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 ABSTRACT 

 

Himalaya is the most seismically active region in the world. This is the results of collision 

between the Indian and Eurasian plate, which is still, operated. The collision of these continental 

plates results in crustal shortening along the northern edges of the Indian plate. This process has 

given rise to three major thrust planes: the Main Central Thrust (MCT), the Main Boundary Thrust 

(MBT) and the Main Frontal Thrust (MFT) (Gansser, 1964; Molnar and Chen, 1983).The central 

seismic gap region of the Himalaya which lies in the northern part of the Indian subcontinent is 

exposed to great seismic hazard. The State of Uttarakhand falls in the central seismic gap and 

hence any large earthquake in this region will pose great destruction. This region has witnessed 

two such damaging earthquakes in recent past viz. the Uttarkashi earthquake (Ms 7.1) of 20 

October 1991 and the Chamoli earthquake (Ms 6.6) 28 March 1999. Devastation caused by these 

earthquakes has drawn interest of seismologist to investigate the attenuation characteristics of the 

medium in this region. It has been seen that the attenuation characteristics of medium plays an 

important role in the earthquake ground motion at a particular site. Different types of rocks have 

different attenuating properties. Attenuation characteristics of the medium control the decay of the 

seismic energy in the lithosphere. Attenuation of the seismic wave is the reduction in the amplitude 

or energy caused by heterogeneity and anelasticity in the earth. This attenuation can be 

quantitatively defined by the inverse of the dimensionless quantity known as quality factor Q, this 

is the ratio of stored to dissipated energy during one cycle of the wave (Johnston and Toksoz 

1981). 

The strong motion data is fundamental for earthquake engineering studies such as 

attenuation properties, advance structural analysis, seismic hazard analysis and calibration of 

ground motion predication relationships. Several strong motions have been observed in the 

Himalaya region in the past. The destruction of these earthquakes is very high. The State of 

Uttarakhand has been occupied by the Himalayan mountain chain. The faults in this area are 

capable of generating large magnitude ground motion that would subject adjacent areas to 

significant ground shaking. Few studies have been carried out to understand the attenuation 

characteristics of the subsurface medium in this part of the Himalaya, which is mainly due to the 

scarcity of strong motion data. The main goal of this study is to improve the scientific 
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understanding of the physical processes that control strong shaking and to develop reliable estimate 

of seismic hazard for reduction of loss of life and property during future earthquakes through 

improved earthquake resistant structure. 

Strong motion data is important for seismic hazard assessment in the Uttarakhand 

Himalaya. In the present study attenuation relations have been developed for the Kumaon and 

Garhwal Himalaya using strong motion data recorded by two regional networks operated in these 

regions. Damped least square inversion technique given by Livenberg (1944) has been used for 

obtaining peak ground attenuation relations. Dependency of the developed attenuation relations on 

distance parameters has been also checked. Obtained attenuation relation for the Kumaon and 

Garhwal Himalaya is further used to test the normality and model adequacies, which satisfied this 

test. Although worldwide attenuation relationships given by various researchers have not been 

satisfied this test with the Himalaya earthquakes data set. This test confirms the suitability of the 

developed attenuation relations for regional studies.  

To validate the developed attenuation relations, strong ground motion records have been 

simulated for the 1991 Uttarkashi and the 1999 Chamoli earthquakes which occurred in recent past 

in the Uttarakhand Himalaya. Semi empirical simulation technique given by Midorikawa (1993) 

has been used in this study. In the recent years semi empirical simulation technique of strong 

ground motion has developed as an effective tool to simulate strong motion records. Semi 

empirical technique has been extensively tested for its applicability in simulation of strong ground 

motion by Midorikawa (1993), Joshi and Patel (1997), Joshi et al. (1999, 2001), Kumar et al. 

(1997), Joshi (2001, 2004), Joshi and Midorikawa (2004), Joshi and Mohan (2008). This 

simulation technique is in turn dependent on attenuation relation of peak ground acceleration. The 

source parameters of the Uttarkashi and Chamoli earthquakes have been used for earlier studies. 

Strong motion records of the Uttarkashi and Chamoli earthquakes have been simulated at nine 

stations, which recorded these earthquakes. Comparison of the observed and simulated peak 

ground acceleration is made in terms of root mean square error (RMSE). Simulation records of 

these earthquakes give the good results, which validated developed attenuation relation.  

Attenuation study plays an important role for safe deign of engineering structure in 

seismically active regions. In the present thesis, comparative study of attenuation trend in the 
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Kumaon and Garhwal Himalaya has been investigated using regional strong motion data. Coda 

wave quality factor (Qc(f)) has been observed for these regions. Similar strong motion dataset of 

nine earthquakes recorded at six stations has been used for both regions. Single backscattering 

technique given by Aki and Chouet (1975) has been used in the present study. Observed coda wave 

quality factor (Qc(f)) value has been compared with other relations given for the Indian and other 

worldwide regions, which falls in the range and justified these results. Observed coda wave quality 

factor (Qc(f)) for both region gives the different trend of attenuation characteristics of seismic 

wave. The Kumaon Himalaya gives the less coda wave quality factor (Qc(f)) as compared to the 

Garhwal Himalaya region i.e. the Kumaon Himalaya has high attenuation medium beneath the 

surface. This attenuation trend has also observed in developed relations of peak ground attenuation 

in this work. 

  A modified seismic hazard technique of seismic hazard zonation initially given by Joshi 

and Patel (1997) has been used for seismic hazard zonation of the Uttarakhand Himalaya region in 

the present study. This technique has been used in different parts of the Himalaya. Worldwide 

attenuation relations of peak ground acceleration given by Abrahamson and Litehiser (1989) have 

been used by earlier researchers for seismic zonation. Modified seismic hazard zonation technique 

and developed attenuation relations have been used in the present work. Seismic hazard zonation 

map for probability of exceendance of peak ground acceleration of 100 and 200 gals have been 

prepared in the present work. These map shows that the many place of the Uttarakhand regions 

falls in high hazardous zone. 
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CHAPTER - 1  

Introduction 

  

The Himalayan orogenic belt is one of the youngest orogens in the world; it was formed as 

a result of the collision, which is still in progress, between the Indian and Eurasian plates which 

begun in the Early Eocene (Molnar and Tapponnier 1975; Powell 1979; Norton and Sclater 1979; 

Patriat and Achache 1984; Searle et al. 1987). Himalayas have witnessed a number of devastating 

earthquakes in recent past. Most of the seismic activities in the Himalayan region are concerted 

along shallow north-dipping planes, which indicates under thrusting of the Indian plate (Kumar and 

Mahajan 2001). Three zones in the entire region of Himalaya in the Indian subcontinent have been 

demarcated as zones of seismic gaps by Khattri (1987). Uttarakhand state of India lies in one of the 

three seismic gaps. The Garhwal and Kumaon are the two major parts of the Uttarakhand 

Himalaya. This region has high density of population, hence attenuation study in these regions 

plays an important role in characterization of seismic hazards. The region of the Garhwal Himalaya 

has recently witness two big earthquakes viz. the Uttarkashi earthquake of October 20, 1991 (Ms = 

7.1) and the Chamoli earthquake of March 28, 1999 (Ms = 6.6). Although the Kumaon Himalaya 

has been frequently visited by several earthquakes of small magnitude, it has not experienced any 

large earthquakes in the recent past. Due to the limited database available in the rough and difficult 

terrain of the Uttarakhand Himalaya, comparative studies have not been done to estimate 

attenuation properties of the medium in these parts of the Himalaya. 

 

1.1 Ground Motion Prediction Equations: Literature - Review  

The possibility of large earthquakes in the seismically active region can‟t be ruled out. The 

construction of protected engineering design depends on various seismic parameters. In almost all 

the practical cases of seismic hazard analysis, the demand is expressed only as a function of the 

peak ground acceleration (Shah and Dong 1984). Peak ground acceleration is often treated as an 

important seismic parameter, which is directly related to the force experienced by a structure 

during an earthquake. Ground motion prediction equation (GMPE) or attenuation relation explain 

the dependency of peak ground acceleration parameter observed during any earthquake on various 

dependent parameters like magnitude, distance, source type, tectonic environment and site type, 
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respectively. Different attenuation relationships have been developed for different regions 

worldwide in the past for estimation of peak ground acceleration (Joyner and Boore 1981, 1988; 

Campbell 1981, 1985; Boore and Joyner 1982; McGuire 1976; Abrahamson and Litehiser 1989; 

Fukushima and Tanaka 1990; Boore et al. 1997 and Boore and Atkinson 2008). A comprehensive 

list of the attenuation relations developed between 1969 to 2000 has been given by Douglas (2001) 

which has been revised in 2010 by Douglas (2011). Very few attenuation relations have been 

developed for the Himalaya, which are applicable to different parts of Himalaya separately (Singh 

et al. 1996; Sharma 1998; Nath et al. 2008; Sharma et al. 2009; Joshi et al. 2013).  

Seismic hazard assessment of a region requires knowledge and understanding of both the 

seismicity and the attenuation of strong ground motion. The use of different database and 

published empirical attenuation relations for peak ground acceleration have resulted in widely 

varying conclusions. Thus, the use of a particular relationship for an area with different geological 

and tectonic features may lead to results that differ significantly from the actual values (Shafiee et 

al. 2011). 

An attenuation relationship has been developed by Joyner and Boore (1981) using 182 

acceleration records of 23 earthquakes, magnitude ranging between 5 to 7.7, recorded in the 

Western North America. This analysis uses a magnitude-independent shape, based on geometrical 

spreading and anelastic attenuation, for the attenuation curve. In this technique, an innovation is 

introduced by decoupling the distance dependence of the data from the magnitude dependence. The 

variables used in equation are, PGA is peak ground acceleration, M is the magnitude and „r‟ is the 

closest horizontal distance to the surface projection of the rupture plane. 

The ground motion prediction equation given by Abrahamson and Litehiser (1989) 

developed using worldwide dataset of 585 acceleration records from 76 earthquakes. This dataset 

used 256 records of 28 strike-slip earthquakes, 14 records of 7 normal earthquakes, 42 records of 

12 normal oblique earthquakes, 224 records of 21 reverse earthquakes and 49 records of 8 reverse 

oblique earthquakes. The attenuation model that fits this data has a magnitude dependent shape. 

The regression uses a two-step procedure that is a hybrid of the Joyner and Boore (1981) and 

Campbell (1981) regression methods. The standard error of estimation is 0.277.  
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Fukushima and Tanaka (1990) has developed a new attenuation relation for peak horizontal 

acceleration applicable to the near source region in the Japan. The database consists of 1372 

records of horizontal components from 28 earthquakes in the Japan and 15 earthquakes in the 

United States and other countries. The data used for the analysis included old uncorrected SMAC-

B2 records. The standard deviation of log A is 0.21and the multiple correlation coefficient is 0.89.  

Molas and Yamazaki (1995) have derived attenuation relation using wide data recorded by 

the new JMA-87 type accelerometers. Earthquakes with depths up to 200 km are used to develop 

the attenuation relation applicable to subduction zone, in the Japan region. Depth and local site 

effects on the attenuation are considered simultaneously with the distance dependence and 

magnitude dependence a two stage regression procedure.  

Singh et al. (1996) has been developed the attenuation relationship for the Indian Himalaya 

region, using strong ground motion data from five earthquakes viz. the Dharamsala earthquake (26 

April 1986), the Meghalaya earthquake (10 September 1986), the Burma-India earthquake (14 May 

1987), the Tripura-Assam earthquake (6 February 1988) and the Guahati earthquake (6 August 

1988). Most of the earthquakes occurred in the Northeast (NE) part of the Himalaya region with 

magnitudes ranging from 5.7 to 7.2.  

Attenuation relation for entire Himalaya region has been determined by Sharma (1998), 

using 66 peak horizontal accelerations data from five Indian earthquakes. This relationship uses 41 

recodes at rock sites and 25 records at soil sites. This analysis uses a two-step stratified regression 

model. The residual sum of squares of the regression analysis is 0.14. It is seen that the proposed 

relationship give lesser values at shorter distances compared to other relationships.  

Gupta and Gupta (2004) developed the attenuation relation for peninsular India using a 

dataset of 31 three-component accelerograms from the Koyna region of earthquakes in magnitude 

range 3.5 to 6.5 and hypocentral distance range from 3.5 to 25 kilometre, respectively. Attenuation 

relation is obtained by performing a two step regression analysis using the peak ground 

acceleration values of the largest two horizontal components and vertical component of selected 

accelerograms.   
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Iyenger and Raghukant (2004) have developed the attenuation relationship for the 

peninsular India. This relationship is based on statistically simulated strong motion records using 

seismological model which clearly lacks actual observational data. It has been observed that 

attenuation of strong motion in peninsular India is similar to that in other intraplate regions of the 

world.  

Nath et al. (2005) have obtained an attenuation relation using a semi empirical approach by 

minimizing the difference between the observed and the estimated values of peak ground motion 

for the Sikkim Himalaya, India. The first-order attenuation law for the Sikkim Himalaya is 

developed using the data for 80 local earthquakes (3 ≤ M ≤ 5.6) recorded during 1998-2003 with 

epicentral distance ranging from 10 to 100 kilometre. This is a mean attenuation relationship 

without considering local site conditions for hypocentral distances less than 100 km. The first order 

attenuation relation is further used for developing a second-order spectral attenuation relationship 

taking into the consideration local site condition in terms of site amplification, elevation, source 

azimuth and spectral acceleration. This relation uses both the recorded and simulated events, with 

local site conditions incorporated in the simulation. 

Atkinson and Boore (2006) developed ground motion prediction equations for the rock and 

soil sites in Eastern North America (ENA) using stochastic finite fault modeling technique. They 

suggested that stochastic ground motion prediction equations provide a basis for estimating peak 

ground motions and response spectra for earthquakes of magnitudes range 4.0 to 8.0, at distances 

from 1 to 200 kilometer.  

Nath et al. (2008) has developed an attenuation relation for the Garhwal Himalaya region. 

They used a similar algorithm as used for the Sikkim Himalaya region i.e. semi empirical approach 

by minimizing the difference between the observed and estimated values of peak ground motion. 

They have used data of selected 61 well-recorded aftershocks out of many events with magnitude 

greater than 2.4 for this study.  

Mandal et al. (2009) have developed attenuation relation for Gujarat, India. In this study 

they used peak ground acceleration from the records of seismic response recorder (SRR) of Bhuj 

earthquake (Mw = 7.7) of 26 January, 2001. A total of 239 records of 32 significant aftershocks of 

magnitude range 3.1 ≤ Mw ≤ 5.6, at epicentral distance range of 1 ≤ R≤ 288 km have been used. 
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They used the Joyner-Boore‟s method for a magnitude-independent shape based on geometrical 

spreading and anelastic attenuation for the attenuation curve. Developed peak ground attenuation 

relation is valid for magnitude range 3.1< Mw ≤ 7.7 with standard deviation (σ): ±0.8243.  

Ulutas and Ozer (2010) have developed an attenuation relation of peak ground acceleration 

for the Marmara region of north-western Turkey. The database consists of 751 horizontal 

components of peak ground acceleration recorded from 78 earthquakes, including the Izmit (Mw = 

7.4) and Duzce (Mw = 7.2) earthquakes of 1999. Multiple regression analysis have been used to 

calculate the coefficients of regression relationship. The horizontal peak ground acceleration has 

been found to be log-normally distributed with a standard error representing a 0.392 percent 

increase in terms of natural logarithm.  

Deif et al. (2011) developed a ground motion attenuation relationship for the Aswan area 

Egypt. The magnitude range 4.0 ≤ Mw ≤ 7.0 and distance to the surface projection of fault up to 

100 km for Aswan based on a statistically simulated seismological model. They generated suites of 

ground motion time histories using stochastic technique. The proposed model of Joyner and Boore 

(1981) has been selected for this study.  

Joshi et al. (2013) has developed a hybrid attenuation model for estimation of the peak 

ground accelerations in Kutch region, India. This regression model uses both actual and simulated 

database. The database consist of 569 peak ground acceleration values in which 89 peak ground 

acceleration values are obtained from observed records and 480 from simulated records. The 

dataset consists of earthquake magnitude in range 3.0 to 8.2 and hypocentral distance 12 to 120 

kilometer. The standard deviation of the attenuation model is: (σ) ±0.5.  

  

1.2 Synthetic Generation of Ground Motion – Review   

Synthetic generation of ground motion is a topic of interest in seismic prospecting as well 

as seismology. Several techniques have been proposed in seismic prospecting to generate synthetic 

seismogram for prospecting of oil and gas reservoirs (Domenico 1977; Castagna et al. 1985; Rao et 

al. 2006; Singh et al. 2014a, 2014b). Synthetic generation of ground motion is equally important in 

seismological studies especially that deal with high frequency strong ground motion. Strong 

ground motion is a basic tool for designing safe structure by an engineers.  Strong motion data is 
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observed by an accelerogarph near the source region. Some of the techniques used for synthetic 

generation of ground motion parameters are (i) Composite Source modeling technique (Zeng et al. 

1994; Yu 1994; Yu et al.1995; Saikia and Herrman 1985; Somerville et al. 1991 and Saikia 1993) 

(ii) Empirical Green Function technique (Hartzell 1978, 1982; Kanamori 1979; Hadley and 

Helmberger 1980; Mikumo et al. 1981; Hadley et al. 1982; Irikura and Muramatu 1982; Irikura 

1983, 1986; Coats et al. 1984; Munguai and Brune 1984; Hutchings 1985; Kamae and Irikura 

1998) (iii) Stochastic simulation technique (Housner and Jennings 1964; Hanks and McGuire 

1981; Lai 1982; Boore 1983; Boore and Atkinson 1987) (iv) Semi empirical simulation technique 

(Midorikawa 1993; Joshi 2001; Joshi and Midorikawa 2004). These techniques have some 

advantages as well as disadvantages compared to each other. These techniques have been discussed 

in following section. 

 

1.2.1 Composite Source Modeling Technique                                    

The composite source modeling technique has been given by Zeng et al. (1994) and Yu 

(1994). This technique uses the synthetic Green‟s function for simulation of strong motion records. 

This technique is quite successful in representing strong ground motion. Modeling the features of 

earthquake source process and application of wave propagation theory synthetic accelerograms are 

simulated in this technique. However, the fault plane solution, the detail velocity Q structure of the 

region and stress drop parameters is required. All these parameters are not easily available for 

interested site. Zeng et al. (1994) presented a composite source model for convolution with the 

synthetic Green‟s function, in order to simulate strong ground motion due to a complex rupture 

process of an earthquake. Yu et al. (1995) have simulated 1991, Himalayan earthquake of 

magnitude 7.1 by using composite source model defined by Zeng et al. (1994). Kumar et al. (2011) 

presented a simple and efficient hybrid technique for simulating earthquake strong ground motion. 

This procedure is the combination of the techniques of envelope function (Midorikawa 1993) and 

composite source model (Zeng et al. 1994). The applicability of the technique has demonstrated by 

successful modeling of Uttarkashi earthquake (Ms = 7.1) of 1991 by Kumar et al. (2011).  
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1.2.2 Empirical Green’s Function Technique 

Empirical Green‟s function technique uses the record of aftershock of the main event to 

simulate ground motion at the observation point (Hartzell 1978, 1982). It is observed that 

simulation of synthetic records using earth model involve two major problems. The first one is 

associated with the description of source and the second one with estimation of earth response 

(Hartzell 1978). Summation of point sources has used in media ranging from full space (Aki 1968) 

to layered half space (Heaton and Helmberger 1977). Empirical Green Function technique has the 

advantage of not requiring the computation of propagation and the local site effects compared to 

other techniques. The main limitation of this technique is that it can be applied in case only where 

appropriate records of small events considered as Green function in the area of study are available. 

Unfortunately, it is rare to have good records of such small events, especially in the source area of 

a large earthquake (Kamae et al. 1998). Irikura (1986) proposed the method of Empirical Green‟s 

function which is consistent with spectral scaling at high frequencies. The method of Empirical 

Green‟s Function technique given by Irikura (1986) uses both target and small events having 

spectral characteristics that can be predicted by ω
-2

 model. 

 

1.2.3 Stochastic Simulation Technique 

Stochastic simulation technique initiated by Housner and Jenning (1964) was among 

earliest techniques of simulation which uses statistical properties of strong motion records. 

Housner and Jenning (1964) simulated records of earthquakes which had pertinent properties of 

recorded strong motion earthquakes. In the stochastic simulation technique, a band limited random 

white Gaussian noise is passed through number of filters, representing earthquake process to get a 

synthetic ground motion (Housner and Jennings 1964). Inspite of success of this technique it is 

also well known that the point source model breaks down in some cases, particularly near the 

source of great earthquakes. The limitation of technique of modeling is that; it does not include 

conceptual model of earthquake source and propagation of energy in the medium.  
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1.2.4 Semi empirical Simulation Technique 

The method of semi empirical modeling technique was initially proposed by Midorikawa 

(1993) and later modified by Joshi and Midorikawa (2004). In semi empirical technique synthetic 

records from different sub-faults within the rupture plane are used in place of aftershock records as 

Green‟s function. This technique is based on stochastic simulation of high frequency ground 

motion which was introduced by Hanks and McGuire (1981); Boore (1983); McGuire et al. (1984); 

Boore and Joyner (1991) and Lai (1982). Boore (1983) used the filtered random white Gaussian 

noise with zero mean and unit variance for simulation of strong ground motion. This method takes 

advantage of both stochastic simulation technique of Boore (1983) and Empirical Green‟s function 

technique of Irikura (1986).  

Midorikawa (1993) proposed a simplified method for synthesizing ground acceleration 

from a large earthquake for engineering use. This method is based on semi-empirical method of 

Irikura (1986) in which the fault of the target earthquake is divided into small sub faults. The 

simulation of synthetic records is controlled by various factors including attenuation relation, 

model of the rupture plane, model of the earth and the geometry of rupture propagation. 

Joshi and Patel (1997) modeled the three dimensional rupture along identified active 

lineaments. Peak ground accelerations were obtained by using semi empirical method of Irikura 

(1986), which was used by Midorikawa (1993). The efficacy of this simulation technique for the 

Himalayan region was established by simulating peak ground accelerations for modeling of the 

Uttarkashi earthquake of October 20, 1991 and comparing it with recorded one.  

Semi empirical technique of simulation given by Midorikawa (1993) is used by Kumar et 

al. (1999) for calculating synthetic accelerograms for a wide range of earthquake magnitudes. The 

validity of this technique was confirmed by modeling of the observed accelerograms, the 

Dharmsala (Ms = 5.3) 1986 and the Uttarkashi (Ms = 7.1) 1991 earthquakes at relatively shorter 

distances. The method has applications where seismic hazard needs to be estimated and empirical 

data sets including accelerograms, velocity Q models and earthquake focal mechanisms are sparse 

or not available at all (Kumar et al. 1999).  
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The final output of the modeling technique used by Midorikawa (1993), Joshi and Patel 

(1997) was the envelope of accelerogram which only gives the idea about peak ground acceleration 

at a particular site and the total duration of the record but not the complete representation of the 

time series (Joshi et al. 1999). The realistic earthquake time series were simulated from the 

modeled rupture plane in a layered earth model given by Joshi et al. (1999), by multiplying filtered 

white noise with the envelope of accelerogram at a particular observation point. The filters through 

which white noise is passed include effect of geometrical spreading, anelastic attenuation and near 

site attenuation of high frequencies.  

An attempt was made by Joshi et al. (2001) to check the effect of layered earth model in the 

technique of semi empirical modeling. In this approach, Joshi et al. (2001) modified the envelope 

of acceleration record to take into account the transmission of energy and travel time taken by 

energy at various boundaries within the layered earth model. The simulated resultant envelope is 

used for generating synthetic accelerograms by multiplying filtered white noise with the envelope 

of accelerogram at a particular site. This modified technique has tested for its applicability to 

simulate the strong motion records of the Uttarkashi earthquake of 20 October, 1991. 

Joshi and Midorikawa (2004) presented a simplified method to simulate strong ground 

motion for a realistic representation of a finite earthquake source buried in a layered earth medium. 

Joshi and Midorikawa (2004) simulated ground motion data of the Geiyo, Japan earthquake (Mw = 

6.8) of 24 March  2001 using stochastic method of Boore (1983) with the help of shaping window 

based on the finite source model of the rupture plane. This shaping window is depended on the 

geometry of the earthquake source and the propagation characteristics of the energy released by 

various sub-faults. The shaping window was modified by Joshi and Midorikawa (2004) to take into 

account the effect of the transmission of energy released from the finite fault at various boundaries 

of the layered earth model above the source. Strong motion records have simulated at eight near-

field stations and compared with the observed data and the simulated record by using empirical 

Green‟s function method of Irikura (1986). Through comparison the efficacy of this method has 

been established to simulate strong ground motion data by assuming a finite rupture plane. 
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 Joshi and Mohan (2008) modified semi empirical technique initially started by 

Midorikawa (1993) for simulation of strong ground motion due to a rupture buried in the earth 

medium consisting of several layers of different velocities and thicknesses. Simulations in the semi 

empirical technique were made by considering, transmission of energy at each layer, frequency 

filtering properties of medium and earthquake source, correction factor for slip of large and small 

magnitude earthquakes and site amplification ratio at various stations (Joshi and Mohan 2008). To 

test the efficacy of the developed technique, strong motion records were simulated by Joshi and 

Mohan (2008) at different stations that recorded the 2004 Niigata-ken Chuetsu, Japan earthquake 

(Ms = 7.0). The comparison of synthetic with observed records over wide range of frequencies 

showed that the present technique is effective to predict various strong motion parameters from 

simple deterministic model which is based on simple regression relations and modeling parameters 

(Joshi and Mohan 2008). 

