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ABSTRACT 

Most of the dynamical systems such as power systems, missile systems, robotic 

systems, inverted pendulum, industrial processes, chaotic circuits etc. are highly nonlinear in 

nature. The control of such systems is a challenging task. Intelligent adaptive optimal control 

is a viable recent approach. Intelligent adaptive optimal control has been emerged from the 

integration of adaptive control and optimal control methodologies with intelligent 

computational techniques. In this research work the performance investigation of intelligent 

adaptive optimal control of dynamical systems is presented. The applications of control 

schemes for dynamical systems control are implemented considering certain examples of 

linear and nonlinear dynamical systems to attempt this research investigation. 

The performance of controlled systems is desired to be optimal which should be valid 

also when applied in the real situation. Adaptive control which is able to deal with 

uncertainties is generally not optimal. Optimal control is off-line, and needs the knowledge of 

system dynamics for its design. Thus, to have both features of control design, it is desired to 

design online adaptive optimal control. 

Policy Iteration (PI) is a computational intelligence technique that belongs to a class of 

reinforcement learning (RL) algorithms; solves Hamilton-Jacobi-Bellman (HJB) equation by 

direct approach. Based on actor-critic structure, PI algorithm consists of two-step iteration: 

policy evaluation and policy improvement. These two steps of policy evaluation and policy 

improvement are repeated until the policy improvement step no longer changes the actual 

policy and thus converging to the optimal control. PI algorithm starts by evaluating the cost of 

a given initial admissible (stabilizing) control policy to converge towards state feedback 

optimal control. The infinite horizon optimal solution using HJB and algebraic Riccati 

equation (ARE) which gives linear quadratic regulator (LQR) require the complete knowledge 

of the system dynamics. Also these techniques give offline solution. The online PI algorithm 

solves online the continuous-time optimal control problem without using the knowledge of 

system internal dynamics, the information which is extracted from real-time dynamics by 

online measurement of sampled states along state trajectory. The knowledge of internal state 

dynamics is not needed for evaluation of cost or the update of control policy; and only the 

knowledge of input-to-state dynamics is required for updating the control policy. Thus, it is a 

partially model-free approach. The adaptive critic design (ACD) using online PI technique 

gives an online infinite horizon adaptive optimal control solution for continuous-time linear 

time invariant (LTI) systems and continuous-time affine nonlinear systems. By using neural 

networks to parameterize actor and critic for online implementation, this control scheme 

becomes a high-level intelligent control scheme. 

In the PI algorithm the critic is trained to approximate the solution of Lyapunov equation 

at the policy evaluation step, and the actor is trained to approximate the control policy at the 
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policy improvement step, and the critic and actor are sequentially updated taking other one 

constant. In the generalized PI algorithm either one or both of the policy evaluation and 

policy improvement steps are not required to complete before the next step is started. The 

online synchronous policy iteration algorithm uses simultaneous continuous-time tuning for 

the actor and critic neural networks. The online synchronous PI algorithm which needs the 

knowledge of the system dynamics, solve the optimal control problem online using real-time 

measurements of closed-loop signals. Using neural networks approximations for critic and 

actor both it gives an online intelligent adaptive optimal control solution for the continuous-

time dynamical systems. 

This research work contributes by presenting the comprehensive performance 

investigation of the different control schemes for continuous-time linear time-invariant (LTI) 

systems and affine nonlinear systems. The following objectives have been considered in this 

research work. 

1. Optimal control of nonlinear inverted pendulum dynamical system using PID controller 

& LQR. 

2. Intelligent control of nonlinear inverted pendulum dynamical system using Mamdani 

and TSK fuzzy inference systems. 

3. Optimal control using LQR for automatic generation control of two-area interconnected 

power system. 

4. Intelligent control using fuzzy-PI controller for automatic generation control of two-area 

interconnected nonlinear power system.  

5. Intelligent control of process system using radial basis function. 

6. Adaptive optimal control using policy iteration technique for LTI systems. 

7. Adaptive optimal control using policy iteration technique for affine nonlinear systems. 

8. Intelligent adaptive optimal control using synchronous policy iteration technique for LTI 

systems. 

9. Intelligent adaptive optimal control using synchronous policy iteration technique for 

affine nonlinear systems. 

These research objectives are briefly described as below. 

Linear quadratic regulator (LQR), an optimal control technique and PID control method 

which are generally used for control of the linear dynamical systems have been used in this 

research work to control the nonlinear dynamical system. The modeling and control design of 

nonlinear inverted pendulum-cart dynamic system using PID controller & LQR have been 

presented for both cases of without and with disturbance input. The simulation results and 

performance analysis have been presented which justify the comparative advantages of 

optimal control using PID+LQR method. The pendulum stabilizes in upright position and cart 
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reaches the desired position quickly & smoothly even under the continuous disturbance input 

justify that the control schemes are simple, effective & robust. 

Due to the capabilities of generalization, function approximation, learning and 

adaptation etc. the neural networks are applied for various control, identification, and 

estimation applications. In this research work the indirect adaptive control of a nonlinear 

process system using radial basis function neural networks (RBFNN) is presented. The liquid 

level control problem of a surge tank is considered as a process system. Two RBFNNs are 

used to model this affine nonlinear system to approximate the internal state dynamic function 

and input-to-state dynamic function respectively. The RBFNN controller provides a 

satisfactory response.  

Fuzzy control has an impact in the control community because of the simple approach 

it provides to use heuristic control knowledge for nonlinear control problems. Fuzzy control is 

an intelligent control technique which uses the human expert knowledge to make the control 

decisions. In this research work, the modeling, control design and performance analysis of 

fuzzy control for nonlinear inverted pendulum-cart dynamic system without & with 

disturbance input are presented. The fuzzy control methods using Mamdani and Takagi-

Sugeno-Kang (TSK) fuzzy inference systems have been implemented to control the cart 

position and stabilize the inverted pendulum in vertically upright position. The comparative 

performance analysis of these fuzzy control methods have also been done with PID control 

method. The simulation results justify the comparative advantages of fuzzy control methods. 

The pendulum stabilizes in vertically upright position and cart approaches the desired 

position even under the continuous disturbance input justify that the control schemes are 

effective & robust. The analysis of the responses of the control schemes gives that the 

performance of PD-FLC using Mamdani type FIS is better than PID controller, and the 

performance of TSK FLC is better than both. The response of direct fuzzy control using TSK 

FIS is more smooth & fast than both PID control & Mamdani PD-fuzzy control. 

Electrical power systems are complex nonlinear dynamic systems. As the system 

parameters can’t be completely known under the presence of nonlinearities and 

uncertainties, the controller designed based on a fixed-parameter linearized model may not 

work properly for the actual plants. Thus, it is required to take into account the system 

nonlinearities and parametric uncertainties in the control design. In view of this aspect of 

investigation, this research work presents the modeling, simulation and performance analysis 

of automatic generation control (AGC) of two-area interconnected nonlinear power system 

using fuzzy-PI controller. The conventional integral control is also presented for comparing 

results. The simulation results and analysis justify the comparative advantages of fuzzy 

control method. 
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In this research work the application of policy iteration technique based adaptive critic 

scheme for adaptive optimal control of continuous-time LTI dynamical systems is presented. 

The control scheme is implemented considering various practical examples of LTI systems- 

general SISO LTI system, higher order LTI system- a mechanical system, load frequency 

control of power system, automatic voltage regulator of power system, and DC motor speed 

control system. The systems modeling, analysis, and simulation results are presented for 

load frequency control of power system for both of system models without and with integral 

control, automatic voltage regulator of power system for both models of without and with 

sensor, DC motor speed control system for both of system models without and with integral 

compensator. Analyzing the simulation results obtained for these applications, it is observed 

that critic parameter matrix P and actor parameter K obtained from adaptive critic scheme 

using PI technique are converging adaptively to optimal values which are mostly same to that 

obtained from LQR approach. Also in case of change in system parameter in real situation 

the controller adapts it and converges to same optimal values. Thus the actor K and critic P 

parameters remain unchanged. The structural change introduced in system dynamics by 

including integral control/compensator is augmenting the system behavior such as of its 

credit that removing the steady state error in closed loop responses. The structural change in 

system will not be adapted by the proposed controller but it will adapt the change in system 

parameters in real situation at any moment of time which is demonstrated by simulating also 

with change in system parameters at certain instant of time.  The comparative performance 

investigation of adaptive critic control scheme and linear quadratic regulator is also 

presented. Thus, adaptive optimal control scheme is partially model-free, effective & robust.  

In this research work the application of PI technique based adaptive critic scheme for 

adaptive optimal control of continuous-time affine nonlinear dynamical systems is presented. 

The cost function approximation using neural network is used for online implementation of PI 

algorithm. The application of control scheme is implemented considering the state regulation 

problem for certain general affine nonlinear systems and certain practical examples of affine 

nonlinear systems- single-link manipulator, inverted pendulum, Vander Pol oscillator. The 

simulation results and performance analysis are presented from which it is observed that the 

system states converge towards the equilibrium point at origin, and the control signal 

remains bounded converging towards zero. The cost function approximation neural networks 

weights are adjusted to the optimal values which give the critic parameters converging 

adaptively to optimal values and thus the control policy is adaptive optimal. The online PI 

algorithm requires an initial stabilizing controller for converging to the optimal solution. The 

simulation results and performance analysis demonstrate the effectiveness of online policy 

iteration technique based adaptive critic control scheme. 
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In this research work the applications of online synchronous PI technique using neural 

networks for adaptive optimal control of continuous-time LTI systems and affine nonlinear 

systems are presented. The application of online synchronous PI based control scheme is 

implemented for two practical examples of LTI systems- load frequency control of power 

system, and automatic voltage regulator of power system. The application of online 

synchronous PI based control scheme is also implemented for affine nonlinear systems 

considering the state regulation problem for certain general affine nonlinear systems and two 

practical examples of affine nonlinear systems- single-link manipulator, and Vander Pol 

oscillator. The simulation results and performance analysis are presented which demonstrate 

the effectiveness of online synchronous PI based adaptive critic control scheme. The online 

synchronous PI based adaptive critic design using neural networks provides an intelligent 

adaptive optimal control of continuous-time dynamical systems. 
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CHAPTER 1  
 

INTRODUCTION 

This chapter introduces the research work. The recent trends state-of-the-art literature review 

on the research work is presented. The research motivation, scope of work and problem 

formulation, author’s contribution and thesis organization are also presented in this chapter. 

1.1 MOTIVATION 
The control systems are decision-making systems that are designed to provide 

autonomy to dynamic systems with desired system response and performance. In general, 

the control problem consists of obtaining dynamic models of systems, and using these 

models to determine control laws or strategies to achieve the desired system response and 

performance. It is a challenging task to design control algorithm that be simple and 

guarantee the stability and robustness in closed-loop system in real situations. With 

technological advancement, it is the need of time to design control systems that be capable 

to maintain acceptable performance levels under significant unanticipated uncertainties.  

Most of the dynamical systems such as power systems, missile systems, robotic 

systems, inverted pendulum, industrial processes, chaotic circuits etc. are inherently highly 

nonlinear in nature. The control of such systems is a challenging task. The conventional 

control strategies are not able to provide proper control solution under the presence of 

nonlinearities and uncertainties in the controlled systems. Traditionally, the nonlinear control 

system design has been dominated by linear control theory, which relies on the key 

assumption of small range of operation of dynamic system for the linear model to be valid. 

The linear control theory has even provided many reliable and effective control systems, the 

demand for nonlinear control theory has recently been increasing due to several reasons. 

The high-performance real-world applications demands control systems with much more 

stringent design specifications with capabilities of handling nonlinearities and rejecting 

disturbances & uncertainties in a large range of operation of dynamic system. The optimal 

control theory synthesizes a control policy which results in the best possible behaviour with 

respect to the prescribed performance criterion satisfying some physical constraints. 

Adaptive control design which deals with uncertain systems or time-varying systems mainly 

systems with known dynamic structure but unknown constant or slowly-varying parameters; 

provides adaptive controllers that are inherently nonlinear whether developed for linear 

systems or for nonlinear systems. The nonlinear control design has become a relatively 

simple task by utilizing the advances in computational techniques. The emergence of 

intelligent control from the intelligent computational techniques such as neural networks and 

fuzzy logic systems has provided novel solutions for identification and control applications 

with a greater degree of autonomy. 
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For the high-performance control systems with stringent design specifications the 

intelligent adaptive optimal control is a viable recent approach. Intelligent adaptive optimal 

control has been emerged from the integration of adaptive control and optimal control 

methodologies with intelligent computational techniques. The performance investigation of 

intelligent adaptive optimal control of dynamical systems is motivating to consider in this 

research work. Thus, the applications of control schemes for dynamical systems control are 

implemented considering certain examples of linear and nonlinear dynamical systems to 

attempt this research investigation. 

1.2 OVERVIEW 
The control literature has influx of various control design concepts over the time. The 

advances in computational techniques and digital technology have made the control system 

automatic, fast, and more efficient & reliable, and offering a wide spectrum of choices for 

control schemes for various practical applications. The Proportional-Integral-Derivative (PID) 

control gives the simplest and yet the most efficient solution to various real-world control 

problems. Even more than 90% of industrial controllers are still implemented based on this, 

particularly at the lowest levels, as no other controllers match with the simplicity, clear 

functionality, applicability, and ease of use offered by the PID controller. Even though the 

demand of better level of performance with better functionality, under uncertainties motivate 

for the development of alternate algorithms of control design, especially at the higher levels 

in the controlled system. 

The performance of the controlled systems is desired to be optimal which should be 

valid also when applied in the real situation. Optimal control designed with approximate 

system model will not give optimal performance when applied in the real situation, as it will 

not be sensitive to changes in system dynamics. Thus, for optimal performance of system in 

real situation, the adaptation of control parameters is desired. Adaptive control has objective 

of maintaining consistent performance of systems which have known structure but unknown 

constant or slowly time-varying parameter values. Adaptive control is an online design 

approach, and which is able to deal with uncertainties is generally not optimal in the sense of 

minimizing a formal performance function as specified for optimal control. Optimal control is 

offline, and needs the knowledge of system dynamics for its design. Thus, to have both 

features of control design, it is desired to design online adaptive optimal control. Adaptive 

optimal control is designed either by adding optimality features to adaptive control (e.g. the 

adaptation of control parameters is done by seeing the desired performance improvement 

reflected by an optimality criterion functional) or by adding adaptive features to optimal 

control (e.g. the optimal control policy is improved relative to the adaptation of the 

parameters of system model). 
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Emulating certain characteristics as generalization, heuristics, learning, adaptation, and 

evolution etc. of intelligent biological systems have lead to the recent developments of 

intelligent computational techniques. The integration of automatic control design with 

intelligent computational techniques has led to the intelligent control methodologies.  The 

intelligent control has emerged as a viable recent approach giving novel solutions to the 

various control system problems. The intelligent controllers can drive uncertain complex 

systems with greater degree of autonomy than the available classical control schemes. The 

intelligent control is mostly task-oriented and rule-based as the dependencies are generally 

too complex to admit an analytical representation whereas the classical control is rooted in 

the differential or difference equations mathematical theory. The intelligent adaptive control 

and intelligent optimal control systems have emerged by the synthesis of intelligent 

computational techniques with adaptive control and optimal control design concepts. Neural 

networks ability to approximate any continuous function to a desired degree of accuracy 

through learning from data makes it suitable for various identification and control 

applications. Fuzzy systems ability to represent heuristic knowledge by fuzzy linguistic inputs 

and rules makes it suitable for various decision and control applications. 

The reinforcement learning (RL) is a third approach to adaptive optimal control, 

strongly related with direct and indirect adaptive optimal control methods from a theoretical 

point of view. RL is a computational intelligence and machine learning approach based on 

the idea that successful control decisions may be remembered, by means of a reinforcement 

signal, such that they become more likely to be used a second time. RL algorithms provide a 

natural approach to solve the optimal control problem; can be implemented by means of 

function approximation structures, such as neural networks, which can be trained to learn the 

solution of Hamilton-Jacobi-Bellman (HJB) equation. There are basically two ways of solving 

the associated optimal control problem; one is Pontryagin’s minimum principle and the other 

is Bellman’s dynamic programming (DP). DP provides a computational technique to apply 

the principle of optimality to a sequence of decisions which define an optimal control policy. 

However, the offline backward-in-time solution of associated HJB equation has a 

computational complexity. Adaptive/approximate dynamic programming (ADP) overcomes 

these issues. The combining of concepts of ADP, RL, and backpropagation lead to the 

concept of adaptive critic design (ACD) as a way of solving dynamic programming problems 

in forward-in-time. ACD utilizes two parametric structures known as the actor and the critic. 

The actor parameterizes the control policy. The critic approximates a value-related cost 

function and captures the effect that the control law will have on the future cost which 

describes the performance of control system. At any given time, the critic provides guidance 

to improve the control policy, the actor to update the critic. Actor-critic online learning 

algorithms solve the optimal control problems. 
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Policy Iteration (PI), a computational intelligence technique refers to a class of RL 

algorithms consisting of two-step iteration: policy evaluation and policy improvement. These 

two steps of policy evaluation and policy improvement are repeated until the policy 

improvement step no longer changes the actual policy and thus converging to the optimal 

control. Instead of solving HJB equation by direct approach, the PI algorithm starts by 

evaluating the cost of a given initial admissible control policy, which is often accomplished by 

solving a nonlinear Lyapunov equation. This updated cost is then used to obtain an updated 

improved control policy which will have a lower associated cost. This is often accomplished 

by minimizing a Hamiltonian function with respect to the updated cost. Value Iteration (VI), 

does not require an initial stabilizing control policy. Generalized Policy Iteration is a family of 

optimal learning techniques which has PI at one extreme. In generalized PI, at each step one 

does not completely evaluate the cost of a given control, but only updates the current cost 

estimate towards that value. VI in fact belongs to the family of generalized PI techniques. 

The PI technique based adaptive critic scheme performs adaptive optimal control without 

using complete knowledge of the system dynamics. The online PI algorithm solves the 

optimal control problem, along a single state trajectory, does not require knowledge of the 

system internal dynamics, and thus giving a direct adaptive optimal control scheme. The 

adaptive optimal control using PI method relies on identification of the cost function 

associated with a given control policy followed by policy improvement in the sense of 

minimizing the identified cost, whereas the regular adaptive controllers rely on online 

identification of the system dynamics followed by model based controller design. By using 

neural networks to parameterize actor and critic for online implementation, this control 

scheme becomes a high-level intelligent control scheme. The synchronous policy iteration 

algorithm is a form of generalized continuous-time policy iteration algorithm. The online 

synchronous PI algorithm involves the simultaneous online training of both actor and critic 

networks. The initiation of the tuning process for the parameters of either actor or critic does 

not require complete convergence of the adaptation process of critic or actor respectively, 

which is regularly required in PI algorithms where only one neural network, critic or actor, is 

tuned until convergence, while the other neural network is held constant. This algorithm 

requires the complete knowledge of the system model. The adaptive critic design using 

online synchronous PI technique with neural networks approximations of cost and policy 

provides an intelligent adaptive optimal control. 

In this research work the comprehensive performance investigation of intelligent 

adaptive optimal control of dynamical systems is considered. Though it is a wide area of 

research, this thesis attempts to contribute some research works into this subject matter. To 

attempt this research investigation nine research objectives are considered. In this thesis the 

performance investigations of various control schemes for continuous-time linear time-
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invariant (LTI) systems and affine nonlinear systems considering applications of various 

general and practical systems examples are presented. In this thesis the comparative 

performance analyses of control schemes for certain applications are also presented. The 

state-of-the-art literature review, objectives of thesis, author’s research contribution, and 

organization of thesis respectively are presented in the following sections of this chapter. 

1.3 STATE-OF-THE-ART LITERATURE REVIEW: RECENT TRENDS 
The recent trends state-of-the-art literature review on the subject is categorically 

presented in the following subsections. 

1.3.1 System Modelling, Identification, and Control Design 
The system modelling, identification, and control design are related problems in the 

real-world applications. The formulation of control system design strategies requires all the 

information characterizing the process to be controlled. The mathematical models describe 

the behaviour of dynamical systems. The system modelling and simulation are interrelated 

steps taken before a new prototype design is tested for any real-world application. The 

simulation of appropriate model of dynamical system provides numerical insights into its 

behaviour. The differential or difference equations which describe the system dynamics form 

the mathematical model. The mathematical model is not unique and depends on the 

perspective of system analysis and design, the nature of signals such as continuous-time or 

discrete-time, and the nature of system parameters etc. In the control system literature [1-

10], the system dynamics is widely represented by the differential or difference equations, 

the state variable representation, the transfer function model, and state-space model; and 

the system analysis is performed using frequency-domain or time-domain approaches. The 

appropriate mathematical model is considered for control system design and analysis as per 

its perspective. In case not all state variables of system are measurable, the state observer is 

designed to obtain the observed model [2-9]. In case system dynamics is unknown or system 

parameters are all unknown or some are known and some are unknown, the system model is 

identified using some procedures of system identification and parameter estimation [11-14].  

The real-world applications have highly nonlinear dynamical systems exhibiting 

complex behaviour. The control design of nonlinear dynamical systems is traditionally, based 

on linearized models and linear control theory. However, the linear controller may exhibit 

significant performance degradation or even instability due the nonlinearities and 

uncertainties present is the system. Thus, for nonlinear systems control design the most 

appropriate models are nonlinear ones. Recently, intelligent computational techniques have 

been used to develop novel system models and controllers for various identification and 

control applications. The soft computing (SC) techniques such as neural networks (NN), and 
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fuzzy logic (FL) etc. have given novel solutions of modelling, identification and control 

problems for various nonlinear dynamical systems [13-16]. 

Most of the real-world dynamical systems such as biomedical systems, complex 

industrial processes, electrical power systems, ecological & environmental systems, and 

missile guidance systems etc. are the large-scale systems. A system is said to be large-scale 

system if it can be decoupled or partitioned into a number of interconnected systems or 

small-scale systems for either computational or practical reasons. Alternatively, a system is 

large-scale when its dimensions are so high such that the conventional techniques of 

modelling, analysis, control system design and computation fail to give accurate solutions 

with reasonable computational efforts. The mathematical models of large-scale systems are 

of high-order which may pose difficulties in its analysis, synthesis, identification and control 

design. In order to deal with such higher-order systems, an obvious method is to 

approximate it by a low-order model which reflects the important characteristics of the 

original high-order system as time constant, damping ratio, natural frequency, etc. The model 

order reduction techniques simplify the understanding and analysis of the system, reduce the 

computation time and complexity, and economize the hardware synthesis. The reduced 

order models and the model order reduction techniques have been widely used in control 

engineering environment. The various model order reduction techniques are presented in the 

literature [17-20]. The development of computational techniques, simulation techniques, and 

digital control design techniques have simplified the modelling, analysis, and control design 

with real-time practical implementation [3-5, 7-10, 21, 22]. 

The various methods of control design for dynamical systems are presented in the 

literature [7, 9, 10, 15].  Some of these control design methods are:  

(i) Classical control: lead-lag compensation, Bode and Nyquist methods, root-locus 

design, etc. 

(ii) Proportional-integral-derivative (PID) control (or its variants P or PI). 

(iii) State-space methods: State feedback control, observers, etc. 

(iv) Optimal control: Linear quadratic regulator (LQR), Pontryagin’s minimum principle or 

dynamic programming, etc.  

(v) Robust control: H2 or H∞ methods, quantitative feedback theory, loop shaping, etc.  

(vi) Nonlinear methods: Feedback linearization, Lyapunov redesign, sliding mode control, 

backstepping, etc. 

(vii) Adaptive control: Model reference adaptive control (MRAC), self-tuning regulator 

(STR), nonlinear adaptive control, etc. 

(viii) Discrete event systems: Petri nets, supervisory control, Infinitesimal perturbation 

analysis, etc. 

(ix) Intelligent control: Neural network control, fuzzy control etc. 
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1.3.2 PID Control 
The PID control is the most simple feedback control scheme for linear dynamical 

systems. The PID or its variants P or PI are widely used in industrial control applications. The 

design and tuning of PID controllers have been continued to be research problems. The 

state-of-the-art of PID control system analysis, design, and technology, and its future issues 

are presented in [23, 24]. The empirical tuning method proposed by Ziegler-Nichols (1942) is 

traditionally used for linear time-invariant (LTI) systems. The Ziegler-Nichols tuning methods 

give moderately good tuning in only restricted situations. Since PID controller is linear, it 

does not give satisfactory performance for nonlinear systems. The development of novel 

design and automatic tuning methods are important research problems. Using various 

control and optimization strategies, various PID control design and tuning methods such as 

auto-tuning, self-tuning, etc. are presented in the literature. A method to compute the entire 

set of stabilizing PID controller parameters for an arbitrary (including unstable) linear time 

delay system is presents in [25]. [26] presents a new control structure with a tuning method 

to design a PID load frequency controller for single area and multi-area power systems in the 

presence of uncertainties in plant parameters using relay based identification technique to 

estimate power system dynamics. The fractional order PID (FOPID) control design and 

tuning algorithms have taken attention of researchers recently, and are presented in 

literature    [27, 28]. The tuning rules of Ziegler-Nichols type for fractional PIDs are presented 

in [27]. The FOPID to improve stability and response of load frequency control (LFC) and 

automatic generation control (AGC) system is presented in [28]. Recently various intelligent 

computational techniques have been applied for PID control design for various applications 

and are presented in literature [29-39]. To determine the PID controller parameters online, a 

fuzzy gain scheduling scheme is presented in [29], and a function-based evaluation 

approach for fuzzy-PID controller is presented in [30]. A parallel fuzzy P + fuzzy I + fuzzy D 

controller is presented in [31]. A robust intelligent tracking controller (RITC) for a class of 

unknown nonlinear systems comprising a neural controller using a PID-type learning 

algorithm in the sense of Lyapunov function, and the robust controller to achieve L2 tracking 

performance with desired attenuation level is presented in [32]. For speed and position 

control of DC motor, an optimal integral state feedback control with PID controller using GA 

and Kalman filter is presented in [33]. An intelligent PID control design scheme using the 

least squares-support vector machine (LS-SVM) is presented in [34]. The optimal fuzzy PID 

controller design using particle swarm optimization (PSO) with Q-learning algorithm for active 

automobile suspension system presented in [35]. The PID control designs for AVR systems 

are presented using PSO-PID in [36], PSO-fuzzy-PID in [37, 38], the velocity relaxed and 

craziness based PSO-PID in [39], and improved evolutionary non-dominated sorting genetic 

algorithm II (NSGA II) based fractional order (FO) PIλDμ in [40, 41]. 
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1.3.3 Optimal Control 
The performance of the dynamical systems being controlled is desired to be optimal. 

There are many optimization & optimal control techniques which are presented in the 

literature for linear & nonlinear dynamical systems [6, 7, 9, 10, 42, 43]. The optimal control 

provides the best possible behaviour of dynamical system with respect to the specified 

performance criterion satisfying some physical constraints. The performance criterion (or 

cost function) may have several forms based on the control application. The optimal control 

theory which is an extension of calculus of variations is a mathematical optimization 

approach to derive optimal control policy. The Euler-Lagrange equation provides the 

necessary condition for extremum of a functional using first variation method, and the 

sufficient condition using second variation of a functional. The Lagrange multiplier method is 

a powerful method in optimization. The Hamiltonian formalism is another powerful approach 

of optimization and to find optimal control policy. The optimal control theory is mainly due to 

the works of maximum principle of L. S. Pontryagin (1956), which provides a necessary 

condition for optimality; and dynamic programming of Richard E. Bellman (1953), that 

resulted in the Hamilton-Jacobi-Bellman (HJB) equation, which is a sufficient condition. R. E. 

Kalman (1960) provided the linear quadratic regulator (LQR) and linear quadratic Gaussian 

(LQG) theory to design optimal feedback controllers. He presented optimal filtering and 

estimation theory leading to Kalman filter. The solution of algebraic Riccatti equation (ARE) 

determines the LQR and LQG which give infinite horizon optimal control solution for linear 

time-invariant systems [42, 43]. The H2 and H∞ optimal control theories are robust optimal 

control theories which are developed using minimization of H2 and H∞ norms respectively 

[44]. The problems of optimization of performance criterion and optimal control policy design 

have continuously been the prime concern for control system designers and researchers. 

The optimal control designs using certain approaches for certain applications are presented 

in [45-49]. The optimal control problem with a continuous inequality constraint on the state 

and the control is presented in [45]. A LQR design for linear stochastic systems with 

probabilistic uncertainty in the parameters is presented in [46]. The LQG design for optimal 

control of pneumatic Stewart-Gough platform is presented in [47]. The optimal control design 

using applications of intelligent computational techniques are also presented in [35, 48, 49]. 

The optimal control for stochastic linear singular system using neural networks solution of the 

matrix Riccati differential equation (MRDE) is presented in [48]. The optimal control design 

using particle swarm optimization (PSO) for power system stabilizers is presented in [49]. 

1.3.4 Adaptive Control 
The control of dynamical systems in the presence of uncertainties, structural 

perturbations, and environmental variations is a major problem of real-world applications.  

The control solution for such systems is obtained using adaptive control algorithms. There 
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are many adaptation & adaptive control techniques which are presented in the literature for 

linear & nonlinear dynamical systems [50-54]. Adaptive control is an online design approach 

which maintains consistent performance of systems which have known structure but 

unknown constant or slowly time-varying parameter values. An adaptive system has an 

adaptation mechanism that automatically compensate for variations in operating conditions, 

process dynamics or disturbances, in order to maintain an optimal performance of the 

system. The high-performance applications motivated the research & development in 

adaptive control schemes. Some fundamental developments  in adaptive control are: Gain-

scheduling in 1950s for aircraft autopilots, optimalizing control or peak-holding control by 

Draper and Li (1951), control system with adaptive characteristics by Benner and Drenick 

(1955), model reference adaptive control (MRAC) by Witaker et al. (1958), self-oscillating 

adaptive system by Li and van der Velde (1960), variable structure systems by Petrov et al. 

(1963), sliding mode control (SMC) by A. F. Filippov (1960s), Dual control by the application 

of dynamic programming in control design for systems with probabilistic uncertainties by 

Bellman (1960-61), partitioning approach by Lainiotis (1971), self-tuning regulator (STR) by 

Astrom and Wittenmark, and augmented error approach for stable MRAC system design by 

Monopoli (1974) etc. [50]. Other developments in control theory such as the state-space and 

stability theory, stochastic control theory, proofs for stability of adaptive systems, control 

design using Lyapunov function, system identification, robust control, and learning control, 

etc. made further advances to adaptive control design methods. The adaptive control using 

feedback linearization that transforms nonlinear adaptive control problem into a linear 

adaptive control problem to apply linear control methods is developed as an approach for 

nonlinear control design for feedback linearizable nonlinear system with known dynamics. 

The indirect adaptive control (IAC) and direct adaptive control (DAC) schemes are 

structurally two basic approaches of adaptive control which were developed based on 

presence or non-presence of system identification in control design. MRAC and STR both 

with IAC and DAC both are widely explored adaptive schemes [52]. With significant 

theoretical and algorithmic advancements the adaptive control systems have wide range of 

current and potential industrial applications [50, 52]. The adaptive control problem has 

continuously been the prime concern for control system designers and researchers. [53-55] 

present the state-of-the-art of theory and applications of adaptive control. A comparative 

study of model reference adaptive control and fuzzy model reference learning control 

techniques for inverted pendulum system is presented in [56]. The sliding mode control 

which is a robust adaptive control approach with various methodologies for various 

applications is presented in [57-64]. Recently, the intelligent control techniques are widely 

used in the framework of adaptive control design for various applications [15, 61-64]. The 
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literature review on sliding mode control using soft computing techniques is presented in [63, 

64]. 

1.3.5 Intelligent Control 
The recent development in the area of artificial intelligence (AI), such as artificial neural 

network (ANN), fuzzy logic (FL), expert systems (ES), evolutionary computational techniques 

such as genetic algorithm (GA), and particle swarm optimization (PSO) etc., and machine 

learning such as support vector machine (SVM), etc., all of which belong to soft computing 

techniques, and are commonly known as intelligent computational techniques have led to the 

development of intelligent control schemes by the integration of these intelligent 

computational techniques with automatic control design [7, 9, 10, 15, 16, 65-77].  

The intelligent computational techniques have continuously attracted researchers of 

diverse applications areas seeking intelligent novel solutions of different problems. The 

application of intelligent computational techniques in control engineering framework has 

continuously been attracted the control researchers for getting intelligent control solutions for 

various dynamical systems applications. Recently several researchers have explored the 

intelligent control methodologies for various applications [7, 9, 10, 13-16, 29-43, 48, 49, 61-

79, 81-99]. 

Neural networks (NN) [7, 10, 15, 43, 65, 66, 69-74] represent an important paradigm 

for classifying patterns or approximating complex nonlinear process dynamics. These 

properties clearly indicate that NN exhibit some intelligent behaviour, and are good candidate 

models for nonlinear processes, for which no perfect mathematical model is available. The 

NN have given novel solutions to various dynamical systems modelling, identification, and 

control problems [7, 10, 13-15, 43, 65, 66, 69-74, 76, 78, 79, 82, 87, 98]. Fuzzy logic (FL) 

systems [7, 9, 10, 15, 43, 66, 67, 69-74] attempt to approximate the human knowledge and 

the associated reasoning process (i.e. process of knowledge representation). In this sense 

the FL systems in intelligent control serves to represent and process the control knowledge 

of a human in a given plant. The FL systems have given promising solutions to various 

modelling and control problems of various applications [7, 9, 10, 15, 29-31, 43, 61, 66-74, 78, 

81, 82, 84-86, 90, 97, 99]. Genetic algorithms (GA) [7, 15, 43, 66, 70, 72, 94] represent an 

optimization approach which is analogous to biological evolution through natural selection, 

crossover, and mutation, where a search is made to “evolve” a solution algorithm that will 

retain the “most-fit” components. These features make GA applicable in intelligent control, 

particularly when optimization is an objective. GA has been used in various optimization and 

control problems [7, 15, 40, 41, 43, 66, 70, 72, 82, 94]. Particle swarm optimization (PSO) 

[95] is an evolutionary computation technique that was inspired by the social behaviour of 

bird flocking and fish schooling; is a population-based optimization algorithm that is not much 

affected by the size and nonlinearity of the problem, and can converge to the optimal solution 
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in many problems where most analytical methods fail to converge. The PSO has given novel 

solutions to various optimization and control problems of dynamical systems [35-39, 49, 95, 

96]. Support vector machine (SVM) [7] is a supervised learning algorithm that automatically 

improves the performance with experience at a given task. SVM has given novel intelligent 

control solutions of various applications [7, 34].   

In recent years, the hybrid intelligent systems by the integration of intelligent 

computational techniques (NN, FL, GA, etc.) in a complementary hybrid framework (hybrid 

neuro-fuzzy, fuzzy-GA, neuro-GA, neuro-fuzzy-GA systems etc.) have been the research 

trends applications for solving complex problems [15, 16]. Adaptive neuro-fuzzy inference 

system (ANFIS), a hybrid neuro-fuzzy system has been widely used for various modelling, 

identification, and control applications [15, 16, 88, 91, 92, 100]. Other hybrid intelligent 

systems as PSO-fuzzy [35, 37], fuzzy-wavelet neural [14], GA-fuzzy [101], GA-fuzzy-neural 

[102], and RBFNN-PSO [96] have also been used for various applications and presented in 

literature.  

The intelligent control is a wider area of research and applications that uses the various 

control theories and computational intelligent systems. The literature reviews on intelligent 

control specifically with adaptive control, optimal control, and adaptive optimal control are 

presented in the following subsections. 

1.3.6 Intelligent Adaptive Control 
The intelligent adaptive control is emerged from the integration of adaptive control 

schemes with intelligent computational techniques. The different intelligent computational 

techniques such as NN, FL, GA etc or hybrid systems such as ANFIS etc are applied in 

adaptation mechanism of adaptive control schemes mainly MRAC or STR and in IAC or DAC 

control structures, resulting in intelligent adaptive control. The intelligent adaptive control has 

continuously been an emerging research area. There are various industrial applications of 

intelligent adaptive control systems. The intelligent adaptive control schemes using various 

methodologies for various applications have been presented in [13, 15, 16, 32, 35, 67-74, 91-

93, 100-115]. 

1.3.7 Intelligent Optimal Control 
The intelligent optimal control is emerged from the integration of optimal control 

schemes with intelligent computational techniques. The different intelligent computational 

techniques or hybrid systems are used to optimize the specified performance criterion of 

optimal control system. The evolutionary computational techniques have played a major role 

in the optimization and optimal control applications. Recently several researchers have 

explored the intelligent computational techniques mainly evolutionary computational 
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techniques using various optimal control methodologies for dynamical systems applications 

[7, 15, 36-41, 116-121]. 

1.3.8 Intelligent Adaptive Optimal Control 
The intelligent adaptive optimal control is emerged from the synergistic integration of 

adaptive control algorithms and optimal control theory with intelligent computational 

techniques having all the features of three technologies. The adaptive optimal control is 

designed by adding either optimality features to adaptive control or adaptive features to 

optimal control. The adaptive optimal control design with application of intelligent 

computational techniques gives intelligent adaptive optimal control. For a given dynamical 

plant and the corresponding performance index, there are basically two ways of solving the 

associated optimal control problem; one is Pontryagin’s minimum principle and the other is 

Bellman’s dynamic programming [6, 7, 10, 42, 71]. Recently several researchers have tried 

to explore the intelligent computational techniques with adaptive and optimal control design 

by applying certain methodologies for certain applications [7, 13, 15, 16, 34, 35, 43, 48, 49, 

61-64, 67-74, 79, 87-89, 91-93, 100-113, 116-122]. A time-optimal control law using neural 

network with dynamic programming and adaptive control law using neural network for conical 

tank level control is proposed in [122].  

The recent development in the area of computational intelligence and machine learning 

techniques provided a third approach to adaptive optimal control namely the reinforcement 

learning (RL) [123-125] based on the idea that successful control decisions may be 

remembered, by means of a reinforcement signal, such that they become more likely to be 

used a second time; the idea originating from experimental animal learning, where it has 

been observed that the dopamine neurotransmitter acts as a reinforcement informational 

signal which favours learning at the level of the neuron. The RL algorithm which was 

generally to find optimal control policies for Markovian systems with discrete state and action 

spaces is strongly related with direct and indirect adaptive optimal control methods from a 

theoretical point of view. The RL algorithm characterizes a learning problem which is in fact 

the adaptive optimal control problem to find a control policy based on reward information 

which characterizes the performance of a given controller. The RL algorithms provide a 

natural approach to solve the optimal control problem; can be implemented by means of 

function approximation structures, such as neural networks, which can be trained to learn the 

solution of Hamilton-Jacobi-Bellman (HJB) equation [123-126]. Bellman’s dynamic 

programming (DP) provides a computational technique to apply the principle of optimality to 

a sequence of decisions which define an optimal control policy or trajectory giving an optimal 

controller in state feedback form, may provide the best approach to find optimal control 

strategies for highly constrained nonlinear systems. Even though a feedback form is robust 

to noise and model uncertainties, however, the solution of the HJB equation associated with 
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DP has a computational complexity that grows exponentially with the number of state 

variables, the problem known as “curse of dimensionality” [124, 127-130], and it is an offline 

process where the problem is solved from the end point and is approached in backward 

direction. To overcome these issues, in 1977, Werbos proposed Adaptive/ Approximate 

Dynamic Programming (ADP) [124-129, 131-141]. Combining the concepts of ADP, RL, and 

backprogation [142, 143], he introduced an approach for ADP called adaptive critic design 

(ACD) as a way for solving dynamic programming problems forward-in-time. Werbos defined 

actor-critic online learning algorithms to solve the optimal control problem based on Value 

Iteration (VI), and defined a family of VI algorithms as ADP algorithms. He used a critic 

neural network for value function approximation (VFA) and an actor neural network for 

approximation of the control policy. Based on functional architectures and critic choices, the 

several versions of ACD are presented recently in the literature [123, 124, 129, 130, 142-

178]. Some works present ACDs as supervised learning systems and reinforcement learning 

systems [124, 143]. The online learning algorithms such as Policy Iteration (PI) [123-126, 

155-167], Value Iteration (VI) [124, 125, 168], and Generalized Policy Iteration (GPI) [154, 

157], have given solution of the optimal control problems for linear [155-158, 161, 166, 169] 

and nonlinear systems [123, 154, 158-165, 167, 168]. GPI is a family of optimal learning 

techniques which has PI at one extreme [125, 158] and VI belongs to it. In GPI, at each step 

the cost of a given control is not completely evaluated, but only the current cost estimate 

towards that value is updated. Likewise, one does not fully update the control policy to the 

greedy policy for the new cost estimate, but only updates the policy towards the greedy 

policy. ACD utilizes two parametric structures known as the actor and the critic. The actor 

parameterizes the control policy. The critic approximates a value-related cost function and 

captures the effect that the control law will have on the future cost which describes the 

performance of control system. At any given time, the critic provides guidance to improve the 

control policy, and the actor to update the critic.  

Policy Iteration (PI) algorithms consist two-step iteration: policy evaluation and policy 

improvement. These two steps of policy evaluation and policy improvement are repeated 

until the policy improvement step no longer changes the actual policy and thus converging to 

the optimal control. Instead of solving HJB equation by direct approach, the PI algorithm 

starts by evaluating the cost of a given initial admissible control policy, which is often 

accomplished by solving a nonlinear Lyapunov equation. This updated cost is then used to 

obtain an updated improved control policy which will have a lower associated cost [125, 155-

157, 159-162]. This is often accomplished by minimizing a Hamiltonian function with respect 

to the updated cost [124, 125, 155, 156, 158-160, 166]. This is the so-called `greedy policy' 

with respect to the updated cost [158]. It is noted that the infinite horizon cost can be 

evaluated only in the case of admissible and stabilizing control policies. Admissibility is in fact 
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a condition for the control policy which is used to initialize the algorithm. PI algorithm requires 

an initial stabilizing control policy, but VI does not require an initial stabilizing control policy 

[124, 125, 158].  

Adaptive optimal control using various approaches has been presented recently in 

literature [122-178]. Adaptive critic designs for various control applications applying certain 

approaches in both discrete-time and continuous-time frameworks are described recently in 

certain papers [122-126, 128-130, 132, 135-178]. The ACD using SVM based tree type 

neural network as critic is presented in [147]. The application of radial basis function neural 

network for ACD is presented in [148]. The ACD using PSO based actor and neural network 

based critic is presented in [149]. Adaptive optimal control using PI technique is presented 

for linear systems in [155-158, 161, 162, 166, 169], and for nonlinear systems using neural 

networks in actor-critic configuration in [123, 158-165, 167]. Adaptive optimal control using 

synchronous PI technique is presented for linear systems in [157, 158, 161, 162], and for 

nonlinear systems in [158, 161, 162]. As from applications point of view PI algorithm is 

implemented for optimal load frequency control of a power system in [156, 169], for F-16 

aircraft in [155, 158, 162], for linear hyperbolic PDE systems in [166], and for general 

nonlinear systems in [158-162]. The convergence guarantees of the continuous-time PI 

technique to the optimal control are given in [123, 154-162, 167-169]. The optimal control for 

discrete-time affine nonlinear systems using VI technique is presented in [168]. A simplified 

version of adaptive critic architecture called ‘single network adaptive critic (SNAC)’ which 

uses only one network instead of two required in a standard adaptive critic design for affine 

systems is proposed in [172-178]. The SNAC design is presented using neural networks in 

[172-177], and using Takagi-Sugeno fuzzy systems in [178]. The applications of SNAC 

design are presented for linear systems in [174], and for nonlinear systems in [172-178].  

1.3.9 Dynamical Systems Applications 
The literature reviews on particularly the control of dynamical systems considered in 

this thesis for control applications are briefly presented in this subsection. The various 

dynamical systems problems for control applications considered in this research study are: 

nonlinear inverted pendulum-cart system, nonlinear surge tank liquid level process system, 

automatic generation control of two-area power system linear and nonlinear both, load 

frequency control of single-area power system, automatic voltage regulator system, DC 

motor speed control system, spring-mass-damper mechanical system, single-link robotic 

manipulator, Vander Pol’s oscillator, and various general linear and nonlinear systems.  

 The inverted pendulum system is a classical benchmark for the implementation of 

control schemes and performance analysis. The inverted pendulum-cart dynamical system 

has been taken by certain researchers for implementing the various control schemes which 

are presented in literature [2, 9, 56, 61, 62, 85, 86, 179-181]. The swing-up of inverted 
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pendulum by energy control is presented in [179]; and the swing-up and stabilization of a 

cart-pendulum system under restricted cart track length is presented in [180]. The fuzzy 

control of inverted pendulum is presented in [85, 86]; and fuzzy hierarchical swing-up and 

sliding position control in [61]. The adaptive fuzzy sliding mode control of inverted pendulum 

is presented in [62]. The control of inverted pendulum cart system using a Lyapunov function 

based approach is presented in [181]; and using model reference adaptive control and fuzzy 

model reference learning control techniques for comparative study in [56]. The nonlinear 

surge tank liquid level process system is also a benchmark control problem that is discussed 

in [71]. 

 The automatic generation control (AGC) of power systems is a widely studied 

problem. The load frequency control (LFC) is the main subsystem of AGC system which is 

an important problem in power systems [182-187]. The various control schemes for AGC or 

LFC systems are presented in the literature [26, 28, 97-99, 182-186, 188-198]. The fuzzy 

logic control of AGC systems is presented in [97, 186]. The adaptive LFC using dynamic 

neural network is presented in [98]. The PID control of LFC system is presented in [26]; and 

FOPID control of LFC and AGC systems is presented in [28]. The robust LFC design using 

fuzzy logic for uncertain power systems is proposed in [99]. [188-198] presents the robust 

LFC design for power systems using various approaches. The H∞ control approach is 

presented in [195-198].  

 The automatic voltage regulator (AVR) and power system stabilizer (PSS) are 

important subsystems of power system to maintain voltage limits and stability [182-184]. 

Recently the control design using various approaches for AVR system and PSS has 

attracted researchers [36-41, 175, 176, 199-203]. PSO-PID controller design and comparison 

of performance with GA-PID for AVR system using a new performance criterion for obtaining 

optimal controller parameters is presented in [36]. The AVR system using PSO-fuzzy-PID 

controller is presented in [37]. The performance of intelligent fuzzy based coordinated control 

of the AGC loop and the excitation loop equipped with PID controlled AVR system and PSS 

controlled AVR system is investigated in [38] using craziness based PSO (CRPSO) as 

optimizing tool to get the optimal tuning of PSS parameters as well as the gains of PID 

controllers and for on-line, off-nominal operating conditions to obtain the off-nominal optimal 

gains of PID controllers and PSS parameters the Takagi Sugeno fuzzy logic (TSFL) has 

been applied. [39] presents PID controlled AVR system, and PSS controlled AVR system 

using velocity update relaxation PSO (VURPSO) and position, velocity updating strategy and 

craziness PSO (CRPSO), and also compares the performance with GA based approach. A 

fractional order (FO) PIλDμ controller for an AVR system using an improved evolutionary non-

dominated sorting genetic algorithm II (NSGA II) that is augmented with a chaotic map for 

greater effectiveness for the multi-objective optimization problem, is presented in [40] and a 
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frequency domain design approach for a fractional order PID (FOPID) controller for an AVR 

system using NSGA-II augmented with a chaotic henon map that is used for the multi-

objective optimization based design procedure, is presented in [41]. The steady state voltage 

stability assessment of power systems with AVR voltage limits is discussed in [199]. The 

effect of time delays on the stability of generator excitation control system is investigated in 

[200]. A parameter tuning method for AVR system using online measured data of the 

excitation control system with parameter optimization technique is presented in [201]. The 

design of PSS for a small-signal stability study using sliding mode control (SMC) techniques 

is presented in [202]. The design of PSS using single network adaptive critic (SNAC) is 

proposed in [175, 176]. In [203] the design of a sub-optimal nonlinear feedback controller for 

power systems based on the approximate solution of the HJB equation is presented.  

 The DC motor speed control system is discussed in [7, 204]. The single-link 

manipulator [71, 178], mass-spring-damper mechanical system [1], and Vander Pol’s 

oscillator [173, 178] are also taken as benchmark systems for the application of various 

control schemes. 

1.4 OBJECTIVES OF THESIS 
Based on the recent trends state-of-the-art of the control system design and 

applications the objectives of this research work have been proposed. The emerging trends 

of optimal control, adaptive control, and intelligent control systems are motivating. The 

dynamical systems such as inverted pendulum, industrial processes, and power systems 

have wide applications in academics & industry. Thus the emerging trends of control theory 

and applications provide a lot of scope of research works on performance investigation of 

control schemes for dynamical systems and exploring novel control algorithms. To carry out 

the research objectives the following problem formulation and scope of work have been 

considered in this thesis. 

1.4.1 Problem Formulation  
Consider the general nth order dynamical systems described in state-space form as 

following: 

( ) ( , ( ), ( ))x t f t x t u t=    ,    0 0( )x t x=                  (1.1) 

( ) ( , ( ), ( ))y t h t x t u t=                    (1.2) 

where f and h are smooth nonlinear vector valued functions and are also assumed to be 

bounded, 1 2( ) [ , ,..., ]T n
nx t x x x= ∈R  is the state vector, 1 2( ) [ , ,..., ]T p

py t y y y= ∈R  is the 

output vector, and 1 2( ) [ , ,..., ]T m
mu t u u u= ∈R  is the control input vector. 

For the control input affine dynamic systems (1.1) and (1.2) can be written as 
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1
( )  ( ( )) ( ( )) ( )

m

i i
i

x t f x t g x t u t
=

= +∑    or 

( ) ( ( )) ( ( )) ( )x t f x t g x t u t= +     ,    0 0( )x t x=                 (1.3) 

( ) ( ( ))y t h x t=                     (1.4) 

where ( ( )) nf x t ∈R , and ( ( )) n mg x t ×∈R  are smooth nonlinear functions. It is assumed that 

these functions will be bounded. In order to system (1.3) and (1.4) to be controllable, it is 

required that ( ) 0g x ≠  for x in a certain controllability region n
CU ⊂ R . It is assumed that 

0 ( )g x< < ∞  for Cx U⊂ . 

If the functions ( ( ))f x t , ( ( ))g x t , and ( ( ))h x t  are linear functions then (1.3) and (1.4) 

approache to represent the linear dynamical systems. The state-space model of general 

continuous-time linear time-invariant (LTI) systems is as follows: 

( ) ( ) ( )x t Ax t Bu t= +                    (1.5) 

( ) ( ) ( )y t Cx t Du t= +                    (1.6) 

with the initial condition 0 0( )x t x= , ( ) nx t ∈R , ( ) py t ∈R , and ( ) mu t ∈R  are the state, output 

and input vectors respectively. Similarly, n nA ×∈R , n mB ×∈R , p nC ×∈R , and p mD ×∈R  are 

constant matrices. 

Consider the state regulation problem for dynamical systems. Let ( )dx t  is the desired 

state then relative to desired state ( )dx t  the instantaneous system state error is given by 

( ) ( ) ( )de t x t x t= −                    (1.7) 

If the system coordinates are transformed such that the desired state becomes the 

origin of the state space, then the new state ( )x t  itself will be error. The control objective is 

to determine a control law *( )u t  such that the system state is regulated to the desired state 

with minimizing a performance index 

0

1 [ ( ) ( ) ( ) ( )]
2

T TJ x t Qx t u t Ru t dt
∞

= +∫                  (1.8) 

and the instantaneous system state error vanishes as lim ( ) 0t e t→∞ =   and thus the system 

error dynamics is asymptotically stable. The matrix Q is nxn real, symmetric, positive definite 

(or positive semi-definite) constant matrix and matrix R is mxm real, symmetric, positive 

definite constant matrix. 

In case of the output tracking problem the control objective is to force the system 

output vector y to follow a given reference signal vector yr under the constraint that all 

signals involved must be bounded. The state regulation problems and state tracking or 

output tracking problems are convertible to each other. 
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In this research work, an infinite horizon intelligent adaptive optimal control solution 

for dynamical systems is proposed. The performance investigations of optimal control, 

adaptive control, intelligent control, adaptive optimal control, and intelligent adaptive optimal 

control schemes for dynamical systems are considered in this research work. 

1.4.2 Scope of Work 
The scope of work undertaken in this research investigation is as following: 

1. The exhaustive literature survey relevant to the research area of intelligent adaptive 

optimal control of dynamical systems. 

