## SEDIMENT FLOW MODELING IN BHAGIRATHI RIVER USING ARTIFICIAL NEURAL NETWORKS

Ph.D. THESIS

by

NANDITA SINGH



## DEPARTMENT OF EARTH SCIENCES INDIAN INSTITUTE OF TECHNOLOGYROORKEE ROORKEE-247667 (INDIA)

DECEMBER, 2014

## SEDIMENT FLOW MODELING IN BHAGIRATHI RIVER USING ARTIFICIAL NEURAL NETWORKS

### A THESIS

Submitted in partial fulfilment of the requirements for the award of the degree

of

### DOCTOR OF PHILOSOPHY

in

### DEPARTMENT OF EARTH SCIENCES

by

NANDITA SINGH



### DEPARTMENT OF EARTH SCIENCES INDIAN INSTITUTE OF TECHNOLOGYROORKEE ROORKEE-247667 (INDIA)

DECEMBER, 2014

### ©INDIAN INSTITUTE OF TECHNOLOGY ROORKEE, ROORKEE-2014 ALL RIGHTS RESERVED



# INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE

## **CANDIDATE'S DECLARATION**

I hereby certify that the work, which is being presented in the thesis entitled "SEDIMENT FLOW **MODELING IN BHAGIRATHI RIVER USING ARTIFICIAL NEURAL NETWORKS**" in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy and submitted in the Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, is an authentic record of my own work carried out during the period from August, 2009 to December, 2014 under the supervision of Dr. G. J. Chakrapani, Professor, Department of Earth Sciences, Indian Institute of Technology Roorkee

The matter presented in this thesis has not been submitted by me for the award of any other degree of this or any other institute.

### (NANDITA SINGH)

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

(G. J. Chakrapani) Supervisor

Date: December , 2014

### ABSTRACT

A river system is a complex network of intertwining channels with an ongoing interaction of flow and sediment transport processes. The prediction of sediment transport is of vital interest due to its importance in understanding river hydraulics, geomorphology, irrigation, hydropower, design and management of water resources projects etc. Hydrodynamic models have been widely used for the analysis, prediction, design, and management of a wide range of water- sediment systems. However, due to the spatial heterogeneity of various physical and geomorphologic properties, a river system cannot be easily represented, and data requirements are large for modeling. A river network covers a vast area comprising of many watersheds and sub- basins, where a complete set of data may not be available. This results in the need for a practical userfriendly model which enables quick simulations and predictions with minimum data requirement and without significantly compromising the model accuracy. ANN has the characteristics of parallel link, error correction, and nonlinear transfer and is an emerging technique for the flow and connection of information. The advantage of using ANN is that every step of the modeling process can be configured and improved based upon model performance. This increases flexibility and also the understanding of the procedure which is otherwise rather complex to comprehend. In the present study, Artificial Neural Networks (ANN) have been employed to model sediment flow in the Himalayan Bhagirathi River, using multi annual time series data at four locations viz. Gangotri, Maneri, Uttarkashi and Rishikesh (Ganges River).

ANN modeling in the present study has been carried out by- understanding the geohydrological processes and parameters which control the variations in sediment load in the Bhagirathi River, description and analysis of time series data, development of representative models, training, testing and evaluation. The possibility of modeling sediment concentration with Artificial Neural Networks at Gangotri, the source of Bhagirathi River has been explored. Considering discharge, rainfall and temperature to be the main controlling factors of variations in sediment concentration in the dynamic glacial environment of Gangotri, fourteen feed forward neural networks with error back propagation algorithm with different inputs have been created, trained and tested for prediction of sediment concentration. The inputs applied in the models are either the variables mentioned above as individual factors (single input networks) or a combination of them (multi-input networks). The suitability of employing antecedent time-step values as network inputs has been checked by comparative analysis of model performance in two different modes. The simple feed forward network has been improvised with a series parallel NARX [nonlinear autoregressive with exogenous input] architecture wherein true values of sediment concentration have been fed as input during training. Daily data of discharge, rainfall, temperature and sediment concentration for the melt period of May-October, when maximum sediment movement takes place, for five years, from the year 2000 to 2004, has been used for modeling and high Coefficient of Determination values [0.77-0.88] have been obtained between observed and ANN predicted values of sediment concentration. According to the performance parameters (R and  $R^2$  values), among discharge, temperature and rainfall as independent variables, the sediment concentration is most affected by rainfall (highest  $R^2$  value). In this scenario, according to the performance parameters, the rainfall-temperature (T7) combination of inputs is seen to work relatively better. The overall performance range is not too large with the values of coefficient of determination ranging from 0.777 to 0.885. This implies that the generally accepted belief of better performance of multi-input ANN models may not hold true always. It is also seen that use of previous time step values as inputs (updating mode) may not necessarily improve model performance and vice versa. The study has brought out relationships between variables that are not reflected in normal statistical analysis. A strong rainfall: sediment concentration and temperature: sediment concentration relationship is shown by the models which is not reflected in statistical correlation. It has also been observed that usage of antecedent time step values as network inputs does not necessarily lead to improvement in model performance.

At Maneri, a simple technique for prediction of suspended sediment concentration [SSC] is presented. ANN models have been developed using short time period data of discharge and sediment concentration during the high activity monsoon period of June to October, 2004, when variations are maximum. Two modeling approaches have been employed, a daily approach and a three hourly approach. Although the time period considered is the same in both the approaches, the modeling performance is marginally better in the three hourly approach where there is a six fold increase in the dataset. The Levenberg-Marquardt optimization function, improvised with NARX [non-linear autoregressive with exogenous input] architecture has been used and high values of coefficient of determination have been obtained [0.89-0.97]. This study shows that short duration time series data can be used for successfully predicting geo-hydrological variables in the highly complex Himalayan river scenario.

Single series modeling using Nonlinear Autoregressive networks has been carried out considering six water years discharge data at Maneri, Uttarkashi and Rishikesh. In this form of

modeling, the present time discharge values were predicted using antecedent discharge values. High values of coefficient of determination were obtained in the study [ $R^2$ =0.92-0.95]. The study validates the possibility of single series prediction in the Bhagirathi River. Prediction would not just help in filling gaps in hydrological data but will also enable continuous monitoring of sediment concentration which is difficult in the Himalayan Rivers where floods and other such eventualities commonly occur.

The present work, besides validating the use of ANN in geo-hydrological modeling, discusses several finer nuances of this technique. For instance, the pros and cons of- using single/multiple inputs in models, the use of previous time step values as network inputs, long duration data vs short duration data, daily vs high frequency three hourly data, the importance of data normalization, pre- modeling data analyses with statistical methods, prediction with a single series etc. Such a study would be of great help in understanding the relationships that exist between hydrologic variables and the degree to which they affect sediment movement. ANN prediction can also be useful for filling up the gaps in hydrologic data. This study shows that geo-hydrological time series data invariably has inherent trends which can be exploited for ANN modeling and predictions.

### ACKNOWLEDGEMENTS

I owe sincere gratitude to my supervisor, Dr. G.J. Chakrapani, Professor, Department of Earth Sciences, IIT Roorkee, for his immaculate supervision, guidance and constant support throughout my research journey. His ingenious ideas and prompt reviews have immensely helped me in bringing the work to its present shape. I cannot thank him enough for his optimism, for keeping the faith in me during the ups and downs of this work. I thank him for being a caring supervisor, who brings out the best in his students while giving them enough room to explore their own scientific potential. At this point in time, I fondly remember my co-guide, Late Dr. U.C. Kothyari, Professor, Department of Civil Engineering, IIT Roorkee. It is disheartening to have lost a wonderful teacher who believed in me and my work even when I doubted myself.

I am grateful to Dr. A.K. Saraf, Professor and Head, Department of Earth Sciences, for extending all necessary infrastructural facilities. I would like to thank the Chairperson and members of Departmental Research Committee (DRC) and the members of the Student Research Committee (SRC) for their valuable time and suggestions during many discussions. I thank Prof. A. K. Sen and Prof. R.G.S. Shastry, Department of Earth Sciences, Dr. Peddinti, Department of Chemistry, for their helpful suggestions.

I am highly indebted to Shri Himanshu Awasthi, General Manager, UJVNL, for providing necessary data and giving his valuable time for discussions on Bhagirathi River.

I am thankful to my senior Dr. R K Saini for his help and support. My lab mates Sugandha, Yawar and Anjali made difficult jobs turn lighter and easy with their willingness to help. The nonteaching staff of the department needs a special mention for their unstinting help in many ways.

A word of thanks is also due to my director, Dr. R.K. Sharma, GSI, WR, Jaipur, for always allowing me to work for my research despite the ongoing exploration work and Shri Sanjay Singh, Sr. Geologist, GSI, Jaipur for helping me out with procuring the latest version of MATLAB. I thank the Regional Mision Head, Shri Nathan for his support.

I have to thank my parents and family members for their good wishes and moral support. Working with the Geological Survey of India as a field geologist and being a part-time scholar put on me several constraints, but with my father's help and effort I could work smoothly despite the distance. I thank my husband, Soumya, for being a wonderful partner, easing off my work load to a great extent so that I could focus on my research. His suggestions and scientific input have been instrumental in the making of this report.

(Nandita Singh)

## TABLE OF CONTENTS

| Title     |               |                                           | Page No. |
|-----------|---------------|-------------------------------------------|----------|
| CAN       | DIDA          | TE'S DECLARATION                          | i        |
| ABS       | TRAC          | Г                                         | iii      |
| ACK       | KNOWI         | LEDGEMENT                                 | vii      |
| ТАВ       | <b>SLE OF</b> | CONTENTS                                  | ix       |
| LIST      | r of fi       | IGURES                                    | xiii     |
| LIST      | F OF TA       | ABLES                                     | xxi      |
| Chapter 1 | INTI          | RODUCTION                                 | 1-15     |
|           | 1.1           | Geo-Hydrological Modeling                 | 2        |
|           | 1.2           | Aim And Scope Of The Present Work         | 3        |
|           | 1.3           | Rivers And Sediment Discharge             | 4        |
|           | 1.4           | The Mechanism Of Sediment Transport       | 7        |
|           | 1.5           | Factors Affecting Sediment Load Of Rivers | 12       |
|           |               | 1.5.1 Discharge                           | 12       |
|           |               | 1.5.2 Relief                              | 13       |
|           |               | 1.5.3 Geology                             | 14       |
|           |               | 1.5.4 Temperature                         | 14       |
|           |               | 1.5.5 Human Influence                     | 15       |
| Chapter 2 | LITH          | ERATURE REVIEW                            | 17-24    |
|           | 2.1           | Studies On Global Rivers                  | 18       |
|           | 2.2           | Application Of ANN To Geo-Hydrology       | 21       |
| Chapter 3 | STU           | 25-31                                     |          |
|           | 3.1           | Physiography                              | 27       |
|           | 3.2           | Climate                                   | 28       |
|           | 3.3           | Geology                                   | 29       |

|           | 3.4  | Sedimen                                        | t Load Variations In Bhagirathi River              | 31 |  |  |
|-----------|------|------------------------------------------------|----------------------------------------------------|----|--|--|
|           | 3.5  | Anthropo                                       | ogenic Activities In Bhagirathi River              | 32 |  |  |
| Chapter 4 | MET  | METHODOLOGY                                    |                                                    |    |  |  |
|           | 4.1  | Artificial                                     | Neural Networks: Overview                          | 34 |  |  |
|           |      | 4.1.1 Str                                      | ucture of ANN                                      | 35 |  |  |
|           |      | 4.1.2 Tyj                                      | 37                                                 |    |  |  |
|           |      | 4.1.3 Mo                                       | 38                                                 |    |  |  |
|           |      | 4.1                                            | .3.1 Selection f proper input and output variables | 38 |  |  |
|           |      | .3.2 Determination of optimal ANN architecture | 39                                                 |    |  |  |
|           |      | 4.1.3.3 Data Normalization                     |                                                    |    |  |  |
|           |      | 4.1                                            | .3.4 Training the network                          | 39 |  |  |
|           |      | 4.1                                            | .3.5 Network creation and Training with FFBPA      | 40 |  |  |
|           |      | 4.1                                            | 42                                                 |    |  |  |
|           |      | 4.1                                            | .3.7 Merits and Demerits of ANN                    | 44 |  |  |
|           | 4.2  | Data Des                                       | 45                                                 |    |  |  |
|           |      | 4.2.1                                          | Gangotri                                           | 45 |  |  |
|           |      | 4.2.2                                          | Maneri                                             | 48 |  |  |
|           |      | 4.2.3                                          | Data For Single Series Modeling                    | 50 |  |  |
|           | 4.3  | Ann Moo                                        | del Development                                    | 52 |  |  |
|           |      | 4.3.1                                          | Gangotri                                           | 52 |  |  |
|           |      | 4.3.2                                          | Maneri                                             | 54 |  |  |
|           |      | 4.3.3                                          | NAR Model Development                              | 56 |  |  |
|           |      | 4.3.4                                          | Model Improvisation                                | 57 |  |  |
| Chapter 5 | RESU | 59-107                                         |                                                    |    |  |  |
|           | 5.1  | Results                                        |                                                    | 60 |  |  |
|           |      | 5.1.1 Gar                                      | ngotri                                             | 60 |  |  |
|           |      | 5.1.2 Ma                                       | neri                                               | 80 |  |  |

|           |      | 5.1.3 NAR    | 98      |
|-----------|------|--------------|---------|
|           | 5.2  | Discussion   | 102     |
| Chapter 6 | CON  | ICLUSIONS    | 109-113 |
|           | 6.1  | Conclusion   | 109     |
|           | 6.2  | Future Scope | 113     |
| BIBLIOGRA | APHY |              | 115     |

# APPENDICES [ I - VII]

## LIST OF FIGURES

|                        |                                                                                                                                                                                                                 | Page No. |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Fig. 1.1               | Discharge time series data at Maneri and Uttarkashi on the Bhagirathi River from 2008 to 2014                                                                                                                   | 6        |
| Fig. 1.2               | Variations in streamflow velocity at natural channel cross sections                                                                                                                                             | 8        |
| Fig. 1.3               | Erosion and deposition criterion defined in terms of threshold velocities                                                                                                                                       | 9        |
| Fig. 1.4               | Lift and drag forces acting on a submerged particle                                                                                                                                                             | 10       |
| Fig. 1.5               | Percent of time particles in a water stream experience rolling,<br>saltation and suspension as a function of transport stage. Percent of<br>time in saltation is represented by the distance between the curves | 11       |
| Fig. 1.6               | Scatter plots showing correlation between Discharge and TSM at (A) Bhagirathi at Maneri and (B) Alaknanda at Lambagad                                                                                           | 13       |
| Fig. 3.1               | A- location of the study area. B- the Bhagirathi basin. C- Gangotri glacier. D- Shaded relief map of the area around Maneri.                                                                                    | 25       |
| Fig. 3.2               | Geology observed along the course of Bhagirathi River                                                                                                                                                           | 29       |
| Fig. 4.1               | (Left) A typical artificial neuron and (right) a three layered ANN.                                                                                                                                             | 34       |
| Fig. 4.2               | (Left) A simple binary threshold function and (right) a non-linear sigmoidal transfer function.                                                                                                                 | 35       |
| Fig. 4.3               | The sigmoid curve (above) without and (below) with bias                                                                                                                                                         | 36       |
| Fig. 4.4               | (Left) A bilayer neural network and (right) A Hopfield Network.                                                                                                                                                 | 37       |
| Fig. 4.5a              | Variation in Temperature data at Gangotri over five melt periods (2000-2004)                                                                                                                                    | 45       |
| Fig. 4.5b              | Variation in Rainfall data at Gangotri over five melt periods (2000-2004)                                                                                                                                       | 45       |
| Fig. 4.5c              | Variation in Discharge data at Gangotri over five melt periods (2000-2004)                                                                                                                                      | 46       |
| <b>D'</b> 4 <b>C</b> 1 | Variation in Sadiment cone data at Cangotri over five malt pariade                                                                                                                                              | 10       |

Fig. 4.5d Variation in Sediment conc. data at Gangotri over five melt periods 46 (2000-2004)

- Fig. 4.6 Line graph for daily Water Discharge and Sediment Concentration 49 (TSM) variation from June-October 2004. Inset- Scatter plot showing relationship between Water Discharge and Sediment Concentration
- Fig. 4.7 Line graph for daily Water Discharge (m<sup>3</sup>/s) variation from April 50 2008-March 2014 [six water years].
- Fig. 4.8a Schematic representation of improvised NARX Network 56 architecture used in training.
- Fig. 4.8b Schematic representation of improvised series parallel NARX 56 Network architecture used in training.
- Fig. 5.1a Regression plots for training and testing datasets of model T1 58 (above) and T1-a (below) showing relationship between target and model computed values of sediment concentration in mg/L.
- Fig. 5.1b Response of models T1 and T1-a after training, testing and 59 validation: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.
- Fig. 5.1c T1 and T1-a Model evaluation- Comparison between target and 60 computed values of sediment concentration along with errors varying with time.
- Fig. 5.2a Regression plots for training and testing datasets of model T2 61 (above) and T2-a (below) showing relationship between target and model computed values of sediment concentration in mg/L.
- Fig. 5.2b Response of models T2 and T2-a after training, testing and 62 validation: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.
- Fig. 5.2c Model evaluation- Comparison between target and computed 63 values of sediment concentration along with errors varying with time.

- Fig. 5.3a Regression plots for training and testing datasets of model T3 64 (above) and T3-a (below) showing relationship between target and model computed values of sediment concentration in mg/L.
- Fig. 5.3b Response of models T3 and T3-a after training, testing and 65 validation: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.
- Fig. 5.3c Model evaluation- Comparison between target and computed 66 values of sediment concentration along with errors varying with time.
- Fig. 5.4a Regression plots for training and testing datasets of model T4 67 (above) and T4-a (below) showing relationship between target and model computed values of sediment concentration in mg/L.
- Fig. 5.4b Response of models T4 and T4-a after training, testing and 68 validation: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.
- Fig. 5.4c Model evaluation- Comparison between target and computed 69 values of sediment concentration along with errors varying with time.
- Fig. 5.5a Regression plots for training and testing datasets of model T5 70 (above) and T5-a (below) showing relationship between target and model computed values of sediment concentration in mg/L.
- Fig. 5.5b Response of models T5 and T5-a after training, testing and 71 validation: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.
- Fig. 5.5c Model evaluation- Comparison between target and computed 72 values of sediment concentration along with errors varying with time.
- Fig. 5.6a Regression plots for training and testing datasets of model T6 73

(above) and T6-a (below) showing relationship between target and model computed values of sediment concentration in mg/L.

- Fig. 5.6b Response of models T6 and T6-a after training, testing and 74 validation: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time
- Fig. 5.6c Model evaluation- Comparison between target and computed 75 values of sediment concentration along with errors varying with time.
- Fig. 5.7a Regression plots for training and testing datasets of model T7 76 (above) and T7-a (below) showing relationship between target and model computed values of sediment concentration in mg/L.
- Fig. 5.7b Response of models T7 and T7-a after training, testing and 77 validation: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.
- Fig. 5.7c Model evaluation- Comparison between target and computed 78 values of sediment concentration along with errors varying with time.
- Fig. 5.8a Regression plots for training and testing datasets of model T1 79 (above) and T1-a (below) showing relationship between target and model computed values of sediment concentration in mg/L.
- Fig. 5.8b Response of models T1 and T1-a after training, testing and 80 validation: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.
- Fig. 5.8c Ternary plots (multi-annual data) of major cations for the Narmada 81 mainstream; A- upstream locations; B-midstream locations and C-downstream locations.
- Fig. 5.9a Regression plots for training and testing datasets of model T2 82 (above) and T2-a (below) showing relationship between target and

model computed values of sediment concentration in mg/L.

- Fig. 5.9b Response of models T2 and T2-a after training, testing and 83 validation: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time
- Fig. 5.9c Model evaluation- Comparison between target and computed 84 values of sediment concentration along with errors varying with time.
- Fig.5.10a Regression plots for training and testing datasets of model T3 85 (above) and T3-a (below) showing relationship between target and model computed values of sediment concentration in mg/L.
- Fig.5.10b Response of models T3 and T3-a after training, testing and 86 validation: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.
- Fig.5.10c Model evaluation- Comparison between target and computed 87 values of sediment concentration along with errors varying with time.
- Fig 5.11a Regression plots for training and testing datasets of model T4 88 (above) and T4-a (below) showing relationship between target and model computed values of sediment concentration in mg/L.
- Fig.5.11b Response of models T4 and T4-a after training, testing and 89 validation: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.
- Fig.5.11c Model evaluation- Comparison between target and computed 90 values of sediment concentration along with errors varying with time.
- Fig.5.12a Regression plots for training and testing datasets of model T5 91 (above) and T5-a (below) showing relationship between target and model computed values of sediment concentration in mg/L.

- Fig.5.12b Response of models T5 and T5-a after training, testing and 92 validation: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.
- Fig.5.12c Model evaluation- Comparison between target and computed 93 values of sediment concentration along with errors varying with time.
- Fig.5.13a Regression plots for training and testing datasets of model T6 94 (above) and T6-a (below) showing relationship between target and model computed values of sediment concentration in mg/L.
- Fig.5.13b Response of models T6 and T6-a after training, testing and 95 validation: Plot showing mparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.
- Fig.5.13c Model evaluation- Comparison between target and computed 96 values of sediment concentration along with errors varying with time.
- Fig.5.14a Regression plots for NAR training and testing datasets at Maneri 97 showing relationship between target and model computed values of discharge in m<sup>3</sup>/s.
- Fig.5.14b Response of NAR models at Maneri after training, testing and 97 validation: Plot showing comparison between target and model computed values of discharge (m<sup>3</sup>/s) along with network errors with time.
- Fig.5.15a Regression plots for NAR training and testing datasets at Uttarkashi 98 showing relationship between target and model computed values of discharge in m<sup>3</sup>/s.
- Fig.5.15b Response of NAR models at Uttarkashi after training, testing and 99 validation: Plot showing comparison between target and model computed values of discharge (m<sup>3</sup>/s) along with network errors with time.

- Fig.5.16a Regression plots for NAR training and testing datasets at Rishikesh 99 showing relationship between target and model computed values of discharge in m<sup>3</sup>/s.
- Fig.5.16b Response of NAR models at Rishikesh after training, testing and 100 validation: Plot showing comparison between target and model computed values of discharge (m<sup>3</sup>/s) along with network errors with time.

# LIST OF TABLES

| Table 1.1 | Water and sediment discharge in some large rivers of the world                                                                                                                  | 5   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 1.2 | Monthly total suspended concentration (TSM, mg/l) and load<br>during water year 2004-05, at Srinagar, Maneri and Rishikesh for<br>Alaknanda, Bhagirathi and Ganga respectively. | 5   |
| Table 4.1 | Descriptive Statistics for Variables used at Gangotri                                                                                                                           | 47  |
| Table 4.2 | Descriptive Statistics for discharge [Q km <sup>3</sup> /s] and sediment conc.<br>[S mg/L] at Maneri                                                                            | 48  |
| Table 4.3 | Descriptive Statistics for Discharge at Maneri, Uttarkashi and Rishikesh                                                                                                        | 50  |
| Table 4.4 | Model characteristics for development of ANN models at Gangotri                                                                                                                 | 53  |
| Table 4.5 | Model characteristics for development of ANN models at Maneri                                                                                                                   | 54  |
| Table 4.6 | Model characteristics for development of ANN models with NAR                                                                                                                    | 55  |
| Table 5.1 | Performance evaluation of ANN models                                                                                                                                            | 101 |

# $\mathbf{CHAPT}\overline{\mathbf{ER}}\,\overline{\mathbf{1}}$

## **INTRODUCTION**

- 1.1 Geo-Hydrological Modeling
- 1.2 Aim and Scope of the Present Work
- 1.3 Rivers and Sediment Discharge
- 1.4 The Mechanism of Sediment Transport
- 1.5 Factors Affecting Sediment Load of Rivers
  - 1.5.1 Discharge
  - 1.5.2 Relief
  - 1.5.3 Geology
  - 1.5.4 Temperature
  - 1.5.5 Human Influence

#### **1.1 GEO-HYDROLOGICAL MODELING**

A river system is a complex network of streams with an ongoing interaction of several spatially and temporally varying geo-hydrological parameters and processes. Understanding sediment transport along with estimation and prediction of sediment concentration has implications in water resource management, land use, territorial hazards and damage to engineering structures by morphological evolution of river bed. However, no direct or indirect empirical model developed for evaluating this process has gained universal acceptance (Abrahart et al. 2008) and there is a growing need for development of minimalist empirical approaches that are sensitive to climatic factors, catchment characteristics and antecedent conditions. The development of the sediment rating curve, which is by far the most conventional method of estimation of sediment concentration, is seen to result in under-prediction (Asselman, 2000; Walling and Webb, 1988). Several mathematical corrections have been applied to the basic linear regression equations to overcome this problem and non-linear regression equations have also been developed (Crowder et al., 2007; Holtschlag, 2001). Many studies in the recent times have indicated the potential advantage of Artificial Neural Networks(ANN) in sediment modeling (Abrahart and White, 2001; Cigizoglu, 2002a, b, 2004; Cigizoglu and Kisi, 2006; Jain, 2001; Kaur et al., 2003; Kisi, 2004; Nagy et al., 2002; Sarangi and Bhattacharya, 2005). There is a constant issue of requirement of detailed topographical and morphometric data in the application of conventional models while it is known that a river network covers a vast area consisting of many watersheds and sub-basins, where a complete set of data may not be available. In such a case, ANN presents a practical, userfriendly model for quick simulations and predictions with minimum data requirement and without significantly compromising the model accuracy (Yitian and Gu, 2003).

Modeling geo-hydrological variables and processes in the Himalayan Rivers with the ANN technique can be quite interesting and challenging. Here, the rivers carry large sediments loads draining through a great range of relief and climate, active tectonic zones and easily erodible rocks (Hasnain and Thayyen, 1999). The relatively young age of the Himalayan Mountains, with their large and rapidly moving glaciers, high seismicity, steep valleys with frequent landslides and avalanches and intense monsoonal rainfall, contribute to high erosion rates (Hasnain and Chauhan, 1993). The study of such huge water resource systems is important not just from the academic point of view but also in light of proper watershed management which involves water supply, flood

control, irrigation, drainage, water quality, power generation, recreation, and fish and wildlife propagation (Tokar et al 1999).

### **1.2 AIM AND SCOPE OF THE PRESENT WORK**

The main objective of the present study is to develop ANN model(s) with the capability to predict suspended sediment concentration (SSC) at Gangotri, Maneri and Uttarkashi on Bhagirathi River and Rishikesh on the Ganges River up to a high degree of accuracy. The study validates the practical capability and usefulness of ANN as a tool for simulating complex non-linear real world river system processes in the Himalayan scenario. The study not only gives an insight into ANN modeling in the Himalaya but it also focuses on the importance of understanding a river basin and the factors that affect sediment concentration, before attempting to model it. The objective has been achieved systematically by -

- 1. <u>Understanding the underlying processes</u>: sediment flow, the hydrological parameters involved, seasonal variations especially in the Himalayan context.
- 2. <u>Data description and analysis</u>: statistical analysis of time series data for Bhagirathi River, data trends and internal structure.
- 3. <u>Understanding the technique</u>: artificial neural networks, it's components and working based on procedures such as, data pre-partitioning, determination of model inputs and optimum network architecture, selection of algorithms etc.
- 4. <u>Application of ANN</u>: training, testing and performance evaluation of ANN models and interpretation of results.

In the present work, for the first time, ANN has been employed for modeling Sediment Concentration in the Bhagirathi River. ANN modeling has been carried out using multi annual hydrological data at four locations viz. Gangotri, which is the source of the river, Maneri, Uttarkashi, which are located downstream before the confluence of the river with Alaknanda and Rishikesh which is located on the Ganges. The Bhagirathi River sediment load variations are controlled by several socio-geohydrological parameters. The main controlling factors have been considered for ANN modeling in the present work. The thesis has been systematically structured into six chapters and written in a lucid manner so that it is as comprehensive as possible. The write up is extensively substantiated with diagrams, graphical illustrations and plots. Chapter one gives an introduction to the main theme of the study, elucidating the need for ANN modeling of hydrologic variables in general and in the Himalayan scenario. The objectives have been stated clearly and a summary of the underlying geo-hydrological processes and factors controlling sediment transport is given. An exhaustive review of previous and current works on global rivers has been given in Chapter two along with a review of ANN application to geo-hydrology. The study area details have been described in Chapter three. Chapter four pertains to the methodology adopted in the study i.e. data description, statistical analysis and most importantly ANN overview. Application of ANN to the study area and development of models is also presented in chapter four. The results have been discussed in chapter five. Finally, main conclusions of the work have been enlisted in Chapter 6 along with the future scope of the work.

### **1.3 RIVERS AND SEDIMENT DISCHARGE**

Rivers are a dynamic and important part of the physical environment and water flowing down to the sea over the face of the land, is the dominant agent of landscape alteration (Bloom, 1978). Their behavior is of interest to a wide variety of concerns, ranging from flood control, navigation, water resource development to recreation. They pose a potential threat to human populations through floods, drought and erosion. They therefore have political, social and economic relevance. Sediment transfer from continents to oceans via rivers is one of the important processes regulating river-bank stabilization, soil formation, crustal evolution and many other earth-related processes (Chakrapani, 2005a). The enormity of this transport is well understood as it is known that globally, rivers transport around  $34.7 \times 10^{12} \text{ m}^3 \text{ yr}^{-1}$  of water and  $13.5 \times 10^{12} \text{ kg yr}^{-1}$  of suspended sediments from continents to oceans (Milliman, et al., 1983). Mass transport by large rivers with high water flows such as, the Amazon, Mississippi, Nile, etc. are not very significant in terms of sediment flux. The Himalayan Rivers such as the Ganga and Brahmaputra, however, contribute large quantities of sediments to the oceans (Chakrapani and Saini, 2009). (Table 1.1)

The Ganga drainage basin in India occupies an area of about  $1.0 \times 10^6$  km<sup>2</sup> of the subcontinent and carries a tremendous volume of water. The river with its large basin, transports approximately  $520 \times 10^6$  ton sediment annually to the ocean (Shuguang *et al.*, 2001). Table 1.2 shows the monthly discharge and sediment concentration characteristics of Alaknanda, Bhagirathi

| River              | Water<br>Discharge<br>(km <sup>3</sup> /yr) | Drainage<br>area<br>(10 <sup>6</sup> km <sup>2</sup> ) | Sediment<br>discharge<br>(10 <sup>6</sup> t/yr) | Sediment<br>yield<br>(t/km²/yr) |  |
|--------------------|---------------------------------------------|--------------------------------------------------------|-------------------------------------------------|---------------------------------|--|
| Amazon             | 6300                                        | 6.15                                                   | 1200                                            | 195                             |  |
| Columbia           | 251                                         | 0.67                                                   | 10                                              | 15                              |  |
| Congo (Zaire)      | 1250                                        | 3.72                                                   | 43                                              | 12                              |  |
| Danube             | 206                                         | 0.81                                                   | 67                                              | 83                              |  |
| Ganges/Brahmaputra | 971                                         | 1.48                                                   | 1060                                            | 716                             |  |
| Huang He           | 49                                          | 0.75                                                   | 1050                                            | 1400                            |  |
| Indus              | 238                                         | 0.97                                                   | 59                                              | 61                              |  |
| Mackenzie          | 306                                         | 1.81                                                   | 42                                              | 23                              |  |
| Mekong             | 470                                         | 0.79                                                   | 160                                             | 202                             |  |
| Mississippi        | 580                                         | 3.27                                                   | 210                                             | 64                              |  |
| Niger              | 192                                         | 1.21                                                   | 40                                              | 33                              |  |

 Table 1.1 Water and sediment discharge in some large rivers of the world [McLennan,1993]

and Ganga rivers at Srinagar, Maneri and Rishikesh respectively. The water flux in Alaknanda River is approximately three times of the Bhagirathi River. However, the sediment concentration in Bhagirathi River is relatively more than that of Alaknanda River which could be attributed to the higher gradient in the former (Chakrapani and Saini, 2009).

Table 1.2 Monthly total suspended concentration (TSM, mg/l) and load during water year 2004-05, at Srinagar, Maneri and Rishikesh for Alaknanda, Bhagirathi and Ganga respectively. (Saini, 2007)

| Month          | Alaknanda<br>Discharge<br>(10 <sup>12</sup> l) | TSM<br>(ppm) | Bhagirathi<br>Discharge<br>(10 <sup>12</sup> l) | TSM<br>(ppm) | Ganga<br>Discharge<br>(10 <sup>12</sup> l) | TSM<br>(ppm) |
|----------------|------------------------------------------------|--------------|-------------------------------------------------|--------------|--------------------------------------------|--------------|
| July 2004      | 3.45                                           | 939          | 1.168                                           | 1370         | 4.7                                        | 872          |
| August 2004    | 4.86                                           | 927          | 1.187                                           | 1046         | 6.5                                        | 894          |
| September 2004 | 2.65                                           | 276          | 0.599                                           | 243          | 3.4                                        | 316          |
| October 2004   | 1.80                                           | 137          | 0.217                                           | 120          | 2.2                                        | 139          |
| November 2004  | 0.51                                           | 48           | 0.131                                           | 27           | 0.8                                        | 65           |
| December 2004  | 0.43                                           | 21           | 0.103                                           | 25           | 0.6                                        | 29           |
| January 2005   | 0.43                                           | 27           | 0.081                                           | 22           | 0.5                                        | 35           |
| February 2005  | 0.23                                           | 50           | 0.070                                           | 27           | 0.5                                        | 41           |
| March 2005     | 0.28                                           | 70           | 0.089                                           | 29           | 0.5                                        | 62           |
| April 2005     | 0.43                                           | 198          | 0.140                                           | 86           | 0.7                                        | 130          |
| May 2005       | 0.65                                           | 418          | 0.424                                           | 344          | 1.1                                        | 305          |
| June 2005      | 1.69                                           | 608          | 0.704                                           | 722          | 2.2                                        | 566          |
| Annual         | 17.41                                          |              | 4.912                                           | ,            | 23.7                                       |              |

It is estimated that the present-day sediment load in rivers has been greatly altered due to large-scale human perturbations (Chakrapani, 2005a). The flash floods in Uttarakhand in June 2013 are a recent example where the catastrophic increase in water discharge is being attributed to human intervention in the form of indiscriminate construction of highways and dams. Figure 1.1 shows the discharge time series data at Maneri and Uttarkashi from 2008 to 2014. The abnormal rise in discharge during the catastrophic floods is well recorded in the data. Following the catastrophic floods in Uttarakhand, the Comptroller and Auditor General of India's report titled "Hydropower Development through Private Sector Participation," quoted the "negligence of environmental concerns was obvious as the muck generated from excavation and construction activities was being openly dumped into the rivers contributing to increase in the turbidity of water" (Thakkar and Upadhyay, 2013).

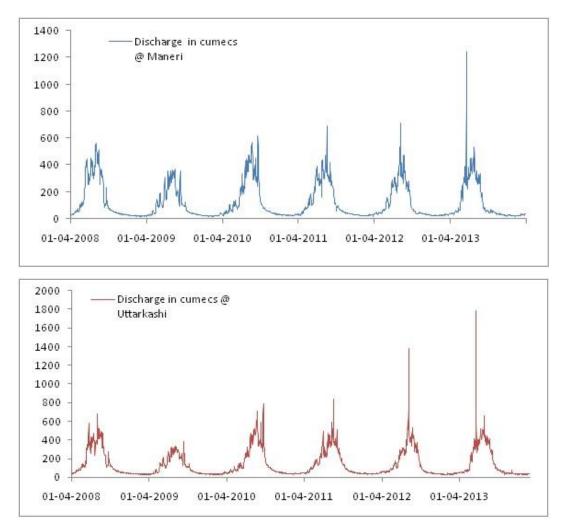



Figure 1.1- Discharge time series data at Maneri from 2008 to 2014

Hence, it is becoming increasingly critical to plan, design, and manage water resource systems carefully and intelligently. Detailed research involving exhaustive study of river basins, hydro-meteorological characteristics, rainfall and water discharge trends needs to be carried out. In light of the above, the need to develop models for prediction of water resource variables becomes imperative.

### **1.4 THE MECHANISM OF SEDIMENT TRANSPORT**

Sediment, the end product of land surface erosion, plays an important role in sustainable development of water resource systems because it controls riverine hydrology, river channel morphology, water quality, aquatic ecology and so forth (Melesse et al., 2011; Walling, 2009). The total sediment transport composes of suspended and bed load. The suspended portion is predominant and commonly accounts for about 90% (Francke et al., 2008; Walling and Fang, 2003; Zhang et al., 2012). Of the total sediment transported to the sea, about 85-90 % is contributed by rivers (Garrels and Mackenzie, 1971). The process of sediment transport in rivers is a result of fluid flow-material interaction and is the sum total of the processes of gravity and friction ultimately determines the ability of flowing water to erode and transport debris. **Velocity**, a vector quantity with both magnitude and direction, is one of the most sensitive properties varying in four dimensions- distance from the stream bed, across the stream (figure 1.2), downstream and with time (temporal variations). Velocity is usually measured at selected points in the flow cross section and expressed as an average value.

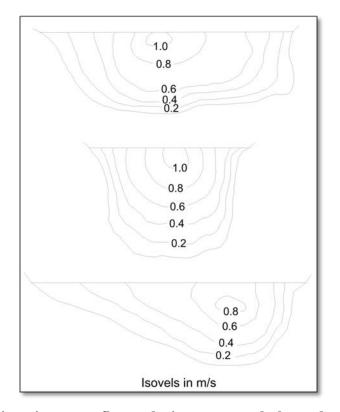



Figure 1.2- Variations in streamflow velocity at natural channel cross sections-after Knighton, 1984.

It is strongly related to **flow resistance**. Resistance in a flow carrying sediments comprises several components- grain or surface roughness, form roughness, channel irregularities and suspended material in the flow. Another component in flow mechanics is the energy of streams to perform mechanical work which is mainly potential and kinetic. This energy is expended by- work done against viscous shear and turbulence, work done against friction at the channel boundary, work done in eroding the channel boundary and work done in transporting the sediment load. Bagnold, 1977, has related sediment transport rate to available stream power where power per unit length of stream is-

### $\Omega = \gamma Qs$

where  $\gamma$  (= $\rho$ g) is the specific weight of water, Q is discharge and s is slope. Since energy must first be used to maintain the flow against internal and boundary friction, a critical energy level must be reached before a stream can perform erosional and transportational work. The concept of an erosion threshold is therefore fundamental to sediment transport. The entrainment and subsequent movement of particles depends on their physical properties, notably size, shape and density. Grain size has a direct influence on mobility. In cohesive sediments, which include particles in the silt-clay range, resistance to erosion depends more on the strength of cohesive bonds between particles than on the physical properties. Erosion of the bed and bank, both contribute to sediment in the rivers. Direct hydraulic action at high discharges lead to shearing of banks and is one of the most effective ways of adding sediment to the rivers. On the river bed, as the flow over a surface of loose grains gradually increases, a condition is reached when the forces tending to move a particle are in balance with those resisting motion. In terms of velocity, the critical condition can be defined as- (Figure 1.3) In addition to the drag forces acting roughly parallel to the bed, there is a lift force normal to the bed which can entrain particles. This force arises in two ways- difference in flow velocity between the top and bottom of a grain sets up a pressure gradient which tends to move the particle vertically upwards and turbulent eddying may produce local velocity components which act directly upwards close to the bed. (Figure 1.4)

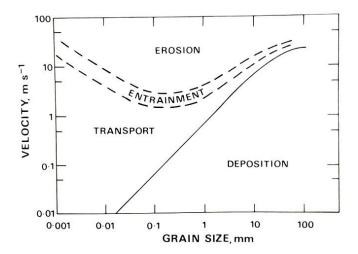



Figure 1.3 Erosion and deposition criterion defined in terms of threshold velocities - after Hjulstrom, 1935.

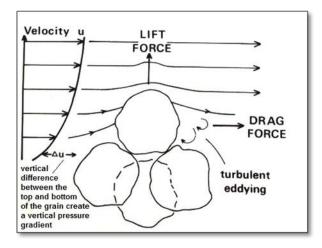



Figure 1.4 Lift and drag forces acting on a submerged particle -Knighton, 1984

After entrainment of particles, the process of sediment transport begins. Much of the sediment supplied to streams/rivers is so fine that its transport is controlled by the rate of supply rather than the transport capacity or **competence** of the river. In contrast, transport of coarser material (> 0.064 mm) is capacity limited and therefore intermittent. The load carried by rivers can be divided into dissolved load (compounds in solution or colloidal mixtures), suspended load (solid load with fine particles in suspension) and bed load (coarser particles that slide, roll or bounce along the stream bed). Dissolved load has no detectable effect on stream flow. The solutions are too dilute to affect viscosity, turbulence or density of the river water and hence no kinetic energy is expended in transport of dissolved load. Transport of suspended load is principally determined by its rate of supply from the drainage basin than the transport capacity of the river. The suspended sediment contributing processes are erosion of cohesive river banks, surface and sub-surface erosion in the catchment area by rain splash or surface wash. However, the rate of bed-load transport is almost entirely a function of the transporting capacity of the flow and there are numerous variables that affect it. The dynamics of bed load movement include rolling, sliding or saltation of particles along the bed. (Figure 1. 5)

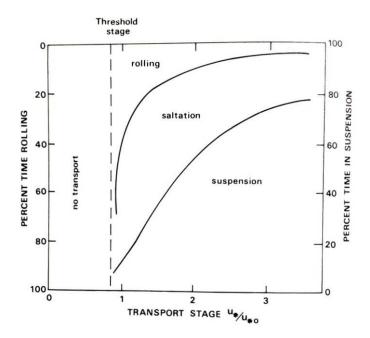



Figure 1.5- Percent of time particles in a water stream experience rolling, saltation and suspension as a function of transport stage. Percent of time in saltation is represented by the distance between the curves -after Abbott and Francis, 1977.

Because dissolved load has no effect on the hydraulic geometry of rivers, and bed load defies accurate measurement, the load of a river that is usually measured is the amount of suspended load (Bloom, 1971). Suspended sediment load is calculated with the help of water discharge and sediment concentration in the river water or,

$$\mathbf{Q}_{\mathbf{s}} = \sum \mathbf{vac} \text{ and } \mathbf{Q} = \sum \mathbf{va},$$

where  $Q_s$  represents sediment load (mass/time), Q represents water discharge (volume/time), v represents mean velocity of river flow, a represents cross sectional area and c represents sediment concentration (mass/volume) (Nordin *et al.*, 1983). The equation relating suspended sediment load to discharge given by Leopold and Maddock, 1953 is **L=pQ<sup>j</sup>**, where L represents suspended sediment load, Q is discharge, p and j are numerical constants. Sediment rating curves, developed with this relation, are often used to analyze sediment transport characteristics. In general, as the discharge increases at a gauging station, the suspended sediment also increases. Values for the exponent 'j' range from 2.0-3.0. These large exponential values mean that as discharge increases ten-fold, the suspended sediment load may increase a hundred to

a thousand fold. The suspended sediment load at a station increases much more rapidly with discharge than either channel width or depth, therefore, the enlargement of the channel by erosion cannot account for the entire increased load. Most of the suspended sediment comes from the watershed upstream from the gauging station, delivered newly to the stream by mass wasting and rill wash during the same rains or snowmelts that swell the discharge of the river. Measurements of channel shape and suspended sediment load confirm that streams move most of their loads during times of higher than average discharge.

### **1.5 FACTORS AFFECTING SEDIMENT LOAD OF RIVERS**

### 1.5.1. Discharge

Water flow is important in determining the river energy and thus the scouring capacity of rivers, but it alone is not a deciding factor for sediment concentrations in rivers (Chakrapani, 2005a). Seasonality of water flow controls the sporadically high sediment loads in rivers. High discharge, together with ample sediment supply (as in a tectonically active region) and proximity to the sink of sediment (oceans) most certainly result in higher sediment loads from rivers. The suspended sediment discharge or denudation rates from various rivers indicate that large variations occur in sediment yield across rivers in different regions over the globe. Run-off or water flow of rivers does not necessarily indicate proportionate sediment load, as large rivers such as Amazon with high water flow carry less suspended sediments. The reason for this is that the Amazon River gets most of its sediment load from the Andes mountains, which constitute only about 10% of the river basin area and not from the Brazilian lowlands. As a result, for such a large river, the Amazon does not have a particularly high sediment yield per unit area. In fact, the sediment yield of the Amazon River is much less compared to some of the smaller rivers in southern Asia. The large islands of the western Pacific Ocean produce enormous sediments in rivers due to active tectonic activities, volcanism, steep slopes, heavy rainfall and intense human activity (Chakrapani, 2005a). Because of the highly variable character of sediment supply, plots of suspended sediment load against discharge (sediment rating curves) often show a wide scatter of points (Colby, 1963). Part of that scatter may be the result of hysteresis in which larger loads occur on the rising rather than falling stage at the same discharge. Figure 1.6 shows the degree of association between discharge and suspended sediment concentration in the Bhagirathi and Alaknanda rivers at Maneri and Lambagad respectively.

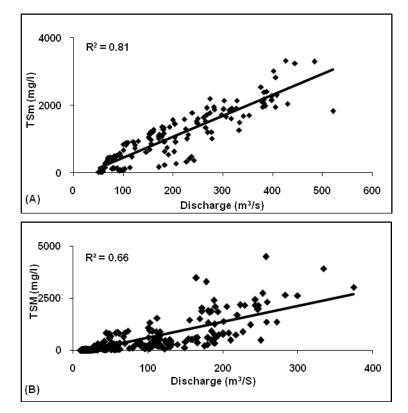



Figure 1.6 Scatter plots showing correlation between Discharge and TSM at (A) Bhagirathi at Maneri and (B) Alaknanda at Lambagad

### 1.5.2 Relief

There is a significant influence of basin elevation and morphology on river sediment fluxes, but only a few mathematical relationships are available. Pinet and Souriau, 1988, found river sediment fluxes to be linearly correlated with mean basin elevation. Looking mainly at river sediment yields of large world rivers, they proposed the following two equations to describe mechanical denudation globally:

$$D_{s} = 419 \text{ x } 10^{-6} \text{ Elev} - 0.245$$
(regions related to orogenesis < 250 Ma)  
and  

$$D_{s} = 61 \text{ x } 10^{-6} \text{ Elev}$$
(regions related to orogenesis > 250 Ma)

The high erosion rates in young continental crust are due to the relatively easy weatherability compared to the highly resistant old continental crust, and low relief and slope factors. Relief is a major factor as it induces greater mechanical erosion. Although factors such as lithology, climate, run-off and vegetation influence erosion rates, mean local relief is a primary control on erosion rates. Data of Ganges and Brahmaputra, which have their headwaters in the Himalayas, plot well above the trend defined by data of other rivers. Although factors such as lithology, climate, run-off and vegetation influence erosion rates, mean local relief is a primary control on erosion rates.

### 1.5.3. Geology

Lithology is an important factor which controls the rates of physical as well as chemical weathering. Rivers flowing over crystalline terrains erode with difficulty, whereas unconsolidated sedimentary rocks yield greater sediment loads to rivers. The enormous sediment loads in the Huang He is due to the presence of yellow loess derived from the deserts in Mongolia, whereas the Ganga–Brahmaputra Rivers carry huge sediment loads because they flow over the easily erodible carbonates and through the Himalayan terrains (Chakrapani, 2005a). The sediment yield is related with the weatherability of rocks, which is a direct result of the climate (temperature, precipitation, pH) and tectonics operating in the source area.

#### 1.5.4. Temperature

Sediment load is related to basin relief, basin area and temperature by the relation

$$Q_s = aR^{3/2}A^{1/2}e^{kT}$$
,

where  $Q_s$  is the long-term sediment load (kg/s), R is relief defined as the highest point of elevation (m) minus the elevation of discharge station (m), A is basin area (km<sup>2</sup>), T is mean surface temperature of the drainage basin and k and a are constants (2 x 10<sup>-5</sup> and 0.1331 respectively) (Chakrapani, 2005a). Hence, the polar rivers with sub-zero temperatures show the lowest values in sediment yield (120 t/km<sup>2</sup>/yr), whereas tropical rivers with temperatures of more than 30°C have extreme sediment yields (3648 t/km<sup>2</sup>/yr).

### **1.5.5. Human Influence**

Together with land-use changes, deforestation and soil conservation practices, the natural sedimentary cycle has been greatly altered because of river impoundments (dam reservoirs). Environmental effects include dislocation of human populations, silting of reservoirs, reduced sediment flux to the oceans, downstream scouring of channels, life cycle and habitat of aquatic organisms, eutrophication, anoxia and toxic conditions. A decrease in sediment load to the river through damming results in increase in coastal erosion and deterioration of coastal marine ecosystem. Four examples in which dam construction has impacted river sediment loads follow: the Nile River sediment discharge has changed from  $100 \times 10^6$  tonnes per annum to almost zero after the closure of the Aswan Dam (Walling and Fang, 2003); the sediment load in the Colorado River decreased from approximately  $125 \times 10^6$  tonnes per annum to  $3 \times 10^6$  tonnes per annum due to the construction of the Hoover Dam (Meade and Parker, 1985); the total suspended load from the Red River has decreased by 70% since the impoundment of the Hoa Binh and Thac Ba reservoirs in the 1980s (Le et al., 2007); and Gupta and Chakrapani (2007) observed that 60-80% of sediments during the monsoon season get trapped in the reservoirs along the Narmada River in peninsular India. Dam constructions have become the main cause of sediment reduction from rivers worldwide (Syvitski et al., 2005). The dumping of muck from mining activities, road constructions, dam constructions etc is also known to cause anomalous increases in sediment load of rivers.

# **CHAPTER 2**

# LITERATURE REVIEW

- 2.1 Studies on Global Rivers
- 2.2 Application of ANN to Geo-Hydrology

#### 2.1 STUDIES ON GLOBAL RIVERS

Water discharge is a key component in the global water cycle affecting our planet's climate (Harding et al., 2011), ecology (Doll et al., 2009) and anthropogenic activities like agriculture, drinking water, recreation (Biemans et al., 2011). The amount of water discharged by the World Rivers to the present-day oceans is estimated to be between 32 and  $37 \times 10^3 \text{km}^3 \text{yr}^{-1}$  McLennan. 1993. Milliman et al, 2008 have worked out the changes in discharge and precipitation patterns globally over a period of 50 years. Contrary to claims of increased 20th century river discharge (Probst and Tardy, 1987; Labat et al., 2004; Milly et al., 2005; Huntington, 2006), neither discharge nor precipitation changed significantly over the last half of the 20th century, offering little support to a global intensification of the hydrological cycle. Changes in individual rivers and at regional levels, however, have been noteworthy. They have identified three types of rivers in this analysis: normal, deficit and excess portraying markedly different situations. Because temporal trends in both precipitation and discharge in most normal rivers reflect climatic variability, 1951– 2000 trends may not reflect long-term change. Deficit Rivers, on the other hand, reflect direct human impact on the flow and discharge of fluvial water. Given the increased demographic pressures in many of the water-scarce regions, the decreased discharge noted in deficit rivers seems unlikely to be reversed. Rather, the number of deficit rivers in these regions are likely to increase. More problematic are excess rivers, as they may in part reflect climatic changes and/or water storage. Given the present inability to define completely the cause(s) of this increased discharge, maintaining and augmenting global monitoring and data dissemination for excess rivers is critical to gain better synthetic and predictive models. Ironically, the number of river gauging stations at higher latitudes has declined in recent years (Vörösmarty et al., 2001), just when continuity in long-term data is most needed. Hartmann et al, 2014, have provided an overview of global river chemistry from the Global River Chemistry Database (GLORICH) which combines hydrochemical data from various sources with the catchment characteristics of sampling locations. The characteristics considered include catchment size, lithology, soil, climate, land cover, net primary production, population density and average slope gradient. About 1.27 million samples over 17000 sampling locations have been included in the database. In a recent work by Pavelsky et al, 2014, direct observation of variation in streamflow has been made using SWOT satellite data which provides high resolution images of terrestrial water surface height, inundation extent, global

ocean surface elevation. Van Vliet et al, 2013, have studied the effects of climate change on global river flow and river water temperature. They have attempted to project discharge and water temperature values under future climate. Greater seasonality of discharge with an increase in high flows and decrease in low flows has been brought out. They have predicted a 0.8-1.6° C rise in average global river temperatures.

The sediment flux delivered by rivers is a crucial process that affects the geomorphologic evolution of river channels, deltas and estuaries. As a link between the land and the sea, rivers discharge approximately 200 x  $10^8$  t of sediment load globally into the sea every year (Milliman and Syvitski, 1992), which is of great importance in terms of geomorphology and geology. Quantifying sediment flux dynamics is a fundamental goal of earth-system science for its role in our planet's geology (Pelletier, 2012), biogeochemistry (Vörösmarty et al., 1997; Syvitski and Milliman, 2007) and anthropogenic activities (Kettner et al., 2010). Milliman and Syvitski, 2007, revised the global estimate of sediment flux to oceans to 18 billion tons per year, using the flux data of 280 rivers that included small mountainous rivers as well as data from gauging stations located near the river mouths. Meade, 1996, however, cautioned that these estimates are at best flux-calculated at most seaward gauging stations and may not exactly represent the true flux into oceans. Much of the sediments could also be deposited in the deltas between the most seaward gauging station and the open sea. In recent decades, the effects of human activities and climate change have significantly affected natural river processes and have led to a decrease in the sediment discharge into the sea (Vörösmarty et al., 2003; Walling and Fang, 2003; Siakeu et al., 2004; Walling, 2006). Decreased sediment loads have caused the erosion of many river deltas, such as the Nile in Egypt (Fanos, 1995), the Ebro in Spain (Mikhailova, 2003) and the Colorado (Carriquiry and Sanchez, 1999) and Mississippi Rivers (Blum and Roberts, 2009) in America. The erosion of river deltas has become a topic of global interest, attracting significant worldwide attention (Syvitski, 2008; Syvitski et al., 2009).

There is a dearth of sediment load data for rivers in many parts of the world (Isik, 2013). Our quantitative understanding and predictive capabilities of global river fluxes are lacking and this is, in part, due to the multi-scale nature of the processes involved (Pelletier, 2012) and the inadequacy in global gauging of rivers (Fekete and Vörösmarty, 2007). Availability of measured river fluxes is decreasing globally (Brakenridge et al., 2012) particularly for sediment (Syvitski et al., 2005). Sediment fluxes to the oceans are measured for less than 10% of the Earth's rivers (Syvitski et al., 2005) and intra-basin measurements are even scarcer (Kettner et al., 2010).

Numerical models can fill the gap in sediment measurements (e.g. Syvitski et al., 2005; Wilkinson et al., 2009) and offer predictive or analytical capabilities of future and past trends enabling the investigations of terrestrial response to environmental and human changes e.g. climate change (Kettner and Syvitski, 2009). Despite advances made in recent years (Kettner and Syvitski, 2008; Pelletier, 2012) simulating global riverine fluxes remains challenging. Quantifying riverine sediment flux and water discharge is an important scientific undertaking for many reasons. Climate change during the 21st century is projected to alter the spatio-temporal dynamics of precipitation and temperature (Bates et al., 2008) resulting in natural and anthropogenically induced changes in land-use and water availability. Estimating the effect of these spatially and temporally dynamic processes warrants sophisticated distributed numerical models. Using past trends is perhaps the best strategy for developing these models and improving our understanding of the dynamics and causality within these complex systems. Cohen et al, 2013, have presented and validated an improved version of the WBMsed global riverine sediment flux model which can capture longterm average and inter-annual suspended sediment fluxes but tends to overestimate daily fluxes (by orders of magnitudes) during high discharge events and underestimate these during low flow periods.

The Himalaya-Ganges-Brahmaputra system is one of the world's largest highlandlowland systems and transports a large quantity of sediment to oceans. The Himalayan and Tibetan regions cover only about 5% of the Earth's land surface but contribute about 25% of the dissolved load to the world's oceans (Raymo and Ruddiman, 1992). Ganga-Brahmputra together forms one of the world's largest river systems, it is first in terms of sediments transport and fourth in terms of water discharge (Sarin et al., 1989). Further, they transport about 1670 million tons of suspended sediments to the Bay of Bengal, highest among all the global rivers (Krishnaswami et al., 1999). It is estimated that the present sediment yield of the Ganga–Brahmaputra River system together is about one billion tonnes per year (Subramanian, 1993) in comparison to the global annual sediment of 15 billion tonnes per year (Milliman and Meade, 1983). Alaknanda and Bhagirathi rivers are mountainous streams which originate in the high Himalaya and combine at Devprayag where river Ganges gets its formal name. Chakrapani and Saini, 2009, have shown that >75% of annual sediment loads are transported during the monsoon season (June through September). They have estimated the annual physical weathering rates in the Alaknanda and Bhagirathi River basins at Devprayag to be 863 tons/km<sup>2</sup>/year and 907 tons/ km<sup>2</sup>/yr respectively, which are far in excess of the global average of 156 tons/  $\text{km}^2/\text{yr}$ .

### 2.2 APPLICATION OF ANN TO GEO-HYDROLOGY

For any water-related development undertaking, long term sediment yield is required generally for various purposes such as design of reservoir life and its storage capacity (Morris and Fan, 1998). However, observations of sediment load are lacking for rivers in many parts of the world, especially in developing and remote regions (Heng and Suetsugi, 2013a; Walling, 2009). Artificial neural network (ANN) is the most well known and powerful data-driven model, especially in data-constraint regions. It has been proved to be useful in modeling complex hydrological processes or non-linear systems such as sediment transport (Haddadchi et al., 2013; Maier and Dandy, 1999; Nourani et al., 2012; Rezapour et al., 2010). The adoption of the Artificial Neural Network (ANN) technique for hydrological modeling has added a new dimension to the system theoretic modeling approach and it has been applied in recent years, as a successful tool, to solve various problems concerned with hydrology and water resources engineering (ASCE, 2000a,b). The objective of these studies is to find a formula between the selected input variables and the output based on a representative set of historic examples. The formula is then extended to predict the outcome of any given input. The computational efficiency of ANN has provided many promising results in the field of hydrology and water resources simulation (Sudheer et al. 2003). An attractive feature of ANN is their ability to extract the relationship between the inputs and outputs of a process, without the physics being explicitly provided to them. They are able to provide a mapping from one multivariate space to another, given a set of data representing that mapping. Even if the data are noisy and contaminated with errors, ANN have been known to identify the underlying rule (Govindaraju, 2000). ANN are data driven when compared to conventional approaches, which are model driven (Nagesh Kumar et al 2003). However there are some limitations of ANN too. Most ANN applications have been unable to explain in a comprehensive way the basic process by which ANN arrive at a decision. Another issue is that there is no standardized way of selecting network architecture (Nagesh Kumar 2001).

ANN have been used for a variety of water resource applications. Works by Karunanithi et al., 1994, Dawson and Wilby, 1998, Campolo et al., 1999 and Imrie et al., 2000, have demonstrated the capability of ANN in streamflow forecasting. The ANN they used performed much better than the conventional models. The application of an ANN for modeling the rainfall-runoff process

started with a preliminary study by Halff et al., 1993, who used a three layer feedforward ANN for the prediction of hydrographs. Comprehensive review on the application of ANN in the areas of water resources and hydrology is provided by the ASCE Task Committee on Application of ANN in Hydrology (2000a, b), Maier and Dandy (2000), and Dawson and Wilby (2001). These include several themes such as rainfall forecasting and estimation (French et al., 1992; Navone and Ceccatto, 1994; Hsu et al., 1997), reservoir inflow time series (Raman and Sunilkumar, 1995), river salinity studies (Maier and Dandy, 1996). Hsu et al. (1995) proposed a new algorithm, called the linear least squares simplex (LLSSIM), for the training of an ANN. It uses a combination of linear least squares and multi-start simplex optimization. This algorithm was found to be more effective and efficient than the error backpropagation (EBP) algorithm, which is commonly used by most of the researchers. Smith and Eli, 1995, used the back-propagation artificial neural network model to predict peak discharge and time to peak by using simulated data from a synthetic catchment. The study by Minns and Hall, 1996, points out the importance of standardization of the data. For a simulation of sheet sediment transport, Tayfur, 2002, compared ANN with several physically-based models including one based on unit stream power, and found that ANN performs comparably with the others and better in some cases. Sajikumar and Thandaveswara, 1999, used a temporal back-propagation neural network (TBPNN) for monthly rainfall-runoff modeling in scarce data conditions. Tokar and Johnson, 1999, demonstrated the impact of the selection of training data on the accuracy of runoff prediction. Zhang and Govindaraju, 2000, used a modular neural network (MNN) for prediction of the catchment runoff and utilized Bayesian concept in deriving the training algorithm. Xiong et al., 2001, used the ANN for flow forecasting in a Karstic catchment, whereas Shamseldin, 1997, used the conjugate gradient method to train the network using data from six catchments from different climates and succeeded in enhancing the accuracy of flood forecasts by making use of the ANN in combining the simulation results of different black box and conceptual models of the rainfall-runoff process.

ANN also have been used for representing soil and water processes including soil moisture fluctuation (Altenford, 1992), groundwater cleanup strategies (Ranjithan et al., 1993), water table fluctuations (Shukla et al., 1996; Yang et al., 1996), pesticide movement in soils (Yang et al., 1997), drainage pattern determination from a digital elevation model (Kao, 1996) and water table management (Yang et al., 1998). ANN is often applied for modeling rainfall-runoff processes (Hall and Minns, 1993; Mason et al., 1996; Gautam et al., 2000; Chang and Chen, 2001; Zhang and Govindaraju, 2003). Sudheer et al., 2002, used soft computing tools to develop a new approach for

designing the network structure in an ANN-based rainfall-runoff model. Reddy, 2003, used ANN and GIS tools in three watersheds of Daman, Ganga Catchments, Maharashtra and two watersheds in Lower Bhavani catchments, Tamil Nadu State, India, for prediction of runoff. Zhang and Govindaraju, 2003, developed a geomorphology-based ANN for prediction of watershed runoff. Shiri and Kisi, 2010, applied a wavelet-neuro-fuzzy conjunction model for predicting short-term and long-term streamflows. Rajurkar et al, 2004, have combined a simple linear black-box model with ANN, to predict run-off in the non-updating mode i.e. without using rainfall in the previous time steps as an input to the network. Sarangi and Bhattacharya, 2000, developed a regression model for prediction of sediment concentration from runoff rate, in association with certain geomorphological parameters. Nagy et al., 2002 used a feed-forward three-layer back propagation (BP) ANN model to predict the sediment concentration in rivers using eight input parameters reflecting sediment and riverbed information. Kaur et al., 2003, used the Soil and Water Assessment Tool (SWAT), to estimate runoff and sediment loss from Nagwan Watershed in the Upper Damodar Valley, India. Yitian and Gu, 2003, developed a mass-conservation transfer function for flow and sediment yield of rivers. Dogan et al, 2007, have attempted to develop an effective model for estimating sediment concentration which includes dependent as well as independent variables. They employed ANN and total sediment transport equations and on comparison found the results of the former to be superior. Rai and Mathur, 2007, developed a Feed Forward Back Propagation Algorithm with Gradient Descent and Bayesian regularization automation for computation of event based temporal variation of Sediment Yield. They compared the results with linear transfer function model and found ANN to perform better in computation of runoff hydrographs and sedimentographs. Cigizoglu, 2008, performed a comparative study of various ANN techniques like Feed Forward Back Propagation, Generalized Regression based Neural Networks and Radial basis function based Neural Networks in short-term continuous and intermittent daily stream forecasting and daily suspended sediment forecasting. They found the Radial-Basis Function based Neural Network to be superior to the other two techniques. Firat and Gungor, 2009, used the ANFIS (Adaptive Neuro Fuzzy Inference System) approach to construct a monthly sediment forecasting system n the Great Menderes Basin. They compared their results with ANN and Multilayer Perceptron approaches and found the ANFIS to be more reliable and accurate. Kisi, 2009, has applied the Neuro Wavelet technique by combining ANN and discrete wavelet transform for modeling daily Suspended Sediment Discharge relationship in the Tongue River in Montana. An increase in estimation accuracy is noticed with this technique. Rajaee et al,

2009, have carried out prediction of Suspended Sediment Load in a gauging station in the US by Neuro fuzzy- Wavelet analysis and neuro fuzzy- sediment rating curve conjunction. They have observed that Wavelet analysis and neuro fuzzy conjunction performs better in terms of prediction of extreme values and lesser errors. Garg, 2011, has introduced the Genetic Programming approach in estimating sediment yield considering various meteorological and geographic features of the Arno River basin in Italy. He has noticed that this approach can efficiently capture the trend of sediment yield even with a small data set. Mustafa et al, 2012, have employed four algorithms-Gradient Descent, Gradient Descent with Momentum, Scaled conjugate gradient and Levenberg Marquardt in Multilayer Feed Forward networks to predict the Suspended Sediment Discharge of Pari River in Malaysia. They found the latter two algorithms to be superior to the former two. In a recent study by Boukhrissa et al, 2013, performance of rating curves and ANN have been compared in sediment load prediction in Kebir catchment of Algeria. Such a study would help to understand and estimate reservoir sedimentation. ANN has so far not been applied for modeling hydrological processes in the Upper Himalayan Rivers.

# **CHAPTER 3**

# STUDY AREA

- 3.1 Physiography
- 3.2 Climate
- 3.3 Geology
- 3.4 Sediment Load Variations in Bhagirathi River
- 3.5 Anthropogenic Activities in Bhagirathi River

ANN has been employed for modeling Sediment Concentration at Gangotri, Maneri, Uttarkashi and Rishikesh. While Gangotri, is the source of Bhagirathi River, Maneri, is located around 75 km downstream. Uttarkashi is located further 20km downstream and Rishikesh is located much further, on the Ganges River.

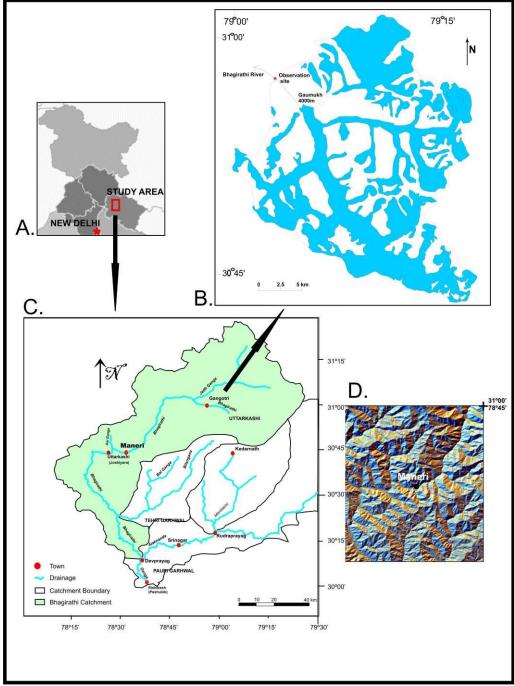



Figure 3.1- A- location of the study area. B- the Gangotri glacier. C- Bhagirathi basin. D- Shaded relief map of the area around Maneri.

The first location represents a dynamic glacial environment where maximum transport of water and sediment takes place during the ablation/melt period (May to October) due to high rates of physical weathering with minimal influence of anthropogenic activities. The Bhagirathi River originates at an altitude of 3892m at the snout of Gangotri glacier (Goumukh) in the Higher Himalayas. It flows for around 225 km across the Himalayas before its confluence with the Alaknanda River at Devprayag to form river Ganga. The Bhagirathi River Basin in the North Western part of Uttarakhand state in India, has a total catchment area of 7811 sq km out of which 2328 sq km is snowbound (Pandey et al., 1999). The basin can be divided into the Bhagirathi, Asi Ganga and Bhilangana sub-basins. The Gangotri glacier, one of the biggest and most important glaciers in the Himalayan region and is bound between latitudes 30°43'- 31°01' and longitudes 79°00'-79°17'. Gaumukh (meaning 'cow's mouth) is located at an elevation of about 4000 m above m.s.l (Singh et al., 2012). While Gangotri, where the first sampling location is situated, is the source of Bhagirathi river, Maneri, Uttarkashi and Rishikesh are situated approximately 75km, 90 km and ~260 km downstream. The total catchment area of the Gangotri glacier study basin up to the first sampling site is about 556  $\text{km}^2$ , out of which about 286  $\text{km}^2$  (51.4%) is ice covered (Haritashya et al., 2006; Singh et al., 2006).

# **3.1 PHYSIOGRAPHY**

The catchment area of Bhagirathi River lies in Uttarkashi and Tehri Garhwal districts. This catchment can be sub divided into the watershed of the Bhagirathi, Bhilangana and Asi Ganga rivers. In the Bhagirathi sub-basin, the highest and the most fascinating zone is above 4000m elevation. This zone is the principal source of water and major tributaries of Ganga River emanate from this zone. The upper reaches are characterized by narrow glaciated valleys, deep gorges, waterfalls and cascades. Between 4000m and 3000m elevation the valleys are filled with glacial debris which is being slowly removed by rivers. This zone supports sub-alpine type trees. Gorges are abundant between 2000m and 3000m elevation. The terrain is rugged, sparsely populated with temperate forests and generally good vegetation. Between 2000m and 1000m river terraces are quite common, land is fertile and heavily cultivated and the area is densely populated.

Bhilangana and Asiganga are the major tributaries of Bhagirathi River. Asiganga joins Bhagirathi River upstream of Uttarkashi. Bhilangana River originates from Khatling glacier and

joins Bhagirathi at Tehri (AHEC report, 2011). The Gangotri glacier is a cluster of many small and large glaciers comprising three main glacier tributaries, namely, Raktvarn glacier (length 15.90 km; area 55.30 km<sup>2</sup>), Kirti glacier (length 11.05 km; area 33.14 km<sup>2</sup>) and Chaturangi glacier (length 22.45 km; area 67.70 km<sup>2</sup>) with main Gangotri glacier as the trunk part of the cluster system (length 30.20 km; area 86.32 km<sup>2</sup>) (Naithani et al., 2001). The gradient of Kirti glacier is highest 0.317, whereas that of Gangotri glacier is lowest (0.045) followed by Chaturangi (0.146) and Raktvarn (0.210) glacier, respectively (Naithani et al., 2001). It is a temperate mountain valley glacier, which flows in the northwest direction. The major glacier tributaries of the Gangotri Glacier system are the Raktvarn, Chaturangi, Swachand and Maiandi glaciers that merge with the trunk glacier from the North-east, and the Meru, Kirti and Ghanohim Glaciers that merge with the trunk glacier from the South- west. The altitude range of these glaciers varies from 4000 to 7000 m. Besides these three major glaciers, some other tributary glaciers of this area directly drain into the Gangotri Glacier such as Swachand, Miandi, Sumeru and Ghanohim. Four other glaciers, which directly drain into the Bhagirathi River are Maitri, Meru, Bhrigupanth and Manda (Naithani et al., 2001). The most striking feature of Gangotri glacier is that a debris layer covers most of the ablation area. The thickness of the debris layer generally varies from a few millimeters to a few meters, although in some locations large rocks are piled up to several meters.

