same value of unknown term in each expression of decision tree, it is observed 

that maximum overall classification accuracy is obtained at n=1.2 by using n1=n2=n3=n4=n5=n 

in the corresponding expressions of Figure 4.4, whereas maximum overall classification 

accuracy is obtained at n equals to 2.2 by using (n−1), and 3.2 by using (n−2) in the 

expressions. Nevertheless, we have considered term (ni −1), so that value of unknown term 

“ni” can be restricted between 1 and some other value where any class starts dominating the 

other classes.  

4.3.4.4 Performance evaluation of proposed classification method 

The performance of proposed classification algorithm (Figure 4.4) is evaluated by calculating 

confusion matrix (or the error matrix), which compares the classification result with ground 

truth information (or ROI points) and reports overall accuracy (OA), kappa coefficient, 

producer accuracy, and user accuracy. Out of these parameters, OA is considered. In order to 

make the algorithm adaptive in nature, it is required to relate OA with image statistics of 

polarimetric indices used in the expressions of decision tree. Therefore, in order to make 

unknown terms depending on image statistics, five variables are formed corresponding to 

mathematical expressions of polarimetric indices used in a decision tree classification 

algorithm, as shown in Figure 4.4. These variables are presented as follows: 

0000 /1/1 )1(
rlrrrlrr

SnMx


  ,                                             (4.6) 

   0000 /2/2 )1(
vvhvvvhv

SnMx


 ,                   (4.7) 

   WPSWPS SnMx )1( 33  ,                            (4.8) 

   00 )1( 44
hvhv

SnMx


                (4.9) 

   55 0 nMx
hv




              (4.10) 

Computation of OA in terms of x1, x2, x3, x4, and x5 

It is observed that OA is quite dependent on unknown terms n1, n2, n3, n4, and n5.Since there are 

five unknown terms (i.e., n1, n2, n3, n4, n5), and it seems difficult to relate OA with these 

unknowns directly, therefore, first it is considered that all the unknowns are the same (n1= 

n2=n3=n4=n5=n), and then OA is computed for different values of “n” using proposed 
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classification algorithm, as shown in Figure 4.4. The plot of OA with respect to “n” is shown in 

Figure 4.5 (a), which shows that OA significantly changes with change in value of “n”. 

 

  

  
 (a)                   (b) 

 
          (c)               (d) 

  
              (e)            (f) 

Figure 4.5: (a) Overall accuracy vs. n, (b) Overall accuracy vs. x1 , (c) Overall accuracy vs. 

x2 , (d) Overall accuracy vs. x3 , (e) Overall accuracy vs. x4, (f) Overall accuracy vs. x5 . 
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Table 4.10  Mathematical formulations of Overall Accuracy (OA) with corresponding R2 values 

Performance parameter Mathematical formulation with constant values R2 

 

OA(x1) 

 2111
)2/1(

111 /)()( bcxeayxOA  
 

y1= 37.61;a1=48.85; b1=5.99; c1 = −6.96 

0.98 

 

 

OA(x2) 

 2222
)2/1(

222 /)()( bcxeayxOA  
 

y2= 37.61;a2=48.85; b2=5.91; c2 = −11.82 

0.98 

 

 

OA(x3) 

 2333
)2/1(

333 /)()( bcxeayxOA    

y3= 37.61;a3=48.85; b3=1.387; c3 = 996.52 

0.98 

 

 

OA(x4) 

 2444
)2/1(

444 /)()( bcxeayxOA  
 

y4= 37.61;a4=48.85; b4=8.843; c4 = −28.75 

0.98 

 

 

OA(x5) 

 2555
)2/1(

551 /)()( bcxeayxOA    

y5= 37.61;a5=48.85; b5=2.01; c5 = −21.69 

0.98 

 

   

  

 

 Now we have the values of “n” and its corresponding values of OA. These values of “n” 

are put in Equations (4.6)-(4.10) for obtaining the values of x1, x2, x3, x4, and x5. After 

computing x1, x2, x3, x4, and x5, OA is correlated to these variables. The plots of OA vs. these 

variables are shown in Figure 4.5((b)-(f)). 

 To obtain the relation between spatial-statistics-based expressions of particular 

polarimetric index (i.e., x1, x2, x3, x4, x5) and OA, the curve fitting method is adopted. The 

obtained expressions with a very high R2 value (coefficient of determination) are represented in 

Table 4.10. In this Table, y1, y2, y3, y4, y5, a1, a2, a3, a4, a5, b1, b2, b3, b4, b5, c1, c2, c3, c4, and c5, 

are constants.   

 In order to determine the significance of these relationships, the Kolmogorov-Smirnov 
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(KS) test is performed with 5% significance level. The KS value and its corresponding p-value 

are obtained as 0.1013 and 0.77, respectively, for all the relationships. The critical value for 5% 

significance level and 19 number of samples (19 observations are made) is 0.27136. The 

obtained KS value is less than the critical value, and the p-value is greater than 0.05 (5% 

significance level). This indicates that the proposed relationships for OA are statistically 

significant. 

4.3.4.5 Optimization algorithm to obtain the value of unknown terms 

The obtained relationships of OA, as provided in Table 4.10, are non-linear functions of 

unknown variables i.e., x1, x2, x3, x4, x5. Therefore, in order to retrieve all the unknowns from 

nonlinear equations of OA, it is required to perform optimization. The problem statement for 

optimization of the proposed classification algorithm can be defined as: 

 "Find design variables (i.e., x1, x2, x3, x4, x5)  that optimize the objective function OA( x1, 

x2, x3, x4, x5) (soft objective) such that OA( x1, x2, x3, x4, x5) is maximized. This optimum 

value must satisfy user-specified constraints. These constraints are hard objectives, 

which need to be satisfied before the optimization of the soft objectives takes place. The 

constraint for hard objective is that OA as a function of individual design variable should 

be greater than respective user-specified lower limit and less than respective user-

specified upper limit." 

 The aforementioned optimization problem involves optimization of single objective 

subjected to several nonlinear constraints, which can be represented mathematically as, 

),,,,(min 54321 xxxxxf ,                         (4.11) 

where 

5/)(

5/)]()()()()([

),,,,(),,,,(

5

1

54321

5432154321


















i

ixOA

xOAxOAxOAxOAxOA

xxxxxOAxxxxxf

,                    (4.12)

 

Subject to constraints     

    
ub
xi

lb
x ii

OAxOAOA  )(
,
            (4.13) 

     iii ubxlb  ,   i=1, 2, ...,5                   (4.14) 
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 The mathematical expressions for OA (xi) are provided in Table 4.10. The terms lb and 

ub in superscripts of Equation (4.13) and Equation (4.14) represent lower bound and upper 

bound, respectively. The terms lb

xiOA  and ub

xiOA  are lower and upper bounds of OA(xi), 

respectively, where i=1,2,3,4,5 corresponding to unknown variables given in equations (4.6)-

(4.10).In this mathematical formulation, both the constraints equations (4.13)-(4.14) must be 

satisfied in order to find a feasible solution. These constraints are provided to ensure that the 

performance of proposed adaptive classification technique always meets the requirements of 

end user (i.e., lower and upper bounds on OA). If it happens that there exist no feasible solution 

for user specified constraints, then user has to provide some other values of constraints in order 

to optimize the algorithm.  

 The optimization has been performed through Genetic Algorithm (GA), which is a 

globally iterative, numerical optimization method. It has been selected due to its several 

advantages over other traditional optimization methods, which obtain best solution using 

gradient and random guesses. One of the most important aspects of GA is that it is global 

because it has random components that test for solutions outside the current minimum, while 

the algorithm converges [257, 366, 447]. In this problem, lower bound and upper bound for all 

the constraints of OA given in Equation (4.13) are taken as 80% and 100%, respectively. The 

limits of design variables xi (i.e., x1, x2... x5) given in Equation (4.14) are decided on the basis of 

Figure 4.5. These limits, which are enlisted in Table 4.11, are selected for criterion OA > 60% 

in order to cover large range of values for all the variables.  

  

Table 4.11  Lower and upper bounds for variables (xi) 

Variables  Lower bound (lb) Upper bound (ub)  

x1 −15 −1 

x2 −20 −5 

x3 994 999 

x4 −40 −20 

x5 −24 −18 
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 The optimization of Equation (4.12) is performed through GA after applying the 

constraints in Equation (4.13) and Equation (4.14) by taking lb

xiOA  and ub

xiOA as 80% and 100%, 

respectively, and lbi and ubi of xi (i=1,2,3…5) according to Table 4.11. The optimum value of 

design variables x1, x2, x3, x4, and x5 are retrieved as −6.96, −11.82, 996.52, −28.75, and −21.69, 

respectively. The values of image statistics (from Table 4.4) and optimum value of design 

variables are substituted in Equations (4.6)-(4.10) in order to get the values of respective 

unknown terms, which are obtained as n1= 2.1208, n2=2.122, n3=2.116, n4=2.123, and n5 =2.12.  

 

4.4.  Results and Discussion 

This section presents the result of proposed adaptive classification algorithm on two different 

ALOS PALSAR data sets, as described in section 4.2. The process adopted for implementation 

and testing of proposed classification algorithm is summarized in the form of flowchart in 

Figure 4.6.  

 

4.4.1.  Implementation and Testing  

The optimum value of unknown terms n1, n2, n3, n4, and n5 are obtained as 2.1208, 2.122, 2.116, 

2.123, and 2.12 respectively, after optimization of Equation (4.12) by GA in which constraints 

of OA(xi) are taken as 80% and 100%, whereas constraints of xi are taken from Table 4.11. The 

proposed algorithm, as shown in Figure 4.4, is implemented on pixel-by-pixel basis on Data-1 

(Data ID-PASL110904061711260908110063) after putting the optimum value of unknown 

terms (i.e., n1= 2.1208, n2=2.122, n3=2.116, n4=2.123, n5 =2.12) in the corresponding 

expressions. Obtained result at optimum value of unknown terms is shown in Figure 4.7. The 

result shows that most of the pixels belonging to specific class are classified as the same 

category. In Figure 4.7, Solani River appears in bare soil category, which is expected because it 

is rain-fed river and it was almost dry during data acquisition in April 2009. The performance 

of this classification map is evaluated by computing confusion matrix using testing ROI given 

in Table 4.2. The overall accuracy is estimated as 87.59% and kappa coefficient as 0.85. The 

estimates of producer accuracy (in percent) and user accuracy (in percent) of classification are 

enlisted in Table 4.12.   
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Data Pre-processing
(multilooking, filtering and 

geocoding)

Extraction of 

polarimetric indices

Calculation of 

separability index

Mathematical expression 

formulation for selected 

indices (In terms of median, 

standard deviation and n s)

Development of adaptive 

decision tree classification 

algorithm 

Obtaining mathematical 

expression of OA in terms of 

image statistics used in 

decision tree 

(by curve fitting method)

Algorithm optimization by GA

Data statistics 

(median and 

standard 

deviation) 

calculation for 

whole image and 

for each class 

defined by ROI

n s  

Figure 4.6: Flowchart for implementation and testing of proposed classification algorithm. 

 



 

 96 

 

Figure 4.7: Result of proposed decision tree algorithm (water- blue; bare soil-yellow, urban-

red, tall vegetation- cyan; short vegetation- green) for Data-1 at n1=2.1208, n2=2.122, n3= 

2.116, n4= 2.123, n5=2.12. 

 

 

 

Table 4.12   Producer and user accuracy estimates (in percent) relative to classification of Data-

1 using testing ROI. 

Class Producer accuracy (%) User accuracy (%) 

Bare soil 98 85 

Water 71 98 

Tall vegetation 86 92 

Short vegetation 92 67 

Urban 95 89 

 

4.4.2.  Validation of Algorithm 

The performance of proposed adaptive classification technique is validated on another 

PALSAR data "Data-2" (Data ID- PASL1100904061711181001150003) acquired on date 

April 6, 2009. For same constraints, as applied for algorithm development, the optimum value 

of design variables i.e., x1, x2, x3, x4, and x5 are obtained as −6.96, −11.82, 996.52, −28.75, and 
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−21.69, respectively, using optimization by GA. The image statistics of Data-2 for required 

polarimetric indices are enlisted in Table 4.13. After putting these image statistics and optimum 

value of design variables (i.e., x1, x2, x3, x4, and x5) in Equations (4.6)-(4.10), corresponding 

unknown terms are obtained as n1=2.301, n2=2.176, n3=2.114, n4=2.138, and n5=2.03. These 

optimum values of unknown terms are used in Figure 4.4 in order to produce classification 

result, which is shown in Figure 4.8. The performance of this classification map is evaluated by 

calculating confusion matrix using testing ROI, as listed in Table 4.2. The overall accuracy is 

estimated as 78.43% and kappa coefficient as 0.72. The estimates of producer accuracy (in 

percent) and user accuracy (in percent) of classification are enlisted in Table 4.14.    

Table 4.13  Image statistics of polarimetric indices for whole image of Data-2 

Feature Minimum Maximum Median Standard deviation 

σ0
hv −37.29 −4.45 −23.72 4.42 

σ0
hv/ σ0

vv −28.48 5.19 −8.35 2.95 

σ0
rr /σ0

ll −19.78 10.98 −3.41 2.72 

WPS 993.88 1002.3 997.30 0.7 

 

 

Figure 4.8: Result of proposed decision tree algorithm (water: blue; bare soil-yellow, urban-

red, tall vegetation- cyan; short vegetation- green) for Data-2 at n1=2.301, n2= 2.176, n3= 2.114, 

n4= 2.138, and n5=2.03. 
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Table 4.14  Producer and user accuracy estimates (in percent) relative to classification of Data-

2 using testing ROI. 

Class Producer accuracy (%) User accuracy (%) 

Bare soil 98 85 

Water 57 98 

Tall vegetation 66 94 

Short vegetation 84 55 

Urban 97 72 

 

4.5.  Conclusion 

An image statistics based adaptive land cover classification technique has been proposed. The 

presented method exhibits the role of various polarimetric indices (σ0
rr, σ0

rl, σ0
ll, σ0

hv, σ0
hh, σ0

vv, 

σ0
45C, σ0

45X, σ0
rr/σ0

rl, σ0
hv/σ0

vv, σ0
hv/σ0

hh, σ0
hh/ σ0

vv, WPS, RVI, NDPI, and CPR) extracted from 

polarimetric data for segregation and labelling of different land cover types. The concept of 

separability index has been used to select polarimetric indices able to separate each class from 

other remaining classes. Then mathematical formulations have been formed for those indices in 

terms of image statistics. These expressions have been used in development of decision tree 

classifier. The dependence of proposed adaptive cluster labelling/classification method on 

statistical parameters (median and standard deviation) to select the values of polarimetric 

indices in order to create a decision boundary for a particular class by using the genetic 

algorithm approach makes the proposed algorithm adaptive in nature. The performance of 

proposed algorithm has been optimized in order to meet end user specific requirement (i.e., 

OA).  

 The algorithm has been developed and validated on two different ALOS PALSAR data. 

Two advantages of proposed method have been observed: firstly, there is no need to optimize 

polarimetric parameters again for running the algorithm for different images of the same site or 

similar sites, and secondly, no need to make any prior assumption about the distribution of data 

for the development of classification algorithm.  
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Chapter 5  

Transmission Line Theory Based Impedance 

Approach for Retrieval of Soil Moisture 

 

Soil moisture retrieval under vegetation cover is a contemplative task because of complexities 

involved in isolation of scattering responses of underlying soil from backscattering coefficient 

of vegetated region. In this chapter, an attempt has been made to take up this challenge of soil 

moisture retrieval under vegetation cover by developing multilayer model based on impedance 

approach of classical transmission line theory.  The foundation of proposed approach lies in the 

principle of transmission line theory, which allows estimation of backscattering coefficient as a 

function of complex dielectric constant and thickness of concerned medium. A multilayer 

model has been developed for characterization of scattering from vegetation canopy and bare 

soil regions. The multilayer model for vegetation consists of one layer of vegetation and two 

layers of soil, whereas for bare soil, it consists two layers of soil. The soil moisture has been 

retrieved for upper layer of soil having depth of 5 cm. Most of the available soil moisture 

retrieval approaches require ‘a priori’ information. However, the proposed approach requires 

minimum or no ‘a priori’ information. This quality seems to make this algorithm a good choice 

for soil moisture retrieval with polarimetric SAR data. 

 

5.1.  Introduction  

Soil moisture is an important land surface parameter that monitors the interaction between land 

surface and atmosphere by controlling the distribution of water, energy, and carbon fluxes [125, 

201, 202]. It maintains water balance at local, regional, and global scale by regulating surface 

run-off, infiltration, evaporation, and percolation in soil [94]. These characteristics of soil 

moisture make it key input parameter in several disciplinary applications, such as weather 

forecasting [111], climate change modelling [110, 327], flood monitoring [101], draught 

monitoring [43], and agriculture monitoring [43, 246], etc.  

 Soil moisture retrieval methods can be categorized as ground based/in situ method and 
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airborne/satellite based method [291]. Conventionally, ground-based/ in situ measurement of 

soil moisture is done by gravimetric method, which comprises collection of soil samples at 

sampled locations, weighing of samples before and after drying (oven drying) followed by 

estimation of moisture content [181]. Due to high spatial and temporal fluctuations in soil 

moisture, it is required to take multiple samples from test sites, which is very time consuming, 

and cumbersome task [415]. These limitations can be compensated by the use of 

airborne/satellite based methods that can estimate soil moisture at much larger scale with 

frequent and vast spatial coverage and high spatial resolution [286, 340].The retrieval of soil 

moisture by using satellites or more specifically, microwave sensors, has gained much attention 

in past years with passive [174, 175, 291] and active [28, 101, 107, 286] methods at different 

frequency bands. The central idea of retrieving soil moisture by microwave sensors is 

established on the fact that there is a large difference in the value of dielectric constant of water 

(~80) and dry soil (3-5), which creates a direct relationship between soil moisture and dielectric 

constant of soil-water mixture due to increment in soil moisture value with increase in 

dielectric constant. Thus, retrieval of soil moisture can be done after measuring dielectric 

constant of soil, which consecutively is related to backscattering coefficient of microwave 

sensor [108, 266, 388]. The sensitivity of microwave sensors to variation in soil moisture and 

their transparency to atmosphere (>90%), make them perfect choice for soil moisture retrieval 

[29]. 