2. Mathematical modelling of dynamical systems both LTI systems and nonlinear 

systems. Consider the continuous-time LTI dynamical systems preferably power 

systems automatic generation control, load frequency control, automatic voltage 

regulator, dc motor speed control systems etc. and continuous-time affine nonlinear 

dynamical systems preferably inverted pendulum, robotic manipulator, Vander Pol’s 

oscillator, etc. for applications of control schemes. 

3. The modelling, simulation, control design, and practical implementation of control 

schemes. 

4. The performance investigation of optimal control scheme for dynamical systems. 

5. The performance investigation of adaptive control scheme for dynamical systems. 

6. The performance investigation of intelligent control techniques for dynamical systems 

using intelligent computational techniques particularly neural networks, and fuzzy 

logic systems. 

7. The performance investigation of adaptive optimal control schemes for dynamical 

systems. 

8. The performance investigation of intelligent adaptive optimal control of dynamical 

systems. 

9. The comparative performance investigation with conventional approaches. 

10. The investigation on stability of the proposed control system with robust tracking and 

state regulation performance. 

11. The investigations of novel control algorithms for dynamical systems. 

1.5 CONTRIBUTIONS OF RESEARCH WORK 
This research work contributes by presenting the comprehensive performance 

investigation of the different control schemes for continuous-time linear time-invariant (LTI) 

systems and affine nonlinear systems. The research objectives which have been considered 

and contributions made in this research work are highlighted as following: 
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1. Optimal control of nonlinear inverted pendulum dynamical system using PID controller 

& LQR.  

 The modeling and control design of nonlinear inverted pendulum-cart dynamic 

system using PID controller & LQR for both cases of without and with disturbance 

input. 

 A simple optimal control approach for nonlinear dynamical systems using PID 

controller and LQR is proposed. 

 The comparative performance investigation of PID control, 2PID+LQR control, and 

1PID+LQR control for nonlinear inverted pendulum dynamical system is presented. 

2. Intelligent control of nonlinear inverted pendulum dynamical system using Mamdani 

and TSK fuzzy inference systems. 

 The modeling, control design and performance analysis of fuzzy control for 

nonlinear inverted pendulum-cart dynamic system for both cases of without & with 

disturbance input.  

 Fuzzy control using Mamdani and Takagi-Sugeno-Kang (TSK) fuzzy inference 

systems (FIS) have been implemented. 

 The comparative performance analysis of PD-fuzzy control using Mamdani FIS, and 

direct fuzzy control using TSK FIS has been presented. The comparative 

performance analysis with PID control method is also presented. 

3. Optimal control design using LQR for automatic generation control (AGC) of two-area 

interconnected power system. 

 The modelling and optimal control design using LQR for AGC of two-area 

interconnected power system is presented. 

 The performance analyses of control schemes of conventional integral control, 

optimal control using LQR, and optimal control using integral controller and LQR for 

AGC system of two-area interconnected power system are presented. 

4. Intelligent control using fuzzy-PI controller for automatic generation control of two-area 

interconnected nonlinear power system. 

 The modeling, control and performance analysis of AGC of two-area interconnected 

nonlinear power system using fuzzy-PI controller is presented. 

 Fuzzy-PI controller using Mamdani FIS is implemented. 

 The performances of fuzzy-PI control and PID control methods are compared for 

AGC system of two-area interconnected power system for both linear and nonlinear 

system models. 

5. Intelligent control of process system using radial basis function neural networks. 

 The indirect adaptive control of a nonlinear process system, a surge tank liquid level 

control system using radial basis function neural networks (RBFNN) is presented. 
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 Feedback linearization method is implemented for control design using RBFNNs. 

 The performance analysis of intelligent control of affine nonlinear systems using 

RBFNNs is presented.   

6. Adaptive optimal control using policy iteration technique for LTI systems. 

 The adaptive optimal control using policy iteration (PI) technique based adaptive 

critic scheme for continuous-time LTI systems is presented. 

 The PI technique based adaptive critic control scheme is implemented for 

applications of general and practical examples of LTI systems- (i) a general LTI 

SISO system, (ii) a higher order LTI system- a mechanical system, (iii) load 

frequency control (LFC) of power system, (iv) automatic voltage regulator (AVR) of 

power system, and (v) DC motor control system. 

 The comprehensive performance analysis of adaptive optimal control of continuous-

time LTI systems with adaptive critic scheme using PI technique is presented. 

 The performance analysis of control scheme is presented for both of system models 

of LFC system without and with integral control. 

 The performance analysis of control scheme is presented for both of system models 

of AVR system neglecting sensor dynamics and including sensor dynamics. 

 The performance analysis of control scheme is presented for both of system models 

of DC motor control system without and with integral compensator. 

 The effects of including integral control in LFC system, sensor dynamics in AVR 

system and integral compensator in DC motor control system are analysed. 

 The comparative performance investigation of adaptive critic control scheme and 

linear quadratic regulator is also presented. 

 The performance of adaptive critic control scheme under structural change in 

system dynamics is investigated.  

 The PI based adaptive critic controller adapts the change in system parameters in 

real situation at any moment of time is demonstrated. 

 The control scheme is partially model-free is demonstrated. 

 The novel adaptive optimal control design for AVR system is proposed. 

 The novel adaptive optimal control design for DC motor control system is proposed. 

 The novel modeling of DC motor control system with integral compensator is 

proposed. 
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7. Adaptive optimal control using policy iteration technique for affine nonlinear systems. 

 The adaptive optimal control using PI technique based adaptive critic scheme for 

continuous-time affine nonlinear dynamical systems is presented.  

 The neural network approximation of cost function is used for online implementation 

of PI algorithm with the Kronecker product quadratic polynomial basis vector 

considered to be the activation function vector. 

 The application of control scheme is implemented considering state regulation 

problem for two general and three practical examples of affine nonlinear systems- (i) 

single-link manipulator, (ii) inverted pendulum-cart system, and (iii) Vander Pol 

oscillator system. 

 The performance of online PI based adaptive critic control scheme which gives 

intelligent adaptive optimal control solution for affine nonlinear systems is analysed. 

 The online PI algorithm provides a partially model-free approach is demonstrated. 

8. Intelligent adaptive optimal control using synchronous policy iteration technique for LTI 

systems. 

 The intelligent adaptive optimal control using synchronous PI technique for LTI 

systems applications is presented. 

 The cost function and control policy are approximated using neural networks. 

 The application of online synchronous PI based control scheme is implemented for 

two practical examples of LTI systems- (i) load frequency control of power system, 

and (ii) automatic voltage regulator of power system. 

 The performance of synchronous PI based control scheme is analysed for both of 

system models of LFC system without and with integral control. 

 The performance of synchronous PI based control scheme is analysed for both of 

system models of AVR system neglecting sensor dynamics and including sensor 

dynamics. 

 The performance of synchronous PI based adaptive critic control scheme under 

structural change in system dynamics is investigated. 

 For convergence of critic NN and actor NN, the requirement of persistence of 

excitation (PE) condition is investigated. 

9. Intelligent adaptive optimal control using synchronous policy iteration technique for 

affine nonlinear systems. 

 The intelligent adaptive optimal control using synchronous PI technique for 

continuous-time affine nonlinear systems applications is presented. 

 The neural networks approximations of critic function and actor function are used. 

 The application of online synchronous PI based control scheme is implemented 

considering state regulation problem for three general affine nonlinear systems with 
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stronger nonlinearities, and two practical examples of affine nonlinear systems- (i) 

single-link manipulator system, and (ii) Vander Pol oscillator system. 

 The performance of synchronous PI based adaptive critic control scheme for affine 

nonlinear systems applications is analysed.  

 For convergence of critic NN and actor NN, the requirement of PE condition is 

investigated also in the control applications of affine nonlinear systems.  

1.6 ORGANIZATION OF THESIS 
This research thesis is organized in seven chapters. The brief overview of each chapter 

is as following: 

Chapter 1 presents the relevance & general introduction of the research work. The 

recent trends state-of-the-art literature review on the research work is presented in this 

chapter. The research motivation, problem formulation and scope of work, author’s 

contribution and thesis organization are also presented in this chapter.  

Chapter 2 Chapter 2 deals with optimal and adaptive control of dynamical systems. In 

this chapter the performance analysis of control application problems of the optimal control of 

nonlinear inverted pendulum-cart dynamical system using PID controller and LQR, the 

optimal control of automatic generation control of two-area power system, and adaptive 

control of dynamical systems are presented.  

Chapter 3 deals with intelligent control of dynamical systems. In this chapter the 

performance analysis of control application problems of the intelligent control of nonlinear 

inverted pendulum-cart dynamical system using fuzzy logic systems, the fuzzy-PI control for 

automatic generation control of two-area nonlinear power system, and neural network control 

of a process system using radial basis function neural networks are presented. 

Chapter 4 describes the adaptive optimal control using policy iteration technique for 

continuous-time LTI systems. The policy iteration technique with proof of convergence of 

algorithm is discussed. The performance analysis of adaptive critic control scheme using 

policy iteration technique for LTI systems is presented. The comparative performance 

analysis of adaptive critic scheme and linear quadratic regulator is also presented. The 

application of control scheme is implemented for certain examples of general and practical 

continuous-time LTI systems.  

Chapter 5 describes the adaptive optimal control using policy iteration technique for 

continuous-time affine nonlinear systems. The neural network approximation of cost function 

for implementation of online policy iteration technique is presented. The application of control 

scheme is implemented for certain examples of general and practical continuous-time affine 

nonlinear systems. 

Chapter 6 discusses the intelligent adaptive optimal control using synchronous policy 

iteration technique for continuous-time LTI systems and affine nonlinear systems. The neural 



 

23 

 

network approximations of cost function and control policy is presented. The application of 

control scheme is implemented for certain examples of general and practical continuous-time 

LTI systems and affine nonlinear systems. 

Chapter 7 presents the conclusions and future scope of research work.  

At the end a list of publications from this research work and a list of references have 

been given. 

Appendices A and B respectively present the continuous-time smooth function and 

Lipschitz continuity for the completeness of comprehension on the subject matters. 
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CHAPTER 2  
 

OPTIMAL AND ADAPTIVE CONTROL OF DYNAMICAL SYSTEMS 

This chapter describes the optimal and adaptive control schemes of dynamical systems. The 

theoretical background on the control schemes of PID control, optimal control, adaptive 

control and their applications are briefly described for completeness of the topic under 

discussion. The performance analysis of control schemes is presented for linear and 

nonlinear dynamical systems applications. 

2.1 INTRODUCTION 
The dynamic systems are described by ordinary differential or difference equations in 

contrast to static systems, which are described by algebraic equations. The dynamic systems 

change with time or any other independent variable according to the dynamic relations. The 

behaviour of dynamic system is completely determined by the system states for any future 

time with the knowledge of initial conditions and knowledge of input for any future time. Most 

of the dynamical systems, physical, chemical, biological, and economical, can be modelled 

by mathematical relations, such as deterministic and/or stochastic differential and/or 

difference equations. The dynamic systems are classified based on the nature of their 

dynamic equations.  

The dynamical systems may be steered from one state to another state by the 

application of some external inputs or controls. For the control system design problems, the 

classical (or conventional) control theory and modern control theory have given various 

control solutions for dynamical systems [1-10]. As per the desired system performances in 

the control system design, the theories of robust control, optimal control, nonlinear control, 

adaptive control, intelligent control etc. have been developed in the control literature. The 

basic concepts of PID control, optimal control, and adaptive control schemes, and their 

implementation for dynamical systems control applications are presented in the respective 

following sections of this chapter. 

2.2 PID CONTROL 
The proportional-integral-derivative (PID) control is the combination of three basic 

control actions, proportional (P) control action, integral (I) control action and derivative (D) 

control action. This combined control action has the advantages of each of the three 

individual control actions. The combinations two terms, proportional control action with 

integral control action, and proportional control action with derivative control action give 

proportional-integral (PI) control action and proportional-derivative control action respectively. 

The equation of PID control action is given by 
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( )( ) ( ) ( )
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de tu t K e t K e t dt K

dt
= + +∫                  (2.1) 
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p d
i

K de tu t K e t e t dt K T
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de tK e t e t dt T
T dt

= + +

 
+ + 

 

∫

∫
                (2.2) 

where pK  is the proportional gain, iK  is the integral gain, dK  is the derivative gain, iT  

is the integral time constant, dT  is the derivative time constant, ( )e t  is the actuating error 

signal, the input signal to the controller, and ( )u t  is the control signal, the controller output 

signal. 

The transfer function of PID control action is given by 

( ) 1( ) 1
( )

i
pid p d p d

i

KU sG s K K s K T s
E s s T s

 
= = + + = + + 

 
               (2.3) 

The PID control has the functionally of all the three terms P, I, and D to their credits in 

both the steady-state and transient-state responses of the controlled systems. It takes the 

past (I), present (P), and future (D) information of the control error into account so that in 

many cases it is able to provide satisfactory control performance. The “three-term” 

functionalities are highlighted as [24]: The proportional control action provides an overall 

control action proportional to the error signal through the all-pass gain factor, the integral 

control action reduces the steady-state errors through low-frequency compensation by an 

integrator, and the derivative term improves the transient response through high-frequency 

compensation by a differentiator. The process of selecting the controller parameters to meet 

given performance specification is known as controller tuning. The conventional tuning 

method for PID controllers (setting values of pK , iT , and dT ) is the Ziegler-Nichols tuning 

method[1-5, 7-10] for LTI systems based on experimental step responses or based on the 

value of pK  that results in marginal stability when only proportional control is used. This is an 

empirical tuning method. The tuning methods for PID controllers are based on their nature 

and usage in the particular applications with given objectives. These methods may be 

grouped as: trial and error, analytical, heuristic, frequency response methods, optimization, 

and adaptive tuning methods. The PID control is the most commonly used dynamic systems 

control technique. The PID controller is very simple and can easily be implemented using 

pneumatic, hydraulic, mechanical, electronic devices, and of course software. The PID 

controllers are very robust to plant uncertainties. There are various issues of PID controllers, 
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such as noise filtering and high frequency roll-off, set-point weighting and two-degree-of- 

freedom, windup, tuning and computer implementation [23]. 

2.3 OPTIMAL CONTROL 
In our daily life we are used to optimization of time and resources for optimum 

utilization. The optimization theory gave the development of optimal control theory. The 

optimal control is concerned with the control design in the best possible way. The control 

input given to the system for this best situation is called optimal control, and the measure of 

best way or performance is called performance index or cost function. Thus, when a system 

is controlled in an optimum way satisfying a given performance index, we have an optimal 

control system.  

The optimization techniques can be of different types based on various factors as the 

approach (algebraic or geometric), the interest (single or multiple), the nature of signals 

(deterministic or stochastic), and the stage (single or multiple). The optimization can be 

further classified as static optimization and dynamic optimization. The static optimization is 

concerned with system control under steady-state conditions, i.e. the system variables are 

not changing with respect to time. The system is described by algebraic equations. In this 

case, the optimization techniques used are: ordinary calculus, Lagrange multipliers, linear 

and nonlinear programming. The dynamic optimization is concerned with optimal control of 

system under dynamic conditions, i.e. the system variables are changing with respect to time 

and thus time is involved in system description. The system is described by differential or 

difference equations. In this case, the optimization techniques used are: variational calculus, 

Pontryagin principle, dynamic programming, and search techniques [10, 42]. 

The main objective of optimal control is to determine control signals that will cause a 

process (plant) to satisfy some physical constraints and at the same time extremize 

(maximize or minimize) a chosen performance criterion (performance index or cost function). 

The optimal control problem is to find a control which causes the dynamical system to reach 

a target or follow a state variable (or trajectory) and at the same time extremize a 

performance index which may take several forms. The various forms of performance indices 

are based on minimum time, minimum fuel, minimum energy, and minimum target error 

(terminal target) optimal control problems [10, 42, 43]. 

The formulation of optimal control problem requires 

1. a mathematical description (or model) of the system to be controlled (generally in 

state variable form), 

2. a specification of the performance index, and 

3. a statement of boundary conditions and the physical constraints on the states and/or 

controls. 

The optimal control problem is formulated in general as 
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Consider a linear time-invariant dynamic system described by the state equation 

( ) ( ) ( )x t Ax t Bu t= +  ,      0(0)x x=                  (2.4) 

where ( )x t  is state variable, and ( )u t  is control variable. 

The control objective is to find the optimal control *( )u t  that causes the system (2.4) to 

give the trajectory *( )x t  that optimizes or extremizes (minimizes or maximizes) a 

performance index 

0

( ) ( ) [ ( ) ( ) ( ) ( )]ftT T T
f f t

J x t Fx t x t Qx t u t Ru t dt= + +∫                (2.5) 

where 0t  is initial time, ft  is final time, R is a positive definite matrix, and Q and F are 

positive definite and positive semidefinite matrices respectively. This form of performance 

index is called quadratic form. 

In case of a nonlinear system described by 

( ) ( ( ), ( ), )x t f x t u t t=  ,      0(0)x x=                  (2.6) 

the state trajectory *( )x t  optimizes the general performance index 

0

( ( ), ) ( ( ), ( ), )ft

f f t
J S x t t V x t u t t dt= + ∫                  (2.7) 

with some constraints on the control variables ( )u t  and/or the state variables ( )x t . The final 

time ft  may be fixed, or free, and the final (target) state may be fully or partially fixed or free. 

There are two ways to obtain the solutions of optimal control problems either by using 

Pontryagin's minimum principle, which provides a necessary condition for optimality, or by 

solving the Hamilton-Jacobi-Bellman (HJB) equation, which is a sufficient condition [42]. 

Although mathematically elegant, both approaches have a major disadvantage of the need of 

complete knowledge of the system dynamics for getting the solution through an offline 

process. In the case when only an approximate model of the system is available, the optimal 

controller derived with respect to the system's model will not perform optimally when applied 

for the control of the real process. Thus, adaptation of the controller parameters is highly 

desired such that system operation becomes optimal with respect to the behaviour of the real 

plant. 

For the applications of optimal control for dynamical systems, the optimal control of 

nonlinear inverted pendulum dynamical system using PID controller and LQR is presented in 

section 2.5, and the optimal control design for automatic generation control of two-area 

interconnected power system using integral controller and LQR is presented in section 2.6. 

2.4 ADAPTIVE CONTROL 
An adaptive control system uses a control scheme that is capable of modifying its 

behavior in response to changes in the process dynamics and the disturbance character. 
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Adaptive controllers have been extensively used in several industries including chemical, 

aerospace, automotive, and pulp and paper [50, 52, 54]. Most current techniques for 

designing control systems are based on a good understanding of the plant under 

consideration and its environment. However, in a number of instances, the plant to be 

controlled is too complex and the basic physical processes in it are not fully understood. 

Hence, control design methods need to be augmented with an identification technique aimed 

at obtaining a progressively better understanding of the plant to be controlled. Adaptive 

control is a technique of applying some system identification techniques to obtain a model of 

the process and its environment from input/output experiment and using this model to design 

a controller. An adaptive system is one in which in addition to the basic (feedback) structure, 

explicit measures are taken to automatically compensate for variations in the operating 

conditions, for variations in the process dynamics or for variations in the disturbances, in 

order to maintain an optimal performance of the system. The ordinary feedback control also 

attempts to reduce the effects of disturbances and plant uncertainty, but a constant-gain 

feedback system is not an adaptive system. 

Adaptive control is a method of designing a controller with some adjustable parameters 

and an embedded mechanism for adjusting these parameters. Adaptive controllers have 

been used mainly to improve the controller’s performance online. The controller becomes 

nonlinear because of the parameter adjustment mechanism. It has, however, a very special 

structure. Since general nonlinear systems are difficult to deal with it makes sense to 

consider special classes of nonlinear systems. An adaptive control system can be thought of 

as having two loops- one loop is a normal feedback with the process and the controller, and 

the other loop is the parameter adjustment loop. The parameter adjustment loop is often 

slower than the normal feedback loop. A block diagram of an adaptive system is shown in 

Fig. 2.1 [52]. 

 
Fig. 2.1 Block diagram of an adaptive control system. 
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For each control cycle, the adaptive algorithm is normally implemented in three basics 

steps: (1) Observable data are collected to calculate the controller’s performance, (2) The 

controller’s performance is used as a guidance to calculate the adjustment to a set of 

controller parameters, (3) The controller’s parameters are then adjusted to improve the 

performance of the controller in the next cycle. Normally, an adaptive controller is designed 

based on one of the available techniques. Each technique is originally designed for a specific 

class of dynamic system. The controller is then adjusted as data are collected during run 

time to extend its effectiveness to control a large class of dynamic systems [50, 52]. 

The rapid growth in the design of integrated and powerful information processors has 

made the use of adaptive controllers even more versatile. Traditionally, there are four basic 

approaches for adaptive control [50, 52, 53]: (i) gain scheduling, (ii) model reference adaptive 

control (MRAC), (iii) self-tuning regulator (STR), and (iv) dual control.  

Gain scheduling is a method of adjusting the control signal based on a known look-up 

table describing changes of a dynamic system. This type of adaptive control system is based 

on the adjustment of controller parameters in response to the operating conditions of a 

process. This control scheme is particularly useful when the variations of the process 

dynamics are predictable. In fact, for a class of dynamic systems, it is possible that an 

explicit model of the system can be accurately described every time the operating conditions 

of the system take new values. A block diagram of gain scheduling adaptive scheme is 

shown in Fig. 2.2 [52]. The two main drawbacks of this method are related to its open loop 

behaviour and to the discrete assignment of controller gains according to a look-up table. 

Indeed, for intermediate operating conditions, no explicit control gains are assigned to the 

system, and the control designer must apply interpolation techniques to avoid instabilities. 

The model reference adaptive control (MRAC) is an adaptive control scheme capable 

of handling processes with unpredictable changes [52]. This control scheme is based on the 

design of an adaptive scheme whose objective is to drive the error signal between the 

response of the process and that of the reference model to zero. Thus, the model reference 

adaptive system (MRAS) is a method of comparing the performance of the actual system 

against an assumed mathematical model that describes the actual system, and designing 

control input to drive this comparison error to zero. The block diagram MRAC is shown in Fig. 

2.3 [52]. The inner loop, which is faster one, is used for regulation of the process, while the 

outer loop is designed for adjustment of the parameters of the inner loop controller to drive 

the error signal to zero. It is observed that there are some instability problems in applying 

MRAC [52]. The key problem with MRAS is to determine the adjustment mechanism so that 

a stable system, which brings the error to zero, is obtained. This problem is nontrivial. The 

following parameter adjustment mechanism, called the MIT rule, was used in the original 

MRAS: 
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d ee
dt
θ γ

θ
∂

= −
∂

                    (2.8) 

where y is the closed-loop system output, my  is the output of a reference model which 

specifies the desired closed-loop response, me y y= −  denotes the model error and θ  is a 

controller parameter. The quantity 
e
θ
∂
∂

 is the sensitivity derivative of the error with respect to 

parameter θ . The parameter γ  determines the adaptation rate. In practice it is necessary to 

make approximations to obtain the sensitivity derivative. The MIT rule can be regarded as a 

gradient scheme to minimize the squared error loss function 21( )
2

J eθ = . 

Self-tuning regulator (STR) [52] is another adaptive control scheme characterized by its 

ability to handle dynamic processes that may be subjected to unpredictable changes in 

system parameters. STR is a method of updating the parameters of a model that describes 

the plant based on observed data, and channeling the updated information into the controller 

that is designed based on these parameters. STR uses the outputs of a recursive 

identification scheme for plant parameters (outer loop) to adjust, through a suitable 

adaptation algorithm, the parameters of a controller located in the regulation loop of the 

system (inner loop). The block diagram of STR is shown in Fig. 2.4 [52]. There are some 

similarities in terms of inner and outer loop structuring between STR and MRAC. The main 

difference between the two schemes is, however, that while the STR design is based on an 

explicit separation between identification and control, the MRAC design uses a direct update 

of controller parameters to achieve asymptotic decay of the error signal to zero. In view of 

this fundamental difference in design, MRAC is referred to as a direct adaptive control 

scheme, while STR is known as an indirect adaptive control scheme. 

Dual control [52] is a method of extending adaptive control to stochastic model dealing 

with uncertainties. The controller can be regarded as being composed of two parts: a 

nonlinear estimator and a feedback controller. The estimator generates the conditional 

probability distribution of the state, called the hyperstate of the problem. The feedback 

controller is a nonlinear function that maps the hyperstate into the space of control variables. 

This function could be computed offline. The hyperstate must, however, be updated online. 

The structural simplicity of the solution is obtained at the price of introducing the hyperstate, 

which is a quantity of very high dimension. Updating of the hyperstate generally requires 

solution of a complicated nonlinear filtering problem. The block diagram of a dual controller is 

shown in Fig. 2.5 [52]. 

The adaptive control problem is to find a method of adjusting the controller when the 

characteristics of the process and its environment are unknown or changing. The way 

adaptation law is combined with control law gives the adaptive control methodologies which 
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include direct adaptive control (DAC) and indirect adaptive control (IAC) algorithms [52]. 

Direct adaptive systems adjust the controller parameters without explicit identification. 

Indirect adaptive systems use the results of identification of the process parameters in an 

optimization procedure to compute the controller settings. In DAC the controller parameters 

are changed directly without the characteristics of the process and its disturbances first being 

determined. In IAC methods the process model and possibly the disturbance characteristics 

are first determined. The controller parameters are designed on the basis of this information. 

 

 
Fig. 2.2 Block diagram of a system with gain scheduling. 

 

 
Fig. 2.3 Block diagram of a model reference adaptive control system (MRAC). 
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Fig. 2.4 Block diagram of self-tuning regulator (STR). 

 

 
Fig. 2.5 Block diagram of a dual controller. 

A typical application of adaptive control was to calibrate a system at startup. In this 

case, a controller is also designed for a specific class of dynamic systems. However, the 

parameters that characterize the dynamic behavior of a particular system might not be 

known in advance. A controller is then designed and arbitrary values are assigned to initialize 

these parameters. After a few control cycles, parameters are adjusted to converge to the 

actual parameters of the system. This approach is often used for cases in which a system is 

designed to handle a variable payload. The payload is different each time, e.g., a crane is 

used to pick up a sizeable object. The payload will alter the basic dynamic behavior of a 

dynamic system. Adaptive control is normally used to calibrate these parameters that 

characterize such dynamic behavior [50, 52, 53]. 
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2.4.1 Indirect Adaptive Control of Dynamical Systems 
The indirect adaptive control (IAC) schemes use the explicit plant model identifier to 

tune controller parameters. The plant model identifier represents the actual plant property; 

the controller is designed such that the controller stabilizes the plant model identifier although 

the state feedback is taken from the actual plant. In case of neural networks control approach 

the plant model identifier is parameterized by neural networks. The conceptual framework for 

the indirect adaptive control for continuous time system is shown in Fig. 2.6 [71]. The 

scheme for discrete-time system is also similar except the continuous-time variables are 

replaced by discrete-time variables. 

The indirect adaptive control is implemented in the following two stages:  

1. System identification: The plant model is explicitly identified. 

2. Control: The controller is designed so that the explicit model identified in step 1 is 

stable in the closed loop. 

 
Fig. 2.6 Schematic block diagram of indirect adaptive control. 

To elaborate the indirect adaptive control design process, consider an example of 

indirect adaptive control of a first-order linear system[71]. Let the first-order discrete-time 

plant is described by 

( 1) ( ) ( )x k ax k bu k+ = +                    (2.9) 

It is assumed that the plant parameters a  and b  are unknown. Design an indirect adaptive 

control scheme for this system. The parameter vector is represented as ˆˆ ˆ[   ]Ta bθ =  that 

consists of unknown parameters. The regression vector is represented as 

( ) [ ( )  ( )]Tk x k u kφ =  which consists of the previous plant state and previous control input. 

Using the recursive least square (RLS) algorithm, the plant parameters can be estimated as 
1ˆ ˆ ˆ( 1) ( ) ( ) ( )[1 ( ) ( ) ( )] [ ( 1) ( ) ( )]T Tk k P k k k P k k x k k kθ θ φ φ φ φ θ−+ = + + + −           (2.10) 

1( 1) ( ) ( ) ( )[1 ( ) ( ) ( )] ( ) ( )T TP k P k P k k k P k k k P kφ φ φ φ−+ = − +             (2.11) 
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where ( )P k  is the covariance matrix. Let us assume that the plant follows a desired 

trajectory ( 1)dx k + , the one-step ahead controller is designed as 

( )1 ˆ( ) ( 1) ( )ˆ du k x k ax k
b

= + −                 (2.12) 

At every sampling instant k, the parameter vector is updated using (2.10), and is substituted 

in the control law (2.12). The parameter vector is updated using regression vector ˆˆ ˆ[   ]Ta bθ =  

and the control input ( )u k  is computed using (2.12). The simulation results for actual 

parameter vectors 0.6a =  and 1b =  are shown in Fig. 2.7, Fig. 2.8, and Fig. 2.9 where Fig. 

2.7 shows learning of parameters through time instant k, Fig. 2.8 shows ( )x k  tracking 

desired trajectory ( )dx k , and Fig. 2.9 shows the control input ( )u k . 

 

 
Fig. 2.7 Learning of parameters. 
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Fig. 2.8 Trajectory tracking. 

 
Fig. 2.9 Control input. 

2.4.2 Direct Adaptive Control of Dynamical Systems 
The direct adaptive control scheme (DAC) directly determines the controller 

parameters without system identification. In DAC, the plant model is parameterized in terms 

of the controller parameters that are estimated directly without intermediate calculations 

involving plant parameter estimates. This control approach is also referred as an implicit 

adaptive control because the design is based on the estimation of an implicit plant model, 
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and explicit plant identification is not needed. A schematic block diagram of direct adaptive 

control is shown in Fig. 2.10 [71]. 

To elaborate the direct adaptive control design process, consider an example of direct 

adaptive control of a first-order linear system [71]: 

p py a y b u= − +                   (2.13) 

where y is the plant output, u is the plant input, pa  and pb  are the plant parameters. Let us 

assume that the plant parameters are unknown. The desired performance of the system is 

specified by the following model: 

m m m my a y b r= − +                  (2.14) 

where r is the reference signal, and ma  and mb  are known constants. 

The objective of the adaptive control design is to formulate a control law and an 

adaptation law such that the error between the system output and the model output 

converges to zero. It is assumed that the sign of pb  is known.  

Let us choose the following control law: 

ˆ ˆr yu a r a y= +                   (2.15) 

where ˆra  and ˆya  are variable controller parameters for which we need to derive an update 

law. Combining (2.13) and (2.15), the closed loop dynamics becomes 

ˆ ˆ( )p y p r py a a b y a b r= − − +                 (2.16) 

The choice of control law (2.15) allows the possibility of perfect model matching if the plant 

parameters are known. In that case if we choose the following values of controller 

parameters 

* m
r

p

ba
b

=   ,   * p m
y

p

a a
a

b
−

=                 (2.17) 

 

 
Fig. 2.10 Schematic block diagram of direct adaptive control. 
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the closed loop dynamics would become identical to reference model (2.14). But since the 

parameters pa  and pb  are unknown, the control input will achieve this objective adaptively 

based on the tracking error me y y= − . Let us define the parameter errors as *ˆr r ra a a= −  and 

*ˆy y ya a a= − . Combining (2.16) and (2.14), the error dynamic can be written as 

( )m p r ye a e b a r a y= − + +                   (2.18) 

To analyse the error convergence, consider the following Lyapunov function candidate: 

2 2 21 1 1
2 2 2p r p yV e b a b a

α β
= + +                 (2.19) 

Taking the derivative of (2.19), we can write 

1 1

1 1ˆ ˆ   { ( )}

p r r p y y

m p r y p r r p y y

V ee b a a b a a

e a e b a r a y b a a b a a

α β

α β

= + +

= − + + + +

 

    

 

   

             (2.20) 

If we choose the following adaptation laws 

ˆ sgn( )r pa b erα= −                  (2.21) 

ˆ sgn( )y pa b eyβ= −                  (2.22) 

then  
2 ( ) sgn( ) sgn( )m p r y p r p p y pV a e b e a r a y b a b er b a b ey= − + + − −

               (2.23) 

Since sgn( )p p pb b b= , V  becomes 2
ma e−  which is negative definite. Thus, the signals e, ra  

and ya  are bounded. Furthermore, because of the boundedness of e , according to 

Barbalat’s lemma [71], e will converge to zero. Since it is assumed that sign of pb  is known, 

the update laws (2.21) and (2.22) will give the desired control law. A general block diagram 

of the above described direct MRAC scheme is shown in Fig. 2.11 [71]. 

Consider the first-order linear system is given by 

 2 5y y u= +                   (2.24) 

To design of the adaptive controller of the form (2.15) using adaptation laws (2.21) and 

(2.22), assume that plant parameters are known as 2pa = −  and 5pb = . The reference 

model parameters are chosen as 3ma =  and 3mb = . The initial values of the controller 

parameters ˆra  and ˆya  are chosen 0. The initial conditions of both the plant and model are 

also taken as 0. Using the control law (2.15) and update laws (2.21) and (2.22), the system is 

simulated for 2r = . The simulation results are shown in Fig. 2.12, Fig. 2.13, and Fig. 2.14 

where Fig. 2.12 shows the tracking performance and Fig. 2.13 shows the evolution of the 
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adaptive parameters. It is noted that though the final parameters are not exactly the same as 

that of the desired ones, the tracking is achieved as time progress. Fig. 2.14 shows the 

control input signal. 

Consider (2.13) consists an additional nonlinear term giving a first-order nonlinear 

system of the following form:  

 ( )p p py a y c f y b u= − − +                 (2.25) 

where ( )f y  is a known nonlinear function. Then the control law in this case can be chosen 

as 

ˆ ˆ ˆ ( )r y fu a r a y a f y= + +                  (2.26) 

with the adaptation laws (2.21), (2.22) and an additional adaptation law: 

ˆ sgn( )  ( )f pa b e f yγ= −                  (2.27) 

 

 
Fig. 2.11 General block diagram of direct MRAC scheme. 
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Fig. 2.12 Trajectory tracking. 

 
Fig. 2.13 Evolution of adaptive controller parameters. 
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Fig. 2.14 Control input. 

2.5 OPTIMAL CONTROL OF NONLINEAR INVERTED PENDULUM DYNAMICAL 
SYSTEM USING PID CONTROLLER AND LQR 
The Inverted Pendulum (IP) is an inherently unstable system with highly nonlinear 

dynamics. This is a system which belongs to the class of under-actuated mechanical 

systems having fewer control inputs than degrees of freedom. This renders the control task 

more challenging making the inverted pendulum system a classical benchmark for the 

design, testing, evaluating and comparing of different classical & contemporary control 

techniques. Thus, the control of inverted pendulum has been a research interest in the field 

of control engineering. Due to its importance this is a choice of dynamic system to analyse its 

dynamic model and propose a control law. The aim of this case study is to stabilize the 

inverted pendulum such that the position of the cart on the track is controlled quickly and 

accurately so that the pendulum is always erected in its inverted position during such 

movements. Realistically, this simple mechanical system is representative of a class of 

attitude control problems whose goal is to maintain the desired vertically oriented position at 

all times [1, 2, 9]. There are many papers present which have taken the inverted pendulum-

cart dynamical system for implementing the various control schemes [61, 62, 85, 86, 179-

181].  

The optimal control design methods are used for the optimal performance of the 

dynamical systems being controlled. There are various optimal control methods presented in 

the literature for linear and nonlinear dynamical systems [6, 9, 10, 42, 43]. The linear 

quadratic regulator (LQR) and linear quadratic Gaussian (LQG) which is a combination of a 
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linear quadratic estimator (LQE) (i.e. Kalman filter) and a LQR [42, 43, 47] are optimal control 

design methods for linear dynamical systems. The optimal control problems for nonlinear 

dynamical systems have been of research interest in control engineering. In recent trends 

even the various advance control approaches [7, 15, 43, 61, 62, 85, 86, 179-181] are 

developing and being tried for many dynamical systems control, the simplicity of control 

algorithms along with the fulfilment of control objectives is further desired. The neural 

network based control design requires a large data set collected from experiments for 

networks training & testing; the fuzzy control requires framing of rules which becomes 

complex for higher order systems; and the evolutionary computational techniques are slow in 

computation, these drawbacks put limit to their implementation even these techniques 

provide automation & intelligent features to the controlled systems. Also the algorithms of 

several adaptive, sliding mode and robust control approaches are comparatively complex 

even these have certain merits.  

The objective & contribution of this section is to present a simple approach to control 

nonlinear dynamical systems. The simple control algorithms of LQR and PID control which 

are generally used for control of the linear dynamical systems have been used in this section 

to control the nonlinear inverted pendulum-cart dynamical system. Here the control objective 

is to control the system such that the cart reaches at a desired position and the inverted 

pendulum stabilizes in upright position. The modelling, simulation and performance analysis 

of optimal control of nonlinear inverted pendulum-cart dynamic system using PID controller 

and LQR have been presented for both cases of without & with disturbance input. The 

comprehensive performance investigation shows that the proposed control method is simple, 

effective, and robust. 

2.5.1 Mathematical Modelling of Nonlinear Inverted Pendulum System 

2.5.1.1 Inverted pendulum system equations 
The free body diagram of an inverted pendulum mounted on a motor driven cart is 

shown in Fig. 2.15 [1, 2, 61, 85, 86, 179-181]. The system equations of this nonlinear 

dynamic system can be derived as follows. It is assumed here that the pendulum rod is 

mass-less, and the hinge is frictionless. In such assumption, the whole pendulum mass is 

concentrated in the centre of gravity (COG) located at the center of the pendulum ball. The 

cart mass and the ball point mass at the upper end of the inverted pendulum are denoted as 

M and m, respectively. There is an externally x-directed force on the cart, ( )u t , and a gravity 

force acts on the point mass at all times. The coordinate system considered is shown in Fig. 

2.15, where ( )x t represents the cart position, and ( )θ t  is the tilt angle referenced to the 

vertically upward direction. 

A force balance on the system in the x-direction can be written as 
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2 2

2 2+ =G
d dM x m x u
dt dt

                           (2.28) 

where, the time-dependent centre of gravity (COG) of the point mass is given by the 

coordinates, ( , )G Gx y . For the point mass assumed here, the location of the center of gravity 

of the pendulum mass is simply 

sinθ= +Gx x l  and        cosθ=Gy l                                  (2.29)   

where l  is the pendulum rod length. Substituting (2.29) into (2.28) it is written as 
2( ) sin cosθθ θθ+ − + = 

M m x ml ml u                           (2.30) 

In a similar way, a torque balance on the system is performed. Fig. 2.16 shows the 

force components acting on the system. The resultant torque balance can be written as 

( cos ) ( sin ) ( sin )x yF l F l mg lθ θ θ− =                                      (2.31) 

where, xF  , and yF  are the force components in x and y directions respectively may be 

determined as 
2

2
2 sin cosθθ θθ = = − + 

 

x G
dF m x m x l l
dt

                         (2.32) 

2
2

2 cos sinθθ θθ = = − + 
 

y G
dF m y m l l
dt

                         (2.33) 

 

 
Fig. 2.15 Motor driven inverted pendulum-cart system. 
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Fig. 2.16 Vector diagram for force components in torque balance. 

Substituting (2.32) and (2.33) into (2.31) we have 

cos sinθ θ θ+ =mx ml mg                            (2.34) 

Equations (2.30) and (2.34) are the defining equations for this system. These two equations 

are manipulated algebraically to have only a single second derivative term in each equation. 

Thus from (2.34), we have 

sin cosθ θ θ= −

ml mg mx  

and putting this into (2.30) gives 
2 2( ) sin cos sin cosθθ θ θ θ+ − + − =

 M m x ml mg mx u  

or 
2 2( cos ) sin cos sinθ θθ θ θ+ − = + −M m m x u ml mg             (2.35) 

Similarly, from (2.34), we have 

sin
cos
θ θ
θ
−

=




g lx  

and putting this into (2.30), we have 

 2( )( sin ) sin cos
cos

θ θ θθ θθ
θ

+ −
− + =



 

M m g l ml ml u  

or 
2 2( )( sin ) cos sin cos cosθ θ θ θθ θθ θ+ − − + =  M m g l ml ml u  

and 

( )2 2cos ( ) cos ( ) sin cos sinθ θ θ θ θ θθ− + = − + + ml M m l u M m g ml           (2.36) 

Finally, by dividing the lead coefficients of (2.35) and (2.36) we may derive the system 

equations describing the cart position dynamics and the pendulum angle dynamics 

respectively. Thus we have 
2

2

(sin ) cos sin
cos

θ θ θ θ
θ

+ −
=

+ −





u ml mgx
M m m

                          (2.37) 
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2

cos ( ) sin (cos sin )
cos ( )

θ θ θ θ θθ
θ

− + +
=

− +





u M m g ml
ml M m l

                        (2.38) 

Equations (2.37) and (2.38) represent a nonlinear system which is relatively 

complicated from a mathematical viewpoint. Following subsection presents the standard 

state space form of these two nonlinear equations. 

2.5.1.2 Nonlinear system state space equations of inverted pendulum 
For numerical simulation of the nonlinear model for the inverted pendulum-cart 

dynamic system, it is required to represent the nonlinear equations (2.37) and (2.38) into 

standard state space form, 

( , , )d x f x u t
dt

=                              (2.39) 

Considering the state variables as following: 

1 2 1 3 4 3  ,      ,       ,    θ θ= = = = = =

  x x x x x x x x                         (2.40) 

Then, the final state space equation for the inverted pendulum system may be written as 

1 1

2 2

3 3

4 4

x f
x fd d dx
x fxdt dt dt
x fx

θ
θ

    
    
    = = =
    
    

    





               (2.41) 

where, 

1 2=f x                    (2.42) 

2
1 1 1 1 2

2 2
1

cos ( ) sin (cos sin )
cos ( )

− + +
=

− +
u x M m g x ml x x xf

ml x M m l
             (2.43) 

3 4=f x                   (2.44) 

2
1 2 1 1

4 2
1

(sin ) cos sin
cos

+ −
=

+ −
u ml x x mg x xf

M m m x
              (2.45) 

If both the pendulum angle θ  and the cart position x  are the variables of interest, 

then the output equation may be written as 

y Cx=  or 
1 0 0 0
0 0 1 0

y Cx
x x

x

θ
θ θ

 
      = = =        
 
 





             (2.46) 

Equations (2.41) and (2.46) give a complete state space representation of the 

nonlinear inverted pendulum-cart dynamic system. 
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2.5.1.3 Linear system state space equations of inverted pendulum 
Since the goal of this particular system is to keep the inverted pendulum in upright 

position around 0θ = , the linearization might be considered about this upright equilibrium 

point. The linear model for the system around the upright stationary point is derived by simply 

linearization of the nonlinear system given in (2.41). Since the usual A and B matrices are 

zero for this case; and so every term is put into the nonlinear vector function, ( , , )f x u t , then 

the linearized form for the system becomes 

0 0 0 0( , ) ( , )x u
d x J x u x J x u u
dt
δ δ δ= +                (2.47) 

where, the reference state is defined with the pendulum stationary and upright with no input 

force. Under these conditions, 0 0x = , and 0 0u = . 

Since the nonlinear vector function is rather complicated, the components of the 

Jacobian matrices are determined systemically, term by term. The elements of the first 

second, third, and fourth columns of 0 0( , )xJ x u   are given by 
0 01 ,

i

x u

f
x
∂
∂

, 
0 02 ,

i

x u

f
x
∂
∂

, 
0 0

3 ,

i

x u

f
x
∂
∂

, and 

0 04 ,

i

x u

f
x
∂
∂

respectively. Thus, combining all these separate terms gives 

 0 0

0 1 0 0
( ) 0 0 0

( , )
0 0 0 1

0 0 0

x

M m g
MlJ x u

mg
M

 
 + 
 =  
 
 −  

               (2.48) 

For the derivative of the nonlinear terms with respect to u , we have 

 

0 0

0 0

1 1
2

12
0 0

3

4 ,
2

1 ,

0 0
cos 1

cos ( )
( , )

0 0
1 1

cos

u

x u

x u

f u x
ml x M m lf u MlJ x u

f u
f u

M m m x M

   
   ∂ ∂  −     − +∂ ∂     = = =    ∂ ∂       ∂ ∂       + −   

           (2.49) 

Finally, after all these manipulations (2.47) may be written explicitly as 
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0 1 0 0 0
( ) 10 0 0

0 0 0 1 0
10 0 0

M m g
d Ml Mlx x u
dt

mg
M M

δ δ δ

   
   + −   
   = +   
   
   −      

             (2.50) 

This is the open loop linearized model for the inverted pendulum with a cart force, ( )δu t , 

(written in perturbation form). Thus, LTI system is in standard state space form. The equation 

(2.50) may be written in general as 

d x A x B u
dt
δ δ δ= +                  (2.51) 

Equation (2.51) along with the output equation (2.46) represents the final linear model 

of the inverted pendulum-cart system. This is the simplified model which is used to study the 

system behavior in general and to design LQR. 

2.5.1.4 Inverted pendulum system equations with disturbance input 
The system equations of this nonlinear dynamic system with disturbance input can be 

derived as follows. Consider a disturbance input due to wind effects acting on the inverted 

pendulum in addition to force on the cart, ( )u t . Let wF  represent the horizontal wind force on 

the pendulum point mass. With this additional force component, the force balance equation 

(2.28) becomes 

  
2 2

2 2+ = +G w
d dM x m x u F
dt dt

                (2.52) 

which can be manipulated as to give 

  2( ) sin cosθθ θθ+ − + = + 

 wM m x ml ml u F               (2.53) 

Similarly, the torque in the clockwise direction caused by the horizontal wind 

disturbance is ( cos )θwF l . Adding the torque contribution of this term the torque balance 

equation (2.31) becomes 

 ( cos ) ( sin ) ( sin ) ( cos )θ θ θ θ− = +x y wF l F l mg l F l              (2.54) 

which can be modified to give 

cos sin cosθ θ θ θ+ = +

 wmx ml mg F                           (2.55) 

Equations (2.53) and (2.55) are the defining equations for this system with a 

disturbance input.  

The state space equation for inverted pendulum system with disturbance input is 

derived as same of equation (2.41) with following modification 
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2
1 1 1 1 2 1

2 2
1

cos ( ) sin (cos sin ) cos

cos ( )

− + + −
=

− +

w
Mu x M m g x ml x x x F x
mf

ml x M m l
           (2.56) 

2 2
1 2 1 1 1

4 2
1

(sin ) cos sin sin
cos

+ − +
=

+ −
wu ml x x mg x x F xf

M m m x
             (2.57) 

The output equation of nonlinear inverted pendulum system with disturbance input 

remains same as equation (2.46). 

The linearized model can also be developed as following: 

0 1 0 0 0 0
( ) 1 10 0 0

0 0 0 1 0 0
1 00 0 0

w

M m g
d Ml Mlx x u Fml
dt

mg
M M

δ δ δ δ

        + −      −    = + +               −         

            (2.58) 

This is the open loop linearized model for the inverted pendulum with a cart force, ( )δu t , and 

a horizontal wind disturbance, ( )δ wF t . The two inputs have been separated for convenience, 

thus the LTI system can be written as 

  1 2 w
d x A x b u b F
dt
δ δ δ δ= + +                            (2.59) 

2.5.2 Control Methods 
The following control methods are presented here to control the nonlinear inverted 

pendulum-cart dynamic system. 

2.5.2.1 PID Control 
To stabilize the inverted pendulum in upright position and to control the cart at 

desired position using PID control approach two PID controllers- angle PID controller, and 

cart PID controller have been designed for the two control loops of the system. The 

equations of PID control are given as following: 

  
( )( ) ( ) θ

θ θ= + +∫p pp ip dp
de tu K e t K e t dt K

dt
              (2.60) 

  
( )( ) ( )= + +∫ x

c pc x ic x dc
de tu K e t K e t dt K

dt
              (2.61) 

where, ( )θe t   and ( )xe t  are angle error and cart position error. Since the pendulum 

angle dynamics and cart position dynamics are coupled to each other so the change in any 

controller parameters affects both the pendulum angle and cart position which makes the 

tuning tedious. The tuning of controller parameters is done using trial & error method and 

observing the responses of SIMULINK model to be the optimal. 
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2.5.2.2 Optimal Control Design Using LQR 
Optimal control refers to a class of methods that can be used to synthesize a control 

policy which results in best possible behavior with respect to the prescribed criterion (i.e. 

control policy which leads to maximization of performance). The main objective of optimal 

control is to determine control signals that will cause a process (plant) to satisfy some 

physical constraints and at the same time extremize (maximize or minimize) a chosen 

performance criterion (performance index (PI) or cost function). The optimal control problem 

is to find a control which causes the dynamical system to reach a target or follow a state 

variable (or trajectory) and at the same time extremize a PI which may take several forms [1, 

2, 4, 6, 7, 9, 10, 42, 43]. 

Linear quadratic regulator (LQR) is one of the optimal control techniques, which takes 

into account the states of the dynamical system and control input to make the optimal control 

decisions. This is simple as well as robust [1, 2, 4, 6, 7, 9, 10, 42, 43]. 

After linearization of nonlinear system equations about the upright (unstable) 

equilibrium position having initial conditions as [ ]0 0,0,0,0 Tx = , the linear state-space 

equation is obtained as 

x Ax Bu= +                   (2.62) 

where,   , , ,
T

x x xθ θ =  


  

The state feedback control u Kx= −  leads to 

  ( )x A BK x= −                  (2.63) 

where, K is derived from minimization of the cost function 

  ( )T TJ x Qx u Ru dt= +∫                 (2.64) 

where, Q and R are positive semi-definite and positive definite symmetric constant matrices 

respectively. 

The LQR gain vector K is given by 

  1 TK R B P−=                   (2.65) 

where, P is a positive definite symmetric constant matrix obtained from the solution of matrix 

algebraic reccatti equation (ARE) 

  1 0T TA P PA PBR B P Q−+ − + =                (2.66) 

In the optimal control of nonlinear inverted pendulum dynamical system using PID 

controller & LQR approach, all the instantaneous states of the nonlinear system, pendulum 

angle θ , angular velocity θ , cart position x , and cart velocity x  have been considered 

available for measurement which are directly fed to the LQR. The LQR is designed using the 

linear state-space model of the system. The optimal control value of LQR is added negatively 

with PID control value to have a resultant optimal control. The tuning of the PID controllers 
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which are used here either as PID control method or PID+LQR control methods  is done by 

trial & error method and observing the responses achieved to be optimal. 

2.5.3 Simulation Results and Analysis 
The MATLAB-SIMULINK models for the simulation of modeling, analysis, and control 

of nonlinear inverted pendulum-cart dynamical system without & with disturbance input have 

been developed. The typical parameters of inverted pendulum-cart system setup are 

selected as [85, 180]: mass of the cart (M): 2.4 kg, mass of the pendulum (m): 0.23 kg, 

length of the pendulum (l): 0.36 m, length of the cart track (L): ± 0.5 m, friction coefficient of 

the cart & pole rotation is assumed negligible. The disturbance input parameters which has 

been taken in simulation are [205]: Band Limited White Noise Power = 0.001, Sample Time = 

0.01, Seed = 23341. 

After linearization the system matrices used to design LQR are computed as below: 

0 1 0 0
29.8615 0 0 0

0 0 0 1
0.9401 0 0 0

A

 
 
 =
 
 − 

,   

0
1.1574

0
0.4167

B

 
 − =
 
 
 

,    
1 0 0 0
0 0 1 0

C  
=  
 

,      and     
0
0

D  
=  
 

 

With the choice of 

1 0 0 0
0 1 0 0
0 0 500 0
0 0 0 250

Q

 
 
 =
 
 
 

,   and    1R =  

The LQR gain vector is obtained as following: 

[ ]137.7896 25.9783 22.3607 27.5768K = − − − −  

Here three control schemes have been implemented for optimal control of nonlinear 

inverted pendulum-cart dynamical system:  

1. PID control method having two PIDs i.e. angle PID & cart PID 

2. Two PIDs (i.e. angle PID & cart PID) with LQR control method 

3. One PID (i.e. cart PID) with LQR control method. 

The tuned PID controller parameters of these control schemes for cases of without & with 

disturbance input are given as in Table 2.1 & Table 2.2 respectively. 