 

 1.3 Frequency Dependent Attenuation Studies - Review 

The attenuation relations are mostly used by engineers to estimate peak ground acceleration 

at different sites. Empirical regression equations have advantages in terms of being convenient, 

efficient, and economical, there is a notable drawback (Kuo et al. 2011). Although attenuation 

relation provide useful information about attenuation characteristics of the medium, it still lakes 

basis seismological understanding. The attenuation characteristics of a region provide essential 

information regarding the seismic hazard of the region. In terms of seismic hazard assessment the 

characterization of this frequency dependence can have important practical implications 

(MalischewskyAuning et al. 2006). Various techniques have been developed to study the 

attenuation characteristic of seismic waves using different parts of the seismogram (e.g., Aki 1969; 

Aki and Chouet 1975; Hermann 1980; Mitchell 1995). Most studies use decay of the coda wave to 

determine attenuation in the earth‟s crust, (Aki 1969; Aki and Chouet 1975; Sato 1977; Roecker et 

al. 1982; Pulli 1984; Reha 1984; Jin and Aki 1986; Ibanez et al. 1990; Kanao and Ito 1992; Gupta 

et al. 1995; Gupta and Kumar 2002; Paul et al. 2003; Kumar et al. 2005; Sharma et al. 2012, Singh 

et al. 2012). The backscattering method is the most frequently methods which is used to measure 

the attenuation characteristic using coda wave. It has been given by Aki (1969) and Aki and 

Chouet (1975). The seismic coda waves are backscattering waves from numerous randomly 
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distributed heterogeneities in the earth (e.g., Aki 1969; Aki and Chouet 1975; Rautian 1976; 

Rautian and Khalturin 1976). Aki and Chouet (1975) proposed two extreme models for back-

scattered waves to calculate the coda wave quality factor (Qc).The first single scattering model 

considers the scattering as a weak process without loss of seismic energy by scattering and in the 

second one the seismic energy transfer is considered to be a diffused process. The single 

backscattering model proposed by Aki and Chouet (1975) was a frequently used model for 

describing the behavior of the coda waves from small local earthquakes. According to this model 

the coda waves are interpreted as backscattered body waves generated by the numerous 

heterogeneities present in the earth's crust and upper mantle.  

Gupta et al. (1995) have determined quality factor of coda waves (Qc(f)) by analyzing coda 

waves of vertical component of velocity sensor of the seven local earthquakes recorded in the 

Garhwal Himalaya region. They have been used single backscattering model in this study. The 

obtained frequency dependent coda wave relationship as Qc(f) = 126f 
0.95

 for the Garhwal 

Himalaya. 

Mandal and Rastogi (1998) have estimated the frequency dependent coda wave (Qc(f)) 

values from 30 local earthquakes around the Koyna-Warna region, India. The recorded seismic 

network consists of short-period seismometers, broadband seismometers, digital accelerographs 

and analog portacorders. Single scattering method has been used for obtaining frequency 

dependent coda quality factor (Qc(f)). They obtained frequency dependent coda wave quality factor 

for the Koyna-Warna region as Qc(f) = 169f
0.77

.  

Gupta et al. (1998) have estimated frequency dependent coda wave relationship for the 

Koyna region, India using 13 local earthquakes recorded during July to August 1996. The dataset 

was recorded using three-component short-period seismometers. They obtained average frequency-

dependent attenuation relationship, Qc(f) = 96f
1.09

 using a single back scattering model. 

Zelt et al. (1999) have estimated the frequency-dependent coda wave Qc(f) relation for  

Southwestern British Columbia, Canada region. Single-scattering method was used to calculated 

frequency dependent quality factor using the data of 122 local earthquakes. The frequency 

dependent relation Qc = 110f
0.72 

was estimated, which is applicable in frequency range 2-16 Hz. 
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Mandal et al. (2001) have estimated frequency-dependence Qc(f) relationship for the 

Chamoli region, India. They have used 48 well-located aftershocks data of the Chamoli earthquake 

in this work. Scattering method has been used to obtain frequency-dependence coda Qc(f) 

relationship. The frequency dependent coda wave relationship Qc(f) = (30±0.8)f 
(1.21±0.03)

 has been 

estimated in this study.  

Gupta and Kumar (2002) have estimated the seismic wave attenuation characteristics of the 

Garhwal Himalaya, Koyna region and Northeast regions of India. Frequency dependent coda wave 

quality factor was determined by implementing the single backscattering model for the three 

regions. Digitally recorded earthquakes were used to estimate Qc(f) for the Garhwal and Koyna 

region while strong motion data was used for the Northeast India region. Frequency dependent 

coda wave quality factor was obtained as (110±5.15)f
(1.02±0.025)

, (97±7.18)f
(1.09±0.036) 

and  

(86±4.04)f
(1.01±0.026)

  for the Garhwal Himalaya, Koyna region and Northeast India, respectively. 
 
 

Paul et al. (2003) have calculated coda wave quality factor for the Kumaon Himalaya using 

eight events recorded on digital telemetered seismic network. Single backscattering model given 

by Aki and Chouet (1975) has been used in this study. Coda wave quality factor Qc(f) = (92±4.73)f 

(1.07±.023)
 was computed for the Kumaon region in this study. 

  Dutta et al. (2004) have studied the  coda wave attenuation using the strong motion data in 

the South Central Alaska region. They estimated coda wave quality factor (Qc) by single 

backscattering methods. They computed Qc
-1

(f) = 0.0063 f
-0.79 

and Qc
-1

(f) = 0.0066 f
-0.84 

for the 

transverse and radial component, respectively for the South-central Alaska region. 

Kumar et al. (2005) have estimated the coda wave quality factor Qc(f) for the NW 

Himalaya, India using single backscattering method. A total of 36 local earthquakes of magnitude 

range 2.1 to 4.8 have been used for Qc estimation at central frequencies 1.5, 3.0, 6.0, 9.0, 12.0 and 

18.0 Hz through eight lapse time windows from 25 to 60 sec starting at double the time of the 

primary shear wave from the origin time. The estimated average frequency dependence quality 

factor gives the relation, Qc(f) = 158f
1.05

. 

Kumar et al. (2007) have studied the attenuation characteristics of the Dharwar Craton, the 

Cuddapah basin and Godawari graben, India. Broadband data was used to determine the coda wave 
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quality factor for the three regions. Single scattering method given by Aki and Chouet (1975) has 

been used for estimation of coda Qc(f) relations. Coda Qc(f) relations i.e. Qc(f) = (730.62 ± 0.09) f 

(0.54 ± 0.01)
, Qc(f) = (535.06 ± 0.13) f 

(0.59 ± 0.01) 
and Qc(f) = (150.56 ± 0.08) f 

(0.91 ± 0.01) 
was calculated 

for the Dharwar Craton, the Cuddapah basin and Godawari graben region, respectively. 

  Sharma et al. (2007) have computed the coda wave (Qc(f)) quality factor
 
for the Koyna 

region, India. Total 37 local earthquakes recorded on short-period three-component seismometers 

were used in this study. The single back-scattering method was used to determine coda wave (Qc). 

The obtained relationship for the Koyna region is Qc (f) = (117.0 ± 2.0) f 
(0.97 ± 0.07)

. 

Sharma et al. (2008) have estimated the coda wave (Qc(f)) quality factor
 
for the Kachchh 

region, Gujarat India by using the broadband data. The single backscattering method was used to 

determine frequency dependent coda wave quality factor. The obtained relationship for coda wave 

is Qc(f)  = (148.0 ± 3.0) f 
(1.01 ± 0.02)

. 

Sahin (2008) has estimated the quality factor Qc(f) in the Southwest Anatolia region using 

coda wave normalization method. Broad band data of the KOERI array (Kandilli Observatory and 

Earthquake Research Institute) recorded at two stations was used for the computation in this work. 

The coda Qc(f) relation for this region is expressed by Qc(f) = (102±8)f
0.82±0.07)

. 

Mukhopadhyay et al. (2008) have used 30 aftershock data of the Chamoli earthquake 28
th

 

March 1999 to estimate the Qc(f) values by using single back scattering model. Data used in this 

work was recorded on the network of short-period seismometers. They determined the coda wave 

quality factor as Qc = (33±2) f
(1.17±0.03)

, Qc = (55±6) f
(1.16±0.05)

, Qc = (78±15) f
(1.12±0.08)

, Qc = (93±18) 

f
(1.07±0.08)

  and Qc = (122±20) f
(0.98±0.07)

  for average lapse time 19.1, 24, 29.3, 34.0 and 40.7sec , 

respectively.  

Rahimi et al. (2009) have estimated the coda wave quality factor for the South East Sabalan 

Mountain, NW Iran by using 65 local events recorded on five accelerographs. Single 

backscattering method has been used in this study. They obtained frequency dependent Qc(f) 

relationship viz. (48±6)f
(0.88±0.05)

, (49±5)f
(0.97±0.03)

, (51±7)f
(1.02±0.06)

, (53±7)f
(0.97±0.03)

 and 

(44±5)f
(0.96±0.03) 

 for Sarein, Ardebil, Kariq, Islamabad and Nir stations, respectively. 
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Ma‟hood and Hamzehloo (2009) hava estimated coda wave attenuation in the East Central 

Iran using single backscattering model given by Aki and Chouet (1975). The Qc(f) relation for the 

entire region of east central Iran, from all data (both seismograms and accelerograms) is obtained 

as Qc(f) = (101±6)f
(0.94±0.11) 

Mukhopadhyay and Sharma (2010) have estimated the coda wave quality factor Qc(f) for 

the Garhwal-Kumaon Himalaya region India by using digital data of 81 events. The range of 

magnitude, epicentral distance and focal depth of the dataset are 2.1 to 4.0, 10 to 140 km and 0 to 

40 km, respectively. The single back-scattering method was used to determine coda Qc(f). The 

frequency dependent coda wave relationship of form 119f 
0.99

 is obtained in this study. 

Gupta et al. (2012) have studied the attenuation characteristics of coda waves for the 

Mainland Gujarat, India. In this work, single backscattering method was used on the broadband 

data to determine the coda Qc(f). The computed average coda Qc(f) relations are: 

(87.0±13.0)f
(1.01±0.06)

, (112.0±20.0)f
(0.94±0.08)

 and (120.0±22.0)f
(0.76±0.07)

 for the lapse time of 30 sec, 

40 sec and 50 sec, respectively. 

           Brahma (2012) has estimated coda wave attenuation using the single backscattering model 

for the Northeast India. Frequency dependent coda Qc(f) relation was estimated as (21.49±1.17) 

f
(1.48±0.08)

, (48.6±1.11) f
(1.29±0.06)

 and (88.86±1.12) f
(1.19±0.06)

 for the time window of 20 sec, 30 sec 

and 40 sec, respectively. 

Sharma et al. (2012) have estimated the attenuation characteristics based on coda waves of 

two areas Jamnagar and Junagarh of the Saurashtra, Gujarat India, using single back scattering 

model. They used broadband waveforms of the vertical components of 33 earthquakes (Mw 1.5 to 

3.5) recorded at six stations and 68 earthquakes (Mw 1.6 to 5) recorded at five stations of the 

Jamnagar and Junagarh area, respectively. They estimated frequency dependent coda wave quality 

factor for the Junagarh and Jamnagar are as (170 ± 4.4)f
(0.97±0.02)

 and (224 ± 6)f
(0.98±0.06)

, 

respectively.  
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1.4 Seismic Hazard Zonation- Review  

 Seismic hazard zoning can be defined as a process of demarcating or mapping areas of 

same seismicity or equal hazard related to a characteristic of strong ground shaking and of site or 

structural response (Todorovska et al. 1995).The concept of seismic hazard in India was introduced 

by scientists of Geological Survey of India in 1935 immediately after the great Bihar Nepal 

earthquake of 15
th

 January 1934 (Auden 1959).The ground motion parameters that first used in 

seismic zoning was the intensity of shaking (e.g. Modified Mercalli Intensity, MMI). Although the 

intensity scale is not based on instrumental data yet the places where instrumental data is lacking or 

is insufficient, zoning in terms of site intensity is the only choice (Todorovska et al. 1995). Chen et 

al. (1988) has given the fuzzy recurrence relationship for seismic hazards analysis or seismic 

zonation. In many studies, the seismic intensity has been also correlated to instrumentally 

measured parameters of strong ground motion like peak ground acceleration. The peak ground 

acceleration is the most widely used ground motion parameters for seismic hazard zoning 

(Algermissen and Parkins 1976; Kiremidjian et al. 1982; Khattri et al. 1984; Lin et al. 2014). 

The first seismic regionalization map of the India show areas of different kind of damage 

was compiled by Geological Survey of India in 1935 (Auden 1959). Similar map was prepared by 

West (1937); Tandon (1956); Krishna (1959); Mithal and Srivastava (1959) and Srivastava (1969). 

The Bureau of Indian Standards (BIS) published the recommendations for earthquake-resistant 

design of structures in the shape of a code in 1962 (IS: 1893-1962). This code included a seismic 

zoning map of the India. In this seismic zoning map, the observed intensity values during the major 

past earthquakes were used as the main parameter. However the zoning map did not reflect the 

seismotectonic setup of the region, where major earthquakes are expected due to ongoing 

geotectonic processes (Todorovska et al. 1995).  In 1966 (IS: 1893-1966), this map was revised 

and again in 1970 (IS: 1893-1970, 1975, 1984 and 2002) including the additional data on 

earthquake occurrence, geology and tectonics. 

Guha (1962) prepared a seismic zoning map of India in 1962 based on modified Mercalli 

Intensity for 35 major earthquakes in a period from 1827 to 1950. This seismic map was 

demarcated as very heavy, heavy, moderate, minor and no damage area, keeping the compatibility 

with the geology and tectonics of the country. Entire peninsular shield region was demarcated as 
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stable zone in this map. This map was further modified for the peninsular shield after occurrence of 

Koyna earthquake of 1967, Bhadrachalam earthquake of 1969 and Broach earthquake of 1970 

(Verma et al. 1970). 

Gubin (1968) prepared a map of seismogenic zones of the Indian peninsula in 1968 and 

updated the map in 1970 aftermath of the occurrence of the Bhadrachalam (13
th

 April 1969) and 

Broach (23
rd

 March 1970) earthquakes. This map shows sixteen seismogenic zones which 

correspond to areas with differential tectonic motions. The width of each seismogenic zone is 

arbitrarily assumed to be 5 km greater than the width of the fault, taking into account possible 

sloping extensions into depth. In this map out of 16 zones, zone 16 can experience earthquake with 

intensity VI-VII where as zones 4, 5 and 15 with intensity V. 

Kaila et al. (1972) have prepared three quantitative seismicity maps of the India, viz., the a 

value, b value and return period maps for earthquakes with magnitude six or above from 1954-

1967. This map shows a very good match of seismicity with the regional tectonic features. Kaila 

and Rao (1979) prepared seismic zoning map of India taking data from 1954-1975 within 2°×2° 

grid averages for seismic risk, expected maximum magnitude (Mmax), Intensity (Imax) and peak 

horizontal acceleration. In this map, the seismic risk values RD (M) was estimated on the basis of 

Gumble‟s theory of largest values and a and b-values are estimated from the cumulative regression 

curve defined by log N = a - bM, where N is the cumulative number of earthquakes which occur in 

a given region during a certain time interval and whose magnitudes equal or exceed M. The 

seismic risk map shows the probability of occurrence of earthquakes capable of producing 

accelerations exceeding 10% of acceleration due to gravity in a design period of 50 years. 

Using the method of probabilistic seismic hazard analysis, Basu and Nigam (1977, 1978) 

have prepared a zoning map of the India which shows peak ground acceleration contour for a life 

period of 100 years. They used the approach given by Cornell (1968). The entire Indian 

subcontinent has been divided into a grid of 2°×2°.  They considered two different earthquake 

sources (the area and volume source), focal depth and distribution of earthquake occurrence. The 

magnitude, focal depth and occurrences were determined using January 1917 to December 1972 

data from Indian Meteorological department (IMD). Using this data a contour map of peak ground 

acceleration for 100 years has been prepared. Basu and Nigam (1977, 1978) modified the zoning 
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map IS: 1893-1984 and divided the Assam region in two different zones (Zone IV and V) which 

was the single zone (Zone V) in IS code map. In their map they have expanded the zone II upto 

Central India. 

Kiremidjian et al. (1982) have prepared seismic hazard map of the Honduras in terms of an 

iso-acceleration map. Such a map is developed for a return period of peak ground acceleration of 

500 years. They used OASES (1978) attenuation relation for the seismic hazard analysis. The 

highest hazard is observed in the southwestern and western regions of the country which are 

closest to the junction of the Benioff Zone, the Caribbean Plate Boundary and the Shallow Focus 

Volcanic province.  

Khattri et al. (1984) have prepared seismic zoning map showing peak ground acceleration 

for the India and neighboring areas having 10% probability of exceedence in 50 years. They used 

probabilistic seismic hazard approach given by Cornell (1968). In this map, India and adjoining 

region have been divided into 24 source zone based on similar generalized geological features and 

similar seismogenic processes. The seismicity of each source zone has been estimated by fitting a 

frequency-magnitude relation using the data with the longest possible time base and correcting the 

data in each magnitude interval for incompleteness using the procedure developed by Stepp (1973). 

They have used the attenuation relationship given by Algermissen and Perkins (1976) with some 

modifications for Indian conditions. In this map the Indian shield and the western coastal area is 

characterized by peak ground acceleration value of 0.05g and 0.4g, respectively. The north western 

and north eastern region shows the expected peak ground acceleration value of around 0.7g. The 

maximum peak ground acceleration value of 0.8g is obtained in the area of Bharamputra valley and 

Quetta region in the northwestern part of Indian subcontinent.  

Joshi and Patel (1997) developed a technique for modeling the three dimensional rupture 

along identified active lineaments. Peak ground accelerations were obtained by using semi-

empirical method given by Midorikawa (1993). The efficacy of this modeling technique is 

established by comparing observed and simulated peak ground accelerations data of the Uttarkashi 

earthquake of 20 October, 1991 (Joshi and Patel 1997). The zonation map for great earthquakes (M 

≥ 8) has been prepared by modeling a rupture in the central seismic gap region of the Uttarakhand 



 

18 

 

Himalaya. Seismic study of the region showed that it was prone to moderate as well as great 

earthquakes.  

Bhatia et al. (1999) have prepared a seismic hazard zonation map for India and adjoining 

region under the Global Seismic Hazard Assessment Program (GSHAP). This map is based on the 

probabilistic approach of Cornell (1968). The peak ground acceleration computed in this work has 

10% probability of exceedence in 50 years, at location defined by a grid of 0.5°×0.5°. In this work 

they have used the attenuation relation of Joyner and Boore (1981) which was defined for 

California and Western United States to obtain the seismic hazard map based on peak ground 

acceleration values. The entire study region has been divided into 86 seismogenic source zones 

based on major tectonic features and seismicity trends to compute the seismic hazard. In this map, 

the northern Indian plate boundary region and Tibetan Plateau region have been assigned the value 

of the order of 0.25g. The value of the order of 0.35-0.4g is assigned to more active region like 

Burmese arc, Northeastern Indian and Hindukush region. In the Indian shield the seismic hazard 

has been of the order of 0.05-0.1g is shown in this map.      

Parvez et al. (2003) have prepared a first order deterministic seismic zonation map of India 

and adjoining region based on the technique of Costa et al. (1993). They computed synthetic 

seismograms at frequency of 1Hz and at a regular grid of 0.2°×0.2° by model summation technique 

proposed by Panza (1985). Parvez et al. (2003) have divided the India and surrounding region into 

15 polygons defining different structural models and 4 of seismogenic zones based on various 

geophysical and geological data. A regional fault plane solution has been defined for each 

seismogenic zone depending on the mechanism of the strongest event or with the best obtained 

event, or the most frequent event. The earthquake database from 1819 to 1998 has been used in this 

study. In this work they have expressed the seismic hazard in terms of maximum displacement, 

maximum velocity and design ground acceleration which have been extracted from the synthetic 

signals and mapped on a regular grid. In the map for design ground acceleration the value of 0.6-

1.3g has been assigned to the region of great Assam earthquake. The value of the order of 0.3-0.6g 

has been assigned to the central and western Himalaya region whereas the value of the order of 

0.3-0.6g has been assigned to Andaman-Nicobar Islands.  
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Mohan et al. (2008) prepared a seismic hazard map of two seismically active regions of 

Himalaya, India. In this work, they have modeled the finite rupture along several lineaments using 

semi empirical technique given by Midorikawa (1993).The zonation map is prepared for 

magnitude M ≥ 6.0, for these regions. The area has been divided into different zones on the basis 

of expected peak ground acceleration. The range of zones follows the similar peak ground 

acceleration as proposed by Bureau of Indian standard map (BIS 2002).  

Joshi and Mohan (2010) prepared expected peak ground acceleration map for different 

zones similar to zones proposed by the Bureau of Indian standard (BIS 2002). The proposed 

technique has been applied to the Kumaon Himalaya area and the surrounding region for 

earthquakes of magnitude M ≥ 6.0. Approximately 56000 km
2
 study area is classified into the 

highest hazard zone V with peak accelerations of more than 400 cm/s
2
. The prepared map shows 

that epicentres of many past earthquakes in this region lie in zone V. 

Mahajan et al. (2010) has developed probabilistic seismic hazards of NW Himalaya and its 

adjoining area, India. They apply standard method of PSHA given by Cornell (1968) for 

computing the peak ground acceleration (PGA) for 10% probability of exceedance in 10 and 50 

years at locations defined in the grid of 0.25°×0.25°.  

 

1.5 Research Gaps 

The state of Uttarakhand in India lies in central seismic gap demarcated by Khattri (1987). 

The possibility of a great earthquake in this seismically active region cannot be ruled out. In any 

seismically active region construction of safe engineering design depends on various seismic 

parameters. Attenuation study plays an important role in visualizing the seismic hazard of any 

region. The literature survey revealed that there are several methods which can be used to 

determine attenuation property of a region using broadband, teleseismic, strong motion and micro 

earthquake data. Comparative studies related to attenuation prosperities of the Uttarakhand 

Himalaya can be divided into two steps. (1) Study of peak ground attenuation relation and (2) 

Frequency dependent coda wave quality factor.  

Inspite of seismically high status of the Uttarakhand Himalaya, this region does not have 

sufficient amount of strong motion data required for preparation of reliable attenuation relation. As 
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most strong motion data show that peak ground acceleration in vertical component usually is less 

than the horizontal component (Wen et al. 2006). Recent studies related to the estimation of 

seismic hazard in India shows that the attenuation relations used for seismic hazard studies in this 

area are basically those that are developed by different workers using worldwide data. 

  The available relations in this region have used data from entire Himalaya irrespective of 

the nature and properties of earthquake occurring in different parts of the Himalaya. It is seen that 

earthquakes in NW Himalaya are occurring mostly along shallow dipping plane of detachment (Ni 

and Barazangi, 1984), while earthquakes in north east Himalaya are occurring mostly at a depth of 

10 to 30 km (Kayal and De 1991). Therefore any attenuation relation that includes entire dataset of 

Himalayan earthquakes can give large deviation from observed peak ground acceleration when 

applying it to the different parts within Himalaya. Further large heterogeneities and complexities in 

the Himalayan crust always present chances of strong regional variation of attenuation 

characteristics of the medium. 

Attenuation characteristics of the region can be determined from dimensionless parameter 

known as quality factor Q. Different types of rocks have different attenuating properties which 

controls the decay of seismic energy released during an earthquakes. Different estimates of quality 

factor have been given by different workers for Himalayas (Gupta et al. 1995; Mandal et al. 2001; 

Paul et al. 2003; Joshi et al. 2009, 2010b). The literature studies of this region give some research 

gaps: 

 

1. Strong motion data are important for seismic study in any seismically active region. 

Dense strong motion network is required for the detailed study of any region. 

Deficiency of strong motion data is a major constrain of the attenuation study in the 

Uttarakhand Himalaya.  

2. Different attenuation properties exist for different parts of the Himalaya. Any 

attenuation relation that includes entire dataset of the Himalayan earthquakes can 

give large deviation from observed peak ground acceleration. So there is a need of 

developed of region specific attenuation relation, which can provide more realistic 

picture of attenuation property of the region. 
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3. In the past many researchers had estimated different quality factors for the Kumaon 

and the Garhwal Himalayas. Most of these studies had used limited data sets from 

this region. Dense data sets for the study region can provide better understanding of 

quality factor in this region. 

4. Study of existing relation of shear wave quality factor indicates that the attenuation 

rate in both the Kumaon and Garhwal Himalaya is different. However, attenuation 

properties in this region have not been estimated using near field strong motion 

data.  