  Over the past years, numerous theoretical [28, 66, 145, 315, 353], empirical [168, 205, 

406], and semi-empirical methods [115, 274, 333] have been developed for retrieval of soil 

moisture using microwave sensors. Despite their wide use, their applicability is limited due to 

certain reasons. Theoretical models, such as Kirchhoff’s Approximation [388], Small 

Perturbation Model (SPM) [315], Integral Equation Model (IEM) [145], and Advanced Integral 

Equation Model (AIEM) [66], have limited applicability due to small domain of validity and 

complexity involved in their implementation. Thus, a lot of effort is required for inversion of 

soil moisture from backscattering coefficient [333]. Empirical methods are easy to handle and 

mostly produce accurate results for the sites, datasets, and environmental conditions, under 

which they have been developed. However, their non-robust nature, and their need for requiring 

adequate amount of reference data for derivation of empirical relationships, are the main 

reasons for their restricted applications [20, 28, 298]. Semi-empirical models in [115, 274], 

tend to overestimate the radar response, and produce inconsistent results for other data sets 
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[19]. Application of these algorithms over vegetated surfaces causes under-estimation of soil 

moisture [332] because vegetated surface represents multiple scattering effect i.e., diffuse 

scattering from vegetation, surface scattering from underlying soil, and multiple scattering due 

to interaction between vegetation and underlying soil [33]. In other terms, for vegetation 

covered soil, the scattering from bare soil surface is very much influenced by the vegetation 

canopy layer, which attenuates the scattering from soil while adding its own contribution [175]. 

Thus, it is required to separate the scattering contribution of underlying soil from 

backscattering coefficient of vegetated region. Conclusively, it can be said that soil moisture 

retrieval under vegetation cover is still an onerous task, which needs proper attention.  

 There exist some methods, namely Water-Cloud model [16, 33, 304], change detection 

methods [254, 260, 275], and decomposition based methods [161, 177], for retrieving soil 

moisture in vegetated areas. The Water-Cloud model works well for retrieving soil moisture in 

vegetation layer, and is easy to implement. However, its implementation requires ‘a priori’ 

knowledge of vegetation parameters, such as Plant Water Content (PWC), vegetation height, 

Leaf Area Index (LAI), etc., for characterization of scattering from vegetation canopy 

(vegetation-air mixed medium). It would be cumbersome to acquire these vegetation 

parameters each time for implementation of this approach, considering temporal variability of 

vegetation. Another limitation of this approach is the requirement of certain assumptions, such 

as invariability of surface roughness and plant height, for optimum and efficient inversion of 

soil moisture from backscattering data. The limitation of change detection methods [254, 260, 

275] is that these methods assume time-invariance nature of vegetation for characterization of 

canopy layer. Thus, application of these methods is restricted for vegetation having narrow 

cycle of growth. The performance of decomposition based approaches is quite satisfactory. 

However, the application of these approaches requires selection of appropriate model for 

vegetation layer [161, 177]. In order to characterize vegetation canopy, some researchers have 

used optical data, and after fusing the information of optical data with microwave data (more 

specifically, SAR data), they have estimated soil moisture [269, 299, 408]. The application of 

these methods requires large amount of ‘a priori’ information for their implementation. Thus, 

there is a need to develop such an approach that requires minimum or no ‘a priori’ information. 

Considering this aspect, in this chapter, transmission line theory based multilayer layer model 

has been proposed for soil moisture retrieval in both bare soil and vegetation covered soil. 

Some researchers have used transmission line theory based approach for different applications, 
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such as estimation of thickness of burnt coal seam [368, 369] and topsoil in semiarid area [5].  

 It is well known that soil moisture is sensitive to various sensor parameters, such as 

frequency (or wavelength), incidence angle, and polarization. It has been found in literature that 

at low incidence angle, HH or HV polarization is better suited for soil moisture retrieval [168, 

388]. As far as frequency is concerned, low range of frequencies from 1 GHz to 5 GHz 

(wavelength 30 cm to 5 cm) are more appropriate than higher range of frequencies (above X- 

band or wavelength below 3 cm), for assessment of soil moisture. It has been found that longer 

wavelengths at low incidence angles reduce the effect of surface roughness [168, 388]. 

Therefore, L-band ALOS PALSAR fully polarimetric data, which has low incidence angle 

(24°), has is good prospect for soil moisture retrieval. In this chapter, HH polarization has been 

used for retrieving soil moisture by applying multilayer model because at steep incidence angle 

(around 20°), HH polarization is better than VV and HV, for retrieval of soil moisture [285]. 

The proposed approach has also been applied on C-band Radarsat-2 data. For both the bands, 

retrieved soil moisture value is in good agreement with the observed soil moisture value. 

 The multilayer model developed in this chapter consists of two separate models that deal 

with retrieval of soil moisture in vegetated and bare soil regions separately. Multilayer model 

for vegetated region consists of three layers with one layer of vegetation (which is actually a 

mixture of vegetation and air) and two layers of soil, whereas multilayer model for bare soil 

region consists of only two layers of soil. In each of these models, impedance of each layer has 

been calculated in terms of their dielectric constant (ε =ε’−jε’’) and thickness (t) by using the 

transmission line theory. The impedance in turn is related to backscattering coefficient. 

Therefore, backscattering coefficient is obtained as a non-linear function of dielectric constant 

and thickness of each layer involved in respective models. It is known that the propagation of 

electromagnetic waves in soil layer leads to their attenuation, which increases with the increase 

in depth of soil layers. Therefore, for retrieval of soil moisture, the observation depth is only 

first few centimetres of soil surface, and more specifically, lies in between one tenth of 

wavelength to one quarter wavelength [391, 406, 407]. For this purpose, the first layer of soil 

has been taken as 5 cm, and second layer of soil has been assumed to be extended up to infinite 

length. Since most of the vegetation (short and tall agricultural vegetation) usually reach up to 

400 cm. Therefore, in this chapter, thickness of vegetation-air mixed layer in multilayer model 

of vegetation has been considered as 5 cm to 400 cm, which probably covers short as well as 

long vegetation regions. It physically infers that the backscattering coefficient becomes the 
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function of dielectric constant of each layer in respective model.  Due to non-linearity of 

backscattering function, Genetic Algorithm (GA) optimization technique has been used to 

retrieve the dielectric constant of each layer with backscattering data, which is obtained by 

satellite SAR data. Genetic algorithm is optimization based approach, which is used to 

determine maximum or minimum of any arbitrary function depending upon the nature of 

problem [257, 382]. It is heuristic solution search based optimization method based on the 

concept of Darwinian theory of natural evolution involving biological techniques, such as 

inheritance, mutation, selection, and crossover [163, 179].  By applying GA on three and two 

layer models for vegetation and bare soil, respectively, real and imaginary parts of dielectric 

constants of bare soil and vegetation covered soil have been retrieved. Finally, soil moisture 

values have been retrieved from soil dielectric constant by using widely accepted polynomial 

relationship proposed by Topp et al. [373]. 

 The chapter is organized as follows: section 5.2 gives the description about study area 

and SAR data sets used for development of proposed methodology. Section 5.3 describes the 

theory of transmission line based impedance model for multilayer modelling approach. In 

section 5.4, methodology of proposed model has been discussed. The results of proposed soil 

moisture retrieval algorithm have been reported in section 5.5 followed by section 5.6, which 

includes concluding remarks.  

 

5.2.  Study Area and Data Used 

5.2.1.  Study Area 

The proposed approach has been developed and validated on same study area i.e., Roorkee, as 

described in section 3.2.1 in Chapter 3.  

5.2.2.  SAR Data  

5.2.2.1 L-band SAR data 

 The development and testing of proposed algorithm has been performed on L-band 

ALOS PALSAR data sets. The description of these data sets i.e., Data-1 (Data ID-

PASL110904061711260908110063) and Data-2 (Data ID- PASL11009040617111810011-

50003), has been given in section 4.2 of Chapter-4.  
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5.2.2.2 C-band SAR data 

 In order to check the validity of proposed approach on C-band (5.45 GHz), Radarsat-2 

fully polarimetric data (Data ID- PDS_01679480) has been used. The acquisition of this dataset 

was carried out on May 31, 2011 at incidence angle of 34˚. The study area is similar to that 

discussed in section 4.2.  

5.2.3.  Ground Data 

5.2.3.1 For L-band ALOS PALSAR data 

Ground truth survey was carried out on April 04, 2009 (2 days before the acquisition of ALOS 

PALSAR data sets) for 20 sites. From each of the sites, eight to ten samples were collected for 

in situ measurement of soil moisture. The average soil moisture data from all of these 20 sites 

have been used for testing and validating the algorithm on Data-1 and Data-2. The observed 

soil moisture range varied from 0.15 cm3 cm-3 to 0.35 cm3 cm-3. 

5.2.3.2 For C-band Radarsat-2 data 

The survey was carried out on May 31, 2011 (day of Radarsat-2 acquisition in order to collect 

soil moisture samples from all 20 sites that have been used for ALOS PALSAR data sets. The 

observed soil moisture range varied from 0.15 cm3 cm-3 to 0.40 cm3 cm-3 for samples collected 

on May 31, 2011.   

 For classification of Radarsat-2 data, required training and testing samples for classes, 

water, urban, vegetation, and bare soil, were also collected during ground survey. These ground 

truth points are enlisted in Table 5.1. 

 

Table 5.1  Ground truth points  

Class  Training Samples  Testing samples  

Water  201 165 

Urban 203 158 

Bare soil  185 104 

Vegetation  105 102 
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5.3.  Theoretical Background 

5.3.1.  Multilayer Model Using Transmission Line Theory Based Impedance 

Approach 

The multilayer model utilizes the concept of transmission line theory which computes 

impedance of each layer in terms of complex dielectric constant and thickness of that layer 

[168]. In order to develop the model, it has been assumed that media is composed of infinite 

length of air and n layers of different (or same) media having diverse complex dielectric 

constant and thickness.  The two-dimensional model of this scenario is shown in Figure 5.1. It 

is shown in this figure that a plane wave having transverse magnetic (TM) mode is incident on 

pth layer at an incidence angle of θi. In TM mode, wave propagation from air to pth layer is 

shown in Figure 5.2. In this case, electric field lies in xz plane and incident fields in air medium 

can be represented by referring Figure 5.2 as [297], 

yeHH ii zxjk
yii ˆ)sincos(1  

 ,                                                 (5.1a) 

)sincos(
0

1)ˆcosˆ(sin ii zxjk
iiyii ezxHZE

 
 ,                  (5.1b) 

where 001 k and Z0 are the wave number and intrinsic wave impedance of free space 

(i.e., 377 ohms),respectively. The term ω is represented as 2πf with f symbolizing operating 

frequency.  The terms Hi and Ei represent incident magnetic and electric field intensities, 

respectively, and Hyi represents y-component of incident magnetic field intensity.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1:  Two dimensional model [5].  
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Figure 5.2:  Representation of wave propagation in two different media. 

 

In a similar manner, the reflected and transmitted fields can be represented as [297],  

   yeHH rr zxjk
yrr ˆ)sincos(1  

 ,                 (5.2a)                       

    
)sincos(

0
1)ˆcosˆ(sin rr zxjk
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 ,                 (5.2b)
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 ,                            (5.3a) 
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tptpytpptp ezxHZE





 ,                (5.3b) 

where pppk  and Zp are the wave number and wave impedance of pth layer, 

respectively. The terms Hr and Er represent reflected magnetic and electric field intensities, 

respectively, and Htp and Etp represent transmitted magnetic and electric field intensities in pth 

layer, respectively.  The term Hyr and Hytp represents y-component of reflected and transmitted 

magnetic field intensity, respectively. 

 Based on transmission line concept, pth layer of thickness tp in Figure 5.1 is said to have 

an impedance of Zp. Therefore, Figure 5.1 can be represented by an equivalent circuit as 

presented in Figure 5.3, where ZCp, ZLp, tp, and εp, indicate the effective series impedance 

(characteristics impedance), parallel impedance, thickness, and complex dielectric constant, 

respectively, of pth layer of media. The complex permeability (µp) is assumed to be constant 
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(or, unity) for all the layers.  ZT represents total input impedance seen looking towards the 

media.  Considering the last layer (nth layer) of model having infinite thickness, the parallel 

impedance ZLn can be taken as zero assuming earth as a perfect conductor. In order to reduce 

the complexity of analysis, the parallel impedances of other layers i.e., ZLp are neglected [5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3:  Equivalent circuit for multilayer model. 

 

 Based on transmission line theory, the total input impedance ZT seen looking towards 1st 

layer is determined by,  
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where γCp and  tp are propagation constant and thickness, respectively, of pth layer of media.  

 At the boundary between the air and pth layer of media, Snell’s law is applied in order to 

give following relationship, 

   tprprpi  sinsin  ,           (5.6) 

where εrp, µrp, and θtp are complex dielectric constant, complex permeability, and transmission 

angle of pth layer of media, as exhibited in Figure 5.1. In whole analysis, µrp has been 
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considered as 1.0, and εrp is represented as ε’rp−jε’’rp, where ε’rp and ε’’rp are real and imaginary 

part of complex dielectric constant, respectively.  

      Considering incidence of plane wave from air to media as represented in Figure 5.1, the 

propagation constant can be derived from Maxwell’s equation as [5],   

   irprptprprpCp jj  2sincos   ,    (5.7) 

 The effective series impedance of pth layer of media is obtained by taking the component 

of electromagnetic fields which are perpendicular to axis of propagation (i.e., x-axis), and can 

be measured as,  

tp

rp

rp

tpp

ytp

ztp

Cp ZZ
H

E
Z 




 coscos 0


 ,                                 (5.8) 

 Thus, Equation (5.5) can be represented as  
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         After substituting Equation (5.9) into Equation (5.4), total input impedance ZT can be 

obtained. The reflection coefficient can then be obtained as,  
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 ,                   (5.10) 

 Finally, the backscattering coefficient is obtained as, 

)log(200 cal ,                                              (5.11) 

 Thus, backscattering coefficient obtained by Equation (5.11) is a function of complex 

dielectric constant and thickness of each layer. 

 

5.4.  Model Development 

The flowchart of developed method is shown in Figure 5.4.  It indicates that first it is required 

to segregate bare soil and vegetation region, by performing classification of fully polarimetric 

SAR data. After obtaining these regions, two separate models for vegetation and bare soil 

regions are developed based on approach described in section 5.3. The procedure for 

development of proposed model has been described below: 
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Figure 5.4: Flowchart for development of soil moisture retrieval algorithm. 
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5.4.1.  Three Layer Model for Vegetation  

For vegetated region, multilayer model, as discussed in section 5.3, having n=3 number of 

layers, hence, designated as three layer model, has been developed. In order to develop three 

layer model for vegetation, it has been assumed that media is composed of infinite length of air, 

one layer of vegetation-air mixture, and two layers of soil. Referring Figure 5.1 and 5.3, it can 

be visualized that topmost layer (or layer-1) is vegetation-air mixed layer having thickness t1 

(or tV, where ‘V’ stands for vegetation-air mixed layer), and next two layers (layer 2 and 3) are 

soil layers having thicknesses t2 (or tS1, where ‘S1’ stands for soil layer 1), and t3 (or tS2, where 

‘S2’ stands for soil layer 2), respectively.  The impedances of vegetation-air mixed layer and 

soil layers are Z1 (or ZV), Z2 (or, ZS1), and Z3 (or, ZS2), respectively, which are calculated by 

using Equation (5.9) as,  
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where, εrV, εrS1, and εrS2 are complex dielectric constants, and µrV, µrS1, and µrS2 are complex 

permeabilities of vegetation canopy and soil layers (layer 2 and 3), respectively. In this 

analysis, µrV, µrS1, and µrS2 are taken as 1.0. 

 The total impedance seen looking into vegetation layer can be measured by using 

Equations (5.4) and (5.12) as, 

    321_ ZZZZ vegT  ,                          (5.13) 

 After obtaining total input impedance ZT_veg in Equation (5.13), reflection coefficient 

(Γ_veg) in vegetated area is measured by Equation (5.10) as, 
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  At last, the backscattering coefficient in vegetated area (i.e., σ0
cal_veg) can be calculated 

using Equations (5.11) and (5.14) as, 
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 The Equation (5.15) indicates that σ0
cal_veg is non-linearly related to complex dielectric 

constant and thickness of all three layers of vegetation model (or three layer model). As 

discussed in section 5.1, thickness of first and second layers of soil (tS1 and tS2, respectively) 

have been taken as 5 cm and infinite, respectively. The thickness of vegetation-air mixed layer 

has been varied from 5 cm to 400 cm because it is assumed that most agricultural vegetation 

would be covered in this range.  

5.4.2.   Two Layer Model for Bare Soil 

In case of bare soil, multilayer model having n=2 numbers of layer (i.e., two layer model) has 

been developed. This model includes infinite layer of air and two layers of soil (soil layers 1 

and 2). Thus, this model is similar to three layer model, as discussed in section 5.4.1, except 

exclusion of vegetation-air mixed layer. As exhibited in Figures 5.1 and 5.3, thickness of soil 

layers 1 and 2 are t1 (or, tS1) and t2 (or, ts2), respectively, and their respective impedances are ZS1 

and ZS2, respectively. The total impedance seen looking into soil layers can be determined by 

using Equations (5.4) and (5.9) as,  
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 In a similar manner, as discussed in section 5.4.1, reflection coefficient (Γ_soil) and 

backscattering coefficient in bare soil region (i.e., σ0
cal_soil) are calculated by using Equations 

(5.10) and (5.11), respectively, as, 
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 After taking tS1 and tS2 as 5 cm and infinite respectively, Equation (5.18) that calculates 

backscattering coefficient for bare soil (σ0
cal_soil) becomes function of complex dielectric 

constant of soil layers 1 and 2.  
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5.4.3.  Retrieval of Complex Dielectric Constant of Soil Layers Using Genetic 

Algorithm 

The backscattering coefficients in Equations (5.15) and (5.18) represent a non-linear problem 

involving multiple unknowns (more than two). The well proven ability of Genetic Algorithm 

(GA) in handling multiple parameters together, and in production of optimal solution of any 

problem in any search space, makes it reliable choice to solve our problem. The most critical 

step of genetic algorithm is proper selection of cost function to accurately determine the 

solution close to optimal results. In this particular case, the cost function is formulated by 

backscattering coefficient calculated in multilayer model, particularly in three layer model 

using Equation (5.15) for vegetation (i.e., σ0
cal_veg), and in two layer model using Equation 

(5.18) for bare soil (i.e., σ0
cal_soil). Through GA, optimum solution for unknown parameters has 

been obtained by minimizing the cost function [179, 341]. The retrieval process of unknown 

parameter using GA for three and two layer models has been discussed as: 

5.4.3.1 Retrieval of dielectric constant of soil layers in three layer model 

Equation (5.15) shows that backscattering coefficient of vegetated area is related to complex 

dielectric constants of each layer. Considering real and imaginary part of complex dielectric 

constant as individual variables, σ0
cal_veg becomes the function of six unknowns which are ε’rV, 

ε’’rV, ε’rS1, ε’’rS1, ε’rS2, and ε’’rS2. This problem for retrieval of real and imaginary part of 

complex dielectric constant of vegetation-air mixed layer and soil layers, has been solved by 

GA. The construction of cost function for GA is done by taking calculated backscattering 

coefficient of Equation (5.15) and observed value of backscattering coefficient (σ0
obs_veg ) using 

HH polarized SAR data as, 

   
20

_
0 || vegobscal_vegionCost Funct   ,                                    (5.19) 

where σ0
obs_veg is observed value of backscattering coefficient in vegetated area which is 

retrieved from HH polarization channel of SAR data.  