Table 2.1 PID controller parameters of control schemes: without disturbance input case 

Control 
Schemes 

Angle PID Control Cart PID Control 
Kpp Kip Kdp Kpc Kic Kdc 

PID -40 0 -8 -1 0 -3 

2 PID+LQR 1 1 1 1.5 -7.5 5 

1 PID+LQR --- --- --- 1.5 -7.5 5 
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Table 2.2 PID controller parameters of control schemes: with disturbance input case 

Control 
Schemes 

Angle PID Control Cart PID Control 

Kpp Kip Kdp Kpc Kic Kdc 

PID -40 0 -8 -1.25 0 -3.6 

2 PID+LQR 1 1 1 1.5 -7.5 5 

1 PID+LQR --- --- --- 1.5 -7.5 5 

 

The SIMULINK models for control of nonlinear inverted pendulum system using PID 

control method for both cases of without & with disturbance input are shown in Fig. 2.17 and 

Fig. 2.19 respectively. The band limited white noise has been added as the disturbance input 

to the system. Here only pendulum angle θ  and cart position x  have been considered for 

the measurement. The reference angle has been set to 0 (rad), and reference cart position is 

set to 0.1 (m). The simulation results for both cases are shown in Fig. 2.18 and Fig. 2.20 

respectively. It is observed that the pendulum stabilizes in vertically upright position after two 

small overshoots for case of without disturbance input, and it stabilizes upright with minor 

oscillations for case of with continuous disturbance input also. The cart position x  reaches 

the desired position of 0.1 (m) quickly & smoothly for case of without disturbance input, and 

quickly with minor oscillations for case of with continuous disturbance input. The control input 

u  is bounded for both cases in ranges [-0.1 0.1], and [-1 1] respectively. Thus simulation 

results justify the effectiveness & robustness of the PID control. 

The SIMULINK models for optimal control of nonlinear inverted pendulum-cart system 

using two PID controllers (angle PID & cart PID) with LQR control method for both cases of 

without & with disturbance input are shown in Fig. 2.21 and Fig. 2.23 respectively. In this 

approach all the states of the system θ , θ , x  and x  are fed to LQR, which is designed 

using the linear state-space model of the system. Here also the angle θ  & cart position x  

have been taken as variables of interest for control, and the band limited white noise has 

been added as the disturbance input to the system. The reference angle is set to 0 (rad), and 

the reference cart position has been set to 0.1 (m). The simulation results for both cases are 

shown in Fig. 2.22 and Fig. 2.24 respectively. Here responses of angle θ , angular velocity θ

, cart position x , cart velocity x , and control u  have been plotted.  It is observed that the 

pendulum stabilizes in vertically upright position quickly & smoothly after two minor 

undershoots and a minor overshoot for case of without disturbance input, and it stabilizes in 

vertically upright position with minute oscillations for case of with continuous disturbance 

input also. The angular velocity approaches 0 (rad/s) quickly for case of without disturbance 

input, and it oscillates by approx. +/-0.01 (rad/s) remaining at most in range approx +/-0.02 
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(rad/s) for case of with continuous disturbance input. The cart position x  reaches smoothly 

the desired position of 0.1 (m) quickly in approx. 6 seconds, and the cart velocity reaches to 

zero for both cases. The control input u  is bounded for both cases in ranges [-0.1 0.1], and [-

1 1] respectively. The simulation results justify the effectiveness & robustness of the 

2PID+LQR control. 

The SIMULINK models for optimal control of nonlinear inverted pendulum-cart system 

using one PID controller (cart PID) with LQR control method for both cases of without & with 

disturbance input are shown in Fig. 2.25 and Fig. 2.27 respectively. This control method is 

similar to 2PID+LQR control method in all respect of control techniques but differs only in 

number of PID controllers used. Here only cart PID controller has been used, and angle PID 

controller has not been used. Here only cart position x  has been taken as variable of interest 

for control. The reference cart position has been set to 0.1 (m). The desired angle to be zero 

is directly taken care of by state feedback control of LQR which is designed using the linear 

state-space model of the system with vertically upright position as reference. The band 

limited white noise has been added as the disturbance input to the system as same. The 

simulation results for both cases are shown in Fig. 2.26 and Fig. 2.28 respectively. Here also 

responses of angle θ , angular velocity θ , cart position x , cart velocity x , and control u  

have been plotted. It is observed that the pendulum stabilizes in vertically upright position 

quickly & smoothly after two minor undershoots and a minor overshoot for case of without 

disturbance input, and it stabilizes in vertically upright position with minute oscillations for 

case of with continuous disturbance input also. The angular velocity approaches 0 (rad/s) 

quickly for case of without disturbance input, and it oscillates by approx. +/-0.01 (rad/s) 

remaining at most in range approx +/-0.02 (rad/s) for case of with continuous disturbance 

input. The cart position x  reaches the desired position of 0.1 (m) quickly & smoothly in 

approx. 6 seconds for both cases. The cart velocity reaches to zero for case of without 

disturbance input, and it oscillates very near to zero for case of with continuous disturbance 

input. The control input u  is bounded for both cases in ranges [-0.1 0.1], and [-1 1] 

respectively. The simulation results justify the effectiveness & robustness of the cart 

PID+LQR control. 

The maximum absolute values of system states & control showing maximum absolute 

variations with respect to desired nominal values in simulation for both cases of without & 

with disturbance input are shown in Table 2.3 & Table 2.4 respectively.  
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Table 2.3 Maximum absolute values of system states & control for without disturbance input 

case 

Control Schemes θ  θ  x  x  u  

PID 0.0046     --- 0.0976 --- 0.1402     

2 PID+LQR 0.0029 0.0070 0.1000 0.0330 0.1500 

1 PID+LQR 0.0029 0.0067 0.1000 0.0331 0.1500 
 

Table 2.4 Maximum absolute values of states & control for with disturbance input case 

Control Schemes θ  θ  x  x  u  

PID 0.0118 --- 0.1481 --- 1.3598 

2 PID+LQR 0.0030 0.0209 0.0993 0.0441 1.3774 

1 PID+LQR 0.0030 0.0204 0.1019 0.0439 1.3882 

 

Comparing the results it is observed that the responses of both alternatives of 

PID+LQR control method are better than PID control, which are smooth & fast also. It is also 

observed that the responses of 2PID+LQR control and cart PID+LQR control are similar. Just 

the cart position response of 2PID+LQR control is smoother than cart PID+LQR control and 

so it is slightly better, which is due to the additional degree of freedom of control added by 

the angle PID controller. But the cart PID+LQR control has structural simplicity in its credit. 

The analysis of the performances of the control schemes of PID control, 2PID+LQR control, 

and cart PID+LQR control for the nonlinear inverted pendulum-cart dynamical system without 

& with disturbance input gives that these control schemes are effective & robust. The 

advantage of this simulation study is that, it demonstrates that, the proposed PID+LQR 

control approach is a simple, effective & robust technique for the optimal control of nonlinear 

dynamical systems. 
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Fig. 2.17 PID control of nonlinear inverted pendulum system. 

 

 
Fig. 2.18 Responses of pendulum angle θ , cart position x, and control force u of nonlinear 

inverted pendulum system with PID control. 
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Fig. 2.19 PID control of nonlinear inverted pendulum system with disturbance input. 

 

 
Fig. 2.20 Responses of pendulum angle θ , cart position x, and control force u of nonlinear 

inverted pendulum system with PID control with disturbance input. 
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Fig. 2.21 Cart PID, angle PID & LQR control of nonlinear inverted pendulum system. 

 

 

Fig. 2.22 Responses of pendulum angle θ  (blue solid line), angular velocity θ  (red dashed 

line), cart position x (blue solid line), cart velocity x  (red dashed line), and control force u of 

nonlinear inverted pendulum system with cart PID, angle PID & LQR control. 
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Fig. 2.23 Cart PID, angle PID & LQR control of nonlinear inverted pendulum system with 

disturbance input. 

 

 

Fig. 2.24 Responses of pendulum angle θ  (blue solid line), angular velocity θ  (red dashed 

line), cart position x (blue solid line), cart velocity x  (red dashed line), and control force u of 

nonlinear inverted pendulum system with disturbance input using cart PID, angle PID & LQR 

control. 
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Fig. 2.25 Cart PID & LQR control of nonlinear inverted pendulum system. 

 

 

Fig. 2.26 Responses of pendulum angle θ  (blue solid line), angular velocity θ  (red dashed 

line), cart position x (blue solid line), cart velocity x  (red dashed line), and control force u of 

nonlinear inverted pendulum system with cart PID & LQR control. 
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Fig. 2.27 Cart PID & LQR control of nonlinear inverted pendulum system with disturbance 

input. 

 

 

Fig. 2.28 Responses of pendulum angle θ  (blue solid line), angular velocity θ  (red dashed 

line), cart position x (blue solid line), cart velocity x  (red dashed line), and control force u of 

nonlinear inverted pendulum system with disturbance input using cart PID & LQR control. 

2.5.4 Discussion 
PID control, and LQR, an optimal control technique to make the optimal control 

decisions have been implemented to control the nonlinear inverted pendulum-cart system 

without & with continuous disturbance input. To compare the results of proposed PID+LQR 

control method, PID control method has been implemented. In the optimal control of 

nonlinear inverted pendulum dynamical system using PID controller and LQR approach all 
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the instantaneous states of the nonlinear system are considered available for measurement, 

which are directly fed to the LQR. The LQR is designed using the linear state-space model of 

the system. The optimal control value of LQR is added negatively with PID control value to 

have a resultant optimal control. The tuning of the PID controllers which are used here either 

as PID control method or PID+LQR control methods is done by trial & error method and 

observing the responses achieved to be optimal. The simulation results and performance 

analysis justify the comparative advantage of optimal control using LQR method. The 

pendulum stabilizes in upright position and cart reaches the desired position quickly & 

smoothly even under the continuous disturbance input such as wind force justify that the 

control schemes are effective & robust. The analysis of the responses of control schemes 

gives that the performance of proposed PID+LQR control method is better than PID control. 

The comparative performance investigation for this benchmark system establishes that the 

proposed PID+LQR control approach being simple, effective & robust control scheme for the 

optimal control of nonlinear dynamical systems. The performance investigation of this control 

approach with tuning of PID controller parameters using GA, and PSO instead of trial & error 

method may be done as a future scope of this work. 

2.6 OPTIMAL CONTROL USING LINEAR QUADRATIC REGULATOR FOR 
AUTOMATIC GENERATION CONTROL OF TWO-AREA INTERCONNECTED 
POWER SYSTEM 
The normal operation of interconnected power systems requires the balance of total 

power generation with total electrical load demand and associated system losses. The 

changes in normal operating point of a power system with time result in deviations of nominal 

system frequency and tie-line power. The frequency deviation is a direct and useful index to 

indicate the imbalance of power generation and demand. A prolonged off-normal frequency 

deviation has several undesirable effects such as directly affecting the power system 

operation, security, reliability and efficiency by damaging equipment, degrading load 

performance, overloading transmission lines, and triggering the protection devices. 

Automatic generation control (AGC) is a centralised real-time closed loop control process to 

balance the power generation and demand in electrical power systems at a minimum cost. 

The AGC system maintains the system frequency to specified nominal value and regulates 

the tie-line power flows between control areas at economic dispatch; and thus, minimizes the 

deviations of system frequency and tie-line power. The AGC system can include one or more 

control subsystems such as load frequency control (LFC), economic dispatch control, 

environmental dispatch control, security dispatch control and the like. Despite the load 

variations in different control areas the system frequency and tie-line power are maintained 

to their scheduled values, this function of AGC is commonly known as automatic load 
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frequency control (ALFC). The term LFC is synonymously used for the term AGC in 

literature. The function of AGC to allocate the power generation requirement among 

generating units to minimize (optimize) the incremental cost of delivered power is known as 

economic dispatch. The AGC system sends signals to the under-control generating units to 

realize its function, which performance depends on the way the generating units respond to 

the signals. The response characteristics of generating units depend on many factors such 

as type of unit, fuel, control strategy, and operating point. The energy control centres have 

the energy management system (EMS) consisting of the AGC, security control, supervisory 

control and data acquisition (SCADA) and load management to manage electric energy. 

Among the various function of AGC system, the LFC is the most important issue in power 

system [184, 186]. 

The critical review on recent philosophies of AGC is presented in [187]. The various 

approaches of AGC are presented in [91, 92, 183-185, 187].  

The interconnected power systems operation and control is required to be with optimal 

performance for which optimal control design for AGC problem is needed. The linear 

quadratic regulator (LQR) provides an optimal control solution for linear dynamical systems. 

In this section the performance analysis of optimal control using LQR for AGC of two-area 

interconnected power system is presented. The comparative performance analysis of 

conventional AGC scheme using integral control, optimal control using LQR and optimal 

integral control using integral controller and LQR is also presented. 

2.6.1 Mathematical Modelling for Automatic Generation Control of Two-Area 
Interconnected Power System 
The monitoring and control of interconnected power system is divided between 

several control areas. A control area or region represents a coherent group of generating 

units and loads where all the generators respond in unison to changes in load or speed 

changer settings. The frequency is assumed to remain same throughout a control area in 

both static and dynamic conditions. The various control areas are interconnected through tie-

lines [183, 184]. A sudden load disturbance in any area causes the deviations in frequencies 

of other areas and tie-lines powers. In order to maintain the system frequency at its nominal 

value and the tie-lines power flows between areas at its scheduled value, the automatic 

generation control (AGC) which is also known as the load frequency control (LFC) balances 

the power generation and demand in each control area. There are two variables of interest in 

this, frequency and tie-line power flows. The linear combination of weighted variations of 

these variables is represented by a single variable known as the area control error (ACE). As 

the AGC drives the ACE to zero, the deviations in system frequency and tie-line power 

becomes zero, and the power system operates in equilibrium.  



 

62 

 

The schematic diagram of frequency control mechanism of electrical power system is 

shown in Fig. 2.29 [186]. Based on the accepted frequency operating standards there are 

three operating conditions corresponding to the frequency variation ranges: primary control, 

secondary or supplementary control, and emergency control. Under the normal operation, 

the small initial frequency deviation is overcome by the governing mechanism of turbine-

generator unit. Under this normal operating condition, the natural governor response is 

known as the primary control. The governor senses the machine speed, and adjusts the 

input valve setting to change the mechanical power output to track the load change and to 

restore frequency to a nominal value. Under the off-normal operation, the larger frequency 

deviation is overcome by the secondary control, which is the task of LFC or AGC. The AGC 

restores the nominal system frequency according to the available amount of power reserve. 

However, under the emergency conditions of serious load-generation imbalance and the 

associated rapid frequency changes following a significant fault, the AGC system may be 

unable to restore the system frequency via the secondary frequency control loop. Under this 

emergency operation, the emergency control and protection schemes, such as under-

frequency load shedding (UFLS) are used to restore the normal operation of power system. 

 
Fig. 2.29 Frequency control mechanism. 

2.6.1.1 Two-Area Interconnected Power System Dynamic Equations 
The power system is exposed to small changes in load under its normal operating 

state, and undergoes small deviations of system states, thus the power system dynamics 

can be represented by the linearized perturbation model around the operating point. The 

linearized model can be used to control design using the linear control theory. The block 

diagram of transfer function model for AGC of two-area interconnected power system is 

shown in Fig. 2.30 [184]. For convenience, each control area is represented by an equivalent 

generating unit consisting of equivalent governor, turbine and generator system. In each area 

the power is transported by tie-line, which is accounted for incremental power balance 

equation of each area.  
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Fig. 2.30 Block diagram of two-area power system automatic generation control. 

For AGC system design and analysis the linearized incremental model of two-area 

interconnected power system is given by the following dynamic equations [184]. 

For kth control area, k=1, 2, the system dynamic equations are as following: 

The incremental power balance equation which gives the power system generator-load 

dynamics is given by 

1( ) ( ) ( ) ( ) ( )k k k

k k k

k k k k

P P P
k k g tie d

P P P P

K K K
f t f t P t P t P t

T T T T
∆ = − ∆ + ∆ − ∆ − ∆             (2.67) 

The incremental power generation of turbine system is given by dynamic equation  

1 1( ) ( ) ( )
k k k

k k

g g g
T T

P t P t X t
T T

∆ = − ∆ + ∆                (2.68) 

The speed governor system dynamics with incremental change in governor valve position is 

given by 

1 1 1( ) ( ) ( ) ( )
k k k

k k k

g k g c
k G G G

X t f t X t P t
R T T T

∆ = − ∆ − ∆ + ∆              (2.69) 

The dynamic equation of incremental tie-line power can be written as 

( ) 2 ( ) 2 ( )
kjtie kj k kj jP t T f t T f tπ π∆ = ∆ − ∆                 (2.70) 

where 2 {1, 2}k J∈ = , 2 \{ }j J k∈  and 

kf∆ = the incremental frequency deviation (Hz); 
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kgP∆ = the incremental change in generator output (pu MW); 

kgX∆ = the incremental change in governor valve position (pu MW); 

kcP∆ = the incremental change in speed changer position (pu MW) which acts as  the control 

input; 

kGT = governor time constants (s); 

kTT = turbine time constants (s); 

kPT = power system generator-load model time constants (s), given as 0

2
k

k
P

k k

HT
D f

= ; 

kPK = power system generator-load model gains (Hz /pu MW), given as 
1

kP
k

K
D

= ; 

kH = power system generator-load inertia constants (pu MW/Hz); 

kD = load damping coefficient (pu MW/Hz); 

0
kf = nominal system frequency (Hz); 

kR = speed regulation due to governor action (Hz./Pu MW) 

kdP∆ = load disturbance (pu MW); 

kjtieP∆ = the incremental tie-line power flowing from area k to j (pu MW);  

kjT = the electrical stiffness, also known as the synchronizing coefficient between area k and 

j, given by 

cos( )
k

k j
kj k j

r kj

V V
T

P X
δ δ= −                 (2.71) 

where  

kδ = the power angle of equivalent machine, and 2k
k

d f
dt
δ π= ; 

kV = the area bus voltage; 

kjX = the tie-line reactance between area k and j; 

kr
P = the rated power of area k; 

From (2.70) and (2.71) we have 

12 2

21 1

12

21 12

1tie r

tie r

P PT
P T P a

∆
= − = − = −

∆
                (2.72) 

where 12a  is the area 1 to area 2 size ratio constant, 

and for generalization, we can write  
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kjtie kj tieP a P∆ = ∆ , 
12 12tie tieP a P∆ = ∆ , 

21 21tie tieP a P∆ = ∆ , 12 21 1a a= − =            (2.73) 

where tieP∆ = incremental tie-line power, and kja = area k to j size ratio constant; 

The area control error (ACE) is the change in area frequency which when used in integral 

control loop the steady state frequency error becomes zero. In order to make steady state 

tie-line power error zero in a two-area control the integral control loops in each area be 

included to integrate the incremental tie-line power signal and fed it back to the speed 

changer. This is done by a single integrating block by defining ACE as a linear combination 

of incremental frequency and tie-lie power. The ACE is given by  

 ( ) ( ) ( )
kjk tie k kACE t P t b f t= ∆ + ∆                 (2.74) 

where kb = the frequency bias (pu MW/Hz); 

The speed changer settings 
kcP∆ can be generated by the integrals of kACE , then by 

considering a variable ( ) ( )k kE t ACE t dt∆ = ∫ , from (2.74) the ACE dynamics is given by 

( ) ( ) ( )
kjk tie k kE t P t b f t∆ = ∆ + ∆                 (2.75) 

Thus, in the conventional integral control scheme of AGC the speed changer settings 
kcP∆

can be given by 

( ) ( )
k kc I kP t K ACE t dt∆ = − ∫                 (2.76) 

where 
kIK = integral gain. 

Equations (2.67) to (2.76) give the system dynamics of two-area interconnected power 

system for AGC system design and analysis.  

The block diagram of transfer function model of AGC system using integral control for 

two-area interconnected power system is shown in Fig. 2.31 [184]. 
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Fig. 2.31 Block diagram of AGC system using integral control for two-area interconnected 

power system. 

2.6.1.2 State Space Model of Two-Area Interconnected Power System 
The state space model of two-area interconnected power system can be obtained from 

the dynamic equations (2.67) to (2.76) considering the state variables as [184] 1 1( ) ( )x t f t= ∆ , 

12 ( ) ( )Gx t P t= ∆ , 
13 ( ) ( )gx t X t= ∆ , 4 2( ) ( )x t f t= ∆ , 

25 ( ) ( )Gx t P t= ∆ , 
26 ( ) ( )gx t X t= ∆ , 

7 ( ) ( )tiex t P t= ∆ , 8 1 1( ) ( )x t E t ACE dt= ∆ = ∫ , 9 2 2( ) ( )x t E t ACE dt= ∆ = ∫ , control inputs 

11( ) ( )cu t P t= ∆ , 
22 ( ) ( )cu t P t= ∆ , and load disturbances 

11( ) ( )dw t P t= ∆ , 
22 ( ) ( )dw t P t= ∆ .  

Thus, the system equations of two-area interconnected power system are written as 

1 1 1

1 1 1 1

1 1 2 7 1
1( ) ( ) ( ) ( ) ( )P P P

P P P P

K K K
x t x t x t x t w t

T T T T
= − + − −              (2.77) 

1 1

2 2 3
1 1( ) ( ) ( )
T T

x t x t x t
T T

= − +                 (2.78) 

1 1 1

3 1 3 1
1

1 1 1( ) ( ) ( ) ( )
G G G

x t x t x t u t
R T T T

= − − +               (2.79) 

2 2 2

2 2 2 2

12
4 4 5 7 2

1( ) ( ) ( ) ( ) ( )P P P

P P P P

K a K K
x t x t x t x t w t

T T T T
= − + + −             (2.80) 
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2 2

5 5 6
1 1( ) ( ) ( )
T T

x t x t x t
T T

= − +                 (2.81) 

2 2 2

6 4 6 2
2

1 1 1( ) ( ) ( ) ( )
G G G

x t x t x t u t
R T T T

= − − +               (2.82) 

7 12 1 12 4( ) 2 ( ) 2 ( )x t T x t T x tπ π= −                 (2.83) 

8 1 1 7( ) ( ) ( )x t b x t x t= +                  (2.84) 

9 2 4 12 7( ) ( ) ( )x t b x t a x t= −                 (2.85) 

Equations (2.77) to (2.85) can be written in state vector matrix form as 

x Ax Bu Fw= + +                  (2.86) 

where 

[ ]

1 1 2 2

1 2 9

1 2 1 2

( ) ( ), ( ),..., ( )

( ), ( ), ( ), ( ), ( ), ( ), ( ), ,

T

T

g g g g tie

x t x t x t x t

f t P t X t f t P t X t P t ACE dt ACE dt

=

 = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∫ ∫
  

is the state vector, [ ]
1 21 2( ) ( ) ( ) ( ) ( )

TT
c cu t u t u t P t P t = = ∆ ∆  is the control vector, and  

[ ]
1 21 2( ) ( ) ( ) ( ) ( )

TT
d dw t w t w t P t P t = = ∆ ∆   is the load disturbance vector, and matrices A, 

B, and F are given as 

 

1 1

1 1 1

1 1

1 1

2 2

2 2 2

2 2

2 2

1

12

2

12 12

1

2 12

1 0 0 0 0 0 0

1 10 0 0 0 0 0 0

1 10 0 0 0 0 0 0

10 0 0 0 0 0

1 10 0 0 0 0 0 0

1 10 0 0 0 0 0 0

2 0 0 2 0 0 0 0 0
0 0 0 0 0 1 0 0

0 0 0 0 0 0 0

P P

P P P

T T

G G

P P

P P P

T T

G G

K K
T T T

T T

R T T

K a K
A T T T

T T

R T T

T T
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In the conventional integral control scheme, the control inputs are determined by 

1 11 8 1I Iu K x K ACE dt= − = − ∫                 (2.87) 

2 22 9 2I Iu K x K ACE dt= − = − ∫                 (2.88) 

Replacing (2.87) and (2.88) into (2.86), the state equation of AGC system using integral 

control can be written as 

wx A x Fw= +                   (2.89) 

where 
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Considering the frequency deviations of area 1 and area 2, and tie-line power deviation 

as output variables, the output equation can be written as 

y Cx=                    (2.90) 
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where [ ] [ ]1 2 3 1 2(t) ( ) ( ) ( ) ( ) ( ) ( )T T
tiey y t y t y t f t f t P t= = ∆ ∆ ∆  is the output vector, and 

output matrix C is given as 

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

C
 
 =  
  

 . 

2.6.2 Control Methods 
The schemes by which ACEs are processed and control signals are generated give the 

control design methods for AGC problem. In this section, following three control methods of 

AGC for two-area interconnected power system are presented. 

2.6.2.1 Integral Control 
The integral control is the conventional control design approach for AGC system. The 

integral control makes the steady state error of system frequency of both areas and steady 

state tie-line power error to zero. The integral control of two-area interconnected power 

system for AGC problem is defined by (2.87) and (2.88) for area 1 and area 2 respectively. 

The control inputs are generated by weighted integrals of ACEs in each area. The integral 

gains are tuned for satisfactory response of area frequency deviations and tie-line power 

deviation. 

2.6.2.2 Optimal Control Using LQR 
The optimal control design for dynamic system defined by (2.86) is obtained by 

synthesizing the control vector u by a linear combination of all the states x (i.e. full state 

feedback) with feedback constants determined by an optimality criterion.  

Since the state equation (2.86) contain an additional disturbance term Fw unlike the 

standard form of state equation. A constant disturbance vector w would drive some of the 

system states and the control vector u to constant steady state values; while the cost 

function used in optimal control design requires that the system state and control vectors 

have zero steady state values to have a minimum for the cost function.  

Define system state and control vectors as the sum of transient and steady state terms 

as 

ts ssx x x= +                   (2.91) 

ts ssu u u= +                    (2.92) 

where tsx  and tsu  are transient state terms,  and ssx  and ssu  are steady state terms of 

system state vector and control vector respectively. 

For a constant disturbance vector w, the steady state is reached when 0x =  in (2.86), 

which gives 
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0 ss ssAx Bu Fw= + +                  (2.93) 

Substituting (2.91) and (2.92) into (2.86), we have 

( ) ( )ts ts ss ts ssx A x x B u u Fw= + + + +                (2.94) 

Substituting (2.93) into (2.94), we have 

ts ts tsx Ax Bu= +                   (2.95) 

Equation (2.95) represents the system model on terms of excursion of state and control 

vectors from their respective steady state values. 

For the full state feedback control  

u Kx= −                    (2.96) 

where K is the feedback gain matrix. 

Substituting (2.91) and (2.92) into (2.96) we have 

( )ts ss ts ssu u K x x+ = − +                  (2.97) 

For a stable system both tsx  and tsu  go to zero, therefore 

ss ssu Kx= −                   (2.98) 

Hence 

ts tsu Kx= −                   (2.99) 

For constant values of disturbance inputs 1w  and 2w  the steady state values of state 

and control variables can be obtained by observing (2.77) to (2.95). These steady state 

values are 

1 4 7 0ss ss ssx x x= = = , 2 3 1ss ssx x w= = , 5 6 2ss ssx x w= =  , 1 1ssu w= , 2 2ssu w= , 

8ssx =constant, 9ssx =constant 

The values of 8ssx  and 9ssx  depend upon the feedback constants.  

To transfer an arbitrary initial state (0)tsx  to origin in infinite time (i.e. ( ) 0tsx ∞ = ), using 

control tsu , the state feedback gain matrix K is required to be determined for system (2.95). 

The linear quadratic regulator (LQR) gives an infinite horizon optimal control solution, and 

thus transfers the system states ( )x t  from an arbitrary initial state (0)x  at 0t =  to origin in 

infinite time (i.e. ( ) 0x ∞ = , at t = ∞ ) by minimizing a quadratic cost function or performance 

index (PI). The quadratic cost function is given by  

( )
0

1
2

T TJ x Qx u Ru dt
∞

= +∫               (2.100) 

where Q, and R are positive semi-definite and positive definite real symmetric constant 

matrices respectively.  
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The optimal control design for system (2.95) using cost function (2.100) terms of 

excursions of state and control vectors lead to the optimal control of system (2.86) satisfying 

the steady state and transient state conditions, thus the quadratic cost function is determined 

by considering the excursions of states and control inputs. The excursions considered in 

design are:  

1. Excursions of ACEs ( 7 1 1ts tsx b x+ ; 12 7 2 4ts tsa x b x− + ) about steady state values are 

minimized. The steady state values of ACEs are zero. The excursions of ACEs also 

represent the excursions of states 1x , 4x , and 7x . 

2. Excursions of states 2x , 3x , 5x , 6x  ( 2tsx ; 3tsx ; 5tsx ; 6tsx ) about steady state are 

minimized. The steady state values of these states are constant. 

3. Excursions of  ACE dt∫  ( 8tsx ; 9tsx ) about the steady state values are minimized. The 

steady state values of  ACE dt∫  are constant. 

4. Excursions of control vector ( 1tsu ; 2tsu ) about steady state values are minimized. The 

steady state value of control vector is constant. The objective of this minimization is to 

limit the control effort indirectly within the physical capability of components. For 

example, the steam valve cannot be opened more than a certain value without causing 

the boiler pressure to drop severely. 

Thus considering the above criterion, the cost function (2.100) can be written as 

( ) ( ) ( ) ( )
1 1 2 2

2 2
2 2 2 2 2 2 2 2

1 2 1 2 1 2
0

1
2 g g g gJ ACE ACE P X P X ACE dt ACE dt k u u dt

∞
 = + + ∆ + ∆ + ∆ + ∆ + + + +  ∫ ∫ ∫

or 

2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 2 3 2 4 5 6 12 7 8 9 1 1 7 12 2 4 7 1 1

0

1 (1 ) 2 2 ( )
2

J b x x x b x x x a x x x b x x a b x x k u u dt
∞

 = + + + + + + + + + + − + + ∫  

                  (2.101) 

where k is a real positive constant. 

Comparing (2.100) and (2.101), we have 
2

1 1

2
2 12 2

2
1 12 2 12

0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 (1 ) 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

b b

b a b
Q

b a b a

 
 
 
 
 

− 
 =
 
 
 − + 
 
 
 

,  
1 0
0 1

R k  
=  
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 The infinite horizon optimal control solution by the minimization of cost function 

(2.100) is obtained by the solution of algebraic Riccati equation (ARE)  

 1 0T TA P PA PBR B P Q−+ − + =              (2.102) 

where P is a positive definite real symmetric constant matrix.  

The matrix P gives the LQR gain matrix K, which is given by 

 1 TK R B P−=                 (2.103) 

Using the LQR gain matrix K, the optimal control for the dynamic system (2.86) is obtained. 

Replacing u Kx= −  in (2.86) we have the stable system 

( )x A BK x Fw= − +                (2.104) 

2.6.2.3 Optimal Control Using Integral Controller and LQR 
The state dynamics of two-area interconnected power system automatic generation 

control with integral controllers (2.87) and (2.88) is defined by (2.89). The dynamic system 

(2.89) is in the standard form of state equation. The optimal performance of this system 

depends on the optimal values of load disturbance inputs and optimal values system states 

with integral control, and thus the optimal values of control inputs, that is the speed changer 

settings. The optimal control design using LQR for dynamic system (2.89) is obtained by 

minimizing the quadratic cost function, which is given by 

( )
0

1
2

T TJ x Qx w Rw dt
∞

= +∫               (2.105) 

Considering the constraints of states similar to the excursions of states in (2.101) and 

constraints of load disturbance input vector the cost function (2.39) is determined, which is 

given by 

( ) ( ) ( ) ( )
1 1 2 2

2 2
2 2 2 2 2 2 2 2

1 2 1 2 1 2
0

1
2 g g g gJ ACE ACE P X P X ACE dt ACE dt k w w dt

∞
 = + + ∆ + ∆ + ∆ + ∆ + + + +  ∫ ∫ ∫

                  (2.106)

Comparing (2.105) and (2.106), we have Q and R matrices similar to obtained in (2.101). 

 By the minimization of cost function (2.106), the infinite horizon optimal control solution 

for dynamic system (2.89) is obtained by the solution of ARE 
1 0T T

w w w w w wA P P A P FR F P Q−+ − + =              (2.107) 

where Pw is a positive definite real symmetric constant matrix. 

The LQR gain matrix Kw is obtained as 
1 T

w wK R F P−=                 (2.108) 

Thus, the optimal control law is obtained as 

ww K x= −                 (2.109) 
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Substituting the feedback control law (2.109) into (2.89), we have the asymptotically stable 

closed loop system  

( )w wx A FK x= −                (2.110) 

2.6.3 Simulation Results and Analysis 
The system parameters of two-area interconnected power system having identical 

generating units considered in simulation are [184]:  
0 50f = Hz, 1 2 2.4R R= = Hz/puMW, 1 2 0.425b b= = , 

1 2
0.08G GT T= = s, 

1 2
0.3T TT T= = s, 

1 2
20P PT T= = s, 

1 2
120P PK K= = Hz/puMW, 12 0.08674T = , 12 21 1a a= − = ,

1 2
0.75I IK K= =  

For the dynamic system defined by (2.86) and (2.90) the system matrix A, input matrix 

B, load disturbance matrix F, output matrix C, and direct transmission matrix D used in 

control design and analysis are computed as below: 

0.05 6 0 0 0 0 6 0 0
0 3.3333 3.3333 0 0 0 0 0 0

5.2083 0 12.5 0 0 0 0 0 0
0 0 0 0.05 6 0 6 0 0
0 0 0 0 3.3333 3.3333 0 0 0
0 0 0 5.2083 0 12.5 0 0 0

0.545 0 0 0.545 0 0 0 0 0
0.425 0 0 0 0 0 1 0 0

0 0 0 0.425 0 0 1 0 0

A

− − 
 − 
 − −
 − 
 = −
 

− − 
 −
 
 
 − 

 

0 0
0 0

12.5 0
0 0
0 0
0 12.5
0 0
0 0
0 0

B

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

    ,  

6 0
0 0
0 0
0 6
0 0
0 0
0 0
0 0
0 0

F

− 
 
 
 
 − 
 =
 
 
 
 
 
 
 

  

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

C
 
 =  
  

   ,  
0 0
0 0
0 0

D
 
 =  
  

 

For the dynamic system defined by (2.89) and (2.90) for two-area power system AGC 

using the integral control the system matrix Aw is computed as below: 
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0.05 6 0 0 0 0 6 0 0
0 3.3333 3.3333 0 0 0 0 0 0

5.2083 0 12.5 0 0 0 0 9.375 0
0 0 0 0.05 6 0 6 0 0
0 0 0 0 3.3333 3.3333 0 0 0
0 0 0 5.2083 0 12.5 0 0 9.375

0.545 0 0 0.545 0 0 0 0 0
0.425 0 0 0 0 0 1 0 0

0 0 0 0.425 0 0 1 0 0

aA

− − 
 − 
 − − −
 − 
 = −
 

− − − 
 −
 
 
 − 

 

The step responses of integral control are shown in Fig. 2.32 and Fig. 2.33. Fig. 2.32 

shows the step responses of area frequency deviations and tie-line power deviation for a 1% 

load disturbance in area 1. Fig. 2.33 shows the step responses of area frequency deviations 

and tie-line power deviation for a 2% load disturbance in area 2. It is observed that deviations 

in area frequencies and tie-line power converge to zero slowly, and stabilizes the system by 

maintaining the balance of power generation and load. 

For the two-area power system defined by (2.89) and (2.90) the optimal AGC is 

designed using LQR. With the choice of 

0.1806 0 0 0 0 0 0.425 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0.1806 0 0 0.425 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0

0.425 0 0 0.425 0 0 2 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

Q

 
 
 
 
 − 
 =
 
 
 −
 
 
 
 

   ,   
3 0
0 3

R  
=  
 

 

the LQR gain matrix K is obtained as 

0.2097 0.5196 0.2690 0.0202 0.0392 0.0082 0.2482 0.5774 0.0000
0.0202 0.0392 0.0082 0.2097 0.5196 0.2690 0.2482 0.0000 0.5774

K
− − − − 

=  − − − 
The eigen values of closed loop system matrix (A-BK) are obtained as 

14.8871− , 14.8721− , 0.9173  3.2912j− + ,  0.9173  3.2912j− − , 1.8789  2.1780j− + , 

1.8789  2.1780j− − , 2.2371− , 0.4980− , 0.4051−  

The step responses of optimal control using LQR are shown in Fig. 2.34 and Fig. 2.35. 

Fig. 2.34 shows the step responses of area frequency deviations and tie-line power deviation 

for a 1% load disturbance in area 1. Fig. 2.35 shows the step responses of area frequency 

deviations and tie-line power deviation for a 2% load disturbance in area 2. It is observed that 
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deviations in area frequencies and tie-line power converge to zero faster than integral 

control, and stabilizes the system by maintaining the balance of power generation and load. 

For the dynamic system defined by (2.89) and (2.90) of two-area power system with 

integral control the optimal AGC is designed using LQR with the same choice of quadratic 

cost function matrices Q and R.  

The LQR gain matrix Kw obtained for this case is 

0.3738 0.2640 0.0147 0.0410 0.0112 0.0002 0.1643 0.5863 0.0083
0.0410 0.0112 0.0002 0.3738 0.2640 0.0147 0.1643 0.0083 0.5863wK
− − − − − − 

=  − − − − − 
The eigen values of closed loop system matrix (Aw-FK) are obtained as 

 13.1987− , 13.1869− , 1.4745 3.4178j− + , 1.4745 3.4178j− − , 1.8787 2.5088j− + , 

1.8787 2.5088j− − , 1.1196 0.6543j− + , 1.1196 0.6543j− − , 0.9238−  

The step responses of optimal control using integral controller and LQR are shown in 

Fig. 2.36 and Fig. 2.37. Fig. 2.36 shows the step responses of area frequency deviations and 

tie-line power deviation for a 1% load disturbance in area 1. Fig. 2.37 shows the step 

responses of area frequency deviations and tie-line power deviation for a 2% load 

disturbance in area 2. For simulation of responses for the case of load disturbances in both 

areas simultaneously, the SIMULINK model of optimal AGC of two-area interconnected 

power system using integral controller and LQR is shown in Fig. 2.38. Fig. 2.39 shows the 

step responses of area frequency deviations and tie-line power deviation for load 

disturbances in both areas as 1% in area 1 and 2% in area 2 respectively. It is observed that 

deviations in area frequencies and tie-line power converge to zero fast. The step responses 

obtained in this case are smoother and faster than both cases of integral control and optimal 

control using LQR. The optimal control using integral controller and LQR stabilizes the 

system by maintaining the balance of power generation and load. 
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Fig. 2.32 Step responses of deviations in area frequencies and tie-line power for a 1% load 

disturbance in area 1 using integral control. 

 

 
Fig. 2.33 Step responses of deviations in area frequencies and tie-line power for a 2% load 

disturbance in area 2 using integral control. 
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Fig. 2.34 Step responses of deviations in area frequencies and tie-line power for a 1% load 

disturbance in area 1 using LQR. 

 
Fig. 2.35 Step responses of deviations in area frequencies and tie-line power for a 2% load 

disturbance in area 2 using LQR. 
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Fig. 2.36 Step responses of deviations in area frequencies and tie-line power for a 1% load 

disturbance in area 1 using integral controller and LQR.  

 

 
Fig. 2.37 Step responses of deviations in area frequencies and tie-line power for a 2% load 

disturbance in area 2 using integral controller and LQR. 
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Fig. 2.38 Optimal AGC of two-area interconnected power system using integral controller and 

LQR. 

 

 
Fig. 2.39 Step responses of deviations in area frequencies and tie-line power for 

simultaneous 1% load disturbance in area 1 and 2% load disturbance in area 2 using integral 

controller and LQR. 

2.6.4 Discussion 
The control design and performance analysis of automatic generation control system 

for two-area interconnected power systems are presented. The control schemes of AGC 

system presented are conventional integral control, optimal control, and optimal control using 

integral controller and LQR. The optimal control design using integral controller and LQR 
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gives an optimal integral controller for AGC system. The LQR provides an infinite horizon 

optimal control solution for AGC system. The simulation results and analysis are presented 

for each of the cases of these control schemes. The step responses obtained in the case of 

optimal control using integral controller and LQR are smoother and faster than both the 

cases of integral control and optimal control using LQR. The comparative analysis of 

simulation results justify the effectiveness and robustness of optimal control using integral 

controller and LQR for automatic generation control of two-area interconnected power 

systems. 

2.7 CONCLUSIONS 
The optimal and adaptive control schemes of dynamical systems with applications are 

discussed in this chapter. The performance analyses of control schemes for applications to 

linear and nonlinear dynamical systems are presented. The indirect adaptive control and 

direct adaptive control for first order dynamical systems are discussed. The optimal control of 

nonlinear inverted pendulum dynamical system using PID controller and LQR is presented. 

The performance analyses of control schemes of PID control, 2PID+LQR control, 1PID+LQR 

control for nonlinear inverted pendulum-cart system for both cases of system models without 

and with disturbance input are presented. It is observed that PID+LQR control scheme 

provides optimal control of nonlinear inverted pendulum dynamical system, the responses of 

which are effective and robust. The optimal control of two-area interconnected power system 

for AGC problem is also presented. The performance analyses of control schemes of 

conventional integral control, optimal control using LQR, and optimal control using integral 

controller and LQR for AGC system of two-area interconnected power system are presented. 

It is observed that the integral controller and LQR control scheme provides the optimal 

control of AGC system. The infinite horizon optimal control solution using LQR design 

provides the effective and robust performance for dynamical systems. Thus, it is observed 

from the simulation results that the combined control schemes of PID+LQR provide better 

responses for dynamical systems control. These optimal control techniques require the 

system model to be completely known. The optimal control design schemes give the offline 

solution for the control problems. The adaptive control schemes require a priori knowledge of 

the system dynamics, and give online solution for the control problems. 
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CHAPTER 3  
 

INTELLIGENT CONTROL OF DYNAMICAL SYSTEMS 

This chapter discusses the intelligent control schemes of dynamical systems using neural 

networks and fuzzy systems. The theoretical background on the intelligent control schemes 

and their applications are briefly described for completeness of the topic under discussion. 

The performance analysis of neural network control scheme and fuzzy control scheme are 

presented for linear and nonlinear dynamical systems applications. 

3.1 INTRODUCTION 
The need for higher degree of autonomy of control systems for high-performance real-

world applications under significant unanticipated uncertainties in the system and 

environment has led the need of alternative novel intelligent control methodologies. The 

intelligent control methodologies can give better control solution for dynamical systems under 

uncertainties than the available classical control methodologies. Emulating certain 

characteristics of intelligent biological systems the intelligent computational techniques such 

as neural networks, fuzzy logic, evolutionary computation, and machine learning have been 

developed. The intelligent control has emerged from the integration of automatic control 

design with intelligent computational techniques which have given novel solutions to the 

various control system problems.  

Recently several researchers have tried to explore the intelligent computational 

techniques synergistically with various control design techniques such as PID control, 

optimal control, and adaptive control techniques by applying certain methodologies for 

certain applications [13, 14, 16, 29, 32, 35, 48, 49, 69, 71-73, 87, 107, 109, 116, 119]. Neural 

network control and fuzzy control have played a major role in the development of intelligent 

control schemes for various dynamical systems applications. The basic concepts of 

intelligent control and intelligent control techniques are briefly introduced in the following 

section. The implementation of neural network control and fuzzy control for certain dynamical 

systems control applications are presented in the following sections of this chapter 

respectively. 

3.2 INTELLIGENT CONTROL 
The intelligent control pertains to a control technique that possesses some sort of 

intelligence. The term “intelligent control” is loosely used to denote a control technique that 

can be accomplished using the “intelligence” of a human having the knowledge in the 

particular domain of control. If a system can be properly controlled by a human in the control 

loop, then that system would be a good candidate for intelligent control. [72]. A control 

methodology is an intelligent control methodology if it uses human-, animal-, or biologically 



 

82 

 

motivated techniques and procedures (e.g., forms of representation or decision making) to 

develop or implement a controller for a dynamical system. The intelligent control 

methodologies include for example, the neural control methodology which is motivated by 

low-level biological representation and decision making; the fuzzy control methodology which 

includes (1) the use of fuzzy sets and fuzzy logic for rule-based representation of a human’s 

knowledge about how to control, (2) fuzzy inference for modelling human deductive 

processes, and (3) conventional or fuzzy processors for implementation; the biologically 

motivated genetic algorithms; learning control which incorporates learning theories into 

controllers; expert control which uses a rule-based expert system, etc. Many intelligent 

control methodologies result from the synthesis of several intelligent and conventional control 

methodologies. Thus, the intelligent controller can be defined as the physical device called a 

controller if is developed or implemented with (1) an intelligent control methodology or (2) 

conventional systems or control techniques to emulate or perform control functions that are 

normally performed by humans, animals, or biological systems. The control system that can 

overcome with three categories of difficulties in the control of complex systems as of 

computational complexity, nonlinearity, and uncertainty, qualify to be called intelligent control 

system. The control system will be qualitatively more intelligent as more it has the ability to 

deal with these difficulties [69]. The information abstraction and knowledge-based decision 

making that incorporates abstracted information are important in intelligent control. Unlike 

conventional control, intelligent control techniques possess capabilities of effectively dealing 

with incomplete information concerning the plant and its environment, and unexpected or 

unfamiliar conditions [72]. The intelligent controller can adapt its action to change its 

parameters under the conditions of changes in the system dynamics. In a control engineering 

perspective, it is not necessary to design every automatic control loop with intelligent 

methodology. The industrial processes have a hierarchy of control loops in which the 

topmost level has intelligent controllers whereas the lowest level has the fast acting, simplest 

and most robust controllers. 

The area of intelligent control has been emerged from the integration of control 

methodologies with intelligent computational techniques. The computational procedures of 

neural networks (NNs), fuzzy logic (FL), and genetic algorithms (GA) belong to the class of 

“soft computing” techniques, which can be directly utilized in intelligent control, either 

separately or synergistically [72]. Fuzzy control has an impact in the control community due 

to the simple approach it provides to use heuristic control knowledge for nonlinear control 

problems. However, in the more complicated situations where the plant parameters are 

subject to perturbations, or when the dynamics of the system are too complex to be 

characterized reliably by an explicit mathematical model, the adaptive schemes are included 

for online operation and use adaptation heuristics to automatically determine the parameters 
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of the controller. Neural networks that make use of the organizational principles of human 

brains are widely known for the powerful abilities, such as learning and adaptation 

capabilities, fault tolerance, parallelism and generalization. The most useful property of 

neural networks is their ability to approximate any continuous function to a desired degree of 

accuracy through learning. The main issue in the neural network based control approaches is 

the choice of a satisfying neural network structure and tuning algorithm to improve the 

system performance. Genetic algorithm is the search & optimization approach, which is 

based on the principle of evolutional process of natural genetics and natural selection of the 

fittest members of a given population to breed the next generation. 

The synergistic combination of terms of “intelligent control”, “optimal control”, and 

“adaptive control” have led to the synthesis of control schemes of “intelligent optimal control”, 

“intelligent adaptive control”, and “intelligent adaptive optimal control”. 

3.2.1 Intelligent Control Systems 
As per the Oxford dictionary, the word intelligence is derived from intellect, which is 

the faculty of knowing, reasoning and understanding. Thus, the intelligent behaviour is the 

ability to reason, plan and learn, which in turn requires access to knowledge. The intelligence 

in human beings is a creation of nature. The human beings learn from nature and try to 

imitate the process of cognition and intelligence into machines. The revolution in artificial 

intelligence (AI) is an attempt to replace the human intelligence with machine intelligence. 

The intelligent control system is the combination of AI techniques with those of control 

techniques to design autonomous systems that can sense, reason, plan, learn, and act in an 

intelligent manner. The intelligent control system should be able to achieve sustained desired 

behaviour under conditions of uncertainty such as uncertainty in plant models, unpredictable 

environmental changes, incomplete, inconsistent or unreliable sensor information, and 

actuator malfunctions [43]. 

As considered by Johnson and Picton (1995), the structure of an intelligent control 

system consists of following subsystems as shown in Fig. 3.1 [43]. 

1. Perception subsystem: This collects information from the plant and the environment, 

and processes it into a form suitable for the cognition subsystem. The essential 

elements of perception subsystem are: (a) sensor array which provides raw data 

about the plant and the environment, (b) signal processing which transforms 

information into a suitable form, and (c) data fusion which uses multidimensional data 

spaces to build representations of the plant and its environment. Here a key 

technology is pattern recognition. 

2. Cognition subsystem: The cognition in an intelligent control system is concerned with 

the decision making process under conditions of uncertainty. The key activities of 

cognition subsystem are: (a) reasoning using (i) knowledge-based systems, and (ii) 
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fuzzy logic; (b) strategic planning using (i) optimum policy evaluation, (ii) adaptive 

search and genetic algorithms, and (iii) path planning; and (c) learning using (i) 

supervised learning in neural networks, (ii) unsupervised learning in neural networks, 

and (iii) adaptive learning.  

3. Actuation subsystem: The actuators operate using signals received from the cognition 

subsystem in order to drive the plant to some desired states. In the event of actuator 

(or sensor) failure, an intelligent control system should be capable of being able to 

reconfigure its control strategy. 

 
Fig. 3.1 Intelligent Control System Structure. 

3.2.2 Intelligent Control Techniques 
Motivated from intelligent biological systems emulating certain characteristics, the 

recent development in the area of computational intelligence (CI), a branch of artificial 

intelligence (AI), has led the development of different intelligent control paradigms. The 

intelligent computational techniques include artificial neural network (ANN), fuzzy logic theory 

(FL), evolutionary computational techniques such as genetic algorithm (GA), and swarm 

intelligence (SI) etc., machine learning such as support vector machine (SVM), and 

knowledge-based systems (KBS) or expert systems (ES) etc. The intelligent computational 

techniques have been integrated with control techniques resulting in intelligent control 

techniques which are classified based on the corresponding computational paradigms. The 

intelligent control techniques have given promising solutions for various control applications 

[7, 9, 10, 13-16, 29-43, 48, 49, 61-79, 81-99]. 

The neural network control techniques are developed using the concepts of the 

artificial neural network (ANN), often called the neural network (NN), which is the most 

generic form of AI for emulating the human thinking process. The human brain is comprised 
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of approximately 10 billion individual nerve cells known as biological neurons. The brain has 

various sensory and motor neurons. Each neuron is interconnected to many other neurons, 

forming a densely interconnected network called neural network. These massive 

interconnections provide an exceptionally large computing power and memory, and thus the 

capacity to remember, think, learn and reason. The neuron is the basic building block of 

central nervous system that processes and communicates information to and from various 

parts of the body. From information processing point of view a biological neuron has three 

major functional regions: the cell body, called soma, the axon, and the dendrites. The 

dendrites receive information from other neurons. The soma collects and combines the 

incoming information from other neurons. The axon transmits information to other neurons. 

The axon is a long fiber having tubular structure bounded by a typical cell membrane, serves 

as transmission line. The junction of an axon with dendrite of another neuron is called a 

synapse. The synapses provide memory for accumulating experience or knowledge. A single 

axon may be involved with hundreds of other synaptic connections. The information 

processing within the biological neuron involves two distinct operations: synaptic operation, 

and somatic operation. Synaptic operation provides a weight to the neural inputs. According 

to the past experience (knowledge or memory) stored in the synapse, the synaptic operation 

assigns a relative weight (significance) to each incoming signal. The somatic operation 

provides the aggregation, thresholding, and nonlinear activation to the inputs of dendrites. 

The soma produces an output signal if the weighted aggregation of neural inputs exceeds a 

certain threshold [65, 72]. The ANN tends to emulate the biological nervous system of the 

human brain in a very limited way by an electronic circuit or computer program. McCulloch 

and Pitts (1943) proposed a simple model of a neuron called artificial neuron [65]. Artificial 

neurons are only a modest resemblance to real things. They model approximately three of 

the processes that biological neurons perform out of at least 150 processes which are 

performed by biological neurons in the human brain. These functions of artificial neuron are: 

evaluation of input signals determining the strength of each one; calculation of sum of input 

signals and its comparison with threshold value; and determination of output signal using an 

activation function [7]. However inferior the ANN model of the biological nervous system, it 

tends to solve many important problems. The ANN has potential advantages for intelligent 

control, which are: ability to adapt and learn from the environment and can generalize from 

given training data to unseen data; ability to fault-tolerance due to its massive parallel 

structure; ability to approximate any nonlinear continuous function to a desired degree of 

accuracy; applicability to multivariable systems; ability to implement in real-time; and can be 

implemented using VLSI hardware which will further increase speed to neural computing [43, 

72].  
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Basically, the neural network architecture is of two types: (i) feedforward, and (ii) 

feedback (recurrent) networks, and neural network learning algorithm is of two types: (i) 

supervised learning, and (ii) unsupervised learning. The back-propagation (BP) is the most 

popular training method for a multi-layer feedforward network; therefore, the standard 

network trained by this algorithm is often called the BP network. Rumelhart, Hinton, and 

Williams proposed the BP training method, although other researchers made contributions to 

it independently. Basically, it is a generalization of the delta learning rule developed by 

Widrow and Hoft (1960) for Adaline training. Hebb (1949) described a technique which 

became known as 'Hebbian' learning. Rosenblatt (1961), devised a single layer of neurons, 

called perceptron that was used for optical pattern recognition. Associative memories are 

faint imitations of the human brain’s ability to associate patterns. An associative memory 

which belongs to the class of single layer feedforward or recurrent network architecture 

depending on its association capability, exhibits Hebbian learning. One of the first 

applications of this technology for control purposes was by Widrow and Smith (1964) who 

developed an ADaptive LINear Element (ADLINE) to stabilize and control an inverted 

pendulum. Kohonen (1988) and Anderson (1972) investigated similar areas, looking into 

'associative' and 'interactive' memory, and also 'competitive learning'. The back propagation 

training algorithm was investigated by Werbos (1974) and further developed by Rumelhart 

(1986) and others, leading to the concept of multi-layer perceptrons (MLP) [43, 66, 72]. The 

neural networks literature is well developed. The detailed discussion on neural networks 

theory and applications can be referred in literature [65, 66]. Neural networks have been 

applied for various control, identification, and estimation applications [7, 10, 13-15, 43, 65, 

66, 69-74, 76, 78, 79, 82, 87, 98]. 

