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ABSTRACT 

One among the advanced control algorithms that is receiving a great deal of 

concern in the process industries, chemical plant and oil refineries is predictive control. 

Predictive control is a prudent control which retains information about the past process 

variables and survey the current as well as the upcoming process variables. Internal model 

control, inferential control and model predictive control are some of the popular predictive 

controllers. Model predictive control (MPC), which works on the basis of receding horizon 

control has attracted the process control community due to its capability to handle 

constraints on process variables, nonlinearities and interactions among process variables, 

disturbances etc. 

Model predictive controllers are model- based controllers which rely on dynamic 

models of the process. Process model plays a key role in model predictive controllers. The 

more accurate the model the more accurate is the controller. State space models, First 

Principle models, Hammerstein models, Volterra models etc were used widely to develop 

accurate dynamics of nonlinear processes which are effort demanding and time consuming. 

Then artificial neural network (ANN) models turned the attention of MPC users due to 

their ability to perfectly identify complex nonlinear relationships between dependent and 

independent variables with less effort. Several researchers have approximated nonlinear 

models by neural networks besides its lengthy training time, requirement of large training 

data, poor extrapolation, offset for multistep predictions in the presence of disturbances, 

over fitting with poor generalization etc. Another widely used machine learning technique 

introduced by Vapnik is deterministic sparse kernel technique named as support vector 

machine (SVM). Support vector regression (SVR) models are significant for its accuracy 

and sparse nature. Another existing machine learning technique introduced by Tipping is 

probabilistic sparse kernel learning technique called as relevance vector machines (RVM). 

Relevance vector regression (RVR) models which are much sparser reproduces the 

nonlinear dynamics accurately. 

In this thesis, a novel neuro fuzzy technique, Extreme ANFIS is proposed and its 

significance in achieving accurate model is verified. Thus different machine learning 

techniques say ANN’s, SVM’s, RVM’s and proposed novel neuro-fuzzy technique are 

employed to show their suitability to achieve accuracy and computational efficiency. 

 The other concern in model predictive controller is computational cost, as it does 

prediction and optimization at each sampling instant. This could be overcome by fast 

prediction and fast optimization techniques. Quasi-Newton methods are known for its fast 
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optimization as it skips Hessian matrix computations, but accuracy is less. Particle swarm 

optimization is an evolutionary algorithm which is meant for its success rate but has long 

processing time. Processing of conventional particle swarm optimization could be speeded 

up by particle swarm optimization with controllable random exploration velocity (PSO-

CREV) technique. This PSO-CREV technique improves the intensity of exploration 

capability of conventional particle swarm optimization significantly by a time-varying 

bound of arbitrary search velocity to meet both the necessities of strong exploration skill 

and fast convergence with less number of iterations and less number of populations. In this 

thesis, PSO-CREV technique is adopted for its accuracy, simplicity and controllable fast 

computations. 

A nonlinear model predictive control strategy which utilizes the above mentioned 

machine learning techniques and PSO-CREV optimization algorithm is applied to a single 

input single output (SISO) catalytic continuous stirred tank reactor (CSTR) process. An 

accurate reliable nonlinear model is first identified by the above mentioned machine 

learning techniques and then the optimization of control sequence is speeded up by PSO-

CREV. An improved system performance is guaranteed by an accurate model and an 

efficient and fast optimization algorithm. Performance comparisons of MPC’s using 

probabilistic sparse kernel learning technique called RVM’s regression model, 

deterministic sparse kernel learning technique called Least squares support vector 

machines (LS-SVM) regression model, a proposed novel neuro-fuzzy based (Extreme 

adaptive neuro fuzzy inference system (ANFIS)) model and neural network based model 

are done on a CSTR process. Relevance vector regression model and Extreme ANFIS 

model shows good tracking performance with very less computation time which is much 

essential for real time control. 

A nonlinear system with much faster dynamics is also considered for control. The 

control of photovoltaic (PV) array Maximum Power Point Tracker (MPPT) through 

Nonlinear Model Predictive Control (NMPC) strategy which uses Extreme ANFIS/ LS-

SVM/ RVM regression model is proposed. Another Extreme ANFIS/ LS-SVM/ RVM 

model is employed to offer the reference Maximum Power Point (MPP) trajectory to the 

model predictive control system by predicting the maximum power point current and 

voltage of the nonlinear PV module at different operating conditions. The above control 

algorithm is speeded up by simplifying the optimization problem by Finite Control Set 

Model Predictive Control (FCS-MPC) technique. Thus an improved system performance is 

guaranteed by an accurate predictive model and simple control algorithm. The obtained 
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simulation results show the superiority of the proposed method compared to state space 

model based NMPC. 

Control of highly nonlinear processes with interacting process variables is still a 

challenge in industries. Hence, a highly nonlinear binary distillation column process is 

considered for control to highlight the control accuracy and computational efficiency of 

NMPC strategy.  An accurate reliable nonlinear model is first identified by the proposed 

novel neuro-fuzzy based (Extreme ANFIS) model and then the optimization of control 

sequence is speeded up by PSO-CREV. To compare the performance, MPC using 

probabilistic sparse kernel learning technique RVR with a RBF kernel, deterministic sparse 

kernel learning technique called LS-SVM regression model and ANN based model is done 

on a distillation column process. RVR based MPC and Extreme ANFIS based MPC again 

shows its significance in achieving good tracking performance with very less 

computational effort which is much essential for real time control applications. 

Thus this thesis focused in incorporating accurate nonlinear model and reducing the 

computational cost related to nonlinear model predictive controller. 
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V Open-circuit voltage OC 

P Power 

i PV array current pv 

v Converter output voltage c   

v PV array voltage pv 

J Performance index 

F Feed rate 

q Fraction of liquid in feed F 

D and B  Distillate and bottom product flow rate 

xD Distillate product composition   

L Reflux flow 

xB Bottom product composition   

V Boilup flow 

M Liquid holdup on reboiler B 

M Condenser holdup D 

M Liquid holdup on theoretical tray i i 

N Location of Feed tray from bottom F 

QF Fraction liquid in feed   

L Liquid flow rate into reboiler B 

V Vapour flow rate on top tray T 

X Logarithmic bottom composition B 

Y Logarithmic top composition D 

x Liquid mole fraction of light component on stage i i 

y Vapour mole fraction of light component on stage i i 

y Vapour mole fraction of light component on top tray T  

Z Mole fraction of light component in feed F 
ref
Dx  Desired value of distillate product composition 
ref
Bx  Desired value of bottom product composition 

 N Total number of trays T 
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LIST OF ACRONYMS 

LQR Linear Quadratic Regulator 

MPHC Model Predictive Heuristic Control 

MPC Model Predictive Control 

DMC Dynamic Matrix Control 

QDMC Quadratic program Dynamic Matrix Control 

IDCOM-M Identification, configuration, simulation and control 

SMOC Shell Multivariable Optimizing Controller 

DMC+ Dynamic matrix control plus 

RMPC Robust model predictive control technology 

MIMO Multi Input, Multi Output 

PID Proportional Integral Derivative 

LMPC Linear Model Predictive Control 

NMPC Nonlinear Model Predictive Control 

ANN Artificial Neural networks 

FF Feed-forward 

RBF Radial Basis Function 

ERN External Recurrent Networks 

SVM Support Vector Machines 

SVR Support Vector Regression 

LS-SVM Least squares support vector machines 

RVM Relevance vector machine 

RVR Relevance vector regression 

SLFNs Single-hidden layer feed-forward neural networks 

ELM Extreme learning machine 

Extreme ANFIS Extreme Adaptive neuro fuzzy inference system 

FCS-MPC Finite Control Set Model Predictive Control 

CSTR Catatytic Stirred Tank Reactor 

ANFIS Adaptive network based fuzzy inference system 

HLA Hybrid learning algorithm 

BFGS Broyden–Fletcher–Goldfarb–Shanno 

PSO-CREV Particle swarm optimization with controllable 
random exploration velocity 

SISO Single input single output 

PV Photovoltaic 

MPPT Maximum Power Point Tracker 

PSO Particle swarm optimization 

CSA Coupled Simulated Annealing 

MLE Maximum likelihood estimate 
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MAP Maximum a posteriori 

EM Expectation Maximization 

MHW Moving horizon window 

RMSE Root mean square error 

DC  Direct current 

SMPS Switched-mode power supply 

IAE Integral absolute error 

LDA Linear discriminant analysis 

PCA Principal components analysis 

LSE Least square error 

BOS Balance of system 
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Chapter 1 
INTRODUCTION 

This chapter describes the introduction to the research work. It starts with the basics of predictive 

control. Subsequently, the demanding tasks in nonlinear model predictive control are discussed 

with its solutions, which is the main subject of this thesis. Next, author’s contribution and 

organisation of thesis are explained. 

1.1 OVERVIEW 

In the early 1960’s, Kalman [1] developed the modern control concepts to 

determine an optimal linear control system by studying a Linear Quadratic Regulator 

(LQR) problem. The process to be controlled is described by a discrete time deterministic 

linear state space model as shown in equation (1.1). 

                                                                                          (1.1) 

The vectors A, B, C, u, x , y describes the state matrix, input matrix, output matrix, 

manipulated variables, states of the process, output of the process respectively. The 

quadratic objective function to be minimized is shown in equation (1.2) where Q is state 

weighting matrix and R is the input weighting matrix. 

                                                                       (1.2) 

The solution to the above LQR problem resembles a propotional controller where 
the  gain matrix K is the solution of matrix Ricatti equation (1.3) 
                                                                                              (1.3)

      
The above algorithm was found to be stabilizable and detectable until the weight 

matrices Q and R are positive definite. Following this a dual control theory Linear 

Quadratic Gaussian controller came into practice which merges LQR and Kalman Filter 

[2]. But it was regarded as impractical due to its inability to meet constraints, process 

nonlinearities, and model uncertainty. This surroundings show the way for the 

intensification of model based control methodologies. 

The exact origin of Model Predictive Control (MPC) took place in mid seventies to 

mid eighties. The first description on MPC, Model Predictive Heuristic Control (MPHC) 

was advocated via Richet et al., 1978 [3], followed by Cuttler and Ramaker 1980 [4] who 

developed Dynamic Matrix Control (DMC). These strategies made MPC more popular 

among industries. During the period of eighties to nineties, again new variants of MPC 
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techniques have been developed. These MPC algorithms include Quadratic program 

Dynamic Matrix Control (QDMC), identification, configuration, simulation and control 

(IDCOM-M), Shell Multivariable Optimizing Controller (SMOC), Dynamic matrix control 

plus (DMC+),  Robust model predictive control technology (RMPC) etc. [5]. All the above 

linear MPC algorithms differ mainly in the process models used (step, impulse and state 

space) and their amendment to time varying models. 

Model predictive control (MPC) is renowned as one of the advanced control 

technique found to be very successful in real time applications [5]. This acknowledgment 

is due to its ability to handle constraints forced on inputs and outputs of process, 

interactions between process variables,  process nonlinearities, dead times, capability of 

controlling multi input, multi output (MIMO) nonlinear systems with significant dead time  

and model uncertainties. The main advantage of MPC lies in its capability to optimize the 

current time slot, in relation with future timeslots. 

Even though the proportional Integral derivative (PID) controller was widely used 

from 1890’s, optimization of controller performance is beyond its scope. Currently model 

predictive control (MPC) has made the optimization and control of such complex problems 

more feasible. Incorporating accurate nonlinear model and fast online optimization 

techniques with less computational complexity is the main subject of this thesis. 

1.2 RECEDING HORIZON CONTROL 

It is the one which overcomes the drawbacks of fixed horizon control. A fixed 

horizon control leads to a control sequence which starts at some current time and concludes 

at some future time. Hence it leads to outdated fixed control choices and as the time given 

for objective function reduction is fixed the control may not be satisfactory. All the above 

draw backs could be overcome by receding horizon control principle.  

In model predictive control, the prediction horizon keeps on moving forward and 

hence it is based on the principle of receding horizon control. The concept of receding 

horizon in MPC is shown in Fig.1.1. At current time instant K, the current plant state is 

sampled and a control strategy to minimize the difference between the desired set point 

trajectory and the process output predicted over the prediction horizon is calculated for a 

relatively short time horizon in future. Having calculated the future control strategy, only 

the initial step of the calculated control series is implemented to the actual process. At the 

subsequent sampling instant k+1, the output measurements necessary for prediction are 

restructured, the prediction horizon is moved one step ahead and the entire course of action 
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is repeated until the difference between the reference trajectory and the predicted plant’s 

output are within the tolerable limit. 

 
Fig. 1.1 The concept of receding horizon 

1.3 LINEAR MODEL PREDICTIVE CONTROL 

Linear MPC uses the linear dynamic model of the plant explicitly in order to 

control the upcoming plant behaviour. Thus plant model becomes the heart of MPC which 

is responsible to anticipate the effects of future manipulated variables, from the past history 

of measurements and control and to estimate the current state of the plant. The MPC 

algorithm determines an open loop series of manipulated variable at each control interval 

in order to optimize the upcoming plant behaviour online by incorporating constraints in 

the process variables. This major difference from other controllers makes MPC more 

attractive among industries.  

The strategy of Linear MPC (LMPC) is demonstrated in Fig 1.2.  It includes three 

important blocks, the actual plant to be controlled with output y(k). The linear model of the 

actual plant has the predicted output ŷ(k)= [ŷ(k+1)/k ,… ŷ(k+Np)/k] here, Np is the 

prediction horizon of MPC which dictates how far we wish the future to be predicted for. 

Next is the optimization block which provides the optimized control signal 

u(k)=[u(k/k),…u(k+ Nu -1 /k)] where Nu is the control horizon of MPC which dictates the 

number of control moves used to attain the upcoming control trajectory, subjected to the 

specified constraints that is required for the plant to achieve the desired trajectory 

ref(k)=[ref1(k) ….refNp

Thus at each sampling instant a sequence of manipulated variable u(k)  is calculated 

in order to lessen the difference involving the predicted output of the model and the desired 

(k)]. Here k stands for the current sampling instant.  
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set point trajectory over the specified prediction horizon Np. The number of manipulated 

variable in the series is decided by the control horizon value Nu and only the first 

manipulated variable is implemented to the actual plant. This course is done in each 

sampling instant. Earlier linear MPC’s were repeatedly used in practice which operates in a 

narrow operating region. 

 
Fig. 1.2 The strategy of Linear MPC 

But linear model predictive controllers fail to experiment the inevitable nonlinear 

behaviour of processes. 

Linear MPC’s are inadequate with the following limitations. 

• Performances of Linear MPC’S are very poor for highly nonlinear processes 

operating over wide regions. 

• They are not satisfactory when the process is subjected to strong regulator control 

problems and strong servo control problems. 

• Linear MPC performance depends on the accuracy of  the linear dynamic model. 

• Most Linear MPC’s uses dynamic step response model or impulse response model  

which has no validation technique to check if the collected data are sufficient to 

characterize the system dynamics. 

These inadequacies coupled with increasingly stringent demands on throughput and 

product quality has encouraged the development of nonlinear model predictive control 

(NMPC) [6]. Hence the next generation MPC’s started focussing on nonlinear models. 

1.4 NONLINEAR MODEL PREDICTIVE CONTROL 

Nonlinear MPC uses the nonlinear dynamic model of the plant explicitly to control 

the upcoming behaviour of the plant. Two challenging tasks in nonlinear model predictive 
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controller are acquiring an accurate nonlinear model and solving nonlinear optimization 

problem online. The strategy of nonlinear MPC is obtained by replacing linear model in 

Fig. 1.1 by nonlinear model. 

The performance of nonlinear model predictive controller depends on model 

accuracy. For a highly tuned controller a very accurate model is necessary [7]. Thus 

precise nonlinear model is expected for better controlled performance. 

1.4.1 Nonlinear system modeling 

Artificial Neural networks (ANN) were widely believed for estimation of nonlinear 

system dynamics due to following reasons. 

• Neuro-computing has its inbuilt ability to learn and approximate nonlinear 

functions. 

• Online computation requirements are very less. 

• Effortless configuration with less number of parameters  

• Neural networks (NN) do not require an algorithm or rule development. 

• Software development is relatively straight forward with just data file input output, 

Peripheral device interface, pre-processing and post processing. 

• Peripheral device interface, pre-processing and post processing. 

Most frequently used ANN topologies in nonlinear model predictive control 

techniques are, Feed-forward (FF) networks, Radial Basis Function (RBF), External 

Recurrent Networks (ERN). 

Most of the researchers have adopted feed forward neural network for modeling due to its 

simple topology. Several scholars [8-10] have approximated nonlinear models by neural 

networks besides its following limitations. 

• Lengthy training time. 

• Requirement of large training data. 

• Poor extrapolation. 

• Offset for multistep predictions in the presence of disturbances. 

• Over fitting with poor generalization etc. 

Thus in spite of the existence of many nonlinear control approaches in theory, designing an 

appropriate controller for complex process is still confronted in practice [11]. 

Another learning method, sparse kernel learning is a nonlinear modeling method 

formerly projected in the machine learning area [12, 13]. Recently a novel kernel based 

deterministic nonlinear modeling method, Support Vector Machines (SVM)  introduced by 
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Vapnik [14] has found its increasing applications in process modeling  The guaranteed 

model accuracy, better generalization capability of SVR model are explicitly 

acknowledged by many researchers [15-20]. Thus by Support Vector Regression (SVR), 

the problem of over fitting can be avoided; generalization ability can be improved with 

better extrapolation capability with less number of training data and less training time. The 

complexity of developing an accurate model for highly nonlinear processes and the 

nonlinearities of its dynamics, make very attractive the use of SVM. 

But, practical applications of SVMs are limited because of its requirement of larger 

number of kernels to approximate the optimal solutions. In least squares support vector 

machines (LS-SVM) the regularization parameter γ and the kernel width parameter σ are 

the two free parameters to be tuned to improve the generalization ability of predicted 

model. Thus the LS-SVM model is burdened with additional externally determined 

parameters, which is a time consuming task. Subsequently Tipping [21] introduced 

relevance vector machine (RVM) in 2000 which attracted much interest in the research 

community owing to its advantages over support vector machine. They are established on a 

Bayesian formulation which results in usage of less number of relevance vectors leading to 

much more sparse representation than support vector machine. Unlike in SVM framework 

where the basis functions must satisfy Mercer’s kernel theorem, in the RVM case there is 

no restriction on the basis functions [14, 22]. Also, kernel width σ is the only parameter to 

be tuned in Relevance vector regression (RVR) model. Consequently the sparse RVR 

model could generalize better with very less computation time than SVM. The result given 

in [21] demonstrates the comparable generalization performance of RVM than SVM with 

intensely fewer kernel functions. Hence in this thesis the sparse kernel learning algorithms 

SVM and RVM are used for modeling of nonlinear complex processes to make use of the 

advantage of accurate prediction and sparse nature. 

A novel machine learning algorithm which works on single-hidden layer feed-

forward neural networks (SLFNs) is Extreme learning machine (ELM) [23].Conventional 

learning methods like neural networks and SVM’s suffer drawbacks like slow learning 

speed and trivial learning variations for different applications of regression problems and 

two class and multi-class classification problems. Every parameter of conventional SLFNs 

requires tuning and thus there exists the reliance between parameters of hidden layer and 

output layer. Traditional learning techniques based on gradient descent methods are 

normally too slow due to inappropriate learning steps and have the problem of converging 

to local minima. The essence of ELM is that the hidden layer parameters cannot be 
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dependent of training samples, and these parameters need not be tuned. Recent research on 

ELM [24] has shown that ELM is better than neural networks because of faster learning 

speed and smaller generalization error. 

A faster and novel neuro-fuzzy learning technique, Extreme Adaptive neuro-fuzzy 

inference system (Extreme ANFIS) is proposed in this thesis which combines the 

qualitative approach of fuzzy logic and adaptive capability of neural network. The 

structure of new extreme ANFIS algorithm is same as conventional ANFIS which works 

on hybrid learning algorithm. The significant features of proposed Extreme-ANFIS 

algorithm as compared to conventional hybrid learning algorithm are listed below: 

• The time required to find gradient and to update premise parameters iteratively 

reduced in proposed Extreme ANFIS algorithm which resulted in significant 

reduction in overall learning time. 

• The proposed algorithm is much simpler, faster and provides better generalization 

than conventional hybrid learning algorithm. 

• The intuitive assumption of random premise parameters in the form of membership 

functions which are spread throughout the universe of discourse of input variable 

and local mapping ability of Sugeno type FIS in the form of rule base helps a lot in 

further improvement of learning speed. 

• The proposed algorithm improves the flexibility of ANFIS architecture by 

eliminating differentiability constraint on membership function. In other words, the 

algorithm can also work with non differentiable membership functions. Also the 

different shapes of membership functions could be practiced easily within same 

universe of discourse of input. 

• The reduction in iterative steps of learning allows ANFIS architecture to increase 

number of inputs and membership functions within required time constraints to 

improve accuracy while modeling the complex nonlinear systems. 

1.4.2 Nonlinear optimization 

In NMPC as the model is nonlinear the optimization problem is no longer quadratic 

and hence it imposes the optimization problem as nonlinear optimization problem.  Hence, 

despite of accurate approximation of nonlinear dynamics of large dimension and highly 

nonlinear processes, it suffers from computational burden as model predictive controller 

does prediction and optimization at each sampling instant. The solution of such non 

convex optimization problem by evolutionary algorithms is very simple with less 
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computational complexity. Hence in this thesis a powerful evolutionary algorithm, particle 

swarm optimization with controllable random exploration velocity is applied for online 

optimization.  

1.5 FINITE CONTROL SET NONLINEAR MODEL PREDICTIVE CONTROL 

The Finite Control Set Model Predictive Control (FCS-MPC) is a method, in which 

the discrete character of power converters is utilized by which the optimization problem of 

MPC is omitted. In FCS-MPC method, by using a discrete model the performance of the 

system for every allowable actuation is predicted and the one which minimizes the 

predefined cost function is implemented for the subsequent sampling instant [25]. The key 

gain of FCS-MPC lies in the straight application of the control action to the power 

converter. The usage of prediction using RVR model or SVR model in FCS-MPC makes 

the controller faster to deal with real time applications with power converters. 

1.6 LITERATURE REVIEW 

The main stumbling block owing to the extension of LMPC to NMPC is the 

necessity of accurate nonlinear model and significant computation requisite during online 

optimization. Identification of a complex dynamic plant is a major concern in control 

theory [26]. This section presents a review of the most commonly used nonlinear process 

modeling techniques and online optimization techniques in NMPC. Widely used nonlinear 

process modeling techniques in NMPC are, 

• First Principle model 

• Empirical Models 

1.6.1 First principle model 

The first principle model otherwise called as white box model or mechanistic 

model is developed based on analysis of the system at fundamental level like the transient 

mass, energy and momentum relation to the system, state equations boundary conditions 

etc.  Thus development of such fundamental dynamic models requires understanding of 

process fundamentals.  

Patwardhan et al. [27] controlled a distillation column using NMPC at an operating 

condition where the process gain changed sign. The rigorous mechanistic model developed 

was not appropriate for use in on-line model predictive control calculations due to the 

memory limitations.  

Chen et al. [28] described a novel NMPC scheme based on first principle model 

with guaranteed asymptotic closed loop stability. But this closed loop stability is proved 
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only under the assumption that no model/plant mismatch or disturbances are acting on the 

system and that the whole state vector can be measured.  

Ricker et al. [29] developed a NMPC using the state variable formulation model 

with 26 states, 10 manipulated variables and 23 outputs. Developing such a model is 

difficult and which in turn makes the optimization problem of NMPC more complex. 

Zheng et al. [30] proposed a novel model predictive control (MPC) algorithm for 

control of nonlinear multivariable systems, in which the author concluded that the number 

of manipulated variables directly affects the online computational demand of the 

algorithm.  

Padtwardhan et.al [31] suggested that In NMPC, online solution to nonlinear 

programming will become simple if the model order is kept low. Hence, In order to keep 

the dimensionality of the nonlinear programming problem low the author has used 

Orthogonal Collocation method of order reduction to ease the computation. 

Limitations of First Principle Model 

• Development of first principles model is usually costly, time consuming and effort 

demanding. 

• This method derives a model of very high order because of thorough modeling 

hence optimization problem in NMPC becomes a complex task [32]. 

1.6.2 Empirical models 

The empirical model otherwise called as black box model is the one which relies 

exclusively on the system data obtained and necessitates no understanding of fundamental 

physical facts of the system. The data collected from the process should be able to extract 

the process characteristics accurately. The following are the commonly used empirical 

models in NMPC. 

• Hammerstein model [33]. 

• Volterra model [34]. 

• Collocation model [35]. 

• Artificial Neural Networks [36]. 

1.6.2.1 Hammerstein model, Volterra model and Collocation model 

Nonlinear model predictive controllers using Hammerstein model, Volterra model, 

Wiener model and Collocation model are discussed in many literatures. Fruzzetti et al. [33] 

developed a nonlinear Hammerstein model for a chemical plant. The Hammerstein model 
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developed is composed of a linear active element in succession to a nonlinear stationary 

element. The closed loop system performance on the developed Hammerstein model has 

shown significant improvement than the linear model even with constraints.  Wiener model 

could be obtained by interchanging linear and nonlinear block. Maner et al. [34] describes 

the model predictive control using a Volterra model. In this paper, the author describes the 

capability of second-order Volterra models to hold asymmetric variation in output due to 

the symmetric variation in input. Jang et al. [35] explained NMPC based on collocation 

modeling. 

Limitations 

• Developing Volterra model for chemical plants from experimental data is 

practically due to the large requirements of data and experimentation time [37]. 

• Time required for Hammerstein model identification is more than parametric 

identification methods [38]. 

1.6.2.2 Neural networks for nonlinear modeling 

The importance of nonlinear system identification and control using ANN has 

improved broadly during the past decade. A neural networks performance is highly 

dependent on its structure [39]. This is basically due to the verified superiority of various 

neural network architectures say Feed Forward neural network, Radial basis function 

(RBF) neural network, Elman neural network etc. in random non-linear mapping. 

Researchers [40, 41] have reviewed many papers on the process modeling and control 

using artificial neural networks which explores its significance. Arumugasamy et al. [42] 

discussed the better set point tracking and disturbance rejection of many neural network 

based NMPC with less computation expense. It also ensures that the neural network based 

NMPC works better in noisy environment when compared to the PI controllers. The 

satisfactory classification performance of neural networks using back propagation and 

radial basis function algorithm are discussed [43]. These significances turned the attention 

of MPC users to model their nonlinear systems using ANN. This section reviews a 

numbers of literatures on the integration of different neural network architectures into 

MPC schemes with their advantages and limitations. 

(i) Feed forward Neural Network 

  Feed forward ANN allows signals to pass through in one direction without any 

feedback arrangement. The basic topology of feed forward neural network is shown in 

Fig.1.3. 
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Feed forward ANN are straight forward networks that correlate inputs with outputs 

and such an organisation is also referred to as bottom-up or top-down. They are 

extensively used in pattern recognition, system identification etc. 

Georgieva et al. [44] controlled the feed flow rate of sugar syrup in a sugar 

crystallization process using a FF neural network based NMPC. Simulation results 

conveyed the smooth behaviour of the control actions and satisfactory set point tracking 

performance. 

The review paper [45] expressed the versatility of Neural networks in its capability 

of being included in a variety of nonlinear control techniques and approaches, also the 

paper highlighted the sufficiency and capability of Multilayered feed forward neural 

network with sigmoid or hyperbolic transfer functions in most of the applications for 

performing systems identification and controls, besides the presence of several other kinds 

of topologies and activation functions. 

 

 

 

 

 

 

 

 

Fig. 1.3 Feed forward neural network 

Gallaf et al. [46] modeled a nonlinear liquid level system with interaction using 

feed forward neural network and controlled using NMPC. Then the superior set point 

tracking performance of FF neural network based NMPC in comparison with conventional 

statistical identification method based NMPC is illustrated with necessary simulations. 

Rankovic et al. [47] controlled a nonlinear system using a feed forward neural 

network based NMPC and digital recurrent network based NMPC. The FF neural network 

is trained using the standard back propagation algorithm and the digital recurrent network 

is trained using a dynamic back propagation algorithm. The simulation results showed the 

suitability of feed forward NN and digital recurrent network for the identification of 

complex nonlinear dynamics with satisfactory results. 

Input Layer 
Hidden Layer 

Output Layer 
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 Chidrawar et al. [48] controlled three different processes using multilayer feed 

forward network based NMPC. Simulation results demonstrate the consequence of neural 

networks on Generalized Predictive Control. 

Kittisupakorn et al. [49] modeled a nonlinear steel pickling process by a multi-layer 

feed forward NN and incorporated it in model predictive control scheme to control 

hydrochloric acid concentrations. The neural network based NMPC developed gave better 

control performance with very less oscillations than the Proportional integral controller 

with less integral absolute error values even in the presence of disturbances. 

Literature [42] evaluated multilayer feed forward neural network as the better 

network when compared to RBF and Elman NN. The better dynamic modeling capability 

of feed forward neural network made the performance of neural network based NMPC 

much better than linear MPC which were widely used in the MPC framework. It also 

guaranteed feasibility of the reference tracking in the presence of input constraints. 

The simulation and experiment results showed the steady state offset of multistep 

model predictive controller using feed forward neural network models with longer 

prediction horizon in the presence of disturbance [50]. 

Advantages 

• Less complicated network 

• Better extrapolation property compared to Radial basis function and Elman neural 

networks [42] 

Limitations 

• Training time is lengthy than Radial basis function neural network [42]. 

• Multistep Model predictive control using feed forward neural network produces 

offset with the presence of disturbance [50]. 

(ii) Radial Basis Function network 

Fig. 1.4 shows the basic structure of RBF network with p number of input layers 

with inputs x1....xp

ϕ

 respectively. The middle layer is the hidden layer with N neurons 

having radial basis function  and weights w1... wN

The RBF, which was first introduced by Powell, was first used in neural network 

by Broomhead and Lowe. It is a type of neural network which is designed as a curve fitting 

problem in a high dimensional feature space.  RBF network is trained in such a way to find 

a multidimensional function by measuring in a statistical sense that fits the training data as 

 associated with it. F(x) is the output of 

RBF network. 
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best as possible, which is being measured in some statistical sense. Here the hidden unit 

forms a set of random basis function for the input vector which is called as the radial basis 

function.  