#### **3.2 CLIMATE**

The Bhagirathi river basin experiences strong climatic seasonal variations, which is also clearly reflected in the monthly variation in stream flows (Pandey et al. 1999). The terrain is characterized by deep gorges and high vertical cliffs, which govern the microclimatic conditions in the area. Monsoon currents penetrate deep through the valley and the rainfall is maximum during the monsoon months i.e. June to September. Winters are rather prolonged and severe. The climate of the Himalayan region in general and of study area in particular depends on the summer monsoon currents and associated cyclone system, westerly disturbances and local orographic and conventional thunderstorms that occurs in the afternoon during pre and post monsoon. In the study area, there exists a large variation of relief from 200m in south to more than 7,500m in the north. Besides this, at every ascend of 1000m, a decrease of temperature by 6°C is also observed [Saini, 2007]. The variation in temperature and rainfall conditions along the ridge and the valley areas are

very prominent. The slope aspect ratio play an important role in determining the climate, as north facing slopes are much cooler and damp as compared to south facing slope due to insolation affect. Beside this, alignment of ranges, leeward and windward direction, proximity of water bodies and large stretch of forest cover and proximity to snow cover play an important role particularly in rainfall and temperature variations (Joshi et al., 1993). The basin area receives more than 70%-80% annual rainfall during the peak monsoon periods of mid June to mid September and the remaining precipitation occur during winter months i.e. from mid November to February by westerly disturbances in August. The average annual rainfall in the basin is about 1178 mm. Rainfall distribution is not uniform throughout the basin and varies between 1500 and 2986 mm. The average seasonal temperature near the snout of the Gangotri glacier is about 9.4 8C while average seasonal rainfall is about 260 mm. The distribution of rainfall varies from year to year (131–369 mm). Details of such climatic conditions prevailing in the study area have been reported by Singh et al., 2006, 2011. In most cases, maximum rainfall is witnessed in July and August. Average daily maximum and minimum temperatures are around 14.6 and 3.9 °C, respectively; wind speed is four times higher during daytime than in the night. The Bhagirathi River and its tributaries are dependent predominantly on glacier and snow melt and precipitation.

#### **3.3 GEOLOGY**

The river Bhagirathi and its tributaries drain largely through the rocks of the Lesser and Central crystallines (Figure 3.2). The Main Crystalline Thrust (MCT) passes through and beyond Bhatwari, about 20 km downstream, where it has almost an east-west course and separates granite gneisses and garnetiferous schists of the Central Crystalline and cream coloured quartzites. The upper catchment of the Bhagirathi is mainly composed of rocks of Central Crystalline rocks primarily consisting of schists, micaceous quartzites, calc-silicates, amphibolites, gneisses, granites, slates and phyllites. In the middle and lower reaches, the Bhagirathi flows through limestone and dolomite bearing Uttarkashi Formation (Pandey et al. 1999). The area from Dharasu to Devprayag in Tehri district falls in Lesser Himalayan belt of the Garhwal region. The river encounters siltstones and phyllites of Chakrata formation and sandstones interbedded with slates of Rautgara formation downstream of Dharasu and before confluence with Alaknanda, it passes through phyllites and micaceous graywack bearing Chandpur Formation near Chaam (Dudeja et al.

2013). Further downstream also, rocks of Chandpur formation comprising phyllites interbedded with thin beds of sandstone are observed up to Devprayag. Chandpur formation is also well exposed between Tehri and Devprayag. The Chandpur formation consists of laminated greenish gray to khaki laminated phyllite/slate interbeded with thin finely interbeded sandstone and white to brownish, purplish greywacke (Kumar, 2005).

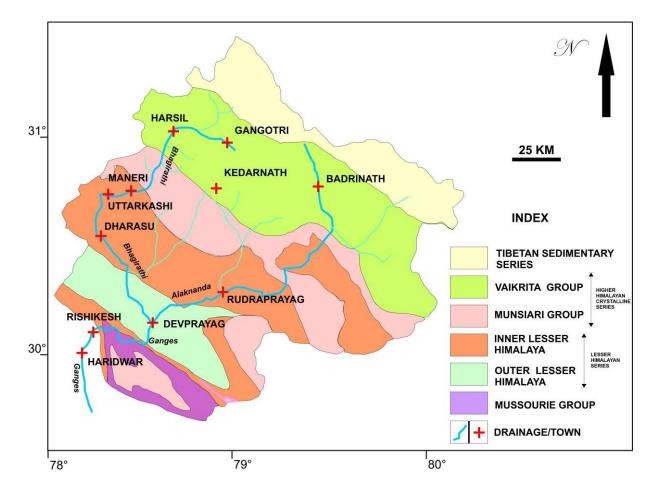



Figure 3.2- Geology observed along the course of Bhagirathi River. (after Bickle et al., 2003)

The Gangotri Glacier area lies in the Central Crystalline Zone. From Gangotri further northeast, the mica schist, which is the dominant rock type above the Main Central Thrust (MCT) is retrograded in chlorite schist and intruded by hard and massive granite (Gangotri granite) (Kumar et al 2009). It is exposed around the Gangotri Glacier region along the upper reaches of Bhagirathi River, including the peaks of Thalay Sagar (6904 m), Meru (6672 m), Shivling (6543 m), Bhagirathi (6856 m) and Bhrigupanth (6044 m) (Jowhar, 2010). The Gangotri granite is fine

grained (1–2 mm), composed of {quartz + K-feldspar + plagioclase + tourmaline + muscovite}, biotite (present only in the biotite-rich facies), garnet (present only in the tourmaline-rich facies), beryl along with apatite as the most abundant accessory mineral (Jowhar 2010). Sulphide minerals like pyrite, chalcopyrite and arsenopyrite are found at the contact of quartz veinlets and massive, banded fine grained limestone (Bhatt, 1963). As reported by Jain et al. 2002, the Gangotri granite is exposed all along the upper reaches of the Bhagirathi River around the Gangotri Glacier area and is the largest body of the High Himalayan Leucogranite (HHL) with an estimated age, based on geochemistry and geochronology study, of early Miocene period (~21 Ma).

### **3.4 SEDIMENT LOAD VARIATIONS IN BHAGIRATHI RIVER**

The Bhagirathi River has an annual water Discharge and Suspended Sediment Concentration of 4.91 x  $10^{12}$  l/yr and 1.24 x  $10^{3}$  mg/L respectively (Chakrapani et al., 2009). The discharge and sediment load variations observed in the Bhagirathi River affect downstream habitation, engineering structures and land use. The main controlling factors for variations in sediment load are relief, tectonic instability, lithology, rainfall and anthropogenic activities (Chakrapani, 2005a) and all of them are favorable for high sediment load in the Bhagirathi River. The Bhagirathi River is dotted with numerous human settlements, hydro power projects and dams which are immensely impacted by the variations in hydrologic variables like water discharge and sediment concentration. The river drains through a great range of relief and climate, active tectonic zones and easily erodible rocks of the Himalaya. The gradient from Goumukh to Harsil is rather steep, 1192 m in a zone of 42 km and 2002 m in a zone of 183 km from Harsil to Devprayag. The erosion rate in the Gangotri Glacier based on 4 years melt period (2000-2003) is 1.8 mm (Haritashya et al. 2006a). Bali et al., 2003, have documented well developed neotectonic activities in Quaternary time. Morphometric analysis carried out to evaluate the glacier recession reveals several parameters of the main trunk glacier, including overall glacier relief of 2880 m, a relief ratio of 0.045 m, and a present equilibrium line altitude of 5560 m (Naithani et al., 2001). The river hydrology is immensely affected by the monsoons when large variations in discharge and sediment load are observed in a relatively short time span [June to October]. The physical weathering rate [PWR~907 tons/km<sup>2</sup>/yr] of the river is much higher than the global average PWR of 156 tons/km<sup>2</sup>/yr despite its relatively small catchment [ $\sim 7.8 \times 10^3 \text{ km}^2$ ] because of predominantly silicate lithology undergoing intense physical breakdown under high gradient [Chakrapani and Saini, 2007). Landslides and breach floods (Hewitt, 1998) are frequent along the river which further contributes to surges in sediment load in the river.

# **3.5 ANTHROPOGENIC ACTIVITIES IN THE BHAGIRATHI RIVER**

In addition to the above, haphazard developmental activities in the Bhagirathi valley, like construction of dams and highways also impact sediment load variations in the river basin. Moreover, Bhagirathi River is an important pilgrim centre and attracts high tourist inflow during the months of March to October. Because of the increased vehicular traffic, new roads get constructed along the mountains, causing frequent landslides. These landslides and road construction debris add on to the river suspensions. Among the human influences on sediment load patterns in rivers, none exert as much influence as the effect of dams/reservoirs along the river courses. Between 1951 and 1982, large dams were being constructed at a rate of 900 per year (Syvitski et al., 2005). The Bhagirathi River is a potential site of medium and small hydropower projects because of the gradient and water flow. There are many existing small and micro hydroelectric projects and many upcoming ones on the River. These projects may cause the sediments to get deposited on the reservoirs. A large variation in suspended sediment concentration is observed in the river course before and after the reservoir site.

The upper Ganga Basin, consists of about 13 commissioned hydropower projects while 57 projects are under construction. Generation of hydropower does not consume any (significant quantity of) water but may cause significant changes in the stream flow variability by regulating natural flows and generating electrical energy in a way that the benefits are maximized. Normally, there is large energy generation for a maximum of only 4-6 hours in a day. Due to this, there are likely to be additional fluctuations in the flows downstream of the point where the outflow of the power plant of a project meets the river. As one travels further downstream, however, the fluctuations get moderated because of valley storage effect and lateral inflows to the river (AHEC Report, 2011).

# **CHAPTER 4**

# METHODOLOGY

- 4.1 Artificial Neural Networks: Overview
  - 4.1.1 Structure of ANN
  - 4.1.2 Types of ANN
  - 4.1.3 Modeling Requisites
    - 4.1.3.1 Selection of proper input and output variables
    - 4.1.3.2 Determination of optimal ANN architecture
    - 4.1.3.3 Data Normalization
    - 4.1.3.4 Training the network

4.1.3.5 Network Creation and Training with Feed Forward Back Propagation Algorithm (FFBPA)

4.1.3.6 Performance Evaluation Criterion

4.1.3.7 Merits and Demerits of ANN

- 4.2 Data Description and Analysis
  - 4.2.1 Gangotri
  - 4.2.2 Maneri
  - 4.2.3 Data for single series modeling
- 4.3 ANN Model Development
  - 4.3.1 Gangotri
  - 4.3.2 Maneri
  - 4.3.3 NAR model development

ANN modeling has been carried out on multi annual hydrological time series data at three stations on Bhagirathi River and one station on the Ganges River. The methodology in ANN modeling requires proper selection of model inputs and outputs which well represent the hydrological process being studied. Selection of problem representing input and output variables requires a detailed study of time series data of relevant variables and statistical analysis for data trends, structure and correlation. An in depth understanding of the working of ANN is a pre requisite. The sequence of processes involved in ANN modeling and the technique itself, has been described in the present chapter.

#### 4.1 ARTIFICIAL NEURAL NETWORKS: OVERVIEW

A general framework can be followed for ANN modeling based on heuristics and experience. The goal of an ANN is to generalize a relationship of the form

$$Y = f(X)$$

where X is an n-dimensional input vector with variables  $x_1,...,x_n$  and Y is an mdimensional output vector consisting of resulting variables of interest  $y_1,...,y_m$ . In hydrology, the values of x can be casual variables (ASCE, 2000a) like rainfall, temperature, previous flows, water levels, spatial locations, evaporation, basin area, elevation, slope, contaminant loads and so on. The values of y can be hydrological responses like runoff, stream flow, ordinates of a hydrograph, hydraulic conductivity, contaminant concentration etc. Although there are no fixed rules for developing an ANN, a general framework for its design is given in (ASCE, 2000a).

ANN is a flexible mathematical structure having an inter-connected assembly of simple processing elements or nodes, which emulates the functioning of neurons in the human brain. It is a massively parallel distributed processor made up of simple processing units, which has a natural propensity for storing information and making it available for use (Haykin, 1999). It has many distinct advantages and possesses the capability of representing the arbitrary complex non-linear relationship between the input and the output of any system. Mathematically, an ANN can be treated as a universal approximator having an ability to learn from examples without the need of explicit physics (ASCE, 2000a, b). ANN predicts the output of a process by training with a set of known inputs and outputs whereby it 'learns' and extracts the relationship between the inputs and outputs. It then tries to bring the predicted output closer to the observed by an internal network

adjustment. The ANN functions as a data-mining tool, in which the input and output data set has to be fed to the software and trained before validating the model. The history of Artificial Neural Networks began in 1943 when the authors Warren McCulloch and Walter Pitts proposed a simple artificial model of the neuron. Their model, in a slightly modified and improved form, is what most Artificial Neural Networks are based on to this day. A law explaining the learning of a network of neurons was proposed by Hebb, 1949. The first ANN, namely the perceptron, was created by Rosenblatt, 1958, and it consisted of neurons arranged within one active layer. The research into application of ANN has blossomed since the introduction of the back propagation training algorithm for feed forward ANN in 1986 (Rumelhart, 1986). In recent years, Artificial Neural Networks (ANN) have become extremely popular for prediction and forecasting in a number of areas, including finance, power generation, medicine, water resources and environmental science. A review of ANN application to hydrology is presented in ASCE (2000b). ANN have been used by researchers for rainfall-runoff modeling, stream-flow prediction, groundwater modeling, water quality, water management, precipitation forecasting, time series, reservoir operations etc.

#### 4.1.1 Structure of ANN

A Typical ANN consists of several nodes or artificial neurons arranged in layers, where information processing takes place (Figure 4.1). Signals are passed between nodes through connection links. Each connection link has an associated weight that represents its connection strength and each node applies a non-linear transformation called an activation function to its net input to determine its output signal.

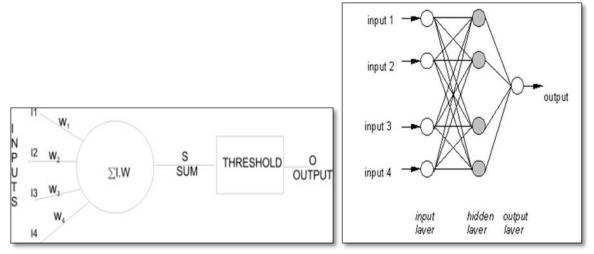



Figure 4.1 (Left) A typical artificial neuron and (right) a three layered ANN.

In typical three layer feed forward networks [which have also been used in the present work], very commonly used by researchers, nodes or artificial neurons are arranged in three layers, an Input layer where the data is introduced to the network; a hidden layer where data is processed and an output layer where results are produced (Tokar et al., 1999). The inputs to the neuron, represented by X, are weighted by a factor which represents the strength of the signal/synaptic connection, represented by W, the Synaptic Weight. The sum of these inputs and their weights is called the activity or activation of the neuron. The output variable is thus given by,

$$Y(x) = g(\sum_{i=0}^{n} W_{i} X_{i})$$

where, the activation parameter, g, could be a simple binary threshold function like

$$g(x) = \begin{cases} 1 & \text{if } x + t > 0 \\ 0 & \text{if } x + t \le 0 \end{cases}$$
 or

a non linear sigmoid function like

$$g(x) = \frac{1}{1+e^{-2s(x+t)}}$$

which is a continuous transformation function (Figure 4.2), producing an output between zero and one making the network more flexible.

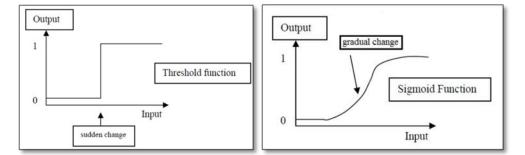



Figure 4.2 (Left) A simple binary threshold function and (right) a non-linear sigmoidal transfer function.

Here, t is the value that pushes the centre of the activation function away from zero and s is a steepness parameter. The role and need of *bias* in ANN is usually not mentioned clearly in literature. The bias neuron lies in one layer, is connected to all the neurons in the next layer, but none in the previous layer and it always emits 1. It is known that for the network to 'learn', the weights are adjusted. Since the bias neuron emits 1, the weights, connected to the bias neuron, are added directly to the combined sum of the other weights. The bias neuron simply shifts the activation function to the left or right (Figure 4.3).

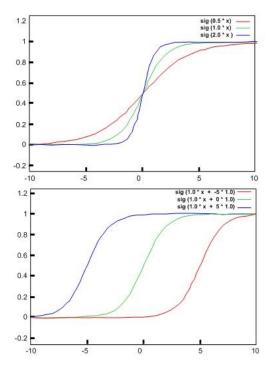



Figure 4.3 The sigmoid curve (above) without and (below) with bias

### 4.1.2 Types of ANN

ANN can be classified on the basis of number of layers present. The simplest form of an ANN is the single-layer network (Hopfield nets). They possess recurrent connectivity, short term memory and a dynamic behaviour. There are bilayer networks (Carpenter/ Grossberg Adaptive Resonance Networks) and Multi-layer networks (most networks using Back propagation) consisting of an input, output and a hidden layer, the concept arising only after the discovery of back propagation (Figure 3.4)

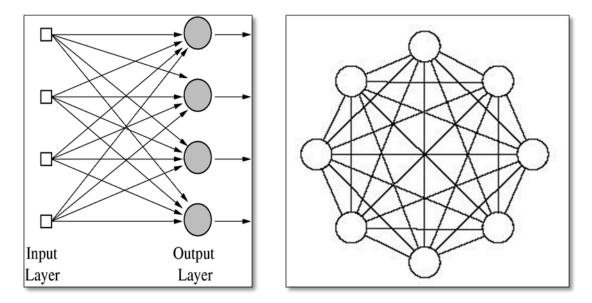



Figure 4.4 (Left) A bilayer neural network and (right) A Hopfield Network.

ANN can also be categorized based on the direction of information flow and processing. In a feed-forward network, the nodes are generally arranged in layers, starting from a first input layer and ending at a final output layer. There can be several hidden layers each having one or more nodes. Information passes from the input to the output side. The nodes in one layer are connected to all nodes in the next layer but not to those in the same layer. Thus, the output of a node in a layer is only dependent on the inputs it receives from the previous layer and the associated synaptic weights. On the other hand, in a recurrent ANN, information flows from the nodes in both the directions, from the input side to the output and vice-versa.

# 4.1.3 Modeling Requisites

### 4.1.3.1 Selection of proper input and output variables

A good understanding of the hydrologic system under consideration is a prerequisite for successful application of ANN. For instance, physical insight into the problem being studied can lead to better choice of input variables for proper mapping. This will help in avoiding loss of information that may result if key input variables are omitted and also prevent inclusion of wrong inputs that tend to confuse the training process. A sensitivity analysis can be used to determine the relative importance of a variable when sufficient data is available (Maier and Dandy, 1996).

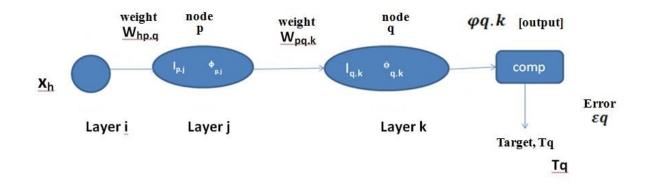
# 4.1.3.2 Determination of optimal ANN architecture

This includes selection of appropriate number of input and output nodes and selecting a proper algorithm for training. Minimal network can offer better generalized performance than more complex networks (Rumelhart et al., 1994). The number of neurons in the input-output layer is defined by the problem. The flexibility lies in selecting the number of hidden layers and in assigning the number of nodes to each of these layers. A trial-and-error method is usually applied to decide the optimal architecture.

#### 4.1.3.3 Data normalization

The data needs to be normalized before being applied to an ANN. The applications involving use of ANN have stressed the importance of scaling the input/output quantities before presenting them to the network. For problems exhibiting high non-linearity, the variables are scaled between range of (0,1) or some other suitable range. This kind of scaling tends to smooth the solution space and averages out some of the noise effects (ASCE 2000 a).

#### 4.1.3.4 Training the network


The main objective of training is to produce desired set of outputs when a set of inputs is given to the ANN. The available data set is partitioned into training and testing data sets. It is important that the training dataset should contain sufficient patterns so that the network can mimic the underlying relationship between input and output variables adequately. Each pass through the training data is called an epoch and during training process the ANN learns through overall change in weights accumulated over many epochs. Finally the optimal weight matrices and bias vectors are found which minimize a predetermined error function, such as sum of squares of errors (Bishop, 1994). After proper training process is stopped when no appreciable change in the values associated with the connection links is observed or some termination criterion is satisfied. However, there is a danger of overtraining a network in this fashion, which is also termed as overfitting. This happens when the network parameters are too fine-tuned to the training dataset. The network, in the process of trying to learn the underlying rule, has started to fit the noise component

of the dataset. When this happens, the network performs very well during training, but fails to generalize when given an unknown input. To prevent this, help of the testing dataset is taken to stop the training when the network begins to over-train. Initially, error for both the training and testing dataset reduces. After an optimal amount of training has been achieved, the error for the training set continues to decrease, but that for the testing dataset begins to rise. This is an indication that further training may result in over-fitting the training data by a network. The training is stopped at this time, and the set of weights are assumed to be optimal (ASCE, 2000a). The ANN is now ready to be used as a predictive tool.

#### 4.1.3.5 Network Creation and Training with Feed Forward Back Propagation Algorithm

Training is a process by which the connection weights are adapted through a continuous process of stimulation by the environment in which the network is embedded. The primary goal of training is to minimize the error function by searching for a set of connection strengths and threshold values that cause the ANN to produce outputs that are close or equal to targets. This can be achieved by adjusting the number of layers, the number of nodes and the pattern of connections. The manner in which the nodes of an ANN are structured is closely related to the algorithm used to train it. In training with back propagation algorithm an ANN is built with chosen inputs, hidden and output units and the weights are generated randomly. A training pair is chosen from the training set and inputs are applied. Network output is calculated and then the error, difference between computed network output and observed output. The summed products of weights and errors in the output layer are back propagated into the network to calculate error on hidden units. Weights are updated into each unit until the error is sufficiently low. The process is repeated till error is acceptably low.

The illustration below shows updation of weights in the output layer of a three layered network with i,j and k layers and associated nodes p and q. Weights,W, associated with a particular layer and node have been given superscripts.  $\Phi$  is the transfer/activation sigmoid function associated with the particular node. So,



Summation of weighted inputs I,

 $I = \sum_{i=1}^{n} Xi.Wi \qquad -----1$ 

Sigmoidal function,

Differentiating, with respect to  $\phi I$ ,

Error, difference of computed output from observed,

Squaring,

**Delta Rule**- The change in weight,  $\Delta W$ , is proportional to the rate of change of squared error w.r.t. weight.

$$\frac{\partial \boldsymbol{\varepsilon}_{q}^{2}}{\partial \boldsymbol{W}_{pq,k}} = \frac{\partial \boldsymbol{\varepsilon}_{q}^{2}}{\partial \boldsymbol{\phi}_{q,k}} \cdot \frac{\partial \boldsymbol{\phi}_{q,k}}{\partial \boldsymbol{I}_{q,k}} \cdot \frac{\boldsymbol{\phi} \boldsymbol{I}_{q,k}}{\partial \boldsymbol{W}_{pq,k}} - 7$$

Where,

Substituting 8 in 6,

$$\Delta W_{pq,k} = -\eta_{p,q} \cdot \delta_{pq,k} \cdot \phi_{p,j}$$

$$W_{pq,k}(N+1) = W_{pq,k}(N) - \eta_{p,q} \cdot \delta_{pq,k} \cdot \phi_{p,j}$$

and

'N' being the number of iterations involved. Error term is used to adjust weights of output layer and it is propagated back through the network. This process is repeated till the error is acceptably low. Once the model is validated, it can be tested to predict the output for any given input.

# 4.1.3.6 Performance Evaluation Criteria

There exists a wide array of numerical performance indicators used in hydrological studies. Some of the important and commonly used criteria for performance evaluation are-

## (1) Coefficient of Determination

It is used to measure the degree of association between observed and model estimated values of output variable and is given by

$$R^{2} = \frac{\sum (Q_{i} - \overline{Q})^{2} - \sum (Q_{i} - \dot{Q}_{i})^{2}}{\sum (Q_{i} - \overline{Q})^{2}}$$

Where  $R^2$  is the coefficient of determination,  $Q_i$  are the observed values,  $\overline{Q}$  is the mean of the observed values and Q are the estimated values by the model. The first term in the numerator is called the initial variation whereas the second term in the numerator is called the residual or unexplained variation. High value of  $R^2$  indicates good model result whereas a low value denotes otherwise but it does not indicate existence of systematic errors.

#### (2) Coefficient of Efficiency

This coefficient is also known as Nash-Sutcliffe coefficient of efficiency. It is analogous to the coefficient of determination in linear regression but not identical. It gives the proportion of variance of the observation accounted for by the model. It is given by

$$E^2 = \frac{F_0 - F}{F_0}$$

where,

$$F_0 = \sum (Q - \overline{Q})^2; \overline{Q} = \frac{1}{N} \sum_{i=1}^N Q_i$$
$$F = \sum (Q_i - Q_i)^2$$

 $F_0$  = Measure of variability of observed values and their mean i.e. the crudest possible prediction F = Measure of association between predicted and observed flows or an index of residual error which reflects the extent to which a model is successful in reproducing the observed discharges.

In training the  $E_2$  is identical to  $R_2$  and varies between zero and one. In testing period the value of  $\overline{Q}$  used is still the mean of training period i.e. the initial variance is calculated as the sum of squares of deviations in testing period from the mean of training period, because the  $E_2$  criterion expresses a comparison of model prediction with the no model situation. The only forecast which could be made for testing period is the mean value of discharges in training period.  $E_2$  may take negative values in validation. This coefficient can be used for comparing the relative performances of different models. For example

$$e^{2} = \frac{F_{1} - F_{2}}{F_{1}}$$

In this equation,  $F_1$  is the initial variance unaccounted for by model 1, which is subsequently accounted for by model 2, the initial variance of which is  $F_2$ .

(3) **Mean Square Error (MSE):** It measures the residual variance. The optimal value for this is zero. It is computed as (notations carry the same meaning)-

$$mse = \frac{1}{N} \sum_{i=1}^{N} (Q_i - Q_{1i})^2$$

(4) **Percentage of Volume error (VE):** It measures the percent error in volume under the observed and simulated hydrograph/sedimentograph, summed over the data period. Ideal value for this parameter is zero. A positive value indicated underestimation and negative value indicates overestimation. It is calculated as follows-

$$VE(\%) = \frac{(\sum Q_i - \sum Q_i)}{\sum Q_i} X100$$

(5) Magnitude and Time to Peak- The magnitude and time to peak of the hydrograph/sedimentograph are also important criteria and are widely used.

Based on all or some of these criteria, the modeling performance is quantitatively evaluated. These are further substantiated by regression/scatter plots between observed (or target) and predicted (or computed) values. Linear graphs, error autocorrelation plots etc are also created for graphical representation of model performance.

#### 4.1.3.7 Merits and Demerits of ANN

ANN have an advantage over deterministic models as- the data needs are usually less and they are well suited for long-term forecasting, they have the ability to mimic non-linear processes even with noisy data, their adaptivity in nonstationary environments etc. There are three primary situations where ANN are advantageous- (1) Situations where only a few decisions are required to be taken from a massive amount of data, (2) Situations where non-linear mapping is automatically required, (3) Situations where a near optimal solution to an optimization problem is required very quickly. However, disadvantage of the ANN is that it is based on a 'black box' approach since the internal structure of the model is generally not known and must be developed by a trial and error process. Also, there is no standardized way of selecting network architecture. The commonly face problems with back propagation algorithm are long, ambiguous training process, local minima, moving target and network paralysis (Nagesh Kumar, 2004).

#### 4.2 DATA DESCRIPTION AND ANALYSIS

#### 4.2.1 Gangotri

Daily Temperature(T), Rainfall(R) and Discharge(Q) data of the melt period (May – October) of five years, from the year 2000-2004 {Data source Haritashya 2005} at a location two km downstream from the snout of the Gangotri glacier has been used for modeling sediment concentration. Besides prediction, this study would also give better insight into dependencies of variables in an area where anthropogenic controlling factors are negligible or rather absent. The dependence patterns of sediment concentration with discharge, rainfall and temperature have been studied in detail by Haritashya et al, 2006; P. Singh et al, 2006, with the help of variation diagrams and other statistical plots. In these studies, it has been observed that, a majority of sediment is transported in the period of July to August due to intensive melting and sediment availability. In the months of May and June, the area of melting is low which leads to relatively lesser sediment load. From September to October, although melting is substantial, the sediment load is again low as most of it has been flushed out in the preceding months. The occurrence of rainstorms has a significant impact on glacier runoff as well as the sediment flux. Heavy rain occurring for short durations influences the increase of sediment in melt water more than the increase in melt runoff (Tempany and Grist, 1958). Sediment availability during rainstorms is also necessary for higher sediment loads. Rainstorms during earlier part of melt period release more sediment due to its availability whereas in the later part of melt period rainstorms do not release much sediment as most of it has already been flushed earlier. The relationship between mean monthly Suspended sediment concentration (SSC) and discharge ( $R^2 = 0.99$ ) is much better than the daily SSC and discharge ( $R^2 = 0.40$ ) because variability of both parameters is averaged-out on monthly scale. Mean monthly SSC and mean monthly SSL provide a good exponential relationship with mean monthly air temperature. These results are relevant for planning and management of water resources in the high altitude areas and for designing hydropower projects (Haritashya et al., 2006). The variation of Temperature, Rainfall, Discharge and Sediment concentration during the melt period for five years, 2000-2004, has been shown in the line graphs below.

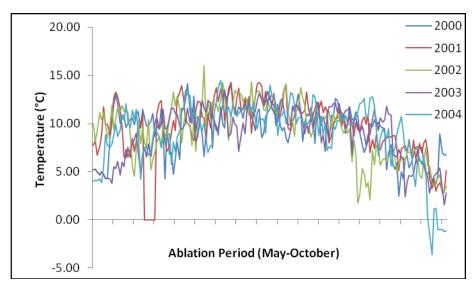



Figure 4.5a Variation in Temperature data at Gangotri over five melt periods (2000-2004)

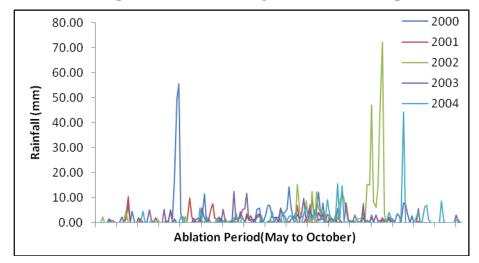



Figure 4.5b- Variation in Rainfall data at Gangotri over five melt periods (2000-2004)

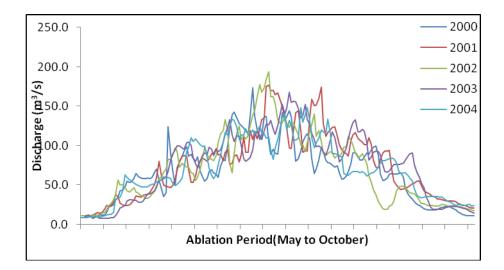



Figure-4.5c Variation in Discharge data at Gangotri over five melt periods (2000-2004)

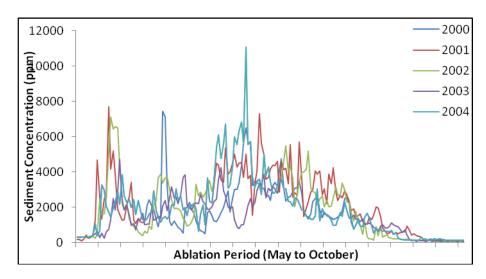



Figure 4.5d Variation in Sediment conc. data at Gangotri over five melt periods (2000-2004)

Basic statistical analysis of the data was carried out to bring out internal structure of the data. A maximum temperature of 16  ${}^{0}$ C on 24.06.2002 has been observed on and a minimum temperature value of -3.60  ${}^{0}$ C has been observed on 13.10.2004. Rainfall data shows maximum value of 72.2 mm on 13.09.2002 and minimum value of 0 mm has been observed on several days with nil rainfall. Discharge data shows a maximum value of 193.5m<sup>3</sup>/s on 22.07.2002 and minimum value of 8 m<sup>3</sup>/s on 06.05.2000, 06.05.2003 and 09.05.2003. Sediment concentration values vary from a high of 11093 ppm in 15.07.2004 to a low of 70 ppm three times in October 2003. Statistical parameters like mean, median, mode, standard deviation and skewness have been used to study the data shape, symmetry and dispersion (Table-4.1).

The mean, median and mode values for TSM are quite apart from each other, suggesting that the data is not normally distributed. Standard Deviation values are high for all variables, signifying that the data is dispersed and not centred around the mean. Skewness value is positive for all except Temperature meaning that the data is non-<sup>symmetrical</sup> and skewed to the right of the mean. kurtosis values less than three suggest a Platykurtic or flat distribution where most values are not concentrated around the mean, however for Temperature, this does not hold true. The result of this simple analysis can be well corroborated with the highly variable flow during monsoon period.

|                 | TSM (ppm) | Discharge (m <sup>3</sup> /s) | Rainfall (mm) | Temp ( <sup>0</sup> C) |
|-----------------|-----------|-------------------------------|---------------|------------------------|
| Mean            | 1911.31   | 71.38                         | 1.46          | 9.28                   |
| Standard Error  | 54.76     | 1.41                          | 0.17          | 0.10                   |
| Median          | 1590      | 70                            | 0             | 9.9                    |
| Mode            | 130       | 23.2                          | 0             | 10.75                  |
| Std Deviation   | 1610.66   | 41.39                         | 4.96          | 2.80                   |
| Sample Variance | 2594221   | 1712                          | 24.63         | 7.86                   |
| Kurtosis        | 2.72      | -0.75                         | 93.50         | 0.32                   |
| Skewness        | 1.30      | 0.29                          | 8.63          | -0.76                  |
| Range           | 11023     | 185.50                        | 72.2          | 16                     |
| Minimum         | 70        | 8                             | 0             | -3.60                  |
| Maximum         | 11093     | 193.5                         | 72.2          | 16                     |
| Sum             | 1653283   | 61746                         | 1262          | 8026                   |
| Count           | 865       | 865                           | 865           | 865                    |

Table 4.1- Descriptive Statistics for Variables used at Gangotri

## 4.2.2 Maneri

High frequency (daily and three-hourly) time series data for water discharge and sediment concentration during the high activity monsoon period of June to October of the year 2004 has been used for modeling. Daily and three-hourly discharge and sediment concentration data covering the monsoon period from Maneri, Uttarkashi was made available by Uttaranchal Jal

Vidhut Nigam Limited (UJVNL). Basic statistical analysis of the data was carried out to bring out internal structure of the data such as trend, variation and autocorrelation. Water Discharge data shows a maximum value of 45011 km<sup>3</sup>/s in the month of August and minimum value of 4432 km<sup>3</sup>/s during late October. Sediment Concentration values vary from a high of 3329 mg/L in August to a low of 35 mg/L in late October. Statistical parameters like mean, median, mode, standard deviation and skewness have been used to study the data shape, symmetry and dispersion (Table-4.2). The mean, median and mode values in both cases are far apart from each other, suggesting that the data is not normally distributed. Standard Deviation values are high for both variables, signifying that the data is dispersed and not centered around the mean. Skewness value is positive in both cases meaning that the data is non-symmetrical and skewed to the right of the mean. kurtosis values less than three suggest a Platykurtic or flat distribution where most values are not concentrated around the mean. The result of this simple analysis can be well corroborated with the highly variable flow during monsoon period. Another interesting characteristic of time series data is autocorrelation. A strong correlation of the series with its own past and future values can be seen in the present data. It has been observed in the line graph (Figure 4.6) that positive discharge values follow positive discharge values and vice versa. The scatter plot (inset, Figure 3.6) between Discharge and sediment concentration shows a high degree of association between them. It can be easily observed from the data that both the values acme at the same time in the month of August and their low values too, correlate well in time. This clearly tells that the two variables are intimately related with each other.

Table 4.2- Descriptive Statistics for discharge [Q km<sup>3</sup>/s] and sediment conc. [S mg/L] at Maneri

|   | Mean  | Std Error | Median | Mode | Std Dev | Kurtosis | Skewness | Range | Min  | Max   | Count |
|---|-------|-----------|--------|------|---------|----------|----------|-------|------|-------|-------|
| Q | 16584 | 814       | 14970  | 5910 | 10037   | -1       | 1        | 40579 | 4432 | 45011 | 152   |
| S | 1028  | 65        | 936    | 138  | 796     | 0        | 1        | 3294  | 35   | 3329  | 152   |

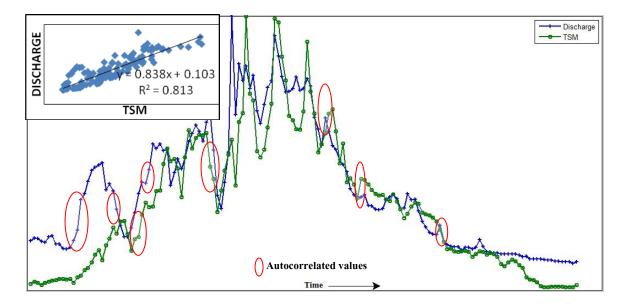



Figure 4.6- Line graph for daily Water Discharge and Sediment Concentration(TSM) variation from June-October 2004. Inset- Scatter plot showing relationship between Water Discharge and Sediment Concentration

### 4.2.3 Discharge data for single series modeling

Daily discharge data for six years from 1<sup>st</sup> April 2008 to 31<sup>st</sup> March 2014 at three locations viz. Maneri, Uttarkashi and Rishikesh were obtained from UJVNL. While Maneri and Uttarkashi are located on the Bhagirathi River, Rishikesh is located further downstream on the Ganges, much after the confluence of Bhagirathi and Alaknanda Rivers. Beyond Rishikesh, the River emerges from the narrow valley confines and widens its channels. The discharge seen at Rishikesh, is therefore, the discharges of Bhagirathi and Alaknanda Rivers combined. The area of cross-section of the channel at Rishikesh is also much larger resulting in greater discharges.

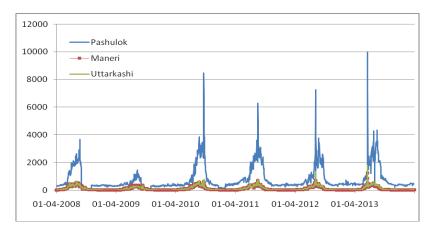



Figure 4.7- Line graph for daily Water Discharge (m<sup>3</sup>/s) variation from April 2008-March 2014 [six water years].

The highest discharge at all the three locations has been observed on 17.06.2013, which coincides with the period when the Kedarnath floods took place in the state. The low discharge values are observed in April (at Maneri and Uttarkashi) and in October (at Rishikesh). The lowest discharge value at Rishikesh is nearly 2.5 times higher than the value at Maneri and Uttarkashi. The descriptive statistics show the data range, shape, structure and dispersion.

| Parameter  | Maneri | Uttarkashi | Rishikesh |
|------------|--------|------------|-----------|
| Mean       | 121    | 137        | 798       |
| Std. Error | 3      | 3          | 18        |
| Median     | 53     | 62         | 447       |
| Mode       | 27     | 31         | 400       |
| Std. Dev.  | 130    | 148        | 842       |
| Variance   | 17006  | 21847      | 709266    |
| Kurtosis   | 4      | 11         | 16        |
| Skewness   | 2      | 2          | 3         |
| Range      | 1228   | 1764       | 9948      |
| Minimum    | 19     | 23         | 52        |
| Maximum    | 1247   | 1786       | 10000     |
| Sum        | 264185 | 299317     | 1748676   |
| Count      | 2191   | 2191       | 2191      |

Table-4.3 Descriptive Statistics for Discharge at Maneri, Uttarkashi and Rishikesh

#### 4.3 ANN MODEL DEVELOPMENT

#### 4.3.1 Gangotri

The present study explores for the first time, the possibility of modeling sediment concentration with Artificial Neural Networks at Gangotri, the source of Bhagirathi River in the Himalaya. Considering discharge, rainfall and temperature to be the main controlling factors of variations in sediment concentration in the dynamic glacial environment of Gangotri, seven ANN models using Feed Forward Back Propagation algorithm with different inputs have been created, trained and tested for prediction of sediment concentration in the non-updating mode where previous time-step values have not been used as input to the model. The inputs applied in the models are either the variables mentioned above as independent factors or a combination of them. The suitability of employing previous time-step values as network inputs has also been checked by creating seven corresponding models in the updating mode. Daily data of discharge, rainfall, temperature and sediment concentration for the melt period of May-October, when maximum sediment movement takes place, for five years, from the year 2000 to 2004, has been used for modeling.

The study area presents an ideal environment where maximum transport of water and sediment takes place during the ablation/melt period (May to October) due to high rates of weathering with minimal influence of anthropogenic activities. A lot of geo-hydrological research has been carried out in and around Gangotri. The factors responsible for variations in suspended sediment concentration and transport have been deftly discussed by Hasnain, 1996, Barnard et al., 2004, have made use of cosmogenic radionuclides to date glacial geomorphic features thereby discussing the timing and style of sedimentation and de-sedimentation processes as a response to landscape adjustment with changing environmental conditions in the monsoon influenced dynamic glacial environment of Gangotri. Voluminous work has been carried out by Singh et al., 2005, 2006, on the hydrological characteristics of Gangotri glacier by studying the diurnal variations in suspended sediment load to understand the melt-runoff delays. Haritashya et al., 2006, 2010 have carried out particle size distribution and studied the inter-relationships of hydrological variables at Gangotri thus explaining the sediment delivery and evacuation patterns in the light of water resource planning and management. V.B. Singh et al., 2014, have studied the seasonal variation in solute and suspended sediment load to bring out the role of geochemical weathering processes in

controlling melt water chemistry at Gangotri. The possibility of modeling sediment concentration in a high altitude glacial environment of the Himalaya has not been explored so far.

The statistical analysis of Gangotri data performed by earlier workers shows that there is an inherent trend in time series river flow data, despite the uncertainties, which makes it predictable. To understand these distribution patterns, seven Artificial Neural Networks were created using the Neural Network Time Series application and neural network tool in MATLAB (R2013a) routines to model the hydrologic flow process at Gangotri, the source of Bhagirathi River. Seven networks (T1-T7) were trained in the non-updating mode with independent (Q or R or T) as well as combination (Q, R or R, T or Q, T or Q, R, T) of inputs. The non updating mode refers to the modeling scenario in which previous time-step values of any variable are not used as network inputs. Simultaneously, seven corresponding neural networks were created (T1a-T7a) representing the updating mode i.e. network inputs included values of variables at previous time-step. Training consisted of as many as 865 data and the goodness of fit characteristics of the computed and observed outputs were evaluated. The number of layers remained three in every case and the weights were selected randomly. Gradient Descent with momentum and adaptive learning rate (traingdx) Back Propagation Algorithm using a non-linear log-sigmoidal transfer function in the hidden layer and a pure linear function in the output layer was employed. Training and evaluation subsets were created by dividing the dataset respectively into 70% and 15% of the complete dataset. The training dataset must represent most, if not all, of the variations observed in the data. The data was first trained and configured from time to time by changing training parameters such as no. of inputs, no. of hidden layer neurons, learning rate, no. of iterations etc. 30% of the data was employed for evaluation of the model. It is important to note that the evaluation data is not employed during training and is a separate subset of the whole data. The fourteen networks created, employed a combination of variables such as discharge, rainfall and temperature in the updating and no-updating modes. The Sediment concentration values computed/predicted by the model during training and testing were compared with the observed/target values with the help of regression plots and line graphs. The performance of ANN in both the modes was compared.

| Model | Input(s)                            | Output I-H-O |        | Net. Training |      | Transfer No. of |            | No. of |  |
|-------|-------------------------------------|--------------|--------|---------------|------|-----------------|------------|--------|--|
|       | -                                   | _            |        | Туре          | Fn.  | Fn.             | Iterations | Data   |  |
| T-1   | Q(t)                                | S(t)         | 1-10-1 | FFBP          | GDX  | Logsig          | 100000     | 865    |  |
| T-1a  | Q(t),Q(t-1)                         | S(t)         | 2-12-1 | -do-          | -do- | -do-            | -do-       | -do-   |  |
| T-2   | Q(t),R(t)                           | S(t)         | 2-12-1 | -do-          | -do- | -do-            | -do-       | -do-   |  |
| T-2a  | Q(t),Q(t-1),R(t),R(t-1)             | S(t)         | 4-12-1 | -do-          | -do- | -do-            | -do-       | -do-   |  |
| T-3   | Q(t),R(t),T(t)                      | S(t)         | 3-14-1 | -do-          | -do- | -do-            | -do-       | -do-   |  |
| T-3a  | Q(t),Q(t-1),R(t),R(t-1),T(t),T(t-1) | S(t)         | 6-14-1 | -do-          | -do- | -do-            | -do-       | -do-   |  |
| T-4   | R(t)                                | S(t)         | 1-11-1 | -do-          | -do- | -do-            | -do-       | -do-   |  |
| T-4a  | R(t).R(t-1)                         | S(t)         | 2-16-1 | -do-          | -do- | -do-            | -do-       | -do-   |  |
| T-5   | T(t)                                | S(t)         | 1-13-1 | -do-          | -do- | -do-            | -do-       | -do-   |  |
| T-5a  | T(t),T(t-1)                         | S(t)         | 2-13-1 | -do-          | -do- | -do-            | -do-       | -do-   |  |
| T-6   | Q(t),T(t)                           | S(t)         | 2-14-1 | -do-          | -do- | -do-            | -do-       | -do-   |  |
| Т-ба  | Q(t),Q(t-1),T(t),T(t-1)             | S(t)         | 4-14-1 | -do-          | -do- | -do-            | -do-       | -do-   |  |
| T-7   | R(t),T(t)                           | S(t)         | 2-15-1 | -do-          | -do- | -do-            | -do-       | -do-   |  |
| T-7a  | R(t-1),T(t-1)                       | S(t)         | 4-15-1 | -do-          | -do- | -do-            | -do-       | -do-   |  |

Table 4.4 Model characteristics for development of ANN models at Gangotri

Note- S-suspended sediment concentration (mg/L), Q- discharge (m3/s), T-temperature (°C), R-rainfall (mm);(t) - present time-step, (t-1)- one previous/antecedent time-step,2 ; I-H-O-neurons in input-hidden-output layers;FFBP-Feed Forward BackPropagation;GDX-Gradient Descent with adaptive learning rate;Logsig-Logsigmoid

### 4.3.2 Maneri

After successful application of ANN at Gangotri, the source of Bhagirathi, modeling was carried out at Maneri, a location around 75 km downstream from the source. The study validates the practical capability and usefulness of this tool for simulating complex non-linear real world river system processes in a Himalayan river scenario. Two modeling approaches have been employed in the study- a daily approach and a three hourly approach during the highest activity monsoon period of June to October. The trend of daily time-series data for the period (June 2004-October-2004) was studied and it was observed that the discharge and sediment concentration data correlates with its own past and future values. Exploiting this fact, six ANN models (T1-T6) with different network configurations, were created and trained using Levenberg Marquardt Back Propagation Algorithm in the Matlab routines. Six corresponding networks incorporating three hourly data of the same variables for the same time period were simultaneously created. Employing three hourly data for the same period not just increases data frequency but also the data numbers by almost six times. The networks were configured from time to time by trial and error based on performance. The study not only gives an insight into ANN modeling in the Himalayan River scenario but it also focuses on the importance of understanding a river basin and the factors that affect sediment concentration, before attempting to model it.

In the past, ANN has been generally been applied in modeling geo-hydrological variables using continuous time series data of long durations. In the present work, an attempt has been made to model the daily water discharge- sediment concentration relationship in the Bhagirathi River during the monsoon period of June-October 2004 when the variations in discharge and sediment concentration are maximum. For the same period, simultaneously, ANN models have been developed using high frequency three hourly water discharge and sediment concentration data. This allows us to have a comparative analysis of the modeling response of short duration-daily data on one side and high frequency, three-hourly data for the same duration on the other.

The statistical analysis shows that there is an inherent trend in time series river flow data, notwithstanding the uncertainties. Moreover, an autocorrelated time series is predictable, probabilistically, because future values depend on current and past values. Exploiting this fact, six ANN models (T1-T6) were created using the Neural Network Time Series application in MATLAB (R2013a) to model daily water discharge-sediment concentration relationship at Maneri, in the Bhagirathi River Basin. Six networks were trained with as many as 153 data and the goodness of fit characteristics of the computed and observed outputs were evaluated.

| Model | Input(s)                         | Output | I-H-O  | Net. | Training Transfer No. of |        |            | Data |
|-------|----------------------------------|--------|--------|------|--------------------------|--------|------------|------|
|       |                                  |        |        | Туре | Fn.                      | Fn.    | Iterations |      |
| T-1   | Q(t)                             | S(t)   | 1-10-1 | FFBP | LM                       | Logsig | 50000      | 152  |
| T-1a  | Q(t)                             | S(t)   | 1-12-1 | -do- | -do-                     | -do-   | -do-       | 865  |
| T-2   | Q(t),Q(t-1)                      | S(t)   | 2-14-1 | -do- | -do-                     | -do-   | -do-       | 152  |
| T-2a  | Q(t),Q(t-1)                      | S(t)   | 2-12-1 | -do- | -do-                     | -do-   | -do-       | 865  |
| T-3   | Q(t),Q(t-1),Q(t-2)               | S(t)   | 3-14-1 | -do- | -do-                     | -do-   | -do-       | 152  |
| T-3a  | Q(t),Q(t-1),Q(t-2)               | S(t)   | 3-14-1 | -do- | -do-                     | -do-   | -do-       | 865  |
| T-4   | Q(t),Q(t-1),S(t-1)               | S(t)   | 3-20-1 | -do- | -do-                     | -do-   | -do-       | 152  |
| T-4a  | Q(t),Q(t-1),S(t-1)               | S(t)   | 3-16-1 | -do- | -do-                     | -do-   | -do-       | 865  |
| T-5   | Q(t),Q(t-1),Q(t-2),S(t-1)        | S(t)   | 4-15-1 | -do- | -do-                     | -do-   | -do-       | 152  |
| T-5a  | Q(t),Q(t-1),Q(t-2),S(t-1)        | S(t)   | 4-14-1 | -do- | -do-                     | -do-   | -do-       | 865  |
| T-6   | Q(t),Q(t-1),Q(t-2),S(t-1),S(t-2) | S(t)   | 5-13-1 | -do- | -do-                     | -do-   | -do-       | 152  |
| Т-ба  | Q(t),Q(t-1),Q(t-2),S(t-1),S(t-2) | S(t)   | 5-14-1 | -do- | -do-                     | -do-   | -do-       | 865  |

 Table 4.5 Model characteristics for development of ANN models at Maneri

step,(t-2)-two previous time steps ; I-H-O-neurons in input-hidden-output layers; FFBP-Feed Forward Back Propagation; LM-Levenberg Marquardt ; Logsig- Log sigmoid

Six, corresponding ANN models were created (T1-a to T6-a) using high frequency threehourly data for the same time-period at the same location. In this approach, the networks were trained with as many as 865 data and the performance was compared with the earlier scenario. The number of layers remained three in every case and the weights were selected randomly. Levenberg-Marquardt Back Propagation Algorithm using a non-linear log-sigmoidal transfer function in the hidden layer and a pure linear function in the output layer was employed. Training and evaluation subsets were created randomly by dividing the dataset respectively into 70%, 30% of the complete dataset. Since the log-sigmoid transfer function can accept X<sub>norm</sub> values in the range [0, 1], before modeling, the data was normalized in the range [0.1, 0.9] by the equation:  $X_{norm} = 0.1 + 0.8 (X_i/X_{max})$  where  $X_{norm}$  is the normalized dimensionless variable,  $X_i$  is the observed value of the variable and X<sub>max</sub> is the maximum value in the data set (Rajurkar et al., 2004).

#### 4.3.3 Non Linear Autoregressive [NAR] model development

Experimental ANN modeling was further carried out using a single variable. The discharge values at three locations viz. Maneri and Uttarkashi on Bhagirathi River and Rishikesh on the Ganges in Uttarakhand were modeled using Artificial Neural Networks (ANN). After successful application of ANN at Gangotri, the source of Bhagirathi and at Maneri, modeling was further carried out with discharge data of these three locations. This study was taken up in order to verify the possibility of modeling a different type of a time series situation where only one series/variable is involved. The future values of a time series y(t) [y= discharge in this case] are predicted only from the past values of that series. This form of prediction is called Nonlinear Autoregressive or NAR and can be written as  $y(t) = fy(t-1), \dots, y(t-d)$ ). No companion variable/time series is used in such models.

The trend of daily discharge data for six years from 1<sup>st</sup> April 2008 to 31<sup>st</sup> March 2014 at three locations viz. Maneri, Joshiyara and Pashulok were studied and three NAR networks were created for the three locations. The networks were trained using Levenberg Marquardt Back Propagation Algorithm in the Matlab routines. The networks were configured from time to time by trial and error based on performance. The study explores the possibility of modeling with a single variable in the highly complex Himalayan river systems.

Output I-H-O Net. Training Transfer No. of Model Input(s) No. of Fn. Iterations Data Туре Fn. Maneri Q(t-1) FFBP LM 2291 Q(t) 1-11-1 Logsig 50000 Uttarkashi Q(t-1) Q(t)1-14-1 -do--do--do--do-2291 2291 Rishikesh 1-12-1 -do--do-Q(t-1) Q(t)-do--do-Note : Q- discharge (m<sup>A</sup>/s); (t) - present time-step, (t-1)-one previous/antecedent time-step ; 1-H-O-neurons in input-hidden-output

Table 4.6 Model characterististics for development of ANN models with NAR

layers; FFBP-Feed Forward Back Propagation; LM- Levenberg Marquardt; Logsig- Log sigmoid

### **4.4 MODEL IMPROVISATION**

. The feed forward networks for all the locations were supplemented with NARX (nonlinear autoregressive with exogenous input) architecture (Figure 4.8a) to improve the model performance. This involves feeding the estimated output back into the input of the network. As a further improvisation into the model, the estimated output values were replaced with the true output values (because they were available) and fed as a parallel input into the network (Figure 4.8b) during training. This improvisation has two advantages, one, the input to the feed forward network is more accurate and two, the resulting network has a purely feed forward architecture and normal back propagation can be easily applied.

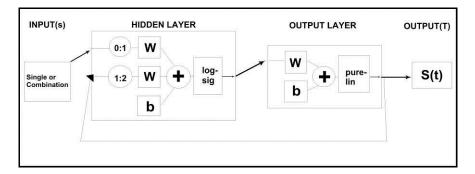



Fig 4.8a- Schematic representation of improvised NARX Network architecture used in training.

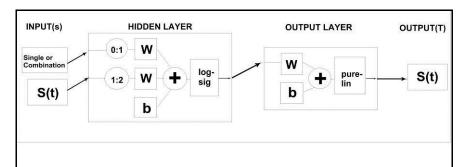



Fig 4.8b Schematic representation of improvised series parallel NARX Network architecture used in training.

# CHAPTER 5

## **RESULTS AND DISCUSSION**

5.1 Results

5.1.1 Gangotri

5.1.2 Maneri

5.1.3 NAR

5.2 Discussion

### 5.1 RESULTS

#### 5.1.1 Gangotri

i) Model T-1 and T-1a: A simple one input-one output network representing sediment concentration S at time t, as a function of water discharge, Q was created. i.e.  $S(t)= f\{Q(t)\}$ . Previous time step values of discharge were not used as inputs and hence the network was trained in the non-updating mode. A corresponding network T-1a was created in the updating mode in which the previous day's discharge was also included as an input i.e.  $S(t)= f\{Q(t), Q(t-1)\}$ . The relationship between target values and model predicted output values of sediment concentration can be understood with the help of regression plots (Figure 5.1a).

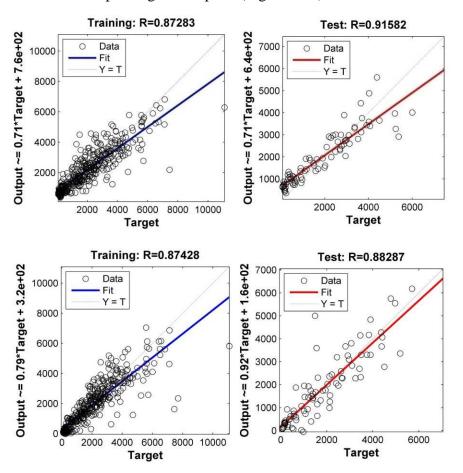



Figure 5.1a- Regression plots for training and testing datasets of model T1 (above) and T1-a (below) showing relationship between target and model computed values of sediment concentration in mg/L at Gangotri.

Regression plots have been created for models T1 and T1- a showing results of training and testing. The correlation coefficient obtained during training of models T1 and T1-a are 0.872 and 0.874 respectively. However, correlation coefficients obtained during testing of both the models are 0.915 and 0.882. It can be observed that the testing values are higher for both the models. Regression equations are also shown in the ordinate label of the plots wherein a direct relationship between targets and outputs is established.

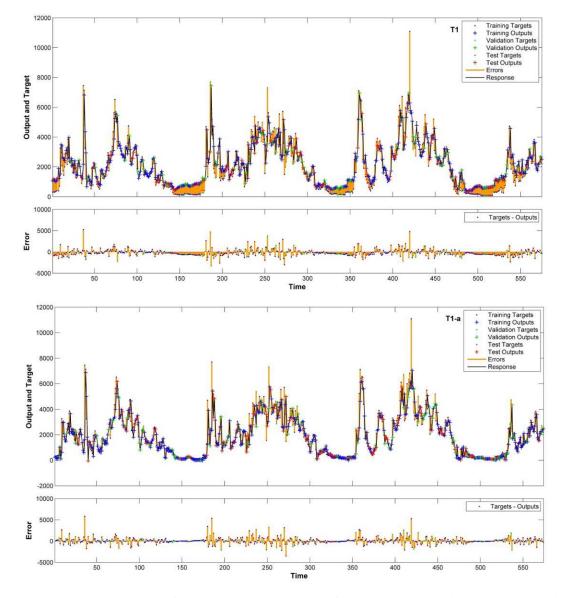



Figure 5.1b- Response of models T1 and T1-a after training, testing and validation at Gangotri: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.

The response of models T1 and T1-a can be seen in Figure 5.1b where the target and output values have been plotted against time. The entire training dataset is further divided into training,

validation and testing subsets. The targets and outputs for training, validation and testing datasets have been plotted against time in the response diagram and the calculated errors, i.e. the difference between targets and outputs have also been plotted against time below the response diagram for both the models. It is clear from the diagram below that the errors, shown in yellow, are greater in model T1 than in model T1-a

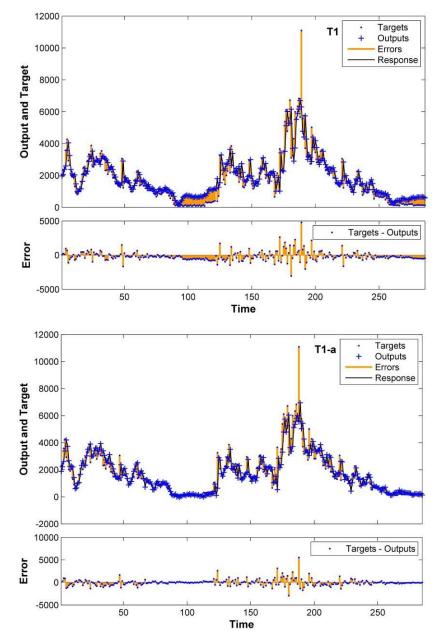



Figure 5.1c- T1 and T1-a Model evaluation at Gangotri- Comparison between target and computed values of sediment concentration along with errors varying with time.

. The performance of the models was further evaluated with the evaluation dataset, which has not been used in the earlier training, validation and testing of models. During evaluation, the outputs

are not provided to the model and it predicts the outputs on the basis of relationships 'learnt' during training. Evaluation of the models helps in confirming the performance of models.

ii) Model T-2 and T-2a: The sediment concentration as a function of water discharge (in m<sup>3</sup>/s) along with rainfall (in mm) at time t was modeled in T2 representing the non-updating mode and the model performance was evaluated. Although the Water discharge as an input remains same, another element i.e. R(t) is added in this model i.e.  $S(t)=f{Q(t),R(t)}$ . The corresponding network T-2a in updating mode i.e.  $S(t)=f{Q(t), Q(t-1),R(t), R(t-1)}$  was also simultaneously created and trained. The relationship between target values and model predicted output values of sediment concentration can be understood with the help of regression plots (Figure 5.2a).

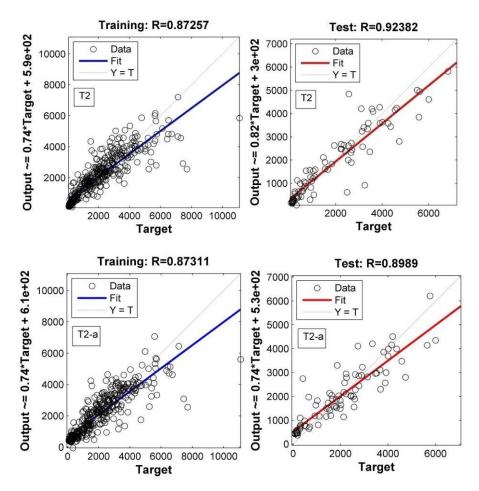



Figure 5.2a Regression plots for training and testing datasets of model T2 (above) and T2-a (below) showing relationship between target and model computed values of sediment concentration in mg/L at Gangotri.

The correlation coefficient obtained during training of models T2 and T2-a are 0.872 and 0.873 respectively. However, correlation coefficients obtained during testing of both the models are 0.923 and 0.898. It can be observed that the testing values are higher for both the models. Regression equations are also shown in the ordinate label of the plots wherein a direct relationship between targets and outputs is established.

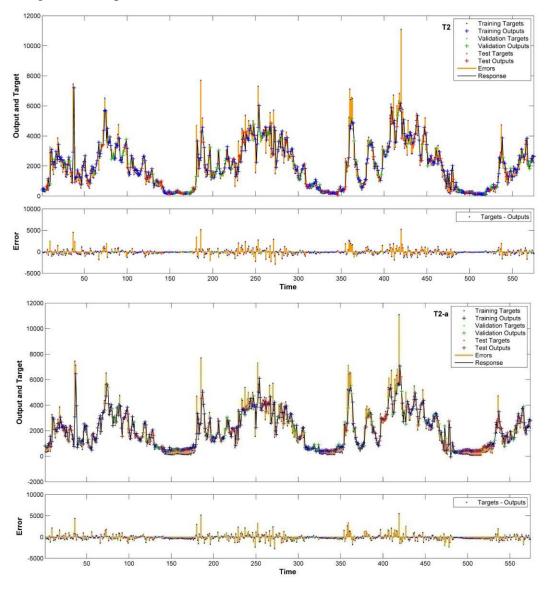



Figure 5.2b- Response of models T2 and T2-a after training, testing and validation at Gangotri: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.

The response of models T2 and T2-a can be seen in Figure 5.2b where the target and model computed values have been plotted against time. The errors obtained in the process have also been

plotted against time. It is clear from Figure 5.2b that the errors, shown in yellow, are greater in model T2-a than model T2. Evaluation of the models (Figure 5.2c) shows smaller errors and a closer match between computed outputs and target values of sediment concentration in non-updating model T2 than in model T2-a.

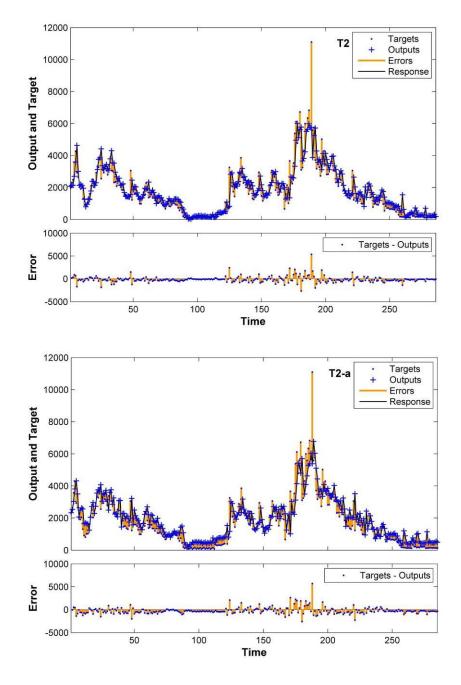



Figure 5.2c- T2 and T2-a Model evaluation- Comparison between target and computed values of sediment concentration along with errors varying with time.

(iii) Model T-3 and T-3a: In the next network, three inputs were used, water discharge (in  $m^3/s$ ), rainfall (in mm) and temperature (in °C) at time t i.e.  $S(t) = f\{Q(t),R(t),T(t)\}$  in the non-updating mode. The corresponding updating mode network, T-3a, i.e.  $S(t) = f\{Q(t),R(t),T(t),Q(t-1),R(t-1),T(t-1)\}$  was also created and trained.

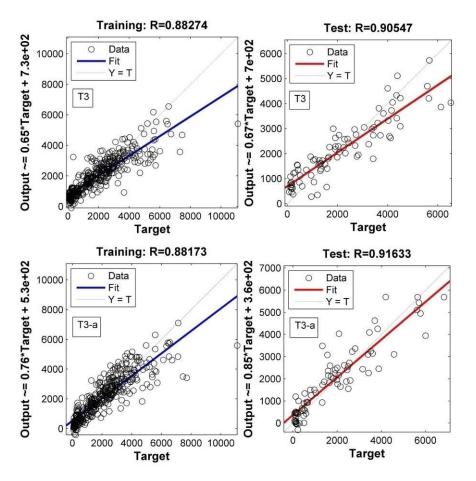



Figure 5.3a- Regression plots for training and testing datasets of model T3 (above) and T3-a (below) showing relationship between target and model computed values of sediment concentration in mg/L at Gangotri.

The relationship between target values and model predicted output values of sediment concentration can be understood with the help of regression plots (Figure 5.3a). The correlation coefficient obtained during training of models T3 and T3-a are 0.882 and 0.881 respectively. However, correlation coefficients obtained during testing of both the models are 0.905 and 0.916. It can be observed that the testing values are higher for both the models. Regression equations are

also shown in the ordinate label of the plots wherein a direct relationship between targets and outputs is established. The response of models T3 and T3-a can be seen in Figure 5.3b where the target and model computed values have been plotted against time. The errors obtained in the process have also been plotted against time. It is clear from Figure 5.3b that the errors, shown in yellow, are greater in model T3 than in model T3-a. Evaluation of the models (Figure 5.3c) shows smaller errors and a closer match between computed outputs and target values of sediment concentration in model T3a than in model T3.

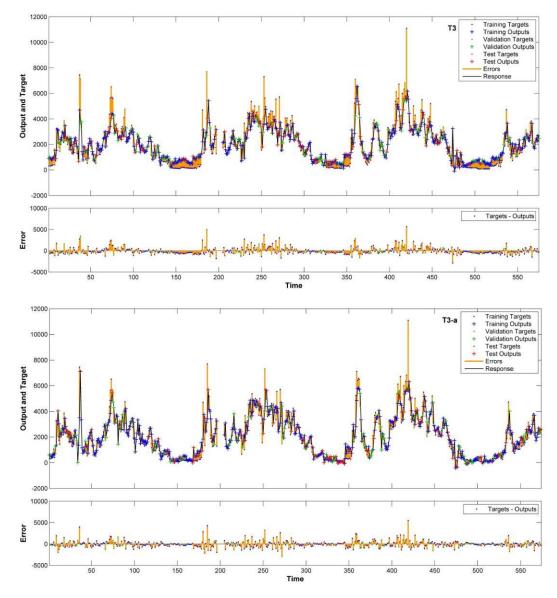



Figure 5.3b- Response of models T3 and T3-a after training, testing and validation at Gangotri: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.

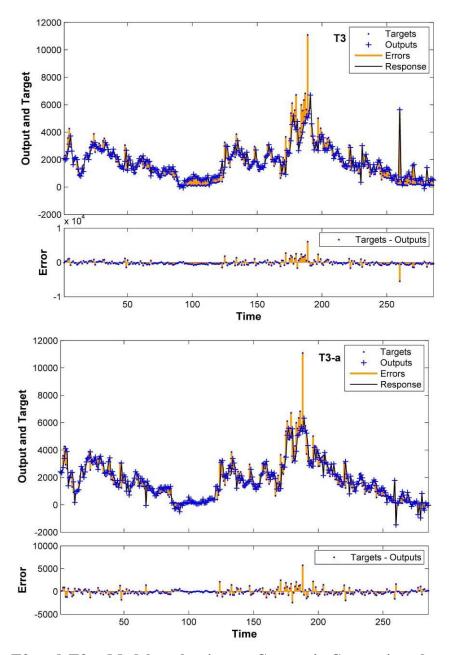



Figure 5.3c- T3 and T3-a Model evaluation at Gangotri- Comparison between target and computed values of sediment concentration along with errors varying with time.

(iv) Model T-4 and T-4a: In this neural network, only rainfall (in mm) at time t has been modelled against sediment concentration (in mg/L) i.e.  $S(t)=f\{R(t)\}$  in the non-updating mode. The updating mode network T-4a,  $S(t)=f\{R(t), R(t-1)\}$  was simultaneously trained.