The fuzzy control techniques are developed using the fuzzy logic (FL) theory 

emulating the human knowledge representation and reasoning process. The fuzzy logic 

theory has provided a mathematical strength to capture the uncertainties associated with 

human cognitive processes, such as thinking and reasoning. Fuzzy logic provides an 

inference morphology that enables approximate human reasoning capabilities to be applied 

to knowledge-based systems. The fuzzy logic was first proposed by Lotfi A. Zadeh (1965). 

The fuzzy logic systems can address the imprecision or vagueness in input-output 

descriptions of systems using fuzzy sets. The concept of fuzzy sets arose as an answer to 

the problems of paradoxes, uncertainties, and imprecision in real-world data, which could not 

be represented by crisp sets. Zadeh classified computing into “hard computing”, i.e. precise 

computation, and “soft computing”. Soft computing techniques such as fuzzy logic, neural 

network, genetic algorithms, probabilistic reasoning, chaos theory, and learning theory etc, 

are inspired by biological computational processes and nature’s problem solving strategies. 

[16, 43, 66, 72]. Fuzzy set theory provides a means for representing uncertainty. In general, 
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probability theory is the primary tool for analyzing uncertainty, which assumes that the 

uncertainty is a random process. However, not all uncertainty is random, and fuzzy set 

theory is used to model the kind of uncertainty associated with imprecision, vagueness and 

lack of information. Conventional set theory having sharp or crisp boundaries, distinguishes 

between those elements that are members of a set and those that are not. Fuzzy sets theory 

relates to classes of objects with un-sharp boundaries in which membership is a matter of 

degree. The degree of belongingness in the fuzzy sets is defined by the term “membership 

function”. The central concept of fuzzy set theory is that the membership function can have 

any value between 0 and 1. A crisp set is defined by the characteristic function that can have 

only two values {0,1}. A fuzzy set is defined by a membership function that can have an 

infinite number of values; any real number in the closed interval [0,1]. A fuzzy variable has 

values that are expressed by the linguistic values. A membership function (MF) is a curve 

that defines how each point in the input space is mapped to a membership value (or degree 

of membership) between 0 and 1. The input space is sometimes referred to as the universe 

of discourse.  

The fuzzy logic control (FLC) system has four functional units: the fuzzification 

process, fuzzy rule-base, fuzzy inference mechanism, and defuzzification process. The 

fuzzification process is concerned with the mapping of crisp inputs to fuzzy inputs. The 

fuzzifier converts the crisp input to a linguistic variable using the membership functions and 

universes of discourse. The fuzzifier takes decisions about number of inputs, discretization or 

normalization of universe of discourse, fuzzy partition of input and output spaces, and choice 

of membership function of a primary fuzzy set. The common membership functions used in 

fuzzy control systems are: triangular, trapezoid, and Gaussian. The knowledge-base consists 

of information of linguistic variable definitions (data-base) and fuzzy rule-base (control-base). 

The fuzzy rule-base is a collection of antecedent-consequent linguistic rules in the form of ‘if-

situation-then-action’, where both situation and action have suitable fuzzy representation. 

The fuzzy rules describe the control strategy which depends on the choice of process state 

(input) variables and control (output) variables. The rule-base is generated using a priori 

knowledge of either one or all of the sources which are: physical laws that govern the plant 

dynamics, data from existing controllers, and imprecise heuristic knowledge obtained from 

experienced experts. The fuzzy inference mechanism establishes a logical connection 

between input and output fuzzy sets. The fuzzy inference engine converts the fuzzy input to 

the fuzzy output using fuzzy rules. The defuzzification process is concerned with the 

mapping of inferred fuzzy output to non-fuzzy (crisp) output. The defuzzifier converts the 

fuzzy output to crisp output using membership functions. The various defuzzification methods 

are: centroid or centre of area (COA) or centre of gravity (COG), centre of average or 

weighted average, mean-max, and centre of sums. The COG is the most popular 
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defuzzification methods. Based on fuzzy inference systems used, the fuzzy logic control 

systems are basically classified as: Mamdani type FLC and Takagi-Sugeno type FLC. The 

FLC was first implemented by Mamdani and Assilian (1975). The fuzzy control literature is 

well developed. The detailed discussion on fuzzy logic control theory and applications can be 

referred in literature [66, 67]. The fuzzy control systems have been successfully implemented 

for various industrial control applications [66, 67]. 

The intelligent control with optimization techniques using evolutionary computational 

techniques are developed emulating the process of evolution in biological species and 

natural processes. The evolutionary computing strategies were introduced by Rechenberg 

(1960). The evolutionary computational algorithms include: genetic algorithms (Holland, 

1975), simulated annealing (Kirkpatrik, et.al. 1983), cellular automata (Wolfram, 1983), 

evolution strategy (Kost, 1995), particle swarm optimization (Ebarhart and Kennedy, 1995), 

ant colony optimization (Dorigo and Caro, 1999), and random cost (Kost and Baumann, 

1999). GA is an adaptive search and optimization algorithms. GA and evolutionary strategies 

are based on the principle of evolutional process of natural genetics and natural selection of 

the fittest members of a given population to breed the next generation. The simulated 

annealing mimics the cooling phenomenon of molten metals to constitute a search 

procedure. The collective behaviour that emerges from a group of social insects such as 

ants, bees, wasps, and termites has been known as swarm intelligence. The particle swarm 

optimization is a population based search algorithm mimicking the social behaviour of birds, 

bees or a school of fishes. The foraging of ants has led to a novel algorithm called ant colony 

optimization. Random cost method is a stochastic algorithm which moves as enthusiastically 

uphill as downhill. This method has no severe problems in escaping from a dead end and is 

able to find the optima. A cellular automaton is a discrete dynamical system that model 

complex behaviour of cells on a lattice structure. [43, 66, 72]. 

The intelligent control techniques are developed using hybrid intelligent systems. The 

hybrid intelligent control systems have given promising solutions for a wide variety of real-

world control problems [15, 16, 66, 92, 100]. The hybrid intelligent systems are developed by 

synergistic combinations of fuzzy systems, neural networks, genetic algorithms, and expert 

systems etc. Every intelligent system has particular computational properties (e.g. ability to 

learn, explanation of decisions) that make them suited for particular problems and not for 

others. Each of them has their own merits and demerits. The synergistic combination of 

different intelligent systems containing properties of each of them makes them functionally 

more suitable for a wider class of applications with better performance on cost of increase in 

computational complexity. The hybrid intelligent systems commonly are: hybrid neuro-fuzzy 

systems, hybrid neuro-GA systems, hybrid fuzzy-GA systems, and hybrid neuro-fuzzy-GA 

systems. The adaptive neuro-fuzzy inference system (ANFIS) is one of the methods to 



 

89 

 

combine fuzzy logic and artificial neural networks. The ANFIS structure can be tuned 

automatically by a least-square estimation (for output membership functions) and a back-

propagation algorithm (for output and input membership functions). The combined fusion of 

neural networks, fuzzy logic, and genetic algorithms technologies developed to explore the 

novel solutions of various problems.  

3.3 INTELLIGENT CONTROL OF NONLINEAR PROCESS SYSTEM USING 
RADIAL BASIS FUNCTION NEURAL NETWORKS 
The artificial neural networks (ANN) possessing the capabilities of generalization, 

function approximation, learning and adaptation etc. have played a significant role in the 

development of intelligent control systems. The neural networks (NN) are widely used for 

system identification and control applications. The feed-forward network is extensively used 

in intelligent control systems. Although there are many variants of feed-forward networks, 

multi-layer perceptrons (MLP) networks and radial basis function (RBF) networks have been 

used in many applications. RBF networks have gained considerable attention as an 

alternative to MLP trained by backpropagation algorithm. The features of simple architecture 

and linear response of radial basis function neural network make it more suitable for 

intelligent control applications. The complex industrial processes involve the automatic 

control system for processes. The automation of certain industrial processes needs the 

advanced controllers as the microcontroller-based liquid level control systems. Various 

advance control techniques for industrial processes are suggested in the process control 

literature. In this section the indirect adaptive control using radial basis function neural 

network for a nonlinear process system is presented. A surge tank liquid level control system 

is considered as an example of a nonlinear process system. 

3.3.1 Mathematical Modelling of Surge Tank Process System 
The industrial processes often involve flow of liquids through connecting pipes and 

tanks. The liquid level control of a surge tank system is an important part of the industrial 

processes. The flow of such processes is often turbulent and not laminar. Such systems are 

represented by nonlinear differential equations. However, these nonlinear differential 

equations can be linearized if the operation region is limited. In general, the surge tank 

process system has a nonlinear dynamics. The schematic diagram of a surge tank system is 

shown in Fig. 3.2 [71]. 
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Fig. 3.2 Schematic diagram of a surge tank system. 

Consider the surge tank is fed by the incompressible liquid with constant density of 

liquid at inlet and outlet. At steady-state the liquid level in the surge tank will be constant. The 

general liquid mass balance will give the dynamics of the surge tank liquid level system. The 

surge tank system dynamics is represented by the differential equation as 

( )( ( )) ( ) ( )dh tA h t u t q t
dt

= −   or 

2 ( )( ) 1 ( )
( ( )) ( ( ))
gh tdh t u t

dt A h t A h t
= − +                             (3.1)    

where g is the acceleration due to gravity, ( )u t  is the input flow in m3/sec, ( )q t  is the output 

flow in m3/sec, ( )h t  is the liquid level of the surge tank, the output of the system in m, and 

( ( ))A h t  is the cross-sectional area of tank in m3, which is given by 

2( ( )) ( )A h t ah t b= +                    (3.2) 

where a  and b  are parameters of tank. The input ( )u t  can be both positive and negative, 

i.e. it can pull liquid out of the tank as well as fill it in the tank. 

3.3.2 Neural Network Control Using Radial Basis Function Networks 
The radial basis function neural network (RBFNN) has simple architecture with a single 

hidden layer, which is especially good in applications requiring locally tunable properties. 

This network uses radial basis functions to represent an input in terms of radial centres. 

Since the response of this network is linear in terms of weights, this network is very suitable 

for intelligent control applications. Thus, weight update rules for such networks within 

intelligent control paradigm become easy to derive through Lyapunov stability analysis. The 

RBFNN has been used for indirect adaptive control of a nonlinear affine system. 



 

91 

 

3.3.2.1 Radial Basis Function Neural Networks 
The RBFNN architecture is shown in Fig. 3.3 [71].  The RBFNN consists of three 

layers: an input layer, a hidden layer and an output layer. The hidden units provide a set of 

functions that constitute an arbitrary basis for the input patterns. 

1. Hidden units are known as radial centres. Each radial centres is represented by a 

vector  ,   1,...,ic i h=   , where h is number of radial centres in the hidden layer. 

2. The transformation from the input space to the hidden unit space is nonlinear whereas 

the transformation from the hidden unit space to the output space is linear. 

3. Dimension of each centre for a p input network is px1. 

 
Fig. 3.3 Architecture of radial basis function neural network. 

The RBFN uses radial basis functions (RBF) to represent an input in terms of radial 

centres. The RBF in hidden layer produces a significant non-zero response only when the 

input falls within a small localized region of the input space. Each hidden unit, known as 

radial centre, has its own receptive field in the input space, i.e. each centre is representative 

of one or some of the input patterns. This is called local representation of inputs, and the 

network is also known as localized receptive field network.   

Consider for instance, an input vector x which lies in the receptive field for centre ic . 

This would activate the hidden centre ic  and by a proper choice of weights, the target output 

is obtained. Suppose an input vector lies between two receptive field centres, then both 

those hidden units will be appreciably activated. The output will be a weighted average of the 

corresponding targets. The inputs are clustered around the centres and the output is linear in 

terms of weights iw  

1

h

i i
i

y wφ
=

=∑                      (3.3)  
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The response of the ith radial centre in RBFN usually expressed by the following 

expression: 

( )i ix cφ φ= −                     (3.4) 

where ix c−  is the Euclidean distance between x and ic , and (.)φ  is radial basis function. 

This justifies the name radial basis function. Function (.)φ  can take various forms; the 

Gaussian form is more widely used. When RBF is Gaussian, each node produces an 

identical output for inputs within a fixed radial distance from the centre, i.e. they are radially 

symmetric. 

A Gaussian basis function is typically parameterized by two parameters: the centre 

which defines its position, and a spread parameter that determines its shape. The spread 

parameter is equal to the standard deviation σ  in case of a one-dimensional Gaussian 

function. In the case of a multivariable input vector x, the parameters that define the shape of 

the hyper-Gaussian function are elements of a covariance matrix Σ . With the selection of the 

same spread parameter σ  for all components of the input vector, the covariance matrix 
2( )diag σΣ = .  

The RBF (Gaussian) neuron is expressed by the following equation 
2

2( , , ) exp
2

x c
x cφ σ

σ

 −
= − 

 
 

                  (3.5) 

where 1 2[ , ,... ]T
nx x x x=  is the input vector, c is the centre and σ  is the spread parameter of 

the Gaussian function. Unlike sigmoidal neuron, there are no connection weights between 

the input terminals and the RBF unit; the centre c and the spread parameter σ  represent the 

weights. 

In the RBF network, the output of each RBF node is the same for all input points x 

having the same Euclidean distance from the respective centres ic , and decreases 

exponentially with the distance. Whereas, the output of each sigmoidal node in a MLP 

network saturates to the same value with increasing i i
i

w x∑ . Thus, the activation responses 

of the nodes are of a local nature in the RBF and of a global nature in the MLP. This intrinsic 

difference has important repercussions for both the convergence speed and the 

generalization performance. In general, MLP learns slower than RBF. In contrast, MLP 

exhibits improved generalization properties, especially for the region that are not represented 

sufficiently in the training set. 

The training of RBF network requires optimal selection of the centre ic  and weights iw

, 1 to i h= . This is a two-fold problem, unlike in a MLP network. As the different layers of 

network perform different tasks, both the layers are optimized using different techniques and 
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in different time scales. Several strategies are applicable depending on the way in which the 

radial centres are specified. 

The RBFNN can be trained using gradient-descent algorithm. The gradient-descent 

algorithm is a supervised training by error correction learning to update the centres and 

weights of RBFNN. The update rule for centre learning is given as 

1
( )( 1) ( )
( )ij ij

ij

E kc k c k
c k

η ∂
+ = −

∂
                  (3.6) 

for 1i =  to p and 1j =  to m, where k is the sample instants. 

Similarly the updates for weights are given as 

2
( )( 1) ( )
( )i i

i

E kw k w k
w k

η ∂
+ = −

∂
                  (3.7) 

where the cost function is 

21( ) ( )
2 dE t y y= −∑ .                   (3.8) 

where y is given by (3.3) with its desired value dy , and radial basis function be taken as 

Gaussian given by (3.5). 1η  and 2η  are learning rates which determine the speed of 

convergence. 

Differentiating E with respect to iw  yields 

( )d i
i i

E E y y y
w y w

φ∂ ∂ ∂
= × = − −

∂ ∂ ∂
                  (3.9) 

Differentiating E with respect to ijc  yields 

( )i i i
d i

ij i ij i ij

zE E y y y w
c y c z c

φ φ
φ

∂ ∂ ∂∂ ∂ ∂
= × × = − − × × ×

∂ ∂ ∂ ∂ ∂ ∂
             (3.10) 

where iz x c= − , 

2
i i

i
i

z
z
φ φ

σ
∂

= −
∂

                  (3.11) 

( )
1

2 2 ( )
( ) j iji

j ij
ij ij i

x cz x c
c c z

− −∂ ∂
= − =

∂ ∂ ∑               (3.12) 

After manipulation, the update rule for the centres is 

1 2( 1) ( ) ( ) ( )i
ij ij d i j ijc k c k y y w x cφη

σ
+ = + − −               (3.13) 

The update rule for the weights is 

2( 1) ( ) ( )i i d iw k w k y yη φ+ = + −                 (3.14) 
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The gradient-descent vector ijE c∂ ∂  exhibits a clustering effect. Unlike the supervised 

learning in a MLP network, there is no backpropagation of error in a RBF network. 

3.3.2.2 Model Identification 
Consider a continuous-time affine nonlinear system given by 

( ) ( )x f x g x u= +                  (3.15) 

where nx∈R  is the system state vector and mu∈R  is the input vector, ( )f x  is nx1 vector, 

and ( )g x  is an nxm matrix. It is assumed that the nonlinear functions ( )f x  and ( )g x  are 

unknown. Thus, it is required to perform system identification of (3.15) [71].  

Before the parametric structure for the system identification can be selected, model 

(3.15) is expressed as 

( ) ( )x x f x g x u= − + +                  (3.16) 

where ( ) ( )f x f x x= + . Let two RBF networks represent functions f  and g , respectively. 

Then the neural network (NN) based model of the system (3.15) is given by 

1 1 2 2
ˆ ˆˆ ˆ ( ) ( )T Tx x W x W x uφ= − + + Φ                 (3.17) 

where 1
1̂

L nW ×∈R  and 2
2

ˆ L nW ×∈R  are weight matrices,  1 1
1

Lφ ×∈R  and 2
2

L m×Φ ∈R  are the 

basis functions of the networks respectively. 1L  and 2L  are the number of hidden neurons in 

the networks. The NN-based model (3.17) will fairly approximate (3.15) if the appropriate 

update laws for 1̂W  and 2Ŵ  are derived such that the system response of (3.17) follows that 

of actual plant (3.15). 

Let us assume that there exists two ideal weight matrices 1W  and 2W  such that ( )f x  

and ( )g x  can be written as 

1 1( ) ( )Tf x W xφ=                   (3.18) 

2 2( ) ( )Tg x W x= Φ                  (3.19) 

As it is not possible to find a NN that can exactly approximate a nonlinear function, the actual 

plant dynamics (3.16) in terms of ideal NN weights are given by 

1 1 2 2( ) ( )T Tx x W x W x uφ= − + + Φ                 (3.20) 

The error vector between the system states and model states is defined as  

ˆe x x= −                   (3.21) 

Thus the error dynamics between the actual plant and the identified model can be derived by 

subtracting (3.17) from (3.20) 
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1 1 2 2 1 1 2 2

1 1 2 2

ˆ
ˆ ˆˆ  ( ) ( ) ( ) ( )

  ( ) ( )

T T T T

T T

e x x

x W x W x u x W x W x u

e W x W x u

φ φ

φ

= −

= − + + Φ + − − Φ

= − + + Φ



 

 

            (3.22) 

To derive the weight update laws, let us consider a Lyapunov function candidate, V as 

1 1 2 2
1 2

1 1 1
2

T T TV e e tr W W W W
α α
 

= + + 
 

                   (3.23) 

where tr represents trace of a matrix. Taking the derivative of (3.23) 

1 1 2 2
1 2

1 1T T TV e e tr W W W W
α α
 

= + + 
 

 

    

                (3.24) 

Since 1W  and 2W  are constant matrices, then (3.24) is written as 

( )

1 1 2 2
1 2

1 1 2 2 1 1 2 2
1 2

1 1ˆ ˆ

1 1ˆ ˆ  ( ) ( )

T T T

T T T T T

V e e tr W W W W

e e W x W x u tr W W W W

α α

φ
α α

 
= + − − 

 
 

= − + + Φ + − − 
 

 

  



 

   

           (3.25) 

Using the properties of trace, (3.25) can be written as 

1 1 2 2 1 1 2 2
1 2

1 1ˆ ˆ( ) ( )T T T T T T TV e e tr W x e W x ue W W W Wφ
α α

 
= − + + Φ − − 

 

 

                (3.26) 

Thus, consider the update laws 

1 1 1
ˆ ( ) TW x eα φ=                   (3.27) 

2 2 2
ˆ ( ) TW x ueα= Φ                  (3.28) 

Substituting (3.27) and (3.28) into (3.26), we have 
TV e e= −                   (3.29) 

Equation (3.29) is negative definite. Since V is taken to be positive definite and V  turns 

to be negative definite, error e will converge to 0. Thus the model states will match the 

system states as time progresses which serve the purpose of system identification. 

3.3.2.3 Controller Design 
Based on the system identified model a control law can be designed using the 

feedback linearization technique, if the nonlinear functions matrix g is invertible. Suppose 

that g is a square matrix and is invertible. Also suppose that system should follow a desired 

trajectory dx . In feedback linearization technique [7, 71], the control law is designed such 

that the error dynamics becomes linear as well as stable. Here the objective is to design a 

control law for the identified model such that the model state vector tracks dx . If the model is 
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an accurate representation of the system, the system states will also follow the same desired 

trajectory.  

Using the certainty equivalence principle [71], consider the control law 

( ) 1

2 2 1 1
ˆ ˆˆ ˆ( ) ( )T T

d vu W x x W x x K eφ
−
 = Φ − + +                (3.30) 

where dx  is the desired state vector, ˆ ˆde x x= − , and vK  is a design parameter. Substituting 

(3.30) into (3.17), we have 

( ) 1

1 1 2 2 2 2 1 1
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ  

ˆ ˆ

T T T T
d v

d v

v

x x W x W x W x x W x x K e

x K e

e K e

φ φ
−
 = − + + Φ Φ − + + 

= +

⇒ = −









           (3.31) 

If we consider a Lyapunov function candidate as 
1 ˆ ˆ
2

TV e e= , then V  can be written as 

ˆ ˆ ˆ ˆT T
vV e e e K e= = −

                  (3.32) 

that is negative definite. Thus, ê  will converge to zero with time, which serves the purpose of 

tracking. 

When the matrix ( )g x  is a rectangular matrix, the negative definiteness of V  cannot 

be ensured because the use of pseudo-inverse of ( )g x  will not exactly cancel the 

nonlinearity ( )f x . In such cases, if the system is a SISO system, then mostly it can be 

modelled in a strict feedback form like 

1 2

2 3

.................

ˆ ˆ

ˆ ˆ

ˆˆ ˆ( ) ( )n

x x

x x

x f x g x u

=

=

= +







                 (3.33) 

1ˆ ˆy x=                    (3.34) 

where ˆ ( )f x  and ˆ ( )g x  are scalar functions.  

Let us define the output tracking error as  

1 1ˆ ˆ ˆd de y y x x= − = −                  (3.35) 

and another variable r a filtered tracking error given by 
( 1) ( 2)

1 1ˆ ˆ ˆ...n n
nr e e eλ λ− −
−= + + +                 (3.36) 

Using the certainty equivalence principle, if the control law is chosen as 

( 1) (1)
1 1

1 ˆ ˆ ˆ( ) ...
( )

n
v n ndu f x k r e e x

g x
λ λ−

−
 = − + + + + +               (3.37) 

then, we have 
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vr k r= −                    (3.38) 

which is a linear and stable dynamics. Considering a Lyapunov function 21
2

V r= , we can 

show that r converges to zero with time. 1 1,..., nλ λ −  are design parameters which can be 

chosen such that the dynamics given by (3.36) is stable. 

3.3.3 Simulation Results and Analysis 
In this section, the application of indirect adaptive control using RBFNN with feedback 

linearization technique is presented for control of a nonlinear process system. A liquid level 

control system for a surge tank is considered as an example of a nonlinear process system.  

Define the surge tank liquid level control system output as ( )h t  and model output as 

( )mh t , then from (3.17) we have  

1 1 2 2
ˆ ˆ( ) ( ) ( ) ( )T T

m mh t h t W h W h uφ φ= − + +                           (3.39) 

where  1̂W  and 2Ŵ  are two weight vectors, 1φ  and 2φ  are Gaussian functions.  

The simulation parameters considered are: system parameters a=1; b=2; number of 

neurons in hidden layer of networks for function ˆ ( )f x  is 30, and for function ˆ ( )g x  is 20 

respectively and thus the sizes of weight vectors respectively; learning parameters 1 0.8α = , 

2 0.5α = ; acceleration due to gravity 9.8g = m/s2; For system identification the training data 

generated for a simulation time of 50 seconds with sample time 0.01T = sec with a 

sinusoidal input 10 5sin( )u t= +  of magnitude between 5 and 10. The initial liquid level 

considered is 8 m. The system and model dynamics are evolved while updating the weights 

using the update laws (3.17) and (3.18), where me h h= − . For neural network control the 

initial liquid level considered is 8 m, desired liquid level 5dh = m, design parameter 4vk = , 

and remaining parameters are considered same as for the model identification for a 

simulation time of 20 seconds. In the simulation the centres and spread of Gaussian 

functions are considered as 5 15 ( ,1)ic rand n= + ∗ , and 1σ =  respectively for RBFNN in both 

cases, where n is the number of radial centres in hidden layer of RBFNN. The simulation 

results obtained are shown in Fig. 3.4Fig. 3.5, and Fig. 3.6. Fig. 3.4 shows the system output 

and model output for system identification. It is observed that the identified system model is 

fairly approximating the actual system. Fig. 3.5 shows tracking of desired liquid level 5dh = m 

based on identified model, showing the system output, model output, and desired output. It is 

observed that the model output tracks the desired trajectory. The liquid level of 4.2352 m is 

obtained for the actual system whereas the liquid level of 5.0000 m is obtained for the 

system model using RBFNN. The control input is shown in Fig. 3.6. Using the control law 
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(3.30) the control input is generated to achieve the desired liquid level. The obtained control 

input is the input flow of 9.1104 m3/sec to achieve the desired liquid level in the surge tank. 

 

 
Fig. 3.4 System output and model output for system identification. 

 
Fig. 3.5 Tracking of desired liquid level. 
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Fig. 3.6 Control input. 

3.3.4 Discussion 
The indirect adaptive control using RBFNN gives an intelligent control solution for a 

nonlinear process system. The feedback linearization technique for affine nonlinear system 

control gives the linear and stable error dynamics, cancelling the nonlinearity in the system. 

The response of neural network control using RBF Networks is fast. 

3.4 INTELLIGENT CONTROL OF NONLINEAR INVERTED PENDULUM 
DYNAMICAL SYSTEM USING FUZZY LOGIC SYSTEMS 
Fuzzy control is an intelligent control technique that uses the human expert knowledge 

to make control decisions.  It provides a simple approach to use heuristic control knowledge 

for nonlinear control problems. Recently fuzzy logic systems have been widely used for 

various applications [9, 15, 43, 61, 62, 67, 68, 85, 86]. In recent trends even the various 

advance control approaches are developing and being tried for many dynamical systems 

control, the comparative performance analysis of fuzzy control methods using Mamdani and 

Takagi-Sugeno-Kang (TSK) fuzzy inference systems (FIS) is desired. The nonlinear inverted 

pendulum-cart dynamical system is used as a benchmark control problem for this 

comparative study with control objectives of cart position control at a desired position and 

stabilization of inverted pendulum in the vertically upright position. The comprehensive 

performance investigation for the control of nonlinear inverted pendulum-cart system for both 

cases of without & with disturbance input is also desired. 
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This section comprehensively presents the intelligent control of nonlinear inverted 

pendulum-cart dynamical system using Mamdani FIS and TSK FIS. The objectives & 

contributions of this section is to present the modelling, control design and comparative 

performance analysis of Mamdani FIS and TSK FIS based intelligent control methods for 

nonlinear inverted pendulum-cart dynamic system for both cases of without & with 

continuous disturbance input. The comparative performance analysis of these fuzzy control 

methods have also been done with PID control method. The simulation results and 

performance analysis justify the comparative advantages of fuzzy control methods. The 

performance analysis shows that the proposed control methods are simple, effective, and 

robust. The mathematical modelling of nonlinear inverted pendulum system as discussed in 

section 2.5.2 is referred in this section for fuzzy control design. 

3.4.1 Fuzzy Control Using Mamdani and TSK Fuzzy Inference Systems 
In the implementation of fuzzy control the mathematical model equations of systems 

are not needed but the expert knowledge of the system behaviour is required to be known, 

that is the information which is gathered by equations. Fuzzy logic systems address the 

imprecision or vagueness in input–output descriptions of systems using fuzzy sets. Fuzzy 

logic may be employed to represent a set of fuzzy rules, the knowledge of a human 

controlling a plant. This is the process of knowledge representation. Then, a rule of inference 

in fuzzy logic may be used according to this fuzzy knowledge base to make control decisions 

for a given set of plant observations. This task concerns “knowledge processing”. In this 

sense, fuzzy logic in intelligent control serves to represent and process the control 

knowledge of a human in a given plant. The fuzzy models categorized into three types 

according to expressions of the consequent part are: 

1. Mamdani Fuzzy Inference System (Ebrahim Mamdani, 1975) 

y A=   where,  A is a fuzzy number                      (3.40) 

2. Takagi-Sugeno-Kang (TSK) Fuzzy Inference System (T-S-K, 1985) 

 0 i iy a a x= +∑                       (3.41) 

 where,  ia  is a constant and ix  is the input variable.  

3. Simplified model 

y c=   where,   c  is a constant.                                            (3.42) 

Fuzzy inference is the process of formulating the mapping from a given input to an 

output using fuzzy logic. The mapping then provides a basis from which decisions can be 

made, or patterns discerned. Basically Mamdani type FIS and Takagi-Sugeno-Kang (i.e. 

Sugeno type) FIS are generally used in practice. Both are similar in many respects. The 

schemes of operation of fuzzy rules in Mamdani FIS, and TSK FIS are shown in Figs. 3, and 

4 respectively . The first two parts of the fuzzy inference process, fuzzifying the inputs and 



 

101 

 

applying the fuzzy operator, are exactly the same. These two types of inference systems 

vary somewhat in the way outputs are determined. The main difference between Mamdani 

FIS and Sugeno FIS is that the Sugeno FIS output membership functions are either linear or 

constant. 

Fuzzy rules of Mamdani fuzzy inference systems: 
If x is (A linguistic term) and y is (B linguistic term) Then z is (C linguistic term) 

where A, B, & C are fuzzy sets 

Examples: R1: if X is small and Y is small then Z is small 

      R2: if X is small and Y is large then Z is large 

Fuzzy rules of TSK fuzzy inference systems: 
If x is A and y is B Then z = f(x, y) 

where A & B are fuzzy sets, and f(x, y) is crisp function very often a polynomial function w.r.t. 

x and y 

Examples: R1: if X is small and Y is small then z = -x +y +1 

       R2: if X is small and Y is large then z = -y +3 

Advantages of the Mamdani & Sugeno Methods: 
Mamdani method is intuitive, widespread acceptance, and well suited to human input 

whereas Sugeno method is computationally efficient, works well with linear techniques (e.g., 

PID control), works well with optimization and adaptive techniques, has guaranteed 

continuity of the output surface, and well suited to mathematical analysis. 

 
Fig. 3.  Scheme of operation of fuzzy rules in Mamdani fuzzy inference system. 
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Fig. 4.  Scheme of Operation of Fuzzy Rules in TSK Fuzzy Inference System. 

Here two fuzzy control approaches using Mamdani FIS and TSK FIS for nonlinear 

plant model of inverted pendulum-cart dynamic system have been implemented. In Mamdani 

type FIS two PD-fuzzy logic controllers (FLC) - angle FLC, and cart FLC have been used for 

the two control loops of the system. The inputs to FLCs are errors in pendulum angle & 

angular velocity, and errors in cart position & cart velocity respectively. The output is control 

force. In the PD type fuzzy control using Mamdani type FIS 49 rules with 7 triangular 

membership functions (NL, NM, NS, Z, PS, PM, PL) for each variable have been used for 

angle FLC & cart FLC both. In the fuzzy control approach using TSK type (commonly known 

as Sugeno type) FIS direct fuzzy control approach has been used with 2 gbell membership 

functions (N &P) for each input variable and 16 linear membership functions (u1 to u16) for 

output variable. The rule bases for pendulum angle control, and cart position control using 

Mamdani type FIS are given in Tables 1 and 2 respectively. The rule base for direct fuzzy 

control using TSK type FIS is given in Table 3. 

Table 3.1 Rule base for pendulum angle FLC using Mamdani FIS 

Control Force u 
Error in angular velocity Thetadot (ethetadot) 

NL NM NS Z PS PM PL 

Error in 

angle 

Theta 

(etheta) 

NL NL NL NL NL NM NS Z 

NM NL NL NL NM NS Z PS 

NS NL NL NM NS Z PS PM 

Z NL NM NS Z PS PM PL 

PS NM NS Z PS PM PL PL 

PM NS Z PS PM PL PL PL 

PL Z PS PM PL PL PL PL 
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Table 3.2 Rule base for cart FLC using Mamdani FIS 

Control Force u 
Error in Cart velocity xdot (exdot) 

NL NM NS Z PS PM PL 

Error in 

cart 

position x 

(ex) 

NL NL NL NL NL NM NS Z 

NM NL NL NL NM NS Z PS 

NS NL NL NM NS Z PS PM 

Z NL NM NS Z PS PM PL 

PS NM NS Z PS PM PL PL 

PM NS Z PS PM PL PL PL 

PL Z PS PM PL PL PL PL 

 

Table 3.3 Rule base for direct FLC using TSK FIS 

1. If (theta is N) & (thetadot is N) & (x is N) & (xdot is N) then (u is u1)    

2. If (theta is N) &(thetadot is N) & (x is N) & (xdot is P) then (u is u2)  

3. If (theta is N) & (thetadot is N) & (x is P) & (xdot is N) then (u is u3)  

4. If (theta is N) & (thetadot is N) & (x is P) & (xdot is P) then (u is u4)  

5. If (theta is N) & (thetadot is P) & (x is N)& (xdot is N) then (u is u5)   

6. If (theta is N) & (thetadot is P) & (x is N) & (xdot is P) then (u is u6)  

7. If (theta is N) & (thetadot is P) & (x is P) & (xdot is N) then (u is u7)   

8. If (theta is N) & (thetadot is P) & (x is P) & (xdot is P) then (u is u8)  

9. If (theta is P) & (thetadot is N) & (x is N) & (xdot is N) then (u is u9)  

10. If (theta is P) & (thetadot is N) & (x is N) & (xdot is P) then (u is u10)  

11. If (theta is P) & (thetadot is N) & (x is P) & (xdot is N) then (u is u11) 

12. If (theta is P) & (thetadot is N) & (x is P) & (xdot is P) then (u is u12)  

13. If (theta is P) & (thetadot is P) & (x is N) & (xdot is N) then (u is u13)  

14. If (theta is P) & (thetadot is P) & (x is N) & (xdot is P) then (u is u14)  

15. If (theta is P) & (thetadot is P) & (x is P) & (xdot is N) then (u is u15)  

16. If (theta is P) & (thetadot is P) & (x is P) & (xdot is P) then (u is u16)  

 

3.4.2 Simulation Results and Analysis 
The MATLAB-SIMULINK models for the simulation of modeling, analysis, and control 

of nonlinear inverted pendulum-cart dynamical system without & with continuous disturbance 

input have been developed. The typical parameters of inverted pendulum-cart system setup 

are selected as [85, 180]: mass of the cart (M): 2.4 kg, mass of the pendulum (m): 0.23 kg, 

length of the pendulum (l): 0.36 m, length of the cart track (L): ± 0.5 m, friction coefficient of 

the cart & pole rotation is assumed negligible. The disturbance input parameters which has 
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been taken in simulation are [205] : Band Limited White Noise Power = 0.001, Sample Time 

= 0.01, Seed = 23341. 

The SIMULINK models for fuzzy control of inverted pendulum system for linear plant 

model without & with disturbance input using Mamdani type FIS are shown in Fig. 3.7 and 

Fig. 3.9 respectivey. Here the linearized state-space model has been used, and only 

pendulum angle theta and cart position x have been considered for the measurement. The 

band limited white noise has been added as the disturbance input to the system. The 

reference angle is set to 0 and the desired cart position has been set to 0.1 (m). In the fuzzy 

control using Mamdani type FIS In the fuzzy control approach using Mamdani type FIS the 

universe of discourses for linear plant model of inverted pendulum are: angle FLC: etheta=[-

0.3 0.3], ethetadot=[-1 1], u=[-1 1], and cart FLC: ex=[-1 1], exdot=[-1 1], u [-1 1]. The change 

of sign of gains with linear & nonlinear plant models are just due to considered change of 

sign in error detectors. The tuned gains of PD-FLCs for linear plant model are: angle FLC: 

Kp=-40, Kd=-8, and cart FLC: Kp=-1, Kd=-4. Both angle & cart FLCs used 49 rules with 7 

triangular MFs (NL, NM, NS, Z, PS, PM, PL) for each variable. The simulation results for both 

cases are shown in Fig. 3.8 and Fig. 3.10 respectively. It is observed here that the pendulum 

stabilizes vertically with minor oscillations in range approx +/-0.002 (rad), and the cart 

reaches the desired position of 0.1 (m) quickly with minor oscillations in both cases. The 

control input u is bounded in range of [-0.1 0.1] for without disturbance input case and in 

range of [-1 1] for with disturbance input case. The simulation results justify the effectiveness 

of the PD-FLC for the linearized model case.  

The SIMULINK models for fuzzy control of nonlinear inverted pendulum system using 

Mamdani FIS of PD type for both cases of without & with disturbance input are shown in Fig. 

3.11 and Fig. 3.13 respectively. The universe of discourses for PD-FLCs are: Angle FLC: 

etheta=[-0.3 0.3], ethetadot=[-1 1], u=[-1 1], and Cart FLC: ex=[-1 1], exdot=[-1 1], u=[-1 1]. 

The tuned gains of PD-FLCs for both cases are: Angle FLC: Kpp=40, Kdp=8, and Cart FLC: 

Kpc=1.25, Kdc=3.6. Both angle & cart FLCs used 49 rules with 7 triangular MFs (NL, NM, NS, 

Z, PS, PM, PL) for each variable. The simulation results for both cases are shown in Fig. 

3.12 and Fig. 3.14 respectively. Here all the state variables θ , θ , x , x  and control u  have 

been plotted.  It is observed here that the pendulum stabilizes in vertically upright position 

quickly with minute oscillations, and the angular velocity oscillates in approx range +/-0.002 

(rad/s) for case of without disturbance input and in approx. range +/-0.02 (rad/s) for case of 

with disturbance input. The cart reaches the desired position of 0.1 (m) quickly with minor 

steady state error, and the cart velocity oscillates very near to zero. The control input u is 

bounded for both cases in approx. ranges [-0.1 0.1] and [-1 1] respectively. During initial 

transients the control input u  is also bounded in approx. range +/-0.12N for case of without 
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disturbance input. The simulation results justify the effectiveness & robustness of the PD-

FLC. 

The SIMULINK models for direct fuzzy control of nonlinear inverted pendulum system 

using TSK type FIS for both cases of without & with disturbance input are shown in Fig. 3.15 

and Fig. 3.17 respectively. The universe of discourses of TSK FLC are: theta=[-0.3 0.3], 

thetadot=[-1 1], x=[-0.5 0.5], xdot=[-0.5 0.5],  u=[-10 10]. In the direct fuzzy control approach 

using TSK Type FIS 16 rules with 2 gbell MFs (N &P) for each input variable, and 16 linear 

MFs for output variable have been used. The simulation results are shown in Fig. 3.16 and 

Fig. 3.18 respectively. Here also all the state variables θ , θ , x , x  and control u  have been 

plotted.  It is observed here that the pendulum stabilizes in vertically upright position quickly 

& smoothly for case of without disturbance input and with acceptable minute oscillations for 

case of with disturbance input. The angular velocity approaches zero for case of without 

disturbance input and oscillates minutely in range approx +/-0.02 (rad/s) for case of with 

disturbance input. The cart reaches the desired position of 0.1 (m) quickly & smoothly after 

initial small transients, and the cart velocity approaches zero for case of without disturbance 

input and oscillates very near to zero for case of with disturbance input. The control input u  

is bounded for both cases in approx. ranges [-0.1 0.1] and [-1 1] respectively. During initial 

transients the control input u  is also bounded in approx. range +/-0.5N for case of without 

disturbance input. The simulation results justify the effectiveness & robustness of the TSK-

FLC. 

The analysis of the responses of PID control scheme which is presented in section 

2.5.4, and the responses of Mamdani type PD-fuzzy control, and TSK type direct fuzzy 

control for nonlinear inverted pendulum system for both cases of without & with continuous 

disturbance input gives that these control schemes are effective & robust. It is observed here 

that the responses of Mamdani PD-fuzzy control are not as smooth as PID control & TSK 

fuzzy control but pendulum reaches near upright position faster than both. The responses of 

TSK fuzzy control are fast, and smoother than Mamdani fuzzy control and PID control both. 

Overall the performance of fuzzy control methods especially of TSK fuzzy control is better 

than PID control. 
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Fig. 3.7 PD-fuzzy control of linearized model of inverted pendulum system using Mamdani 

type FIS. 

 

 
Fig. 3.8 Responses of pendulum angle theta, cart position x, and control force u of linearized 

model of inverted pendulum system with fuzzy control using Mamdani FIS. 
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Fig. 3.9 PD-fuzzy control of linearized model of inverted pendulum system with disturbance 

input using Mamdani FIS. 

 

 
Fig. 3.10 Responses of pendulum angle theta, cart position x, and control force u of 

linearized model of inverted pendulum system with fuzzy control using Mamdani FIS. 
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Fig. 3.11 PD-fuzzy control of nonlinear inverted pendulum system using Mamdani type FIS. 

 

 

Fig. 3.12 Responses of pendulum angle theta & angular velocity θ , cart position x & cart 

velocity x , and control force u of nonlinear inverted pendulum system with fuzzy control 

using Mamdani FIS.  
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Fig. 3.13 PD-fuzzy control of nonlinear inverted pendulum system with disturbance input 

using Mamdani FIS. 

 

 

 
Fig. 3.14 Responses of PD-fuzzy control of nonlinear inverted pendulum system with 

disturbance input using Mamdani FIS. 
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Fig. 3.15 Direct fuzzy control of nonlinear inverted pendulum system using TSK type FIS. 

 

 
Fig. 3.16 Responses of pendulum angle theta & angular velocity thetadot, cart position x & 

cart velocity xdot, and control force u of nonlinear inverted pendulum system with fuzzy 

control using TSK FIS. 
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Fig. 3.17 Direct fuzzy control of nonlinear inverted pendulum system with disturbance input 

using TSK FIS. 

 

 
Fig. 3.18 Responses of fuzzy control of nonlinear inverted pendulum system with disturbance 

input using TSK FIS. 
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3.4.3 Discussion 
Fuzzy control has been implemented using Mamdani and TSK fuzzy inference 

systems to control the nonlinear inverted pendulum dynamical system for both cases of 

without & with continuous disturbance input. The comparative performance analysis of fuzzy 

control methods with PID control has also been presented. The simulation results and 

analysis justify the comparative advantages of fuzzy control methods. The pendulum 

stabilizes in vertically upright position and cart approaches the desired position even under 

the continuous disturbance input such as wind force justify that the control schemes are 

effective & robust. The analysis of the responses of the control schemes gives that the 

performance of PD-FLC using Mamdani type FIS is better than PID controller, and the 

performance of TSK FLC is better than both. The response of direct fuzzy control using TSK 

FIS is more smooth & fast than both PID control and Mamdani type PD-fuzzy control. 

3.5 FUZZY-PI BASED AUTOMATIC GENERATION CONTROL OF TWO-AREA 
INTERCONNECTED NONLINEAR POWER SYSTEM 
Automatic generation control (AGC) which ensures the convergence of deviations in 

system frequency and tie-line power flows from nominal values to zero, is one of the 

important control problems in interconnected power system design and operation. AGC is 

becoming more significant today due to the increasing size, changing structure, emerging 

renewable energy sources and new uncertainties, environmental constraints, and complexity 

of power systems. AGC markets require the increased intelligence and flexibility to ensure 

that they are capable of maintaining a generation-load balance, following serious 

disturbances. The operation and control of future power systems will be challenging due to 

its increased complexity with ancillary services and energy markets. The intelligent AGC will 

be able to provide effective solution to this problem [186]. 

Due to features of simplicity, robustness, and reliability, fuzzy logic is used to provide 

control solutions for a wide range of applications including power system control and 

operation. The conventional control schemes are essentially based on linearized 

mathematical models of the controlled systems. Fuzzy control methods synthesize the 

controller based on measurements, long-term experiences, and knowledge of domain 

experts/operators. Fuzzy control provides the simple approach to use the heuristic control 

knowledge for nonlinear control problems. 

In this section the performance analysis of fuzzy-proportional-integral (fuzzy-PI) 

controller for AGC of two-area interconnected nonlinear power system is presented. The 

comparative performance analysis with conventional AGC scheme using integral control is 

also presented. 
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3.5.1 Mathematical Modelling for Automatic Generation Control of Two-Area 
Interconnected Nonlinear Power System 

Electrical power systems are complex nonlinear dynamic systems. Since a power 

system is only exposed to small changes in load demand during its normal operation, a 

linearized model is sufficient to represent the dynamic behavior of power system around the 

operating point. On the basis of this linearized model the control laws are developed using 

the linear control theory. However, in case of a sudden large change in load demand due to 

frequent switching of large load units in deregulated operations, large overshoot or prolonged 

oscillation of governor valve position occurs. In the presence of such nonlinearities and 

parametric uncertainties the system becomes highly nonlinear, and thus the control design 

based on linearized model may not be effective. Thus the consideration of nonlinearities is 

important in the synthesis and analysis of AGC system. The linearized mathematical model 

for AGC system of two-area interconnected power system is discussed in section 2.6.1. In 

this section the nonlinearities due to governor valve position limits is considered in the 

mathematical model of two-area interconnected nonlinear power system for AGC problem. 

3.5.1.1 Two-Area Interconnected Nonlinear Power System Dynamic Equations 

In the case of large change in ( )
kdP t∆  for kth control area, the dynamic equations (2.1) 

to (2.4) will not appropriately represent the power system due to the governor valve position 

limits. The large change in ( )
kdP t∆  require the large change in speed changer setting ( )

kcP t∆  

to regulate frequency deviations ( )kf t∆ , but the governor output ( )
kgX t∆  will not change 

beyond a specified limit. There are several ways of modelling governor valve position limits, 

out of which the practical piston-like steam valve structure can be modelled as a limiter with 

cut-off actions. The governor valve position limit is represented by a nonlinear function 

( ( ))
kk gX tη ∆  with maximum limit ( )

kgMX t∆ , and the minimum limit ( )
kgmX t∆ . This governor 

valve position limits nonlinearity function is shown in Fig. 3.19 [99]. Including the governor 

valve position limits nonlinearity the block diagram of two-area interconnected nonlinear 

power system is shown is Fig. 3.20. 

Considering the nonlinearities of governor valve position limits in the two-area 

interconnected nonlinear power system the dynamic equations for kth control area are written 

as [99]: 

1( ) ( ) ( ) ( ) ( )k k k

k kj k

k k k k

P P P
k k g tie d

P P P P

K K K
f t f t P t P t P t

T T T T
∆ = − ∆ + ∆ − ∆ − ∆            (3.43) 

1 1( ) ( ) ( ( ))
k k k

k k

g g k g
T T

P t P t X t
T T

η∆ = − ∆ + ∆               (3.44) 
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1 1 1( ) ( ) ( ) ( )
k k k

k k k

g k g c
k G G G

X t f t X t P t
R T T T

∆ = − ∆ − ∆ + ∆              (3.45) 

( ) 2 ( ) 2 ( )
kjtie kj k kj jP t T f t T f tπ π∆ = ∆ − ∆                (3.46) 

( ) ( ) ( ) ( )
kjk k kj tie k kE t ACE t a P t b f t∆ = = ∆ + ∆               (3.47) 

where 2 {1, 2}k J∈ = , 2 \{ }j J k∈  for two-area power system, ( )
kk gXη ∆  is the nonlinear 

function of governor valve position limits, and the remaining variables and constants have 

same meaning as in section 2.6.1. Also the remaining descriptions of dynamic equations for 

two-area interconnected nonlinear power system are same as in section 2.6.1. 

 

 
Fig. 3.19 Nonlinearity function of governor valve position limits. 
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Fig. 3.20 Block diagram of two-area interconnected nonlinear power system. 

3.5.1.2 State Space Model of Two-Area Interconnected Nonlinear Power System 
The state space model of two-area interconnected nonlinear power system can be 

obtained from the dynamic equations (3.43) to (3.47) by writing these equations for area 1 

and area 2, and considering the variables as in section 2.6.1.2. 

The state space model of two-area interconnected nonlinear power system is given as 
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 ( ) ( ( ), ( ), ( ))x t f x t u t w t=                 (3.48) 

where  

[ ]

1 1 2 2

1 2 9

1 2 1 2

( ) ( ), ( ),..., ( )

( ), ( ), ( ), ( ), ( ), ( ), ( ), ,

T

T

g g g g tie

x t x t x t x t

f t P t X t f t P t X t P t ACE dt ACE dt

=

 = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∫ ∫
 

is the state vector, [ ]
1 21 2( ) ( ) ( ) ( ) ( )

TT
c cu t u t u t P t P t = = ∆ ∆  is the control vector, and  

[ ]
1 21 2( ) ( ) ( ) ( ) ( )

TT
d dw t w t w t P t P t = = ∆ ∆   is the load disturbance vector; and ( )f   is a 

vector valued nonlinear affine function. 

3.5.2 Control Methods 
For AGC system design and analysis for two-area interconnected nonlinear power 

system the conventional integral control method and the fuzzy-PI control method are 

presented in this section. 

3.5.2.1 Integral Control 
The integral control for AGC system of two-area interconnected nonlinear power 

system is defined similar to the integral control for the linear system defined by (2.87) and 

(2.88) for area 1 and area 2 respectively, generating the control inputs by weighted integrals 

of ACEs in each area. The weights of integrals of ACEs are integral gains, which are tuned 

for satisfactory response of deviations of area frequencies and tie-line power. 

3.5.2.2 Fuzzy-PI Control 
The fuzzy logic controller (FLC) for AGC system takes ACE and rate of change of ACE 

as input variables which are processed using fuzzy inference system to synthesize the 

control signal. The fuzzy-PI control scheme is the combination of fuzzy control and PI control 

schemes. In fuzzy-PI control the output signal of FLC is fed as the input signal to the PI 

controller to synthesize the control signal for the AGC system. The schematic diagram of 

fuzzy-PI controller is shown in Fig. 3.21. The dynamic equation of fuzzy-PI control signal 

given by 

0
( ) ( ) ( )

t

P flc I flcu t k u t k u dτ τ= + ∫                 (3.49) 

where 

( )u t = ( )cP t∆  is the control signal, 

( )flcu t = the output signal of FLC, 

Pk = proportional gain, 

Ik = integral gain 
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The block diagram of AGC system using fuzzy-PI controller for two-area interconnected 

nonlinear power system is shown in Fig. 3.20. Each control area has a fuzzy-PI controller. In 

this fuzzy control approach Mamdani type fuzzy inference system (FIS) is used.  The input 

variables ACEs and d/dt(ACEs), and output variable uflc  are represented by 7 triangular 

membership functions (MFs) of fuzzy sets negative-large (NL), negative-medium (NM), 

negative-small (NS), zero (Z), positive-small (PS), positive-medium (PM), and positive-large 

(PL) for each variable. The output signal of FLC is synthesized using 49 fuzzy rules of 

Mamdani type. The fuzzy rule-base is constructed using the dynamic relation between ACE 

and cP∆ . The fuzzy rule-base of Mamdani FIS is given in Table 3.5. The centre-of-gravity 

(COG) defuzzyfication method is used to obtain the crisp value of output signal of FLC.  

 

 
Fig. 3.21 Schematic diagram of fuzzy-PI controller. 

Table 3.4 Fuzzy rule-base using Mamdani FIS for AGC of two-area power system. 