Nonlinear model predictive controllers with radial basis functions as the plant 

model are discussed in [51]. Simulation results reveal the prospective ability of NMPC to 

model and control the catalytic stirred tank reactor (CSTR) process with better 

performance over the conventional proportional integral derivative controller. 

Literature [52] presents a generalized MPC based on RBF neural network model 

for a class of time delayed nonlinear system. Initially RBF-NN modeling is done on the 

time delayed nonlinear system and then the developed model is embedded into predictive 

control algorithm. The RBF-NN can model nonlinear systems with unknown time delay. It 

can generate accurate control signals even in the presence of noise or fluctuation of the 

parameters of the plant. The efficacy of the proposed controller is confirmed in the 

simulation which explores the good adaptation and robustness capability of the network. 

 
 

 

Fig. 1.4 Structure of RBF neural network 

A radial basis function network using linear, cubic, thin-plate-spline, 

multiquadratic and inverse multiquadratic basis functions are presented [53]. The RBF 

network is trained to represent discrete-time nonlinear dynamic systems and the results are 

compared. The predictive accuracy of inverse multiquadratic function was relatively poor 

when compared to other basis functions. The results also indicate that the performance of 

the method depends very much on the different systems that were used. 

Advantages 

• Radial basis function has shortest training time [42]. 

• Radial basis function networks do not suffer from local minima problem [54]. 

Input layer 
Hidden layer or 

radial basis function 

Output layer 

F(x) 
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Limitations 

• Extrapolation far from training data is usually dangerous and unjustified in RBF 

networks [54]. 

• RBF are more sensitive to the curse of dimensionality [54]. 

(iii) Elman neural network 

Elman Neural Network, a semi-recursive neural network using the Back 

propagation algorithm is a special case of architecture employed by Jeff Elman. These 

neural algorithms have a drawback of slow convergence rate [55]. Fig. 1.5 shows an Elman 

network which is a simple recurrent NN with input layer x, hidden layer y, output layer z 

and context unit u. The inputs to the network are in1....ink. The corresponding weights 

between input layer and hidden layer are wx1y1.... wxkyl and the corresponding weights 

between the hidden layer and output layer are wy1z1.... wylzn

The permanent back connections make the context units always to maintain a 

duplicate of the earlier values of the hidden units. Thus the response of the Elman network 

depends both on current and past network inputs. Hence Elman network could perform 

sequence-prediction which is beyond the scope of a standard multilayer perceptron. 

.  The hidden layer y is 

connected to the context unit u with a fixed weight of one. At each time step, the input is 

transmitted in a standard feed-forward fashion, and then the back propagation learning rule 

is applied. 

In [56] an Elman ANN model is used to replicate the dynamics of imperfectly 

mixed bioreactor and a feed-forward ANN is used for control purpose. They investigate the 

appropriateness of an ANN for optimization and control. 

Declerq et al. [57] analyzed all the three different neural networks feed forward 

NN, the RBF based NN and the Elman neural network in designing a predictor for a 

dynamic non-linear system. Those neural network predictors were then used in MPC 

control algorithm. They validated the models using time validation and found that the feed 

forward neural net predicted the underlying non linearity of the system repeatedly better 

than the other two networks. 

Limitations 

• Training time is lengthy when compared to Radial Basis Functions [42]. 

• Poor extrapolation property when compared to feed forward neural network [42]. 
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Fig. 1.5 Elman neural network 

1.6.3 Support Vector Machines for nonlinear modeling 

The novel SVM algorithm was invented by Vladimir Vapnik in 1995 [58]. A 

support vector machine is a new concept for analysis of data in a set of associated 

supervised machine learning methods, recognizing patterns, classification and function 

approximation analysis. Support Vector learning depends on effortless ideas which 

initiated in statistical learning theory [14]. They are fast replacing neural network as the 

tool of choice for classification and regression tasks, primarily due to their ability to 

generalize well on unseen data. SVM’s are characterized by usage of kernels, nonexistence 

of local minima and sparse solution with less number of support vectors. Although SVM’s 

are being used mainly for classification tasks, in recent times SVM’s have been fruitfully 

applied to solve regression problems [59]. The guaranteed model accuracy and better 

generalization capability of SVR models are explicitly acknowledged by many researchers 

[15- 20]. 

• The neural network model could not perform better outside the training data range, 

also the NN model over fits data with poor generalization. The SVR model 

extrapolates much better than that of the NN model with good generalization also, 

the SVR modeling method can be implemented without difficulty. Therefore, SVR 

is a more suitable when compared to other data-driven empirical modeling methods 

[11]. 
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• An upright SVR model can be attained using less training data than NN methods 

[60]. 

• One of the specific advantages of SVM is sparseness of the solution. Which means 

SVM’s solution depends on the support vectors and not on the whole data set [61]. 

SVM’s are successfully applied in identifying faults in induction motors [62]. 

• The three significant controller performance characteristics of robustness, set-point 

tracking, and also ensuring the preferred feature in the presence of unmeasured 

disturbances makes SVR a substitute control method for nonlinear chemical 

processes [11]. 

Least squares support vector machines, first proposed by Suykens and Vandewalle 

are least square versions of support vector machines, In LS-SVM version, the solution is 

made simple by resolving a set of linear equations as an alternative to a convex quadratic 

programming problem for conventional SVMs. 

1.6.4 Relevance Vector Machine 

The research community is attracted towards Relevance vector machines for 

classification and regression due to its advantages. RVM are based on a Bayesian 

formulation of a linear model, which makes its representation sparser. This sparseness 

nature makes RVM to generalize better and provide outputs at low computational cost [63]. 

Nonlinear system identification using RVM is successfully discussed in many literatures 

[64- 69] which highlights its significance. 

• The number of relevance vectors is very less than that of support vectors which 

makes the RVM approximated function significantly sparser than the SVM 

decision function [63].  

• Modification of regularization parameter is not needed in RVM as in SVM training 

[63]. 

• The algorithm for RVM seems to be simple with the requirement of more memory 

and computations [22]. 

1.6.5 Neuro-Fuzzy techniques 

Neuro-fuzzy techniques have captivated increasing attention of researchers in 

different areas due to the growing requirement of intelligent systems [70]. Satisfactory 

performance of Fuzzy logic based controller is discussed in [71, 72]. 

Fuzzy logic systems do not incorporate any learning, while neural networks, a 

black box approach, do not possess mechanisms for explicit knowledge representation. By 
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combining neural networks and fuzzy logic, advantages of both these approaches can be 

incorporated in neuro-fuzzy systems. Adaptive network based fuzzy inference system 

(ANFIS) is a hybrid intelligent system which merges the fuzzy logic’s qualitative approach 

and neural network’s adaptive capabilities towards better performance [73]. A hybrid 

learning algorithm is used by ANFIS to identify parameters of Sugeno-type [74] fuzzy 

inference systems. Many applications of ANFIS are reported in literature [75]. ANFIS has 

strong computational complexity restrictions because of hybrid learning algorithm (HLA). 

A faster learning technique ‘Extreme ANFIS’ is proposed in this thesis. Extreme learning 

machine [23] is a novel algorithm which works on single-hidden layer feed-forward neural 

networks. Extreme ANFIS network reduces the computation complexity of the ANFIS by 

eliminating the hybrid learning algorithm and avoids the randomness of the ELM networks 

by incorporating explicit knowledge representation using fuzzy membership functions. 

1.6.6 Online Nonlinear Optimization Techniques  

Finding feasible solution for a constrained nonlinear equation is a very challenging 

problem. Solution for such complex nonlinear system requires high computational efforts 

[76]. MPC is forced to do optimization at each sampling instant online. Hence 

computational complexity and guarantee for convergence are the two important tasks to be 

considered while selecting the optimization techniques.  

1.6.6.1 Nonlinear Programming 

Nonlinear programming is the process of cracking a method of collectively termed 

constraints both with equalities and inequalities, over a set of mysterious real variables, 

along with a cost function to be maximized or minimized, where few constraints or the 

cost function are nonlinear. Different methods of nonlinear programming applied for 

nonlinear optimization in MPC are Newton-Raphson method [77], Levenberg Marquardt 

[78]. In the above techniques computation of Jacobian and hessian are unavoidable which 

increases the computational cost. 

The online optimization in MPC at each sampling instant is carried out by Newton- 

Raphson method in [77]. It involves the calculation of Hessian but as the number of 

iterations required for convergence is less real time applications become feasible.  

In [78] the optimization performances of Levenberg Marquardt method of 

optimization and Newton-Raphson method of optimization in MPC algorithm are 

compared and concluded that Levenberg Marquardt method performs better with minimum 

oscillations around the set points with stability. 
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Neural network based MPC using Quasi Newton method of online optimization is 

discussed in [79]. The Newton’s method approximated by Broyden–Fletcher–Goldfarb–

Shanno (BFGS) method is called as Quasi Newton’s method of optimization. Here the 

calculation of Hessian is omitted making the algorithm simpler with fewer computations. 

But the accuracy of Quasi Newton method is less due to approximations. Standard direct 

methods, such as Newton’s method, are impractical for large-scale problems because of 

their high linear algebra costs and large memory requirements [80]. Xue Cheng Xi et al. 

[81] obtained the control sequence by dynamic programming in which selection of sub 

problems and ordering are tough tasks. 

1.6.6.2 Evolutionary algorithms 

One of the promising research fields is evolutionary techniques which utilize nature 

or social systems. It became popular because of its ability and versatility to optimize 

complex problems [82]. The solution of non convex nonlinear optimization problem by 

evolutionary algorithms is simple since it is a derivative free method. The computational 

complexity in evolutionary algorithm is a prohibiting factor. Chen Yue-hua et al. [83] has 

optimized the performance index by genetic algorithm which has more computational 

effort when compared with particle swarm optimization.  

Emad et al. [84] has compared five evolutionary-based search methods in his paper. 

Genetic algorithm, Memetic algorithm, Particle swarm optimization, Ant colony 

optimization, Shuffled frog leaping optimization algorithms were considered and their 

comparative results were presented. The particle swarm optimization (PSO) method 

dominates other algorithms both in success rate and solution quality but only second best 

in time consumption. 

Particle swarm optimization method confirmed its capability to treat very difficult 

optimization and search problems [85]. This algorithm is an attractive tool due to its 

simplicity and high performance, it has been proven to be a powerful challenger to other 

evolutionary algorithms [86, 87] and been extensively used in numerous optimization 

processes [88, 89]. The performance of PSO-based feedback controller is robust and 

optimal [90]. It is a computationally efficient method since it is a derivative free method. 

Xin Chen et al. [91, 92] has authenticated a novel method of optimization, particle swarm 

optimization with controllable random exploration velocity (PSO-CREV), for its 

computational efficiency and improved performance than conventional particle swarm 

optimization with guaranteed convergence. 

http://en.wikipedia.org/wiki/Charles_George_Broyden�
http://en.wikipedia.org/wiki/Roger_Fletcher_(mathematician)�
http://en.wikipedia.org/w/index.php?title=Daniel_Goldfarb&action=edit&redlink=1�
http://en.wikipedia.org/w/index.php?title=David_F._Shanno&action=edit&redlink=1�
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1.6.7 Finite Control Set Model Predictive control 

The Finite Control Set Model Predictive Control is a method, in which the 

optimization problem can be simplified by utilizing the discontinuous nature of power 

converters. In this technique the system behaviour is predicted only for those possible 

on/off switching states and the one with minimum error is implemented. Many successful 

applications of FCS-MPC method for power converters and drives are discussed in articles 

[93- 100].  

The FCS-MPC of PV system for maximum power point tracking using state space 

model is discussed in [101]. The faster dynamics of PV system and power converters are 

administered successfully by FCS-MPC principle since the burden of online optimization 

is omitted in FCS-MPC principle. 

1.7 AUTHOR’S CONTRIBUTIONS 

The author’s contributions in the area of research are summarized as follows- 

1. This research focused in achieving accurate nonlinear models by adopting different 

machine learning techniques say; Feed forward neural network, Support vector 

machines, Relevance vector machines and novel Extreme adaptive neuro-fuzzy 

inference systems. Their suitability in achieving accurate predictions is verified.  

2. The fast accurate convergence of performance function in MPC is a great challenge 

in practice. This is made simpler by adopting PSO-CREV optimization technique 

which optimizes the performance function accurately with very less computational 

time. 

3. Nonlinear model predictive control of system with faster dynamics is made feasible 

by incorporating FCS-MPC principle. The control of photovoltaic array Maximum 

Power Point Tracker through Nonlinear Model Predictive Control strategy using fast 

predicting model and FCS-MPC technique is successfully done. 

4. The Feed forward neural network based NMPC is demonstrated for a nonlinear 

system. The nonlinear process considered for study is the Duffing’s equation. The 

online nonlinear optimization involved in NMPC is performed using PSO. The 

performance of the above developed NMPC is compared with Linear MPC. The 

simulation results conveys the significance of NMPC 

5. Different empirical models are developed for a single input single output (SISO) 

process. Catalytic stirred tank reactor is the SISO process considered for analysis. 

The performances of corresponding model based NMPC’s are compared. The 

developed Extreme ANFIS PSO-CREV-MPC, SVM-PSO-CREV-MPC and RVM-
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PSO-CREV-MPC for SISO process are compared with NN based MPC to show their 

significance. 

6. Then the control of system with faster dynamics using model predictive control is 

focused. A photovoltaic (PV) array with power converter is considered as the fast 

dynamic system. The control of photovoltaic array Maximum Power Point Tracker 

(MPPT) is done by Finite Control Set Nonlinear Model Predictive Control strategy 

by utilizing Extreme ANFIS/ SVM/ RVM regression models. The accurate prediction 

nature of Extreme ANFIS/ SVM/ RVM model made the performance better. 

7. Different modeling techniques are incorporated to develop NMPC for a Multi Input 

Multi Output process. Binary distillation column is the MIMO process considered for 

analysis. The developed Extreme ANFIS-PSO-CREV-MPC, LS-SVM-PSO-CREV-

MPC and RVM-PSO-CREV-MPC for MIMO distillation column processes are 

compared with NN based MPC to show their significance. 

1.8 ORGANISATION OF THE THESIS 

This thesis is organized into seven chapters. A brief summary of each chapter is 

given below. 

Chapter 1 describes the history of model predictive control. Then the demanding 

tasks in nonlinear model predictive control are discussed with its solutions, which is the 

main subject of this thesis. The author’s contribution and organization of thesis are also 

explained in this chapter. 

In Chapter 2, Neural Network (NN) based model predictive control is explained in 

detail. The Feed forward neural network based NMPC with particle swarm optimization is 

developed for a well known nonlinear system, Duffing’s equation. The performance of the 

above developed NMPC is compared with Linear MPC with necessary simulations. 

In Chapter 3, the basics of SVM based nonlinear model predictive control, RVM 

based nonlinear model predictive control and the proposed neuro-fuzzy techniques are 

discussed with their advantages.  

Chapter 4 analyzes the importance of Relevance Vector Machine based NMPC, 

Support Vector Machine based NMPC and Extreme ANFIS based NMPC in comparison 

with Neural Network based NMPC by simulating a SISO CSTR process. A Fast and 

guaranteed optimization algorithm PSO-CREV is used for online optimization which 

minimizes the complexity in computation. 
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Chapter 5 describes the model predictive control of a system with faster dynamics. 

The study system is a photovoltaic array with power converter. The importance of RVM/ 

SVM model in developing MPP tracker, and the control of entire photovoltaic system by 

Finite control set model predictive control to maintain the maximum power are validated 

by simulation results. 

Chapter 6 analyzes a highly nonlinear, interacting MIMO distillation column 

process whose simulation results convey the importance of Relevance Vector Machine 

based NMPC, Support Vector Machine based NMPC and Extreme ANFIS based NMPC in 

comparison with Neural Network based NMPC. A fast and guaranteed optimization 

algorithm PSO-CREV is used for online optimization which minimizes the complexity in 

computation. 

Chapter 7 concludes the thesis by highlighting the significant contribution of the 

thesis with the scope for further research in the area of NMPC. 



Chapter 2 
MODEL PREDICTIVE CONTROL USING NEURAL NETWORKS 

This chapter describes model predictive control using neural networks. It starts with some 

background on neural networks capability in nonlinear system modeling. Then, the theory behind 

the basic principle of neural network based MPC is discussed more in detail. The performance 

comparisons of linear MPC, nonlinear MPC, NN based MPC using line search method of 

optimization and NN based MPC using particle swarm optimization are shown. 

2.1 INTRODUCTION 

A common control loop feedback mechanism, PID controller is extensively used in 

industrial control systems from 1890’s. But controlling systems with higher order 

dynamics and large time delays and constraints are beyond its scope. In some cases, 

complex constrained formulations are transformed to simple unconstrained optimization 

formulations after removing the set of constraints and inserting them into the cost function 

[102]. Optimization and control of such dynamic processes became viable after the 

surfacing of Model Predictive controller in 1980’s. MPC technology is found to be applied 

in broad areas including chemicals, food processing, automotive, and aerospace 

applications [5]. Original Model predictive controllers were developed using linear models 

and hence the optimization problems are convex which could be solved analytically. But 

due to the severe nonlinearity of several chemical and industrial processes incorporation of 

nonlinear model is inescapable for better controlled performance. Therefore, a modeling 

technique with the ability to learn and represent the   nonlinear behaviour is needed [6]. 

The modern era of artificial neural network started with the revolutionary work of 

McCulloch and Pitts in the year 1943. Artificial Neural networks purge the need to develop 

an explicit model of a process by developing model even for unidentified parts of the 

process with noise. Neural networks have the better capability to virtually map any sets of 

data. System identification using neural networks have been demonstrated in many 

published works with their promising results [8- 10], [103- 108]. 

After reviewing 100 relevant papers, Mohamed Azlan Hussain [45] has concluded 

that multilayer feed forward with sigmoid or hyperbolic activation functions is commonly 

used in applications than other network topologies and activation functions. This proves 

their adequacy and potentiality for performing process identification and controls for 

ample range of problems. The prediction accuracy of Feed forward neural networks is 

much better than external recurrent network but, they produce offset for multistep ahead 

prediction in the presence of disturbance. The external recurrent neural network produces 
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zero offset in the presence of disturbance [50].  But training phase of these recurrent neural 

networks is not easy for large number of inputs. 

System modeling using dynamic recurrent neural networks is discussed in many 

literatures [109-112]. Artificial neural network has its unique advantage in the area of 

incipient faults detection [113]. Errors in neural network output depends on the 

architecture also hence selection of appropriate neural network plays vital role before 

modeling.  

The feed forward neural networks are generally used for system identification in 

process control due to following significance. It has a fixed computation time and 

reasonable computation speed as a result of the parallel structure [114]. It can learn from 

noisy and incomplete data [115, 116]. FF neural network could generalize better than RBF 

and recurrent networks to circumstances not taught to network previously but the output of 

neural networks is usually associated with small error, since it finds a general 

approximation to a solution.  

When incorporating the nonlinear neural network model in MPC, the optimization 

problem of Neural network based NMPC becomes non convex which could not be solved 

analytically. The selection of minimization algorithm plays an important role in reducing 

computational complexity of nonlinear MPC’s. In MPC, as the future control signal is 

calculated based on online optimization at each sampling instant, it is burdened with the 

calculation of Jacobean and Hessian in nonlinear programming. This computation cost 

disables the nonlinear model predictive controller from making response in time [91]. As 

model predictive controller does prediction and optimization at each sampling instant, it is 

computationally expensive. Hence selecting a suitable optimization algorithm is another 

criterion. 

Some researchers have used nonlinear programming methods based on 

approximated Hessian. In [117] the most popular formula known as Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm to approximate the inverse Hessian is used. Quasi 

Newton is easier to implement as exact Hessian is not required and it further ensures fast 

convergence. But the set point tracking performance is not remarkable.  

Introduction of this chapter is followed by the theory behind the basic principle of 

neural network based MPC. Then simulations are carried out to compare the performances 

of linear MPC, nonlinear MPC, NN based MPC using line search method of optimization 

and NN based MPC using particle swarm optimization. 
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2.2 PRINCIPLE OF NEURAL NETWORK BASED MPC 

The basic arrangement of NN based predictive controller is shown in Fig. 2.1. It 

contains three important components, the process under control with output y, a NN that 

approximates the process with predicted output ŷ and the optimization algorithm which is 

framed based on cost function and constraints which determines the input u required for 

the plant to achieve the desired performance. Reference trajectory is represented by ref. 

The general principle of NN based MPC is also explained by the flow diagram shown in 

Fig. 2.2. 

At every sampling instant a series of control input is calculated based on past 

process measurements. Number of control inputs in the sequence is decided by the control 

horizon Nu which dictates the number of control moves used to attain the future control 

trajectory. The control inputs are calculated in such a way as to minimize the performance 

function, which is the difference between models predicted output and the desired set point 

trajectory over the specified prediction horizon Np

 

 which dictates how far we wish the 

future to be predicted for, and only the initial control input  in the series is used by the 

actual plant. This procedure is repeated at every sampling instant with new prediction of 

the same length. 

 
Fig. 2.1 Basic Structure of neural network based model predictive controller 
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Fig. 2.2 Flow chart of MPC algorithm 

2.3 TRAINING OF NEURAL NETWORK 

The offline training of neural network model before embedding in MPC is shown 

in Fig. 2.3. The experimental input, output data is collected from the plant to be modeled. 

This input, output data should articulate the dynamics of the plant to be controlled. Same 

input u(k) is provided to both the plant and the NN model. The neural network has another 

input which is responsible for capturing the dynamics of the plant and maintaining system 

stability. This input either comes from the actual plant’s output, y(k), or the NN’s output, 

ŷ(k). 

Training a neural network is nothing but adjusting the weights associated with each 

input until the desired output is reached. The difference between the NN’s output signal, 

ŷ(k), and the plant’s output signal, y(k) is calculated and is then used to revise the weights 

of the network after passing through appropriate learning function. This procedure is 

recurrently done until the deviation of the output of NN model from the actual process is 

reduced to allowable level. 
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Fig. 2.3 Neural network training 

Many different training functions are available in Matlab neural network toolbox, 

for updating weights in neural networks.  They are Batch training with weight and bias 

learning rules, BFGS quasi-Newton backpropagation, BFGS quasi-Newton 

backpropagation for use with NN model reference adaptive controller, Bayesian 

regularization, Batch unsupervised weight/bias training, Cyclical order incremental update, 

Powell-Beale conjugate backpropagation, Fletcher-Powell conjugate gradient 

backpropagation, Polak-Ribiére conjugate gradient backpropagation, Gradient descent 

backpropagation, Gradient descent with adaptive learning rule backpropagation, Gradient 

descent with momentum backpropagation, Gradient descent with momentum and adaptive 

learning rule backpropagation, Levenberg- Marquardt backpropagation, One step secant 

backpropagation,Random order incremental training with learning functions, Resilient 

backpropagation, Sequential order incremental training with learning functions, Scaled 

conjugate gradient backpropagation. Among them Levenberg- Marquardt minimization 

algorithm is the better one which converges faster with robustness [118- 120]. 

Before using the trained network for prediction, validation of the network is 

necessary to check over fitting and generalization. In this test, an unseen input signal 

which is beyond the input data provided for training the ANN is used to compare the non-

linear plant output and the trained ANN output. Hence, it is a time validation test with an 

error index equation (2.1) to quantify it and to check the accuracy of the approximated 

model with N number of validation test samples. 
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2.4 PREDICTION USING FEED FORWARD NEURAL NETWORK 
A model is developed to generate system predictions. The neural networks describe 

the nonlinear models explicitly by their powerful function approximation properties [121]. 

Controllers based on neural network models offers an attractive property of robustness due 

to necessary information contained in the model [42]. 

One step ahead prediction of a Multilayer feed forward neural network structure 

comprising of five hidden neurons with sigmoid activation function and a single output 

neuron with linear activation function is shown in Fig. 2.4. The input’s for this network are 

u(k+1),y(k) and their analogous delay nodes u(k),…..u(k-nd) and y(k) … y(k-dd) where k is 

the current sampling instant. The number of delay nodes corresponding to input, u and 

output, y is determined by nd and dd ( )1ˆ +kyrespectively. The output of the NN  is the first 

predicted output. The network has one hidden layer were the number of hidden neurons 

and the activation function associated with each is selected by the user based on the plant 

under control. 

Multistep ahead prediction is done by repeating the single step ahead prediction 

recursively by feeding back the predicted output at each step, as input to the neural 

network. 

 

Fig. 2.4 Multilayer feed forward neural network for single step ahead prediction 

The equation for n step ahead prediction is given below, 
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       k   -  current sampling instant, 

 ( )nky +ˆ  -  n step ahead predicted output of neural network at kth sampling instant, 

       fj    -  activation function for the jth hidden neuron 

       b, bj -  bias on the output and hidden nodes respectively, 

       hid   -  number of hidden neurons, 

       wj   -  weight between the jth hidden node and the output node, 

       wj,I -  weight connecting the ith input node with the jth hidden node 

 
The first term in equation (2.3) stands for the values of control input u used in Fig. 

2.4, in which the condition k-Nu<i holds the previous future values of u and the other 

condition set all the other control inputs to u(k+Nu). The second summation of equation 

(2.3) stands for the feedback part which is fed back after each step prediction. The very last 

summation stands for the past values of y. 

A two step ahead prediction of a plant with 2 delay nodes corresponding with input 

u and 3 delay nodes corresponding with plant output y is illustrated in Fig. 2.5. 
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Fig. 2.5 Two step ahead prediction using feed forward neural network 

2.5 COST FUNCTION FORMULATION 

 In the MPC dynamic optimization problem the cost function to be minimized over 

the prediction horizon at every sampling instant is formulated as in equation (2.4) 
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N1

N

  - minimum value of prediction horizon 

2

N

  -  maximum value of prediction horizon 

u

ref  -  reference trajectory 

  -  control horizon 

ŷ   - output predicted by the neural network 

u∆   -  control input change defined as u(n+j)-u(n+j-1) 

λ   -  Control input weighting factor. 
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The first term in the cost function above minimizes the mean square error between 

the estimated output of the plant’s model and set point signal and the second term 

minimizes the magnitude of  change in the control signal used by the plant. As the value of

λ  increases the change in control signal will be smooth and slow. 

In Model predictive controller this cost function is minimized at each sampling 

instant and the control signal within a specified constraint is generated. This control signal 

will let the plant’s output to track the desired reference trajectory. N2, Nu λand  are the 

tuning parameters in the cost function for better minimization. This cost function 

formulated above could be minimized by either neural network function approximator or 

nonlinear programming or any evolutionary algorithms which are derivative free. 

2.6 MINIMIZATION OF PERFORMANCE FUNCTION BY NEURAL 

NETWORK 

Akesson et al. [121] has minimized the cost function of the neural network based 

NMPC by another neural network approximator. The corresponding neural network model 

is trained offline so that the future cost over a prediction horizon is reduced. Here the 

online computational burden at each sampling instant is minimized; since part of the 

computation is done offline while training the neural network and making it ready for 

approximation. But the computational complexity to create the training data is more 

tiresome as every training data point involves solving the MPC optimization problem. 

Another drawback is that for some choice of cost functions, minimization may not be 

accurate. Hopfield neural network based optimization in grid applications is discussed in 

[122]. 

2.7 PERFORMANCE COMPARISON OF LINEAR MPC AND NEURAL 

NETWORK BASED MPC 

A nonlinear system does not satisfy the superposition principle, or in other words, 

the nonlinear system provides output which is not directly relative to its input. This section 

presents the controlled output of a well known nonlinear system, Duffing’s equation in 

equation (2.5) which describes the relation between mass, stiffening spring and damper 

with a non minimum phase zero. 

)()(2)()()()(
.

3
...

tututytytyty −=+++                      (2.5) 

The Matlab simulink model of the above duffing’s equation is shown in Fig. 2.6. 
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Fig. 2.6 Simulink model of Duffing’s equation 

 This section describes the better capability of Neural Network based NMPC in 

comparison with linear MPC. 

2.7.1 Linear MPC 

A Linear time invariant state space form of the duffing’s equation is used as the 

plant model. Then by Taylor’s series method of linearization the equilibrium points are 

identified. 

     At Equilibrium point (0,0)      At Equilibrium point (1,0)      At Equilibrium point (-1,0) 

 

 

 

 

 

 

The prediction horizon Np, control horizon Nc λ and control input weighting factor 

are set to is set to17, 2, 0.05 respectively. A quadratic program solver is used as the 

minimization routine for the cost function to compute the control signal. The process input 

is constrained to ±1 and output of the process is constrained to ±1.5. 
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2.7.2 Neural network based NMPC 

A double layered feed forward NN comprising of five hidden neurons with sigmoid 

activation function and a single output neuron with linear activation function is used. The 

feed forward NN model of the duffing’s equation is approximated as the nonlinear plant 

model. The identified multilayer feed forward neural network has 4 neurons in the hidden 

layer with two delayed plant inputs and plant outputs. The prediction horizon Np, control 

horizon Nc λand control input weighting factor are set to is set to17, 2, 0.05 respectively. 

 

Fig. 2.7 Random signal used as input to the plant 

 

Fig. 2.8 Response of plant for random signal input 

 

Fig. 2.9 Neural Network Prediction error 
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Training data is obtained by providing random signal as input to the plant and 

recording its corresponding outputs. The data used for training the neural network is given 

in Fig. 2.7 & Fig. 2.8. The neural networks offline training is performed using the same 

random signal through Levenberg-Marquardt learning algorithm with a learning rate of 

0.01. Fig. 2.9 shows the deviation between the trained NN models predicted output and 

actual plant output for random input signals. 

2.7.3 Simulation Results 

The above trained NN model  is then adopted as the nonlinear aproximated model 

in MPC. The simulation results of the tracking performance of LMPC and NMPC for 

duffing’s equation are revealed in Fig. 2.10 and Fig. 2.11 correspondingly. 

 

Fig. 2.10 Set point tracking performance of LMPC 

 

Fig. 2.11 Set point tracking performance of NMPC 
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From the simulation results it is clear that LMPC is not suitable for strong set point 

change problem over wide operating region. Thus neural network based NMPC dominates 

LMPC with smooth setpoint tracking performance even for strong set point changes. 