The relationship between target values and model predicted output values of sediment concentration can be understood with the help of regression plots (Figure 5.4a). The correlation

coefficient obtained during training of models T4 and T4-a are 0.874 and 0.868 respectively. However, correlation coefficients obtained during testing of both the models are 0.905 and 0.941. It can be observed that the testing values are higher for both the models.

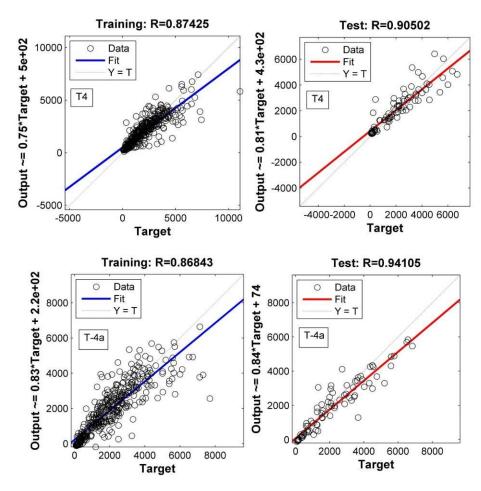



Figure 5.4a- Regression plots for training and testing datasets of model T4 (above) and T4-a (below) showing relationship between target and model computed values of sediment concentration in mg/L at Gangotri.

Regression equations are also shown in the ordinate label of the plots wherein a direct relationship between targets and outputs is established. The response of models T4 and T4-a can be seen in Figure 5.4b where the target and model computed values have been plotted against time. The errors obtained in the process have also been plotted against time. It is clear from Figure 5.4b that the errors, shown in yellow, are overall less in the two models compared with the previous models. Evaluation of the models (Figure 5.4c) shows smaller errors and a close match between computed outputs and target values of sediment concentration in both the models.

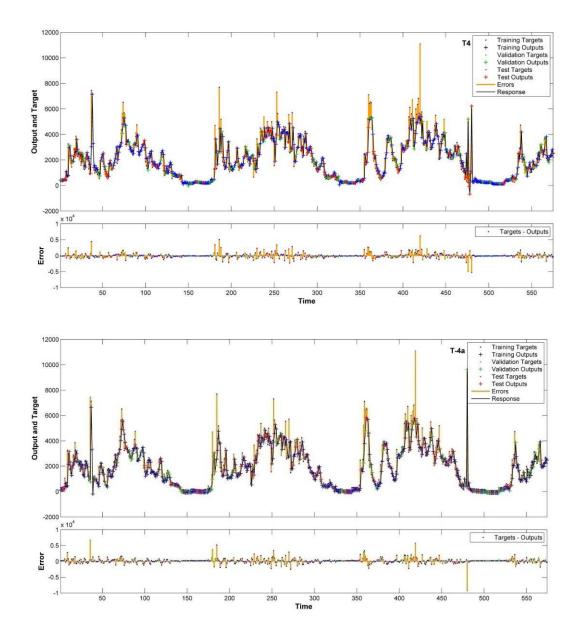



Figure 5.4b- Response of models T4 and T4-a after training, testing and validation at Gangotri: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.

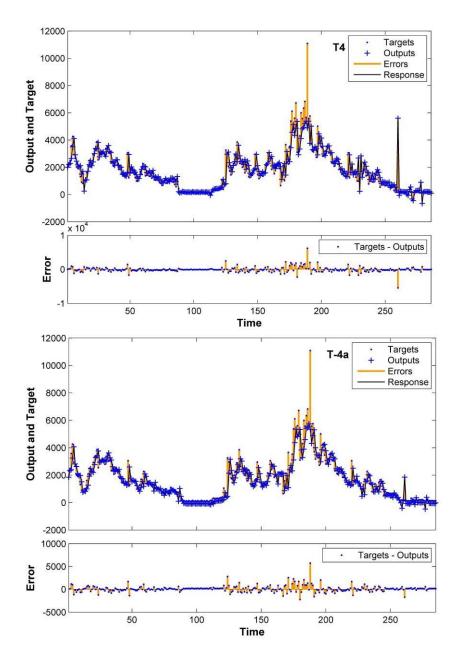



Figure 5.4c- T4 and T4-a Model evaluation at Gangotri- Comparison between target and computed values of sediment concentration along with errors varying with time.

(v) Model T-5 and T-5a: Temperature (°C) at time t was modelled against sediment concentration at time t in the next non-updating mode network i.e.  $S(t) = f\{T(t)\}$ . The corresponding updating mode network T-5a,  $S(t) = f\{T(t), T(t-1)\}$  was also created and trained. The relationship between target values and model predicted output values of sediment concentration can be understood with the help of regression plots (Figure 5.5a). The correlation coefficient obtained during training of models T5 and T5-a are 0.886 and 0.876 respectively. However, correlation coefficients obtained during testing of both the models are 0.910 and 0.894. It can be observed that the testing values are higher for both the models. Regression equations are also shown in the ordinate label of the plots wherein a direct relationship between targets and outputs is established.

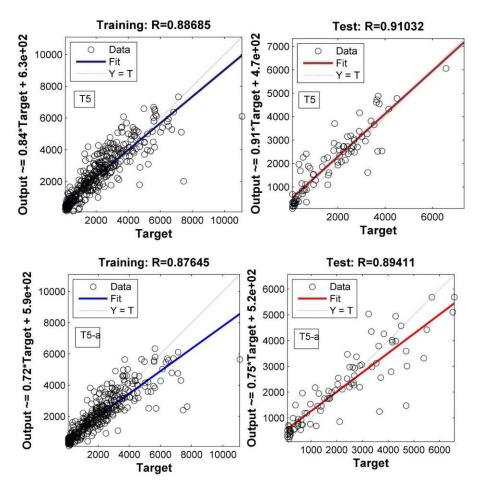



Figure 5.5a- Regression plots for training and testing datasets of model T5 (above) and T5-a (below) showing relationship between target and model computed values of sediment concentration in mg/L at Gangotri.

The response of models T5 and T5-a can be seen in Figure 5.5b where the target and model computed values have been plotted against time. The errors obtained in the process have also been plotted against time. It is clear from Figure 5.5b that the errors, shown in yellow, are more or less the same in both models. Evaluation of the models (Figure 5.5c) shows smaller errors and a close match between computed outputs and target values of sediment concentration in model T5-a than in model T5.

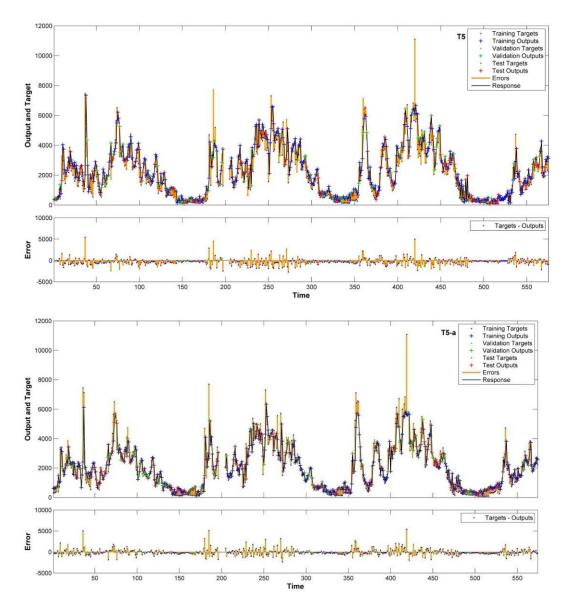



Figure 5.5b- Response of models T5 and T5-a after training, testing and validation at Gangotri: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.

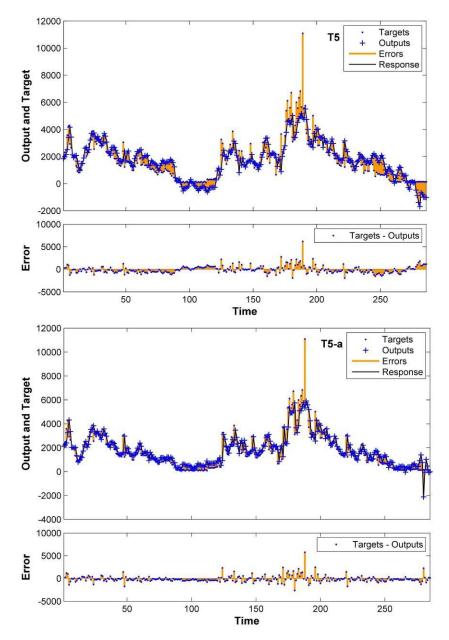



Figure 5.5c- T5 and T5-a Model evaluation at Gangotri- Comparison between target and computed values of sediment concentration along with errors varying with time.

(vi) Model T-6 and T-6a: In this network, Water discharge  $(m^3/s)$  and temperature (°C) at time t have been modelled against sediment concentration (mg/L) at time t, i.e.  $S(t)=f\{Q(t), T(t)\}$  in the non-updating mode and simultaneously the updating mode network T-6a,  $S(t)=f\{Q(t), T(t), Q(t-1), T(t-1)\}$  was also created and trained. The relationship between target values and model predicted output values of sediment concentration can be understood with the help of regression plots (Figure 5.6a).

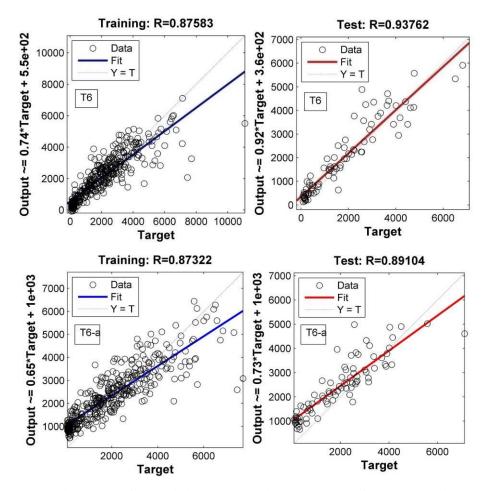



Figure 5.6a- Regression plots for training and testing datasets of model T6 (above) and T6-a (below) showing relationship between target and model computed values of sediment concentration in mg/L at Gangotri.

The correlation coefficient obtained during training of models T6 and T6-a are 0.875 and 0.873 respectively. However, correlation coefficients obtained during testing of both the models are 0.937 and 0.891. It can be observed that the testing values are higher for both the models. Regression equations are also shown in the ordinate label of the plots wherein a direct relationship between targets and outputs is established.

The response of models T6 and T6-a can be seen in Figure 5.6b where the target and model computed values have been plotted against time. The errors obtained in the process have also been plotted against time. It is clear from Figure 5.6b that the errors, shown in yellow, are larger for model T6-a than in model T6. Evaluation of the models (Figure 5.6c) shows smaller errors and a close match between computed outputs and target values of sediment concentration in model T6 than in model T6a.

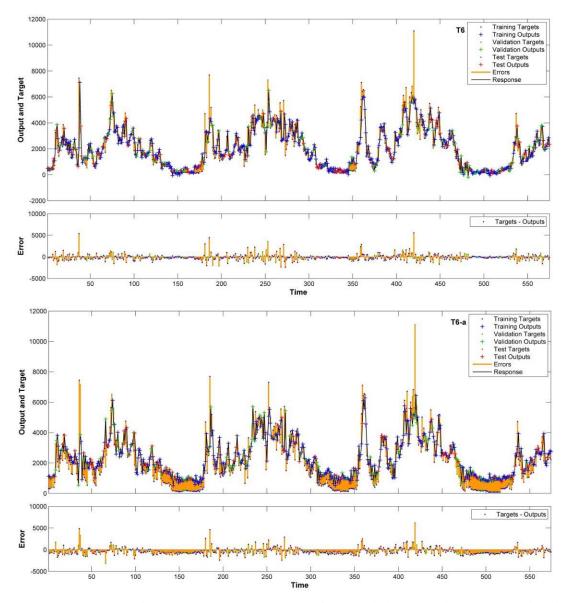



Figure 5.6b- Response of models T6 and T6-a after training, testing and validation at Gangotri: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.

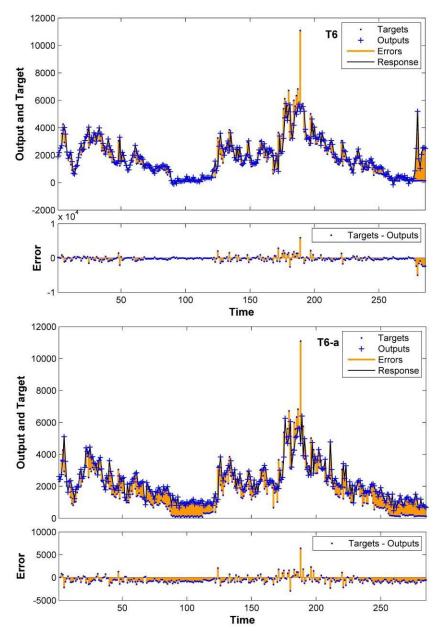



Figure 5.6c- T6 and T6-a Model evaluation at Gangotri- Comparison between target and computed values of sediment concentration along with errors varying with time.

(vii) Model T-7 and T-7a: In this network, Temperature (in °C) and Rainfall (in mm) at time t have been modelled against sediment concentration (mg/L) at time t, i.e.  $S(t)=f{T(t), R(t)}$  in the non-updating mode and modelled as  $S(t)=f{T(t), R(t), T(t-1), R(t-1)}$  in the updating mode network T-7a.

The relationship between target values and model predicted output values of sediment concentration can be understood with the help of regression plots (Figure 5.7a). The correlation coefficient obtained during training of both the models, T7 and T7-a, is 0.869. However,

correlation coefficients obtained during testing of both the models are 0.918 and 0.905. It can be observed that the testing values are higher for both the models. Regression equations are also shown in the ordinate label of the plots wherein a direct relationship between targets and outputs is established. The response of models T7 and T7-a can be seen in Figure 5.7b where the target and model computed values have been plotted against time. The errors obtained in the process have also been plotted against time. It is clear from Figure 5.7b that the errors, shown in yellow, are larger for model T7 than in model T7-a. Evaluation of the models (Figure 5.7c) shows smaller errors and a close match between computed outputs and target values of sediment concentration in model T7a than in model T7.

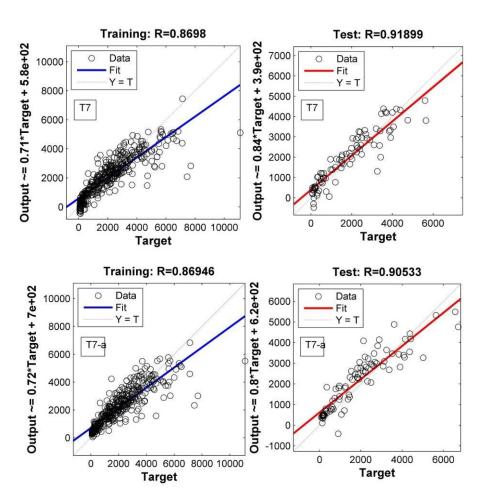



Figure 5.7a- Regression plots for training and testing datasets of model T7 (above) and T7-a (below) showing relationship between target and model computed values of sediment concentration in mg/L at Gangotri.

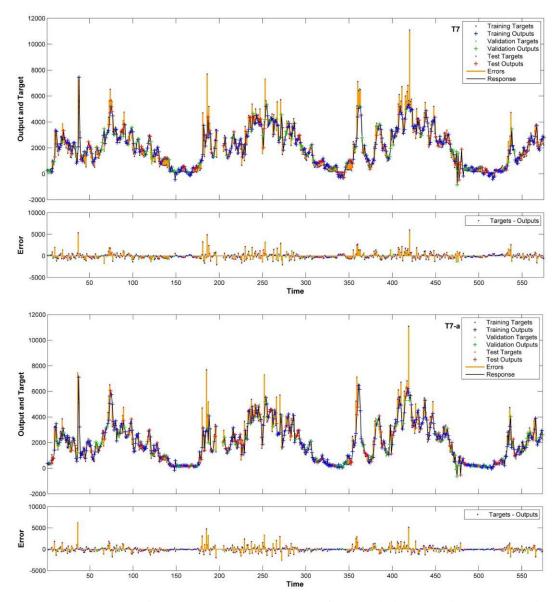



Figure 5.7b- Response of models T7 and T7-a after training, testing and validation at Gangotri: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.

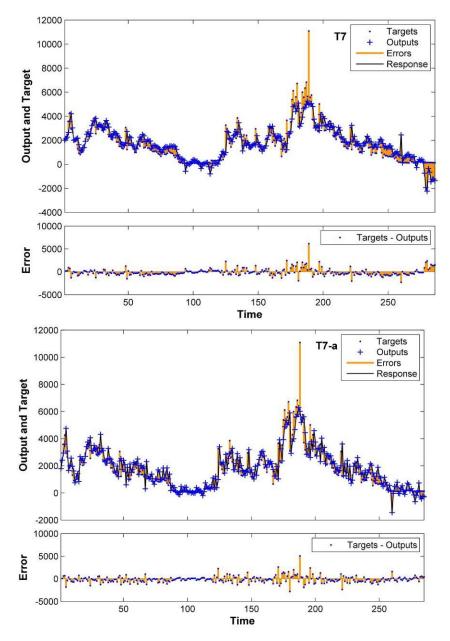



Figure 5.7c- T7 and T7-a Model evaluation at Gangotri- Comparison between target and computed values of sediment concentration along with errors varying with time.

### 5.1.2 Maneri

(i) Model-T1 and T1-a: A simple one input-one output network representing sediment concentration S (in mg/L) at time t, as a function of water discharge, Q (in  $m^3/s$ ) was created. i.e.  $S(t) = f\{Q(t)\}$  and trained. Model T1-a was also created and trained with similar input although a larger dataset was employed in this case.

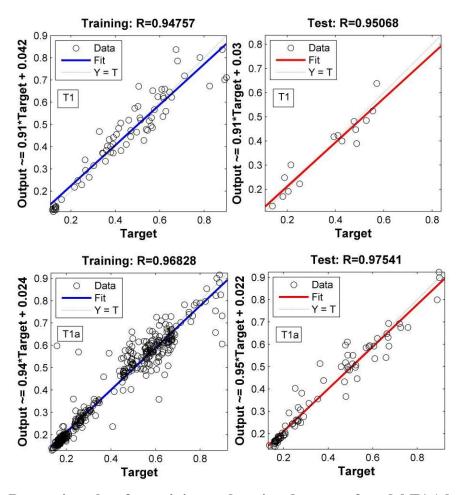



Figure 5.8a- Regression plots for training and testing datasets of model T1 (above) and T1-a (below) showing relationship between target and model computed values of sediment concentration in mg/L at Maneri.

The relationship between target values and model predicted output values of sediment concentration can be understood with the help of regression plots (Figure 5.8a). The correlation coefficients obtained during training of model T1 and T1-a are 0.94 and 0.96 respectively. However, correlation coefficients obtained during testing of are 0.95 and 0.97 for model T1 and T1- respectively. It can be observed that the testing values are higher for both the models. Regression equations are also shown in the ordinate label of the plots wherein a direct relationship between targets and outputs is established.

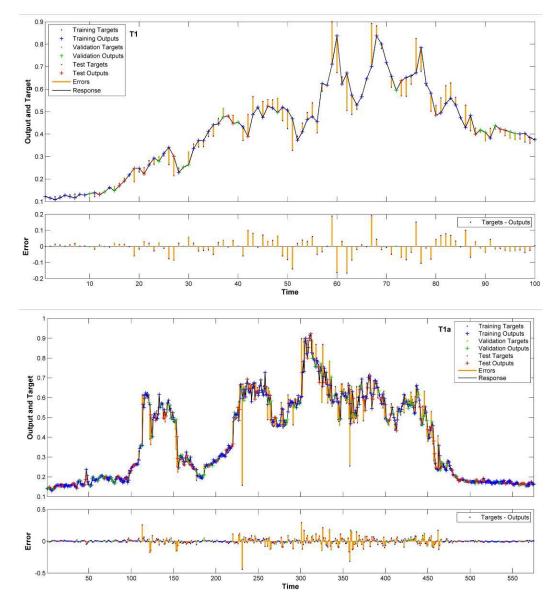



Figure 5.8b- Response of models T1 and T1-a after training, testing and validation at Maneri: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.

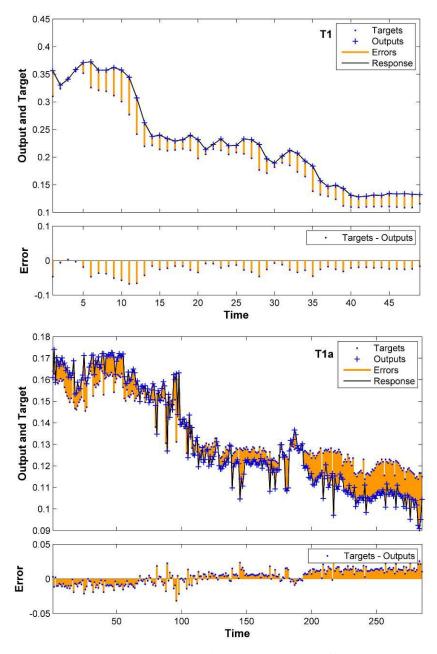



Figure 5.8c- Ta and T1-a Model evaluation at Maneri- Comparison between target and computed values of sediment concentration along with errors varying with time.

The response of models T1 and T1-a can be seen in Figure 5.8b where the target and model computed values of sediment concentration (in mg/L) have been plotted against time. The errors obtained in the process have also been plotted against time. It is clear from Figure 5.8b that the errors, shown in yellow, are quite large for both the models T1 and T1-a. Evaluation of the models (Figure 5.8c) shows a comparison between observed and model computed values of sediment concentration along with variation of errors with time.

(ii) Model-T2 and T2-a: Water discharge (in m<sup>3</sup>/s) at one previous time-step was included as an input and the model performance evaluated in the next non-linear input- output network.

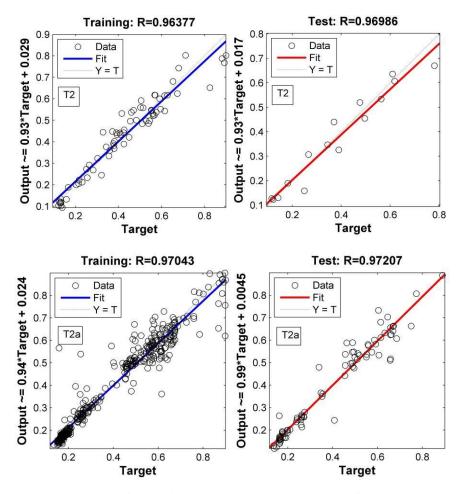



Figure 5.9a- Regression plots for training and testing datasets of model T2 (above) and T2-a (below) showing relationship between target and model computed values of sediment concentration in mg/L at Maneri.

Although the input variable remains the same, another element i.e. Q(t-1) is added in this model i.e.  $S(t)=f{Q(t),Q(t-1)}$ . Model T2-a was also created with the high frequency dataset. The relationship between target values and model predicted output values of sediment concentration can be understood with the help of regression plots (Figure 5.9a). The R (correlation coefficient)

values obtained during training for model T2 and T2-a area 0.96 to 0.97 respectively while these values during testing are 0.96 and 0.97 respectively. It can be observed that the testing values are higher for both the models. Regression equations are also shown in the ordinate label of the plots wherein a direct relationship between targets and outputs is established.

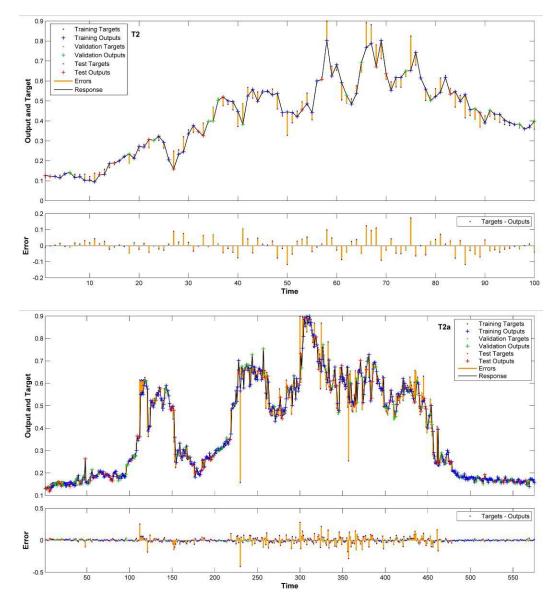



Figure 5.9b- Response of models T2 and T2-a after training, testing and validation at Maneri: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.

The response of models T2 and T2-a can be seen in Figure 5.9b where the target and model computed values of sediment concentration (in mg/L) have been plotted against time. The errors

obtained in the process have also been plotted against time. It is clear from Figure 5.10b that the errors, shown in yellow, are large for both the models T2 and T2-a. Evaluation of the models (Figure 5.9c) shows a comparison between observed and model computed values of sediment concentration along with variation of errors with time.

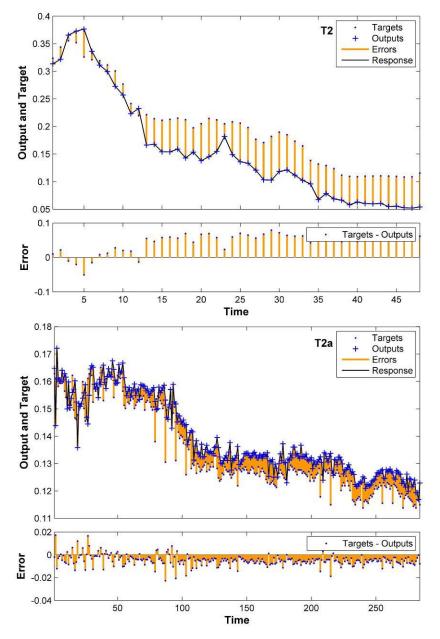



Figure 5.9c- T2 and T2-a Model evaluation at Maneri- Comparison between target and computed values of sediment concentration along with errors varying with time.

(iii) Model-T3 and T3-a: In the next network, water discharge at two previous time-steps was also included as an input. So three elements were included in the input variable i.e.  $S(t) = f{Q(t),Q(t-t)}$ 

1),Q(t-2) against sediment concentration values. Model T3-a using the high frequency dataset was also created and trained.

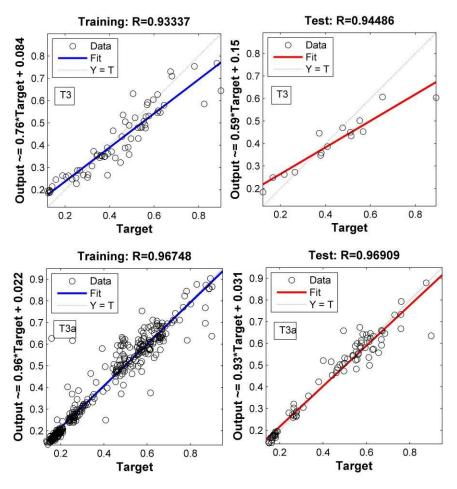



Figure 5.10a- Regression plots for training and testing datasets of model T3 (above) and T3-a (below) showing relationship between target and model computed values of sediment concentration in mg/L at Maneri.

The relationship between target values and model predicted output values of sediment concentration can be understood with the help of regression plots (Figure 5.10a). The R (correlation coefficient) values obtained during training for model T3 and T3-a are 0.93 and 0.967 respectively while these values during testing are 0.94 and 0.969 respectively. It can be observed that the testing values are higher for both the models. Regression equations are also shown in the ordinate label of the plots wherein a direct relationship between targets and outputs is established.

The response of models T2 and T2-a can be seen in Figure 5.10b where the target and model computed values of sediment concentration (in mg/L) have been plotted against time. The

errors obtained in the process have also been plotted against time. It is clear from Figure 5.11b that the errors, shown in yellow, are large for both the models T2 and T2-a. Evaluation of the models (Figure 5.10c) shows a comparison between observed and model computed values of sediment concentration along with variation of errors with time.




Figure 5.10b- Response of models T3 and T3-a after training, testing and validation at Maneri: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.

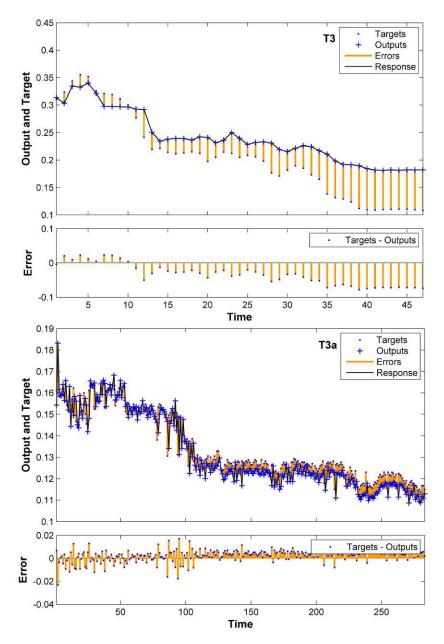



Figure 5.10c- T3 and T3-a Model evaluation at Maneri- Comparison between target and computed values of sediment concentration along with errors varying with time.

(iv) Model-T4 and T4-a: In the next networks, water discharge at two previous time-steps was replaced by sediment concentration at the previous time-step. i.e.  $S(t) = f\{Q(t),Q(t-1),S(t-1)\}$ . Model T4-a was also created and trained with the higher frequency dataset. The relationship between target values and model predicted output values of sediment concentration can be understood with the help of regression plots (Figure 5.11a).

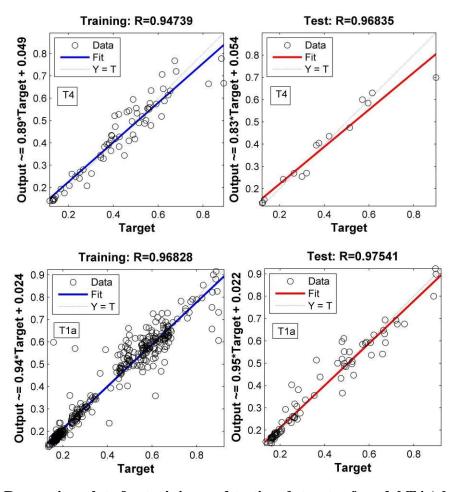



Figure 5.11a- Regression plots for training and testing datasets of model T4 (above) and T4-a (below) showing relationship between target and model computed values of sediment concentration in mg/L at Maneri.

The R (correlation coefficient) values obtained during training for model T4 and T4-a are 0.94 and 0.968 respectively while these values during testing are 0.968 and 0.975 respectively. It can be observed that the testing values are higher for both the models. Regression equations are also shown in the ordinate label of the plots wherein a direct relationship between targets and outputs is established.

The response of models T4 and T4-a can be seen in Figure 5.11b where the target and model computed values of sediment concentration (in mg/L) have been plotted against time. The errors obtained in the process have also been plotted against time. Evaluation of the models (Figure 5.12c) shows a comparison between observed and model computed values of sediment concentration along with variation of errors with time.

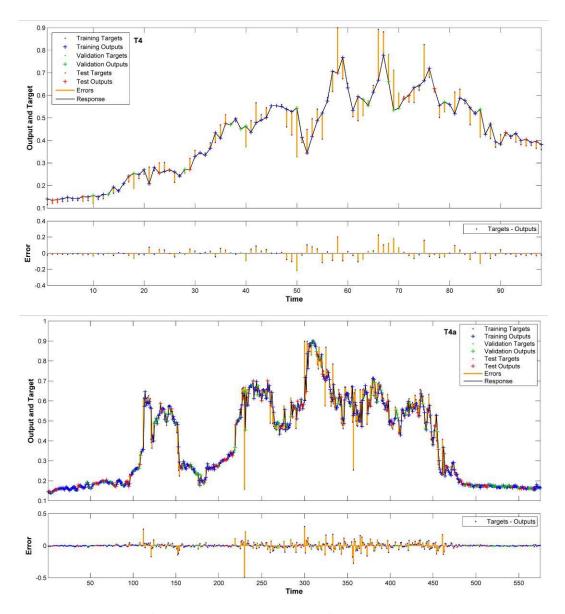



Figure 5.11b- Response of models T4 and T4-a after training, testing and validation at Maneri: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.

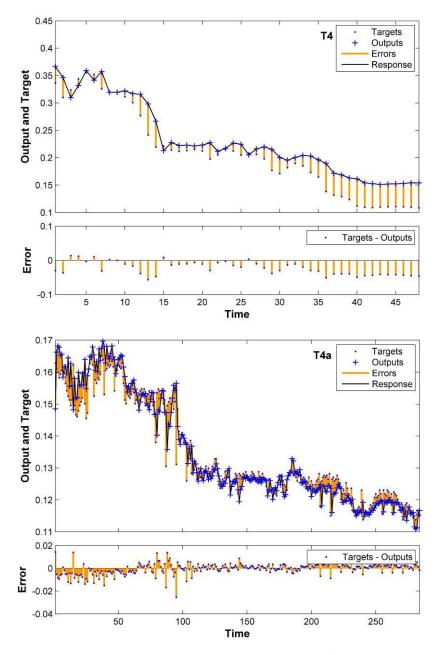



Figure 5.11c- T4 and T4-a Model evaluation at Maneri- Comparison between target and computed values of sediment concentration along with errors varying with time.

(v) Model-T5 and T5-a: Water discharge at two previous time-steps along with the above configuration, was also included as an input. i.e.  $S(t)= f\{Q(t),Q(t-1),Q(t-2),S(t-1)\}$  in the next network. Model T4-a was also created and trained with the higher frequency dataset. The relationship between target values and model predicted output values of sediment

The relationship between target values and model predicted output values of sediment concentration can be understood with the help of regression plots (Figure 5.12a).

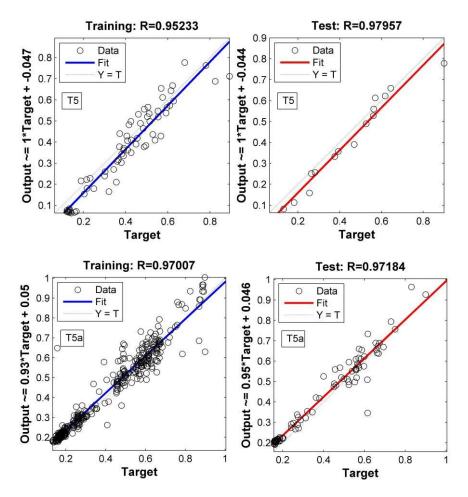



Figure 5.12a- Regression plots for training and testing datasets of model T5 (above) and T5a (below) showing relationship between target and model computed values of sediment concentration in mg/L at Maneri.

The R (correlation coefficient) values obtained during training for model T5 and T5-a are 0.952 and 0.970 respectively while these values during testing are 0.979 and 0.971 respectively. It can be observed that the testing values are higher for both the models. Regression equations are also shown in the ordinate label of the plots wherein a direct relationship between targets and outputs is established. The response of models T5 and T5-a can be seen in Figure 5.12b where the target and model computed values of sediment concentration (in mg/L) have been plotted against time. The errors obtained in the process have also been plotted against time. Evaluation of the models (Figure 5.12c) shows a comparison between observed and model computed values of sediment concentration along with variation of errors with time.

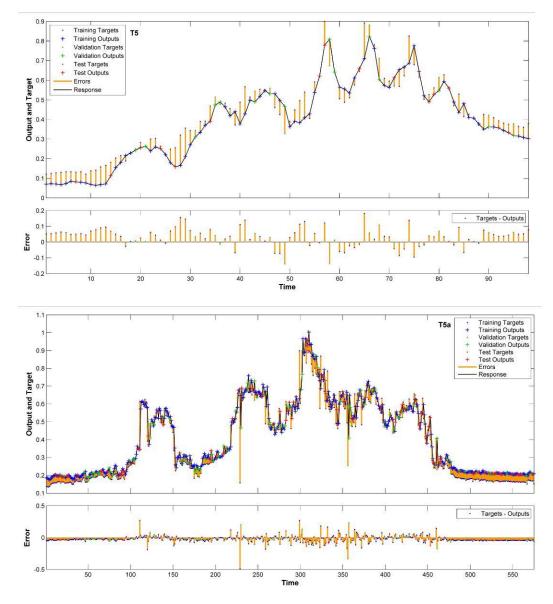



Figure 5.12b- Response of models T5 and T5-a after training, testing and validation at Maneri: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.

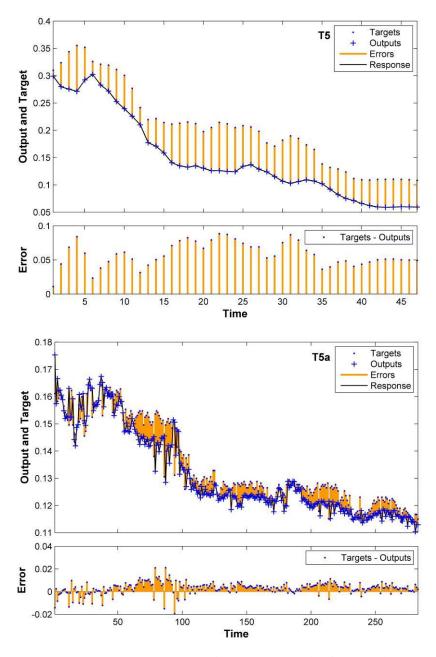



Figure 5.12c- T5 and T5-a Model evaluation at Maneri- Comparison between target and computed values of sediment concentration along with errors varying with time.

(vi) Model-T6 and T6-a: Water discharge at two previous time-steps along with the above configuration, was also included as an input. i.e.  $S(t) = f\{Q(t),Q(t-1),Q(t-2),S(t-1) \ S(t-2)\}$  in the next network. Model T6-a using the high frequency dataset was also created and trained.

The relationship between target values and model predicted output values of sediment concentration can be understood with the help of regression plots (Figure 5.13a).

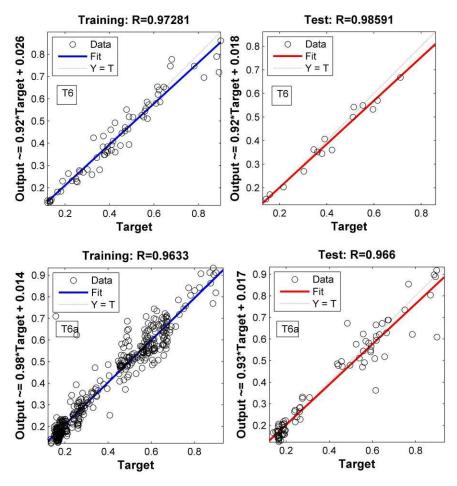



Figure 5.13a- Regression plots for training and testing datasets of model T6 (above) and T6-a (below) showing relationship between target and model computed values of sediment concentration in mg/L at Maneri.

The R (correlation coefficient) values obtained during training for model T6 and T6-a are 0.97 and 0.963 respectively while these values during testing are 0.985 and 0.966 respectively. It can be observed that the testing values are higher for both the models. Regression equations are also shown in the ordinate label of the plots wherein a direct relationship between targets and outputs is established. The response of models T6 and T6-a can be seen in Figure 5.13b where the target and model computed values of sediment concentration (in mg/L) have been plotted against time. The errors obtained in the process have also been plotted against time. Evaluation of the models (Figure 5.13c) shows a comparison between observed and model computed values of sediment concentration along with variation of errors with time.

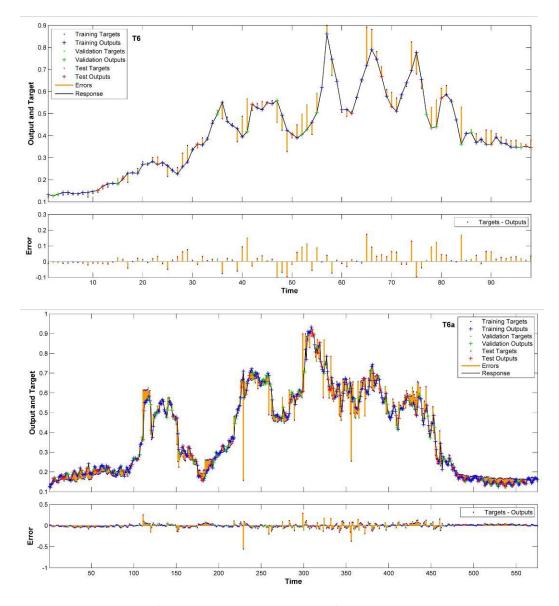



Figure 5.13b- Response of models T6 and T6-a after training, testing and validation at Maneri: Plot showing comparison between target and model computed values of sediment concentration (mg/L) along with network errors with time.



Figure 5.13c- T6 and T6-a Model evaluation at Maneri- Comparison between target and computed values of sediment concentration along with errors varying with time.

# 5.1.3 NAR

More that 2000 discharge values (in  $m^3/s$ ) were used for modeling in the study. One step previous discharge values were used as input to predict the discharge values at the present time step in all the three locations. The training, validation and testing results are shown below.

i) **Maneri:** A correlation coefficient (R) value of 0.964 during training and 0.976 during testing has been obtained at Maneri. This implies that the coefficients of determination ( $R^2$ ) are 0.92 and 0.952 for training and testing respectively. The response plot also shows a close match between observed and predicted values of discharge.

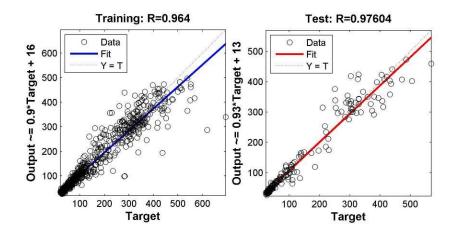



Figure 5.14a- Regression plots for NAR training and testing datasets at Maneri showing relationship between target and model computed values of discharge in m<sup>3</sup>/s.

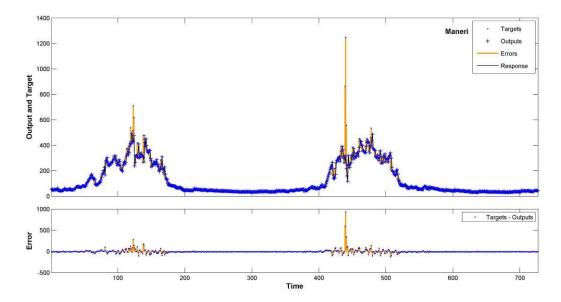



Figure 5.14b- Response of NAR models at Maneri after training, testing and validation: Plot showing comparison between target and model computed values of discharge  $(m^3/s)$  along with network errors with time.

ii) Uttarkashi: At Uttarkashi, a correlation coefficient (R) value of 0.95 during training and 0.962 during testing has been obtained. This implies that the coefficients of determination ( $R^2$ ) are 0.90 and 0.92 for training and testing respectively. The response plot also shows a close match between observed and predicted values of discharge.

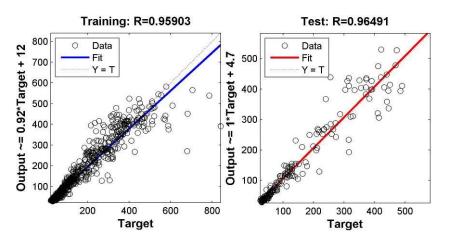
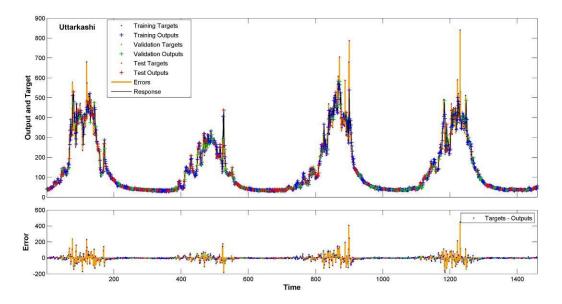




Figure 5.15a- Regression plots for NAR training and testing datasets at Uttarkashi showing relationship between target and model computed values of discharge in  $m^3/s$ .



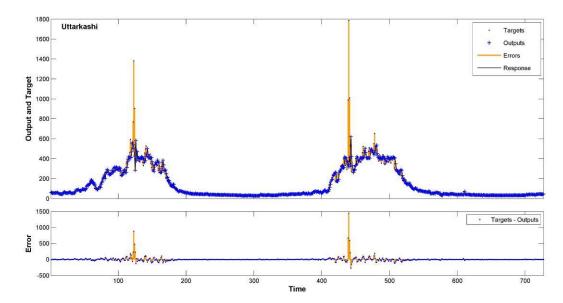



Figure 5.15b- Response of NAR models at Maneri after training, testing and validation: Plot showing comparison between target and model computed values of discharge  $(m^3/s)$  along with network errors with time.

iii) **Rishikesh**: At Rishikesh, a correlation coefficient (R) value of 0.954 during training and 0.968 during testing has been obtained. This implies that the coefficients of determination ( $R^2$ ) are 0.910 and 0.937 for training and testing respectively. The response plot also shows a close match between observed and predicted values of discharge.

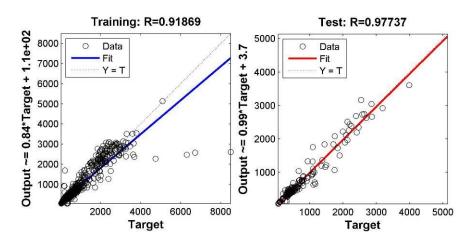



Figure 5.16a- Regression plots for NAR training and testing datasets at Uttarkashi showing relationship between target and model computed values of discharge in  $m^3/s$ .

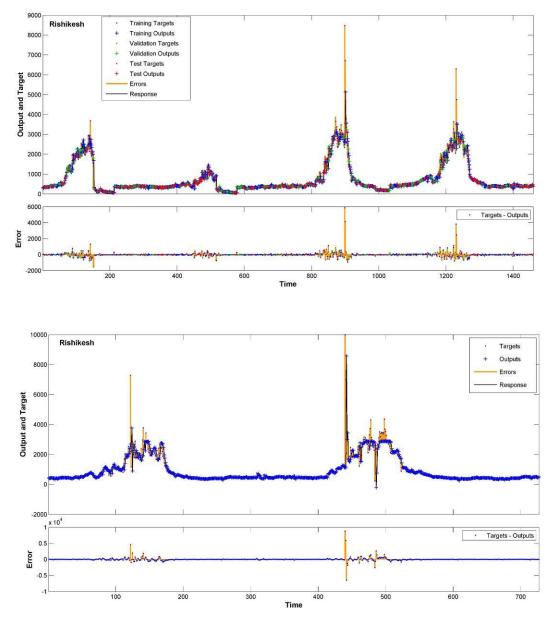



Figure 5.16b- Response of NAR models at Maneri after training, testing and validation: Plot showing comparison between target and model computed values of discharge  $(m^3/s)$  along with network errors with time.

# **5.2 DISCUSSION**

The performance criteria of ANN models are the comparison of R,  $R^2$  and MSE values (discussed in Chapter 4). The Correlation Coefficient or R value is commonly used to evaluate goodness of fit of hydrologic variables, and is obtained by performing linear regression between the ANN-predicted values and the targets.

|          | Model      | $\mathbf{R}^2$ | MSE            |
|----------|------------|----------------|----------------|
| GANGOTRI | T1/1a      | 0.837/0.777    | 0.0028/0.0079  |
|          | T2/2a      | 0.851/0.806    | 0.0051/0.0068  |
|          | T3/3a      | 0.819/0.848    | 0.009/0.0055   |
|          | T4/4a      | 0.819/0.885    | 0.0023/0.0034  |
|          | T5/5a      | 0.828/0.799    | 0.0098/0.0061  |
|          | T6/6a      | 0.877/0.793    | 0.009/0.0097   |
|          | T7/7a      | 0.842/0.819    | 0.0033/0.0042  |
| MANERI   | T1/1a      | 0.902/0.95     | -0.009/-0.002  |
|          | T2/2a      | 0.938/0.94     | -0.002/-0.004  |
|          | T3/3a      | 0.891/0.938    | 0.0016/-0.0004 |
|          | T4/4a      | 0.937/0.956    | -0.009/-0.0019 |
|          | T5/5a      | 0.958/0.942    | -0.0008/0.004  |
|          | T6/6a      | 0.970/0.933    | -0.005/0.0001  |
| NAR      | Maneri     | 0.95           | 0.00087        |
|          | Uttarkashi | 0.92           | 0.0076         |
|          | Rishikesh  | 0.93           | 0.0095         |

 Table 5.1- Performance estimates of ANN Models

R equal to 1 indicates perfect correlation between the target and predicted values, whereas R equal to 0 indicates no correlation between. The mean square error or MSE value is another parameter for evaluation of the prediction capability of the ANN. The ANN performance is considered good when the MSE values are close to 0. R and  $R^2$  values closer to one with smaller MSE values indicate better performance. The model characteristic and performance parameters have been tabulated in table 3.1.

i) **Gangotri-** The regression plots were made between observed and computed values of sediment concentration and they show that at Gangotri, the overall performance range is not too large with the values of coefficient of determination ranging from 0.777 to 0.885 in the updating mode and from 0.819 to 0.877 in the non-updating mode. The range of performance is wider for the updating mode than that of the non-updating mode. However, on the basis of average performance, the non-updating mode performs better (avg.  $R^2 = 0.839$ ) than the updating mode (avg.  $R^2 = 0.818$ ). In the present study, models T1, T4 and T5 are simple one input one output non-updating models where the relationship of sediment concentration with discharge, rainfall and

temperature as independent variables has been explored. According to the performance parameters (R and  $R^2$  values), among discharge, temperature and rainfall as independent variables, the sediment concentration is most affected by rainfall (highest  $R^2$  value). In the real scenario also, we know that rainfall has a direct effect on sediment concentration as an increase in rainfall leads to an increase in discharge which in turn increases sediment concentration. Also, higher rainfall leads to greater erosion resulting in higher sediment supply to the river. This indirect relationship between rainfall and discharge, although physically observable, is not seen in the statistical analysis. The rainfall data contains several nil values due to which the degree of association between rainfall and sediment concentration, as seen in statistical correlation is very low. However, this indirect relationship is very well brought out with ANN modeling as model T4a is the best performing model. Models T2, T6 and T7 have used a combination of either discharge-rainfall; dischargetemperature or rainfall-temperature as input parameters against sediment concentration. In this scenario, according to the performance parameters, the rainfall-temperature (T7) combination of inputs is seen to work relatively better. The performance is the best for the model in which only rainfall has been used as input (T4-a). This implies that the generally accepted belief of better performance of multi-input ANN models may not hold true always. Model T3 has used all three variables as inputs and the model is seen to perform well with high  $R^2$  value and low error. However, it is not the best performing model. Models T1-T7 have been trained in the non-updating mode where previous time-step values have not been employed as network input. Models T1a-T7a, represent the updating mode models. Non updating models T1, T2, T5, T6 and T7 are seen to perform better than the corresponding models in the updating mode. However, updating models T3-a and T4-a perform better than corresponding non-updating models. This implies that use of previous time step values as inputs (updating mode) may not necessarily improve model performance and vice versa.

Some generalized and some model specific observations can be made from the response plots. The overall trend of sediment concentration is well captured by the models. It is also interesting to note in the response plots that when the magnitude of values of sediment concentration is smaller, the variation or fluctuation in it is also low and when the magnitude of values is larger, the fluctuation or variation is also large. The network error i.e. difference between observed and ANN predicted sediment concentration, is generally greater when values of observed sediment concentration are higher. In model T1, it can be seen that there is a general overprediction (Output>Target; negative errors) of sediment concentration when the magnitude of the variable is low (low points of the curve). On the contrary, there is a marked under prediction (Output<Target; positive errors) during the highest magnitude time (high points of the curve). The network errors are much smaller for model T1-a as can be seen in the response and evaluation plots. Among models T2 and T2-a, the errors are lesser for the former. Mostly, target values are greater than the model computed outputs resulting in under prediction which is markedly higher during peak sediment concentration period. Errors are larger for model T3 than for model T3-a with a similar under prediction of high values and over prediction of low values. In models T4 and T4-a, the overall trend is very well captured by ANN. Over prediction of low values is much lesser in this case although there is under prediction of higher values seen with the peaks in the response plots. The performance of models T5 and T5-a is also similar in the sense that the errors show similar variations and the response plot also shows similar phases of under and over prediction. Model T-6a has several continuous over predicted phases as compared with model T6 where sediment concentration values have been closely predicted and the overall trend has been well captured. Among models T7 and T7-a, the former has more errors than the latter.

It is clear from the above discussion that sediment concentration values are well predicted with ANN in the Gangotri scenario and relationships which are not expressed by normal statistical correlation are very well brought out with ANN. The best performing model is the one where only Rainfall is employed as the input parameter and previous time step values are also used as inputs (model T4-a).

ii) **Maneri-** In the present study, modeling has been carried out using two approaches- daily and three hourly and the inputs increase from model T1/1a to T6/6a. However, no clear increasing or decreasing trend of coefficient of determination with this increase is observed.

The regression plots show R values obtained for training and testing data subsets of models based on daily data (T-T6) as well as models based on three hourly data (T1-a to T6-a). Higher R values in the testing rather than training subsets in all the models indicates that no data over-fitting has occurred, which should be the case. The regression plots obtained during testing of data for models in both the approaches (T-T6 and T1a-T6a) have been shown. The performance is highest for model T6 ( $R^2$ =0.970) [Table 3] which employs maximum number of inputs in the daily approach. Overall, the range of coefficient of determination is 0.891 to 0.970 which indicates that the overall performance of the models is good and the SSC values have been closely predicted. It can be seen that as an average, that the three hourly approach models tend to perform relatively better than the corresponding daily approach models [Avg.  $R^2$  in daily approach= 0.93; Avg.  $R^2$  in three-hourly approach= 0.94]. It is also observed that the use of previous sediment concentration values as network inputs enhances model performance. The response of all the models was observed with the help of plots where the observed (target) values of SSC were plotted with the model calculated (output) values against time. The errors obtained in the process were also plotted against time. The training and evaluation response plots of best performing models for Maneri, T6 (daily approach) and T4a (three hourly approach)

The overall trend of SSC is well captured by the models, but there are two important characteristics of the observed (target) and ANN predicted (output) sediment concentration values which can be seen in the performance plots. Firstly, when the magnitude of values is smaller, the variation or fluctuation in it is also low. This can be seen during the earlier and later part of the curve. Secondly, when the magnitude is greater, the variation is also larger. This corresponds to the middle part of the curve. The performance plots show that the network error i.e. difference between observed and ANN predicted sediment concentration, is generally greater when values of observed sediment concentration are higher, approximately the period of July and August when discharge and sediment concentration and extremely high in the Bhagirathi river. Errors in the period before and after that are smaller and so are the observed values of sediment concentration. This time corresponds to the onset (June) and waning (September-October) respectively of monsoons in the study area. Also interesting to note is, there is a general under-prediction during the high sediment concentration period of July-August (observed values are mostly higher than predicted ones, as can be seen in the performance plots) and there is a general over-prediction in the low sediment concentration period of June, September and October (observed values are lesser than predicted values). Nevertheless, despite the high variation during the peak monsoon period, ANN has been able to closely predict the sediment concentration values.

This study shows that short duration geo-hydrological time series data can also be predicted by ANN modeling with substantial accuracy. Prediction would not just help in filling gaps in hydrological data but will also enable continuous monitoring of sediment concentration which is difficult in the Himalayan Rivers where floods and other such eventualities commonly occur.

#### iii) NAR

It can be seen in the response plots that most of the discharge values are near perfectly predicted by ANN. Extremely high values of coefficient of determination have been obtained [Maneri, 0.95; Uttarkashi, 0.92; Rishikesh, 0.93]. The predicted and observed discharge values closely match on the rising and falling limb of the discharge curve. However, it is observed that the peak values of discharge are under predicted by the model. In this particular case, despite the fact that the peak values of observed discharge are exceptionally high, ANN has still been able to predict them to an extent. The tail ends in the response plots are near perfectly predicted by the models. Errors are mostly confined to the peak areas although even there to an extent the values have been predicted. The discharge at Rishikesh is the combined discharge of Alaknanda and Bhagirathi Rivers and at this location the fluctuations in discharge are not as high as in the upstream rivers possibly because of lower gradient and wider channel.

The results of single series modeling at Maneri, Uttarkashi and Rishikesh show that even when a single variable is involved, ANN has the ability to learn and predict trends. The continuous monitoring of sediment concentration in the Himalaya is difficult and even concerned agencies normally collect monthly or fortnightly data. In such situations single series predictions can be used to make prediction of other variables. The experimental study indicates that ANN is a robust tool which has the ability to predict hydrologic variables even when a single series or variable is involved. In the present case, ANN has successfully predicted the values of discharge at three different locations on Bhagirathi and Ganges using only previous day values of discharge as input. Prediction using a single time series can be of immense use in scenarios where data availability is difficult and also in flood monitoring.

# CHAPTER 6

# CONCLUSIONS

6.1 Conclusions

6.2 Future Scope

#### **6.1 CONCLUSIONS**

- ANN models created have successfully predicted the Suspended Sediment Concentration [SSC] values in the Bhagirathi River at Gangotri, Maneri, Uttarkashi and Rishikesh to a high degree of accuracy, notwithstanding the temporal variations.
- High coefficient of determination values of 0.88 (at Gangotri), 0.97(at Maneri) and 0.92-0.95 [Maneri, Uttarkashi and Rishikesh] have been obtained. Mean square error, which measures the second moment of error, incorporating both bias and variance, has been used for error estimates. Small Mean square error values (<0.002) have been obtained for all models.
- The use of Levenberg Marquardt optimisation function has led to better, faster and more accurate performance than GDX function (Gradient Descent with adaptive learning rate). Overall, the use of NARX (Non linear Autoregressive with exogenous Input) improvisation has yielded good prediction results.
- Overall, the modeling performance is better at Maneri(short period) than at Gangotri (longer period) implying that longer time period data may not always result in better models. Although the length of data is short but it has a high frequency (three hourly values) which leads to performance improvement.

### GANGOTRI

 Data trends and analysis shows Suspended Sediment Concentration [SSC] is greatly controlled by Discharge, Rainfall and Temperature. Statistical correlation shows good association between SSC and discharge. However, statistical correlation shows less degree of association between Rainfall-SSC and Temperature-SSC.

- Modeling has been carried out in two modes: updating [antecedent time values used as inputs] and non-updating [antecedent time values not used as inputs]. Ablation period [May-October] discharge, rainfall, temperature and SSC data of five years has been used. Modeling in the updating mode does not significantly improve model performance. Non-updating mode models perform marginally better (avg.  $R^2 = 0.839$ ) than the updating mode (avg.  $R^2 = 0.818$ ). This implies that the use of antecedent time values as inputs may not necessarily improve model performance.
- The performance range of ANN models is not too large:  $R^2 = 0.777$  to 0.885 [T1a-T7a, models using antecedent values i.e. updating mode];  $R^2 = 0.819$  to 0.877 [T1-T7, models not using antecedent values i.e. non-updating mode]. With the ANN models, best performance is achieved in Model T4a, implying SSC is most affected by Rainfall (Model T4a). Out of all the input combinations, the Rainfall-Temperature [model T7] combination performs better. The result thus brings out a relationship which is not reflected in normal statistical correlation.
- The overall trend of SSC is well captured by ANN models, but, a general over prediction/ over estimation (Computed values > Observed values; negative errors) of SSC is seen when the magnitude of SSC is low (seen at the tails of the response plots). Also, an under prediction/ under estimation (Computed values < Observed values; positive errors) of SSC when magnitude is high. When magnitude of SSC is low, the fluctuations in it are also lesser [earlier and later part of the curve]. On the other hand, when magnitude of SSC is high, fluctuations are also higher [middle part of the curve]. The network error, is generally greater when values of observed sediment concentration are higher.</p>

#### MANERI

 Data trends and analysis shows a high degree of association between Discharge and SSC. Both the values acme at the same time in the month of August and their low values too, correlate well in time. Also, one fold increase in water discharge leads to 2-3 fold increase in sediment concentrations.

- Modeling has been carried out using two approaches: daily and three-hourly. Although the time period remains same in both the approaches, the dataset used in the three hourly approach is six times larger. Discharge and SSC data of highest activity period [June to October] of a short duration has been used. On an average, the three hourly approach models [Avg. R<sup>2</sup>= 0.93] perform better than the daily approach models [Avg. R<sup>2</sup>= 0.93]. Use of antecedent SSC values as network inputs enhances model performance in case of Maneri.
- The SSC values have been closely predicted. The range of coefficient of determination is not large ( $R^2 = 0.891$  to 0.970). Performance is highest for model T6 ( $R^2=0.970$ ), which has the maximum number of inputs in the daily approach. At Maneri, the inclusion of one and two previous time step values of Discharge and SSC along with present discharge as network inputs leads to best prediction results (Model T6).

#### Non Linear Autoregressive Models (NAR)

- Single series predictions have been successfully carried out at Maneri, Uttarkashi and Rishikesh. The present values of discharge have been predicted using previous time step values of discharge of six water years data.
- Extremely high values of coefficient of determination have been obtained at Maneri (0.95), Uttarkashi (0.92), Rishikesh (0.93). The discharge trends have been very closely predicted. Prediction using a single time series can be of immense use in scenarios where data availability is difficult and also in flood monitoring.

An interesting outcome of modeling at Gangotri is that the rainfall: SSC and temperature: SSC relationship, which is not reflected in statistical correlation is brought out well with ANN. ANN has hence proved to be a powerful tool capable of establishing unknown dependencies with less data requirements, more flexibility and less cumbersome procedure. However, it is a rather difficult proposition to generalize any criteria of determining the optimum network architecture in ANN. Modeling with ANN is largely area and problem dependent and hence no two study areas can be modeled with similar ANN structures. Also interesting to note is that there is a general under-prediction during the high sediment concentration period and there is a general over-prediction in the low sediment concentration period and future ANN models would require this refinement.

#### 6.2 FUTURE SCOPE

In the future, a holistic hydro-social framework for modeling that integrates both water availability (hydrology) and water use (social sciences) should be developed. Understanding hydrological resource management and water use tends to fall into the domain of social scientists, who have the tools to analyze how and why societies use water in the ways they do. Five major human variables critical to hydrological modeling which have profoundly influenced water use over the last 60 years are: (1) political agendas and economic development; (2) governance: laws and institutions; (3) technology and engineering; (4) land and resource use; and (5) societal responses (Carey et al. 2014). Societal forces establish the legal, economic, political, cultural, and social drivers that actually shape water usage patterns via human modification of watershed dynamics.

Also important to understand and consider is the concept of Environment Flow Requirement (EFR) which has been developed to assess and minimize the impact of large withdrawals on the river ecosystem and the uses to which the river is put (AHEC, 2011). Environmental flows is a term to denote the quantity, timing, duration, frequency and quality of water flows required to sustain freshwater, estuarine and near shore ecosystems and the human livelihoods and well being that depend on them (Acreman and Ferguson, 2010). EFRs are essential for maintaining flow regime, sediment movement, river purity, acquatic biodiversity, societal needs and prevailing recreation. It depends on the size of the river, natural state or perceived sensitivity of the river, the desired state of the river and the uses of river water. Consequently, before defining EFR for a river, broader objectives must be determined/ quantified to indicate type of river desired. With the changing patterns of water use, it is extremely essential to make such assessments and incorporate these social variables into geohydrological models.

# **BIBLIOGRAPHY**

- Abbott, J. E. and Francis, J.R.D. Saltation and suspension trajectories of solid grains in a water stream. Philos. Trans. R. Soc. London, Ser. A, 284, 225–254. 1977.
- [2] Abrahart, R.J., See, L.M., Heppenstall, A.J., White, S.M. Neural Network Estimation of Suspended Sediment: Potential Pitfalls and Future Directions in Abrahart, R.J., See, L.M., Solomatine, D.P. Practical Hydroinformatics. Springer Verlag Berlin Heidelberg. 139-161. 2008.
- [3] Abrahart, R.J. and White, S.M. Modeling Sediment Transfer in Malawi: Comparing Back propagation Neural Network Solutions against a multiple linear regression benchmark using small data sets. Physics and Chemistry of the Earth, B 26(1): 19–24. 2001.
- [4] Acreman, M.C. and Ferguson, J.D. Environmental flows and the European water framework directive. Freshwater Biology. 55(32-48). 2010.
- [5] Altenford, C.T. Using a neural network for soil moisture predictions. ASAE Microfiche No. 92-3557, ASAE, St. Joseph, Mich. 1992.
- [6] Alternate Hydro Energy Center Report, Assessment of cumulative impact of hydropower projects in Bhagirathi and Alaknanda Basins. 2011.
- [7] American Society of Civil Engineers (ASCE) Task Committee on Application of the Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology I: preliminary concepts. Journal of Hydraulic Engineering, ASCE 5(2): 115–123. 2000a.
- [8] ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology II: hydrologic applications. Journal of Hydraulic Engineering, ASCE 5 (2): 124–137. 2000b.
- [9] Asselman, N.E.M. Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234(3–4): 228–248. 2000.
- [10] Bagnold, R.A. Bed load transport by natural rivers. Water Resources Research. 13: 303-312. 1977.
- [11] Bali, R., Awasthi, D.D., Tiwari, N.K. Neotectonic control on the geomorphic evolution of the Gangotri Glacier valley, Garhwal Himalaya. Gondwana Research 6 (4): 829–838. 2003.

- [12] Barnard, P.L., Owena, L.A., Finkela, R.C. Style and timing of glacial and paraglacial sedimentation in a monsoon-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya, Sedimentary Geology 165:199–221. 2004.
- [13] Bates, B.C., Kundzewicz, Z.W., Wu, S., Palutikof, J.P. (Eds.). Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva. 2008.
- [14] Bhatt, B.K. Preliminary study of the Bhagirathi basin between Uttarkashi and Gomukh. In: Proceeding of National Symposium on Himalayan Geology, Calcutta. Geological Society of India. Miscellaneous Publication 15:1–8. 1963.
- Bickle, J.M., Bunbury, J., Chapman, J.H., Harris, B.W.N., Fairchild, J.I., Ahmad, T., 2003.
   Fluxes of Sr into the headwaters of the Ganges. Geochim. Cosmochim. Acta. (14), 2567–2584. 2003.
- Biemans, H., Haddeland, I., Kabat, P., Ludwig, F., Hutjes, R.W.A., Heinke, J., von Bloh,
   W., Gerten, D. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour. Res. 47. 2011.
- [17] Bishop, C.M. Neural Networks for Pattern Recognition, O.U.P New York. 1995.
- [18] Bloom, A.L. Geomorphology. A systematic analysis of late Cenozoic landforms. Prentice-Hall. 1998.
- [19] Blum, M.D. and Roberts, H.H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491. 2009.
- [20] Boukhrissa, Z.A., Khanchoul, K., Le Bissonnais, Y., Tourki, M. Prediction of sediment load by sediment rating curve and neural network (ANN) in El Kebir catchment, Algeria Journal of Earth System Sciences, 122(5), 1303-1312. 2013.
- Brakenridge, G.R., Cohen, S., de Groeve, T., Kettner, A.J., Syvitski, J.P.M., Fekete, B.M.
   Calibration of satellite measurements of river discharge using a global hydrology model. J.
   Hydrol. 475, 123–136. 2012.
- [22] Campolo, M., Andreussi, P., Soldati, A. River flood forecasting with neural network model.Water Resour. Res. 35(4): 1191–1197. 1999.
- [23] Carey, M., Baraer, M., Mark, B.G., French, A., Bury, J., Young, K.R., McKenzie, J.M. Toward Hydro-social modeling: Merging human variables and the social sciences with climate-glacier runoff models (Santa River, Peru). Journal of Hydrology. 518(60-70). 2014.

- [24] Carriquiry, J.D. and Sanchez, A. Sedimentation in the Colorado River delta and upper gulf of California after nearly a century of discharge loss. Mar. Geol. 158, 125–145. 1999.
- [25] Chakrapani, G.J. Factors controlling variations in river sediment loads. Current Science, 88(4), 569–575. 2005a.
- [26] Chakrapani, G.J. and Saini, R.K. Temporal and spatial variations in water discharge and sediment load in the Alaknanda and Bhagirathi Rivers in Himalaya, India Journal of Asian Earth Sciences. 35: 545–553. 2009.
- [27] Chakrapani, G.J., Saini, R.K., Yadav, S.K. Chemical weathering rates in the Alaknanda-Bhagirathi river basins in Himalayas, India. Journal of Asian Earth Sciences. 34:347-362.
   2009.
- [28] Chang, F.J. and Chen, Y.C. A counter propagation fuzzy-neural network modeling approach to real time streamflow prediction. Journal of Hydrology. 245: 153–164. 2001.
- [29] Chidambaram, S., Ramanathan, A.L., Anandhan, P., Srinivasamoorthy, K., Prasanna, M.V. Vasudevan, S. A statistical approach to identify the hydrogeochemically active regimes in groundwaters of Erode district, Tamilnadu. Asian Journal of Water, Environment and Pollution. 5(3):123-135. 2008.
- [30] Cigizoglu, H.K. Suspended sediment estimation and forecasting using artificial neural networks. Turkish Journal of Engineering and Environmental Sciences. 26:15–25. 2002a.
- [31] Cigizoglu, H.K. Suspended sediment estimation for rivers using artificial neural networks and sediment rating curves. Turkish Journal of Engineering and Environmental Sciences. 26: 27–36. 2002b.
- [32] Cigizoglu, H.K. Estimation and forecasting of daily suspended sediment data by multi layer perceptrons, Advances in Water Resources. 27:185–195. 2004.
- [33] Cigizoglu, H.K. and Kisi, O. Methods to improve the neural network performance in suspended sediment estimation, Journal of Hydrology, 317(3–4): 221–238. 2006.
- [34] Cigizoglu, H.K. Artificial Neural Networks in Water Resources. Integration of Information for Environmental Security. 115–148. 2008.
- [35] Cohen, S., Kettner, A.J., Syvitski, J.P.M. WBMsed: a distributed global-scale riverine sediment flux model model description and validation. Comput. Geosci. 2013.
- [36] Colby, B.R. Fluvial sediments: a summary of source, transportation, deposition and measurement of sediment discharge. US Geological Survey Bulletin 1181-A, USGS, Washington D.C. 1963.