Fuzzy control 

signal uflc 

Rate of change of area control error d/dt(ACE) 

NL NM NS Z PS PM PL 

Area 

control 

error 

ACE 

NL PL PL PL PM PM PS Z 

NM PL PM PM PM PS Z NS 

NS PL PM PS PS Z NS NM 

Z PM PM PS Z NS NM NM 

PS PM PS Z NS NS NM NL 

PM PS Z NS NM NM NM NL 

PL Z NS NM NM NL NL NL 

3.5.3 Simulation Results and Analysis 
In this section the simulation results and performance analysis of fuzzy-PI control for 

AGC of two-area interconnected power system are presented for both cases of linear and 

nonlinear system using MATLAB-SIMULINK models. The comparative performance analysis 

of fuzzy-PI control with conventional integral control is also presented. The integral gains of 

integral controllers and PI gains of fuzzy-PI controllers are tuned by trial and error method by 

observing the system responses to be optimal. 
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Considering the identical generating units in the two-area interconnected nonlinear 

power system, the system parameters taken in simulation are [184]:  
0 50f = Hz, 1 2 2.4R R= = Hz/puMW, 1 2 0.425b b= = , 

1 2
0.08G GT T= = s, 

1 2
0.3T TT T= = s, 

1 2
20P PT T= = s, 

1 2
120P PK K= = Hz/puMW, 12 0.08674T = , 12 21 1a a= − = . 

3.5.3.1 Linear System Case 
For simulation of performance of integral control for linear model of AGC system of 

two-area interconnected power system with load disturbances in both areas simultaneously, 

the SIMULINK model is shown in Fig. 3.22. The step load disturbances considered in both 

control areas are: 
1

0.01dP∆ = pu in area 1, and 
2

0.02dP∆ = pu area 2. The tuned integral 

gains are: 
1 2

0.75I IK K= = − . The step responses of deviations in area frequencies and tie-

line power for load disturbances in both areas as 1% in area 1 and 2% in area 2 respectively, 

using integral controller are shown in Fig. 3.23. It is observed that the deviations in area 

frequencies and tie-line power converge to zero slowly after vanishing initial oscillations.  

For simulation of performance of fuzzy-PI control for linear model of AGC system of 

two-area interconnected power system with load disturbances in both areas simultaneously, 

the SIMULINK model is shown in Fig. 3.24. Both control areas have similar fuzzy-PI 

controllers with just differences in tuning of PI gains. The FLC designed using Mamdani FIS. 

The FLC used 49 fuzzy rules with 7 triangular MFs (NL, NM, NS, Z, PS, PM, PL) for each 

variable. The defuzzification method used is centroid. The universe of discourses for 

variables are: ACE=[-0.025 0.025], d/dt(ACE)=[-0.1 0.1], uflc=[-1 1]. The tuned PI gains are: 

1
0.20Pk = , 

1
0.60Ik = , 

2
0.25Pk = , 

2
0.60Ik = . The step load disturbances considered in both 

control areas are: 
1

0.01dP∆ = pu in area 1, and 
2

0.02dP∆ = pu area 2. The step responses of 

deviations in area frequencies and tie-line power for load disturbances in both areas as 1% in 

area 1 and 2% in area 2 respectively, using fuzzy-PI controller are shown in Fig. 3.25. It is 

observed that the deviations in area frequencies and tie-line power converge to zero quickly 

after vanishing small initial transients. The responses are smooth and very fast. 
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Fig. 3.22 SIMULINK model of integral control for linear model of AGC system of two-area 

interconnected power system. 

 

 
Fig. 3.23 Step responses of integral control for linear model of AGC system of two-area 

interconnected power system with load disturbances of 1% in area 1 and 2% in area 2. 
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Fig. 3.24 SIMULINK model of fuzz-PI control for linear model of AGC system of two-area 

interconnected power system. 

 

 
Fig. 3.25 Step responses of fuzz-PI control for linear model of AGC system of two-area 

interconnected power system with load disturbances of 1% in area 1 and 2% in area 2. 
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3.5.3.2 Nonlinear System Case 
The SIMULINK model for simulation of performance of integral control for AGC system 

of two-area interconnected nonlinear power system with simultaneous load disturbances in 

both control areas is shown in Fig. 3.26. The step load disturbances considered in both 

control areas are: 
1

0.01dP∆ = pu in area 1, and 
2

0.02dP∆ = pu area 2. The tuned integral 

gains are: 
1 2

0.60I IK K= = − . The step responses of deviations in area frequencies and tie-

line power for load disturbances in both areas as 1% in area 1 and 2% in area 2 respectively, 

using integral controller for nonlinear system case are shown in Fig. 3.27. It is observed that 

the deviations in area frequencies and tie-line power converge to zero slowly after vanishing 

initial oscillations. 

The SIMULINK model for simulation of performance of fuzzy-PI control for AGC system 

of two-area interconnected nonlinear power system with simultaneous load disturbances in 

both control areas is shown in Fig. 3.28. In this nonlinear system case also, both control 

areas have similar fuzzy-PI controllers with just differences in tuning of PI gains. The FLC 

designed using Mamdani FIS. The FLC used 49 fuzzy rules with 7 triangular MFs (NL, NM, 

NS, Z, PS, PM, PL) for each variable. The defuzzification method used is centroid. The 

universe of discourses for variables are: ACE=[-0.025 0.025], d/dt(ACE)=[-0.1 0.1], uflc=[-1 

1]. The tuned PI gains are: 
1

0.20Pk = ,  
1

0.60Ik = , 
2

0.30Pk = , 
2

0.68Ik = . The step load 

disturbances considered in both control areas are: 
1

0.01dP∆ = pu in area 1, and 
2

0.02dP∆ =

pu area 2. The step responses of deviations in area frequencies and tie-line power for load 

disturbances in both areas as 1% in area 1 and 2% in area 2 respectively, using fuzzy-PI 

controller for nonlinear system case are shown in Fig. 3.29. It is observed that the deviations 

in area frequencies and tie-line power converge to zero quickly after vanishing small initial 

transients. The responses are smooth and very fast. 
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Fig. 3.26 SIMULINK model of integral control for nonlinear model of AGC system of two-area 

interconnected power system. 

 

 
Fig. 3.27 Step responses of integral control for nonlinear model of AGC system of two-area 

interconnected power system with load disturbances of 1% in area 1 and 2% in area 2. 
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Fig. 3.28 SIMULINK model of fuzz-PI control for nonlinear model of AGC system of two-area 

interconnected power system. 

 
Fig. 3.29 Step responses of fuzz-PI control for nonlinear model of AGC system of two-area 

interconnected power system with load disturbances of 1% in area 1 and 2% in area 2. 

The analysis of responses of both the integral control scheme and fuzzy-PI control 

scheme using Mamdani FIS for AGC system of two-area interconnected power system for 

both cases of linear system and nonlinear system, it is observed that the deviations in area 

frequencies and tie-line power converge to zero, stating that the balance of power generation 
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and load demand is maintained in both control areas, and the system frequency is 

maintained at specified value. It is observed that the integral controller give similar responses 

in both cases of linear or nonlinear AGC system models with changes in integral gains 

tuning. Similarly it is observed that the fuzzy-PI controller also give similar responses in both 

cases of linear or nonlinear AGC system models with changes in PI gains tuning. The 

comparative performance analysis of fuzzy-PI control with integral control gives that the 

responses of fuzzy-PI control are smoother and much faster than integral control. Both 

control schemes are effective & robust. Thus, it is justified that the performance of fuzzy-PI 

control scheme is better than the integral control scheme. 

3.5.4 Discussion 
The modelling and control design for automatic generation control of two-area 

interconnected nonlinear power system considering the governor valve position limits 

nonlinearity is discussed. The performance analysis of fuzzy-PI control scheme for AGC 

system of two-area interconnected nonlinear power system is presented. For the 

comparative performance analysis the integral control scheme is also presented. Also both 

the fuzzy-PI control scheme and integral control scheme are implemented for both cases of 

linear and nonlinear system models for the comparative performance analysis. For both 

control schemes and both cases of system models, the simulation results are presented for 

AGC system of two-area interconnected power systems with simultaneous load disturbances 

in both control areas. The FLC is designed using Mamdani FIS with uniform triangular 

membership functions. The simulation results justify the effectiveness and robustness of both 

control schemes. From the responses of both control schemes, it is observed that the 

deviations in area frequencies and tie-line power converge to zero. Thus, the balance of 

power generation and load demand is maintained in both control areas, and the system 

frequency is maintained at specified value. By the comparative performance analysis 

between fuzzy-PI control scheme and integral control scheme, it is observed that the 

responses of fuzzy-PI controller are smoother and much faster than integral controller, and 

thus, the performance of fuzzy-PI control scheme is better than the integral control scheme. 

Fuzzy-PI control scheme provide a simple and intelligent control method for AGC system of 

two-area interconnected nonlinear power systems. 

3.6 CONCLUSIONS 
The intelligent control is the integration of automatic control design with intelligent 

computational techniques. The intelligent control schemes of dynamical systems with 

applications using neural networks and fuzzy logic systems are discussed in this chapter. 

The performance analysis of neural network control scheme using radial basis function 

neural networks for a nonlinear process system is presented. The RBFNNs are used in 
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indirect adaptive control structure for this application. The neural network controller using 

RBFNNs gives fast tracking performance for the nonlinear process system. The intelligent 

control of nonlinear inverted pendulum dynamical system using fuzzy logic systems is 

presented. The performance analyses of fuzzy control schemes using Mamdani FIS, and 

TSK FIS for nonlinear inverted pendulum system for both cases of system models without 

and with disturbance input are presented. The comparative performance analysis between 

both fuzzy control schemes and PID control is also presented for this application. From the 

analysis of simulation results, it is observed that the response of direct FLC using TSK FIS is 

faster and smoother than both PD-FLC using Mamdani FIS and PID control schemes. The 

response of PD-FLC is better than PID control, whereas the response of TSK-FLC is better 

than both of these. The intelligent control using fuzzy-PI control scheme using Mamdani FIS 

for AGC system of two-area interconnected nonlinear power system is also presented. The 

conventional integral control scheme is also presented for the comparative performance 

analysis. Both of these control schemes are implemented for both cases of linear and 

nonlinear system models. From the analysis of simulation results, it is observed that the 

fuzzy-PI controller give smoother and much faster response than integral controller, and thus 

it is a simple and better control method. The neural network control and fuzzy control 

schemes provide the better control solution than the conventional control schemes. The 

neural networks and fuzzy logic systems based control schemes provide the intelligent 

automation for dynamical systems. The neural networks systems require the input-output 

data measurements for their implementation, whereas the fuzzy logic systems require the 

heuristics domain expert knowledge for representation of system dynamics in terms of 

linguistic variables. These control design techniques require a priori knowledge of the system 

dynamics. These control design techniques can give the online solution for the dynamical 

systems control problems. 
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CHAPTER 4  
 

ADAPTIVE OPTIMAL CONTROL USING POLICY ITERATION TECHNIQUE FOR 
LTI SYSTEMS 

This chapter presents a comprehensive performance analysis of adaptive optimal 

control of continuous-time linear time-invariant (LTI) dynamical systems with adaptive critic 

scheme using policy iteration (PI) technique. The convergence analysis of PI algorithm and 

its online implementation for adaptive optimal control of continuous-time LTI systems are 

discussed. The application of control scheme is presented for certain examples of 

continuous-time LTI systems. 

4.1 INTRODUCTION 
The performance of the controlled systems is desired to be optimal which should be 

valid also when applied in the real situation. The optimal control design techniques require 

the knowledge of system model, specification of performance indices, boundary conditions 

and physical constraints for design solution and synthesizing the control policy. The optimal 

control is an offline design approach which needs the complete knowledge of the system 

dynamics. The optimal control designed with approximate system model will not give optimal 

performance when applied in the real situation, as it will not be sensitive to changes in 

system dynamics. Thus, for optimal performance of dynamic system in real situation, the 

adaptation of control parameters is desired. Adaptive control has the objective of maintaining 

consistent performance of systems which have known structure but unknown constant or 

slowly time-varying parameter values. The adaptive control design techniques require a priori 

knowledge of system dynamics for design solution and synthesizing the control policy. The 

adaptive control is an online design approach which is able to deal with uncertainties, is 

generally not optimal in the sense of minimizing a formal performance function as specified 

for the optimal control. Thus, to have both features of control design, it is desired to design 

online adaptive optimal control. The adaptive optimal control is designed either by adding 

optimality features to adaptive control (e.g. the adaptation of control parameters is done by 

seeing the desired performance improvement reflected by an optimality criterion functional) 

or by adding adaptive features to optimal control (e.g. optimal control policy is improved 

relative to the adaptation of parameters of system model). 

There are basically two ways of solving the associated optimal control problem; one is 

Pontryagin’s minimum principle and the other is Bellman’s dynamic programming (DP) [7, 42, 

71]. However, the solution of Hamilton-Jacobi-Bellman (HJB) equation associated with DP 

has a computational complexity. The infinite horizon optimal control design using linear 

quadratic regulator (LQR) by offline solution of algebraic Riccati equation (ARE) and HJB 

equation require the complete knowledge of the system dynamics. 
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Policy iteration (PI) technique is a computational intelligence technique that belongs to 

reinforcement learning (RL) algorithms [123-126]. The online PI technique provides an online 

adaptive optimal control solution for an infinite horizon problem subject to the real-time 

dynamics of a continuous-time system. Based on actor-critic structure, PI algorithms consist 

of two-step iteration: policy evaluation and policy improvement. Instead of solving HJB 

equation by direct approach, the PI algorithm starts by evaluating the cost of a given initial 

admissible control policy, which is often accomplished by solving a nonlinear Lyapunov 

equation. This updated cost is then used to obtain an updated improved control policy which 

will have a lower associated cost. This is often accomplished by minimizing a Hamiltonian 

function with respect to the updated cost [124, 125, 155, 156, 158-160, 166]. This is the so-

called `greedy policy' with respect to the updated cost [158]. These two steps of policy 

evaluation and policy improvement are repeated until the policy improvement step no longer 

changes the actual policy and thus converging to the optimal control. It is noted that the 

infinite horizon cost can be evaluated only in the case of admissible and stabilizing control 

policies. Admissibility is in fact a condition for the control policy which is used to initialize the 

algorithm [158]. PI algorithm requires an initial stabilizing control policy, but value iteration 

(VI) algorithm does not require an initial stabilizing control policy ing control policy, but VI 

does not require an initial stabilizing control policy [124, 125, 158]. The PI technique based 

adaptive critic scheme performs adaptive optimal control without using complete knowledge 

of the system dynamics. The knowledge of systems internal dynamics (i.e. matrix A) is not 

needed for evaluation of cost or the update of control policy; only the knowledge of input 

matrix B is required for updating the control policy. Thus this control scheme becomes 

partially model-free. The online PI algorithm solves the optimal control problem along a 

single state trajectory, which does not require knowledge of the system internal dynamics, 

and thus can be viewed as a direct adaptive optimal control technique. Unlike the regular 

adaptive controllers which rely on online identification of system dynamics followed by model 

based controller design, the PI method relies on identification of cost function associated with 

a given control policy followed by policy improvement in sense of minimizing the identified 

cost.  

The Adaptive optimal control using PI technique is presented for linear systems in 

[155-158, 161, 162, 166, 169], and for nonlinear systems using neural networks in actor-critic 

configuration in [123, 158-165, 167]. Even though adaptive critic is successfully implemented 

in several real-life problems; the performance investigation of the adaptive critic control 

scheme with practical applications is not explored much in the literature. Even certain recent 

papers are appeared on adaptive critic designs and PI technique with certain applications, 

the comprehensive analysis with practical applications is much desired.  
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In this chapter the performance analysis of adaptive optimal control using PI technique 

for continuous-time LTI systems is presented comprehensively. The application of PI based 

control scheme is implemented for certain general and practical examples of LTI systems- 

general LTI SISO system, higher-order LTI system- a mechanical system, load frequency 

control (LFC) of power system, automatic voltage regulator (AVR) of power system, and DC 

motor speed control system.  

4.2 INFINITE HORIZON OPTIMAL CONTROL OF CONTINUOUS-TIME LTI 
SYSTEMS 
The infinite horizon optimal control (i.e. linear quadratic regulator (LQR)) problem using 

policy iteration technique for continuous-time LTI systems without using the complete 

knowledge of system internal dynamics is presented in this section [71, 144, 155, 156]. 

Consider the continuous-time linear time-invariant dynamical system described by 

( ) ( ) ( )t A t B t= +x x u                    (4.1) 

where ( ) nt ∈x R , ( ) mu t ∈R  and ( ,  )A B  is stabilizable, subject to the optimal control 

problem 

0

0 0
*

( )
( ) arg  min ( , ( ), ( ))

t t
u t

u t V t x t u t
≤ ≤∞

=                  (4.2) 

where the infinite horizon quadratic cost function to be minimized is expressed as 

0
0 0( ( ), ) ( ( ) ( ) ( ) ( ))T T

t
V x t t x Qx u Ru dτ τ τ τ τ

∞
= +∫                    (4.3) 

with 0,  0Q R≥ > and 1 2( , )Q A detectable. 

The solution of this optimal control problem, determined by Bellman's optimality 

principle, is given by 

( ) ( )t K t= −u x    with 1 TK R B P−=                   (4.4) 

where the matrix P is the unique positive definite solution of the Algebraic Riccati Equation 

(ARE) 
1 0T TA P PA PBR B P Q−+ − + =                   (4.5) 

Equation (4.4) gives a stabilizing closed loop controller determined from the unique 

positive semi-definite solution of ARE under the detectability condition. Here to solve (4.5), 

both system matrix A and control input matrix B must be known i.e. complete knowledge of 

the system dynamics is required. Due to this reason, the development of algorithms that will 

converge to solution of optimization problem without performing prior system identification 

and using explicit models of system dynamics is needed from the control systems point of 

view.  
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4.3 CONTINUOUS-TIME ADAPTIVE CRITICS 
In adaptive critic design (ACD), (4.4) and (4.3) or (4.5) are represented by two 

parametric function approximation networks namely action network (actor) and critic network 

(critic) respectively. The action network which provides control signals represents the 

relationship between state and input. The critic network which learns the desired 

performance index for some performance index/cost function represents the relationship 

between state and costate vector. The critic evaluates the performance of actor and the actor 

is improved based on the feedback from the critic network. These two functional networks 

approximating HJB equation which leads to ARE for linear systems, successively adapt to 

determine the optimal control solution for a system. In general, ACD uses incremental 

optimization combined with a parametric structure to efficiently approximate the optimal cost 

and control. In ACD a short-term cost metric is optimized that ensures optimization of the 

cost over all future times. ACDs function as supervised learning systems and reinforcement 

learning systems [124-126, 143]. 

4.4 POLICY ITERATION TECHNIQUE 
In this section, online policy iteration technique which gives optimal control solution of 

the LQR problem, without using knowledge of the system internal dynamics (i.e. system 

matrix A) is presented. It gives an adaptive controller which converges to the state feedback 

optimal controller. The policy iteration technique [124-126, 155, 156, 158-160, 166]] is based 

on an actor-critic structure, consists of two-step iteration- critic update and actor update. For 

a given stabilizing controller critic computes the associated infinite horizon cost. The actor 

computes the control policy and is represented by its parameters (i.e. feedback controller 

gain) [155, 156]. 

4.4.1 Policy Iteration Algorithm 

Let a stabilizing gain K for (1), under the assumption that ( ,  )A B  is stabilizable, such 

that ( )A BK= −x x  is a stable closed loop system. Then the corresponding infinite horizon 

quadratic cost is given by 

( ( )) ( )( ) ( ) ( ) ( )T T T T

t
V t Q K RK d t P tτ τ τ

∞
= + =∫x x x x x                        (4.6) 

where P is the real symmetric positive definite solution of the Lyapunov matrix equation 

( ) ( ) ( )T TA BK P P A BK K RK Q− + − = − +                 (4.7) 

and ( ( ))V tx serves as a Lyapunov function for (1) with controller gain K. The cost function 

(4.6) can be written as 

( ( )) ( )( ) ( ) ( ( ))
t T T T

t
V t Q K RK d V t Tτ τ τ

+
= + + +∫x x x x                   (4.8) 
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Based on (4.8), denoting ( )tx  with tx , with parameterization ( ) T
t t tV P=x x x  and 

considering an initial stabilizing control gain 1K , following two-step online policy iteration 

algorithm can be implemented: 

1. Policy evaluation 

( )
t TT T T T

t i t i i t T i t Tt
P Q K RK d Pτ τ τ

+

+ += + +∫x x x x x x                  (4.9) 

2. Policy improvement 
1

1
T

i iK R B P−
+ =                           (4.10) 

Equations (4.9) and (4.10) formulate a new policy iteration algorithm. It is important to 

note that this algorithm does not require system matrix A for its solution, only control input 

matrix B must be known for updating K. 

4.4.2 Convergence Analysis 
The convergence of policy iteration algorithm is discussed in this subsection referring 

the lemmas, remarks and theorems in [155, 156]. 

Let i iA A BK= − , then for the system iA=x x , a Lyapunov function may be 

( ) ,  T
i t t i t tV P= ∀x x x x , and 

( ) ( ) ( )
T

T T T Tt i t
t i i i i t t i i t

d P A P P A K RK Q
dt

= + = − +
x x x x x x              (4.11)

then, 0T∀ > , from (4.11) we may have 

 
( )( )

Tt T t TT T T Tt i t
t i i t t i t t T i t Tt t

d PQ K RK d d P P
dt

τ τ
+ +

+ ++ = − = −∫ ∫
x xx x x x x x           (4.12) 

which is same as (4.9). From (4.11) the Lyapunov equation is 

( )T T
i i i i i iA P P A K RK Q+ = − +                 (4.13) 

For a stabilizing control policy iK  the matrix iA  is stable and 0T
i iK RK Q+ > then 

there exists a unique solution of the Lyapunov equation (4.13), 0iP > . Thus if iA  is 

asymptotically stable, the solution of (4.9) is the unique solution of (4.13), and thus both (4.9)

and (4.13) are equivalent. Although the same solution is obtained whether solving (4.13) or 

(4.9), (4.9) can be solved without using any knowledge on the system matrix A. Thus, PI 

algorithm (4.9) & (4.10) is equivalent to iterating between (4.13) & (4.10), without using 

knowledge of the system internal dynamics, if iA  is stable at each iteration. 

Let the control policy iK  is stabilizing with the associated cost ( ) T
i t t i tV P=x x x . For 

the state trajectories generated while using the controller 1iK + , take the positive definite cost 
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function ( )i tV x  as a Lyapunov function candidate. Taking the derivative of ( )i tV x  along the 

trajectories generated by 1iK +  one obtains 

1 1

1 1

( ) [ ( ) ( ) ]

         [ ( ) ( ) ] [ ( ) ( ) ]

T T
i t t i i i i t

T T T T T
t i i i i t t i i i i i i t

V P A BK A BK P
P A BK A BK P PB K K K K B P

+ +

+ +

= − + −

= − + − + − + −

 x x x
x x x x       (4.14) 

Using the policy update given by (4.10) and completing the squares, the second term can be 

written as 

1 1 1 1 1 1 1 1[ ( ) ( ) ] [ ( ) ( ) ]T T T T T T T
t i i i i i i t t i i i i i i i i tK R K K K K RK K K R K K K RK K RK+ + + + + + + +− + − = − − − − +x x x x  

Using (4.13) the first term in the equation can be written as [ ]T T
t i i tK RK Q− +x x  and summing 

up the two terms one obtains 

 1 1 1 1( ) [( ) ( )] [ ]T T T T
i t t i i i i t t i i tV K K R K K Q K RK+ + + += − − − − + x x x x x            (4.15) 

Thus, under the initial assumptions from the problem setup 0, 0Q R≥ > , ( )i tV x  is a 

Lyapunov function proving that the updated control policy 1iK += −u x  is stabilizing with 1iK +  

given by (4.10), and thus, if (4.10) is used for updating the control policy then the new control 

policy will be stabilizing. Thus it is concluded that if the initial control policy given by 1K  is 

stabilizing, then all policies obtained using the iteration (4.9)-(4.10) will be stabilizing policies.  

Let ( )iRic P  be the matrix valued function defined as 

1( ) T T
i i i i iRic P A P P A PBR B P Q−= + − +                (4.16) 

and let '
iPRic  denote the Fréchet derivative of ( )iRic P  taken with respect to Pi. The matrix 

function '
iPRic  evaluated at a given matrix M will thus be 

' 1 1( ) ( ) ( )
i

T T T
P i iRic M A BR B P M M A BR B P− −= − + − . 

Equations (4.11) and (4.10) can be compactly written as 
1

1 1( )T T
i i i i i iA P P A P BR B P Q−

− −+ = − +                 (4.17) 

Subtracting 1 1
T
i i i iA P P A− −+  on both sides gives 

1
1 1 1 1 1 1( ) ( ) ( )T T T

i i i i i i i i i iA P P P P A P A A P P BR B P Q−
− − − − − −− + − = − + − +            (4.18) 

which is Newton’s method 

 
1

' 1
1 1( ) ( )

ii i P iP P Ric Ric P
−

−
− −= −                 (4.19) 

Thus, the iteration between (4.9) and (4.10) is equivalent to Newton's method 

formulation (4.19) by use of the introduced notations ( )iRic P  and '
iPRic . Newton's method, 

i.e. iteration (4.13) & (4.10), conditioned by an initial stabilizing policy will converge to the 

solution of ARE. And, if the initial policy is stabilizing, all the subsequent control policies will 

be stabilizing. This proven equivalence between (4.13) & (4.10), and (4.9) & (4.10), shows 
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that the online policy iteration algorithm will converge to the solution of the optimal control 

problem (4.2) with the infinite horizon quadratic cost (4.3) without using knowledge of the 

internal dynamics of the controlled system (4.1). Thus, under the assumptions of 

stabilizability of ( ,  )A B and detectability of 1 2( , )Q A  , with 0, 0Q R≥ >  in the cost index (4.2), 

the policy iteration (4.9) & (4.10), conditioned by an initial stabilizing controller, converges to 

the optimal control solution given by (4.3) where the matrix P satisfies the ARE (4.4).  

Thus the only requirement for convergence to the optimal controller consists in an 

initial stabilizing policy that will guarantee a finite value for the cost 1 1( ) T
t t tV P=x x x . Under 

the assumption that the system to be controlled is stabilizable and implementation of an 

optimal state feedback controller is possible and desired. It is reasonable to assume that a 

stabilizing (though not optimal) state feedback controller is available to begin the iteration. In 

fact in many cases the system to be controlled is itself stable such that the initial controller 

can be chosen as zero. 

4.5 ADAPTIVE OPTIMAL CONTROL USING POLICY ITERATION TECHNIQUE 
This section presents the online implementation of policy iteration algorithm based 

adaptive optimal control without using knowledge of the system internal dynamics. The 

implementation of PI algorithm only needs knowledge of B matrix which explicitly appears in 

(4.10). The system matrix A is not required for computation of either of two steps of PI 

algorithm, as that information is embedded in the states ( )tx  and ( )t T+x  which are 

observed online.  

Associated with the policy iK , to find the critic parameters (matrix iP ) of the cost 

function in (4.9), the term ( ) ( )T
it P tx x  is written as 

( ) ( ) ( )T T
i it P t p t=x x x                  (4.20) 

where ( )tx  denotes the Kronecker product quadratic polynomial basis vector with the 

elements 1, ; ,{ ( ) ( )}i j i n j i nx t x t = =  and ( )p v P=  with ( )v   a vector valued matrix function that acts 

on symmetric matrices and returns a column vector by stacking the elements of the diagonal 

and upper triangular part of the symmetric matrix into a vector where the off-diagonal 

elements are taken as 2 ijP  [155, 156]. Using (4.20), (4.9) is rewritten as 

( ( ) ( )) ( )( ) ( )
t TT T T

i i it
p t t T Q K RK dτ τ τ

+
− + = +∫x x x x                (4.21) 

In this equation ip  is the vector of unknown parameters and ( ) ( )t t T− +x x  acts as a 

regression vector. The right hand side target function is denoted by ( ( ), )id t Kx  (also known 

as the reinforcement on the time interval [ , ]t t T+ ), 
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( ( ), ) ( )( ) ( )
t T T T

i i it
d t K Q K RK dτ τ τ

+
≡ +∫x x x  

is measured based on the system states over the time interval [ , ]t t T+ . System (4.1) is 

augmented by introducing a new state ( )V t  defined as ( ) ( ) ( ) ( ) ( )T TV t t Q t t R t= + x x u u , and 

so the value of ( ( ), )id t Kx  can be measured by taking two measurements of this newly 

introduced system state since ( ( ), ) ( ) ( )id t K V t T V t= + −x . This new state signal is the 

output of an analog integration block having as inputs the quadratic terms ( ) ( )T t Q tx x  and 

( )R ( )T t tu u  which can also be obtained using an analog processing unit. 

The parameter vector pi  of the function ( )i tV x  (i.e. critic), which will then yield the 

matrix iP , is found by minimizing, in the least-squares sense, the error between the target 

function, ( ( ), )id t Kx , and the parameterized left hand side of (4.21). Evaluating the right 

hand side of (4.21) at ( 1) / 2N n n≥ +  (the number of independent elements in the matrix iP ) 

points ix in the state space, over the same time interval T, the least-squares solution is 

obtained as 
1( )T

ip −= XX XY                  (4.22) 

where  
1 2[     ...   ]N
∆ ∆ ∆=X x x x , ( ) ( )i i it t T∆ = − +x x x , 1 2[ ( , )  ( , )  ... ( , )]N T

i i id K d K d K=Y x x x  

The least-squares problem can be solved in real-time after a sufficient number of data 

points are collected along a single state trajectory, under the regular presence of an 

excitation requirement. Alternatively, (4.22) can be solved also using recursive estimation 

algorithms (e.g. gradient descent algorithms or the recursive least squares (RLS) algorithm) 

in which case a persistence of excitation condition is required. Due to this reason there are 

no real issues related to the algorithm becoming computationally expensive with the increase 

of the state space dimension [155, 156].  

In the case in which the cost function (4.9) is solved for in a single step (e.g. using a 

method such as the exact least-squares described by (4.22)), the online algorithm has the 

same quadratic convergence speed as Newton's method. For the case in which the solution 

of (4.9) is obtained iteratively, the convergence speed of the online algorithm will decrease. 

In this case at each step in the PI algorithm (which involves solving (4.9) & (4.10)) a 

recursive gradient descent algorithm, which most often has exponential convergence, will be 

used for solving (4.10). Thus it is resolved that the convergence speed of the online 

algorithm will depend on the chosen technique for solving (4.9).  Even the convergence 

property of online algorithm is not affected by the value of sample time T; it affects the 

excitation condition necessary in the setup of a numerically well posed least squares problem 
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and obtaining the least squares solution (4.22). More precisely, assuming without loss of 

generality that the matrix X in (4.22) is square, and letting 0ε >  be a desired lower bound on 

the determinant of X, then the chosen sampling time T must satisfy 

1

( )
n

I c
I

aT
A

ε

λ
=

>

∏
                  (4.23) 

where Iλ  denotes the eigenvalues of closed loop system and 0a >  is a scaling factor. From 

this point of view a minimal insight relative to the system dynamics would be required for 

choosing the sampling time T [155, 156]. 

The online PI algorithm requires only measurements of states at discrete moments in 

time, t and t+T, as well as knowledge of observed cost over time interval [ , ]t t T+ , which is 

( ( ), )id t Kx . Therefore, knowledge of system matrix A is not required for the cost evaluation 

or the control policy update, and only the matrix B is required for the control policy update, 

using (4.10), which makes the tuning algorithm only partially model-free. The PI algorithm 

converges to optimal control solution measuring cost along a single state trajectory, provided 

that there is enough initial excitation in the system. Since the algorithm iterates only on 

stabilizing policies which will make the system states go to zero, sufficient excitation in the 

initial state of the system is necessary. In the case that excitation is lost prior to obtaining the 

convergence (system reaches the equilibrium point) a new experiment needs to be 

conducted having as a starting point the last policy from the previous experiment. In this 

case, the control policy is updated at time t+T, after observing the state ( )t T+x  and it is 

used for controlling the system during the time interval [ , 2 ]t T t T+ + . The critic stops 

updating the control policy when the difference between the system performances evaluated 

at two consecutive steps crosses below a designer specified limit, i.e. the algorithm has 

converged to the optimal controller. Also in the case that this error is bigger than this 

specified limit the critic again starts tuning the actor parameters to obtain an optimal control 

policy. If there is a sudden change in system dynamics described by the matrix A as long as 

the present controller is stabilizing for the new matrix A, the algorithm will converge to the 

solution to the corresponding new ARE. Thus the algorithm is suitable for online 

implementation from the control theory point of view. 

Fig. 4.1 [155, 156] shows the schematic block diagram of adaptive optimal control with 

actor-critic structure for LTI system. Since the system is augmented with an extra state ( )V t  

that is part of the adaptive critic control scheme thus this controller is actually a dynamic 

controller with the cost state. This adaptive optimal controller has a hybrid structure with a 

continuous-time internal state followed by a sampler and discrete-time update rule. The 

application of the proposed control scheme is presented in the following section 5. 
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Fig. 4.1 Adaptive optimal control with actor-critic structure. 

4.6 SIMULATION RESULTS AND ANALYSIS 
This section presents the systems modeling, simulation results and performance 

analysis to demonstrate the application of adaptive optimal control using online PI technique 

considering general and practical examples of LTI systems- general LTI SISO system, 

higher-order LTI system- a mechanical system, load frequency control (LFC) of power 

system, automatic voltage regulator (AVR) of power system, and DC motor speed control 

system. 

4.6.1 General LTI SISO System 
Consider a general LTI SISO dynamical system described by the transfer function [7] 

3 2

( ) 3( )
( ) 9 24 20

+
= =

+ + +
Y s sG s
U s s s s

               (4.24) 

The state space model of this system is given as 

1 1

2 2

3 3

0 1 0 0
0 0 1 0
20 24 9 1

       
       = +       
       − − −       







x x
x x u
x x

  and  [ ]
1

2

3

3 1 0
 
 =  
  

x
y x

x
 

For system (4.24), in implementation of PI algorithm the initial conditions for states 

and cost function, and critic parameters are taken as 0 [0.1,0.2,0.1,0]x = ; 
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[ ]0 0 0;0 0 0;  0 0 0P = . The length of the simulation in samples is taken 60, and sample 

time T=0.05 seconds. The cost function parameters Q and R are taken as identity matrices of 

appropriate dimensions. The unique positive definite solution of ARE (4.5), denoted here by 

matrix RicP, and adaptive optimal critic matrix P of adaptive critic scheme using PI in (4.9) & 

(4.10) with (4.22) respectively are obtained as 

2.2818 1.5196 0.0250
1.5196 2.2882 0.0840
0.0250 0.0840 0.0647

RicP
 
 =  
  

 

2.2818 1.5196 0.0250
1.5196 2.2882 0.0840
0.0250 0.0840 0.0647

P
 
 =  
  

 

, and the actor gains of LQR design by (4.4) & (4.5) denoted here by RicK , and actor K by 

adaptive critic scheme using PI in (4.10) respectively are obtained as 

[ ]0.0250 0.0840 0.0647RicK =  

[ ]0.0250 0.0840 0.0647K =  
The eigenvalues of closed loop system are obtained as 

 -1.9662 + 0.1893i, -1.9662 - 0.1893i, -5.1323 

The simulation responses using PI technique for LTI system (4.24) are shown in Figs. 

2 to 6. Fig. 4.2 shows the system state trajectories which converge towards the equilibrium 

point. Fig. 4.3 shows the control signal trajectory which also converges towards zero. Fig. 4.4 

shows the evolution of closed loop poles of the system during simulation. Fig. 4.5 shows the 

convergence of critic parameters of matrix P towards optimal values. Fig. 4.6 shows P 

parameters updating with iteration, here * at one indicate update, and * at zero indicate no 

update. 

Simulation with change in system parameter is also done at sample k=21;  (i.e. t=1.05 

seconds), such that A(3,1)=-22, then the solution is obtained as 

2.5057 1.6406 0.0227
1.6406 2.3494 0.0890
0.0227 0.0890 0.0652

RicP
 
 =  
  

 

2.2818 1.5196 0.0250
1.5196 2.2882 0.0840
0.0250 0.0840 0.0647

P
 
 =  
  

 

[ ]0.0227 0.0890 0.0652RicK =  

[ ]0.0250 0.0840 0.0647K =  
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The eigenvalues of closed loop system are obtained as 

-1.8771 + 0.7899i, -1.8771 - 0.7899i, -5.3106    

Fig. 4.7 shows the evolution of closed loop poles of the system during simulation with 

change in system parameter at sample k=21. The remaining responses obtained are same 

as above in this case. Fig. 4.8 presents the closed loop response of LTI system (4.24) using 

both approaches of LQR and adaptive critic (AC) using PI technique. It remains exactly the 

same also for case with change in system parameters. It is observed here that the adaptive 

optimal controller using PI technique gives the similar response as of standard LQR. 

It is observed from the above simulation results that critic parameter matrix P and 

actor parameter K obtained using PI technique are converging adaptively to optimal values 

and are of same values of RicP and RicK respectively that obtained from LQR approach. 

Also in case of change in the system parameter in real situation the controller adapts it and 

converges to same optimal values. Thus the actor K and critic P parameters remain 

unchanged. The analysis of the above simulation results demonstrates that the proposed 

adaptive optimal control scheme is partially model-free, effective & robust. 

 

 
Fig. 4.2 System states. 
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Fig. 4.3 Control signal. 

 
Fig. 4.4 Evolution of poles of closed loop system. 
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Fig. 4.5 Critic parameters. 

 
Fig. 4.6 Updating of critic parameters. 
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Fig. 4.7 Evolution of poles of closed loop system with change in system parameters at k=21. 

 
Fig. 4.8 Unit step response of closed loop system. 
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4.6.2 General Higher Order LTI System- A Mechanical System 
Consider a mechanical system shown in Fig. 4.9 as a practical example of higher 

order LTI system [1]. The system is at rest for t<0, At t=0, a step force f of α newton is 

applied to mass 2m . The force f uα= , where u is a step force of 1 newton. The 

displacements 1y  and 2y  are measured from the respective equilibrium positions of the carts 

before f is applied. Assume the system parameters: 1 10m = kg, 2 20m = kg, 20b = N-s/m,  

1 30k = N/m, 2 60k = N/m, and 10α = . The dynamic equations for this system are written as 

1 1 1 1 2 1 2 1 2( ) ( )m y k y k y y b y y= − − − − −                 (4.25) 

2 2 2 2 1 2 1( ) ( )m y k y y b y y uα= − − − − +                  (4.26) 

 

 
Fig. 4.9 Mechanical system 

Considering the state variables as 1 1x y= , 2 1x y=  , 3 2x y= , 4 2x y=  , and the output 

variables as 1y , 2y , the state space model of the system is written as 

X AX Bu
y CX Du
= +
= +



                  (4.27) 

where,  

1 2 2

1 1 1 1

2 2

2 2 2 2

0 1 0 0

0 0 0 1

k k kb b
m m m m

A

k kb b
m m m m

 
 + − −
 

=  
 
 

− − 
 

, 

2

0
0
0B

m
α

 
 
 

=  
 
 
  

, 
1 0 0 0
0 0 1 0

C  
=  
 

, 
0
0

D  
=  
 

 

At the above system parameters values we have 

0 1 0 0
9 2 6 2

0 0 0 1
3 1 3 1

A

 
 − − =
 
 − − 

, 

0
0
0

0.5

B

 
 
 =
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For this higher order LTI system which is defined by (4.27), in implementation of PI 

algorithm the initial conditions for states and cost function, and critic parameters are taken as 

0 [0.5,0.2,0.1,0,0]x = ; [ ]0 0 0 0;  0 0 0 0;  0 0 0 0; 0 0 0 0P = .  

The length of the simulation in samples is taken 120, and sample time T=0.05 

seconds. The cost function parameters Q and R are taken as identity matrices of appropriate 

dimensions. The unique positive definite solution of ARE (4.5), denoted here by matrix RicP, 

and adaptive optimal critic matrix P of adaptive critic scheme using PI in (4.9) & (4.10) with 

(4.22) respectively are obtained as 

2.3433 0.2224 0.2824 0.8069
0.2224 0.5692 0.5492 0.9811
0.2824 0.5492 3.2418 1.2046
0.8069 0.9811 1.2046 2.7331

RicP

− − − 
 − =
 −
 − 

 

2.3443 0.2224 0.2827 0.8072
0.2224 0.5693 0.5492 0.9813
0.2827 0.5492 3.2425 1.2048
0.8072 0.9813 1.2048 2.7337

P

− − − 
 − =
 −
 − 

 

, and the actor gains of LQR design by (4.4) & (4.5) denoted here by RicK , and actor K by 

adaptive critic scheme using PI in (4.10) respectively are obtained as 

 [ ]0.4034 0.4906 0.6023 1.3666RicK = −  , [ ]0.4036 0.4907 0.6024 1.3669K = −  

The eigenvalues of closed loop system are obtained as 

-1.4796 + 2.9795i, -1.4796 - 2.9795i, -0.3621 + 0.9042i, -0.3621 - 0.9042i 

The simulation responses using PI technique for higher order LTI system (4.27) are 

shown in Figs. 4.10 to 4.14. Fig. 4.10 shows the system state trajectories which converge 

towards the equilibrium point. Fig. 4.11 shows the control signal trajectory which also 

converges towards zero. Fig. 4.12 shows the evolution of closed loop poles of the system 

during simulation. Fig. 4.13 shows the convergence of critic parameters of matrix P towards 

optimal values. Fig. 4.14 shows P parameters updating with iteration, here * at one indicate 

update, and * at zero indicate no update. Fig. 4.15 presents the closed loop response of 

higher order LTI system (4.27) using both approaches of LQR and adaptive critic (AC) using 

PI technique. It is observed here that the adaptive optimal controller using PI technique gives 

the similar responses as of standard LQR. 

Simulation with change in system parameter is also done at sample k=41;   (i.e. 

t=2.05 seconds), as 1 40k = N/m, such that  A(2,1)=-10, then the solution is obtained as 
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2.6885 0.2612 0.3383 0.9959
0.2612 0.4903 0.5106 0.8273
0.3383 0.5106 3.3735 1.1342
0.9959 0.8273 1.1342 2.5046

RicP

− − − 
 − =
 −
 − 

 

2.3443 0.2224 0.2827 0.8072
0.2224 0.5693 0.5492 0.9813
0.2827 0.5492 3.2425 1.2048
0.8072 0.9813 1.2048 2.7337

P

− − − 
 − =
 −
 − 

 

and the actor gains RicK and K respectively are obtained as 

[ ]0.4980 0.4136 0.5671 1.2523RicK = −  , [ ]0.4036 0.4907 0.6024 1.3669K = −  

The eigenvalues of closed loop system are obtained as 

-1.4546 + 3.1006i, -1.4546 - 3.1006i, -0.3872 + 1.0133i, -0.3872 - 1.0133i 

The simulation responses using PI technique for the case of change in system 

parameter are similar as above. In this case Fig. 4.16 shows the evolution of closed loop 

poles adapting the controller. For the case of change in parameters of system (4.27) Fig. 

4.17 shows the closed loop response using both approaches of LQR and adaptive critic (AC) 

using PI technique. It is observed here also that the adaptive optimal controller using PI 

technique gives the similar responses as of standard LQR. The controller performs adapting 

the change in system parameters.  

It is observed in the above simulation results that critic parameter matrix P and actor 

parameter K obtained using PI technique are converging adaptively to optimal values and 

are mostly of same values of RicP and RicK respectively that obtained from LQR approach. 

Also in case of change in the system parameter in real situation the controller adapts it and 

converges to same optimal values. Thus the actor K and critic P parameters remain 

unchanged. The analysis of the above simulation results demonstrates that the proposed 

adaptive optimal control scheme is partially model-free, effective & robust. 
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Fig. 4.10 System states. 

 

 
Fig. 4.11 Control signal. 
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Fig. 4.12 Evolution of poles of closed loop system. 

 
Fig. 4.13 Critic parameters. 



 

147 

 

 
Fig. 4.14 Updating of critic parameters. 

 
Fig. 4.15 Unit step responses of closed loop system. 
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Fig. 4.16 Evolution of closed loop poles with change in system parameters at k=41. 

 
Fig. 4.17 Unit step responses of closed loop system with change in system parameters at 

k=41. 
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4.6.3 Load Frequency Control System 
The active power and frequency control is known as load frequency control (LFC), 

which plays an important function of power system operation where the main objective is to 

regulate the output power of each generator at prescribed levels while keeping the frequency 

fluctuations with in predetermined limits [182-185]. In the large scale interconnected power 

systems the system frequency and the inter-area tie-line power are required to be near to the 

scheduled values as possible. LFC is required to be robust to the unknown external 

disturbances and system model and parameter uncertainties. Many control strategies for 

power systems load frequency control have been presented in literature [26, 28, 98, 99, 182-

185, 188-198].  

In this section the incremental linear system models of LFC without and with integral 

control both are considered to investigate the performance of proposed control scheme also 

under the system’s structural change. The performance is also investigated for change in 

system parameters at certain instant of time to demonstrate that the proposed approach is 

partially model-free. 

4.6.3.1 LFC System model without integral control 
The functional block diagram of single-area power system load frequency control 

without integral control model is shown in Fig. 4.18 [26, 28, 182] 

 
Fig. 4.18 Block diagram of load frequency control of power system. 

The state space model of the system is derived as following 

( ) ( ) ( )dx Ax t Bu t F P t= + + ∆                 (4.28) 

( ) ( )y f t Cx t= ∆ =                  (4.29) 

where state vector ( ) [ ( )   ( )   ( )]T
g gx t f t P t X t= ∆ ∆ ∆ ; ( )f t∆  is incremental frequency deviation 

(Hz); ( )gP t∆ is incremental change in generator output (p.u. MW); ( )gX t∆  is incremental 

change in governor value position (p.u. MW); ( )dP t∆ is load disturbance (p.u. MW); R is 
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speed regulation due to governor action (Hz. p.u. MW-1); GT  is governor time constants (s); 

TT is turbine time constants (s); PT is plant model constants (s); PK is plant gain; and 

1 0

1 10

1 10

P

P P

T T

G G

K
T T

A
T T

RT T

 
− 

 
 

= − 
 
 
− − 
 

,  
0
0
1

G

B

T

 
 
 

=  
 
 
  

,  0
0

P

P

K
T

F

 − 
 

=  
 
 
  

,  [ ]1 0 0C =  

The range of LFC system parameters [26, 28, 188-192] is  

1 [0.033,0.1]
PT
∈ , [4,12]P

P

K
T

∈ , 
1 [2.564,4.762]
TT
∈ , 

1 [9.615,17.857]
GT
∈ ,  

1 [3.081,10.639]
GRT
∈  

Considering the values of system parameters around the above range, let we have 

0. 11.5 0
0 2.5 2.5
9.5 0

0665

13.7360
A

− 
 = − 
 − −

, 
0
0

13.7360
B

 
 =  
  

, 
11.5
0
0

F
− 
 =  
  

  

The LFC system transfer function is given by 

3 2

( ) 394.9( )
( ) 16.3 35.42 275.4
f sG s

u s s s s
∆

= =
+ + +

 

For implementation of PI algorithm the initial conditions for states and cost function, 

and critic parameters are taken as 0 [0,0.1,0,0]x = ; [ ]0 0 0;0 0 0;  0 0 0P = . The length of 

simulation in samples is taken 60, and sample time T=0.05 seconds. The cost function 

parameters Q and R are taken as identity matrices of appropriate dimensions. The unique 

positive definite solution of ARE (4.5), denoted here by matrix RicP, and adaptive optimal 

critic matrix P of adaptive critic scheme using PI in (4.9) & (4.10) with (4.22) respectively are 

obtained as 

0.3600 0.5313 0.0367
0.5313 1.5662 0.1690
0.0367 0.1690 0.0500

RicP
 
 =  
  

  ,  
0.3673  0.5357 0.0367
0.5357 1.5967 0.1733
0.0367 0.1733 0.0507

P
 
 =  
  

 

, and the actor gains of LQR design by (4.4) & (4.5) denoted here by RicK , and actor K by 

adaptive critic scheme using PI in (4.10) respectively are obtained as 

[ ]0.5044 2.3212 0.6867RicK = , [ ]0.5040 2.3811 0.6962K =  
The eigenvalues of closed loop system are obtained as 

-19.9774, -2.9441 + 3.9285i, -2.9441 - 3.9285i 
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Simulation with change in system parameter is also done at sample k=21; (i.e. t=1.05 

seconds), such that A(2,2)=-4, and A(2,3)=4; then the solution is obtained as 

0.3006 0.3466 0.0370
0.3466 0.7568 0.1243
0.0370 0.1243 0.0532

RicP
 
 =  
  

,  
0.3673  0.5357 0.0367
0.5357 1.5967 0.1733
0.0367 0.1733 0.0507

P
 
 =  
  

 

and the actor gains RicK and K respectively are obtained as 

[ ]0.5077 1.7077 0.7305RicK = , [ ]0.5040 2.3811 0.6962K =  
The eigenvalues of closed loop system are obtained as 

 -5.4251 + 4.1489i, -5.4251 - 4.1489i, -16.5154 

Figs. 4.19 to 4.24 shows the simulation responses of LFC model (4.28) & (4.29) with 

ACD using PI technique. Fig. 4.19 shows system state trajectories which converge towards 

the equilibrium point. Fig. 4.20 shows control signal trajectory which also converge towards 

zero. Fig. 4.21 shows evolution of closed loop poles of the system during simulation. Fig. 

4.22 shows convergence of critic parameters of matrix P towards optimal values. Fig. 2.23 

shows P parameters updating with iteration, here * at one indicate update, and * at zero 

indicate no update. The simulation responses for the case of change in system parameter 

are similar as above and just the evolution of poles changes adapting the controller. The 

evolution of poles of the closed loop system for this case is shown in Fig.4.24. 

Fig. 4.25 presents the closed loop response of LFC system without integral control 

model using both approaches of LQR and adaptive critic (AC). It is observed that the closed 

loop response with unit step load disturbance ( )dP t∆ have steady state error. The adaptive 

optimal controller using ACD gives similar responses as of standard LQR. Fig. 4.26 shows 

closed loop unit step response of load frequency for LFC system without integral control 

model and with change in system parameters using both approaches of LQR and adaptive 

critic (AC). It is observed here that the closed loop response with unit step load disturbance 

( )dP t∆ is unaffected by change in system parameters and remains at same value as before 

but using LQR it is affected by change in system parameters. Thus the controller using ACD 

adapts for change in system internal dynamics.  
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Fig. 4.19 System states 

 

 
Fig. 4.20 Control signal 
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Fig. 4.21 Evolution of poles of closed loop system 

 

 
Fig. 4.22 Critic parameters 
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Fig. 4.23 Updating of critic parameters 

 

 
Fig. 4.24 Evolution of poles of closed loop system with change in system parameter at 

sample k=21 (i.e. t=1.05 seconds), A(2,2)=-4, and A(2,3)=4. 
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Fig. 4.25 Closed loop unit step response of load frequency for LFC system without integral 

control model. 

 
Fig. 4.26 Closed loop unit step response of load frequency for LFC system without integral 

control model and with change in system parameters at sample k=21 (i.e. t=1.05 seconds), 

A(2,2)=-4, A(2,3)=4. 

4.6.3.2 LFC System model with integral control 
The functional block diagram of single-area power system load frequency control with 

integral control model is shown in Fig. 4.27 [189-192]. 
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Fig. 4.27 Block diagram of load frequency control of power system with integral control. 

Introducing an integral control of ( )f t∆ in the LFC system dynamics, the state space 

model of the system is derived by modifying (4.28) & (4.29) as following [189-192]. The state 

( )E t∆ , incremental change in integral control is included in the state vector ( )x t  as, 

( ) [ ( )   ( )   ( )   ( )]T
g gx t f t P t X t E t= ∆ ∆ ∆ ∆ , and  may be defined by 

0
( ) ( )

t

EE t K f t dτ∆ = ∆∫                  (4.30) 

to insure the regulation property of ( )f t∆ , i.e. 