2.8 PERFORMANCE COMPARISON OF NN BASED MPC WITH DIFFERENT 

ONLINE OPTIMIZATION TECHNIQUES  

Nonlinear MPC does prediction and optimization at each sampling instant. Hence 

practical implementation of Nonlinear MPC is a challenging task.  In this section the set 

point tracking performance of NN model based NMPC using line search routine based on 

backtracking technique and neural network based NMPC using particle swarm 

optimization are presented for the above mentioned duffings equation. 

2.8.1 Particle Swarm Optimization 

An ever-present and natural process that forms an essential part of our daily life is 

optimization. Basically, it is an art of choosing the finest choice among the available 

choices. Optimization techniques are being expansively used in the field of engineering. 

After getting encouraged by the foraging performance of birds, American 

psychologist Kennedy and electrical engineer Eberhart introduced the particle swarm 

optimization algorithm [87]. The mechanism of particle swarm optimization is motivated 

from the complex social activities shown by the natural species like flock of birds, school 

of fish and even crowd of human beings [123]. It is an arbitrary optimization algorithm 

which is developed based on collaboration and competition among the particles in the 

swarm. PSO dependance on swarms cleverness is characterized by its universality and 

global optimization. The PSO algorithm is simple to put into practice and has been proven 

to be very competitive for solving diverse global optimization [124]. 

To make improvement in exploration and progress, Shi and Eberhart established 

inertia weight based on actual PSO [125]. As a first step, It initializes the swarm in 

possible solution space and velocity space with initial position and velocity, based on its 

distinct search principle. Each particle is a possible key of the optimization problem whose 

appropriateness value is dependent on the cost function. The particle velocity make a 

decision of the direction and distance of movement through the solution space. Generally, 

particles go after the current best solution and look for the ultimate finest solution which 

keeps on changing in each generation. In each generation, particles will go behind two 

extremums, one is the finest solution found by the individuals called pbest and the further 

is the finest solution found by any particle in their environs. Here, the global best value, 
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gbest is used, where every particle is associated to and able to attain information from 

every other particle in the swarm [126]. 

Basic steps involved in PSO algorithm are, 

1. Initialization of  population. 

2. Evaluation of  fitness of individual particles. 

3. Modification of velocities based on pbest found by the individual and global best 

found by the neighbourhood. 

4. Termination after attaining the required iterations. 

Let us consider a feature space of n dimensional where the group 

X=[X1,...,X2,…,Xm] comprises m particles. The position and velocity of ith individual 

particles is Xi=[xi1,xi2,…xin]T and Vi=[vi1,vi2,…vin]T respectively and the best finest 

position the swarm has found individually, pbest is Pi=[Pi1,Pi2,…,Pin]T. The best location 

found by the swarm globally gbest is Pg=[pg1,pg2,…pgn]T

Now the velocity and position update equations for the particle X

. 
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 is given in  (2.5) 

and (2.6) respectively. 

                  (2.5) 
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Where, 

d=1,2,…,n - dimension of the solution space 

i=1,2,…m - particle 

m    -  swarm size, 

 t   -  iteration counter, 

w    -  inertia weights 

r1, r2

c

       -          random numbers in the range [0,1], 

1, c2

P

   - learning factors. 

id   

P

- best position recognized by particle i 

id   -  

Learning factors c

global best position recognized by particle i 

1 and c2

Fig. 2.13 initially shows the random arrangement of  particles in two dimensional 

optimization. Then as the number of itteration increases, the particles are moving closer to 

each other. This phenomenon repeats until most of the particles are coming to an unique 

optimum position. 

 ranges from [0, 4] but usually their value is taken to be 

2. The basic flow chart for implementing PSO is given in Fig. 2.12. 
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Fig.2.12 Flow chart of Particle Swarm Optimization algorithm 
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(a) (b) 

 

 

                  (c)                                                                                    (d) 

Fig. 2.13 (a) Initial position of the particles. (b) Position of the particles after 10 
iterations. (c)  Position of the particles after 100 iterations. (d) Position of the particles 
after 500 iterations. 

2.8.2 Backtracking technique for optimization 
Backtracking is a technique used to decide the distance to move in a particular 

search direction in an unconstrained method of optimization. This particular direction 

decides the minimization of the formulated cost function sufficiently. This is done 

numerically by a parameter α which gives an enough decrease in the objective function. 

Hence selection of α needs importance and is based on Armijo-Goldstein condition [127]. 
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The backtracking algorithm actually reduces the value of α with rate parameter τ 

until the condition of Armijo-Goldstein is satisfied. It has the following steps. 

(i) The iteration counter j is set to zero and the  initial guess to the parameter α is 

α>0 and rate parameter )1,0(∈τ . 

(ii) Repeat the following steps Until jα satisfies the Armijo-Goldstein condition.  

                     jj ταα =+1  
                     1+= jj   

            (iii)     Update  the value of α by the above value. 

2.8.3 Simulation Results 

The set point tracking performance comparison of NN based MPC using line 

search method of optimization using backtracking technique and NN based MPC using 

PSO are presented in this section. The set point tracking performances of NN- MPC-

backtracking and NN-MPC-PSO are shown in Fig. 2.14 and Fig. 2.15 correspondingly. 

 

Fig. 2.14 Set point tracking performance of NN- MPC-backtracking 

The performance of NN based MPC using PSO is better than NN based MPC using 

line search method of optimization with faster settling time. The little overshoots and 

undershoots in neural network based MPC using line search method of optimization is 

eliminated in neural network based MPC using PSO which exhibits its significance. Also 

as PSO is derivative free method, the computational expense of NN-MPC-PSO in less than 

NN-MPC-Backtracking as shown in Table 2.1. 
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Fig. 2.15 Set point tracking performance of NN- MPC-PSO 

 

Table 2.1 Comparison of computational cost 

 
 

 

 

2.9 CONCLUSION 

The model predictive control using neural networks is described in this chapter 

with a short review on neural networks capability in nonlinear system modeling. The 

performance comparisons of linear MPC, nonlinear MPC, NN based MPC using line 

search method of optimization and NN based MPC using particle swarm optimization are 

done using MATLAB. The developed simulation results convey the importance of NN 

models in MPC and the better performance of PSO algorithm than conventional line search 

algorithm with relatively less computational time. 

Optimization algorithm Relative computational time 

PSO 1 

Line search with backtracking 
technique 1.7 



Chapter 3 
MODEL PREDICTIVE CONTROL USING SUPPORT VECTOR MACHINES, 

RELEVANCE VECTOR MACHINES AND NEURO-FUZZY TECHNIQUES 

This chapter describes model predictive control using Support vector machines and Relevance 

vector machines and neuro-fuzzy techniques. It starts with some background on kernel methods of 

system identification followed by basic principles of LS-SVM regression, RVM regression and 

neuro-fuzzy techniques. The significance of accurate and sparse model in MPC applications are 

explained by a benchmark example. 

3.1 INTRODUCTION 

One of the scientific disciplines in artificial intelligence is machine learning, which 

deals with algorithms that could develop performance based on empirical data collected 

from the process under study. The collected data should illustrate the relation between 

observed variables of the process. A learner captures the characteristics of their unknown 

underlying probability distribution with the help of data. The difficulty in machine learning 

lies in integrating all possible behaviour of a process by a set of experimental training 

records.  The learner which becomes skilled from those data is expected to generalize the 

process behaviour from the training examples and to produce a useful output for unseen 

data. 

Machine learning algorithms can be classified under different taxonomy as 

supervised learning, unsupervised learning, semi-supervised learning, reinforcement 

learning, transduction etc. Supervised method understands the process behaviour from the 

input signal and supervisory output signal of training data. Thus the supervised learning 

algorithm has the capability to analyze the training data and to conclude them either as 

classification function for discrete data or as regression function for continuous data.  For 

predicting the exact output for every valid input value the learning method should include 

the capability of generalization. The models incorporated in MPC’s in this thesis are 

limited to supervised learning. 

The following steps are to be performed to solve a supervised learning problem 
1. Training data has to be collected. The approximated functions input features has to 

be determined. The accurateness of the approximated function depends powerfully 

on the illustration of input entity. 

2. Hence the features in the input vector should be enough to predict the output 

accurately without creating the curse of dimensionality issue.  

http://en.wikipedia.org/wiki/Algorithm�
http://en.wikipedia.org/wiki/Taxonomy�
http://en.wikipedia.org/wiki/Supervised_learning�
http://en.wikipedia.org/wiki/Unsupervised_learning�
http://en.wikipedia.org/wiki/Semi-supervised_learning�
http://en.wikipedia.org/wiki/Reinforcement_learning�
http://en.wikipedia.org/wiki/Reinforcement_learning�
http://en.wikipedia.org/wiki/Reinforcement_learning�
http://en.wikipedia.org/wiki/Transduction_%28machine_learning%29�
http://en.wikipedia.org/wiki/Curse_of_dimensionality�
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3. The configuration of the approximated function and analogous learning method has 

to be decided.  

4. Training has to be performed on the selected algorithm. The trained function could 

be validated by optimizing performance or cross-validation on a validation set 

which is a subset of training set. 

5. The precision of the trained function has to be evaluated by a test data set which is 

beyond the training set. 

Kernel techniques are a group of novel methods for pattern analysis where support 

vector machines and relevance vector machines are vital elements. Kernel methods find the 

solution after explicitly mapping the data into the new high dimensional kernel Hilbert 

space; here the number of features of the data decides the number of coordinates. This 

method of finding the relation in the feature space by the help of kernel function by merely 

calculating the inner products among the images of all data pairs is called kernel trick. This 

method of finding the relation is very simple than the computation of coordinates of data in 

the high dimensional space. Support vector machine, Relevance vector machine, Fisher’s 

linear discriminant analysis (LDA), Gaussian processes, principal components analysis 

(PCA), canonical correlation analysis, ridge regression, spectral clustering, linear adaptive 

filters are some of the algorithms operating with kernels.  

Commonly used kernel functions are Linear Kernel, Polynomial Kernel, Gaussian 

Kernel, Circular Kernel, Bessel Kernel, Bayesian Kernel, Wavelet Kernel etc. Selecting a 

suitable kernel plays importance. Kernel function has to be selected based on the problem 

at hand [128]. In this thesis Gaussian kernel function is selected while using RVM and 

SVM for modeling.   

One among the commonly used curve fitting methods is least square approach of 

polynomial curve fitting. Consider a training dataset 𝐱𝐱 = (𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑁𝑁)𝑇𝑇 , which consists of 

N number of elements such that each element is a surveillance of x and let for each 

surveillance of x there is a corresponding value t. This dataset will be known as target 

dataset which can be written as  𝐭𝐭 = (𝑡𝑡1, 𝑡𝑡2,…,𝑡𝑡𝑁𝑁)𝑇𝑇  . Here, the target dataset is synthetically 

generated from the sin⁡(2𝜋𝜋𝜋𝜋) function with some random Gaussian noise added to it. The 

regression problem of the above function is discussed below. The input training dataset 𝐱𝐱 

is generated by selecting values of 𝑥𝑥𝑛𝑛  , for n=1,…, N, spread out uniformly in the range 

[0,1]. Real time dataset generation can be captured by adding Gaussian noise to the target 

dataset. 

http://en.wikipedia.org/wiki/Inner_product�
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The objective is to predict the target variable t̂  for some unknown value of x̂  with 

the help of training dataset. For such prediction, the datasets must be fitted by a nonlinear 

polynomial function of the form shown in equation (3.1) 

          2
0 1

0
( , ) ...

M
M j

M j
j

y x w w x w x w x
=

= + + + = ∑w                                             (3.1)                                                                    

Where  

M  - polynomial order. 

w  -   vector representing the coefficients of the polynomial ie.,   

   w = (𝑤𝑤0, … ,𝑤𝑤𝑀𝑀) 

The polynomial y(x,w) is a nonlinear function with respect to  x but it is linear with 

respect to the coefficients of x which are the unknown parameters. The coefficients of x is 

to be selected in such a way to diminish the error among y(x,w) and the training dataset. 

The error function measured here is the summation of the squared error between the 

predictions y( 𝑥𝑥𝑛𝑛 ,w) for each data point  𝑥𝑥𝑛𝑛  and the corresponding target values 𝑡𝑡𝑛𝑛 : 

{ }
2

1

1( ) ( , )
2

N

n n
n

E y x t
=

= −∑w w              (3.2) 

The minimization routine of (3.2) chooses the value of w in such a way that makes 

E(w) as small as possible. The derivatives of the E(w) with respect to w will be a linear 

function since E(w) function is a quadratic function of w. Next step is the selection of the 

value of M which is the order of the polynomial. As exposed in Fig. 3.1 the fitting of data 

is poor if the value of M is 0 or 1 and the polynomial fitting is the best one 

function sin⁡(2𝜋𝜋𝜋𝜋), if the value of M is 3, the polynomial gives the best fit to the 

functionsin⁡(2𝜋𝜋𝜋𝜋). Increasing the order of the polynomial to 9 makes the polynomial curve 

to pass through all the data points giving an outstanding fitting of the data  with E(w)=0. 

Even though M=9 gives outstanding fitting of the data, it suffers from generalization 

problem, i.e., the prediction for unseen data is very poor since the fitted polynomial 

violently oscillates at different points. Hence, with respect to the best generalization, M=3 

polynomial gives the best data fit. Fig. 3.1 gives the polynomial plots for the values of M.  

A novel powerful deterministic methodology for evaluation of nonlinear function 

and nonlinear classification based on kernel methods is Support Vector Machine which 

avoids over fitting problem and improves generalization ability with less number of 

training data and less training time. In LS-SVM the regularization parameter γ and the 

kernel width parameter σ should be tuned to improve the generalization ability of predicted 

model. This SVM method has better generalization capability. The overall precision of the 
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SVM method is better than the overall precision of the evolutionary fuzzy rules [129]. 

Combinations of SVM models and MPC approaches are also discussed in [17- 20]. 

 

 

Fig. 3.1 Polynomial plots for the values of M (red colour curve) 

RVM is an advanced probabilistic machine learning technique for classification 

and regression that uses Bayesian inference to get sparing solutions. Relevance vector 

machines results in usage of less number of relevance vectors leading to much more sparse 

representation than Support Vector Machine. The functional form of RVM and SVM are 

same. In the case of RVM no constraint is put on the basis functions whereas SVM is 

forced to satisfy the Mercer’s kernel theorem [15, 22]. Also, RVM modeling is made 

simple by having kernel width σ as the only tuning parameter. The RVR model is much 

sparser than SVM model as the relevance vectors are very less than support vectors. As a 

result sparse RVR model could perform better with better generalization and less 

computation time than SVM.  
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In Fig. 3.2 the one in the right side seems to be over-fitting and the one in the left 

shows seems to be an ideal fit. But without prior knowledge about the approximated 

function the above decision cannot be done. 

 

 

                                                    
                                                     (a)                                                 (b) 

Fig. 3.2 (a) Ideal fitting (b) Over fitting 

The only way for a meaningful judgment is by imposing a priori based on previous 

knowledge about the function. This could be done commonly by regularization. In 

relevance vector regression, in order to avoid these over fitting difficulty, restraints are 

established on the weight parameters, which describe the specific preferred assets of the 

approximated function. The Bayesian method offers constraints on the weight parameters 

by considering the parameters as arbitrary variables, for which prior probabilistic 

distributions are initiated. Combination of relevance vector regression model and MPC are 

less reported in literatures. 

Another universal estimator, Adaptive neuro-fuzzy inference system is a class of 

NN which depends on Takagi–Sugeno fuzzy inference system. As it puts together the 

principles of both NN and fuzzy logic, it gains the strength of both the techniques in a 

single structure. The inference mechanism of ANFIS is based on several membership 

functions with typical fuzzy If-Then rule which describes the dynamics of the nonlinear 

system. 

A new neuro-fuzzy learning technique, Extreme ANFIS is proposed in this chapter 

which depends on the concept of Extreme Learning Machine [23]. The proposed algorithm 

Input 

 

  Input 
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has minimized the learning time of ANFIS architecture which is very simple and eliminate 

drawbacks of gradient based Hybrid Learning Algorithm. 

Next section of this chapter describes basic theory behind Support vector machines, 

Relevance vector machines and neuro-fuzzy techniques. The significance of accurate, 

sparse model and proposed novel neuro-fuzzy technique in MPC applications are 

explained by benchmark examples which concludes this chapter. 

3.2 SUPPORT VECTOR MACHINES 

Support Vector learning is based on effortless thoughts which initiated in statistical 

learning theory. It is a class of supervised learning algorithms first introduced by Vapnik 

[14]. SVM’s are fast replacing neural network as the tool of choice for classification and 

regression tasks, primarily due to their ability to generalize well on unseen data. SVM’s 

are exemplified by usage of kernels, nonexistence of local minima, and sparse nature of the 

solution. Although SVM’s are being used mainly for classification tasks, newly SVM’s 

have been effectively applied to solve regression problems [59]. SVM performs better than 

neural network model due to its better generalization capability [130]. 

SVMs build a hyperplane which divides examples such that examples of one class 

are all on one side of the hyperplane, and examples of the other class on the other side.  

Consider input data of the form  where the vectors are in a dot product 

space , and are the class labels. Formally, any hyperplane in  is defined as 

               (3.3) 

where w is a vector orthogonal to the hyperplane and  represents the dot product and b 

is the bias. In an SVM, the idea is to find the hyperplane that maximizes the minimum 

distance (called the margin) from any training data point (Fig. 3.3). The following 

constraint problem describes the optimal hyperplane: 

              (3.4) 

subject to  

for i = 1, 2, …, m where m is the number of training examples. 

The above problem can be solved by introducing the Lagrange multipliers                

( ) and maximizing the following dual problem 

            (3.5) 
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Separating
HyperplaneMargin

Supporting
Vectors

and             (3.6) 

The patterns which correspond to non-zero Lagrange coefficients are called support 
vectors.  The resultant decision function has the following form 

                                                                    (3.7) 

Thus the optimal margin hyperplane is represented as a linear combination of 

training points. Consequently, the decision function for classifying points with respect to 

the hyperplane only involves dot products between points. Furthermore, the algorithm that 

finds a separating hyperplane in the feature space can be stated entirely in terms of vectors 

in the input space and dot products in the feature space. 

When the samples are not linearly separable, a kernel function is used to transforms 

the data to a higher dimensional space where it is linearly separable and then applies the 

hyperplane. The kernel function gives the dot product of the two examples in the higher 

dimensional space without actually transforming them into that space. This notion, dubbed 

the kernel trick, allows us to perform the transformation for purposes of classification to 

large dimensional spaces. In the nonlinear case, resultant decision function has the 

following form 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Maximum margin and optimal hyperplane 

Support vector machines analyze data and recognize pattern by supervised learning 

models using kernel methods for both classification and regression analysis. In SVM the 

data points are separated by selecting the best hyper plane focusing the target as largest 

separation or margin. In other words, the separating hyper plane is selected so that the 
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distance from it to the nearest data point on both the sides is maximum. The data point 

touching this maximum margin hyperplane is called as support vector. 

                                    (3.8) 

where the kernel function and is the nonlinear map from 

original space to the high dimensional space. Two of the most commonly used kernel 

functions are polynomial functions and Gaussian radial basis functions and are given by  

Polynomial kernel:           (3.9) 

Radial basis kernel:            (3.10) 

where  is the spread of the Gaussian function. 

The maximum margin allows the SVM to select among multiple candidate 

hyperplanes; however, for many data sets, the SVM may not be able to find any separating 

hyperplane at all, either because the kernel function is inappropriate for the training data or 

because the data contains mislabeled examples. The latter problem can be addressed by 

using a ‘soft margin’ that accepts some misclassifications of the training examples. In this 

case introducing slack variables  and error penalty C, the optimal hyperplane can be 

found by solving the following new quadratic optimization problem [131] 

minimize                        (3.11) 

       subject to                       (3.12) 

       for all i 

The value of C is set by the user and larger value of C leads to a larger penalty for 

an error. The problem can be solved by the dual formulation as in the linear separable case 

and a decision boundary of the form given in equation (3.8) can be obtained. The value of 

is different from the separable case and is given by . 

3.2.1 Least Squares Support Vector Machines 

Least squares support vector machines are least square versions of SVM’s, first 

proposed by Suykens and Vandewalle. In this version, the solution is made simpler by 

resolving a set of linear equations as an alternative to the convex quadratic programming 

problem for classical SVMs. The significant dissimilarity with classical SVMs is the 

equality constraints and the sum squared error term [132]. The inequality constraints with 

the slack variable in equation (3.12) are replaced by the equality constraints with an error 











+= ∑

=

m

i
iii bxxKyxy

1

),(sgn)( α

)(),(),( xxxxK ii φφ= )(xφ

[ ] 3,2'1)',( =+= kXxxxK
kT

σ



 −−= 2'

2
1exp)',( xxxxK

σ

iξ

∑
=

+
m

i
iCw

1

2

2
1 ξ

( ) iii bwxy ξ−≥+ 1,

,0≥iξ

iα iC α≤≤0



48 
 

variable Ei 

 

in equation (3.7) and the squared loss function is included in the objective 

function equation (3.6). The above modifications make it a simple linear problem. 

Consider a particular training set of M regression data points { }M
iii yx 1),( =  , where 

M
i Rx ∈  Ryi ∈is the input data to the real plant and  is the output data of the real plant.. In 

high dimensional feature space Z , LS-SVM model is,    

  bxwxy T += )()( ϕ                   where RbZw ∈∈ ,                   (3.13) 

In the above nonlinear function estimation model, the weight vector w and the bias 

term b are the two parameters to be identified. (.)ϕ , maps the input data into a high 

dimensional feature space .Z  In least squares version of SVM the optimization problem 

formulated is as follows. 
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Where, 

       γ  - Regularization parameter. 

iE -  Deviation of actual output from predicted output of the ith 

The Lagrange function for equation (3.6) is 
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where  iα -Lagrange multiplier. 

According to Karush–Kuhn–Tucker conditions, 
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All the above equations in Equation (3.9) are first transformed into a matrix form 

and then substituting the values of  E  and w   results in the following matrix equation, 
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i xxKxx =ϕϕ is an MXM identity matrix and    I, j=1, 2... M is any 

kernel function satisfying the Mercer condition [133]. 

The parameters α and b  can be obtained as a Solution of Equation (3.9) and hence 

LS-SVM predicted model of the given dataset is as follows, 
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In the present work Radial basis function (RBF) in Equation (3.12) is selected as kernel 

function because of its ability to decrease computational complication of the training 

process and to develop generalization capability of LS-SVM. 

}2/exp{)( 22
, σxxxxk ii −−=                   (3.20) 

where σ is the kernel width. 

Thus in LS-SVM in order to obtain the predicted model there are two free 

parameters to be tuned i.e., regularization parameter γ  and kernel width parameterσ . In 

LS-SVM these are the two parameters which decide the generalization ability of predicted 

model. Hence optimization of these parameters plays a momentous role. These parameters 

are tuned using the algorithm of Coupled Simulated Annealing (CSA) and simplex method 

[134]. Initially the global optimization technique Coupled Simulated Annealing determines 

suitable values for those parameters and then further optimization is done by simplex 

method to get finely tuned values of those parameters to achieve accurate prediction. 

3.2.2.1    Principle of coupled Simulated Annealing 

It is a global optimization algorithm which bears a resemblance to the annealing 

process carried out in material physics. This optimization technique was proposed by 

Kirkpatrick.  The ideas of Boltzmann [135] and Metropolis et al. [136] influenced 

Kirkpatrick et al. [137]. Kirkpatrick et al. repeated the approach of Metropolis for all 

temperatures on the annealing agenda till the arrival of thermal equilibrium. [138].  

Following are the steps involved in Simulated Annealing algorithm. 

1. The upper bound and initial values of the SVM kernel function parameters γ  and 

σ are set and fed to the support vector machine model and the predicted error is 
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obtained from the state of the system, which furnish the primary state of the 

system. 

2. Then random values are selected to the two kernel function parameters and the new 

system state is forecasted. 

3. The latest state is acknowledged or discarded based on the following equations. 

Accepted the new state if 

   Energy (new state) > Energy (old state) Pp < and  , 10 ≤≤ p  

                  or 

Reject the new state otherwise i.e., Energy(new state) ≤ Energy(old state)

4. In case of non acceptance of new state go to step 2 and repeat step 2 and 3 until the 

acceptance of new state. 

. Here, p 

is the arbitrary number to decide the recognition of new state and P is the 

possibility of accommodating the latest state. 

5. After acceptance of a new system state, the temperature is reduced. The 

temperature reduction is obtained by the following equation, 

New Temperature= (Current Temperature) ρ×  

Where, 10 << ρ  

Stop the algorithm when the predetermined temperature is reached. Otherwise go to 

step 2. 

After this initial optimization by CSA algorithm the SVM kernel function 

parameter values are again optimized by simplex method to get fine tuned SVM kernel 

function parameters.  

     Simplex search method is a popular algorithm for linear programming. The Simplex 

method is a method that precedes from one extreme point of the feasible region of a linear 

programming problem to another extreme point, in such a way as to continually increase 

(or decrease) the importance of the objective function unless optimality is attained.  

The well known function sinc(x) = sin(x)/x is chosen to demonstrate the support 

vector regression. SVM is applied to some simple synthetic datasets of sinc function and 

SVM regression is shown. Gaussian function is the Kernel function chosen for the SVM 

model. The target dataset of this regression problem is assumed to have additive Gaussian 

noise components. 
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Fig. 3.4 SVM regression of ‘sinc’ function 

In Fig. 3.4, the actual ‘sinc’ function is shown by dashed line and the noisy version 

of the ‘sinc’ function is shown by black dots. The objective is to predict the ‘sinc’ function 

with minimum amount of error and minimum number of support vectors. For this sinc 

function example 100 input vectors (100 black dots) have been used as dataset but the 

prediction is done by only 29 vectors which are known as support vector machine 

predictor. The RMSE value between the predicted output and the actual output is 0.0491. 

3.3 RELEVANCE VECTOR MACHINE AND PROBABILITY THEORY 

A novel probabilistic sparse kernel learning technique used for nonlinear 

classification/ regression is relevance vector machine. To represent ambiguity in an 

experiment, probability theory can be used. Probability theory is based on rational coherent 

inferences and it also gives significance to the common sense. Bayesian perspective is 

involved in addressing the amount of uncertainty involved in selecting the suitable model 

parameters, the weight vector w. The prior probability p(w), captures the former 

assumptions about the model parameters. Given the weight vector w, the targets of the 

observed data  t = (𝑡𝑡1, 𝑡𝑡2,…,𝑡𝑡𝑁𝑁)𝑇𝑇  can be captured into the conditional probability p(t|w) and 

it is also known as the likelihood function because for different values of w, it represents 
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the quantity of  likeliness of the observed data set . Hence, according to the Baye’s theorem 

below, 
( ) ( )( )=

( )
p pp

p
t | w ww | t

t            
(3.21) 

where,  

p(w|t)  -  posterior probability 

p(w)  -  prior probability 

p(t|w)   -          likelihood function 

Posterior probability is the uncertainty in w after the data has been observed. In 

equation (3.13) the posterior probability is directly proportional to the prior and the 

likelihood function since the denominator of (3.13) is only acting as a normalizing 

constant. 

The likelihood function plays a significant role in Bayesian and maximum 

likelihood estimate (MLE). Still, its role of play in both the methods is rather different. In 

MLE, w is estimated accordingly to maximizes the likelihood function i.e., maximum 

probability is for getting the observed target data t. But, in case of the Bayesian approach, 

the uncertainty of w is expressed by posterior probability. The main benefit of the Bayesian 

method is the presence of prior assumptions or knowledge. But the difficulty is that the 

prior is chosen based on the mathematical convenience rather than the prior belief and 

hence if the chosen prior is poor than Bayesian techniques gives poor results. 

3.3.1 Bayesian inference and Relevance vector machine  

Bayesian inference is a technique of statistical inference that uses few kinds of 

interpretation to compute the probability to decide if the hypothesis may be true. The usage 

of bayes theorem in the evaluation process has given the name "Bayesian". This Bayes 

theorem was deduced by Thomas Bayes. Practically, Bayesian inference leads to the usage 

of prior probability to judge the probability of another assertion. In other words the 

posterior probability of the assertion comes as the mixture of prior probability and 

likelihood of the evidence.  

The Bayes method involves the following steps.  

(i) A probabilistic model is developed. The model is defined in such a way to express 

qualitative aspects of our knowledge with some unknown parameters. The prior 

probability distribution for these unknown parameters is also specified. 

(ii) Data is collected. 
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(iii) From the observed data, the posterior probability distribution for the parameters is 

calculated. This posterior distribution is used to make prediction or decision. 

The posterior distribution for the parameters of the model which is the combination 

of the prior distribution and the likelihood for the parameter is completed by means of 

Bayes' Rule: 

( ) ( / )( / )
( )

p parameters p data parametersP parameters data
p data
 

=
          (3.22)                             

The above equation shows,  

( / ) ( ) ( / )P parameters data p parameters p data parameters∝  
                 (3.23) 

The schematical representation of the above equation is, 

posterior prior likelihood ∝  × 
                     (3.24) 

Prediction for unknown new data is obtained by integrating with respect to the 

posterior: 

∫∝
parameters

dataparametersPparametersdatanewpdatadatanewp )/()/()/(

                  (3.25)
 

This Bayesian inference is applied in the context of machine learning using 

relevance vector machine. The task of Bayesian inference in machine learning technique is 

to estimate P(t/x) with some particular model depending on input-output pairs [22, 139]. 

3.3.2 Sparse Bayesian learning for regression using RVM 

RVM is a probabilistic model with similar functional form as that of Support 

Vector Machine. The prediction accuracy of RVM is comparable to that of SVM with very 

less number of kernel functions [140]. RVM is based on Bayesians approach in which a 

prior is introduced over the model weights and each weight is administrated by one hyper 

parameter. The most probable value of each hyper parameter is iteratively evaluated from 

the data. The model is sparser since the posterior distributions of a few percentages of the 

weights are made zero. 

Consider a given training set of M regression data points{ }M
mmm yx 1),( = , where 

M
m Rx ∈  Rym ∈is the input data to the actual plant and  is the output data of the actual 

plant and is assumed to contain Gaussian noise ε  with mean 0 and variance 2σ . In high 

dimensional feature space z , the outputs of an extended linear model can be articulated as a 

linear combination of the response of a set of M basis functions, as follows: 
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)(),(                   (3.26) 

Now the predicted output ŷ of the true value y is, 

 
ϕϕ T

m

M

m
m wwxwwxy =+= ∑

=
0

1
)(),(ˆ    where Zw∈               (3.27) 

In the above nonlinear function estimation model, mw is the weight vector and (.)mϕ

is an arbitrary basis function (or kernel). In the present work RBF is used as the kernel 

function because of its ability to reduce computational complexity of the training process. 