- [37] Crowder, D.W., Demissie, M., Markus, M. The accuracy of sediment loads when log transformation produces nonlinear sediment load-discharge relationships. Journal of Hydrology. 336(3–4): 250–268. 2007.
- [38] Das, S.K., Routh, J., Roychoudhury, A.N., Klump, J.V. Elemental (C, N, H and P) and stable isotope (δ15N and δ13C) signatures in sediments from Zeekoevlei, South Africa: a record of human intervention in the lake. Journal of Paleolimnology. 39(3):349-360. 2008.
- [39] Dawson, C.W. and Wilby, R. An artificial neural network approach to rainfall-runoff modeling. Hydrological Sciences Journal. 43 (1): 47-66. 1998.
- [40] Dawson, C.W. and Wilby, R.L. Hydrological modeling using artificial neural networks, Progress in Physical Geography. 25(1): 80–108. 2001.
- [41] Deka, R.L., Mahanta, C., Pathak, H., Nath, K. K., Das, S. Trends and fluctuations of rainfall regime in the Brahmaputra and Barak basins of Assam, Theoretical and Applied Climatology. 114(1-2):61-71. 2013.
- [42] Dogan, E., Yuksel, I., Kisi, O. Estimation of total sediment load concentration obtained by experimental study using artificial neural networks. Environ Fluid Mech. 7:271–288. 2007.
- [43] Doll, P., Fiedler, K., Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. 13 (12), 2413–2432. 2009.
- [44] Dudeja, D., Bartarya, S.K., Khanna, P.P., Ionic sources and water quality assessment around a reservoir in Tehri, Uttarakhand, Garhwal Himalaya. Environ. Earth Sci. 69:2513– 2527. 2013.
- [45] Eriksson, P.G., Banerjee, S., Catuneanu, O., Sarkar, S., Bumby, A.J. and Mtimkulu, M.N.
   Prime controls on Archaean-Palaeoproterozoic sedimentation: change over time.
   Gondwana Research 12: 550-559. 2007.
- [46] Equeenuddin, S. M., Tripathy, S., Sahoo, P. K., Panigrahi, M. K. Hydrogeochemical characterization of acid mine drainage and water pollution at Makum Coalfield, India. Journal of Geochemical Exploration. 105:75-82. 2010.
- [47] Equeenuddin, S. M., Tripathy, S., Sahoo, P. K., Panigrahi, M. K. Geochemistry of ochreous precipitates from coal mine drainage in India. Environmental Earth Sciences. 61:723-731.
   2010.
- [48] Fanos, A.M. The impact of human activities on the erosion and accretion of the Nile delta coast. J. Coast. Res. 11, 821–833. 1995.

- [49] Fekete, B.M. and Vörösmarty, C.J. The current status of global river discharge monitoring and potential new technologies complementing traditional discharge measurements. Predictions in ungauged basins: PUB kick-off. Proceedings of the PUB Kick-off meeting held in Brasilia, 20–22 November 2002. IAHS Publ., vol 309, pp. 129–136. 2013.
- [50] Firat, M. and Gungor, M., River flow estimation using adaptive neuro fuzzy inference system. Mathematics and Computers in Simulation. 2006.
- [51] Francke, T., López-Tarazón, J.A., Schröder, B. Estimation of suspended sediment concentration and yield using linear models, random forests and quantile regression forests. Hydrol. Process. 22 (25), 4892–4904. 2008.
- [52] French, M.N., Krajewski, W.F., Cuykendall, R.R. Rainfall forecasting in space and time using a neural network. Journal of Hydrology 137, 1–31. 1992.
- [53] Garg, V. Modeling catchment sediment yield: a genetic programming approach. Nat Hazards .70:39–50. 2014.
- [54] Garrels, R. M. and Mackenzie, F. T. Evolution of Sedimentary Rocks, Norton, New York, pp 397. 1971.
- [55] Gautam, M.R., Watanabe, K., Saegusa, H. Runoff analysis in humid forest catchment with artificial neural network. Journal of Hydrology, 235, 117–136. 2000.
- [56] Ghosh, A., Saha, S., Saraswati, P.K., Banerjee, S., Burley, S. and Gundu Rao, T.K.
   Gallitellia A Proxy for Palaeo-monsoonal upwelling on the western coast of India? Current Science 95: 1608-1611. 2008.
- [57] Girija, T.R., Mahanta, C. Fuzzy Logic and Artificial Neural Network approaches for dissolved oxygen prediction. Int. J. of Environment and Waste Management. 6(3/4): 237 – 254. 2006.
- [58] Govindaraju, R. S. and Rao, A. R. (eds). Artificial Neural Networks in Hydrology, Kluwer Academic Publishers, Amsterdam. 2000.
- [59] Gupta, H. and Chakrapani, G.J. Temporal and spatial variations in water flow and sediment load in the Narmada river. Curr. Sci. 92 (5), 679–684. 2007.
- [60] Haddadchi, A., Movahedi, N., Vahidi, E., Omid, M.H., Dehghani, A.A. Evaluation of suspended load transport rate using transport formulas and artificial neural network models (case study: Chelchay Catchment). J. Hydrodyn. 25 (3), 459–470. 2013.
- [61] Halff, A.H., Halff, H.M., Azmoodeh, M. Predicting runoff from rainfall using neural networks. Proc. Engng. Hydrol., ASCE, New York. 768–775. 1993.

- [62] Hall M.J. and Minns A.W. Rainfall-runoff modeling as a problem in artificial intelligence: experience with a neural network. BHS 4th National Hydrology Symposium, Cardiff 5.51– 5.57. 1993.
- [63] Harder, S.V., Amatya, D., Callahan, T, Trettin, C., Hakkila, J. Hydrology and water budget for a forested Atlantic coastal plain watershed, South Carolina. Journal of the American Water Resources Association. 43(3):563-575. 2007.
- [64] Harding, R., Best, M., Blyth, E., Hagemann, S., Kabat, P., Tallaksen, L.M., Warnaars, T.,
   Wiberg, D., Weedon, G.P., van Lanen, H., Ludwig, F., Haddeland, I. WATCH: current knowledge of the terrestrial global water cycle. J. Hydrometeorol. 12 (6), 1149–1156. 2011.
- [65] Haritashya, U.K. Glacio-hydrological studies of the Gangotri Glacier basin, Himalayas.
   Ph.D Thesis, Department of Earth Sciences, Indian Institute of Technology, Roorkee, India, 360 pp. 2005.
- [66] Haritashya, U.K., Singh, P., Kumar, N., Gupta, R.P. Suspended sediments from Gangotri Glacier: quantification, variability and correlations with discharge and temperature, Journal of Hydrology: 321, 116–130. 2006a.
- [67] Hartmann, J., Lauerwald, R., Moosdorfa, N. A brief overview of the GLObal River CHemistry Database, GLORICH Procedia Earth and Planetary Science. 10:23 – 27. 2014.
- [68] Hasnain, S. I. and Chauhan, D. S. Sediment transfer in the glaciofluvial environment a Himalayan perspective. Environ. Geol. 22, 205–211. 1993.
- [69] Hasnain, S.I. Factors controlling suspended sediment transport in Himalayan glacier meltwaters. Journal of Hydrology 181: 49–62. 1996.
- [70] Hasnain, S.I., Thayyen, R.J. Discharge and suspended-sediment concentration of meltwaters, draining from the Dokriani Glacier, Himalaya, India. Journal of Hydrology 218: 191–198. 1999.
- [71] Haykin, S. Neural Networks: A Comprehensive Foundation. Prentice Hall. New Jersey. 1999.
- [72] Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory. New York: Wiley and Sons. 1949.
- [73] Heng, S. and Suetsugi, T. Using artificial neural network to estimate sediment load in ungauged catchments of the Tonle Sap River Basin, Cambodia. J.Water Resour. Prot. 5(2), 111–123. 2013a.

- [74] Hewitt, K. Catastrophic landslides and their effects on the upper Indus streams, Karakoram Himalaya, northern Pakistan, Geomorphology 26, 47–80. 1998.
- [75] Hjulstrom, F. Studies of the morphological activities of rivers as illustrated by River Fyris.Bulletin of the Geological Institute, University of Uppsala. 25: 221-527. 1935.
- [76] Holtschlag, D.J. Optimal estimation of suspended-sediment concentrations in streams.Hydrological Processes 15(7), 1133–1155. 2001.
- [77] Hsu, K.L., Gao, X.G., Sorooshian, S., Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology 36 (9), 1176–1190. 1997.
- [78] Hsu, K.L., Gupta, H.V., Sorooshian, S. Artificial neural network modeling of the rainfall– runoff process. Water Resources Research 31 (10), 2517–2530. 1995.
- [79] Huntington, T.G. Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology 319, 83–95. 2006.
- [80] Ileana B., La Torre, T., Amatya, D. Callahan, T. Interpreting historical streamflow data from a third-order coastal plain watershed: Runoff response to storm events. Proceedings of the South Carolina Water Resources Conference. 2008.
- [81] Imrie, C. E., Durucan, S., Korre, A. River flow prediction using artificial neural networks: generalization beyond the calibration range. Journal of Hydrology 233(1–4): 138–153. 2000.
- [82] Isik, S. Regional rating curve models of suspended sediment transport for Turkey. Earth Sci. Inform. 6 (2), 87–98. 2013.
- [83] Jain, A.K., Singh, S., Manickavasagam, R.M. Himalayan Collision Tectonics. Memoir Gondwana Research Group 7:114. 2002.
- [84] Jain, S.K. Development of integrated sediment rating curves using ANN, Journal of Hydraulic Engineering, ASCE, 127(1), 30–37. 2001.
- [85] Joshi, S.C., Joshi, D.R., Dani, D.D. Kumaun Himalaya: A geographic perspective on resource development. Publisher, Gyanodaya Prakashan, Nainital, pp 324. 1993.
- [86] Jowhar, T.N. Chemistry of Tourmalines from the Gangotri Granite, Garhwal Higher Himalaya. Earth Science India 3, 181–194. 2010.
- [87] Kale, V.S. Geomorphic Effects of Monsoon Floods on Indian Rivers. Natural Hazards (28): 65–84. 2003.

- [88] Kao, J. J. Neural net for determining DEM-based model drainage pattern. J. Irrig. Drain. Eng. 122(2):112–121. 1996.
- [89] Karunanithi, N., Grenney, W.J., Whitley, D., Bovee, K. Neural networks for river flow prediction. J. Comp. Civ. Engng, ASCE 8 (2), 201–220. 1994.
- [90] Kaur, R., Srinivasan, R., Mishra, K., Dutta, D., Prasad, D., Bansal, G. Assessment of SWAT model for soil and water management in India. Land Use Water Resources Research, 3: 1–7. 2003.
- [91] Kettner, A.J., Restrepo, J.D., Syvitski, J.P.M. A spatial simulation experiment to replicate fluvial sediment fluxes within the Magdalena River, Colombia. J. Geol. 118, 363–379.
   2010.
- [92] Kettner, A.J. and Syvitski, J.P.M. HydroTrend v. 3.0: a climate-driven hydrological transport model that simulates discharge and sediment load leaving a river system. Comput. Geosci. 34 (10), 1170–1183. 2008.
- [93] Kettner, A.J. and Syvitski, J.P.M. Fluvial responses to perturbations in the Northern Mediterranean since the Last Glacial Maximum. Quat. Sci. Rev. 2009
- [94] Kisi, O. River flow modeling using artificial neural networks, Journal of Hydrologic Engineering, ASCE, 9(1), 60–63. 2004.
- [95] Kisi, O. Daily river flow forecasting using artificial neural networks and auto- regressive models. Turk J Eng Environ Sci 29:9–20. 2009.
- [96] Knighton, D. Fluvial forms and processes. Edward Arnold, London. 1984.
- [97] Krishnaswami, S., Singh, S.K., Dalai, T.K. Silicate weathering in the Himalaya: Role in contributing to major ions and radiogenic Sr to the Bay of Bengal. In: Somayajulu, B.L.K. (Ed.), Ocean Science, Trends and Future Directions. Indian National Science Academy and Academia International, New Delhi, pp. 23–51. 1999.
- [98] Kumar, D.N. ANN Applications in Hydrology Merits and Demerits. Invited Article in: Integrated Water Resources Planning and Management: 5:31-42. 2004
- [99] Kumar, K., Miral, M.S., Joshi, S., Pant, N., Joshi, V., Joshi, L.M. Solute dynamics of meltwater of Gangotri glacier, Garhwal Himalaya, India. Environmental Geology. 58: 1151–1159. 2009.
- [100] Kumar, M., Ramanathan, A.L., Keshari, A.K. Understanding the extent of Interaction between surface and ground water through major ion chemistry and multivariate Statistical techniques. Hydrological processes. 23(2):297-310. 2008.

- [101] Kundu, N., Panigrahi, M.K., Sharma, S.P., Tripathy, S. Delineation of fluoride contaminated groundwater around a hot spring in Nayagarh, Orissa, India using geochemical and resistivity studies. Environmental Geology. 43: 228-235. 2002.
- [102] Kundu N., Panigrahi, M.K., Tripathy, S. Munshi, S. Hart, B.R., Powell, M.A. A geochemical appraisal of Fluoride contamination of ground water in Nayagarh District, Orissa, India. Environmental Geology. 41:451-460. 2001.
- [103] La Torre, T., Ileana, B., Amatya, D., Sun, G., Callahan, T. Seasonal rainfall-runoff relationships in a lowland forested watershed in the southeastern USA. Hydrological Processes. 25:2032-2045. 2011.
- [104] Le, T.P.Q., Garnier, J., Gilles, B., Sylvain, T., Chau, V.M. The changing flow regime and sediment load of the Red River, Vietnam. J. Hydrol. 334, 199–214. 2007.
- [105] Leopold, L.B. and Maddock, T. The hydraulic geometry of stream channels and some physiographic implications. United States Geological Survey Professional Paper. 252: pp 57. 1953.
- [106] Maier, H.R. and Dandy, G.C. The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research. 32 (4): 1013–1022. 1996b.
- [107] Maier, H.R., Dandy, G.C. Understanding the behaviour and optimising the performance of back-propagation neural networks: An empirical study. Environmental Modeling and Software 13 (2): 179–191. 1998b.
- [108] Maier, H.R., Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Model. Softw. 15 (1), 101–124. 1999.
- [109] Maier, H.R. and Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and application. Environment Modeling and Software. 15: 101–124. 2000.
- [110] Mason, J.C., Price, R.K., Tem'me, A. A neural network model of rainfall-runoff using radial basis functions." J. Hydraul. 34(4): 537–548. 1996.
- [111] McLennan, S.M. Weathering and global denudation. Journal of Geology, 101:295–303. 1993.
- [112] Meade, R. H. River sediment inputs to major deltas. In Sea-Level Rise and Coastal Subsidence (eds Milliman, J. D. and Haq, B. U.), Kluwer, Boston, pp. 63–85. 1996.

- [113] Meade, R.H. and Parker, R.S. Sediment in rivers of the United States. National Water Summary, 1984. Water Supply Paper, vol. 2275. USGS, Reston, Virginia, USA, pp. 40– 60. 1985.
- [114] Melesse, A.M., Ahmad, S., McClain, M.E., Wang, X., Lim, Y.H. Suspended sediment load prediction of river systems: an artificial neural network approach. Agric. Water Manag. 98 (5), 855–866. 2011.
- [115] Mikhailova, M.V. Transformation of the Ebro River Delta under the impact of intense human-induced reduction of sediment and runoff. Water Resour. 30 (4), 370–378. 2003.
- [116] Milliman, J. D. and Meade, R. H. Worldwide delivery of river sediment to the oceans. J. Geol. 91:1–21. 1983.
- [117] Milliman, J.D., Farnsworth, K.L., Jones, P.D., Xu, K.H., Smith, L.C. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Global 8 and Planetary Change 62(3), 187-194. 2008.
- [118] Milliman, J.M., Syvitski, J.P.M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544. 1992.
- [119] Milly, P.C.D., Dunne, K.A., Vecchia, A.V. Global pattern of trends in streamflow and
- [120] Minns, A.W. and Hall, M.J. Artificial neural networks as rainfall runoff models.Hydrologic Science Journal. 41 (3): 399–417. 1996.
- [121] Morris, G.L. and Fan, J. Reservoir Sedimentation Handbook. McGraw-Hill, New York. 1998.
- [122] Mustafa, M.R., Rezaur, R.B., Saiedi, S., Isa, M.H. River Suspended Sediment Prediction Using Various Multilayer Perceptron Neural Network Training Algorithms—A Case Study in Malaysia. Water Resour. Manage. 26:1879–1897. 2012.
- [123] Nagy, H.M., Watanabe, K., Hirano, M. Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulic Engineering. 128(6): 588–595. 2002.
- [124] Naithani, A.K., Nainwal, H.C., Sati, K.K., Prasad, C. Geomorphological evidences of retreating of Gangotri glacier and its characteristics. Current Science. 80(1): 87–94. 2001.
- [125] Navone, H. D., and Ceccatto, H. A. Predicting Indian monsoon rainfall: A neural network approach. Clim. Dyn. 10:305–312. 1994.
- [126] Nordin C.F. Jr., Cranston C.C. and Mejia B.A. New Technology for Measuring Water and Suspended sediment Discharge of large rivers. Proceedings of the Second International

Symposium on River Sedimentation, 11-16<sup>th</sup> October, 1983, Nanjing, China. Beijing Water resources and Electric Power press, pp 1145-1158.

- [127] Nourani, V.,Kalantari, O.,Baghanam, A. Two semidistributed ANN-basedmodels for estimation of suspended sediment load. J. Hydrol. Eng. 17 (12), 1368–1380. 2012.
- [128] Paikaray, S., Banerjee, S., Mukherjee, S. Geochemistry of shales from the Paleoproterozoic to Neoproterozoic Vindhyan Supergroup: implications on provenance, tectonics and paleoweathering. Journal of Asian Earth Sciences 32: 34-48. 2008.
- [129] Pandey, S.K., Singh, A.K., Hasnain, S.I. Weathering and geochemical processes controlling solute acquisition in Ganga Headwater-Bhagirathi river, Garhwal Himalaya, India; Aquatic Geochemistry, 5:357–379. 1999.
- [130] Pavelsky, T.M., Durand, M.T., Andreadis, K.M., Beighley, R.E., Pajya, R.C.D, Allen, G.H., Miller, Z.F. Assessing the potential global extent of SWOT river discharge observations. Journal of Hydrology. 519B, 1516-1525. 2014.
- [131] Pelletier, J.D. A spatially distributed model for the long-term suspended sediment discharge and delivery ratio of drainage basins. J. Geophys. 2012.
- [132] Pinet, P. and Souriau, M. Continental erosion and large-scale relief. Tectonics.7:563–582.1988.
- [133] Probst, J.L. and Tardy, Y. Long range streamflow and world continental runoff fluctuations since the beginning of this century. Journal of Hydrology 94, 289–311. 1987.
- [134] Rai, R.K. and Mathur, B.S. Event-based Sediment Yield Modeling using Artificial Neural Network. Water Resources Management. 22: 423–441. 2007.
- [135] Rajaee, T., Mirbagheri, S.A., Nourani, V., Alikhani, A. Prediction of daily suspended sediment load using wavelet and neurofuzzy combined model. J. Environ. Sci. Tech. 7(1): 93-110. 2009.
- [136] Rajurkara, M.P., Kothyari, U.C., Chaube, U.C. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology. 285: 96–113. 2004.
- [137] Raman, H., and N. Sunilkumar. Multivariate modeling of water resources time-series using artificial neural networks. Hydrological Science Journal 40(2):145–163. 1995.
- [138] Ramanathan, A.L., Vaithiyanathan, P., Subramanian, V. Das, B.K. Nature and Transport of Solute load in the Cauvery River Basin, India. Water Research (28):1585-91. 1993.
- [139] Ranjithan, S., Eheart, J. W., and Rarrett, J. H. Neural network-based screening for groundwater reclamation under uncertainty. Water Resour. Res. 29(3):563–574. 1993

- [140] Raymo, M.E. and Ruddiman, W.F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122. 1992.
- [141] Reddy, S.B. Estimation of watershed runoff using artificial neural networks. Ph.D Thesis in Agricultural Engineering (unpublished) Post Graduate School, IARI, New Delhi. 2003.
- [142] Rezapour, O.M., Shui, L.T., Ahmad, D.B. Review of artificial neural networkmodel for suspended sediment estimation. Aust. J. Basic Appl. Sci. 4 (8), 3347–3353. 2010.
   Rivers. Glob. Planet. Chang. 39 (1–2), 111–126. 2003.
- [143] Routh, J., Meyers, P.A., Hjorth, T., Baskaran, M., Hallberg, R. Sedimentary geochemical record of recent environmental changes around Lake Middle Marviken, Sweden. Journal of Paleolimnology. 37(4): 529-545. 2007.
- [144] Routh, J., Meyers, P.A., Gustafsson, Ö., Baskaran, M., Hallberg, R., ScholdstrÖm, A. Sedimentary geochemical characteristics of Lake Brunnsviken, Sweden: A record of human-induced environmental changes in the watershed. Limnology and Oceanography. 49:1560–1569. 2004.
- [145] Roymoulik, M., Banerjee, S. and Mukherji, S. Correlation between sorbent characteristics and metal sorption capacity of soils around Mumbai: implications on environmental hazard management. Journal of the Geological Society of India 66: 445-452. 2005.
- [146] Rumelhart, D.E., Hinton, G.E., Williams, R.J. Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (Eds.), Parallel Distributed Processing. MIT Press, Cambridge.1986.
- [147] Sahoo, P. K., Tripathy, S., Equeenuddin, S. M., Panigrahi, M. K. Geochemical Characteristics of Coal Mine Discharge vis-à-vis Behavior of Rare Earth Elements at Jaintia Hill Coalfield, Northeastern India. Journal of Geochemical Exploration. 112: 235-243. 2012.
- [148] Saini, R.K. Phd Thesis titled 'Temporal and spatial variations on water chemistry of Alaknanda and Bhagirathi Rivers of Garhwal Himalaya". 2007.
- [149] Sajikumar, N. and Thandaveswara, B.S. A nonlinear rainfall runoff model using an artificial neural network. Journal of Hydrology. 216: 32–55. 1999.
- [150] Sarangi, A. and Bhattacharya, A.K. Comparison of Artificial Neural Network and regression models for sediment loss prediction from Banha watershed in India, Agricultural Water Management. 78: 195–208. 2005.

- [151] Sarangi, A. and Bhattacharya, A.K. Use of geomorphological parameters for sediment yield prediction from watersheds. J. Soil Water Conserv. 44 (1–2):99–106. 2000.
- [152] Sarin, M.M., Krishnaswami, S., Dilli, k., Somayajulu, B.L.K., Moore, W.S. Major ion chemistry of the Ganga–Brahmaputra river system: weathering process and the fluxes of the Bay of Bengal. Geochimica et Cosmochimica Acta 53, 997–1009. 1989.
- [153] Shamseldin, A.Y. Application of a neural network technique to rainfall runoff modeling. Journal of Hydrology. 199: 272–294. 1997.
- [154] Shiri, J. and Kisi, O. Short term and long term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. Journal of Hydrology 394, 486–493. 2010.
- [155] Shuguang, L., Jian D., Di H., Honglin Y., Congxian L., Shouye Y. and Chalov R.S. Regional variation of sediment load of Asian rivers flowing into the ocean, Vol. 44 Supp. 2001.
- [156] Shukla, M.B., Kok, R., Prasher, S.O., Clark, G., Lacroix, R.Use of artificial neural networks in transient drainage design. Transactions of the ASAE 39 (1): 119–124. 1996.
- [157] Siakeu, J., Oguchi, T., Aoki, T., Esaki, Y., Jarvie, H.P. Change in riverine suspended sediment concentration in central Japan in response to late 20<sup>th</sup> century human activities. Catena 55, 231–254. 2004.
- [158] Singh, P., Haritashya, U.K., Kumar, N., Singh, Y. Hydrological characteristics of the Gangotri Glacier, central Himalayas, India. Journal of Hydrology. 327: 55–67. 2006.
- [159] Singh, P., Haritashya, U.K., Ramasastri, K.S., Kumar, N. Diurnal variations in discharge and suspended sediment concentration, including runoff-delaying characteristics, of the Gangotri Glacier in the Garhwal Himalayas. Hydrological Processes. 19: 1445–1457. 2005a.
- [160] Singh, P., Kumar, A., Kishore, N. Meltwater storage and delaying characteristics of Gangotri glacier (Indian Himalayas) during ablation season, Hydrological Processes. 25: 159–166. 2011.
- [161] Singh, V.B., Ramanathan, A.L., Pottakkal, J.G., Kumar, M. Seasonal variation of the solute and suspended sediment load in Gangotri glacier meltwater, central Himalaya, India, Journal of Asian Earth Sciences. 79: 224–234. 2014.
- [162] Skelton, A., Claesson, L., Chakrapani, G., Mahanta, C., Routh, J., Mörth, M., Khanna, P. Coupling Between Seismic Activity and Hydrogeochemistry at the Shillong Plateau, Northeastern India. Pure and Apllied Geophysics. 165(1):45-61. 2008.

- [163] Smith, J. and Eli. R.N. Neural network models of rainfall runoff process. J. Water Resources Planning and Management, ASCE, 121 (6): 499–508. 1995.
- [164] Subramanian, V., Sediment load of Indian rivers. Curr. Sci. 64, 928–930. 1993.
- [165] Sudheer, K. P., Gosain, A. K., Ramasastri, K. S. A data driven algorithm for constructing artificial neural network rainfall runoff models. Hydrolog. Process. 16(6):1325-1330. 2002.
- [166] Sudheer, K. P., Nayak, P. C., and Ramasastri, K. S. Improving peak flow estimates in artificial neural network river flow models. Hydrolog. Process.17(3):677–686. 2003.
- [167] Syvitski, J.P.M. Deltas at risk. Sustain. Sci. 3, 23–32. 2008.
- [168] Syvitski, J.P.M., Kettner, A.J., Overeem, I., Hutton, E.W.H., Hannon, M., Brakenridge, R., Day, J., Vörösmarty, C., Saito, Y., Giosan, L., Nicholls, R.J. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686. 2009.
- [169] Syvitski, J.P.M., Kettner, A.J., Peckham, S.D., Kao, S.J. Predicting the flux of sediment to the coastal zone: application to the Lanyang watershed, Northern Taiwan. J. coast. Res. 21, 580–587. 2005.
- [170] Syvitski, J.P.M. and Milliman, J.D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 115 (1), 1–19. 2007.
- [171] Syvitski, J.P.M., Vörösmarty, C.J., Kettner, A.J., Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376– 380. 2005.
- [172] Tayfur, G. Artificial neural networks for sheet sediment transport. Hydrol. Sci. J. 47 (6), 879–892.2002.
- [173] Tempany, H. and Grist, D.H. Introduction to Tropical Agriculture. Longmans, London. 1958.
- [174] Thakkar, H. and Upadhyay, K. Damming Uttarakhand is not for the better. Article- The Hindu, Sep 27 2013.
- [175] Tokar, A.S. and Johnson, P.A. Rainfall-runoff modeling using Artificial Neural Networks.Jouranal of Hydrologic Engineering. 4(3): 232. 1999.
- [176] Tripathy, S., Panigrahi, M.K., Kundu, N. J. Soil geochemistry of a fluoride contaminated area in the Nayagarh district, Orissa, India: A factor analytical appraisal. Environmental Geochem. and Health, 27: 205-216. 2005.
- [177] Valdiya, K.S. Dynamics of Himalaya, Hyderabad: Universities Press. 1998.

- [178] Van Vliet, M.T.H, Franssen, W.H.P., Yearsley, J.R., Ludwig, F., Haddeland, I., Lettenmaier, D.P., Kabat, P. Global river discharge and water temperature under climate change. Global Environmental Change. 23:450–464. 2013.
- [179] Vörösmarty, C.J., et al. Global water data: a newly endangered species. Eos, American Geophysical Union Transactions 82 (5), 54–58. 2001.
- [180] Vorosmarty, C.J., Meybeck, M., Fekete, B., Sharma, K. The potential impact of neocastorization on sediment transport by the global network of rivers. Int. Assoc. Hydrol. Sci. Publ. 245, 261–273. 1997.
- [181] Vorosmarty, C.J., Meybeck, M., Fekete, B.M., Sharma, K., Green, P., Syvitski, J., 2003. Anthropogenic sediment retention: major global impact from registered river impoundments. Glob. Planet. Change 39, 169–190. 2003.
- [182] Walling, D.E. Human impact on land-ocean sediment transfer by the world rivers.Geomorphology. 79, 192-216. 2006.
- [183] Walling, D.E. The impact of global change on erosion and sediment transport by rivers: current progress and future challenges. The United Nations World Water development Report 3. The United Nations Educational, Scientific and Cultural Organization, Paris. 2009.
- [184] Walling, D.E. and Fang, D. Recent trends in the suspended sediment loads of the world's
- [185] Walling, D.E. and Webb, B.W. The reliability of rating curve estimates of suspended sediment yield; some further comments. In: Bordas, M.P., Walling, D.E. (eds), Sediment Budgets. IAHS Publication No. 174, IAHS Press, Wallingford, UK, 337–350. 1988.
- [186] Wilkinson, S.N., Prosser, I.P., Rustomji, P., Read, A.M. Modeling and testing spatially distributed sediment budgets to relate erosion processes to sediment yields. Environ. Model Softw. 24, 489–501. 2009.
- [187] Xiong, L., O'Connor, K.M., Goswami, M. Application of the artificial neural network in flood forecasting on a Karstic catchment. Proc. XXIX IAHR Congr., China. 29–35. 2001.
- [188] Yang, C. C., Prasher, S. O., Sreekanth, S. An artificial neural network model for simulating pesticide concentrations in soil. Trans. ASAE. 40(5):1285–1294. 1997.
- [189] Yang, C.C., Prasher, C.O., Lacroix, R. Applications of artificial neural networks to land drainage engineering. Transactions of the ASAE 39 (2): 525–533. 1996.
- [190] Yitian, L. and Gu, R.R. Modeling flow and sediment transport in a river system using an artificial neural network. Environmental Management. 31(1): 122–134. 2003.

- [191] Zhang, B. and Govindaraju, S. Prediction of watershed runoff using Bayesian concepts and modular neural networks." Water Resour. Res. 36(3):753–762. 2000.
- [192] Zhang, B. and Govindaraju, R. Geomorphology-based artificial neural networks (GANN) for estimation of direct runoff over watersheds. Journal of Hydrology. 273:18–34. 2003.
- [193] Zhang, W., Wei, X., Zheng, J., Zhu, Y., Zhang, Y. Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves. Cont. Shelf Res. 38 (15), 35–46.
   2012.

|         |       |      |        | Те     | mperature | (T), Rain | ıfall (R), | Dischar | ge (Q) ai | nd Sediment | Concer | ntration | (S) Data | at Gango | otri    |       |      |        |        |
|---------|-------|------|--------|--------|-----------|-----------|------------|---------|-----------|-------------|--------|----------|----------|----------|---------|-------|------|--------|--------|
| DATE    | т     | R    | Q      | S      | DATE      | т         | R          | Q       | S         | DATE        | т      | R        | Q        | S        | DATE    | Т     | R    | Q      | S      |
|         | [°C]  | [mm] | [m³/s] | [mg/L] |           | [°C]      | [mm]       | [m³/s]  | [mg/L]    |             | [°C]   | [mm]     | [m³/s]   | [mg/L]   |         | [°C]  | [mm] | [m³/s] | [mg/L] |
| 1-5-00  | 5.20  | 0.00 | 9.0    | 330    | 27-5-00   | 9.7       | 0          | 59.2    | 1590      | 22-6-00     | 10.1   | 0.7      | 68.0     | 1680     | 18-7-00 | 10.15 | 0.3  | 107.8  | 3235   |
| 2-5-00  | 5.23  | 0.00 | 8.6    | 290    | 28-5-00   | 9.8       | 0.4        | 58.4    | 2410      | 23-6-00     | 8.75   | 0        | 60.0     | 1250     | 19-7-00 | 9.25  | 0.3  | 113.4  | 3400   |
| 3-5-00  | 5.01  | 0.00 | 11.1   | 312    | 29-5-00   | 10.25     | 0          | 58.5    | 1900      | 24-6-00     | 6.6    | 0        | 55.0     | 830      | 20-7-00 | 11.15 | 3.6  | 137.2  | 3500   |
| 4-5-00  | 4.68  | 0.00 | 12.0   | 321    | 30-5-00   | 11.05     | 0          | 59.3    | 1300      | 25-6-00     | 8.95   | 0        | 58.0     | 705      | 21-7-00 | 11.5  | 7    | 137.2  | 3600   |
| 5-5-00  | 4.98  | 0.00 | 10.2   | 298    | 31-5-00   | 8.65      | 0          | 58.7    | 1250      | 26-6-00     | 10.75  | 0        | 67.0     | 615      | 22-7-00 | 8.5   | 6.8  | 104.9  | 3065   |
| 6-5-00  | 4.73  | 0.00 | 8.0    | 340    | 1-6-00    | 9.8       | 0          | 59.7    | 2130      | 27-6-00     | 11.7   | 0        | 70.0     | 510      | 23-7-00 | 9     | 2    | 88.9   | 3080   |
| 7-5-00  | 4.27  | 1.60 | 9.3    | 370    | 2-6-00    | 9.45      | 0          | 66.6    | 2430      | 28-6-00     | 11     | 0        | 66.0     | 1695     | 24-7-00 | 10.75 | 2.1  | 95.9   | 2620   |
| 8-5-00  | 4.33  | 0.00 | 10.0   | 410    | 3-6-00    | 11.55     | 0          | 70.8    | 2055      | 29-6-00     | 9.75   | 1.8      | 64.0     | 1805     | 25-7-00 | 11.15 | 2    | 91.1   | 2680   |
| 9-5-00  | 8.5   | 0    | 11.8   | 1060   | 4-6-00    | 8.9       | 0          | 55.7    | 1920      | 30-6-00     | 9.75   | 0.4      | 60.0     | 1520     | 26-7-00 | 11.5  | 2    | 89.6   | 2400   |
| 10-5-00 | 10.05 | 0    | 11.7   | 390    | 5-6-00    | 4.25      | 4.5        | 44.6    | 1300      | 1-7-00      | 8.75   | 1.4      | 75       | 1235     | 27-7-00 | 12    | 5.8  | 116.6  | 3245   |
| 11-5-00 | 12    | 0    | 12.1   | 710    | 6-6-00    | 9.45      | 1.8        | 35.5    | 895       | 2-7-00      | 11.75  | 0        | 83       | 1200     | 28-7-00 | 12    | 2.8  | 141.7  | 3400   |
| 12-5-00 | 13    | 0    | 15.1   | 3260   | 7-6-00    | 6.75      | 16.5       | 40.2    | 1570      | 3-7-00      | 10     | 0.4      | 80.9     | 1400     | 29-7-00 | 9.75  | 4    | 132.6  | 3200   |
| 13-5-00 | 12    | 0    | 22.7   | 2970   | 8-6-00    | 7         | 49.6       | 124     | 7450      | 4-7-00      | 9.5    | 0.6      | 100.6    | 1700     | 30-7-00 | 12    | 5.4  | 137.6  | 4115   |
| 14-5-00 | 9.95  | 0    | 23.6   | 2080   | 9-6-00    | 4.75      | 55.5       | 90      | 7130      | 5-7-00      | 12.75  | 0        | 121.4    | 2000     | 31-7-00 | 9.75  | 14.3 | 144.8  | 4755   |
| 15-5-00 | 10.85 | 1.3  | 24.8   | 1740   | 10-6-00   | 6.35      | 3.6        | 70.0    | 3250      | 6-7-00      | 13     | 0        | 139.3    | 2400     | 1-8-00  | 9.25  | 6.6  | 137.6  | 3065   |
| 16-5-00 | 10.8  | 7.1  | 30.6   | 1440   | 11-6-00   | 8.05      | 0          | 50.0    | 1200      | 7-7-00      | 14.25  | 0        | 142.7    | 2955     | 2-8-00  | 9.6   | 0.8  | 107.5  | 2375   |
| 17-5-00 | 9.6   | 0    | 35.2   | 2000   | 12-6-00   | 6.25      | 0          | 72.0    | 980       | 8-7-00      | 11.75  | 0        | 135.5    | 1735     | 3-8-00  | 8.55  | 0    | 80.4   | 2567   |
| 18-5-00 | 9.95  | 4.5  | 42.7   | 2280   | 13-6-00   | 11.6      | 0          | 80.0    | 1240      | 9-7-00      | 11.5   | 0        | 128.6    | 2525     | 4-8-00  | 8     | 0    | 83.9   | 2615   |
| 19-5-00 | 10.45 | 0    | 44.1   | 2890   | 14-6-00   | 11.45     | 0          | 87.0    | 1040      | 10-7-00     | 11     | 0        | 125.5    | 3020     | 5-8-00  | 9.25  | 0    | 93.6   | 2880   |
| 20-5-00 | 10.6  | 0    | 48.1   | 2170   | 15-6-00   | 12.45     | 0          | 93.0    | 860       | 11-7-00     | 11.75  | 2.4      | 122.6    | 3000     | 6-8-00  | 11.8  | 0    | 104.6  | 3095   |
| 21-5-00 | 9.85  | 0    | 55     | 3860   | 16-6-00   | 14.1      | 0          | 99.0    | 750       | 12-7-00     | 11.25  | 1.8      | 118.6    | 3370     | 7-8-00  | 11.7  | 0    | 112.4  | 3135   |
| 22-5-00 | 10.75 | 0    | 53.2   | 2640   | 17-6-00   | 11.4      | 0.2        | 87.0    | 530       | 13-7-00     | 10.5   | 0.8      | 115.8    | 4360     | 8-8-00  | 12    | 0    | 115.3  | 3495   |
| 23-5-00 | 11.25 | 0    | 54     | 2280   | 18-6-00   | 9.95      | 0          | 89.0    | 1925      | 14-7-00     | 12     | 0        | 137.1    | 5645     | 9-8-00  | 13.05 | 0    | 108.6  | 2765   |
| 24-5-00 | 9.5   | 0    | 58.8   | 2450   | 19-6-00   | 12.85     | 0          | 84.0    | 2000      | 15-7-00     | 12.5   | 1.2      | 173.8    | 6515     | 10-8-00 | 11.2  | 1    | 83.4   | 1860   |
| 25-5-00 | 11.45 | 0    | 65.1   | 2000   | 20-6-00   | 9.1       | 1.7        | 80.0    | 2300      | 16-7-00     | 11.5   | 5.4      | 138.2    | 5700     | 11-8-00 | 8.1   | 9.5  | 65.2   | 1540   |
| 26-5-00 | 10.6  | 0    | 60.6   | 2440   | 21-6-00   | 10.75     | 11.6       | 86.0    | 1885      | 17-7-00     | 10.75  | 5.8      | 120.5    | 5595     | 12-8-00 | 10    | 0.6  | 70.6   | 1340   |

| 13-8-00 | 11    | 4.9  | 81.7 | 1625 | 10-9-00 | 7     | 0   | 55.9 | 540 | 8-10-00  | 7.5   | 0    | 23.8 | 190  | 16-5-01 | 6.5   | 10.40 | 37.9 | 4195 |
|---------|-------|------|------|------|---------|-------|-----|------|-----|----------|-------|------|------|------|---------|-------|-------|------|------|
| 14-8-00 | 10.8  | 12.2 | 98.6 | 2315 | 11-9-00 | 7.5   | 0   | 56.8 | 830 | 9-10-00  | 6     | 0    | 23.5 | 180  | 17-5-01 | 6.45  | 0.00  | 35.4 | 5190 |
| 15-8-00 | 11.65 | 2    | 92.9 | 2495 | 12-9-00 | 8.25  | 0   | 59.6 | 710 | 10-10-00 | 4.75  | 0    | 22.2 | 164  | 18-5-01 | 7.5   | 0.00  | 27.3 | 3900 |
| 16-8-00 | 10.5  | 8    | 81.9 | 2675 | 13-9-00 | 10    | 0.8 | 64.3 | 720 | 11-10-00 | 4.85  | 0    | 20   | 171  | 19-5-01 | 6.45  | 0.00  | 24.8 | 1890 |
| 17-8-00 | 7.9   | 1.2  | 78.9 | 1870 | 14-9-00 | 9.65  | 1.4 | 65   | 640 | 12-10-00 | 4.95  | 0    | 18.4 | 155  | 20-5-01 | 8.45  | 0.00  | 24.1 | 1590 |
| 18-8-00 | 11.4  | 0    | 78.3 | 1425 | 15-9-00 | 10.35 | 0   | 64.3 | 670 | 13-10-00 | 4     | 0    | 16.4 | 150  | 21-5-01 | 7.15  | 2.00  | 24.3 | 1260 |
| 19-8-00 | 10.85 | 1.7  | 75.6 | 1735 | 16-9-00 | 9.75  | 0   | 64.2 | 640 | 14-10-00 | 3.65  | 0    | 14.2 | 142  | 22-5-01 | 8.15  | 0.00  | 25.1 | 1310 |
| 20-8-00 | 9.75  | 1.7  | 73.1 | 1535 | 17-9-00 | 10.15 | 0   | 64.6 | 630 | 15-10-00 | 3.75  | 0    | 12.9 | 140  | 23-5-01 | 9.2   | 0.00  | 27.5 | 2090 |
| 21-8-00 | 10.75 | 0.5  | 74.5 | 1505 | 18-9-00 | 9.7   | 1.6 | 65.6 | 690 | 16-10-00 | 4.7   | 0    | 12.1 | 130  | 24-5-01 | 10    | 0.00  | 31.5 | 2620 |
| 22-8-00 | 9.75  | 1.3  | 65.5 | 1405 | 19-9-00 | 9.55  | 0   | 60.4 | 480 | 17-10-00 | 8.9   | 0    | 11.3 | 140  | 25-5-01 | 11.05 | 0.00  | 36.5 | 3425 |
| 23-8-00 | 9.4   | 5.6  | 57.9 | 1300 | 20-9-00 | 9.45  | 3.6 | 46.6 | 590 | 18-10-00 | 6.9   | 0    | 11.1 | 135  | 26-5-01 | 9.95  | 0.00  | 35.7 | 1280 |
| 24-8-00 | 8.25  | 0.3  | 58.7 | 1365 | 21-9-00 | 5.15  | 2.8 | 38.9 | 290 | 19-10-00 | 6.7   | 0    | 11.1 | 125  | 27-5-01 | 7.5   | 0.00  | 34.1 | 1075 |
| 25-8-00 | 10.85 | 0    | 61.7 | 1450 | 22-9-00 | 7     | 0   | 35.3 | 180 | 20-10-00 | 6.75  | 0    | 11   | 124  | 28-5-01 | 9.9   | 0.00  | 36.7 | 1370 |
| 26-8-00 | 10.8  | 0    | 67   | 1570 | 23-9-00 | 7.75  | 0   | 32   | 170 | 1-5-01   | 7.75  | 0.00 | 8.5  | 170  | 29-5-01 | 9.25  | 2.10  | 37.5 | 1200 |
| 27-8-00 | 12.6  | 0.2  | 76.8 | 1835 | 24-9-00 | 5.65  | 0   | 28.9 | 160 | 2-5-01   | 8.25  | 0.00 | 8.5  | 180  | 30-5-01 | 7.6   | 0.00  | 37.4 | 1125 |
| 28-8-00 | 12.4  | 0    | 91   | 2500 | 25-9-00 | 5.25  | 0   | 26   | 160 | 3-5-01   | 6.75  | 0.00 | 8.8  | 110  | 31-5-01 | 9.4   | 0.00  | 40.8 | 1230 |
| 29-8-00 | 11.55 | 0    | 91.7 | 2585 | 26-9-00 | 5.9   | 0   | 23.9 | 130 | 4-5-01   | 7.6   | 0.00 | 9.3  | 220  | 1-6-01  | 10.9  | 0     | 45.4 | 1385 |
| 30-8-00 | 10.6  | 0    | 86.6 | 2220 | 27-9-00 | 2.45  | 2.8 | 22.3 | 140 | 5-5-01   | 8.85  | 0.00 | 10.4 | 440  | 2-6-01  | 12.15 | 0     | 50.5 | 1645 |
| 31-8-00 | 10.25 | 3.1  | 82.1 | 1155 | 28-9-00 | 5     | 0   | 20.4 | 130 | 6-5-01   | 11.75 | 0.00 | 11.8 | 250  | 3-6-01  | 12.4  | 0.7   | 59.8 | 1735 |
| 1-9-00  | 8.95  | 0.9  | 82.1 | 780  | 29-9-00 | 4.25  | 0   | 19.5 | 130 | 7-5-01   | 9.95  | 0.00 | 13.5 | 280  | 4-6-01  | 10    | 0.15  | 79.9 | 2952 |
| 2-9-00  | 9.95  | 0    | 85.9 | 970  | 30-9-00 | 6.3   | 0.4 | 18.9 | 111 | 8-5-01   | 9.95  | 0.90 | 15.1 | 410  | 5-6-01  | 8.125 | 0     | 59.9 | 1830 |
| 3-9-00  | 11.75 | 1    | 90.6 | 1380 | 1-10-00 | 6.65  | 0   | 18.4 | 130 | 9-5-01   | 8.8   | 0.70 | 14.3 | 1320 | 6-6-01  | 7.15  | 0     | 49.8 | 1470 |
| 4-9-00  | 10.4  | 2    | 88.9 | 930  | 2-10-00 | 5.4   | 0   | 18.4 | 111 | 10-5-01  | 10.6  | 0.00 | 14.7 | 4700 | 7-6-01  | 7.6   | 0     | 48.4 | 1170 |
| 5-9-00  | 10.45 | 0    | 94.9 | 920  | 3-10-00 | 6     | 0   | 18.6 | 120 | 11-5-01  | 12.65 | 0.00 | 19.4 | 2570 | 8-6-01  | 9.125 | 0     | 47.5 | 1395 |
| 6-9-00  | 11.2  | 0    | 98.5 | 1460 | 4-10-00 | 6.75  | 0   | 19.2 | 130 | 12-5-01  | 13.25 | 0.00 | 23.8 | 1330 | 9-6-01  | 10.35 | 0     | 46.8 | 1490 |
| 7-9-00  | 10.8  | 0.3  | 100  | 1660 | 5-10-00 | 7.5   | 0   | 20.7 | 210 | 13-5-01  | 12.8  | 0.00 | 23.1 | 2490 | 10-6-01 | 9.25  | 0     | 49.0 | 1340 |
| 8-9-00  | 9.05  | 3    | 87.4 | 1410 | 6-10-00 | 7.6   | 0   | 21.5 | 170 | 14-5-01  | 11.5  | 0.00 | 23.7 | 2500 | 11-6-01 | 12.55 | 0     | 57.3 | 1545 |
| 9-9-00  | 7.8   | 0.3  | 63.9 | 960  | 7-10-00 | 7.45  | 0   | 23   | 220 | 15-5-01  | 9.5   | 1.40 | 28.2 | 7700 | 12-6-01 | 13.25 | 0     | 68.8 | 2160 |

| 13-6-01 | 13.9  | 1   | 79.6 | 2115 | 11-7-01 | 13.65 | 3.6 | 111.1 | 4290 | 8-8-01  | 12    | 2    | 93.3  | 5720 | 5-9-01  | 8.75  | 0.00 | 101.4 | 1210 |
|---------|-------|-----|------|------|---------|-------|-----|-------|------|---------|-------|------|-------|------|---------|-------|------|-------|------|
| 14-6-01 | 12.6  | 9.8 | 86.2 | 3060 | 12-7-01 | 11.25 | 1   | 91.0  | 4500 | 9-8-01  | 11.5  | 3.2  | 137.2 | 3610 | 6-9-01  | 10.10 | 0.00 | 81.6  | 1090 |
| 15-6-01 | 10.2  | 2.7 | 87.6 | 2415 | 13-7-01 | 11.65 | 1.3 | 91.7  | 4550 | 10-8-01 | 11    | 7    | 158.8 | 1490 | 7-9-01  | 9.40  | 0.00 | 72.6  | 1040 |
| 16-6-01 | 10    | 0   | 86.6 | 2660 | 14-7-01 | 12.5  | 1.2 | 118.9 | 3700 | 11-8-01 | 11.1  | 0    | 150.3 | 1970 | 8-9-01  | 9.15  | 0.00 | 71.8  | 1470 |
| 17-6-01 | 9.8   | 1.2 | 69.5 | 1840 | 15-7-01 | 11.1  | 1.3 | 107.5 | 5000 | 12-8-01 | 11.35 | 0    | 151.6 | 2320 | 9-9-01  | 10.35 | 0.00 | 82.4  | 1300 |
| 18-6-01 | 8.5   | 1.9 | 53.0 | 1990 | 16-7-01 | 12.8  | 2.1 | 118.2 | 3650 | 13-8-01 | 13.25 | 0    | 160.0 | 2870 | 10-9-01 | 10.65 | 0.00 | 90.9  | 1550 |
| 19-6-01 | 8.25  | 1.5 | 53.0 | 1525 | 17-7-01 | 9     | 3.1 | 108.1 | 3830 | 14-8-01 | 11.5  | 4    | 174.0 | 2970 | 11-9-01 | 9.90  | 0.00 | 93.3  | 2020 |
| 20-6-01 | 11.35 | 0   | 61.8 | 2220 | 18-7-01 | 11.15 | 0   | 121.2 | 1560 | 15-8-01 | 10.55 | 2    | 127.8 | 4070 | 12-9-01 | 10.90 | 0.00 | 93.2  | 1950 |
| 21-6-01 | 12.3  | 0   | 73.5 | 2090 | 19-7-01 | 12.85 | 0   | 132.6 | 3420 | 16-8-01 | 10.85 | 1.5  | 111.9 | 3900 | 13-9-01 | 7.00  | 2.10 | 94.0  | 1470 |
| 22-6-01 | 12.2  | 0   | 80.9 | 2220 | 20-7-01 | 14.15 | 0   | 135.0 | 4050 | 17-8-01 | 11.5  | 0    | 116.6 | 4070 | 14-9-01 | 8.30  | 0.00 | 68.5  | 820  |
| 23-6-01 | 10.75 | 0.5 | 83.9 | 1910 | 21-7-01 | 14.25 | 0.1 | 175.0 | 7310 | 18-8-01 | 12.25 | 3.2  | 120.1 | 2730 | 15-9-01 | 7.40  | 0.00 | 54.8  | 640  |
| 24-6-01 | 10.5  | 5.2 | 82.7 | 660  | 22-7-01 | 13.9  | 0.3 | 176.7 | 5640 | 19-8-01 | 11.4  | 2.6  | 122.8 | 3040 | 16-9-01 | 8.85  | 1.50 | 49.9  | 500  |
| 25-6-01 | 8     | 7.6 | 80.4 | 1590 | 23-7-01 | 11.7  | 0.4 | 169.3 | 4970 | 20-8-01 | 12.3  | 0    | 123.9 | 2200 | 17-9-01 | 7.55  | 0.00 | 45.8  | 540  |
| 26-6-01 | 11    | 1.9 | 83.4 | 2150 | 24-7-01 | 12.35 | 0   | 170.1 | 3600 | 21-8-01 | 11.15 | 0    | 111.3 | 3880 | 18-9-01 | 7.25  | 0.00 | 44.0  | 670  |
| 27-6-01 | 9.5   | 1.6 | 89.7 | 1020 | 25-7-01 | 13.3  | 0   | 164.3 | 3700 | 22-8-01 | 11.75 | 0.5  | 101.3 | 3360 | 19-9-01 | 8.10  | 0.00 | 45.0  | 480  |
| 28-6-01 | 11.15 | 1.7 | 89.8 | 3660 | 26-7-01 | 12.5  | 1.3 | 166.6 | 4160 | 23-8-01 | 11.3  | 2    | 95.0  | 4250 | 20-9-01 | 8.30  | 0.00 | 45.8  | 590  |
| 29-6-01 | 12.9  | 0   | 96.3 | 2350 | 27-7-01 | 11.9  | 1.3 | 157.4 | 4410 | 24-8-01 | 8     | 1.2  | 91.0  | 2890 | 21-9-01 | 8.45  | 0.00 | 47.9  | 500  |
| 30-6-01 | 13.75 | 0   | 88.0 | 2240 | 28-7-01 | 13.1  | 0   | 149.5 | 4360 | 25-8-01 | 8.75  | 0    | 89.8  | 2380 | 22-9-01 | 8.65  | 0.00 | 49.3  | 570  |
| 1-7-01  | 12.25 | 0.6 | 89.2 | 3280 | 29-7-01 | 11.25 | 0   | 135.8 | 4620 | 26-8-01 | 9.95  | 0    | 86.4  | 2700 | 23-9-01 | 8.60  | 0.00 | 51.7  | 620  |
| 2-7-01  | 13.6  | 0   | 80.6 | 4500 | 30-7-01 | 11.05 | 0   | 122.6 | 2860 | 27-8-01 | 10.5  | 0    | 105.8 | 2550 | 24-9-01 | 8.75  | 0.00 | 52.6  | 630  |
| 3-7-01  | 13.5  | 0.6 | 91.3 | 4380 | 31-7-01 | 10.9  | 0.4 | 97.1  | 4570 | 28-8-01 | 10.5  | 0    | 113.3 | 2960 | 25-9-01 | 8.75  | 0.00 | 54.5  | 930  |
| 4-7-01  | 10.35 | 0.9 | 94.8 | 3560 | 1-8-01  | 11.9  | 0   | 96.6  | 4150 | 29-8-01 | 11.5  | 0    | 116.3 | 2740 | 26-9-01 | 7.40  | 0.00 | 55.0  | 680  |
| 5-7-01  | 11.6  | 0.6 | 76.0 | 3400 | 2-8-01  | 13.5  | 0   | 122.3 | 4210 | 30-8-01 | 9.75  | 0    | 108.9 | 2310 | 27-9-01 | 5.10  | 0.00 | 49.3  | 450  |
| 6-7-01  | 13.6  | 0   | 77.7 | 5380 | 3-8-01  | 13.75 | 0   | 142.0 | 3340 | 31-8-01 | 11    | 0    | 106.8 | 1820 | 28-9-01 | 7.40  | 0.00 | 42.8  | 500  |
| 7-7-01  | 14.25 | 0.7 | 86.3 | 3890 | 4-8-01  | 9.5   | 6.9 | 144.2 | 5550 | 1-9-01  | 9.50  | 0.00 | 104.6 | 1910 | 29-9-01 | 7.50  | 0.00 | 41.1  | 400  |
| 8-7-01  | 12.25 | 4.2 | 88.1 | 4000 | 5-8-01  | 9.25  | 0   | 119.4 | 2570 | 2-9-01  | 10.00 | 0.00 | 101.2 | 1500 | 30-9-01 | 7.75  | 5.50 | 39.6  | 370  |
| 9-7-01  | 10.9  | 2.4 | 79.5 | 4500 | 6-8-01  | 10.2  | 0   | 91.7  | 2830 | 3-9-01  | 10.75 | 0.00 | 101.2 | 1520 | 1-10-01 | 6.90  | 0.00 | 38.0  | 320  |
| 10-7-01 | 12.6  | 0   | 88.2 | 5010 | 7-8-01  | 10.7  | 0   | 93.8  | 2680 | 4-9-01  | 10.00 | 3.80 | 109.9 | 1650 | 2-10-01 | 8.30  | 0.00 | 35.0  | 210  |

| 3-10-01  | 6.50  | 0.00 | 34.2 | 230 | 11-5-02 | 9.35  | 0.00 | 15.0 | 2493 | 8-6-02  | 11.65 | 0.00 | 82.3  | 3371 | 6-7-02  | 8.25  | 0.00 | 65.5  | 6721  |
|----------|-------|------|------|-----|---------|-------|------|------|------|---------|-------|------|-------|------|---------|-------|------|-------|-------|
| 4-10-01  | 8.25  | 0.00 | 32.3 | 160 | 12-5-02 | 10.50 | 0.00 | 17.9 | 1614 | 9-6-02  | 13.25 | 0.00 | 82.2  | 3664 | 7-7-02  | 10.75 | 0.00 | 89.9  | 3107  |
| 5-10-01  | 6.50  | 0.00 | 32.0 | 190 | 13-5-02 | 11.70 | 0.00 | 23.8 | 1629 | 10-6-02 | 11.85 | 0.00 | 87.0  | 3743 | 8-7-02  | 12.00 | 0.00 | 116.0 | 3243  |
| 6-10-01  | 5.75  | 0.00 | 31.5 | 160 | 14-5-02 | 11.25 | 0.00 | 26.8 | 2536 | 11-6-02 | 12.90 | 0.00 | 97.0  | 3021 | 9-7-02  | 13.50 | 0.00 | 124.4 | 4307  |
| 7-10-01  | 7.90  | 0.00 | 30.5 | 210 | 15-5-02 | 11.85 | 4.70 | 31.1 | 5243 | 12-6-02 | 11.50 | 2.50 | 93.0  | 2443 | 10-7-02 | 13.15 | 0.00 | 107.8 | 6000  |
| 8-10-01  | 7.00  | 0.00 | 29.7 | 200 | 16-5-02 | 11.25 | 0.00 | 36.6 | 7114 | 13-6-02 | 8.00  | 0.00 | 73.0  | 1943 | 11-7-02 | 13.25 | 0.00 | 112.6 | 5579  |
| 9-10-01  | 8.00  | 0.00 | 29.6 | 210 | 17-5-02 | 11.30 | 0.00 | 56.2 | 6429 | 14-6-02 | 10.00 | 0.00 | 77.3  | 1971 | 12-7-02 | 13.00 | 0.00 | 108.1 | 6343  |
| 10-10-01 | 8.35  | 0.00 | 29.4 | 210 | 18-5-02 | 11.20 | 0.00 | 50.0 | 6571 | 15-6-02 | 11.10 | 0.00 | 75.0  | 1943 | 13-7-02 | 12.25 | 0.00 | 112.1 | 6829  |
| 11-10-01 | 7.10  | 0.00 | 29.7 | 120 | 19-5-02 | 8.65  | 0.00 | 50.6 | 6500 | 16-6-02 | 10.00 | 0.00 | 72.9  | 1821 | 14-7-02 | 12.75 | 0.00 | 125.1 | 5657  |
| 12-10-01 | 4.25  | 0.00 | 29.1 | 130 | 20-5-02 | 5.50  | 0.00 | 47.0 | 4386 | 17-6-02 | 9.65  | 0.00 | 73.0  | 1400 | 15-7-02 | 12.40 | 0.00 | 138.4 | 11093 |
| 13-10-01 | 3.25  | 0.00 | 26.7 | 130 | 21-5-02 | 4.55  | 0.00 | 43.0 | 2464 | 18-6-02 | 7.75  | 0.00 | 65.2  | 1250 | 16-7-02 | 10.85 | 0.00 | 144.3 | 5579  |
| 14-10-01 | 4.25  | 0.00 | 25.7 | 150 | 22-5-02 | 7.25  | 0.00 | 41.4 | 1914 | 19-6-02 | 10.35 | 0.00 | 64.3  | 950  | 17-7-02 | 14.35 | 0.00 | 162.1 | 5764  |
| 15-10-01 | 3.00  | 0.00 | 24.3 | 145 | 23-5-02 | 10.25 | 0.00 | 43.5 | 2214 | 20-6-02 | 7.15  | 0.00 | 55.5  | 1021 | 18-7-02 | 11.40 | 2.60 | 177.5 | 3707  |
| 16-10-01 | 3.60  | 0.00 | 24.3 | 140 | 24-5-02 | 7.95  | 0.00 | 46.3 | 1350 | 21-6-02 | 9.70  | 0.00 | 60.2  | 1157 | 19-7-02 | 13.00 | 0.00 | 167.4 | 3179  |
| 17-10-01 | 3.85  | 0.00 | 22.9 | 145 | 25-5-02 | 9.55  | 0.00 | 41.3 | 1143 | 22-6-02 | 11.50 | 0.00 | 69.1  | 1586 | 20-7-02 | 13.35 | 0.00 | 173.6 | 3450  |
| 18-10-01 | 2.90  | 0.00 | 21.8 | 135 | 26-5-02 | 8.00  | 0.00 | 39.1 | 907  | 23-6-02 | 12.25 | 0.00 | 84.5  | 3321 | 21-7-02 | 13.40 | 0.00 | 184.0 | 3271  |
| 19-10-01 | 2.85  | 0.00 | 21.0 | 130 | 27-5-02 | 7.55  | 0.00 | 36.3 | 950  | 24-6-02 | 16    | 0.00 | 97.4  | 2643 | 22-7-02 | 12.65 | 1.30 | 193.5 | 2729  |
| 20-10-01 | 5.15  | 0.00 | 20.8 | 130 | 28-5-02 | 10.40 | 0.00 | 36.4 | 621  | 25-6-02 | 9.75  | 0.00 | 88.4  | 2879 | 23-7-02 | 11.50 | 0.00 | 161.5 | 5021  |
| 1-5-02   | 10.00 | 0.00 | 11.0 | 301 | 29-5-02 | 5.20  | 0.00 | 33.2 | 500  | 26-6-02 | 12.50 | 0.00 | 84.8  | 2600 | 24-7-02 | 11.35 | 0.00 | 161.7 | 3814  |
| 2-5-02   | 8.11  | 0.00 | 11.3 | 320 | 30-5-02 | 6.25  | 1.20 | 32.7 | 393  | 27-6-02 | 10.60 | 0.50 | 82.5  | 2764 | 25-7-02 | 12.50 | 0.00 | 152.7 | 4293  |
| 3-5-02   | 9.23  | 0.00 | 11.1 | 317 | 31-5-02 | 7.00  | 0.00 | 35.7 | 671  | 28-6-02 | 12.25 | 2.20 | 80.4  | 3136 | 26-7-02 | 11.60 | 0.00 | 132.9 | 3457  |
| 4-5-02   | 11.11 | 2.20 | 12.2 | 325 | 1-6-02  | 8.00  | 0.00 | 38.9 | 564  | 29-6-02 | 12.00 | 0.00 | 87.1  | 3521 | 27-7-02 | 11.70 | 0.00 | 127.6 | 2814  |
| 5-5-02   | 10.43 | 0.00 | 11.2 | 308 | 2-6-02  | 8.70  | 0.00 | 42.2 | 936  | 30-6-02 | 12.10 | 0.00 | 103.1 | 2914 | 28-7-02 | 11.00 | 0.00 | 128.7 | 2829  |
| 6-5-02   | 11.12 | 0.00 | 12.3 | 290 | 3-6-02  | 7.55  | 0.00 | 46.3 | 757  | 1-7-02  | 11.25 | 1.60 | 114.7 | 3536 | 29-7-02 | 11.85 | 0.00 | 136.3 | 3207  |
| 7-5-02   | 9.87  | 0.00 | 11.7 | 319 | 4-6-02  | 10.00 | 0.00 | 58.3 | 2114 | 2-7-02  | 12.50 | 0.00 | 118.7 | 5386 | 30-7-02 | 10.75 | 0.00 | 127.7 | 3521  |
| 8-5-02   | 8.45  | 0.00 | 12.0 | 357 | 5-6-02  | 8.90  | 0.00 | 60.4 | 2414 | 3-7-02  | 14.25 | 0.00 | 132.8 | 6121 | 31-7-02 | 11.90 | 0.00 | 123.2 | 3607  |
| 9-5-02   | 9.80  | 0.00 | 13.0 | 250 | 6-6-02  | 8.55  | 0.00 | 66.1 | 3686 | 4-7-02  | 13.10 | 0.00 | 119.0 | 4779 | 1-8-02  | 12.60 | 0.00 | 129.5 | 4700  |
| 10-5-02  | 11.90 | 0.00 | 14.0 | 514 | 7-6-02  | 10.65 | 0.00 | 70.5 | 3914 | 5-7-02  | 11.25 | 2.00 | 78.6  | 5607 | 2-8-02  | 13.60 | 0.00 | 127.5 | 5500  |

| 3-8-02  | 14.15 | 0.00  | 121.5 | 4030 | 31-8-02 | 9.00 | 0.40  | 85.4 | 1730 | 28-9-02  | 6.35 | 0.00 | 26.2 | 150 | 6-5-03  | 4.73  | 0   | 8    | 340  |
|---------|-------|-------|-------|------|---------|------|-------|------|------|----------|------|------|------|-----|---------|-------|-----|------|------|
| 4-8-02  | 11.25 | 15.30 | 113.9 | 4350 | 1-9-02  | 9.50 | 1.80  | 89.8 | 1260 | 29-9-02  | 6.55 | 0.00 | 24.7 | 170 | 7-5-03  | 4.27  | 1.6 | 9.3  | 370  |
| 5-8-02  | 9.95  | 4.40  | 100.0 | 3630 | 2-9-02  | 9.00 | 1.60  | 84.4 | 1790 | 30-9-02  | 6.10 | 0.00 | 24.2 | 170 | 8-5-03  | 4.33  | 0   | 10   | 410  |
| 6-8-02  | 10.35 | 2.40  | 101.3 | 2050 | 3-9-02  | 9.50 | 1.80  | 76.7 | 1100 | 1-10-02  | 7.05 | 0.00 | 24.1 | 160 | 9-5-03  | 4.25  | 0   | 8    | 500  |
| 7-8-02  | 8.70  | 2.70  | 91.9  | 2770 | 4-9-02  | 6.05 | 2.80  | 62.3 | 1010 | 2-10-02  | 7.0  | 0.00 | 23.7 | 170 | 10-5-03 | 3.8   | 0   | 8.1  | 620  |
| 8-8-02  | 11.25 | 8.80  | 103.3 | 3470 | 5-9-02  | 8.30 | 1.40  | 52.8 | 490  | 3-10-02  | 7.15 | 0.00 | 23.2 | 190 | 11-5-03 | 5.55  | 0   | 8.2  | 300  |
| 9-8-02  | 11.75 | 0.00  | 118.8 | 4020 | 6-9-02  | 6.75 | 15.40 | 44.1 | 1200 | 4-10-02  | 7.1  | 0.00 | 23.2 | 160 | 12-5-03 | 5.35  | 0   | 8.3  | 550  |
| 10-8-02 | 13.75 | 0.00  | 126.0 | 4010 | 7-9-02  | 1.75 | 15.20 | 38.1 | 350  | 5-10-02  | 7.35 | 0.00 | 24.0 | 160 | 13-5-03 | 6.05  | 2.4 | 8.4  | 250  |
| 11-8-02 | 12.60 | 12.60 | 140.2 | 4180 | 8-9-02  | 2.60 | 47.00 | 29.1 | 230  | 6-10-02  | 7.5  | 0.00 | 25.2 | 120 | 14-5-03 | 4.65  | 0   | 8.5  | 600  |
| 12-8-02 | 12.00 | 0.00  | 111.6 | 5200 | 9-9-02  | 5.35 | 8.40  | 24.5 | 220  | 7-10-02  | 4.7  | 0.00 | 24.9 | 80  | 15-5-03 | 5.975 | 0   | 8.7  | 750  |
| 13-8-02 | 9.90  | 12.40 | 118.8 | 3100 | 10-9-02 | 4.90 | 6.10  | 20.2 | 140  | 8-10-02  | 4.35 | 0.00 | 23.9 | 80  | 16-5-03 | 5.5   | 0   | 11   | 1320 |
| 14-8-02 | 9.65  | 5.80  | 104.7 | 2900 | 11-9-02 | 3.40 | 14.90 | 19.2 | 900  | 9-10-02  | 6.15 | 0.00 | 23.2 | 80  | 17-5-03 | 7.35  | 0   | 16.5 | 2500 |
| 15-8-02 | 8.60  | 3.30  | 90.0  | 2860 | 12-9-02 | 3.90 | 43.60 | 19.3 | 410  | 10-10-02 | 7.5  | 0.00 | 23.0 | 80  | 18-5-03 | 6.5   | 0   | 21.2 | 1870 |
| 16-8-02 | 9.25  | 4.40  | 87.6  | 2160 | 13-9-02 | 2.10 | 72.2  | 22.8 | 960  | 11-10-02 | 5.7  | 0.00 | 22.3 | 80  | 19-5-03 | 7.25  | 0   | 22.4 | 2920 |
| 17-8-02 | 10.10 | 0.60  | 89.5  | 2490 | 14-9-02 | 7.20 | 3.50  | 25.0 | 350  | 12-10-02 | 5.6  | 0.00 | 22.0 | 80  | 20-5-03 | 8     | 0   | 24.1 | 4730 |
| 18-8-02 | 11.75 | 0.00  | 91.8  | 2650 | 15-9-02 | 5.75 | 0.00  | 29.6 | 420  | 13-10-02 | 4    | 0.00 | 22.0 | 80  | 21-5-03 | 8.35  | 0   | 29.6 | 2240 |
| 19-8-02 | 11.00 | 3.00  | 91.4  | 2060 | 16-9-02 | 7.75 | 0.00  | 41.7 | 430  | 14-10-02 | 3.5  | 0.00 | 22.0 | 80  | 22-5-03 | 9     | 1.6 | 31.8 | 1850 |
| 20-8-02 | 10.45 | 0.20  | 83.9  | 2410 | 17-9-02 | 7.65 | 0.00  | 47.2 | 280  | 15-10-02 | 4    | 0.00 | 21.2 | 80  | 23-5-03 | 7.15  | 0   | 31.7 | 2140 |
| 21-8-02 | 10.25 | 0.20  | 87.0  | 2030 | 18-9-02 | 5.70 | 0.00  | 48.5 | 270  | 16-10-02 | 4.4  | 0.00 | 20.4 | 80  | 24-5-03 | 4.75  | 0   | 30.7 | 1560 |
| 22-8-02 | 10.60 | 0.30  | 86.6  | 2070 | 19-9-02 | 6.25 | 0.00  | 48.4 | 210  | 17-10-02 | 4.65 | 0.00 | 19.7 | 80  | 25-5-03 | 6.85  | 0   | 30.9 | 970  |
| 23-8-02 | 10.85 | 1.50  | 90.8  | 2540 | 20-9-02 | 6.40 | 0.00  | 46.8 | 220  | 18-10-02 | 2.75 | 0.00 | 19.4 | 80  | 26-5-03 | 7.55  | 5.2 | 28.6 | 1100 |
| 24-8-02 | 11.25 | 8.20  | 97.9  | 3160 | 21-9-02 | 6.00 | 0.00  | 42.5 | 240  | 19-10-02 | 3    | 0.00 | 18.5 | 80  | 27-5-03 | 6.5   | 1.2 | 27.9 | 730  |
| 25-8-02 | 9.50  | 12.20 | 98.9  | 2700 | 22-9-02 | 6.55 | 0.00  | 40.4 | 240  | 20-10-02 | 3.5  | 0.00 | 17.7 | 80  | 28-5-03 | 7.9   | 0   | 29.6 | 1290 |
| 26-8-02 | 11.00 | 9.40  | 111.3 | 2690 | 23-9-02 | 7.35 | 0.00  | 39.0 | 200  | 1-5-03   | 5.20 | 0.00 | 9.0  | 330 | 29-5-03 | 6.6   | 0   | 34.9 | 1270 |
| 27-8-02 | 10.15 | 4.90  | 106.7 | 3370 | 24-9-02 | 7.30 | 0.00  | 38.4 | 180  | 2-5-03   | 5.23 | 0.00 | 8.6  | 290 | 30-5-03 | 8.1   | 0   | 38.5 | 1660 |
| 28-8-02 | 11.05 | 0.00  | 100.9 | 3000 | 25-9-02 | 6.50 | 0.00  | 35.0 | 210  | 3-5-03   | 5.01 | 0.00 | 11.1 | 312 | 31-5-03 | 10    | 0   | 38.5 | 1020 |
| 29-8-02 | 10.65 | 1.00  | 90.6  | 2350 | 26-9-02 | 4.85 | 0.00  | 30.3 | 170  | 4-5-03   | 4.68 | 0.00 | 12.0 | 321 | 1-6-03  | 10.7  | 0   | 40.3 | 1060 |
| 30-8-02 | 9.50  | 0.50  | 84.5  | 2250 | 27-9-02 | 5.75 | 0.00  | 26.7 | 200  | 5-5-03   | 4.98 | 0.00 | 10.2 | 298 | 2-6-03  | 9.4   | 5.5 | 42.8 | 1050 |