( ) ( )EE t K f t∆ = ∆                  (4.31) 

where, EK is integral control gain; and 

1 0 0

1 10 0

1 1 10

0 0 0

P

P P

T T

G G G

E

K
T T

T TA

RT T T
K

 − 
 
 

− =  
 
− − − 
 
  

, 

0
0
1

0
G

B
T

 
 
 
 =
 
 
  

, 0
0
0

P

P

K
T

F

 − 
 

=  
 
 
  

,  [ ]1 0 0 0C =  

Considering the values of system parameters around the above range, let we have 

0.0665 11.5

13

0 0
0 2.5 2.5 0
9.5 0

0.6 0 0
.7360 1

0
3.7360

A

−

− −

 
 − =
 −
 
 

, 

0
0

13.7360
0

B

 
 
 =
 
 
 

, 

11.5
0
0
0

F

− 
 
 =
 
 
 

 

Under this case the LFC system transfer function is given by 
29

4 3 2

( ) 394.9 2.677 10( )
( ) 16.3 35.42 275.4 236.9
f s sG s

u s s s s s

−∆ + ×
= =

+ + + +
 

For implementation of PI algorithm the initial conditions for states and cost function, 

and critic parameters are taken as 0 [0,0.1,0,0,0]x = ; 
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[ ]0 0 0 0;  0 0 0 0;  0 0 0 0; 0 0 0 0P = . The length of simulation in samples is taken 100, 

and sample time T=0.05 seconds. The cost function parameters Q and R are taken as 

identity matrices of appropriate dimensions. The unique positive definite solution of ARE 

(4.5), denoted here by matrix RicP, and adaptive optimal critic matrix P of adaptive critic 

scheme using PI in (4.9) & (4.10) with (4.22) respectively are obtained as 

0.4600 0.6911 0.0519 0.4642
0.6911 1.8668 0.2002 0.5800
0.0519 0.2002 0.0533 0.0302
0.4642 0.5800 0.0302 2.2106

RicP

 
 
 =
 
 
 

,  

0.5428 0.7621 0.0552 0.5619
0.7621 2.2278 0.2504 0.6393
0.0552 0.2504 0.0610 0.0302
0.5619 0.6393 0.0302 2.3280

P

 
 
 =
 
 
 

 

, and the actor gains of LQR design by (4.4) & (4,5) denoted here by RicK , and actor K by 

adaptive critic scheme using PI in (4.10) respectively are obtained as 

[ ]0.7135 2.7499 0.7323 0.4142RicK = ,  

[ ]0.7587 3.4394 0.8372 0.4142K =   

The eigenvalues of closed loop system are obtained as 

-20.1027, -3.4914 + 3.3266i, -3.4914 - 3.3266i, -0.7168 

Simulation with change in system parameter is also done at sample k=81;   (i.e. 

t=4.05 seconds), such that A(4,1)=0.8, then the solution is obtained as 

0.4981 0.7486 0.0573 0.4837
0.7486 1.9694 0.2106 0.5884
0.0573 0.2106 0.0544 0.0302
0.4837 0.5884 0.0302 1.7894

RicP

 
 
 =
 
 
 

,  

0.5428 0.7621 0.0552 0.5619
0.7621 2.2278 0.2504 0.6393
0.0552 0.2504 0.0610 0.0302
0.5619 0.6393 0.0302 2.3280

P

 
 
 =
 
 
 

 

and the actor gains RicK and K respectively are obtained as 

[ ]0.7869 2.8934 0.7473 0.4142RicK = ,  

[ ]0.7587 3.4394 0.8372 0.4142K =  
The eigenvalues of closed loop system are obtained as 

-20.0826, -1.0625, -3.3286 + 3.1399i, -3.3286 - 3.1399i 
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Figs. 4.28 to 4.33 show simulation responses of LFC with integral control model with 

ACD using PI technique. Fig. 4.28 shows system state trajectories which converge towards 

the equilibrium point. Fig. 4.29 shows control signal trajectory which also converge towards 

zero. Fig. 4.30 shows evolution of closed loop poles of the system during simulation. Fig. 

4.31 shows convergence of critic parameters of matrix P towards optimal values. Fig. 4.32 

shows P parameters updating with iteration, here * at one indicate update, and * at zero 

indicate no update. The simulation responses for the case of change in system parameter 

are similar as above and just the evolution of poles changes adapting the controller. Fig. 4.33 

shows evolution of closed loop poles in this case. 

Fig. 4.34 presents the closed loop response of LFC system with integral control 

model with unit step using both approaches of LQR and adaptive critic (AC). It is observed 

that there is no steady state error in the closed loop responses which is due to including 

integral control in LFC model. The adaptive optimal controller using ACD gives similar 

responses as of standard LQR. Fig. 4.35 presents the closed loop response of load 

frequency with unit step load disturbance ( )dP t∆ for case of change in system parameters. It 

is observed here also that the response of ACD remains exactly the same as before and is 

not affected by change in system parameter. The controller performs adapting the change in 

system parameters. This demonstrates that the proposed control scheme is effective & 

robust. 

 

 
Fig. 4.28 System states 
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Fig. 4.29 Control signal 

 

 
Fig. 4.30 Evolution of poles of closed loop system 
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Fig. 4.31 Critic parameters 

 
Fig. 4.32 Updating of critic parameters 
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Fig. 4.33 Evolution of poles of closed loop system with change in system parameter at 

sample k=81 (i.e. t=4.05 seconds), A(4,1)=0.8. 

 

 
Fig. 4.34 Closed loop unit step response of load frequency for LFC system with integral 

control model. 
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Fig. 4.35 Closed loop unit step response of load frequency for LFC system with integral 

control model and with change in system parameter at sample k=81 (i.e. t=4.05 seconds), 

A(4,1)=0.8. 

 In the above simulation results it is observed that critic parameter matrix P and actor 

parameter K obtained from control scheme of ACD using PI technique are converging 

adaptively to optimal values and RicP and RicK respectively are mostly of same values to 

that obtained from LQR approach. Also in case of change in system parameter in real 

situation the controller adapts it and converges to same optimal values. Thus the actor K and 

critic P parameters remain unchanged. 

Analyzing the simulation results obtained for LFC system in all the above mentioned 

cases of system models without & with integral control, and changes in system parameters 

applying adaptive critic control using online PI technique, it is established that this adaptive 

critic control scheme provides a promising adaptive optimal control solution for dynamical 

systems without complete knowledge of the system dynamics. The structural change 

introduced in system dynamics by including integral control is augmenting the system 

behavior such as of its credit that removing the steady state error in closed loop responses. 

The structural change in system will not be adapted by the proposed controller but it will 

adapt the change in system parameters in real situation at any moment of time.  Thus this 

technique is partially model-free, effective & robust. 

4.6.4 Automatic Voltage Regulator System 
The industrial and domestic electrical appliances are designed to operate at a certain 

voltage and frequency rating and thus their performance is dependent on the quality of power 

supply. The performance of equipments is adversely affected and possibly may cause them 
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damage if there is prolonged operation of the equipments outside the allowable range of 

voltages. Thus the terminal voltage of all the equipments in the system should be maintained 

within acceptable limits. Automatic voltage regulator (AVR) is an essential system in an 

electric power system which maintains the magnitude of terminal voltage of a synchronous 

generator at a specified level by its field excitation control. The incremental model of an AVR 

system is a continuous-time linear time-invariant (LTI) dynamical system.  

The basic concept of AVR system for electric power system is discussed in [182-185]. 

Recently the control design using various approaches for automatic voltage regulator system 

and power system stabilizers has attracted researchers [36-41, 175, 176, 199-203]. The 

conventional and recent control schemes for AVR system present in the literature are 

generally off-line and not giving adaptive and optimal control solution at the same time in real 

situation. Thus the investigation of adaptive optimal control solution for AVR system is 

desired for automation of voltage control in electric power system. 

Automatic voltage regulator (AVR) maintains the generator terminal voltage and 

controls the reactive power flow by controlling generator field excitation. A simple AVR 

system comprises four main components, namely amplifier, exciter, generator, and 

comparator & sensor. Since the time constant of sensor is normally very small thus it may be 

neglected for a simplified mathematical model of AVR system of a single-area power system. 

Fig. 36 shows the functional block diagram of a simple AVR system neglecting the sensor 

dynamics [182-185]. Fig. 37 shows the functional block diagram of an AVR system including 

sensor dynamics [36, 37, 39-41, 200]. Considering the major time constant and ignoring the 

saturation or other nonlinearities, and deviated from a normal state, the linearized 

incremental mathematical modelling of AVR system is presented as following [36-41, 182-

185]. 

 
Fig. 4.36 Block diagram of automatic voltage regulator neglecting sensor dynamics. 

 
Fig. 4.37 Block diagram of automatic voltage regulator including sensor dynamics. 
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(a)   Amplifier model 

( )( )
( ) 1

R A
A

A

V s KG s
e s sT

∆
= =

∆ +
                (4.32) 

where nominally 10 < KA < 400 and a small time constant is in the range 0.02 < TA < 0.1. 

(b) Exciter model 

( )
( )

( ) 1
f E

E
R E

V s KG s
V s sT

∆
= =
∆ +

                (4.33) 

where nominally 10 < KE < 400 and a time constant is in the range 0.5 < TE < 1. 

(c)   Generator model 

( )( )( )
( ) ( ) 1

t G
G

f f G

V s KE sG s
V s V s sT

∆∆
= ≅ =
∆ ∆ +

               (4.34) 

where nominally 0.7 < KG < 1 and a time constant is in the range 1 < TG < 2. These 

constants vary depending on the load. 

(d)   Sensor model 

( )( )
( ) 1

s s
s

t s

V s KH s
V s sT

∆
= =
∆ +

                (4.35) 

where nominally Ks = 1 , and the time constant is in the range 0.001 < Ts< 0.06. 

The AVR system parameters consider are [39, 41, 182-185]: TA = 0.1 sec, TE = 0.4 

sec, TG = 1 sec, Ts = 0.01 sec, KA = 10, KE = 1, KG = 1, and Ks = 1. 

4.6.4.1 AVR system neglecting sensor dynamics 
The open loop transfer function is given by 

( )( )
( ) (1 )(1 )(1 )
t A E G

A E G

V s K K KG s
e s sT sT sT

∆
= =
∆ + + +

              (4.36) 

The closed loop transfer function of AVR system neglecting the sensor dynamics is 

written as 

( )
(1 )(1 )(1 )

A E G
CL

A E G A E G

K K KG s
sT sT sT K K K

=
+ + + +

             (4.37) 

Analysis of (4.37) gives that the static error decreases with increased loop gain as for 

p% static error the loop gain 
100 1A E GK K K

p
> − . For stability compensation a series phase 

lead compensator ( ) 1s cG s sT= +  can be included in the system. 

The state space model of AVR system neglecting sensor dynamics in phase variable 

companion form may be written from transfer function model (4.37) as following: 

X AX Bu= +                   (4.38) 

y CX Du= +                   (4.39) 
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where, [ ]1 2 3
TX x x x= , 1 ty x V= = ∆ , refu V= ∆ , and 

0 1 0
0 0 1

1 1 1 1 1 1 1A E G

A E G A E E G G A A E G

A

K K K
T T T T T T T T T T T T

 
 
 
 =
 
    +
− − + + − + +    

    

, 
0
0
1

B
 
 =  
  

, 

0 0A E G

A E G

K K KC
T T T

 
=  
 

, 0D = . 

For the given system parameters the closed loop transfer function of AVR system 

(4.37) is obtained as  

3 2

250( )
13.5 37.5 275CLG s

s s s
=

+ + +
               (4.40) 

and the state space model of AVR system is obtained as 

0 1 0
0 0 1
275 37.5 13.5

A
 
 =  
 − − − 

, 
0
0
1

B
 
 =  
  

, [ ]250 0 0C = , [ ]0D =  

In implementation of PI algorithm for system (4.40), the initial conditions for states 

and cost function, and critic parameters are taken as [ ]0 0.1 0.05 0.04 0x = ; 

[ ]0 0 0; 0 0 0; 0 0 0P = . The length of the simulation in samples is taken 120, and sample 

time T=0.05 seconds. The cost function parameters Q and R are taken as identity matrices of 

appropriate dimensions. The unique positive definite solution of ARE (4.5), denoted here by 

matrix RicP, and adaptive optimal critic matrix P of adaptive critic scheme using PI in (4.9) & 

(4.10) with (4.22) respectively are obtained as 

167.9165 22.5745 0.0018
22.5745 11.3630 0.6104
0.0018 0.6104 0.0820

RicP
 
 =  
  

, 
167.9185 22.5747 0.0018
22.5747 11.3631 0.6104
0.0018 0.6104 0.0820

P
 
 =  
  

 

, and the actor gains of LQR design by (4.4) & (4.5) denoted here by RicK , and actor K by 

adaptive critic scheme using PI in (4.10) respectively are obtained as 

[ ]0.0018 0.6104 0.0820RicK = , [ ]0.0018 0.6104 0.0820K =  

The eigenvalues of closed loop system are obtained as 

 -12.3013, -0.6404 + 4.6846i, -0.6404 - 4.6846i. 

The simulation responses using PI technique for LTI system (4.40) are shown in Figs. 

4.38 to 4.42. Fig. 4.38 shows the system state trajectories which converge towards the 

equilibrium point. Each circle “o” on state trajectories shows the modification of initial 
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conditions to new states values during simulation in each sample. Fig. 4.39 shows the control 

signal trajectory which also converges towards zero. Fig. 4.40 shows the evolution of closed 

loop poles of the system during simulation. Fig. 4.41 shows the convergence of critic 

parameters of matrix P towards optimal values. Fig. 4.42 shows P parameters updating with 

iteration, here * at one indicate update, and * at zero indicate no update. 

Simulation is also done for the case of change in system parameter which changes 

the elements of system matrix A during simulation. Consider the change in system parameter 

as TG = 1.25 seconds at sample k=41; (i.e. t=2.05 seconds) then for this case system 

transfer function is obtained as 

3 2

200( )
13.3 35 220CLG s

s s s
=

+ + +
                 (4.41) 

, and thus the system state model is changed such that A(3,1) = -220; A(3,2) = -35; A(3,3) = -

13.3; and [ ]200 0 0C = . In this case the unique positive definite solution of RicP and P 

using LQR and PI technique respectively are obtained as 

103.1486 16.0069 0.0023
16.0069 8.8044 0.4685
0.0023 0.4685 0.0726

RicP
 
 =  
  

, 
167.9185 22.5747 0.0018
22.5747 11.3631 0.6104
0.0018 0.6104 0.0820

P
 
 =  
  

 

, and the actor gains of LQR design RicK , and actor K by adaptive critic scheme using PI 

respectively are obtained as 

[ ]0.0023 0.4685 0.0726RicK = , [ ]0.0018 0.6104 0.0820K =  

The eigenvalues of closed loop system are obtained as 

 -11.9427, -0.7196 + 4.2313i, -0.7196 - 4.2313i. 

Fig. 4.43 shows the evolution of closed loop poles of the system during simulation 

with change in system parameter at sample k=41. The remaining responses obtained are 

same as above in this case. Fig. 4.44 presents the closed loop response of LTI system (4.41) 

using both approaches of LQR and adaptive critic (AC) using PI technique by replacing 

u Kx r= − +  in state equations where refr V= is a unit step input and K is actor gains RicK 

and K respectively. It remains exactly the same also for case with change in system 

parameters. It is observed here that the adaptive optimal controller using PI technique gives 

the similar response as of standard LQR. 
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Fig. 4.38 System states. 

 

 
Fig. 4.39 Control signal. 
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Fig. 4.40 Evolution of poles of closed loop system. 

 

 
Fig. 4.41 Critic parameters. 
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Fig. 4.42 Updating of critic parameters. 

 

 
Fig. 4.43 Evolution of poles of closed loop system with change in system parameters at 

k=41. 
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Fig. 4.44 Unit step response of closed loop system. 

4.6.4.2 AVR system including sensor dynamics 
The closed loop transfer function of AVR system including sensor dynamics is written 

as 

(1 )( )
(1 )(1 )(1 )(1 )

A E G s
CL

A E G s A E G s

K K K sTG s
sT sT sT sT K K K K

+
=

+ + + + +
            (4.42) 

Including the sensor dynamics in the AVR system modelling, a pole and a zero are added. 

The state space model of AVR system including sensor dynamics in phase variable 

companion form may be written from transfer function model (4.42) similar as (4.38) and 

(4.39) with following modification: 

[ ]1 2 3 4
TX x x x x= , and 

4 3 2 1

0 1 0 0
0 0 1 0
0 0 0 1

A

a a a a

 
 
 =
 
 − − − − 

,  

0
0
0
1

B

 
 
 =
 
 
 

,  0 0A E G A E G

A E G s A E G

K K K K K KC
T T T T T T T
 

=  
 

,  0D = ,     

where, 1
1 1 1 1

A E G s

a
T T T T
 

= + + + 
 

,    2
1 1 1 1 1 1

A E A G A s E G E s G s

a
T T T T T T T T T T T T
 

= + + + + + 
 

, 

3
1 1 1 1

A E G A E s A G s E G s

a
T T T T T T T T T T T T
 

= + + + 
 

,  and 4
1 A E G s

A E G s

K K K Ka
T T T T

+
= . 
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In the both cases of neglecting and including sensor dynamics AVR system is a 

continuous-time single-input single-output (SISO) linear time-invariant (LTI) system.  

For the given system parameters the transfer function of AVR system (4.42) is 

obtained as 4 3 2

250 25000( )
113.5 1387.5 3775 27500CL

sG s
s s s s

+
=

+ + + +
            (4.43) 

, and the state space model of AVR system is obtained as 

0 1 0 0
0 0 1 0
0 0 0 1

27500 3775 1387.5 113.5

A

 
 
 =
 
 − − − − 

, 

0
0
0
1

B

 
 
 =
 
 
 

, [ ]25000 250 0 0C = , [ ]0D =  

In implementation of PI algorithm for system (4.43), the initial conditions for states 

and cost function, and critic parameters are taken as [ ]0 0.1 0.05 0.04 0.02 0x = ; 

[ ]0 0 0 0; 0 0 0 0; 0 0 0 0P = . The length of the simulation in samples is taken 120, and 

sample time T=0.05 seconds. The cost function parameters Q and R are taken as identity 

matrices of appropriate dimensions. The unique positive definite solution of ARE (4.5), 

denoted here by matrix RicP, and adaptive optimal critic matrix P of adaptive critic scheme 

using PI in (4.9) & (4.10) with (4.22) respectively are obtained as 

3

6.5160 0.8940 0.1290 0.0000
0.8940 0.3225 0.0446 0.0002

1.0 10
0.1290 0.0446 0.0100 0.0000
0.0000 0.0002 0.0000 0.0000

RicP

 
 
 = ×
 
 
 

, 

3

6.5164 0.8940 0.1290 0.0000
0.8940 0.3225 0.0446 0.0002

1.0 10
0.1290 0.0446 0.0100 0.0000
0.0000 0.0002 0.0000 0.0000

P

− 
 
 = ×
 
 − 

 

, and the actor gains of LQR design by (4.4) & (4.5) denoted here by RicK , and actor K by 

adaptive critic scheme using PI in (4.10) respectively are obtained as 

[ ]0.0000 0.2369 0.0325 0.0047RicK = , 

[ ]0.0001 0.2370 0.0325 0.0047K = −   

The eigenvalues of closed loop system in this case are obtained as 

 -99.9763, -12.4887, -0.5199 + 4.6642i, and   -0.5199 - 4.6642i. 

The simulation responses using PI technique for LTI system (4.43) are shown in Figs. 

4.45 to 4.49. Fig. 4.45 shows the system state trajectories which converge towards the 

equilibrium point. Each circle “o” on state trajectories shows the modification of initial 

conditions to new states values during simulation in each sample. Fig. 4.46 shows the control 
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signal trajectory which also converges towards zero. Fig. 4.47 shows the evolution of closed 

loop poles of the system during simulation. Fig. 4.48 shows the convergence of critic 

parameters of matrix P towards optimal values. Fig. 4.49 shows P parameters updating with 

iteration, here * at one indicate update, and * at zero indicate no update. 

Simulation is also done for the case of change in system parameter which changes 

the elements of system matrix A during simulation. Consider the change in system parameter 

as TG = 1.25 seconds at sample k=41; (i.e. t=2.05 seconds) then for this case the system 

transfer function is obtained as 

4 3 2

200 20000( )
113.3 1365 3520 22000CL

sG s
s s s s

+
=

+ + + +
              (4.44) 

and the system state model is changed such that A(4,1) = -22000; A(4,2) = -3520; A(4,3) = -

1365; A(4,4) = -113.3; and C = [20000  200  0  0]. In this case also the unique positive 

definite solution of RicP and P using LQR and PI technique respectively are obtained as 

3

3.5299 0.5643 0.1021 0.0000
0.5643 0.2072 0.0345 0.0002

1.0 10
0.1021 0.0345 0.0091 0.0000
0.0000 0.0002 0.0000 0.0000

RicP

 
 
 = ×
 
 
 

, 

3

6.5164 0.8940 0.1290 0.0000
0.8940 0.3225 0.0446 0.0002

1.0 10
0.1290 0.0446 0.0100 0.0000
0.0000 0.0002 0.0000 0.0000

P

− 
 
 = ×
 
 − 

 

, and the actor gains of LQR design RicK, and actor K by adaptive critic scheme using PI 

respectively are obtained as 

[ ]0.0000 0.1604 0.0256 0.0046RicK = , [ ]0.0001 0.2370 0.0325 0.0047K = −   

The eigenvalues of closed loop system in this case are obtained as 

-99.9821, -12.0977, -0.6125 + 4.2206i, and -0.6125 - 4.2206i. 

Fig. 4.50 shows the evolution of closed loop poles of the system during simulation 

with change in system parameter at sample k=41. The remaining responses obtained are 

same as above in this case. Fig. 4.51 presents the closed loop response of LTI system (4.44) 

using both approaches of LQR and adaptive critic (AC) using PI technique by replacing 

u Kx r= − +  in state equations where refr V= is a unit step input and K is actor gains RicK 

and K respectively. It remains exactly the same also for case with change in system 

parameters. It is observed here that the adaptive optimal controller using PI technique gives 

the similar response as of standard LQR. 
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Fig. 4.45 System states. 

 

 
Fig. 4.46 Control signal. 
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Fig. 4.47 Evolution of poles of closed loop system. 

 

 
Fig. 4.48 Critic parameters. 
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Fig. 4.49 Updating of critic parameters. 

 

 
Fig. 4.50 Evolution of poles of closed loop system with change in system parameters at 

k=41. 
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Fig. 4.51 Unit step response of closed loop system. 

It is observed from the above simulation results for AVR system for both cases that 

critic parameter matrix P and actor parameter K obtained from PI based adaptive critic 

scheme are converging adaptively to optimal values and are mostly of same values of RicP 

and RicK respectively that obtained from LQR approach. Also in case of change in the 

system parameter in real situation the controller adapts it and converges to same optimal 

values. Thus the actor K and critic P parameters remain unchanged. 

Analyzing the simulation results obtained for AVR system in both the cases of system 

models neglecting and including sensor dynamics, and changes in system parameters 

applying adaptive critic design using online PI technique, it is established that this proposed 

control scheme provide a promising adaptive optimal control solution for dynamical systems 

without complete knowledge of the system dynamics. The effect of system modelling 

uncertainties has been demonstrated by analyzing the simulation results for AVR system for 

both cases of neglecting and including sensor dynamics. It is observed that the simulation 

results obtained in both cases are similar. Thus it inference that the system model may be 

simplified by neglecting subsystems whose time constant is very small without considerably 

affecting the system characteristics and thus simplifying control design and its performance. 

The structural change introduced in system dynamics by including sensor dynamics is 

augmenting the system behaviour such as of its credit in closed loop response. The 

structural change in system will not be adapted by the proposed controller and in that case 

control algorithm has to be modified according to order of system dynamics. The proposed 
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controller adapts the change in system parameters in real situation at any moment of time.  

Thus this technique is partially model-free, effective & robust. 

4.6.5 DC Motor Speed Control System 
Consider the linearized state space model of speed control system of a separately 

excited dc motor with load disturbance model [7], for both of system models without and with 

integral compensator. Investigation of performance is also carried for change in system 

parameters at certain instant of time to demonstrate that the proposed control approach is 

partially model-free. 

4.6.5.1 DC motor speed control system model without integral compensator 
Consider the speed control system of armature controlled DC motor. The applied 

voltage Va controls the angular velocity ω  of the shaft, and TL is the load disturbance torque. 

The block diagram of DC motor speed control system is shown in Fig. 2. The physical 

constants of dc motor speed control system model considered here in simulation are [204]: 

armature resistance, 2aR = Ohms; armature inductance, 0.5aL = Henrys; Torque constant, 

KT = 0.1; Back EMF constant,  Kb = 0.1; Viscous friction constant, b = 0.2 (Newton-

m)/(rad/sec); and Moment of inertia, 0.02J = kg.m2/s2.  

The state space model of the system is derived as 

Lx Ax Bu FT= + +                  (4.45) 

y Cxω= =                   (4.46) 

where state vector [ ]Tax iω= , control input au V= ,  

T

b a

a a

Kb
J JA K R
L L

 − 
 =
 − −  

, 
0
1

a

B
L

 
 =  
  

, 
1

0
F J

 − =
 
 

, and [ ]1 0C =  

At the given nominal values of system parameters, we have 

10 5
0.2 4

A
− 

=  − − 
, 

0
2

B  
=  
 

, 
50
0

F
− 

=  
 

 

 

 
Fig. 4.52 Block diagram of DC motor speed control system. 
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For implementation of PI algorithm the initial conditions for states and cost function, 

and critic parameters are taken as 0 [0.8,0.4,0]x = ; [ ]0 0;  0 0P = . The length of simulation 

in samples is taken 30, and sample time T=0.05 seconds. The cost function parameters Q 

and R are taken as identity matrices of appropriate dimensions. The unique positive definite 

solution of ARE (4.5), denoted here by matrix RicP, and adaptive optimal critic matrix P of 

adaptive critic scheme using PI in (4.9) & (4.10) with (4.22) respectively are obtained as 

0.0496 0.0152
0.0152 0.1349

RicP  
=  
 

,   
0.0496 0.0152
0.0152 0.1350

P  
=  
 

 

, and the actor gains of LQR design by (4.4) & (4.5) denoted here by RicK , and actor K by 

adaptive critic scheme using PI in (4.10) respectively are obtained as 

[ ]0.0304 0.2698RicK = ,   [ ]0.0304 0.2699K =  
The eigenvalues of closed loop system are obtained as 

-9.7497, -4.7901 

Simulation with change in system parameters is also done at sample k=21; (i.e. t=1.05 

seconds), such that b=0.3, J=0.025, b/J = 12, and 1/J = 40, and so the parameter A(1,1) = -

12, then the solution is obtained as 

0.0415 0.0110
0.0110 0.1302

RicP  
=  
 

,   
0.0496 0.0152
0.0152 0.1350

P  
=  
 

 

and the actor gains RicK and K respectively are obtained as 

[ ]0.0219 0.2605RicK = ,   [ ]0.0304 0.2699K =  
The eigenvalues of closed loop system are obtained as 

-11.8209, -4.7189 

The simulation responses of adaptive optimal control using PI technique for DC motor 

speed control system model (4.45) & (4.46) are shown in Fig. 4.53 to 4.57. Fig. 4.53 shows 

system state trajectories which converge towards the equilibrium point. Fig. 4.54 shows 

control signal trajectory which also converge towards zero. Fig. 4.55 shows evolution of 

closed loop poles of the system during simulation. Fig. 4.56 shows convergence of critic 

parameters of matrix P towards optimal values. Fig. 4.57 shows P parameters updating with 

iteration, here * at one indicate update, and * at zero indicate no update. Fig. 4.58 shows 

evolution of closed loop poles for case of change in system parameters during simulation. 

Rest of responses remains similar as of Fig. 4.53 to 4.57. 

Fig. 4.59 presents closed loop response of DC motor speed control system without 

integral compensator model using both approaches of LQR and adaptive critic (AC). It is 
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observed that the closed loop responses with unit step reference input rω , and unit step load 

disturbance torque LT∆ have- steady state error.  

Fig. 4.60 shows closed loop response with load disturbance torque TL=-0.1 N-m 

between the time period t=[4, 8] seconds. Figs. 4.61 and 4.62 show closed loop responses 

as above for the case of change in system parameters during simulation. Here it is observed 

that the adaptive optimal controller using PI based adaptive critic scheme gives similar 

responses as of standard LQR. 

 

 
Fig. 4.53 System states 
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Fig. 4.54 Control signal 

 
Fig. 4.55 Evolution of poles of closed loop system 

 



 

181 

 

 
Fig. 4.56 Critic parameters 

 
Fig. 4.57 Updating of critic parameters 
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Fig. 4.58 Evolution of poles of closed loop system with change in system parameter at 

sample k=21 (i.e. t=1.05 seconds), A(1,1)=-12. 

 
Fig. 4.59 Closed loop unit step response of DC motor speed. 
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Fig. 4.60 DC motor speed response with load disturbance for time t=4 to 8 seconds. 

 
Fig. 4.61 Closed loop unit step response of DC motor speed for system model with change in 

system parameters. 
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Fig. 4.62 DC motor speed response with change in system parameters and with load 

disturbance for time t=4 to 8 seconds. 

4.6.5.2 DC motor control system model with integral compensator 
Fig. 4.63 shows the block diagram of DC motor speed control system with integral 

compensator for speed. The augmented system state space model with integral control 

dynamics to remove the steady-state error, the third state variable is taken as

0
( )

t

rE dtω ω= −∫ , and then a IV u K E= + , which makes 3rd column of the system matrix A 

having “non-all-elements-zero” column. The value of KI is chosen by root locus design for a 

stable closed-loop system. 

Thus, we have the state space model of the system with integral compensator by 

modifying (4.45) & (4.46) with state vector [ ]Tax i Eω= , disturbance input vector 

[ ]TL rw T ω= , 

0

1 0 0

T

b a I

a a a

Kb
J J

K R KA
L L L

 − 
 
 = − − 
 
− 

  

, 

0
1

0
a

B
L

 
 
 =
 
 
 

, 

1 0

0 0
0 1

J
F

 − 
 

=  
 
 
 

, and [ ]1 0 0C = . 

Thus, with above parameters values the system matrices are 

10 5 0
0.2 4 10
1 0 0

A
− 

 = − − 
 − 

, 
0
2
0

B
 
 =  
  

, 
50 0
0 0
0 1

F
− 
 =  
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Fig. 4.63 Block diagram of DC motor speed control system with integral compensator. 

For implementation of PI algorithm the initial conditions for states and cost function, 

and critic parameters are taken as 0 [0.8,0.4,0.2,0]x = ; [ ]0 0 0;  0 0 0; 0 0 0P = . The length 

of simulation in samples is taken 60, and sample time T=0.05 seconds. The cost function 

parameters Q and R are taken as identity matrices of appropriate dimensions. The unique 

positive definite solution of ARE (4.5), denoted here by matrix RicP, and adaptive optimal 

critic matrix P of adaptive critic scheme using PI in (4.9) & (4.10) with (4.22) respectively are 

obtained as 

0.0840 0.0301 0.3479
0.0301 0.1512 0.0495
0.3479 0.0495 3.7961

RicP
− 

 = − 
 − − 

, 
0.0840 0.0301 0.3481
0.0301 0.1513 0.0495
0.3481 0.0495 3.7982

P
− 

 = − 
 − − 

 

, and the actor gains of LQR design by (4.4) & (4.5) denoted here by RicK , and actor K by 

adaptive critic scheme using PI in (4.10) respectively are obtained as 

[ ]0.0602 0.3024 0.0990RicK = − , [ ]0.0602 0.3025 0.0990K = −  
The eigenvalues of closed loop system are obtained as 

-10.5444, -2.0303 + 0.8448i, -2.0303 - 0.8448i 

Simulation with change in system parameters is also done at sample k=21;   (i.e. 

t=1.05 seconds), such that b=0.3, J=0.025, b/J = 12, and 1/J = 40, and so the parameter 

A(1,1) = -12, then the solution is obtained as 

0.0687 0.0220 0.3300
0.0220 0.1424 0.0495
0.3300 0.0495 4.1942

RicP
− 

 = − 
 − − 

, 
0.0840 0.0301 0.3481
0.0301 0.1513 0.0495
0.3481 0.0495 3.7982

P
− 

 = − 
 − − 

 

and the actor gains RicK and K respectively are obtained as 

[ ]0.0440 0.2847 0.0990RicK = − , [ ]0.0602 0.3025 0.0990K = −  
The eigenvalues of closed loop system are obtained as 

  -12.3281, -1.4775, -2.7994 

The simulation responses of adaptive optimal control using PI technique for DC motor 

speed control system model with integral compensator are shown in Fig. 9. Fig. 9(a) shows 

system state trajectories which converge towards the equilibrium point. Fig. 9(b) shows 

control signal trajectory which also converge towards zero. Fig. 9(c) shows evolution of 
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closed loop poles of the system during simulation. Fig. 9(d) shows convergence of critic 

parameters of matrix P towards optimal values. Fig. 9(e) shows P parameters updating with 

iteration, here * at one indicate update, and * at zero indicate no update. The simulation 

responses of adaptive optimal control using PI based adaptive critic scheme for DC motor 

speed control system model with integral compensator for the case of change in system 

parameter are similar as above and just the evolution of poles changes adapting the 

controller. Fig. 9(f) shows evolution of closed loop poles in the case of change in system 

parameter. 

Fig.10 presents the closed loop responses of DC motor speed control system with 

integral compensator model using both approaches of LQR and adaptive critic (AC). It is 

observed that the closed loop responses with unit step reference input rω , and unit step load 

disturbance torque LT∆ have no steady state error. Fig. 11 shows closed loop response with 

load disturbance torque TL=-0.1 N-m between the time period t=[4, 8] seconds. Here also it is 

observed that the adaptive optimal controller using PI based adaptive critic scheme gives 

similar responses as of standard LQR. 

Fig. 12 shows the closed loop responses of DC motor speed control system with 

integral compensator model using both approaches of LQR and adaptive critic (AC) for the 

case of change in parameters. The controller performs adapting the change in system 

parameters. Fig. 13 shows closed loop response with load disturbance torque TL=-0.1 N-m 

between the time period t=[4, 8] seconds. It is observed in this case that the disturbance 

rejection is much better than the case of system model without integral compensator. The 

inclusion of integral compensator in the system model removes the steady state error and 

also improves the disturbance rejection capability of controlled system. It is also observed 

here that the adaptive optimal controller using PI based adaptive critic scheme gives similar 

responses as of standard LQR. This demonstrates that the proposed control scheme is 

effective & robust. 

 



 

187 

 

 
Fig. 4.64 System states 

 

 
Fig. 4.65 Control signal 
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Fig. 4.66 Evolution of poles of closed loop system 

 

 
Fig. 4.67 Critic parameters 
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Fig. 4.68 Updating of critic parameters 

 

 
Fig. 4.69 Evolution of poles of closed loop system with change in system parameter at 

sample k=21 (i.e. t=1.05 seconds), A(1,1)=-12. 
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Fig. 4.70 Closed loop unit step response of DC motor speed control for system model with 

integral compensator. 

 
Fig. 4.71 DC motor speed response with load disturbance for time t=4 to 8 seconds for 

system model with integral compensator. 
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Fig. 4.72 Closed loop unit step response of DC motor speed for system model with integral 

compensator with change in system parameters. 

 
Fig. 4.73 DC motor speed response with load disturbance for time t=4 to 8 seconds for 

system model with integral compensator and change in system parameter. 

In the above simulation results for both cases it is observed that critic parameter matrix 

P and actor parameter K obtained from adaptive critic scheme using PI technique are 

converging adaptively to optimal values and values of RicP and RicK respectively are mostly 
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same to that obtained from LQR approach. Also in case of change in system parameter in 

real situation the controller adapts it and converges to same optimal values. Thus the actor K 

and critic P parameters remain unchanged. 

Analyzing the simulation results obtained for both cases of DC motor control system 

models without & with integral compensator, and changes in system parameters applying 

adaptive critic scheme using online PI technique, it is established that the proposed control 

scheme provide a promising adaptive optimal control solution for dynamical systems without 

complete knowledge of the system dynamics. The structural change introduced in system 

dynamics by including integral compensator is augmenting the system behavior such as of 

its credit that removing the steady state error in closed loop responses. The structural 

change in system will not be adapted by the proposed controller but it will adapt the change 

in system parameters in real situation at any moment of time.  Thus, this control scheme is 

partially model-free, effective & robust. 

4.7 CONCLUSIONS 
The comprehensive performance analysis of adaptive optimal control using policy 

iteration technique for continuous-time LTI systems has been presented in this chapter. The 

infinite horizon control using online PI technique based adaptive critic scheme gives an 

adaptive optimal control solution to the real-time dynamics of a continuous-time LTI system. 

The infinite horizon optimal control solution using ARE requires the complete knowledge of 

the system dynamics, which is not required using PI technique based adaptive critic scheme. 

Online PI algorithm does not require the knowledge of system’s internal dynamics (i.e. matrix 

A) for evaluation of cost or the update of control policy; only the knowledge of input matrix B 

is required for updating the control policy. Thus, adaptive optimal control scheme using 

online policy iteration technique is partially model-free. The convergence of the proposed 

algorithm, under the condition of initial stabilizing controller, to the solution of the state 

feedback optimal control problem has been established. To demonstrate the applications of 

control scheme, the systems modeling, simulation results, and performance analysis are 

presented for certain general and practical example of LTI systems- a general LTI SISO 

system, a 4th order mechanical system, LFC system without and with integral control, AVR 

system neglecting and including sensor dynamics, and DC motor speed control system 

without and with integral compensator, and also for all the examples with change in system 

parameters at certain instant of time. The simulation results justify the effectiveness & 

robustness of the online adaptive optimal control scheme using PI technique. 
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CHAPTER 5  
 

ADAPTIVE OPTIMAL CONTROL USING POLICY ITERATION TECHNIQUE FOR 
AFFINE NONLINEAR SYSTEMS 

In this chapter the adaptive critic design using policy iteration technique with neural 

network approximation of cost function for adaptive optimal control of continuous-time affine 

nonlinear dynamical systems is presented. The application of control scheme is implemented 

for both general and practical examples of affine nonlinear systems. 

5.1 INTRODUCTION 
Adaptive critic (AC) based control design has evolved as a powerful and promising 

technique to solve optimal control problems for nonlinear systems. Adaptive critic designs 

(ACD) which have potential of replicating critical aspects of human intelligence such as the 

ability to cope with a large number of variables in parallel, in real-time, and in a noisy 

nonlinear non-stationary environment, have proved to provide brain-like intelligence on a 

very small scale but good enough for solving engineering problems. The concept of ACD 

utilizes two parametric structures known as the actor and the critic to efficiently approximate 

the optimal cost and control using incremental optimization of a short-term cost metric that 

ensures optimization of the cost over all future times. The actor parameterizes the control 

policy. The critic approximates a value-related cost function and captures the effect that the 

control law will have on the future cost which describes the performance of control system. At 

any given time, the critic provides guidance to improve the control policy, and the actor to 

update the critic.  

The infinite horizon optimal control design using HJB equation requires the complete 

knowledge of system dynamics with an offline solution. The policy iteration (PI) technique 

which is based on actor-critic structure consists of two-step iteration: policy evaluation and 

policy improvement. The online PI algorithm solves the optimal control problem along a 

single state trajectory, does not require the knowledge of system internal state dynamics, 

and thus giving a direct adaptive optimal control scheme. The online PI technique provides 

an adaptive optimal control solution for an infinite horizon problem subject to the real-time 

dynamics of a continuous-time system. Using neural network approximation of cost function 

for online implementation, the PI algorithm gives a high-level intelligent control. 

Adaptive optimal control using various approaches has been presented recently in 

[122-178]. The ACD for various control applications applying certain approaches in both 

discrete-time and continuous-time frameworks are described recently in certain papers [122-

126, 128-130, 132, 135-178]. Adaptive optimal control using PI technique is presented for 

linear systems in [155-158, 161, 162, 166, 169], and for nonlinear systems using neural 

networks in actor-critic configuration in [123, 158-165, 167]. The performance analysis of PI 
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based adaptive critic control scheme with applications to practical affine nonlinear systems is 

desired.  

In this chapter the performance analysis of adaptive optimal control using PI technique 

with neural network approximation of cost function for continuous-time affine nonlinear 

systems is presented considering state regulation problems of certain general and practical 

examples of affine nonlinear systems- single link manipulator, inverted pendulum-cart 

system, and Vander Pol’s oscillator system. 

5.2 INFINITE HORIZON OPTIMAL CONTROL OF CONTINUOUS-TIME AFFINE 
NONLINEAR SYSTEMS 
Consider a continuous-time affine nonlinear system given by 

( ) ( ( )) ( ( )) ( )x t f x t g x t u t= +                   (5.1) 

with ( ) nx t ∈R , ( ( )) nf x t ∈R , ( ( ) n mg x t ×∈R  and the input ( ) mu t U∈ ⊂ R , and the boundary 

conditions are as 0 0( )x t x=  fixed and ( )fx t  free. 

It is assumed here that (0) 0f = , such that ( ) ( )f x g x u+  is Lipschitz continuous on a 

set nΩ⊆ R  which contains the origin, and that the dynamical system is stabilizable on Ω , 

i.e. there exists a continuous control function ( )u t U∈ such that the system is asymptotically 

stable on Ω . 

It is required here to find a control input that minimizes the performance index given by 

0
0 0( ( ), ) ( ( ), ) ( ( ), ( ))

T

t
V x t t x T T L x u dφ τ τ τ= + ∫                     (5.2) 

The utility function L is given by 

( , ) ( ) TL x u Q x u Ru= +                    (5.3) 

with ( )Q x  being positive definite, i.e. 0,  ( ) 0x Q x∀ ≠ >  and 0 ( ) 0x Q x= ⇒ = , and m mR ×∈R  

a positive definite matrix. 

Let us define a scalar function  * *( ( ), )V x t t  as the optimal value of the performance 

index V for an initial state *( )x t  at time t, i.e. 

* * * *( ( ), ) ( ( ), ) ( ( ), ( ), )
T

t
V x t t x T T L x u dφ τ τ τ τ= + ∫                 (5.4) 

At the boundary conditions it is given that 
* * *( ( ), ) ( ( ), )V x T T x T Tφ=                   (5.5) 

It is noticeable here that although the global asymptotic stability is guaranteed in a 

case of linear dynamical system, it is generally difficult to guarantee in a case of general 

continuous-time nonlinear dynamical system due to its non-smooth nature at the points of 

discontinuities of x , and of the gradient of cost function. Thus, considering here to the case 
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in which asymptotic stability is desired and the cost function is continuously differentiable in a 

region nΩ⊆ R . 

The infinite horizon integral cost function associated with the control input { }0( );u tτ τ ≥  

is defined as 

0
0( ( )) ( ( ), ( ))

t

uV x t L x u dτ τ τ
∞

= ∫                      (5.6) 

where ( )x τ denotes the solution of (5.1) for initial condition 0( )x t ∈Ω  and input { }0( );u tτ τ ≥ . 

For the cost function which explicitly depend on time the optimal value function * *( , )V x t  

must satisfy the HJB equation given by 
* *

min , , , 0V VH t
t

 ∂ ∂
+ = ∂ ∂ u

x u
x

                  (5.7) 

where the second term of (5.7) is the Hamiltonian functional. It provides the solution to the 

optimal control problem for general nonlinear dynamical systems. 

Definition 1: Admissible (Stabilizing) Policy [159, 160]: A control policy ( )xµ  is 

defined as admissible with respect to (5.6) on Ω , denoted by ( )µ∈Ψ Ω  if ( )xµ  is 

continuous on  Ω , (0) 0µ = , ( )xµ  stabilizes (5.1) on Ω    and  0( )V x  is finite 0x∀ ∈Ω . 

The cost function associated with any admissible control policy ( )µ∈Ψ Ω   is given by 

( ( )) ( ( ), ( ( )))
t

V x t L x x dµ τ µ τ τ
∞

= ∫                  (5.8)  

where ( )V xµ  is continuously differentiable belonging to the class 1C  functions. A 1C  

function is exactly a function whose derivative exits and is of class 0C that consist of all 

continuous functions. The infinitesimal version of (5.8) is written as 

0 ( , ( )) ( ( ) ( ) ( ))  ,  (0) 0TL x x f x g x x V µµ λ µ= + + =                         (5.9) 

where 
V
x

µ

λ ∂
=

∂
 is the costate vector which denotes the gradient of the cost function V µ  with 

respect to x, as the cost function does not depend explicitly on time. Equation (5.9) is a 

Lyapunov equation for nonlinear systems which can be solved for the cost function ( )V xµ  

for the given controller ( ) ( )xµ ∈Ψ Ω . If ( )V xµ satisfies (5.9), with ( , ( )) 0L x xµ ≥ , then ( )V xµ  

is a Lyapunov function for the system (5.1) with an admissible control policy ( )xµ . 

The optimal control problem can now be formulated: Given the continuous-time system 

(5.1), the set ( )u∈Ψ Ω  of admissible control policies, and the infinite horizon cost functional 

(5.6), find an admissible control policy such that the cost index (5.6) associated with the 

system (5.1) is minimized. 

Defining the Hamiltonian of the problem 
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( , , ) ( ( ), ( )) ( ( ( )) ( ( )) ( ))TH x u L x t u t f x t g x t u tλ λ= + +                  (5.10) 

the optimal cost function *( )V x  satisfies the HJB equation 

*

( )
0 arg  min ( , , )

u
H x u λ

∈Ψ Ω
 =                   (5.11) 

This Hamiltonian, which does not depend explicitly on time and corresponds to the 

infinite horizon optimal control problem, must be identically zero when evaluated on an 

extremal trajectory. Also every admissible policy, ( )xµ , and associated cost, ( )V xµ , with 

(0) 0V µ = , satisfy ( , , ) 0H x µ λ = . Thus this equation can be used to solve for the cost 

associated with any given admissible policy. 

Assuming the existence of the unique solution of (5.11), the optimal control function for 

the given problem is 

1 ** 1( ) ( )
2

Tu x R g x λ−= −                      (5.12) 

Substituting this optimal control policy in the Hamiltonian we obtain the formulation of 

the HJB equation in terms of *λ : 

* * * *10 ( ) ( ) ( )   ,  (0) 0
4

T TQ x f x G x Vλ λ λ= + − =              (5.13) 

where 1( ) ( ) ( )TG x g x R g x−= . 

This is a necessary and sufficient condition for the optimal value function. For the linear 

system case, considering a quadratic cost functional, the equivalent of this HJB equation is 

the well known Riccati equation. In order to find the optimal control solution for the problem 

the HJB equation (5.13) is required to be solved for the cost function and then substitute the 

solution in (5.12) to obtain the optimal control. However, the analytical offline solution of the 

HJB equation is difficult to obtain in most cases. It also requires the complete knowledge of 

the system dynamics (i.e. the functions ( ),  ( )f x g x  should be known). 

5.3 CONTINUOUS-TIME ADAPTIVE CRITICS 
In adaptive critic design (ACD) for affine nonlinear systems, the equations (5.12) and 

(5.13) are represented by two parametric function approximation networks known as action 

network (actor) and critic network (critic) respectively. The action network which provides 

control signals represents the relationship between state and input. The critic network which 

learns the desired performance index for some performance index/cost function represents 

the relationship between state and costate vector. The critic evaluates the performance of 

actor and the actor is improved based on the feedback from the critic network. These two 

functional networks approximating HJB equation successively adapt to determine the optimal 

control solution for a system. In general, ACD uses incremental optimization combined with a 
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parametric structure to efficiently approximate the optimal cost and control. In ACD a short-

term cost metric is optimized that ensures optimization of the cost over all future times.  

In general, neural networks are used as the parametric structures in ACD [122, 124, 

125, 128-130, 133, 140, 142-144, 147-149, 158-160, 168, 172-174, 207]. Other choices for 

parametric function approximations in ACD are support vector machines (SVM) [147], 

particle swarm optimization (PSO) [149],radial basis function neural network [148], and fuzzy 

systems [178]. Single network adaptive critic (SNAC) using neural networks [172-174], and 

Takagi-Sugeno fuzzy systems [178] are simplified options for parametric structures in ACD. 

ACDs function as supervised learning systems and reinforcement learning systems [124, 

143]. The policy iteration algorithm [123-126, 155-167], and value iteration algorithm [124, 

125, 168] are other options of ACD for solving online optimal control problem.  

5.4 POLICY ITERATION TECHNIQUE 
The policy iteration technique [123-126, 155-167] is based on an actor-critic structure, 

consists of two-step iteration- critic update and actor update. For a given stabilizing controller 

the critic computes the associated infinite horizon cost, and the actor computes the control 

policy. The online policy iteration algorithm adapts to solve the infinite horizon problem 

without using knowledge of the system internal dynamics (i.e. function ( )f x ). It gives an 

adaptive controller which converges to the state feedback optimal controller. Policy iteration 

algorithm for solving the HJB equation to find the infinite horizon optimal control of nonlinear 

dynamical systems is presented here. The convergence of the algorithm is discussed briefly 

in this section and for its detail the lemmas, remarks, and theorems may be referred in [159, 

160]. 

5.4.1 Policy Iteration Algorithm 

Let (0) ( ( ) ( )u x t ∈Ψ Ω be an admissible control policy such that the closed loop system 

is asymptotically stable on Ω , and T>0 such that as ( )x t ∈Ω  also ( )x t T+ ∈Ω  (the 

existence of such T >0 is guaranteed by the admissibility of (0) (.)µ  on Ω ), then the infinite 

horizon cost function (5.8) can be written as  

( ( )) ( ( ), ( ( ))) ( ( ))
t T

t
V x t L x x d V x t Tµ µτ µ τ τ

+
= + +∫              (5.14) 

Based on (5.14) and (5.11), considering an initial admissible control policy (0) ( ( )u x t , 

the policy iteration algorithm is derived. This algorithm iterates between two steps 

1. Policy evaluation: solve for ( ) ( ( ))iV x tµ  using 

( )( ) ( )( ( )) ( ( ), ( ( ))) ( ( ))
t T i

t

i iV x t L x x d V x t Tµ µτ µ τ τ
+

= + +∫             (5.15) 

with ( ) (0) 0iV µ =  
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and 

2. Policy improvement: update the control policy using 
( 1) ( )

( )
arg  min ( , , )i i

u
H x uµ λ+

∈Ψ Ω
 =                  (5.16) 

which explicitly is 

( 1) 1 ( )1( ) ( )
2

i T ix R g xµ λ+ −= −                      (5.17) 

The policy iteration algorithm converges to the optimal control policy * ( )µ ∈Ψ Ω  with 

corresponding cost function ( )0 0

*( ) min ( ( ), ( ( )))V x L x x dµ τ µ τ τ
∞

= ∫ . 

Equations (5.15) and (5.17) give a formulation for the Policy Iteration algorithm to 

solve the optimal control problem without any knowledge of system internal dynamics ( )f x . 

The knowledge of system’s internal state dynamics, i.e. ( )f x , is not required for evaluation of 

cost in (5.15) or update of control policy in (5.17), and only the knowledge of input-to-state 

dynamics, i.e. ( )g x , is required for the policy update in (5.17). The information regarding 

system internal dynamics ( )f x  is embedded in the states ( )x t  and ( )x t T+  which are 

sampled online. This online algorithm is motivated by the success of the online adaptive critic 

techniques proposed by computational intelligence researchers [127]. In the spirit of 

reinforcement learning algorithms, the integral term in (5.15) can be addressed as the 

reinforcement over the time interval [ , ]t t T+ . 

Policy iteration algorithm can be viewed as an actor-critic system. In this 

interpretation, the policy evaluation step is viewed as the work of a critic, who evaluates the 

performance of the current policy, ( )iµ  i.e. generates an estimate of the value function  ( )iV µ  

from states and reinforcement supplied by the environment as inputs. The policy 

improvement step is viewed as the work of an actor, who takes into account the latest 

evaluation of the critic, i.e. the estimate of the value function, and acts out the improved 

policy ( 1)iµ + . 