The vector form of T
Mwwww ],.......,[ 10=  and the responses of all kernel function 

T
M xxx )]().....([)( 1 ϕϕϕ =  maps the input data into a high dimensional feature space .z   

Hence the obtained error signal could be stated as   

  ),0(ˆ 2σε Nyy mmm =−=             (3.28) 

 The objective of relevance vector regression is to find the finest value of w  such 

that ),(ˆ wxy  makes fine estimations for unknown input data. For the RVM model in (3.27) 

let T
M ]..........,[ 10 αααα = be the vector of M independent hyperparameters, each associated 

with one model weight or kernel function.  

The Gaussian prior distributions of the RVM framework are chosen as shown 

below,     

  }2/exp{)2/()/( 2

1

2/1
mm

M

m
mmm wwp απαα −= ∏

=

          (3.29) 

Here mα  is the hyperparameter that governs each weight mw  

The likelihood function of independent training targets Mmyy m ....1, ==   can be stated 

as, 
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=          (3.30) 

 The above likelihood function is enhanced by the prior in (3.29) defined over each 

weight to trim down the complication involved in the model and to avoid over fitting. 

  Now using Bayes rule, the posterior distribution over model weights could be 

calculated as follows, 

 ),/(
)/(),/(),,/( 2

2
2

σα
ασσα

yp
wpwypywp =                    (3.31)
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 The posterior distribution in (3.23) is a Gaussian distribution function, 

 ),(),,/( 22 σµσα Nywp =                                             (3.32) 

 Whose covariance and mean are respectively given by, 

 
12 )( −− +=Σ ATϕϕσ                   (3.33) 

  yTϕσµ Σ= −2               (3.34) 

With )(αdiagA =  

 Marginalization of the likelihood over the target data is given by (3.30) and could 

be obtained by combining out the weights to acquire the marginal likelihood for the 

hyperparameters.     

  ),0()/(),/(),/( 22 CNdwwpwypyp == ∫ ασσα             (3.35)  

Here the covariance is given by    TAIC ϕϕσ 12 −+=  
 In (3.33) and (3.34) the only unknown variables are the hyperparameters α . The 

hyperparameters involved in the formulation are predicted using the structure of type II 

maximum likelihood [138].  

 )log2log(2/1),/(log 12 yCyCMyp T −++−= πσα              (3.36) 

 Logarithm is included in (3.36) to reduce computational complexity. Maximization 

of the logarithmic marginal likelihood in (3.36) over α leads to the most probable value 

MPα which provides the maximum a posteriori (MAP) estimate of the weights. 

 The ambiguity about best possible values of the weights, given by (3.31), is used to 

convey ambiguity about the predictions made by the model, i.e., given an input *x , the 

probability distribution of the consequent output *y is known through its predictive 

distribution 

 dwywpwxypxyp )ˆ,ˆ,/()ˆ,,/()ˆ,ˆ,/( 22**2** σασσα ∫=                            (3.37) 

which has the Gaussian form  

 ),()ˆ,ˆ,/( 2**2** σσα YNxyp =                        (3.38) 

The mean and variance of the predicted model are respectively, 

 µϕ )( ** xY T=        and        )()(ˆ **22* xxT ϕϕσσ Σ+=                                                  (3.39) 

Maximizing the logarithmic marginal likelihood in (3.36) leads the optimal values 

of many of the hyperparameters mα  typically infinite , yielding a posterior distribution in 

(3.31) of the corresponding weights mw that tends to be a delta function peaked to zero. 

Thus the corresponding weights are deleted from the model along with its accompanying 
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kernel function. Hence very few data points corresponding to nonzero weights build the 

RVM model and are called the relevance vectors. This results in very good sparseness of 

RVM model than SVM model. Thus the computation time for prediction using RVM 

model is reduced significantly. 

3.3.3 Training of RVM network 

The value of weight vector w and precision parameter β which is given by the 

inverse of the variance of the Gaussian conditional distribution by maximum likelihood, 

are found using the training dataset. Also α is the hyperparameter vector with dimension 

N+1. Considerably, each element of the hyperparameter vector α is committed 

independently with each element of the weight vector w. 

Steps followed for training the RVM network are as follows: 

1. Appropriate kernel function is chosen for the dataset and the basis function ϕ  is 

designed by using the kernel function. 

2. Suitable convergence criteria is selected for α and β For example, 

1
1

n n
i ii

δ α α+
=

= −∑ , such that re- estimation will halt when Threshδ δ<   

3. Practically, infinity could be defined by choosing a very big value. A threshold 

value Threshα  has been chosen for iα . This Threshα   value will be considered as infinity 

upon completing it. 

4. Initialize α and β. 

5. Estimate mean, Tm tβ φ= ∑ and covariance, 1( )TA βφ φ −
= +∑ . Here, A=diag(αi

6. Revise    

) 

2
i

i
im

γα =  and   
2|| ||
ii

N
t m

γ
β

φ
−

=
−
∑ . Here iiii ∑−= αγ 1 , 

Here
  ii∑  is the 

ith ∑diagonal component of the posterior covariance  and N is the total number of 

training data. 

7. When i Threshα α> , prune the αi

8. Steps (5) to (7) are repeated, until the convergence criteria are satisfied. 

 and matching basis functions. 

Being using RVM network for process modeling, the architecture of the RVM 

network must be given significance. The delayed time input structure provides input for 

RVM network. The inputs to the RVM network includes signals u(n) and y(n-1), with their 

corresponding delayed version, u(n-1), ..., u(n-nd), and y(n-2), ..., y(n-dd). The parameters 

nd and dd represents the number of delay corresponding to the input and output of the 
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process to be modeled respectively. After the satisfaction of the convergence criteria 

sparseness is automatically achieved because while training, the posterior distributions of 

several of the weight values in the weight vector are strictly peaked around zero. The 

training vectors corresponding to the exceptional nonzero weights are known as the 

relevance vectors. Thus the output equation of the RVM network for an unknown time 

delayed input x(n) is 

))((),(ˆ nxwwxy Tϕ=                               (3.40) 

where, 

)]()....1(),(),.....([)( dd dnynynnununx −−−=  

The structure given by (3.40) is sufficient to model any non-linear process. The 

plant output stored in vector form is the target dataset for the RVM. The regressor vector 

which is the input vector combining the target vector is used for training the plant model. 

The training stops when the stopping criteria either Maximum number of iterations or 

i Threshα α=  is fulfilled. After training the RVM network, the trimmed basis function and 

the trimmed weight vector gives the model of the non-linear process.  

Before using the trained RVM model for control purpose, validation of the network 

is required to check over fitting and generalization. In this test, an unseen input signal 

which is beyond the input signal used for training the RVM is used to compare the non-

linear plant output and the trained RVM output. Hence, it is a time validation test with an 

error index equation (3.41) to quantify it and to check the accuracy of the approximated 

RVM model with N number of validation test data. 

∑

∑
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−
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N

index

ky

kyky
error

1

2

2

)(

))()(ˆ(

          (3.41) 

)(ˆ ky  -  RVM model prediction 

)(ky  -  actual plant output 

N -  number of validation test samples 

3.3.4 Predictions for new data 

The RVM network based predictive control algorithm can predict multistep ahead 

output of the process by using the process model for a random input from the present 

instance, n, to future instance, n+k. This is done by shifting equations (3.40) with respect to 

time by k, which becomes, 
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))(()(ˆ knxwkny T
n +=+ ϕ            (3.42)  

where, 

))]0),max(((),...1()),,min((ˆ)....1(ˆ),(),.....([)( kdnynydkknyknynknuknuknx ddd −−−−+−+−++=+
.
 

Thus prediction for new data point on the posterior distribution is obtained at 

convergence of the hyper parameter estimation procedure, trained on the maximizing 

values 2,MP MPα σ . The predictive distribution for unknown data x∗ can be determined by the 

following expression. 

( ) ∫= dwtwpwtpttp MPMPMPMPMP ),,/(),/(,,/ 22
*

2
* σασσα        (3.43)  

Both the terms in the integral of equation (3.33) are Gaussian and hence the 

expression for predictive distribution can be expressed in terms of Gaussian as 

( ) ),/(,,/ 2
***

2
* σσα ytNttp MPMP =           (3.44)  

The predictive mean is by instinct ( ; )y x µ∗ . The predicted noise on the data and the 

noise due to prediction uncertainty together comprise the predictive variance. 

Now, RVM is applied to some simple synthetic datasets and RVM regression is 

shown. In the RVM model, the Kernel function is the Gaussian function. Generally, the 

regression problems have their target dataset and in real time they will always be affected 

by some additive Gaussian noise component. 

 

Fig. 3.5 RVM regression of ‘sinc’ function 
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In Fig. 3.5, the actual ‘sinc’ function is shown by dashed line and the noisy version 

of the ‘sinc’ function is shown by black dots. The objective is to predict the ‘sinc’ function 

with minimum amount of error and minimum number of relevance vectors. For this sinc 

function example 100 input vectors (100 black dots) have been used as dataset but the 

prediction is done by only 6 vectors which are known as relevant vector machine predictor. 

The RMSE value between the predicted output and the actual output is 0.042. Thus RVM 

has better prediction accuracy with much sparse model than SVM explained in previous 

section. 

3.4 COMPARISON OF SVM AND RVM 

Support Vector Machines differ from Relevance Vector Machines in different 

aspects as tabulated in Table 3.1. 

Table 3.1. Difference between SVM and RVM 

Sl. No. Support Vector Machines Relevance vector machines 

1 SVM model is not as sparse as RVM 
model, as the number of support 
vectors necessity linearly develop 
with the number of training data. 

RVM is much sparser than SVM, 
because practically while modeling in 
RVM several weights are peaked 
around zero, which in turn reduces the 
number of relevance vectors. 

2 Predictions using SVM model are not 
probabilistic, instead deterministic. 

Predictions using RVM model are 
probabilistic. 

3 In SVM it is necessary to approximate 
a trade-off parameter ‘C’ by cross-
validation procedure which is 
computationally expensive. 

No such parameter to be estimated in 
RVM 
 

4 In SVM the kernel function must 
satisfy Mercer’s condition. 

There is no such restriction on the 
basis function in the case of RVM. 

5 In LS-SVM the regularization 
parameter γ and the kernel width 
parameter σ are the two parameters to 
be tuned to improve the generalization 
ability of predicted model 

Kernel width σ is the only parameter 
to be tuned in Relevance vector 
regression (RVR) model. 

6 The number of basis function used in 
SVM is more than RVM. 

RVM model typically utilizes fewer 
kernel functions than SVM 
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3.4.1 Prediction accuracy of Support vector regression model 

This section describes the comparative study of the prediction accuracy of LSSVM 

model and Neural Network model. The benchmark example under study is the Duffing’s 

equation representing the relationship between a mass, damper and a stiffening spring as in 

equation (3.45) 

)()(2)()()()(
.

3
...

tututytytyty −=+++                 (3.45) 

A sequence of 300 samples is used to train the SVR model offline using the leave 

one out method. Leave one out method is one in which at each iteration, one leaves out one 

point, and fits the model on the other data points. The performance of the model is 

estimated based on the point left out. This procedure is repeated for each data point. 

Finally, all the different estimates of the performance are combined (default by computing 

the mean). The assumption is made that the input data is distributed independent and 

identically over the input space [134]. The two kernel parameters, kernel width (σ ) and 

regularization parameter (γ ) are chosen to be 1 and 100 respectively.    

In the case of multilayer feed forward neural network, for offline training a 

sequence of 1000 samples are used and is done through Levenberg-Marquardt learning 

algorithm. After training the Support Vector Regression (SVR) model and Neural Network 

(NN) model, they are tested with some 100 unseen random inputs and there corresponding 

prediction errors are calculated. The comparative graph of prediction errors of SVR model 

and NN model are revealed in Fig 3.6. 

 

Fig. 3.6 Comparison of prediction errors of SVR and NN model 
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From Fig. 3.6 it is obvious that the prediction error for SVR model is very less 

when compared to NN model. The root mean square error (RMSE) value is 0.0052 and 

0.0231 for SVR model and NN model respectively. This highlights the better prediction 

accuracy of SVR model. 

3.4.2 Prediction accuracy of Relevance vector regression model 

This section describes the comparative study of the prediction accuracy of RVR 

model and Neural Network model. The same benchmark example in the previous section is 

taken for analysis. 

A sequence of 300 samples is used to train the sparse Bayesian RVR model offline. 

Hyper parameter estimation is carried out by Expectation Maximization (EM) updates on 

the objective function [22]. For this RVR model RBF kernel is used with the width 

parameter estimated automatically by the learning procedure [22] which improves 

generalization ability and reduces computational complexity of the training process. Thus, 

unlike in LS-SVM there is no necessity for computationally expensive determination of 

regularization parameter by cross validation technique. Also in the RVR model confidence 

intervals, likelihood values and posterior probabilities could be explicitly encoded easily. 

 

Fig. 3.7 Comparison of prediction errors of RVR and NN model 

The comparative graph of prediction errors of RVR model and NN model are 

revealed in Fig 3.7. This figure make clear that the prediction error for RVR regression 

model is very less when compared to NN model. The root mean square error value is 

0.0034 and 0.0231 for RVR model and NN model respectively. Also the prediction 

accuracy of RVR model is little better than SVR model. This highlights the better 

prediction accuracy of RVR model compared to SVR model and NN model. 
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Thus the better prediction accuracy of RVR and SVR model when compared to NN 

model are well understood from the above example. 

3.4.3 Significance of accurate and sparse model in MPC 

The model accuracy is a key task in order to provide an efficient and adequate 

control action.  J. A. Rossiter [7] has explained the importance of model in MPC. In order 

to control a process very accurately a very accurate model is necessary. Thus model 

accuracy is the one which determines the controller’s accuracy. A model is the one which 

provides useful predictions about the real world. If the models prediction is accurate then 

the control signal generated to control the actual process will also be accurate. So an 

accurate model is the heart of MPC. 

In MPC as prediction and optimization are done at each sampling instant, care 

should be taken to decrease the time consumption for both prediction and optimization. A 

sparse model could predict much faster than a dense model [142]. Accordingly RVR 

model which is much sparser than SVR model and SVR model which is much sparser than 

NN model performs suitably in MPC applications. 

Table 3.2. Significance of model accuracy and sparseness in MPC 

Model Number of 
samples 

Prediction error 
RMSE 

Number of 
support vectors/ 

Relevance 
vectors 

Relative 
prediction 

time 

RVM 100 0.0034 5 1 

SVM 100 0.0052 41 2.3 

Neural 
network 100 0.0231 - 4.9 

The same benchmark example in the previous section is considered and the 

following data are tabulated in Table 3.2. The relative prediction time of RVR model is 

much less than SVR model and NN model which elucidate the importance of model 

sparseness. The RVR model is made much sparser than SVR model by the usage of less 

number of relevance vectors than support vectors. 

3.5 NEURO-FUZZY TECHNIQUES 

Neuro-fuzzy which was proposed by J.S.Jang [73] is the combinations of ANN and 

fuzzy logic. Fuzzy logic solves the complex nonlinear problems by utilizing the experience 
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or expert’s knowledge described as the fuzzy rule base [143]. Fuzzy controllers which omit 

the requirement of exact mathematical model of the process to be controlled are well 

appropriate to nonlinear time-variant systems [144]. ANN and fuzzy logic techniques are 

effectively applied in motor drive systems [145, 146]. Neuro-fuzzy hybridization technique 

results in a better intelligent system that works together with the human-like reasoning 

style of fuzzy systems which incorporates fuzzy sets IF -THEN fuzzy rules and the 

learning structure of neural networks. The neuro-fuzzy technique could be divided under 

two areas: linguistic fuzzy modeling which focuses on interpretability, mainly the 

Mamdani model; and precise fuzzy modeling which focuses on accuracy, mainly the 

Takagi-Sugeno-Kang model. 

3.5.1 Conventional ANFIS 
ANFIS is a neuro-fuzzy technique, which is based on hybrid learning algorithm. It 

maps first order Sugeno fuzzy inference system in multilayer feed-forward adaptive neural 

network to enhance performance such as fast and accurate learning by fine tuning of 

membership function parameters and by analysing both linguistic and numerical 

knowledge. The first order Sugeno fuzzy model, its inference mechanism and 

defuzzification process is shown in Fig. 3.8. The typical fuzzy If-Then rule set is used to 

describe ANFIS architecture. It is expressed as follow: 

Rule 1:  If x is A1 and y is B1, then f1 = p1 x + q1 y + r

Rule 2:  If x is A
1 

2 and y is B2, then f2 = p1 x + q2 y + r

Here, x and y are the crisp inputs, A
2 

i, Bi

1) Layer-1: Every node i in this layer represents fuzzy membership function as node 

function with an adaptive parameters. 

 are linguistic variables. The five layer ANFIS 

architecture explained by Jang [63] is shown in Fig. 3.9. The purpose of each layer is 

described as follow: 

 𝑂𝑂𝑖𝑖1 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥),            𝑖𝑖 = 1,2                        (3.46) 

where x is input value, 𝑂𝑂𝑖𝑖1 is membership value of fuzzy variable Ai. ai, bi, ci

2) Layer-2: Each node in this layer is fixed node which acts like product operation as in 

Sugeno fuzzy model. 

 are the 

adaptive parameters commonly known as premise parameters. 

 𝑂𝑂𝑖𝑖2 = 𝑤𝑤𝑖𝑖 = 𝜇𝜇𝐴𝐴𝑖𝑖(𝑥𝑥)  × 𝜇𝜇𝐵𝐵𝑖𝑖(𝑦𝑦),             𝑖𝑖 = 1,2                 (3.47) 
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Fig. 3.8 First order Sugeno Fuzzy inference mechanism 

3) Layer-3: layer contains fixed nodes, which calculates normalized firing strength, 𝑊𝑊�𝑖𝑖  

as follows  

 
𝑤𝑤�𝑖𝑖 =

𝑤𝑤𝑖𝑖
𝑤𝑤1 + 𝑤𝑤2

,        𝑖𝑖 = 1,2                 (3.48) 

4) Layer-4: Each node i, in this layer is an adaptive node with a node function given as 

 𝑂𝑂𝑖𝑖4 = 𝑤𝑤�𝑖𝑖𝑓𝑓𝑖𝑖 = 𝑤𝑤�𝑖𝑖(𝑝𝑝𝑖𝑖𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑦𝑦 + 𝑟𝑟𝑖𝑖)                 (3.49) 

where 𝑊𝑊𝑖𝑖��� is the output of layer-3 and {pi, qi, ri

5) Layer-5: It is fixed single node that computes overall output as summation of all 

incoming signals from layer-4. 

} are adaptive consequent parameters. 

 
𝑂𝑂𝑖𝑖5 = �𝑤𝑤𝑓𝑓𝑖𝑖 =

𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖
∑ 𝑤𝑤𝑖𝑖𝑖𝑖

           (3.50) 

The premise and consequent parameters are updated to minimise error by various 

learning algorithms. The most commonly used algorithm is hybrid learning algorithm [73]. 

This algorithm combines the gradient based method (i.e. back propagation) and least 

square error (LSE) to identify parameters. The hybrid learning algorithm (HLA) consists of 

two passes explained as follows:      

Forward pass: In the forward pass of the HLA, node outputs pass forward up to layer-4 by 

assuming some premise parameters and the consequent parameters are recognized by the 

least-square error method. As the premise parameter values are fixed, the linear 

combination of the consequent parameters provides the overall output, 
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𝑓𝑓 =

𝑤𝑤1

𝑤𝑤1 + 𝑤𝑤2
𝑓𝑓1 +

𝑤𝑤1

𝑤𝑤1 + 𝑤𝑤2
𝑓𝑓2  

 

   
 

 = 𝑤𝑤1����𝑓𝑓1 + 𝑤𝑤2����𝑓𝑓2                      
 

              = (𝑤𝑤1����𝑥𝑥)𝑝𝑝1 + (𝑤𝑤1����𝑦𝑦)𝑞𝑞1 + (𝑤𝑤1����)𝑟𝑟1  

                         +(𝑤𝑤2����𝑥𝑥)𝑝𝑝2 + (w2����𝑦𝑦)𝑞𝑞2 + (𝑤𝑤2����)𝑟𝑟2          (3.51) 

which is linear in the consequent parameters p1, q1, r1, p2, q2  and r

 
2 

𝑓𝑓 = 𝑋𝑋𝑋𝑋                       (3.52) 

 

 

Fig. 3.9 ANFIS architecture 

If X matrix is invertible then, 

 𝑍𝑍 = 𝑋𝑋−1𝑓𝑓                 (3.53) 

Otherwise solution of Z could be obtained using pseudo-inverse method. 

 𝑍𝑍 = (𝑋𝑋𝑇𝑇𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑓𝑓                 (3.54) 
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b) Backward pass: In backward pass, the error signals propagate backward and the 

premise parameters are renewed with the help of gradient descent method by keeping 

consequent parameters fixed. Parameter updating rule is given as   

 
𝑎𝑎𝑖𝑖𝑖𝑖 (𝑡𝑡 + 1) = 𝑎𝑎𝑖𝑖𝑖𝑖 (𝑡𝑡)− 𝜂𝜂.

𝜕𝜕𝜕𝜕
𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

          (3.55) 

where 𝜂𝜂 is the learning rate for parameter aij

 

, the gradient is obtained using chain rule as 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

= 𝑒𝑒. 1.
(𝑝𝑝𝑖𝑖𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑦𝑦 + 𝑟𝑟𝑖𝑖)− 𝑓𝑓

∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1

.
𝑤𝑤𝑖𝑖
𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖

.
𝜕𝜕𝜇𝜇𝐴𝐴𝑖𝑖𝑖𝑖
𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

        (3.56) 

 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏𝑖𝑖𝑖𝑖

= 𝑒𝑒. 1.
(𝑝𝑝𝑖𝑖𝑥𝑥 + 𝑞𝑞𝑖𝑖𝑦𝑦 + 𝑟𝑟𝑖𝑖) − 𝑓𝑓

∑ 𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1

.
𝑤𝑤𝑖𝑖
𝜇𝜇𝐵𝐵𝑖𝑖𝑖𝑖

.
𝜕𝜕𝜇𝜇𝐵𝐵𝑖𝑖𝑖𝑖
𝜕𝜕𝑏𝑏𝑖𝑖𝑖𝑖

        (3.57) 

By using forward pass and backward pass alternately, the   ANFIS parameters have 

been trained. But the training time requirement of hybrid learning algorithm is much 

lengthy. This drawback could be overcome by the novel Extreme ANFIS learning 

algorithm. 

3.5.2 Extreme ANFIS Learning Algorithm 

The advantages of ANFIS architecture and its approximating capabilities with great 

accuracy have been proved already by Jang in 1993 [73]. The architecture and Hybrid 

Learning Algorithm introduced by Jang is explained in previous Section. HLA uses both 

the forward pass and backward pass, which is a combination of least square error and back 

propagation based on gradient descent. As it uses gradient based method, it has certain 

drawbacks such as the calculation of gradient is possible with differentiable membership 

functions only, over fitting, and an iterative method hence time consuming.  

The proposed algorithm, called Extreme ANFIS learning algorithm is simple and 

derivative-less algorithm which eliminate drawbacks of gradient based Hybrid Learning 

Algorithm. The proposed algorithm can be summarized as follows: 

Algorithm: Consider a particular training data set scattered over the possible input 

range are available for given regression or modeling problem as: 

[I1   I2   I3…………..  In;

where I

 f] 

i

 

, i=1, 2… n are inputs, and f is corresponding output.  
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Step 1: Calculate range of every input to get the universe of discourse for input 

membership functions as,  

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐼𝐼𝑖𝑖} −𝑚𝑚𝑚𝑚𝑚𝑚{𝐼𝐼𝑖𝑖}                 (3.58) 

where i = 1, 2… n is number of input.  

Step 2: Decide shape of membership function and number of membership functions 

which represent linguistic partitions of universe of discourse. Bell shaped membership 

function is commonly used because of its advantages over other membership functions 

such as smoothness in change in membership grade which is a drawback of triangular and 

trapezoidal membership functions, also it provides flexibility in core of membership 

function which is not possible in Gaussian type membership function. The mathematical 

representation of bell shape membership function is given as, 

 
𝜇𝜇𝑖𝑖𝑖𝑖 =

1

1 + �
𝐼𝐼𝑖𝑖 − 𝑐𝑐𝑗𝑗
𝑎𝑎𝑗𝑗

�
2𝑏𝑏𝑗𝑗

 
          (3.59) 

where μij represents membership grade of ith input and jth membership function, aj, bj, cj 

are position and shape deciding parameters. The cj represents the centre of jth membership 

function, aj decides half width of membership function, bj/2aj represents slope at 

membership grade μij

 

 = 0.5. The significance of parameters is shown in Fig. 3.10. 

Fig 3.10 Bell shape membership function parameters 

Step 3: The premise parameters (aj, bj, cj

Consider there are m uniformly distributed membership functions with parameters 

(a

) values are generated randomly with 

some constraints on ranges of those parameters. These ranges depend on the number of 

membership functions used and size of universe of discourse.  

j
*, bj

*, cj
*) in universe of discourse. The procedure to select random parameters is 

described below: 
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Selection of aj: The parameter aj

 

 decides the width of membership function. The 

default value of parameter in uniformly distributed membership functions is expressed as, 

𝑎𝑎𝑗𝑗∗ =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
2𝑚𝑚− 2                 (3.60) 

  The range of selection of random value aj  

 

is given as, 

𝑎𝑎𝑗𝑗∗

2 ≤ 𝑎𝑎𝑗𝑗 ≤
3𝑎𝑎𝑗𝑗∗

2                  (3.61) 

  Selection of bj: The parameter bj with the help of aj gives slope as bj/2aj. The 

default value of bj  

Selection of c

in uniformly distributed membership functions is 2. The slight change in 

this value significantly changes the slope hence its range is limited within 1.9 to 2.1. 

j: The range for random value for center (cj) of membership function 

is decided such that one center should not cross the center of consecutive membership 

function. The range of center value (cj

where 

) selection is shown in equation (3.62)  

 cj
*

 d

 is center of uniformly distributed membership function, 

cc

Step 4: Once the randomly generated membership functions are available, the node 

output up to fourth layer can be obtained easily. Now the final output f becomes a simple 

linear combination of consequent parameters as shown in equation (3.63) 

 is distance between two consecutive centers of uniformly distributed membership. 

 

𝑓𝑓 = �𝑊𝑊�𝑘𝑘 ��𝑅𝑅𝑘𝑘𝑘𝑘 𝐼𝐼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝑄𝑄𝑘𝑘�
𝑚𝑚𝑛𝑛

𝑘𝑘=1

                 (3.63) 

where k represents the number of rules, m specifies the number of membership functions, n 

specifies the number of inputs, mn  represents maximum number of rules, i represents 

number of inputs, Ii  is a value of ith input, Rki and Qk are consequent parameters 

corresponding to kth rule and ith

Consider there are p numbers of training data pairs, then linear matrix of p 

equations are represented as, 

 input. 

1)1()1(1 ×++×× = nmnmpp nn UF β
                   (3.64) 

 

 
�𝑐𝑐𝑗𝑗∗ −

𝑑𝑑𝑐𝑐𝑐𝑐
2
� < 𝑐𝑐𝑗𝑗 < �𝑐𝑐𝑗𝑗∗ −

𝑑𝑑𝑐𝑐𝑐𝑐
2
�     (3.62) 
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where F is output matrix, 𝛽𝛽 is weighted input parameter matrix, U is unknown consequent 

parameter matrix of shown dimension. It can be solved using least square error (LSE) 

method as has been explained in forward pass of Hybrid Learning Algorithm. 

Step 5: Run algorithm after step 2 for 50-70 times and find out the root mean 

square error in each epoch. And finally generate the Sugeno type FIS model using the 

obtained premise and consequent parameters for least RMSE. 

3.5.3 Comparison of conventional ANFIS and Extreme ANFIS   

The proposed algorithm is implemented in Matlab and tested for its time efficiency 

and accuracy upon some benchmark problems. The simulation results and performance 

evaluation is discussed in next section. 

The performance analysis is conducted on the basis of time required to learn 

parameters from training data, training error and testing error of proposed algorithm. The 

results obtained have been compared with conventional ANFIS results.  

Example 1: consider a single input single output nonlinear sinc function (3.65) 

01
0,/)sin()(

==
≠=

x
xxxxf

                                 (3.65) 

100 training samples are created where the input x is uniformly distributed on the interval 

(-10,10). A uniform noise distributed in [-0.1, 0.1] is added to training samples. 50 noise 

free samples are used for testing the algorithms. 

Table 3.3 Performance analysis of Example 1 

Algorithm 
Number of 

membership 
functions 

Time (s) Training error 
(RMSE) 

Testing error 
(RMSE) 

Conventional ANFIS 4 0.57 0.012 0.192 
Extreme ANFIS 0.0021 0.018 0.140 

Conventional ANFIS 7 0.92 0.004 0.124 
Extreme ANFIS 0.001 0.0062 0.104 

Conventional ANFIS 11 8.6 0.0018 0.051 
Extreme ANFIS 0.004 0.0021 0.048 
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Fig 3.11 Final membership functions after learning with (a) Extreme ANFIS (b) 
Conventional ANFIS 

The final membership functions after learning using conventional ANFIS algorithm 

and Extreme ANFIS algorithm are given in Fig. 3.11. The learning time, training error and 

testing error are listed in Table 3.3. It is clearly observed that if the number of membership 

functions increases, the model accuracy also increases with less training time. But in case 

of conventional ANFIS algorithm time to learn parameters also increases. Thus the 

drawback of large training time is totally eliminated by Extreme ANFIS learning algorithm 

without affecting accuracy and generalization of conventional method.   

In the subsequent section, results of two benchmark problems from previous work 

of Jang are compared [73, 75]. 