 

5.4.3.2 Retrieval of dielectric constant of soil layers in two layer model 

The backscattering coefficient of bare soil (i.e., σ0
cal_soil) in two layer model [Equation (5.18) in 

section 5.4.2] is a non-linear function of real and imaginary parts of dielectric constant of two 

layers of soil i.e., ε’rS1, ε’’rS1, ε’rS2, and ε’’rS2. The retrieval of these four unknowns has been 
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done by using GA by minimizing the cost function, which is defined as,  

   
20

_
0 ||ost soilobscal_soilFunctionC   ,                           (5.20) 

where σ0
obs_soil is the backscattering coefficient of bare soil which is retrieved from HH 

polarized channel of SAR data. 

5.4.4.  Retrieval of Soil Moisture  

Application of GA in Equations (5.19) and (5.20), helps in retrieval of real and imaginary parts 

of complex dielectric constant of both the layers of soil (i.e., ε’rS1, ε’’rS1, ε’rS2, and ε’’rS2) for 

vegetated area using three layer model, as discussed in section 5.4.1, and for bare soil region 

using two layer model, as discussed in section 5.4.2. In this analysis, soil moisture value has 

been retrieved by using well-known polynomial relation between volumetric soil moisture and 

real part of complex dielectric constant of soil, which was proposed by Topp et al. [373]. Based 

on this relationship, volumetric soil moisture for top layer of soil (first 5 cm) in both the regions 

(i.e., vegetation and bare soil) can be estimated as,  

   
3'

1
62'

1
4'

1
22 103.4105.51092.2103.5 rSrSrSvm    ,      (5.21) 

 

5.5.  Results and Discussion  

This section presents the result of proposed soil moisture retrieval algorithm of two different L-

band ALOS PALSAR data sets and one Radarsat-2 data. The results are discussed as follows: 

5.5.1.  Implementation of Algorithm on Data-1 

The steps for implementation of the algorithm have been described in Figure 5.4. The algorithm 

has been implemented and tested on Data-1 (Data ID-PASL110904061711260908110063). The 

step-wise description of implementation procedure has been given as follows: 

 

1. In first step, classification of SAR data is performed, for which the adaptive 

classification algorithm, as developed in Chapter 4, has been used. The classified image 

of Data-1 has been shown in Figure 4.7, which exhibits five different classes, such as 

water, urban, tall vegetation, short vegetation, and bare soil in blue, red, cyan, green, 

and yellow colours, respectively. In this analysis, short vegetation and tall vegetation 

classes have been considered as single entity called vegetation.  
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2. In second step, urban and water classes have been masked in order to obtain only 

vegetation and bare soil classes. The masked classified image of Data-1 has been shown 

in Figure 5.5, in which vegetation and bare soil classes are represented in green and 

yellow colours, respectively, whereas masked urban and water classes are shown in 

black colour. 

3. Now, in case of vegetation, three layer model, as discussed in section 5.4.1, has been 

applied, whereas in case of bare soil, two layer model, as discussed in section 5.4.2, has 

been applied. Using these models, backscattering coefficients have been calculated for 

both vegetated and bare soil regions i.e., σ0
cal_veg and σ0

cal_soil, as given in Equations 

(5.15) and (5.18), respectively.  

4. Next step is to measure backscattering coefficient for HH polarization using Data-

1.This data is obtained after performing pre-processing, as described in Chapter 3 

(Figure 3.3). The observed backscattering coefficient for vegetation class and bare soil 

class has been designated as σ0
obs_veg and σ0

obs_soil, respectively. 

5. In MATLAB, the code for GA has been implemented, which is based on the concept of 

evolution optimization [447]. In this algorithm, population of distinct solutions are 

repeatedly modified in order to improve the fitness, and to obtain optimal solution of 

the problem by minimizing cost function. 

6. In case of vegetation, there are six unknowns consisting real and imaginary parts of 

dielectric constants of vegetation-air mixed layer and soil layers (i.e., ε’rV, ε’’rV, ε’rS1, 

ε’’rS1, ε’rS2, and ε’’rS2). These unknowns are retrieved by minimizing the cost function, as 

given in Equation (5.19), using GA. Since retrieval of soil moisture is generally 

performed for first few centimeters of soil layer, the thickness of first layer of soil i.e., 

tS1, has been considered up to 5 cm (as discussed earlier that penetration depends upon 

the used radar wavelength). The thickness of second layer of soil (tS2) has been taken as 

infinite, whereas thickness of vegetation-air mixed layer (tV) has been varied from 5 cm-

400 cm. 

7. In a similar manner, for bare soil class, GA has been applied over the cost function, as 

given in Equation (5.20), for retrieving 4 unknowns consisting real and imaginary parts 

of dielectric constants of soil (i.e., ε’rS1, ε’’rS1, ε’rS2, and ε’’rS2). In this case, tS1 is again 

set as 5 cm in order to retrieve soil moisture in first few centimetres of soil depth, and 

tS2 is considered as infinite. 
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8. The next step is to estimate the soil moisture for both bare soil and vegetation-covered 

bare soil. After applying GA in three layer model for vegetation and two layer model 

for bare soil, the value of real parts of dielectric constants for top layer of soil (i.e., ε’rS1) 

have been retrieved for both models. These values of ε’rS1 have been used for retrieving 

volumetric soil moisture in top layer of soil (mv) in both the regions i.e., bare soil and 

vegetation underlying soil, by using Equation (5.21). Figure 5.6 shows the moisture 

map for top layer of soil. 

9. Figure 5.7 shows the graph of retrieved volumetric soil moisture for top layer of soil 

(mv) obtained by proposed approach versus observed volumetric soil moisture for Data-

1. The coefficient of determination (R2) and Root Mean Square Error (RMSE) has been 

obtained as 0.74 and 0.027, respectively. Small RMSE and moderate R2 value indicates 

quite good performance of proposed methodology. 

 

 

 

Figure 5.5: Classified masked image of Data-1 exhibiting vegetation and bare soil classes in 

green and yellow colours, respectively. Black region shows masked urban and water classes. 
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Figure 5.6:  Soil moisture map for top layer of soil (mv) using Data-1. 

 

 

 

 

Figure 5.7: Retrieved volumetric soil moisture (mv) versus observed volumetric soil 

moisture for Data-1.  
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5.5.2.  Testing of Algorithm on Data-2 

The algorithm has been tested on different ALOS PALSAR data (i.e., Data-2: Data ID- 

PASL1100904061711181001150003) for similar region (i.e. Roorkee). After classifying the 

image of Data-2 using method proposed in Chapter 4, masking of urban and water classes in 

classified image (Figure 4.8) has been performed. This masked classified image of data-2 has 

been shown in Figure 5.8, which displays vegetation in green and bare soil in yellow colour.  

 Now, GA has been applied for retrieving six unknowns (ε’rV, ε’’rV, ε’rS1, ε’’rS1, ε’rS2, and 

ε’’rS2) of three layer model for vegetation and four unknowns (ε’rS1, ε’’rS1, ε’rS2, and ε’’rS2) of two 

layer model for bare soil by minimizing the cost functions, as given in Equations (5.19) and 

(5.20), respectively. The optimum values of ε’rS1 obtained from both three and two layer models 

for vegetation and bare soil, respectively, have been used to estimate volumetric soil moisture 

for top layer of soil (i.e., mv) by Equation (5.21). The generated soil moisture map for bare soil 

as well as crop covered soil is shown in Figure 5.9. 

 

 

 

Figure 5.8: Classified masked image of Data-2 exhibiting vegetation and bare soil classes in 

green and yellow colours, respectively. Black region shows masked urban and water classes. 
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 For Data-2, the quantitative result of retrieved volumetric soil moisture for top layer of 

soil (mv1) for Data-2 versus observed volumetric soil moisture has been presented in Figure 

5.10. The R2 and RMSE error for this relationship is 0.70 and 0.039, respectively. The result of 

retrieved soil moisture shows good agreement with the observed value of soil moisture. 

 

 

 

Figure 5.9: Soil moisture map for top layer of soil (mv) using Data-2. 

 

 

Figure 5.10:  Retrieved volumetric soil moisture (mv1) versus observed volumetric soil 

moisture for Data-2. 
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5.5.3.  Application of Proposed Approach on C-Band Radarsat-2 Data 

For the purpose of evaluating the performance of proposed soil moisture retrieval approach on 

C-band, Radarsat-2 data has been used. The pre-processing of Radarsat-2 data is performed in a 

similar manner, as described in section 3.7.1 (Figure 3.3) in Chapter 3. The application of 

proposed soil moisture algorithm requires masking of urban and water classes. For ALOS 

PALSAR data, the masking of these regions has been done after classifying data by adaptive 

classification algorithm proposed in Chapter 4. Since this algorithm has been developed for L-

band ALOS PALSAR data. Thus, in this chapter, classification of Radarsat-2 has been carried 

out by supervised maximum likelihood method. This classification has been performed on layer 

stacked HH-HV-VV polarized bands by using training samples for water, urban, vegetation, 

and bare soil regions. The ground truth points for training and testing samples required for 

classification have been enlisted in Table-5.1. The overall classification accuracy measured by 

taking testing samples of all four classes has been obtained as 87%. The classified image of 

Radarsat-2 data exhibiting water, urban, vegetation and bare soil regions in blue, red, green and 

yellow colours, respectively, and its corresponding masked classified image exhibiting urban 

and water classes in black colour, is shown in Figure 5.11.  

  

 

  

   (a)       (b) 

Figure 5.11: (a) Classified image of Radarsat-2 data exhibiting water, urban, bare soil and 

vegetation classes in blue, red, yellow, and green colours, respectively, and (b) Masked 

classified image exhibiting urban and water classes in black colours. 
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 The same procedure has been adopted, as in section 5.5.1 and 5.5.2, for retrieval of 

unknowns associated with two and three layer models for bare soil and vegetation, respectively 

by minimizing the cost functions (Equation (5.20) and (5.19), respectively) using GA. Finally, 

soil moisture for top layer of soil and vegetation covered soil has been retrieved by Equation 

(5.21). This moisture map (i.e., mv) has been shown in Figure 5.12.  

 The retrieval of volumetric soil moisture for top layer of soil (mv) using Radarsat-2 data 

shows good agreement with the observed volumetric soil moisture as represented in Figure 

5.13. The R2 and RMSE have been obtained as 0.75 and 0.041, respectively. The retrieved 

volumetric soil moisture is in good agreement with the observed soil moisture. 

 

Figure 5.12: Soil moisture map for top layer of soil (mv) using Radarsat-2 data.  

  

 

Figure 5.13: Retrieved volumetric soil moisture (mv) versus observed volumetric soil 

moisture for Radarsat-2. 
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5.6.  Conclusion 

In this chapter, multilayer model based on the principle of transmission line theory has been 

proposed for retrieval of soil moisture in bare soil and vegetation covered soil. For vegetation 

and bare soil regions, three and two layer models, respectively, have been developed. Three 

layer model for vegetation canopy has one extra layer of vegetation as compared to that of two 

layer model for bare soil consisting only two layers of soil. This method estimates 

backscattering coefficient as a function of complex dielectric constant and thickness of each 

layer. In the proposed approach, the first and second layers of soil in both the models are taken 

as 5 cm and infinite, respectively. The vegetation layer (in three layer model) is considered to 

have thickness varying from 5 cm to 400 cm, assuming all the agricultural vegetation covering 

this range. The real and imaginary parts of dielectric constants for both bare soil and vegetated 

regions have been retrieved by genetic algorithm approach after minimizing cost function, 

which is formed by calculated backscattering coefficients in each model and HH polarized 

backscattering coefficient from SAR data. Further, volumetric soil moisture has been retrieved 

by using polynomial relation proposed by Topp et al. [373].  

 The proposed approach has the capability to retrieve soil moisture without having any 

prior knowledge about test sites. For L-band ALOS PALSAR data sets (Data-1 and Data-2), 

retrieved soil moisture values by proposed method exhibit good agreement with the observed 

(i.e., ground truth) soil moisture. The proposed approach has also been applied on C-band 

Radarsat-2 data, which is classified by using maximum likelihood supervised classification 

method. After, retrieving bare soil and vegetated regions by classification, soil moisture has 

been retrieved by proposed approach for top layer of soil (5 cm) and satisfactory results have 

been obtained for even for C-band.  
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Chapter 6  

Study and Analysis of Hybrid Polarimetric 

Chandrayaan-1’s MiniSAR Data for 

Characterization of Lunar Surface    

 

With the advent of hybrid polarimetry, radar polarimetry has got its new dimension. It is a 

unique architecture in which transmitted polarization is one of the circular polarizations (left 

‘L’/right circular ‘R’), and the received polarization is H & V linear. This configuration 

provides several advantages in terms of reductions in pulse repetition frequency, data volume, 

and system power needs, and increment in swath width [308]. These advantages provide 

optimum conditions for exploration of planetary surfaces. MiniSAR onboard Chandrayaan-1’s 

mission of Indian Space Research Organisation (ISRO), India, was one such sensor. The 

objective of this mission was to explore lunar surface for the presence of water-ice deposits, to 

characterize radio-physical properties of lunar regolith, and to investigate scattering response of 

lunar surface [357]. On lunar surface, investigating the possibility of water-ice deposits has 

been a very challenging, yet fascinating task, which requires meticulous efforts. 

Conceptualization of MiniSAR was a breakthrough in this field for imaging permanently 

shadowed regions, where possibility of water- ice might be high. This chapter deals with the 

task of characterizing lunar surface by developing an algorithm for possible detection of water-

ice, and determining its electrical and physical properties by using MiniSAR data. 

 

6.1.  Introduction  

 There have been several missions for lunar exploration in order to collect data of lunar surface 

for studying its various properties, such as dielectric constant, surface roughness, mineral 

composition, chemical composition (e.g., H2, OH−, He, etc.,), regolith density, regolith layer 

thickness, etc., [188, 253, 276, 336, 413]. The presence of water-ice deposits or its constituents 

on lunar surface has been one of the most intense matters of research by various past lunar 

exploration missions. Various theoretical studies and observations have been carried out in past 
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for discussing the presence (or absence) of water-ice or water molecules (hydroxyl) on lunar 

surface [15, 126-128, 414]. It was hypothesized that water or water molecules may be delivered 

to Moon through bombardment of water-bearing impactors such as comets, asteroids, 

meteorites, and micro-meteorites [15, 230, 295], or can be created by reaction between protons 

derived by solar wind and oxygenated minerals on lunar soil [75, 241, 295, 365]. Water can 

also be present on surface of Moon by various other sources, such as endogenous sources (fire 

fountains, apatite, outgassing) [86, 321], giant interstellar clouds, interplanetary dust particles, 

and solar wind[241, 278].  These volatiles (water or water molecules) can be transported 

through ballistic trajectories, and after reaching permanently shadowed regions, they become 

cold trapped [15]. It has been believed that these volatile deposits might be there for billions of 

years in permanently shadowed polar regions of Moon, which have average surface 

temperature less than 40K due to absence of solar illumination [15, 281]. Recent study by 

Moon Mineralogy Mapper (M3)  has detected the presence of magmatic water under lunar 

surface that may be generated from interiors of Moon by unknown sources [32, 190].  

 The possibility of finding water-ice deposits is more in permanently shadowed regions of 

Moon. SAR provides a possible way of imaging these regions and analyses their scattering 

behaviour. MiniSAR was theorized to achieve this particular goal. It was the first polarimetric 

SAR outside the Earth orbit, on-board India's Chandrayaan-1 mission launched by Indian Space 

Research Organisation (ISRO) [359]. The aim of this mission was to gather valuable facts and 

evidences about scattering properties of both the regions of lunar poles lying either in 

illumination, or in permanent shadow [357]. In radar based missions, received radar circular 

polarization ratio (μc), which is defined as the ratio of same sense circular polarization (SC) to 

opposite sense circular polarization (OC), has been traditionally used as a key parameter for 

determining the evidences of possible water-ice deposits in cold dark permanently shadowed 

regions. Several radar based experiments have detected the presence of water-ice after 

obtaining high circular polarization ratio (μc >1) received from polar regions of Mercury [24, 

48], Jupiter [279], Mars [60], and Moon [225, 272]. High value of circular polarization ratio (μc 

>1), is caused due to density variations, particles, and voids in weakly absorbing media, like 

water-ice [400]. In weakly absorbing media, like ice, there exist wavelength sized forward 

scatterers in the form of dust, silicate rocks, voids, etc., which cause incident electromagnetic 

wave to undergo multiple forward scattering within the ice matrix. These multiple scattered 

waves interfere constructively with waves scattered in time-reversed direction (or backscatter 
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direction) leading to increase in SC backscatter, and hence, circular polarization ratio [261, 

359]. Thus, this process known as Coherent Backscatter Opposition Effect (CBOE), which 

takes place in ice-matrix, gives rise to high value of μc. However, further studies revealed that  

μc >1 may also occur due to double-bounce effect, which takes place in rough, dry surfaces 

containing rocks, blocky lava flows, etc., [53, 361]. Thus, μc >1 assumption, is also an indicator 

of surface roughness. These two situations which cause high μc values are depicted in Figure 

6.1. 

 

 

Figure 6.1: Situations depicting reasons for high circular polarization ratio [358]. 

 

 Differentiation of two regions on the basis of criterion μc >1, is very challenging because 

two different phenomena are associated with lunar surface, which are volume scattering caused 

by dielectric mixing due to presence of planetary water-ice, and double-bounce scattering 

caused by surface roughness due to ejecta, rocks, or lava flows on lunar surface. Therefore, it is 

required to develop such an approach that may differentiate these two regions. One feasible 

way of differentiating these regions is determination of textural (or roughness) information 

along with scattering phenomenon associated with these regions. Therefore, in this chapter, 

information of two different approaches (i.e., polarimetric and fractal) have been fused for 

segregating craters having higher possibility of containing water-ice deposits (or dielectric 

mixing) from rough regions. The polarimetric approaches, ‘m-δ’ decomposition [308] and ‘m-

χ’ decomposition [310], help in studying scattering phenomena associated with lunar surface, 

while fractal approach helps in identifying surfaces on the basis of their irregularity and 

roughness [158, 383]. Fractal based approach determines the roughness of any surface with the 
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renowned measure called fractal dimension ('D'), which has values lie in the range 2.0 to 3.0 

for any surface. Characterization of lunar surface is possible by using fractal-based approach, 

which creates one-to-one relation between the values of fractal dimension 'D' and texture (or 

roughness) measure of surfaces. It has been observed that value of D increases with increase in 

surface roughness [236, 292]. The fractal approach performs the clustering of pixels into 

different classes in terms of their roughness; however, it does not provide any additional 

information about the classes [199, 200, 249] .  