5. Detail seismic studies of the region indicate that the Garhwal Himalaya has been 

devastated by two large earthquakes in recent past viz. the Uttarkashi and the 

Chamoli earthquakes. However no such major earthquake has been reported in the 

Kumaon Himalaya. Possible causes for such drastic change in seismicity pattern in 

almost similar tectonic regime have been not investigated.  

6. Many researchers have simulated records of major earthquakes in the Garhwal 

Himalaya using semi empirical simulation technique and worldwide attenuation 

relation given by Abrahamson and Litehiser (1989). Use of this worldwide 

attenuation relation for study of Himalayan earthquakes is questionable. 

7. Seismic hazards zonation of the Uttarakhand Himalaya had been made using 

worldwide attenuation relations. 

 

1.6 Research Objective 

Strong motion data is the first requirement of the engineer and seismologist for safe design 

of structure. Himalaya region has experienced many small as well as moderate earthquakes in the 

past. Maintenance of strong motion array is the major problem in this region due to its rough 

topography and high attitude. Without strong motion data seismic hazards assessment is not 

possible in this area. In the Uttarakhand Himalaya a network is operating in the Garhwal region 

since 1976, but in Kumaon region there is a strong requirement of such network. For solve this 

problem, a dance network of eight strong motion accelerographs has been installed by the 
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Department of Earth Sciences, Indian Institute of Technology Roorkee and National Geophysical 

Research Institute Hyderabad, India under the seismicity project since 2006. Parameters extracted 

from the recorded strong motion records from these two networks have provided an opportunity to 

compare regional attenuation properties of this region. The objective of this work is to use strong 

motion parameters from data recorded by these two networks to study attenuation characteristics of 

both the Kumaon and Garhwal Himalaya. 

 Anelastic attenuation studies performed by Gupta et al. (1995) and Paul et al. (2003) for the 

Garhwal and the Kumaon Himalaya indicate high attenuation rate for the Kumaon Himalaya as 

compare to the Garhwal Himalaya. Both researchers have determined frequency dependent coda 

wave attenuation relation for these regions using back scattering technique of Aki (1968). However 

the dataset are entirely different for two studies. Completely different trends in attenuation rates of 

strong ground motion in the Garhwal and the Kumaon region has motivated a strong need to look 

insight into the detail attenuation characteristics of the Garhwal and Kumaon region. In order to 

maintain consistency in the approach, the study needs to be done by similar technique using dataset 

having similar constraints. On the basis of literature survey and research gaps the research work in 

the Ph.D degree is targeted to achieve following objectives:  

1. Development of regression relation of peak ground acceleration for the Uttarakhand 

Himalaya using strong motion data of similar parametric constraints of independents 

variables.  

2. Checking of the suitability of developed attenuation relation to simulate large 

earthquake in this region.  

3.  Development of frequency dependent coda wave quality factor for both the Kumaon 

and Garhwal Himalaya using similar strong motion data with similar techniques. 

4. Preparation of seismic hazard map on the basis of obtained attenuation relation for the 

Uttarakhand Himalaya.  
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1.7 Thesis Layout  

Total seven Chapters are included in the present thesis. The literature review regarding the 

attenuation relation, technique of simulation, frequency dependent coda wave quality and seismic 

hazards zonation studies is presented in Chapter 1. Different relations developed by various 

researchers to determine the attenuation property are discussed in this Chapter. Literature survey 

for seismic hazards zonation of the Indian region is also discussed in this Chapter. Various research 

gaps are identified on the basis of literature survey and objectives of present work have been 

discussed in this Chapter. 

Strong motion data and study area are discussed in Chapter 2. The strong motion networks 

operated in the Uttarakhand Himalaya has been discussed in this Chapter. Methodology used for 

developing attenuation relation for the Kumaon and Garhwal Himalaya region using regional 

strong ground motion data is described in Chapter 3. This Chapter also describes normality and 

model adequacies with developed attenuation relation. Validity of these attenuation relations are 

checked by modeling of the Uttarkashi and Chamoli earthquakes and is discussed in Chapter 4. 

Determination of frequency dependent coda wave quality factor using single backscattering 

technique is presented in Chapter 5. This Chapter also discusses the regional average relationships 

for the Kumaon and Garhwal Himalaya.  

The seismic hazard zonation map of the Uttarakhand Himalaya region, have been prepared 

in this work and is given in Chapter 6. Summary and conclusion of present research work is given 

in Chapter 7. This Chapter summarizes the whole research work, which reveals the important 

conclusions for future research work. 
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CHAPTER – 2 

Parameterization of Strong Motion Data 

 

2.1 Introduction 

Strong motion data is a major requirement for designing earthquake resistant structures in a 

seismically active region. Himalayan is one of the most seismically active regions in the world. 

Numbers of major earthquakes have visited this region during the last hundred years. However, 

very few strong motion records of these earthquakes are available today. The major difficulty in 

getting regional strong motion records is that this region is quite inaccessible and it is also difficult 

to maintain strong motion stations in this rough mountainous terrain. In the resent years, strong 

motion networks have been installed in the region of the Uttarakhand Himalaya. These networks 

have recorded strong motion data of several small events in this region. This Chapter discussed 

about the study area, processing and source parameters of strong motion data recorded by the 

networks operated in the Kumaon and Garhwal Himalaya. 

 

2.2 Geology and Tectonic of Study Area 

The Himalaya orogen, which extends over 2500 km from Kashmir in the northwest to 

Arunachal Pradesh in northeast India, is believed to be a result of collision of the Indian and 

Eurasian plates (Gansser 1964; Holmes 1965; Seeber et al. 1981; and Lyon and Molnar 1983). 

Himalayan mountain chain is characterized by a marked concentration of interplate seismicity and 

high rate of upliftment as well as convergence (Molnar and Chen 1983; Nakata 1989; Demets et al. 

1990). Many thrust faults lie in the Himalayan regions which are capable of producing earthquakes 

of magnitude 8.0 or greater (Gitis et al. 2008). Fourteen major earthquakes of magnitude ≥ 7.5, 

including five great earthquakes of magnitude ≥ 8, have occurred in the Himalayan region during 

1897 to 1992 (Gupta et al. 1995; Satyabala and Gupta 1996). Many historical earthquakes have 

been recorded in this region which are mostly concentrated between main boundary thrust (MBT) 

and main central thrust (MCT) (Seeber and Armbruster 1984). 
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The Uttarakhand Himalaya falls under the highest zone IV and V of seismic zoning map of 

India. This area has witnessed two major earthquakes i.e. the Uttarkashi earthquake of 1991 (Ms = 

7.1) and the Chamoli earthquake of 1999 (Ms = 6.6) in the recent past. The northeastern part of the 

study area is occupied by the Tibetan Plateau while the southwestern sector is occupied by the Indo 

Genetic plains. The northeastern part of the study area exposes rocks of the Trans Himalayan 

tectogen along with late to post tectonic granitoid and ophiolite bodies (GSI 2000). South of this, 

the belt between the Karakoram Fault and the Indian suture zone is occupied by cover rocks, 

affected by Himalayan orogeny, late to post tectonic granitoid ophiolite and lithopackets of the 

accretionary complex (GSI 2000). The foothill belt constitutes foredeep sediments affected by the 

terminal phases of the Himalayan orogeny. South of foothills the tract is covered by the alluvial fill 

of the Gangetic foredeep. The northern most tectonic element is the dextral Karakoram Fault, 

which is sub parallel to the Indus Suture Zone (ISZ), occurring to the South. The Indus Suture 

Zone (ISZ) is an important tectonic zone, which demarcates the northern boundary of the Indian 

Plate (GSI 2000). Within the main Himalayan belt the high grade complex of the central crystalline 

is bound to the north and south by the Martoli Thrust and the Main Central Thrust (MCT) 

respectively. A similar high grade complex, the Almora crystalline, is delimited on either side by 

the North Almora Thrust (NAT) and South Almora Thrust (SAT). The main Himalayan belt is 

represented from the Tertiary frontal fold belt by the Main Boundary Thrust (MBT) and the 

southern limit of the frontal belt is marked by the Main Frontal Thrust (MFT), which has its 

surface manifestation at places (GSI 2000). A number of N-S to NNE-SSW faults of limited spatial 

extension has also been mapped from the area. Seismicity of this region from 1973 to 2014 along 

with tectonic map is shown in Fig. 2.1. 
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Figure 2.1: Locations of various events in the Garhwal and Kumaon Himalaya during 1973 

to 2014 reported by USGS. The geology and tectonics of the region is after GSI (2000).  
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Figure 2.2: Geological sketch map of the Himalaya. A - Outer Himalaya, B - Lesser 

Himalaya, C - Greater Himalaya and D - Tethys Himalaya (Figure modified after 

Bhattacharya 2008). 
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Himalaya has been geologically divided into four lithotectonic subdivisions as shown in Fig. 2.2. 

From south to north these are defined as (Gansser 1964):  

(1) Outer Himalaya: - This part mostly includes the molassic Siwalik Supergroup of Mio-

Pliocene ages and is demarcated by two tectonic planes, the Himalayan Frontal Thrust 

(HFT) to the south and the Main Boundary Thrust (MBT) to the north (Bhattacharya 

2008). 

(2) Lesser Himalaya: - This part exposes a thick pile of highly folded Proterozoic sedimentary 

strata together with a few outcrops of older crystalline rocks; this subdivision is bounded 

by the MBT in the south and the Main Central Thrust (MCT) in the north. The Main 

Central Thrust (MCT) is defined by the contact between the Lesser and the Higher 

Himalayas (Bhattacharya 2008). 

(3) Greater or Higher Himalaya: - This part exposes a massive, north-dipping pile of 

metamorphic rocks – the Central Crystalline Zone and is demarcated by the MCT to its 

south and the Dar-Martoli Fault or Tethys Fault or the South Tibetan Detachment (STD) to 

the north (Bhattacharya 2008).  

(4) Tethys Himalaya: - This part includes a thick pile of sedimentary rocks of Cambrian to 

Lower Eocene ages (Bhattacharya 2008). 

 

2.3 Strong Motion Networks  

Under a major seismicity project funded by the Department of Science and Technology, 

Government of India, a dense network of eight stations has been installed in the highly 

mountainous terrain of the Kumaon Himalaya since March 2006 by Department of Earth Sciences, 

Indian Institute of Technology Roorkee and National Geophysical Research Institute, Hyderabad, 

India. Additional six strong motion accelerographs have been deployed by the Department of Earth 

Sciences Indian Institute of Technology Roorkee, in another project funded by Ministry of Earth 

Science, New Delhi, Government of India, since 2008. Because of high seismic activity and 

seismic gap present in this region, this strong motion network has great importance in recording 

recent seismic activities of the region. 
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On recommendation of International Workshop on strong motion measurements held in 

Honolulu, the Department of Earthquake Engineering, Indian Institute of Technology Roorkee 

established three strong motion arrays in India, funded by the Department of Science and 

Technology, New Delhi, Government of India (Chandrasekaran and Das 1993), which is still 

operating. Under this project 284 strong motion accelerographs have been installed in the three 

strong motion arrays. These are Kangra array (NW Himalaya), Uttar Pradesh array (North 

Himalaya) and Shillong array (NE Himalaya) India. The instruments used in these arrays are 

analogue strong motion accelerographs (SMA-1). The Uttar Pradesh array has 40 strong motion 

accelerographs. This array has recorded several earthquakes in the entire Himalayan belt. This 

array also covers various parts of the Garhwal Himalaya, India and continuously monitoring the 

seismic activities in this region.  

Location of stations of the Kumaon and Garhwal Himalaya networks along with the 

geology and tectonics in the Uttarakhand Himalaya which data used is in the present work shown 

in Fig 2.3. The minimum inter station distance of Kumaon array is approximately 11 km, while for 

Garhwal array it is approximately 20 km. Strong motion data of the earthquakes in the Garhwal 

Himalaya are available from the website maintained by the Department of Earthquake 

Engineering, Indian Institute of Technology, Roorkee, India.  
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Figure 2.3 Locations of strong motion recorders in the Kumaon and Garhwal Himalaya 

which data used. Half filled triangle denotes the station maintained by the Department of 

Earthquake Engineering, Indian Institute of Technology Roorkee and empty triangle denotes 

the stations maintained by the National Geophysical Research Institute and Department of 

Earth Sciences, Indian Institute of Technology Roorkee. Tectonic map has been taken after 

GSI (2000). 
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2.3.1 Data from Kumaon Network  

The sites for installation of strong motion accelerographs (SMA) in the Kumaon array have 

been selected on the basis of historical seismic activities. The historical events during 1973 to 2014 

shown in Fig. 2.1 indicate a cluster of events in between Main Central Thrust (MCT) and North 

Almora Thrust (NAT) in the Kumaon Himalaya region. Hence most of the strong motion 

accelerographs are installed between MCT and NAT to record maximum earthquakes occurring in 

this region. Details of all stations in the Kumaon array are given in Table 2.1. Some stations of this 

network are mobile and hence Table 2.1 has a total of 16 stations. This network is installed in 

highly mountainous terrain of the Kumaon Himalaya as shown in Fig. 2.4 where elevation of 

recording stations from mean sea level lie between 612 to 2239 meter. This network is one of the 

dense networks monitoring strong motion seismic activity in highly mountainous terrain of the 

Himalaya, India. Three-component accelerograph has been installed at each station as shown in 

Fig. 2.5. The stations Jouljibi and Munsyari have minimum and maximum elevation of 612 m and 

2239 m, respectively. 
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Table 2.1: Name, code and location of the recording stations in the Kumaon array. 

Sr. 

No. 

Station 

Name 

Station 

Code 

Latitude 

(Degree) 

Longitude  

(Degree) 

Elevation of the 

stations from 

mean sea level 

(meter) 

1 Didihat DID 29.80 80.25 1628 

2 Pithoragarh PIT 29.58 80.21 1574 

3 Tejam TEJ 29.95 80.12 968 

4 Dharchula DHA 29.84 80.53 935 

5 Munsyari MUN 30.06 80.25 2239 

6 Askot ASK 29.76 80.33 1258 

7 Kamedidevi KAM 29.84 79.96 1811 

8 Jouljibi JOL 29.75 80.38 612 

9 Baluakot BAL 29.79 80.42 644 

10 Knalichhina KNA 29.67 80.27 1656 

11 Muavani MUA 29.74 80.13 822 

12 Berinag BER 29.77 80.05 1684 

13 Mangti MAN 30.00 80.71 1609 

14 Sobla SOB 30.06 80.59 1628 

15 Thal THL 29.82 80.14 784 

16 Bageshwar BHA 29.83 79.77 873 
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Figure 2.4 Location of recording station in mountainous terrain of Himalaya. Figure showing 

location of the Askot station installed at the elevation of 1258 meter from mean sea level. 
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Figure 2.5 Strong motion accelerograph made by Kinemetrics, U.S.A. installed at each site. 
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This network had recorded two hundred ninety four events in this region since March, 2006 

to December 2014. Three-component force balance, accelerometer of Etna model make by 

Kinemetrics, U.S.A. have been installed at all stations of this network. In order to record events 

with low energy, the threshold level of instruments were set at very low level of 0.005% of full 

scale. The sensitivity of instrument is 1.25 V/g and full scale measurement is 2.5V. Sampling 

interval of digital data is kept at 0.01 sec. Purpose of such low threshold level is to record almost 

every possible local events occurring in this region. The major components of entire accelerograph 

unit are the Sensor, Global positioning system (GPS) antenna, Solar panel, Battery and PCMCIA 

card and is shown in Fig. 2.6 and 2.7. The entire instrument is in a compact form and consists of 

sensor, recording unit and battery. Global positioning system (GPS) antenna is connected through a 

cable to the main unit and is used to provide accurate geographical location and time. Solar panel 

and battery is used to supply the power backup to the accelerograph. Data can be retrieved from the 

PCMCIA card or through a cable connected with laptop as shown in Fig 2.8. PCMCIA is the 

memory card which is used to store the data. The data retrieved from the card is obtained in EVT 

format. The ASCII conversion of this format give three files with extension .001, .002 and .003, 

respectively which represent the longitudinal, transverse and vertical components, respectively of 

acceleration record. Three components of accelerogram of recorded at Dharchula station is shown 

in Fig. 2.9. 
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Figure 2.6 Major components of the strong motion accelerograph. 
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Figure 2.7 A figure showing the major component of accelerograph installed in the field. 
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Figure 2.8 Retrieval of data recorded in the strong motion accelerograph through a cable by 

using the laptop. 

 

 

Figure 2.9 Recorded three component of unprocessed accelerogram of an event occurred on 

4-09-2008 at the Dharchula station. 
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The hypocentral parameters of events recorded at three or more than three stations have 

been determined using HYPO71 software originally developed by Lee and Lahr (1972). Input 

parameters for the software are: station coordinates, arrival time of P-wave and S-wave, and 

velocity model of the region. The velocity model given by Yu et al. (1995) has been used for 

localization of events. Those events which are recorded at one and two stations are also used in the 

present work for calculation of source parameters using displacement spectra after estimating 

hypocentral distance from S-P time in the record. The records collected from the accelerograph 

have been processed using the procedure suggested by Boore and Bommer (2005). The processing 

steps involve baseline correction, instrumental scaling and frequency filtering which are defined in 

following section.  

 

2.3.2 Data from Garhwal Network 

A strong motion network of two hundred analog accelerographs had been installed by the 

Department of Earthquake Engineering Indian Institute of Technology Roorkee. This network 

covers various parts of the Himachal Pradesh, Punjab, Haryana, Uttar Pradesh, Uttarakhand (Table 

2.2), Bihar, West Bengal, Sikkim, and northeastern India. Inter spacing distance is about 20 to 40 

km of this network of strong motion instruments were located only in the Himachal Pradesh, 

Uttarakhand, and Shillong regions. Some strong motion accelerographs were installed in the 

seismic zone III of India. Due to its large population density this region has high seismic 

vulnerability. These strong motion networks are monitoring seismic activities and providing good 

quality strong motion data. However, due to the unavailability of components/spare parts and to 

obsolete technology, most of the strong motion accelerographs installed in the early 1980s are no 

longer functional. To overcome this problem, a division of the Government of India, sanctioned a 

project titled “National Strong Motion Instrumentation Network” to the Indian Institute of 

Technology, Roorkee (Kumar et al. 2012). 

In February 2004, under a another seismicity project funded by the Department of Science 

and Technology, New Delhi about 300 digital strong motion accelerographs were installed in 

northern and northeastern India to monitor seismic activity. In 2007 this network was further 

strengthened by 20 digital strong motion accelerographs by installing in the Delhi region under 

another project sanctioned by the Department of Science and Technology (Kumar et al. 2012). 
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Typically, the instruments are installed in a room on the ground floor of (preferably) a 

government-owned one or two story building where proper logistics are available, which means 

that the instrument is protected from tampering and 220 v AC power supply is available. In Delhi, 

however, free field instruments were installed inside a specially fabricated housing. All 300 strong 

motion accelerographs consist of internal AC-63 GeoSIG triaxial force-balanced accelerometers 

and GSR-18 GeoSIG 18-bit digitizers with external GPS. The 12 strong motion accelerographs 

installed in the Delhi are K-2 (Kinemetrics K-2s) with internal accelerometer (model episensor) 

and 18-bit digitizer. The recording for all instruments is in trigger mode at a sampling frequency of 

200 sps. The recording is done on a 256-MB GeoSIG or 1-GB Kinematics compact flash card 

(Kumar et al. 2012). Major components of instrument installed in the Garhwal Himalaya regions 

are shown in Fig. 2.10. A diagram showing the networking of instruments installed in remote area 

to the central station Roorkee is shown in Fig. 2.11. 

 

Table 2.2 List of strong motion accelerographs stations with name and coordinates installed 

in the Garhwal Himalaya (after Mittal et al. 2012) 

S. No. Station name Latitude (Degree) Longitude (Degree) 

1. Chamoli 30.41 79.32 

2. Pauri 30.15 78.78 

3. Tehri 30.37 78.43 

4. Uttarkashi 30.73 78.44 

5. Barkot 30.81 78.25 

6. Dhanaulti 30.43 78.23 

7. Garsain 30.05 79.29 

8. Ghansali 30.43 78.66 

9. Joshimath 30.57 79.58 

10. Lansdown 29.84 78.68 
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Figure 2.10 Major components of instrument installed in the Garhwal Himalaya regions 

(modified after www.pesmos.in). 
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Figure 2.11 A diagram showing the networking of instruments installed in field to Roorkee 

(the central station). This figure has been taken after Kumar et al. (2012). 
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2.4 Processing of Strong Motion Data 

2.4.1 Instrument scaling: This is an important correction, which converts counts or 

milivolt recorded by the instrument into actual ground acceleration in gals (cm/sec
2
). For strong 

motion accelerographs installed in Kumaon array, the instrument correction for longitudinal 

transverse and vertical component is 1.25 volt/g, respectively. The recorded data has been 

converted into acceleration form as shown in Fig. 2.12. 

  

 

 

0 40 80 120
Time (sec)

-2

-1

0

1

2

3

A
c
c
e

le
ra

ti
o

n
 (

c
m

/S
2
)

 

 

Figure 2.12 Processed (Baseline corrected) NS component of at the Dharchula station after 

instrument scaling correction. Records taken from strong motion data of earthquake 

occurred on 4.09.2008. 
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2.4.2 Baseline correction: This step necessitates subtraction of straight line from the input 

of time series. The line can be linear least square fit to the time series or the mean value of time 

series. The mean value is determined from the mean of suitable portion of accelerogram. Basically 

the portion of record prior to P- wave is taken for calculating mean and in case of absence of pre 

event memory in the recorder, entire record can be used. In the time series of the accelerogram, it 

is very difficult to see the effect of linear correction and is evident on the velocity record obtained 

from the integration of acceleration record. It is seen that velocity record of unprocessed 

accelerogram clearly shows long period undulation due to abrupt change in the linear trend of 

velocity record as shown in Fig. 2.13. This is removed clearly in the accelerogram processed for 

baseline correction shown in Fig. 2.13. 
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Figure 2.13 An example of (a) Digitized acceleration record without baseline correction, (b) 

Velocity record obtained from the integration of acceleration record, (c) Digitized 

acceleration record with baseline correction, (d) Velocity record obtained from the 

integration of acceleration record. 
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 2.4.3 Padding: This step extends the time series in both directions by adding zeros to 

the leading and trailing ends of the record. This step is used before application of low cut 

frequency filtering. The zero pads are added symmetrically to  both ends of the records in order to 

accommodate the filter transient. The length of zero pad „tpad‟ at each end is calculated using 

following empirically determined formula:  

 1.5 /pad cT nroll f                (2.1) 

 Where, nroll is the rolloff of the acausal low cut Butterworth filter and fc is the low cut 

frequency of the filter. The effect of padding is visible in the integrated displacement record 

obtained from accelerogram. A long term away from zero at the end of the velocity or 

displacement time series indicates that there may be insufficient padding. The integrated 

displacement record shows that without padding there is long term away from zero at the end of 

displacement record and this is removed in the zero padded processed record shown in Fig. 2.14. 
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Figure 2.14 An example of (a) Acceleration record without zero pads. The portion of record 

marked by rectangle is shown above this plot, (b) Velocity record obtained from integration 

of acceleration record, and (c) Displacement record obtained from the integration of velocity 

record. (d) Acceleration record with zero pads. The portion of record marked by rectangle is 

shown above this plot (e) Velocity record obtained from integration of acceleration record, 

and (f) Displacement record obtained from the integration of velocity record. 
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 2.4.4 Frequency Filtering: After baseline and instrument correction a filter is applied to 

remove high frequency noise. The usual processing of digital records uses Butterworth filter with a 

corner frequency near 80% of final sampling rate (Shakal et al. 2004). In the present work, we have 

used the having sampling rate of 0.01 sec, therefore high frequency corner of Butterworth filter is 

assumed as 40 Hz for 50 Hz nyquist frequency. Selection of low frequency cutoff of Butterworth 

filter remains the most difficult part of strong motion processing, because the effect of earthquake 

magnitude is to raise the response spectrum at low frequencies. The selection of cutoff of the 

Butterworth filter is based on the criteria so that the crossing with noise spectrum may not occur in 

the usual strong motion processing band. The selection of low frequency cutoff of the Butterworth 

filter is based on the characteristics of the noise and event present in the record. In this work we 

have selected noise from pre event memory of the digital record. The selection of low cutoff of the 

Butterworth filter is made in such a way that the ratio of the Fourier amplitude spectrum of record 

to that of noise is greater than 3 (Boore and Bommer 2005). In this work, we have used following 

criteria for selection of low frequency cut offs of the Butterworth filter which are based on the 

work done by Boore and Bommer (2005) and Shakal et al. (2004): 

(i) This criteria for selection of low frequency cutoff of the Butterworth filter uses the velocity 

response spectrum of the record and the noise. The selection of low frequency cutoff of the 

Butterworth filter based on the property of logarithm of velocity response spectrum was first 

suggested by Trifunac (1977). The logarithm of velocity response spectrum of record increases 

from low values at short period until it reaches a maximum at intermediate periods, beyond which 

it starts decreasing. However, the logarithm of noise spectrum increases in long period ranges. The 

frequency at which the ratio of logarithm of response spectrum of event and noise is less than 3 is 

selected as low frequency corner of the Butterworth filter. This criterion is shown in Fig. 2.15(g). 