|         |       |      | -     |      |         |       |       |       |      |         |       |      |       |      |         |       |      |       |      |
|---------|-------|------|-------|------|---------|-------|-------|-------|------|---------|-------|------|-------|------|---------|-------|------|-------|------|
| 3-6-03  | 10.00 | 0.00 | 48.9  | 1990 | 1-7-03  | 9.55  | 0.00  | 95.1  | 2310 | 29-7-03 | 10.85 | 2.80 | 140.3 | 2800 | 26-8-03 | 12.10 | 0.00 | 108.8 | 1710 |
| 4-6-03  | 11.50 | 0.00 | 55.8  | 1270 | 2-7-03  | 11.05 | 0.00  | 104.6 | 2490 | 30-7-03 | 10.15 | 0.20 | 147.7 | 3380 | 27-8-03 | 12.15 | 8.00 | 121.3 | 1510 |
| 5-6-03  | 9.50  | 5.20 | 56.4  | 1340 | 3-7-03  | 11.80 | 0.00  | 114.7 | 3580 | 31-7-03 | 12.45 | 0.00 | 167.9 | 3550 | 28-8-03 | 11.25 | 1.00 | 129.2 | 2280 |
| 6-6-03  | 9.55  | 0.00 | 58.3  | 1520 | 4-7-03  | 13.50 | 0.00  | 123.5 | 4270 | 1-8-03  | 12.55 | 1.20 | 155.2 | 3060 | 29-8-03 | 12.10 | 0.20 | 133.0 | 1840 |
| 7-6-03  | 10.55 | 1.60 | 61.0  | 1370 | 5-7-03  | 12.40 | 12.60 | 132.7 | 2930 | 2-8-03  | 11.20 | 2.50 | 156.5 | 3040 | 30-8-03 | 10.60 | 0.60 | 117.4 | 1370 |
| 8-6-03  | 11.65 | 0.00 | 67.4  | 2080 | 6-7-03  | 8.60  | 1.30  | 113.5 | 2650 | 3-8-03  | 10.35 | 1.80 | 155.8 | 2320 | 31-8-03 | 11.00 | 0.30 | 117.2 | 1420 |
| 9-6-03  | 11.60 | 0.00 | 81.6  | 2400 | 7-7-03  | 9.00  | 1.70  | 105.0 | 2020 | 4-8-03  | 9.90  | 3.40 | 147.6 | 2340 | 1-9-03  | 11.35 | 0.00 | 120.6 | 1570 |
| 10-6-03 | 11.10 | 0.00 | 88.8  | 1800 | 8-7-03  | 10.70 | 2.00  | 112.4 | 1910 | 5-8-03  | 9.85  | 1.40 | 135.3 | 2080 | 2-9-03  | 11.40 | 0.00 | 118.0 | 1350 |
| 11-6-03 | 10.95 | 0.00 | 95.1  | 2590 | 9-7-03  | 9.95  | 5.20  | 112.1 | 2030 | 6-8-03  | 11.80 | 4.00 | 137.7 | 2530 | 3-9-03  | 11.75 | 0.00 | 104.1 | 1350 |
| 12-6-03 | 9.75  | 0.00 | 99.4  | 3150 | 10-7-03 | 9.75  | 5.60  | 100.4 | 1310 | 7-8-03  | 11.30 | 9.80 | 152.4 | 2470 | 4-9-03  | 6.75  | 7.60 | 81.5  | 1200 |
| 13-6-03 | 9.40  | 0.00 | 100.0 | 2540 | 11-7-03 | 7.15  | 11.70 | 83.8  | 910  | 8-8-03  | 11.80 | 0.60 | 133.4 | 2220 | 5-9-03  | 10.25 | 0.00 | 85.6  | 1350 |
| 14-6-03 | 9.65  | 0.00 | 96.9  | 2570 | 12-7-03 | 8.95  | 1.40  | 80.3  | 810  | 9-8-03  | 11.80 | 1.20 | 127.3 | 1850 | 6-9-03  | 10.65 | 1.00 | 91.3  | 1070 |
| 15-6-03 | 10.10 | 0.00 | 95.8  | 2230 | 13-7-03 | 10.10 | 2.90  | 83.0  | 1010 | 10-8-03 | 11.15 | 5.20 | 116.0 | 1840 | 7-9-03  | 9.75  | 0.00 | 93.1  | 1060 |
| 16-6-03 | 11.60 | 1.80 | 103.7 | 2700 | 14-7-03 | 8.95  | 0.80  | 84.8  | 1030 | 11-8-03 | 10.25 | 2.40 | 107.6 | 1490 | 8-9-03  | 9.10  | 2.40 | 92.4  | 1120 |
| 17-6-03 | 10.05 | 0.60 | 104.9 | 3710 | 15-7-03 | 11.50 | 0.00  | 95.1  | 1610 | 12-8-03 | 8.95  | 4.20 | 98.7  | 1490 | 9-9-03  | 9.75  | 0.20 | 88.6  | 1020 |
| 18-6-03 | 11.55 | 0.00 | 100.3 | 3840 | 16-7-03 | 12.20 | 3.20  | 111.6 | 2100 | 13-8-03 | 10.00 | 3.80 | 99.4  | 1360 | 10-9-03 | 8.90  | 3.00 | 75.4  | 880  |
| 19-6-03 | 10.75 | 1.30 | 85.3  | 2130 | 17-7-03 | 11.30 | 3.50  | 118.1 | 2510 | 14-8-03 | 9.00  | 0.90 | 96.9  | 1300 | 11-9-03 | 7.75  | 0.60 | 66.9  | 810  |
| 20-6-03 | 8.15  | 5.90 | 77.2  | 1990 | 18-7-03 | 10.75 | 1.40  | 113.2 | 2030 | 15-8-03 | 10.75 | 1.40 | 92.8  | 1520 | 12-9-03 | 8.85  | 1.00 | 66.2  | 670  |
| 21-6-03 | 8.70  | 1.80 | 72.5  | 1850 | 19-7-03 | 11.35 | 0.00  | 108.2 | 2290 | 16-8-03 | 9.50  | 3.70 | 88.1  | 3060 | 13-9-03 | 8.85  | 0.00 | 68.1  | 940  |
| 22-6-03 | 10.55 | 0.60 | 80.0  | 2140 | 20-7-03 | 12.45 | 0.00  | 119.6 | 2930 | 17-8-03 | 10.65 | 0.00 | 95.1  | 1230 | 14-9-03 | 10.55 | 0.00 | 73.1  | 1000 |
| 23-6-03 | 12.45 | 1.80 | 88.4  | 2240 | 21-7-03 | 13.15 | 0.60  | 127.7 | 3330 | 18-8-03 | 11.70 | 0.00 | 107.2 | 1920 | 15-9-03 | 11.50 | 0.00 | 75.8  | 840  |
| 24-6-03 | 11.60 | 0.00 | 91.0  | 2220 | 22-7-03 | 12.50 | 0.00  | 126.6 | 3270 | 19-8-03 | 12.25 | 0.80 | 117.7 | 1600 | 16-9-03 | 10.30 | 2.20 | 75.8  | 820  |
| 25-6-03 | 11.25 | 0.00 | 89.4  | 2710 | 23-7-03 | 11.95 | 0.00  | 131.9 | 3880 | 20-8-03 | 8.00  | 2.00 | 110.4 | 1600 | 17-9-03 | 9.25  | 1.20 | 75.8  | 910  |
| 26-6-03 | 12.35 | 0.00 | 98.2  | 2320 | 24-7-03 | 13.35 | 0.00  | 121.0 | 2550 | 21-8-03 | 8.90  | 0.70 | 94.7  | 1510 | 18-9-03 | 10.65 | 0.00 | 76.9  | 1110 |
| 27-6-03 | 12.20 | 0.00 | 95.5  | 2210 | 25-7-03 | 12.00 | 2.30  | 114.6 | 3090 | 22-8-03 | 7.15  | 1.00 | 79.7  | 1260 | 19-9-03 | 10.15 | 0.00 | 78.0  | 1010 |
| 28-6-03 | 7.50  | 2.30 | 87.5  | 1900 | 26-7-03 | 12.95 | 0.00  | 126.0 | 2930 | 23-8-03 | 10.75 | 0.00 | 83.2  | 990  | 20-9-03 | 10.40 | 0.00 | 82.1  | 930  |
| 29-6-03 | 10.40 | 0.00 | 95.3  | 1890 | 27-7-03 | 11.55 | 5.70  | 141.5 | 3180 | 24-8-03 | 11.75 | 0.00 | 90.1  | 980  | 21-9-03 | 11.85 | 0.00 | 86.4  | 910  |
| 30-6-03 | 9.25  | 5.50 | 92.5  | 2030 | 28-7-03 | 11.35 | 2.80  | 152.3 | 3050 | 25-8-03 | 11.75 | 0.00 | 97.3  | 1310 | 22-9-03 | 11.00 | 0.00 | 89.8  | 730  |

|          | -     |      |      |     |         |       |      |         |      |         |       |      |          |      |         |       |      |          |       |
|----------|-------|------|------|-----|---------|-------|------|---------|------|---------|-------|------|----------|------|---------|-------|------|----------|-------|
| 23-9-03  | 10.90 | 8.00 | 90.5 | 570 | 1-5-04  | 4.00  | 0.00 | 9       | 330  | 29-5-04 | 7.05  | 0.00 | 47.68    | 1900 | 26-6-04 | 7.00  | 0.00 | 71.34    | 2150  |
| 24-9-03  | 6.75  | 7.40 | 76.0 | 740 | 2-5-04  | 4.13  | 0.00 | 8.9     | 290  | 30-5-04 | 8.65  | 0.00 | 47.92    | 1300 | 27-6-04 | 7.75  | 1.90 | 62.21    | 1020  |
| 25-9-03  | 6.65  | 3.60 | 66.5 | 450 | 3-5-04  | 4.11  | 0.00 | 9.7     | 312  | 31-5-04 | 9.65  | 0.00 | 50.27    | 1250 | 28-6-04 | 7.75  | 0.00 | 58.18    | 3660  |
| 26-9-03  | 6.50  | 0.00 | 59.7 | 190 | 4-5-04  | 4.25  | 0.00 | 10.3    | 321  | 1-6-04  | 9.13  | 0.00 | 50.82    | 1385 | 29-6-04 | 11.25 | 0.00 | 63.96    | 2350  |
| 27-9-03  | 7.30  | 0.00 | 52.9 | 120 | 5-5-04  | 3.85  | 0.00 | 10.1    | 298  | 2-6-04  | 8.70  | 0.00 | 52.33    | 1645 | 30-6-04 | 12.25 | 0.00 | 75.89    | 2240  |
| 28-9-03  | 6.50  | 0.00 | 46.8 | 160 | 6-5-04  | 5.55  | 0.00 | 10.01   | 340  | 3-6-04  | 7.50  | 0.00 | 54.76    | 1735 | 1-7-04  | 13.75 | 0.00 | 88.84    | 3536  |
| 29-9-03  | 6.25  | 0.00 | 36.7 | 80  | 7-5-04  | 8.80  | 0.00 | 11.03   | 370  | 4-6-04  | 8.40  | 0.00 | 55.57    | 2952 | 2-7-04  | 14.50 | 0.00 | 104.56   | 5386  |
| 30-9-03  | 2.40  | 0.00 | 29.5 | 130 | 8-5-04  | 7.75  | 0.00 | 10.05   | 410  | 5-6-04  | 8.08  | 0.00 | 57.76    | 1830 | 3-7-04  | 12.25 | 0.20 | 116.85   | 6121  |
| 1-10-03  | 3.9   | 0.00 | 23.0 | 90  | 9-5-04  | 7.55  | 0.00 | 9.93    | 1060 | 6-6-04  | 8.90  | 0.00 | 60.53    | 1470 | 4-7-04  | 11.25 | 1.00 | 113.54   | 4779  |
| 2-10-03  | 4.6   | 0.00 | 19.2 | 150 | 10-5-04 | 7.90  | 0.00 | 10.66   | 390  | 7-6-04  | 8.95  | 0.40 | 58.97    | 1170 | 5-7-04  | 11.25 | 0.00 | 124.88   | 5607  |
| 3-10-03  | 4.5   | 0.00 | 19.3 | 70  | 11-5-04 | 8.80  | 0.00 | 11.63   | 710  | 8-6-04  | 5.75  | 0.00 | 59.82    | 1395 | 6-7-04  | 11.75 | 4.00 | 134.09   | 6721  |
| 4-10-03  | 4.8   | 0.00 | 19.5 | 120 | 12-5-04 | 9.95  | 0.00 | 12.04   | 3260 | 9-6-04  | 8.10  | 0.00 | 58.74    | 1490 | 7-7-04  | 10.75 | 0.00 | 131.94   | 3107  |
| 5-10-03  | 5.9   | 0.00 | 19.0 | 160 | 13-5-04 | 8.70  | 0.00 | 12.86   | 2970 | 10-6-04 | 7.10  | 2.20 | 52.72    | 1340 | 8-7-04  | 12.00 | 0.00 | 124.00   | 3243  |
| 6-10-03  | 7.3   | 0.00 | 19.3 | 80  | 14-5-04 | 9.35  | 0.00 | 13.29   | 2080 | 11-6-04 | 8.60  | 2.40 | 49.59    | 1545 | 9-7-04  | 11.25 | 2.60 | 108.32   | 4307  |
| 7-10-03  | 6.2   | 0.00 | 20.8 | 130 | 15-5-04 | 10.80 | 0.00 | 15.05   | 1740 | 12-6-04 | 9.20  | 0.00 | 51.08    | 2160 | 10-7-04 | 10.75 | 0.00 | 113.75   | 6000  |
| 8-10-03  | 6.0   | 0.00 | 22.1 | 90  | 16-5-04 | 10.35 | 0.00 | 32.32   | 1440 | 13-6-04 | 11.20 | 0.00 | 54.18    | 2115 | 11-7-04 | 11.10 | 0.00 | 113.40   | 5579  |
| 9-10-03  | 5.8   | 0.00 | 23.0 | 150 | 38124   | 12.1  | 0    | 33.5658 | 2000 | 38152   | 11.6  | 0    | 59.1575  | 3060 | 38180   | 11.45 | 0    | 121.6572 | 6343  |
| 10-10-03 | 5.2   | 0.00 | 23.2 | 70  | 38125   | 10.25 | 0    | 34.945  | 2280 | 38153   | 13.5  | 0    | 72.49735 | 2415 | 38181   | 11.65 | 0    | 113.7492 | 6829  |
| 11-10-03 | 4.5   | 0.00 | 23.3 | 120 | 38126   | 9.65  | 0    | 42.4324 | 2890 | 38154   | 13    | 0    | 92.5453  | 2660 | 38182   | 11.5  | 0    | 115.5726 | 5657  |
| 12-10-03 | 2.8   | 0.00 | 23.2 | 160 | 38127   | 11.45 | 0    | 63.6173 | 2170 | 38155   | 12.95 | 0    | 98.44279 | 1840 | 38183   | 11.85 | 0    | 119.8479 | 11093 |
| 13-10-03 | 4.0   | 0.00 | 22.6 | 80  | 38128   | 10.5  | 0    | 60.3845 | 3860 | 38156   | 10.65 | 0    | 110.1552 | 1990 | 38184   | 11.75 | 0    | 115.5726 | 5579  |
| 14-10-03 | 4.5   | 0.00 | 21.9 | 130 | 38129   | 11.5  | 0    | 56.9782 | 2640 | 38157   | 11.45 | 5.8  | 105.8277 | 1525 | 38185   | 11.35 | 0    | 119.2005 | 5764  |
| 15-10-03 | 4.8   | 0.00 | 21.1 | 90  | 38130   | 9.25  | 4.5  | 54.9828 | 2280 | 38158   | 10.65 | 0.6  | 108.52   | 2220 | 38186   | 12.25 | 2.9  | 124.8078 | 3707  |
| 16-10-03 | 5.0   | 0.00 | 20.1 | 150 | 38131   | 4.2   | 0.5  | 52.724  | 2450 | 38159   | 10.6  | 0    | 105.4941 | 2090 | 38187   | 10.25 | 0    | 115.7136 | 3179  |
| 17-10-03 | 5.4   | 0.00 | 19.3 | 70  | 38132   | 6.85  | 0    | 51.422  | 2000 | 38160   | 9.95  | 2.8  | 101.1497 | 2220 | 38188   | 9.5   | 0    | 115.1502 | 3450  |
| 18-10-03 | 3.3   | 3.20 | 17.2 | 120 | 38133   | 7.5   | 0    | 49.1701 | 2440 | 38161   | 9.25  | 0    | 98.69867 | 1910 | 38189   | 10.75 | 0    | 109.6767 | 3271  |
| 19-10-03 | 1.5   | 0.00 | 16.0 | 160 | 27-5-04 | 7.60  | 1.00 | 47.92   | 1590 | 24-6-04 | 10.15 | 0.00 | 99.92    | 660  | 22-7-04 | 10.40 | 0.00 | 111.12   | 2729  |
| 20-10-03 | 2.8   | 0.00 | 14.8 | 80  | 28-5-04 | 6.75  | 0.00 | 48.17   | 2410 | 25-6-04 | 8.45  | 0.00 | 85.34    | 1590 | 23-7-04 | 10.50 | 4.40 | 94.78    | 5021  |

| 24-7-04 | 9.00  | 0.00 | 82.90  | 3814 | 21-8-04 | 8.80  | 0.60  | 89.38 | 1510 | 18-9-04  | 8.50  | 0.30  | 64.95 | 690 | 16-10-04 | 0.00 | 0.00 | 24.13 | 140 |
|---------|-------|------|--------|------|---------|-------|-------|-------|------|----------|-------|-------|-------|-----|----------|------|------|-------|-----|
| 25-7-04 | 11.70 | 0.00 | 97.42  | 4293 | 22-8-04 | 10.10 | 3.60  | 87.22 | 1260 | 19-9-04  | 9.40  | 0.00  | 65.90 | 480 | 17-10-04 | 0.00 | 0.00 | 25.00 | 145 |
| 26-7-04 | 14.00 | 0.00 | 107.64 | 3457 | 23-8-04 | 7.25  | 15.60 | 86.34 | 990  | 20-9-04  | 9.10  | 0.00  | 65.50 | 590 | 18-10-04 | 0.00 | 1.10 | 25.80 | 135 |
| 27-7-04 | 12.85 | 0.40 | 123.85 | 2814 | 24-8-04 | 7.60  | 0.60  | 64.85 | 980  | 21-9-04  | 8.50  | 0.00  | 62.35 | 290 | 19-10-04 | 0.00 | 1.00 | 23.20 | 130 |
| 28-7-04 | 12.85 | 4.40 | 136.42 | 2829 | 25-8-04 | 7.40  | 14.90 | 63.03 | 1310 | 22-9-04  | 9.50  | 1.40  | 59.25 | 180 | 20-10-04 | 0.00 | 0.00 | 24.00 | 130 |
| 29-7-04 | 12.00 | 0.00 | 140.35 | 3207 | 26-8-04 | 9.75  | 0.00  | 62.11 | 1710 | 23-9-04  | 5.60  | 44.30 | 54.89 | 170 |          |      |      |       |     |
| 30-7-04 | 8.75  | 1.00 | 120.21 | 3521 | 27-8-04 | 9.40  | 0.00  | 66.00 | 1510 | 24-9-04  | 7.00  | 0.00  | 45.13 | 160 |          |      |      |       |     |
| 31-7-04 | 10.80 | 2.60 | 132.17 | 3607 | 28-8-04 | 10.35 | 0.00  | 67.05 | 2280 | 25-9-04  | 7.45  | 0.00  | 37.63 | 160 |          |      |      |       |     |
| 1-8-04  | 10.90 | 2.80 | 126.36 | 3060 | 29-8-04 | 10.30 | 0.00  | 67.26 | 1840 | 26-9-04  | 8.95  | 0.00  | 34.57 | 130 |          |      |      |       |     |
| 2-8-04  | 11.50 | 1.00 | 107.84 | 3040 | 30-8-04 | 11.25 | 0.00  | 67.21 | 1370 | 27-9-04  | 9.75  | 0.00  | 34.34 | 140 |          |      |      |       |     |
| 3-8-04  | 10.00 | 4.20 | 106.83 | 2320 | 31-8-04 | 10.25 | 0.00  | 65.65 | 1420 | 28-9-04  | 10.75 | 0.00  | 35.15 | 130 |          |      |      |       |     |
| 4-8-04  | 11.20 | 0.40 | 109.88 | 2340 | 1-9-04  | 10.90 | 0.00  | 67.77 | 780  | 29-9-04  | 9.10  | 2.20  | 35.80 | 130 |          |      |      |       |     |
| 5-8-04  | 13.25 | 0.00 | 148.58 | 2080 | 2-9-04  | 10.00 | 0.00  | 65.75 | 970  | 30-9-04  | 7.25  | 4.70  | 35.60 | 111 |          |      |      |       |     |
| 6-8-04  | 13.10 | 0.00 | 129.81 | 2530 | 3-9-04  | 9.95  | 0.00  | 61.77 | 1380 | 1-10-04  | 7.25  | 0.00  | 35.53 | 320 |          |      |      |       |     |
| 7-8-04  | 12.05 | 3.50 | 139.80 | 2470 | 4-9-04  | 9.80  | 0.00  | 63.47 | 930  | 2-10-04  | 8.25  | 0.40  | 35.36 | 210 |          |      |      |       |     |
| 8-8-04  | 10.05 | 6.40 | 148.42 | 2220 | 5-9-04  | 10.65 | 0.00  | 65.55 | 920  | 3-10-04  | 6.75  | 6.40  | 35.98 | 230 |          |      |      |       |     |
| 9-8-04  | 10.60 | 2.80 | 131.49 | 1850 | 6-9-04  | 10.70 | 0.00  | 66.05 | 1460 | 4-10-04  | 4.75  | 6.80  | 35.98 | 160 |          |      |      |       |     |
| 10-8-04 | 10.70 | 3.60 | 110.77 | 1840 | 7-9-04  | 11.25 | 0.00  | 68.84 | 1660 | 5-10-04  | 3.50  | 1.40  | 34.78 | 190 |          |      |      |       |     |
| 11-8-04 | 10.15 | 0.70 | 97.42  | 1490 | 8-9-04  | 12.10 | 0.00  | 72.87 | 1410 | 6-10-04  | 6.00  | 0.00  | 34.67 | 160 |          |      |      |       |     |
| 12-8-04 | 10.10 | 5.00 | 103.70 | 1490 | 9-9-04  | 12.25 | 0.00  | 77.98 | 960  | 7-10-04  | 6.50  | 0.00  | 32.09 | 210 |          |      |      |       |     |
| 13-8-04 | 9.85  | 4.40 | 109.27 | 1360 | 10-9-04 | 12.65 | 0.00  | 81.12 | 540  | 8-10-04  | 5.75  | 0.00  | 31.03 | 200 |          |      |      |       |     |
| 14-8-04 | 10.15 | 0.80 | 120.28 | 1300 | 11-9-04 | 10.55 | 0.00  | 81.52 | 830  | 9-10-04  | 6.50  | 0.00  | 29.38 | 210 |          |      |      |       |     |
| 15-8-04 | 10.70 | 2.20 | 117.98 | 1520 | 12-9-04 | 10.70 | 0.00  | 82.61 | 710  | 10-10-04 | 5.40  | 0.00  | 28.14 | 210 |          |      |      |       |     |
| 16-8-04 | 13.00 | 1.20 | 116.14 | 3060 | 13-9-04 | 12.65 | 0.00  | 83.94 | 720  | 11-10-04 | 0.30  | 8.80  | 26.10 | 120 |          |      |      |       |     |
| 17-8-04 | 12.85 | 0.60 | 133.71 | 1230 | 14-9-04 | 12.85 | 0.00  | 84.29 | 640  | 12-10-04 | 0.00  | 0.30  | 24.07 | 130 |          |      |      |       |     |
| 18-8-04 | 11.40 | 9.20 | 115.57 | 1920 | 15-9-04 | 11.85 | 0.00  | 83.76 | 670  | 13-10-04 | 0.00  | 0.00  | 24.90 | 130 |          |      |      |       |     |
| 19-8-04 | 8.75  | 4.20 | 90.16  | 1600 | 16-9-04 | 9.25  | 4.00  | 78.53 | 640  | 14-10-04 | 1.15  | 0.00  | 25.00 | 150 |          |      |      |       |     |
| 20-8-04 | 10.75 | 0.20 | 89.74  | 1600 | 17-9-04 | 6.70  | 2.40  | 67.26 | 630  | 15-10-04 | 1.20  | 0.00  | 24.80 | 145 |          |      |      |       |     |

|          |      |     | Daily D | ischarg | e (Q) ar | nd Sediment | Concer | ntratio | n (S) Data at | Maneri | from . | June to Octo | ber 200 | )4   |          |      |     |
|----------|------|-----|---------|---------|----------|-------------|--------|---------|---------------|--------|--------|--------------|---------|------|----------|------|-----|
| Date     | Q    | S   | Date    | Q       | S        | Date        | Q      | S       | Date          | Q      | S      | Date         | Q       | S    | Date     | Q    | S   |
|          | m³/s | ppm |         | m³/s    | ppm      |             | m³/s   | ppm     |               | m³/s   | ppm    |              | m³/s    | ppm  |          | m³/s | ppm |
| 06-01-04 | 94   | 78  | 6-28-04 | 101     | 683      | 7-25-04     | 204    | 1453    | 8-21-04       | 274    | 1778   | 9-17-04      | 151     | 1049 | 10-14-04 | 68   | 354 |
| 06-02-04 | 99   | 103 | 6-29-04 | 118     | 479      | 7-26-04     | 262    | 1648    | 8-22-04       | 327    | 1919   | 9-18-04      | 130     | 940  | 10-15-04 | 67   | 305 |
| 06-03-04 | 98   | 91  | 6-30-04 | 146     | 620      | 7-27-04     | 521    | 1828    | 8-23-04       | 302    | 2142   | 9-19-04      | 120     | 920  | 10-16-04 | 64   | 270 |
| 06-04-04 | 93   | 66  | 7-1-04  | 183     | 646      | 7-28-04     | 333    | 1272    | 8-24-04       | 274    | 2195   | 9-20-04      | 110     | 913  | 10-17-04 | 64   | 160 |
| 06-05-04 | 91   | 90  | 7-2-04  | 206     | 919      | 7-29-04     | 430    | 2045    | 8-25-04       | 268    | 1927   | 9-21-04      | 106     | 880  | 10-18-04 | 60   | 133 |
| 06-06-04 | 102  | 104 | 7-3-04  | 203     | 1064     | 7-30-04     | 399    | 2154    | 8-26-04       | 248    | 1540   | 9-22-04      | 106     | 835  | 10-19-04 | 60   | 121 |
| 06-07-04 | 103  | 119 | 7-4-04  | 228     | 1011     | 7-31-04     | 426    | 3329    | 8-27-04       | 239    | 1784   | 9-23-04      | 123     | 736  | 10-20-04 | 60   | 99  |
| 06-08-04 | 88   | 128 | 7-5-04  | 278     | 1018     | 8-1-04      | 383    | 2387    | 8-28-04       | 225    | 1313   | 9-24-04      | 94      | 589  | 10-21-04 | 60   | 49  |
| 06-09-04 | 88   | 138 | 7-6-04  | 269     | 1205     | 8-2-04      | 408    | 2304    | 8-29-04       | 193    | 1360   | 9-25-04      | 86      | 498  | 10-22-04 | 58   | 40  |
| 06-10-04 | 79   | 138 | 7-7-04  | 278     | 1212     | 8-3-04      | 341    | 1687    | 8-30-04       | 181    | 1284   | 9-26-04      | 83      | 505  | 10-23-04 | 57   | 38  |
| 06-11-04 | 78   | 130 | 7-8-04  | 265     | 1536     | 8-4-04      | 317    | 1613    | 8-31-04       | 173    | 1124   | 9-27-04      | 83      | 475  | 10-24-04 | 57   | 41  |
| 06-12-04 | 81   | 138 | 7-9-04  | 269     | 1724     | 8-5-04      | 353    | 1709    | 9-1-04        | 178    | 1355   | 9-28-04      | 83      | 464  | 10-25-04 | 55   | 43  |
| 06-13-04 | 94   | 90  | 7-10-04 | 200     | 1566     | 8-6-04      | 385    | 1979    | 9-2-04        | 181    | 1339   | 9-29-04      | 76      | 470  | 10-26-04 | 55   | 44  |
| 06-14-04 | 114  | 160 | 7-11-04 | 223     | 1595     | 8-7-04      | 398    | 2265    | 9-3-04        | 161    | 1286   | 9-30-04      | 81      | 479  | 10-27-04 | 54   | 43  |
| 06-15-04 | 171  | 175 | 7-12-04 | 249     | 1479     | 8-8-04      | 484    | 3297    | 9-4-04        | 160    | 1219   | 10-1-04      | 81      | 468  | 10-28-04 | 54   | 40  |
| 06-16-04 | 184  | 243 | 7-13-04 | 231     | 1133     | 8-9-04      | 445    | 3253    | 9-5-04        | 154    | 1171   | 10-2-04      | 78      | 406  | 10-29-04 | 54   | 35  |
| 06-17-04 | 206  | 275 | 7-14-04 | 250     | 1613     | 8-10-04     | 406    | 2833    | 9-6-04        | 152    | 1150   | 10-3-04      | 81      | 438  | 10-30-04 | 51   | 36  |
| 06-18-04 | 228  | 339 | 7-15-04 | 282     | 1944     | 8-11-04     | 377    | 2546    | 9-7-04        | 155    | 1160   | 10-4-04      | 96      | 476  | 10-31-04 | 54   | 65  |
| 06-19-04 | 234  | 431 | 7-16-04 | 297     | 1724     | 8-12-04     | 377    | 2120    | 9-8-04        | 172    | 1101   | 10-5-04      | 84      | 466  |          |      |     |
| 06-20-04 | 238  | 485 | 7-17-04 | 313     | 1851     | 8-13-04     | 383    | 2063    | 9-9-04        | 177    | 1083   | 10-6-04      | 73      | 436  |          |      |     |
| 06-21-04 | 242  | 369 | 7-18-04 | 302     | 1889     | 8-14-04     | 405    | 1958    | 9-10-04       | 182    | 1164   | 10-7-04      | 73      | 451  |          |      |     |
| 06-22-04 | 191  | 546 | 7-19-04 | 284     | 1884     | 8-15-04     | 380    | 1949    | 9-11-04       | 174    | 1076   | 10-8-04      | 70      | 441  |          |      |     |
| 06-23-04 | 202  | 629 | 7-20-04 | 319     | 1913     | 8-16-04     | 383    | 2174    | 9-12-04       | 156    | 984    | 10-9-04      | 70      | 408  |          |      |     |
| 06-24-04 | 189  | 759 | 7-21-04 | 333     | 1499     | 8-17-04     | 401    | 3016    | 9-13-04       | 156    | 874    | 10-10-04     | 68      | 320  |          |      |     |
| 06-25-04 | 154  | 691 | 7-22-04 | 266     | 1350     | 8-18-04     | 388    | 2413    | 9-14-04       | 183    | 931    | 10-11-04     | 68      | 295  |          |      |     |
| 06-26-04 | 124  | 834 | 7-23-04 | 180     | 949      | 8-19-04     | 328    | 2144    | 9-15-04       | 172    | 1015   | 10-12-04     | 68      | 341  |          |      |     |
| 06-27-04 | 101  | 844 | 7-24-04 | 155     | 1209     | 8-20-04     | 306    | 1674    | 9-16-04       | 173    | 1063   | 10-13-04     | 68      | 374  |          |      |     |

|        |        |        |        | Thre    | e hourl | y Disch | arge da | ta at Ma | neri fro | om July | to Aug | gust 20 | 04     |        |        |        |        |
|--------|--------|--------|--------|---------|---------|---------|---------|----------|----------|---------|--------|---------|--------|--------|--------|--------|--------|
| Date   | Hr:3   | 6.00   | 9.00   | 12.00   | 15.00   | 18.00   | 21.00   | 24.00    | Date     | Hr:3    | 6.00   | 9.00    | 12.00  | 15.00  | 18.00  | 21.00  | 24.00  |
| 01-Jul | 172.75 | 172.75 | 162.29 | 151.78  | 151.78  | 203.76  | 203.76  | 246.59   | 01-Aug   | 420.20  | 406.03 | 391.83  | 364.50 | 329.24 | 343.78 | 399.67 | 407.34 |
| 02-Jul | 203.76 | 203.76 | 203.76 | 172.85  | 172.85  | 172.85  | 246.59  | 267.75   | 02-Aug   | 399.67  | 358.83 | 326.55  | 470.41 | 470.41 | 470.41 | 380.63 | 390.42 |
| 03-Jul | 4.57   | 204.57 | 215.34 | 203.27  | 226.07  | 236.64  | 267.88  | 267.88   | 03-Aug   | 390.42  | 329.24 | 341.41  | 317.39 | 300.60 | 311.79 | 354.72 | 381.63 |
| 04-Jul | 226.18 | 226.18 | 183.75 | 183.75  | 183.75  | 246.59  | 288.50  | 288.50   | 04-Aug   | 365.43  | 286.20 | 276.18  | 276.18 | 276.18 | 304.93 | 374.70 | 374.70 |
| 05-Jul | 288.56 | 288.56 | 267.75 | 226.18  | 226.18  | 309.12  | 309.12  | 309.12   | 05-Aug   | 353.25  | 318.42 | 338.22  | 322.41 | 318.42 | 330.45 | 401.10 | 437.97 |
| 06-Jul | 247.03 | 247.03 | 247.03 | 225.22  | 225.22  | 267.25  | 319.99  | 373.01   | 06-Aug   | 383.03  | 373.63 | 373.63  | 374.23 | 360.06 | 374.23 | 401.10 | 437.97 |
| 07-Jul | 284.98 | 284.98 | 263.52 | 242.90  | 223.79  | 265.70  | 327.10  | 327.10   | 07-Aug   | 401.10  | 368.97 | 409.43  | 403.63 | 367.36 | 376.16 | 409.43 | 447.57 |
| 08-Jul | 265.70 | 265.70 | 261.90 | 224.23  | 222.05  | 265.70  | 304.07  | 314.46   | 08-Aug   | 440.21  | 500.38 | 526.72  | 486.52 | 429.58 | 448.08 | 513.26 | 526.35 |
| 09-Jul | 304.07 | 304.07 | 245.08 | 212.61  | 245.08  | 245.08  | 296.43  | 296.43   | 09-Aug   | 526.35  | 513.26 | 399.20  | 390.17 | 383.03 | 387.18 | 472.07 | 486.41 |
| 10-Jul | 244.18 | 244.18 | 233.92 | 179.62  | 170     | 167.56  | 263.52  | 263.52   | 10-Aug   | 464.65  | 449.56 | 449.56  | 344.12 | 318.42 | 367.68 | 397.63 | 458.28 |
| 11-Jul | 222.05 | 222.05 | 200.01 | 170.07  | 179.62  | 242.90  | 283.91  | 263.52   | 11-Aug   | 444.57  | 423.17 | 337.75  | 337.52 | 337.25 | 374.55 | 379.78 | 379.81 |
| 12-Jul | 292.99 | 292.99 | 200.99 | 201.43  | 191.04  | 242.44  | 285.27  | 285.27   | 12-Aug   | 379.81  | 364.96 | 357.35  | 349.49 | 349.49 | 379.91 | 407.37 | 429.55 |
| 13-Jul | 212.16 | 212.16 | 212.22 | 201.43  | 222.05  | 256.50  | 264.71  | 264.71   | 13-Aug   | 407.37  | 383.88 | 365.43  | 327.13 | 327.13 | 404.08 | 424.07 | 422.28 |
| 14-Jul | 222.05 | 222.05 | 222.05 | 227.01  | 219.64  | 262.18  | 283.55  | 341.84   | 14-Aug   | 399.69  | 383.88 | 374.47  | 362.63 | 356.16 | 415.48 | 481.14 | 469.34 |
| 15-Jul | 283.42 | 283.42 | 238.05 | 280.65  | 244.07  | 285.50  | 320.63  | 323.47   | 15-Aug   | 438.46  | 374.04 | 343.62  | 337.16 | 360.19 | 371.16 | 411.87 | 404.70 |
| 16-Jul | 306.96 | 306.96 | 273.96 | 262.77  | 254.36  | 323.12  | 307.35  | 343.50   | 16-Aug   | 374.65  | 358.69 | 350.42  | 350.42 | 350.42 | 435.00 | 420.98 | 420.98 |
| 17-Jul | 333.62 | 333.62 | 275.67 | 281.19  | 262.77  | 282.60  | 389.69  | 346.82   | 17-Aug   | 388.62  | 371.38 | 380.12  | 346.43 | 346.43 | 415.71 | 477.86 | 484.16 |
| 18-Jul | 324.73 | 324.73 | 317.78 | 220.56  | 281.19  | 302.36  | 318.85  | 326.36   | 18-Aug   | 468.91  | 400.49 | 365.52  | 361.82 | 361.82 | 381.76 | 393.18 | 372.18 |
| 19-Jul | 333.39 | 333.39 | 268.47 | 294.63  | 230.87  | 230.87  | 283.72  | 293.52   | 19-Aug   | 332.75  | 327.43 | 315.80  | 289.47 | 281.30 | 328.68 | 381.84 | 370.43 |
| 20-Jul | 281.65 | 281.65 | 319.69 | 298.46  | 273.17  | 316.00  | 388.76  | 388.76   | 20-Aug   | 358.62  | 300.84 | 280.08  | 273.82 | 278.00 | 297.40 | 317.28 | 343.62 |
| 21-Jul | 338.74 | 338.74 | 318.09 | 262.60  | 256.44  | 363.14  | 403.69  | 383.53   | 21-Aug   | 333.91  | 317.28 | 264.41  | 246.30 | 238.99 | 244.34 | 247.13 | 301.89 |
| 22-Jul | 320.17 | 320.14 | 321.67 | 180.96  | 189.62  | 244.85  | 286.30  | 265.70   | 22-Aug   | 306.98  | 306.89 | 301.89  | 301.89 | 326.36 | 348.16 | 342.68 | 379.76 |
| 23-Jul | 223.79 | 223.79 | 202.42 | 139.89  | 174.87  | 154.82  | 165.61  | 154.82   | 23-Aug   | 364.50  | 342.68 | 301.22  | 287.05 | 273.68 | 281.83 | 286.99 | 281.83 |
| 24-Jul | 154.82 | 154.82 | 153.24 | 161.26  | 118.43  | 118.43  | 182.32  | 192.78   | 24-Aug   | 271.03  | 256.90 | 256.90  | 235.30 | 247.37 | 285.68 | 327.76 | 312.61 |
| 25-Jul | 171.81 | 171.81 | 161.24 | 234.34  | 161.26  | 161.26  | 287.01  | 285.89   | 25-Aug   | 312.04  | 283.89 | 267.23  | 252.97 | 257.71 | 257.71 | 257.71 | 252.47 |
| 26-Jul | 244.08 | 244.08 | 245.08 | 209.70  | 223.78  | 295.86  | 326.87  | 306.25   | 26-Aug   | 248.15  | 238.22 | 252.26  | 242.37 | 243.21 | 243.21 | 256.47 | 256.47 |
| 27-Jul | 262.60 | 262.60 | 241.54 | 2209.38 | 209.38  | 313.07  | 324.46  | 344.67   | 27-Aug   | 256.47  | 243.21 | 233.51  | 228.97 | 228.97 | 233.51 | 242.92 | 242.92 |
| 28-Jul | 384.24 | 384.24 | 321.84 | 289.70  | 266.52  | 278.22  | 355.66  | 383.41   | 28-Aug   | 233.23  | 230.73 | 221.01  | 221.01 | 221.01 | 232.61 | 220.41 | 220.41 |
| 29-Jul | 383.41 | 383.41 | 377.06 | 442.00  | 428.46  | 447.15  | 502.97  | 474.15   | 29-Aug   | 211.55  | 211.55 | 209.28  | 192.80 | 165.43 | 179.77 | 185.42 | 189.80 |
| 30-Jul | 424.64 | 424.64 | 398.13 | 398.00  | 317.47  | 352.97  | 420.70  | 452.88   | 30-Aug   | 199.17  | 194.53 | 170.92  | 172.00 | 164.03 | 148.72 | 198.98 | 198.98 |
| 31-Jul | 452.88 | 452.88 | 476.44 | 386.19  | 380.20  | 386.19  | 460.09  | 413.18   | 31-Aug   | 189.51  | 177.37 | 174.88  | 153.72 | 153.72 | 154.38 | 207.31 | 175.09 |

|         |        |        |        | Three h | ourly Di | scharge | e data a | t Maner | i from S | Septem | ber to ( | Octobe | r 2004 |        |        |       |       |
|---------|--------|--------|--------|---------|----------|---------|----------|---------|----------|--------|----------|--------|--------|--------|--------|-------|-------|
| Date    | Hr:3   | 6.00   | 9.00   | 12.00   | 15.00    | 18.00   | 21.00    | 24.00   | Date     | Hr:3   | 6.00     | 9.00   | 12.00  | 15.00  | 18.00  | 21.00 | 24.00 |
| Sep. 01 | 178.55 | 176.88 | 169.39 | 169.39  | 170.22   | 169.58  | 191.88   | 194.11  | Oct.1    | 81.40  | 81.40    | 81.30  | 81.35  | 81.28  | 81.28  | 81.28 | 81.25 |
| Sep. 02 | 194.11 | 193.37 | 194.00 | 194.00  | 142.54   | 159.00  | 181.80   | 192.54  | Oct.2    | 81.16  | 68.40    | 81.30  | 81.33  | 81.21  | 68.40  | 81.35 | 81.30 |
| Sep. 03 | 181.80 | 171.41 | 171.41 | 171.41  | 117.76   | 119.42  | 171.69   | 182.32  | Oct.3    | 81.40  | 94.21    | 94.07  | 83.40  | 88.80  | 68.40  | 68.40 | 68.40 |
| Sep. 04 | 171.69 | 160.95 | 138.13 | 139.16  | 149.49   | 160.34  | 181.80   | 181.80  | Oct.4    | 94.16  | 93.79    | 93.79  | 93.88  | 105.84 | 103.78 | 91.75 | 91.75 |
| Sep. 05 | 160.54 | 149.95 | 149.95 | 149.95  | 128.83   | 160.34  | 160.34   | 170.68  | Oct.5    | 91.53  | 91.16    | 94.80  | 79.30  | 79.30  | 79.19  | 79.19 | 74.20 |
| Sep. 06 | 170.68 | 139.49 | 149.95 | 149.95  | 128.83   | 128.98  | 170.68   | 180.96  | Oct.6    | 74.20  | 74.20    | 73.85  | 68.40  | 73.87  | 73.58  | 73.85 | 73.86 |
| Sep. 07 | 160.34 | 160.34 | 139.49 | 139.49  | 139.49   | 149.95  | 160.34   | 191.19  | Oct.7    | 73.90  | 73.93    | 73.87  | 68.40  | 79.86  | 73.79  | 68.40 | 68.40 |
| Sep. 08 | 180.96 | 191.19 | 160.34 | 160.34  | 139.49   | 160.34  | 191.19   | 191.19  | Oct.8    | 73.90  | 73.90    | 68.40  | 68.40  | 68.40  | 68.40  | 68.40 | 73.90 |
| Sep. 09 | 170.68 | 170.68 | 160.34 | 160.34  | 160.34   | 160.34  | 217.65   | 217.65  | Oct.9    | 73.90  | 73.90    | 73.94  | 68.40  | 68.40  | 68.40  | 68.40 | 68.40 |
| Sep. 10 | 196.19 | 185.96 | 165.34 | 165.30  | 165.34   | 165.34  | 196.19   | 216.46  | Oct.10   | 68.40  | 68.40    | 68.40  | 68.40  | 68.40  | 68.40  | 68.40 | 68.40 |
| Sep. 11 | 196.19 | 175.68 | 172.75 | 172.75  | 94.60    | 185.37  | 195.78   | 196.54  | Oct.11   | 68.40  | 68.40    | 68.40  | 68.40  | 68.40  | 68.40  | 68.40 | 68.40 |
| Sep. 12 | 184.16 | 171.67 | 133.79 | 133.79  | 133.79   | 133.93  | 196.54   | 157.29  | Oct.12   | 68.40  | 68.40    | 68.40  | 68.40  | 68.40  | 68.40  | 68.40 | 68.40 |
| Sep. 13 | 171.81 | 159.53 | 120.84 | 120.94  | 120.94   | 121.12  | 209.40   | 220.89  | Oct.13   | 68.40  | 68.40    | 68.40  | 68.40  | 68.40  | 68.40  | 68.40 | 68.40 |
| Sep. 14 | 196.16 | 183.73 | 160.26 | 160.26  | 147.88   | 171.53  | 221.36   | 221.36  | Oct.14   | 68.40  | 68.40    | 68.40  | 68.40  | 68.40  | 68.40  | 68.40 | 68.40 |
| Sep. 15 | 196.16 | 171.24 | 151.48 | 151.48  | 150.92   | 151.20  | 200.17   | 201.13  | Oct.15   | 64.60  | 68.40    | 68.40  | 68.40  | 68.40  | 57.00  | 68.40 | 68.40 |
| Sep. 16 | 200.65 | 188.36 | 174.49 | 174.49  | 173.71   | 172.93  | 150.05   | 151.48  | Oct.16   | 64.60  | 68.40    | 68.40  | 57.00  | 57.00  | 57.00  | 68.40 | 68.40 |
| Sep. 17 | 175.64 | 148.89 | 137.98 | 137.98  | 138.72   | 163.30  | 151.20   | 151.20  | Oct.17   | 57.00  | 68.40    | 68.40  | 57.00  | 57.00  | 68.40  | 68.40 | 68.40 |
| Sep. 18 | 150.34 | 124.85 | 126.00 | 126.00  | 125.62   | 125.62  | 126.00   | 138.95  | Oct.18   | 57.00  | 68.40    | 68.40  | 45.60  | 45.60  | 68.40  | 68.40 | 57.00 |
| Sep. 19 | 138.95 | 139.42 | 125.91 | 125.91  | 112.33   | 98.40   | 111.28   | 111.35  | Oct.19   | 57.00  | 68.40    | 68.40  | 45.60  | 45.60  | 68.40  | 68.40 | 57.00 |
| Sep. 20 | 111.30 | 111.12 | 111.05 | 111.05  | 98.40    | 98.40   | 111.25   | 124.35  | Oct.20   | 57.00  | 68.40    | 68.40  | 45.60  | 45.60  | 68.40  | 68.40 | 57.00 |
| Sep. 21 | 123.98 | 98.40  | 98.40  | 98.40   | 98.40    | 98.40   | 111.33   | 124.16  | Oct.21   | 57.00  | 68.40    | 68.40  | 45.60  | 45.60  | 68.40  | 68.40 | 57.00 |
| Sep. 22 | 123.98 | 98.40  | 98.40  | 98.40   | 89.40    | 98.40   | 92.88    | 145.59  | Oct.22   | 57.00  | 68.40    | 68.40  | 45.60  | 45.60  | 57.00  | 68.40 | 57.00 |
| Sep. 23 | 145.82 | 145.94 | 149.74 | 149.74  | 98.40    | 98.40   | 98.40    | 101.30  | Oct.23   | 45.60  | 68.40    | 68.40  | 41.80  | 41.80  | 68.40  | 68.40 | 57.00 |
| Sep. 24 | 98.40  | 98.40  | 92.88  | 99.88   | 92.88    | 92.88   | 92.88    | 82.00   | Oct.24   | 45.60  | 68.40    | 68.40  | 41.80  | 41.80  | 68.40  | 68.40 | 57.00 |
| Sep. 25 | 94.90  | 94.95  | 82.00  | 82.00   | 82.00    | 93.51   | 80.90    | 81.09   | Oct.25   | 45.60  | 68.40    | 68.40  | 45.60  | 38.00  | 68.40  | 68.40 | 38.00 |
| Sep. 26 | 86.67  | 86.67  | 81.35  | 81.35   | 81.30    | 81.25   | 81.25    | 87.75   | Oct.26   | 38.00  | 68.40    | 68.40  | 45.60  | 45.60  | 68.40  | 68.40 | 38.00 |
| Sep. 27 | 87.75  | 87.75  | 81.35  | 81.35   | 81.25    | 81.25   | 81.28    | 81.30   | Oct.27   | 38.00  | 68.40    | 68.40  | 45.60  | 38.00  | 68.40  | 68.40 | 38.00 |
| Sep. 28 | 81.33  | 81.25  | 93.98  | 93.98   | 68.40    | 81.35   | 81.21    | 81.30   | Oct.28   | 38.00  | 68.40    | 68.40  | 38.00  | 38.00  | 68.40  | 68.40 | 45.60 |
| Sep. 29 | 81.35  | 81.33  | 68.40  | 68.40   | 68.40    | 74.87   | 81.33    | 81.35   | Oct.29   | 38.00  | 68.40    | 68.40  | 38.00  | 38.00  | 68.40  | 68.40 | 45.60 |
| Sep. 30 | 81.40  | 81.40  | 81.40  | 81.23   | 81.25    | 81.25   | 81.33    | 81.37   | Oct.30   | 38.00  | 68.40    | 68.40  | 38.00  | 38.00  | 45.60  | 68.40 | 45.60 |
|         |        |        |        |         |          |         |          |         | Oct.31   | 38.00  | 68.40    | 68.40  | 38.00  | 38.00  | 68.40  | 68.40 | 45.60 |

|        |      | Th   | ree ho | ourly se | dimen | t conce | entratio | on in p | pm at N | laneri | from J | uly to | Augus | st 2004 |       |       |       |
|--------|------|------|--------|----------|-------|---------|----------|---------|---------|--------|--------|--------|-------|---------|-------|-------|-------|
| Date   | Hr:3 | 6.00 | 9.00   | 12.00    | 15.00 | 18.00   | 21.00    | 24.00   | Date    | Hr:3   | 6.00   | 9.00   | 12.00 | 15.00   | 18.00 | 21.00 | 24.00 |
| 01-Jul | 660  | 660  | 680    | 690      | 640   | 630     | 590      | 620     | 01-Aug  | 9980   | 9040   | 9560   | 9320  | 9630    | 9680  | 9740  | 9430  |
| 02-Jul | 690  | 860  | 890    | 960      | 980   | 990     | 990      | 990     | 02-Aug  | 9350   | 9680   | 9740   | 9450  | 9560    | 9680  | 6750  | 9530  |
| 03-Jul | 1000 | 1090 | 1100   | 1130     | 1080  | 940     | 1080     | 1090    | 03-Aug  | 9240   | 6700   | 6450   | 6290  | 6200    | 6150  | 6210  | 6730  |
| 04-Jul | 1080 | 1040 | 960    | 1000     | 990   | 980     | 1010     | 1030    | 04-Aug  | 6110   | 6150   | 6250   | 6290  | 6240    | 6170  | 8240  | 6180  |
| 05-Jul | 1100 | 1010 | 890    | 850      | 880   | 1080    | 1120     | 1210    | 05-Aug  | 6010   | 6150   | 6180   | 6250  | 6290    | 6370  | 8920  | 8530  |
| 06-Jul | 1290 | 1150 | 1130   | 1130     | 1180  | 1080    | 1280     | 1400    | 06-Aug  | 7960   | 7840   | 7960   | 8340  | 6290    | 8010  | 8570  | 8370  |
| 07-Jul | 1530 | 1210 | 1070   | 1068     | 1080  | 1110    | 1230     | 1400    | 07-Aug  | 8140   | 8320   | 8380   | 8430  | 8340    | 8260  | 13860 | 8750  |
| 08-Jul | 1480 | 1500 | 1530   | 1580     | 1560  | 1510    | 1540     | 1590    | 08-Aug  | 10930  | 13860  | 13630  | 13450 | 13380   | 13700 | 12660 | 13880 |
| 09-Jul | 1640 | 1750 | 1750   | 1740     | 1760  | 1780    | 1760     | 1610    | 09-Aug  | 13660  | 13840  | 13750  | 13630 | 12560   | 11840 | 11460 | 13340 |
| 10-Jul | 1520 | 1610 | 1680   | 1700     | 1700  | 1540    | 1410     | 1370    | 10-Aug  | 12160  | 11680  | 11570  | 11430 | 11280   | 10930 | 8260  | 13340 |
| 11-Jul | 1340 | 1310 | 1580   | 1760     | 1790  | 1860    | 1640     | 1480    | 11-Aug  | 11430  | 11280  | 10860  | 9880  | 8960    | 8220  | 8970  | 11880 |
| 12-Jul | 1340 | 1360 | 1380   | 1396     | 1480  | 1670    | 1725     | 1480    | 12-Aug  | 8430   | 8140   | 7930   | 8140  | 8260    | 8930  | 9650  | 8350  |
| 13-Jul | 1340 | 1710 | 2310   | 2280     | 2460  | 2610    | 2680     | 2740    | 13-Aug  | 8980   | 6750   | 6590   | 6270  | 8760    | 9880  | 9880  | 8920  |
| 14-Jul | 2810 | 2880 | 2860   | 2900     | 2810  | 3240    | 4000     | 4300    | 14-Aug  | 9430   | 8840   | 8450   | 8190  | 8270    | 9960  | 6840  | 2680  |
| 15-Jul | 4260 | 4430 | 8940   | 8860     | 8950  | 8890    | 8930     | 8960    | 15-Aug  | 9380   | 9650   | 6900   | 6550  | 6470    | 6930  | 6840  | 9650  |
| 16-Jul | 9130 | 8760 | 8880   | 5060     | 4570  | 5130    | 6760     | 6870    | 16-Aug  | 6480   | 8760   | 9650   | 9760  | 9580    | 9460  | 9240  | 6650  |
| 17-Jul | 6980 | 6920 | 6870   | 7520     | 7200  | 7810    | 7960     | 7980    | 17-Aug  | 8160   | 8840   | 8760   | 99970 | 9870    | 10640 | 10760 | 9120  |
| 18-Jul | 8110 | 8050 | 7970   | 7330     | 6840  | 6560    | 7360     | 8240    | 18-Aug  | 8910   | 8890   | 8780   | 10150 | 10180   | 10290 | 9920  | 10110 |
| 19-Jul | 8300 | 8230 | 8000   | 7840     | 7740  | 6870    | 6760     | 6540    | 19-Aug  | 8660   | 9230   | 8910   | 8450  | 8260    | 8080  | 7780  | 9240  |
| 20-Jul | 6600 | 5920 | 4150   | 2640     | 2160  | 2820    | 3070     | 3240    | 20-Aug  | 6840   | 6930   | 6840   | 6520  | 6370    | 6230  | 6740  | 7110  |
| 21-Jul | 3430 | 3050 | 2870   | 2740     | 2710  | 3050    | 3100     | 3040    | 21-Aug  | 8140   | 7830   | 7560   | 7240  | 5850    | 5930  | 6480  | 7860  |
| 22-Jul | 3010 | 2860 | 2770   | 2810     | 2860  | 2460    | 2410     | 2420    | 22-Aug  | 7640   | 7580   | 7340   | 7160  | 7930    | 7930  | 8480  | 7360  |
| 23-Jul | 2400 | 2440 | 1440   | 1890     | 1910  | 1870    | 1620     | 1610    | 23-Aug  | 8870   | 8630   | 8360   | 8210  | 8530    | 8370  | 8420  | 9160  |
| 24-Jul | 1560 | 1890 | 1940   | 2820     | 2790  | 2760    | 2810     | 2780    | 24-Aug  | 8780   | 8530   | 8240   | 8030  | 8760    | 9680  | 9560  | 8660  |
| 25-Jul | 2870 | 2860 | 2830   | 2810     | 2880  | 2990    | 2960     | 3040    | 25-Aug  | 9150   | 7890   | 6730   | 6250  | 6860    | 7940  | 7620  | 9230  |
| 26-Jul | 3010 | 3040 | 3300   | 3320     | 3250  | 3360    | 3480     | 3610    | 26-Aug  | 7270   | 6720   | 5290   | 4850  | 5460    | 6140  | 6080  | 7460  |
| 27-Jul | 3460 | 3540 | 3560   | 3590     | 3680  | 3710    | 3820     | 3880    | 27-Aug  | 5210   | 4630   | 3150   | 2870  | 2460    | 2460  | 2420  | 5340  |
| 28-Jul | 3890 | 4030 | 4160   | 4250     | 4390  | 6590    | 6670     | 6710    | 28-Aug  | 2280   | 2460   | 2740   | 3080  | 2840    | 2650  | 2580  | 2370  |
| 29-Jul | 6780 | 6870 | 6910   | 7130     | 8340  | 9720    | 9810     | 9870    | 29-Aug  | 2410   | 2960   | 3240   | 3180  | 2670    | 2450  | 2390  | 2460  |
| 30-Jul | 1000 | 9880 | 9630   | 8990     | 9680  | 9880    | 9910     | 9960    | 30-Aug  | 1870   | 1840   | 1860   | 1830  | 1680    | 1560  | 1510  | 1520  |
| 31-Jul | 9850 | 9920 | 9780   | 9810     | 9860  | 9930    | 9560     | 9940    | 31-Aug  | 1470   | 1510   | 1490   | 1480  | 1430    | 1390  | 1420  | 1400  |

|         |      | Tł   | nree ho | ourly se | diment | t conce | entratio | on in p | pm at N | laneri | from J | uly to | Augus | t 2004 |       |       |       |
|---------|------|------|---------|----------|--------|---------|----------|---------|---------|--------|--------|--------|-------|--------|-------|-------|-------|
| Date    | Hr:3 | 6.00 | 9.00    | 12.00    | 15.00  | 18.00   | 21.00    | 24.00   | Date    | Hr:3   | 6.00   | 9.00   | 12.00 | 15.00  | 18.00 | 21.00 | 24.00 |
| Sep. 01 | 1400 | 1360 | 1250    | 1360     | 1340   | 1350    | 1380     | 1400    | Oct.1   | 450    | 460    | 500    | 440   | 470    | 490   | 470   | 460   |
| Sep. 02 | 1420 | 1430 | 1140    | 1380     | 1350   | 1290    | 1340     | 1360    | Oct.2   | 420    | 400    | 460    | 390   | 400    | 410   | 390   | 380   |
| Sep. 03 | 1380 | 1320 | 1180    | 1250     | 1310   | 1260    | 1290     | 1300    | Oct.3   | 370    | 430    | 460    | 480   | 460    | 450   | 430   | 420   |
| Sep. 04 | 1310 | 1280 | 1160    | 1230     | 1210   | 1170    | 1190     | 1200    | Oct.4   | 400    | 480    | 480    | 510   | 500    | 480   | 490   | 470   |
| Sep. 05 | 1180 | 1160 | 1060    | 1160     | 1180   | 1200    | 1220     | 1210    | Oct.5   | 450    | 480    | 480    | 480   | 460    | 470   | 460   | 450   |
| Sep. 06 | 1190 | 1150 | 1090    | 1140     | 1150   | 1140    | 1160     | 1180    | Oct.6   | 440    | 470    | 410    | 450   | 430    | 410   | 430   | 450   |
| Sep. 07 | 1150 | 1190 | 1240    | 1130     | 1180   | 1150    | 1110     | 1130    | Oct.7   | 460    | 490    | 310    | 450   | 470    | 480   | 470   | 480   |
| Sep. 08 | 1120 | 1090 | 1130    | 1070     | 1090   | 1100    | 1120     | 1090    | Oct.8   | 460    | 490    | 260    | 460   | 470    | 450   | 460   | 480   |
| Sep. 09 | 1070 | 1120 | 1060    | 1070     | 1080   | 1100    | 1090     | 1070    | Oct.9   | 460    | 440    | 350    | 380   | 400    | 380   | 440   | 410   |
| Sep. 10 | 1050 | 1200 | 880     | 1260     | 1270   | 1240    | 1210     | 1200    | Oct.10  | 380    | 350    | 410    | 290   | 280    | 260   | 290   | 300   |
| Sep. 11 | 1180 | 1230 | 890     | 1110     | 1090   | 1060    | 1040     | 1010    | Oct.11  | 310    | 290    | 400    | 240   | 280    | 290   | 280   | 270   |
| Sep. 12 | 1030 | 1050 | 1030    | 1040     | 980    | 940     | 910      | 890     | Oct.12  | 300    | 320    | 310    | 330   | 360    | 380   | 360   | 370   |
| Sep. 13 | 860  | 890  | 1080    | 860      | 810    | 800     | 830      | 860     | Oct.13  | 400    | 380    | 270    | 400   | 380    | 370   | 400   | 390   |
| Sep. 14 | 880  | 900  | 1040    | 870      | 790    | 820     | 1060     | 1090    | Oct.14  | 360    | 380    | 270    | 390   | 380    | 370   | 350   | 330   |
| Sep. 15 | 1110 | 1080 | 910     | 1000     | 980    | 1010    | 1000     | 1030    | Oct.15  | 310    | 330    | 240    | 300   | 320    | 330   | 310   | 300   |
| Sep. 16 | 1130 | 1110 | 920     | 1050     | 1060   | 1080    | 1070     | 1080    | Oct.16  | 290    | 280    | 250    | 260   | 240    | 290   | 290   | 260   |
| Sep. 17 | 1100 | 1070 | 940     | 1020     | 1050   | 1080    | 1070     | 1060    |         |        | -      |        | -     | =      | =     |       |       |
| Sep. 18 | 1090 | 980  | 890     | 870      | 960    | 910     | 900      | 920     |         |        |        |        |       |        |       |       |       |
| Sep. 19 | 950  | 930  | 870     | 890      | 910    | 920     | 940      | 950     |         |        |        |        |       |        |       |       |       |
| Sep. 20 | 930  | 950  | 860     | 910      | 920    | 940     | 910      | 880     |         |        |        |        |       |        |       |       |       |
| Sep. 21 | 860  | 880  | 660     | 930      | 950    | 940     | 920      | 900     |         |        |        |        |       |        |       |       |       |
| Sep. 22 | 870  | 890  | 530     | 860      | 880    | 900     | 870      | 880     |         |        |        |        |       |        |       |       |       |
| Sep. 23 | 840  | 880  | 540     | 840      | 720    | 680     | 700      | 690     |         |        |        |        |       |        |       |       |       |
| Sep. 24 | 650  | 670  | 450     | 650      | 610    | 670     | 490      | 520     |         |        |        |        |       |        |       |       |       |
| Sep. 25 | 510  | 540  | 460     | 520      | 500    | 470     | 480      | 500     |         |        |        |        |       |        |       |       |       |
| Sep. 26 | 510  | 530  | 470     | 520      | 480    | 500     | 530      | 500     | ]       |        |        |        |       |        |       |       |       |
| Sep. 27 | 570  | 570  | 490     | 430      | 410    | 420     | 460      | 450     | ]       |        |        |        |       |        |       |       |       |
| Sep. 28 | 500  | 480  | 470     | 470      | 450    | 430     | 450      | 460     | ]       |        |        |        |       |        |       |       |       |
| Sep. 29 | 490  | 480  | 380     | 490      | 480    | 470     | 490      | 480     | ]       |        |        |        |       |        |       |       |       |
| Sep. 30 | 500  | 480  | 460     | 460      | 480    | 500     | 490      | 460     | ]       |        |        |        |       |        |       |       |       |

|            |                   |            |                   |            |                   | Daily discha | rge (Q            | ) data at N | laneri            | for six wat | er yea            | irs        |                   |            |                   |            |                   |
|------------|-------------------|------------|-------------------|------------|-------------------|--------------|-------------------|-------------|-------------------|-------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| Date       | Q                 | Date       | Q                 | Date       | Q                 | Date         | Q                 | Date        | Q                 | Date        | Q                 | Date       | Q                 | Date       | Q                 | Date       | Q                 |
|            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |              | m <sup>3/</sup> s |             | m <sup>3/</sup> s |             | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |
| 01-04-2008 | 19                | 28-04-2008 | 52                | 25-05-2008 | 118               | 21-06-2008   | 388               | 18-07-2008  | 304               | 14-08-2008  | 515               | 10-09-2008 | 89                | 07-10-2008 | 76                | 03-11-2008 | 50                |
| 02-04-2008 | 24                | 29-04-2008 | 52                | 26-05-2008 | 124               | 22-06-2008   | 336               | 19-07-2008  | 296               | 15-08-2008  | 424               | 11-09-2008 | 97                | 08-10-2008 | 72                | 04-11-2008 | 50                |
| 03-04-2008 | 36                | 30-04-2008 | 54                | 27-05-2008 | 120               | 23-06-2008   | 261               | 20-07-2008  | 303               | 16-08-2008  | 397               | 12-09-2008 | 97                | 09-10-2008 | 68                | 05-11-2008 | 49                |
| 04-04-2008 | 30                | 01-05-2008 | 56                | 28-05-2008 | 113               | 24-06-2008   | 288               | 21-07-2008  | 327               | 17-08-2008  | 399               | 13-09-2008 | 104               | 10-10-2008 | 68                | 06-11-2008 | 46                |
| 05-04-2008 | 31                | 02-05-2008 | 63                | 29-05-2008 | 106               | 25-06-2008   | 310               | 22-07-2008  | 345               | 18-08-2008  | 377               | 14-09-2008 | 104               | 11-10-2008 | 68                | 07-11-2008 | 50                |
| 06-04-2008 | 31                | 03-05-2008 | 63                | 30-05-2008 | 104               | 26-06-2008   | 337               | 23-07-2008  | 328               | 19-08-2008  | 257               | 15-09-2008 | 106               | 12-10-2008 | 68                | 08-11-2008 | 49                |
| 07-04-2008 | 31                | 04-05-2008 | 64                | 31-05-2008 | 117               | 27-06-2008   | 305               | 24-07-2008  | 330               | 20-08-2008  | 347               | 16-09-2008 | 109               | 13-10-2008 | 67                | 09-11-2008 | 46                |
| 08-04-2008 | 30                | 05-05-2008 | 82                | 01-06-2008 | 118               | 28-06-2008   | 256               | 25-07-2008  | 349               | 21-08-2008  | 340               | 17-09-2008 | 113               | 14-10-2008 | 66                | 10-11-2008 | 46                |
| 09-04-2008 | 30                | 06-05-2008 | 77                | 02-06-2008 | 120               | 29-06-2008   | 273               | 26-07-2008  | 402               | 22-08-2008  | 381               | 18-09-2008 | 114               | 15-10-2008 | 65                | 11-11-2008 | 45                |
| 10-04-2008 | 34                | 07-05-2008 | 70                | 03-06-2008 | 136               | 30-06-2008   | 303               | 27-07-2008  | 395               | 23-08-2008  | 363               | 19-09-2008 | 185               | 16-10-2008 | 64                | 12-11-2008 | 49                |
| 11-04-2008 | 36                | 08-05-2008 | 60                | 04-06-2008 | 155               | 01-07-2008   | 285               | 28-07-2008  | 390               | 24-08-2008  | 344               | 20-09-2008 | 235               | 17-10-2008 | 61                | 13-11-2008 | 46                |
| 12-04-2008 | 40                | 09-05-2008 | 59                | 05-06-2008 | 162               | 02-07-2008   | 310               | 29-07-2008  | 415               | 25-08-2008  | 336               | 21-09-2008 | 176               | 18-10-2008 | 61                | 14-11-2008 | 45                |
| 13-04-2008 | 37                | 10-05-2008 | 57                | 06-06-2008 | 171               | 03-07-2008   | 307               | 30-07-2008  | 430               | 26-08-2008  | 332               | 22-09-2008 | 147               | 19-10-2008 | 60                | 15-11-2008 | 41                |
| 14-04-2008 | 36                | 11-05-2008 | 56                | 07-06-2008 | 196               | 04-07-2008   | 311               | 31-07-2008  | 551               | 27-08-2008  | 320               | 23-09-2008 | 132               | 20-10-2008 | 59                | 16-11-2008 | 45                |
| 15-04-2008 | 39                | 12-05-2008 | 62                | 08-06-2008 | 224               | 05-07-2008   | 321               | 01-08-2008  | 568               | 28-08-2008  | 309               | 24-09-2008 | 119               | 21-10-2008 | 58                | 17-11-2008 | 45                |
| 16-04-2008 | 40                | 13-05-2008 | 65                | 09-06-2008 | 242               | 06-07-2008   | 354               | 02-08-2008  | 539               | 29-08-2008  | 367               | 25-09-2008 | 112               | 22-10-2008 | 59                | 18-11-2008 | 40                |
| 17-04-2008 | 43                | 14-05-2008 | 71                | 10-06-2008 | 274               | 07-07-2008   | 369               | 03-08-2008  | 552               | 30-08-2008  | 356               | 26-09-2008 | 98                | 23-10-2008 | 58                | 19-11-2008 | 46                |
| 18-04-2008 | 40                | 15-05-2008 | 84                | 11-06-2008 | 334               | 08-07-2008   | 377               | 04-08-2008  | 513               | 31-08-2008  | 335               | 27-09-2008 | 100               | 24-10-2008 | 58                | 20-11-2008 | 40                |
| 19-04-2008 | 41                | 16-05-2008 | 97                | 12-06-2008 | 380               | 09-07-2008   | 458               | 05-08-2008  | 487               | 01-09-2008  | 320               | 28-09-2008 | 87                | 25-10-2008 | 55                | 21-11-2008 | 43                |
| 20-04-2008 | 43                | 17-05-2008 | 106               | 13-06-2008 | 408               | 10-07-2008   | 387               | 06-08-2008  | 440               | 02-09-2008  | 320               | 29-09-2008 | 85                | 26-10-2008 | 58                | 22-11-2008 | 42                |
| 21-04-2008 | 44                | 18-05-2008 | 115               | 14-06-2008 | 390               | 11-07-2008   | 425               | 07-08-2008  | 417               | 03-09-2008  | 317               | 30-09-2008 | 83                | 27-10-2008 | 53                | 23-11-2008 | 43                |
| 22-04-2008 | 45                | 19-05-2008 | 104               | 15-06-2008 | 432               | 12-07-2008   | 435               | 08-08-2008  | 448               | 04-09-2008  | 307               | 01-10-2008 | 75                | 28-10-2008 | 53                | 24-11-2008 | 48                |
| 23-04-2008 | 57                | 20-05-2008 | 89                | 16-06-2008 | 389               | 13-07-2008   | 445               | 09-08-2008  | 462               | 05-09-2008  | 254               | 02-10-2008 | 76                | 29-10-2008 | 55                | 25-11-2008 | 36                |
| 24-04-2008 | 58                | 21-05-2008 | 92                | 17-06-2008 | 420               | 14-07-2008   | 421               | 10-08-2008  | 426               | 06-09-2008  | 192               | 03-10-2008 | 82                | 30-10-2008 | 50                | 26-11-2008 | 44                |
| 25-04-2008 | 60                | 22-05-2008 | 93                | 18-06-2008 | 436               | 15-07-2008   | 329               | 11-08-2008  | 410               | 07-09-2008  | 138               | 04-10-2008 | 78                | 31-10-2008 | 54                | 27-11-2008 | 40                |
| 26-04-2008 | 59                | 23-05-2008 | 130               | 19-06-2008 | 448               | 16-07-2008   | 348               | 12-08-2008  | 442               | 08-09-2008  | 119               | 05-10-2008 | 77                | 01-11-2008 | 50                | 28-11-2008 | 40                |
| 27-04-2008 | 54                | 24-05-2008 | 103               | 20-06-2008 | 389               | 17-07-2008   | 353               | 13-08-2008  | 486               | 09-09-2008  | 113               | 06-10-2008 | 79                | 02-11-2008 | 50                | 29-11-2008 | 40                |