 Therefore, the objective of this chapter is to identify such regions on the lunar surface 

which have prominent volume scattering due to dielectric mixing rather than due to surface 

roughness, and to compute the dielectric properties of the identified region. For this purpose, in 

this chapter, a decision tree algorithm has been proposed for studying the possibility of volatile 

deposits on lunar surface by segregation of smooth regions from rough regions based on fractal 

dimension 'D', and then, applying favourable  conditions for likelihood of dielectric mixing due 

to water-ice deposits on the basis of μc >1 and volume scattering phenomenon. The decision 

criteria in the proposed algorithm have been obtained by analysing μc, m- decomposition, m-χ 

decomposition, and fractal dimension 'D'.  The criteria for possible existence of water-ice 

obtained by proposed approach have been combined with the criteria for possible icy craters 

proposed by Thompson et al. [371], and it has been observed that there are certain regions 

inside anomalous craters which satisfy the conditions proposed by both the approaches i.e., 

proposed approach and Thompson's approach. In these common regions, the possibility of 

finding water-ice deposits might be high. After obtaining possible locations of water-ice 

deposits on lunar surface by combined approach (proposed approach and Thomson’s 

approach), the study of electrical and physical properties such as dielectric constant of lunar 

surface (ε= ε’-j ε’’) [52, 413], loss tangent (tan δ) [413], and regolith bulk density (ρ0) [124], 

has been performed.  

 The chapter is organized as follows: section 6.2 gives the description about study area 

and data used. The detailed description of MiniSAR data has also been discussed in this 

section. Section 6.3 includes the theoretical background related to child parameters, 

decomposition approaches, and fractal approach. The description of electrical and physical 

parameters has also been given in this section. In section 6.4, proposed methodology has been 

discussed. In section 6.5, the results of proposed algorithm using data of Peary crater have been 

presented. The proposed algorithm has been applied on another MiniSAR data of 
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Rozhdestvenskiy crater, the results of which are discussed in section 6.6. The concluding 

remarks have been given in section 6.7. 

 

6.2.  Study Area and Data Used  

6.2.1.  Study Area 

For development and testing of proposed algorithm, MiniSAR data of Peary (Data-P) crater on 

lunar North Pole has been considered. Peary crater is large irregular shaped impact crater 

(diameter 77.7 km) located at 88.6° N, 33° E. 

 The proposed algorithm has also been tested on another MiniSAR data of 

Rozhdestvenskiy crater (Data-R) on North Polar Region of Moon. Rozhdestvenskiy crater is a 

bowl shaped large crater (diameter 177 km) located just opposite to Peary crater at 155° W, 

85.2° N [359].  

 Illumination studies at these two craters suggest that most of the area around the higher 

rim lies in permanent sun illumination, while small anomalous craters (diameter <10-20 km) on 

the floor of these craters experience permanent shadow [47, 237, 267, 359]. Thus, possibility 

for presence of water-ice within these craters may be large as compared to areas around higher 

rim [47, 237, 267].  

6.2.2.  Data Description  

MiniSAR was a single frequency (S-band-2.38GHz) hybrid polarity imaging radar having 

unique architecture among planetary radars. This sensor illuminated the lunar surface by left 

circular polarization (LCP) and received lunar backscatter in mutually coherent horizontal (H) 

and vertical (V) polarizations. In MiniSAR, the illumination of lunar surface was performed at 

incidence angle of 35° and ground range resolution of 150 m.  

 MiniSAR, being a dual polarimetric hybrid SAR system, provided four channel raw data 

as |ELH|2, |ELV|2, Real (ELH ELV
*), and Imaginary (ELH ELV

*) without any processing, where E 

represents complex voltage. The former two channels are horizontal and vertical receive 

amplitude images, while latter two channels are real and imaginary part of complex cross-

product of horizontal and vertical receive polarizations [308]. These four channels are basic 

building blocks for construction of Stokes vector g, which preserves overall information of 

backscattered electromagnetic field, and can be represented as, 
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 In second column of Equation (6.1), g1 represents total backscattered power, g2 represents 

difference of in-phase and quadrature phase received power, g3 and g4 are real and imaginary 

parts of cross-channel received power, respectively (refer Appendix-A for more details on 

Stokes vector). In third column of Equation (6.1), Stokes parameters (g1, g2, g3, g4) are 

expressed in terms of complex voltage E measured in hybrid polarimetric manner. In these 

expressions Re and Im represent real and imaginary parts, respectively, <...> represents 

multilooking (or spatial averaging), and '*' represents complex conjugate. In forth column, 

Stokes parameters are expressed in terms of Poincare variables χ and ψ , which are ellipticity 

and orientation angles, respectively, of  polarization ellipse, as shown in Figure A.2 in 

Appendix-A [310].  

 

6.3.  Theoretical Background 

Traditionally, μc >1 has been widely accepted criterion for identification of potential water-ice 

deposits on lunar surface [225, 272] and various other planetary surfaces [24, 48, 60]. 

However, circular polarization ratio (μc) alone may not be useful for finding the possible 

evidences for presence of water-ice deposits on lunar surface. The regions having volatile 

deposits exhibit μc >1 due to volume scattering phenomenon, as shown in Figure 6.1 [261, 359]. 

Thus, information about scattering mechanism may provide some additional information. Since 

SAR has the capability to obtain scattering information by using decomposition approaches, 

segregation of volume scattering dominant regions from other regions may be possible by 

decomposition of MiniSAR data. It is believed that μc >1 may also occur due to surface 

roughness resulted by rocks, cracks, lava flow, ejecta, etc., on lunar surface. These rough 

surfaces mainly contribute single and double-bounce scattering [53, 361]. However, little 

contribution of volume scattering may also occur due to multiple reflections on rough rocky 

surfaces. Thus, if roughness information is obtained by some means, it might aid in finding the 

possible presence of volumetric water-ice deposits on lunar surface. It is known that fractal 
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dimension 'D' is capable of identifying rough and smooth surfaces based on 'D' values [199, 

200, 249, 292] . For example, 2-dimensional surfaces exhibit D values in between 2.0 to 3.0 

with lower range corresponds to smooth surfaces and higher range corresponds to rough 

surfaces [292]. Therefore, fusing the information of fractal dimension 'D' with scattering 

information, MiniSAR data may provide regions exhibiting volume scattering due to dielectric 

mixing (by water-ice) rather than due to surface roughness. Thus, in this chapter, an attempt has 

been made to develop an algorithm, using scattering information obtained from decomposition 

approaches and roughness information from fractal dimension 'D', for identifying volume 

scattering regions due to dielectric mixing. Therefore, in this section review of methods related 

to information extraction about scattering mechanisms and roughness, has been presented. 

6.3.1.  Extracting Information of Scattering Mechanisms by Polarimetric 

Approaches 

The information about scattering mechanisms can be obtained by using either child parameters 

or decomposition parameters. They are discussed as follows: 

6.3.1.1 Child parameter extraction  

The Stokes parameters are used in formation of various useful quantitative measures called 

child parameters, which not only describe the scattering mechanisms of different targets but 

also provide information related to the geophysical properties, such as dielectric permittivity, 

density, surface roughness, geometric shape, size, and EM penetration capability [57, 58, 311]. 

These child parameters are: degree of polarization (DoP or m), circular polarization ratio (μc), 

linear polarization ratio (μL), degree of circular polarization (mc), degree of linear polarization 

(mL), relative LH-LV phase difference (δ), and ellipticity parameter (χ) [308, 310]. In the 

proposed approach, only some of the child parameters i.e., μc, m,, and χ, have been used 

because of their experimental validation done in earlier research, in which these parameters 

show capability to retrieve scattering behaviour of targets [252, 308, 310]. The detailed 

description of all the parameters has been presented below: 

a) Degree of polarization (m)  

The degree of polarization helps in determining the state of polarization of electromagnetic 

waves by characterizing the amount of depolarization in polarimetric SAR images [335]. It can 

be mathematically represented as [308], 
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where m=0 denotes completely depolarized wave, m=1 denotes fully polarized wave, and 

0<m<1 denotes partially polarized wave [335]. Therefore, lower m values correspond to 

volume scattering, whereas higher m values correspond to surface or double-bounce scattering 

[252]. 

b) Circular Polarization Ratio (μc) 

The circular polarization ratio is defined as the ratio of the same sense circular polarization 

(SC) to the opposite sense circular polarization (OC), given as [308],  
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The criterion μc>1 has been a prime indicator for detection of planetary water-ice deposits [271, 

272, 352].  

c) Relative LH-LV phase (δ) 

It is defined as the relative phase between two linearly polarized backscattered electric field 

vectors, which is given by [308], 
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where ‘–‘ sign in numerator represents transmission of left circular polarization. It is sensitive 

indicator of scattering mechanisms associated with the target.  The δ value clustered around 

+90° and around −90° reflect double-bounce and surface scattering, respectively, whereas 

distributed δ represents dominant volume scattering [252, 308]. 

d) Ellipticity angle (χ) [310] 

It preserves the sense of rotation of polarization ellipse (i.e., even versus odd-bounce) for 

transmission of electromagnetic field in circular or elliptical polarization. It is basically a shape 

parameter, which determines the degree up to which shape of polarization ellipse is oval [310]. 

It can be defined as, 
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e) Degree of circular polarization (mc) 

It is an indicator of obtaining the power contained in circularly polarized component of 

received radar echo. It is defined as [311],  

1

4

g

g
mc


 ,                       (6.6) 

f) Degree of linear polarization (mL) 

It is an indicator of multiple scattering versus subsurface scattering.  In case of subsurface 

scattering, backscatter response will have partially polarized linear waves. In received radar 

response, the degree of linear polarization is defined as [311],  
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g) Linear polarization ratio (μL) 

It gives ratio of polarized power contained in horizontal component and in vertical component, 

and is defined as [357], 
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6.3.1.2  Polarimetric decomposition approaches for segregation of scattering mechanisms 

The polarimetric decomposition methods utilize polarimetric data in optimum manner by 

identification of two or more independent components, which assist in classifying physical 

scattering phenomenon associated with the observed region [3, 250, 310]. There are two 

polarimetric decomposition methods based on hybrid polarimetric SAR data, namely m-  

decomposition [308] and m-χ decomposition [310]. These decomposition methods provide 

three scattering mechanisms, i.e., volume scattering, surface scattering, and double-bounce 

scattering.  These methods are described as follows: 

a) The m-δ Decomposition 

The m-δ decomposition makes use of degree of polarization (m), relative LH-LV phase 

difference (δ), and first Stokes vector (g1) as decomposition parameters, and provides fractional 

power related to three scattering components, which are expressed as [308],  

    ])sin1([ 5.0 1  mgf surface ,            (6.9a) 

         )]sin1([ 5.0 1  mgfdouble ,    (6.9b) 
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  )1(1 mgfvolume   ,     (6.9c)         

where fsurface,  fdouble, and fvolume represent power terms related to surface scattering, double-

bounce scattering, and volume scattering, respectively. 

b) The m-χ decomposition 

In m-χ decomposition, degree of polarization (m), ellipticity parameter (χ), and first Stokes 

vector (g1) are taken as decomposition parameters. The after-products of m-χ decomposition, 

i.e., three scattering component can be expressed as [310], 

    )]2sin1([ 5.0 1  mgf surface ,          (6.10a) 

                 )]2sin1([ 5.0 1  mgfdouble ,                                 (6.10b)

  )1(1 mgfvolume  ,                                  (6.10c)         

6.3.2.  Extraction of Roughness Information Using Fractal Approach  

The concept of fractal geometry was introduced by Mandelbrot in 1967 for describing self-

similar geometries, such as Von Koch curve, Cantor's dust, etc., for representing the 

characteristic of complex and irregular natural objects that cannot be analysed easily by 

classical Euclidean concepts [236]. Fractal based approach has been used by several researcher 

for determining textural features of surfaces [157-159]. In fractal geometry, fractal dimension 

'D' is the key parameter, which generalizes the concept of Euclidean geometry. Although, most 

natural surfaces are non-fractals, 'D' has been represented as useful index for surface 

characterization [96, 313, 314]. The fractal dimension, also known as shape's similarity 

dimension, can be defined mathematically as [236],  

   
)/1log(

)log(

r

N
D r ,             (6.11) 

where, Nr represents the number of similar parts of an object scaled down by the ratio r. The 

above formula is applicable to strictly self-similar objects. 

Fractal dimension 'D', is a scale-independent quantity, which is used for explaining the 

fractional gap of geometrical structure over limited scale [203, 364]. The value of fractal 

dimension is always greater than the topological dimension of any object [236]. In traditional 

Euclidean space, a point is topologically zero-dimensional, a line is one-dimensional (1D), an 

area is two-dimensional (2D), and a volume is three-dimensional (3D).  Thus, topological 

dimension of irregular natural objects cannot be represented by Euclidean geometry. Fractal 
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dimension 'D', being a non-integer quantity, helps in measuring geometric complexity and 

irregularity of imaged objects. A point pattern represents fractal dimension value 'D' in between 

0 and 1.0; a curve, between 1.0 and 2.0; and a surface, between 2.0 and 3.0 [236]. In general, 

irregularity or complexity of any object is directly proportional to the value of 'D'. Thus, it was 

suggested that fractal dimension is the perfect indicator of surface roughness [292, 364]. For 

2D surfaces or images, various land covers can be mapped in terms of roughness, like smooth, 

rough, medium rough, highly rough, and so on. Fractal dimension 'D' can map these terms in 

the range between 2.0 to 3.0 [292]. Smooth 2D surfaces exhibit 'D' value equals to 2.0, and 

with the increase in surface roughness, value of 'D' increases and reaches at value 3.0 for 

extremely rough surfaces. 

In literature, there are numerous methods for estimation of fractal dimension 'D', which 

are Box Counting Method [184, 324, 364];Triangular Prism Surface Area Method (TPSAM) 

[76, 97, 118, 178, 314, 363, 364]; Variogram Method [30, 97, 178, 364]; Isarithm Method [178, 

364]; Fourier Spectrum Method [292, 364]; Two Dimensional Variation Method (2DVM) [30]. 

Among these methods, TPSAM  is widely acknowledged method for producing accurate results 

[203]. 

Therefore, in this chapter, fractal dimension ‘D’ has been estimated with TPSAM [363]. 

It can be assumed that there is non-strict direct relation between texture of land cover type and 

value of fractal dimension 'D'; i.e., different land covers have unique values of fractal 

dimension 'D' based on their roughness/texture behaviour [292]. Thus, in this chapter, an 

attempt has been made to segregate smooth and rough lunar surfaces on the basis of ‘D’ value 

in order to resolve the confusion caused by μc >1 assumption, so as to obtain the regions having 

volume scattering due to possibility of dielectric mixing resulted by volatile deposits rather 

than due to rough surface. The description of TPSAM method has been provided below: 

6.3.2.1 Triangular Prism Surface Area Method (TPSAM) 

Triangular Prism Surface Area Method is one of the most widely acclaimed approach for 

estimation of fractal dimension ‘D’ [76, 178, 363]. In this method, three dimensional triangular 

prisms are formed by locating four adjacent pixels for an analysis window in the image. The 

intensity of these pixels are considered as height of corners of the prism, while the center pixel 

which is the average of four pixels forming the corners of prism, becomes the height of top of 

the prism. This structure in 3D space provides four triangular surfaces, the surface area of 

which are estimated by Heron’s formula [76]. Figure 6.2 exhibits an example of triangular 
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prism formed by considering a square array having four pixels at its corner which are separated 

by distance (step size) Δ and are located at coordinates  (i, j), (i+Δ, j), (i+Δ, j+Δ), and (i, j+Δ) 

having pixels values a, b, c, and d, respectively. These pixel values are considered as the height 

of the edges of the prism, while their average e is considered as the height of the top of prism. 

After joining these five points, a prism is formed having four triangular facets A, B, C, and D, 

at its top surface. At this point total area of upper surface of prism (sum of areas of A, B, C, and 

D) and area of base (Δ× Δ) are calculated. This process is repeated by increasing the step size 

in power of 2 and estimating total upper surface area of prism until whole image is taken for 

construction of prism. The base area as x-axis and upper surface area of the prism as y-axis, 

estimated at each step, are plotted on log-log scale. The least square estimation of this plot is 

used to calculate fractal dimension ‘D’ by subtracting slope of least square fit from 2.0, as,  

   SlopeD  0.2 ,                        (6.12) 

 It is observed that for very rough surface having large variation in grey scale values, the 

prism surface area varies drastically with change in base area. Due to this large variation, slope 

becomes drastically negative, and thus, resulted in fractal dimension ‘D’ approaching the value 

of 3.0. However, for very smooth surface having almost no variation in their grey scale values, 

there is very small change in prism area with respect to change in base area. The regression 

slope in this case is almost zero, and this resulted in D values near 2.0. In order to obtain 

comparable results of fractal dimension ‘D’ for variant surfaces, the data values have been 

normalized between 0 and 255.  
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Figure 6.2: Three dimensional view of triangular prism formed with four pixels [76]. 
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6.3.3.  Thompson’s Approach 

For segregation of possible icy and non-icy regions on lunar surface, Thompson et al. have 

proposed an empirical scattering model [370, 371], which is based on collaborating effect of 

specular and diffuse scattering mechanisms. The model postulates that specular scattering on 

lunar surface is obtained from smooth (or flat) surfaces and sub-surfaces which are oriented in 

the direction perpendicular to the radar line-of-sight. The smoothness of these surfaces is 

considered at a scale of more than tenth of wavelengths of radar for enormous region. The 

diffuse scattering is assumed to be obtained from rough surfaces or sub-surfaces. The 

roughness of these areas is considered at a scale of one wavelength. This type of scattering is 

obtained from wavelength sized rocks, or dielectric-mixing due to ice. The backscattering 

response of these rough regions is proportional to cosine of incidence angle. In regions having 

specular scattering, opposite sense circular (OC) echo is present, whereas in regions having 

diffuse scattering both opposite sense circular (OC) and same sense circular (SC) echoes are 

present. Therefore, based on the values of these SC and OC increments, this scattering model, 

proposes three unique surface conditions which may cause high value of circular polarization 

ratio (μc) on lunar surface. These conditions are, (a) roughness due to fresh young craters, (b) 

ice or dielectric composition, and (c) double-bounce craters. The segregation of these surface 

conditions has been provided by the values of increment in SC and OC echoes. In this chapter, 

the conditions for segregating icy craters proposed by Thompson et al. [371], have been used 

for the analysis. These conditions are described as follows: 

   0.1 ,        (6.13) 

     25.15.0   ,             (6.14) 

   5.1)/( Ratio ,               (6.15) 

     0.1 5.0  SumWeighted ,      (6.16) 

where α is increment in same sense circularly polarized (SC) echoes, γ is increment in opposite 

sense circularly polarized (OC) echoes, and weighted sum is increment in total power. These 

terms are defined as [370], 
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       88.012.0 SumWeighted ,             (6.19) 

where denominator in Equations (6.17) and (6.18), represents the averaged value of respective 

quantities over selected area of interest on lunar surface. The Equations (6.17) and (6.18) 

indicate that increment in SC and OC echoes (i.e., α and γ, respectively) represent the ratio of 

detected backscattered powers inside crater to the power in immediate background region in 

Moon [370]. The ratio (α/γ) acts as a substitute of circular polarization ratio μc. It can be 

obtained by using Equations (6.17), (6.18), and (6.3) as,  
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 ,            (6.20) 

6.3.4.  Estimation of Electrical and Physical Parameters of Lunar Surface 

The real part of dielectric constant of lunar surface has been determined by using Campbell’s 

approach [52], which is based on normalized ratio of horizontal and vertical polarizations as,  
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 ,          (6.21) 

where θi, σ0
LH, and σ0

LV are incidence angle, backscattering coefficients for LH and LV 

polarizations, respectively. For MiniSAR data, the incidence angle is 35°. The Equation (6.21) 

was originally developed with linear polarizations (i.e., HH and VV) for determining dielectric 

constant over Mars equivalent environment on Earth surface [52]. However, several studies 

have been performed by taking LH and LV polarizations, and encouraging results have been 

obtained [49, 50, 164, 307]. 