(ii)  This criteria for selection of low frequency cut offs of Butterworth filter uses the ratio of 

Fourier amplitude spectrum of record with that noise. The low frequency cut offs of Butterworth 

filter is taken as that frequency, where this ratio is less than 3. This criterion is shown in Fig. 

2.15(h). Criteria for selection of low frequency cut-off of the Butterworth filter are shown in Fig. 

2.15. 
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Figure 2.15 An example of (a) Acceleration, (b) velocity and (c) displacement waveform of the 

digitized record of noise taken from prevent memory of the record of event recorded at the 

Dharchula station (d) Acceleration, (e) velocity, and (f) displacement record of signal 

corrupted with noise. (g) The Pseudo velocity response spectra at 5% damping of noise and 

signal with noise. (h) Amplitude spectra of acceleration record of noise and signal corrupted 

with noise. (i) Acceleration, (j) velocity, and (k) displacement record of signal after filtering. 

The spectrum of noise is shown by grey colour while the spectrum of signal corrupted with 

noise is shown by black. Vertical line in the spectra denotes the lower frequency range.  

 

 



 

50 

 

2.5 Estimation of Source Parameters 

Once the record is processed, the next step is the calculation of source parameter from that 

record for proper parameterization of event. The calculation of source spectra from acceleration 

record is based on the spectral property of acceleration record. The acceleration spectra of shear 

waves recorded at a distance R due to an earthquake of seismic moment Mo can be given as (Boore 

1983; Atkinson and Boore 1998): 

A(f) =  CMo S(f) D(f) Rs(f)        (2.2) 

Where, C is a constant for a particular station;  S(f) represents the source acceleration spectra; Rs(f) 

denotes the site amplification factor and D(f) denotes a frequency-dependent diminution function 

which takes into account the anelastic attenuation and attenuation due to geometrical spreading and 

is given as (Boore and Atkinson 1987): 

D(f) = [e
-fR/

 
Q(f)

G(R)]P(f, fm)      (2.3) 

In the above equation P(f, fm) is a high-cut filter that accounts for the observation that 

acceleration spectra often show a sharp decrease with increasing frequency, above some cutoff 

frequency fm, that cannot be attributed to whole path attenuation (Boore 1983). Due to the  rapid 

fall of acceleration spectra after 25 Hz in most of the acceleration records used in the present work, 

fm is used as 25 Hz in the analytical form of P(f, fm) suggested by Boore (1983). The function G(R) 

represents the geometrical attenuation term and is taken to be equal to 1/R for R < 100 km and 

equal to  1 10 R  for R > 100 km (Singh et al. 1999). The term e
-fR/ Q(f) 

represent anelastic 

attenuation term and in this term Q(f) is the frequency-dependent shear wave quality factor. Using 

equation (2.2) the source acceleration spectra SA(f) can be calculated as: 

SA(f) = A(f)/D(f)        (2.4) 

The source displacement spectra „SD(f)‟ can be calculated from source acceleration spectra 

„SA(f)‟ by using differential property of the Fourier transform. This gives the following equation:  

SD(f) = SA(f)/ (2πf)
2
        (2.5) 
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Source displacement spectra obtained from equation (2.5) gives idea about „fc‟ and „Ω0‟. The 

seismic moment (Mo) which determines the source strength is calculated using long term flat level 

(Ω0) and corner frequency (fc) from the source displacement spectra. An example of obtained 

source displacement spectra obtained from acceleration records is shown in Fig. 2.16. The source 

displacement spectra „SD(f)‟ can be theoretically computed from following expression given by 

Brune (1970): 

SD(f) = 1/(1+(f/fc)
2
)        (2.6) 

In the above expression „fc‟ is corner frequency. The match of theoretical source spectra with 

observed source spectra gives an estimate of corner frequency „fc‟ and long term flat level Ω0. 

Corner frequency and long term flat level (Ωo) is used to calculate the variation of source 

parameters. Seismic moment (M0) and long term flat level (Ωo) are related by following relation 

(Brune 1970, 1971): 

Mo = 4πρβ
3
 Ωo R/ FS*Rθϕ*PRTITN       (2.7) 

Where, ρ and β are the density and the S-wave velocity of the medium, respectively, FS is the free 

surface effect, PRTITN is the reduction factor, Ωo is the long term flat level of the source 

displacement spectrum at a hypocentral distance of R and Rθϕ is the radiation-pattern coefficient. 

The value of density and shear wave velocity as 2.7 gm/cm
3
 and 3.5 km/sec, respectively have 

been used. The radiation pattern coefficient „Rθϕ‟ was approximately taken as 0.55 for S wave 

(Atkinson and Boore 1995).  

The other parameter representing the source is its size, which is defined by the radius of 

circular rupture. The corner frequency „fc‟ of the source spectra is related to the radius „ro‟ of the 

equivalent circular crack by the following relation. The relation between „ro‟ and the corner 

frequency „fc‟ is given as (Brune 1970, 1971): 

 ro = 2.34β/2πfc         (2.8) 

Stress drop (∆σ) is one of the important parameters of an earthquake source and the static 

stress drop is the simplest measure of the overall reduction in shear stress due to slip on the fault 

zone. It is the difference between the average shear stress on the fault zone before and after the 
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earthquake (Ruff 1999). For a circular crack of radius „ro‟ the stress drop „∆σ‟ is given as 

(Papageorgiou and Aki 1983): 

∆σ = 7Mo /16 ro
3
         (2.9) 
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Figure 2.16 Source displacement spectra of different earthquakes recorded at the Dharchula 

station. Theoretical Brune’s spectrum is shown by solid line. 
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The seismic moment of an earthquake is directly related to the moment magnitude of an 

earthquake. Keeping in view of the saturation of mb, Ms and ML magnitude scales, moment 

magnitude (Mw) have been determined in the present work. Following relation given by Hanks and 

Kanamori (1979) has been used in the present work: 

                     10

2
og ( ) 10.7

3
w oM L M 

                 (2.10) 
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Figure 2.17 Distribution of peak ground acceleration with hypocentral distance for (a) 

Garhwal data (b) Kumaon data and (c) Moment magnitude with hypocentral distance of the 

recorded data of Garhwal array (d) Moment magnitude with hypocentral distance of the 

recorded data of Kumaon array. 
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Distribution of peak ground acceleration with hypocentral distance for the Garhwal and the 

Kumaon data is shown in Fig. 2.17(a) and (b), respectively. This shows that the range of 

hypocentral distance of the data set is between 4 to 151 km and maximum data lies in the range of 

10 to 100 km. Distribution of magnitude with hypocentral distance for the Garhwal and the 

Kumaon Himalaya is shown in Fig. 2.17(c) and (d), respectively. This shows that data of both 

regions lies between the magnitude range 3.5 ≤ Mw ≤ 5.3. For developing regression relation of 

peak ground acceleration for the Garhwal and Kumaon Himalaya, the moment magnitude and the 

hypocentral distance are selected as independent variables. In order to have consistency in the 

range of independent variable, we have used similar range of distance and magnitude, respectively 

for both of the regions. 

 

2.6 Conclusion 

This Chapter discusses strong motion data obtained in the Kumaon and Garhwal Himalaya, 

respectively. Various processing steps used to process strong motion records have been discussed 

in the present Chapter. The processed acceleration records are further used to obtained source 

parameters of earthquakes recorded by networks operating in the Garhwal and Kumaon Himalaya, 

respectively.  
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CHAPTER-3 

Attenuation Relations for the Kumaon and Garhwal Himalaya   

 

3.1 Introduction 

Peak ground acceleration during an earthquake plays an important role in safe design of 

engineering structures. Peak ground acceleration attenuates with respect to the epicentral and 

hypocentral distance. This decay is explained by attenuation relation. An attenuation relation is a 

mathematical expression relating specific parameters of an earthquake (Campbell 2001) with the 

desired engineering parameters. In the present work, strong motion data has been used for 

developing attenuation relation using Damped least square inversion method. This Chapter 

discussed the methodology of regression analysis to determine the attenuation relation of the 

Kumaon and Garhwal Himalaya. Various statistical tests on the developed regression relation is 

presented in this Chapter.  

  

3.2 Methodology of Regression Analysis 

Attenuation relation is one of the major requirements for estimations of seismic hazard of 

an area. Attenuation relations are generally derived from regression analysis. The first step in the 

regression analysis is the selection of regression model. In the present work regression model has 

been selected on the basis of dependency of peak ground acceleration on magnitude and distance 

parameters. Various functional dependencies have been checked and regression model that gives 

the best correlation and minimum error is selected for final regression model. Most of the 

earthquakes in the Uttarakhand Himalaya originate at a shallow dipping plane of detachment at 

approximate depths of about 10-15 km. Therefore in order to include the effect of earthquake 

originating from the plane of detachment a term „R
b
‟ is introduced in the present work which is 

equal to (R+15), which coincide with the approximate depth of plane of detachment. Following 

regression model has been selected in the present work: 

     1 2 3( ) ( ) ( ) ( )b

wln PGA a bf R cf M df R          (3.1) 
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Where, PGA is horizontal peak ground acceleration in gals, Mw is moment magnitude, „R’ 

is hypocentral distance in kilometer, R
b
 is distance parameter which can be hypocentral (R+15) or 

epicentral (E+15) distance in kilometer, E is epicentarl distance and a, b, c and d are regression 

coefficients, respectively. Following set of equations is obtained from different values of peak 

ground acceleration (PGAmk) obtained at different stations due to earthquake of magnitude (Mm) 

and hypocentral distance (Rmk): 

11 1 11 2 1 3 11

12 1 12 2 1 3 12

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

b

b

ln PGA a bf R cf M df R

ln PGA a bf R cf M df R

   

   
 

  :   : : 

 1 1 1 2 1 3 1( ) ( ) ( ) ( )b

k k kln PGA a bf R cf M df R     

  :   : : 

1 1 1 2 1 3 1( ) ( ) ( ) ( )b

n n nln PGA a bf R cf M df R     

For peak ground acceleration data of m
th

 earthquake recorded at k
th

 stations following set of 

equations is obtained: 

1 1 1 2 3 1

2 1 2 2 3 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

b

m m m m

b

m m m m

ln PGA a bf R cf M df R

ln PGA a bf R cf M df R

   

   
 

:   :                          : 

1 2 3( ) ( ) ( ) ( )b

mk mk m mkln PGA a bf R cf M df R     
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The above set of equations can be written in matrix form as: 

ln(PGA11) 

ln(PGA12) 

: 

ln(PGA1n) 

: 

ln(PGAm1) 

ln(PGAm2) 

: 

ln(PGAmk) 

 

 

 

 

 

= 

1     f1(R11)     f2  (M1)     f3(R
b
11) 

1 f1(R12)     f2  (M1)    f3 (R
b

 12) 

              :                       : 

1 f1(R1n)     f2  (M1)    f3 (R
b

 1n) 

            :                         : 

1 f1(Rm1)   f2  (Mm)   f3 (R
b

 m1) 

1 f1(Rm2)    f2 (Mm)   f3 (R
b

 m2) 

              :                       : 

1 f1(Rmn)   f2 (Mm)   f3 (R
b

 mk) 

 

 

 

 

a 

b 

c 

d 

  

 The above matrix equations can be further simplified as: 

                         d Gm               (3.2) 

       Where, „d‟ is the column matrix having peak ground acceleration data at various stations due 

to different earthquakes, „G‟ is a rectangular matrix defining the dependency of independent 

parameters of magnitude and hypocentral distance and „m‟ is the model matrix having coefficient 

of regression analysis. The model matrix „m‟ is obtained by following expression using least 

square inversion method: 

                           1( )T Tm G G G d                              (3.3) 

           In this expression, matrix „G
T
‟
 
define the transpose of matrix G. In actual case some of the 

eigen values of „G
T
G‟ are very small so that the variance of solution becomes unacceptably large 

(Joshi et al. 2010a). To avoid this difficulty, we used the damped least squares method given by 
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Levenberg (1944), which does not require eigen values analysis. The inversion using damped least 

square method is can be expressed as:  

                                1( )est T Tm G G I G d                     (3.4)                            

          In above equation, matrix „I‟ is the identity matrix and „λ‟ is the damping factor. Addition of 

large damping factor stabilizes the matrix by enhancing small eigen values but at the cost of losing 

resolution. It is therefore essential to keep the damping factor as small as possible as one 

approaches final solution (Manglik and Verma 1998). The solution of above equation can be 

obtained by minimizing  |d-Gm| + m
T
(λI)m instead of  |d-Gm|

2
, where (λI) is a diagonal matrix 

with damping factors. In order to choose the value of λ we have to check various possibilities of 

eigen values. The criteria of selection used in the present work is that based on modification of 

that, given by Dimri (1992) and applied by Joshi et al. (2010a). In the present work we have 

checked various possibilities of damping factors starting from one tenth of the largest eigen value. 

In order to find smallest damping factor giving minimum root mean square  error (RMSE), we 

have performed several iterations and in each iteration the damping factor is reduced by half of its 

earlier value. The power and inverse power methods have been used in the present work for 

calculation of largest and smallest eigen values. For numerical implementation of this scheme we 

have started with damping factor equal to 0.1 of the largest eigen value and reduced it further in a 

stepwise manner by half of its initial value for next 20 iterations. The root mean square error in 

each of the iteration has been computed by using following formula. Several such iterations have 

been performed to select damping factor corresponding to minimum root mean square (RMS) 

error.  

   
  

2

1

/
N

obi cai obi

i

PGA

P P P

RMSE
N








        (3.5) 

  

 

 Where, Pobi is observed and Pcai is calculated peak ground acceleration respectively and N is 

the number of sample. The magnitude of an earthquake depends on logarithm of maximum ground 

motion. Therefore, in the present study regression model that has logarithmic dependency of peak 

ground acceleration on magnitude has been used. Various dependency of logarithm of peak ground 

acceleration on distance parameter gives various possibilities of regression models. These models 
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explain linear, power and logarithmic dependency of dependent variables on various independent 

variables like R, R
b
 and Mw, respectively. The obtained coefficients of the regression relation from 

these models are compared. The comparison of statistical parameters from all possible models 

which gives minimum error and maximum correlation in terms of best fit is selected as final 

model. 

 

3.3 Data Used 

Under a major seismicity project funded by the Department of Science and Technology, 

and Ministry of Earth Science, Government of India New Delhi, a network has been installed in the 

highly mountainous terrain of the Kumaon Himalaya by National Geophysical Research Institute, 

Hyderabad and Department of Earth Sciences, Indian Institute of Technology Roorkee, India. The 

Department of Earthquake Engineering, Indian Institute of Technology Roorkee has installed an 

another strong motion arrays in the Garhwal Himalaya, India under a major project funded by 

Department of Science and Technology, Government of India. Detail of these networks is 

described in Chapter 2. These arrays had recorded several earthquakes in the entire Himalayan belt.  

 Strong motion networks installed in the Kumaon and Garhwal Himalaya region has given 

opportunity to record small to major earthquakes occurred in these regions. One hundred thirty 

strong motion records from the Kumaon and twenty nine strong motion records from the Garhwal 

Himalaya have been used in the present work as input data. Consistency in the data set has been 

maintained by selecting data from earthquakes of similar magnitude and distance range. Since our 

database contains very few earthquakes having hypocentral distance less than 15 km, we have 

rejected that data. The maximum data is lies in the distance range between 15 to 100 kilometer, 

while magnitude (Mw) range is from 3.5 to 5.3, respectively.  

 

3.4.1 Case-I: Attenuation Models for the Kumaon Himalaya  

 Most of the earthquakes in this part of Himalaya are originating from the basement 

thrust lying at an average depth of 15 km. Assuming the logarithmic dependency of magnitude 

scale on the amplitude of the ground motion we have assumed following four possible models for 

the regression analysis:  
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Model- I   
 

( ) ln ln( )b

wln PGA a b R cM d R     

 

Model- II ( ) ln( )b

wln PGA a bR cM d R     

                 (3.6)  

Model -III ( ) ( )b

wln PGA a bR cM d R     

 

Model- IV ( ) ln ( )b

wln PGA a b R cM d R        

   

 These models explain linear, power and logarithmic dependency of dependent variables on 

various independent variables like R, Mw and R
b
. Using the damped least square inversion scheme 

regression coefficients has been computed for each regression model. The obtained coefficients of 

the regression relation from these models for the Kumaon Himalaya are given in Table 3.1. The 

comparison of statistics from all four models indicates that model II gives minimum error and 

maximum correlation of observed and calculated data. The elements of the resolution and the 

correlation matrix for each model indicates high resolution and low error for coefficients of 

regression analysis for model II. The damping factor giving the minimum root mean square error 

(RMSE) between observed and calculated data set is 0.87. The developed attenuation relation for 

the Kumaon Himalaya on the basis of inversion of data and obtained values of regression 

coefficient is given as: 

    ln( ) 0.336 2.58 0.018 2.96ln( 15)WPGA M R R             (3.7) 

  Where, PGA is peak ground acceleration in cm/sec
2
, Mw is moment magnitude, and 

R is the hypocentral distance in kilometer. The comparison of actual and computed peak ground 

acceleration is shown in Fig. 3.1(a).The resolution matrix obtained from the inversion algorithm is 

shown in Fig. 3.1(b). Distribution of residual with respect to peak ground acceleration is shown in 

Fig. 3.1(c) which indicates that the parameter is predicted properly and are not over or under 

estimated. Distribution of residual with respect to magnitude and distance parameter is shown in 

Fig. 3.1(d) and 3.1(e), respectively and it shows that the residual is within permissible limits for 

selected magnitude and distance ranges.   
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Table 3.1 Statistics of the obtained coefficients from different regression relations for 

Kumaon data using hypocentral distance. 

Model Regression coefficients  Mean of 

observed  

log(PGA)  

Standard 

deviation of 

observed 

log(PGA)  

Mean of 

log(PGA) 

computed 

from 

relation 

Standard 

deviation of 

log(PGA) 

computed 

from relation 

Correlation 

coefficient 

SSE 

(Sum 

of 

square 

error) 

SSR 

(Sum of 

square 

residual) 

I a = -8.78; b = -2.3; 

 c = 2.6, d = 1.48 

-0.05 1.26 0.19 0.90 0.71 0.90 0.93 

II a  = -0.336; b = .018; 

 c = 2.58, d = -2.96 

-0.05 1.26 -.045 0.91 0.72 0.87 0.90 

III a = -10.41; b = -0.029;  

c = 2.6, d = -0.004 

-0.05 1.26 -0.48 0.89 0.69 1.03 0.98 

IV a = -5.87; b = -1.6; 

 c = 2.5, d = 0.007 

-0.05 1.26 -0.25 0.87 0.70 0.89 0.90 
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Figure 3.1 Using selected attenuation model (a) Comparison of observed peak ground 

acceleration with calculated one. The cross and solid circle represent observed and calculated 

peak ground acceleration, respectively, (b) Resolution matrix of regression coefficients (c) 

Distribution of residual with respect to peak ground acceleration. (d) Plot of residual versus 

magnitude and (e) Plot of residual versus hypocentral distance. Residual is difference of 

logarithm of observed peak ground acceleration with calculated.  
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 In an attempt to check the dependency of attenuation relation on distance parameter, we have 

introduced term epicentral distance „(E+15)‟ in place of „(R+15)‟ in the regression models given in 

equation (3.6). This new parameters gives following four possible models: 

Model- V   '( ) ln ln( )wln PGA a b R cM d R     

 

Model- VI '( ) ln( )wln PGA a bR cM d R     

                (3.8)  

Model -VII '( ) ( )wln PGA a bR cM d R     

 

Model- VIII '( ) ln ( )wln PGA a b R cM d R       

 

Where, PGA is peak ground acceleration in cm/sec
2
, Mw is the moment magnitude, „R‟ is 

the hypocentral distance and R
‟
 shows the distance parameter and is equal to (E+15). These models 

explain linear, power and logarithmic dependency of dependent variables on various independent 

variables like R, Mw and R
‟
. Using the damped least square inversion scheme regression 

coefficients has been computed for each regression model. The obtained coefficients of the 

regression relation from these models (Model V to VIII) for the Kumaon Himalaya are given in 

Table 3.2. The compressions of statistics from all four models indicate that model V gives the 

minimum error and maximum correlation. This gives following attenuation model from similar 

dataset for Kumaon Himalaya:  

  ln( ) 5.8 2.62 0.16ln 1.33ln( 15)wPGA M R E                  (3.9) 

 Where, PGA is peak ground acceleration in cm/sec
2
, Mw is the moment magnitude, „R‟ is 

the hypocentral distance and E is the epicentral distance in kilometer. Root mean square error 

between logarithm observed and estimated peak ground acceleration (PGA) obtained for this 

model is 0.87 and standard deviation is 0.42, which has less than that observed in attenuation 

relation given in equation (3.7). Comparison of actual and computed peak ground acceleration is 

shown in Fig. 3.2(a). Resolution matrix obtained from the inversion algorithm is shown in Fig. 

3.2(b). Plot of resolution matrix in Fig. 3.2(b), shows that the regression coefficients are properly 
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resolved. Distribution of residual with respect to peak ground acceleration (PGA) is shown in Fig. 

3.2(c) and indicates that the parameter is predicted properly and is not over or under estimated. 

Distribution of residual with respect to magnitude and distance parameter is shown in Fig. 3.2(d) 

and 3.2(e), respectively and it shows that the residual is within permissible limits for selected 

magnitude and distance ranges. 

 

Table 3.2 Statistics of the obtained coefficients form different regression relation for Kumaon 

data using epicentral distance. 

Model Regression coefficients  Mean of 

observed  

log(PGA)  

Standard 

deviation of 

observed 

log(PGA)  

Mean of 

log(PGA) 

computed 

from relation 

Standard 

deviation of 

log(PGA) 

computed 

from relation 

Correlation 

coefficient 

SSE 

(Sum 

of 

square 

error) 

SSR 

(Sum of 

square 

residual) 

V a = -5.8; b = -0.16;  

c = 2.62, d = -1.33 

-0.05 1.26 -0.04 0.91 0.72 0.87 0.90 

VI a = -4.6; b = 0.006;  

c = 2.57, d = -1.8 

-0.05 1.26 -0.03 0.91 0.72 0.87 0.90 

VII a = -9.48; b = 0.069;  

c = 2.55, d =-0.089 

-0.05 1.26 -0.09 0.88 0.70 0.89 0.88 

VIII a = -6.21; b = -1.52;  

c = 2.61, d = 0.004 

-0.05 1.26 -0.05 0.90 0.71 0.87 0.90 
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Figure 3.2 An attenuation relation using epicentral distance (a) comparison of observed peak 

ground acceleration with calculated one. (b) Resolution matrix of regression coefficients (c) 

Distribution of residual with respect to peak ground acceleration. (d) Plot of residual versus 

magnitude and (e) Plot of residual versus distance. Residual is difference of logarithm of 

observed peak ground acceleration with calculated. 
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3.4.2 Case-II: Attenuation Relations for the Garhwal Himalaya 

 In the present work regression relation for the Garhwal Himalaya is developed using strong 

motion data recorded by network operating in the Garhwal Himalaya. This data set consists of 

limited event due to high threshold of recording. This data set consists of peak ground acceleration 

from 29 records of horizontal component. Four different regression model given in equation (3.6) 

has been selected for regression analysis. Damped least square algorithm has been used for obtain 

coefficients of regression analysis. The obtained regression coefficients for all four models (Model 

I to IV in equation 3.6) are given in Table 3.3. This indicates high resolution and low error for 

coefficients of regression analysis for model I. Model I also gives minimum root mean square 

error. The diagonal elements of resolution and correlation matrix indicate that model II is also 

giving minimum error however resolution matrix corresponding to this model is very poor. 

Therefore model I has been retained for defining attenuation relation for the Garhwal Himalaya. 

The attenuation relation for this model is given as: 

 ln( ) 2.29 2.07 1.95ln 4.03ln( 15)wPGA M R R                      (3.10) 

 Where, PGA is peak ground acceleration in gals observed in the horizontal component, Mw 

is moment magnitude, and R is hypocentral distance in km. The damping factor corresponding 

minimum root mean square error is 0.017 and the root mean square error (RMSE) between 

observed and calculated data set is 0.46. The comparison of actual and computed peak ground 

acceleration is shown in Fig. 3.3(a). The resolution matrix obtained from inversion algorithm is 

shown in Fig. 3.3(b) and shows that the regression coefficients have been properly resolved. 

Distribution of residual with respect to peak ground acceleration (PGA) is shown in Fig. 3.3(c). 

This indicates that the data is predicted properly and is not over or under estimated. Distribution of 

residual with respect to magnitude and distance parameter is shown in Fig. 3.3(d) and 3.3(e), 

respectively and it shows that the residual are within permissible limits for selected magnitude and 

distance ranges.  

 

 



 

67 

 

Table 3.3 Comparisons of statistics for obtained values from different models using 

hypocentral distance for the Garhwal Himalaya region. 