Example 2: consider two input nonlinear function given in equation (3.66) 

   
𝑧𝑧 =

sin⁡(𝑥𝑥)
𝑥𝑥 .

sin⁡(𝑦𝑦)
𝑦𝑦            (3.66) 

Consider the inputs x and y varies in range of [-10, 10] × [-10, 10]. Equally spaced 

121 training data pairs and 16 rules with four membership functions are used for adapting 

parameters of ANFIS using both conventional Hybrid Learning algorithm and proposed 

Extreme ANFIS learning algorithm. And equally spaced 100 testing data are used to check 

generalization. The final membership functions after learning using conventional ANFIS 

algorithm and Extreme ANFIS algorithm are given in Fig. 3.12 and Fig.3.13. 
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Table 3.4 Performance analysis of Example 2 

Algorithm 
Number of 

membership 
functions 

Time (s) Training error 
(RMSE) 

Testing error 
(RMSE) 

Conventional ANFIS 4 0.814 0.0352 0.0862 
Extreme ANFIS 0.479 0.0418 0.0438 

Conventional ANFIS 7 3.933 0.0004 0.0304 
Extreme ANFIS 1.077 0.0066 0.0411 

Conventional ANFIS 11 23.4315 9.8×10 0.0688 -8 

Extreme ANFIS 1.718 1.35×10 0.0625 -14 

 

Fig. 3.12 Final membership functions after learning with Conventional ANFIS 

 

Fig. 3.13 Final membership functions after learning with Extreme ANFIS algorithm 

Example 3: Modeling of nonlinear function with three inputs using ANFIS. The 

function is given as, 

    𝑂𝑂 = (1 + 𝑥𝑥0.5 + 𝑦𝑦−1 + 𝑧𝑧−1.5)2           (3.67) 

  where x, y and z are inputs with ranges [1,6]×[1,6]×[1,6]. 216 training data are used 

to train ANFIS. The time efficiency and training error is checked by using training data. 
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Generalization of obtained ANFIS model is analyzed for 125 testing data in range [1.5, 

5.5] × [1.5, 5.5] × [1.5, 5.5]. The overall performance analysis for different number of 

membership functions is listed in Table 3.5. 

From observed results it is examined that, as the number of membership function 

increases the generalization ability of conventional gradient based algorithm is affected 

badly due to over-fitting. But in the proposed algorithm generalization is much better by 

the accurate model. Learning times and errors listed in tables are obtained by taking 

average of ten to fifteen trails. 

Table 3.5 Performance analysis of Example 3 

Algorithm 
Number of 

membership 
functions 

Time (s) 
Training 

error 
(RMSE) 

Testing error 
(RMSE) 

Conventional ANFIS 
2 

0.588 0.0254 0.3128 

Extreme ANFIS 0.389 0.0942 0.4057 

Conventional ANFIS 
4 

18.671 3.5×10 2.1263 -4 

Extreme ANFIS 2.503 0.0023 0.4825 

Conventional ANFIS 
5 

96.06 7.9×10 4.5413 -5 

Extreme ANFIS 4.073 1.78×10 1.4510 -4 

3.5.4 Prediction accuracy of Extreme ANFIS model 

This section describes the prediction accuracy of Extreme ANFIS model for a 

benchmark example, the Duffing’s equation representing the relationship between a mass, 

damper and a stiffening spring as in equation (3.45) is considered for study. 

 

Fig 3.14 Prediction accuracy of Extreme ANFIS model 
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A sequence of 300 samples and 10 rules with 10 membership functions are used for 

adapting parameters of ANFIS using proposed Extreme ANFIS learning algorithm. And 

the same 100 testing data used to analyze prediction errors in SVM and RVM in previous 

sections are used to check generalization of developed Extreme ANFIS model. The 

prediction accuracy of Extreme ANFIS based MPC is comparable with SVM and RVM. 

This highlights the good generalization capability of the proposed novel Extreme ANFIS 

model. 

3.6 CONCLUSION 

The model predictive control using Support vector machines, Relevance vector 

machines and neuro-fuzzy techniques are described in this chapter. The simulation results 

tabulating the prediction error and prediction time for a benchmark example explains the 

significance of accurate and sparse model in MPC applications. Also the proposed novel 

Extreme ANFIS algorithm performs better than conventional ANFIS algorithm with good 

generalization capability as SVM and RVM with very less training time. 



Chapter 4

NONLINEAR MODEL PREDICTIVE CONTROL OF A SINGLE INPUT 

SINGLE OUTPUT PROCESS

This chapter describes the control of nonlinear CSTR SISO process using Relevance Vector 

Machines (RVM) regression model, Support vector regression (SVR) model, neuro-fuzzy 

techniques and NN model based MPC’s. The optimization problem in the above control algorithm 

is made faster by particle swarm optimization with controllable random exploration velocity 

method of optimization. The simulation results comparing MPC using deterministic sparse kernel 

learning technique, probabilistic sparse kernel technique, neuro-fuzzy techniques and NN 

technique are shown.

4.1 INTRODUCTION

Before selecting a control strategy many requirements have to be considered. The 

implementation cost, maintenance cost, computational cost, operation transparency are the 

important criterion considered. Model predictive controller is one among the controllers 

which satisfies the above requirements opted for practical implementation. Model 

predictive controller does prediction and optimization at each sampling instant as discussed 

in the previous chapters. Hence, system identification technique and optimization 

technique are the norms which decide the quality of MPC. This chapter applies novel 

system identification techniques and optimization algorithm to make MPC the best 

controller suitable for practical application.

A nonlinear model predictive control strategy which utilizes all the machine 

learning techniques discussed in previous chapters and PSO-CREV optimization algorithm

is applied to a single input single output process. A CSTR is the SISO process occupied for 

analysis. An accurate reliable nonlinear model is first identified by the above mentioned 

machine learning techniques and then the optimization of control sequence is speeded up 

by PSO-CREV. Additional stochastic behaviour in PSO-CREV is omitted for faster 

convergence of nonlinear optimization. An improved system performance is guaranteed by 

an accurate model and an efficient and fast optimization algorithm. Performance

comparisons of MPC’s using probabilistic sparse kernel learning technique called RVM’s 

regression model, deterministic sparse kernel learning technique called LS-SVM

regression model, a proposed novel neuro-fuzzy based (Extreme adaptive neuro-fuzzy 

inference system (ANFIS)) model and neural network based model are done on a CSTR 

process. Relevance vector regression shows improved tracking performance with very less 

computation time which is much essential for real time control. To the author’s best 
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knowledge, combinations of RVM model and MPC approach are not reported in 

literatures. 

A novel method of optimization, particle swarm optimization with controllable 

random exploration velocity developed by Xin Chen et al. [91, 92], which is significant for 

its computational efficiency and improved performance, is used in this chapter. Thus 

nonlinear model predictive controller combining Extreme ANFIS/ relevance vector 

regression/ support vector regression/ neural network model and particle swarm 

optimization with controllable random exploration velocity merges the advantage of 

accurate prediction and less computational effort. 

This section is followed by simulation results of SISO process comparing MPC 

using deterministic sparse kernel learning technique, probabilistic sparse kernel technique, 

neuro-fuzzy techniques and NN technique.

4.2 THEORY BEHIND MPC FOR A SISO PROCESS

The structure of model predictive control of a SISO system is shown in Fig. 4.1.

Fig. 4.1 Structure of nonlinear model predictive control of SISO system

MPC uses the present dynamic state of the plant, the past process measurements, its 

models, and the plants target variables and constraints to evaluate future deviations in the 

manipulated variables. These deviations are evaluated to keep the process output near to 

the target while constraints imposed on the input variables and output variables are 

considered. MPC generally applies the first alteration in the manipulated variable to the 
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real plant, and uses the remaining alterations for the prediction of process output. The non-

linear model responsible for accurate prediction can be easily generated by ANN, Extreme 

ANFIS, SVM or RVM models. Key terms behind the theory of MPC are:

1. Moving horizon window (MHW): the time dependent window which starts from an 

arbitrary time ݐ௜to +௜ݐ ௣ܰwhere the length of the window ௣ܰremains fixed.

2. Prediction horizon: means the distance how far ahead the future output is to be

predicted. The value of this parameter equals to the length of the moving horizon 

window, ௣ܰ.

3. Receding horizon control: Within the MHW, the optimal trajectory of the future 

manipulated variable is fully defined but only the initial step of the calculated 

manipulated variable signal is applied to the real process.

4. The designed model must cover the entire dynamics of the process. For predictive 

control, designing a good model of the process is very important because the model 

is the one responsible for predicting the precise future process outputs.

5. To implement the objective, a condition is required which can take the best 

decision. The objective function is known as the performance function and it is 

nothing but an error function between the actual and desired responses. Hence, the 

best control action can be generated by minimizing the performance function 

within the optimization window.

6. Minimization of performance function could be carried out by any optimization 

algorithm and in this chapter a novel method of optimization, particle swarm 

optimization with controllable random exploration velocity is used for accurate and 

fast optimization.

Thus the principles of model predictive control consists of

 Dynamic model of the plant.

 Past control moves.

 Cost function over the receding prediction horizon.

 Prediction horizon.

 Control horizon.

4.2.1 Different machine learning techniques for MPC’s

The basic structure of different machine learning techniques based nonlinear model 

predictive controller of a SISO process is shown in Fig. 4.1. This structure includes three 

important blocks, actual plant to be controlled with output y(k). Then the ANN/ Extreme 
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ANFIS / SVM/ RVM model of the actual plant to be controlled with estimated output 

ŷ(k)= [ŷ(k+1) ,… ŷ(k+Np)] here, Np refers the MPC’s prediction horizon which dictates 

how far we wish the future to be predicted for. Next is the optimization block which 

provides the optimized control signal u(k)=[u1(k),…uNu(k)] where Nu refers to the control 

horizon of MPC which dictates number of control moves used to attain the upcoming 

control trail, subjected to the specified constraints that is required for the plant to achieve 

the desired trajectory ref(k)=[ref1(k)1 ….refNp(k)]. Here k stands for the current sampling 

instant.

Thus at each sampling instant a sequence of manipulated variable u(k)  is calculated 

to minimize the deviation of the predicted output of approximated model from the 

preferred reference trajectory over the specified prediction horizon Np as shown in (4.7).

The control horizon Nu decides the number of steps of manipulated variable in the 

sequence. This procedure is repeated at every sampling moment.

4.2.2 Performance index formulation

For a single input single output nonlinear process the predicted output of NN/ 

Extreme ANFIS/ SVM/ RVM model is a function of past process outputs, 

Y(k)=[y(k)…..y(k-ny+1)] and past process inputs, U(k-1)=[u(k-1)…u(k-nu+1)]. The 

numeral value of delayed controlled variables and delayed manipulated variables depends 

on the corresponding process orders nu and ny respectively.

Thus a single step ahead prediction of a SISO nonlinear process could be illustrated 

by the subsequent discrete time model,

)]1(),..,(),1(),..([)1(ˆ  uy nkukunkykyfky
                                                        

(4.1)

where   k is the discrete time index

The above equation is rewritten as

)]1(),(),([)1(ˆ  kUkukYfky                                                                   (4.2)

Here, Y(k) and U(k-1) represents the vectors holding past controlled variables and 

past manipulated variables respectively. Thus after system identification using the 

regression data set the single step ahead prediction for ANN model is,

     



hid

j
jjj bknetfwky

1

11ˆ
                  (4.3)

The one step ahead prediction for Extreme ANFIS model is,
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The one step ahead prediction for SVM model is,

bxxKky i

M

i
ij  



),()1(ˆ
1


          (4.5)

The one step ahead prediction for RVM model could is,

 T
m

M

m
m wxwky  



)()1(ˆ
0

                         (4.6)

where  M is the subset of training samples.

Accordingly, the performance index to be minimized to achieve the optimal control 

sequence u(k) can be obtained as shown below,

       



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j

N

Nj

jnujkyjkrefkuJ
1

22
2

1

ˆ)]([                                                   (4.7)

In the performance index formulated in Equation (4.7) ŷdepends on the  kernel 

function in case of SVM and RVM model, which in turn is a function of manipulated  

variable u, which is  optimized and applied to the actual plant to diminish the deviation 

between the desired value and controlled variable.

N1 - minimum value of prediction horizon

N2 - maximum value of prediction horizon

Nu - value of control horizon

         k   - current sampling instant

         ref(.) - reference trajectory

        - control input weighting factor

        - predicted output of ANN/ Extreme ANFIS / SVM/ RVM

        - control input change defined as u(k+j)-u(k+j-1)

The predictive controller presented in this chapter is a single step ahead predictive 

controller, which does one step ahead prediction at each sampling instant. Since the 

process under simulation is a low order process and as the SVR model and RVR model 

developed are accurate, a single step ahead prediction is sufficient to provide satisfactory 

tracking performance.

The MPC parameters for the best control of CSTR process are given below. 

Prediction horizon=1



(.)ŷ

u
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Control horizon=1

Penalty factor on differenced control signal =0.5

Control input constraint 0≤ u1(t) ≤ 4

4.3 CONVENTIONAL PSO AND NEED FOR PSO-CREV ALGORITHM

PSO is an optimization algorithm supported by population, which reproduces the 

communal behavior of group of particles. The victory of majority of evolutionary 

optimization algorithms are realized by balancing two objectives, exploration and 

exploitation. Exploration refers to diversification which satisfies the goal of searching the 

whole solution domain in order to provide a consistent estimation of the global optimum.  

On the other hand, the term exploitation refers to intensification which intensifies the 

search attempt around the best solutions [147]. From Equation (2.5) and Equation (2.6)  in 

chapter 2 it is understood that the strength of exploration performance is merely calculated 

by the degrading speed of )( )()( t
id

t
id XP  and )( )()( t

id
t

gd XP  as r1 and r2 are supplemented as 

relational coefficients to )( )()( t
id

t
id XP  and )( )()( t

id
t

gd XP  respectively. These random variables 

r1 and r2 cannot be tuned without restraint. Hence if a particle converges to a local minimal 

solution, the algorithm may not have the capability to neglect it and hence the strength of 

exploration behavior of the conventional PSO algorithm needs improvement. This task of 

improving the exploration strength is achieved in a modified novel algorithm PSO-CREV.

The introduction of the terms ,  and the positive coefficient  makes PSO-

CREV algorithm different from conventional PSO. In the modified PSO-CREV algorithm 

)(n is introduced into velocity updating equation and hence convergence is not 

guaranteed since it is a disturbance to the system. Hence ‘ε(n)’which reaches zero as 

n→infinity is included to repress )(n , but again the reduced system seems to be non-

convergent. Hence a new term  is introduced to make the system convergent. Thus

introduction of these terms guarantees stronger exploration capability and faster 

convergence speed.

The intensity of exploration capability of conventional PSO was improved 

significantly by Xin Chen et al. [91,92], after incorporating some modifications in the 

position and velocity equations as shown in Equation (4.8) and Equation (4.9) respectively.
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)(t
id   -  Bounded random variable with continuous uniform distribution, )()()( nnwn  

bN      - Total number of iterations

1 , 2 - Positive constants less than one which makes the random velocity )(n   a decreasing one.        

)(n   - Stochastic velocity with invariable value range and zero expectant.

)( t    -   tends to zero as t increases, and 





1

)(
t

n

α      -    ranges between 0 and 1.

The introduction of the terms ),(n and the positive coefficient  makes the 

algorithm different from the conventional PSO. Introduction of these terms guarantees 

stronger exploration capability and faster convergence speed. )(n is different from inertia 

constant as it is operating on all the three components of velocity update equation. The 

additional stochastic term  increases the exploration capability of the algorithm but 

decreases the convergence speed. A decreasing )(n which tends to zero as n in the 

velocity update equation and a positive coefficient , whose value is less than 1, make the 

algorithm converge faster [92]. A non-zero value of )(n is much helpful to force swarms

into unidentified solution space in addition to the consequence carried out by cognitive and 

communal components of the PSO algorithm. Without extra stochastic behavior or )(n

=0, the behavior of PSO-CREV and conventional PSO are same, but the convergence rate 

of PSO-CREV is fast. Hence in this chapter this additional stochastic behaviour is omitted 

to achieve faster convergence. The adverse effect on exploration capability can be reduced 

by selecting dynamic strategy for )(n as 
bn

a
n

)1(
)(


 where a and b are scalars. To 

balance both exploration capability and speed of convergence, the value of b must be 

properly selected. Choosing small value of b formulate the algorithm with powerful 

exploration capability [92]. Hence the weakened exploration capability of PSO-CREV 
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algorithm by the deletion of can be compensated by suitably selecting a value for b. 

Other PSO-CREV parameters are
4.0)1(

5.3
)(




n
n , 221  cc and .95.0

4.4 CATALYTIC CSTR PROCESS

The above discussed methods are applied for a SISO process. The SISO process 

considered for demonstration is CSTR. This section describes the schematic of a catalytic 

stirred tank reactor process which is simulated to show the performances of RVM based 

NMPC than LS-SVM based NMPC, Extreme ANFIS based NMPC and NN based NMPC. 

The continuous stirred-tank reactor, otherwise called as vat- or backmix reactor, is the 

reactor commonly used in chemical engineering. The Physical arrangement of CSTR plant 

is given in Fig. 2. In a catalytic reactor, the speed of catalytic reaction is relative to the 

amount of catalyst the reagents contact.

Fig. 4.2 Schematic of the CSTR process

The dynamic model of the Catalytic CSTR process is,
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(4.11)

where,

h(t)    - liquid level in the reactor,

Cb(t)  - concentration of product at the output of the   process 

Cb1(t)  - concentration of the concentrated feed of the   process 

Cb2(t)  - concentration of the diluted feed of the   process 

q1(t)    - concentrated feed flow rate Cb1,

q2(t)    - diluted feed flow rate Cb2, 

q0         - product flow rate at the output of the process.
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The nominal conditions for the feed concentrations are set to Cb2 = 24.9 mol L-1 and 

Cb1 = 0.1 mol L-1. The rate of consumption of both the feeds are associated with the 

constants k1=1 and k2=1. The objective of this catalytic reactor is to obtain the desired 

concentration Cb at the product by adjusting the flow rates q1 and q2 .The illustration is 

made simple by setting q2(t) = 0. 1 L min-1. The Matlab Simulink model of the above 

illustrated CSTR process is shown in Fig.4.3.

Fig. 4.3 MATLAB SIMULINK model of the CSTR process

4.5 NEURAL NETWORK BASED MPC OF CSTR PROCESS

This section describes the multilayer feed forward NN model based nonlinear MPC 

using PSO-CREV optimization algorithm. In order to develop an accurate model accurate 

data set is necessary and is generated by simulating the simulink model of CSTR process. 

This data set is meant for training, validating and testing the model. The trained, validated 

and tested model is then incorporated in MPC to provide accurate predictions of process 

dynamics.

4.5.1 Training and Testing the Model

A two layer feed forward neural network comprising of five hidden neurons with 

sigmoid activation function and an output neuron with linear activation function is used as 

the model in the NN model based MPC.  NN requires large number of training data to 
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attain reasonable generalization and hence a sequence of 1000 samples is used for training 

the NN model and is done through Levenberg-Marquardt learning algorithm.

Fig. 4.4 and Fig. 4.5 correspond to the modeling results neural network method. 

The datasets are generated by providing random constrained signal as input to the plant. 

The constraint to the input signal is 0≤ u(t) ≤ 4. The identification performance of NN 

model is assessed by the Root mean square error (RMSE) performance function.
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               (4.12)

where,          )(ky
 - predicted output for the sampling instant k,

)(ky - output of the plant for the sampling instant k 

N    - total number of samples.

The RMSE value of the Neural Network models training error is 0.0312 and is 

tabulated in Table 4.1. The trained NN model is further tested with 100 samples of random 

inputs which are beyond the training data and there corresponding absolute prediction 

errors are calculated. The absolute prediction errors of NN model are shown in Fig. 4.5.

The RMSE value of testing error is 0.0989 as tabulated in Table. 4.1. This proves the poor

generalization capability of NN model.

Fig. 4.4 Training performance of NN model
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Fig. 4.5 Testing performance of NN model

4.5.2 Performances of NN –PSO-CREV-MPC

This section describes the set point tracking performance and unmeasured 

disturbance rejection capability of NN-PSO-CREV based MPC. The offline trained and 

validated NN model is then used as the nonlinear model for nonlinear MPC. The value of

N1, N2 and c Nu of NN based MPC are set to 1, 1 and 1 correspondingly. The control input 

weighting factor λ is set to 0.5.

Fig. 4.6 illustrates the random set point tracking performances of NN model based 

MPC with PSO-CREV optimization algorithm. Fig. 4.7 shows the corresponding changes 

in the process variable, flow rate. The tracking performance of NN-PSO-CREV based 

MPC suffers from overshoots and undershoots which is due to their poor generalization 

capability. 

As the PSO-CREV algorithm converges to the finest solution at each sampling 

instant, the control variable flow rate corresponding to the controller is with very less 

fluctuations. The control variable u(k) i.e., flow rate of the concentrated feed Cb1 , is shown 

in Fig. 4.7 whose smoothness shows the index of control performance.

The unmeasured disturbance rejection capability of NN-PSO-CREV based MPC is 

examined by subjecting the CSTR process with dissimilar magnitudes of disturbances at 
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different sampling instants. The control variable, flow rate of the concentrated feed Cb1 

with disturbances at different sampling instants are shown in Fig. 4.8. The unmeasured 

disturbance rejection performance of NN-PSO-CREV based MPC is shown in Fig 4.9. The 

controlled variable, product concentration settles down slowly with oscillations after 

getting affected by unmeasured disturbances.

Fig. 4.6 Tracking performance of product concentration for CSTR process

Fig. 4.7 Changes in the process variable for tracking the product concentration of 
CSTR process.
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Fig. 4.8 Changes in the process variable to show unmeasured disturbances

Fig. 4.9 Performance of unmeasured disturbance rejection

4.6 SVM BASED MPC OF CSTR PROCESS

This section describes the behaviour of SVM based MPC using PSO-CREV 

optimization algorithm. In order to develop an accurate model accurate data set is recorded 

by simulating the Matlab simulink model and is meant for training, validating and testing 

the model. The trained, validated and tested model is then incorporated in MPC to provide 

accurate predictions of process dynamics.
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4.6.1 Training and Testing the Model

A sequence of 300 samples is used to train the SVR model offline using the leave 

one out method discussed in chapter 3. Figure 4.10 and Figure 4.11 corresponds to the 

modeling results of Support vector regression model. The identification routine of SVR 

model is assessed by the RMSE performance function as in equation (4.13).
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               (4.13)

where )(ky
 represents the support vector regression model’s output for the sampling 

instant k, )(ky represents the actual plant’s output for the sampling instant k and N

represents total samples. 

The RMSE value of the training error corresponding to support vector regression 

model is given in Table 4.1, where the training accuracy of SVR model and Extreme

ANFIS model are almost same. The trained SVR model is further tested with 100 samples 

of random inputs which are beyond the training data and there corresponding absolute 

prediction errors are calculated. 

The prediction errors of SVR model for 100 different samples are shown in Figure 

4.11, which explores the good generalization capability of SVR model. Thus one can 

conclude that SVM based empirical modeling behaves suitably for industrial process 

control with good generalization.

Fig. 4.10 Training performance of SVR model
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Fig. 4.11 Testing performance of SVR model

4.6.2 Performances of SVM-PSO-CREV-MPC 

The offline trained and tested SVR model is then used as the nonlinear model for 

nonlinear MPC. Fig. 4.12 illustrates the random set point tracking performances of support 

vector regression model based MPC with PSO-CREV optimization algorithm. Fig. 4.13

shows the corresponding changes in the process variable, flow rate. 

The SVR based MPC tracks the set point very well without any overshoot or 

undershoot as a result of its accurate model with good generalization capability.

Next, the unmeasured disturbance rejection capability of SVM-PSO-CREV based 

MPC is examined by subjecting the CSTR process with dissimilar magnitudes of 

disturbances at different sampling instants. The control variable, flow rate of the 

concentrated feed Cb1 with disturbances at different sampling instants are revealed in Fig. 

4.14.

The unmeasured disturbance rejection capability of SVM based MPC is shown in 

Fig. 4.15. The controlled variable, product concentration settles down smoothly with very 

less oscillations after getting affected by unmeasured disturbances.



89

Fig. 4.12 Tracking performance of product concentration for CSTR process

Fig. 4.13 Changes in the process variable for tracking the product 
concentration of CSTR Process
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Fig. 4.14 Changes in the process variable to show unmeasured disturbances

Fig. 4.15 Performance of unmeasured disturbance rejection
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4.7 RVM BASED MPC OF CSTR PROCESS

This section describes the suitability of RVM based MPC using PSO-CREV 

optimization algorithm in tracking random set points and overcoming unmeasured 

disturbances. In order to develop an accurate model accurate data set is necessary. This 

data set is meant for training and testing the model. The trained and tested model is then 

incorporated in MPC to provide accurate predictions of process dynamics.

4.7.1 Training and Testing the Model

A sequence of 300 samples is used to train the sparse Bayesian RVR model offline. 

RBF kernel function is used by the model and kernel width parameter is estimated 

accurately, which get better generalization ability and less computational complexity of the 

training process. The value of N1, N2 and Nu of RVM based MPC are set to 1, 1 and 1 

correspondingly to reduce the computational burden. The control input weighting factor λ 

is set to 0.5.

Fig. 4.16 Training performance of RVR model
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Fig. 4.17 Testing performance of RVR model

Fig. 4.16 and Fig. 4.17 correspond to the modeling results of RVR model. The 

datasets are generated by providing random constrained signal as input to the plant. The 

constraint to the input signal is 0≤ u(t) ≤ 4. The training error of RVR model shows the 

training accuracy of RVR model.

The trained RVR model is further tested with 100 samples of random inputs which 

are beyond the training data and there corresponding absolute prediction errors are 

calculated. The graph of prediction errors of RVR model is shown in Fig. 4.17, which 

explores the better generalization capability of RVR model. Thus one can conclude that the 

RVR based empirical modeling can prevail better with accurate model having good 

generalization capability. The model accuracy is accessed by RMSE value which is the 

square root of the average of the squared error values as in equation (4.11).

4.7.2 Performances of RVM-PSO-CREV-MPC

The offline trained and tested RVR model is then used as the nonlinear model for 

nonlinear MPC. Fig.4.18 illustrates the random set point tracking performances of RVR 

model based MPC with PSO-CREV.
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The tracking performance of RVR based MPC is free from overshoots and 

undershoots due its accurate prediction and precise optimization using PSO-CREV.

Fig. 4.18 Tracking performance of product concentration for CSTR process

Fig. 4.19 Changes in the process variable for tracking the product concentration of 
CSTR process
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As the PSO-CREV algorithm converges to the finest solution at each sampling 

instant, the control variable flow rate corresponding to RVM-PSO-CREV is with very less 

fluctuations. The control variable u(k) i.e., flow rate of the concentrated feed Cb1 , is shown 

in Fig. 4.19 whose smoothness shows the index of control performance.

The unmeasured disturbance rejection capability of RVM-PSO-CREV based MPC 

is analyzed by subjecting the CSTR process with dissimilar magnitudes of disturbances at 

different sampling instants. The control variable, flow rate of the concentrated feed Cb1 

with disturbances at different sampling instants is shown in Fig. 4.20.

Certainly the unmeasured disturbance rejection performance of RVM-PSO-CREV

based MPC is very good with very less oscillations. The controlled variable, product 

concentration settles down faster after getting affected by unmeasured disturbances as 

shown in Fig. 4.21. Thus RVM-PSO-CREV based MPC behaves suitably for process 

control industrial applications.

Fig. 4.20 Changes in the process variable to show unmeasured disturbance
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Fig. 4.21 Performance of unmeasured disturbance rejection

4.8 EXTREME ANFIS BASED MPC OF CSTR PROCESS

This section describes the proposed novel neuro-fuzzy model based MPC called 

Extreme ANFIS based MPC using PSO-CREV optimization algorithm. The accurate data 

set spreading randomly over the entire operating region of the CSTR process is generated 

by simulating the simulink model of CSTR process. This data set is meant for training,

validating and testing the model. The trained and tested model is then incorporated in MPC 

to provide accurate predictions of process dynamics.

4.8.1 Training and Testing the Model

Randomly generated 300 training data pairs are used to train the Extreme ANFIS 

network offline. The four inputs to the network are y(k), y(k-1), u(k) and u(k-1). Here, y(k) 

and y(k-1) are the current process output and delayed process output respectively. Also u(k) 

and u(k-1)are current process input and delayed process input respectively. Three bell 

shaped membership functions with 81 rules are used for adapting parameters of ANFIS. 

This novel Extreme ANFIS model has good generalization ability with less training time. 

The final membership function after learning the nonlinear CSTR process with Extreme 

ANFIS algorithm is shown in Fig.4.22.
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Fig. 4.22 Final membership functions after learning with Extreme ANFIS algorithm

The datasets are generated by providing random constrained signal as input to the 

plant. The constraint to the input signal is 0≤ u(t) ≤ 4. The identification performance of 

Extreme ANFIS model is assessed by the RMSE performance function.
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               (4.14)

where )(ky
 represents the Extreme ANFIS model’s output for the sampling instant k, 

where )(ky represents the actual plant’s output for the sampling instant k and N represents 

total number of samples.

Fig. 4.23 and Fig. 4.24 correspond to the modeling results of Extreme ANFIS 

method.

The RMSE value of training error for Extreme ANFIS model is 0.0303 and is 

tabulated in Table 4.1, the training accuracy of Extreme ANFIS model and NN model used 

in previous section are almost same. The trained Extreme ANFIS model is further tested 

with 100 samples of random inputs which are beyond the training data and there 

corresponding absolute prediction errors are calculated. The prediction errors of Extreme 

ANFIS model is given in Fig. 4.24. The RMSE of testing error for Extreme ANFIS model 

is 0.0605 and is tabulated in Table. 4.1. The generalization capability of Extreme ANFIS 

model is good. This is because of the qualitative adaptive capability of Extreme ANFIS 

model.
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Fig. 4.23 Training performance of Extreme ANFIS model

Fig. 4.24 Testing performance of Extreme ANFIS model
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4.8.2 Performance of Extreme ANFIS-PSO-CREV-MPC

The offline trained and tested Extreme ANFIS model is then used as the nonlinear 

model for nonlinear MPC. The value of N1, N2 and Nu of Extreme ANFIS based MPC and 

NN based MPC are set to 1, 1 and 1 correspondingly. The control input weighting factor λ 

is set to 0.5. Fig. 4.25 illustrates the random set point tracking performances of Extreme 

ANFIS model based MPC with PSO-CREV. Fig. 4.26 shows the corresponding changes in 

the process variable, flow rate.