Equation (5.15) is a discretized version of (5.8) and it can be viewed as a Lyapunov 

equation for nonlinear systems, may be referred also as 

( )( ) ( ) ( )

( )

( ( ( ))) ( ( ), ( ( ))) ( ( )) ( ( ))

(0) 0

t T i

t

i i i

i

LE V x t L x x d V x t T V x t

V

µ µ µ

µ

τ µ τ τ
+

+ + −

=

∫           (5.18) 

5.4.2 Convergence Analysis 
The convergence analysis of policy iteration algorithm is discussed in this subsection 

referring the lemmas, remarks and theorems in [159, 160]. 
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Since ( ) ( )iµ ∈Ψ Ω  then 1( ) ( ( )) ( )iV x t Cµ ∈ Ω , defined as 

( )( ) ( ( )) ( ( ), ( ( )))i

t

iV x t L x x dµ τ µ τ τ
∞

= ∫ , is a Lyapunov function for the system 

( )( ) ( ( )) ( ( )) ( ( ))ix t f x t g x t x tµ= + , then (9) is written in iteration form as 

( ) ( ) ( )

( )

0 ( , ( )) ( ) ( ( ) ( ) ( ))

(0) 0

i i T i

i

L x x f x g x x

V µ

µ λ µ= + +

=
             (5.19) 

Then, 
( ) 1( )
i

V Cµ ∈ Ω  satisfies 

( ) ( ) ( )( ) ( ( ) ( ) ( )) ( ( ), ( ( )))i T i if x g x x L x t x tλ µ µ+ = −                    (5.20) 

with ( )( ( ), ( ( )));  ( ) 0iL x t x t x tµ ≠ . Integrating (5.20) over the time interval [ , ]t t T+ , we obtain 

(5.15). Let us assume that there exists another cost function 1( )V C∈ Ω  which satisfies 

(5.23) with the end condition (0) 0V = . This cost function also satisfies 

( )( ( )) ( ( ), ( ( )))iV x t L x t x tµ= − . Thus, subtracting this from (5.15) we obtain 

( )

( ) ( )

( )

[ ( ( )) ( ( ))] [ ( ( )) ( ( ))]

                                                  ( ( )) ( ( )) ( ( )) 0

i iT T

i

d V x t V x t d V x t V x tx
dx dx

f x t g x t x t

µ µ

µ

   − −   =
   
   

× + =



             (5.21) 

which must hold for any x on the system trajectories generated by the stabilizing policy ( )iµ . 

Thus 
( )

( ( )) ( ( ))
i

V x t V x t cµ= + . As this relation must hold also for ( ) 0x t =  then 

( )
(0) (0) 0

i
V V c cµ= + ⇒ =  and thus 

( )
( ( )) ( ( ))

i
V x t V x tµ=  i.e. Equation (5.15) has a unique 

solution which is equal to the unique solution of (5.19). Thus, if ( ) ( )iµ ∈Ψ Ω  and 

1( ) ( ( )) ( )iV x t Cµ ∈ Ω  satisfy (5.15), then the new control policy ( 1)iµ + , determined based on 

(5.16), is admissible for the system (5.1) [159, 160]. Even though the same solution is 

obtained from either (5.19) or (5.15), solving (5.19) requires ( )f x , but solving (5.15) does 

not require any knowledge of the system internal dynamics ( )f x .Thus, it shows that the 

algorithm (5.15) and (5.17) is equivalent to iterating between (5.19) and (5.17), without using 

knowledge of the system internal dynamics ( )f x . As iterating on (5.19) and (5.17), 

conditioned by an initial admissible policy (0) ( )xµ , all the subsequent control policies will be 

admissible and the iteration (5.19) and (5.17) will converge to the solution of the HJB 

equation, the equivalent of this the policy iteration (5.15) and (5.17) converges uniformly to 

the optimal control solution on the trajectories originating in Ω , i.e. 0 00 :i i iε∀ > ∃ ∀ ≥  

( )( ) * *sup ( ) ( )  ,   sup ( ) ( )ii

x x
V x V x x xµ ε µ µ ε

∈Ω ∈Ω
− < − <               (5.22) 
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Thus, the equivalence between (5.15) and (5.19) concludes that this online adaptive 

optimal control algorithm will converge to the solution of the optimal control problem (5.6), on

Ω , without using knowledge of the internal dynamics of the controlled system (5.1). The 

positive definite solution of (5.15) is guaranteed when the system has stabilizable dynamics 

and when the performance functional satisfies zero state observability (i.e. observability of 

the system state through the cost function) [159, 160]. 

5.4.3 Neural Network Approximation of Cost Function for Online Implementation of 
PI Algorithm 
For implementation of PI algorithm given by (5.15) and (5.17), which does not need 

the knowledge of internal state dynamics, ( )f x , and only need the knowledge of input-to-

state dynamics, ( )g x , the real-time dynamics of continuous-time system is used by 

measuring online sampled states ( )x t  and ( )x t T+  which are involved in policy evaluation 

(5.15). Thus, for online implementation, the cost function approximation using parametric 

function approximation network is used to determine the optimal control solution for a 

system. 

Due to their universal approximation property the neural networks are natural choice 

to approximate smooth functions on compact sets. Thus, for solving (5.15) for any x∈Ω , the 

cost function approximation using a neural network is considered here. Thus, consider that 

the cost function ( ) ( )iV xµ  can be approximated, for x∈Ω , by 

( ) ( )

1

( ) ( ) ( ) ( ) ( )
i i

h
T

h j j h h
j

iV x w x xµ µµ φ ϕ
=

= =∑ w               (5.23) 

This can be seen as a neural network where h is the number of neurons on the 

hidden layer, ( )h xϕ  is the vector of activation functions with neuron activation functions 

1( ) ( )j x Cφ ∈ Ω ,  (0) 0jφ ∈ . 
( )i

jwµ denote the weights of the output layer and 
( )i

h
µw is the weight 

vector. The output layer neuron has a linear activation function. The weights of the hidden 

layer are all equal to one and will not be changed during the training procedure [159, 160]. 

Consider an infinite set of linearly independent activation functions { }
1

( )j xφ
∞

, such 

that 1( ) ( )j x Cφ ∈ Ω , (0) 0jφ ∈ , 1,j = ∞ , which satisfy the completeness property (i.e. any 

function 1( ) ( ),  (0) 0f x C f∈ Ω ∈ can be represented as a linear combination of a subset of 

{ }
1

( )j xφ
∞

, then the exact solution of  (5.15) can be expressed as 

( ) ( )

1

( ) ( ) ( ) ( ) ( )
i i T

j j
j

iV x c x xµ µµ φ ϕ
∞

∞ ∞
=

= =∑ c                (5.24) 
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where ( )xϕ∞ is the vector of activation functions and 
( )iµ

∞c denotes the weight vector.  

Using the neural network approximate description for the cost function, (5.23) and 

(5.24) can be written as 
( ) ( )( )( ) ( ( )) ( , ( )) ( ) ( ( ))
i it TT i T

h h h ht
x t L x x d x t Tµ µϕ µ τ ϕ

+
= + +∫w w             (5.25) 

Thus using this neural network approximation for the cost function, (5.26) will have the 

residual error 
( ) ( )( )( ( ), ) ( , ( )) ( ) [ ( ( )) ( ( ))]
i it T i T

h h h ht
x t T L x x d x t T x tµ µδ µ τ ϕ ϕ

+
= + + −∫ w            (5.26) 

From the perspective of temporal difference learning methods this error can be 

viewed as a temporal difference residual error for continuous-time systems [159, 160]. The 

method of weighted residuals in the least-squares sense is used to determine the 

parameters of the neural network approximating the cost function 
( )i

hV µ . Thus, in order to 

tune the parameters 
( )i

h
µw of the cost function approximation 

( )i

hV µ , minimize the objective 

function 

 
( ) ( )

( ( , )) ( , )
i iT

h hJ x T x T dxµ µδ δ
Ω

= ∫                (5.27) 

From (5.27) we have 

 
( )

( )

( )

( , ) ( , ) 0
i

i

i
h

h
h

d x T x T dx
d

µ
µ

µ

δ δ
Ω

=∫ w
               (5.28) 

Using the inner product notation for the Lebesgue integral, (5.28) can be written as 
( )

( )

( , ) , ( , ) 0
i

i
ih
h

h

d x T x T
d

µ

µ

δ δ
Ω

=
w

                (5.29) 

which is 
( )

( )

[ ( ( )) ( ( ))],[ ( ( )) ( ( ))]

[ ( ( )) ( ( ))], ( ( ), ( ( )))

iT
h h h h h

t T i
h h t

x t T x t x t T x t

x t T x t L x x d

µϕ ϕ ϕ ϕ

ϕ ϕ τ µ τ τ

Ω

+

Ω

+ − + −

+ + − ∫

w
            (5.30) 

with [ ( ( )) ( ( ))],[ ( ( )) ( ( ))]T
h h h hx t T x t x t T x tϕ ϕ ϕ ϕ

Ω
Φ = + − + −  being invertible, we obtain 

( ) 1 ( )[ ( ( )) ( ( ))], ( ( ), ( ( )))
i t T i

h h h t
x t T x t L x x dµ ϕ ϕ τ µ τ τ

+−

Ω
= −Φ + − ∫w            (5.31) 

For the proof of convergence of solution with cost function approximation, the 

theorems, lemmas, corollaries, facts and definitions may be referred in [159, 160].  
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Thus, using the tuned parameters 
( )i

h
µw  the cost function 

( )i

hV µ associated with the 

control policy ( )iµ , can be calculated, and the control policy can be updated. The updated 

control policy will thus be 

( )( 1) 11( ) ( ) ( )
2

ii T T
h hx R g x x µµ ϕ+ −= − ∇ w                 (5.32) 

Equation (5.32) gives the output of the actor neural network. The controller (actor) 

can be seen as a neural network, similar to the one approximating the critic, which has the 

same weight parameters as the critic neural network, but whose activation functions are the 

gradients of those in the critic. 

In this implementation the activation function vector ( )h xϕ  is considered to be the 

Kronecker product quadratic polynomial basis vector with the elements 1, ; 1,{ ( ). ( )}i j i n j nx t x t = = , 

where n is the number of system state variables. For application of nonlinear inverted 

pendulum system the activation function vector contains 10 quadratic elements, for single-

link manipulator 3 quadratic elements, and also for Vander Pol’s oscillator 3 quadratic 

elements are considered. 

5.5 ADAPTIVE OPTIMAL CONTROL USING POLICY ITERATION TECHNIQUE 
The implementation issues of online policy iteration technique based adaptive critic 

scheme for adaptive optimal control of continuous-time input-affine nonlinear systems is 

described in this section. The adaptive optimal control scheme with actor-critic structure for 

affine nonlinear systems is shown in Fig. 5.1 [159, 160]. For implementation of policy 

iteration algorithm given by (5.15) and (5.17), the real-time dynamics of continuous-time 

system is used by measurements of states ( )x t  and ( )x t T+  sampled online along state 

trajectories which determine the information of system internal state dynamics, ( )f x , the 

knowledge that is not needed by PI algorithm, and only needed the knowledge of input-to-

state dynamics, ( )g x . In this control system structure the online adaptation scheme uses the 

dynamic information ( ) TV Q x u Ru= +  of cost function (state) ( )V t  for a control policy ( )xµ . 

In this implementation ( )V t  is reset to zero at the beginning of each sample interval [ , ]t t T+

, then the measurement ( )V t T+  gives the reinforcement over time interval [ , ]t t T+  required 

to implement the policy evaluation step in (5.15), i.e. ( )V t T+  gives the integral 

reinforcement term in (5.15). Thus, this is a dynamical controller whose memory is exactly 

the value ( )V t of using the current policy. Taking measurements at specific time values about 

the system states x, and the augmented system state V, (i.e. ( )x t , ( )x t T+  and 

( ) ( )V t T V t+ − ), the critic is able to evaluate the infinite horizon continuous-time performance 

of the system associated with a given control policy described in terms of the actor 
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parameters. The critic learns the cost function associated with a certain control behavior 

based on a computed temporal difference (TD) error signal, given by ( ) ( )V t T V t+ − . After 

observing the system state 1( )ix t +  at time 1it + , the control policy is updated to ( 1) ( )i
h xµ + (i.e. a 

new control policy at time 1it + ), which is used for controlling the system during the time 

interval 1 1[ , ]i it t T+ + + . This makes the PI algorithm suitable for online implementation. Since 

online PI algorithm does not require the system internal state dynamics ( )f x  for the 

evaluation of the cost function or the update of the control policy, and only requires the input-

to-state dynamics ( )g x  for the update of the control policy, thus the control scheme based 

on PI technique becomes partially model free. This control system structure involves the 

continuous-time dynamics of the system, and the discrete-time sampled data for the policy 

evaluation and policy update steps at discrete moments in time. Thus, this is a hybrid 

continuous-time / discrete-time adaptive control structure. This control scheme gives the 

optimal control solution and performs online adaptation, is termed as optimal adaptive 

control. This gives a direct adaptive optimal control scheme. The adaptive optimal control 

using policy iteration method relies on identification of the cost function associated with a 

given control policy followed by policy improvement in the sense of minimizing the identified 

cost, whereas the regular adaptive controllers rely on online identification of the system 

dynamics followed by model based controller design. This technique involves computations 

at a supervisory level based on discrete-time data measured from the system to update 

parameters of both actor and critic. By using neural networks to parameterize actor and critic 

for online implementation, this control scheme becomes a high-level intelligent control 

scheme.  

Using neural network approximation the solution of cost function, given by (5.25), can 

be obtained in real time, after a sufficient number of data points are collected along state 

trajectories in the region of interest Ω , and applying recursive least squares (RLS) algorithm 

which requires a persistence of excitation condition. Enough excitation must be present in 

the system for successful application of the algorithm. As PI algorithm iterates only on 

stabilizing controllers, if system state reached the equilibrium point, the data measured from 

the system can no longer be used in the adaptive algorithm; in that case the system must be 

again excited to the previously considered initial state and a new experiment needs to be 

conducted having as starting point the last policy obtained in the previous experiment. The 

convergence of iterations is determined by a threshold specified by control designer. The 

error between the system performances evaluated at two consecutive steps to be below 

threshold is considered as the criteria to stop the iterations [159, 160]. 
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Fig. 5.1 Adaptive optimal control with actor-critic structure. 

5.6 SIMULATION RESULTS AND ANALYSIS 
In this section, the application of ACD using online PI technique with neural network 

approximation of cost function for adaptive optimal control is implemented for five examples 

of affine nonlinear systems- two general systems, and three practical systems- single-link 

manipulator, inverted pendulum system, and Vander Pol oscillator. The simulation results 

and performance analysis are presented to demonstrate the effectiveness of the control 

scheme. 

5.6.1 General Affine Nonlinear System Example 1 
Consider a general input-affine nonlinear system which is having stronger 

nonlinearities and quadratic cost function. This nonlinear system is given by the equations 

 1 1 2x x x= − +                   (5.33) 

2 ( ) ( )x f x g x u= +                  (5.34) 

where 2
1 2 2 1

1 1( ) ( ) (2 sin(2 ))
2 2

f x x x x x= − + + + , and  1( ) 2 sin(2 )g x x= + . 

For implementation of PI algorithm the initial conditions for states and cost function, 

and critic parameters are taken here also as [ ]0 1 1 0x = ; [ ]0 3 3 / 2P = . The length of 

the simulation in samples is taken 150, number of operations 30, and sample time T=0.1 

seconds.  
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The adaptive optimal critic matrix P of adaptive critic scheme using PI which gives the 

quadratic cost critic parameters at 5th iteration is obtained as 

[ ]0.5 0 1P = . 

Thus the control policy is obtained as 

1
1 1 2 1

2

0
1 (2 sin(2 )) (2 sin(2 ))
2

2
u R x P x x x

x

−

 
 = − + = − + 
  

 

The simulation responses of adaptive optimal control using PI technique for affine 

nonlinear system (5.33) & (5.34) are shown in Figs. 5.2 to 5.4. Fig. 5.2 shows the system 

state trajectories which converge towards the equilibrium point at origin. Fig. 5.3 shows the 

control signal trajectory which also converge towards zero. Fig. 5.4 shows the convergence 

of critic parameters of matrix P towards optimal values. 

 

 
Fig. 5.2 System states 
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Fig. 5.3 Control signal 

 

 
Fig. 5.4 Critic parameters 
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5.6.2 General Affine Nonlinear System Example 2 
Consider a general input-affine nonlinear system which is having stronger 

nonlinearities and quadratic cost function. This nonlinear system is described by the dynamic 

equations 

1 1 2x x x= − +                   (5.35) 

2 ( ) ( )x f x g x u= +                  (5.36) 

where 2
1 2 2 1

1 1( ) ( ) (2 cos(2 ))
2 2

f x x x x x= − + + + , and 1( ) 2 cos(2 )g x x= + . 

Considering the state regulation problem for this system defined by (5.35) & (5.36) 

with quadratic cost function. For implementation of PI algorithm the initial conditions for 

states and cost function, and critic parameters are taken as [ ]0 1 1 0x = ; [ ]0 3 3 / 2P =

. The length of the simulation in samples is taken 150, number of operations 30, and sample 

time T=0.1 seconds. Using neural network approximation of cost function the adjusted 

optimal weights 
( )i

L
µw at 5th iteration during simulation give the adaptive optimal critic 

parameters P, which is obtained as 

[ ]0.5 0 1P =   

Thus the control policy is obtained as 

1
1 1 2 1

2

0
1 (2 cos(2 )) (2 cos(2 ))
2

2
u R x P x x x

x

−

 
 = − + = − + 
  

 

The simulation responses of adaptive optimal control using PI technique for affine 

nonlinear system defined by (5.35) & (5.36) are shown in Figs. 5.5 to 5.7. Fig. 5.5 shows the 

system state trajectories showing 1x  and 2x  which converge towards the equilibrium point at 

origin. Fig. 5.6 shows the control signal trajectory u which also converge towards zero. Fig. 

5.7 shows the convergence of critic parameters of matrix P towards optimal values. 
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Fig. 5.5 Nonlinear system states trajectories 

 

 
Fig. 5.6 Control signal 
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Fig. 5.7 Critic parameters 

5.6.3 Single-Link Manipulator System 
Consider the single-link manipulator which is also a benchmark nonlinear system 

problem. The dynamic system equations of a single-link manipulator [71, 178] are given as  

d
dt
θ ω=                   (5.37) 

2

1sin a
d g T
dt l ml
ω θ= − +                 (5.38) 

where θ  is angular displacement, ω  is angular velocity, and aT  is the actuating torque. Let 

acceleration due to gravity g=9.81m/s2; link length l=1m, and link mass m=1kg. Considering 

1xθ = , and 2xω =  as the state variables , and aT u=  is the control input, then dynamic 

system equations are written as 

1 2x x=                    (5.39) 

2 1sin( )x g x u= − +                  (5.40) 

For implementation of PI algorithm the initial conditions for states and cost function, 

and critic parameters are taken as [ ]0 1 1 0x = ; [ ]1 0 1/ 2P = . The quadratic cost 

function matrices are taken as [1  0; 0  1]Q = , 1R = . The length of the simulation in samples 

is taken 150, number of operations 30, and sample time T=0.1 seconds. At each iteration 
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data is measured along state trajectory defined from different initial conditions chosen 

randomly in the region of interest Ω . 

Using neural networks approximation of cost function the adjusted optimal weights 
( )i

L
µw at 5th iteration during simulation give the adaptive optimal critic parameters P, which is 

obtained as 

[ ]10.3212 0.0988 1.0487P =  

Thus the control policy is obtained as 

1
1 1 2

2

0
1 0.0494 1.0487
2

2
u R P x x x

x

−

 
 = − = − − 
  

 

The simulation responses of ACD using PI technique for single-link manipulator 

(5.39) & (5.40) are shown in Figs. 5.8 to 5.10. Fig. 5.8 shows the system state trajectories 

which converge towards the equilibrium point at origin. Fig. 5.9 shows the control signal 

trajectory which also converge towards zero. Fig. 5.10 shows the convergence of critic 

parameters of matrix P towards optimal values. 

 

 

Fig. 5.8 Single-link manipulator system states trajectories- angular displacement 1x  and 

angular velocity 2x . 
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Fig. 5.9 Control signal u with adaptive optimal control using PI technique. 

 

 
Fig. 5.10 Critic parameters. 
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5.6.4 Nonlinear Inverted Pendulum System 
Consider the nonlinear inverted pendulum-cart dynamical system which represents 

the control input affine system. The dynamic equations of inverted pendulum-cart system are 

given as [1, 2, 180]  
2

2

(sin ) cos sin
cos

u ml mgx
M m m

θ θ θ θ
θ

+ −
=

+ −



                (5.41) 

2

cos ( ) sin (cos sin )
cos ( )

u M m g ml
ml M m l

θ θ θ θ θθ
θ

− + +
=

− +



              (5.42) 

where ( )x t is the cart position and ( )tθ is the pendulum tilt angle referenced to the vertically 

upward direction, M is mass of cart, m is the pendulum ball point mass, u is an externally x-

directed force on the cart, and g is the acceleration due to gravity.  

Considering 1 2 1 3 4 3 ,   ,   ,  x x x x x x x xθ θ= = = = = =

    as state variables, (5.41) and 

(5.42) may be written in state space form 

1 1 1

2 2 2

3 3 3

4 4 4

x f g
x f gd d d u
x f gxdt dt dt
x f gx

θ
θ

      
      
      = = = +
      
      

      





x                        (5.43) 

where, 

1 2f x=                    (5.44) 

2
1 1 1 2

2 2
1

( ) sin (cos sin )
cos ( )

M m g x ml x x xf
ml x M m l

+ +
=

− +
              (5.45) 

3 4f x=                   (5.46) 

2
1 2 1 1

4 2
1

(sin ) cos sin
cos

ml x x mg x xf
M m m x

−
=

+ −
               (5.47) 

1 0g =                    (5.48) 

1
2 2

1

cos
cos ( )

xg
ml x M m l

=
− +

                (5.49) 

3 0g =                    (5.50) 

4 2
1

1
cos

g
M m m x

=
+ −

                (5.51) 

For the simulation the typical parameters of inverted pendulum-cart system setup are 

considered as [180]: mass of the cart (M): 2.4 kg, mass of the pendulum (m): 0.23 kg, length 

of the pendulum (l): 0.36 m, length of the cart track (L): ± 0.5 m, friction coefficient of the cart 

& pole rotation is assumed negligible. The acceleration due to gravity g=9.81 m/s2. 
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For implementation of PI algorithm the initial conditions for system states and cost 

function, and the initial critic parameters are considered as [ ]0 0.4 0.8 0π π= −x ; 

[ ]1 0 0 0 1 0 0 1 0 1P = . The quadratic cost function matrices are taken as 

[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 01]Q = , 1R = . The length of the simulation in samples is taken 

1200, number of operations 20, and sample time T=0.05 seconds. At each iteration data is 

measured along state trajectory defined from different initial conditions chosen randomly in 

the region of interest Ω . 

Using neural networks approximation of cost function the adjusted optimal weights 
( )i

L
µw at 60th iteration during simulation give the adaptive optimal critic parameters P, which is 

obtained as 

[26.7512    0.1662    2.1849    5.2627   0.8502    0.2337    0.5275    2.4927    5.3840    6.8071]P = −  

Thus the control policy is obtained as 

1

2 1

3 1

4 11
2

1 21

3 2

4 2
2

1 3

4 3

4

2 0 0 0
0 0

0 00
0 0cos

0.0828cos 0.9468 0 2 0 01
0 002
0 01

2.63 0.23cos 0 0 2 0
0 0
0 0 0 2

T

T

T

x
x x
x x
x xx

x x
u R P

x x
x x

x x
x x

x

−

 
 
 
  
  
  
 − 

= −   
  
  
  −   
 
 
  

 

The simulation responses are shown in Figs. 5.11 to 5.13. Fig. 5.11 shows the 

system state trajectories showing θ , θ , x , and x  which converge towards the equilibrium 

point at origin. Fig. 5.12 shows the control signal trajectory u which also converge towards 

zero. Fig. 5.13 shows the convergence of critic parameters of matrix P towards optimal 

values. It is observed here that the states of pendulum-cart system are regulated quickly with 

bounded control input u. The inverted pendulum stabilizes in vertically upright position 

quickly.  
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Fig. 5.11 Nonlinear inverted pendulum system states trajectories- pendulum angle θ , 

angular velocity θ , cart position x, cart velocity x . 

 
Fig. 5.12 Control force u with adaptive optimal control using PI technique. 
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Fig. 5.13 Critic parameters. 

5.6.5 Nonlinear Vander Pol Oscillator System 
Consider the control design for Vander Pol oscillator, a benchmark nonlinear system 

problem. The homogeneous system for this problem has an unstable equilibrium point at the 

origin ( 1 2 0x x= = ), and a stable limit cycle. These properties make it a nontrivial regulator 

problem in the sense that without applying appropriate control, the states starting from any 

non-zero initial condition will never go to zero, and rather develop towards the limit cycle 

[173, 178]. The system dynamics of a Vander Pol oscillator is given by 

1 2x x=                    (5.52)  

2 2 2
2 1 1 2 1 2(1 ) (1 )x x x x x x uα= − + − + + +                (5.53) 

The state regulation problem is considered for system defined by (5.52) and (5.53) 

with quadratic cost function. Consider parameter 0.3α = . For implementation of PI algorithm 

the initial conditions for states and cost function, and critic parameters are taken as 

[ ]0 1 1 0x = ; [ ]1 0 1P = . The length of the simulation in samples is taken 900, number 

of operations 30, and sample time T=0.05 seconds. At each iteration data is measured along 

state trajectory defined from different initial conditions chosen randomly in the region of 

interest Ω . Using neural network approximation of cost function the adjusted optimal weights 
( )i

L
µw at 30th iteration during simulation give the adaptive optimal critic parameters P, which is 

obtained as 
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[ ]2.1453 0.7862 1.6628P =   

Thus the control policy is obtained as 

( )1 2 2
1 2 1

2

2 2
1 2 1 2

0
1 1
2

2

  (1 )(0.3931 1.6628 )

u R x x P x
x

x x x x

−

 
 = − + +  
  

= − + + +

 

The simulation responses of adaptive optimal control using PI technique for Vander 

Pol oscillator system are shown in Figs. 5.14 to 5.16. Fig. 5.14 shows the system state 

trajectories showing 1x  and 2x  which converge towards the equilibrium point at origin. Fig. 

5.15 shows the control signal trajectory u which also converge towards zero. Fig. 5.16 shows 

the convergence of critic parameters of matrix P towards optimal values. 

 

 
Fig. 5.14 Vander Pol oscillator system states trajectories 
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Fig. 5.15 Control signal 

 
Fig. 5.16 Critic parameters 

From the analysis of simulation results obtained for all the above examples of input-

affine nonlinear systems, it is observed that the system states converge towards the 

equilibrium point at origin, and the control signal remains bounded converging towards zero. 
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The cost function approximation neural networks weights 
( )i

L
µw are adjusted to the optimal 

values which give the critic parameters matrix P converging adaptively to optimal values and 

thus the control policy is adaptive optimal. The online PI algorithm does not require the 

system internal state dynamics extracting that information from real-time dynamics by online 

measurement of data along state trajectory defined from different initial conditions chosen 

randomly in the region of interest Ω  at each iteration, thus providing a partially model-free 

approach. The online PI algorithm requires an initial stabilizing controller for converging to 

the optimal solution. The online implementation using neural network approximation of cost 

function, the recursive least squares algorithm requires a persistence of excitation condition. 

The adaptive critic design using policy iteration technique provides adaptive optimal control 

solution for affine nonlinear systems. Thus, the simulation results and performance analysis 

demonstrate the effectiveness of online policy iteration technique based adaptive critic 

control scheme. 

5.7 CONCLUSIONS 
This chapter presents adaptive critic design using online policy iteration technique for 

continuous-time affine nonlinear dynamical systems. ACD involves two parametric function 

approximation networks known as a critic and an actor to efficiently approximate the optimal 

cost and control. Based on actor-critic structure the online PI algorithm consists of two-step 

iteration: policy evaluation and policy improvement requires an initial stabilizing control policy 

to converge towards state feedback optimal control. The infinite horizon optimal solution 

using HJB requires the complete knowledge of the system dynamics, which becomes 

partially model free using the online policy iteration technique based adaptive critic scheme. 

The online PI algorithm solves online the continuous-time optimal control problem without 

using the knowledge of system internal dynamics, the information which is extracted from 

real-time dynamics by online measurement of sampled states along state trajectory. The 

knowledge of internal state dynamics (i.e. ( )f x ) is not needed for evaluation of cost or the 

update of control policy; and only the knowledge of input-to-state dynamics (i.e. ( )g x ) is 

required for updating the control policy. Thus, the ACD using online PI technique gives an 

infinite horizon adaptive optimal control solution for continuous-time affine nonlinear systems. 

In this chapter the neural network approximation of cost function is used for online 

implementation of PI algorithm with the Kronecker product quadratic polynomial basis vector 

considered to be the activation function vector. In this section the application of control 

scheme is implemented considering the state regulation problem for two general and three 

practical examples of input-affine nonlinear systems- a single-link manipulator, and inverted 

pendulum system, and Vander Pol oscillator. The simulation results and performance 

analysis are presented which justify the effectiveness of the proposed control scheme. 
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CHAPTER 6  
 

INTELLIGENT ADAPTIVE OPTIMAL CONTROL USING SYNCHRONOUS POLICY 
ITERATION TECHNIQUE FOR CONTINUOUS-TME DYNAMICAL SYSTEMS 

This chapter describes the intelligent adaptive optimal control of continuous-time dynamical 

systems using synchronous policy iteration technique with neural networks approximation of 

cost function and control policy. The application of control scheme is presented for selected 

examples of both continuous-time LTI systems and affine nonlinear systems. 

6.1 INTRODUCTION 
The optimal control problems of continuous-time nonlinear systems can be obtained by 

the solution of nonlinear Lyapunov equations using neural networks which are trained to be 

approximate solution. The nonlinear optimal control solution can be obtained by using the 

policy iteration (PI) algorithm that is built on an actor-critic structure which involves two neural 

networks (NN) known as critic network and actor network. The critic is trained to approximate 

the solution of Lyapunov equation at the policy evaluation step, and the actor is trained to 

approximate the control policy at the policy improvement step. Based on discrete-time 

information measured from the system, the sequential updates of critic and actor are done in 

the PI algorithm (i.e. while one is tuned the other one remains constant). In the generalized 

policy iteration (GPI) algorithm either one or both of the policy evaluation and policy 

improvement steps are not required to complete before the next step is started. At each step 

the cost of control policy is not completely evaluated, but only updated the current cost 

estimate towards that value. The policy improvement step is initiated before the policy 

evaluation step converges with the assumption that the iterative solution of each of the two 

steps is approached. This approach is termed as optimistic PI [154]. The synchronous policy 

iteration algorithm is a variant of GPI. In the synchronous PI algorithm the tuning of both 

actor and critic neural networks are done simultaneously based on the continuous-time 

measurement from the environment. The synchronous PI algorithm requires the complete 

knowledge of system dynamics for solution, and also requires a certain persistence of 

excitation (PE) condition for convergence [161]. The online synchronous PI technique 

provides online adaptive optimal control solution for continuous-time linear and nonlinear 

systems. The synchronous PI algorithm with tuning algorithms for both actor and critic 

networks, and convergence proof are proposed recently in certain papers [154, 161] In this 

chapter the applications of synchronous PI technique using neural networks approximation of 

cost function and control policy for intelligent adaptive optimal control of continuous-time LTI 

systems and affine nonlinear systems are presented. For the implementation of online 

synchronous PI based control scheme, two practical examples of LTI systems- LFC system 

and AVR system are considered. And three general systems and two practical systems 
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examples of affine nonlinear systems- single-link manipulator and Vander Pol oscillator are 

considered for applications of control scheme. The concepts of infinite horizon optimal 

control of continuous-time systems, and continuous-time adaptive critics are same as 

discussed in sections 5.2 and 5.3 respectively. The formulation of infinite horizon optimal 

control of continuous-time affine nonlinear systems as discussed in section 5.2 is referred as 

same for the mathematical formulations in the following sections of this chapter. 

6.2 SYNCHRONOUS POLICY ITERATION TECHNIQUE 
The synchronous policy iteration technique is an iterative method which belongs to the 

reinforcement learning technique, tunes the actor and critic networks concurrently at the 

same time. The synchronous PI algorithm, neural networks approximation of value function, 

the tuning and convergence of actor and critic networks, and adaptive optimal control using 

synchronous PI technique for continuous-time systems are discussed in the following sub-

sections. 

6.2.1 Synchronous Policy Iteration Algorithm 
Same to the PI algorithm the synchronous PI algorithm consists of two iterative steps 

[158]: 

1. Policy evaluation: given ( ) ( )i xµ , solve for the value 
( )

( ( ))
i

V x tµ  using nonlinear 

Lyapunov equation 

( )

( ) ( ) ( )0 ( , ( )) ( ) ( ( ) ( ) ( )),

(0) 0
i

i i T iL x x f x g x x

V µ

µ λ µ= + +

=
                (6.1) 

2. Policy improvement: update the control policy using Hamiltonian functional 
( 1) ( )

( )
arg min ( , ,i i

u
H x uµ λ+

∈Ψ Ω
 =                     (6.2) 

which explicitly is 

( 1) 1 ( )1( ) ( )
2

i T ix R g xµ λ+ −= −                   (6.3) 

where the variables in above equations have same meaning as discussed in section 5.2 and 

5.4. The PI algorithm requires an admissible policy (0) ( ( )) ( )x tµ ∈Ψ Ω  to ensure its 

convergence. The convergence proofs of synchronous PI algorithms are presented for 

continuous-time systems in [158, 161]. 

6.2.2 Neural Network Approximation of Value Function 
In the standard PI algorithm, the critic and actor are updated alternatively by solving 

(6.1) and (6.3). In actor-critic structure the cost function 
( )

( ( ))
i

V x tµ , and the control policy 

( 1) ( )i xµ +  are approximated by neural networks (NN) at each step of PI algorithm, known as 
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critic NN and actor NN respectively which are tuned alternatively in the least square sense to 

solve the value function (6.1) and the control policy (6.3) respectively. Thus, while one neural 

network is being tuned, the other is held constant, whereas in synchronous PI algorithm 

these two networks are tuned simultaneously in real-time to guarantee convergence to the 

control policy as well as stability during the training process [158, 161]. 

Let the assumptions that the solution of nonlinear Lyapunov equation is smooth ( i.e. 
1( ) ( )V x C∈ Ω ), and positive definite (i.e. ( ) 0Q x > , {0}x∈Ω− ; (0) 0Q = ) which is 

guaranteed for the stabilizable system dynamics if performance functional satisfies zero-state 

observability. With such assumptions, there exists a complete independent basis set 1{ ( )}xφ  

such that the solution ( )V x  and its gradient 
( )V x
x

λ ∂
=

∂
 are uniformly approximated 

according to Weirstrass higher-order approximation theorem, and there exist coefficients ic , 

such that   [158].  

1 1 1
( ) ( ) ( ) ( )

N

i i i i i i
i i i N

V x c x c x c xφ φ φ
∞ ∞

= = = +

= = +∑ ∑ ∑  

1 1
1

( ) ( ) ( )T
i i

i N
V x C x c xϕ φ

∞

= +

≡ + ∑                   (6.4) 

1 1 1

( ) ( ) ( )( ) N
i i i

i i i
i i i N

x x xV x c c c
x x x x

φ φ φ∞ ∞

= = = +

∂ ∂ ∂∂
= = +

∂ ∂ ∂ ∂∑ ∑ ∑                (6.5) 

where 1 1 2( ) [ ( )  ( ) ... ( )] :T n N
Nx x x xϕ φ φ φ= →R R . The last terms in (6.4) and (6.5) converge 

to zero as N →∞ . 

Since the critic NN is based on value function approximation (VFA) in Sobolev norm 

(i.e. approximation of value function ( )V x , and its gradient) [158], thus, consider that it has 

weights 1W  such that the value ( )V x  is approximated by a neural network as 

1 1( ) ( ) ( )TV x W x xϕ ε= +                   (6.6) 

where 1( ) : n Nxϕ →R R  is the activation functions vector, N is the number of neurons in the 

hidden layer, and ( )xε  is the neural networks approximation error which is bounded by a 

constant on a compact set. Selecting the activation functions { }( ) : 1,i x i Nφ =  to provide a 

complete basis set { }( ) : 1,i x iφ = ∞  such that ( )V x  and its derivative are uniformly 

approximated. 

Taking the derivative of value function ( )V x  with respect to x, we have 

  1
1 1 1

( )( ) ( ) ( )
TT

TxV x xW x W
x x x

ϕ ε ϕ ε
 ∂∂ ∂

= + = ∇ +∇ ∂ ∂ ∂ 
               (6.7) 
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According to the Weirstrass higher-order approximation theorem a complete basis set exists 

if ( )V x  is sufficiently smooth, and thus, as the number of hidden-layer neurons N →∞ , the 

approximation errors 0ε → , 0ε∇ →  uniformly. Also these errors are bounded by constants 

on a compact set. 

Using the neural networks approximation of value function, considering a fixed control 

policy u(t), the nonlinear Lyapunov equation, and thus the Hamiltonian becomes 

 1 1 1( , , ) ( ) ( )T T
HH x u W W f gu Q x u Ruϕ ε= ∇ + + + =                (6.8) 

where the residual error due to the function approximation error is given by 

 ( ) ( )T
H f guε ε= − ∇ +                    (6.9) 

This residual error is bounded on a compact set under the Lipschitz assumption on the 

system dynamics. The detail discussion on convergence of solution can be referred in [154, 

158]. 

The effect of approximation error on HJB equation is given by 

1
1 1 1 1 1 1

1 ( )
4

T T T T
HJBW f W gR g W Q xϕ ϕ ϕ ε−∇ − ∇ ∇ + =              (6.10) 

where the residual error due to function approximation error is given by 

1 1
1 1

1 1
2 4

T T T T T
HJB f W gR g gR gε ε ϕ ε ε ε− −= −∇ + ∇ ∇ + ∇ ∇             (6.11) 

As the number of hidden layer neurons increases the error HJBε  converges uniformly to zero 

(i.e. 0ε∀ > , ( ) : supx HJBN ε ε ε∈Ω∃ < ). 

6.2.3 Tuning and Convergence Analysis of Online Synchronous PI Algorithm 
The standard PI algorithms for continuous-time systems which are offline methods 

require the complete knowledge of system dynamics (i.e. ( )f x  and ( )g x ) to obtain the 

solution. Consistent with the online learning mechanism in the mammal brain, the online 

synchronous PI algorithm is an adaptive learning algorithm that uses simultaneous 

continuous-time tuning for the actor and critic neural networks for continuous-time systems. 

The synchronous PI algorithm also require the complete knowledge of the system dynamics, 

yet can approximately solve the optimal control problem online using real-time 

measurements of closed-loop signals. The synchronous PI algorithm is consistent with 

adaptive control schemes which first design an observer for system state and unknown 

dynamics, and then design feedback control using this observer. The value function 

approximation using neural networks is like the observer design for value function. The 

following subsections briefly present the synchronous tuning and convergence of critic NN 

and actor NN respectively. For the detail discussion on tuning and convergence analysis for 
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critic NN and actor NN of synchronous PI algorithm, the assumptions, lemmas, theorems, 

definitions, and remarks may be referred in [154, 158, 161]. 

6.2.3.1 Critic Neural Networks 

The critic NN weights 1W , that provide the best approximate solution for (6.8) are 

unknown. Thus the output of the critic NN is 

 1 1
ˆ ˆ( ) ( )TV x W xϕ=                  (6.12) 

where 1̂W  are the current estimated values of the critic NN weights. Since 1( ) : n Nxϕ →R R is 

the activation functions vector with N the number of neurons in the hidden layer, then the 

approximate Hamiltonian is given by 

1 1 1 1
ˆ ˆ( , , ) ( ) ( )T TH x W u W f gu Q x u Ru eϕ= ∇ + + + =              (6.13) 

Define the critic weight estimation error as 

1 1 1̂W W W= −                   (6.14) 

then 

1 1 1( )T
He W f guϕ ε= − ∇ + +                 (6.15) 

For a given admissible control policy u, it is desired to select  1̂W  such that the squared 

residual error is minimized. The squared residual error is given by 

1 1 1
1
2

TE e e=                   (6.16) 

then 1 1
ˆ ( )W t W→ , and . 1 He ε→ . 

Consider the normalized gradient descent algorithm as the tuning law for the critic NN 

weights as  

 1 1
1 1 1 1 12

1 11

ˆ ˆ ( )ˆ ( 1)
T T

T

EW a a W Q x u Ru
W

σ σ
σ σ

∂  = − = − + + +∂
             (6.17) 

where 1 1( )f guσ ϕ= ∇ + . This is a modified Levenberg-Marquardt algorithm in which 

2
1 1( 1)Tσ σ +  is used for normalization instead of 1 1( 1)Tσ σ + . This is required in convergence 

proofs [154, 157, 158, 161]. 

From (6.8) we have 

 1 1( ) ( )T T
HQ x u Ru W f gu eϕ+ = − ∇ + +               (6.18) 

Let the notations 

1
1

1 1( 1)T

σσ
σ σ

=
+

 , 1 1( 1)T
sm σ σ= +               (6.19) 

Substituting (6.18) in (6.17) and with (6.19), the critic weight estimation error dynamics is 

obtained as 
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 1 1 1 1 1 1 1
T H

s

W a W a
m
εσ σ σ= − +

                  (6.20) 

From (6.20) with defining output y, the error dynamical system is defined as 

1 1 1 1 1 1 1

1 1

T H

s

T

W a W a
m

y W

εσ σ σ

σ

= − +

=



 



                (6.21) 

Even though the critic tuning algorithms of the form (6.17) are traditionally used, when 

the convergence of critic weights can be guaranteed is generally not known. To guarantee 

the convergence of 1̂W  to 1W , the persistence of excitation (PE) assumption and associated 

technical lemmas are proposed in [154, 157, 158, 161]. 

Persistence of Excitation Assumption [154, 157, 158, 161]: Let the signal 1σ  be persistently 

exciting over the interval [ , ]t t T+ , i.e. there exist constants 1 20, 0, 0Tβ β> > >  such that, for 

all t, 

 1 0 1 1 2( ) ( )
t T T

t
I S d Iβ σ τ σ τ τ β

+
≤ ≡ ≤∫                (6.22) 

The PE assumption is required in adaptive control with system identification using 

recursive least squares (RLS) algorithm. The PE is required to identify the critic parameters 

to approximate ( )V x . The PE condition (6.22) is equivalent to the uniform complete 

observability (UCO) of the error dynamics system (6.21). According to UCO that gives the 

bounded-input-bounded-output (BIBO) condition, the state 1( )W t  is bounded. The lemmas, 

theorems, and remarks for proof of convergence of critic NN can be referred in [154, 157, 

158, 161]:.  

The error dynamics system (6.21) is exponentially stable. In fact if 0Hε =  then ( )W t  

decays exponentially, and ( ) (0)kTW kT e Wα−≤   with decay constant 

( )1 3
1 ln 1 2a
T

α β= − −                  (6.23) 

This can be proved by taking the Lyapunov function 1
1 1 1

1
2

TL W a W−=    and PE condition.  

Let maxHε ε≤  and maxy y≤  then 1W  converges exponentially to the residual set 

( ){ }2
1 max 2 1 max max

1

( )
T

W t y a y
β

δβ ε
β

≤ + +               (6.24) 
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where δ  is a positive constant of the order of 1. Equation (6.24) can be proved using the 

state solution of error dynamics system (6.21) considering 1 1 1( )W t a uσ=

 , ( ) ( )x B t u t= , 

( ) ( )Ty C t x t= , where 1( )x t W=  , 1 1B aσ= , 1C σ=  that be PE, and setting H

s

u y
m
ε

= − + , then, 

max max
H

s

u y y
m
ε ε≤ + ≤ + .                    (6.25) 

Following Theorem 6.1 shows that the critic tuning law (6.17) indeed guarantees the 

boundedness of the output of error dynamic system [154, 157, 158, 161]:.   

   

Theorem 6.1 [154, 157, 158, 161]: Let ( )u t  be any admissible bounded control input. Let 

tuning for the critic NN be provided by (6.17) and assume that 1σ  is persistently exciting. Let 

the residual error in (6.8) be bounded maxHε ε≤ . Then the critic parameter error is 

practically bounded by 

 [ ]{ }2
1 2 1 max

1

( ) 1 2
T

W t a
β

δβ ε
β

≤ +                (6.26) 

Proof: Consider the Lyapunov function candidate as following: 

 { }1
1 1 1

1( )
2

TL t tr W a W−=                    (6.27) 

The derivative of L is given by 

 1
1 1 12
T T

H
s

L tr W W
m
σ σ ε

 
 = − −  

 
    

 1 1 1
1 1 12

T
T T H

s s s

L tr W W tr W
m m m
σ σ σ ε   

= − +   
   

     

 
2

1 1
1 1

T T
H

s s s

L W W
m m m
σ σ ε

≤ − +    

 1 1
1 1

T T
H

s s s

L W W
m m m
σ σ ε 

= − − 
 

    

Therefore 0L ≤  if  

 1
1 max

T
H

s s

W
m m
σ εε> >                  (6.28) 

since 1sm ≥ . If (6.28) satisfies ( )L t  decreases that provides an effective practical bound 

for 1 1
TWσ  . 
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The estimation error dynamics (6.21) with its output bounded effectively by maxy ε< ,  

(6.24) shows the exponential convergence to the residual set  

 [ ]{ }2
1 2 1 max

1

( ) 1 2
T

W t a
β

δβ ε
β

≤ +                           (6.29) 

This completes the proof. 

Since N →∞ , 0Hε → uniformly, thus maxε decreases with increasing the number of 

hidden layer neurons. For the given control policy ( )u t , the critic NN weights 1̂W  converge to 

the actual unknown weights 1W , which solve the Hamiltonian equation (6.8). Thus, (6.12) 

converges close to the actual value function of the current control policy. Thus, this theorem 

shows that the tuning algorithm (6.17) is effective. 

6.2.3.2 Actor Neural Networks 
In online synchronous PI algorithm the weights of both actor and critic neural networks 

are tuned at the same time. The justified form of actor NN is desired to be determined. Let 

the solution 1( ) ( )V x C∈ Ω  to the nonlinear Lyapunov equation (6.1) for a given admissible 

policy u(t) is given by (6.4). Then by substituting (6.5) into (6.3) the policy improvement step 

in PI is given as 

 1

1

( )1( ) ( )
2

T i
i

i

xu x R g x c
x

φ∞
−

=

∂
= −

∂∑                (6.30) 

for some unknown coefficients ci. Let the least square solution to (6.8) be 1W , then control 

policy with unknown critic weights 1W , is given by 

1 1
1 1 1 1

1 1( ) ( ) ( ) ( ) ( )
2 2

T T Tu x R g x V x R g x x Wϕ− −= − ∇ = − ∇              (6.31) 

Thus, the control policy in the form of an action NN that computes the control input in the 

structured form can be defined as 

 1
2 1 2

1 ˆ( ) ( )
2

T Tu x R g x Wϕ−= − ∇                 (6.32) 

where 2Ŵ  denotes the current known values of the actor NN weights. 

Define the actor NN estimation error as 

2 1 2
ˆW W W= −                   (6.33) 

Definition 6.1 [158]: The equilibrium point 0ex =  of system ( ) ( )x f x g x u= +   is said to be 

uniformly ultimately bounded (UUB) if there exists a compact set nS ⊂ R  so that for all 

0x S∈  there exists a bound B and a time 0( , )T B x  such that ( ) ex t x B− ≤  for all 0t t T≥ + . 
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Assumption 6.1 [158]: It is assumed that  

(a) ( )f   is Lipschitz continuous, and ( )g   is bounded by a constant, ( ) ff x b x< , 

( ) gg x b< . 

(b) The NN approximation error and its gradient are bounded on a compact set containing Ω  

so that bεε < , 
x

bεε∇ < . 

(c) The NN activation functions and their gradients are bounded so that 1( )x bϕϕ < , 

1( )
x

x bϕϕ∇ < . 

The following theorem which is proposed in [158, 161] provides the tuning laws for the 

actor and critic NNs that guarantee convergence to the optimal controller along with closed-

loop stability. 

Theorem 6.2 [158, 161]: Let the system dynamics be given by ( ) ( )x f x g x u= + , 0(0)x x= , 

the critic NN be given by (6.12) and the control input be given by actor NN (6.32). Let tuning 

for the critic NN be provided by 

 2
1 1 2 1 2 22

2 2

ˆ ˆ ( )
( 1)

T T
TW a W Q x u Ruσ σ

σ σ
 = − + + +

               (6.34) 

where 2 1 2( )f guσ ϕ= ∇ + , and assume that 2
2

2 2( 1)T

σσ
σ σ

=
+

 is persistently exciting. Let the 

actor NN be tuned as 

 ( )2 2 2 2 1 2 1 1 2 1
1ˆ ˆ ˆ ˆ ˆ( ) ( )
4

T TW a F W F W D x W m x Wσ = − − −  
              (6.35) 

where 
1

1 1 1( ) ( ) ( ) ( ) ( )T TD x x g x R g x xϕ ϕ−≡ ∇ ∇  

2
2

2 2( 1)Tm σ
σ σ

≡
+

 

and 1 0F >  and 2 0F >  are tuning parameters. Then there exists an 0N , such that for number 

of hidden layer units 0N N> , the closed-loop system state, the critic parameter error 

1 1 1̂W W W= −  and the actor parameter error 2 1 2
ˆW W W= −  are UUB, and (6.26) holds 

asymptotically so that convergence of 1̂W  to the approximate optimal critic value 1W  is 

obtained. 

Proof: The convergence proof is based on Lyapunov analysis considering the Lyapunov 

function as 
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 ( ) ( )1 1
1 1 1 2 2 2

1 1( ) ( )
2 2

T TL t V x tr W a W W a W− −= + +                  (6.36) 

With the chosen tuning laws it can be shown that the errors 1W  and 2W  are UUB and the 

convergence is obtained.  

 The derivative of Lyapunov function is given by 

1 1
1 1 1 2 2 2

1 2

( ) ( )

         = ( ) ( ) ( )

T T

V

L x V x W a W W a W
L x L x L x

− −= + +

+ +

 

     

  

               (6.37) 

By expanding each term in (6.37) and further deriving it is proved that if L exceeds a 

certain bound, then, L  is negative, which guarantees the convergence and closed-loop 

stability. After further derivation of (6.37) and analysis it can be demonstrated that the state 

and weights are UUB. The detail convergence proof of theorem 6.2 is referred in [158]. 

6.3 ADAPTIVE OPTIMAL CONTROL USING SYNCHRONOUS POLICY 
ITERATION TECHNIQUE 
This section presents the implantation issues of adaptive optimal control using online 

synchronous PI technique for continuous-time linear time-invariant (LTI) systems and input-

affine nonlinear systems. The adaptive optimal control using actor-critic structure for LTI 

systems is shown in Fig. 6.1, and for affine nonlinear systems is shown in Fig. 6.2 [158, 161]. 

Two neural networks- critic NN and actor NN are used for online implementation of 

synchronous PI algorithm. For the LTI systems application the formulation of (6.1), (6.2) and 

(6.3) is modified for x Ax Bu= + , by replacing ( )f x Ax= , and ( )g x B= . The critic P and 

actor K are obtained from optimal weights of critic NN and actor NN respectively. 

 

 
Fig. 6.1 Adaptive optimal control with actor-critic structure using synchronous PI trchnique for 

LTI systems. 
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Fig. 6.2 Adaptive optimal control with actor-critic structure using synchronous PI trchnique for 

affine nonlinear systems. 

In this control system structure the critic and the actor functions are approximated by 

neural networks. The critic NN and the actor NN are tuned synchronously in the synchronous 

PI algorithm to obtain the solution of (6.1) and (6.3), which are the policy evaluation and 

policy improvement steps of algorithm respectively. The online synchronous PI algorithm 

uses the continuous-time data measured from the system for online concurrent tuning of the 

critic NN and the actor NN. The tuning laws of the critic and actor can be interpreted as the 

extra state dynamics of the closed loop actor-critic control system. The equilibrium points of 

the extra states are described by the dynamics of the critic and actor parameters respectively 

characterizing the optimal critic and optimal actor. The implementation of synchronous PI 

algorithm requires the complete knowledge (i.e. internal state dynamics ( )f x , and control 

input-to-state dynamics ( )g x ) of system dynamics. The convergence of synchronous PI 

algorithm requires the persistence of excitation (PE) condition on the signals that are used 

for the training of the critic NN and actor NN. The PE condition is explicitly embedded in the 

adaptation laws by adding a small probing noise to the control signal. On the convergence, 

the PE condition is no longer required, and the probing noise signal is turned off. The 

learning constants and tuning parameters are suitably selected for exponential convergence 

and the same values of critic and actor weights. In this implementation the activation 

functions vector ( )xϕ  is selected from system state variables considering generally in the 

sense of Kronecker product quadratic polynomial basis vector.  

The online synchronous PI technique provides online adaptive optimal control solution 

with infinite horizon cost for affine-input continuous-time systems with known dynamics. 

Using neural networks approximations for cost function and control policy in the online 

implementation, the synchronous PI technique based adaptive critic scheme provides an 
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intelligent adaptive optimal control solution for continuous-time time-invariant dynamical 

systems.  