Model Regression coefficients Mean of 

Observe

d  

(PGA) 

data 

Standard 

deviation of 

observed 

(PGA) data 

Mean PGA 

data 

computed 

from 

relation 

Standard 

deviation of 

PGA data 

computed 

from relation 

Correlation 

coefficient 

SSE 

(Sum 

of 

square 

error) 

SSR 

(Sum of 

square 

residual) 

I a = 2.29; c = 2.07; 

b = 1.95; d = -4.03 

2.03 1.04 2.0 0.91 0.88 0.46  0.89 

II a = -4.17; c = 1.96; 

b = -0.012; d = -0.38 

2.03 1.04 2.06 0.91 0.88     0.47 0.90 

III a = -0.03; c = 1.63; 

b = 0.25; d = -0.27 

2.03 1.04 1.64 1.0 0.84 0.67 1.08 

IV a = -4.61; c = 1.92; 

b = -0.18; d = 0.013 

2.03 1.04 2.1 0.89 0.87 0.48 0.88 
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Figure 3.3 For selected regression model using hypocentral distance (a) Comparison of 

observed peak ground acceleration with calculated one. The cross and solid circle represent 

observed and calculated peak ground acceleration, respectively, (b) Resolution matrix of 

regression coefficients (c) Distribution of residual with respect to peak ground acceleration. 

(d) Plot of residual versus magnitude and (e) Plot of residual versus hypocenter distance. 

Residual is difference of logarithm of observed peak ground acceleration with calculated.  
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 Dependency of regression model on different distance parameters have been also checked 

for the Garhwal Himalaya. The obtained coefficients from these models (Model V to VII in 

equation 3.8) are given in Table 3.4. Comparison of correlation coefficient, sum of square error 

(SSE), sum of square residual (SSR) and other statistical parameters of used and calculated dataset 

indicate that model VI gives high correlation coefficient and low error as compared to other 

models. This regression model is given as: 

 ln( ) 4.8 1.92 0.014 0.17ln( 15)wPGA M R E              (3.11) 

 Where, PGA is peak ground acceleration, Mw moment magnitude, R is hypocentaral 

distance and E is epicentral distance in kilometer. Comparison of actual and computed peak ground 

acceleration is shown in Fig. 3.4(a) and it shows that the regression model is capable of predicting 

the dataset. The resolution matrix obtained from the inversion algorithm is shown in Fig. 3.4(b). 

Distribution of residual with respect to peak ground acceleration (PGA) is shown in Fig. 3.4(c) and 

it indicate that the parameter is predicted properly and is not over or under estimated. Distribution 

of residual with respect to magnitude and distance parameter is shown in Fig. 3.4(d) and 3.4(e), 

respectively and it shows that the residual are within permissible limits for selected magnitude and 

distance ranges.  
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Table 3.4 Comparisons of statistics for obtained values from different regression models 

using epicentral distance for the Garhwal region. 

Model Regression 

coefficients 

Mean of 

observed  

PGA data 

Standard 

deviation of 

observed 

PGA data 

Mean PGA 

data 

computed 

from relation 

Standard 

deviation of 

PGA data 

computed 

from relation 

Correlation 

coefficient 

Sum of 

square 

error 

Sum of 

square 

residual 

V a = -0.54;c = 2.09;  

b = 0.34; d = -1.9 

2.03 1.04 2.03 0.89 0.86 0.52 0.88 

VI a = -4.8; c = 1.92; 

b=-.014;d= -0.17 

2.03 1.04 2.03 0.92 0.88 0.47 0.90 

VII a = -5.2; c = 1.89; 

b = -.013;d= -.001 

2.03 1.04 2.24 0.87 0.86 0.52 0.88 

VIII a = -4.8; c = 1.91;  

b= -0.12; d= -.014 

2.03 1.04 2.05 0.92 0.88 0.47 0.90 
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Figure 3.4 Attenuation relation using epicentral distance (a) comparison of observed peak 

ground acceleration with calculated one. (b) Resolution matrix of regression coefficients (c) 

Distribution of residual with respect to peak ground acceleration. (d) Plot of residual versus 

magnitude and (e) Plot of residual versus distance. Residual is difference of logarithm of 

observed peak ground acceleration with calculated. 
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3.5 Numerical Experiment 

Attenuation relation is major input for estimation of seismic hazard using probabilistic 

seismic hazard assessment (PSHA) technique. It is seen that the computation of seismic hazard 

depends on the distribution of random variable called as residual from the attenuation relation. The 

random residual is defined as difference of logarithm of actual and predicted values. The random 

residual is usually assumed to be log normally distributed (Campbell 1981). A posteriori empirical 

justification in support of a lognormal distribution for random residual comes from statistical tests 

on the observed scatter about the predicted value of peak ground acceleration (Esteva 1970; 

Donovan 1973; McGuire 1977, 1978; Campbell 1981). It is assumed that random residuals behave 

normally for all computations related to the ground motion variability. Deviation of this random 

residual with respect to normality is one of the main causes of presence of fat tail in the distribution 

function, which may effect in the computation of the seismic hazard of the region. A simple 

method of checking nonlinearity assumption is to construct a plot of cumulative probability with 

respect to residuals plotted in an increasing order. Figure 3.5 shows the example of nonlinearity 

assumption. This graph is a straight line for normal distribution as shown in Fig. 3.5(a). A sharp 

upward and downward curve at both ends in Fig. 3.5(b) indicates that the tail of this distribution is 

too heavy to be considered as normal distribution. Flattening at the extreme end is shown in Fig. 

3.5(c), which is a typical pattern from a distribution with thinner tail. The patterns associated with 

positive and negative skew are shown in Fig. 3.5(d) and 3.5(e), respectively. Small departures from 

normality assumption do not affect the model greatly, but gross nonlinearity is potentially more 

serious. If the errors come from a distribution with thicker or heavier tails than the normal, the least 

square fit may be sensitive to a small subset of data. Heavy tail distribution often generates outliers 

that pull the least square fit too much in their direction. The random residual also plays an 

important role in deciding several types of model inadequacies. The model inadequacies in the 

attenuation relation are checked by plotting random variable versus predicted parameter.  If the 

plot of random residuals versus predicted parameter shows the data points within a horizontal band 

then there are no obvious model defect. An example of the model inadequacies in the plots by with 

deviation are shown in Fig.3.5. 
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Figure 3.5 Normal probability plots (a) ideal; (b) heavy-tailed distribution; (c) light-tailed 

distribution; (d) positive skew; (e) negative skew. (Modified after Montgomery et al. 2003) 
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A very simple method for checking the normality assumption in attenuation relation is to 

construct a cumulative probability plot of the residuals. First step in this process is calculation of 

random residuals. The random residuals are arranged in an increasing order and are plotted against 

cumulative probability in order to make cumulative probability plot. The ideal normal probability 

plot of random residual follows a straight line. Substantial departures from a straight line indicate 

that the distribution is not normal. The model inadequacies in the ground motion prediction 

equation (GMPE) are checked by the plot of random residual versus observed value. In the present 

work model adequacies present in the developed ground motion prediction equation (GMPE) are 

checked by plotting random residuals versus observed peak ground acceleration values. It is seen 

that as long as the plot of random residuals versus observed values follows horizontal band there 

are no model inadequacies. Strong deviations of random residuals from this band and strange 

patterns often resulted due to the model inadequacies (Montgomery et al. 2003).  

Various studies done by Joshi and Patel (1997), Joshi et al. (2001), Joshi (1997, 1998, 

2001), Kumar et al. (1999) regarding modeling of strong motion data for the Himalayan 

earthquakes shows that the attenuation relation of Abrahamson and Litehiser (1989) is suitable to 

predict peak ground acceleration parameters in this region. The GMPE given by Abrahamson and 

Litehiser (1989) has been tested for normality and model inadequacies in the present work. This 

relation which is hereby referred in the text as AL89 and is given as: 

10 10g ( ) 0.62 0.177 0.982log ( 0.284 ) 0.132 0.0008Lo a g M R e M F ER                     (3.12) 

In this expression, M is the magnitude of the earthquake represented by an element, R is the 

distance in km to the closest approach of the zone of energy release and a(g) is the horizontal peak 

ground acceleration. The variable E is a dummy variable and is 1 for interplate events and zero for 

intraplate events. The dummy variable F is 1 for reverse or reverses oblique events and zero 

otherwise. The observed and predicted value of peak ground acceleration using AL89 relationship 

is shown in Fig. 3.6(a). The plot of normality and model inadequacies is shown in Fig. 3.6(b) and 

3.6(c), respectively. The relation between predicted value of the peak ground acceleration used in 

the dataset and observed value obtained from this relation is shown in Fig. 3.6(a). The linear trends 

of plot in Fig. 3.6(a) denote that GMPE is capable of predicting the data which has been used for 

its generation. The plot of random residual versus cumulative probability in Fig. 3.6(b) shows 
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presence of weak tail in the cumulative probability plot. The horizontal band of residual in all 

range of actual data defend that the model is adequate to predict peak ground acceleration values. 

 The attenuation relation developed by Joyner and Boore (1981) has been used for 

preparing seismic hazard map of India and adjoining region by Bhatia et al. (1999) under Global 

Seismic Hazard Assessment Program (GSHAP). The ground motion prediction equation (GMPE) 

given by Joyner and Boore (1981) is tested normality and model inadequacies in the present work. 

The GMPE given by Joyner and Boore (1981) is hereby referred as JB81 in the text and is given 

as: 

g ( ) 1.02 0.249 log 0.00255Lo a g M r r                                                  (3.13) 

1/2

2 2( ) , 7.3r d h h     

In this expression, „r‟ is the hypocentral distance, „M‟ is the magnitude of earthquake and 

a(g) is peak ground acceleration in g. This relation is restricted to the data of Western North 

American shallow earthquakes with depth less than 20 km and magnitude more than 5.0 and 

includes 183 records. Estimated and observed peak ground acceleration values using JB81 

relationship is shown in Fig. 3.7(a). Plot of cumulative probability function versus random residual 

is shown in Fig. 3.7(b) and residual versus peak ground acceleration plot are shown in Fig.3.7(c). 

In the present work ground motion prediction equations have been developed from database 

of networks installed in the Uttarakhand Himalayan region. The developed ground motion 

prediction equations (GMPEs) have been used to check the assumption of normality and model 

inadequacies. Figure 3.8 and Fig. 3.9 shows the test of normality and model inadequacies of 

GMPEs given in equation (3.7) and (3.9), respectively. The cumulative probability plot of random 

variable also falls in straight line indicating it to be following normality assumption. However 

some weak tails are also evident at the extreme ends. 
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Figure 3.6 (a) Comparison of peak ground acceleration obtained from GMPE of 

Abrahamson and Litehiser (1989) with the data used in developing this GMPE, (b) its 

cumulative probability function plot with respect to random residual of estimation, (c) 

random residual plot with respect to peak ground acceleration parameter. 
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Figure 3.7 (a) Comparison of peak ground acceleration obtained from regression relation of 

JB81 with the data used in developing this GMPE, (b) its cumulative probability function 

plot with respect to random residual of estimation, (c) random residual plot with respect to 

PGA parameter. 
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Figure 3.8 (a) Comparison of PGA obtained from regression model (equation 3.7) with the 

data used in developing this GMPE, (b) its cumulative probability function plot with respect 

to random residual of estimation, (c) its random residual plot with respect to PGA 

parameter. 
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Figure 3.9 (a) Comparison of PGA obtained from regression model ( equation 3.9) with the 

data used in developing this GMPE using epicenteral distance as one of the distance 

dependent parameter, (b) its cumulative probability function plot with respect to residual of 

estimation, (c) its residual plot with respect to peak ground acceleration 
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The test on normality and model inadequacies on various ground motion prediction 

equations shows that GMPE behave almost similar to its dataset which is used for its prediction. 

However in actual practice attenuation relation is used to predict values in the region that have 

limited or no strong motion data. This situation is same as using ground motion prediction equation 

to create data set other than that used in development of GMPE. In order to check the effect of 

normality for predicting data set other than that used for developing GMPE, a test is performed on 

the data set of Abrahamson and Litehiser (1989) using GMPE given by Joyner and Boore (1981) 

and that of Joyner and Boore (1981) using GMPE given by Abrahamson and Litehiser (1989). 

Clear deviation from normality is observed in this test which is shown in Fig. 3.10. These 

cumulative probability plots show that the mean is a negative value which means there is problem 

of underestimation. The problem of underestimation can also be due to the difference in the 

variable used in two ground motion prediction equation models. It is seen that the deviation from 

cumulative probability plot on predicting the data of Abrahamson and Litehiser (1989) by Joyner 

and Boore (1981) is less because of the large amount of data used by Abrahamson and Litehiser 

(1989) as compared to Joyner and Boore (1981). 

 

 

Figure 3.10 Cumulative probability plots of random residual produced by using (a) GMPE 

defined by Joyner and Boore (1981) for predicting data used in Abrahamson and Litehiser 

(1989) (b) GMPE given by Abrahamson and Litehiser (1989) for predicting data used in 

Joyner and Boore (1981).  
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The effect on the assumption of normality and model inadequacies in the ground motion 

prediction equation (GMPE) used for predicting regional Himalayan data from Kumaon Himalaya 

is numerically tested in the present work. In this test ground motion prediction equation of 

Abrahamson and Litehiser (1989), Joyner and Boore (1981) are included because of its frequent 

use in strong motion modeling of the Himalayan earthquakes (Joshi, 2006; Kumar et al. 1999) and 

seismic hazard estimation of the region (Bhatia et al. 1999). This test also includes other ground 

motion prediction equation (GMPE) given by Boore et al. (1997) and Boore and Atkinson (2008). 

The ground motion prediction equation given by Boore and Atkinson (2008) and Boore et al. 

(1997) is now hereby referred in the text as BA08 and BO97, respectively. The test checks the 

distribution of random residual with respect to peak ground acceleration and deviation of random 

residuals from normality. These tests are shown in Fig. 3.11. It is seen that the attenuation relations 

given by Abrahamson and Litehiser (1989), Boore and Atkinson (2008) and Joyner and Boore 

(1981) overestimate the value of peak ground acceleration when applied to predict data from the 

Kumaon Himalaya, thus clearly emphasizing the need to develop a new ground motion prediction 

equation for the region. Although Boore et al. (1997) gives comparable match in terms of predicted 

parameter, strict deviation from normality is clearly seen in the ground motion prediction equation 

when used for predicting data from the Kumaon Himalayan. It is seen from this test that when 

these relations are used for predicting values of peak ground acceleration of data from the Kumaon 

Himalaya fat tail or heavy tail is clearly seen in the normality plot of random residual which clearly 

indicates deviation of ground motion prediction equation from normality. This type of deviation 

from normality is expected to affect probabilistic seismic hazard assessment technique where we 

use 10% of probability of exceedence of peak ground acceleration in 50 years as a major parameter 

for seismic hazard zonation.  
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Figure 3.11(a) Comparison of PGA obtained from GMPE defined by Boore and Atkinson (2008) 

with the dataset of Kumaon Himalaya, (b) its cumulative probability function plot with respect 

to random residual of estimation, (c) its random  residual plot with respect to PGA parameter, 

(d) Comparison of PGA obtained from GMPE of BO97 with the dataset of Kumaon Himalaya, 

(e) its cumulative probability function plot with respect to random residual of estimation, (f) its 

random residual plot with respect to PGA parameter. (g) Comparison of PGA obtained from 

GMPE of AL89 with the dataset of Kumaon Himalaya, (h) its cumulative probability function 

plot with respect to random residual of estimation, (i) its random residual plot with respect to 

PGA parameter. (j) Comparison of PGA obtained from GMPE of JB81 with the dataset of 

Kumaon Himalaya, (k) its cumulative probability function plot with respect to random residual 

of estimation, (l) its random residual plot with respect to PGA parameter. 
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3.6 Discussion  

Regression relations have been developed in the present work for the Kumaon and Garhwal 

region. Regional strong motion data set has been used for developing regression relation. Distance 

parameter depending on the hypocentral and epicentral distance has been included in the regression 

model. It is seen that regression relations depending on epicentral as distance parameter give the 

minimum root mean square error. Attenuation curve of peak ground acceleration has been obtained 

using developed attenuation relations for both cases and different attenuation trend for the Kumaon 

and Garhwal Himalaya has been observed. Obtained attenuation curve for the Kumaon and 

Garhwal Himalaya are shown in Fig. 3.12. These curves shows that attenuation of peak ground 

acceleration is high in the Kumaon Himalaya as compare to the Garhwal Himalaya. 
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Figure 3.12 Attenuation curve for (a) and (b) Garhwal region, (c) and (d) Kumaon region 

using developed attenuation relation using hypocentral and epicentral distance, respectively.  
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 3.7 Conclusion 

 This Chapter discusses the methodology of the regression relation analysis. Attenuation 

relations have been developed using damped least square inversion method. Dependency of 

developed attenuation relation on distance parameters also check in this study. The attenuation 

relations using epicentral distance in place of hypocentral distance gives the minimum root mean 

square error. The data for the Himalayan earthquake are predicted by using the attenuation 

relations developed for the Himalayan region with hypocental and epicentaral distance parameters. 

These attenuation relations obey normality and do not reflect any model inadequacies. The 

worldwide attenuation relations which are frequently used in Indian regions have been also 

checked for the assumption of normality and models inadequacies. It is seen that these attenuation 

relation shows presence of fat tails together with large model inadequacies when they are used for 

predicting Himalayan data. It is seen that as long as the data set is similar to that used for 

generating ground motion prediction equation (GMPE) the normality and model adequacies are 

broadly satisfied. However, clear deviation from normality is observed when using GMPE for 

predicting different data sets.  
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CHAPTER - 4 

Modeling of Finite Earthquake Source using Semi-empirical 

Technique 

 

4.1 Introduction 

 The technique of simulation of strong ground motion is useful tool where strong motion 

data is not available. Many techniques which have been used for synthesis of strong motion data 

have been discussed in Chapter 1. One of the widely used techniques is the semi empirical 

simulation technique given by Midorikawa (1993). The semi empirical simulation technique is 

dependent on attenuation relation. Joshi et al. (2012) have demonstrated the applicability of 

attenuation relation in this technique for regional studies. In this Chapter, semi empirical technique 

has been used for simulation of strong ground motion due to the Uttarkashi and Chamoli 

earthquakes 

 

4.2 Method of Finite Modeling of Earthquake Source 

 Developed attenuation relation of limited applicability can be used for deterministic 

modeling of the rupture plane using semi empirical technique, initially proposed by Midorikawa 

(1993) and later modified by Joshi and Midorikawa (2004). This technique requires attenuation 

relation applicable in the study area for simulation of strong ground motion using deterministic 

model of the rupture plane. The method was initially proposed by Midorikawa (1993) and is used 

to model rupture plane buried in a homogenous earth model. Modification in this technique has 

been made by Joshi and Midorikawa (2004) to include the effect of buried rupture plane in the 

layered earth model. This technique has been used to simulate accelerogram due to rectangular 

rupture source. The semi empirical technique of simulation is based on the concept of dividing the 

finite rupture of the target earthquake into several subfaults representing small earthquakes. This 

technique uses attenuation relation for scaling the envelope of accelerogram which are treated as 

Green‟s function. This simulation technique is controlled by various factors like attenuation 

relation, geometry of the rupture plane, velocity model of the earth crust, geometry of the rupture 
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propagation and source parameters of small earthquakes. The basic concept of the release of 

synthetic record from various subfaults and their summation at the observation point considering 

the rupture propagation and propagation of the energy in the medium is same as that was initially 

given by Midorikawa (1993) in his envelope summation technique. The scaling relation between 

the parameters of the target and small earthquakes is based on the self similarity laws given by 

Kanamori and Anderson (1975).  

  

4.2.1 Self-Similarity 

Division of rupture plane of target earthquake into sub-faults in this simulation technique is 

based on the self-similarity law of the source parameter given by Kanamori and Anderson (1975) 

and other the self-similarity law of source spectra given by Aki (1967). Scaling relationship of 

source parameters such as rupture length, rupture width, slip, slip duration and magnitude are 

defined by the self-similarity laws given by Kanamori and Anderson (1975) and is defined as 

follows: 

                                     
1 3

'e e o oL L W W T D d M C M N                                     (4.1) 

where,  

   L and Le = length of the rupture plane of the target and small earthquakes, respectively;  

  W and We = width of the rupture plane of the target and small earthquakes, respectively;  

      T and τ = slip duration of the target and element earthquakes, respectively;  

     D and d = slip of the target and small earthquakes, respectively;  

Mo and Mo′ = seismic moment of the target and small earthquakes, respectively and  

              N = total number of sub-faults along the length or width of the target rupture plane.  

Above relation was modified by considering following empirical relationship between 

seismic moment and the earthquake magnitude given by Kanamori (1977): 

10log 1.5 16.1o wM M                                                     (4.2) 
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Where, Mo and Mw are the seismic moment and moment magnitude of an earthquake, respectively. 

Using equation (4.1), following relation has been obtained: 

1.5 16.1
10 wM

oM



                    (4.3)

 

1.5 ' 16.1
10 w

o

M
M




                                  (4.4)
 

Dividing equation (4.3) with (4.4) we get: 

                                                  
 0.5

10
w wM M

N


                                                       (4.5) 

Where, Mw and Mw′ are the moment magnitude of the target and small earthquakes, 

respectively. Above equation has been also used by Midorikawa (1993) for fixing parameters of 

target and subfault events, respectively. The scaling laws mentioned above are required for 

defining the parameter of rupture plane responsible for causing target earthquake. The other scaling 

relation which is used in the simulation technique is based on the spectral scaling model given by 

Aki (1967) and Brune (1970) and is called as Omega square (ω
˗2

) spectral scaling model. 

According to ω
˗2

 model (Aki 1967; Brune 1970), the theoretical shapes of source spectrum is given 

as:  
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                                                               (4.6) 

The source displacements spectra of both the target and small earthquakes can be defined as 

follows: 

 
 

2
1

o
o

c

M
U f

f F

 
 

                                                               (4.7) 

 
 

2
1

o
o

c

M
U f

f f


 

 
 

                                                               (4.8) 

Where, Fc and fc  are the corner frequency of the target and small earthquakes, respectively 

According to ω
˗2 

model, Irikura (1986) have proposed following approximation: 

    20 ,oU f U f                                                       (4.9) 
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The self-similarity law for spectral parameter of the target and small earthquakes is formulated as 

follows: 

3o o

o o

U M
N

U M
 

 
                                                            (4.10) 

Where, oU and oU are the constant levels of the source displacement spectra of the target and 

small earthquakes, respectively. This scaling relation is called as ω
˗2

 spectral scaling model (Aki 

1967; Brune 1970). If the average stress drop is independent of Mo, self-similarity exists among 

these earthquakes (Aki 1967). Under such cases high-frequency acceleration flat level Ao is 

proportional to Mo
1/3

, which gives the following form of the spectral relationship between the target 

and small earthquakes (Irikura 1986): 

                                        
1 3

'o o o oA A M C M N                                                   (4.11) 

Where, oA  and 
oA   are the high-frequency flat level of the acceleration spectra of the target and 

small earthquakes, respectively. The constant stress drop model gives following scaling relation 

between the corner frequency of the target and small earthquakes (Boore 1983): 

                                                    
1/3

1c c o oF f M M N                                               (4.12) 

Where, Fc and fc are the corner frequency of the target and small earthquakes, respectively. The 

condition of constant stress drop does not always hold for wide magnitude range (Joshi and 

Midorikawa 2004). Therefore, Irikura (1986) has introduced a flexible condition for ω
˗2 

model, 

having shape of ω
˗2

 source spectrum but not constant stress. In such cases the self-similarity law of 

source spectra for including stress drop ratio C of the target and small earthquakes is given as 

(Irikura 1986): 

 

3o o
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C N

U M
 

 
                                                       (4.13) 
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Where, C is the stress drop ratio between the target and small earthquake, N and C can be derived 

from constant levels of the source displacement and acceleration spectra of the target and small 

earthquakes, respectively. In this case other scaling laws parameters are given as: 

 
1 3

e e o oL L W W T D d M C M N                                       (4.15) 

                                                  o oD d A A N                                                       (4.16) 

Where, C is the ratio of stress drop of the target and the small earthquake. 

 The procedure of simulation of the strong ground motion is illustrated in Fig. 4.1. White 

Gaussian noise shown in Fig. 4.1(a) is passed through filters representing the basic spectral shape 

defined by Boore (1983) and shown in Fig. 4.1(b). These filters represent source spectrum, near 

site attenuation of high frequency and anelastic attenuation. The cut-off frequency of high cut filter 

assumed in this work is 40 Hz and the shear wave quality factor in the filter representing anelastic 

attenuation is assumed as Qβ(f) =112f
.97

 (Joshi 2006). This is the relation of shear wave quality 

factor derived for Garhwal region by Joshi (2006). The filtered white noise shown in Fig. 4.1(c) is 

windowed by the envelope of accelerogram released by a particular element shown in Fig. 4.1(d) 

to obtain accelerogram shown in Fig. 4.1(e). The accelerogram arriving at the observation point is 

convolved with the correction factor F(t) to account the slip distribution of large and small events 

Fig. 4.1(f). Summation of all accelerogram arriving at the observation point at different time lags 

(Fig. 4.1g) gives the resultant accelerogram shown in Fig. 4.1(h). Stepwise procedure of simulation 

is given as below: 

(i) The rupture responsible for the target event is identified. 