Fig. 4.25 Tracking performance of product concentration for CSTR process

The tracking performance of Extreme ANFIS based MPC is free from large 

overshoots or undershoots due to their accurate predictions because of its good

generalization capability and precise optimization using PSO-CREV. 

As the PSO-CREV algorithm converges to the finest solution at each sampling 

instant, the control variable flow rate corresponding to Extreme ANFIS-PSO-CREV is

with very less fluctuations. The control variable u(k) i.e., flow rate of the concentrated feed

Cb1 , is shown in Fig. 4.26 whose smoothness shows the index of control performance.

The unmeasured disturbance rejection capability of Extreme ANFIS-PSO-CREV 

based MPC is analyzed by subjecting the CSTR process with dissimilar magnitudes of 

disturbances at different sampling instants. The control variable, flow rate of the 

concentrated feed Cb1 with disturbances at different sampling instants are shown in Fig. 

4.27. The unmeasured disturbance rejection performance of Extreme ANFIS-PSO-CREV 



99

based MPC is shown in Fig. 4.28. The controlled variable, product concentration settles 

down smoothly with very less oscillations after getting affected by unmeasured 

disturbances.

Fig. 4.26 Changes in the process variable for tracking the product concentration of 
CSTR process

Fig. 4.27 Changes in the process variable to show unmeasured disturbances
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Fig. 4.28 Performance of unmeasured disturbance rejection

4.9 TABULATION OF PERFORMANCE INDICES OF DIFFERENT MPC’s

This section enunciates the model accuracy of different empirical models 

developed and the performance indices and computational cost of all the controllers 

designed in the previous sections. 

Table 4.1 shows the training accuracy, testing accuracy of various models with 

their corresponding number of training data. Even though the NN model is trained using 

1000 training data, its training error and testing error are more. But the Extreme ANFIS 

model, SVR model and RVR model uses less number of training data and behaves with 

good generalization capability. This is clear from their corresponding prediction errors for 

unseen test data.

Table 4.1 Accuracy of different empirical models

Model
Number of   

Training data
RMSEtraining RMSEtesting

NN 1000 0.0312 0.0989

Extreme ANFIS 300 0.0303 0.0605

SVR 300 0.0292 0.0591

RVR 300 0.0233 0.0565
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Table.4.2 shows the Integral absolute error (IAE) value, number of support vectors/ 

relevance vectors and computational time related to each controller for the simulation 

results carried out for 75 samples. IAE is the performance criteria which quantifies the 

accuracy of all controllers. Fig 4.29 and Fig. 4.30 illustrates the set point tracking 

performance of all the controllers discussed in previous sections.

The sparseness property of SVR model reduces the computational time of SVR-

MPC to 10.06 seconds for 75 samples (i.e. nearly 0.1341 Seconds for sample). But the 

sparse nature of RVR model sharply reduces the computational time of RVR-MPC to 4.71

seconds for 75 samples (ie. nearly 0.06 Seconds for sample), which is much shorter than 

the sampling time of the CSTR process. The number of support vectors and relevance 

vectors used while modeling SVR and RVR model respectively tabulated in Table 4.2, 

signifies the sparseness of the models.

Table 4.2 Performance Indices of various control strategies

Conditions Control tactics

Number 
of 

Training 
Samples

IAE

Number of 
Support 
Vectors/ 

Relevance 
Vectors

computational 
time

(Seconds)

No 
Disturbance

NN-PSO-CREV 1000 0.982 - 21.23

Extreme ANFIS-
PSO-CREV

300 0.7701
-

5.21

LS-SVM-PSO-
CREV

300 0.7619 162 10.06

RVM-PSO  -
CREV

300 0.6640 27 4.71

Disturbance

NN-SVM-PSO-
CREV 1000 3.4100 - 22.43

Extreme ANFIS-
PSOCREV

300 2.9008 - 6.04

LS-SVM-PSO-
CREV

300 2.8838 162 11.40

RVM-PSO  -
CREV

300 2.2933 27 4.78
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Fig. 4.29 Tracking performance comparison of product concentration for CSTR 

process

Fig. 4.30 Performance comparison of unmeasured disturbance rejection
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The Extreme ANFIS model based MPC consumes only 5.21 seconds (ie. nearly 

0.06 Seconds for sample) due to its simple structure and simple algorithm. Thus the time 

consumption in Extreme ANFIS based MPC is same as RVM based MPC. But, the 

dynamic NN model based MPC consumes 21.23 Seconds which is much larger than the 

above mentioned controllers.

Hence, it is clear that NN based MPC is the one which consumes more time with 

more integral average error. As a result, RVR-PSO-CREV, SVR-PSO-CREV and Extreme 

ANFIS-PSO-CREV model predictive controller are better than NN based controller with 

less computational load and less integral average error.

Also Extreme ANFIS-PSO-CREV and RVR-PSO-CREV based MPC’s consumes 

very less time with good tracking performances, which is much essential for real time 

applications. Therefore we conclude RVR-PSO-CREV and Extreme ANFIS-PSO-CREV 

based MPC’s to be the best controller based on various attributes like usage of less number

of training data, better prediction accuracy, better generalization capability, excellent set 

point tracking performance, better unmeasured disturbance rejection capability. Hence it is 

well suitable for industrial process control applications.

4.10 CONCLUSION

A viable solution to the problem of fast implementation of NMPC is proposed in 

this chapter. Different machine learning techniques are used to create an accurate for 

prediction model and a derivative free optimization method, PSO-CREV is incorporated to 

achieve faster convergence. Based on the simulation results of CSTR process the tracking 

performance of RVM- PSO-CREV, Extreme ANFIS-PSO-CREV, LS-SVM-PSO-CREV 

based MPC’s are much better than NN based MPC with very less computational cost and 

better unmeasured disturbance rejection capability which confirms its feasibility. 

Simulation results convey that such better performance is due to their better prediction 

accuracy and better generalization capability. Also the computation time of Extreme 

ANFIS based MPC and RVM based MPC are very less and equal which makes them well 

suitable for real time control applications.



Chapter 5 
NONLINEAR MODEL PREDICTIVE CONTROL FOR MAXIMUM POWER 

POINT TRACKING OF PHOTO VOLTAIC ARRAY 

This chapter describes the model predictive control of a system with faster dynamics. A 

photovoltaic array with power converter is considered as the fast dynamic system. Thus the control 

of photovoltaic array Maximum Power Point Tracker system through Nonlinear Model Predictive 

Control strategy using novel Neuro-Fuzzy technique, Relevance Vector Machines regression model 

and Support Vector Machines regression model is described. The optimization problem in the 

above control algorithm is neglected by Finite Control Set Model Predictive Control technique. 

The simulation results comparing model predictive control of PV array using deterministic sparse 

kernel learning technique, neuro-fuzzy technique and probabilistic sparse kernel technique are 

shown. 

5.1 INTRODUCTION 

Control of systems with faster dynamics is beyond the scope of MPC, as it does 

prediction and optimization at each sampling instant. But it is made feasible in this chapter 

by incorporating FCS-MPC technique. As a result of this, the necessity for optimization of 

control sequence at each sampling instant is avoided. A photo voltaic array maximum 

power point tracking system is the fast dynamic process considered for analysis. 

In recent years, fossil fuels are in its deteriorating path which increases the demand 

for alternative sources of energy. In spite of its installation cost, photo voltaic system 

persist to draw worldwide wellbeing as it is a renewable source with zero noise or 

pollution with very less maintenance cost. Maximum energy could be extracted via the 

load from the photovoltaic systems, by the operation of a direct current (DC) converter 

which boosts the solar panel output voltage. The power efficiency of PV system could be 

maintained maximum by a controller which forces the system to operate at a sole point 

called Maximum Power Point (MPP), found at the knee of the I-V characteristics, at which 

the array delivers maximum power. A maximum power point tracker which identifies and 

supplies reference maximum power point input to the controller is also essential.  

One of the commonly used methods to identify the MPP is Perturb and Observe 

method [148-150] which has the drawbacks of tracking the wrong direction under rapidly 

fluctuating irradiance levels and oscillation around the MPP under steady state operation. 

The incremental conductance is the other method which overrules the above mentioned 

drawbacks but it has the disadvantage of increased complexity and cost [151, 152]. 

Photovoltaic Power Output Estimation is done by Genetically Evolved Fuzzy Predictor in 
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[153]. Neural networks are extensively used for Maximum Power Point Tracking of photo 

voltaic array [154, 155]. However, the generalization capabilities of the neural networks 

are very poor. Another concern regarding neural network solutions is the presence of 

multiple local minima which may not result in a distinctive solution.  Hence advanced 

machine learning techniques are to be used for Maximum Power Point Tracking of photo 

voltaic arrays. 

The sparse kernel learning is a new nonlinear system identification method initially 

proposed in the machine learning area [12, 13]. A sparse kernel technique, Support Vector 

Regression introduced in [15], overwhelms the over fitting and poor generalization 

capability of neural network with less number of training data and less training time. But, 

practical applications of Least Squares Support Vector Machines are limited because of its 

requirement of larger number of support vectors to approximate the optimal solutions. In 

LS-SVM the regularization parameter γ and the kernel width parameter σ are the two free 

parameters to be tuned to improve the generalization ability of predicted model. 

The promising results for the application of SVM model in PV power forecasting is 

discussed in [157]. But as the LS-SVM model is burdened with additional externally 

determined parameters, time consumption is more. Subsequently Tipping [21] introduced 

Relevance Vector Machine which attracted much interest in the research community owing 

to its advantages over support vector machine. They are established on a Bayesian 

formulation which results in usage of less number of relevance vectors leading to much 

more sparse representation than Support Vector Machine. RVM has no restriction on the 

basis functions [15, 22]. The sparse RVR model could generalize better with very less 

computation time with only one tuning parameter kernel width σ. The generalization 

performance of RVM and SVM are compared in the results given in [21]. 

 The guaranteed model accuracy and generalization capability of Relevance Vector 

Regression model are explicitly acknowledged by many researchers [64-69]. Thus by 

RVR, the problem of over fitting can be avoided; generalization ability can be improved 

with better extrapolation capability with less number of training data and less training time. 

Extreme ANFIS model is the proposed novel model which provides accurate model 

with good generalization capability and fast prediction. The better generalization capability 

of Extreme ANFIS model and RVR model could guarantee to tackle the changing 

characteristics of PV array with time. Hence, Extreme ANFIS model/ RVR model could 

identify and supply the reference MPP input to the controller at all possible system 

conditions with more accuracy, speed and less cost. 
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The MPP tracking of PV array is structured by the controller operating the boost 

converter switch, whose responsibility is to shift and maintain the panel’s output power to 

the above identified optimal maximum power. With the motivation of achieving maximum 

efficiency many control schemes for maximum power point tracking of PV array has been 

emerged using fuzzy model based approach [158-161], genetic algorithm [162], Ripple-

Based Extremum Seeking Control [163], Neural network based approach [164] etc.  

Model Predictive Control is an advanced accurate control approach applicable to a 

wide range of practical applications due to multivariable handling nature and easy 

implementation [165, 166]. MPC has the skill to handle constrictions imposed on process 

inputs and outputs, process nonlinearities, dead times, overcoming disturbances and model 

uncertainties.  

Designing an accurate nonlinear model and solving nonlinear optimization problem 

online are the tough tasks in nonlinear model predictive controller. A commonly accepted 

shortcoming of model predictive control is its capability to control systems with slow 

dynamics with sample time in the order of seconds or minutes. The sole reason for this 

short coming is the repetition of prediction and optimization at each sampling instant. A 

well recognized method for implementing fast MPC is by adopting the Finite Control Set 

Model Predictive Control technique. 

FCS-MPC is a method, in which the optimization problem can be made simple by 

utilizing the discrete nature of power converters. In FCS-MPC method, a discrete model is 

used to predict the behavior of the system for every admissible actuation sequence up to 

the prediction horizon. The switching action that minimizes a predefined cost function is 

finally selected to be applied in the next sampling instant [167]. The main advantage of 

FCS-MPC lies in the direct application of the control action to the converter. Many 

successful applications of FCS-MPC method for power converters and drives are discussed 

in articles [93-100].  

In the present work, the control of photo voltaic array maximum power point 

tracker is accomplished by Extreme ANFIS-MPC and RVR-FCS-MPC and SVR-FCS-

MPC for the first time, which operates the DC converter switch combined with Extreme 

ANFIS/ RVR/ SVR based MPPT which identifies and supplies reference MPP input to the 

controller at different operating conditions. Thus the advantages of accurate prediction by 

Extreme ANFIS/ RVR/ SVR model and simplified optimization by FCS-MPC principle 

are utilized. A real time interaction of the Extreme ANFIS- MPPT/ RVR-MPPT/ SVR-

MPPT which provides optimal reference trajectory to the Extreme ANFIS-MPC/ RVR-
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FCS-MPC/ SVR-FCS-MPC based on instant solar energy, promotes better transient 

response under sudden alterations in solar irradiance when compared to state space model 

based MPC proposed by in [101]. 

5.2 STRUCTURE OF PHOTOVOLTAIC CELLS, MODULES AND ARRAYS 

A photovoltaic cell performs photoelectric effect which is nothing but conversion 

of sunlight into electricity. Sunlight falling on the PV cell may be reflected, absorbed, or 

passed through; yet, electricity is generated only by the absorbed light. The electrons in the 

PV cell atoms acquire the energy of absorbed light. With the power of this energy, the 

energy acquired electrons gets interrupted from its standard locations in the atoms of PV 

material and supports the flow of electric current in the electrical circuit. “Built-in electric 

field,” which is a particular electrical property of the PV cell offers the force or voltage 

necessary to drive the current via an external load [168]. Two layers of semiconductor 

material say p-type and N-type are kept in touch with each other, to encourage the built-in 

voltage inside a PV cell. N-type semiconductor material is the one which has electrons as 

the majority carriers and has negative electrical charge. The p-type semiconductor material 

is the one which has holes as the majority carriers and has positive electrical charge. In N-

type semiconductor material electrons are the majority carriers and in P- type 

semiconductor material holes are the majority. Stuffing of these P-type and N-type 

material together generates a P-N junction at their boundary with an electric field. The P-N 

junction of a PV cell is shown in Fig. 5.1. 

 

Fig. 5.1 P-N Junction of a Solar Cell 

After the formation of a PN junction, excess electrons in the N-type material shift 

to the P-type material, and excess holes in the p-type side shift to the N- type side. The 

process builds up positive charge and negative charge along the sides of the N-type and P-

type semiconductor material respectively. This movement of charges results in generation 
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of an electric field at the PN junction. This is due to the flow of negatively charged 

electrons and positively charged holes. The electrical field developed pushes the electrons 

towards the negative surface to carry current and holes towards the positive surface, where 

they stay for incoming electrons [168]. Power converters are essential to convert DC to 

alternate current (AC) for commercial applications. This electricity can also be stored in 

batteries, for upcoming use. All these are known as the “balance of system” (BOS) 

mechanism [169]. Combination of PV modules and BOS mechanism constructs the PV 

system. This PV system satisfies the energy demand of day to day life. Fig. 5.2 describes 

the schematic of a solar cell, solar module and solar array. 

A PV or solar cell is the fundamental construction block of a PV or solar power 

system. A single PV cell is typically quite small and produces power of about 1 or 2W 

[169]. The output power is enhanced by connecting together many PV cells to form bigger 

unit called PV modules. Larger units called PV array is formed by interconnecting more 

number of PV modules together to generate more power. Serial connection of cells or 

modules results in the increase of output voltage and the parallel connection of cells or 

modules results in increase of output current. 

 

Fig. 5.2: (a) Solar Cell, (b) Solar Module, (c) Solar Array 

Based on the method of collection of sunlight, PV systems come under two 

common groups: flat-plate type and concentrator type [169]. Flat panel type PV systems 

capture the sunlight either directly or use the diffused one from the surroundings. 

Concentrator systems collect the sunlight as a whole and concentrate by focusing the 

sunlight to target PV panels with the help of lenses and reflectors. By this means of 

absorbing the solar light, the effectiveness of the PV cell is improved. 

5.3 STRUCTURE OF OVERALL SYSTEM 

The structure of overall photo voltaic array MPPT system through NMPC strategy 

utilizing RVM regression model is shown in Fig 5.3. The PV array captures the lunar 
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radiation. The output of PV array is associated to DC-DC boost converter whose output is 

organized by RVM based model predictive controller through switch s, to trap maximum 

power from the PV module. 

A MPPT based on another RVR model utilizes the PV module temperature and 

solar irradiance to predict the MPP current i* and MPP voltage v* to provide the desired 

reference trajectory to the RVM MPC. Thus the PV array voltage vpv, PV array current ipv, 

reference current i*, reference voltage v*, converter output voltage vc 

 

are provided as 

inputs to RVM based MPC to gather appropriate information at each sampling instant to 

either open the switch or close the switch s with binary output. 

Fig. 5.3 Structure of overall PV array MPPT system through RVM-MPC strategy 

The basic structure of overall photo voltaic array MPPT system through NMPC 

strategy utilizing Extreme ANFIS/ SVM regression model is obtained by replacing RVM 

model by Extreme ANFIS/ LS-SVM model in Fig. 5.3. 

5.4 PV SYSTEM CONFIGURATION AND CHARACTERISTICS 

A typical double diode PV model shown in Fig.5.4 is considered to examine the 

efficiency of the proposed NMPC. In double diode PV model two diodes are connected in 

parallel to get more accurate I-V characteristics than single diode PV model. The modeling 

of double diode PV array is derived by [170, 171]. The net output current of the PV cell is 

the difference between the photovoltaic current Iph generated by solar irradiation and diode 

reverse saturation currents ID1 ,  ID2
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where, 

I  - Net output current of solar cell 

Iph  

I

- photovoltaic current 

01,I02 

V  - Terminal voltage 

- Diode reverse saturation currents 

Rs  

R

- Series resistor 

p  

a

- Parallel resistor 

1,a2

V

 -  Diode constants 

t  

 Photovoltaic current–voltage (I–V) curves shown in Fig. 5.5 are obtained by 

measuring the current produced by varying the load resistance, after maintaining the cell 

temperature constant. The I–V curve characteristically goes through two points: 

- Thermal voltage 

• Short-circuit current (ISC): ISC

• Open-circuit voltage (V

 is the current generated by short circuiting the output 

terminals of the solar cell or in other words current generated when the  terminal 

voltage of the solar cell and  load resistance are maintained zero. 

OC): VOC

The I

 is the voltage generated by open circuiting the 

output terminals of the solar cell or in other words voltage corresponding to zero 

current or infinite load resistance. 

SC and VOC

 

 of the PV array considered is tabulated in Table 5.1 

Fig. 5.4 Double diode PV model 

Table 5.1 PV array details 

Parameter Values 

Short-circuit current (Isc) 20.5 A 

Open-circuit voltage (Voc) 66.5 V 
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The cell may be operated over a wide range of voltages and currents. By varying 

the load resistance from zero (a short circuit) to infinity (an open circuit), the MPP of the 

cell can be determined. On the I–V curve, the maximum power point occurs when the 

product of current and voltage is maximum. No power is produced at the short-circuit 

current with no voltage, or at the open-circuit voltage with no current. Therefore, MPP is 

somewhere between these two points. Maximum power is generated at about the “knee” of 

the curve. This point represents the maximum efficiency of the solar device in converting 

sunlight into electricity [172]. A PV system consists of many cells connected in series and 

parallel to provide the desired output terminal voltage and current. This PV system exhibits 

a nonlinear I–V characteristic [173]. The voltage-current and power-current characteristics 

of a PV array with specification given in Table 1 are shown in Fig. 5.5 and Fig.5.6. 

The serial and parallel combination of solar cell constitutes photovoltaic array. A 

photovoltaic array containing multiple photovoltaic modules is meant for converting 

sunlight into usable electricity. A photovoltaic system supplying power for residential, 

commercial, or industrial energy supply generally contains an array of solar modules, 

power converters, electrical wiring, interconnections and mounting for other components. 

While modeling the PV array, photovoltaic current Iph, diode reverse saturation 

currents I01 and I02 are multiplied by the number of solar cells linked in parallel and the 

thermal voltage Vt   is multiplied by the number of solar cells linked in series.  

Ideally the maximum power point current corresponding to irradiance 1000 W/m

The V-I and 

I-P characteristics of the PV array are shown in Fig.5.5 and Fig. 5.6 respectively.   
2 

and 1200 W/m2 are 18.6 A and 22.3 A respectively. Hence for a sudden change in 

irradiance from 1000 W/m2 to 1200W/m2

 

, MPC for photovoltaic array MPPT system is 

anticipated to track MPP1 to MPP2 in Fig.5.6 which corresponds to the maximum power 

point reference currents 18.6 A and 22.3 A respectively. 
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Fig. 5.5 V-I Characteristics of PV system for two irradiance levels 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.6 I-P Characteristics of PV system for two irradiance levels 
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5.5 ANALYSIS OF PROPOSED CONTROL ALGORITHM 

The proposed control methodology is based on Extreme ANFIS/ RVM/ SVM based 

finite control set model predictive controller, which operates the DC converter switch 

combined with Extreme ANFIS/ RVM/ SVM based MPPT which identifies and supplies 

reference maximum power point input to the controller. Thus, one Extreme ANFIS/ RVM/ 

SVM model duplicates PV array and the other model duplicates boost converter 

accompanying actual PV array output. The theory behind Extreme ANFIS, RVR and SVR 

are discussed in detail in chapter 3. 

5.5.1 MPPT based on Extreme ANFIS, RVM and SVM models 

Maximum power point tracking is a technique to trap the utmost possible power 

from solar panels. It is the task of the MPPT system to sample the output of the solar cells 

and apply suitable load to withdraw maximum power for any environmental condition.  

 The Extreme ANFIS/ RVM/ SVM model is employed to supply the controller with 

appropriate MPP reference inputs. For this present work, the data is obtained by simulating 

the proposed photovoltaic module in an open-loop system. The simulation is carried out at 

random irradiance constrained between 400 W/m2 and 1200 W/m2

A sequence of 100 samples is used to train the sparse Bayesian RVR model offline. 

Hyperparameter estimation is carried out by Expectation Maximization (EM) updates on 

the objective function [22]. For this RVR model RBF kernel is used with the width 

parameter estimated automatically by the learning procedure [22] which improves 

generalization ability and reduces computational complexity of the training process. Also 

in the RVR model confidence intervals, likelihood values and posterior probabilities could 

be explicitly encoded easily. The SVM model involved in NMPC strategy is also trained 

offline using the same sequence of 100 samples by leave one out method. In SVR model 

the leave one out method is used to train offline using a sequence of 100 samples.  

 and its corresponding 

maximum power point voltage and current values are recorded. 

The Extreme ANFIS model involved in NMPC strategy is also trained offline using 

the same sequence of 100 samples. Three bell shaped membership functions are used for 

adapting parameters of ANFIS. 

Fig. 5.7 and Fig. 5.8 correspond to the modeling results of RVR model and SVR 

model for reference current. The prediction error for training data of RVR model and SVR 

model are shown in Fig. 5.7. Also the prediction accuracy for random unseen testing data 

of RVR model and SVR model are shown in Fig. 5.8. They explain the little better 

prediction capability of RVR model compared to SVR model due to its better 
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generalization capability and model accuracy. The modeling results of Extreme ANFIS 

model is same as SVR model hence only the later is shown in Fig. 5.7 and Fig. 5.8. 

 

Fig. 5.7 Training performance of RVR/SVR model for maximum power point current 

 

Fig. 5.8 Testing performance of RVR/SVR model for maximum power point current 
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The trained Extreme ANFIS model, RVR model and SVR model are further tested 

with 100 samples of random unseen inputs which are beyond the training data and there 

corresponding absolute prediction errors are shown in Fig. 5.8, which explores slightly 

better generalization capability of RVR model than Extreme ANFIS model and SVR 

model. Thus one can conclude that all the three empirical models Extreme ANFIS, RVR 

and SVR have good generalization capability. 

5.5.2 Different machine learning techniques Based MPC Principle 

The machine learning techniques employed here are used to predict n sampling 

instant (k+n) ahead behaviour of boost converter in order to implement control action at 

current sampling instant k. Thus MPC technique has the capability of understanding the 

forthcoming behaviour of the process and to take protective action at the current instant k 

itself in order to avoid undesirable offsets and oscillations at (k+n)th

Block diagram of RVM based MPC using FCS-MPC principle is shown in Fig. 5.9 

which presents the FCS-MPC algorithm. It holds five main steps as summarized below 

[164] 

 instant guaranteeing 

robustness to system performance. 

1) Measure the instantaneous PV array voltage vpv, PV array current ipv, reference 

current i*, reference voltage v*, converter output voltage vc 

2) Predict the converter output voltage v

. 

c and PV array current ipv

3) Compute the performance function for each prediction. 

 for the subsequent 

sampling instant for all the feasible switching states. 

4) Choose the switching state corresponding to minimum performance function. 

Apply the latest switching state. 

Extreme ANFIS/ SVM based MPC using FCS-MPC principle is attained by 

replacing RVM model in Fig. 5.9 by Extreme ANFIS/ SVM model.  

Boost converter otherwise called as step-up converter is a DC-to-DC power 

converter which produces an output which is superior to its input. It is categorized  under 

switched-mode power supply (SMPS) with one diode and one transistor as switches and an 

energy storing element  either  a capacitor or inductor, or the combination of both. Filters 

can be connected at the output side to reduce the ripples in the output voltage. 

Power could be supplied to the boost converter from batteries, solar panels, 

rectifiers, DC generators etc. A DC to DC converter is one which alters one DC voltage to 

another DC voltage. A boost converter is otherwise called as step-up converter as it “steps 

up” the input voltage. 

http://en.wikipedia.org/wiki/DC-to-DC_converter�
http://en.wikipedia.org/wiki/DC-to-DC_converter�
http://en.wikipedia.org/wiki/Switched-mode_power_supply�
http://en.wikipedia.org/wiki/Diode�
http://en.wikipedia.org/wiki/Transistor�
http://en.wikipedia.org/wiki/Capacitor�
http://en.wikipedia.org/wiki/Inductor�
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Fig. 5.9 Block diagram of RVM based MPC using FCS-MPC principle 

The dynamic equations of DC-DC boost converter adopted here to boost the value 

of solar panel output voltage for utmost power withdrawal has the following two ideal 

switching states, 

  When switch is open, s=1, current will be reduced due to higher impedance. 
Therefore, modification or drop in current will be restricted by the inductor. Hence higher 
voltage is allowed to charge the capacitor. 

)(1
pvpv

pv vi
Ldt

di
+=               (5.2) 

)1(1
pvpv

c v
R

i
Cdt

dv
+=               (5.3) 

When switch is closed, s=0, the inductor stores the energy.  

pv
pv v

Ldt
di 1

=                (5.4) 

C
c v

RCdt
dv 1

=                (5.5) 

The boost converter presented in Fig. 5.10 is configured using C= 50μF and L=20mH. 
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For a nonlinear process the predicted output of different models is a function of 

past process outputs, Y(k)=[y(k)…..y(k-ny+1)] and past process inputs, U(k-1) = [u(k-

1)…u(k-nu+1)]. The number of past controlled outputs and past manipulated inputs 

depends on the corresponding process orders nu and ny

 

 respectively. 

Fig. 5.10 Equivalent circuit of boost converter for two switching states  
(a) Open switch s=1 (b) Closed switch s=0 

Thus a single step ahead performance prediction of the system output can be 

illustrated by the subsequent discrete time model, 

)]1(),...,(),1(),....([)1(ˆ +−+−=+ uy nkukunkykyfky                       (5.6) 

where k is the discrete time index 

The above equation can also be written as 

)]1(),(),([)1(ˆ −=+ kUkukYfky                    (5.7) 

Here, Y(k) and U(k-1) are the vectors holding past controlled outputs and past manipulated 

inputs respectively.  

  Thus after system identification of boost converter accompanying actual PV array 

outputs the one step ahead predicted converter output voltage vc  and the one step ahead 

predicted PV array current ipv

  

 for their two possible switching states are given in (5.8) and 

(5.9) respectively. 
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In (5.8) and (5.9) )0(ϕ and )1(ϕ are the RBF kernel functions corresponding to 

manipulated variable (switch position) s=0 and s=1 respectively. 
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The performance index calculated for photo voltaic array MPPT system is, 
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FCS-MPC is the methodology incorporated to simplify the optimization problem 

and to track the right direction of P-V curve to extract and maintain maximum power. 

FCS-MPC procedure for one controlled variable ipv is shown in Fig. 5.11. The reference 

trajectory offered by different models based MPPT is specified by dashed line. As the 

prediction horizon length is one the model predictive controller has to select the control 

action either S0 or S1 corresponding to minimum cost function J0 or J1 

The behaviour of both the controlled variables i

respectively. 

pv and vc 

 

are entirely dependent on 

the instant dynamic output of operating PV module. In [101] a simplified equivalent 

equation describing the PV system is used and hence a regulation factor is involved to 

minimize prediction error. In this work, as the model used itself duplicates boost converter 

accompanying actual PV array output, the necessity for any equivalent equation describing 

PV system behaviour is neglected. Thus the prediction of boost converter performance is 

made simple, fast and accurate without any extra regulation factor. 

Fig. 5.11 FCS-MPC methodology 

In [101] the horizon length is set to 2 in order to minimize estimation error which 

increases computation complexity. In this work, the horizon length is chosen to be 1 which 

minimizes computation burden and makes practical implementation of manipulated 

variable (switch position) very simple. 

5.6 RESULTS AND DISCUSSIONS 

This section describes the performances of PV array MPPT through RVM based 

NMPC strategy, Extreme ANFIS based NMPC strategy and SVM based NMPC strategy. 
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The performances of the proposed methods are better than space model based NMPC 

approach proposed by Kakasimos et.al [101]. 

In the proposed control system methodologies, RVM regression model, Extreme 

ANFIS model and SVM regression model plays vital role in providing reference inputs and 

accurate nonlinear model for executing MPC strategy. 

Hence for a rapid change in irradiance from 1000 to 1200 W/m2

 

 the accurate RVR 

model, Extreme ANFIS model and SVR model with good generalization capability 

developed in this work as MPPT, has the capability to afford fast, fluctuation free, steady 

state reference input to the model predictive controller as revealed in Fig. 5.12 (The 

response of MPPT-RVR, MPPT-Extreme ANFIS and MPPT-SVR are similar and hence 

only the former is plotted). The reference input provided by modified incremental 

conductance algorithm proposed in [101] is slow with more oscillations. 