|            |                   |            |                   |            |                   | Daily discha | rge (Q            | ) data at N | laneri            | for six wat | er yea            | irs        |                   |            |                   |            |                   |
|------------|-------------------|------------|-------------------|------------|-------------------|--------------|-------------------|-------------|-------------------|-------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| Date       | Q                 | Date       | Q                 | Date       | Q                 | Date         | Q                 | Date        | Q                 | Date        | Q                 | Date       | Q                 | Date       | Q                 | Date       | Q                 |
|            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |              | m <sup>3/</sup> s |             | m <sup>3/</sup> s |             | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |
| 30-11-2008 | 40                | 27-12-2008 | 31                | 23-01-2009 | 28                | 19-02-2009   | 23                | 18-03-2009  | 23                | 14-04-2009  | 28                | 11-05-2009 | 40                | 07-06-2009 | 142               | 04-07-2009 | 143               |
| 01-12-2008 | 39                | 28-12-2008 | 32                | 24-01-2009 | 27                | 20-02-2009   | 27                | 19-03-2009  | 26                | 15-04-2009  | 30                | 12-05-2009 | 45                | 08-06-2009 | 139               | 05-07-2009 | 140               |
| 02-12-2008 | 39                | 29-12-2008 | 32                | 25-01-2009 | 27                | 21-02-2009   | 26                | 20-03-2009  | 27                | 16-04-2009  | 29                | 13-05-2009 | 42                | 09-06-2009 | 125               | 06-07-2009 | 148               |
| 03-12-2008 | 35                | 30-12-2008 | 32                | 26-01-2009 | 26                | 22-02-2009   | 26                | 21-03-2009  | 28                | 17-04-2009  | 28                | 14-05-2009 | 47                | 10-06-2009 | 108               | 07-07-2009 | 166               |
| 04-12-2008 | 39                | 31-12-2008 | 32                | 27-01-2009 | 26                | 23-02-2009   | 28                | 22-03-2009  | 27                | 18-04-2009  | 37                | 15-05-2009 | 55                | 11-06-2009 | 107               | 08-07-2009 | 205               |
| 05-12-2008 | 39                | 01-01-2009 | 31                | 28-01-2009 | 27                | 24-02-2009   | 21                | 23-03-2009  | 27                | 19-04-2009  | 35                | 16-05-2009 | 68                | 12-06-2009 | 108               | 09-07-2009 | 208               |
| 06-12-2008 | 39                | 02-01-2009 | 30                | 29-01-2009 | 27                | 25-02-2009   | 27                | 24-03-2009  | 20                | 20-04-2009  | 41                | 17-05-2009 | 75                | 13-06-2009 | 110               | 10-07-2009 | 222               |
| 07-12-2008 | 38                | 03-01-2009 | 33                | 30-01-2009 | 28                | 26-02-2009   | 26                | 25-03-2009  | 27                | 21-04-2009  | 42                | 18-05-2009 | 111               | 14-06-2009 | 100               | 11-07-2009 | 230               |
| 08-12-2008 | 37                | 04-01-2009 | 29                | 31-01-2009 | 27                | 27-02-2009   | 23                | 26-03-2009  | 27                | 22-04-2009  | 36                | 19-05-2009 | 136               | 15-06-2009 | 101               | 12-07-2009 | 271               |
| 09-12-2008 | 37                | 05-01-2009 | 29                | 01-02-2009 | 27                | 28-02-2009   | 27                | 27-03-2009  | 26                | 23-04-2009  | 29                | 20-05-2009 | 126               | 16-06-2009 | 95                | 13-07-2009 | 269               |
| 10-12-2008 | 36                | 06-01-2009 | 31                | 02-02-2009 | 26                | 01-03-2009   | 27                | 28-03-2009  | 27                | 24-04-2009  | 29                | 21-05-2009 | 146               | 17-06-2009 | 87                | 14-07-2009 | 359               |
| 11-12-2008 | 40                | 07-01-2009 | 30                | 03-02-2009 | 26                | 02-03-2009   | 26                | 29-03-2009  | 26                | 25-04-2009  | 33                | 22-05-2009 | 146               | 18-06-2009 | 87                | 15-07-2009 | 297               |
| 12-12-2008 | 33                | 08-01-2009 | 29                | 04-02-2009 | 27                | 03-03-2009   | 22                | 30-03-2009  | 27                | 26-04-2009  | 35                | 23-05-2009 | 130               | 19-06-2009 | 89                | 16-07-2009 | 222               |
| 13-12-2008 | 35                | 09-01-2009 | 29                | 05-02-2009 | 27                | 04-03-2009   | 27                | 31-03-2009  | 29                | 27-04-2009  | 40                | 24-05-2009 | 122               | 20-06-2009 | 96                | 17-07-2009 | 254               |
| 14-12-2008 | 33                | 10-01-2009 | 30                | 06-02-2009 | 26                | 05-03-2009   | 28                | 01-04-2009  | 20                | 28-04-2009  | 46                | 25-05-2009 | 106               | 21-06-2009 | 111               | 18-07-2009 | 276               |
| 15-12-2008 | 34                | 11-01-2009 | 29                | 07-02-2009 | 27                | 06-03-2009   | 27                | 02-04-2009  | 27                | 29-04-2009  | 59                | 26-05-2009 | 93                | 22-06-2009 | 126               | 19-07-2009 | 300               |
| 16-12-2008 | 32                | 12-01-2009 | 27                | 08-02-2009 | 29                | 07-03-2009   | 27                | 03-04-2009  | 28                | 30-04-2009  | 56                | 27-05-2009 | 109               | 23-06-2009 | 155               | 20-07-2009 | 318               |
| 17-12-2008 | 33                | 13-01-2009 | 28                | 09-02-2009 | 30                | 08-03-2009   | 20                | 04-04-2009  | 27                | 01-05-2009  | 66                | 28-05-2009 | 111               | 24-06-2009 | 185               | 21-07-2009 | 280               |
| 18-12-2008 | 34                | 14-01-2009 | 30                | 10-02-2009 | 27                | 09-03-2009   | 27                | 05-04-2009  | 27                | 02-05-2009  | 67                | 29-05-2009 | 111               | 25-06-2009 | 221               | 22-07-2009 | 280               |
| 19-12-2008 | 35                | 15-01-2009 | 27                | 11-02-2009 | 21                | 10-03-2009   | 27                | 06-04-2009  | 26                | 03-05-2009  | 56                | 30-05-2009 | 99                | 26-06-2009 | 254               | 23-07-2009 | 246               |
| 20-12-2008 | 39                | 16-01-2009 | 28                | 12-02-2009 | 26                | 11-03-2009   | 27                | 07-04-2009  | 32                | 04-05-2009  | 52                | 31-05-2009 | 89                | 27-06-2009 | 307               | 24-07-2009 | 294               |
| 21-12-2008 | 33                | 17-01-2009 | 29                | 13-02-2009 | 27                | 12-03-2009   | 21                | 08-04-2009  | 31                | 05-05-2009  | 46                | 01-06-2009 | 97                | 28-06-2009 | 309               | 25-07-2009 | 309               |
| 22-12-2008 | 36                | 18-01-2009 | 29                | 14-02-2009 | 26                | 13-03-2009   | 27                | 09-04-2009  | 33                | 06-05-2009  | 46                | 02-06-2009 | 109               | 29-06-2009 | 290               | 26-07-2009 | 329               |
| 23-12-2008 | 36                | 19-01-2009 | 28                | 15-02-2009 | 27                | 14-03-2009   | 27                | 10-04-2009  | 28                | 07-05-2009  | 46                | 03-06-2009 | 162               | 30-06-2009 | 290               | 27-07-2009 | 357               |
| 24-12-2008 | 32                | 20-01-2009 | 29                | 16-02-2009 | 27                | 15-03-2009   | 26                | 11-04-2009  | 27                | 08-05-2009  | 41                | 04-06-2009 | 187               | 01-07-2009 | 244               | 28-07-2009 | 325               |
| 25-12-2008 | 31                | 21-01-2009 | 27                | 17-02-2009 | 26                | 16-03-2009   | 27                | 12-04-2009  | 32                | 09-05-2009  | 46                | 05-06-2009 | 195               | 02-07-2009 | 190               | 29-07-2009 | 293               |
| 26-12-2008 | 33                | 22-01-2009 | 28                | 18-02-2009 | 23                | 17-03-2009   | 26                | 13-04-2009  | 29                | 10-05-2009  | 40                | 06-06-2009 | 176               | 03-07-2009 | 166               | 30-07-2009 | 273               |

|            |                   |            |                   |            |                   | Daily discha | rge (Q            | ) data at N | laneri            | for six wat | er yea            | irs        |                   |            |                   |            | I                 |
|------------|-------------------|------------|-------------------|------------|-------------------|--------------|-------------------|-------------|-------------------|-------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| Date       | Q                 | Date       | Q                 | Date       | Q                 | Date         | Q                 | Date        | Q                 | Date        | Q                 | Date       | Q                 | Date       | Q                 | Date       | Q                 |
|            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |              | m <sup>3/</sup> s |             | m <sup>3/</sup> s |             | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |
| 31-07-2009 | 301               | 27-08-2009 | 185               | 23-09-2009 | 104               | 20-10-2009   | 53                | 16-11-2009  | 40                | 13-12-2009  | 31                | 09-01-2010 | 27                | 05-02-2010 | 23                | 04-03-2010 | 23                |
| 01-08-2009 | 296               | 28-08-2009 | 207               | 24-09-2009 | 102               | 21-10-2009   | 54                | 17-11-2009  | 40                | 14-12-2009  | 31                | 10-01-2010 | 27                | 06-02-2010 | 23                | 05-03-2010 | 27                |
| 02-08-2009 | 306               | 29-08-2009 | 206               | 25-09-2009 | 102               | 22-10-2009   | 52                | 18-11-2009  | 40                | 15-12-2009  | 32                | 11-01-2010 | 23                | 07-02-2010 | 27                | 06-03-2010 | 27                |
| 03-08-2009 | 323               | 30-08-2009 | 203               | 26-09-2009 | 102               | 23-10-2009   | 51                | 19-11-2009  | 39                | 16-12-2009  | 32                | 12-01-2010 | 27                | 08-02-2010 | 23                | 07-03-2010 | 23                |
| 04-08-2009 | 340               | 31-08-2009 | 217               | 27-09-2009 | 101               | 24-10-2009   | 47                | 20-11-2009  | 38                | 17-12-2009  | 30                | 13-01-2010 | 26                | 09-02-2010 | 25                | 08-03-2010 | 27                |
| 05-08-2009 | 367               | 01-09-2009 | 176               | 28-09-2009 | 98                | 25-10-2009   | 52                | 21-11-2009  | 38                | 18-12-2009  | 31                | 14-01-2010 | 25                | 10-02-2010 | 22                | 09-03-2010 | 23                |
| 06-08-2009 | 347               | 02-09-2009 | 162               | 29-09-2009 | 99                | 26-10-2009   | 44                | 22-11-2009  | 41                | 19-12-2009  | 31                | 15-01-2010 | 27                | 11-02-2010 | 22                | 10-03-2010 | 27                |
| 07-08-2009 | 330               | 03-09-2009 | 174               | 30-09-2009 | 98                | 27-10-2009   | 51                | 23-11-2009  | 40                | 20-12-2009  | 29                | 16-01-2010 | 27                | 12-02-2010 | 26                | 11-03-2010 | 27                |
| 08-08-2009 | 330               | 04-09-2009 | 155               | 01-10-2009 | 96                | 28-10-2009   | 44                | 24-11-2009  | 42                | 21-12-2009  | 29                | 17-01-2010 | 24                | 13-02-2010 | 27                | 12-03-2010 | 27                |
| 09-08-2009 | 330               | 05-09-2009 | 136               | 02-10-2009 | 97                | 29-10-2009   | 47                | 25-11-2009  | 33                | 22-12-2009  | 29                | 18-01-2010 | 27                | 14-02-2010 | 27                | 13-03-2010 | 23                |
| 10-08-2009 | 303               | 06-09-2009 | 95                | 03-10-2009 | 94                | 30-10-2009   | 45                | 26-11-2009  | 32                | 23-12-2009  | 29                | 19-01-2010 | 27                | 15-02-2010 | 27                | 14-03-2010 | 28                |
| 11-08-2009 | 317               | 07-09-2009 | 92                | 04-10-2009 | 96                | 31-10-2009   | 47                | 27-11-2009  | 34                | 24-12-2009  | 29                | 20-01-2010 | 23                | 16-02-2010 | 22                | 15-03-2010 | 24                |
| 12-08-2009 | 321               | 08-09-2009 | 283               | 05-10-2009 | 127               | 01-11-2009   | 44                | 28-11-2009  | 36                | 25-12-2009  | 28                | 21-01-2010 | 27                | 17-02-2010 | 27                | 16-03-2010 | 27                |
| 13-08-2009 | 336               | 09-09-2009 | 281               | 06-10-2009 | 97                | 02-11-2009   | 41                | 29-11-2009  | 36                | 26-12-2009  | 28                | 22-01-2010 | 23                | 18-02-2010 | 23                | 17-03-2010 | 31                |
| 14-08-2009 | 358               | 10-09-2009 | 362               | 07-10-2009 | 91                | 03-11-2009   | 45                | 30-11-2009  | 39                | 27-12-2009  | 28                | 23-01-2010 | 27                | 19-02-2010 | 27                | 18-03-2010 | 31                |
| 15-08-2009 | 360               | 11-09-2009 | 255               | 08-10-2009 | 90                | 04-11-2009   | 45                | 01-12-2009  | 31                | 28-12-2009  | 29                | 24-01-2010 | 22                | 20-02-2010 | 25                | 19-03-2010 | 37                |
| 16-08-2009 | 377               | 12-09-2009 | 231               | 09-10-2009 | 76                | 05-11-2009   | 47                | 02-12-2009  | 36                | 29-12-2009  | 28                | 25-01-2010 | 27                | 21-02-2010 | 27                | 20-03-2010 | 42                |
| 17-08-2009 | 319               | 13-09-2009 | 208               | 10-10-2009 | 68                | 06-11-2009   | 45                | 03-12-2009  | 36                | 30-12-2009  | 28                | 26-01-2010 | 23                | 22-02-2010 | 27                | 21-03-2010 | 45                |
| 18-08-2009 | 251               | 14-09-2009 | 155               | 11-10-2009 | 62                | 07-11-2009   | 46                | 04-12-2009  | 36                | 31-12-2009  | 28                | 27-01-2010 | 27                | 23-02-2010 | 27                | 22-03-2010 | 43                |
| 19-08-2009 | 211               | 15-09-2009 | 134               | 12-10-2009 | 64                | 08-11-2009   | 44                | 05-12-2009  | 35                | 01-01-2010  | 27                | 28-01-2010 | 22                | 24-02-2010 | 27                | 23-03-2010 | 43                |
| 20-08-2009 | 184               | 16-09-2009 | 118               | 13-10-2009 | 58                | 09-11-2009   | 43                | 06-12-2009  | 34                | 02-01-2010  | 27                | 29-01-2010 | 26                | 25-02-2010 | 26                | 24-03-2010 | 41                |
| 21-08-2009 | 174               | 17-09-2009 | 106               | 14-10-2009 | 61                | 10-11-2009   | 40                | 07-12-2009  | 34                | 03-01-2010  | 28                | 30-01-2010 | 25                | 26-02-2010 | 27                | 25-03-2010 | 46                |
| 22-08-2009 | 174               | 18-09-2009 | 106               | 15-10-2009 | 59                | 11-11-2009   | 46                | 08-12-2009  | 34                | 04-01-2010  | 27                | 31-01-2010 | 23                | 27-02-2010 | 24                | 26-03-2010 | 39                |
| 23-08-2009 | 187               | 19-09-2009 | 107               | 16-10-2009 | 59                | 12-11-2009   | 39                | 09-12-2009  | 31                | 05-01-2010  | 27                | 01-02-2010 | 23                | 28-02-2010 | 27                | 27-03-2010 | 39                |
| 24-08-2009 | 200               | 20-09-2009 | 106               | 17-10-2009 | 55                | 13-11-2009   | 39                | 10-12-2009  | 31                | 06-01-2010  | 27                | 02-02-2010 | 27                | 01-03-2010 | 26                | 28-03-2010 | 39                |
| 25-08-2009 | 171               | 21-09-2009 | 112               | 18-10-2009 | 59                | 14-11-2009   | 40                | 11-12-2009  | 32                | 07-01-2010  | 27                | 03-02-2010 | 23                | 02-03-2010 | 27                | 29-03-2010 | 38                |
| 26-08-2009 | 186               | 22-09-2009 | 106               | 19-10-2009 | 56                | 15-11-2009   | 41                | 12-12-2009  | 31                | 08-01-2010  | 27                | 04-02-2010 | 25                | 03-03-2010 | 27                | 30-03-2010 | 39                |

|            |                   |            |                   |            |                   | Daily discha | rge (Q            | ) data at N | laneri            | for six wat | er yea            | irs        |                   |            |                   |            |                   |
|------------|-------------------|------------|-------------------|------------|-------------------|--------------|-------------------|-------------|-------------------|-------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| Date       | Q                 | Date       | Q                 | Date       | Q                 | Date         | Q                 | Date        | Q                 | Date        | Q                 | Date       | Q                 | Date       | Q                 | Date       | Q                 |
|            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |              | m <sup>3/</sup> s |             | m <sup>3/</sup> s |             | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |
| 31-03-2010 | 38                | 27-04-2010 | 51                | 24-05-2010 | 96                | 20-06-2010   | 137               | 17-07-2010  | 292               | 13-08-2010  | 426               | 09-09-2010 | 332               | 06-10-2010 | 109               | 02-11-2010 | 63                |
| 01-04-2010 | 32                | 28-04-2010 | 59                | 25-05-2010 | 114               | 21-06-2010   | 164               | 18-07-2010  | 294               | 14-08-2010  | 423               | 10-09-2010 | 282               | 07-10-2010 | 107               | 03-11-2010 | 63                |
| 02-04-2010 | 31                | 29-04-2010 | 58                | 26-05-2010 | 129               | 22-06-2010   | 164               | 19-07-2010  | 363               | 15-08-2010  | 414               | 11-09-2010 | 275               | 08-10-2010 | 107               | 04-11-2010 | 62                |
| 03-04-2010 | 32                | 30-04-2010 | 65                | 27-05-2010 | 134               | 23-06-2010   | 175               | 20-07-2010  | 416               | 16-08-2010  | 506               | 12-09-2010 | 317               | 09-10-2010 | 108               | 05-11-2010 | 63                |
| 04-04-2010 | 28                | 01-05-2010 | 61                | 28-05-2010 | 126               | 24-06-2010   | 194               | 21-07-2010  | 433               | 17-08-2010  | 506               | 13-09-2010 | 289               | 10-10-2010 | 101               | 06-11-2010 | 62                |
| 05-04-2010 | 29                | 02-05-2010 | 58                | 29-05-2010 | 102               | 25-06-2010   | 185               | 22-07-2010  | 354               | 18-08-2010  | 553               | 14-09-2010 | 276               | 11-10-2010 | 101               | 07-11-2010 | 61                |
| 06-04-2010 | 33                | 03-05-2010 | 55                | 30-05-2010 | 96                | 26-06-2010   | 183               | 23-07-2010  | 304               | 19-08-2010  | 508               | 15-09-2010 | 262               | 12-10-2010 | 92                | 08-11-2010 | 61                |
| 07-04-2010 | 37                | 04-05-2010 | 82                | 31-05-2010 | 95                | 27-06-2010   | 221               | 24-07-2010  | 337               | 20-08-2010  | 508               | 16-09-2010 | 241               | 13-10-2010 | 90                | 09-11-2010 | 59                |
| 08-04-2010 | 39                | 05-05-2010 | 107               | 01-06-2010 | 116               | 28-06-2010   | 241               | 25-07-2010  | 379               | 21-08-2010  | 500               | 17-09-2010 | 271               | 14-10-2010 | 88                | 10-11-2010 | 61                |
| 09-04-2010 | 46                | 06-05-2010 | 106               | 02-06-2010 | 140               | 29-06-2010   | 238               | 26-07-2010  | 452               | 22-08-2010  | 569               | 18-09-2010 | 373               | 15-10-2010 | 82                | 11-11-2010 | 58                |
| 10-04-2010 | 47                | 07-05-2010 | 90                | 03-06-2010 | 144               | 30-06-2010   | 245               | 27-07-2010  | 443               | 23-08-2010  | 517               | 19-09-2010 | 620               | 16-10-2010 | 79                | 12-11-2010 | 58                |
| 11-04-2010 | 40                | 08-05-2010 | 79                | 04-06-2010 | 120               | 01-07-2010   | 219               | 28-07-2010  | 422               | 24-08-2010  | 448               | 20-09-2010 | 538               | 17-10-2010 | 82                | 13-11-2010 | 56                |
| 12-04-2010 | 54                | 09-05-2010 | 72                | 05-06-2010 | 114               | 02-07-2010   | 183               | 29-07-2010  | 361               | 25-08-2010  | 405               | 21-09-2010 | 365               | 18-10-2010 | 80                | 14-11-2010 | 56                |
| 13-04-2010 | 39                | 10-05-2010 | 73                | 06-06-2010 | 103               | 03-07-2010   | 190               | 30-07-2010  | 354               | 26-08-2010  | 340               | 22-09-2010 | 325               | 19-10-2010 | 82                | 15-11-2010 | 55                |
| 14-04-2010 | 41                | 11-05-2010 | 72                | 07-06-2010 | 96                | 04-07-2010   | 206               | 31-07-2010  | 438               | 27-08-2010  | 296               | 23-09-2010 | 299               | 20-10-2010 | 86                | 16-11-2010 | 58                |
| 15-04-2010 | 44                | 12-05-2010 | 69                | 08-06-2010 | 102               | 05-07-2010   | 338               | 01-08-2010  | 386               | 28-08-2010  | 289               | 24-09-2010 | 264               | 21-10-2010 | 81                | 17-11-2010 | 53                |
| 16-04-2010 | 59                | 13-05-2010 | 63                | 09-06-2010 | 91                | 06-07-2010   | 288               | 02-08-2010  | 351               | 29-08-2010  | 301               | 25-09-2010 | 226               | 22-10-2010 | 82                | 18-11-2010 | 56                |
| 17-04-2010 | 61                | 14-05-2010 | 67                | 10-06-2010 | 83                | 07-07-2010   | 224               | 03-08-2010  | 422               | 30-08-2010  | 319               | 26-09-2010 | 198               | 23-10-2010 | 80                | 19-11-2010 | 50                |
| 18-04-2010 | 69                | 15-05-2010 | 60                | 11-06-2010 | 76                | 08-07-2010   | 203               | 04-08-2010  | 424               | 31-08-2010  | 374               | 27-09-2010 | 178               | 24-10-2010 | 77                | 20-11-2010 | 46                |
| 19-04-2010 | 61                | 16-05-2010 | 57                | 12-06-2010 | 78                | 09-07-2010   | 244               | 05-08-2010  | 477               | 01-09-2010  | 342               | 28-09-2010 | 161               | 25-10-2010 | 70                | 21-11-2010 | 46                |
| 20-04-2010 | 55                | 17-05-2010 | 69                | 13-06-2010 | 85                | 10-07-2010   | 253               | 06-08-2010  | 478               | 02-09-2010  | 400               | 29-09-2010 | 149               | 26-10-2010 | 69                | 22-11-2010 | 46                |
| 21-04-2010 | 53                | 18-05-2010 | 66                | 14-06-2010 | 86                | 11-07-2010   | 244               | 07-08-2010  | 441               | 03-09-2010  | 348               | 30-09-2010 | 143               | 27-10-2010 | 69                | 23-11-2010 | 46                |
| 22-04-2010 | 46                | 19-05-2010 | 65                | 15-06-2010 | 91                | 12-07-2010   | 218               | 08-08-2010  | 456               | 04-09-2010  | 340               | 01-10-2010 | 135               | 28-10-2010 | 69                | 24-11-2010 | 46                |
| 23-04-2010 | 50                | 20-05-2010 | 65                | 16-06-2010 | 100               | 13-07-2010   | 208               | 09-08-2010  | 473               | 05-09-2010  | 331               | 02-10-2010 | 127               | 29-10-2010 | 69                | 25-11-2010 | 46                |
| 24-04-2010 | 45                | 21-05-2010 | 56                | 17-06-2010 | 92                | 14-07-2010   | 186               | 10-08-2010  | 423               | 06-09-2010  | 305               | 03-10-2010 | 123               | 30-10-2010 | 69                | 26-11-2010 | 46                |
| 25-04-2010 | 43                | 22-05-2010 | 78                | 18-06-2010 | 86                | 15-07-2010   | 217               | 11-08-2010  | 441               | 07-09-2010  | 343               | 04-10-2010 | 118               | 31-10-2010 | 69                | 27-11-2010 | 46                |
| 26-04-2010 | 39                | 23-05-2010 | 111               | 19-06-2010 | 100               | 16-07-2010   | 231               | 12-08-2010  | 437               | 08-09-2010  | 459               | 05-10-2010 | 114               | 01-11-2010 | 62                | 28-11-2010 | 46                |

|            |                   |            |                   |            |                   | Daily discha | rge (Q            | ) data at N | laneri            | for six wat | er yea            | rs         |                   |            |                   |            |                   |
|------------|-------------------|------------|-------------------|------------|-------------------|--------------|-------------------|-------------|-------------------|-------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| Date       | Q                 | Date       | Q                 | Date       | Q                 | Date         | Q                 | Date        | Q                 | Date        | Q                 | Date       | Q                 | Date       | Q                 | Date       | Q                 |
|            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |              | m <sup>3/</sup> s |             | m <sup>3/</sup> s |             | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |
| 29-11-2010 | 46                | 26-12-2010 | 34                | 22-01-2011 | 31                | 18-02-2011   | 30                | 17-03-2011  | 35                | 13-04-2011  | 39                | 10-05-2011 | 84                | 06-06-2011 | 112               | 03-07-2011 | 297               |
| 30-11-2010 | 46                | 27-12-2010 | 38                | 23-01-2011 | 30                | 19-02-2011   | 30                | 18-03-2011  | 36                | 14-04-2011  | 34                | 11-05-2011 | 83                | 07-06-2011 | 110               | 04-07-2011 | 306               |
| 01-12-2010 | 46                | 28-12-2010 | 35                | 24-01-2011 | 31                | 20-02-2011   | 30                | 19-03-2011  | 36                | 15-04-2011  | 40                | 12-05-2011 | 89                | 08-06-2011 | 117               | 05-07-2011 | 304               |
| 02-12-2010 | 46                | 29-12-2010 | 35                | 25-01-2011 | 30                | 21-02-2011   | 29                | 20-03-2011  | 36                | 16-04-2011  | 42                | 13-05-2011 | 89                | 09-06-2011 | 109               | 06-07-2011 | 292               |
| 03-12-2010 | 39                | 30-12-2010 | 35                | 26-01-2011 | 31                | 22-02-2011   | 28                | 21-03-2011  | 32                | 17-04-2011  | 46                | 14-05-2011 | 86                | 10-06-2011 | 109               | 07-07-2011 | 294               |
| 04-12-2010 | 46                | 31-12-2010 | 38                | 27-01-2011 | 30                | 23-02-2011   | 30                | 22-03-2011  | 33                | 18-04-2011  | 54                | 15-05-2011 | 87                | 11-06-2011 | 120               | 08-07-2011 | 307               |
| 05-12-2010 | 46                | 01-01-2011 | 37                | 28-01-2011 | 31                | 24-02-2011   | 28                | 23-03-2011  | 34                | 19-04-2011  | 58                | 16-05-2011 | 89                | 12-06-2011 | 160               | 09-07-2011 | 341               |
| 06-12-2010 | 38                | 02-01-2011 | 36                | 29-01-2011 | 30                | 25-02-2011   | 28                | 24-03-2011  | 36                | 20-04-2011  | 49                | 17-05-2011 | 105               | 13-06-2011 | 166               | 10-07-2011 | 309               |
| 07-12-2010 | 46                | 03-01-2011 | 34                | 30-01-2011 | 29                | 26-02-2011   | 27                | 25-03-2011  | 33                | 21-04-2011  | 40                | 18-05-2011 | 110               | 14-06-2011 | 197               | 11-07-2011 | 252               |
| 08-12-2010 | 41                | 04-01-2011 | 35                | 31-01-2011 | 30                | 27-02-2011   | 27                | 26-03-2011  | 38                | 22-04-2011  | 41                | 19-05-2011 | 111               | 15-06-2011 | 195               | 12-07-2011 | 251               |
| 09-12-2010 | 46                | 05-01-2011 | 35                | 01-02-2011 | 30                | 28-02-2011   | 27                | 27-03-2011  | 37                | 23-04-2011  | 41                | 20-05-2011 | 144               | 16-06-2011 | 211               | 13-07-2011 | 275               |
| 10-12-2010 | 39                | 06-01-2011 | 34                | 02-02-2011 | 27                | 01-03-2011   | 28                | 28-03-2011  | 42                | 24-04-2011  | 46                | 21-05-2011 | 152               | 17-06-2011 | 245               | 14-07-2011 | 302               |
| 11-12-2010 | 40                | 07-01-2011 | 33                | 03-02-2011 | 29                | 02-03-2011   | 27                | 29-03-2011  | 42                | 25-04-2011  | 53                | 22-05-2011 | 111               | 18-06-2011 | 210               | 15-07-2011 | 288               |
| 12-12-2010 | 46                | 08-01-2011 | 35                | 04-02-2011 | 29                | 03-03-2011   | 30                | 30-03-2011  | 39                | 26-04-2011  | 58                | 23-05-2011 | 101               | 19-06-2011 | 194               | 16-07-2011 | 283               |
| 13-12-2010 | 39                | 09-01-2011 | 33                | 05-02-2011 | 30                | 04-03-2011   | 28                | 31-03-2011  | 36                | 27-04-2011  | 68                | 24-05-2011 | 111               | 20-06-2011 | 215               | 17-07-2011 | 266               |
| 14-12-2010 | 39                | 10-01-2011 | 33                | 06-02-2011 | 29                | 05-03-2011   | 28                | 01-04-2011  | 39                | 28-04-2011  | 69                | 25-05-2011 | 136               | 21-06-2011 | 221               | 18-07-2011 | 263               |
| 15-12-2010 | 35                | 11-01-2011 | 33                | 07-02-2011 | 29                | 06-03-2011   | 28                | 02-04-2011  | 35                | 29-04-2011  | 73                | 26-05-2011 | 122               | 22-06-2011 | 255               | 19-07-2011 | 277               |
| 16-12-2010 | 46                | 12-01-2011 | 32                | 08-02-2011 | 27                | 07-03-2011   | 29                | 03-04-2011  | 23                | 30-04-2011  | 80                | 27-05-2011 | 158               | 23-06-2011 | 305               | 20-07-2011 | 288               |
| 17-12-2010 | 39                | 13-01-2011 | 34                | 09-02-2011 | 29                | 08-03-2011   | 28                | 04-04-2011  | 33                | 01-05-2011  | 77                | 28-05-2011 | 159               | 24-06-2011 | 340               | 21-07-2011 | 315               |
| 18-12-2010 | 38                | 14-01-2011 | 28                | 10-02-2011 | 35                | 09-03-2011   | 27                | 05-04-2011  | 38                | 02-05-2011  | 76                | 29-05-2011 | 191               | 25-06-2011 | 337               | 22-07-2011 | 162               |
| 19-12-2010 | 35                | 15-01-2011 | 34                | 11-02-2011 | 30                | 10-03-2011   | 27                | 06-04-2011  | 32                | 03-05-2011  | 74                | 30-05-2011 | 173               | 26-06-2011 | 318               | 23-07-2011 | 411               |
| 20-12-2010 | 40                | 16-01-2011 | 32                | 12-02-2011 | 30                | 11-03-2011   | 23                | 07-04-2011  | 31                | 04-05-2011  | 79                | 31-05-2011 | 164               | 27-06-2011 | 374               | 24-07-2011 | 437               |
| 21-12-2010 | 37                | 17-01-2011 | 32                | 13-02-2011 | 32                | 12-03-2011   | 23                | 08-04-2011  | 30                | 05-05-2011  | 84                | 01-06-2011 | 169               | 28-06-2011 | 353               | 25-07-2011 | 442               |
| 22-12-2010 | 37                | 18-01-2011 | 32                | 14-02-2011 | 32                | 13-03-2011   | 23                | 09-04-2011  | 30                | 06-05-2011  | 91                | 02-06-2011 | 137               | 29-06-2011 | 394               | 26-07-2011 | 405               |
| 23-12-2010 | 38                | 19-01-2011 | 32                | 15-02-2011 | 29                | 14-03-2011   | 25                | 10-04-2011  | 30                | 07-05-2011  | 79                | 03-06-2011 | 114               | 30-06-2011 | 359               | 27-07-2011 | 365               |
| 24-12-2010 | 36                | 20-01-2011 | 32                | 16-02-2011 | 31                | 15-03-2011   | 39                | 11-04-2011  | 29                | 08-05-2011  | 74                | 04-06-2011 | 104               | 01-07-2011 | 331               | 28-07-2011 | 360               |
| 25-12-2010 | 36                | 21-01-2011 | 31                | 17-02-2011 | 32                | 16-03-2011   | 34                | 12-04-2011  | 30                | 09-05-2011  | 81                | 05-06-2011 | 107               | 02-07-2011 | 283               | 29-07-2011 | 368               |

|            |                   |            |                   |            |                   | Daily discha | rge (Q            | ) data at N | laneri            | for six wat | er yea            | irs        |                   |            |                   |            |                   |
|------------|-------------------|------------|-------------------|------------|-------------------|--------------|-------------------|-------------|-------------------|-------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| Date       | Q                 | Date       | Q                 | Date       | Q                 | Date         | Q                 | Date        | Q                 | Date        | Q                 | Date       | Q                 | Date       | Q                 | Date       | Q                 |
|            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |              | m <sup>3/</sup> s |             | m <sup>3/</sup> s |             | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |
| 30-07-2011 | 352               | 26-08-2011 | 280               | 22-09-2011 | 131               | 20-10-2011   | 68                | 16-11-2011  | 50                | 13-12-2011  | 37                | 09-01-2012 | 30                | 05-02-2012 | 28                | 03-03-2012 | 27                |
| 31-07-2011 | 344               | 27-08-2011 | 283               | 23-09-2011 | 129               | 21-10-2011   | 67                | 17-11-2011  | 43                | 14-12-2011  | 37                | 10-01-2012 | 30                | 06-02-2012 | 28                | 04-03-2012 | 27                |
| 01-08-2011 | 342               | 28-08-2011 | 299               | 24-09-2011 | 117               | 22-10-2011   | 64                | 18-11-2011  | 46                | 15-12-2011  | 36                | 11-01-2012 | 30                | 07-02-2012 | 28                | 05-03-2012 | 29                |
| 02-08-2011 | 307               | 29-08-2011 | 278               | 25-09-2011 | 122               | 23-10-2011   | 64                | 19-11-2011  | 46                | 16-12-2011  | 36                | 12-01-2012 | 30                | 08-02-2012 | 28                | 06-03-2012 | 37                |
| 03-08-2011 | 295               | 30-08-2011 | 312               | 26-09-2011 | 119               | 24-10-2011   | 62                | 20-11-2011  | 46                | 17-12-2011  | 35                | 13-01-2012 | 30                | 09-02-2012 | 28                | 07-03-2012 | 31                |
| 04-08-2011 | 335               | 31-08-2011 | 329               | 27-09-2011 | 113               | 25-10-2011   | 61                | 21-11-2011  | 47                | 18-12-2011  | 35                | 14-01-2012 | 30                | 10-02-2012 | 28                | 08-03-2012 | 28                |
| 05-08-2011 | 314               | 01-09-2011 | 418               | 28-09-2011 | 106               | 26-10-2011   | 60                | 22-11-2011  | 44                | 19-12-2011  | 36                | 15-01-2012 | 30                | 11-02-2012 | 28                | 09-03-2012 | 28                |
| 06-08-2011 | 339               | 02-09-2011 | 370               | 29-09-2011 | 90                | 27-10-2011   | 59                | 23-11-2011  | 43                | 20-12-2011  | 31                | 16-01-2012 | 33                | 12-02-2012 | 27                | 10-03-2012 | 28                |
| 07-08-2011 | 373               | 03-09-2011 | 327               | 30-09-2011 | 93                | 28-10-2011   | 58                | 24-11-2011  | 44                | 21-12-2011  | 33                | 17-01-2012 | 30                | 13-02-2012 | 27                | 11-03-2012 | 28                |
| 08-08-2011 | 479               | 04-09-2011 | 294               | 01-10-2011 | 63                | 29-10-2011   | 57                | 25-11-2011  | 43                | 22-12-2011  | 34                | 18-01-2012 | 30                | 14-02-2012 | 27                | 12-03-2012 | 28                |
| 09-08-2011 | 428               | 05-09-2011 | 272               | 02-10-2011 | 93                | 30-10-2011   | 67                | 26-11-2011  | 43                | 23-12-2011  | 32                | 19-01-2012 | 29                | 15-02-2012 | 27                | 13-03-2012 | 27                |
| 10-08-2011 | 418               | 06-09-2011 | 251               | 03-10-2011 | 94                | 31-10-2011   | 55                | 27-11-2011  | 43                | 24-12-2011  | 34                | 20-01-2012 | 28                | 16-02-2012 | 27                | 14-03-2012 | 30                |
| 11-08-2011 | 409               | 07-09-2011 | 263               | 04-10-2011 | 100               | 01-11-2011   | 53                | 28-11-2011  | 43                | 25-12-2011  | 32                | 21-01-2012 | 29                | 17-02-2012 | 27                | 15-03-2012 | 31                |
| 12-08-2011 | 370               | 08-09-2011 | 266               | 05-10-2011 | 96                | 02-11-2011   | 52                | 29-11-2011  | 43                | 26-12-2011  | 32                | 22-01-2012 | 29                | 18-02-2012 | 27                | 16-03-2012 | 30                |
| 13-08-2011 | 400               | 09-09-2011 | 287               | 06-10-2011 | 90                | 03-11-2011   | 54                | 30-11-2011  | 42                | 27-12-2011  | 32                | 23-01-2012 | 26                | 19-02-2012 | 27                | 17-03-2012 | 30                |
| 14-08-2011 | 345               | 10-09-2011 | 262               | 07-10-2011 | 85                | 04-11-2011   | 53                | 01-12-2011  | 42                | 28-12-2011  | 30                | 24-01-2012 | 29                | 20-02-2012 | 26                | 18-03-2012 | 30                |
| 15-08-2011 | 367               | 11-09-2011 | 261               | 08-10-2011 | 100               | 05-11-2011   | 54                | 02-12-2011  | 41                | 29-12-2011  | 34                | 25-01-2012 | 29                | 21-02-2012 | 28                | 19-03-2012 | 30                |
| 16-08-2011 | 695               | 12-09-2011 | 238               | 09-10-2011 | 100               | 06-11-2011   | 51                | 03-12-2011  | 41                | 30-12-2011  | 30                | 26-01-2012 | 28                | 22-02-2012 | 28                | 20-03-2012 | 33                |
| 17-08-2011 | 487               | 13-09-2011 | 235               | 10-10-2011 | 94                | 07-11-2011   | 51                | 04-12-2011  | 41                | 31-12-2011  | 30                | 27-01-2012 | 27                | 23-02-2012 | 28                | 21-03-2012 | 34                |
| 18-08-2011 | 356               | 14-09-2011 | 244               | 11-10-2011 | 84                | 08-11-2011   | 51                | 05-12-2011  | 41                | 01-01-2012  | 30                | 28-01-2012 | 28                | 24-02-2012 | 28                | 22-03-2012 | 30                |
| 19-08-2011 | 321               | 15-09-2011 | 242               | 12-10-2011 | 78                | 09-11-2011   | 53                | 06-12-2011  | 39                | 02-01-2012  | 31                | 29-01-2012 | 28                | 25-02-2012 | 28                | 23-03-2012 | 30                |
| 20-08-2011 | 318               | 16-09-2011 | 219               | 13-10-2011 | 77                | 10-11-2011   | 49                | 07-12-2011  | 39                | 03-01-2012  | 30                | 30-01-2012 | 28                | 26-02-2012 | 27                | 24-03-2012 | 28                |
| 21-08-2011 | 318               | 17-09-2011 | 192               | 14-10-2011 | 78                | 11-11-2011   | 46                | 08-12-2011  | 36                | 04-01-2012  | 30                | 31-01-2012 | 28                | 27-02-2012 | 28                | 25-03-2012 | 22                |
| 22-08-2011 | 305               | 18-09-2011 | 182               | 15-10-2011 | 76                | 12-11-2011   | 51                | 09-12-2011  | 38                | 05-01-2012  | 32                | 01-02-2012 | 28                | 28-02-2012 | 28                | 26-03-2012 | 29                |
| 23-08-2011 | 300               | 19-09-2011 | 166               | 16-10-2011 | 73                | 13-11-2011   | 49                | 10-12-2011  | 38                | 06-01-2012  | 30                | 02-02-2012 | 28                | 29-02-2012 | 28                | 27-03-2012 | 33                |
| 24-08-2011 | 330               | 20-09-2011 | 152               | 17-10-2011 | 72                | 14-11-2011   | 43                | 11-12-2011  | 41                | 07-01-2012  | 31                | 03-02-2012 | 28                | 01-03-2012 | 28                | 28-03-2012 | 37                |
| 25-08-2011 | 310               | 21-09-2011 | 138               | 18-10-2011 | 71                | 15-11-2011   | 50                | 12-12-2011  | 36                | 08-01-2012  | 31                | 04-02-2012 | 28                | 02-03-2012 | 28                | 29-03-2012 | 34                |

|            |                   |            |                   |            |                   | Daily discha | rge (Q            | ) data at N | laneri            | for six wat | ter yea           | irs        |                   |            |                   |            | $\neg$            |
|------------|-------------------|------------|-------------------|------------|-------------------|--------------|-------------------|-------------|-------------------|-------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| Date       | Q                 | Date       | Q                 | Date       | Q                 | Date         | Q                 | Date        | Q                 | Date        | Q                 | Date       | Q                 | Date       | Q                 | Date       | Q                 |
|            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |              | m <sup>3/</sup> s |             | m <sup>3/</sup> s |             | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |
| 30-03-2012 | 35                | 26-04-2012 | 44                | 23-05-2012 | 70                | 19-06-2012   | 178               | 16-07-2012  | 204               | 12-08-2012  | 305               | 08-09-2012 | 243               | 05-10-2012 | 65                | 01-11-2012 | 54                |
| 31-03-2012 | 41                | 27-04-2012 | 44                | 24-05-2012 | 82                | 20-06-2012   | 205               | 17-07-2012  | 199               | 13-08-2012  | 330               | 09-09-2012 | 230               | 06-10-2012 | 62                | 02-11-2012 | 46                |
| 01-04-2012 | 43                | 28-04-2012 | 46                | 25-05-2012 | 98                | 21-06-2012   | 181               | 18-07-2012  | 223               | 14-08-2012  | 343               | 10-09-2012 | 202               | 07-10-2012 | 57                | 03-11-2012 | 46                |
| 02-04-2012 | 44                | 29-04-2012 | 51                | 26-05-2012 | 108               | 22-06-2012   | 234               | 19-07-2012  | 245               | 15-08-2012  | 318               | 11-09-2012 | 209               | 08-10-2012 | 58                | 04-11-2012 | 52                |
| 03-04-2012 | 49                | 30-04-2012 | 50                | 27-05-2012 | 111               | 23-06-2012   | 264               | 20-07-2012  | 262               | 16-08-2012  | 322               | 12-09-2012 | 212               | 09-10-2012 | 58                | 05-11-2012 | 46                |
| 04-04-2012 | 44                | 01-05-2012 | 46                | 28-05-2012 | 129               | 24-06-2012   | 294               | 21-07-2012  | 247               | 17-08-2012  | 309               | 13-09-2012 | 235               | 10-10-2012 | 60                | 06-11-2012 | 46                |
| 05-04-2012 | 39                | 02-05-2012 | 42                | 29-05-2012 | 130               | 25-06-2012   | 265               | 22-07-2012  | 255               | 18-08-2012  | 265               | 14-09-2012 | 285               | 11-10-2012 | 62                | 07-11-2012 | 45                |
| 06-04-2012 | 46                | 03-05-2012 | 43                | 30-05-2012 | 133               | 26-06-2012   | 248               | 23-07-2012  | 301               | 19-08-2012  | 479               | 15-09-2012 | 208               | 12-10-2012 | 59                | 08-11-2012 | 44                |
| 07-04-2012 | 43                | 04-05-2012 | 42                | 31-05-2012 | 153               | 27-06-2012   | 236               | 24-07-2012  | 333               | 20-08-2012  | 424               | 16-09-2012 | 214               | 13-10-2012 | 57                | 09-11-2012 | 46                |
| 08-04-2012 | 44                | 05-05-2012 | 43                | 01-06-2012 | 163               | 28-06-2012   | 238               | 25-07-2012  | 375               | 21-08-2012  | 478               | 17-09-2012 | 188               | 14-10-2012 | 51                | 10-11-2012 | 43                |
| 09-04-2012 | 46                | 06-05-2012 | 44                | 02-06-2012 | 150               | 29-06-2012   | 250               | 26-07-2012  | 329               | 22-08-2012  | 430               | 18-09-2012 | 212               | 15-10-2012 | 48                | 11-11-2012 | 44                |
| 10-04-2012 | 46                | 07-05-2012 | 52                | 03-06-2012 | 145               | 30-06-2012   | 246               | 27-07-2012  | 348               | 23-08-2012  | 370               | 19-09-2012 | 188               | 16-10-2012 | 43                | 12-11-2012 | 45                |
| 11-04-2012 | 56                | 08-05-2012 | 54                | 04-06-2012 | 136               | 01-07-2012   | 255               | 28-07-2012  | 394               | 24-08-2012  | 348               | 20-09-2012 | 150               | 17-10-2012 | 42                | 13-11-2012 | 39                |
| 12-04-2012 | 43                | 09-05-2012 | 66                | 05-06-2012 | 133               | 02-07-2012   | 260               | 29-07-2012  | 416               | 25-08-2012  | 343               | 21-09-2012 | 137               | 18-10-2012 | 39                | 14-11-2012 | 40                |
| 13-04-2012 | 41                | 10-05-2012 | 66                | 06-06-2012 | 124               | 03-07-2012   | 274               | 30-07-2012  | 430               | 26-08-2012  | 361               | 22-09-2012 | 123               | 19-10-2012 | 36                | 15-11-2012 | 43                |
| 14-04-2012 | 37                | 11-05-2012 | 69                | 07-06-2012 | 92                | 04-07-2012   | 287               | 31-07-2012  | 539               | 27-08-2012  | 363               | 23-09-2012 | 102               | 20-10-2012 | 45                | 16-11-2012 | 45                |
| 15-04-2012 | 35                | 12-05-2012 | 71                | 08-06-2012 | 86                | 05-07-2012   | 314               | 01-08-2012  | 483               | 28-08-2012  | 301               | 24-09-2012 | 86                | 21-10-2012 | 40                | 17-11-2012 | 43                |
| 16-04-2012 | 36                | 13-05-2012 | 68                | 09-06-2012 | 81                | 06-07-2012   | 287               | 02-08-2012  | 469               | 29-08-2012  | 280               | 25-09-2012 | 84                | 22-10-2012 | 40                | 18-11-2012 | 40                |
| 17-04-2012 | 35                | 14-05-2012 | 64                | 10-06-2012 | 85                | 07-07-2012   | 313               | 03-08-2012  | 516               | 30-08-2012  | 227               | 26-09-2012 | 82                | 23-10-2012 | 40                | 19-11-2012 | 41                |
| 18-04-2012 | 36                | 15-05-2012 | 63                | 11-06-2012 | 91                | 08-07-2012   | 280               | 04-08-2012  | 712               | 31-08-2012  | 235               | 27-09-2012 | 78                | 24-10-2012 | 40                | 20-11-2012 | 41                |
| 19-04-2012 | 38                | 16-05-2012 | 63                | 12-06-2012 | 100               | 09-07-2012   | 255               | 05-08-2012  | 619               | 01-09-2012  | 246               | 28-09-2012 | 77                | 25-10-2012 | 40                | 21-11-2012 | 37                |
| 20-04-2012 | 39                | 17-05-2012 | 66                | 13-06-2012 | 108               | 10-07-2012   | 241               | 06-08-2012  | 321               | 02-09-2012  | 259               | 29-09-2012 | 76                | 26-10-2012 | 40                | 22-11-2012 | 37                |
| 21-04-2012 | 46                | 18-05-2012 | 74                | 14-06-2012 | 102               | 11-07-2012   | 243               | 07-08-2012  | 321               | 03-09-2012  | 256               | 30-09-2012 | 75                | 27-10-2012 | 37                | 23-11-2012 | 41                |
| 22-04-2012 | 54                | 19-05-2012 | 76                | 15-06-2012 | 120               | 12-07-2012   | 271               | 08-08-2012  | 310               | 04-09-2012  | 242               | 01-10-2012 | 74                | 28-10-2012 | 40                | 24-11-2012 | 38                |
| 23-04-2012 | 45                | 20-05-2012 | 76                | 16-06-2012 | 140               | 13-07-2012   | 267               | 09-08-2012  | 330               | 05-09-2012  | 256               | 02-10-2012 | 73                | 29-10-2012 | 37                | 25-11-2012 | 38                |
| 24-04-2012 | 45                | 21-05-2012 | 73                | 17-06-2012 | 159               | 14-07-2012   | 237               | 10-08-2012  | 420               | 06-09-2012  | 276               | 03-10-2012 | 73                | 30-10-2012 | 38                | 26-11-2012 | 39                |
| 25-04-2012 | 43                | 22-05-2012 | 70                | 18-06-2012 | 182               | 15-07-2012   | 214               | 11-08-2012  | 297               | 07-09-2012  | 254               | 04-10-2012 | 73                | 31-10-2012 | 37                | 27-11-2012 | 39                |

| Date       | Q                 |
|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
|            | m <sup>3/</sup> s |
| 28-11-2012 | 39                | 25-12-2012 | 31                | 21-01-2013 | 28                | 17-02-2013 | 30                | 16-03-2013 | 35                | 12-04-2013 | 46                | 09-05-2013 | 68                | 05-06-2013 | 304               | 02-07-2013 | 339               |
| 29-11-2012 | 37                | 26-12-2012 | 31                | 22-01-2013 | 29                | 18-02-2013 | 31                | 17-03-2013 | 32                | 13-04-2013 | 46                | 10-05-2013 | 84                | 06-06-2013 | 309               | 03-07-2013 | 343               |
| 30-11-2012 | 38                | 27-12-2012 | 31                | 23-01-2013 | 29                | 19-02-2013 | 31                | 18-03-2013 | 31                | 14-04-2013 | 46                | 11-05-2013 | 82                | 07-06-2013 | 272               | 04-07-2013 | 319               |
| 01-12-2012 | 37                | 28-12-2012 | 31                | 24-01-2013 | 27                | 20-02-2013 | 28                | 19-03-2013 | 32                | 15-04-2013 | 34                | 12-05-2013 | 70                | 08-06-2013 | 302               | 05-07-2013 | 354               |
| 02-12-2012 | 34                | 29-12-2012 | 29                | 25-01-2013 | 26                | 21-02-2013 | 28                | 20-03-2013 | 31                | 16-04-2013 | 44                | 13-05-2013 | 69                | 09-06-2013 | 357               | 06-07-2013 | 386               |
| 03-12-2012 | 37                | 30-12-2012 | 29                | 26-01-2013 | 27                | 22-02-2013 | 30                | 21-03-2013 | 29                | 17-04-2013 | 41                | 14-05-2013 | 65                | 10-06-2013 | 392               | 07-07-2013 | 449               |
| 04-12-2012 | 38                | 31-12-2012 | 29                | 27-01-2013 | 27                | 23-02-2013 | 26                | 22-03-2013 | 30                | 18-04-2013 | 36                | 15-05-2013 | 67                | 11-06-2013 | 368               | 08-07-2013 | 455               |
| 05-12-2012 | 38                | 01-01-2013 | 29                | 28-01-2013 | 27                | 24-02-2013 | 28                | 23-03-2013 | 33                | 19-04-2013 | 37                | 16-05-2013 | 70                | 12-06-2013 | 300               | 09-07-2013 | 424               |
| 06-12-2012 | 34                | 02-01-2013 | 29                | 29-01-2013 | 28                | 25-02-2013 | 27                | 24-03-2013 | 37                | 20-04-2013 | 46                | 17-05-2013 | 91                | 13-06-2013 | 315               | 10-07-2013 | 410               |
| 07-12-2012 | 35                | 03-01-2013 | 29                | 30-01-2013 | 26                | 26-02-2013 | 30                | 25-03-2013 | 37                | 21-04-2013 | 50                | 18-05-2013 | 108               | 14-06-2013 | 260               | 11-07-2013 | 358               |
| 08-12-2012 | 35                | 04-01-2013 | 29                | 31-01-2013 | 27                | 27-02-2013 | 27                | 26-03-2013 | 37                | 22-04-2013 | 53                | 19-05-2013 | 121               | 15-06-2013 | 304               | 12-07-2013 | 361               |
| 09-12-2012 | 35                | 05-01-2013 | 29                | 01-02-2013 | 27                | 28-02-2013 | 28                | 27-03-2013 | 37                | 23-04-2013 | 52                | 20-05-2013 | 141               | 16-06-2013 | 865               | 13-07-2013 | 348               |
| 10-12-2012 | 34                | 06-01-2013 | 28                | 02-02-2013 | 27                | 01-03-2013 | 29                | 28-03-2013 | 37                | 24-04-2013 | 60                | 21-05-2013 | 159               | 17-06-2013 | 1246.64           | 14-07-2013 | 347               |
| 11-12-2012 | 32                | 07-01-2013 | 27                | 03-02-2013 | 26                | 02-03-2013 | 30                | 29-03-2013 | 37                | 25-04-2013 | 65                | 22-05-2013 | 172               | 18-06-2013 | 558               | 15-07-2013 | 343               |
| 12-12-2012 | 36                | 08-01-2013 | 28                | 04-02-2013 | 31                | 03-03-2013 | 26                | 30-03-2013 | 37                | 26-04-2013 | 67                | 23-05-2013 | 192               | 19-06-2013 | 251               | 16-07-2013 | 391               |
| 13-12-2012 | 32                | 09-01-2013 | 28                | 05-02-2013 | 28                | 04-03-2013 | 39                | 31-03-2013 | 37                | 27-04-2013 | 67                | 24-05-2013 | 213               | 20-06-2013 | 241               | 17-07-2013 | 434               |
| 14-12-2012 | 37                | 10-01-2013 | 26                | 06-02-2013 | 32                | 05-03-2013 | 31                | 01-04-2013 | 39                | 28-04-2013 | 57                | 25-05-2013 | 226               | 21-06-2013 | 224               | 18-07-2013 | 445               |
| 15-12-2012 | 33                | 11-01-2013 | 27                | 07-02-2013 | 27                | 06-03-2013 | 33                | 02-04-2013 | 43                | 29-04-2013 | 59                | 26-05-2013 | 249               | 22-06-2013 | 240               | 19-07-2013 | 455               |
| 16-12-2012 | 33                | 12-01-2013 | 27                | 08-02-2013 | 35                | 07-03-2013 | 35                | 03-04-2013 | 42                | 30-04-2013 | 60                | 27-05-2013 | 217               | 23-06-2013 | 252               | 20-07-2013 | 445               |
| 17-12-2012 | 32                | 13-01-2013 | 27                | 09-02-2013 | 28                | 08-03-2013 | 34                | 04-04-2013 | 42                | 01-05-2013 | 61                | 28-05-2013 | 166               | 24-06-2013 | 308               | 21-07-2013 | 353               |
| 18-12-2012 | 35                | 14-01-2013 | 30                | 10-02-2013 | 31                | 09-03-2013 | 37                | 05-04-2013 | 42                | 02-05-2013 | 56                | 29-05-2013 | 146               | 25-06-2013 | 323               | 22-07-2013 | 395               |
| 19-12-2012 | 33                | 15-01-2013 | 28                | 11-02-2013 | 33                | 10-03-2013 | 32                | 06-04-2013 | 41                | 03-05-2013 | 50                | 30-05-2013 | 137               | 26-06-2013 | 292               | 23-07-2013 | 399               |
| 20-12-2012 | 32                | 16-01-2013 | 27                | 12-02-2013 | 27                | 11-03-2013 | 37                | 07-04-2013 | 42                | 04-05-2013 | 60                | 31-05-2013 | 159               | 27-06-2013 | 386               | 24-07-2013 | 463               |
| 21-12-2012 | 32                | 17-01-2013 | 27                | 13-02-2013 | 34                | 12-03-2013 | 33                | 08-04-2013 | 43                | 05-05-2013 | 56                | 01-06-2013 | 219               | 28-06-2013 | 344               | 25-07-2013 | 535               |
| 22-12-2012 | 31                | 18-01-2013 | 30                | 14-02-2013 | 28                | 13-03-2013 | 34                | 09-04-2013 | 44                | 06-05-2013 | 54                | 02-06-2013 | 257               | 29-06-2013 | 301               | 26-07-2013 | 432               |
| 23-12-2012 | 31                | 19-01-2013 | 29                | 15-02-2013 | 32                | 14-03-2013 | 36                | 10-04-2013 | 45                | 07-05-2013 | 52                | 03-06-2013 | 276               | 30-06-2013 | 310               | 27-07-2013 | 382               |
| 24-12-2012 | 31                | 20-01-2013 | 27                | 16-02-2013 | 31                | 15-03-2013 | 35                | 11-04-2013 | 46                | 08-05-2013 | 59                | 04-06-2013 | 279               | 01-07-2013 | 316               | 28-07-2013 | 366               |

| Date       | Q                 |
|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
|            | m <sup>3/</sup> s |
| 29-07-2013 | 359               | 25-08-2013 | 195               | 21-09-2013 | 70                | 18-10-2013 | 62                | 14-11-2013 | 39                | 11-12-2013 | 30                | 07-01-2014 | 29                | 03-02-2014 | 25                | 02-03-2014 | 30                |
| 30-07-2013 | 316               | 26-08-2013 | 193               | 22-09-2013 | 65                | 19-10-2013 | 47                | 15-11-2013 | 39                | 12-12-2013 | 32                | 08-01-2014 | 32                | 04-02-2014 | 27                | 03-03-2014 | 26                |
| 31-07-2013 | 305               | 27-08-2013 | 178               | 23-09-2013 | 61                | 20-10-2013 | 61                | 16-11-2013 | 39                | 13-12-2013 | 32                | 09-01-2014 | 30                | 05-02-2014 | 26                | 04-03-2014 | 39                |
| 01-08-2013 | 327               | 28-08-2013 | 165               | 24-09-2013 | 61                | 21-10-2013 | 58                | 17-11-2013 | 38                | 14-12-2013 | 31                | 10-01-2014 | 28                | 06-02-2014 | 27                | 05-03-2014 | 31                |
| 02-08-2013 | 295               | 29-08-2013 | 164               | 25-09-2013 | 59                | 22-10-2013 | 59                | 18-11-2013 | 37                | 15-12-2013 | 28                | 11-01-2014 | 29                | 07-02-2014 | 29                | 06-03-2014 | 33                |
| 03-08-2013 | 305               | 30-08-2013 | 187               | 26-09-2013 | 60                | 23-10-2013 | 57                | 19-11-2013 | 36                | 16-12-2013 | 34                | 12-01-2014 | 30                | 08-02-2014 | 22                | 07-03-2014 | 35                |
| 04-08-2013 | 280               | 31-08-2013 | 199               | 27-09-2013 | 62                | 24-10-2013 | 55                | 20-11-2013 | 36                | 17-12-2013 | 32                | 13-01-2014 | 30                | 09-02-2014 | 25                | 08-03-2014 | 34                |
| 05-08-2013 | 320               | 01-09-2013 | 184               | 28-09-2013 | 66                | 25-10-2013 | 55                | 21-11-2013 | 36                | 18-12-2013 | 32                | 14-01-2014 | 26                | 10-02-2014 | 26                | 09-03-2014 | 37                |
| 06-08-2013 | 359               | 02-09-2013 | 135               | 29-09-2013 | 62                | 26-10-2013 | 54                | 22-11-2013 | 35                | 19-12-2013 | 24                | 15-01-2014 | 29                | 11-02-2014 | 24                | 10-03-2014 | 32                |
| 07-08-2013 | 314               | 03-09-2013 | 121               | 30-09-2013 | 62                | 27-10-2013 | 52                | 23-11-2013 | 36                | 20-12-2013 | 29                | 16-01-2014 | 28                | 12-02-2014 | 27                | 11-03-2014 | 37                |
| 08-08-2013 | 256               | 04-09-2013 | 98                | 01-10-2013 | 51                | 28-10-2013 | 50                | 24-11-2013 | 32                | 21-12-2013 | 25                | 17-01-2014 | 26                | 13-02-2014 | 23                | 12-03-2014 | 33                |
| 09-08-2013 | 257               | 05-09-2013 | 89                | 02-10-2013 | 46                | 29-10-2013 | 50                | 25-11-2013 | 46                | 22-12-2013 | 25                | 18-01-2014 | 26                | 14-02-2014 | 24                | 13-03-2014 | 34                |
| 10-08-2013 | 256               | 06-09-2013 | 79                | 03-10-2013 | 50                | 30-10-2013 | 50                | 26-11-2013 | 35                | 23-12-2013 | 26                | 19-01-2014 | 29                | 15-02-2014 | 29                | 14-03-2014 | 36                |
| 11-08-2013 | 307               | 07-09-2013 | 80                | 04-10-2013 | 49                | 31-10-2013 | 48                | 27-11-2013 | 38                | 24-12-2013 | 26                | 20-01-2014 | 25                | 16-02-2014 | 25                | 15-03-2014 | 35                |
| 12-08-2013 | 310               | 08-09-2013 | 85                | 05-10-2013 | 48                | 01-11-2013 | 46                | 28-11-2013 | 37                | 25-12-2013 | 26                | 21-01-2014 | 29                | 17-02-2014 | 26                | 16-03-2014 | 35                |
| 13-08-2013 | 335               | 09-09-2013 | 78                | 06-10-2013 | 48                | 02-11-2013 | 44                | 29-11-2013 | 38                | 26-12-2013 | 25                | 22-01-2014 | 27                | 18-02-2014 | 26                | 17-03-2014 | 32                |
| 14-08-2013 | 266               | 10-09-2013 | 75                | 07-10-2013 | 47                | 03-11-2013 | 43                | 30-11-2013 | 38                | 27-12-2013 | 26                | 23-01-2014 | 29                | 19-02-2014 | 25                | 18-03-2014 | 31                |
| 15-08-2013 | 287               | 11-09-2013 | 82                | 08-10-2013 | 45                | 04-11-2013 | 41                | 01-12-2013 | 38                | 28-12-2013 | 26                | 24-01-2014 | 26                | 20-02-2014 | 27                | 19-03-2014 | 32                |
| 16-08-2013 | 288               | 12-09-2013 | 85                | 09-10-2013 | 44                | 05-11-2013 | 45                | 02-12-2013 | 36                | 29-12-2013 | 21                | 25-01-2014 | 28                | 21-02-2014 | 28                | 20-03-2014 | 31                |
| 17-08-2013 | 292               | 13-09-2013 | 79                | 10-10-2013 | 69                | 06-11-2013 | 41                | 03-12-2013 | 36                | 30-12-2013 | 25                | 26-01-2014 | 25                | 22-02-2014 | 28                | 21-03-2014 | 29                |
| 18-08-2013 | 265               | 14-09-2013 | 73                | 11-10-2013 | 72                | 07-11-2013 | 42                | 04-12-2013 | 33                | 31-12-2013 | 33                | 27-01-2014 | 28                | 23-02-2014 | 29                | 22-03-2014 | 30                |
| 19-08-2013 | 310               | 15-09-2013 | 66                | 12-10-2013 | 68                | 08-11-2013 | 41                | 05-12-2013 | 35                | 01-01-2014 | 29                | 28-01-2014 | 27                | 24-02-2014 | 29                | 23-03-2014 | 33                |
| 20-08-2013 | 317               | 16-09-2013 | 59                | 13-10-2013 | 67                | 09-11-2013 | 36                | 06-12-2013 | 34                | 02-01-2014 | 30                | 29-01-2014 | 27                | 25-02-2014 | 28                | 24-03-2014 | 37                |
| 21-08-2013 | 342               | 17-09-2013 | 58                | 14-10-2013 | 64                | 10-11-2013 | 44                | 07-12-2013 | 35                | 03-01-2014 | 29                | 30-01-2014 | 27                | 26-02-2014 | 28                | 25-03-2014 | 37                |
| 22-08-2013 | 302               | 18-09-2013 | 54                | 15-10-2013 | 54                | 11-11-2013 | 33                | 08-12-2013 | 35                | 04-01-2014 | 30                | 31-01-2014 | 27                | 27-02-2014 | 28                | 26-03-2014 | 37                |
| 23-08-2013 | 212               | 19-09-2013 | 66                | 16-10-2013 | 52                | 12-11-2013 | 45                | 09-12-2013 | 36                | 05-01-2014 | 30                | 01-02-2014 | 26                | 28-02-2014 | 29                | 27-03-2014 | 37                |
| 24-08-2013 | 200               | 20-09-2013 | 59                | 17-10-2013 | 68                | 13-11-2013 | 39                | 10-12-2013 | 32                | 06-01-2014 | 30                | 02-02-2014 | 23                | 01-03-2014 | 29                | 28-03-2014 | 37                |