(ii) Rupture is divided into several sub faults on the basis of self similarity laws. 

(iii) Parameters of rupture plane are decided on the basis of earlier studies and source 

parameters of target events. 

(iv) One element is treated as starting point of energy which acts as a nucleation point or the 

starting point of rupture. The rupture from nucleation point travels in all directions with 

an assigned rupture velocity. 
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(v) On arrival of rupture front at the centre of an element energy is released in the form of 

envelope function defined by Kameda and Sugito (1978)  and modified by Joshi et al. 

(2001) as: 

   ( ) (( ) ) / exp(1 / )ss d de t T PGA t T t T                         (4.17) 

         In this expression, PGA is the peak ground acceleration, Tss represents transmission 

factor (Joshi et al. 2001) and Td the duration parameters, respectively. The parameter 

PGA is determined using attenuation relation.  

(vi) White Gaussian random noise of zero mean and one standard deviation (Fig. 4.1a) is 

passed through several of filters given by Boore (1983) having basic shape of 

acceleration spectra given in Fig. 4.1(b). 

(vii) This is windowed using the envelope function defined in equation (4.17) and given in 

Fig. 4.1(d). 

(viii) In order to compensate the slip duration of target and small event the windowed filtered 

record is convolved with a correction function given by Irikura (1986) and shown in Fig. 

4.1(f). We have used following form of correction function given by Irikura et al. (1997) : 

  ( ) ( ) ( 1) / (1 exp( 1)) exp(1 / )F t t N T t T         (4.18) 

Where, δ(t) is the delta function, N is the total number of subfaults along the length or 

width, T is rise time of the target earthquake. 

(ix) The geometry of rupture propagation decides the time at which record is released from 

different elements.  

(x) The acceleration records released from each subfault reaches the observation point 

depending upon the rupture propagation from the nucleation point to a particular subfault 

and the travel time of energy in the layered earth from that subfault to the observation 

point. Appropriate summation of all records gives resultant acceleration record at the 

observation point (Fig. 4.1g). The procedure of simulation of strong ground motion is 

illustrated in Fig. 4.1. 
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Figure 4.1 Method of simulation of the strong ground motion showing (a) White Gaussian 

noise, (b) Filter representing actual earthquake process, (c) Filtered white noise, (d) Envelope 

of accelerogram released by i, j element within the rupture plane shown in figure f, (e) 

Multiplication of the envelope with filtered white noise, (f) Rupture plane divided into 4×4 

elements in the layered earth with i,j, element releasing record which is convolved with the 

correction factor F(t), (g) Summation of all accelerogram from various element according to 

their arrival time at the observation point and (h) The simulated acceleration record and its 

acceleration spectrum.(after Joshi 2004) 
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4.4 Simulation of the Uttarkashi and Chamoli Earthquakes 

 The region of the Garhwal Himalaya has been visits by recently two earthquakes viz. the 

Uttarkashi earthquake (Ms = 7.1) 20
th

 October 1991 and Chamoli earthquake (Ms = 6.6) 28
th

 March 

1999. The parameters of the Uttarkashi and Chamoli earthquakes are given in Table 4.1. The 

Uttarkashi region which lies in the northern part of Indian subcontinent was rocked by a 

moderately strong earthquake. Thirteen stations had recorded strong motion data of this 

earthquake. Maximum peak acceleration of horizontal component was recorded at the Uttarkashi 

station and the vertical component at the Bhatwari station. The most probable causative fault for 

this earthquake has been identified on the basis of location of isoseismal, isoacceleration, 

aftershocks distribution in regional tectonic maps (Joshi 1994). The Uttarkashi earthquake was 

associated with the very complex Alpine Himalayan tectonic setup. The most prominent tectonic 

feature in this picturesque region is the Main Central Thrust (MCT), which exists as three 

northeast-dipping crystalline thrust sheets, separated by Vaikrita, Munsiari and Bhatwari Thrusts. 

Other lineaments in the vicinity are North Almora, Tons Nayar, Dunda, Krol and Garhwal thrusts 

(Joshi 2004).    

 The region of the Garhwal Himalaya was rocked by the Chamoli earthquake on 28
th

 March, 

1999. The Chamoli earthquake was felt at far off places like Kanpur (440 km southeast of the 

epicentre), Shimla (220 km northwest) and Delhi (280 km southwest). A strong motion network of 

28 stations is operated in the source regions of this earthquake. The instruments are Kinemetrics 

SMA-1 accelerographs, which are triggered accelerographs with threshold level of 1% of g 

(Chandrasekaran and Das 1992) recording three orthogonal components of acceleration on 70mm 

film. Detail knowledge of the site conditions is unavailable; however most of the stations of this 

array are located on the hard rock site (Sharma 1998). At the time of earthquake the strong motion 

array operational in the epicentral area recorded the Chamoli earthquake at eleven stations (Joshi 

2004). At the far field stations like Lansdown and Roorkee, the processed record does not have 

clear phase and entire coda length. Due to this reason record from these two stations are not used in 

the present study. The region surrounding the epicenter of the Chamoli earthquake is marked by 

various tectonic faults and lineaments. In the region of the Western Garhwal the Main Central 

Thrust (MCT) forms a 12 km thick NNE dipping shear zone. The MCT zone of deformation is 

bounded in this region by the Munsiari thrust in the south and Vaikrita thrust in northward 
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direction (Metcalfe 1993). The Chamoli earthquake lies in the same seismo-tectonic belts as the 

1991 Uttarkashi earthquake. This belt of moderate seismicity with 6 to 7 magnitude earthquakes is 

located within the nortern part of the Lesser Himalaya and lies immediate south of the higher 

Himalayas (Mahajan and Virdi 2001). Tectonics of the region surrounding the epicenters of the 

Uttarkashi and Chamoli earthquakes with location of rupture planes responsible for these 

earthquakes is shown in Fig. 4.2. 

 The suitability of developed attenuation relations in this work has been checked by 

simulating strong motion records of these two earthquakes at nine near field stations. The 

attenuation relation developed for the Garhwal Himalaya has been used to simulate records of 

these earthquakes using semi empirical technique. The semi empirical technique has been 

previously used by Joshi et al. (2001) and Joshi (2004) for simulating the strong motion records of 

these earthquakes using attenuation relation of worldwide applicability given by Abrahamson and 

Litehiser (1989). In this work the rupture model considered for the modeling the Uttarkashi and 

Chamoli earthquakes are assumed to be similar to that modeled by Joshi (2004). The parameters of 

rupture model of the Uttarkashi and Chamoli earthquakes are given Table 4.2 and Table 4.3, 

respectively. In order to test the applicability of developed attenuation relation, we have modeled 

the ruptures of these two earthquakes and records have been simulated at the sites that have 

recorded these earthquakes.  
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Table 4.1 Parameters of (a) Uttarkashi earthquake of 20
th 

Oct, 1991. (b) Chamoli earthquake 

of 28
th

 March, 1999. 

Hypocenter Size   Fault Plane Solution   Reference 

(a)  

20.10.1991 

21:23:14.3(GMT) 

30.78° N, 78.77° E 

10 km  

 

mb = 6.5, Ms = 7.1, 

Mo = 1.8 x 10
26

 dyne-

cm 

MW = 6.8 

 

NP1: φ= 296°, δ= 5°, λ= 90° 

NP2: φ= 116°, δ= 85°, λ= 

90°   

 

 

USGS 

 

(b) 

28.03.1999 

19:05:11.00 (GMT) 

30.51°N, 79.40°E 

15.0 km 

 

 

mb = 6.4 

Ms = 6.6 

M0 = 7.7x10
25

 dyne-cm 

 

NP1: φ= 282°, δ= 9°, λ= 95° 

     NP2: φ = 97°, δ= 81°, λ= 89° 

 

 

USGS 
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Figure 4.2 Tectonics of the region surrounding the epicenters of the Uttarkashi and Chamoli 

earthquakes (after Metcalfe 1993 and Valdiya 1977). Location of rupture planes responsible 

for the Uttarkashi and Chamoli earthquakes have been after Joshi (2004). The location of 

near field stations recording these events is shown by empty triangle. 
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Table 4.2 Modeling parameters of rupture plane of the Uttarkashi earthquake. 

Modeling parameters Source 

            Length = 33 km 

            Width  = 15 km 

            Dip     = 14
0
              

           Strike =  317
0 

                  
Qβ(f)  = 112f

.97
 

           Number of elements = 225 

 Wells and Coppersmith (1994) 

  Wells and Coppersmith (1994) 

  CMT ( Harvard ) 

 CMT ( Harvard )  

 Joshi (2006) 

Kanamori and Anderson (1975) 

 

Table 4.3 Modeling parameters of rupture plane of the Chamoli earthquake. 

Modeling parameters Source 

         Length = 22 km 

         Width  = 11 km 

         Dip  =  9
0
 

         Strike  = 
  
 282

0
 

        
  
Qβ(f)  = 112f

.97
 

        Number of element =  16 

 Wells and Coppersmith (1994) 

Wells and Coppersmith (1994) 

 CMT ( Harvard ) 

CMT ( Harvard )  

Joshi (2006) 

Kanamori and Anderson (1975) 

 

 The strong motion records of the Uttarkashi and Chamoli earthquakes have been simulated 

at nine near field stations, respectively. Locations of these stations are shown in Fig. 4.3. The 

pseudo acceleration response spectra is prepared from simulated and observed records after band-

passing them through a Butterworth filter with 1 to 10 Hz bandwidth. The simulated records are 

compared with actual records in terms of peak ground acceleration values for the Uttarkashi and 

Chamoli earthquakes are given in Table 4.4 and Table 4.5, respectively. Root mean square error 

between the observed and obtained peak ground acceleration is obtained using following relation: 

( ) /PGA obi cai obiErr P P P 

             (4.19) 

Where, Pobi and Pcai is the observed and calculated peak ground acceleration respectively.  
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 Figure 4.3 Location of strong motion array that have recorded the Uttarkashi and Chamoli 

earthquakes. The stations recording only the Uttarkashi and Chamoli earthquakes are 

shown by a solid filled and hollow triangle, respectively. Those stations which recorded both 

the Uttarkashi and Chamoli earthquakes are shown by half filled triangle. 
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4.3.1 Simulation for the Uttarkashi earthquake 

 A comparison of simulated and observed acceleration records and pseudo acceleration 

spectrum for the Uttarkashi earthquake is shown in Fig. 4.4 and 4.5, respectively. Station wise 

comparison of simulated and observed records is summarized below:   

 Bhatwari: The simulated record match with the observed records at this station. The simulated 

response spectrum matches effectively with that of the observed. 

Uttarkashi:  Maximum ground acceleration was recorded at this station during the Uttarkashi 

earthquake. The simulated peak ground acceleration value is very closer to observed value. A good 

match of the simulated and observed response spectra is observed at periods from 0.1 to 0.4 sec.  

Ghansaili:  The simulated peak ground acceleration and observed peak ground acceleration value 

similar, 120 and 121 cm/s
2
 at this station which is the best match of two records. The simulated 

response spectrum matches effectively with that of the observed one. 

Barkot:  At this station simulated and observed record very much resembles each other. The 

simulated response spectrum is also showing good match with observed spectrum. 

Rudrapryag:  The simulated peak ground acceleration value is higher than observed peak ground 

acceleration value at this station. The simulated response spectrum have good match at the period 

more than 0.5 sec. 

Srinagar:  The simulated peak ground acceleration and observed peak ground acceleration value at 

this station is 88 cm/s
2
 and 49 cm/s

2
, respectively. The simulated response spectrum is showing 

good match with observed spectrum between the period 0.3 sec to 1sec. 

Purola: The simulated and observed record nearly matches at this station. Also response spectra 

for the period 0.3 to 0.5 sec are showing a good match.  

Koteswar:  The close approximation of peak ground acceleration values for simulated with 

observed shows good match between the records. The simulated acceleration spectrum has low 

value at this station compared to observed spectrum. 
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Tehri:  The simulated peak ground acceleration matches effectively with the recorded data. The 

simulated response spectrum have good match with observed at the period more than 0.2 sec.   

The comparison of peak ground acceleration values from simulated and observed records at nine 

stations is made in terms of Errpga error. This is given in Table 4.4. Error between simulated and 

observed peak ground acceleration vary from 0.008 to 1.14. Errpga error is minimum at the 

Ghansaili and is maximum at the Srinagar station. 

 

Table 4.4 Comparisons of observed peak ground acceleration values with that simulated for 

the Uttarkashi earthquake. 

Recording 

station  

Observed  longitudinal 

peak ground 

acceleration (cm/sec
2
)  

Observed  

transverse peak 

ground 

acceleration 

(cm/sec
2
)  

Simulated  

peak ground 

acceleration 

(cm/sec
2
) 

Err pga 

computed 

from 

longitudinal 

and simulated 

PGA 

Err pga 

computed 

from 

transverse 

and 

simulated 

PGA 

Bhatwari 235 238 270 .14 .13 

Ghansaili 129 120 121 .06 .008 

Uttarkashi 245 309 252 .02 .18 

Rudraparyag 48 51 81 .68 .58 

Barkot 85 80 79 .07 .01 

Srinagar 41 49 88 1.14 .79 

Purola 66 87 50 .24 .42 

Tehri 74 66 82 .10 .24 

Koteshwar 100 61 81 .19 .32 
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Figure 4.4 Comparison of observed and simulated acceleration records at various stations for 

the Uttarkashi earthquake using developed attenuation relation with recorded longitudinal 

and transverse component.  
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Figure 4.5 Comparison of response spectra obtained from observed and simulated records at 

nine stations for the Uttarkashi earthquake. The black, blue and gray lines represent the 

observed two horizontal records, simulated records respectively, using developed attenuation 

relation.   

 

4.3.2 Simulations for the Chamoli earthquake 

A comparison of simulated and observed acceleration records and pseudo acceleration spectrum 

for the Chamoli earthquake is shown in Fig. 4.6 and 4.7, respectively. Station wise comparison of 

acceleration records is summarized below:   

Gopeshwar:  The simulated record match well with the observed records at this station. The 

simulated response spectrum matches effectively with that of the observed spectrum. 

Joshimath: The simulated peak ground acceleration and observed peak ground acceleration value 

at this station is 109 cm/s
2
 and 65 cm/s

2
, respectively. The simulated response spectrum is also 

little bit deviating from observed spectrum. 
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Barkot: At this station simulated and observed records are showing close matching. The simulated 

response spectrum is very much identical with observed spectrum. 

Ghansaili: The simulated peak ground acceleration and observed peak ground acceleration value 

at this station is 87 cm/s
2
 and 83 cm/s

2
, respectively which are a good match. The simulated 

response spectrum matches effectively with that of the observed. 

Ukhimath: This station having not good observed records. The simulated and observed peak 

ground acceleration values are 131 cm/s
2
 and 89 cm/s

2
, respectively. The simulated response 

spectrum have good match with observed at the period more than 0.2 sec. 

Uttarkashi: The simulated peak ground acceleration value is low at this station as compare to 

observed value. The simulated response spectrum have good match with observed spectrum at the 

low and high period ranges. 

Chinyalisar: The close approximation of peak ground acceleration values for simulated with 

observed shows good match between the records. The simulated acceleration spectrum also shows 

a good match with observed spectrum between period 0.1 to 0.2sec. 

Almora: The simulated record match well with the observed records at this station. The simulated 

response spectrum matches effectively with that of the observed spectrum. 

Tehri: The simulated peak ground acceleration value is low compare to observed peak ground 

acceleration value at this station. The simulated response spectrum have not good match with 

observed spectrum at the period more than 0.3 sec. 

The comparison of peak ground acceleration values from simulated and observed records at 

nine stations is made in terms of Errpga error and is given in Table 4.5. Error between simulated and 

observed acceleration record vary from .04 to .84. Minimum root mean square error is obtained at 

the Ghansiali while maximum Errpga error is obtained at the Joshimath station. The comparison 

shows that simulate records have peak ground acceleration closer to the actual values. The 

comparison of simulated with observed response spectra of the Uttarkashi and Chamoli 

earthquakes is shown in Fig. 4.5 and 4.7 respectively. This confirms the suitability of attenuation 

relation developed in the present work. 
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Table 4.5 Comparisons of observed peak ground acceleration values with that simulated for 

the Chamoli earthquake. 

Recording 

station 

Observed  

longitudinal 

peak ground 

acceleration 

(cm/s
2
)  

Observed  

transverse peak 

ground 

acceleration 

(cm/s
2
)  

Simulated  

peak ground 

acceleration 

(cm/s
2
) 

Errpga 

computed 

from 

longitudinal 

and 

simulated 

PGA  

Errpga 

computed 

from 

transverse 

and 

simulated 

PGA 

Gopeshwar 187 369 308 .64 .16 

Joshimath 65 59 109 .67 .84 

Barkot 15 21 20 .33 .04 

Ghansiali 72 83 87 .20 .04 

Ukhimath 89 73 131 .47 .79 

Uttarkashi 48 64 31 .35 .51 

Chaniyalisar 49 43 35 .28 .18 

Almora 25 29 32 .28 .10 

Tehri 56 65 39 .30 .40 
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Figure 4.6 Comparison of the observed and simulated acceleration records at various stations 

for the Chamoli earthquake using developed attenuation relation. 
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Figure 4.7 Comparison of response spectra is obtained from observed and simulated records 

at nine stations for the Chamoli earthquake. The black, blue and gray lines represent the 

observed two horizontal records, simulated records using developed attenuation relation, 

respectively.   

  

4.4 Conclusion  

 Finite modeling of source of the Uttarkashi and Chamoli earthquakes using the semi 

empirical simulation technique given by Midorikawa (1993) has been discussed in this Chapter. 

Developed attenuation relation has been used in the present work for simulation of acceleration 

records of these earthquakes at those stations which has recorded these earthquakes. Comparison of 

simulated record is made with the observed records. It is seen that the simulated record of these 

earthquakes have a good match with observed records which confirms the suitability of developed 

attenuation relations in this work to model earthquakes in this region. 
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   CHAPTER - 5 

Coda Wave Attenuation Characteristics of the Kumaon and Garhwal 

Himalaya 

5.1 Introduction 

Frequency dependent coda wave attenuation characteristics of the Kumaon Himalaya and 

Garhwal Himalaya region has been studied using single backscattering method given by Aki and 

Chouet (1975). Single backscattering method is one of the most frequently used techniques. Strong 

motion data of nine earthquakes recoded on six stations for the Kumaon and Garhwal Himalaya 

region respectively has been used. This Chapter discussed the methodology and numerical 

experiment, which gives the comparable evidence of attenuation characteristics for both regions.  

 

5.2 Frequency Dependent Coda Wave (Qc) 

 The energy content in a strong motion record is highly affected by attenuation characteristic 

of the medium. The study of attenuation characteristic of a medium, using strong motion data, is 

important for seismologists and engineers for seismic hazard analysis. Attenuation characteristic of 

a medium is defined by anelastic attenuation of seismic waves. This in turn, is characterized by a 

dimensionless quantity known as quality factor Q (Knopoff 1964). Anelastic attenuation property 

can be estimated using different parts of an accelerogram. Most studies use decay of coda wave to 

determine attenuation characteristic of the earth‟s crust, (Aki 1969; Aki and Chouet 1975; Sato 

1977; Roecker et al. 1982; Pulli 1984; Reha 1984; Jin and Aki 1986; Ibanez et al. 1990; Kanao and 

Ito 1992; Gupta et al. 1995; Gupta and Kumar 2002; Paul et al. 2003; Kumar et al. 2005; Sharma et 

al. 2012). Coda wave quality factor estimates for the Kumaon and the Garhwal Himalaya region 

have been made in high frequency range using single backscattering model given by Aki and 

Chouet (1975). Coda waves of 30 sec window length, filtered at six different frequency bands, 

centered at 1.5, 3.0, 6.0, 12.0, 20.0 and 28.0 Hz, have been analyzed using the single 

backscattering method. In the present work strong motion data recorded within an epicentral 

distance of 100 km have been used for estimation of coda wave quality factor. Strong motion data 

recorded by the networks operational in the Kumaon and Garhwal Himalaya region, within the 

State of Uttarakhand, India have been used to determine regional attenuation characteristics.  
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 5.3 Data Used  

A major seismicity project funded by the Department of Science and Technology and 

Ministry of Earth Sciences, Government of India, a network of Strong Motion Accelerograph 

(SMA) has been installed in the Pithoragarh region of the Kumaon Himalaya by the National 

Geophysical Research Institute and Department of Earth Sciences, Indian Institute of Technology 

Roorkee, India. Instrument specification of this network, operational in the Kumaon Himalaya has 

been described in Chapter 2. Strong motion data recorded on this network has been used to 

determine attenuation properties of the Kumaon Himalaya. The strong motion data recorded in the 

Garhwal Himalaya are available through website www.pesmos.in  maintained by the Department 

of Earthquake Engineering, Indian Institute of Technology, Roorkee, India. Fig. 5.1 shows 

epicenters of events used in this work, station location of those strong motion recorders which 

recorded these events, and tectonics of the region. Geographical coordinates of stations are given in 

Table 5.1.  

 

Table 5.1 Strong motion stations in the Kumaon and Garhwal Himalaya, with their 

geographical coordinate. Strong motion data from these stations was used in the present 

analysis. 

Sr. 

No. 

Kumaon Array Garhwal Array 

Station 

Name  

Latitude 

(Degree) 

Longitude 

(Degree) 

Station 

Name  

Latitude 

(Degree) 

Longitude 

(Degree) 

1. Dharchula 29.84N 80.53E Uttarkashi 30.730N 78.445E 

2. Didihat 29.80N 80.25E Chamoli 30.412N 79.320E 

3. Pithoragarh 29.58N 80.21E Barkot 30.809N 78.256E 

4. Thal 29.82N 80.14E Tehri 30.374N 78.430E 

5. Tejam 29.95N 80.12E Dhanaulti 30.427N 78.288E 

6. Askot 29.76N 80.33E Gairsain 30.051N 79.288E 

 

 

http://www.pesmos.in/
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Figure 5.1 Location of strong motion recorders installed in the Kumaon and Garhwal 

Himalaya. Empty triangles and half filled triangles denote stations in the Kumaon and 

Garhwal array, respectively. Stars show the epicenter of the earthquakes. Tectonics of the 

region is taken after GSI (2000). 

  

 Determination of frequency dependent coda wave quality factor from acclerograms requires 

a processed record. Acceleration records were processed as per the procedure suggested by Boore 

and Bommer (2005). The processing steps involve baseline correction; instrumental scaling and 

frequency filtering are discussed in Chapter 2. In the present work strong motion data of nine 

events of similar magnitude and depth range, recorded at six stations for the Kumaon Himalaya 

and Garhwal Himalaya region, respectively, have been used to determine coda wave quality factor 

(Qc). Those earthquakes were selected in both regions, which had maximum coverage of the entire 

region. 
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5.4 Methodology 

The single backscattering model given by Aki and Chouet (1975) is a commonly used 

method for describing the behavior of the coda wave from small regional earthquakes. According 

to this method, the coda waves are interpreted as backscattered body waves generated by numerous 

heterogeneities present in the earth‟s crust and upper mantle. This implies that the scattering is a 

weak process and outgoing waves are scattered only once before reaching the receiver (Gupta et al. 

1995). In the single backscattering model, the coda wave‟s amplitude A(f, t), for central frequency 

‘f’ over a narrow bandwidth signal and lapse time ‘t’ measured from earthquake origin time is 

described as (Aki 1980): 

( , ) ( ) exp( / )a

cA f t S f t ft Q                            (5.1) 

Where S(f) represent the source function at frequency „f’ and „a’ is geometrical spreading factor 

and taken as unity for body waves and Qc is the quality factor representing the average attenuation 

characteristics of the medium. Equation (5.1) is linearised by taking its logarithm. The logarithm of 

equation (5.1) gives following form of linear equation:  

ln[ ( , )] ln ( ) ln( )
ft

A f t S f a t
Qc


    

ln[ ( , )] ln( ) ln ( )
ft

A f t a t S f
Qc


    

ln[ ( , ) ]A f t t C bt                         (5.2) 

 

Equation (5.2) represent an equation of line in which constant ‘C‟ is equal to ln S(f),  „a’ is 

the geometrical spreading factor and taken as one for body waves and slope of the line  is defined 

as b =„πf/Qc’. Parameter Qc is the quality factor representing the average attenuation characteristics 

of the medium. Value of parameters „b‟ and „C‟ in equation (5.2) is determined by using least 

square fit and „Qc’ can be obtained from slope of the ln[A(f,t)t] verses ‘t’ curve.  
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In the process of determination of frequency dependent coda „Qc’, the processed 

accelerogram are filtered at different central frequency over narrow bandwidths. Six different 

frequency bands have been considered in the present work. Filtered accelerogram is used to 

determine frequency dependent coda wave quality factor (Qc). P-wave and S-wave are identified 

from accelerogram. Normally, lapse time „t’ is taken as twice the S-wave travel time (Rautian and 

Khalturian 1978), but in case of strong motion records, „t’  is taken from the point where regular 

decay of coda waves in the strong motion records start (Gupta and Kumar 2002). The root mean 

square amplitudes of filtered accelerograms are estimated using a moving time window of 2.56 sec 

wide with 1.28 sec interval. This amplitude is further use to obtain curve define in equation (5.2). 