 
Fig. 5.12 Desired output current for irradiance variation  

from 1000 W/m2 to 1200 W/m

Also, the accuracy and better generalization property of RVR model, Extreme ANFIS 

model and SVR model used in RVM based MPC, Extreme ANFIS based MPC and SVM 

based MPC respectively enables better tracking performance than state space model based 

MPC under any transient conditions. Thus in the proposed methodologies the PV array 

current i

2 

pv tracks the accurate reference current i* steadily with zero oscillations, which is 

much better than the state space model based MPC strategy proposed in [101] as shown in 

Fig.5.13 (The response of RVR-MPC Extreme ANFIS- MPC and SVR-MPC are similar 

and hence only the former is plotted). The PV array output power is shown in Fig.5.14 in 
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which the extracted output power is more efficient in RVM/ Extreme ANFIS/ SVM based 

MPC. The tracking efficiency corresponding to irradiance variation 1000 W/m2 and 1200 

W/m2 

 

are 99.85% and 99.91% respectively. 

 
Fig.5.13 PV array current tracking performance for irradiance variation  

from 1000 W/m2  to 1200 W/m
 

2 

 

Fig.5.14 Overall power extracted from PV system by RVM based MPC under 
irradiance variation from 1000 W/m2 to 1200 W/m

5.6.1 Tabulation of performance indices for different controlling techniques 

2 

This section enunciates the performance indices and sampling time of the proposed 

methodologies and state space model based MPC proposed by Kakasimos et.al. [101]. 

Table 5.2 and Table 5.3 show the number of support vectors/ relevance vectors and 

sampling time related to each controller for the simulation carried out.  

 The number of relevance vectors of RVR model is very less than the number of 

support vectors of SVM model which sharply reduces the computational time of RVR-

1223 W 
(99.91)% 

 

1008.5 W 
(99.85)% 
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MPC. The overall simulation of RVM based MPC system and Extreme ANFIS based MPC 

system are carried out with a sampling time of 26μs and 27μs respectively, guaranteeing 

the capability of MPC control system to provide control action at every 26μs and 27μs 

correspondingly, which is sufficient for fast real time application. Thus the RVM based 

MPC and Extreme ANFIS based MPC has the capability to tackle the transient conditions 

intelligently with accuracy and fast convergence characteristics than LS-SVM based MPC 

and state space model based MPC [101] whose sampling time is 50μs. 

Thus when compared to state space model based MPC, Extreme ANFIS based 

MPC and RVM based MPC performs better based on various attributes like better 

prediction accuracy, better generalization capability, better set point tracking performance 

and very less computation time. This makes it well suitable for industrial process control 

applications. 

Table 5.2 Performance Indices of various control strategies 

Control tactics 
Number of     
Training 
Samples 

Model 

Number of 
Support Vectors/ 

Relevance 
Vectors 

   MPC 
Sampling time 
    (Seconds) 

LS-SVM-MPC 100 SVR 54 0.00005 

Extreme ANFIS - 

MPC 
100 

Extreme 

ANFIS 
- 0.000027 

RVM-MPC 100 RVR 9 0.000026 

Kakasimos et.al - State space - 0.00005 

 

Table 5.3 Performance Indices of various MPPT strategies 

MPPT model Number of 
Training Samples 

Number of 
Support Vectors/ 

Relevance Vectors 

LS-SVM 100 53 

RVM 100 11 
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5.7 CONCLUSION  

Novel simple nonlinear control strategies, RVM/ Extreme ANFIS/ SVM based 

MPC using FCS technique are proposed for PV system to accomplish maximum energy 

utilization. The accurate reference trajectory delivered by one RVR/ Extreme ANFIS/ SVR 

model based on instant real time solar energy empowers the NMPC to handle abrupt 

changes in solar irradiance more efficiently. The performances of the proposed simple 

algorithms are much better than the performance of state space model based MPC. 

Simulation results convey that such better performance is due to the better prediction 

accuracy of RVM/ Extreme ANFIS/ SVM model owing to its good generalization 

capability. The proposed controller does not require heavy computations; hence, 

implementation is feasible. 



Chapter 6 
NON LINEAR MODEL PREDICTIVE CONTROL OF A MULTI INPUT 

MULTI OUTPUT PROCESS 

This chapter describes the control of highly nonlinear distillation column MIMO process using 

Relevance Vector Machines (RVM) regression model, Support vector regression model Extreme 

ANFIS model and NN model based MPC’s. The optimization problem in the above control 

algorithm is made faster by particle swarm optimization with controllable random exploration 

velocity method of optimization. The simulation results comparing MPC using deterministic sparse 

kernel learning technique, probabilistic sparse kernel technique, neuro-fuzzy technique and NN 

technique are shown. 

6.1 INTRODUCTION 

Recent technological developments and ever-increasing demands of automation 

have necessitated the sophisticated control of complex systems [174]. The simulation and 

design of controller for higher order processes is a complicated task since the cost and 

complexity of the controller increases with system order [175]. High performance robust 

control and tracking control using nonlinear surface of the system is discussed in [176]. 

Model predictive control which is a subset of optimal control problem is a suitable, well 

efficient controller for highly nonlinear and interacting MIMO systems. Generally, in 

model based control approaches physical systems are analyzed and controlled by an 

accurate relevant model. Although an extensive research has been done on multivariable 

system modeling, identification and control most of them make use of linear 

demonstrations of physical systems, which shrinks the controllers operating region. This 

shortcoming could be overcome by the usage of nonlinear support vector regression 

models, relevance vector regression models, neuro-fuzzy models, neural network models. 

Even though control of multivariable systems is the extension of the control of 

SISO systems, there are certain complicated tasks associated with it. The sole reason for 

the complications in MIMO control system is the presence of interaction among process 

variables. Hence the success of multi input multi output control strategy is evaluated based 

of its ability to deal with the consequences of interaction. 

One among the widely used control for MIMO system is the PID Multi loop 

control which is a kind of control applicable for systems having minor interactions among 

process variables. It is the method of transformation of MIMO system to separated SISO 

systems. Here paring between controlled and manipulated variables is an important feature 

[177]. But if the interaction among process variables is strong, a decoupling component, 
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decoupler has to be designed. As a whole, all the separate control loops has to be tuned 

independently. This simple robust PID controller attracted most of the industries [178, 

179]. Proper selection of manipulated variable pairing and accurate design of decoupler is 

necessary for efficient control using this PID controller.  Hence a thorough knowledge of 

the process is must before designing the PID controller. As SVM/RVM based MPC’s 

makes use of SVM /RVM model, thorough knowledge of the process is not necessary 

instead accurate input output data of the process is sufficient. This feature makes neural 

network/SVM/RVM model based MPC’s attractive. 

One among the significant reasons which makes MPC successful in industries is its 

capability to handle highly nonlinear MIMO process with ease. The key role of Model 

predictive controller is the minimization of the formulated performance index, which is the 

deviation of predicted output from the desired one. This minimization is achieved by a 

novel method of optimization, particle swarm optimization with controllable random 

exploration velocity described in chapter 4. 

This chapter describes the simulation results of a highly nonlinear multi input multi 

output distillation column process with severe interacting process variables illustrates, the 

tracking performance of RVM based MPC with a radial basis function kernel, 

deterministic sparse kernel SVM based MPC with a radial basis function kernel, neuro-

fuzzy technique and neural network based MPC are shown with relevant results. 

6.2 BASIC STRUCTURE OF MPC FOR A MIMO SYSTEM 

The general MPC configuration is shown in Fig. 6.1. It includes the blocks 

representing the MIMO system to be controlled, dynamic nonlinear model of the process, 

controller for control calculations. The variable residuals are equivalent to the disturbance 

affecting the process if the model is faultless. But practically none of the model is perfect 

hence, residuals is alike the effect of disturbance and model mismatch. The nonlinear 

dynamic model predicts the dynamic outputs of the plant based on systems past inputs and 

outputs. The predictions could be made for more than one time step ahead. Then the 

control calculations are done by the controller which is based on future predictions and 

current measurements. This control value is responsible for minimizing the deviation 

between the plant’s output and set point. The feedback mechanism provided for the actual 

MIMO process compensates the error in the prediction which occurs because of the 

mismatch between the process and the model. 
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Fig. 6.1 MPC basic structure 

6.2.1 Cost function formulation 

For a MIMO mn× nonlinear process the predicted outputs of NN/ LS-SVM/ RVM  

model from is a function of past process outputs, Y(k)=[y1(k)…..y1(k-ny+1), y2(k)…..y2(k-

ny+1),….,ym(k)…..ym(k-ny+1)] and past process inputs, U(k-1)=[u1(k-1)…u1(k-

nu+1),u2(k-1)…u2(k-nu+1),....,un(k-1)…un(k-nu+1)]. Which could be compactly rewritten 

as Y(k)=[Y1(k),Y2(k)…,Ym(k)] and U(k-1)=[U1(k-1),U2(k-1)….,Un(k-1)] . Here, Y(k) and 

U(k-1) are the vectors holding the past controlled outputs and past manipulated inputs 

respectively. The number of past controlled outputs and past manipulated inputs depends 

on the corresponding process orders nu and ny

 Thus the prediction of m outputs for a MIMO 

 respectively. 
mn×  nonlinear process can be 

illustrated by the discrete time model given below, 

)]1(),(),([)1(ˆ 11 −=+ kUkukYfky         

)]1(),(),([)1(ˆ 22 −=+ kUkukYfky              (6.1) 

……..   

)]1(),(),([)1(ˆ −=+ kUkukYfky mm  
where k is the discrete time index 

The simple idea behind regression problem using sparse kernel learning structure is 

to project the input vectors by a nonlinear mapping into the high dimensional kernel 

Hilbert space and then to carry out linear regression in that feature space. Thus after system 

identification with the regression data set, the single step ahead prediction of each output 

using NN model could be formulated as, 



126 
 

( ) ( )( ){ }∑
=

++=+
hid

i
iiij bknetfwky

1
11

            
(6.2) 

single step ahead prediction of each output using LS-SVM model could be formulated as,    
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single step ahead prediction of each output using RVM model could be formulated as, 
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                   (6.4) 

where j=1…m and M is the subset of training samples. 

Accordingly, the performance index to be minimized to achieve the optimal control 

sequence can be obtained as shown below, 
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In the performance index formulated in Equation (6.5) ŷ  depends on the kernel 

function which in turn is a function of manipulated variable u, which is optimized and 

applied to the actual plant to diminish the deviation between the desired value and 

controlled variable. 

  N1

  N

  - minimum prediction horizon 

2

  N

  -  maximum prediction horizon 

u

  m  -  number of outputs 

  -  control horizon 

  n  - number of inputs 

  ref(.)             -  reference trajectory 

      (.)ˆ jy   - jth

      

 predicted output of the model 

(.)ju∆       -  change of jth  control input defined as uj

       k    - current sampling instant 

(k+i)-uj(k+i-1) 

           jjq λ,     - time independent weighting coefficients. 

6.3 BINARY DISTILLATION COLUMN PROCESS 

This section describes the better accuracy and less computational demand of LS-

SVM based NMPC than NN based NMPC by simulating a binary distillation column.  

 The arrangement of distillation column process for the separation of a binary 

mixture of methanol and n-propanol is shown in Fig. 6.2. Two conventional controllers 
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represented by LC are used to retain the levels in the reflux and bottom product tanks. The 

MPC algorithm is responsible for controlling the composition of top product Dx  and 

bottom product Bx  by manipulating the reflux stream flow rate, L and vapour stream flow 

rate, V. Two significant controller performance characteristics of desired set point tracking 

and disturbance rejection are presented by suitable simulations. 

 
Fig. 6.2 Schematic of the binary distillation column process 

The binary distillation column considered is under LV –configuration [180]. It 

exhibits severe nonlinearity and strong cross coupling both under steady state and dynamic 

operating conditions. Simulation results convey the suitability of NMPC to tackle this 

nonlinearity and cross coupling. 

The fundamental model containing the following nonlinear differential equations is 

used as the real process during simulation. The molar flows, relative volatility, liquid 

holdup on all trays are assumed to be constant. Mixing on all stages is perfect and vapour 

holdup is assumed to be nil. 

 The important notations of the distillation column are listed below, 

F   - Feed rate [kmol/min] 

qF

D and B  - distillate and bottom product flow rate [kmol/min] 

   - Fraction of liquid in feed 

xD and xB 

L   - reflux flow [kmol/min] 

- distillate and bottom product  composition 

V   - boilup flow [kmol/min] 

MB   -  Liquid holdup on reboiler [kmol] 
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MD

M

   - condenser holdup [kmol] 

i

N

   - Liquid holdup on theoretical tray i [kmol] 

T

N

   - total number of trays 

F

Q

   - location of Feed tray from bottom 

F

L

   - fraction liquid in feed 

B   

V

-  Liquid flow rate into reboiler 

T  

X

- vapour flow rate on top tray 

B  - lnxB, 

Y

logarithmic bottom composition 

D  - ln (1-yD), 

x

logarithmic top composition 

i  

y

-   liquid mole fraction of light component on stage i 

i  

y

- vapour mole fraction of light component on stage i 

T  

Z

- vapour mole fraction of light  component on top tray 

F  

ref
Dx

-  mole fraction of light component in feed 

  -  desired value of distillate product composition 

ref
Bx   - desired value of bottom product composition 

Material balance equations for change in holdup of light component on each tray; 

)1(,2 , +≠≠= FFT NiNiNi iiiiiiiiii yVxLyVxLxM −−+= −−++ 1111                     (6.6)
 

above feed location 1+= FNi
 

Fviiiiiiiiii yFyVxLyVxLxM +−−+= −−++ 1111        (6.7) 

below feed location, FNi =
 

FLiiiiiiiiii xFyVxLyVxLxM +−−+= −−++ 1111                        (6.8) 

reboiler, 1=i
  

111 , xxBxyVxLxM BiiiiiiB =−−= ++                           (6.9)
 

total condenser, 1+= Ni  

111 , +−− =−−=
TNDiiiiiiD xyDxxLxVxM                          (6.10) 

VLE on each tray, ),1( TNi =  , constant relative volatility 

))1(1( iii xxy −+= αα                           (6.11) 

Flow rates above and below feed trays with constant molar flow rates are, 

FNi >  above feed, ,LLi =  Vi FVV +=                        (6.12) 

FNi ≤  below feed, ,Li FLL += VVi =           (6.13) 
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FqF FL =   , LV FFF −=              (6.14) 

condenser holdup is kept constant, 

LFVLVD VN −+=−=              (6.15) 

reboiler holdup is kept constant, 

VFLVLB L −+=−= 12              (6.16) 

Vapour phase and liquid phase composition of the feed  FF yx , respectively  are obtained 

by solving the equations below. 

FVFLF yFxFFZ +=                (6.17) 

))1(1( FFF xxy −+= αα             (6.18) 

6.4 NEURAL NETWORK BASED MPC OF DISTILLATION COLUMN 

PROCESS 

This section describes NN based MPC using PSO-CREV optimization algorithm. 

In order to develop an accurate model accurate data set is necessary and is generated by 

simulating the Matlab Simulink model of distillation column. Those recorded data set is 

meant for learning, validating and testing the model. The learned, validated and tested 

model is then incorporated in MPC to provide accurate predictions of process dynamics. 

6.4.1 Training and testing the model 

The dynamic model of the binary distillation column is simulated open loop to 

collect the training and testing data. The simulation is carried out at random constrained 

reflux flow and boilup flow and its corresponding distillate and bottom product 

compositions are recorded. The constraint to the input signals, reflux flow and boilup flow 

are 2.5≤ u1(t) ≤ 2.9 and 3≤ u2t) ≤ 3.5 respectively. The binary distillation column model 

considered under LV- configuration contains a total of 41 stages including the reboiler and 

total condenser. Thus the dynamic model contains 41 nonlinear differential equations. In 

order to capture the above order of dynamics using NN model two past outputs and past 

inputs are sufficient hence a second order model is chosen. 

A two layer feed forward neural network comprising of five hidden neurons with 

sigmoid activation function and a single output neuron with linear activation function is 

used as the model. In Neural network based nonlinear MPC, for offline training the 

multilayer feed forward neural network a sequence of 1000 samples with two delay 

regression vector format are used and is done through Levenberg-Marquardt learning 
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algorithm. The identification performance of NN method of approximation is assessed by 

the root mean square error (RMSE) performance function in (6.19). 
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                      (6.19) 

where )(ky  - output of the model for kth

          

 sampling instant,  

)(ky  - output of the plant for kth

N     - total number of samples. 

 sampling instant, 

 Fig. 6.3 and Fig. 6.4 correspond to the modeling results of NN methods. The 

trained model is further tested with 100 samples of data which are beyond the training 

data. The graph of prediction errors of NN model for test data beyond the training data are 

shown in Fig. 6.4, which explores the poor generalization capability of NN model with 

lengthy training time. Accuracy of the model in terms of RMSE (6.18) is tabulated in 

Table 6.1. 

 

Fig. 6.3 Training performance of NN models 
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Fig. 6.4 Testing performance of NN models 

6.4.2 Performance of NN-PSO-CREV-MPC 

The offline trained, validated and tested NN model is then used as the nonlinear 

model for nonlinear MPC. Fig. 6.5 illustrates the random set point tracking performances 

of NN model based MPC. The tracking performance of NN based MPC, is with more 

oscillations due to the presence of strong interacting process variables.  

Also as the PSO-CREV algorithm converges to the finest solution at each sampling 

instant the manipulated variables reflux flow rate, L and boilup flow rate, V corresponding 

to NN-PSO-CREV are with smooth fluctuations as shown in Fig.6.6 presenting the index 

of control performance. 

The unmeasured disturbance rejection capability of NN-PSO-CREV based MPC is 

verified by subjecting the distillation column process with dissimilar magnitudes of 

disturbance at different sampling instants as shown in Fig. 6.7. The control variables, 

Reflux flow rate, L and boilup flow rate, V with disturbances at different sampling instant 

(indicated by dashed circles) are revealed in Fig. 6.7.  
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The MPC parameters for the best control of distillation column process are given below.  

Minimum prediction horizon=1 

Maximum prediction horizon=5 

Control horizon=1 

Penalty factor on differenced control signal =0.005 

Control input 1 constraint 2.5≤ u1(t) ≤ 2.9  

Control input 2 constraint 3≤ u2t) ≤ 3.5  

The unmeasured disturbance rejection performance of NN-PSO-CREV based MPC 

as shown in Fig. 6.8. The controlled variables, top product composition and bottom 

product composition settles down slowly with oscillations after getting affected by 

unmeasured disturbances. 

 

Fig. 6.5 Set point tracking performance of distillation column process by NN-MPC 
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Fig. 6.6 Modifications in the process variables for tracking the top product and 
bottom product compositions of distillation column process 

 

Fig. 6.7 Modifications in the process variable to illustrate unmeasured disturbance 
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Fig. 6.8 Performance of unmeasured disturbance rejection 

6.5 SVM BASED MPC OF BINARY DISTILLATION COLUMN PROCESS 

This section describes SVM based MPC using PSO-CREV optimization algorithm 

for the multi input multi output binary distillation column process.  

6.5.1 Training and testing the model 

A sequence of 100 samples is used to train the SVR model offline using the leave 

one out method discussed in chapter 3. Figure 6.9 and Figure 6.10 corresponds to the 

modeling results of SVR models. The identification performance of support vector 

regression model is assessed by RMSE performance function in (6.20). 
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                      (6.20) 

where )(ky  represents the model’s output for the sampling instant k, )(ky  represents the 

plant’s output for the sampling instant k and N represents total number of samples. 
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Fig. 6.9 Training performance of SVR models 

 

Fig. 6.10 Testing performance of SVR models 
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The RMSE values corresponding to the training errors of Support Vector 

Regression models of top product and bottom product compositions are 0.0027and 0.0028 

respectively. The trained SVR models are further tested with 100 samples of random 

inputs which are beyond the training data and there corresponding absolute prediction 

errors are calculated.  

The prediction errors of SVR models for 100 different samples are shown in Figure 

6.18, which explores the good generalization capability of SVR models. Thus one can 

conclude that SVM based empirical modeling behaves suitably for industrial process 

control with good generalization. 

6.5.2 Performance of SVM-PSO-CREV-MPC   

The offline trained and tested SVM model is then used as the nonlinear model for 

nonlinear MPC. Fig. 6.11 illustrates the random set point tracking performances of SVR 

based MPC. The SVM based MPC performs well even in the presence of severe 

interacting process variables. 

 

Fig. 6.11 Set point tracking performance of distillation column process by SVM-MPC 
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Also as the PSO-CREV algorithm converges to the finest solution at each sampling 

instant the manipulated variables reflux flow rate, L and boilup flow rate, V corresponding 

to SVM-PSO-CREV-MPC are with very less fluctuations as shown in Fig.6.12 presenting 

the index of control performance. 

The unmeasured disturbance rejection capability of SVM-PSO-CREV based MPC 

is examined by subjecting the distillation column process with dissimilar magnitudes of 

disturbances at different sampling instants.  

The control variables, boilup flow rate, V and Reflux flow rate, L with disturbances 

(indicated by dashed circles) at different sampling instant are shown in Fig. 6.13. Both the 

controlled variables, top and bottom product compositions settle down smoothly with very 

less oscillations after getting affected by unmeasured disturbances as shown in Fig. 6.14. 

Thus the better capability of SVR based MPC; in overcoming the interaction 

among process variables is vibrant from the simulation results. Accordingly SVR-PSO-

CREV based MPC behaves suitably for process control industrial applications. 

 

Fig. 6.12 Modifications in the process variables for tracking the top product and 
bottom product compositions of distillation column process 
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Fig. 6.13 Modifications in the process variable to illustrate unmeasured disturbance 

 

Fig. 6.14 Performance evaluation of unmeasured disturbance rejection 
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6.6 RVM BASED MPC OF BINARY DISTILLATION COLUMN PROCESS 

This section describes the significance of RVM based MPC using PSO-CREV 

optimization algorithm for the multi input multi output, binary distillation column process 

with highly interacting process variables.  

6.6.1 Training and testing the model 

A random sequence of 100 samples are generated using the Matlab simulink model 

of  binary distillation column process and is used to train the sparse Bayesian RVR model 

offline as discussed in chapter 3. RBF kernel is used in the RVM model which improves 

generalization ability and minimizes the computational complexity of the training process. 

The identification performance of RVR model is assessed by RMSE performance 

function of equation (6.20). Fig. 6.15 and Fig. 6.16 correspond to the modeling results of 

RVR method. The RMSE value corresponding to the training errors of top and bottom 

product compositions are 0.0021 and 0.0024 respectively. The trained RVR model is 

further tested with 100 samples of random inputs which are beyond the training data and 

there corresponding absolute prediction errors are calculated. The graph of prediction 

errors of RVR model shown in Fig. 6.16 explores the better generalization capability of 

RVR model. The RMSE value corresponding to the testing errors of top and bottom 

product compositions are 0.0023 and 0.0025 respectively. Thus one can conclude that 

RVR based empirical modeling can prevail better with accurate model having good 

generalization capability. 
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Fig. 6.15 Training performance of RVR models 

 

Fig. 6.16 Testing performance of RVR models 
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6.6.2 Performances of RVM-PSO-CREV-MPC  

The offline trained and tested RVR model is then used as the nonlinear model for 

nonlinear MPC. Fig. 6.17 illustrates the random set point tracking performances of RVR 

based MPC. The RVR based MPC performs well, with no oscillations even in the presence 

of severe interacting process variables. 

Also as the PSO-CREV algorithm congregate to the finest solution at each 

sampling instant the manipulated variables reflux flow rate, L and boilup flow rate, V 

corresponding to SVR-PSO-CREV and NN-PSO-CREV are with very less fluctuations as 

shown in Fig.6.18 presenting the index of control performance. 

The unmeasured disturbance rejection capability of RVM-PSO-CREV based MPC 

is examined by subjecting the distillation column process with dissimilar magnitudes of 

disturbances at different sampling instants. 

The control variables, Reflux flow rate, L and boilup flow rate, V with disturbances 

(indicated by dashed circles) at different sampling instants are shown in Fig. 6.19. 

Certainly the unmeasured disturbance rejection performance of RVM-PSO-CREV based 

MPC is very good with very less oscillations as shown in Fig. 6.20. The controlled 

variable, product concentration settles down faster after getting affected by unmeasured 

disturbances. Thus RVM-PSO-CREV based MPC behaves suitably for process control 

industrial applications. 

Thus the better capability of RVR based MPC; in overcoming the interaction 

among process variables are vibrant from the simulation results. Accordingly RVR-PSO-

CREV based MPC behaves suitably for process control industrial applications. 

 

Fig. 6.17 Set point tracking performance of distillation column process by RVM-MPC 
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Fig. 6.18 Modifications in the process variables to trail the top product and bottom 
product compositions of distillation column process 

 

 

Fig. 6.19 Modification in the process variable to illustrate unmeasured disturbance 
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Fig.6.20 Performance evaluation of unmeasured disturbance rejection 

6.7 EXTREME ANFIS BASED MPC OF BINARY DISTILLATION COLUMN 

PROCESS 

This section describes the proposed novel Extreme ANFIS model based MPC using 

PSO-CREV optimization algorithm for binary distillation column process. 

6.7.1 Training and Testing the Model 

A sequence of 100 samples with two delay regression vector formats is used to 

train the Extreme ANFIS model offline. The six inputs to the network for reflux flow 

output are y1(k), y1(k-1), u1(k), u1(k-1), u2(k) and u2(k-1), Here,  y(k) and y(k-1) 

corresponds to top product composition. Also u1(k) and u1(k-1) corresponds to input1, 

reflux flow and Also u2(k) and u2(k-1) corresponds to input 2, boilup flow. Three bell 

shaped membership functions with 729 rules are used for adapting parameters of ANFIS. 

This novel Extreme ANFIS model has good generalization ability with less training time. 

The final membership function after learning the nonlinear binary distillation column 

process with Extreme ANFIS algorithm is shown in Fig.6.21 and Fig. 6.22 respectively. 

Fig. 6.21 corresponds to the model for output 1, top product composition and Fig. 6.22 

corresponds to the model for output 2, bottom product composition. 
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The identification performance of Extreme ANFIS model is assessed by the root mean 

square error performance function in (6.21). 
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where )(ky  signifies the predicted output of the model for the sampling instant k, )(ky  
represents the output of the plant for the sampling instant k and N represents total number 

of samples. 

 
Fig. 6.21 Final membership functions of top product composition after learning with 

Extreme ANFIS algorithm 

 

Fig. 6.22 Final membership functions of bottom product composition after learning 
with Extreme ANFIS algorithm 
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Fig. 6.23 Training performance of Extreme ANFIS model 

 

Fig. 6.24 Testing performance of Extreme ANFIS model 
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Figure 6.23 and Figure 6.24 corresponds to the modeling results of Extreme ANFIS 

model. The RMSE values corresponding to training errors of Extreme ANFIS models are 

0.0027 and 0.0028 for top product and bottom product composition respectively. The 

trained Extreme ANFIS models are further tested with 100 samples of random inputs 

which are beyond the training data and there corresponding absolute prediction errors are 

calculated. The RMSE value corresponding to testing errors of Extreme ANFIS models are 

0.0029 and 0.0032 for top product and bottom product composition respectively. 

The graph for prediction error of Extreme ANFIS model is shown in Figure 6.24, 

which explores the better generalization capability of Extreme ANFIS model. Thus one 

can conclude that Extreme ANFIS based empirical model performs better with good 

generalization capability. 

6.7.2 Performances of Extreme ANFIS-MPC 

The offline trained and tested Extreme ANFIS model is then used as the nonlinear 

model for nonlinear MPC. Fig. 6.25 illustrates the random set point tracking performances 

of Extreme ANFIS based MPC. It performs well even in the presence of severe interacting 

process variables. 

 
 

Fig. 6.25 Set point tracking performance of distillation column process by Extreme 
ANFIS-MPC 
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Fig. 6.26 Modifications in the process variables to trail the top product and bottom 
product compositions of distillation column process 

 

Fig. 6.27 Changes in the process variable to show unmeasured disturbance 
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Fig. 6.28 Performance of unmeasured disturbance rejection 

Also as the PSO-CREV algorithm converges to the best solution at each sampling 

instant the manipulated variables reflux flow rate, L and boilup flow rate, V corresponding 

to Extreme ANFIS-PSO-CREV-MPC are with very less fluctuations as shown in Fig.6.26 

presenting the index of control performance. 

The unmeasured disturbance rejection capability of Extreme ANFIS-PSO-CREV 

based MPC is analyzed by subjecting the distillation column process with dissimilar 

magnitudes of disturbance at different sampling instants. The control variables, Reflux 

flow rate, L and boilup flow rate, V with disturbances (indicated by dashed circles) at 

different sampling instant are shown in Fig. 6.27. The controlled variables, top product 

composition and bottom product composition settles down smoothly with very less 

oscillations after getting affected by unmeasured disturbances, and is shown in fig. 6.28. 

6.8 TABULATION OF PERFORMANCE INDICES OF DIFFERENT 

CONTROLLING TECHNIQUES 

This section enunciates the model accuracy of different empirical models 

developed and the performance indices and computational cost of all the controllers 

designed in the previous sections.  
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Table 6.1 shows the training accuracy, testing accuracy of various models with 

their corresponding number of training data. Even though the NN model is trained using 

1000 training data, its testing error is more. But the Extreme ANFIS model, SVR model 

and RVR model uses less number of training data and has behaves with good 

generalization capability. This is clear from their corresponding prediction errors for 

unseen test data. 

Table 6.1 Accuracy of different empirical models 

Model 
Number of   
Training 

data 

RMSE RMSEtraining testing 

Dx  Bx  Dx  Bx  

NN 1000 0.0026 0.0028 0.0153 0.0134 

Extreme ANFIS 100 0.0027 0.0028 0.0029 0.0032 

SVR 100 0.0027 0.0028 0.0028 0.0030 

RVR 100 0.0021 0.0024 0.0023 0.0025 

Table 6.2 enunciates the performance indices and computational cost of the 

controllers discussed in previous sections. Integral absolute error (IAE) is the performance 

criteria which quantifies the accuracy of all controllers. Fig. 6.29 and Fig. 6.30 shows the 

tracking performance of all controllers discussed in previous sections. Table 6.2 shows the 

IAE value and computational time related to each controller for the simulation results 

carried out for 750 samples.  