 Most of the lunar surface mainly consists of regolith layer, which is formed due to 

constant impacts by terrestrial objects on lunar surface. This regolith layer consists of dust, 

rock, minerals, and glass particles. The regolith bulk density is defined as “the mass of the 

material contained within a given volume”. It is expressed in grams per cubic centimeter [56]. 

Experimentally, it has been found that regolith bulk density is strongly related to real part of 

dielectric constant as [124], 

   'log53.30   ,             (6.22) 

 The Equation (6.22) shows that regolith bulk density is independent of chemical 

compositions within regolith layer. The dependency of regolith bulk density on temperature 

and frequency is also negligible.  
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 According to Wang et al., loss tangent can be expressed in terms of regolith bulk density 

as [413], 

    
)943.244.0( 010tan




 ,                  (6.23) 

 Imaginary part of dielectric constant can be determined as [124], 

     tan'''  ,           (6.24) 
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Figure 6.3:  Flowchart for analysis and study of MiniSAR data. 
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6.4.  Algorithm Development and Implementation  

Based on the theoretical concept, as discussed in section 6.3, an algorithm is proposed for 

detection of possible water-ice deposits on lunar surface. The course of steps followed for 

implementation and development of algorithm, and determination of electrical and physical 

properties of lunar surface are presented by flowchart in Figure 6.3.  This section also includes 

the description of pre-processing of MiniSAR data. The algorithm is developed and 

implemented on MiniSAR data of Peary crater (Data-P). 

6.4.1.  Data Pre-processing 

In MiniSAR data, the transmission of left circular polarization causes the relative LH-LV phase 

‘δ’ to be +90°. After reflection, due to change in sense of polarization, relative LH-LV phase 

‘δ’ should be −90° [311]. However, in MiniSAR data, it has been found that relative LH-LV 

phase (δ) undergoes a phase shift of 45° (or −135°) in counter-clockwise direction, which 

makes all the lunar surface to exhibit volume scattering. Thus, phase calibration of MiniSAR 

data is performed prior to Stokes vector formulation. There is no need to calibrate first and 

second bands of MiniSAR data (i.e., |ELH|2 and |ELV|2, respectively). However, the phase 

calibration of third and fourth bands of MiniSAR data [Real (ELH ELV
*) and Imaginary (ELH 

ELV
*)] has been performed as follows [311]: 

 

 45sin)Im(45cos)Re()Re( ***
LVLHLVLHLVLH EEEEEE ,               (6.25a) 

  45cos)Im(45sin)Re()Im( ***
LVLHLVLHLVLH EEEEEE ,               (6.25b) 

 

 The histograms for relative LH-LV phase ‘δ’ of uncalibrated and calibrated MiniSAR 

data are shown in Figure 6.4. These histograms indicate that uncalibrated MiniSAR data        

(Data-P: Peary crater) shows mean relative LH-LV phase ‘δ’ at −135°, while calibrated data 

has mean relative LH-LV phase ‘δ’ at −90°. 

 



 

 139 

 
(a) 

 
(b) 

Figure 6.4: Histograms of relative LH-LH phase (δ): (a) before, and (b) after, phase 

calibration of MiniSAR data of Peary crater (Data-P). 

 

 After phase correction, Stokes vector have been generated by Equation (6.1).  The maps 

of Stokes parameters i.e., g1, g2, g3, and g4 are presented in Figure 6.5. For the purpose of 

analysis, 12 region of interests (ROIs) have been selected over the floor of Peary crater        

(Data-P). These ROIs are represented as numbered rectangles on g1 image as shown in Figure 

6.5 (a). ROIs representing numbers 1 to 8, are anomalous craters on the floor of Peary crater, 

whereas 9-12 represent regions outside the anomalous craters.The Stokes parameters have been 

used for the extraction of child parameters specifically, degree of polarization (m), circular 

polarization ratio (μc), relative LH-LV phase (δ), and ellipticity angle (χ) by Equations (6.2)-

(6.5), respectively. The maps of these child parameters i.e., μc, m, δ, and χ, are presented in 

Figure 6.6. These child parameters have been further used to develop proposed algorithm for 

possible water-ice detection, and to obtain electrical and physical parameters of lunar surface 

(Figure 6.3). 
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     (a)      (b) 

        
       (c )     (d) 

Figure 6.5: Images of Stokes vector (a) g1, (b) g2, (c) g3, and (d) g4. The region of interest 

areas (ROIs) on the floor of Peary crater are exhibited in (a). 
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(a)                         (b) 

  
(c)                               (d) 

Figure 6.6: Images of child parameters: (a) circular polarization ratio (μc), (b) degree of 

polarization (m), (c) relative LH-LV phase (δ), and (d) ellipticity angle (χ) for MiniSAR data of 

Peary crater (Data-P). 
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6.4.2.  Algorithm Development for Possible Existence of Water-Ice Deposits  

It has been observed that identification of such regions is required that have dominant volume 

scattering due to dielectric mixing because they are more likely to have water-ice deposits, as 

elucidated in above sections. For obtaining such type of regions, several tests have to be 

performed i.e., segregation of regions having dominant volume scattering, segregation of 

smooth and rough surfaces, etc. This type of critical test can be performed by decision tree 

algorithm with much better way. Therefore, a decision tree algorithm has been proposed for 

retrieving regions exhibiting dominant volume scattering phenomenon due to dielectric mixing 

that may represent possibility of water-ice deposits. The decision criteria have been obtained by 

critically analysing child parameters [Equations (6.2)-(6.5)], decomposition parameters 

[Equations (6.9)-(6.10)], and fractal dimension 'D' (section 6.3.2.1) for whole image of 

MiniSAR data of Peary crater, i.e., Data-P. These decision criteria have been combined with 

the criteria for icy craters, proposed by Thompson [Equations (6.13)-(6.16)]. The steps for 

development of algorithm are discussed as follows: 

 

Step 1: Obtaining regions with μc>1: The criterion μc>1 has been well-acknowledged to 

obtain the possible existence of volatile deposits in the form of water-ice. Therefore, regions 

with μc >1 have been obtained for inspecting the feasibility of dielectric mixing due to water-

ice deposits on lunar surface. However, it may not confirm the presence of dielectric mixing 

due to water-ice, since μc >1 may also occur due to surface roughness [53, 361]. This scenario 

has already been depicted in Figure 6.1. Regions, which are having μc >1, are shown in the 

form of red pixels overlaid on g1 image in Figure 6.7. 

 

Step 2: Obtaining regions with dominant volume scattering: Dominant volume scattering is 

expected to be obtained either from rough surface (i.e., rock, rough blocky lava flows), or due 

to dielectric mixing (i.e., water-ice) [48, 361].  The regions with dominant volume scattering 

may be obtained by using following two methods: 

1) Using Relative LH-LV phase δ 

It is known that the values of relative LH-LV phase indicator 'δ' are near −90° for surface 

scattering, near +90° for dihedral scattering, and distributed between −180° and +180° for 

volume scattering [252]. Therefore, segregation of different scattering mechanisms on the basis 

of δ is possible. 
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Figure 6.7: The regions with μc >1 in form of red pixels overlaid on g1 image using 

MiniSAR data of Peary crater (Data-P). 

 

 

2) Using decomposition approach 

The regions with dominant volume scattering will satisfy following condition,  

   )( surfacebouncedoublevolume fff   ,                 (6.26) 

 In order to satisfy inequality in Equation (6.26), decomposition parameters extracted from 

m-δ and m-χ decomposition approaches may be used. Putting Equations (6.9) and (6.10), 

respectively, in Equations (6.26), we get,  
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 Equations (6.27a) and (6.27b) satisfy for the value of m < 0.33, however, m < 0.35 has been 

taken as threshold value to determine dominant volume scattering mechanism [199]. The 

regions having distributed δ and m<0.35, are shown in the form of red pixels overlaid on g1 

image in Figure 6.8. 
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(a)                         (b) 

Figure 6.8: Red pixels exhibiting regions with (a) distributed δ, and (b) m<0.35, on g1 image 

using MiniSAR data of Peary crater (Data-P). 

 

 Thus, based on the analysis performed in steps 1 and 2, a conclusion can be made that a 

region on lunar surface may have prospects for presence of water-ice deposits, if pixels of those 

regions satisfy the conditions μc>1, m<0.35, and distributed δ.  However, one may not provide 

the assurance about it because μc>1 can still be caused due to surface roughness. The use of 

fractal concept may help in solving this problem, which might be able to differentiate rough 

region from region having water-ice deposit by measuring fractal dimension 'D'.  

 

Step 3: Obtaining roughness information using fractal dimension ‘D’: Surface roughness 

can be measured by calculating fractal dimension ‘D’, which has the value between 2.0 to 3.0 

for any surface. Typically, ‘D’ value increases in correspondence with increment in surface 

roughness. More specifically, D=2.0 indicates extremely smooth surface, whereas D=3.0 

indicates drastically rough surface [199, 200, 249, 290, 292].  Map of local fractal dimension 

'D' has been generated for g1 image by moving local window over the area of interest (AOI) 

using Triangular Prism Surface Area Method (TPSAM), as discussed in section 6.3.2.1 [199, 

200, 249]. For generation of fractal dimension ‘D’ map, g1 image has been chosen since it 

contains total backscattered information of imaged region. 
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Table 6.1 The values of ‘D’ for different window size for MiniSAR data of                         

Peary crater (Data-P) 

Window Minimum Maximum Mean(MeD) Standard deviation(σD) 

5 1.536 3.356 2.151 0.1163 

7 1.536 3.356 2.151 0.1163 

9 1.596 3.126 2.173 0.092 

11 1.596 3.126 2.173 0.092 

13 1.596 3.126 2.173 0.093 

15 1.596 3.126 2.173 0.093 

 

  

 

 Window size plays an important role for representing texture measure using fractal 

dimension ‘D’. Therefore, effect of window size on ‘D’ values has been studied. The initial 

window size has been taken as 5×5, which has been incremented by step of 2 up to window 

size 15×15. The statistics (i.e., minimum, maximum, mean, and standard deviation) of ‘D’ 

values, obtained for each window size, has been enlisted in Table 6.1, which shows that there is 

no change in statistics of D for window sizes 5×5 and 7×7. At window size 9×9, statistics of D 

change which remain almost same up to window size 15×15. The minimum values of D are 

less than 2.0 and maximum values are greater than 3.0, because natural scenes modelled as 

fractals are not truly self-similar, but statistically self-similar [290]. Since standard deviation 

values are small for window size 9×9 and window size 11×11, therefore, window size 9×9 has 

been selected for retrieving roughness information of lunar surface using MiniSAR data. In 

order to make ‘D’ image compatible to all the images, warping of ‘D’ image has been 

performed, by taking first degree polynomial warp with nearest neighbour re-sampling method 

using ENVI 4.8.  

  The 'D' image for window size 9×9, has been classified by using unsupervised k-means 

classification algorithm in order to cluster lunar surface into two classes, rough and smooth 

[249]. The unsupervised classification approach identifies two clusters on the basis of ‘D’ 

values [423]. As discussed above, the regions with lower D values correspond to smooth 

region, whereas those with higher D values correspond to rough region. Therefore, for both the 

classes, corresponding D values have been calculated. The spatial statistics (i.e., mean and 

standard deviation) of D values, for these two clusters obtained by k-means algorithm, have 
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been presented in Table 6.2. This table shows that cluster-1 belongs to regions having lower 

range of D, whereas cluster-2 belongs to higher range of D. Therefore, cluster-1 and cluster-2 

are designated as smooth and rough surfaces, respectively. By observing minimum and 

maximum D values of both the classes in Table 6.2, it can be visualized that distinction 

between both the classes starts at D=2.17, which is also the mean value of whole ‘D’ image 

(i.e., MeD) measured at window size 9×9, as given in Table 6.1. Thus, the criterion D < MeD 

has been taken to segregate smooth class from rough class.  

 The D-map and its classified image for “Data-P” is shown in Figure 6.9, where red regions 

exhibit smooth surface, and green regions exhibit rough surface. From the classified image in 

Figure 6.9(b), it has been observed that ROIs 1-8 (except ROI 5) and ROI 11,as exhibited in 

Figure 6.5(a), have more than 55% area occurring in smooth class, whereas ROIs 5, 9, 10 and 

12 have more than 55% area occurring in rough region.  

  

Step-4: Obtaining icy regions with Thompson’s criteria: The performance of Thompson’s 

approach for obtaining possible icy regions has been evaluated by applying Thompson’s 

criteria given in Equations (6.13)-(6.16) on MiniSAR data of Peary crater i.e., Data-P.  The 

result of Thompson’s approach has been shown in Figure 6.10, in which red pixels overlaid on 

g1 image represent regions satisfying Thompson’s criteria for possible icy regions, as given in 

Equations (6.13)-(6.16).   

 

 

Table 6.2  Spatial statistics of 'D' values for Data-P using window 9×9 for cluster-1 and cluster-

2 obtained by k-means classification 

Statistics Smooth class Rough class 

Minimum 1.596 2.1735 

Maximum 2.1734 3.1267 

Mean  2.1069 2.2511 

Standard deviation 0.0497 0.0681 
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(a)                                  (b) 

Figure 6.9: The (a) fractal dimension ‘D’ map, (b) its corresponding k-means classified 

image measured at 9×9 window size. Red and green colours in (b) represent smooth and rough 

classes, respectively, for MiniSAR data of Peary crater (Data-P). 

 

 

 

Figure 6.10: Result of Thompson’s approach in which red pixels overlaid on g1 image of 

Peary crater are regions satisfying Thompson’s criteria for icy craters. 

 



 

 148 

Step-5: Fusing all the criteria obtained in above steps for development of decision tree 

algorithm: The criteria obtained by critical analysis performed in steps 1-4 i.e., μc>1, scattering 

mechanism information by decomposition methods, roughness information by fractal 

dimension ‘D’, and possible icy crater criteria of Thompson, have been taken altogether by 

developing a decision tree algorithm. This algorithm helps in extraction of volume scattering 

regions having possibility of dielectric mixing (i.e., water-ice) from region exhibiting volume 

scattering due to surface roughness. The proposed decision tree algorithm has been shown in 

Figure 6.11 incorporating these boundary conditions. 

  In the decision tree algorithm, as shown in Figure 6.11, first, the parameter   has been 

chosen for segregation of regions exhibiting surface and double-bounce scattering. The regions 

with  in close proximity of −90° and +90° are said to exhibit surface scattering and double-

bounce scattering, respectively [252, 308]. Thus, in the proposed decision tree approach, at 

node-1, the criterion −100°<<−80° has been taken for representing surface scattering, and at 

node-2, the criterion 80°<<100° has been taken for representing dihedral (double-bounce) 

scattering. Now, remaining region of lunar surface will exhibit dominant volume scattering.  

This volume scattering may be caused either due to presence of volatile deposits (i.e., dielectric 

mixing), or due to surface roughness. Therefore, at node-3 of proposed decision tree, fractal 

dimension 'D' has been chosen for segregating rough and smooth surfaces by using criterion    

D < (MeD), where MeD is mean value of whole D image, as obtained in step-3 of section 6.4.2. 

For Data-P, this condition has been obtained as D < 2.17. After obtaining smooth region 

representing volume scattering, Thompson’s criteria given in Equations (6.13)-(6.16) have been 

added along with the conditions μc >1 and  m < 0.35 (as obtained in step-2 of section 

6.4.2).These conditions at node-4 are the prime indicators for determining the presence of 

dielectric mixing due to water-ice deposits. Pixels satisfying the conditions at node-4 have 

higher possibility of containing water-ice deposits because in these regions μc > 1 is occurring 

within smooth surface, and thus, volume scattering may be occurring due to dielectric mixing 

(i.e., water-ice) only. 
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Figure 6.11: Decision tree for possible water-ice detection. 

 

6.4.3.  Determination of Electrical and Physical Properties of Lunar Surface 

The electrical and physical properties of lunar surface have been evaluated by calculating real 

part of dielectric constant (ε’), regolith bulk density (ρ0), loss tangent (tan δ), and imaginary 

part of dielectric constant (ε’’) by using Equations (6.21)-(6.24), respectively. 

 

6.5.  Results and Discussion 

The proposed algorithm has been implemented on MiniSAR data of Peary crater i.e., Data-P. 

The results of this data are presented below:  

6.5.1.  Analysis of Child Parameters and Fractal Dimension ‘D’  

In section 6.4.2 (step-3), window size 99 has been selected for obtaining the value of fractal 

dimension ‘D’. Therefore, all the child parameter i.e., degree of polarization ‘m’, circular 

polarization ratio ‘μc’, relative LH-LV phase ‘δ’, and ellipticity angle ‘χ’, as obtained by 

Equations (6.2)-(6.5), have been estimated for window size 99 in order to make them 

compatible with fractal dimension ‘D’. The evaluation of all the child parameters, i.e., μc, m, δ, 

χ, and D, measured at window size 99, has been performed for all 12 ROIs selected on the 
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floor of Peary crater (Data-P) in Figure 6.5(a). The statistical representation exhibiting 

maximum, minimum, mean, and standard deviation, of these parameters (μc, m, δ,  χ, and D) 

have been presented in Figure 6.12 for all 12 ROIs selected in Figure 6.5(a). 

 The analyses for each of the parameter i.e., μc, m, δ,  χ and D, for studying the decision 

tree as given in Figure 6.11, are as follows: 

 Figure 6.12 (a) shows that maximum value of μc is greater than 2.0 for all the ROIs 

except ROIs 4, 9,10,11, and 12. ROI 9, which is the region outside anomalous crater, 

has maximum value of μc as 0.9. Thus, possibility of having water-ice is negligible in 

this region.  However, in remaining ROIs (i.e., ROIs 1-12 except ROI 9), there may be 

possibility of water-ice deposits because maximum value of μc is greater than 1 

(criterion obtained in step-1 of section 6.4.2).  