Slope of ln[A(f,t)t] verses ‘t’ curve give the value at different central frequencies. Slope ln[A(f,t)t] 

of best fit line give the value of coda ‘Qc’ at different central frequencies. 

 

5.5.1 Case Study: Coda Wave Quality Factor for the Kumaon Himalaya 

In the present work strong motion data of nine events, comprising 30 accelerograms, 

recorded at six stations have been used to determine coda wave quality factor (Qc). Those 

earthquakes were selected which had maximum coverage of the entire region; their parameters are 

listed in Table 5.2. Figure 5.2 shows epicenters of located earthquakes, stations which recorded 

these earthquakes and source-receiver geometry for earthquake occurring in the Kumaon 

Himalaya. 
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Table 5.2 Hypocentral parameters and moment magnitude of the events used in the present 

study from the Kumaon Himalaya and the error obtained in its localisation. ERH and ERZ 

define the horizontal and vertical error in the location of hypocenter, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Date Origin time 

(GMT) 

Epicenter Depth 

(km) 

No. 

of 

Stati

ons 

ERH 

(km) 

ERZ 

(km) 

Seismic 

moment 

Mo 

(dyne cm) 

Moment 

magnitude 

Mw 

30/05/06 18:25:18.03 29º54.14‟,80º 26.95‟ 03 03 0.9 1.9 3.0x1021 3.8 

27/10/06 7:55:01.39 29º57.46‟,80º 15.23‟ 13 04 5.6 3.1 2.1x1022 3.8 

08/12/09 07:05:16.70 30º22.39‟,80º 13.22‟ 13 03 8.4 5.6 5.5x1022 4.5 

11/01/10 05:15:14.61 29º48.68‟,80º 25.06‟ 12 03 0.2 0.6 4.3x1022 4.4 

12/01/10 09:35:21.62 29º51.73‟,80º 21.30‟ 05 03 0.4 7.2 2.3x1021 3.4 

26/01/10 06:51:13.30 29º51.82‟,80º 19.89‟ 03 03 2.3 1.5 8.8x1021 3.9 

4/07/10 02:35:57.50 29º51.28‟,80º 21.16‟ 13 04 2.4 1.9 2.0x 1022 4.1 

6/07/10 19:08:21.96 29º50.05‟,80º 21.59‟ 12 03 0.3 0.2 5.3x 1022 4.4 

17/12/10 12:14:50.84 29º48.45‟,80º 16.91‟ 16.4 04 3.1 2.5 1.3x 1021 3.3 
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Figure 5.2 Projection of ray path of events recorded at different stations in the Kumaon 

region. Star shows epicenters of studied events and hollow triangles show recording stations. 

Tectonics of the region has been taken after GSI (2000). 

 

Figure 5.3 shows P wave, S wave and coda wave of an accelerogram recoded on 

27/10/2006 at the Pithoragarh station. Strong motion accelerograms were filtered at six different 

central frequencies and are shown in Fig. 5.4. The low cutoff, high cutoff and central frequencies 

of these bands are given in Table 5.3. The filtered accelerogram was used to determine frequency 

dependent coda wave quality factor Qc. Root mean square amplitude of filtered accelerogram of 

each event was estimated from time window 2.56 sec of 1.28 sec interval. This amplitude was 

further used to obtain ln[A(f, t) t] versus t curve, defined in equation (5.2). Slope of ln[A(f, t) t] 

versus „t’ curve gives the value of Qc for different central frequencies for one event recoded at the 

Pithoragrah station and is shown in Fig. 5.5. Thirty accelerograms, filtered at six different central 

frequencies, yield an ensemble of 180 plots of ln[A(f, t) t] versus t  for determining frequency 

dependent Qc. This was further used to obtain a plot of average Qc versus frequency. Obtained coda 
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Q(f) relationship at various stations of the Kumaon Himalaya region is given in Table 5.4 and is 

shown in Fig. 5.6. The best fit curve gives an estimate of frequency dependent Qc, at different 

central frequencies for the Kumaon region, and is shown in Fig. 5.7(a). Equation of best fit line of 

mean value shown in Fig. 5.7(b) gives (1.07 .04)(65 2.4)cQ f    for the Kumaon Himalaya.  
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Figure 5.3 An example of observed acceleration record for an earthquake recorded at the 

Pithoragarh station of Kumaon array. 

 

Table 5.3 Low and high cutoff frequencies of Butterworth band pass filter used for filtering 

strong motion data. 

Low cutoff  Central frequency (Hz) High Cutoff 

1.0 

2.0 

4.0 

8.0 

16.0 

24.0 

1.5 

3.0 

6.0 

12.0 

20.0 

28.0 

2.0 

4.0 

8.0 

16.0 

24.0 

32.0 
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Figure 5.4 Strong motion record of the Pithoragarh station for the event that occurred on 

27/10/2006, filtered at different central frequencies. 
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Figure 5.5 Linear equation fitted between logarithmic coda amplitude and lapse time, for 

estimation of coda Qc for different central frequencies at the Pithoragarh station for the 

event recoded on 27/10/2006. 
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Figure 5.6 Plot for obtained frequency dependent coda Qc(f) relationship for various stations 

of the Kumaon Himalaya region. 
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Table 5.4 Obtained coda Qc(f) relationship for various stations of the Kumaon Himalaya 

region. 

S.N. Station Name Coda Qc Value 

1. Dharchula 73f
0.98

 

2. Didihat 52f
1.16

 

3. Pithoragarh 68f
1.10

 

4. Askot 43f
1.14

 

5. Tejam 76f
1.02

 

6. Thal 77f
1.01
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Figure 5.7 Plot for obtained (a) frequency dependent Qc Values at different central 

frequencies. (b) Mean value of coda Qc as a function of frequency for the Kumaon Himalaya. 
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5.5.2 Case Study: Coda Wave Quality Factor for the Garhwal Himalaya 

Strong motion data of nine earthquakes recoded at six stations from the Garhwal Himalaya 

were taken from the website www.pesmos.in. Figure 5.8 shows location of earthquakes and 

recording stations used for determination of coda Qc. Parameters of nine earthquakes used in this 

analysis are given in Table 5.5. Twenty accelerograms recorded at six stations formed part of the 

analysis, which was similar to that carried out for data from the Kumaon Himalaya. Figure 5.9 

shows the filtered accelerogram at six different central frequencies. Fig. 5.10 gives the value of 

Qc(f) for one event recoded at the Uttarkashi station. Obtained coda Q(f) relationship for various 

stations from the Garhwal Himalaya is given in Table 5.6 and is shown in Fig.5.11. Figure 5.12(a) 

shows the plot of estimated coda Qc with different central frequency for the Garhwal region. 

Average value of Qc obtained at different central frequency is further used to obtain regional Qc(f) 

relationship for this region and is given in Fig. 5.12(b). The regional Qc(f) relationship for the 

Garhwal Himalaya is obtained as (1.06 .04)(96 6.9)cQ f   .  
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Figure 5.8 Projection of ray path of events recorded at different stations in the Garhwal 

region. Star shows epicenters of studied events and half filled triangles show the recording 

stations. Tectonics of the region has been taken after GSI (2000). 

http://www.pesmos.in/
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Table 5.5 Moment magnitude and hypocentral parameters of the events used in the present 

study for the Garhwal Himalaya taken from website www.pesmos.in 

Date Origin time 

(UTC) 

Epicenter Depth 

(km) 

Moment 

magnitude 

Mw (IMD) 

18/03/09 11:22:42 30.9N,78.2E 10 3.3 

21/09/09 09:43:37 30.9N,79.1E 13 4.7 

03/05/10 17:15:08 30.4N,78.4E 08 3.5 

20/06/11 06:27:18 30.5N,79.4E 12 4.6 

21/09/11 02:24:36 30.9N,78.4E 10 3.1 

24/09/11 14:32:18 30.9N,78.3E 10 3.0 

25/02/09 04:04:21 30.6N, 79.3E 10 3.7 

15/05/09 18:39;22 30.5N,79.3E 15 4.1 

9/02/12 19:17:29 30.9N, 78.2E 10 5.0 

 

http://www.pesmos.in/
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Figure 5.9 Strong motion record at the Uttarkashi station for event that occurred on 

09/02/2012, filtered at different central frequencies. 
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Figure 5.10 Linear equation fitted between logarithmic coda amplitudes and lapse time for 

estimation coda Qc at the Uttarkashi station for the event recoded on 09/02/2012. 
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Table 5.6 Obtained coda Q(f) relationship for various stations of the Garhwal region. 

S.N.  Station Name Coda Qc Value 

1. Barkot 87f
1.06

 

2. Chamoli 72f
1.15

 

3. Tehri 61f
1.14

 

4. Uttarkashi 118f
0.81

 

5. Dhanaulti 84f
1.09

 

6. Garsain 107f
1.05
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Figure 5.11 Plot for obtained frequency dependent Q(f) relationship for various stations of 

the Garhwal region. 
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Figure 5.12 Plot for obtained (a) frequency dependent Qc at different central frequencies for 

Garhwal Himalaya. (b) Mean value of coda Qc as a function of frequency for Garhwal 

Himalaya. 
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5.6 Results and Discussion   

The study of frequency dependent coda wave quality factor Qc is interpreted as an 

important tectonic parameter. Regions of high tectonic activities are characterized by low values of 

Qc compared to stable regions where Qc is high. Further, the frequency dependent coda wave 

relationship, in the form of
0 c

nQ Q f , generally provides estimate of Q0 (Qc at 1 Hz) which 

represents the level of medium heterogeneities. The power of frequency dependence given by 

parameter n represents the level of tectonic activity of the region; high value of n indicates high 

tectonic activity. The Kumaon Himalaya is more heterogeneous and less stable tectonically as 

compared to the adjoining the Garhwal Himalaya (Paul et al. 2003, Gupta et al. 1995). The fitting 

of the power law 
0 c

nQ Q f  gives the frequency dependent relationship for the Kumaon Himalaya 

as (1.07 .04)(65 2.4)cQ f   and for the Garhwal Himalaya and (1.06 .04)(96 6.9)cQ f   . In the present 

study, as n has almost the same numerical value for both the Kumaon and Garhwal regions, it 

implies a similar tectonic activity in both regions. The coda wave quality factor obtained in the 

present work for two regions shows that these regions have different attenuation properties and 

almost similar level of tectonic activity. Several frequency dependent relationships for various 

Indian and worldwide regions are given in Table 5.7. A comparison of Qc obtained in the present 

work, when made with available values obtained in other parts of India, and the world, shown in 

Fig. 5.13(a) and 5.13(b), respectively, indicates that the distribution falls within the range of values 

justified for tectonically active regions. The contours of Qo values obtained at different stations are 

shown in Fig. 5.14. The contours of Qo value shows that the region of Garhwal Himalaya is 

covered by high Qo contours compared to the Kumaon Himalaya. This clearly indicates presence 

of high attenuating medium in the Kumaon Himalaya as compared to the Garhwal Himalaya. 

 The attenuation relations obtained for the Kumaon and Garhwal Himalaya support two 

different attenuation models which indicate two different attenuation properties for these regions. 

In order to confirm this attenuation trend we have compared the anelastic attenuation of shear wave 

and coda wave quality factor in the Kumaon and Garhwal Himalaya. The comparison of anelastic 

attenuation in terms of shear wave quality factor „Qβ(f)‟ obtained for the Garhwal and Kumaon 

Himalaya by Joshi (2006) and Joshi et al. (2010b) is shown in Fig. 5.15(a). The shear wave quality 

factors for these regions have been calculated using strong motion dataset from the Garhwal and 
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the Kumaon Himalaya by Joshi (2006) and Joshi et al. (2010b), respectively. It is seen from 

Fig.5.15 (a) and 5.15(b) that the shear wave quality factor Qβ(f) and coda wave quality factor  Qc(f) 

respectively,  have comparative higher value in almost all frequencies in the Garhwal region as 

compared to the Kumaon Himalaya, indicating high attenuation in almost all frequencies in the 

Kumaon Himalaya. The estimate of shear wave and coda wave quality factor depends on 

characteristics of the medium between the source and station. Therefore, results obtained in the 

present work confirm the presence of a highly attenuating medium beneath the Kumaon Himalaya, 

as compared to the Garhwal Himalaya.  

 

Table 5.7 Frequency dependent Q(f) relationship for various Indian and worldwide regions. 

Relation  Region  Reference  

126f
0.95

 Garhwal Himalaya Gupta et al. (1995) 

86f
1.01

 NE Himalaya Gupta and Kumar (2002) 

92f
1.07

 Kumaon Himalaya Paul et al. (2003) 

158f
1.05

 NW Himalaya Kumar et al. (2005) 

117f
0.97

 Koyna region Sharma et al. (2007) 

119f
0.99

 Garhwal-Kumaon Himalaya Mukhopadhyay  and Sharma (2010) 

80f
1.10

 Friuli Italy Rovelli (1982) 

63f
0.97

 Washington state, USA Havskov et al. (1989) 

155f
0.89

 South Spain Ibanez et al. (1990) 

100f
0.70

 South Iberia Pujades et al. (1991) 

79f
0.74

 Park field Hellweg et al. (1995) 

152f
0.84

 South Central Alaska Dutta et al. (2004) 
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Figure 5.13 Comparison of Qc(f) relations developed in present work with (a) Indian region, 

and (b) for worldwide regions. 
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Figure 5.15 Comparisons of (a) Qβ(f) relation and (b) Qc(f) relations developed in present 

study for the Garhwal and  Kumaon Himalaya. The Qβ(f) relationship for the  Garhwal and 

Kumaon Himalaya has been used after Joshi (2006) and Joshi et al. ( 2010b), respectively.  
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5.7 Conclusion  

       In this Chapter coda wave quality factor for the Kumaon and Garhwal Himalaya has been 

investigated. Coda wave quality factor has been obtained using strong motion data recorded by two 

regional networks. Strong motion records were filtered using a band pass Butterworth filter at 

central frequencies of 1.5, 3.0, 6.0, 12.0, 20.0 and 28.0 Hz, respectively. Using single 

backscattering model the frequency dependent Qc relationship for the Kumaon and Garhwal 

Himalaya were obtained as (1.07 .04)(65 2.4)cQ f    and (1.06 .04)(96 6.9)cQ f   , respectively. 

Comparative study of attenuation characteristics of the Kumaon and Garhwal Himalaya indicate 

that the Kumaon Himalaya has a higher attenuation characteristic compared to the Garhwal 

Himalaya. 
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 CHAPTER - 6 

Seismic Hazard Assessment of the Uttarakhand Himalaya 

 

6.1 Introduction 

Seismic zoning can be defined as a process of demarcating or mapping areas of equal 

seismicity, or of equal hazard related to a characteristic of strong ground shaking and of site or 

structural response (Todorovska et al. 1995). An evaluation of seismic hazards, whether 

deterministic (scenario based) or probabilistic, requires an estimate of the expected ground motion 

at the site of interest. Seismic hazard in an area can be estimated by two approaches: (1) 

Probabilistic seismic hazard assessment approach (PSHA) and (2) Deterministic seismic hazard 

assessment approach (DSHA). Deterministic seismic hazard analysis (DSHA) is basically a 

method of engineering design that incorporates available data from geology leading to estimates of 

earthquake activity, plus everything else we know about a site and its environment, the tectonics, 

the past seismicity, the soil mechanics, the statistics and the sociology (Heriberta and Lomnitz 

2002). Both approaches use the same datasets, which include earthquake sources, occurrence 

frequencies, and peak ground attenuation relationships. Due to the discontinuous recording of 

seismic activity within Himalaya, there is no continuous catalogue in this study area. This is a 

major drawback for any hazard study in this area no matter whether it is a probabilistic seismic 

hazard assessment approach (PSHA) or deterministic seismic hazard assessment approach (DSHA) 

technique. Joshi and Patel (Tectonophysics 283:289-310; 1997) have formulated a method of 

seismic hazard zonation, which is based on the modelling of finite rupture plane along identified 

lineaments in the region using the semi empirical simulation technique given by Midorikawa 

(1993). This method has advantage of using strong ground motion prediction equation of small 

magnitude earthquake to model strong motion parameters of large earthquake. The method of 

seismic zonation given by Joshi and Patel (1997) has been modified in this work to prepare seismic 

hazard zonation map of the Uttarakhand Himalaya region defined by the probability of exceedence 

of peak ground acceleration. 
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6.2 Method of Seismic Hazard Zonation 

 Seismic hazard zonation technique given by Joshi and Patel (1997) is based on the 

deterministic modeling of finite ruptures along identified probable fault in an area using semi 

empirical approach. The advantage of semi empirical simulation technique has been already 

discussed in Chapter 4. This technique of zonation has been applied for the Doon valley (Joshi and 

Patel 1997); NE part of India (Joshi et al. 2007); Assam valley (Joshi et al. 2007) and  Uttarakhand 

Himalaya (Joshi and Mohan 2010). The technique of zonation presented by earlier researcher using 

the semi empirical simulation technique is based on the method given by Midorikawa (1993), 

which in turn is dependent on the attenuation relation applicable for the region under study. 

Applicability of attenuation relation is an important factor for successful implementation of this 

technique. Due to scarcity of enough strong motion data set in this region attenuation relation 

developed for worldwide earthquakes have been used in earlier study. The seismic hazard map 

prepared earlier by Joshi and Mohan (2010), Joshi and Patel (1997) for the Uttarakhand Himalaya 

is based on the attenuation relation given by Abrahamson and Litehiser (1989). Although 

attenuation relation given by Abrahamson and Litehiser (1989) is based on worldwide data it is 

seen that this relation also suffer from problem of overestimation and deviation from normality 

when used for predicting the Kumaon Himalayan earthquakes (Chapter 3). Besides using 

attenuation relation of worldwide applicability for preparing of seismic hazard zonation map for 

the Uttarakhand Himalaya, these map suffer a drawback of not including concept of probability of 

exceedence of specific peak ground acceleration (PGA) value. In the present study modification in 

earlier work by Joshi and Patel (1997) has been made to include the concept of probability of 

exceedence. Various steps in this modified technique are given as follows: 

(i) The first step in the preparation of seismic hazard map is the identification of active lineaments. 

This identification is based on various geological information, satellite-imageries and geological 

field work done by other workers in the study area. The length of a possible rupture along these 

lineaments is measured from the same map. The lengths of possible ruptures along these 

lineaments are calculated using the following empirical relationship given by Wells and 

Coppersmith (1994): 

                         Log (L) = -2.42+ 0.58Mw                                            (6.1) 
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Where, „Mw‟ is moment magnitude and „L‟ is rupture length in kilometer.  

Assuming the rectangular rupture model, the ruptured area (A) is calculated by using empirical 

relation given by Kanamori and Anderson (1975): 

Log (A) = Ms- 4            (6.2) 

Where, A = Area of the rupture fault in square km. 

Ms = Surface wave magnitude. 

This area (A) is further used to compute the width (W) of the rupture plane i.e. W = A/L. the 

values of parameters L, W, Le and We for each rupture model are computed from applicable 

empirical relations and self-similarity laws given by Kanamori and Anderson (1975). 

 
 

1 3

e e o oL L W W T D d M M N     
     (6.3) 

where,  

   L and Le = Length of the rupture plane of the target and small earthquakes, respectively;  

  W and We = Width of the rupture plane of the target and small earthquakes, respectively;  

      T and τ = slip duration of the target and small earthquakes, respectively;  

     D and d = slip of the target and small earthquakes, respectively;  

Mo and Mo′ = seismic moment of the target and small earthquakes, respectively and  

 N = total number of sub-faults along the length or width of the rupture plane of target earthquake. 

Various parameters defined in equation (6.3) is shown in Fig. 6.1.
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Figure 6.1 Various parameters of the rupture plane.  

 

(ii) Number of subfaults along length or width is assumed as N and this is calculated by following 

relationship given by Sato (1989): 

  N = 10
.5(M-m)

                 (6.4) 

where, „M‟ and „m‟ are the magnitude of target and small earthquakes, respectively. 

(iii) Entire region is divided into a grid consisting of several observation points at which peak 

ground acceleration is computed from the simulated acceleration using semi empirical technique. 
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 (iv) At each observation point acceleration records are simulated by modeling each rupture along 

selected lineament. For preparation of seismic zonation map of the Uttarakhand region two 

attenuation relations have been used. These are attenuation relations developed from database of 

small magnitude earthquakes in the Kumaon and Garhwal Himalaya, defined in Chapter 3. 

Following are two sets of attenuation relationships used in present work. 

For Kumaon Himalaya: 

ln( ) 0.336 2.58 0.018 2.96ln( 15)WPGA M R R     
   (6.5) 

ln( ) 5.8 2.62 0.16ln 1.33ln( 15)wPGA M R E     
    (6.6)

 

For Garhwal Himalaya: 

ln( ) 2.29 2.07 1.95ln 4.03ln( 15)wPGA M R R    
   (6.7) 

ln( ) 4.8 1.92 0.014 0.17ln( 15)wPGA M R E     
   (6.8)

 

 

In above equations, PGA is peak ground acceleration in gals, Mw is moment magnitude, 

and R is hypocentral and E is epicentral distance in kilometers.  

For 'm' number of lineaments 'm' values of peak ground accelerations i.e., Pa1, Pa2,......,Pam 

are obtained at a single observation point. In the present work acceleration records are simulated 

for various possibilities of nucleation point. For a rupture divided into subfualts of size n×n there 

are n×n possibilities of nucleation point. Therefore the process of simulation generates a dataset of 

peak ground acceleration which consists of n×n possibilities of ruptures for a single rupture model. 

The database includes contributions from ruptures within 100 km radius from the observation 

point. The probability of exceedence of peak ground acceleration is then computed from the 

developed database of peak ground acceleration values from several models at a given observation 

site. 
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(v) Since we are dealing with a small area having limited database therefore the similar frequency 

magnitude relation is expected in the region. The obtained frequency magnitude relation for this 

region is calculated on the basis of data from United States Geological Survey (USGS) shown in 

Fig. 6.2. The developed frequency magnitude relation is given as: 

10og 5.7 0.71 wL N M        (6.9) 

Where, Mw is the magnitude of earthquake and N is number of earthquake equal or more than Mw. 

The plot of Log10N verses magnitude is shown in Fig. 6.2.  
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Figure 6.2 Frequency verses magnitude relationship for the Uttarakhand Himalaya 

region. 
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(vi) This process is repeated for all observation points and the probability of exceedence of peak 

ground acceleration at each point is computed. Contours of the expected acceleration are used in 

the preparation of a seismic hazard zonation map. 

 The flow diagram of this modified seismic zonation technique is shown in Fig. 6.3. For 

the purpose of preparation of the seismic hazard zonation map, the computer software „EQHAZ‟ 

has been developed in the FORTRAN language. Required inputs to this software are parameters of 

the rupture plane, its location, velocity model of the region and attenuation relations applicable in 

the study region. The output from this software consists of the probability of exceedence of peak 

ground acceleration at each specified location on the map. 
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Figure 6.3 Flow diagram of modified seismic hazard zonation technique used in 

present work. 
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6.3 Seismic Zonation of the Uttarakhand Himalaya India 

The Bureau of Indian Standard (BIS 2002) has divided entire India into four seismic zones 

(Zones II to Zone V). Unlike its previous edition which consisted of five or six zones for the 

country. Zone V and zone II expects the highest and lowest level of seismic hazard in the country, 

respectively. The Uttarakhand Himalayas lies in the northern part of the Indian subcontinent and 

falls under the highest zones IV and V of seismic zoning map of India. The Uttarakhand state has a 

total area of 53,484 km², of which 93% is mountainous and 65% is covered by forest. Most of the 

northern part of the state is covered by high Himalayan peaks and glaciers. The Tehri Dam which 

is the highest dam in India and one of the tallest in the world is located in this region. The area of 

study form part of the Kumaon and Garhwal region of the Uttarakhand Himalaya from latitude 

29°N to 32°N and from longitude 78°E to 81°E. The main seismic zone extending from the 

Uttarkashi in the west to the Dharchula in the east is sub-parallel to Himalayan trend and lies in 

close proximity of Main Central Thrust (MCT). This zone is dominated by shallow focus (0-40 

km) events, though some deeper events are also recorded from the Kaurik Fault Zone (GSI 2000). 

Within a period of 181 years from 1816 to 1997 a total of 297 seismic events have occurred in this 

region, out of which 32 events had magnitude, more than 5.5 (Yu et al. 1995). In the present work 

several ruptures have been identified from the tectonic and geological map of the region given by 

Geological Survey of India (GSI 2000). This map is shown in Fig. 6.4. A total of 67 lineaments 

have been identified as active lineaments by Joshi et al. (2007) for preparation of seismic hazard 

map of the region. In the present work the possibility of entire or portion of rupture along these 

lineaments that can generate earthquake of magnitude greater than or equal to 6.0 has been 

visualized. A total of 111 such possibilities were identified and are shown in Fig. 6.5.  