The applications of this control scheme are presented for both continuous-time LTI 

systems and affine nonlinear systems. The simulation results and analysis for LTI systems 

and affine nonlinear systems are presented in the following sections respectively. 

6.4 SIMULATION RESULTS AND ANALYSIS FOR LTI SYSTEMS 
In this section, the application of online synchronous PI technique based adaptive critic 

scheme with neural networks approximation of critic and actor functions for adaptive optimal 

control is implemented for two practical examples of LTI systems- load frequency control 

(LFC) of power system, and automatic voltage regulator (AVR) of power system. LFC system 

models without and with integral control; and AVR system models neglecting and including 

sensor dynamics are considered for implementation of control scheme and performance 

analysis. The simulation results and performance analysis are presented to demonstrate the 

effectiveness of the control scheme. The performance of adaptive critic control scheme using 

synchronous PI technique is compared with LQR approach. 

The quadratic cost function is considered for these examples. The Kronecker product 

quadratic polynomial basis vector is considered as the critic NN activation functions vector 

1( )xϕ . For convergence the PE condition ensured by adding a small probing noise given by 

 0.05 2( ) sin ( ) cos( )tn t e t t−=  

The probing noise is turned off after convergence is reached. 

6.4.1 Load Frequency Control of Power System 
Consider the single-area power system load frequency control problem as discussed in 

section 4.6.3. 

6.4.1.1 LFC System Model without Integral Control 
As discussed in section 4.6.3.1 the state space model of LFC system without integral 

control is given by 

0. 11.5 0
0 2.5 2.5
9.5 0

0665

13.7360
A

− 
 = − 
 − −

 ,  
0
0

13.7360
B

 
 =  
  

 ,  
11.5
0
0

F
− 
 =  
  

 , 

[ ]1 0 0C =  , 0D =  

For implementation of synchronous PI algorithm the initial conditions of states are 

taken as [ ]0 0 0.1 0x = , and both the critic and actor NNs weight vectors 1W  and 2W  are 

initialized with elements of unity values. The learning constants are taken as 1 50a = , 2 1a = .  
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The quadratic cost function parameters Q and R are taken as identity matrices of appropriate 

dimensions. The critic NN activation function vector is selected as 

2 2 2
1 1 1 2 1 3 2 2 3 3( )

T
x x x x x x x x x xϕ  =    

Let the critic NN and actor NN weights are denoted respectively as 

[ ]1 1 2 3 4 5 6
ˆ T

c c c c c c cW W W W W W W W= =  

[ ]2 1 2 3 4 5 6
ˆ T

a a a a a a aW W W W W W W W= =  

For the PE condition a small probing noise ( )n t  is added to control input during 

simulation for time 150t ≤ . After 200 seconds the critic NN and actor NN weights are 

converged respectively to 

[ ]0.7383 1.0215 0.0569 1.0321 0.7407 0.0493 T
cW = −  

[ ]0.7383 1.0215 0.0569 1.0321 0.7407 0.0493 T
aW = −  

Thus, from (6.32) the actor NN is given by 

1

2 1

3 11
2

2

3 2

3

2 0 0
0

0
01ˆ ( ) 0

0 2 02
13.7360

0
0 0 2

T

T

a

x
x x
x x

u x R W
x
x x

x

−

 
 
  
  = −   
     
 
  

 

which gives the neural network approximate solution of optimal control 1 Tu R B Px−= − .  

The unique positive definite solution of ARE denoted here by matrix RicP is obtained as 

0.3600 0.5313 0.0367
0.5313 1.5662 0.1690
0.0367 0.1690 0.0500

RicP
 
 =  
  

 

and from critic NN weights Wc the adaptive optimal critic matrix P of adaptive critic scheme 

using synchronous PI is obtained as 

0.7383 0.5107 0.0285
0.5107 1.0321 0.3703
0.0285 0.3703 0.0493

P
 
 =  
 − 

 

The actor gains of LQR design RicK, and actor K of adaptive critic scheme using 

synchronous PI respectively are obtained as 

[ ]0.5044 2.3212 0.6867RicK =     ,   [ ]0.3909 5.0871 0.6769K = −  

The eigenvalues of closed loop system are obtained as 

-2.5140, -2.2453 +13.0352i, -2.2453 -13.0352i 
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Fig. 6.3 shows the system state trajectories which converge towards the equilibrium 

point zero. The convergence of parameters of critic NN and actor NN to optimal values are 

shown respectively in Figs. 6.4 and 6.5. Fig. 6.6 presents the closed loop response of LFC 

system without integral control model using both approaches of LQR and adaptive critic 

(AC). It is observed that the closed loop response with unit step load disturbance have 

steady state error. 

 

 
Fig. 6.3 System states trajectories. 
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Fig. 6.4 Convergence of critic parameters. 

 

 
Fig. 6.5 Convergence of actor parameters. 
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Fig. 6.6 Closed loop step response with load disturbance of LFC system model without 

integral control.  

6.4.1.2 LFC System Model with Integral Control 
As discussed in section 4.6.3.2 the state space model of LFC system with integral 

control is given by 

0.0665 11.5

13

0 0
0 2.5 2.5 0
9.5 0

0.6 0 0
.7360 1

0
3.7360

A

−

− −

 
 − =
 −
 
 

  , 

0
0

13.7360
0

B

 
 
 =
 
 
 

  , 

11.5
0
0
0

F

− 
 
 =
 
 
 

 

[ ]1 0 0 0C =  , 0D =  

For implementation of synchronous PI algorithm the initial conditions of states are 

taken as [ ]0 0 0.1 0 0x = , and both the critic and actor NNs weight vectors 1W  and 2W  

are initialized with elements of unity values. The learning constants are taken as 1 50a = , 

2 10a = .  The quadratic cost function parameters Q and R are taken as identity matrices of 

appropriate dimensions. The critic NN activation function vector is selected as 

2 2 2 2
1 1 1 2 1 3 1 4 2 2 3 2 4 3 3 4 4( )

T
x x x x x x x x x x x x x x x x xϕ  =    

Let the critic NN and actor NN weights are denoted respectively as 

[ ]1 1 2 3 4 5 6 7 8 9 10
ˆ T

c c c c c c c c c c cW W W W W W W W W W W W= =  

[ ]2 1 2 3 4 5 6 7 8 9 10
ˆ T

a a a a a a a a a a aW W W W W W W W W W W W= =  
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For the PE condition a small probing noise ( )n t  is added to control input during 

simulation for time 150t ≤ . After 200 seconds the critic NN and actor NN weights are 

converged respectively to 

[ ]0.6925 1.0202 0.1021 0.9960 1.0355 0.8005 0.9952 0.0179 0.2468 1.0107c

TW =

[ ]0.6925 1.0202 0.1021 0.9960 1.0355 0.8005 0.9952 0.0179 0.2468 1.0107a

TW =  

Thus, from (6.32) the actor NN is given by 

1

2 1

3 1

4 1

21
2

3 2

4 2

3

4 3

4

2 0 0 0
0 0

0 0
0 00

0 2 0 001ˆ ( )
0 013.73602
0 00
0 0 2 0
0 0
0 0 0 2

T

T

a

x
x x
x x
x x

x
u x R W

x x
x x

x
x x

x

−

 
 
 
 
 

   
   
 = −  
   
      

 
 
 
  

 

which gives the neural network approximate solution of optimal control 1 Tu R B Px−= − .  

The unique positive definite solution of ARE denoted here by matrix RicP is obtained as 

0.4600 0.6911 0.0519 0.4642
0.6911 1.8668 0.2002 0.5800
0.0519 0.2002 0.0533 0.0302
0.4642 0.5800 0.0302 2.2106

RicP

 
 
 =
 
 
 

 

and from critic NN weights Wc the adaptive optimal critic matrix P of adaptive critic scheme 

using synchronous PI is obtained as 

0.6925 0.5101 0.0511 0.4980
0.5101 1.0355 0.4002 0.4976
0.0511 0.4002 0.0179 0.1234
0.4980 0.4976 0.2468 1.0107

P

 
 
 =
 
 
 

 

The actor gains of LQR design RicK, and actor K of adaptive critic scheme using 

synchronous PI respectively are obtained as 

[ ]0.7135 2.7499 0.7323 0.4142RicK =    ,   

[ ]0.7014 5.4975 0.2455 1.6953K =  

The eigenvalues of closed loop system are obtained as 

-8.4497 +10.5385i, -8.4497 -10.5385i, -1.3876 + 1.2549i, -1.3876 - 1.2549i 
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Fig. 6.7 shows the LFC system state trajectories which converge towards the 

equilibrium point zero. The convergence of parameters of critic NN and actor NN to optimal 

values are shown respectively in Figs. 6.8 and 6.9. Fig. 6.10 presents the closed loop 

response of LFC system with integral control model using both approaches of LQR and 

adaptive critic (AC). It is observed here that there is no steady state error in the closed loop 

response with unit step load disturbance which is due to including integral control in LFC 

model. The adaptive optimal controller using synchronous PI based adaptive critic scheme 

gives faster response than LQR approach. 

 

 

Fig. 6.7 System states trajectories. 
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Fig. 6.8 Convergence of critic parameters. 

 

 

Fig. 6.9 Convergence of actor parameters. 
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Fig. 6.10 Closed loop step response with load disturbance of LFC system with integral 

control model. 

6.4.2 Automatic Voltage Regulator of Power System 
Consider the power system automatic voltage regulator design problem as discussed 

in section 4.6.4. 

6.4.2.1 AVR System Model Neglecting Sensor Dynamics 
As discussed in section 4.6.4.1 consider the state space model of AVR system 

neglecting sensor dynamics given by 

0 1 0
0 0 1
275 37.5 13.5

A
 
 =  
 − − − 

  ,  
0
0
1

B
 
 =  
  

  ,  [ ]250 0 0C =   ,  [ ]0D =  

For implementation of synchronous PI algorithm the initial conditions of states are 

taken as [ ]0 0.1 0.05 0.04x = , and both the critic and actor NNs weight vectors 1W  and 

2W  are initialized with elements of unity values. The learning constants are taken as 1 50a = , 

2 1a = .  The quadratic cost function parameters Q and R are taken as identity matrices of 

appropriate dimensions. The critic NN activation function vector is selected as 

2 2 2
1 1 1 2 1 3 2 2 3 3( )

T
x x x x x x x x x xϕ  =    

The critic NN and actor NN weights are denoted respectively as  

[ ]1 1 2 3 4 5 6
ˆ T

c c c c c c cW W W W W W W W= =  
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[ ]2 1 2 3 4 5 6
ˆ T

a a a a a a aW W W W W W W W= =  

which are tuned synchronously using synchronous PI algorithm. 

For the PE condition a small probing noise ( )n t  is added to control input during 

simulation for time 150t ≤ . After 200 seconds the critic NN and actor NN weights are 

converged respectively to 

[ ]0.9962 1.0533 1.0664 1.1610 0.3366 0.1060 T
cW = −  

[ ]0.9962 1.0533 1.0664 1.1610 0.3366 0.1060 T
aW = −  

Thus, from (6.32) the actor NN is given by 

1

2 1

3 11
2

2

3 2

3

2 0 0
0

0
01ˆ ( ) 0

0 2 02
1

0
0 0 2

T

T

a

x
x x
x x

u x R W
x
x x

x

−

 
 
  
  = −   
     
 
  

 

which gives the neural network approximate solution of optimal control 1 Tu R B Px−= − .  

The unique positive definite solution of ARE denoted here by matrix RicP is obtained as 

167.9165 22.5745 0.0018
22.5745 11.3630 0.6104
0.0018 0.6104 0.0820

RicP
 
 =  
  

 

and from critic NN weights Wc the adaptive optimal critic matrix P of adaptive critic scheme 

using synchronous PI is obtained as 

 
0.9962 0.5267 0.5332
0.5267 1.1610 0.1683
0.5332 0.1683 0.1060

P
 
 = − 
 − 

 

The actor gains of LQR design RicK, and actor K of adaptive critic scheme using 

synchronous PI respectively are obtained as 

[ ]0.0018 0.6104 0.0820RicK =     ,   [ ]0.5332 0.1683 0.1060K = −  

The eigenvalues of closed loop system are obtained as 

-12.3879, -0.6090 + 4.6767i, -0.6090 - 4.6767i 

Fig. 6.11 shows the state trajectories of AVR system neglecting sensor dynamics which 

converge towards the equilibrium point zero. The convergence of parameters of critic NN and 

actor NN to optimal values are shown respectively in Figs. 6.12 and 6.13. Fig. 6.14 presents 

the closed loop response of AVR system neglecting sensor dynamics model using both 

approaches of LQR and adaptive critic (AC) by replacing u Kx r= − +  in state equation, 
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where refr V=  is a unit step input; and K is actor gains RicK and K respectively. It is 

observed that the adaptive optimal controller using synchronous PI based adaptive critic 

scheme gives the similar response as of LQR approach. 

 

 
Fig. 6.11 System states trajectories. 

 
Fig. 6.12 Convergence of critic parameters. 
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Fig. 6.13 Convergence of actor parameters. 

 

 
Fig. 6.14 Closed loop step response with Vref of AVR system model neglecting sensor 

dynamics. 
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6.4.2.2 AVR System Model Including Sensor Dynamics 
As discussed in section 4.6.4.2 consider the state space model of AVR system 

including sensor dynamics given by 

0 1 0 0
0 0 1 0
0 0 0 1

27500 3775 1387.5 113.5

A

 
 
 =
 
 − − − − 

 ,  

0
0
0
1

B

 
 
 =
 
 
 

   ,  

[ ]25000 250 0 0C =   ,  [ ]0D =  

For implementation of synchronous PI algorithm the initial conditions of states are 

taken as [ ]0 0.1 0.05 0.04 0.02x = , and both the critic and actor NNs weight vectors 1W  

and 2W  are initialized with elements of unity values. The learning constants are taken as 

1 50a = , 2 10a = . The quadratic cost function parameters Q and R are taken as identity 

matrices of appropriate dimensions. The critic NN activation function vector is selected as 

2 2 2 2
1 1 1 2 1 3 1 4 2 2 3 2 4 3 3 4 4( )

T
x x x x x x x x x x x x x x x x xϕ  =    

The critic NN and actor NN weights are denoted respectively as 

[ ]1 1 2 3 4 5 6 7 8 9 10
ˆ T

c c c c c c c c c c cW W W W W W W W W W W W= =  

[ ]2 1 2 3 4 5 6 7 8 9 10
ˆ T

a a a a a a a a a a aW W W W W W W W W W W W= =  

which are tuned synchronously using synchronous PI algorithm. 

For the PE condition a small probing noise ( )n t  is added to control input during simulation for 

time 150t ≤ . After 200 seconds the critic NN and actor NN weights are converged 

respectively to 

[ ]1.0006 0.9981 0.9884 1.0540 0.9937 1.0477 1.0957 1.2055 0.2882 0.0922 T
cW = −

[ ]1.0006 0.9981 0.9884 1.0540 0.9937 1.0477 1.0957 1.2055 0.2882 0.0922 T
aW = −

Thus, from (6.32) the actor NN is given by 

1

2 1

3 1

4 1

21
2

3 2

4 2

3

4 3

4

2 0 0 0
0 0

0 0
0 00

0 2 0 001ˆ ( )
0 002
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0 0 2 0
0 0
0 0 0 2

T

T
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x
x x
x x
x x

x
u x R W
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x
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x
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which gives the neural network approximate solution of optimal control 1 Tu R B Px−= − .  

The unique positive definite solution of ARE denoted here by matrix RicP is obtained as 

3

6.5160 0.8940 0.1290 0.0000
0.8940 0.3225 0.0446 0.0002

1.0 10
0.1290 0.0446 0.0100 0.0000
0.0000 0.0002 0.0000 0.0000

RicP

 
 
 = ×
 
 
 

 

and from critic NN weights Wc the adaptive optimal critic matrix P of adaptive critic scheme 

using synchronous PI is obtained as 

1.0006 0.4991 0.4942 0.5270
0.4991 0.9937 0.5239 0.5478
0.4942 0.5239 1.2055 0.1441
0.5270 0.5478 0.2882 0.0922

P

 
 
 =
 −
 − 

 

The actor gains of LQR design RicK, and actor K of adaptive critic scheme using 

synchronous PI respectively are obtained as 

[ ]0.0000 0.2369 0.0325 0.0047RicK =   ,  

[ ]0.5270 0.5478 0.2882 0.0922K = −  

The eigenvalues of closed loop system in this case are obtained as 

1.0e+002 *[-1.0008, -0.1247, -0.0052 + 0.0466i, -0.0052 - 0.0466i] 

Fig. 6.15 shows the state trajectories of AVR system including sensor dynamics which 

converge towards the equilibrium point zero. The convergence of parameters of critic NN and 

actor NN to optimal values are shown respectively in Figs. 6.16 and 6.17. Fig. 6.18 presents 

the closed loop response of AVR system including sensor dynamics model using both 

approaches of LQR and adaptive critic (AC) by replacing u Kx r= − +  in state equation, 

where refr V=  is a unit step input; and K is actor gains RicK and K respectively. It is 

observed in this case also that the adaptive optimal controller using synchronous PI based 

adaptive critic scheme gives the similar response as of LQR approach. 

 



 

244 

 

 
Fig. 6.15 System states trajectories. 

 
Fig. 6.16 Convergence of critic parameters. 
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Fig. 6.17 Convergence of actor parameters. 

 

 
Fig. 6.18 Closed loop step response with Vref of AVR system model including sensor 

dynamics. 
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6.5 SIMULATION RESULTS AND ANALYSIS FOR AFFINE NONLINEAR 
SYSTEMS 
In this section, the application of adaptive critic control scheme using online 

synchronous PI technique with neural networks approximation of cost function and control 

policy is implemented for five examples of continuous-time time-invariant affine nonlinear 

systems- three general systems, and two practical systems- single-link manipulator, and 

Vander Pol oscillator. The simulation results and performance analysis are presented to 

demonstrate the effectiveness of the control scheme. The infinite horizon cost function as 

defined in section 5.2 is considered for the optimal control problems of these examples of 

affine nonlinear systems. The infinite horizon cost function 
0

( ( ), ( ))V L x u dτ τ τ
∞

= ∫ , where 

( , ) ( ) TL x u Q x u Ru= + , is minimized for optimal control solution. 

For the implementation of synchronous PI technique, the critic NN activation functions 

vector 1( )xϕ  is considered as the Kronecker product quadratic polynomial basis vector. For 

convergence of critic NN and actor NN, the PE condition is ensured by adding a small 

probing noise to control signal. The probing noise is turned off after convergence is reached. 

The probing noise is considered as 

 0.05 2( ) sin ( ) cos( )tn t e t t−=  

6.5.1 General Affine Nonlinear System Example 1 
Consider a general continuous-time input-affine nonlinear system having stronger 

nonlinearities described by the following equations 

 1 1 2x x x= − +                          (6.38) 

2 ( ) ( )x f x g x u= +                         (6.39) 

where 3 3 2
1 2 2 1

1( ) (2 cos(4 ))
4

f x x x x x= − − + + , and  1( ) 2 cos(4 )g x x= + . 

For implementation of synchronous PI algorithm the initial conditions of states are 

taken as [ ]0 1 1x = − , and both the critic NN and actor NN weight vectors are randomly 

initialized with each element respectively as 10 2*W rand= , 20 3*W rand= . The learning 

constants are taken as 1 50a = , 2 1a = . The infinite horizon cost function is considered as by 

defining 2 2 4 4
1 2 1 2( )Q x x x x x= + + + , and 1R = .  

The optimal value function is 

* 4 2
1 2

1 1( )
4 2

V x x x= +  

and the optimal control signal is 
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 *
1 2

1( ) (2 cos(4 )
2

u x x x= − +  

Consider the critic NN activation function vector as 

2 2 4 4
1 1 2 1 2( )

T
x x x x xϕ  =    

The critic NN and actor NN weights are denoted respectively as 

 [ ]1 1 2 3 4
ˆ T

c c c c cW W W W W W= =  

 [ ]2 1 2 3 4
ˆ T

a a a a aW W W W W W= =  

which are tuned at the same time using synchronous PI algorithm. 

For the PE condition a small probing noise ( )n t  is added to control input during simulation for 

time 80t ≤ . After 100 seconds the critic NN and actor NN weights are converged 

respectively to 

[ ]0.3571 0.7007 0.8986 0.1634cW =  

[ ]0.3571 0.7007 0.8986 0.1634aW =  

Thus, from (6.32) the actor NN is given by 

1

21
2 3

1 1
3
2

2 0
0 0 21ˆ ( )

2 cos(4 ) 4 02
0 4

T

T

a

x
x

u x R W
x x

x

−

 
    = −    + 
 
 

  

which gives the neural network approximate solution of optimal control policy. 

Fig. 6.19 shows the state trajectories of nonlinear system (6.38) and (6.39) which 

converge towards the equilibrium point zero. The convergence of parameters of critic NN and 

actor NN to optimal values are shown respectively in Figs. 6.20 and 6.21. Fig. 6.22 shows 

the 3-D mesh-plot of optimal value function. Fig. 6.23 shows the 3-D mesh-plot of neural 

network approximated value function using online synchronous PI technique. It is observed 

that the neural network approximated value function by online tuning using synchronous PI is 

similar to the optimal value function. 
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Fig. 6.19 System states trajectories. 

 

 
Fig. 6.20 Convergence of critic parameters. 
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Fig. 6.21 Convergence of actor parameters. 

 

 
Fig. 6.22 3-D plot of optimal value function V*. 
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Fig. 6.23 3-D plot of neural network approximated value function by online tuning. 

6.5.2 General Affine Nonlinear System Example 2 
Consider a general continuous-time input-affine nonlinear system which is having 

stronger nonlinearities and quadratic cost function. This nonlinear system is described by the 

following equations 

1 1 2x x x= − +                           (6.40) 

2 ( ) ( )x f x g x u= +                         (6.41) 

where 2
1 2 2 1

1 1( ) ( ) (2 sin(2 ))
2 2

f x x x x x= − + + + , and  1( ) 2 sin(2 )g x x= + . 

For implementation of synchronous PI algorithm the initial conditions of states are 

taken as [ ]0 1 1x = − , and both the critic NN and actor NN weight vectors are randomly 

initialized with each element respectively as 10 2*W rand= , 20 3*W rand= . The learning 

constants are taken as 1 5a = , 2 1a = . The infinite horizon cost function is considered as by 

defining 2 2
1 2( )Q x x x= + , and 1R = .  

The optimal value function is 

* 2 2
1 2

1( )
2

V x x x= +  

and the optimal control signal is 
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 *
1 2

1( ) (2 sin(2 )
2

u x x x= − +  

Consider the critic NN activation function vector as 

2 2
1 1 1 2 2( )

T
x x x x xϕ  =    

The critic NN and actor NN weights are denoted respectively as 

 [ ]1 1 2 3
ˆ T

c c c cW W W W W= =  

 [ ]2 1 2 3
ˆ T

a a a aW W W W W= =  

which are tuned at the same time using synchronous PI algorithm. 

For the PE condition a small probing noise ( )n t  is added to control input during simulation for 

time 80t ≤ . After 100 seconds the critic NN and actor NN weights are converged 

respectively to 

[ ]0.7151 0.1091 0.8276 T
cW =  

[ ]0.7151 0.1091 0.8276 T
aW =  

Thus, from (6.32) the actor NN is given by 

1
1

2 2 1
1

2

2 0
01ˆ ( )

2 sin(2 )2
0 2

T
T

a

x
u x R x x W

x
x

−

 
   = −    +    

  

which gives the neural network approximate solution of optimal control policy.  

Fig. 6.24 shows the state trajectories of nonlinear system (6.40) and (6.41) which 

converge towards the equilibrium point zero. The convergence of parameters of critic NN and 

actor NN to optimal values are shown respectively in Figs. 6.25 and 6.26. Fig. 6.27 shows 

the 3-D mesh-plot of optimal value function. Fig. 6.28 shows the 3-D mesh-plot of neural 

network approximated value function using online synchronous PI technique. Also for this 

example of nonlinear system, it is observed that the neural network approximated value 

function by online tuning using synchronous PI is similar to the optimal value function. 
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Fig. 6.24 System states trajectories. 

 

 
Fig. 6.25 Convergence of critic parameters. 

 



 

253 

 

 
Fig. 6.26 Convergence of actor parameters. 

 

 
Fig. 6.27 3-D plot of optimal value function V*. 
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Fig. 6.28 3-D plot of neural network approximated value function by online tuning. 

6.5.3 General Affine Nonlinear System Example 3 
Consider a general continuous-time input-affine nonlinear system having stronger 

nonlinearities and quartic cost function. This nonlinear system is described by the following 

equations [160] 
3

1 1 2 22x x x x= − + +                         (6.42) 

2 ( ) ( )x f x g x u= +                         (6.43) 

where 2 2
1 2 2 2 1

1 1( ) ( ) (1 2 )sin ( )
2 2

f x x x x x x= − + + + , and  1( ) sin( )g x x= . 

For implementation of synchronous PI algorithm for this nonlinear system, the initial 

conditions of states are taken as [ ]0 1 1x = − , and both the critic NN and actor NN weight 

vectors are randomly initialized with each element respectively as 10 2*W rand= , 

20 3*W rand= . The learning constants are taken as 1 50a = , 2 1a = . The infinite horizon cost 

function is considered as by defining 2 2 4
1 2 2( ) 2Q x x x x= + + , and 1R = . 

The optimal value function is 

* 2 2 4
1 2 2

1( )
2

V x x x x= + +  

and the optimal control signal is 

 * 3
1 2 2( ) sin( )( 2 )u x x x x= − +  
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Consider the critic NN activation function vector as 

2 2 4 3 2 2 3 4
1 1 1 2 2 1 1 2 1 2 1 2 2( )

T
x x x x x x x x x x x x xϕ  =    

The critic NN and actor NN weights are denoted respectively as 

 [ ]1 1 2 3 4 5 6 7 8
ˆ T

c c c c c c c c cW W W W W W W W W W= =  

 [ ]2 1 2 3 4 5 6 7 8
ˆ T

a a a a a a a a aW W W W W W W W W W= =  

which are tuned at the same time using synchronous PI algorithm. 

For the PE condition a small probing noise ( )n t  is added to control input during simulation for 

time 80t ≤ . After 100 seconds the critic NN and actor NN weights are converged 

respectively to 

[ ]0.4021 0.0522 0.6481 0.3281 0.6601 0.8436 0.1613 0.2469 T
cW = − −  

[ ]0.4021 0.0522 0.6481 0.3281 0.6601 0.8436 0.1613 0.2469 T
aW = − −  

Thus, from (6.32) the actor NN is given by 

1

2 1

2
3
11

2 2 3
1 1 2 1

2 2
1 2 2 1
3 2
2 1 2

3
2

2 0

0 2
0 4 01ˆ ( )

sin( ) 32
2 2

3
0 4

T

T

a

x
x x

x
x

u x R W
x x x x

x x x x
x x x

x

−

 
 
 
 
 

   = −       
 
 
 
  

  

which gives the neural network approximate solution of optimal control policy. 

Fig. 6.29 shows the state trajectories of nonlinear system (6.42) and (6.43) which 

converge towards the equilibrium point zero. The convergence of parameters of critic NN and 

actor NN to optimal values are shown respectively in Figs. 6.30 and 6.31. Fig. 6.32 shows 

the 3-D mesh-plot of optimal value function. Fig. 6.33 shows the 3-D mesh-plot of neural 

network approximated value function using online synchronous PI technique. For this 

example of nonlinear system, it is observed that the neural network approximated value 

function by online tuning using synchronous PI is somewhat similar to the optimal value 

function. 
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Fig. 6.29 System states trajectories. 

 

 
Fig. 6.30 Convergence of critic parameters. 

 



 

257 

 

 
Fig. 6.31 Convergence of actor parameters. 

 

 
Fig. 6.32 3-D plot of optimal value function V*. 
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Fig. 6.33 3-D plot of neural network approximated value function by online tuning. 

6.5.4 Single-Link Manipulator System 
Consider the single-link manipulator system described by dynamic equations [71] 

1 2x x=                    (6.44) 

2 1sin( )x g x u= − +                  (6.45) 

where 1x θ=  is angular displacement, 2x ω=  is angular velocity, au T=  is the actuating 

torque, and g is the acceleration due to gravity. The system’s physical parameters are 

considered as link length l=1m, and link mass m=1kg.  

For implementation of synchronous PI algorithm the initial conditions of states are 

taken as [ ]0x π π= − , and both the critic NN and actor NN weight vectors are randomly 

initialized with each element respectively as 10 2*W rand= , 20 3*W rand= . The learning 

constants are taken as 1 2a = , 2 1a = . The infinite horizon quadratic cost function is 

considered as by defining 2 2
1 2( )Q x x x= + , and 1R = .  

The optimal value function is 

* 2 2
1 2

1 1( )
2 2

V x x x= +  

and the optimal control signal is 

 *
1 2

1( ) sin( )
2

u x x x= −  
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Consider the critic NN activation function vector as 

2 2
1 1 1 2 2( )

T
x x x x xϕ  =    

The critic NN and actor NN weights are denoted respectively as 

 [ ]1 1 2 3
ˆ T

c c c cW W W W W= =  

 [ ]2 1 2 3
ˆ T

a a a aW W W W W= =  

which are tuned at the same time using synchronous PI algorithm. 

For the PE condition a small probing noise ( )n t  is added to control input during simulation for 

time 80t ≤ . After 100 seconds the critic NN and actor NN weights are converged 

respectively to 

[ ]1.1852 0.0044 0.9833 T
cW =  

[ ]1.1852 0.0044 0.9833 T
aW =  

Thus, from (6.32) the actor NN is given by 

1
1

2 2 1

2

2 0
01ˆ ( )
12

0 2

T
T

a

x
u x R x x W

x

−

 
   = −        

  

which gives the neural network approximate solution of optimal control policy.  

Fig. 6.34 shows the state trajectories of nonlinear system (6.44) and (6.45) which 

converge towards the equilibrium point zero. The convergence of parameters of critic NN and 

actor NN to optimal values are shown respectively in Figs. 6.35 and 6.36. Fig. 6.37 shows 

the 3-D mesh-plot of optimal value function. Fig. 6.38 shows the 3-D mesh-plot of neural 

network approximated value function using online synchronous PI technique. It is observed 

that the neural network approximated value function by online tuning using synchronous PI is 

similar to the optimal value function. 
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Fig. 6.34 System states trajectories. 

 

 
Fig. 6.35 Convergence of critic parameters. 
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Fig. 6.36 Convergence of actor parameters. 

 

 
Fig. 6.37 3-D plot of optimal value function V*. 
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Fig. 6.38 3-D plot of neural network approximated value function by online tuning. 

6.5.5 Vander Pol Oscillator System 
Consider the state regulation problem of Vander Pol oscillator system described by 

dynamic equations [173] 

1 2x x=                    (6.46)  

2 2 2
2 1 1 2 1 2(1 ) (1 )x x x x x x uα= − + − + + +                            (6.47) 

with considering parameter 0.3α = .  

For implementation of synchronous PI algorithm the initial conditions of states are 

taken as [ ]0 1 1x = − , and both the critic NN and actor NN weight vectors are randomly 

initialized with each element respectively as 10 2*W rand= , 20 3*W rand= . The learning 

constants are taken as 1 5a = , 2 1a = . The infinite horizon quadratic cost function is 

considered as by defining 2 2
1 2( )Q x x x= + , and 1R = .  

The optimal value function is 

* 2 2
1 2

1 1( )
2 2

V x x x= +  

and the optimal control signal is 

 * 2 2
1 2 2

1( ) (1 )
2

u x x x x= − + +  

Consider the critic NN activation function vector as 
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2 2
1 1 1 2 2( )

T
x x x x xϕ  =    

The critic NN and actor NN weights are denoted respectively as 

 [ ]1 1 2 3
ˆ T

c c c cW W W W W= =  

 [ ]2 1 2 3
ˆ T

a a a aW W W W W= =  

which are tuned at the same time using synchronous PI algorithm. 

For the PE condition a small probing noise ( )n t  is added to control input during simulation for 

time 80t ≤ . After 100 seconds the critic NN and actor NN weights are converged 

respectively to 

[ ]0.8754 1.0159 0.5505 T
cW =  

[ ]0.8754 1.0159 0.5505 T
aW =  

Thus, from (6.32) the actor NN is given by 

1
1

2 2 12 2
1 2

2

2 0
01ˆ ( )

12
0 2

T
T

a

x
u x R x x W

x x
x

−

 
   = −    + +    

 

which gives the neural network approximate solution of optimal control policy.  

Fig. 6.39 shows the state trajectories of nonlinear system (6.46) and (6.47) which 

converge towards the equilibrium point zero. The convergence of parameters of critic NN and 

actor NN to optimal values are shown respectively in Figs. 6.40 and 6.41. Fig. 6.42 shows 

the 3-D mesh-plot of optimal value function. Fig. 6.43 shows the 3-D mesh-plot of neural 

network approximated value function using online synchronous PI technique. 
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Fig. 6.39 System states trajectories. 

 

 
Fig. 6.40 Convergence of critic parameters. 
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Fig. 6.41 Convergence of actor parameters. 

 

 
Fig. 6.42 3-D plot of optimal value function V*. 
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Fig. 6.43 3-D plot of neural network approximated value function by online tuning. 

6.6 CONCLUSIONS 
The synchronous PI algorithm is built on an actor-critic structure consisting of two step 

iteration: policy evaluation and policy improvement. These two steps are concurrently 

performed in synchronous PI, whereas in PI, these two steps are sequentially completed. 

The synchronous PI algorithm uses two neural networks known as critic NN and actor NN 

which approximate the value function and control policy respectively. In online synchronous 

PI algorithm, both the critic NN and actor NN are tuned simultaneously based on continuous-

time data measurement from the system. The convergence of synchronous PI algorithm 

explicitly requires a PE condition which is ensured by adding a small probing noise to control 

signal. For evaluation of cost or update of control policy, the synchronous PI algorithm 

requires the complete knowledge of system dynamics whereas the PI algorithm requires only 

input-to-state dynamics. The online synchronous PI technique based adaptive critic scheme 

provides an infinite horizon online adaptive optimal control solution. Using neural networks to 

parameterize critic and actor for online implementation, the synchronous PI based control 

scheme provides a high-level intelligent control. Thus, the synchronous PI technique based 

adaptive critic scheme provides an intelligent adaptive optimal control.  

In this chapter the application of online synchronous PI based control scheme is 

implemented for continuous-time time-invariant dynamical systems optimal control problems. 

Examples of both continuous-time LTI systems and input-affine nonlinear systems are 

considered for implementation of the control scheme. The LTI systems- LFC system models 
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without and with integral control both, and AVR system models neglecting and including 

sensor dynamics both are considered for implementation of synchronous PI based control 

scheme and performance analysis also with structural change in system dynamics. The 

performance of synchronous PI based adaptive critic control scheme is compared with LQR 

approach. It is observed that the synchronous PI based adaptive critic control scheme gives 

the similar response as of LQR approach. The input-affine nonlinear systems- general 

nonlinear system examples, single-link manipulator and Vander Pol’s oscillator systems are 

considered for implementation of control scheme and performance analysis. The simulation 

results and performance analysis justify the effectiveness of synchronous PI based control 

scheme also for affine nonlinear systems control applications. 
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CHAPTER 7  
 

CONCLUSIONS AND FUTURE SCOPE OF WORK 

This chapter concludes the research work. The conclusions and future scope of works are 

presented in this chapter. 

7.1 CONCLUSIONS 
Since the conclusions are given at the end of each chapter. This section presents the 

conclusions of research work at a glance. 

In this research work the performance investigations of various control schemes of PID 

control, optimal control, adaptive control, intelligent control, intelligent adaptive control, 

adaptive optimal control, and intelligent adaptive optimal control of dynamical systems 

considering certain linear and nonlinear dynamical systems applications are presented. 

Intelligent adaptive optimal control has been emerged from the integration of adaptive control 

and optimal control methodologies with intelligent computational techniques. Intelligent 

adaptive optimal control is a viable recent approach for the high performance applications 

with stringent design specifications. In this research work the performance investigation of 

intelligent adaptive optimal control of dynamical systems is presented. The applications of 

control schemes for dynamical systems control are implemented considering certain 

examples of linear and nonlinear dynamical systems to attempt this research investigation. 

The performance of controlled systems is desired to be optimal which should be valid 

also when applied in the real situation. Adaptive control which is able to deal with 

uncertainties is generally not optimal. Adaptive control schemes require a priori knowledge of 

the system dynamics, and give online solution for the control problems. Optimal control is 

offline, and needs the knowledge of system dynamics for its design. Thus, to have both 

features of control design, it is desired to design online adaptive optimal control. The 

intelligent control techniques also require a priori knowledge of the system dynamics for 

control design; can give the online solution for the dynamical systems control problems. 

Policy Iteration (PI) technique provides a direct adaptive optimal control of dynamical 

systems. The infinite horizon optimal solution using Hamilton-Jacobi-Bellman (HJB) equation 

and algebraic Riccati equation (ARE) which gives linear quadratic regulator (LQR) require 

the complete knowledge of the system dynamics. Also these techniques give offline solution. 

The online PI technique solves HJB equation by direct approach by starting with evaluation 

of the cost of a given initial admissible (stabilizing) control policy to converge towards state 

feedback optimal control. Based on actor-critic structure the PI algorithm consists of two-step 

iteration: policy evaluation and policy improvement. The online PI algorithm solves online the 

continuous-time optimal control problem without using the knowledge of system internal 

dynamics subject to the real-time dynamics of continuous-time system. The knowledge of 
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internal state dynamics is not needed for evaluation of cost or the update of control policy; 

and only the knowledge of input-to-state dynamics is required for updating the control policy. 

Thus, it provides a partially model-free approach. Using neural networks to parameterize 

actor and critic for online implementation, the PI based control scheme becomes a high-level 

intelligent control scheme with online adaptive optimal control solution. In PI algorithm the 

critic and actor are sequentially updated taking other one constant at policy evaluation and 

policy improvement steps. In online synchronous PI algorithm both critic NN and actor NN 

are tuned synchronously at the same time. The online synchronous PI algorithm needs the 

complete knowledge of system dynamics. It solves the optimal control problem online using 

real-time measurements of closed-loop signals. The persistence of excitation (PE) condition 

is explicitly required for convergence of synchronous PI algorithm. Using neural networks 

approximations for critic and actor both for online implementation it provides a high-level 

intelligent control. Thus, the online synchronous PI technique based control scheme gives an 

online intelligent adaptive optimal control solution for continuous-time dynamical systems. 

In this research work the various research objectives have been considered by 

accomplishing which the research findings are summarized as following: 

1. Optimal control of nonlinear inverted pendulum dynamical system using PID controller 

& LQR. 

 The inverted pendulum stabilizes in the upright position and cart reaches the desired 

position quickly & smoothly even under the continuous disturbance input. 

 The performance of proposed PID+LQR control method is better than PID control. 

 PID+LQR control scheme can be used for optimal control of nonlinear dynamical 

systems. 

 The proposed PID+LQR control approach is simple, effective & robust control 

scheme for the optimal control of nonlinear dynamical systems. 

2. Intelligent control of nonlinear inverted pendulum dynamical system using Mamdani 

and TSK fuzzy inference systems. 

 The inverted pendulum stabilizes in vertically upright position and cart approaches 

the desired position even under the continuous disturbance input. 

 The performance of PD-FLC using Mamdani type FIS is better than PID controller. 

 The performance of direct fuzzy control using TSK FIS is better than both the PD-

FLC using Mamdani type FIS and PID controller.  

 The response of direct fuzzy control using TSK FIS is more smooth & fast than both 

Mamdani type PD-fuzzy control and PID control. 

3. Optimal control design using LQR for automatic generation control of two-area 

interconnected power system. 

 The deviations in area frequencies and tie-line power converge to zero. 
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 The step responses obtained in the case of optimal control using integral controller 

and LQR are smoother and faster than both the cases of integral control and optimal 

control using LQR for AGC system of two-area interconnected power system. 

 The performance of optimal control using integral control and LQR is better than 

both integral control scheme and LQR method. 

 The infinite horizon optimal control solution using LQR design provides the effective 

and robust performance for dynamical systems. 

4. Intelligent control using fuzzy-PI controller for automatic generation control of two-area 

interconnected nonlinear power system.  

 The deviations in area frequencies and tie-line power converge to zero for both 

cases of linear and nonlinear system models of AGC system of two-area 

interconnected nonlinear power system. 

 The fuzzy-PI controller using Mamdani type FIS gives smoother and much faster 

response than integral controller, and thus it is a simple and better control method. 

5. Intelligent control of process system using radial basis function neural networks. 

 The response of indirect adaptive control using RBFNN is fast for nonlinear process 

system.  

6. Adaptive optimal control using policy iteration technique for LTI systems. 

 The online policy iteration (PI) technique based adaptive critic scheme provides an 

online infinite horizon adaptive optimal control of continuous-time LTI dynamical 

systems. 

 The applications of PI based adaptive critic control scheme for various general and 

practical examples of continuous-time LTI systems- general LTI SISO system, a 4th 

order mechanical system, load frequency control of power system, automatic 

voltage regulator of power system, and DC motor speed control system; and the 

comprehensive performance analysis justify the effectiveness of this control 

scheme. 

 The online PI algorithm does not require the knowledge of system’s internal 

dynamics (i.e. matrix A) for evaluation of cost or the update of control policy; only 

the knowledge of input matrix B is required for updating the control policy.  

 The adaptive optimal control scheme using PI technique is partially model-free, 

effective & robust. 

 The information of internal state dynamics is extracted from real-time data 

measurements along state trajectory at discrete moments of time. 

 The PI algorithm requires an initial stabilizing control policy.  

 The critic parameter matrix P and actor parameter matrix K obtained from adaptive 

critic scheme using PI technique converge adaptively to the optimal values. 
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 The critic parameter matrix P and actor parameter matrix K obtained from adaptive 

critic scheme using PI technique are mostly of same values to that obtained from 

LQR approach. 

 Also in case of change in system parameter in real situation the controller adapts it 

and converges to same optimal values, and thus the actor K and critic P parameters 

remain unchanged. 

 The structural change introduced in system dynamics by including integral control 

for LFC system, integral compensator for DC motor control system, and sensor 

dynamics for AVR system augments the system behavior such as of its credit to that 

particular system.  

 Integral control in LFC system and integral compensator in DC motor control system 

remove the steady state error in closed loop responses. 

 The closed loop step response of adaptive critic control scheme is similar to the 

LQR approach. 

 The structural change in system is not adapted by the PI based adaptive critic 

controller. 

 The PI based adaptive critic controller adapts the change in system parameters in 

real situation at any moment of time. 

 The application of PI technique gives a novel adaptive optimal control design for a 

4th order mechanical system. 

 The application of PI technique gives a novel adaptive optimal control design for 

AVR system. 

 The application of PI technique gives a novel adaptive optimal control design for DC 

motor control system. 

 The novel modeling of DC motor control system with integral compensator gives a 

stable open-loop system matrix A. 

7. Adaptive optimal control using policy iteration technique for affine nonlinear systems. 

 The online PI technique based adaptive critic scheme provides an online infinite 

horizon adaptive optimal control of continuous-time affine nonlinear dynamical 

systems. 

 The applications of PI based adaptive critic control scheme considering the state 

regulation problem for certain general affine nonlinear systems and certain practical 

examples of affine nonlinear systems- single-link manipulator, inverted pendulum-

cart system, Vander Pol oscillator system, and the comprehensive performance 

analysis justify the effectiveness of this control scheme. 

 The online PI algorithm does not require the knowledge of system’s internal 

dynamics (i.e. ( )f x ) for evaluation of cost or the update of control policy; only the 
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knowledge of input-to-state dynamics (i.e. ( )g x ) is required for updating the control 

policy.  

 The adaptive optimal control scheme using PI technique is partially model-free, 

effective & robust. 

 The online PI algorithm requires an initial stabilizing controller for converging to the 

optimal solution. 

 Using neural network approximation of cost function for online implementation of PI 

algorithm gives a high-level intelligent control. 

 The system states converge towards the equilibrium point at origin, and the control 

signal remains bounded converging towards zero.  

 Neural networks weights are adjusted to the optimal values which give the critic 

parameters converging adaptively to optimal values and thus the control policy is 

adaptive optimal. 

8. Intelligent adaptive optimal control using synchronous policy iteration technique for LTI 

systems. 

 The applications of online synchronous PI based adaptive critic control scheme for 

practical examples of continuous-time LTI systems- load frequency control of power 

system without and with integral control, and automatic voltage regulator of power 

system neglecting and including sensor dynamics and comprehensive performance 

analysis justify the effectiveness of control scheme. 

 The closed loop step response of synchronous PI based adaptive critic control 

scheme is similar to the LQR approach. 

 The structural change in system is not adapted also by the synchronous PI based 

adaptive critic controller. 

9. Intelligent adaptive optimal control using synchronous policy iteration technique for 

affine nonlinear systems. 

 The applications of online synchronous PI based control scheme also for affine 

nonlinear systems considering the state regulation problems for certain general 

affine nonlinear systems of stronger nonlinearities and practical examples of affine 

nonlinear systems- single-link manipulator, and Vander Pol oscillator, and 

performance analysis justify the effectiveness control scheme. 

 The online synchronous PI algorithm requires the complete knowledge of system 

dynamics for evaluation of cost or update of control policy.  

 The synchronous PI based control scheme is model-based whereas the PI based 

control scheme is partially model-free.  

 Both critic NN and actor NN are tuned simultaneously based on continuous-time 

data measurement from the system. 
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 The neural networks weights of both critic and actor are converged to same optimal 

values. 

 The neural network approximated value function by online tuning using synchronous 

PI is almost similar to the optimal value function. 

 The convergence of synchronous PI algorithm explicitly requires a PE condition 

which is ensured by adding a small probing noise to control signal.  

 The online synchronous PI based adaptive critic control scheme provides an online 

infinite horizon adaptive optimal control. 

 Using neural networks approximations of both critic and actor functions for online 

implementation, the online synchronous PI based adaptive critic scheme provides 

an intelligent adaptive optimal control for continuous-time dynamical systems. 

7.2 FUTURE SCOPE OF WORKS 
The intelligent adaptive optimal control is an emerging recent research area having a 

vide scope of work based on the complexity of the control problems with constraints and 

control algorithms. Related to the research objectives undertaken in this research work some 

of the future scope of research works is listed as under: 

1. The performance investigation of PID+LQR control approach with tuning of PID 

controller parameters using GA, and PSO instead of trial & error method for inverted 

pendulum-cart system. 

2. The real-time experimental investigation of PID+LQR control scheme. 

3. The real-time experimental investigation of fuzzy control schemes. 

4. Optimal control design using integral controller and LQR for AGC system of multi-area 

interconnected nonlinear power system. 

5. Performance investigation of fuzzy-PID controller for multi-area interconnected 

nonlinear power systems. 

6. The real-time experimental investigation of PI based adaptive critic control schemes for 

continuous-time linear and nonlinear dynamical systems. 

7. Extension of application of PI technique to LFC system of multi-area interconnected 

power system problem. 

8. Implementation of PI technique for non-affine nonlinear systems. 

9. Performance investigation of PI based control scheme for tracking control problems. 

10. Since PI algorithm requires an initial stabilizing control policy. The investigations may 

be carried out for non-requirement of initial stabilizing control policy. 

11. The investigation to find the possibility of convergence of synchronous PI algorithm 

without explicit need of persistence of excitation condition. 



 

275 

 

12. Since the synchronous PI algorithm requires the complete knowledge of system 

dynamics, the further investigations can be made to modify the algorithm for partial 

model-free approach at par with PI algorithm.  
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APPENDIX – A     CONTINUOUS-TIME SMOOTH FUNCTIONS 

This appendix discusses in brief about the continuous-time smooth functions which are taken 

as assumption on nonlear dynamic systems in proofs of convergence of PI algorithms. 

A.1   SMOOTH FUNCTION 
A continuous function is called as smooth function if its differentives of all orders exist. 

According to the properties of the derivatives of functions the differentiability class of a 

function is defined. The differentiability class is a classification of functions. The higher order 

differentiability classes correspond to the existence of more derivatives (Refer Wikipedia).  

Let a function is defined on open set of real number having real values. Consider k be 

a nonnegative integer. The function f belongs to differentiability class kC  if its derivatives, 
(1)f , (2)f ,…. ( )kf exist and are continuous. The continuity is automatic for all the derivatives 

except for ( )kf . The function f belongs to the differentiability class C∞ , or smooth, if its 

derivatives of all orders exist. The function f belongs to the differentiability class Cω , or 

analytic, if f is smooth and if it equals its Taylor series expansion around any point in its 

domain. Thus,  

1. Class 0C consists of all continuous functions.  

2. Class 1C  consists of all differentiable functions whose derivative is continuous. Thus, 
1C  function is exactly a function whose derivative exists and is of class 0C . 

3. Class kC  for any positive integer k, be the set of all differentiable functions whose 

derivative is in 1kC − . In particular, kC  is contained in 1kC − . 

A.2 EXAMPLES  
Consider a function defined as  

 
   0

( )
0   0  
x if x

f x
if x

≥
=  <

                   (A.1) 

This function is continuous but not differential at 0x = , therefore it belongs to class 0C  but 

does not belong to class 1C . 

Consider another function defined as 

2 1sin     0
( )

0                  0  

x if x
f x x

if x

   ≠  =  
 =

                  (A.2) 

This function is differentiable, with derivative 
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'
1 1cos 2 sin      0

( )
0                                      0  

x if x
f x x x

if x

    − + ≠    =    
 =

      (A.3) 

Because 
1cos
x

 
 
 

 oscillates as 0 x → , ' ( )f x  is not continuous at zero. Therefore, this 

function is differentiable but not of class 1C . 

For further detail refer smooth function in Wikipedia.   
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APPENDIX – B     LIPSCHITZ CONTINUITY 

This appendix discusses in brief about the Lipschitz continuity which is taken as an 

assumption on nonlinear dynamic systems in proofs of convergence of PI algorithms. 

Lipschitz continuity is a strong form of uniform continuity for functions. Intuitively, a 

Lipschitz continuous function is limited in how fast it can change. There exists a definite real 

number such that, for every pair of points on the graph of this function, the absolute value of 

the slope of the line connecting them is not greater than this real number; this bound is called 

the function's "Lipschitz constant" (or "modulus of uniform continuity"). In differential equation 

theory, Lipschitz continuity is the central condition of the Picard–Lindelöf theorem which 

guarantees the existence and uniqueness of the solution to an initial value problem. A 

special type of Lipschitz continuity, called contraction, is used in the Banach fixed point 

theorem (Refer Lipschitz continuity in Wikipedia). 

Lipschitz continuity is defined as: Given two metric spaces ( , )XX d  and ( , )YY d , where 

Xd  denotes the metric on the set X and Yd  is the metric on set Y (for example, Y might be 

the set of real numbers R with the metric ( , )dY x y x y= −  and X might be a subset of R), a 

function :f X Y→  is called Lipschitz continuous if there exists a real constant K ≥ 0 such 

that, for all 1x  and 2x  in X, 

1 2 1 2( ( ), ( )) ( , )Y Xd f x f x Kd x x≤                   (B.1) 

Any such K is referred to as a Lipschitz constant for the function f. The smallest 

constant is sometimes called the (best) Lipschitz constant; however in most cases the latter 

notion is less relevant. If K = 1 the function is called a short map, and if 0 ≤ K < 1 the function 

is called a contraction. 

The inequality is (trivially) satisfied if 1 2x x= . Otherwise, one can equivalently define a 

function to be Lipschitz continuous if and only if there exists a constant K ≥ 0 such that, for all

1 2x x≠ , 

1 2

1 2

( ( ), ( ))
( , )

Y

X

d f x f x K
d x x

≤                    (B.2) 

For real-valued functions of several real variables, this satisfies if and only if the 

absolute value of the slopes of all secant lines are bounded by K. The set of lines of slope K 

passing through a point on the graph of the function forms a circular cone, and a function is 

Lipschitz if and only if the graph of the function everywhere lies completely outside of this 

cone. 

A function is called locally Lipschitz continuous if for every x  in X there exists a 

neighborhood U of x  such that f  restricted to U is Lipschitz continuous. Equivalently, if X is 



 

298 

 

a locally compact metric space, then f  is locally Lipschitz if and only if it is Lipschitz 

continuous on every compact subset of X. In spaces that are not locally compact, this is a 

necessary but not a sufficient condition. 

For further detail refer Lipschitz continuity in Wikipedia.   
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