 The degree of polarization m is found to have mean values around 0.4 with standard 

deviation of around 0.1 for all the ROIs except ROIs 9-12, for which average m value 

varies between 0.5 to 0.7, as shown in Figure 6.12 (b). Thus, the criterion for dominant 

volume scattering i.e., m<0.35 as obtained in step-2 of section 6.4.2, is completely 

fulfilled by ROIs 1-8.  

 The statistics of relative LH-LV phase δ have been presented in Figure 6.12(c), which 

indicates that δ is distributed between −180° (approx.) to +180° (approx.) for all the 

ROIs except ROI 9. For ROIs 1 to 8, average δ value ranges from −27° to −68°, and for 

ROI 9, it is obtained as −90°. The average δ value at ROI 9, represents the presence of 

surface scattering, whereas those of ROIs 1 to 8 represent the occurrence of volume 

scattering, as discussed in step-2 of section 6.4.2. Therefore, based on characteristics of 

δ value, the possibility of water-ice deposits in these ROIs (1 to 8) will be high. ROIs 

10-12 have average δ value between −81° to −88°, which is close to −90°. Thus, these 

regions will have dominant surface scattering, and hence, have minimum possibility of 

water-ice.  

 In Figure 6.12 (d), the statistical representation of ellipticity angle χ for all the ROIs has 

been shown. It shows that χ varies from −45° (approx.) to +45° (approx.) for ROIs 1 to 

8, from −45° to −5° for ROI 9, from −45° to 13° for ROIs 10 and 12, and from −45° to 

28° for ROI 11.  

 The statistics of fractal dimension D measured at 99 window have been presented in 

Figure 6.12(e) for all the ROIs. This figure shows that mean value of D is less than 2.17 
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for all the ROIs except ROIs 5, 9, 10, and 12, for which mean value of D is found to be 

2.2 (approximately). Based on the criterion D < 2.17 for segregating smooth regions, as 

obtained in step-3 of section 6.4.2, it is visualized from Figure 6.12(e) that all the ROIs 

have minimum value less than 2.17. 

 Therefore, in regions satisfying criterion D < 2.17, smoothness is relatively 

higher. If in these regions (with D < 2.17), all conditions obtained in section 6.4.2 i.e., 

μc > 1, m < 0.35, and δ distributed are satisfied, the possibility for presence of water-ice 

deposits might be high. 

    
(a)                            (b) 

    
(c)              (d) 

 

(e) 

Figure 6.12: Statistics of (a) μc , (b) m, (c) δ, (d) χ, and (e) D, for window size 99, for all 12 

ROIs selected in Figure 6.5 (a). 
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    (a)          (b) 

Figure 6.13: RGB composite image of (a) m- δ, and (b) m-χ decompositions, with single 

bounce, double-bounce and volume scattering, as red, green, and blue colours respectively, for 

MiniSAR data of Peary crater (Data-P). 

 

6.5.2.  Analysis of Decomposition Methods 

This section evaluates the performance of m-  and m-χ decomposition methods (as discussed 

in section 6.3.1.2), which provides the information about the scattering behaviour of lunar 

surface. The visual representation of these two decomposition methods has been provided in 

Figure 6.13. This figure shows RGB colour composite images of m-  and m-χ decomposition 

methods by taking respective fdouble, fvolume, and fsurface components, as red, green, and blue 

colours, respectively.    

 Figure 6.13 shows that ROIs 1-8 show dominance of volume scattering by both the 

decomposition methods. ROI 9 shows surface scattering (blue colour) and combination of 

surface and double-bounce scattering mechanisms, by m- [Figure 6.13 (a)] and m-χ [Figure 

6.13(b)] decomposition methods, respectively. ROI 10 exhibits both surface and volume 

scattering by m- decomposition [Figure 6.13(a)]. However, by m-χ decomposition [Figure 

6.13 (b)], some portion of ROI 10 exhibits volume scattering while other shows mixed surface 

and double-bounce scattering. ROI 11 shows dominance of surface scattering by m- 
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decomposition, and mixed surface and double-bounce scattering by m-χ decomposition. Major 

part of ROI 12 shows the dominance of double-bounce scattering. Surface scattering is also 

present in this ROI. Thus, based on the analysis of decomposition methods, it is possible to find 

water-ice deposits in ROIs 1-8 due to dominance of volume scattering in these regions. 

  

Table 6.3  Mean value of decomposition terms over selected ROIs on Data-P (Peary crater) 

ROI Methods fdouble fvolume fsurface 

1 m-δ 0.0671 0.2238 0.1496 

m-χ 0.0906 0.2238 0.1449 

2 m-δ 0.0606 0.2045 0.1234 

m-χ 0.0741 0.2045 0.1219 

3 m-δ 0.1454 0.4134 0.2799 

m-χ 0.1869 0.4134 0.2764 

4 m-δ 0.0581 0.2176 0.1426 

m-χ 0.0794 0.2176 0.1372 

5 m-δ 0.1192 0.3252 0.1768 

m-χ 0.1422 0.3252 0.1768 

6 m-δ 0.0335 0.1597 0.1085 

m-χ 0.0424 0.1597 0.1067 

7 m-δ 0.0595 0.1911 0.0988 

m-χ 0.0711 0.1911 0.0985 

8 m-δ 0.0908 0.2571 0.1279 

m-χ 0.0992 0.2571 0.1303 

9 m-δ 0.0201 0.1462 0.2081 

m-χ 0.0632 0.1462 0.1991 

10 m-δ 0.0451 0.2663 0.2621 

m-χ 0.0999 0.2663 0.2473 

11 m-δ 0.0407 0.2259 0.2422 

m-χ 0.0932 0.2259 0.2283 

12 m-δ 0.0673 0.1792 0.1951 

m-χ 0.1180 0.1792 0.1771 
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 Further, for more specific discussion, the quantitative analysis has been performed for 

both the decomposition methods by observing the contribution of each decomposition term, 

i.e., fdouble, fvolume, and fsurface [obtained in Equations (6.9) and (6.10)], for all 12 ROIs selected in 

Figure 6.5 (a).  The results are presented in Table 6.3.  It indicates that volume scattering term 

is invariant for both the decomposition methods, as also evident from Equations (6.9c) and 

(6.10c).  For ROIs 1 to 8 and 10, the contribution of volume scattering is more as compared to 

single and double-bounce scattering, for both the decomposition methods. In ROIs 9 and 11, 

surface scattering is more as compared to volume and double-bounce scattering. This result for 

ROI 9 and 11 is acceptable because ejecta or region outside anomalous crater is expected to 

give more single-bounce (or surface) scattering. In ROI 12, the contribution of volume 

scattering is more as compared to single and double-bounce scattering for m-χ decomposition, 

whereas the contribution of surface scattering is more as compared to volume and double-

bounce scattering, for m- decomposition. This quantitative analysis also suggests the presence 

of water-ice deposits in ROIs 1 to 8 because of more volume scattering as compared to surface 

and double-bounce scattering, in these regions. 

6.5.3.  Analysis of Proposed Decision Tree Algorithm (Figure 6.11) 

This section presents the analysis of all the conditions for obtaining possible locations of water-

ice deposits, as presented in proposed decision tree algorithm (Figure 6.11). Since all the 

criteria, as obtained in section-6.4.2, have been incorporated in proposed algorithm, possible 

locations having dielectric-mixing due to presence of water-ice deposits, may possibly be 

identified. For this purpose, the percentage of pixels satisfying these criteria (as obtained in 

steps 1-4 of section 6.4.2), which are μc > 1, m < 0.35, δ distributed, D < 2.17,  and Thompson’s 

criteria, have been calculated, and analysed for all the ROIs selected in Figure 6.5(a). The result 

of proposed algorithm and all the criterions obtained in step 1-4 of section-6.4.2 have been 

summarized in Table 6.4. Table 6.4 shows that ROIs 1-8 have significant percentage of pixels 

satisfying criterion     μc > 1. For these ROIs, more than 45% pixels satisfy criterion m < 0.35, 

which indicates the occurrence of volume scattering mechanism. All the ROIs from 1-8, except 

ROI 5, have more than 65% pixels satisfying criterion D < 2.17, the necessary condition for 

representing smooth region. The relative LH-LV phase δ has been found to be distributed in 

ROIs 1-8, as also evident from Figure 6.12(c). ROI 9 has no pixel satisfying criteria μc > 1. 

Thus, for this ROI, there is no possibility of having dielectric-mixing due to water-ice.  
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Table 6.4  Analysis based on criteria obtained in section 6.4.2 and proposed decision tree 

(Figure 6.11) 
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1 19% 45% 67% Distributed 
17.40% 0.93% 

Yes 

2 16% 54% 79% Distributed 
11.96% 0.74% 

Yes 

3 33% 50% 65% Distributed 
12.71% 2.9% 

Yes 

4 14% 47% 75% Distributed 
13.93% 0.61% 

Yes 

5 32% 57% 39% Distributed 
26.24% 2.02% 

Yes 

6 8% 46% 78% Distributed 
4.08% 0.18% 

Yes 

7 27% 63% 69% Distributed 
14.31% 0.21% 

Yes 

8 30% 70% 73% Distributed 
30.74% 4.35% 

Yes 

9 0% 2% 30% Non Distributed 
0.71% 0% 

No 

10 1% 12% 22% Distributed 
8.5% 0.14% 

Negligible 

11 3% 12% 57% Distributed 
12.27% 0.15% 

Negligible 

12 7% 1% 49% Distributed 
24.38% 0% 

Negligible 

 

 

 The percentage of pixels satisfying Thompson’s criteria (>4%) is quite good for all the 

ROIs except ROI 9. For ROI 9, very less percentage of pixels satisfy Thompson’s criteria. 

Appreciable pixels (>8%) satisfy Thompson criteria for ROIs 10, 11, and 12, which are regions 

outside anomalous craters. In these regions, very less pixels (< 7%) satisfy criteria μc > 1, which 

is favourable condition for dielectric-mixing. Based on m-δ and m-χ decomposition method 

(Table 6.3), it has been observed that ROI 11 exhibits dominant surface scattering, which is not 

the favourable condition for dielectric-mixing. However, Thompson’s approach shows that 

12.27% pixels in ROI 11 represent possibility of water-ice. On the other hand, proposed 

approach (Figure 6.11) shows that only 0.15% pixels, which is almost negligible, have 
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possibility of dielectric mixing in ROI 11. According to illumination study carried out in [47, 

237, 267, 359], the regions outside anomalous craters may be illuminated by sun. Thus, the 

probability for existence of water-ice deposits may be less in these regions (ROIs 9-12). Unlike 

Thompson’s approach, proposed decision tree method (Figure 6.11) has identified that these 

regions (ROIs 9-12) have very less possibility of water-ice deposits. Thus, the result of 

proposed decision tree algorithm (Figure 6.11) in Table 6.4, indicates there is more possibility 

of water-ice deposits to be present in ROIs 1-8 as compared to ROIs 9-12. The visual 

representation for the result of proposed decision tree (Figure 6.11), is expressed in Figure 6.14, 

which exhibits red pixels overlaid on g1 image. These red pixels indicate regions having 

possibility of water-ice deposits. 

 

 

 

 

Figure 6.14: Result of decision tree (Figure 6.11) exhibiting regions having possibility of 

water-ice deposits in the form of red pixels overlaid on g1 image using MiniSAR data of Peary 

crater. 
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6.5.4.  Estimation of Electrical and Physical Properties 

The maps of electrical and physical parameter i.e., real part of dielectric constant i.e., ε’ 

(Equation 6.21), imaginary part of dielectric constant i.e., ε’’ (Equation 6.24), loss tangent i.e., 

tan δ (Equation 6.23), and regolith bulk density i.e., ρ0 (Equation 6.22), are presented in Figure 

6.15. These values are estimated for possible icy regions (Figure 6.14) obtained by proposed 

approach (Figure 6.11). The mean value of ε’ for possible icy regions has been obtained as 

3.01. The mean values of ε’’, tan δ, and ρ0 for possible icy regions have been obtained as 0.034, 

0.008, and 1.97 g/cm3.  

      

     (a)         (b) 

          

                (c)            (d)          

Figure 6.15: Visual representation of (a) real part of dielectric constant (ε’), (b) imaginary 

part of dielectric constant (ε’’), (c) loss tangent (tan δ), and (d) Regolith bulk density (ρ0). 
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6.5.5.  Application of Proposed Algorithm on another MiniSAR Data 

The proposed algorithm has also been applied on MiniSAR data of Rozhdestvenskiy crater 

(Data-R), as described in section 6.2. After pre-processing, as described in section 6.4.1 and 

Figure 6.3, Stokes vector (g1, g2, g3, and g4) and child parameters (μc, m,, and χ) have been 

generated for window size 99, as discussed in section 6.4.2 (step-3). The 'D' image has been 

generated by using local window size 99 through TPSAM method, as discussed in section 

6.3.2.1, and then classified into two classes: rough and smooth by k-means algorithm. For 

“Data-R”, the mean value of ‘D’ i.e., MeD has been obtained as 2.15.  

 The g1 image of Data-R has been shown in Figure 6.16, in which 8 ROIs on the floor of 

Rozhdestvenskiy crater have been selected for the analysis. ROIs 1 and 2 are anomalous 

craters, whereas ROIs 3-8 are regions outside the anomalous craters on the floor of 

Rozhdestvenskiy crater.  

 

 

Figure 6.16: The g1 image representing selected ROIs on the floor of Rozhdestvenskiy crater.  

 

 The result of Thompson’s approach as given in Equations (6.13)-(6.16), and decision tree 

as shown in Figure 6.11, have been presented in Table 6.5. Comparing the results of these two 

methods in Table 6.5, it is observed that ROIs 1 and 2 have appreciable percentage of pixels 

satisfying criteria for possible presence of water-ice deposits. Table 6.5 shows that ROIs 3-6 

show good percentage of pixels (>8%) exhibiting icy regions by Thompson’s approach. 

However, the result of proposed approach (Figure 6.11) show very less percentage of pixels 

(<2%) satisfying the criteria for possible presence of water-ice. ROIs 7 and 8 show almost 
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negligible percentage of pixels (<0.3%) fulfilling the criteria of possible icy regions by both the 

methods. Thus, ROIs 1 and 2 show evidences of water-ice by proposed approach (Figure 6.11), 

whereas potential of having volatile deposits is negligible for ROIs 3-8, as depicted in Table 

6.5. In this section, the visual representation for the ROIs having possibility of water-ice i.e., 

ROIs 1 and 2 has been provided. Figure 6.17, represent possible locations of water-ice deposits 

in ROI-1 and ROI-2, respectively, for method presented in Figures 6.11. In these figures, red 

pixels overlaid on g1 image are the results of proposed algorithm (Figure 6.11). 

 

Table 6.5  Results of Thompson's approach [Equations (6.13)-(6.16)], and proposed decision 

tree approach (Figure 6.11), for MiniSAR data of Rozhdestvenskiy crater (Data-R) 

ROI Pixel % : 

Thompson’s 

approach 

Pixel % : 

Modified 

decision tree in 

Figure 6.11 

Pixel % : Possibility of 

dielectric mixing due to 

water ice 

1 23.76% 1.65% Yes 

2 7.05% 1.07% Yes 

3 8.1% 0.03% Negligible 

4 8.64% 0.06% Negligible 

5 22.46% 0.64% Negligible 

6 15.61% 0.21% Negligible 

7 0.27% 0% No 

8 0.13% 0.003% Negligible 

  

     

(a)    (b) 

Figure 6.17: Red pixels exhibiting possible locations for water-ice deposits on g1 image for 

(a) ROI-1, and (b) ROI-2, using proposed algorithm (Figure 6.11). 
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      Further, the electrical and physical parameter i.e., real part of dielectric constant i.e., ε’ 

(Equation 6.21), imaginary part of dielectric constant i.e., ε’’ (Equation 6.24), loss tangent i.e., 

tan δ (Equation 6.23), and regolith bulk density i.e., ρ0 (Equation 6.22), have been computed 

for icy regions obtained by proposed approach. The mean value of ε’, ε’’, tan δ and ρ0 for icy 

regions are obtained as 2.9, 0.038, 0.006, and 0.98 g/cm3, respectively. 

6.6.  Conclusion 

In this chapter, a decision tree method has been proposed, which has attempted to resolve the 

ambiguity caused by μc >1 assumption.  The criterion μc >1 creates ambiguity in a sense that it 

not only provides indication of possible presence of water-ice deposits but also indicates the 

presence of surface roughness. Therefore, the principle of fractals has been utilized, for 

obtaining roughness information through a parameter called fractal dimension D. It is expected 

that dielectric mixing due to water-ice deposits exhibits volume scattering. Therefore, in this 

chapter, scattering information has been retrieved by using m- and m-χ decomposition 

approaches. The exhaustive study has been carried out by analysing μc, m-, and m-χ 

decomposition approaches, and fractal dimension D, in order to obtain criteria for possible 

water-ice detection. The proposed decision tree approach utilizes the criteria for possible icy 

regions suggested by Thompson et al. along with criteria based on μc, m- and m-χ 

decomposition approaches, and fractal dimension D. This decision tree provides segregation of 

regions representing volume scattering resulted from volatile deposits rather than surface 

roughness. By visualizing the results of proposed approach, it can be concluded that the 

proposed approach has the capability to minimize the ambiguity created due to characterization 

by using μc alone. After retrieving regions having possible existence of water-ice deposits on 

lunar surface, the electrical and physical characteristics such as real part of dielectric constant 

(ε’), imaginary part of dielectric constant (ε’’), loss tangent (tan δ), and regolith bulk density 

(ρ0), are estimated for possible icy regions.  
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Chapter 7  

Conclusions and Future Scope 

 

The objective of this thesis is to project shortcomings and provide solutions for classification 

and retrieval of surface parameters of Earth and Moon by polarimetric SAR data. The 

polarimetric properties of SAR data are utilized in well-defined manner by extracting 

polarimetric parameters. Polarimetric parameters have great potential for describing scattering 

behaviour, electrical properties, and physical properties such as shape, orientation, size, 

symmetry, non-symmetry, or irregularity of targets. Therefore, in this thesis, emphasis is given 

to utilize polarimetric parameters to characterize and retrieve surface parameters of Earth and 

lunar surface by using minimum or no ‘a priori’ information. This chapter concludes the 

contributions made in the thesis followed by recommendations for further scope of research.  

 

7.1.  Contributions of the Thesis 

The thesis is divided into two parts-first part is related to critical analysis of fully polarimetric 

SAR data (ALOS PALSAR and/or Radarsat-2) for characterization and surface parameter 

retrieval of Earth’s surface. In this part, three tasks have been performed: analysis of model 

based decomposition and deorientation; identification and classification of different land covers 

by adaptive approach; and retrieval of soil moisture under vegetation cover by transmission line 

theory based model. The second part of thesis deals with the characterization of lunar surface 

using hybrid polarimetric SAR data (MiniSAR). The tasks carried out in this part are, analysis 

of scattering behaviour of lunar surface by critical observation of polarimetric parameters and 

decomposition parameters based on hybrid polarimetry; development of algorithm for possible 

water-ice detection; and estimation of electrical and physical parameters of lunar surface.  