  The great and large earthquakes in the Himalaya occur at a shallow depth (10-20 Km) 

by thrust faulting on the Main Himalaya Thrust i.e. on the plane of detachment (Kayal 2014). The 

aftershock data of the Uttarkashi earthquake (1991) and the Chamoli earthquake (1999) has show 

that these shallow earthquakes (depth ≤ 20 km) occurred on the plane of detachment (Kayal 2014). 

The seismic rupture occurred at more than 20 km depth and did not break the surface (Lomnitz and 

Hofseth 2005). The average depth of events in this area reported from catalog of earthquake given 

by United State Geological Survey (USGS) is also around 20 kilometer. In the present work 

possible rupture for preparation of seismic hazard map is placed at a depth of 12 kilometer. The 

http://en.wikipedia.org/wiki/Forest
http://en.wikipedia.org/wiki/Himalaya
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strike of rupture is measured from the tectonic map, whereas the dip of modeled rupture plane is 

assumed as 15°. This dip coincides with the shallow dipping plane of detachment that has given 

rise to the Uttarkashi and the Chamoli earthquakes. Same dip has been also assumed in earlier 

study for modeling of the rupture plane of the Uttarkashi and the Chamoli earthquakes (Joshi 2004, 

Joshi and Midorikawa 2004). The rupture velocity for modeling rupture plane is assumed as 2.6 

km/sec which is similar to that used for modeling of the Uttarkashi and the Chamoli earthquakes 

by Joshi (1997; 2004). The velocity model given by Yu et al. (1995) is used in the present work 

and is selected on the basis of its applicability for modeling of the Uttarkashi and the Chamoli 

earthquakes by Joshi (1997, 2001, 2004) and Yu et al. (1995). This velocity model is given in 

Table 6.1. 

 

Table 6.1 Velocity model used for present work is given by Yu et al. (1995). 

Depth to top of layer (km) Velocity Vs (km/sec) 

0.4 

1.0 

15.0 

2.0 

2.86 

2.96 

 

The entire region is divided into hundred grids and each center of each grid is assumed as 

an observation point for the purpose of preparation of seismic hazard map. In the present work all 

elements within the identified rupture plane are treated as nucleation point. Strong motion records 

have been simulated at each hundred observations point from different possibility of nucleation 

point using semi empirical method discussed in Chapter 4. At each observation point several strong 

motion records have been simulated using semi empirical technique. The semi empirical technique 

depends on attenuation relation that is applicable for the study area. In the present work different 

regression models defined in equation (6.5) to (6.8) have been used. The modeling parameters of 

rupture plane based self-similarity laws are given in Table 6.2. 
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Figure 6.4 Tectonic map of the Uttarakhand Himalaya has been taken after Geological 

Survey of India (2000). 
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Figure 6.5 Location of rupture modeled for the Uttarakhand Himalaya for preparation of 

seismic hazard zonation map. The rupture is identified from seismotectonic map of the 

Uttarakhand region given by Geological Survey of India (GSI, 2000). 
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Table 6.2 The lineaments and modeling parameters of ruptures computed from various 

empirical relations.  
Lineament No.   Length(km)     Downward       Magnitude (Mw)            Rupture area            Le (km)       We(km) 

                                                   Extension(km)                                               (sq. km) 

1 107.1 34.32 7.7 3675.6 9.4 3 

2 47.6 19.35 7.1 920.9 6.7 2.7 

3 59.5 22.65 7.2 1347.7 7.3 2.8 

4 133.28 40.06 7.8 5338.8 10.3 3.1 

5 35.7 15.79 6.8 563.6 5.9 2.6 

6 35.7 15.79 6.8 563.6 5.9 2.6 

7 61.88 23.29 7.3 1441.1 7.4 2.8 

8 47.6 19.35 7.1 920.9 6.7 2.7 

9 61.88 23.29 7.3 1441.1 7.4 2.8 

10 47.6 19.35 7.1 920.9 6.7 2.7 

11 14.28 8.26 6.2 117.9 4 2.3 

12 116.62 36.45 7.7 4250.7 9.8 3 

13 40.46 17.25 6.9 697.8 6.2 2.6 

14 28.56 13.48 6.7 385.1 5.4 2.5 

15 47.6 19.35 7.1 920.9 6.7 2.7 

16 38.08 16.52 6.9 629.2 6.1 2.6 

17 38.08 16.52 6.9 629.2 6.1 2.6 

18 28.56 13.48 6.7 385.1 5.4 2.5 

19 64.26 23.92 7.3 1536.9 7.6 2.8 

20 26.18 12.68 6.6 331.9 5.2 2.5 

21 38.08 16.52 6.9 629.2 6.1 2.6 

22 38.08 16.52 6.9 629.2 6.1 2.6 

23 30.94 14.27 6.7 441.4 5.5 2.6 

24 23.8 11.85 6.5 282.1 5 2.5 

25 119 36.97 7.8 4399.8 9.8 3.1 

26 21.42 11 6.5 235.6 4.7 2.4 

27 76.16 26.97 7.4 2054 8.1 2.9 
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28 52.36 20.69 7.1 1083.5 6.9 2.7 

29 23.8 11.85 6.5 282.1 5 2.5 

30 71.4 25.77 7.4 1839.8 7.9 2.9 

31 35.7 15.79 6.8 563.6 5.9 2.6 

32 73.78 26.37 7.4 1945.7 8 2.9 

33 35.7 15.79 6.8 563.6 5.9 2.6 

34 38.08 16.52 6.9 629.2 6.1 2.6 

35 26.18 12.68 6.6 331.9 5.2 2.5 

36 99.96 32.69 7.6 3267.3 9.1 3 

37 59.5 22.65 7.2 1347.7 7.3 2.8 

38 99.96 32.69 7.6 3267.3 9.1 3 

39 95.2 31.58 7.6 3006.2 8.9 3 

40 45.22 18.66 7 843.7 6.5 2.7 

41 49.98 20.02 7.1 1000.8 6.8 2.7 

42 64.26 23.92 7.3 1536.9 7.6 2.8 

43 61.88 23.29 7.3 1441.1 7.4 2.8 

44 35.7 15.79 6.8 563.6 5.9 2.6 

45 26.18 12.68 6.6 331.9 5.2 2.5 

46 76.16 26.97 7.4 2054 8.1 2.9 

47 76.16 26.97 7.4 2054 8.1 2.9 

48 128.52 39.04 7.8 5017.5 10.2 3.1 

49 42.84 17.96 7 769.3 6.4 2.7 

50 85.68 29.31 7.5 2511.4 8.6 2.9 

51 99.96 32.69 7.6 3267.3 9.1 3 

52 71.4 25.77 7.4 1839.8 7.9 2.9 

53 52.36 20.69 7.1 1083.5 6.9 2.7 

54 92.82 31.02 7.6 2879.1 8.9 3 

55 95.2 31.58 7.6 3006.2 8.9 3 

56 59.5 22.65 7.2 1347.7 7.3 2.8 



 

147 

 

57 35.7 15.79 6.8 563.6 5.9 2.6 

58 147.56 43.05 7.9 6351.8 10.8 3.1 

59 35.7 15.79 6.8 563.6 5.9 2.6 

60 26.18 12.68 6.6 331.9 5.2 2.5 

61 85.68 29.31 7.5 2511.4 8.6 2.9 

62 92.82 31.02 7.6 2879.1 8.9 3 

63 47.6 19.35 7.1 920.9 6.7 2.7 

64 45.22 18.66 7 843.7 6.5 2.7 

65 90.44 30.45 7.5 2754.2 8.8 2.9 

66 38.08 16.52 6.9 629.2 6.1 2.6 

67 52.36 20.69 7.1 1083.5 6.9 2.7 

68 190.4 51.54 8.1 9814 12 3.3 

69 95.2 31.58 7.6 3006.2 8.9 3 

70 23.8 11.85 6.5 282.1 5 2.5 

71 71.4 25.77 7.4 1839.8 7.9 2.9 

72 28.56 13.48 6.7 385.1 5.4 2.5 

73 42.84 17.96 7 769.3 6.4 2.7 

74 95.2 31.58 7.6 3006.2 8.9 3 

75 95.2 31.58 7.6 3006.2 8.9 3 

76 109.48 34.86 7.7 3816.1 9.5 3 

77 19.04 10.12 6.4 192.7 4.5 2.4 

78 66.64 24.54 7.3 1635.4 7.7 2.8 

79 23.8 11.85 6.5 282.1 5 2.5 

80 28.56 13.48 6.7 385.1 5.4 2.5 

81 47.6 19.35 7.1 920.9 6.7 2.7 

82 69.02 25.16 7.3 1736.3 7.8 2.8 

83 23.8 11.85 6.5 282.1 5 2.5 

84 45.22 18.66 7 843.7 6.5 2.7 

85 57.12 22.01 7.2 1257 7.2 2.8 
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86 42.84 17.96 7 769.3 6.4 2.7 

87 59.5 22.65 7.2 1347.7 7.3 2.8 

88 47.6 19.35 7.1 920.9 6.7 2.7 

89 47.6 19.35 7.1 920.9 6.7 2.7 

90 71.4 25.77 7.4 1839.8 7.9 2.9 

91 73.78 26.37 7.4 1945.7 8 2.9 

92 76.16 26.97 7.4 2054 8.1 2.9 

93 40.46 17.25 6.9 697.8 6.2 2.6 

94 35.7 15.79 6.8 563.6 5.9 2.6 

95 28.56 13.48 6.7 385.1 5.4 2.5 

96 35.7 15.79 6.8 563.6 5.9 2.6 

97 69.02 25.16 7.3 1736.3 7.8 2.8 

98 38.08 16.52 6.9 629.2 6.1 2.6 

99 38.08 16.52 6.9 629.2 6.1 2.6 

100 28.56 13.48 6.7 385.1 5.4 2.5 

101 33.32 15.03 6.8 500.9 5.7 2.6 

102 61.8 23.27 7.3 1437.9 7.4 2.8 

103 35.7 15.79 6.8 563.6 5.9 2.6 

104 26.18 12.68 6.6 331.9 5.2 2.5 

105 121 37.41 7.8 4526.8 9.9 3.1 

106 47.6 19.35 7.1 920.9 6.7 2.7 

107 33.32 15.03 6.8 500.9 5.7 2.6 

108 40.46 17.25 6.9 697.8 6.2 2.6 

109 57.12 22.01 7.2 1257 7.2 2.8 

110 23.8 11.85 6.5 282.1 5 2.5 

111 95.2 31.58 7.6 3006.2 8.9 3 
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At each observation point several strong motion records have been simulated for each 

possibility of nucleation point within identified 111 rupture plane in the area. A total of these 6569 

records have been simulated at each observation point. From each simulated record peak ground 

acceleration value is stored in the dataset at each observation point. A dataset of 6569 peak ground 

accelerations values is obtained from different simulated records obtained after modeling various 

rupture plane at each observation point. This dataset has been used for preparation seismic 

zonation map. The data set is used to compute the seismic hazard map by calculating probability of 

exceedence of specific peak ground acceleration value. The processes of obtaining seismic hazard 

map is applied for both regression models given in equations (6.5) to (6.8), thereby two different 

seismic hazard maps for probability of exceedence of peak ground acceleration is obtained. These 

maps are shown in Fig. 6.6 to Fig. 6.9, respectively.  
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Figure 6.6 Seismic hazard map of Uttarakhand region showing 10% probability of 

exceedence of peak ground acceleration of 100 gals using developed attenuation relation for 

dependent of hypocentral distance.  

 

 

 



 

151 

 

290 290

780 810

Uttarkashi

Barkot

Tehri

Ghansaili
Chamoli

RudraprayagSrinagar

Bageswar

Almora

Nainital

Dehradun

Lansdwon

Pithoragarh

Dharchula

Ukhimath

Munsiari

Champawat

Haldawani

Ranikhet

GairsainPauri
Devprayag

Rishikesh

320320

0

0.1

0.2

 

 

Figure 6.7 Seismic hazard map of Uttarakhand region showing 10% probability of 

exceedence of peak ground acceleration of 100 gals using developed attenuation relation for 

epicentral distance.  
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Figure 6.8 Seismic hazard  zonation map of Uttarakhand region showing contours of 10% 

probability of exceedence of peak ground acceleration of value 200 gal using developed 

attenuation relations for hypocentral distance. 

 

 

 



 

153 

 

290 290

780 810

Uttarkashi

Barkot

Tehri

Ghansaili
Chamoli

RudraprayagSrinagar

Bageswar

Almora

Nainital

Dehradun

Lansdwon

Pithoragarh

Dharchula

Ukhimath

Munsiari

Champawat

Haldawani

Ranikhet

GairsainPauri
Devprayag

Rishikesh

320320

0

0.1

0.14

 

Figure 6.9 Seismic hazard zonation map of the Uttarakhand region showing contours of 10% 

probability of exceedence of peak ground acceleration of value 200 gal using developed 

attenuation relations for epicentral distance. 
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It is seen that appropriate choice of attenuation relations influence the value of predicted 

parameters. In an attempt to check how attenuation relation can influence seismic hazard map of 

the region, the seismic hazard map of the Uttarakhand Himalaya is prepared using different 

attenuation relations. The developed attenuation relations for different distance parameters have 

been used in this work. The prepared seismic hazard zonation maps using developed attenuation 

relations for various distance parameters are shown in Fig. 6.6, 6.7, 6.8 and 6.9, respectively. 

Further, the attenuation relation given by Abrahamson and Litehiser (1989) has been also used for 

preparation of seismic hazard zonation map and is shown in Fig. 6.10. The attenuation relation 

given by Abrahamson and Litehiser (1989) has been frequently used for modeling of great 

earthquakes in Indian region. Since attenuation relation given by Abrahamson and Litehiser (1989) 

clearly shows overestimation of peak ground acceleration (PGA) values with Himalaya dataset 

(Joshi et al. 2012). The zones of 10% probability of exceedence of peak ground acceleration of 

value 100 gal is shown in Fig. 6.10 has also increased drastically. It is seen that when attenuation 

relation prepared from regional database is used in preparation of seismic hazard zonation map 

there is no drastic difference in the obtained seismic hazards of the region using similar technique. 

However, strong difference in terms of shape of zones is observed when attenuation relation given 

by Abrahamson and Litehiser (1989) is used for preparation of seismic hazard zonation. This test 

clearly demonstrates importance of proper choice of attenuation relation used for seismic hazard 

zonation in any region.  
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Figure 6.10 Seismic hazard zonation map of the Uttarakhand region showing 10% 

probability of exceedence of peak ground acceleration values of 100 gals using attenuation 

relation given by Abrahamson and Litehiser (1989). 
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The prepared zonation map for two different cases is shown in Fig. 6.5 and Fig. 6.6, 

respectively. It is shows from these maps that a large part of the region falls in the 10% probability 

of exceedence of the peak ground acceleration value of 100 gal. The area becomes smaller in the 

seismic hazard map for the 10% probability of exceedence of 200 gals (Fig. 6.8 and 6.9). The 

prepared seismic zonation maps for the Uttarakhand Himalaya shows that major area fall within 

10% probability of exceedence of peak ground acceleration 100 gal and 200 gal, respectively. It is 

seen that many locations like Tehri, Chamoli, Almora, Srinagar, Devprayag, Bageshwar and Pauri 

fall in a zone of 10% probability of exceedence of peak ground acceleration value of 200 gals. The 

peak ground acceleration recorded during the Uttarkashi earthquake of 1991 and the Chamoli 

earthquake of 1999, at near source region is between 253 and 352 gal. These are two resent major 

earthquakes that occurred in the Uttarakhand Himalaya. The destruction during the Uttarkashi and 

the Chamoli earthquakes was severe in the near source region. This indicates that the area which 

falls under 10% probability of exceedence for the peak ground acceleration value of 200 gal in the 

present study can expect similar destruction in future earthquake and needs to be looked more 

carefully. This study indicates that the Uttarakhand Himalaya and the surrounding region are 

highly vulnerable to seismic hazard.  

 

6.4 Conclusion 

A modified technique of seismic zonation based on deterministic modeling of rupture plane 

is presented in this Chapter and is applied of the Uttarakhand Himalaya. The developed attenuation 

relations have been used for preparing the seismic hazard zonation maps of 10% probability of 

exceedence of peak ground acceleration values of 100 and 200 gals, respectively.  It is seen that 

similar hazard maps are obtained when regional attenuation relations based on different regression 

model is used in this study. However, clear deviation in seismic hazard is seen when regression 

relation based on worldwide data is used. Therefore present study clearly demonstrates importance 

of regional regression relation is presenting seismic hazard map of the region.  
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CHAPTER - 7 

Summary and Conclusions 

 

7.1 Summary 

Attenuation characteristics play an important role for safe deign of earthquake resistance 

building in a seismically active region. A seismic wave in a medium is affected by the three factors 

viz., source characteristics, travel path and medium. Different types of medium present in the earth 

crust behave differently for the similar seismic wave propagation. The effects of the propagation 

seismic wave in material on earthquake ground motion are associated with the attenuation 

properties of medium. Therefore estimation of attenuation characteristics is an important task for 

seismic hazard assessment of a region. Present research work is an attempt to understand and 

quantify the attenuation properties of earthquake ground motions in the seismically active 

Himalaya region. Further seismic hazard assessment has been carried out in this study. Following 

are the main objectives of this study:  

1. Development of regression relations of peak ground acceleration for the Uttarakhand 

Himalaya using strong motion data of similar parametric constraints of independents 

variables.  

2. Checking the suitability of developed attenuation relation to simulate large earthquake 

which occurred in this region.  

3. Development of frequency dependent coda wave quality factor for both the Kumaon 

and the Garhwal Himalaya using similar strong motion data with similar techniques. 

4.  Preparation of seismic hazard map on the basis of developed attenuation relations for 

the Uttarakhand Himalaya. 

 

In the present work, attenuation properties have been determined for two regions viz., the 

Kumaon Himalaya and Garhwal Himalaya, of the Uttarakhand Himalaya, India. In the Kumaon 
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Himalaya region very few studies have been carried out regarding the attenuation properties. 

Strong motion data have been used to achieve the above objectives. The strong motion data 

recorded on the Kumaon network consisting of eight stations, installed in the highly mountainous 

terrain of the Kumaon Himalaya, India have been used for in the present study. However, for the 

Garhwal Himalaya the strong motion data recorded on Garhwal network have been used. The 

average interspacing distance of station in the Kumaon Himalaya and Garhwal Himalaya region is 

approximately 11 km and 20 km, respectively. 

First part of the present study is to determine the attenuation relations for peak ground 

acceleration using the strong motion data recorded by these networks. The strong motion array in 

the Garhwal Himalaya operating  by the Department of Earthquake Engineering, Indian Institute of 

Technology Roorkee, provide an opportunity to obtain strong motion data recorded in this region. 

The method of regression analysis to obtain the attenuation relation has been described in the 

Chapter 3. The Kumaon and Garhwal Himalaya strong motion dataset has been used to develop 

attenuation relations for these regions. Developed attenuation relations for the Kumaon and 

Garhwal Himalaya region obtained two different models in this study. For checking the suitability 

of developed attenuation relations a test for normality and model adequacies with the Himalaya 

data set has been examined. Further, test of normality and model adequacies with worldwide 

attenuation relations has been also checked. 

In the present work developed attenuation relation has been used for simulation of strong 

motion records of two resent earthquakes using semi empirical technique. Semi empirical 

simulation technique given by Midorikawa (1993) and modified by Joshi and Midorikawa (2004) 

has been used for simulation the record of two earthquakes viz. the 1991 Uttarkashi earthquake and 

the 1999 Chamoli earthquake which is occurred in the Garhwal Himalaya. This simulation 

technique is turn dependent on the attenuation relation applicable for the sturdy area. The semi 

empirical simulation technique is frequently used by many researchers. In the present work 

simulated acceleration time series of the Uttarkashi and the Chamoli earthquakes give the good 

agreement with observed one. This test is confirming the efficacy of developed attenuation 

relations for study area. 
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   The frequency dependent attenuation property has been also investigated for these regions 

in the present study. Coda wave quality factor (Qc(f)) has been computed using the strong motion 

dataset recorded by the Kumaon  and the Garhwal Himalaya networks, India. In this study we have 

analyzed data from nine local events recorded on six stations for each networks separately. The 

single backscattering technique given by Aki and Chouet (1975) has been used for this work. The 

process of determination of frequency dependent coda wave quality factor (Qc(f)) has been 

discussed in Chapter 5. The obtained results have been compared with worldwide relations given 

by many researchers, which fall within limits. This test is conformation of efficacy of obtained 

results.    

Seismic hazard zonation of the Uttarakhand Himalaya has been done in the present study. 

Modified seismic hazard zonation technique has been used in this present study. Joshi and Patel 

(1997) has been formulated a method of seismic zonation which base on semi empirical technique 

given by Midorikawa (1993) and later modified Joshi and Midorikawa (2004). This method has 

been successfully used for Doon Valley, Northeast region and the Uttarakhand of the India. In this 

work seismic zonation method given by Joshi and Patel (1997) has been modified. The modified 

method of seismic hazard zonation is discussed in Chapter 6. In this approach rupture plane has 

been modelled as a rectangular plane. The length of the rupture plane has been determined with the 

help of map. The length of the rupture plane has been calculated using the empirical relation given 

by Wells and Coppersmith (1994). 

 

The attenuation relations developed for the Uttarakhand Himalaya region with different 

distance parameters has been used and found no drastic difference with obtained results. Further, 

long difference in terms of shape of zones is observed when the worldwide attenuation relation 

given by Abrahamson and Litehiser (1989) has been used. The attenuation relation given by 

Abrahamson and Litehiser (1989) has been frequently used for simulation of past Himalayan 

earthquakes. The modified seismic zonation is strongly dependent on attenuation relations 

applicable for study region. The obtained result gives the good evidence with seismicity of the 

region. 
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7.2 Conclusions 

 Research work carried out in this thesis presents the attenuation characteristics of the 

Uttarakhand Himalaya based on strong motion data. The strong motion data recorded by two 

networks operating in the Kumaon and Garhwal Himalaya region has been used in present work. 

The source parameters of recorded events have been estimated and attenuation characteristics have 

been studies for both regions viz. the Kumaon Himalaya and the Garhwal Himalaya. Major 

conclusions drawn on the research work carried out in present thesis is listed as follow: 

1. Regression models developed for the Kumaon and Garhwal Himalaya are tested with actual 

data. The comparison of actual and synthetic database shows that regression model presented in 

this thesis is suitable to define trend of peak ground acceleration obtained during several 

earthquakes. The developed models are tested for the assumption of normality and model 

adequacies and it is found that all regression models satisfy the criteria. 

2. Study of peak ground acceleration trends and several regression models in the Uttarakhand 

region suggest regression model having dependency on epicentral distance gives less error as 

compared to other models.  

3. Dependency of peak ground acceleration on other parameters clearly shows that distribution of 

PGA in the Uttarakhand region follows different trend for the Kumaon and Garhwal Himalaya, 

respectively. 

4. The test of normality and model adequacies are performed on several regression models of 

worldwide applicability and it is seen that as long as data set remain similar to that used for 

obtaining coefficients of regression analysis normality and model adequacies are satisfied in the 

regression model, while for other cases sharp deviation from normality  and model adequacies 

are observed.  

5. Rate of attenuation of peak ground acceleration observed from the developed regression model 

is checked for both regions of the Kumaon and the Garhwal Himalaya and it seen that high rate 

of attenuation of peak ground acceleration is observed in the Kumaon Himalaya as compared to 

the Garhwal Himalaya. 

6. The validity of developed attenuation relations has been checked by simulating strong motion 

records of  two recent earthquakes viz. the Uttarkashi  and Chamoli earthquake  that occurred in 

the Garhwal Himalaya region using semi empirical simulation technique given by Midorikawa 
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(1993). The regression model developed for the Garhwal Himalaya has been used in this 

simulation technique. The simulation of strong ground motion of these two earthquakes gives a 

good match with observed records, which further supports the validity of developed attenuation 

relation.  

7. The difference in attenuation trend of peak ground acceleration is checked by computing 

dimensionless quality factor „Qc(f)‟ for these two regions using strong motion data. The 

obtained value of Qc(f) in these two regions has been compared with available values measured 

in other part of India and world. This comparison indicates that the distribution of Qc(f) in this 

region falls within the range of values justified for tectonically active regions.  

8. The comparative study of obtained Qc(f) relation for the Kumaon and Garhwal Himalaya 

indicate that coda wave quality factor is less in the Kumaon region as compared to the Garhwal 

region, which indicate highly attenuating medium in the Kumaon Himalaya as compared to the 

Garhwal Himalaya. 

9. Seismic hazards assessment of seismically active region of the Uttarakhand Himalaya has been 

made using modified seismic hazard zonation technique initially given by Joshi and Patel 

(1997). The maps of probability of exceedance of peak ground acceleration have been prepared 

using modified seismic hazard zonation technique. These maps show that many important cites 

in this region fall in highly hazardous zones. 
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