|            |                   |            |                   |            | D                 | aily dischar | ge (Q)            | data at UI | tarkas            | hi for six w | /ater y           | vears      |                   |            |                   |            |                   |
|------------|-------------------|------------|-------------------|------------|-------------------|--------------|-------------------|------------|-------------------|--------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| Date       | Q                 | Date       | Q                 | Date       | Q                 | Date         | Q                 | Date       | Q                 | Date         | Q                 | Date       | Q                 | Date       | Q                 | Date       | Q                 |
|            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |              | m <sup>3/</sup> s |            | m <sup>3/</sup> s |              | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |
| 01-04-2008 | 34                | 28-04-2008 | 64                | 25-05-2008 | 126               | 21-06-2008   | 479               | 18-07-2008 | 304               | 14-08-2008   | 490               | 10-09-2008 | 109               | 07-10-2008 | 107               | 03-11-2008 | 61                |
| 02-04-2008 | 37                | 29-04-2008 | 62                | 26-05-2008 | 130               | 22-06-2008   | 422               | 19-07-2008 | 235               | 15-08-2008   | 435               | 11-09-2008 | 102               | 08-10-2008 | 106               | 04-11-2008 | 60                |
| 03-04-2008 | 42                | 30-04-2008 | 67                | 27-05-2008 | 137               | 23-06-2008   | 337               | 20-07-2008 | 318               | 16-08-2008   | 440               | 12-09-2008 | 103               | 09-10-2008 | 103               | 05-11-2008 | 61                |
| 04-04-2008 | 37                | 01-05-2008 | 68                | 28-05-2008 | 120               | 24-06-2008   | 378               | 21-07-2008 | 318               | 17-08-2008   | 451               | 13-09-2008 | 112               | 10-10-2008 | 93                | 06-11-2008 | 56                |
| 05-04-2008 | 38                | 02-05-2008 | 75                | 29-05-2008 | 115               | 25-06-2008   | 322               | 22-07-2008 | 369               | 18-08-2008   | 436               | 14-09-2008 | 119               | 11-10-2008 | 89                | 07-11-2008 | 61                |
| 06-04-2008 | 39                | 03-05-2008 | 80                | 30-05-2008 | 112               | 26-06-2008   | 320               | 23-07-2008 | 363               | 19-08-2008   | 393               | 15-09-2008 | 121               | 12-10-2008 | 91                | 08-11-2008 | 60                |
| 07-04-2008 | 37                | 04-05-2008 | 76                | 31-05-2008 | 122               | 27-06-2008   | 300               | 24-07-2008 | 393               | 20-08-2008   | 316               | 16-09-2008 | 120               | 13-10-2008 | 92                | 09-11-2008 | 56                |
| 08-04-2008 | 37                | 05-05-2008 | 90                | 01-06-2008 | 106               | 28-06-2008   | 252               | 25-07-2008 | 388               | 21-08-2008   | 403               | 17-09-2008 | 122               | 14-10-2008 | 87                | 10-11-2008 | 55                |
| 09-04-2008 | 37                | 06-05-2008 | 81                | 02-06-2008 | 109               | 29-06-2008   | 376               | 26-07-2008 | 385               | 22-08-2008   | 479               | 18-09-2008 | 121               | 15-10-2008 | 87                | 11-11-2008 | 55                |
| 10-04-2008 | 41                | 07-05-2008 | 76                | 03-06-2008 | 133               | 30-06-2008   | 427               | 27-07-2008 | 370               | 23-08-2008   | 467               | 19-09-2008 | 219               | 16-10-2008 | 83                | 12-11-2008 | 58                |
| 11-04-2008 | 44                | 08-05-2008 | 73                | 04-06-2008 | 142               | 01-07-2008   | 399               | 28-07-2008 | 356               | 24-08-2008   | 324               | 20-09-2008 | 268               | 17-10-2008 | 87                | 13-11-2008 | 58                |
| 12-04-2008 | 49                | 09-05-2008 | 70                | 05-06-2008 | 169               | 02-07-2008   | 373               | 29-07-2008 | 425               | 25-08-2008   | 312               | 21-09-2008 | 213               | 18-10-2008 | 83                | 14-11-2008 | 57                |
| 13-04-2008 | 47                | 10-05-2008 | 76                | 06-06-2008 | 146               | 03-07-2008   | 325               | 30-07-2008 | 485               | 26-08-2008   | 341               | 22-09-2008 | 184               | 19-10-2008 | 81                | 15-11-2008 | 49                |
| 14-04-2008 | 40                | 11-05-2008 | 70                | 07-06-2008 | 163               | 04-07-2008   | 385               | 31-07-2008 | 681               | 27-08-2008   | 321               | 23-09-2008 | 185               | 20-10-2008 | 85                | 16-11-2008 | 53                |
| 15-04-2008 | 47                | 12-05-2008 | 80                | 08-06-2008 | 193               | 05-07-2008   | 382               | 01-08-2008 | 574               | 28-08-2008   | 276               | 24-09-2008 | 171               | 21-10-2008 | 75                | 17-11-2008 | 54                |
| 16-04-2008 | 51                | 13-05-2008 | 79                | 09-06-2008 | 244               | 06-07-2008   | 421               | 02-08-2008 | 406               | 29-08-2008   | 290               | 25-09-2008 | 154               | 22-10-2008 | 76                | 18-11-2008 | 49                |
| 17-04-2008 | 53                | 14-05-2008 | 80                | 10-06-2008 | 316               | 07-07-2008   | 398               | 03-08-2008 | 469               | 30-08-2008   | 268               | 26-09-2008 | 153               | 23-10-2008 | 75                | 19-11-2008 | 55                |
| 18-04-2008 | 49                | 15-05-2008 | 106               | 11-06-2008 | 295               | 08-07-2008   | 368               | 04-08-2008 | 461               | 31-08-2008   | 266               | 27-09-2008 | 141               | 24-10-2008 | 74                | 20-11-2008 | 50                |
| 19-04-2008 | 51                | 16-05-2008 | 108               | 12-06-2008 | 355               | 09-07-2008   | 412               | 05-08-2008 | 520               | 01-09-2008   | 235               | 28-09-2008 | 133               | 25-10-2008 | 70                | 21-11-2008 | 51                |
| 20-04-2008 | 53                | 17-05-2008 | 133               | 13-06-2008 | 332               | 10-07-2008   | 421               | 06-08-2008 | 475               | 02-09-2008   | 233               | 29-09-2008 | 128               | 26-10-2008 | 68                | 22-11-2008 | 49                |
| 21-04-2008 | 55                | 18-05-2008 | 129               | 14-06-2008 | 311               | 11-07-2008   | 463               | 07-08-2008 | 507               | 03-09-2008   | 229               | 30-09-2008 | 117               | 27-10-2008 | 66                | 23-11-2008 | 51                |
| 22-04-2008 | 56                | 19-05-2008 | 118               | 15-06-2008 | 317               | 12-07-2008   | 472               | 08-08-2008 | 516               | 04-09-2008   | 230               | 01-10-2008 | 120               | 28-10-2008 | 64                | 24-11-2008 | 57                |
| 23-04-2008 | 71                | 20-05-2008 | 110               | 16-06-2008 | 331               | 13-07-2008   | 390               | 09-08-2008 | 412               | 05-09-2008   | 230               | 02-10-2008 | 116               | 29-10-2008 | 66                | 25-11-2008 | 44                |
| 24-04-2008 | 71                | 21-05-2008 | 104               | 17-06-2008 | 329               | 14-07-2008   | 402               | 10-08-2008 | 446               | 06-09-2008   | 222               | 03-10-2008 | 114               | 30-10-2008 | 52                | 26-11-2008 | 52                |
| 25-04-2008 | 77                | 22-05-2008 | 112               | 18-06-2008 | 446               | 15-07-2008   | 393               | 11-08-2008 | 442               | 07-09-2008   | 169               | 04-10-2008 | 116               | 31-10-2008 | 73                | 27-11-2008 | 48                |
| 26-04-2008 | 72                | 23-05-2008 | 139               | 19-06-2008 | 579               | 16-07-2008   | 361               | 12-08-2008 | 439               | 08-09-2008   | 141               | 05-10-2008 | 112               | 01-11-2008 | 60                | 28-11-2008 | 46                |
| 27-04-2008 | 69                | 24-05-2008 | 112               | 20-06-2008 | 510               | 17-07-2008   | 376               | 13-08-2008 | 459               | 09-09-2008   | 134               | 06-10-2008 | 105               | 02-11-2008 | 66                | 29-11-2008 | 48                |

|            |                   |            |                   |            |                   | Daily disch | arge (0           | Q) data at I | Maner             | i for six wa | ter ye            | ars        |                   |            |                   |            |                   |
|------------|-------------------|------------|-------------------|------------|-------------------|-------------|-------------------|--------------|-------------------|--------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| Date       | Q                 | Date       | Q                 | Date       | Q                 | Date        | Q                 | Date         | Q                 | Date         | Q                 | Date       | Q                 | Date       | Q                 | Date       | Q                 |
|            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |             | m <sup>3/</sup> s |              | m <sup>3/</sup> s |              | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |
| 30-11-2008 | 47                | 27-12-2008 | 38                | 23-01-2009 | 35                | 19-02-2009  | 28                | 18-03-2009   | 25                | 14-04-2009   | 33                | 11-05-2009 | 44                | 07-06-2009 | 162               | 04-07-2009 | 160               |
| 01-12-2008 | 47                | 28-12-2008 | 38                | 24-01-2009 | 33                | 20-02-2009  | 31                | 19-03-2009   | 28                | 15-04-2009   | 37                | 12-05-2009 | 49                | 08-06-2009 | 155               | 05-07-2009 | 164               |
| 02-12-2008 | 44                | 29-12-2008 | 38                | 25-01-2009 | 34                | 21-02-2009  | 33                | 20-03-2009   | 28                | 16-04-2009   | 35                | 13-05-2009 | 44                | 09-06-2009 | 142               | 06-07-2009 | 166               |
| 03-12-2008 | 40                | 30-12-2008 | 38                | 26-01-2009 | 33                | 22-02-2009  | 31                | 21-03-2009   | 30                | 17-04-2009   | 32                | 14-05-2009 | 51                | 10-06-2009 | 128               | 07-07-2009 | 180               |
| 04-12-2008 | 44                | 31-12-2008 | 39                | 27-01-2009 | 31                | 23-02-2009  | 32                | 22-03-2009   | 29                | 18-04-2009   | 40                | 15-05-2009 | 61                | 11-06-2009 | 122               | 08-07-2009 | 219               |
| 05-12-2008 | 45                | 01-01-2009 | 39                | 28-01-2009 | 33                | 24-02-2009  | 25                | 23-03-2009   | 28                | 19-04-2009   | 38                | 16-05-2009 | 78                | 12-06-2009 | 124               | 09-07-2009 | 229               |
| 06-12-2008 | 44                | 02-01-2009 | 37                | 29-01-2009 | 34                | 25-02-2009  | 31                | 24-03-2009   | 23                | 20-04-2009   | 46                | 17-05-2009 | 86                | 13-06-2009 | 123               | 10-07-2009 | 229               |
| 07-12-2008 | 43                | 03-01-2009 | 41                | 30-01-2009 | 35                | 26-02-2009  | 31                | 25-03-2009   | 32                | 21-04-2009   | 50                | 18-05-2009 | 111               | 14-06-2009 | 116               | 11-07-2009 | 227               |
| 08-12-2008 | 43                | 04-01-2009 | 37                | 31-01-2009 | 34                | 27-02-2009  | 27                | 26-03-2009   | 30                | 22-04-2009   | 39                | 19-05-2009 | 122               | 15-06-2009 | 120               | 12-07-2009 | 254               |
| 09-12-2008 | 41                | 05-01-2009 | 37                | 01-02-2009 | 33                | 28-02-2009  | 30                | 27-03-2009   | 29                | 23-04-2009   | 31                | 20-05-2009 | 126               | 16-06-2009 | 110               | 13-07-2009 | 311               |
| 10-12-2008 | 41                | 06-01-2009 | 39                | 02-02-2009 | 34                | 01-03-2009  | 31                | 28-03-2009   | 30                | 24-04-2009   | 35                | 21-05-2009 | 147               | 17-06-2009 | 97                | 14-07-2009 | 323               |
| 11-12-2008 | 48                | 07-01-2009 | 37                | 03-02-2009 | 33                | 02-03-2009  | 32                | 29-03-2009   | 29                | 25-04-2009   | 36                | 22-05-2009 | 151               | 18-06-2009 | 104               | 15-07-2009 | 287               |
| 12-12-2008 | 41                | 08-01-2009 | 36                | 04-02-2009 | 33                | 03-03-2009  | 25                | 30-03-2009   | 29                | 26-04-2009   | 39                | 23-05-2009 | 146               | 19-06-2009 | 101               | 16-07-2009 | 209               |
| 13-12-2008 | 40                | 09-01-2009 | 36                | 05-02-2009 | 31                | 04-03-2009  | 33                | 31-03-2009   | 32                | 27-04-2009   | 45                | 24-05-2009 | 139               | 20-06-2009 | 109               | 17-07-2009 | 226               |
| 14-12-2008 | 39                | 10-01-2009 | 37                | 06-02-2009 | 33                | 05-03-2009  | 31                | 01-04-2009   | 23                | 28-04-2009   | 52                | 25-05-2009 | 128               | 21-06-2009 | 121               | 18-07-2009 | 277               |
| 15-12-2008 | 41                | 11-01-2009 | 37                | 07-02-2009 | 33                | 06-03-2009  | 31                | 02-04-2009   | 30                | 29-04-2009   | 76                | 26-05-2009 | 119               | 22-06-2009 | 131               | 19-07-2009 | 299               |
| 16-12-2008 | 39                | 12-01-2009 | 35                | 08-02-2009 | 32                | 07-03-2009  | 31                | 03-04-2009   | 30                | 30-04-2009   | 64                | 27-05-2009 | 128               | 23-06-2009 | 156               | 20-07-2009 | 298               |
| 17-12-2008 | 40                | 13-01-2009 | 34                | 09-02-2009 | 33                | 08-03-2009  | 24                | 04-04-2009   | 30                | 01-05-2009   | 77                | 28-05-2009 | 133               | 24-06-2009 | 189               | 21-07-2009 | 272               |
| 18-12-2008 | 41                | 14-01-2009 | 37                | 10-02-2009 | 32                | 09-03-2009  | 30                | 05-04-2009   | 30                | 02-05-2009   | 80                | 29-05-2009 | 133               | 25-06-2009 | 212               | 22-07-2009 | 256               |
| 19-12-2008 | 43                | 15-01-2009 | 34                | 11-02-2009 | 25                | 10-03-2009  | 30                | 06-04-2009   | 29                | 03-05-2009   | 67                | 30-05-2009 | 126               | 26-06-2009 | 241               | 23-07-2009 | 238               |
| 20-12-2008 | 47                | 16-01-2009 | 36                | 12-02-2009 | 31                | 11-03-2009  | 30                | 07-04-2009   | 37                | 04-05-2009   | 59                | 31-05-2009 | 110               | 27-06-2009 | 234               | 24-07-2009 | 297               |
| 21-12-2008 | 41                | 17-01-2009 | 36                | 13-02-2009 | 31                | 12-03-2009  | 25                | 08-04-2009   | 34                | 05-05-2009   | 54                | 01-06-2009 | 115               | 28-06-2009 | 259               | 25-07-2009 | 275               |
| 22-12-2008 | 41                | 18-01-2009 | 35                | 14-02-2009 | 31                | 13-03-2009  | 28                | 09-04-2009   | 30                | 06-05-2009   | 51                | 02-06-2009 | 123               | 29-06-2009 | 275               | 26-07-2009 | 300               |
| 23-12-2008 | 41                | 19-01-2009 | 35                | 15-02-2009 | 31                | 14-03-2009  | 30                | 10-04-2009   | 31                | 07-05-2009   | 51                | 03-06-2009 | 159               | 30-06-2009 | 272               | 27-07-2009 | 317               |
| 24-12-2008 | 39                | 20-01-2009 | 35                | 16-02-2009 | 33                | 15-03-2009  | 28                | 11-04-2009   | 32                | 08-05-2009   | 44                | 04-06-2009 | 190               | 01-07-2009 | 242               | 28-07-2009 | 303               |
| 25-12-2008 | 39                | 21-01-2009 | 35                | 17-02-2009 | 32                | 16-03-2009  | 30                | 12-04-2009   | 38                | 09-05-2009   | 49                | 05-06-2009 | 209               | 02-07-2009 | 202               | 29-07-2009 | 284               |
| 26-12-2008 | 41                | 22-01-2009 | 35                | 18-02-2009 | 28                | 17-03-2009  | 29                | 13-04-2009   | 33                | 10-05-2009   | 41                | 06-06-2009 | 191               | 03-07-2009 | 198               | 30-07-2009 | 264               |

|            |                   |            |                   |            |                   | Daily disch | arge (            | Q) data at l | Maner             | i for six wa | ter ye            | ars        |                   |            |                   |            | <b></b>           |
|------------|-------------------|------------|-------------------|------------|-------------------|-------------|-------------------|--------------|-------------------|--------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| Date       | Q                 | Date       | Q                 | Date       | Q                 | Date        | Q                 | Date         | Q                 | Date         | Q                 | Date       | Q                 | Date       | Q                 | Date       | Q                 |
|            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |             | m <sup>3/</sup> s |              | m <sup>3/</sup> s |              | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |
| 31-07-2009 | 279               | 27-08-2009 | 199               | 23-09-2009 | 108               | 20-10-2009  | 63                | 16-11-2009   | 45                | 13-12-2009   | 34                | 09-01-2010 | 32                | 05-02-2010 | 28                | 04-03-2010 | 30                |
| 01-08-2009 | 291               | 28-08-2009 | 212               | 24-09-2009 | 108               | 21-10-2009  | 66                | 17-11-2009   | 44                | 14-12-2009   | 36                | 10-01-2010 | 32                | 06-02-2010 | 27                | 05-03-2010 | 36                |
| 02-08-2009 | 288               | 29-08-2009 | 217               | 25-09-2009 | 107               | 22-10-2009  | 63                | 18-11-2009   | 44                | 15-12-2009   | 37                | 11-01-2010 | 28                | 07-02-2010 | 33                | 06-03-2010 | 34                |
| 03-08-2009 | 331               | 30-08-2009 | 251               | 26-09-2009 | 104               | 23-10-2009  | 62                | 19-11-2009   | 39                | 16-12-2009   | 34                | 12-01-2010 | 30                | 08-02-2010 | 27                | 07-03-2010 | 28                |
| 04-08-2009 | 311               | 31-08-2009 | 237               | 27-09-2009 | 115               | 24-10-2009  | 55                | 20-11-2009   | 39                | 17-12-2009   | 33                | 13-01-2010 | 30                | 09-02-2010 | 36                | 08-03-2010 | 33                |
| 05-08-2009 | 319               | 01-09-2009 | 204               | 28-09-2009 | 112               | 25-10-2009  | 63                | 21-11-2009   | 41                | 18-12-2009   | 33                | 14-01-2010 | 28                | 10-02-2010 | 27                | 09-03-2010 | 28                |
| 06-08-2009 | 291               | 02-09-2009 | 187               | 29-09-2009 | 111               | 26-10-2009  | 54                | 22-11-2009   | 39                | 19-12-2009   | 33                | 15-01-2010 | 34                | 11-02-2010 | 28                | 10-03-2010 | 32                |
| 07-08-2009 | 303               | 03-09-2009 | 191               | 30-09-2009 | 110               | 27-10-2009  | 58                | 23-11-2009   | 40                | 20-12-2009   | 33                | 16-01-2010 | 34                | 12-02-2010 | 32                | 11-03-2010 | 34                |
| 08-08-2009 | 288               | 04-09-2009 | 170               | 01-10-2009 | 109               | 28-10-2009  | 53                | 24-11-2009   | 48                | 21-12-2009   | 31                | 17-01-2010 | 30                | 13-02-2010 | 33                | 12-03-2010 | 34                |
| 09-08-2009 | 292               | 05-09-2009 | 186               | 02-10-2009 | 108               | 29-10-2009  | 55                | 25-11-2009   | 42                | 22-12-2009   | 31                | 18-01-2010 | 35                | 14-02-2010 | 32                | 13-03-2010 | 30                |
| 10-08-2009 | 292               | 06-09-2009 | 141               | 03-10-2009 | 107               | 30-10-2009  | 52                | 26-11-2009   | 41                | 23-12-2009   | 27                | 19-01-2010 | 34                | 15-02-2010 | 34                | 14-03-2010 | 40                |
| 11-08-2009 | 267               | 07-09-2009 | 120               | 04-10-2009 | 112               | 31-10-2009  | 55                | 27-11-2009   | 37                | 24-12-2009   | 27                | 20-01-2010 | 28                | 16-02-2010 | 28                | 15-03-2010 | 32                |
| 12-08-2009 | 287               | 08-09-2009 | 296               | 05-10-2009 | 140               | 01-11-2009  | 51                | 28-11-2009   | 40                | 25-12-2009   | 32                | 21-01-2010 | 32                | 17-02-2010 | 34                | 16-03-2010 | 35                |
| 13-08-2009 | 297               | 09-09-2009 | 306               | 06-10-2009 | 113               | 02-11-2009  | 53                | 29-11-2009   | 39                | 26-12-2009   | 33                | 22-01-2010 | 26                | 18-02-2010 | 29                | 17-03-2010 | 38                |
| 14-08-2009 | 297               | 10-09-2009 | 377               | 07-10-2009 | 104               | 03-11-2009  | 51                | 30-11-2009   | 44                | 27-12-2009   | 32                | 23-01-2010 | 35                | 19-02-2010 | 32                | 18-03-2010 | 40                |
| 15-08-2009 | 285               | 11-09-2009 | 249               | 08-10-2009 | 96                | 04-11-2009  | 49                | 01-12-2009   | 34                | 28-12-2009   | 31                | 24-01-2010 | 29                | 20-02-2010 | 28                | 19-03-2010 | 45                |
| 16-08-2009 | 268               | 12-09-2009 | 255               | 09-10-2009 | 91                | 05-11-2009  | 48                | 02-12-2009   | 38                | 29-12-2009   | 33                | 25-01-2010 | 35                | 21-02-2010 | 32                | 20-03-2010 | 50                |
| 17-08-2009 | 262               | 13-09-2009 | 219               | 10-10-2009 | 85                | 06-11-2009  | 49                | 03-12-2009   | 39                | 30-12-2009   | 32                | 26-01-2010 | 30                | 22-02-2010 | 33                | 21-03-2010 | 55                |
| 18-08-2009 | 264               | 14-09-2009 | 195               | 11-10-2009 | 77                | 07-11-2009  | 49                | 04-12-2009   | 39                | 31-12-2009   | 32                | 27-01-2010 | 35                | 23-02-2010 | 36                | 22-03-2010 | 52                |
| 19-08-2009 | 240               | 15-09-2009 | 167               | 12-10-2009 | 75                | 08-11-2009  | 47                | 05-12-2009   | 36                | 01-01-2010   | 31                | 28-01-2010 | 28                | 24-02-2010 | 35                | 23-03-2010 | 45                |
| 20-08-2009 | 195               | 16-09-2009 | 134               | 13-10-2009 | 62                | 09-11-2009  | 45                | 06-12-2009   | 35                | 02-01-2010   | 31                | 29-01-2010 | 31                | 25-02-2010 | 34                | 24-03-2010 | 52                |
| 21-08-2009 | 237               | 17-09-2009 | 134               | 14-10-2009 | 69                | 10-11-2009  | 44                | 07-12-2009   | 35                | 03-01-2010   | 32                | 30-01-2010 | 29                | 26-02-2010 | 33                | 25-03-2010 | 51                |
| 22-08-2009 | 204               | 18-09-2009 | 115               | 15-10-2009 | 72                | 11-11-2009  | 49                | 08-12-2009   | 36                | 04-01-2010   | 33                | 31-01-2010 | 28                | 27-02-2010 | 27                | 26-03-2010 | 47                |
| 23-08-2009 | 198               | 19-09-2009 | 116               | 16-10-2009 | 68                | 12-11-2009  | 43                | 09-12-2009   | 32                | 05-01-2010   | 31                | 01-02-2010 | 30                | 28-02-2010 | 35                | 27-03-2010 | 45                |
| 24-08-2009 | 208               | 20-09-2009 | 114               | 17-10-2009 | 66                | 13-11-2009  | 43                | 10-12-2009   | 36                | 06-01-2010   | 31                | 02-02-2010 | 34                | 01-03-2010 | 35                | 28-03-2010 | 48                |
| 25-08-2009 | 209               | 21-09-2009 | 113               | 18-10-2009 | 71                | 14-11-2009  | 43                | 11-12-2009   | 34                | 07-01-2010   | 31                | 03-02-2010 | 29                | 02-03-2010 | 35                | 29-03-2010 | 46                |
| 26-08-2009 | 204               | 22-09-2009 | 111               | 19-10-2009 | 69                | 15-11-2009  | 46                | 12-12-2009   | 34                | 08-01-2010   | 32                | 04-02-2010 | 33                | 03-03-2010 | 35                | 30-03-2010 | 46                |

|            |                   |            |                   |            |                   | Daily disch | arge (            | Q) data at I | Maner             | i for six wa | ter ye            | ars        |                   |            |                   |            |                   |
|------------|-------------------|------------|-------------------|------------|-------------------|-------------|-------------------|--------------|-------------------|--------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| Date       | Q                 | Date       | Q                 | Date       | Q                 | Date        | Q                 | Date         | Q                 | Date         | Q                 | Date       | Q                 | Date       | Q                 | Date       | Q                 |
|            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |             | m <sup>3/</sup> s |              | m <sup>3/</sup> s |              | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |
| 31-03-2010 | 48                | 27-04-2010 | 58                | 24-05-2010 | 104               | 20-06-2010  | 149               | 17-07-2010   | 317               | 13-08-2010   | 472               | 09-09-2010 | 378               | 06-10-2010 | 135               | 02-11-2010 | 74                |
| 01-04-2010 | 38                | 28-04-2010 | 68                | 25-05-2010 | 120               | 21-06-2010  | 164               | 18-07-2010   | 322               | 14-08-2010   | 455               | 10-09-2010 | 330               | 07-10-2010 | 132               | 03-11-2010 | 73                |
| 02-04-2010 | 39                | 29-04-2010 | 68                | 26-05-2010 | 132               | 22-06-2010  | 174               | 19-07-2010   | 358               | 15-08-2010   | 459               | 11-09-2010 | 311               | 08-10-2010 | 135               | 04-11-2010 | 72                |
| 03-04-2010 | 38                | 30-04-2010 | 74                | 27-05-2010 | 144               | 23-06-2010  | 184               | 20-07-2010   | 410               | 16-08-2010   | 567               | 12-09-2010 | 359               | 09-10-2010 | 128               | 05-11-2010 | 71                |
| 04-04-2010 | 36                | 01-05-2010 | 71                | 28-05-2010 | 141               | 24-06-2010  | 205               | 21-07-2010   | 469               | 17-08-2010   | 573               | 13-09-2010 | 336               | 10-10-2010 | 123               | 06-11-2010 | 70                |
| 05-04-2010 | 35                | 02-05-2010 | 68                | 29-05-2010 | 109               | 25-06-2010  | 206               | 22-07-2010   | 373               | 18-08-2010   | 609               | 14-09-2010 | 321               | 11-10-2010 | 121               | 07-11-2010 | 69                |
| 06-04-2010 | 40                | 03-05-2010 | 63                | 30-05-2010 | 99                | 26-06-2010  | 203               | 23-07-2010   | 316               | 19-08-2010   | 578               | 15-09-2010 | 360               | 12-10-2010 | 116               | 08-11-2010 | 69                |
| 07-04-2010 | 44                | 04-05-2010 | 93                | 31-05-2010 | 106               | 27-06-2010  | 233               | 24-07-2010   | 342               | 20-08-2010   | 541               | 16-09-2010 | 287               | 13-10-2010 | 115               | 09-11-2010 | 67                |
| 08-04-2010 | 47                | 05-05-2010 | 113               | 01-06-2010 | 130               | 28-06-2010  | 255               | 25-07-2010   | 389               | 21-08-2010   | 554               | 17-09-2010 | 276               | 14-10-2010 | 112               | 10-11-2010 | 70                |
| 09-04-2010 | 56                | 06-05-2010 | 110               | 02-06-2010 | 142               | 29-06-2010  | 255               | 26-07-2010   | 441               | 22-08-2010   | 705               | 18-09-2010 | 415               | 15-10-2010 | 106               | 11-11-2010 | 66                |
| 10-04-2010 | 56                | 07-05-2010 | 96                | 03-06-2010 | 151               | 30-06-2010  | 262               | 27-07-2010   | 450               | 23-08-2010   | 583               | 19-09-2010 | 679               | 16-10-2010 | 107               | 12-11-2010 | 65                |
| 11-04-2010 | 48                | 08-05-2010 | 89                | 04-06-2010 | 129               | 01-07-2010  | 255               | 28-07-2010   | 443               | 24-08-2010   | 507               | 20-09-2010 | 787               | 17-10-2010 | 107               | 13-11-2010 | 65                |
| 12-04-2010 | 64                | 09-05-2010 | 88                | 05-06-2010 | 132               | 02-07-2010  | 215               | 29-07-2010   | 391               | 25-08-2010   | 446               | 21-09-2010 | 423               | 18-10-2010 | 104               | 14-11-2010 | 65                |
| 13-04-2010 | 46                | 10-05-2010 | 88                | 06-06-2010 | 115               | 03-07-2010  | 226               | 30-07-2010   | 377               | 26-08-2010   | 401               | 22-09-2010 | 346               | 19-10-2010 | 105               | 15-11-2010 | 62                |
| 14-04-2010 | 46                | 11-05-2010 | 88                | 07-06-2010 | 119               | 04-07-2010  | 226               | 31-07-2010   | 446               | 27-08-2010   | 350               | 23-09-2010 | 336               | 20-10-2010 | 102               | 16-11-2010 | 65                |
| 15-04-2010 | 52                | 12-05-2010 | 78                | 08-06-2010 | 128               | 05-07-2010  | 321               | 01-08-2010   | 420               | 28-08-2010   | 334               | 24-09-2010 | 315               | 21-10-2010 | 101               | 17-11-2010 | 58                |
| 16-04-2010 | 68                | 13-05-2010 | 68                | 09-06-2010 | 113               | 06-07-2010  | 316               | 02-08-2010   | 351               | 29-08-2010   | 343               | 25-09-2010 | 273               | 22-10-2010 | 95                | 18-11-2010 | 63                |
| 17-04-2010 | 72                | 14-05-2010 | 72                | 10-06-2010 | 105               | 07-07-2010  | 240               | 03-08-2010   | 452               | 30-08-2010   | 350               | 26-09-2010 | 242               | 23-10-2010 | 105               | 19-11-2010 | 58                |
| 18-04-2010 | 80                | 15-05-2010 | 67                | 11-06-2010 | 89                | 08-07-2010  | 227               | 04-08-2010   | 448               | 31-08-2010   | 383               | 27-09-2010 | 216               | 24-10-2010 | 95                | 20-11-2010 | 54                |
| 19-04-2010 | 70                | 16-05-2010 | 61                | 12-06-2010 | 89                | 09-07-2010  | 252               | 05-08-2010   | 496               | 01-09-2010   | 371               | 28-09-2010 | 201               | 25-10-2010 | 92                | 21-11-2010 | 53                |
| 20-04-2010 | 65                | 17-05-2010 | 79                | 13-06-2010 | 96                | 10-07-2010  | 286               | 06-08-2010   | 510               | 02-09-2010   | 400               | 29-09-2010 | 188               | 26-10-2010 | 88                | 22-11-2010 | 58                |
| 21-04-2010 | 60                | 18-05-2010 | 73                | 14-06-2010 | 96                | 11-07-2010  | 256               | 07-08-2010   | 479               | 03-09-2010   | 393               | 30-09-2010 | 177               | 27-10-2010 | 82                | 23-11-2010 | 57                |
| 22-04-2010 | 58                | 19-05-2010 | 70                | 15-06-2010 | 100               | 12-07-2010  | 242               | 08-08-2010   | 511               | 04-09-2010   | 360               | 01-10-2010 | 196               | 28-10-2010 | 83                | 24-11-2010 | 55                |
| 23-04-2010 | 61                | 20-05-2010 | 71                | 16-06-2010 | 108               | 13-07-2010  | 222               | 09-08-2010   | 516               | 05-09-2010   | 364               | 02-10-2010 | 157               | 29-10-2010 | 83                | 25-11-2010 | 56                |
| 24-04-2010 | 53                | 21-05-2010 | 61                | 17-06-2010 | 101               | 14-07-2010  | 209               | 10-08-2010   | 460               | 06-09-2010   | 357               | 03-10-2010 | 148               | 30-10-2010 | 82                | 26-11-2010 | 53                |
| 25-04-2010 | 52                | 22-05-2010 | 82                | 18-06-2010 | 98                | 15-07-2010  | 232               | 11-08-2010   | 473               | 07-09-2010   | 392               | 04-10-2010 | 144               | 31-10-2010 | 79                | 27-11-2010 | 53                |
| 26-04-2010 | 47                | 23-05-2010 | 106               | 19-06-2010 | 113               | 16-07-2010  | 233               | 12-08-2010   | 486               | 08-09-2010   | 587               | 05-10-2010 | 140               | 01-11-2010 | 70                | 28-11-2010 | 53                |

|            |                   |            |                   |            |                   | Daily disch | arge (            | Q) data at l | Maner             | i for six wa | ter ye            | ars        |                   |            |                   |            |                   |
|------------|-------------------|------------|-------------------|------------|-------------------|-------------|-------------------|--------------|-------------------|--------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
| Date       | Q                 | Date       | Q                 | Date       | Q                 | Date        | Q                 | Date         | Q                 | Date         | Q                 | Date       | Q                 | Date       | Q                 | Date       | Q                 |
|            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |             | m <sup>3/</sup> s |              | m <sup>3/</sup> s |              | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |            | m <sup>3/</sup> s |
| 29-11-2010 | 51                | 26-12-2010 | 37                | 22-01-2011 | 37                | 18-02-2011  | 36                | 17-03-2011   | 44                | 13-04-2011   | 54                | 10-05-2011 | 96                | 06-06-2011 | 135               | 03-07-2011 | 226               |
| 30-11-2010 | 52                | 27-12-2010 | 40                | 23-01-2011 | 35                | 19-02-2011  | 37                | 18-03-2011   | 46                | 14-04-2011   | 47                | 11-05-2011 | 97                | 07-06-2011 | 134               | 04-07-2011 | 226               |
| 01-12-2010 | 52                | 28-12-2010 | 40                | 24-01-2011 | 34                | 20-02-2011  | 36                | 19-03-2011   | 43                | 15-04-2011   | 50                | 12-05-2011 | 113               | 08-06-2011 | 134               | 05-07-2011 | 321               |
| 02-12-2010 | 52                | 29-12-2010 | 40                | 25-01-2011 | 35                | 21-02-2011  | 36                | 20-03-2011   | 43                | 16-04-2011   | 54                | 13-05-2011 | 119               | 09-06-2011 | 133               | 06-07-2011 | 316               |
| 03-12-2010 | 43                | 30-12-2010 | 41                | 26-01-2011 | 35                | 22-02-2011  | 36                | 21-03-2011   | 40                | 17-04-2011   | 60                | 14-05-2011 | 109               | 10-06-2011 | 132               | 07-07-2011 | 240               |
| 04-12-2010 | 48                | 31-12-2010 | 44                | 27-01-2011 | 35                | 23-02-2011  | 36                | 22-03-2011   | 40                | 18-04-2011   | 73                | 15-05-2011 | 110               | 11-06-2011 | 141               | 08-07-2011 | 227               |
| 05-12-2010 | 52                | 01-01-2011 | 41                | 28-01-2011 | 35                | 24-02-2011  | 33                | 23-03-2011   | 43                | 19-04-2011   | 68                | 16-05-2011 | 116               | 12-06-2011 | 202               | 09-07-2011 | 252               |
| 06-12-2010 | 42                | 02-01-2011 | 40                | 29-01-2011 | 35                | 25-02-2011  | 33                | 24-03-2011   | 44                | 20-04-2011   | 58                | 17-05-2011 | 131               | 13-06-2011 | 191               | 10-07-2011 | 286               |
| 07-12-2010 | 51                | 03-01-2011 | 39                | 30-01-2011 | 33                | 26-02-2011  | 36                | 25-03-2011   | 41                | 21-04-2011   | 45                | 18-05-2011 | 143               | 14-06-2011 | 218               | 11-07-2011 | 256               |
| 08-12-2010 | 45                | 04-01-2011 | 40                | 31-01-2011 | 34                | 27-02-2011  | 32                | 26-03-2011   | 46                | 22-04-2011   | 48                | 19-05-2011 | 145               | 15-06-2011 | 215               | 12-07-2011 | 242               |
| 09-12-2010 | 49                | 05-01-2011 | 39                | 01-02-2011 | 33                | 28-02-2011  | 32                | 27-03-2011   | 44                | 23-04-2011   | 50                | 20-05-2011 | 179               | 16-06-2011 | 220               | 13-07-2011 | 222               |
| 10-12-2010 | 45                | 06-01-2011 | 38                | 02-02-2011 | 33                | 01-03-2011  | 32                | 28-03-2011   | 48                | 24-04-2011   | 57                | 21-05-2011 | 175               | 17-06-2011 | 252               | 14-07-2011 | 209               |
| 11-12-2010 | 44                | 07-01-2011 | 38                | 03-02-2011 | 33                | 02-03-2011  | 32                | 29-03-2011   | 46                | 25-04-2011   | 66                | 22-05-2011 | 151               | 18-06-2011 | 234               | 15-07-2011 | 232               |
| 12-12-2010 | 50                | 08-01-2011 | 39                | 04-02-2011 | 34                | 03-03-2011  | 37                | 30-03-2011   | 45                | 26-04-2011   | 71                | 23-05-2011 | 129               | 19-06-2011 | 206               | 16-07-2011 | 233               |
| 13-12-2010 | 41                | 09-01-2011 | 37                | 05-02-2011 | 36                | 04-03-2011  | 37                | 31-03-2011   | 47                | 27-04-2011   | 85                | 24-05-2011 | 151               | 20-06-2011 | 233               | 17-07-2011 | 317               |
| 14-12-2010 | 43                | 10-01-2011 | 37                | 06-02-2011 | 31                | 05-03-2011  | 34                | 01-04-2011   | 50                | 28-04-2011   | 88                | 25-05-2011 | 155               | 21-06-2011 | 237               | 18-07-2011 | 322               |
| 15-12-2010 | 34                | 11-01-2011 | 37                | 07-02-2011 | 31                | 06-03-2011  | 33                | 02-04-2011   | 47                | 29-04-2011   | 92                | 26-05-2011 | 158               | 22-06-2011 | 274               | 19-07-2011 | 358               |
| 16-12-2010 | 51                | 12-01-2011 | 36                | 08-02-2011 | 30                | 07-03-2011  | 34                | 03-04-2011   | 35                | 30-04-2011   | 100               | 27-05-2011 | 175               | 23-06-2011 | 323               | 20-07-2011 | 410               |
| 17-12-2010 | 45                | 13-01-2011 | 38                | 09-02-2011 | 33                | 08-03-2011  | 33                | 04-04-2011   | 46                | 01-05-2011   | 94                | 28-05-2011 | 171               | 24-06-2011 | 345               | 21-07-2011 | 469               |
| 18-12-2010 | 43                | 14-01-2011 | 34                | 10-02-2011 | 39                | 09-03-2011  | 33                | 05-04-2011   | 47                | 02-05-2011   | 92                | 29-05-2011 | 193               | 25-06-2011 | 330               | 22-07-2011 | 373               |
| 19-12-2010 | 41                | 15-01-2011 | 38                | 11-02-2011 | 36                | 10-03-2011  | 35                | 06-04-2011   | 43                | 03-05-2011   | 89                | 30-05-2011 | 190               | 26-06-2011 | 350               | 23-07-2011 | 316               |
| 20-12-2010 | 42                | 16-01-2011 | 36                | 12-02-2011 | 36                | 11-03-2011  | 33                | 07-04-2011   | 39                | 04-05-2011   | 96                | 31-05-2011 | 175               | 27-06-2011 | 371               | 24-07-2011 | 342               |
| 21-12-2010 | 41                | 17-01-2011 | 37                | 13-02-2011 | 37                | 12-03-2011  | 31                | 08-04-2011   | 40                | 05-05-2011   | 102               | 01-06-2011 | 177               | 28-06-2011 | 491               | 25-07-2011 | 389               |
| 22-12-2010 | 40                | 18-01-2011 | 37                | 14-02-2011 | 38                | 13-03-2011  | 30                | 09-04-2011   | 38                | 06-05-2011   | 106               | 02-06-2011 | 149               | 29-06-2011 | 437               | 26-07-2011 | 441               |
| 23-12-2010 | 40                | 19-01-2011 | 36                | 15-02-2011 | 36                | 14-03-2011  | 36                | 10-04-2011   | 43                | 07-05-2011   | 95                | 03-06-2011 | 128               | 30-06-2011 | 387               | 27-07-2011 | 450               |
| 24-12-2010 | 41                | 20-01-2011 | 36                | 16-02-2011 | 33                | 15-03-2011  | 47                | 11-04-2011   | 40                | 08-05-2011   | 82                | 04-06-2011 | 120               | 01-07-2011 | 255               | 28-07-2011 | 443               |
| 25-12-2010 | 42                | 21-01-2011 | 36                | 17-02-2011 | 40                | 16-03-2011  | 41                | 12-04-2011   | 44                | 09-05-2011   | 87                | 05-06-2011 | 123               | 02-07-2011 | 215               | 29-07-2011 | 391               |

| Date       | Q                 |
|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
|            | m <sup>3/</sup> s |
| 30-07-2011 | 377               | 26-08-2011 | 337               | 22-09-2011 | 179               | 20-10-2011 | 76                | 16-11-2011 | 57                | 13-12-2011 | 42                | 09-01-2012 | 39                | 05-02-2012 | 37                | 03-03-2012 | 35                |
| 31-07-2011 | 446               | 27-08-2011 | 369               | 23-09-2011 | 200               | 21-10-2011 | 81                | 17-11-2011 | 49                | 14-12-2011 | 39                | 10-01-2012 | 38                | 06-02-2012 | 37                | 04-03-2012 | 34                |
| 01-08-2011 | 360               | 28-08-2011 | 345               | 24-09-2011 | 166               | 22-10-2011 | 74                | 18-11-2011 | 53                | 15-12-2011 | 41                | 11-01-2012 | 40                | 07-02-2012 | 36                | 05-03-2012 | 37                |
| 02-08-2011 | 340               | 29-08-2011 | 323               | 25-09-2011 | 154               | 23-10-2011 | 73                | 19-11-2011 | 53                | 16-12-2011 | 41                | 12-01-2012 | 41                | 08-02-2012 | 37                | 06-03-2012 | 49                |
| 03-08-2011 | 323               | 30-08-2011 | 362               | 26-09-2011 | 152               | 24-10-2011 | 69                | 20-11-2011 | 48                | 17-12-2011 | 38                | 13-01-2012 | 39                | 09-02-2012 | 37                | 07-03-2012 | 40                |
| 04-08-2011 | 377               | 31-08-2011 | 358               | 27-09-2011 | 145               | 25-10-2011 | 69                | 21-11-2011 | 52                | 18-12-2011 | 38                | 14-01-2012 | 40                | 10-02-2012 | 37                | 08-03-2012 | 39                |
| 05-08-2011 | 344               | 01-09-2011 | 511               | 28-09-2011 | 137               | 26-10-2011 | 65                | 22-11-2011 | 50                | 19-12-2011 | 40                | 15-01-2012 | 38                | 11-02-2012 | 37                | 09-03-2012 | 39                |
| 06-08-2011 | 345               | 02-09-2011 | 379               | 29-09-2011 | 136               | 27-10-2011 | 65                | 23-11-2011 | 49                | 20-12-2011 | 35                | 16-01-2012 | 44                | 12-02-2012 | 37                | 10-03-2012 | 37                |
| 07-08-2011 | 463               | 03-09-2011 | 346               | 30-09-2011 | 138               | 28-10-2011 | 66                | 24-11-2011 | 47                | 21-12-2011 | 34                | 17-01-2012 | 38                | 13-02-2012 | 35                | 11-03-2012 | 36                |
| 08-08-2011 | 590               | 04-09-2011 | 305               | 01-10-2011 | 136               | 29-10-2011 | 66                | 25-11-2011 | 45                | 22-12-2011 | 39                | 18-01-2012 | 39                | 14-02-2012 | 35                | 12-03-2012 | 36                |
| 09-08-2011 | 452               | 05-09-2011 | 281               | 02-10-2011 | 127               | 30-10-2011 | 64                | 26-11-2011 | 47                | 23-12-2011 | 33                | 19-01-2012 | 39                | 15-02-2012 | 29                | 13-03-2012 | 35                |
| 10-08-2011 | 427               | 06-09-2011 | 264               | 03-10-2011 | 128               | 31-10-2011 | 61                | 27-11-2011 | 46                | 24-12-2011 | 39                | 20-01-2012 | 34                | 16-02-2012 | 30                | 14-03-2012 | 37                |
| 11-08-2011 | 521               | 07-09-2011 | 278               | 04-10-2011 | 129               | 01-11-2011 | 60                | 28-11-2011 | 46                | 25-12-2011 | 35                | 21-01-2012 | 38                | 17-02-2012 | 35                | 15-03-2012 | 38                |
| 12-08-2011 | 432               | 08-09-2011 | 294               | 05-10-2011 | 129               | 02-11-2011 | 57                | 29-11-2011 | 46                | 26-12-2011 | 35                | 22-01-2012 | 38                | 18-02-2012 | 35                | 16-03-2012 | 38                |
| 13-08-2011 | 436               | 09-09-2011 | 311               | 06-10-2011 | 130               | 03-11-2011 | 55                | 30-11-2011 | 45                | 27-12-2011 | 36                | 23-01-2012 | 29                | 19-02-2012 | 35                | 17-03-2012 | 39                |
| 14-08-2011 | 372               | 10-09-2011 | 288               | 07-10-2011 | 99                | 04-11-2011 | 60                | 01-12-2011 | 46                | 28-12-2011 | 33                | 24-01-2012 | 36                | 20-02-2012 | 34                | 18-03-2012 | 41                |
| 15-08-2011 | 388               | 11-09-2011 | 289               | 08-10-2011 | 112               | 05-11-2011 | 61                | 02-12-2011 | 45                | 29-12-2011 | 38                | 25-01-2012 | 35                | 21-02-2012 | 37                | 19-03-2012 | 45                |
| 16-08-2011 | 841               | 12-09-2011 | 272               | 09-10-2011 | 105               | 06-11-2011 | 57                | 03-12-2011 | 46                | 30-12-2011 | 32                | 26-01-2012 | 37                | 22-02-2012 | 37                | 20-03-2012 | 43                |
| 17-08-2011 | 531               | 13-09-2011 | 244               | 10-10-2011 | 98                | 07-11-2011 | 57                | 04-12-2011 | 46                | 31-12-2011 | 33                | 27-01-2012 | 36                | 23-02-2012 | 37                | 21-03-2012 | 49                |
| 18-08-2011 | 382               | 14-09-2011 | 259               | 11-10-2011 | 94                | 08-11-2011 | 58                | 05-12-2011 | 46                | 01-01-2012 | 34                | 28-01-2012 | 36                | 24-02-2012 | 37                | 22-03-2012 | 46                |
| 19-08-2011 | 347               | 15-09-2011 | 267               | 12-10-2011 | 93                | 09-11-2011 | 60                | 06-12-2011 | 43                | 02-01-2012 | 34                | 29-01-2012 | 37                | 25-02-2012 | 37                | 23-03-2012 | 47                |
| 20-08-2011 | 361               | 16-09-2011 | 240               | 13-10-2011 | 85                | 10-11-2011 | 60                | 07-12-2011 | 46                | 03-01-2012 | 32                | 30-01-2012 | 37                | 26-02-2012 | 32                | 24-03-2012 | 47                |
| 21-08-2011 | 342               | 17-09-2011 | 213               | 14-10-2011 | 95                | 11-11-2011 | 53                | 08-12-2011 | 36                | 04-01-2012 | 32                | 31-01-2012 | 37                | 27-02-2012 | 31                | 25-03-2012 | 46                |
| 22-08-2011 | 383               | 18-09-2011 | 191               | 15-10-2011 | 88                | 12-11-2011 | 59                | 09-12-2011 | 42                | 05-01-2012 | 36                | 01-02-2012 | 35                | 28-02-2012 | 31                | 26-03-2012 | 51                |
| 23-08-2011 | 390               | 19-09-2011 | 188               | 16-10-2011 | 84                | 13-11-2011 | 58                | 10-12-2011 | 41                | 06-01-2012 | 38                | 02-02-2012 | 37                | 29-02-2012 | 31                | 27-03-2012 | 45                |
| 24-08-2011 | 410               | 20-09-2011 | 178               | 17-10-2011 | 82                | 14-11-2011 | 51                | 11-12-2011 | 46                | 07-01-2012 | 36                | 03-02-2012 | 35                | 01-03-2012 | 35                | 28-03-2012 | 51                |
| 25-08-2011 | 356               | 21-09-2011 | 173               | 18-10-2011 | 83                | 15-11-2011 | 57                | 12-12-2011 | 41                | 08-01-2012 | 40                | 04-02-2012 | 35                | 02-03-2012 | 35                | 29-03-2012 | 43                |

| Date       | Q                 |
|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
|            | m <sup>3/</sup> s |
| 30-03-2012 | 56                | 26-04-2012 | 56                | 23-05-2012 | 88                | 19-06-2012 | 196               | 16-07-2012 | 230               | 12-08-2012 | 374               | 08-09-2012 | 334               | 05-10-2012 | 81                | 01-11-2012 | 52                |
| 31-03-2012 | 56                | 27-04-2012 | 56                | 24-05-2012 | 99                | 20-06-2012 | 229               | 17-07-2012 | 239               | 13-08-2012 | 367               | 09-09-2012 | 282               | 06-10-2012 | 83                | 02-11-2012 | 45                |
| 01-04-2012 | 57                | 28-04-2012 | 61                | 25-05-2012 | 120               | 21-06-2012 | 198               | 18-07-2012 | 263               | 14-08-2012 | 411               | 10-09-2012 | 261               | 07-10-2012 | 69                | 03-11-2012 | 44                |
| 02-04-2012 | 59                | 29-04-2012 | 65                | 26-05-2012 | 130               | 22-06-2012 | 246               | 19-07-2012 | 288               | 15-08-2012 | 427               | 11-09-2012 | 263               | 08-10-2012 | 77                | 04-11-2012 | 49                |
| 03-04-2012 | 64                | 30-04-2012 | 64                | 27-05-2012 | 123               | 23-06-2012 | 264               | 20-07-2012 | 285               | 16-08-2012 | 395               | 12-09-2012 | 261               | 09-10-2012 | 78                | 05-11-2012 | 45                |
| 04-04-2012 | 56                | 01-05-2012 | 60                | 28-05-2012 | 135               | 24-06-2012 | 293               | 21-07-2012 | 258               | 17-08-2012 | 363               | 13-09-2012 | 321               | 10-10-2012 | 77                | 06-11-2012 | 44                |
| 05-04-2012 | 53                | 02-05-2012 | 53                | 29-05-2012 | 141               | 25-06-2012 | 277               | 22-07-2012 | 260               | 18-08-2012 | 331               | 14-09-2012 | 368               | 11-10-2012 | 76                | 07-11-2012 | 43                |
| 06-04-2012 | 59                | 03-05-2012 | 54                | 30-05-2012 | 145               | 26-06-2012 | 258               | 23-07-2012 | 311               | 19-08-2012 | 359               | 15-09-2012 | 301               | 12-10-2012 | 74                | 08-11-2012 | 46                |
| 07-04-2012 | 57                | 04-05-2012 | 53                | 31-05-2012 | 170               | 27-06-2012 | 237               | 24-07-2012 | 357               | 20-08-2012 | 458               | 16-09-2012 | 281               | 13-10-2012 | 69                | 09-11-2012 | 47                |
| 08-04-2012 | 56                | 05-05-2012 | 57                | 01-06-2012 | 177               | 28-06-2012 | 239               | 25-07-2012 | 397               | 21-08-2012 | 498               | 17-09-2012 | 278               | 14-10-2012 | 67                | 10-11-2012 | 45                |
| 09-04-2012 | 60                | 06-05-2012 | 55                | 02-06-2012 | 158               | 29-06-2012 | 240               | 26-07-2012 | 346               | 22-08-2012 | 527               | 18-09-2012 | 288               | 15-10-2012 | 65                | 11-11-2012 | 43                |
| 10-04-2012 | 58                | 07-05-2012 | 58                | 03-06-2012 | 157               | 30-06-2012 | 248               | 27-07-2012 | 395               | 23-08-2012 | 423               | 19-09-2012 | 249               | 16-10-2012 | 62                | 12-11-2012 | 46                |
| 11-04-2012 | 66                | 08-05-2012 | 70                | 04-06-2012 | 151               | 01-07-2012 | 284               | 28-07-2012 | 423               | 24-08-2012 | 419               | 20-09-2012 | 206               | 17-10-2012 | 65                | 13-11-2012 | 40                |
| 12-04-2012 | 58                | 09-05-2012 | 85                | 05-06-2012 | 140               | 02-07-2012 | 258               | 29-07-2012 | 463               | 25-08-2012 | 417               | 21-09-2012 | 205               | 18-10-2012 | 61                | 14-11-2012 | 41                |
| 13-04-2012 | 53                | 10-05-2012 | 84                | 06-06-2012 | 130               | 03-07-2012 | 268               | 30-07-2012 | 594               | 26-08-2012 | 414               | 22-09-2012 | 179               | 19-10-2012 | 57                | 15-11-2012 | 45                |
| 14-04-2012 | 48                | 11-05-2012 | 87                | 07-06-2012 | 102               | 04-07-2012 | 305               | 31-07-2012 | 553               | 27-08-2012 | 435               | 23-09-2012 | 170               | 20-10-2012 | 62                | 16-11-2012 | 45                |
| 15-04-2012 | 47                | 12-05-2012 | 93                | 08-06-2012 | 101               | 05-07-2012 | 312               | 01-08-2012 | 507               | 28-08-2012 | 447               | 24-09-2012 | 159               | 21-10-2012 | 55                | 17-11-2012 | 44                |
| 16-04-2012 | 48                | 13-05-2012 | 86                | 09-06-2012 | 91                | 06-07-2012 | 275               | 02-08-2012 | 505               | 29-08-2012 | 353               | 25-09-2012 | 144               | 22-10-2012 | 54                | 18-11-2012 | 52                |
| 17-04-2012 | 45                | 14-05-2012 | 79                | 10-06-2012 | 93                | 07-07-2012 | 310               | 03-08-2012 | 769               | 30-08-2012 | 310               | 26-09-2012 | 128               | 23-10-2012 | 53                | 19-11-2012 | 43                |
| 18-04-2012 | 44                | 15-05-2012 | 78                | 11-06-2012 | 103               | 08-07-2012 | 312               | 04-08-2012 | 1381.7            | 31-08-2012 | 282               | 27-09-2012 | 123               | 24-10-2012 | 51                | 20-11-2012 | 43                |
| 19-04-2012 | 47                | 16-05-2012 | 78                | 12-06-2012 | 104               | 09-07-2012 | 287               | 05-08-2012 | 904               | 01-09-2012 | 271               | 28-09-2012 | 116               | 25-10-2012 | 53                | 21-11-2012 | 36                |
| 20-04-2012 | 50                | 17-05-2012 | 83                | 13-06-2012 | 118               | 10-07-2012 | 289               | 06-08-2012 | 515               | 02-09-2012 | 335               | 29-09-2012 | 136               | 26-10-2012 | 49                | 22-11-2012 | 37                |
| 21-04-2012 | 63                | 18-05-2012 | 96                | 14-06-2012 | 108               | 11-07-2012 | 289               | 07-08-2012 | 454               | 03-09-2012 | 339               | 30-09-2012 | 135               | 27-10-2012 | 47                | 23-11-2012 | 43                |
| 22-04-2012 | 69                | 19-05-2012 | 96                | 15-06-2012 | 133               | 12-07-2012 | 310               | 08-08-2012 | 402               | 04-09-2012 | 314               | 01-10-2012 | 112               | 28-10-2012 | 50                | 24-11-2012 | 38                |
| 23-04-2012 | 58                | 20-05-2012 | 91                | 16-06-2012 | 151               | 13-07-2012 | 295               | 09-08-2012 | 412               | 05-09-2012 | 350               | 02-10-2012 | 105               | 29-10-2012 | 47                | 25-11-2012 | 38                |
| 24-04-2012 | 58                | 21-05-2012 | 94                | 17-06-2012 | 164               | 14-07-2012 | 276               | 10-08-2012 | 420               | 06-09-2012 | 357               | 03-10-2012 | 100               | 30-10-2012 | 46                | 26-11-2012 | 40                |
| 25-04-2012 | 56                | 22-05-2012 | 87                | 18-06-2012 | 198               | 15-07-2012 | 230               | 11-08-2012 | 377               | 07-09-2012 | 340               | 04-10-2012 | 96                | 31-10-2012 | 45                | 27-11-2012 | 41                |

| Date       | Q                 |
|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
|            | m <sup>3/</sup> s |
| 28-11-2012 | 40                | 25-12-2012 | 34                | 21-01-2013 | 29                | 17-02-2013 | 34                | 16-03-2013 | 36                | 12-04-2013 | 46                | 09-05-2013 | 73                | 05-06-2013 | 324               | 02-07-2013 | 383               |
| 29-11-2012 | 39                | 26-12-2012 | 33                | 22-01-2013 | 30                | 18-02-2013 | 35                | 17-03-2013 | 33                | 13-04-2013 | 53                | 10-05-2013 | 83                | 06-06-2013 | 319               | 03-07-2013 | 381               |
| 30-11-2012 | 38                | 27-12-2012 | 34                | 23-01-2013 | 26                | 19-02-2013 | 32                | 18-03-2013 | 42                | 14-04-2013 | 50                | 11-05-2013 | 87                | 07-06-2013 | 297               | 04-07-2013 | 367               |
| 01-12-2012 | 37                | 28-12-2012 | 33                | 24-01-2013 | 27                | 20-02-2013 | 28                | 19-03-2013 | 42                | 15-04-2013 | 43                | 12-05-2013 | 73                | 08-06-2013 | 307               | 05-07-2013 | 365               |
| 02-12-2012 | 35                | 29-12-2012 | 33                | 25-01-2013 | 25                | 21-02-2013 | 30                | 20-03-2013 | 44                | 16-04-2013 | 54                | 13-05-2013 | 72                | 09-06-2013 | 400               | 06-07-2013 | 406               |
| 03-12-2012 | 38                | 30-12-2012 | 33                | 26-01-2013 | 26                | 22-02-2013 | 30                | 21-03-2013 | 44                | 17-04-2013 | 53                | 14-05-2013 | 69                | 10-06-2013 | 406               | 07-07-2013 | 461               |
| 04-12-2012 | 39                | 31-12-2012 | 32                | 27-01-2013 | 26                | 23-02-2013 | 29                | 22-03-2013 | 44                | 18-04-2013 | 50                | 15-05-2013 | 71                | 11-06-2013 | 392               | 08-07-2013 | 525               |
| 05-12-2012 | 39                | 01-01-2013 | 30                | 28-01-2013 | 26                | 24-02-2013 | 29                | 23-03-2013 | 47                | 19-04-2013 | 46                | 16-05-2013 | 75                | 12-06-2013 | 334               | 09-07-2013 | 486               |
| 06-12-2012 | 35                | 02-01-2013 | 30                | 29-01-2013 | 26                | 25-02-2013 | 30                | 24-03-2013 | 47                | 20-04-2013 | 47                | 17-05-2013 | 90                | 13-06-2013 | 348               | 10-07-2013 | 479               |
| 07-12-2012 | 35                | 03-01-2013 | 30                | 30-01-2013 | 25                | 26-02-2013 | 30                | 25-03-2013 | 44                | 21-04-2013 | 50                | 18-05-2013 | 108               | 14-06-2013 | 292               | 11-07-2013 | 412               |
| 08-12-2012 | 36                | 04-01-2013 | 29                | 31-01-2013 | 26                | 27-02-2013 | 30                | 26-03-2013 | 44                | 22-04-2013 | 55                | 19-05-2013 | 132               | 15-06-2013 | 336               | 12-07-2013 | 444               |
| 09-12-2012 | 36                | 05-01-2013 | 33                | 01-02-2013 | 25                | 28-02-2013 | 31                | 27-03-2013 | 44                | 23-04-2013 | 52                | 20-05-2013 | 163               | 16-06-2013 | 990               | 13-07-2013 | 412               |
| 10-12-2012 | 36                | 06-01-2013 | 32                | 02-02-2013 | 25                | 01-03-2013 | 33                | 28-03-2013 | 43                | 24-04-2013 | 69                | 21-05-2013 | 177               | 17-06-2013 | 1786.08           | 14-07-2013 | 422               |
| 11-12-2012 | 32                | 07-01-2013 | 30                | 03-02-2013 | 24                | 02-03-2013 | 30                | 29-03-2013 | 45                | 25-04-2013 | 71                | 22-05-2013 | 180               | 18-06-2013 | 1010.28           | 15-07-2013 | 404               |
| 12-12-2012 | 37                | 08-01-2013 | 28                | 04-02-2013 | 31                | 03-03-2013 | 31                | 30-03-2013 | 44                | 26-04-2013 | 67                | 23-05-2013 | 212               | 19-06-2013 | 535               | 16-07-2013 | 476               |
| 13-12-2012 | 34                | 09-01-2013 | 28                | 05-02-2013 | 42                | 04-03-2013 | 43                | 31-03-2013 | 46                | 27-04-2013 | 77                | 24-05-2013 | 231               | 20-06-2013 | 349               | 17-07-2013 | 512               |
| 14-12-2012 | 39                | 10-01-2013 | 26                | 06-02-2013 | 39                | 05-03-2013 | 39                | 01-04-2013 | 47                | 28-04-2013 | 67                | 25-05-2013 | 244               | 21-06-2013 | 274               | 18-07-2013 | 496               |
| 15-12-2012 | 34                | 11-01-2013 | 25                | 07-02-2013 | 33                | 06-03-2013 | 35                | 02-04-2013 | 50                | 29-04-2013 | 70                | 26-05-2013 | 262               | 22-06-2013 | 260               | 19-07-2013 | 493               |
| 16-12-2012 | 35                | 12-01-2013 | 26                | 08-02-2013 | 37                | 07-03-2013 | 40                | 03-04-2013 | 46                | 30-04-2013 | 72                | 27-05-2013 | 258               | 23-06-2013 | 284               | 20-07-2013 | 500               |
| 17-12-2012 | 34                | 13-01-2013 | 27                | 09-02-2013 | 30                | 08-03-2013 | 40                | 04-04-2013 | 44                | 01-05-2013 | 76                | 28-05-2013 | 178               | 24-06-2013 | 290               | 21-07-2013 | 458               |
| 18-12-2012 | 35                | 14-01-2013 | 30                | 10-02-2013 | 32                | 09-03-2013 | 44                | 05-04-2013 | 45                | 02-05-2013 | 66                | 29-05-2013 | 166               | 25-06-2013 | 329               | 22-07-2013 | 481               |
| 19-12-2012 | 34                | 15-01-2013 | 28                | 11-02-2013 | 34                | 10-03-2013 | 38                | 06-04-2013 | 46                | 03-05-2013 | 58                | 30-05-2013 | 165               | 26-06-2013 | 319               | 23-07-2013 | 478               |
| 20-12-2012 | 34                | 16-01-2013 | 26                | 12-02-2013 | 28                | 11-03-2013 | 43                | 07-04-2013 | 50                | 04-05-2013 | 70                | 31-05-2013 | 181               | 27-06-2013 | 404               | 24-07-2013 | 551               |
| 21-12-2012 | 34                | 17-01-2013 | 26                | 13-02-2013 | 34                | 12-03-2013 | 40                | 08-04-2013 | 51                | 05-05-2013 | 61                | 01-06-2013 | 245               | 28-06-2013 | 405               | 25-07-2013 | 654               |
| 22-12-2012 | 32                | 18-01-2013 | 33                | 14-02-2013 | 29                | 13-03-2013 | 41                | 09-04-2013 | 59                | 06-05-2013 | 57                | 02-06-2013 | 279               | 29-06-2013 | 342               | 26-07-2013 | 517               |
| 23-12-2012 | 33                | 19-01-2013 | 29                | 15-02-2013 | 33                | 14-03-2013 | 42                | 10-04-2013 | 55                | 07-05-2013 | 60                | 03-06-2013 | 276               | 30-06-2013 | 348               | 27-07-2013 | 434               |
| 24-12-2012 | 33                | 20-01-2013 | 28                | 16-02-2013 | 36                | 15-03-2013 | 39                | 11-04-2013 | 49                | 08-05-2013 | 64                | 04-06-2013 | 297               | 01-07-2013 | 367               | 28-07-2013 | 449               |

| Date       | Q                 |
|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|------------|-------------------|
|            | m <sup>3/</sup> s |
| 29-07-2013 | 446               | 25-08-2013 | 277               | 21-09-2013 | 103               | 18-10-2013 | 51                | 14-11-2013 | 48                | 11-12-2013 | 37                | 07-01-2014 | 27                | 03-02-2014 | 29                | 02-03-2014 | 30                |
| 30-07-2013 | 398               | 26-08-2013 | 274               | 22-09-2013 | 105               | 19-10-2013 | 60                | 15-11-2013 | 48                | 12-12-2013 | 37                | 08-01-2014 | 30                | 04-02-2014 | 31                | 03-03-2014 | 31                |
| 31-07-2013 | 376               | 27-08-2013 | 271               | 23-09-2013 | 94                | 20-10-2013 | 46                | 16-11-2013 | 46                | 13-12-2013 | 32                | 09-01-2014 | 30                | 05-02-2014 | 31                | 04-03-2014 | 43                |
| 01-08-2013 | 439               | 28-08-2013 | 254               | 24-09-2013 | 92                | 21-10-2013 | 61                | 17-11-2013 | 43                | 14-12-2013 | 37                | 10-01-2014 | 32                | 06-02-2014 | 28                | 05-03-2014 | 39                |
| 02-08-2013 | 405               | 29-08-2013 | 242               | 25-09-2013 | 83                | 22-10-2013 | 62                | 18-11-2013 | 43                | 15-12-2013 | 34                | 11-01-2014 | 31                | 07-02-2014 | 34                | 06-03-2014 | 35                |
| 03-08-2013 | 385               | 30-08-2013 | 279               | 26-09-2013 | 78                | 23-10-2013 | 63                | 19-11-2013 | 42                | 16-12-2013 | 40                | 12-01-2014 | 31                | 08-02-2014 | 29                | 07-03-2014 | 40                |
| 04-08-2013 | 355               | 31-08-2013 | 291               | 27-09-2013 | 79                | 24-10-2013 | 58                | 20-11-2013 | 38                | 17-12-2013 | 37                | 13-01-2014 | 32                | 09-02-2014 | 30                | 08-03-2014 | 40                |
| 05-08-2013 | 417               | 01-09-2013 | 281               | 28-09-2013 | 87                | 25-10-2013 | 58                | 21-11-2013 | 41                | 18-12-2013 | 39                | 14-01-2014 | 33                | 10-02-2014 | 32                | 09-03-2014 | 44                |
| 06-08-2013 | 440               | 02-09-2013 | 229               | 29-09-2013 | 78                | 26-10-2013 | 57                | 22-11-2013 | 39                | 19-12-2013 | 29                | 15-01-2014 | 31                | 11-02-2014 | 29                | 10-03-2014 | 38                |
| 07-08-2013 | 422               | 03-09-2013 | 202               | 30-09-2013 | 79                | 27-10-2013 | 55                | 23-11-2013 | 41                | 20-12-2013 | 37                | 16-01-2014 | 32                | 12-02-2014 | 32                | 11-03-2014 | 43                |
| 08-08-2013 | 352               | 04-09-2013 | 181               | 01-10-2013 | 75                | 28-10-2013 | 53                | 24-11-2013 | 40                | 21-12-2013 | 32                | 17-01-2014 | 30                | 13-02-2014 | 29                | 12-03-2014 | 40                |
| 09-08-2013 | 341               | 05-09-2013 | 179               | 02-10-2013 | 74                | 29-10-2013 | 32                | 25-11-2013 | 39                | 22-12-2013 | 34                | 18-01-2014 | 27                | 14-02-2014 | 31                | 13-03-2014 | 41                |
| 10-08-2013 | 348               | 06-09-2013 | 171               | 03-10-2013 | 74                | 30-10-2013 | 32                | 26-11-2013 | 39                | 23-12-2013 | 34                | 19-01-2014 | 32                | 15-02-2014 | 35                | 14-03-2014 | 42                |
| 11-08-2013 | 405               | 07-09-2013 | 155               | 04-10-2013 | 72                | 31-10-2013 | 28                | 27-11-2013 | 41                | 24-12-2013 | 35                | 20-01-2014 | 28                | 16-02-2014 | 32                | 15-03-2014 | 39                |
| 12-08-2013 | 388               | 08-09-2013 | 148               | 05-10-2013 | 71                | 01-11-2013 | 49                | 28-11-2013 | 42                | 25-12-2013 | 35                | 21-01-2014 | 32                | 17-02-2014 | 31                | 16-03-2014 | 36                |
| 13-08-2013 | 421               | 09-09-2013 | 146               | 06-10-2013 | 71                | 02-11-2013 | 47                | 29-11-2013 | 40                | 26-12-2013 | 32                | 22-01-2014 | 30                | 18-02-2014 | 30                | 17-03-2014 | 33                |
| 14-08-2013 | 367               | 10-09-2013 | 134               | 07-10-2013 | 69                | 03-11-2013 | 46                | 30-11-2013 | 40                | 27-12-2013 | 34                | 23-01-2014 | 31                | 19-02-2014 | 30                | 18-03-2014 | 42                |
| 15-08-2013 | 365               | 11-09-2013 | 139               | 08-10-2013 | 65                | 04-11-2013 | 44                | 01-12-2013 | 37                | 28-12-2013 | 35                | 24-01-2014 | 29                | 20-02-2014 | 31                | 19-03-2014 | 42                |
| 16-08-2013 | 389               | 12-09-2013 | 148               | 09-10-2013 | 65                | 05-11-2013 | 48                | 02-12-2013 | 40                | 29-12-2013 | 25                | 25-01-2014 | 31                | 21-02-2014 | 31                | 20-03-2014 | 44                |
| 17-08-2013 | 389               | 13-09-2013 | 141               | 10-10-2013 | 62                | 06-11-2013 | 45                | 03-12-2013 | 71                | 30-12-2013 | 34                | 26-01-2014 | 27                | 22-02-2014 | 31                | 21-03-2014 | 44                |
| 18-08-2013 | 356               | 14-09-2013 | 130               | 11-10-2013 | 78                | 07-11-2013 | 45                | 04-12-2013 | 42                | 31-12-2013 | 36                | 27-01-2014 | 31                | 23-02-2014 | 30                | 22-03-2014 | 44                |
| 19-08-2013 | 394               | 15-09-2013 | 121               | 12-10-2013 | 70                | 08-11-2013 | 44                | 05-12-2013 | 42                | 01-01-2014 | 32                | 28-01-2014 | 29                | 24-02-2014 | 31                | 23-03-2014 | 47                |
| 20-08-2013 | 410               | 16-09-2013 | 111               | 13-10-2013 | 58                | 09-11-2013 | 39                | 06-12-2013 | 40                | 02-01-2014 | 30                | 29-01-2014 | 30                | 25-02-2014 | 31                | 24-03-2014 | 47                |
| 21-08-2013 | 416               | 17-09-2013 | 103               | 14-10-2013 | 51                | 10-11-2013 | 47                | 07-12-2013 | 41                | 03-01-2014 | 31                | 30-01-2014 | 28                | 26-02-2014 | 32                | 25-03-2014 | 44                |
| 22-08-2013 | 413               | 18-09-2013 | 96                | 15-10-2013 | 51                | 11-11-2013 | 36                | 08-12-2013 | 41                | 04-01-2014 | 29                | 31-01-2014 | 29                | 27-02-2014 | 31                | 26-03-2014 | 44                |
| 23-08-2013 | 306               | 19-09-2013 | 92                | 16-10-2013 | 52                | 12-11-2013 | 49                | 09-12-2013 | 42                | 05-01-2014 | 32                | 01-02-2014 | 30                | 28-02-2014 | 32                | 27-03-2014 | 44                |
| 24-08-2013 | 288               | 20-09-2013 | 97                | 17-10-2013 | 56                | 13-11-2013 | 47                | 10-12-2013 | 38                | 06-01-2014 | 31                | 02-02-2014 | 33                | 01-03-2014 | 33                | 28-03-2014 | 43                |