 Chapter three, contributes in the field of model based target decomposition theorems, and 

provides an elaborated analysis of scattering mechanisms (surface ‘Ps’, double-bounce ‘Pd’, 

volume ‘Pv’ and/or helix ‘Pc’ scattering) obtained from different land covers after applying 

deorientation. Analysed methods without deorientation are three component decomposition 

(TCM) [138] and four component decomposition method (FCM) [425]. Analysed methods with 
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single deorientation (orthogonal rotation) are three component decomposition method with 

deorientation (TCMD) [210], four component decomposition method with deorientation 

(FCMD) [427], and four component decomposition with deorientation and additional volume 

scattering model (FCMDA) [325]. Two methods with double deorientation (orthogonal rotation 

and unitary transformation) are analysed, which are three component decomposition method 

with double deorientation and adaptive volume scattering (TCMDDA) [90] and four 

component decomposition method with double deorientation (FCMDD) [344]. Key issues 

addressed in this chapter are as follows: 

 Visual analysis of decomposition methods is quite helpful in observing scattering 

response of different land covers. Certain land covers such as urban exhibit 

improvement in scattering response after deorientation. It has been observed that after 

deorientation, volume scattering considerably reduces in urban area. Change in 

scattering response is observed after deorientation. However, the decomposition results 

of all the methods with deorientation appear almost same. 

 Pixel wise quantitative analysis of scattering terms indicates that pixel percentages for 

Pd and Ps increase after deorientation. Number of pixels representing Pv remain almost 

same for all the decomposition methods with or without deorientation. Number of 

pixels having all scattering mechanisms in common also increase in decomposition 

methods with deorientation. 

 Power wise quantitative analysis of scattering terms indicates that power of Pv reduces 

after deorientation. The increment in powers of Pd and Ps has been observed after 

deorientation. This analysis shows that characterization of urban and vegetation (short 

and tall) is difficult because of different scattering responses obtained by each 

decomposition methods. Bare soil exhibit strong surface scattering power by all the 

decomposition methods.  

 

 Chapter four, presents an adaptive decision tree based land cover classification approach, 

in which decision criterion are formed by utilizing spatial statistics (median and standard 

deviation) based adaptive threshold of polarimetric indices. The algorithm is based on 

obtaining optimum threshold of polarimetric indices based on overall accuracy provided by end 

user using genetic algorithm (GA). The contributions made in this chapter are as follows: 

 The chapter provides an exhaustive analysis of sixteen polarimetric indices (σ0
rr, σ

0
rl, 



 

 163 

σ0
ll, σ

0
hv, σ

0
hh, σ

0
vv, σ

0
45C, σ0

45X, σ0
rr/ σ

0
rl, σ

0
hv/σ

0
vv, σ

0
hv/σ

0
hh, σ

0
hh/σ

0
vv, WPS, RVI, NDPI, 

and CPR). The role of these polarimetric indices has been observed and analysed in 

characterization and segregation of different land covers. 

 The chapter presents a systematic way to obtain polarimetric indices providing best 

separation between two different classes by using the concept of separability index. 

 The algorithm has been tested and validated on two different ALOS PALSAR data of 

Roorkee. After optimization of algorithm for classification accuracy between 80% and 

100% by GA, classification maps for both data sets have been generated. The 

estimation of confusion matrix based on ROIs collected during ground survey shows 

overall accuracy and kappa coefficient for first data as 87.59% and 0.85, respectively, 

and for second data as 78.43% and 0.72, respectively. 

 The algorithm does not use fixed threshold and is adaptive in nature by making use of 

spatial statistics (median and standard deviation) of polarimetric indices. Based on end 

user requirement of overall classification accuracy, the algorithm adapts itself to tune 

threshold of polarimetric indices used in classification algorithm.  

 The proposed adaptive classification algorithm works well for similar sites and 

satellite sensors without any further need of tuning the threshold of polarimetric 

indices. 

 

 Chapter five, addresses the problem of retrieving soil moisture under vegetation cover. 

This problem has been solved by developing multilayer model for bare soil (two layers of soil) 

and vegetated regions (two layers of soil and one layer for vegetation-air mixture) on the basis 

of conventional transmission line theory, which allows the estimation of impedance or 

backscattering coefficient in terms of complex dielectric constants of considered media at 

constant thickness (depth in case of soil and height in case of vegetation). The thickness of first 

layer of soil has been taken as 5 cm, and second layer as infinite. The thickness of vegetation-

air mixed layer has been considered to be varied from 5 cm to 400 cm, assuming most of the 

agricultural vegetation covered in this range. The value of dielectric constant of each layer have 

been retrieved by GA and soil moisture for first layer of soil has been estimated by relationship 

given by Topp et al. [373]. Following inferences have been drawn in this chapter: 

 The proposed soil moisture algorithm works well for both bare soil and vegetated 

regions. The main highlight of this algorithm is its ability to estimate soil moisture for 
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vegetation having height up to 400 cm. 

 The soil moisture values retrieved by proposed approach shows good agreement with 

the observed value of soil moisture for both frequency bands L and C, by suing ALOS 

PALSAR data and Radarsat-2 data, respectively.  

 The advantage of this method lies in its simplicity and dependence on physical 

concept of transmission line theory. 

 The proposed soil moisture retrieval algorithm requires minimum amount of ‘a priori’ 

knowledge about test site.  

 

 Chapter six, represents second part of the thesis in which an algorithm for possible 

detection of water-ice on lunar surface has been developed. The study has been performed on 

hybrid polarimetric MiniSAR data of Peary and Rozhdestvenskiy craters on North Polar 

Region of Moon. The key issue addressed in this chapter is the ambiguity resulted by μc >1 

criterion, which represents scattering from both possible icy regions and rough regions. The 

water-ice deposits on lunar surface are expected to produce volume scattering. Therefore, the 

main objective of this chapter is to obtain volume scattering in smooth regions having μc >1 

criterion. Further, the electrical and physical parameters i.e., real part of dielectric constant (ε’), 

imaginary part of dielectric constant (ε’’), loss tangent (tan δ), and regolith bulk density (ρ0) 

have been computed. The contributions made in this chapter are as follows: 

 In this chapter, confusion caused by μc >1 criterion, has been resolved by using fractal 

dimension ‘D’, which exhibits one-to-one relationship with surface roughness.  

 Based on fractal dimension ‘D’, the criterion for obtaining smooth regions has been 

estimated as D < MeD, where MeD represents mean value of D.  

 The chapter uses polarimetric approaches (m-δ and m-χ decomposition methods) for 

obtaining scattering response. The criterion for dominant volume scattering (as 

expected from water-ice) has been estimated as m < 0.35.  

 Based on δ value, criteria for surface and double-bounce scattering mechanisms have 

been selected as −100 <  <−80 and 80 < <100, respectively. The volume scattering is 

exhibited by remaining region on lunar surface.    

 The decision tree formed by combining all the above mentioned criteria and 

Thompson’s criteria [371] for possible icy craters, show possibility of having water-ice 

on some of the anomalous craters on the floor of Peary and Rozhdestvenskiy craters.  
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In a nutshell, the contributions of proposed research work are as follows: 

 First contribution of the thesis is to provide both pixel wise and power wise elaborated 

analyses of model based decomposition methods and deorientation effect for various land 

covers. 

 Second contribution of the present research work is to provide a new way to use 

polarimetric parameters for characterization land covers using adaptive and scene-

independent classification algorithm. 

 Third contribution is the use of classical concept of transmission line theory for retrieval 

of soil moisture in both vegetated and bare soil areas requiring minimum ‘a priori’ 

information about sites. The algorithm works well for both L- and C- frequency bands. 

 Fourth major contribution is the development of algorithm for determining possible 

presence of water-ice deposits on lunar surface. This algorithm resolves the ambiguity 

caused due to same scattering response presented by both rough and icy regions through 

high value of circular polarization ratio, by using the concept of fractal dimension, a 

concept used for representing roughness.  

 

 Thus, present research work covers variant applications of SAR polarimetry with 

emphasis on requiring negligible prior information about study area. 

 

7.2.  Future Scope 

Present thesis work has the scope and possibilities to extend it further. A few major ones are 

listed as follows: 

 The present research work provides the solution of adaptive classification of various 

land covers using L-band ALOS PALSAR data. The design strategies of proposed 

classification algorithm can be utilized for application based on different SAR sensors 

operating at different frequency. 

 Currently available Indian satellite RISAT-1 provides huge scope in extending proposed 

classification algorithm for C-band because of providing amplitude, phase, and 

polarization state of backscattered wave in both linear and hybrid polarimetric mode. 

Therefore, beneficial features of some more polarimetric parameters can be exploited 
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for characterization of various land covers.  

 Differentiation of scattering response obtained from urban and tall vegetation (trees) is 

still an open challenge.  

 Fusion of several satellite sensors will provide more parameters for discrimination of 

different land covers. Therefore, proposed classification algorithm can be generalized to 

make it scene and sensor independent. 

 Further analysis is required to check the feasibility of proposed soil moisture retrieval 

algorithm for application in forest region.   

 Some scattering models based on IEM, SPM, PO etc., are required to be developed for 

estimating lunar surface parameters such as dielectric constant, roughness, and regolith 

thickness, for parameterization of surface and subsurface properties.  
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Appendix- A  

Foundation of SAR Polarimetry  

 

A1.  Wave Polarimetry   

A1.1. Polarization of Electromagnetic Wave 

Considering an orthogonal coordinate system (h, v, k) as shown in Figure A.1, a 

monochromatic plane EM wave propagating in positive direction k through loss-less medium 

can be expressed in terms of location vector r and time t as [40],  
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where E0h and E0v are the amplitudes of horizontally and vertically polarized EM waves. The 

terms δh and δv are the phases of these two orthogonal components and ω is angular frequency 

[37]. The elimination of the term (ωt-kr) leads to the following equation of ellipse by using 

some trigonometric identities: 
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where δ denotes the phase difference between Eh and Ev  and is defined as,  

vh   ,             (A.3) 
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Figure A.1: Description of coordinate system [160]. 
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 The extremity of electric field vector of a harmonic plane EM wave describes an elliptical 

locus in equiphase plane (plane perpendicular to direction of propagation) over time at fixed 

point in space, as shown in Figure A.2. This property of EM wave is known as polarization 

[165].  

 The polarization state of EM wave is expressed by orientation, shape, and size of the 

polarization ellipse accompanied by the sense of rotation of electric field vector, while 

observing the wave in such a way that it travels away from observer [165]. These parameters 

are defined as follows: 

 The size of polarization ellipse is defined by semi-major axis a and semi-minor axis b of 

polarization ellipse, which are related to amplitude of EM wave components as [42],  
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22
vh EEbaA   ,              (A.4) 

 The orientation angle ψ is defined as the angle between the major axis of the 

polarization ellipse and positive h - axis. This parameter describes the inclination of the 

ellipse, and is given by relation [102], 
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where α is a constructive variable representing absolute phase angle, which is defined 

as,  
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 The ellipticity angle χ is
 

defined as the ratio of minor and major semi-axes of 

polarization ellipse. It describes the shape of the ellipse, and is represented as [102], 

           ,tan
a

b
               (A.8) 

  or,  

  
44

         ,sin
2

sin)2(sin2sin
2
0

2
0

00 



 






vh

vh

EE

EE
  ,                  (A.9)             

 The sense of rotation of electric field vector is described by the sign of ellipticity angle 

χ. The positive value represents left-handed polarizations, whereas negative value 

represents right-handed polarizations [165]. 
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 In general, the EM wave is elliptically polarized. However, two extreme cases occur 

when ellipse collapses to a line and a circle. These two particular cases are [377]: 
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Figure A.2:  Polarization ellipse [165]. 
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A1.2. Stokes Vector 

Stokes vector represents the polarization of EM wave in terms of power quantities directly 

observed by radar systems [42, 102]. The Stokes vector can be defined as [416], 
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 The Stokes parameters are useful in defining the polarization, amplitude, and phase of 

EM wave. The Stokes parameter g1 represents the total power in polarized EM wave; g2 

represents the power contained in horizontally or vertically polarized EM wave; g3 represents 

power contained in linearly polarized EM wave oriented at 45° or 135°; and g4  represents the 

power contained in right or left circularly polarized EM wave. The non-zero value of any of the 

parameter i.e., g2, g3, or g4 represents the existence of polarized part of EM wave [42]. 

 The term degree of polarization, which describes the correlation between Eh and Ev is 

expressed as the ratio of power in completely polarized wave to the total power, and is defined 

as [416],  
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 ,                  (A.13) 

For completely polarized wave m=1 and for polarized wave 0<m<1. 

A1.3. Poincare Sphere 

The Stokes vector can be represented as a Cartesian coordinates of a point on a sphere known 

as Poincare sphere, which helps in graphical representation of polarization states of wave [42, 

165].  The Stokes vector is related to canonical angular variables (χ and ψ) of polarization 

ellipse, as defined in Equations (A.7) and (A.9), by following relation,  
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Therefore, the Stokes vector represented in Equation (A.12) is expressed as [165],  
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 Figure A.3 represents Poincare sphere, in which (g2, g3, g4) represents a spherical 

coordinate of a point on sphere of radius g1. The Poincare sphere provides an exclusive 

representation of each polarization state on the surface of sphere. The angles 2χ and 2ψ are the 

latitude and longitude of each polarization state. The Poincare sphere provides mapping of 

linear polarizations at the equator (χ =0°) and circular polarization at the poles. The portion of 

Poincare sphere above the equator i.e., χ > 0°, represents left-handed polarizations, and below 

the equator i.e., χ < 0°, represents right-handed polarizations. Thus, the Poincare sphere 

provides one-to-one mapping of all possible polarization states and points on sphere [42, 102]. 
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Figure A.3 : Poincare sphere [165]. 

 

A1.4. Polarization Ratio 

Polarization ratio is defined as the ratio of orthogonal components of electric field vector E as 

[42], 
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where α and δ are known as Deschamps parameters for defining the polarization states of EM 

wave [see Equation (A.6)]. The polarization ratio ρ can also be expressed in terms of 

orientation angle ψ and ellipticity angle χ by [422], 
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Therefore, polarization ratio ρ changes with change in polarization basis. 

A1.5. Jones Vector 

Jones vector represents the wave polarization of plane monochromatic electric field by utilizing 

least possible information [219].  

Equation (A.1) can be written as,  
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The Jones vector can then be defined as, 
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Thus, Jones vector determines the amplitude and phase of electric field vector.  

 In general, the polarization state of electric field expressed by Jones vector can be 

represented in any arbitrary orthogonal basis (m, n) as,  

   nEmEE nm ˆˆ  ,                      (A.21) 

Jones vector [Equation (A.21)] can be expressed in terms of polarization ratio given in 

Equation (A.17) as, 
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After some manipulations Equation (A.22) can be written as,  
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 Table A.1 provides the value of polarization basis for different bases [42].The 

information provided by Jones vector is equivalent to that of polarization ellipse parameters. 

Jones vector in terms of polarization ellipse parameters (χ and ψ) and initial phase (υ) can be 

represented as,  
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Table A. 1 Polarization state description in terms of orientation angle ψ, ellipticity angle χ, 

polarization ratio ρ, and Jones vector E [42] 
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A1.6. Special Unitary Group 

Jones vector in Equation (A.25) can be written as [40], 
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,              (A.26) 

where hm ˆˆ   represents unit vector corresponding to horizontal polarization. The matrices 

U2(ψ), U2(χ), and U2(υ) are the rotation matrices of special unitary group corresponding to 

orientation angle ψ, ellipticity angle χ, and absolute phase υ, respectively [219, 416, 422]. After 

combining these unitary rotation matrices, Equation (A.26) can be written as,  



 

 174 

    m(A UE ˆ),,2  ,          (A.27) 

These unitary matrices satisfy following conditions [316]: 
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In a similar way, Equation (A.23) can be written as [416],  
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This angle δi corresponds to reference phase of transformed polarization basis. After comparing 

Equations (A.26) and (A.29), it can be written as [416],  
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A1.7. Change in Polarization Basis 

Transformation of polarization basis is very important concept of SAR polarimetry. Two 

conditions need to be followed for polarization basis transformation: (a) amplitude should 

remain invariant, and (b) ortho-normality conditions must be preserved. A monochromatic 

plane wave can be expressed as a linear sum of orthogonal components of electric field 

obtained in any reference polarization basis [416]. There exist numerous numbers of 

polarization bases. Let’s suppose, polarization states in an arbitrary orthogonal basis (x, y) are 

required to be converted in another polarization basis (a, b). The Jones vector in these bases can 

be represented as, 

    bEaEyExEE bayx
ˆˆˆˆ  ,           (A.32) 

The corresponding Jones vector in these two bases are obtained as,  
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By using unitary transformation matrices U2(ψ, χ, υ),  
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which can be expressed as, 
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or,  
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A1.8. Polarization Description for Partially Polarized Wave  

The electric field vector represented in Equation (A.1) is completely polarized monochromatic 

plane wave tracing well defined fixed polarization ellipse. However, there exists another class 

of waves known as quasi-monochromatic or partially polarized waves having time-varying 

amplitude and phase parameters, which do not define well defined polarization ellipse. These 

waves occur due to interaction of monochromatic plane EM wave with time-dependent 

scatterers [219].  

 The quasi-monochromatic plane wave at fixed point in space can be represented as, 
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where  ω̄  is the mean wave frequency. Since, transmission in SAR is done at narrowband, 

wave frequency ω satisfies following condition [42]:  
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where Δω represents the spread in wave frequency. The time varying nature of E0h(t), E0v(t), 

and δ(t) resulted in spectral spread of Δf such that Δf<<ω/2π. If the reception of narrowband 

scattered wave is done in time interval τ such that τ<<2π/ Δf, the parameters E0h(t), E0v(t), and 

δ(t) are assumed to be constant over time. This characteristics corresponds to behaviour of 

monochromatic plane wave having mean wave frequency of ω̄ . The second case is when the 

reception of scattered wave is done in longer time interval such that τ>>2π/ Δf. In this case, the 

parameters E0h(t), E0v(t), and δ(t) no longer remain constant over time [378]. Such types of 

waves are known as partially polarized waves. Due to time dependence nature of these waves, 

their characterization is possible by time-averaged statistics. Therefore, the concept of wave 
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coherency matrix was introduced [429]. The wave coherency matrix is time-averaged product 

of Jones vector with its conjugate transpose, and can be expressed as, 
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where <…> represents ensemble averaging or time averaging. Equation (A.40) can be written 

in terms of Stokes vector (Equation (A.12)) as,  
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The Stokes vector in Equation (A.12) thus can be expressed for partially polarized wave as, 
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Equation (A.42) can be represented as the sum of completely polarized and completely 

unpolarized components of wave by [194],  
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where mg1 is the completely polarized part, and (1-m) g1 is the unpolarized part of EM wave. 