|          |                   |            |                   |          | Daily d           | lischarge | (Q) da            | ata at Rish | ikesh             | for six wa | ater ye           | ears     |                   |          |                   |          |                   |
|----------|-------------------|------------|-------------------|----------|-------------------|-----------|-------------------|-------------|-------------------|------------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|
| Date     | Q                 | Date       | Q                 | Date     | Q                 | Date      | Q                 | Date        | Q                 | Date       | Q                 | Date     | Q                 | Date     | Q                 | Date     | Q                 |
|          | m <sup>3/</sup> s |            | m <sup>3/</sup> s |          | m <sup>3/</sup> s |           | m <sup>3/</sup> s |             | m <sup>3/</sup> s |            | m <sup>3/</sup> s |          | m <sup>3/</sup> s |          | m <sup>3/</sup> s |          | m <sup>3/</sup> s |
| 01-04-08 | 302               | 28-04-2008 | 364               | 25-05-08 | 538               | 21-06-08  | 1400              | 18-07-08    | 1750              | 14-08-08   | 2213              | 10-09-08 | 109               | 07-10-08 | 107               | 03-11-08 | 374               |
| 02-04-08 | 299               | 29-04-2008 | 416               | 26-05-08 | 606               | 22-06-08  | 1405              | 19-07-08    | 1822              | 15-08-08   | 2348              | 11-09-08 | 102               | 08-10-08 | 106               | 04-11-08 | 378               |
| 03-04-08 | 288               | 30-04-2008 | 388               | 27-05-08 | 489               | 23-06-08  | 1161              | 20-07-08    | 1967              | 16-08-08   | 2250              | 12-09-08 | 103               | 09-10-08 | 103               | 05-11-08 | 378               |
| 04-04-08 | 318               | 01-05-2008 | 393               | 28-05-08 | 410               | 24-06-08  | 1133              | 21-07-08    | 2057              | 17-08-08   | 2943              | 13-09-08 | 112               | 10-10-08 | 93                | 06-11-08 | 359               |
| 05-04-08 | 329               | 02-05-2008 | 355               | 29-05-08 | 538               | 25-06-08  | 1078              | 22-07-08    | 2013              | 18-08-08   | 2927              | 14-09-08 | 119               | 11-10-08 | 89                | 07-11-08 | 346               |
| 06-04-08 | 340               | 03-05-2008 | 388               | 30-05-08 | 548               | 26-06-08  | 1132              | 23-07-08    | 1864              | 19-08-08   | 2516              | 15-09-08 | 121               | 12-10-08 | 91                | 08-11-08 | 392               |
| 07-04-08 | 357               | 04-05-2008 | 423               | 31-05-08 | 504               | 27-06-08  | 1272              | 24-07-08    | 1812              | 20-08-08   | 2144              | 16-09-08 | 120               | 13-10-08 | 92                | 09-11-08 | 358               |
| 08-04-08 | 343               | 05-05-2008 | 422               | 01-06-08 | 488               | 28-06-08  | 1301              | 25-07-08    | 1981              | 21-08-08   | 2272              | 17-09-08 | 122               | 14-10-08 | 87                | 10-11-08 | 358               |
| 09-04-08 | 316               | 06-05-2008 | 427               | 02-06-08 | 488               | 29-06-08  | 1180              | 26-07-08    | 1955              | 22-08-08   | 2569              | 18-09-08 | 121               | 15-10-08 | 87                | 11-11-08 | 371               |
| 10-04-08 | 327               | 07-05-2008 | 444               | 03-06-08 | 533               | 30-06-08  | 1671              | 27-07-08    | 2485              | 23-08-08   | 3683              | 19-09-08 | 219               | 16-10-08 | 83                | 12-11-08 | 362               |
| 11-04-08 | 355               | 08-05-2008 | 418               | 04-06-08 | 552               | 01-07-08  | 1998              | 28-07-08    | 2275              | 24-08-08   | 2275              | 20-09-08 | 268               | 17-10-08 | 87                | 13-11-08 | 362               |
| 12-04-08 | 335               | 09-05-2008 | 425               | 05-06-08 | 568               | 02-07-08  | 1733              | 29-07-08    | 1907              | 25-08-08   | 2051              | 21-09-08 | 213               | 18-10-08 | 83                | 14-11-08 | 355               |
| 13-04-08 | 328               | 10-05-2008 | 410               | 06-06-08 | 568               | 03-07-08  | 1527              | 30-07-08    | 2192              | 26-08-08   | 1912              | 22-09-08 | 184               | 19-10-08 | 81                | 15-11-08 | 344               |
| 14-04-08 | 336               | 11-05-2008 | 402               | 07-06-08 | 700               | 04-07-08  | 1572              | 31-07-08    | 2551              | 27-08-08   | 1970              | 23-09-08 | 185               | 20-10-08 | 85                | 16-11-08 | 334               |
| 15-04-08 | 366               | 12-05-2008 | 382               | 08-06-08 | 806               | 05-07-08  | 1668              | 01-08-08    | 2662              | 28-08-08   | 1986              | 24-09-08 | 171               | 21-10-08 | 75                | 17-11-08 | 318               |
| 16-04-08 | 337               | 13-05-2008 | 378               | 09-06-08 | 870               | 06-07-08  | 1815              | 02-08-08    | 2114              | 29-08-08   | 1750              | 25-09-08 | 154               | 22-10-08 | 76                | 18-11-08 | 342               |
| 17-04-08 | 323               | 14-05-2008 | 384               | 10-06-08 | 948               | 07-07-08  | 1759              | 03-08-08    | 2069              | 30-08-08   | 1680              | 26-09-08 | 153               | 23-10-08 | 75                | 19-11-08 | 368               |
| 18-04-08 | 348               | 15-05-2008 | 384               | 11-06-08 | 919               | 08-07-08  | 1707              | 04-08-08    | 2121              | 31-08-08   | 1560              | 27-09-08 | 141               | 24-10-08 | 74                | 20-11-08 | 337               |
| 19-04-08 | 355               | 16-05-2008 | 409               | 12-06-08 | 1133              | 09-07-08  | 1962              | 05-08-08    | 2232              | 01-09-08   | 235               | 28-09-08 | 133               | 25-10-08 | 70                | 21-11-08 | 366               |
| 20-04-08 | 351               | 17-05-2008 | 460               | 13-06-08 | 1120              | 10-07-08  | 1854              | 06-08-08    | 1997              | 02-09-08   | 233               | 29-09-08 | 128               | 26-10-08 | 68                | 22-11-08 | 377               |
| 21-04-08 | 342               | 18-05-2008 | 506               | 14-06-08 | 1287              | 11-07-08  | 1822              | 07-08-08    | 1969              | 03-09-08   | 229               | 30-09-08 | 117               | 27-10-08 | 66                | 23-11-08 | 346               |
| 22-04-08 | 368               | 19-05-2008 | 498               | 15-06-08 | 1314              | 12-07-08  | 2040              | 08-08-08    | 1959              | 04-09-08   | 230               | 01-10-08 | 120               | 28-10-08 | 64                | 24-11-08 | 329               |
| 23-04-08 | 383               | 20-05-2008 | 524               | 16-06-08 | 1352              | 13-07-08  | 2134              | 09-08-08    | 2092              | 05-09-08   | 230               | 02-10-08 | 116               | 29-10-08 | 66                | 25-11-08 | 360               |
| 24-04-08 | 392               | 21-05-2008 | 453               | 17-06-08 | 1181              | 14-07-08  | 2061              | 10-08-08    | 2081              | 06-09-08   | 222               | 03-10-08 | 114               | 30-10-08 | 52                | 26-11-08 | 336               |
| 25-04-08 | 412               | 22-05-2008 | 487               | 18-06-08 | 1209              | 15-07-08  | 2099              | 11-08-08    | 2224              | 07-09-08   | 169               | 04-10-08 | 116               | 31-10-08 | 73                | 27-11-08 | 344               |
| 26-04-08 | 426               | 23-05-2008 | 483               | 19-06-08 | 1437              | 16-07-08  | 1877              | 12-08-08    | 2173              | 08-09-08   | 141               | 05-10-08 | 112               | 01-11-08 | 60                | 28-11-08 | 317               |
| 27-04-08 | 350               | 24-05-2008 | 554               | 20-06-08 | 1352              | 17-07-08  | 1850              | 13-08-08    | 2210              | 09-09-08   | 134               | 06-10-08 | 105               | 02-11-08 | 66                | 29-11-08 | 331               |

|          |                   |          |                   |          | Daily             | discharg | ;e (Q) d          | data at Ma | aneri fo          | or six wa | ter yea           | ars      |                   |          |                   |          |                   |
|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|------------|-------------------|-----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|
| Date     | Q                 | Date     | Q                 | Date     | Q                 | Date     | Q                 | Date       | Q                 | Date      | Q                 | Date     | Q                 | Date     | Q                 | Date     | Q                 |
|          | m <sup>3/</sup> s |            | m <sup>3/</sup> s |           | m <sup>3/</sup> s |          | m <sup>3/</sup> s |          | m <sup>3/</sup> s |          | m <sup>3/</sup> s |
| 30-11-08 | 324               | 27-12-08 | 352               | 23-01-09 | 400               | 19-02-09 | 355               | 18-03-09   | 325               | 14-04-09  | 361               | 11-05-09 | 412               | 07-06-09 | 579               | 04-07-09 | 562               |
| 01-12-08 | 372               | 28-12-08 | 400               | 24-01-09 | 407               | 20-02-09 | 373               | 19-03-09   | 327               | 15-04-09  | 363               | 12-05-09 | 366               | 08-06-09 | 565               | 05-07-09 | 515               |
| 02-12-08 | 374               | 29-12-08 | 335               | 25-01-09 | 413               | 21-02-09 | 374               | 20-03-09   | 335               | 16-04-09  | 367               | 13-05-09 | 382               | 09-06-09 | 548               | 06-07-09 | 524               |
| 03-12-08 | 356               | 30-12-08 | 387               | 26-01-09 | 378               | 22-02-09 | 365               | 21-03-09   | 280               | 17-04-09  | 356               | 14-05-09 | 373               | 10-06-09 | 499               | 07-07-09 | 511               |
| 04-12-08 | 347               | 31-12-08 | 369               | 27-01-09 | 333               | 23-02-09 | 357               | 22-03-09   | 313               | 18-04-09  | 370               | 15-05-09 | 378               | 11-06-09 | 451               | 08-07-09 | 552               |
| 05-12-08 | 382               | 01-01-09 | 392               | 28-01-09 | 375               | 24-02-09 | 358               | 23-03-09   | 328               | 19-04-09  | 352               | 16-05-09 | 422               | 12-06-09 | 439               | 09-07-09 | 605               |
| 06-12-08 | 337               | 02-01-09 | 378               | 29-01-09 | 394               | 25-02-09 | 355               | 24-03-09   | 353               | 20-04-09  | 356               | 17-05-09 | 403               | 13-06-09 | 431               | 10-07-09 | 624               |
| 07-12-08 | 358               | 03-01-09 | 391               | 30-01-09 | 389               | 26-02-09 | 389               | 25-03-09   | 286               | 21-04-09  | 388               | 18-05-09 | 434               | 14-06-09 | 412               | 11-07-09 | 604               |
| 08-12-08 | 352               | 04-01-09 | 383               | 31-01-09 | 389               | 27-02-09 | 349               | 26-03-09   | 317               | 22-04-09  | 410               | 19-05-09 | 492               | 15-06-09 | 383               | 12-07-09 | 665               |
| 09-12-08 | 333               | 05-01-09 | 412               | 01-02-09 | 309               | 28-02-09 | 355               | 27-03-09   | 334               | 23-04-09  | 383               | 20-05-09 | 519               | 16-06-09 | 408               | 13-07-09 | 797               |
| 10-12-08 | 339               | 06-01-09 | 406               | 02-02-09 | 278               | 01-03-09 | 360               | 28-03-09   | 332               | 24-04-09  | 336               | 21-05-09 | 488               | 17-06-09 | 388               | 14-07-09 | 784               |
| 11-12-08 | 309               | 07-01-09 | 426               | 03-02-09 | 379               | 02-03-09 | 317               | 29-03-09   | 314               | 25-04-09  | 360               | 22-05-09 | 468               | 18-06-09 | 358               | 15-07-09 | 813               |
| 12-12-08 | 296               | 08-01-09 | 426               | 04-02-09 | 377               | 03-03-09 | 330               | 30-03-09   | 320               | 26-04-09  | 401               | 23-05-09 | 539               | 19-06-09 | 332               | 16-07-09 | 694               |
| 13-12-08 | 334               | 09-01-09 | 406               | 05-02-09 | 385               | 04-03-09 | 345               | 31-03-09   | 336               | 27-04-09  | 374               | 24-05-09 | 566               | 20-06-09 | 341               | 17-07-09 | 633               |
| 14-12-08 | 318               | 10-01-09 | 412               | 06-02-09 | 386               | 05-03-09 | 344               | 01-04-09   | 324               | 28-04-09  | 370               | 25-05-09 | 478               | 21-06-09 | 351               | 18-07-09 | 719               |
| 15-12-08 | 323               | 11-01-09 | 400               | 07-02-09 | 353               | 06-03-09 | 328               | 02-04-09   | 338               | 29-04-09  | 425               | 26-05-09 | 495               | 22-06-09 | 371               | 19-07-09 | 850               |
| 16-12-08 | 368               | 12-01-09 | 372               | 08-02-09 | 336               | 07-03-09 | 341               | 03-04-09   | 333               | 30-04-09  | 431               | 27-05-09 | 489               | 23-06-09 | 426               | 20-07-09 | 1145              |
| 17-12-08 | 353               | 13-01-09 | 402               | 09-02-09 | 345               | 08-03-09 | 333               | 04-04-09   | 350               | 01-05-09  | 494               | 28-05-09 | 463               | 24-06-09 | 474               | 21-07-09 | 1175              |
| 18-12-08 | 331               | 14-01-09 | 396               | 10-02-09 | 264               | 09-03-09 | 328               | 05-04-09   | 342               | 02-05-09  | 425               | 29-05-09 | 463               | 25-06-09 | 542               | 22-07-09 | 960               |
| 19-12-08 | 351               | 15-01-09 | 395               | 11-02-09 | 286               | 10-03-09 | 328               | 06-04-09   | 330               | 03-05-09  | 470               | 30-05-09 | 409               | 26-06-09 | 618               | 23-07-09 | 754               |
| 20-12-08 | 351               | 16-01-09 | 382               | 12-02-09 | 375               | 11-03-09 | 305               | 07-04-09   | 335               | 04-05-09  | 407               | 31-05-09 | 474               | 27-06-09 | 696               | 24-07-09 | 864               |
| 21-12-08 | 337               | 17-01-09 | 396               | 13-02-09 | 348               | 12-03-09 | 302               | 08-04-09   | 344               | 05-05-09  | 380               | 01-06-09 | 438               | 28-06-09 | 219               | 25-07-09 | 849               |
| 22-12-08 | 312               | 18-01-09 | 382               | 14-02-09 | 381               | 13-03-09 | 324               | 09-04-09   | 295               | 06-05-09  | 423               | 02-06-09 | 454               | 29-06-09 | 500               | 26-07-09 | 733               |
| 23-12-08 | 312               | 19-01-09 | 330               | 15-02-09 | 378               | 14-03-09 | 331               | 10-04-09   | 334               | 07-05-09  | 425               | 03-06-09 | 442               | 30-06-09 | 704               | 27-07-09 | 1007              |
| 24-12-08 | 358               | 20-01-09 | 378               | 16-02-09 | 353               | 15-03-09 | 324               | 11-04-09   | 358               | 08-05-09  | 392               | 04-06-09 | 478               | 01-07-09 | 690               | 28-07-09 | 906               |
| 25-12-08 | 347               | 21-01-09 | 371               | 17-02-09 | 335               | 16-03-09 | 327               | 12-04-09   | 356               | 09-05-09  | 401               | 05-06-09 | 547               | 02-07-09 | 658               | 29-07-09 | 1185              |
| 26-12-08 | 344               | 22-01-09 | 400               | 18-02-09 | 361               | 17-03-09 | 337               | 13-04-09   | 351               | 10-05-09  | 398               | 06-06-09 | 599               | 03-07-09 | 544               | 30-07-09 | 1054              |

|          |                   |          |                   |          | Daily             | discharg | ge (Q) d          | data at Ma | neri fo           | or six wa | ter yea           | ars      |                   |          |                   |          |                   |
|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|------------|-------------------|-----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|
| Date     | Q                 | Date     | Q                 | Date     | Q                 | Date     | Q                 | Date       | Q                 | Date      | Q                 | Date     | Q                 | Date     | Q                 | Date     | Q                 |
|          | m <sup>3/</sup> s |            | m <sup>3/</sup> s |           | m <sup>3/</sup> s |          | m <sup>3/</sup> s |          | m <sup>3/</sup> s |          | m <sup>3/</sup> s |
| 31-07-09 | 967               | 27-08-09 | 875               | 23-09-09 | 108               | 20-10-09 | 63                | 16-11-09   | 331               | 13-12-09  | 269               | 09-01-10 | 382               | 05-02-10 | 350               | 04-03-10 | 384               |
| 01-08-09 | 863               | 28-08-09 | 862               | 24-09-09 | 108               | 21-10-09 | 66                | 17-11-09   | 352               | 14-12-09  | 294               | 10-01-10 | 355               | 06-02-10 | 348               | 05-03-10 | 383               |
| 02-08-09 | 805               | 29-08-09 | 917               | 25-09-09 | 107               | 22-10-09 | 63                | 18-11-09   | 346               | 15-12-09  | 320               | 11-01-10 | 376               | 07-02-10 | 352               | 06-03-10 | 395               |
| 03-08-09 | 776               | 30-08-09 | 946               | 26-09-09 | 104               | 23-10-09 | 62                | 19-11-09   | 342               | 16-12-09  | 304               | 12-01-10 | 393               | 08-02-10 | 337               | 07-03-10 | 372               |
| 04-08-09 | 877               | 31-08-09 | 943               | 27-09-09 | 115               | 24-10-09 | 55                | 20-11-09   | 349               | 17-12-09  | 307               | 13-01-10 | 405               | 09-02-10 | 359               | 08-03-10 | 380               |
| 05-08-09 | 1014              | 01-09-09 | 204               | 28-09-09 | 112               | 25-10-09 | 63                | 21-11-09   | 340               | 18-12-09  | 318               | 14-01-10 | 393               | 10-02-10 | 430               | 09-03-10 | 363               |
| 06-08-09 | 1335              | 02-09-09 | 187               | 29-09-09 | 111               | 26-10-09 | 54                | 22-11-09   | 315               | 19-12-09  | 310               | 15-01-10 | 412               | 11-02-10 | 476               | 10-03-10 | 362               |
| 07-08-09 | 1369              | 03-09-09 | 191               | 30-09-09 | 110               | 27-10-09 | 58                | 23-11-09   | 360               | 20-12-09  | 274               | 16-01-10 | 384               | 12-02-10 | 481               | 11-03-10 | 389               |
| 08-08-09 | 1465              | 04-09-09 | 170               | 01-10-09 | 109               | 28-10-09 | 53                | 24-11-09   | 261               | 21-12-09  | 307               | 17-01-10 | 350               | 13-02-10 | 373               | 12-03-10 | 366               |
| 09-08-09 | 1243              | 05-09-09 | 186               | 02-10-09 | 108               | 29-10-09 | 55                | 25-11-09   | 299               | 22-12-09  | 311               | 18-01-10 | 373               | 14-02-10 | 374               | 13-03-10 | 384               |
| 10-08-09 | 1076              | 06-09-09 | 141               | 03-10-09 | 107               | 30-10-09 | 52                | 26-11-09   | 332               | 23-12-09  | 312               | 19-01-10 | 380               | 15-02-10 | 351               | 14-03-10 | 465               |
| 11-08-09 | 941               | 07-09-09 | 120               | 04-10-09 | 112               | 31-10-09 | 55                | 27-11-09   | 281               | 24-12-09  | 318               | 20-01-10 | 374               | 16-02-10 | 342               | 15-03-10 | 499               |
| 12-08-09 | 1097              | 08-09-09 | 296               | 05-10-09 | 140               | 01-11-09 | 323               | 28-11-09   | 282               | 25-12-09  | 348               | 21-01-10 | 375               | 17-02-10 | 349               | 16-03-10 | 486               |
| 13-08-09 | 1090              | 09-09-09 | 306               | 06-10-09 | 113               | 02-11-09 | 317               | 29-11-09   | 255               | 26-12-09  | 340               | 22-01-10 | 276               | 18-02-10 | 345               | 17-03-10 | 387               |
| 14-08-09 | 1014              | 10-09-09 | 377               | 07-10-09 | 104               | 03-11-09 | 322               | 30-11-09   | 252               | 27-12-09  | 306               | 23-01-10 | 321               | 19-02-10 | 340               | 18-03-10 | 362               |
| 15-08-09 | 1195              | 11-09-09 | 249               | 08-10-09 | 96                | 04-11-09 | 316               | 01-12-09   | 258               | 28-12-09  | 328               | 24-01-10 | 358               | 20-02-10 | 369               | 19-03-10 | 383               |
| 16-08-09 | 1097              | 12-09-09 | 255               | 09-10-09 | 91                | 05-11-09 | 315               | 02-12-09   | 271               | 29-12-09  | 308               | 25-01-10 | 331               | 21-02-10 | 360               | 20-03-10 | 392               |
| 17-08-09 | 951               | 13-09-09 | 219               | 10-10-09 | 85                | 06-11-09 | 321               | 03-12-09   | 305               | 30-12-09  | 286               | 26-01-10 | 334               | 22-02-10 | 391               | 21-03-10 | 392               |
| 18-08-09 | 1093              | 14-09-09 | 195               | 11-10-09 | 77                | 07-11-09 | 315               | 04-12-09   | 316               | 31-12-09  | 303               | 27-01-10 | 344               | 23-02-10 | 333               | 22-03-10 | 408               |
| 19-08-09 | 1094              | 15-09-09 | 167               | 12-10-09 | 75                | 08-11-09 | 292               | 05-12-09   | 298               | 01-01-10  | 342               | 28-01-10 | 351               | 24-02-10 | 384               | 23-03-10 | 461               |
| 20-08-09 | 999               | 16-09-09 | 134               | 13-10-09 | 62                | 09-11-09 | 308               | 06-12-09   | 315               | 02-01-10  | 322               | 29-01-10 | 357               | 25-02-10 | 388               | 24-03-10 | 460               |
| 21-08-09 | 838               | 17-09-09 | 134               | 14-10-09 | 69                | 10-11-09 | 337               | 07-12-09   | 327               | 03-01-10  | 379               | 30-01-10 | 385               | 26-02-10 | 365               | 25-03-10 | 442               |
| 22-08-09 | 766               | 18-09-09 | 115               | 15-10-09 | 72                | 11-11-09 | 352               | 08-12-09   | 296               | 04-01-10  | 356               | 31-01-10 | 342               | 27-02-10 | 366               | 26-03-10 | 358               |
| 23-08-09 | 735               | 19-09-09 | 116               | 16-10-09 | 68                | 12-11-09 | 343               | 09-12-09   | 296               | 05-01-10  | 360               | 01-02-10 | 339               | 28-02-10 | 350               | 27-03-10 | 380               |
| 24-08-09 | 667               | 20-09-09 | 114               | 17-10-09 | 66                | 13-11-09 | 337               | 10-12-09   | 301               | 06-01-10  | 367               | 02-02-10 | 347               | 01-03-10 | 353               | 28-03-10 | 346               |
| 25-08-09 | 700               | 21-09-09 | 113               | 18-10-09 | 71                | 14-11-09 | 392               | 11-12-09   | 302               | 07-01-10  | 344               | 03-02-10 | 354               | 02-03-10 | 297               | 29-03-10 | 386               |
| 26-08-09 | 732               | 22-09-09 | 111               | 19-10-09 | 69                | 15-11-09 | 361               | 12-12-09   | 321               | 08-01-10  | 368               | 04-02-10 | 335               | 03-03-10 | 364               | 30-03-10 | 453               |

|          |                   |          |                   |          | Daily             | discharg | e (Q) d           | data at Ma | aneri fo          | or six wa | ter yea           | ars   |                   |          |                   |          |                   |
|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|------------|-------------------|-----------|-------------------|-------|-------------------|----------|-------------------|----------|-------------------|
| Date     | Q                 | Date     | Q                 | Date     | Q                 | Date     | Q                 | Date       | Q                 | Date      | Q                 | Date  | Q                 | Date     | Q                 | Date     | Q                 |
|          | m <sup>3/</sup> s |            | m <sup>3/</sup> s |           | m <sup>3/</sup> s |       | m <sup>3/</sup> s |          | m <sup>3/</sup> s |          | m <sup>3/</sup> s |
| 31-03-10 | 322               | 27-04-10 | 399               | 24-05-10 | 383               | 20-06-10 | 431               | 40376      | 1168              | 13-08-10  | 2818              | 40430 | -                 | 06-10-10 | 1034              | 02-11-10 | 535               |
| 01-04-10 | 333               | 28-04-10 | 432               | 25-05-10 | 400               | 21-06-10 | 390               | 40377      | 1055              | 14-08-10  | 2574              | 40431 | 3040              | 07-10-10 | 932               | 03-11-10 | 519               |
| 02-04-10 | 341               | 29-04-10 | 451               | 26-05-10 | 449               | 22-06-10 | 485               | 40378      | 1209              | 15-08-10  | 2571              | 40432 | 2856              | 08-10-10 | 633               | 04-11-10 | 481               |
| 03-04-10 | 336               | 30-04-10 | 371               | 27-05-10 | 504               | 23-06-10 | 620               | 40379      | 1640              | 16-08-10  | 2796              | 40433 | 2742              | 09-10-10 | 762               | 05-11-10 | 463               |
| 04-04-10 | 323               | 01-05-10 | 374               | 28-05-10 | 523               | 24-06-10 | 677               | 40380      | 1468              | 17-08-10  | 2959              | 40434 | 3061              | 10-10-10 | 772               | 06-11-10 | 492               |
| 05-04-10 | 327               | 02-05-10 | 359               | 29-05-10 | 460               | 25-06-10 | 755               | 40381      | 1894              | 18-08-10  | 2937              | 40435 | 2648              | 11-10-10 | 856               | 07-11-10 | 454               |
| 06-04-10 | 375               | 03-05-10 | 328               | 30-05-10 | 466               | 26-06-10 | 762               | 40382      | 1050              | 19-08-10  | 2969              | 40436 | 2600              | 12-10-10 | 852               | 08-11-10 | 463               |
| 07-04-10 | 337               | 04-05-10 | 363               | 31-05-10 | 497               | 27-06-10 | 747               | 40383      | 1093              | 20-08-10  | 3187              | 40437 | 2427              | 13-10-10 | 832               | 09-11-10 | 424               |
| 08-04-10 | 336               | 05-05-10 | 383               | 01-06-10 | 433               | 28-06-10 | 740               | 40384      | 1374              | 21-08-10  | 3338              | 40438 | 2482              | 14-10-10 | 807               | 10-11-10 | 445               |
| 09-04-10 | 361               | 06-05-10 | 431               | 02-06-10 | 501               | 29-06-10 | 766               | 40385      | 1747              | 22-08-10  | 3863              | 40439 | 2341              | 15-10-10 | 798               | 11-11-10 | 418               |
| 10-04-10 | 391               | 07-05-10 | 426               | 03-06-10 | 495               | 30-06-10 | 885               | 40386      | 1468              | 23-08-10  | 3655              | 40440 | 8485              | 16-10-10 | 768               | 12-11-10 | 438               |
| 11-04-10 | 352               | 08-05-10 | 397               | 04-06-10 | 568               | 01-07-10 | 805               | 40387      | 1815              | 24-08-10  | 3257              | 40441 | 6717              | 17-10-10 | 715               | 13-11-10 | 404               |
| 12-04-10 | 411               | 09-05-10 | 409               | 05-06-10 | 457               | 02-07-10 | 640               | 40388      | 1421              | 25-08-10  | 3134              | 40442 | 5090              | 18-10-10 | 676               | 14-11-10 | 419               |
| 13-04-10 | 470               | 10-05-10 | 400               | 06-06-10 | 461               | 03-07-10 | 598               | 40389      | 1196              | 26-08-10  | 3380              | 40443 | 3984              | 19-10-10 | 673               | 15-11-10 | 400               |
| 14-04-10 | 450               | 11-05-10 | 424               | 07-06-10 | 435               | 04-07-10 | 644               | 40390      | 1980              | 27-08-10  | 2784              | 40444 | 3793              | 20-10-10 | 593               | 16-11-10 | 402               |
| 15-04-10 | 354               | 12-05-10 | 371               | 08-06-10 | 482               | 05-07-10 | 725               | 40391      | 2402              | 28-08-10  | 2382              | 40445 | 3409              | 21-10-10 | 538               | 17-11-10 | 395               |
| 16-04-10 | 452               | 13-05-10 | 336               | 09-06-10 | 555               | 06-07-10 | 1112              | 40392      | 2066              | 29-08-10  | 2348              | 40446 | 2543              | 22-10-10 | 566               | 18-11-10 | 411               |
| 17-04-10 | 397               | 14-05-10 | 321               | 10-06-10 | 511               | 07-07-10 | 847               | 40393      | 2046              | 30-08-10  | 2391              | 40447 | 2431              | 23-10-10 | 459               | 19-11-10 | 416               |
| 18-04-10 | 425               | 15-05-10 | 375               | 11-06-10 | 480               | 08-07-10 | 667               | 40394      | 1818              | 31-08-10  | 2685              | 40448 | 1857              | 24-10-10 | 626               | 20-11-10 | 401               |
| 19-04-10 | 414               | 16-05-10 | 342               | 12-06-10 | 480               | 09-07-10 | 594               | 40395      | 1993              | 01-09-10  | 2998              | 40449 | 1997              | 25-10-10 | 651               | 21-11-10 | 379               |
| 20-04-10 | 409               | 17-05-10 | 336               | 13-06-10 | 457               | 10-07-10 | 681               | 40396      | 2092              | 02-09-10  | 2485              | 40450 | 1663              | 26-10-10 | 646               | 22-11-10 | 361               |
| 21-04-10 | 389               | 18-05-10 | 343               | 14-06-10 | 458               | 11-07-10 | 683               | 40397      | 1862              | 03-09-10  | 3249              | 40451 | 1490              | 27-10-10 | 674               | 23-11-10 | 380               |
| 22-04-10 | 414               | 19-05-10 | 390               | 15-06-10 | 423               | 12-07-10 | 649               | 40398      | 1880              | 04-09-10  | 3263              | 40452 | 1389              | 28-10-10 | 679               | 24-11-10 | 385               |
| 23-04-10 | 381               | 20-05-10 | 387               | 16-06-10 | 407               | 13-07-10 | 576               | 40399      | 2280              | 05-09-10  | 2992              | 40453 | 1338              | 29-10-10 | 628               | 25-11-10 | 415               |
| 24-04-10 | 391               | 21-05-10 | 359               | 17-06-10 | 450               | 14-07-10 | 626               | 40400      | 2256              | 06-09-10  | 2829              | 40454 | 1299              | 30-10-10 | 605               | 26-11-10 | 422               |
| 25-04-10 | 339               | 22-05-10 | 325               | 18-06-10 | 437               | 15-07-10 | 668               | 40401      | 2502              | 07-09-10  | 2926              | 40455 | 1220              | 31-10-10 | 566               | 27-11-10 | 407               |
| 26-04-10 | 366               | 23-05-10 | 363               | 19-06-10 | 445               | 16-07-10 | 742               | 40402      | 2907              | 08-09-10  | 3481              | 40456 | 1087              | 01-11-10 | 557               | 28-11-10 | 377               |

|          |                   |          |                   |          | Daily             | discharg | ;e (Q) d          | lata at Ma | neri fo           | or six wa | ter yea           | ars      |                   |          |                   |          |                   |
|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|------------|-------------------|-----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|
| Date     | Q                 | Date     | Q                 | Date     | Q                 | Date     | Q                 | Date       | Q                 | Date      | Q                 | Date     | Q                 | Date     | Q                 | Date     | Q                 |
|          | m <sup>3/</sup> s |            | m <sup>3/</sup> s |           | m <sup>3/</sup> s |          | m <sup>3/</sup> s |          | m <sup>3/</sup> s |          | m <sup>3/</sup> s |
| 29-11-10 | 335               | 26-12-10 | 196               | 22-01-11 | 169               | 18-02-11 | 387               | 17-03-11   | 465               | 13-04-11  | 483               | 10-05-11 | 782               | 06-06-11 | 564               | 03-07-11 | 1447              |
| 30-11-10 | 401               | 27-12-10 | 191               | 23-01-11 | 166               | 19-02-11 | 481               | 18-03-11   | 479               | 14-04-11  | 538               | 11-05-11 | 763               | 07-06-11 | 622               | 04-07-11 | 1250              |
| 01-12-10 | 389               | 28-12-10 | 191               | 24-01-11 | 168               | 20-02-11 | 499               | 19-03-11   | 492               | 15-04-11  | 519               | 12-05-11 | 766               | 08-06-11 | 652               | 05-07-11 | 1245              |
| 02-12-10 | 398               | 29-12-10 | 190               | 25-01-11 | 169               | 21-02-11 | 421               | 20-03-11   | 445               | 16-04-11  | 529               | 13-05-11 | 764               | 09-06-11 | 638               | 06-07-11 | 1364              |
| 03-12-10 | 401               | 30-12-10 | 190               | 26-01-11 | 166               | 22-02-11 | 356               | 21-03-11   | 390               | 17-04-11  | 590               | 14-05-11 | 789               | 10-06-11 | 644               | 07-07-11 | 1432              |
| 04-12-10 | 400               | 31-12-10 | 206               | 27-01-11 | 166               | 23-02-11 | 424               | 22-03-11   | 463               | 18-04-11  | 522               | 15-05-11 | 778               | 11-06-11 | 629               | 08-07-11 | 1876              |
| 05-12-10 | 396               | 01-01-11 | 244               | 28-01-11 | 163               | 24-02-11 | 414               | 23-03-11   | 482               | 19-04-11  | 481               | 16-05-11 | 776               | 12-06-11 | 618               | 09-07-11 | 2011              |
| 06-12-10 | 385               | 02-01-11 | 202               | 29-01-11 | 256               | 25-02-11 | 401               | 24-03-11   | 442               | 20-04-11  | 592               | 17-05-11 | 832               | 13-06-11 | 631               | 10-07-11 | 1838              |
| 07-12-10 | 391               | 03-01-11 | 198               | 30-01-11 | 430               | 26-02-11 | 379               | 25-03-11   | 460               | 21-04-11  | 538               | 18-05-11 | 897               | 14-06-11 | 666               | 11-07-11 | 1765              |
| 08-12-10 | 381               | 04-01-11 | 191               | 31-01-11 | 407               | 27-02-11 | 468               | 26-03-11   | 442               | 22-04-11  | 594               | 19-05-11 | 888               | 15-06-11 | 847               | 12-07-11 | 1504              |
| 09-12-10 | 407               | 05-01-11 | 190               | 01-02-11 | 472               | 28-02-11 | 442               | 27-03-11   | 525               | 23-04-11  | 559               | 20-05-11 | 898               | 16-06-11 | 875               | 13-07-11 | 1685              |
| 10-12-10 | 346               | 06-01-11 | 190               | 02-02-11 | 416               | 01-03-11 | 429               | 28-03-11   | 435               | 24-04-11  | 574               | 21-05-11 | 886               | 17-06-11 | 817               | 14-07-11 | 1662              |
| 11-12-10 | 363               | 07-01-11 | 184               | 03-02-11 | 409               | 02-03-11 | 429               | 29-03-11   | 475               | 25-04-11  | 603               | 22-05-11 | 592               | 18-06-11 | 816               | 15-07-11 | 1950              |
| 12-12-10 | 355               | 08-01-11 | 178               | 04-02-11 | 350               | 03-03-11 | 379               | 30-03-11   | 513               | 26-04-11  | 632               | 23-05-11 | 794               | 19-06-11 | 787               | 16-07-11 | 2107              |
| 13-12-10 | 357               | 09-01-11 | 178               | 05-02-11 | 302               | 04-03-11 | 394               | 31-03-11   | 482               | 27-04-11  | 621               | 24-05-11 | 846               | 20-06-11 | 610               | 17-07-11 | 1818              |
| 14-12-10 | 354               | 10-01-11 | 172               | 06-02-11 | 306               | 05-03-11 | 394               | 01-04-11   | 441               | 28-04-11  | 634               | 25-05-11 | 900               | 21-06-11 | 933               | 18-07-11 | 1668              |
| 15-12-10 | 355               | 11-01-11 | 172               | 07-02-11 | 360               | 06-03-11 | 455               | 02-04-11   | 491               | 29-04-11  | 669               | 26-05-11 | 906               | 22-06-11 | 933               | 19-07-11 | 1546              |
| 16-12-10 | 350               | 12-01-11 | 175               | 08-02-11 | 363               | 07-03-11 | 449               | 03-04-11   | 500               | 30-04-11  | 693               | 27-05-11 | 919               | 23-06-11 | 968               | 20-07-11 | 1700              |
| 17-12-10 | 351               | 13-01-11 | 169               | 09-02-11 | 365               | 08-03-11 | 462               | 04-04-11   | 435               | 01-05-11  | 703               | 28-05-11 | 923               | 24-06-11 | 1026              | 21-07-11 | 2516              |
| 18-12-10 | 211               | 14-01-11 | 178               | 10-02-11 | 413               | 09-03-11 | 450               | 05-04-11   | 457               | 02-05-11  | 689               | 29-05-11 | 871               | 25-06-11 | 1055              | 22-07-11 | 2064              |
| 19-12-10 | 194               | 15-01-11 | 182               | 11-02-11 | 455               | 10-03-11 | 418               | 06-04-11   | 529               | 03-05-11  | 695               | 30-05-11 | 958               | 26-06-11 | 1140              | 23-07-11 | 2209              |
| 20-12-10 | 203               | 16-01-11 | 184               | 12-02-11 | 420               | 11-03-11 | 469               | 07-04-11   | 476               | 04-05-11  | 711               | 31-05-11 | 930               | 27-06-11 | 787.05            | 24-07-11 | 2196              |
| 21-12-10 | 203               | 17-01-11 | 184               | 13-02-11 | 410               | 12-03-11 | 370               | 08-04-11   | 521               | 05-05-11  | 733               | 01-06-11 | 908               | 28-06-11 | 1322              | 25-07-11 | 2217              |
| 22-12-10 | 203               | 18-01-11 | 178               | 14-02-11 | 394               | 13-03-11 | 461               | 09-04-11   | 464               | 06-05-11  | 730               | 02-06-11 | 813               | 29-06-11 | 1728              | 26-07-11 | 2325              |
| 23-12-10 | 199               | 19-01-11 | 171               | 15-02-11 | 432               | 14-03-11 | 464               | 10-04-11   | 437               | 07-05-11  | 771               | 03-06-11 | 762               | 30-06-11 | 1496              | 27-07-11 | 2099              |
| 24-12-10 | 196               | 20-01-11 | 166               | 16-02-11 | 422               | 15-03-11 | 455               | 11-04-11   | 508               | 08-05-11  | 741               | 04-06-11 | 717               | 01-07-11 | 2046              | 28-07-11 | 2472              |
| 25-12-10 | 197               | 21-01-11 | 171               | 17-02-11 | 429               | 16-03-11 | 488               | 12-04-11   | 545               | 09-05-11  | 721               | 05-06-11 | 600               | 02-07-11 | 1647              | 29-07-11 | 2698              |

| Date     | Q                 |
|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|
|          | m <sup>3/</sup> s |
| 30-07-11 | 2666              | 26-08-11 | 2345              | 22-09-11 | 1340              | 20-10-11 | 604               | 16-11-11 | 354               | 13-12-11 | 410               | 09-01-12 | 430               | 05-02-12 | 382               | 03-03-12 | 384               |
| 31-07-11 | 2443              | 27-08-11 | 2867              | 23-09-11 | 1200              | 21-10-11 | 603               | 17-11-11 | 356               | 14-12-11 | 358               | 10-01-12 | 419               | 06-02-12 | 390               | 04-03-12 | 408               |
| 01-08-11 | 2225              | 28-08-11 | 3031              | 24-09-11 | 939               | 22-10-11 | 583               | 18-11-11 | 370               | 15-12-11 | 383               | 11-01-12 | 411               | 07-02-12 | 412               | 05-03-12 | 412               |
| 02-08-11 | 2334              | 29-08-11 | 2693              | 25-09-11 | 900               | 23-10-11 | 571               | 19-11-11 | 365               | 16-12-11 | 393               | 12-01-12 | 412               | 08-02-12 | 419               | 06-03-12 | 404               |
| 03-08-11 | 2135              | 30-08-11 | 2681              | 26-09-11 | 860               | 24-10-11 | 581               | 20-11-11 | 348               | 17-12-11 | 386               | 13-01-12 | 436               | 09-02-12 | 441               | 07-03-12 | 435               |
| 04-08-11 | 2147              | 31-08-11 | 2956              | 27-09-11 | 811               | 25-10-11 | 566               | 21-11-11 | 314               | 18-12-11 | 387               | 14-01-12 | 447               | 10-02-12 | 457               | 08-03-12 | 402               |
| 05-08-11 | 2209              | 01-09-11 | 3117              | 28-09-11 | 806               | 26-10-11 | 602               | 22-11-11 | 381               | 19-12-11 | 330               | 15-01-12 | 439               | 11-02-12 | 400               | 09-03-12 | 387               |
| 06-08-11 | 2217              | 02-09-11 | 2958              | 29-09-11 | 779               | 27-10-11 | 569               | 23-11-11 | 363               | 20-12-11 | 363               | 16-01-12 | 412               | 12-02-12 | 499               | 10-03-12 | 406               |
| 07-08-11 | 2468              | 03-09-11 | 2736              | 30-09-11 | 775               | 28-10-11 | 546               | 24-11-11 | 347               | 21-12-11 | 380               | 17-01-12 | 420               | 13-02-12 | 421               | 11-03-12 | 371               |
| 08-08-11 | 3276              | 04-09-11 | 2621              | 01-10-11 | 755               | 29-10-11 | 482               | 25-11-11 | 377               | 22-12-11 | 355               | 18-01-12 | 455               | 14-02-12 | 402               | 12-03-12 | 373               |
| 09-08-11 | 3632              | 05-09-11 | 2364              | 02-10-11 | 731               | 30-10-11 | 456               | 26-11-11 | 378               | 23-12-11 | 362               | 19-01-12 | 452               | 15-02-12 | 398               | 13-03-12 | 376               |
| 10-08-11 | 2369              | 06-09-11 | 2192              | 03-10-11 | 725               | 31-10-11 | 451               | 27-11-11 | 380               | 24-12-11 | 397               | 20-01-12 | 407               | 16-02-12 | 429               | 14-03-12 | 427               |
| 11-08-11 | 2279              | 07-09-11 | 1970              | 04-10-11 | 720               | 01-11-11 | 535               | 28-11-11 | 400               | 25-12-11 | 349               | 21-01-12 | 409               | 17-02-12 | 424               | 15-03-12 | 393               |
| 12-08-11 | 2541              | 08-09-11 | 1852              | 05-10-11 | 731               | 02-11-11 | 550               | 29-11-11 | 404               | 26-12-11 | 354               | 22-01-12 | 401               | 18-02-12 | 442               | 16-03-12 | 350               |
| 13-08-11 | 2816              | 09-09-11 | 2280              | 06-10-11 | 698               | 03-11-11 | 512               | 30-11-11 | 398               | 27-12-11 | 365               | 23-01-12 | 396               | 19-02-12 | 396               | 17-03-12 | 362               |
| 14-08-11 | 2057              | 10-09-11 | 2108              | 07-10-11 | 771               | 04-11-11 | 535               | 01-12-11 | 397               | 28-12-11 | 351               | 24-01-12 | 398               | 20-02-12 | 348               | 18-03-12 | 358               |
| 15-08-11 | 2173              | 11-09-11 | 2067              | 08-10-11 | 784               | 05-11-11 | 527               | 02-12-11 | 400               | 29-12-11 | 363               | 25-01-12 | 403               | 21-02-12 | 388               | 19-03-12 | 370               |
| 16-08-11 | 6305              | 12-09-11 | 2059              | 09-10-11 | 708               | 06-11-11 | 469               | 03-12-11 | 405               | 30-12-11 | 333               | 26-01-12 | 411               | 22-02-12 | 413               | 20-03-12 | 400               |
| 17-08-11 | 4750              | 13-09-11 | 2045              | 10-10-11 | 690               | 07-11-11 | 435               | 04-12-11 | 412               | 31-12-11 | 366               | 27-01-12 | 386               | 23-02-12 | 419               | 21-03-12 | 392               |
| 18-08-11 | 3594              | 14-09-11 | 2017              | 11-10-11 | 711               | 08-11-11 | 325               | 05-12-11 | 406               | 01-01-12 | 361               | 28-01-12 | 397               | 24-02-12 | 398               | 22-03-12 | 400               |
| 19-08-11 | 3304              | 15-09-11 | 2130              | 12-10-11 | 686               | 09-11-11 | 405               | 06-12-11 | 390               | 02-01-12 | 361               | 29-01-12 | 461               | 25-02-12 | 397               | 23-03-12 | 412               |
| 20-08-11 | 3157              | 16-09-11 | 2409              | 13-10-11 | 629               | 10-11-11 | 402               | 07-12-11 | 401               | 03-01-12 | 375               | 30-01-12 | 261               | 26-02-12 | 374               | 24-03-12 | 408               |
| 21-08-11 | 2764              | 17-09-11 | 2120              | 14-10-11 | 695               | 11-11-11 | 400               | 08-12-11 | 392               | 04-01-12 | 400               | 31-01-12 | 257               | 27-02-12 | 386               | 25-03-12 | 392               |
| 22-08-11 | 2517              | 18-09-11 | 1904              | 15-10-11 | 605               | 12-11-11 | 417               | 09-12-11 | 413               | 05-01-12 | 409               | 01-02-12 | 273               | 28-02-12 | 344               | 26-03-12 | 402               |
| 23-08-11 | 2659              | 19-09-11 | 1774              | 16-10-11 | 680               | 13-11-11 | 416               | 10-12-11 | 391               | 06-01-12 | 400               | 02-02-12 | 448               | 29-02-12 | 352               | 27-03-12 | 451               |
| 24-08-11 | 2629              | 20-09-11 | 1603              | 17-10-11 | 648               | 14-11-11 | 360               | 11-12-11 | 395               | 07-01-12 | 363               | 03-02-12 | 545               | 01-03-12 | 375               | 28-03-12 | 475               |
| 25-08-11 | 2414              | 21-09-11 | 1589              | 18-10-11 | 521               | 15-11-11 | 348               | 12-12-11 | 361               | 08-01-12 | 403               | 04-02-12 | 369               | 02-03-12 | 385               | 29-03-12 | 448               |

| Date     | Q                 |
|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|
|          | m <sup>3/</sup> s |
| 30-03-12 | 358               | 26-04-12 | 455               | 23-05-12 | 486               | 19-06-12 | 798               | 16-07-12 | 933               | 12-08-12 | 1784              | 08-09-12 | 2074              | 05-10-12 | 691               | 01-11-12 | 428               |
| 31-03-12 | 404               | 27-04-12 | 437               | 24-05-12 | 530               | 20-06-12 | 737               | 17-07-12 | 916               | 13-08-12 | 1784              | 09-09-12 | 1901              | 06-10-12 | 602               | 02-11-12 | 430               |
| 01-04-12 | 442               | 28-04-12 | 432               | 25-05-12 | 567               | 21-06-12 | 587               | 18-07-12 | 915               | 14-08-12 | 2068              | 10-09-12 | 1666              | 07-10-12 | 501               | 03-11-12 | 433               |
| 02-04-12 | 417               | 29-04-12 | 444               | 26-05-12 | 618               | 22-06-12 | 908               | 19-07-12 | 940               | 15-08-12 | 1901              | 11-09-12 | 1662              | 08-10-12 | 598               | 04-11-12 | 429               |
| 03-04-12 | 396               | 30-04-12 | 447               | 27-05-12 | 622               | 23-06-12 | 1016              | 20-07-12 | 1023              | 16-08-12 | 1802              | 12-09-12 | 1658              | 09-10-12 | 622               | 05-11-12 | 421               |
| 04-04-12 | 413               | 01-05-12 | 449               | 28-05-12 | 638               | 24-06-12 | 1118              | 21-07-12 | 1042              | 17-08-12 | 1641              | 13-09-12 | 1765              | 10-10-12 | 648               | 06-11-12 | 417               |
| 05-04-12 | 430               | 02-05-12 | 423               | 29-05-12 | 630               | 25-06-12 | 1143              | 22-07-12 | 1154              | 18-08-12 | 1632              | 14-09-12 | 2431              | 11-10-12 | 615               | 07-11-12 | 413               |
| 06-04-12 | 446               | 03-05-12 | 430               | 30-05-12 | 639               | 26-06-12 | 1112              | 23-07-12 | 811               | 19-08-12 | 2381              | 15-09-12 | 2642              | 12-10-12 | 600               | 08-11-12 | 442               |
| 07-04-12 | 425               | 04-05-12 | 424               | 31-05-12 | 700               | 27-06-12 | 992               | 24-07-12 | 1302              | 20-08-12 | 1818              | 16-09-12 | 2476              | 13-10-12 | 594               | 09-11-12 | 394               |
| 08-04-12 | 410               | 05-05-12 | 401               | 01-06-12 | 732               | 28-06-12 | 961               | 25-07-12 | 1684              | 21-08-12 | 2976              | 17-09-12 | 2445              | 14-10-12 | 580               | 10-11-12 | 373               |
| 09-04-12 | 422               | 06-05-12 | 394               | 02-06-12 | 741               | 29-06-12 | 874               | 26-07-12 | 2051              | 22-08-12 | 3781              | 18-09-12 | 2430              | 15-10-12 | 555               | 11-11-12 | 392               |
| 10-04-12 | 434               | 07-05-12 | 385               | 03-06-12 | 802               | 30-06-12 | 870               | 27-07-12 | 1848              | 23-08-12 | 2582              | 19-09-12 | 2196              | 16-10-12 | 527               | 12-11-12 | 401               |
| 11-04-12 | 308               | 08-05-12 | 398               | 04-06-12 | 754               | 01-07-12 | 846               | 28-07-12 | 1818              | 24-08-12 | 2660              | 20-09-12 | 1887              | 17-10-12 | 526               | 13-11-12 | 359               |
| 12-04-12 | 408               | 09-05-12 | 430               | 05-06-12 | 716               | 02-07-12 | 623               | 29-07-12 | 1887              | 25-08-12 | 2917              | 21-09-12 | 1757              | 18-10-12 | 512               | 14-11-12 | 370               |
| 13-04-12 | 415               | 10-05-12 | 459               | 06-06-12 | 664               | 03-07-12 | 914               | 30-07-12 | 2029              | 26-08-12 | 3439              | 22-09-12 | 1431              | 19-10-12 | 485               | 15-11-12 | 372               |
| 14-04-12 | 409               | 11-05-12 | 488               | 07-06-12 | 688               | 04-07-12 | 968               | 31-07-12 | 2524              | 27-08-12 | 2932              | 23-09-12 | 1229              | 20-10-12 | 478               | 16-11-12 | 371               |
| 15-04-12 | 359               | 12-05-12 | 495               | 08-06-12 | 566               | 05-07-12 | 552               | 01-08-12 | 2380              | 28-08-12 | 2745              | 24-09-12 | 1165              | 21-10-12 | 512               | 17-11-12 | 387               |
| 16-04-12 | 407               | 13-05-12 | 475               | 09-06-12 | 481               | 06-07-12 | 1103              | 02-08-12 | 2027              | 29-08-12 | 2348              | 25-09-12 | 1037              | 22-10-12 | 531               | 18-11-12 | 356               |
| 17-04-12 | 417               | 14-05-12 | 482               | 10-06-12 | 463               | 07-07-12 | 1178              | 03-08-12 | 7283              | 30-08-12 | 2164              | 26-09-12 | 883               | 23-10-12 | 540               | 19-11-12 | 343               |
| 18-04-12 | 427               | 15-05-12 | 475               | 11-06-12 | 426               | 08-07-12 | 1336              | 04-08-12 | 1175              | 31-08-12 | 2090              | 27-09-12 | 895               | 24-10-12 | 534               | 20-11-12 | 381               |
| 19-04-12 | 456               | 16-05-12 | 476               | 12-06-12 | 474               | 09-07-12 | 1203              | 05-08-12 | 3718              | 01-09-12 | 1917              | 28-09-12 | 782               | 25-10-12 | 475               | 21-11-12 | 364               |
| 20-04-12 | 423               | 17-05-12 | 380               | 13-06-12 | 485               | 10-07-12 | 1080              | 06-08-12 | 2880              | 02-09-12 | 1932              | 29-09-12 | 779               | 26-10-12 | 441               | 22-11-12 | 353               |
| 21-04-12 | 441               | 18-05-12 | 498               | 14-06-12 | 508               | 11-07-12 | 1000              | 07-08-12 | 2257              | 03-09-12 | 2139              | 30-09-12 | 780               | 27-10-12 | 429               | 23-11-12 | 350               |
| 22-04-12 | 449               | 19-05-12 | 513               | 15-06-12 | 488               | 12-07-12 | 1079              | 08-08-12 | 1990              | 04-09-12 | 2218              | 01-10-12 | 720               | 28-10-12 | 486               | 24-11-12 | 360               |
| 23-04-12 | 451               | 20-05-12 | 504               | 16-06-12 | 524               | 13-07-12 | 1093              | 09-08-12 | 1801              | 05-09-12 | 2170              | 02-10-12 | 745               | 29-10-12 | 450               | 25-11-12 | 383               |
| 24-04-12 | 438               | 21-05-12 | 522               | 17-06-12 | 648               | 14-07-12 | 1149              | 10-08-12 | 2888              | 06-09-12 | 2331              | 03-10-12 | 751               | 30-10-12 | 419               | 26-11-12 | 386               |
| 25-04-12 | 448               | 22-05-12 | 501               | 18-06-12 | 712               | 15-07-12 | 1001              | 11-08-12 | 1911              | 07-09-12 | 2164              | 04-10-12 | 712               | 31-10-12 | 421               | 27-11-12 | 382               |

| Date     | Q                 |
|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|
|          | m <sup>3/</sup> s |
| 28-11-12 | 380               | 25-12-12 | 497               | 21-01-13 | 460               | 17-02-13 | 387               | 16-03-13 | 483               | 12-04-13 | 457               | 09-05-13 | 479               | 05-06-13 | 1053              | 02-07-13 | 1877              |
| 29-11-12 | 397               | 26-12-12 | 492               | 22-01-13 | 400               | 18-02-13 | 578               | 17-03-13 | 520               | 13-04-13 | 442               | 10-05-13 | 486               | 06-06-13 | 1057              | 03-07-13 | 1847              |
| 30-11-12 | 404               | 27-12-12 | 512               | 23-01-13 | 447               | 19-02-13 | 508               | 18-03-13 | 360               | 14-04-13 | 442               | 11-05-13 | 486               | 07-06-13 | 1039              | 04-07-13 | 1821              |
| 01-12-12 | 396               | 28-12-12 | 493               | 24-01-13 | 451               | 20-02-13 | 464               | 19-03-13 | 441               | 15-04-13 | 444               | 12-05-13 | 460               | 08-06-13 | 1022              | 05-07-13 | 1986              |
| 02-12-12 | 382               | 29-12-12 | 458               | 25-01-13 | 432               | 21-02-13 | 422               | 20-03-13 | 485               | 16-04-13 | 456               | 13-05-13 | 453               | 09-06-13 | 1037              | 06-07-13 | 2517              |
| 03-12-12 | 388               | 30-12-12 | 475               | 26-01-13 | 460               | 22-02-13 | 448               | 21-03-13 | 497               | 17-04-13 | 459               | 14-05-13 | 449               | 10-06-13 | 1122              | 07-07-13 | 2584              |
| 04-12-12 | 448               | 31-12-12 | 476               | 27-01-13 | 444               | 23-02-13 | 438               | 22-03-13 | 482               | 18-04-13 | 430               | 15-05-13 | 468               | 11-06-13 | 1246              | 08-07-13 | 1233              |
| 05-12-12 | 406               | 01-01-13 | 476               | 28-01-13 | 441               | 24-02-13 | 439               | 23-03-13 | 496               | 19-04-13 | 463               | 16-05-13 | 466               | 12-06-13 | 1245              | 09-07-13 | 2805              |
| 06-12-12 | 390               | 02-01-13 | 478               | 29-01-13 | 446               | 25-02-13 | 427               | 24-03-13 | 513               | 20-04-13 | 442               | 17-05-13 | 479               | 13-06-13 | 1179              | 10-07-13 | 2427              |
| 07-12-12 | 388               | 03-01-13 | 485               | 30-01-13 | 456               | 26-02-13 | 438               | 25-03-13 | 500               | 21-04-13 | 420               | 18-05-13 | 490               | 14-06-13 | 1210              | 11-07-13 | 2489              |
| 08-12-12 | 388               | 04-01-13 | 473               | 31-01-13 | 460               | 27-02-13 | 428               | 26-03-13 | 506               | 22-04-13 | 430               | 19-05-13 | 504               | 15-06-13 | 1150              | 12-07-13 | 2485              |
| 09-12-12 | 388               | 05-01-13 | 474               | 01-02-13 | 462               | 28-02-13 | 410               | 27-03-13 | 442               | 23-04-13 | 437               | 20-05-13 | 431               | 16-06-13 | 1047              | 13-07-13 | 2520              |
| 10-12-12 | 391               | 06-01-13 | 469               | 02-02-13 | 465               | 01-03-13 | 415               | 28-03-13 | 463               | 24-04-13 | 464               | 21-05-13 | 727               | 17-06-13 | 10000             | 14-07-13 | 2988              |
| 11-12-12 | 405               | 07-01-13 | 465               | 03-02-13 | 460               | 02-03-13 | 456               | 29-03-13 | 495               | 25-04-13 | 430               | 22-05-13 | 726               | 18-06-13 | 7000              | 15-07-13 | 3170              |
| 12-12-12 | 393               | 08-01-13 | 464               | 04-02-13 | 427               | 03-03-13 | 475               | 30-03-13 | 424               | 26-04-13 | 447               | 23-05-13 | 691               | 19-06-13 | 2090              | 16-07-13 | 3013              |
| 13-12-12 | 410               | 09-01-13 | 498               | 05-02-13 | 507               | 04-03-13 | 484               | 31-03-13 | 564               | 27-04-13 | 422               | 24-05-13 | 808               | 20-06-13 | 1698              | 17-07-13 | 3120              |
| 14-12-12 | 396               | 10-01-13 | 475               | 06-02-13 | 763               | 05-03-13 | 493               | 01-04-13 | 543               | 28-04-13 | 389               | 25-05-13 | 903               | 21-06-13 | 1568              | 18-07-13 | 2837              |
| 15-12-12 | 410               | 11-01-13 | 435               | 07-02-13 | 610               | 06-03-13 | 508               | 02-04-13 | 417               | 29-04-13 | 419               | 26-05-13 | 912               | 22-06-13 | 1516              | 19-07-13 | 2692              |
| 16-12-12 | 280               | 12-01-13 | 436               | 08-02-13 | 599               | 07-03-13 | 500               | 03-04-13 | 347               | 30-04-13 | 435               | 27-05-13 | 895               | 23-06-13 | 1667              | 20-07-13 | 2680              |
| 17-12-12 | 376               | 13-01-13 | 444               | 09-02-13 | 558               | 08-03-13 | 506               | 04-04-13 | 475               | 01-05-13 | 450               | 28-05-13 | 827               | 24-06-13 | 1889              | 21-07-13 | 2125              |
| 18-12-12 | 419               | 14-01-13 | 426               | 10-02-13 | 403               | 09-03-13 | 525               | 05-04-13 | 452               | 02-05-13 | 429               | 29-05-13 | 757               | 25-06-13 | 2476              | 22-07-13 | 2950              |
| 19-12-12 | 428               | 15-01-13 | 456               | 11-02-13 | 402               | 10-03-13 | 518               | 06-04-13 | 470               | 03-05-13 | 420               | 30-05-13 | 780               | 26-06-13 | 2067              | 23-07-13 | 3322              |
| 20-12-12 | 433               | 16-01-13 | 448               | 12-02-13 | 389               | 11-03-13 | 513               | 07-04-13 | 468               | 04-05-13 | 425               | 31-05-13 | 719               | 27-06-13 | 2158              | 24-07-13 | 3738              |
| 21-12-12 | 440               | 17-01-13 | 436               | 13-02-13 | 372               | 12-03-13 | 498               | 08-04-13 | 477               | 05-05-13 | 458               | 01-06-13 | 791               | 28-06-13 | 1813              | 25-07-13 | 4308              |
| 22-12-12 | 461               | 18-01-13 | 448               | 14-02-13 | 393               | 13-03-13 | 504               | 09-04-13 | 472               | 06-05-13 | 445               | 02-06-13 | 843               | 29-06-13 | 1886              | 26-07-13 | 3125              |
| 23-12-12 | 457               | 19-01-13 | 529               | 15-02-13 | 383               | 14-03-13 | 501               | 10-04-13 | 432               | 07-05-13 | 449               | 03-06-13 | 1029              | 30-06-13 | 1865              | 27-07-13 | 2696              |
| 24-12-12 | 482               | 20-01-13 | 484               | 16-02-13 | 651               | 15-03-13 | 504               | 11-04-13 | 467               | 08-05-13 | 458               | 04-06-13 | 1049              | 01-07-13 | 1911              | 28-07-13 | 2669              |

| Date     | Q                 |
|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|----------|-------------------|
|          | m <sup>3/</sup> s |
| 29-07-13 | 2475              | 25-08-13 | 2051              | 21-09-13 | 931               | 18-10-13 | 609               | 14-11-13 | 425               | 11-12-13 | 361               | 07-01-14 | 442               | 03-02-14 | 380               | 02-03-14 | 456               |
| 30-07-13 | 2276              | 26-08-13 | 2042              | 22-09-13 | 966               | 19-10-13 | 578               | 15-11-13 | 439               | 12-12-13 | 358               | 08-01-14 | 418               | 04-02-14 | 364               | 03-03-14 | 475               |
| 31-07-13 | 242.6             | 27-08-13 | 2046              | 23-09-13 | 802               | 20-10-13 | 566               | 16-11-13 | 412               | 13-12-13 | 353               | 09-01-14 | 428               | 05-02-14 | 358               | 04-03-14 | 484               |
| 01-08-13 | 2002              | 28-08-13 | 2084              | 24-09-13 | 835               | 21-10-13 | 552               | 17-11-13 | 405               | 14-12-13 | 365               | 10-01-14 | 436               | 06-02-14 | 295               | 05-03-14 | 493               |
| 02-08-13 | 2417              | 29-08-13 | 2036              | 25-09-13 | 785               | 22-10-13 | 497               | 18-11-13 | 410               | 15-12-13 | 370               | 11-01-14 | 426               | 07-02-14 | 354               | 06-03-14 | 508               |
| 03-08-13 | 2179              | 30-08-13 | 2147              | 26-09-13 | 740               | 23-10-13 | 498               | 19-11-13 | 401               | 16-12-13 | 353               | 12-01-14 | 440               | 08-02-14 | 374               | 07-03-14 | 500               |
| 04-08-13 | 2690              | 31-08-13 | 2088.5            | 27-09-13 | 745               | 24-10-13 | 474               | 20-11-13 | 404               | 17-12-13 | 378               | 13-01-14 | 432               | 09-02-14 | 347               | 08-03-14 | 506               |
| 05-08-13 | 2675              | 01-09-13 | 2156              | 28-09-13 | 793               | 25-10-13 | 495               | 21-11-13 | 402               | 18-12-13 | 370               | 14-01-14 | 448               | 10-02-14 | 380               | 09-03-14 | 525               |
| 06-08-13 | 3119              | 02-09-13 | 2042              | 29-09-13 | 782               | 26-10-13 | 517               | 22-11-13 | 401               | 19-12-13 | 404               | 15-01-14 | 412               | 11-02-14 | 356               | 10-03-14 | 518               |
| 07-08-13 | 3517              | 03-09-13 | 1918              | 30-09-13 | 784               | 27-10-13 | 503               | 23-11-13 | 426               | 20-12-13 | 403               | 16-01-14 | 415               | 12-02-14 | 364               | 11-03-14 | 513               |
| 08-08-13 | 3195              | 04-09-13 | 1853              | 01-10-13 | 810               | 28-10-13 | 501               | 24-11-13 | 420               | 21-12-13 | 421               | 17-01-14 | 432               | 13-02-14 | 330               | 12-03-14 | 498               |
| 09-08-13 | 3413              | 05-09-13 | 1768              | 02-10-13 | 865               | 29-10-13 | 503               | 25-11-13 | 416               | 22-12-13 | 435               | 18-01-14 | 429               | 14-02-14 | 371               | 13-03-14 | 504               |
| 10-08-13 | 3481              | 06-09-13 | 1714              | 03-10-13 | 829               | 30-10-13 | 477               | 26-11-13 | 401               | 23-12-13 | 425               | 19-01-14 | 404               | 15-02-14 | 413               | 14-03-14 | 501               |
| 11-08-13 | 3462              | 07-09-13 | 1429              | 04-10-13 | 832               | 31-10-13 | 496               | 27-11-13 | 399               | 24-12-13 | 427               | 20-01-14 | 371               | 16-02-14 | 411               | 15-03-14 | 504               |
| 12-08-13 | 3383              | 08-09-13 | 886               | 05-10-13 | 848               | 01-11-13 | 482               | 28-11-13 | 384               | 25-12-13 | 421               | 21-01-14 | 361               | 17-02-14 | 411               | 16-03-14 | 483               |
| 13-08-13 | 3469              | 09-09-13 | 1107              | 06-10-13 | 842               | 02-11-13 | 512               | 29-11-13 | 386               | 26-12-13 | 452               | 22-01-14 | 349               | 18-02-14 | 412               | 17-03-14 | 520               |
| 14-08-13 | 4363              | 10-09-13 | 1099              | 07-10-13 | 699               | 03-11-13 | 472               | 30-11-13 | 361               | 27-12-13 | 477               | 23-01-14 | 361               | 19-02-14 | 414               | 18-03-14 | 360               |
| 15-08-13 | 3690              | 11-09-13 | 1090              | 08-10-13 | 709               | 04-11-13 | 480               | 01-12-13 | 241               | 28-12-13 | 459               | 24-01-14 | 371               | 20-02-14 | 413               | 19-03-14 | 441               |
| 16-08-13 | 3547              | 12-09-13 | 1071              | 09-10-13 | 679               | 05-11-13 | 468               | 02-12-13 | 373               | 29-12-13 | 426               | 25-01-14 | 351               | 21-02-14 | 416               | 20-03-14 | 485               |
| 17-08-13 | 3275              | 13-09-13 | 1075              | 10-10-13 | 681               | 06-11-13 | 497               | 03-12-13 | 358               | 30-12-13 | 426               | 26-01-14 | 360               | 22-02-14 | 411               | 21-03-14 | 497               |
| 18-08-13 | 2935              | 14-09-13 | 1070              | 11-10-13 | 681               | 07-11-13 | 459               | 04-12-13 | 381               | 31-12-13 | 402               | 27-01-14 | 357               | 23-02-14 | 413               | 22-03-14 | 482               |
| 19-08-13 | 2848              | 15-09-13 | 953               | 12-10-13 | 678               | 08-11-13 | 444               | 05-12-13 | 397               | 01-01-14 | 428               | 28-01-14 | 321               | 24-02-14 | 412               | 23-03-14 | 496               |
| 20-08-13 | 2699              | 16-09-13 | 841               | 13-10-13 | 672               | 09-11-13 | 447               | 06-12-13 | 375               | 02-01-14 | 431               | 29-01-14 | 350               | 25-02-14 | 415               | 24-03-14 | 513               |
| 21-08-13 | 2857              | 17-09-13 | 877               | 14-10-13 | 589               | 10-11-13 | 456               | 07-12-13 | 362               | 03-01-14 | 417               | 30-01-14 | 411               | 26-02-14 | 415               | 25-03-14 | 500               |
| 22-08-13 | 2539              | 18-09-13 | 857               | 15-10-13 | 652               | 11-11-13 | 436               | 08-12-13 | 366               | 04-01-14 | 429               | 31-01-14 | 364               | 27-02-14 | 414               | 26-03-14 | 506               |
| 23-08-13 | 2134              | 19-09-13 | 825               | 16-10-13 | 605               | 12-11-13 | 444               | 09-12-13 | 363               | 05-01-14 | 443               | 01-02-14 | 351               | 28-02-14 | 414               | 27-03-14 | 442               |
| 24-08-13 | 2068              | 20-09-13 | 803               | 17-10-13 | 608               | 13-11-13 | 425               | 10-12-13 | 370               | 06-01-14 | 448               | 02-02-14 | 381               | 01-03-14 | 415               | 28-03-14 | 463               |