 The wave coherency matrix J is hermitian positive semi-definite matrix having non-

negative eigenvalues, and it satisfies following condition [416]: 
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 Due to hermitian matrix characteristics defined in Equation (A.44), trace (sum of 

diagonal elements) and determinant of matrix remains constant irrespective of unitary 

transformation. Therefore, Stokes vector will also be basis-invariant along with total power and 

degree of polarization.  
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A2. Scattering Polarimetry  

In scattering scenario, it is required to relate polarization behaviour of transmitted and scattered 

wave. This section provides the polarization description of scatterer by defining different 

matrices which are as follows: 

A2.1. Scattering Matrix 

The illumination of a scatterer by EM wave changes the polarization state and degree of 

polarization of incident wave depending upon the geometrical properties of targets. For 

deterministic and time-invariant targets, this transformation behaviour is expressed by 2×2 

complex matrix called scattering matrix [339]. This matrix is known as Sinclair matrix in 

backscattering scenario, and Jones matrix in forward scattering scenario. The scattering matrix 

relates Jones vector of incident and scattered wave as [379, 429],  
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where r is the distance between target and antenna. The term ejkr accounts for phase shift 

caused due to propagation of wave from transmitter to scatterer, and the term r-1 accounts for 

attenuation between incident and scattered wave due to spherical nature of wave [165]. The 

first subscript in [S] matrix in Equation (A.45) denote the transmitted polarization and the 

second subscript denote the received polarization. This matrix forms the basis of SAR 

polarimetry. In case of reciprocal target, scattering matrix is symmetrical with Shv=Svh.  

A2.2. Polarimetric Scattering Phenomenon 

Figure A.4 shows the coordinate system of a scattering problem in which fully polarized EM 

wave E
i
 is incident on a scatterer in the direction ki. The receiver accepts the scattered wave E

s
 

from the direction ks. At receiver location there are two conventions for representing coordinate 

systems. The representation of scattered field in (h1
s
, v1

s
, k1

s
) coordinate system is called Back-

Scatter Alignment (BSA), and in (h2
s
, v2

s
, k2

s
) coordinate system is called Forward Scatter 

Alignment (FSA). BSA is generally used in radar mono-static case for characterizing 

backscattering, whereas FSA is used in bi-static cases [165].  
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   Figure A.4:  Coordinate system and scattering geometry. 

 

A2.3. Scattering Target Vector for Backscattering Cases 

The scattering target vector help in describing scattering performance of distributed scatterers. 

In order to extract physical constructive information from 2×2 scattering matrix [Equation 

(A.45)], vectorization of scattering matrix is performed for obtaining scattering target vector 

[80]. Mathematically, target vector can be expressed as,  
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)(  STraceSV ,           (A.46) 

where V(.) denotes the vectorization operator. The term Ψ represents 2×2 complex basis matrix 

which is orthonormal under hermitian inner product, and κ represents target vector, which is 

expressed as,  

     T4321 ,,,   ,          (A.47) 

 In SAR polarimetry, two basis matrices are used in general which are, lexicographic basis 

ΨL and Pauli basis ΨP.  

The lexicographic basis ΨL is represented by [80],  
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Vectorization of [S] by ΨL using Equation (A.46) gives lexicographic scattering vector κL 

defined by,  

     TvvvhhvhhL SSSS ,,, ,            (A.49) 
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The Pauli basis ΨP is related to Pauli spin matrix as [80],  
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After vectorization by Equation (A.46) leads to Pauli scattering vector κP of the form,  

  ThvvhvhhvvvhhvvhhP SSjSSSSSS )(,,,  ,                   (A.51) 

The components of Pauli scattering vector are related to physical mechanisms which are 

described as follows [78]: 

 Shh + Svv     :  Isotropic surface scattering. 

 Shh − Svv     :  Isotropic dihedral scattering. 

 Shv+ Svh    :    Isotropic dihedral scattering having relative phase shift of π/4 with respect   

to horizontal. 

 j(Svh −Shv) :   Isotropic cross-polarizer, which transforms the incident wave into their          

orthogonal polarization states. This term appears in backscatter case only in 

the presence of Faraday rotation.  

 

 In backscattering scenario, for reciprocal scatterer having Shv=Svh, the scattering vectors 

in Equations (A.49) and (A.51) can be written as [322],  

     T
vvhvhhL SSS  ,2, ,                     (A.52) 

     T
hvvvhhvvhhP SSSSS

 
2,,  ,               (A.53) 

 In Equation (A.52), 2 is multiplied to cross-polar terms in order to satisfy conservation 

of norm (equals span or total power of scattering matrix) under polarization unitary basis 

transformation [80, 378]. 

A2.4. Matrices for Distributed Targets 

The scattering matrix expressed in Equation (A.45) is useful in characterization of scattering 

from point targets or stationary targets. However, in nature most of the scatterers usually vary 

with time and/or space. Therefore, there scatterers cannot be completely described by single 

scattering matrix. These targets are known as partial scatterers or distributed targets or 

depolarizing targets. Besides natural motion of scatterers, like growth of vegetation, motion of 

water surface, etc., artificial motions like movement of antenna in SAR systems resulted in 

illumination of scatterer with respect to time and/or space. Due to spatial and/or time variations 

of these scatterers, statistical averaging is required for describing polarization behaviour of 
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these targets. The most popular matrices in SAR polarimetry in this category are covariance 

and coherency matrices [219].   

 A polarimetric covariance matrix is formed by taking the outer product of lexicographic 

scattering vector [Equation (A.52)] with its transposed complex conjugate as  [379], 
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where <…> indicates spatial averaging, assuming homogeneous nature of the arbitrary 

scattering medium.  

 The outer product of Pauli scattering vector [Equation (A.53)] with its transposed 

complex conjugate gives polarimetric coherency matrix, defined as [80], 
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which can be represented as [219] 
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(A.57) 

  

 The interpretation of diagonal terms of coherency matrix is similar to component of Pauli 

vector, as described in section A2.3. The off-diagonal terms represent complex cross-

correlation terms. The interpretation of these terms is as follows [212]: 

 
2

11
2

1
VVHH SST              :  Single-bounce scattering. 

 
2

22
2

1
VVHH SST            : Double-bounce scattering. 

 
2

33 2 HVST                        : Volume scattering. 
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  VVHHHV SSST 
*

13               : Co-and cross polarized correlation affected by azimuth    

surface tilt. 

   *12 VVHHVVHH SSSST   : Correlation between double and single bounce scattering 

  VVHHHV SSST 
*

23 Im)Im(  :  Helix scattering. 

  VVHHHV SSST 
*

23 Re)Re(  :  Effect of azimuth terrain slope. 

 

 The covariance and coherency matrices defined in Equations (A.55) and (A.57) are 

positive semi-definite hermitian matrices, and have same eigenvalues [80]. These matrices are 

related to each other as,  

     33 ][][ UTUC
T

 , or     
T

UCUT 33 ][][  ,                    (A.58) 

where  U3 is special unitary matrix defined as, 
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A2.5. Basis Transformation for Scattering Matrix 

Considering basis transformation from (x,y) to (a,b) as in section A1.7, redefining scattering 

matrix Equation (A.45) as [192],  

      i
xyxy

s
xy ESE  ,               (A.60) 

      i
abab

s
ab ESE  ,               (A.61) 

The incident Jones vector in (x,y) basis is transformed to (a,b) basis according to Equation 

(A.36) as,  

    xy
i
ab EUE abxy )(2  ,                    (A.62) 

 In mono-static or in in backscattering scenario (BSA convention), the scattered wave 

propagates in the direction opposite to that of incident wave. Therefore, scattered Jones vector 

in (a, b) basis can be written as,  

    
s
xy

s
ab EUE abxy

*
2 )(  ,                     (A.63) 

 where conjugate (*) sign occurs due to inversion of coordinate system. By using Equations 

(A.62) and (A.63), Equation (A.60) can be written as [219], 
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which implies that, 

    1
2

*
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 abxyabxy USUS xyab ,                (A.65) 

By using the properties of unitary matrix, it can be written as,  

        ),,(),,( 22  USUS xy
T

ab  ,          (A.66) 

This transformation is known as “con-similarity transformation” [219]. The scattering matrix 

obtained in new basis should satisfy invariant conditions (i.e., invariant span and determinant) 

under unitary transformation. The elements of transformed scattering matrix in (a, b) basis can 

be written as [3, 37, 422], 
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,                 (A.67) 

  Let’s consider change of polarization basis from linear (h, v) to circular (l, r) basis. 

Referring Table-A.1, for left circular polarization ρ=j is introduced in Equation (A.67) for 

obtaining elements of scattering matrix in circular polarization as, 

     

)2(
2

1

)(
2

1

)2(
2

1

vvhvhhrr

vvhhlrrl

vvhvhhll

SjSSS

jSjSSS

SjSSS







,              (A.68) 

 

A2.6. Symmetry Properties 

Symmetry usually exists in all geophysical scatterers. The scattering behaviour of scatterers are 

completely described by scattering components of covariance/coherency matrices. Symmetry 

conditions impose some restrictions on number of independent components in 

covariance/coherency matrices based on the assumption that transformations after application 

of symmetry conditions remain invariant. Thus, symmetry conditions simplify the scattering 

problems by describing scattering behaviour of scatterers quantitatively [264]. Three symmetry 
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conditions observed in scatterers are reflection, rotation, and azimuthal symmetries (Figure 

A.5), which are described as follows: 

 

P Q

A

A 

A

A 

A

A  

     (a)        (b)            (c) 

Figure A.5:   (a) Reflection symmetry, (b) rotation symmetry, and (c) azimuthal symmetry 

[160]. 

 

a. Reflection symmetry 

 The assumption of reflection symmetry is that any scatterer located at P has similar 

scatterer located in the direction just opposite to it say, Q, about scattering plane AA’. Axis 

AA’ includes the direction of radar line-of-sight, and has the possibility to be rotated by an 

angle θ about radar line-of-sight. This symmetry condition is depicted in Figure A.5(a). 

 In alignment condition (θ=0°), scattering matrix and Pauli scattering vectors [Equation 

(A.53)] at location P, and its mirrored location Q, are of the form [264]: 
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 Observed coherency matrix is determined as the summation of coherency matrices 

obtained at P and Q as [264],  



 

 184 

  













































33
*
23

*
13

2322
*
12

131211

33
*
23

*
13

2322
*
12

131211

][

][][][

ttt

ttt

ttt

ttt

ttt

ttt

T

TTT QP

’         (A.70) 

 Equation (A.70) implies that after application of reflection symmetry condition, number 

of independent scattering components are reduced to five as compared to nine in original 

coherency matrix. As evident from Equation (A.70) that there is no correlation between co-

polarized and cross-polarized scattering components, i.e., 

  0)()(
**
 hvvvhhhvvvhh SSSSSS ,     (A.71) 

 Reflection symmetry usually appear in smooth surface, such as water, tilled fields in the 

at right angle to row direction, etc., [264].  

b. Rotation symmetry 

 Rotation symmetry assumes invariance of covariance/coherency matrix under random 

rotation of plane of polarization about radar line-of-sight, as presented in Figure A.5(b). 

Rotated coherency matrix with rotation about radar line-of sight by angle θ [80],  

  TRTRT *)(])[()(   ,                (A.72) 

where R(θ) is orthogonal rotation matrix defined as,  
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 The rotation invariance condition in mathematical terms, assumes target scattering 

vectors (Pauli vectors for coherency matrix) to be equivalent to eigenvectors of rotation matrix 

R(θ). These eigenvectors are represented as [80],  
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 The rotation invariant coherency matrix is described by linear summation of outer 

product of eigenvectors given in Equation (A.74) as, 
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where a, b, and c, are eigenvalues of T. The inferences drawn from equation (A.75) are as 

follows [160]: 

 Two of the diagonal terms are equal, i.e.,  

  
22

2 hvvvhh SSS  ,                   (A.76) 

 The term (Shh+Svv) is not correlated to any of the term (Shh−Svv) or Shv, i.e.,  

  0)())((
**  hvvvhhvvhhvvhh SSSSSSS ,                          (A.77) 

 Correlation between (Shh−Svv) and Shv remains intact after rotation symmetry, 

i.e.,  

   0)(
*
 hvvvhh SSS ,                   (A.78) 

 Rotation symmetry exists in random gyro-tropic media, like Earth’s ionosphere and 

helical shaped targets [264].  

c. Azimuthal symmetry  

Azimuthal symmetry is general symmetry property, which assumes that reflection symmetry 

exists for all the scattering planes at all rotation angles θ [264]. Thus, it possesses the 

characteristics of both reflection and rotation symmetry, as visualized from Figure A.5 (c).  

 The Equation corresponding to azimuthal symmetry is obtained by applying the concept 

of reflection symmetry on rotation symmetry condition defined by Equation (A.75) as,  
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 The Equation (A.79) indicates that by application of azimuthal symmetry, number of 

independent parameters reduce to two, as two of the diagonal terms are equal, as presented in 

Equation (A.79).  
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Appendix-B 

Flowcharts of Model Based Decomposition Methods 

 

B1. Three Component Model Based Decomposition (TCM) 

 

NoYes

 

 

Figure B.1: Flowchart of algorithm for three component model based decomposition    

(TCM) [9].  
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B2. Four Component Model Based Decomposition (FCM) 

Helix Scattering power

Volume 
scattering 

Power

If   Pv  <  0 , then Pc  = 0  (remove helix scattering )  = 0 comp. (Pv, Pd, Ps) decomposition

Double-bounce 
scattering

Surface 
Scattering

NoYes

If

Yes

No

-2 dB +2 dB

 

Figure B.2: Flowchart of algorithm for four component model based decomposition (FCM) 

[425]. 
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B.3. Three Component Model Based Decomposition with Deorientation (TCMD) 

 

NoYes

 

 

Figure B.3: Flowchart of algorithm for three component model based decomposition with 

deorientation (TCMD). 
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B4. Three Component Model Based Decomposition with Double Deorientation and 

Adaptive Volume Scattering Component (TCMDDA) 

T(θ)

T(φ )=T 

NOYES

YES NO

YES YES NONO

 

Figure B.4: Flowchart of algorithm for three component model based decomposition with 

double deorientation and adaptive volume scattering component (TCMDDA) [90]. 
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B5. Four Component Model Based Decomposition with Deorientation (FCMD) 

 

Rotation of data matrix

Four-component decompositon Helix Scattering power

Volume 
scattering 

Power

If   Pv  <  0 , then Pc  = 0  (remove helix scattering )  = 0 comp. (Pv, Pd, Ps) decomposition

Double-bounce 
scattering

Surface 
Scattering

NoYes

If

-2 dB +2 dB

Yes

No

 

Figure B.5:  Flowchart of algorithm for four component model based decomposition with 

deorientation (FCMD) [427]. 
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B6. Four Component Decomposition with Deorientation and Additional Volume 

Scattering Model (FCMDA) 

 

Rotation of data matrix

Four-component decompositon Helix Scattering power

Volume 
scattering 

Power

If   Pv  <  0 , then Pc  = 0  (remove helix scattering )  = 0 comp. (Pv, Pd, Ps) decomposition

Double-bounce scattering 
dominantSurface 

Scattering 
dominant

NoYes

If

-2 dB +2 dB

Yes No

Surface 
Scattering Double 

bounce 
scattering

 

Figure B.6: Flowchart of algorithm for four component decomposition with deorientation 

and additional volume scattering model (FCMDA) [325]. 
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B7. Four Component Model Based Decomposition Method with Double Deorientation 

(Unitary Transformation) (FCMDD) 

Unitary transformation of 
data matrix

Four-component decompositon Helix Scattering power

Volume 
scattering 

Power

If   Pv  <  0 , then Pc  = 0  (remove helix scattering )  = 0 comp. (Pv, Pd, Ps) decomposition

Double-bounce scattering 
dominantSurface 

Scattering 
dominant

NoYes

If

-2 dB +2 dB

Yes No

Surface 
Scattering Double 

bounce 
scattering

 

 Figure B.7: Flowchart of algorithm for four component model based decomposition 

method with double deorientation (unitary transformation) (FCMDD) [344]. 
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Appendix-C 

Results of Model Based Decomposition Methods 

 

C1. For Region- 2: Meerut 

Data ID- PASL1100904231713261001150001 

Center latitude- 28° 58' 32'' N  

Center longitude -77° 42' 20'' E 

 

In this region, five areas are selected for the analysis. In Figure C.1, numbers 1 to 4 represent 

urban areas designated as urban-1, urban-2, urban-3, and urban-4, respectively. White rectangle 

in Figure C.1, represent tall vegetation.  
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a) Visual analysis 

 

 
(a)    (b)    (c) 

    
(d)    (e)    (f) 

   
      (g) 

Figure C.1:  RGB colour composite images with Pd as red component, Pv as green 

component, and Ps as blue colours for Region-2 (Meerut) : (a) TCM, (b) FCM, (c) TCMD, (d) 

TCMDDA, (e) FCMD, (f) FCMDA, and (g) FCMDD. 

 

 

 

 

 



 

 197 

b) Power-wise quantitative analysis  

 

  
(a)     (b) 

  
(c )     (d) 

 
(e) 

Figure C.2: Result of power wise analysis for studied decomposition methods for Region-2 

(Meerut): (a) urban-1, (b) urban-2, (c) urban-3, (d) urban-4, and (e) tall vegetation, regions 

represented by number 1 to 4 and white rectangle, respectively, in Figure C.1. 
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C2. For Region-3: New Delhi 

Data ID- PASL1100904231713261001150001 

Center latitude- 28° 58' 32'' N  

Center longitude -77° 42' 20'' E 

 In this region, six areas have been selected for the analysis. Numbers 1 to 5 in Figure C.3 

represent urban areas designated as urban-1, urban-2, urban-3, urban-4, and urban-5, 

respectively. Number 6 represent bridge over the river. 

 

a) Visual analysis 

 

   
(a)     (b)    (c) 

  
(d)      (e)    (f) 

  
      (g) 

 

Figure C.3: RGB colour composite images with Pd as red colour, Pv as green colour, and Ps 

as blue colour for Region-3 (New Delhi): (a) TCM, (b) FCM, (c) TCMD, (d) TCMDDA, (e) 

FCMD, (f) FCMDA, and (g) FCMDD. 
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b) Power-wise quantitative analysis  

 

   
(a)      (b) 

  
(c)      (d) 

  
(e)        (f) 

Figure C.4: Result for power wise analysis of studied decomposition methods for Region-3 

(New Delhi): (a) urban-1, (b) urban-2, (c) urban-3, (d) urban-4, (e) urban-5, and (f) bridge, 

represented by number 1 to 6, respectively, in Figure C.3. 
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