The distillation column model under simulation has time constants of one minute.  

Here, NN-PSO-CREV-MPC is the one which consumes more time and RVR-PSO-CREV-

MPC and Extreme ANFIS based MPC consumes very less time. Also the IAE value is 

more for NN-PSO-CREV and is very less for RVM-PSOCREV. Which highlights the 

efficient performance of RVR-PSE-CREV based MPC. 

The sparseness property of SVR model reduces the computational time of SVR-

MPC to 1451.1 seconds for 750 samples (ie. nearly 1.9 Seconds for sample). But the sparse 

nature of RVR model sharply reduces the computational time of RVR-MPC to 769.80 

seconds for 750 samples (i.e., nearly 1.02 Seconds for sample), which is much shorter than 

the sampling time of the distillation column process.  



150 
 

Table 6.2 Performance Indices of different control strategies based on LS-SVM, 
RVM, Extreme ANFIS and NN models. 

 

 

 

Conditions Control 
tactics 

Number of 
Training 
Samples 

IAE 
Number of Support 
Vectors/ Relevance 

Vectors 
Comput-
ational 

time 
(Seconds) Top 

product 
Bottom 
product Model1 Model2 

 

No 
Disturbance 

 

 

RVM-PSO-
CREV 

100 0.0749 0.0157 12 11 769.80 

LS-SVM-
PSO-CREV 

100 0.0825 0.0165 61 59 1451.1 

Extreme 
ANFIS-PSO-

CREV 
100 0.0829 0.0167 - - 770.9 

NN-PSO-
CREV 

1000 0.1337 0.1517 - - 3750.51 

Disturbance 

RVM-PSO-
CREV 

100 0.0922 0.0158 12 11 771 

LS-SVM-
PSO-CREV 

100 0.1010 0.0199 61 59 1453 

Extreme 
ANFIS-PSO-

CREV 
100 0.1050 0.0200 - - 772 

NN-PSO-
CREV 1000 0.2341 0.1194 - - 3756 
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The number of support vectors and relevance vectors used while modeling SVR 

and RVR model respectively are tabulated in Table 6.2 which signifies the sparseness of 

the models. The Extreme ANFIS model based MPC consumes only 770.9 seconds (i.e., 

nearly 1.02 Seconds for sample), due to its simple structure and simple algorithm. Thus the 

time consumption in Extreme ANFIS based MPC is same as RVM based MPC. But the 

dynamic NN model based MPC consumes 3750.51 Seconds which is much larger than all 

the above mentioned controllers.  

Also the integral average error corresponding to NN model based MPC is very 

large compared to that of LS-SVM model based MPC, Extreme ANFIS model based MPC 

and RVM model based MPC. Hence, it is clear that NN based MPC is the one which 

consumes more time with more integral average error and RVR-PSO-CREV, SVR-PSO-

CREV and Extreme ANFIS-PSO-CREV model predictive controllers are better than NN 

based model predictive controller with less computational load and less integral average 

error. 

Also, RVR-PSO-CREV and Extreme ANFIS-PSO-CREV based MPC’s consumes 

very less time with good tracking performances, which is  much essential for real time 

applications. Therefore we conclude RVR-PSO-CREV-MPC and Extreme ANFIS-PSO-

CREV-MPC to be the best controller based on various attributes like usage of less number 

of training data, better prediction accuracy, better generalization capability, excellent set 

point tracking performance, better unmeasured disturbance rejection capability. Hence it is 

well suitable for industrial process control applications. 
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Fig.6.29 Tracking performance comparison of Top product composition and bottom 
product composition of binary distillation column process. 
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. 

Fig. 6.30 Performance comparison of unmeasured disturbance rejection 
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6.9 CONCLUSION 

A viable solution to the problem of nonlinear model predictive control is proposed 

in this chapter. Different machine learning technique is used to create an accurate for 

prediction model and a derivative free optimization algorithm, PSO-CREV is used to 

achieve faster convergence. Based on the simulation results of highly nonlinear distillation 

column process, the tracking performance of RVM- PSO-CREV based MPC , LS-SVM-

PSO-CREV based MPC, Extreme ANFIS based MPC are much better than NN-PSO-

CREV based MPC with better unmeasured disturbance rejection capability which confirms 

its feasibility. Simulation results convey that such better performance is due to their better 

prediction accuracy and better generalization capability. Also the computation time of 

Extreme ANFIS based MPC and RVM based MPC are very less and equal which makes 

them well suitable for real time control applications. 



Chapter 7 
CONCLUSIONS AND SCOPE FOR FUTURE WORK 

7.1 CONCLUSIONS 

Linear model predictive controllers were popularly practiced since 1970’s. But after 

1990’s control theoreticians and control practitioners have shown increasing interest 

towards nonlinear model predictive controllers. This is because of the necessity of today 

nonlinear processes to operate under rigid, quality performance specifications with more 

and more constraints in a wide operating region. These demands could be fulfilled only if 

the process nonlinearities are considered explicitly while designing a controller. Nonlinear 

model predictive controller operates suitably to fulfill today’s demands by directly using 

the nonlinear model for prediction, with necessary constraints and by solving the nonlinear 

optimal performance function online. The two demanding tasks to achieve quality 

performance of NMPC are an accurate nonlinear model and fast accurate convergence of 

performance function.  

This research focused in achieving the above tasks by incorporating accurate 

nonlinear models and reducing the computational cost related to nonlinear model 

predictive controller. The conclusions of this thesis are summarized as the following: 

• Learning machines as accurate models of plants give better MPC 

performance compared to classical models. 

• Accuracy of the model influences the performance of model predictive 

controllers. 

• Derivative free optimization technique like PSO can be used to speed up the 

optimization process in model predictive control. 

• Model predictive controller could be applied to systems with faster 

dynamics by incorporating FCS-MPC principle. The control of photovoltaic 

array Maximum Power Point Tracker through Nonlinear Model Predictive 

Control strategy using fast predicting model and FCS-MPC technique is 

successfully done. 

• The proposed Extreme ANFIS model, LS-SVM model and RVM model 

have very good generalization capability and hence they outperform in 

overcoming severe interaction, severe nonlinearity and disturbances in 

processes. 
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• But the time consumption for prediction is very less in proposed Extreme 

ANFIS model and sparse RVM model than LS-SVM model and NN based 

NMPC.  

• Hence Extreme ANFIS based MPC and RVM based NMPC are the best 

suitable for industrial applications since it provides accurate tracking 

performance with very less computation time. 

• The control performances of faster dynamics, photovoltaic system using 

Extreme ANFIS model, RVM model, and SVM model based FCS-MPC 

algorithm are much better than the performance of state space model based 

NMPC.  

• Simulation results convey that such better performance is due to the better 

prediction accuracy of Extreme ANFIS /RVM /SVM model which is 

because of its good generalization capability.  

• Also, RVM model based controller and the proposed Extreme ANFIS 

model based controller requires very less computations and hence 

considered to be the best suitable for implementation.     

7.2 SCOPE FOR FUTURE WORK  

The research work presented in this thesis can be further extended as below: 

• Stability issues and robustness related to nonlinear model predictive control 

using learning machine could be studied. 

• Since the learning time of novel Extreme ANFIS model is very less. An 

online trained Extreme ANFIS model based NMPC could be developed. An 

online trained model will have the capability to eliminate model mismatch 

even under unmeasured disturbance condition. 

• Different optimizations techniques could be developed and applied to 

reduce the computation costs further in turn the NMPC could be applied for 

systems with faster dynamics. 

• Nonlinear MPC for MPPT of PV array is simulated in which temperature is 

kept constant and irradiation alone is varied. As a future work both 

temperature and irradiation could be kept variable to design an effective 

control of MPPT of PV array. 



157 
 

PUBLICATIONS FROM THIS WORK 

1. M. Germin Nisha, G. N. Pillai, “Nonlinear model predictive control with relevance 

vector regression and particle swarm optimization”, Journal of control theory and 

applications, 2013, 11(4), 563-569. (Published by Springer available online). 

International Journals and International Conference - Published/Accepted 

2. M. Germin Nisha, G. N. Pillai, “Nonlinear model predictive control of MIMO system 

with relevance vector regression and particle swarm optimization”, Journal of control 

engineering and applied informatics, (Accepted). 

3. M. Germin Nisha, G. N. Pillai, “Nonlinear model predictive control using neural 

networks and particle swarm optimization” International conference on advanced 

computing methodologies, ICACM-2011, 1-6. (Published by Elsevier). 

4. M. Germin Nisha, G. N. Pillai, “Nonlinear Model Predictive Control using Relevance 

Vector Machine for Maximum Power Point Tracking of Photovoltaic Arrays”, ISA 

Transactions (Elsevier journal) submitted after revision. 

1. M. Germin Nisha, G. N. Pillai, “Nonlinear model predictive control of a MIMO 

system with a novel neuro-fuzzy learning machine and Particle swarm optimization”, 

Applied soft computing (communicated). 

International Journals under review 

2. M. Germin Nisha, Pushpak Jagtap, G. N. Pillai, “Nonlinear model predictive control 

with a new neuro-fuzzy learning machine and Particle swarm optimization”, Soft 

computing (communicated). 



BIBLIOGRAPHY 

1. 

2. 

R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems". 

Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960. 

3. J. Richalet, A. Rault, J.L.Testud and J. Papon, “Model Predictive Heuristic Control: 

Applications to Industrial Processes”, Automatica, vol. 14, pp. 413-428, 1978. 

M. Athans, "The role and use of the stochastic Linear-Quadratic-Gaussian problem 

in control system design". IEEE Transaction on Automatic Control. AC-16, vol. 6, 

pp. 529–552, 1971. 

4. C. R. Cuttler and B.L. Ramaker, “Dynamic matrix control- a computer control 

algorithm” in Proc. Joint automatic control conference, San Francisco, 1980. 

5. S. J. Qin and A. T. Badgwell, “A survey of industrial model predictive control 

technology”, Control Engineering Practice, vol. 11, no. 7, pp. 733-764, 2003. 

6. M. A. Henson, “Nonlinear Model predictive control: current status and future 

directions”, Computers and chemical engineering, vol. 23, pp. 187-202, 1998. 

7. A. Rossiter, “Model Based predictive control: a practical approach”, CRC press 

Baco Paton London, New York, Washington, D.C.2003. 

8. N. Bhat and T. J. Mcavoy, “Use of neural nets for dynamic modeling and control of 

chemical process systems”, Comput. Chem. Eng., vol. 14, no. 5, pp. 573-583, 1990. 

9. D. C. Psichogios and L. H. Ungar, “Direct and   indirect model based control using 

artificial neural network”, Industrial & Engineering Chemistry Research, vol. 30, 

no. 12, pp. 2564-2573, 1991. 

10. K. J. Hunt, K. Sbarbaro, R. Zbikowski , and  P. J. Gawthrop, “Neural Network for 

control systems – a survey”, Automatica, vol. 28, no. 6, pp. 1083-1120, 1992. 

11. Y. Liu, Y. Gao, Z. Gao, H. Wang, and P. Li, “Simple nonlinear predictive control 

strategy for chemical processes using sparse kernel learning with polynomial 

form”, Industrial & Engineering Chemistry Research, vol. 49, pp. 8209–8218, 

2010. 

12. J. S. Taylor, and N. Cristianini, “Kernel Methods for Pattern Analysis”, Cambridge 

University Press, Cambridge, UK, 2004. 



159 

 

13. C. M. Bishop, “Pattern Recognition and Machine Learning”, Springer-Verlag, New 

York, 2006. 

14. V. Vapnik, “Statistical Learning Theory”, Wiley, New York, 1998. 

15. H. Zhang and X. Wang, “Nonlinear systems modeling and control using support 

vector machine technique”, Lecture Notes in Computer Science, Springer-Verlag: 

New York, pp. 660 – 669, 2006. 

16. A. Kulkarni, V. K. Jayaraman and B. D. Kulkarni , “Control of chaotic dynamical 

systems using support vector machines”, Phys. Lett. A, vol. 317, pp. 429–435, 

2003. 

17. W. Zhong, D. Pi and Y. Sun, “An approach of nonlinear model multistep ahead 

predictive control based on SVM”, Lecture notes in Computer Science, Springer-

Verlag Berlin Heidelberg, vol. 3516, pp. 1036-1039, 2005. 

18. W. Zhong, D. Pi, Y. Sun, “Support vector machine based nonlinear model 

multistep ahead optimizing predictive control”,  Journal of Cent. South university 

of technology,vol. 12, no. 5, pp. 591-595, 2005. 

19. C. Yue-hua, C. Guang-yi,  Z. Xin-jian , “ LS-SVM model based nonlinear 

predictive control  for MCFC system”, Journal of Zhejiang University Science A, 

vol. 8, no.5, pp. 748-754, 2007. 

20. X. C. Xi, A. N. Poo, S. K. Chou, “Support vector regression model predictive  

control of a HVAC plant”, Control Engineering Practice,vol. 15, pp. 897-908, 

2007. 

21. M. E. Tipping “The relevance vector machine”, Advances in Neural Information 

Processing  Systems, vol. 12, pp. 652–658, 2000. 

22. M. E. Tipping, “Sparse Bayesian Learning and the     Relevance Vector Machine”,  

Journal of  Machine Learning Research, vol. 1, 2001, pp. 211–244. 

23. G.-B. Huang, Q.-Y. Zhu and C.-K. Siew, “Extreme learning machine: theory and 

applications”, Neurocomputing, vol. 70, pp. 489–501, 2006. 



160 

 

24. G.-B. Huang, H. Zhou, X. Ding, R. Zhang, “Extreme learning machine for 

regression and multiclass classification0”, IEEE Transactions on Systems. Man 

Cybernetics B Cyber, vol. 42, no. 2, pp. 513–529, 2012. 

25. J. Rodriguez, M. P. Kazmierkowski, J. R. Espinoza , P. Zanchetta, H. Abu-Rub, H. 

A. Young,  and C. A. Roja, “State of the Art of Finite Control Set Model Predictive 

Control in Power  Electronics” IEEE Transactions on Industrial Informatics, vol. 9 

no. 2, pp.1003-101, 2013. 

26. S. Purwar, I.N. Kar, A.N. Jha, “On-line system identification of complex systems 

using  Chebyshev neural networks”, Applied Soft Computing, vol. 7, pp. 364–372, 

2007. 

27. A. A. Patwardhan and T. F. Edgar, “Nonlinear model predictive control of apacked 

distillation  column”, Industrial Engineering and Chemistry Research, vol. 32, no. 

10, pp. 2345-   2356, 1990. 

28. H. Chen and F. Allgower, “A quasi infinite horizon nonlinear model predictive 

control  scheme with guaranteed stability”, Automatica, vol. 34, no. 10, pp. 1205-

1218, 1997. 

29. N. L. Ricker and J. H. Lee, “Nonlinear Model predictive control of the Tennesse 

Eastman challenge process”, Computer and Chemical Engineering, vol. 19, pp. 

961-981, 1995. 

30. A. Zheng, “A Computational efficient nonlinear linear model predictive control 

algorithm”, in  Proc. American Control Conference. Albuquerque, NM, 1997. 

31. A. A. Padtwardhan, T. T. Wright and T. E. Edgar, “Nonlinear model predictive 

Control of  distributed parameter systems”, Chemical Engineering Science. vol. 47, 

no. 4, pp. 721-735, 1992. 

32. J. H. Lee, “Modeling and identification for nonlinear model predictive control:    

requirement,current status and future research needs, Editors: Allogower, F. and 

Zheng, A. Nonlinear   model predictive control, Birkhauser. pp. 269-293, 2000. 

33. K. P. Fruzzetti, A. Palazoglu and K. A. MacDonald , “Nonlinear model predictive 

control    using Hammerstein models”, Journal of Process Control, vol.7, no. 1, pp. 

31-41, 1997. 



161 

 

34. B. R. Maner, F. J. Doyle, B. A. Ogunnaike and R. K. Pearson, “Nonlinear model  

predictive control of a simulated multivariable polymerization reactor using second 

order Volterra models, Automatica, vol. 32, pp. 1285-1301,1996. 

35. S. S. Jang and L. S. Wang, “Experimental study of rigorous nonlinear model 

predictive control for a packed distillation column”, Journal of Chinese Institute of 

Chemical Engineer, vol. 28, no. 3, pp. 151-162, 1997. 

36. M. Asohi, “Modeling and Control of a Continuous Crystallization Process Using 

Neural network and Model Predictive Control” Ph. D dissertation, University of 

Saskatchewan, 1995. 

37. F. Allgower, A. Zeng, “progress in systems and control theory: Nonlinear model 

predictive control”, vol. 26, Berelin, Birkhauser, 2000. 

38. F. Alonge, F. D Ippolito, F.M. Raimondi and S, Tumminaro, “Identification of 

nonlinear systems described by Hammerstein models” in Proc. of the 42 IEEE 

conference on decision and control, Hawali ,USE December 2003. 

39. Y. Chen, B. Yang, J.  Dong, A.  Abraham, “Time-series forecasting using flexible 

neural tree model”,  Information Sciences, vol. 174,pp. 219-235,  2005. 

40. K. J. Hunt, D. Sbarbaro, R. Zbikowski and P. J,Gawthrop, “Neural  Network for 

control systems”,  Automatica,   vol. 28, no. 6, pp. 1083-1112, 1992. 

41. K. S. Narendra and K. Parthasarathy, “Identification and control of Dynamic  

Systems using  Neural Networks”,  IEEE Transactios on Neural networks.  vol. 1, 

pp. 4-27, 1990. 

42. Arumugasamy, S. Kumar and A. Zainal, “Elevating Model Predictive Control 

Using  Feedforward Artificial Neural Networks: A Review”, Chemical Product and 

Process Modeling: vol. 4, no. 1, Article 45, 2009. 

43. J. V. Desai, B. Bandyopadhyay and C. D. Kane, “Neural network based fabric 

classification  and blend composition analysis”, in Proc. IEEE international 

conference on industrial technology, 2000. 

44. P. Georgieva and F. D. A. Segbastio, “Application of feed forward neural networks 

in modeling and closed loop control of a fed-batch crystallization process", 



162 

 

Transactions on Engineering, Computing and Technology, vol. 12, pp. 65-70, 

2006. 

45. M. A.  Hussain, “Review of the applications of neural networks in chemical 

process control - simulation and online implementation”, Artificial Intelligence in 

Engineering, vol.13 no. 1, pp. 55- 68, 1999. 

46. E. Al-Gallaf, “Artificial Neural Network Based Nonlinear Model Predictive 

Control Strategy”, Information Technology Journal, vol. 1 no. 2, 173-179, 2002. 

47. V. Rankovic and I. Nikolic,  “Identification of Nonlinear Models with Feedforward 

Neural Network and Digital Recurrent Network”, FME Transactions, vol. 36, no. 

2, pp. 87-92, 2008. 

48. S. Chidrawar and B. Patre, “Generalized Predictive Control and Neural Generalized 

Predictive Control”, Leonardo Journal of Sciences, vol. 7, no.13, 133-152, 2008. 

49. P. Kittisupakorn, P. Thitiyasook and Hussain, “Neural network based model 

predictive control for a steel pickling process”, Journal of Process Control, vol. 19, 

no. 4, pp. 579-590, 2009. 

50. J. Z. Chu, “Multistep model predictive control based on Artificial Neural 

Networks”, Industrial Engineering Chemistry.Research, vol. 42, pp. 5215-5228, 

2003. 

51. A. S. Kamalabady, K. Salahshoor, “New SISO and MISO Adaptive Nonlinear 

Predictive Controllers based on Self Organizing RBF Neural Networks”, in proc. 

3rd

52. W. Guo,   M. Han, “Generalized predictive controller based on RBF neural network 

for a class of nonlinear system”, in Proc. IEEE American control conference, 2006. 

 IEEE International conference on communication control and signal processing, 

2008. 

53. R. Ahmad and H. Jamaluddin, “Radial basis function for nonlinear dynamic system 

identification”, Jurnal Teknologi, vol. 36, no. A, pp. 39–54, 2002. 

54. http://www.statsoft.com/textbook/neural-networks/#radial (accessed on 10/9/2013) 

http://www.statsoft.com/textbook/neural-networks/#radial�


163 

 

55. L. M. Saini and M. K. Soni, “Artificial Neural Network-Based Peak Load 

Forecasting Using Conjugate Gradient Methods”, IEEE Transactions on power 

systems, vol. 17, no. 3, pp. 907-912, 2002. 

56. P. R. Patnaik,  “Neural control of an imperfectly mixed fed-batch bioreactor for 

recombinant ß –galactosidase”, Biochemical Engineering Journal, vol. 3, no. 2, pp. 

113-120, 1999. 

57. F. Declercq and R. D. Keyser, “Comparative study of neural predictors in model 

based predictive control”, in Proc. of International Workshop on Neural Networks 

for Identification, Control, Robotics, and Signal/Image Processing, Bratislava, 

pp.20-28, 1996. 

58. C. Cortes and V. Vapnik, "Support-Vector Networks", Machine Learning, vol.20, 

1995. 

59. A. Karatzoglou and D. Meyer, “Support Vector machine in R”, Journal of 

statistical software, vol. 15, no. 9, pp. 1-32, 2006. 

60. U. Thissen, R. V.  Brakel, A.P. D. Weijer, W.J. Melssen and L.M.C. Buydens,“ 

Using support vector machines for time series prediction” Chemometrics and 

Intelligent Laboratory Systems ,vol.69, pp.35-49, 2003. 

61. W. Wang, C. Men, W. Lu, “Online   prediction   model    based   on support vector 

machine”, Neurocomputing, vol. 71, pp. 550-558, 2008. 

62. S. R. Kolla, “Identifying faults in three phase induction motors using support vector 

machines”, in proc. Electrical manufacturing and coil winding expo, pp: 109-114, 

2010-2013. 

63. D. G. Tzikas , L. Wei  , A. Likas , Y. Yang , and N. P. Galatsanos,  “A Tutorial on 

Relevance Vector Machines for Regression and  Classification wit Applications”, 

University of Ioannina, Ioanni, GREECE, Illinois Institute of Technology, Chicago, 

USA, 2006. 

64. G. Camps-Valls, M. Martinez-Ramon, J. L. Rojo-Alvarez and J. Munoz-Mari. 

“Nonlinear System Identification With Composite Relevance Vector Machines”, 

IEEE Signal Processing Letters, vol.14, no. 4, pp.  279-282, 2007. 



164 

 

65. I. Psorakis, T. Damoulas and A. M. Girolami, “Multiclass Relevance Vector 

Machines: Sparsity and Accuracy”, IEEE Transactions on neural networks, vol. 21, 

no. 10, pp. 1588-1598, 2010. 

66. J. Q. Candela and L. K. Hansen,“Time serier prediction based on the relevance 

vector machine with adaptive kernels”, in Proc. IEEE International Conference on 

Aquostics, Speech and Signal Processing, pp.  985-988, 2003. 

67. A. M. Nicolaou, H. Gunes, and M. Pantic “Output-associative RVM regression for 

dimensional and continuous emotion prediction”, Image and Vision Computing, 

vol. 30, no. 3, pp.186-196, 2012. 

68. S. TAI. “An Annealing Dynamical Learning-based Relevance Vector Regression 

Algorithm for Housing Price Forecasting”, Journal of Information & 

Computational Science, vol. 8, no. 14, pp.3313–3319, 2011. 

69. P. Wong, Q. Xu, C. Vong and H. Wong, “Rate-Dependent Hysteresis Modeling 

and Control of a Piezostage Using Online Support Vector Machine and Relevance 

Vector Machine”, IEEE Transactions on industrial Electronics, vol. 59, no. 4, pp. 

1988-2001, 2012. 

70. A. Abraham, B. Nath, “A neuro-fuzzy approach for modeling electricity demand in 

Victoria”, Applied Soft Computing, vol. 1, pp. 127–138, 2001. 

71. S.  Yadav, J. P. Tiwari and S. K. Nagar, “Digital Control of Magnetic Levitation 

System using Fuzzy Logic Controller”, International Journal of Computer 

Applications, vol. 41, no. 21, pp. 27-31. 2012. 

72. S. Harish and M. K. Mishra, “Fuzzy Logic based Supervision of  DC link PI 

Control in a DSTATCOM”, in Proc. IEEE India conference INDICON, vol. 2, 

2008 

73. J. S. R. Jang, "ANFIS: Adaptive-network-based fuzzy inference systems," IEEE 

Trans. Svst., Man, Cybern., vol. 23, no. 3, pp. 665-685, 1993. 

74. M. Sugeno and G. T. Kang, “Structure identification of fuzzy model”, IEEE 

transactions on fuzzy sets and systems, vol.28, No. 4, pp.15-33, 1988. 



165 

 

75. 7J. S. Jang, C. T. Sun and E. Mizutani, “Neuro-Fuzzy and Soft Computing: A 

Computational Approach to Learning and Machine Intelligence”, NJ: Prentice-

Hall, 1997. 

76. C. Grosan and A. Abraham, “Multiple Solutions for a System of Nonlinear 

Equations”, International Journal of Innovative Computing, Information and 

Control, vol. 4, no. 9,  pp. 2161–2170. 2008. 

77. D. Soloway and P. J. Haley, “Neural generalized predictive control: A Newton-

Raphson Implementation”, in Proc. IEEE International Symposium on Intelligent 

Control Dearborn, MI September 15-18, pp. 277-282, 1996. 

78. S. K. Chidrawar, S. Bhaskarwar and B. M. Patre, “Implementation of neural 

network for generalized predictive control  A Comparison between a Newton 

Raphson and Levenberg Marquardt implementation”, World congress on Computer 

science and information engineering, vol. 1, pp. 669-673, 2009. 

79. M. Norgaard, “Neural Networks for Modelling and Control of Dynamic Systems: 

A Practitioner's Handbook” Springer verlag, London, 2000. 

80. C. Grosan and A. Abraham, “A New Approach for Solving Nonlinear Equations 

Systems”, IEEE Transactions on systems man and cybernetics, vol. 38, no. 3, pp. 

698-714, 2008. 

81. X. C. Xi, A. N. Poo and S. K. Chou, “ Support vector regression model predictive 

control of a HVAC plant”, Control Engineering Practice,vol.15, pp. 897-908, 

2007. 

82. D. K. Kumar, S. K. Nagar and S.K. Bharadwaj, “Model order reduction based on 

SISO and MIMO systems based on genetic algorithm”, in Proc. International 

conference on automation robotics and control systems, pp.97-104, 2010. 

83. C. Yue-hua, C. Guang-yi and Z.  Xin-jian, “LS-SVM model based nonlinear 

predictive control for MCFC system”, Journal of Zhejiang University Science A, 

vol.8, no.5, pp.748-754, 2007. 

84. E. Elbeltagi, T. Hegazy and D. Grierson, “Comparison among five evolutionary -

based optimization algorithms”, Advanced engineering informatics, vol. 19, pp. 43-

53, 2005. 



166 

 

85. C. Grosan, A. Abraham and M. Nicoara, “Performance Tuning of Evolutionary 

Algorithms Using Particle Sub Swarms”, in Proc. 7th

86. R. C. Eberhart and J. Kennedy, “A New Optimizer Using Particle Swarm Theory”, 

in Proc. 6

 IEEE International 

Symposium on Symbolic and Numeric Algorithms for Computing Scientific, 2005. 

th

87. J. Kennedy and R. C. Eberhart “Particle Swarm Optimization”, in Proc. IEEE 

International Conference on Neural Network, Perth, Australia, pp. 1942- 

1948,1995. 

  International Symposium on Micro Machine and Human Science, 

Nagoya, Japan, pp. 39-43, 1995. 

88. H. Yoshida, K.  Kawata, Y.  Fukuyama and Y. A. Nakanishi, “ Particle Swarm 

Optimization for Reactive Power and Voltage Control Considering Voltage 

Stability”, in Proc. International Conference on Intelligent System Application to 

Power Systems, Rio de Janeiro, Brazil, pp. 117-121,1999. 

89. L. Messerschmidt and A. P.  Engelbrecht, “Learning to Play Games Using a PSO-

Based Competitive Learning Approach”, IEEE Transactions on Evolutionary 

Computation, vol 8, no. 3, pp. 280-288, 2004. 

90. B. K. Kumar, M. K. Mishra, K. S. Bhaskar and P. H. Vardhana, “ PSO-based 

feedback controller design of DSTATCOM for load compensation with non-stiff 

sources”, International Journal of Power Electronics, vol.1, no.2, pp.191 – 205, 

2008. 

91. X. Chen and Y. Li, “Neural network predictive control for Mobile Robot Using 

PSO with Controllable Random Exploration Velocity”, International journal of 

intelligent control and systems, vol. 12, no. 3, , 2007, pp. 217-229. 

92. X. Chen and Y. Li, “A Modified PSO Structure Resultin g in High Exploration 

Ability with Convergence Guaranteed”, IEEE Transactions on systems, man and 

cybernetics, vol. 37, no.5, pp. 1271-1289, 2007. 

93. R.  J. Pontt , C. A.  Silva, P. Correa, P. Lezana, P. Cortes and U. Ammann, “ 

Predictive current control of a voltage source inverter”, IEEE Transactions on 

Industrial Electronics, vol. 54,no. 1,pp. 495-503, 2007. 



167 

 

94. S. Muller, U. Ammann and S. Rees, “New time-discrete modulation scheme for 

matrix converters”, IEEE Transactions on industrial Electronics, vol. 52,no. 6, 

pp.1607-1615, 2005. 

95. J. C. P. Rodriguez, P. Antoniewicz and M. Kazmierkowski, “ Direct Power Control 

of an AFE Using Predictive Control”, IEEE Transactions on Power 

Electronics,vol. 23, no. 5,pp. 2516-2523, 2008. 

96. P. Cortes, J. Rodriguez, D. E. Quevedo and C. Silva, “ Predictive current control 

strategy with imposed load current spectrum”, IEEE Transactions on Power 

Electronics, vol. 23, no. 2, pp. 612-618, 2008. 

97. D. E. Quevedo and F. C. Goodwin, “ Multistep optimal analog to digital 

Conversion”, IEEE Transactions on Circuits and Systems I.- Regular Papers, vol. 

52, no. 3, pp. 503-515, 2005. 

98. R. Vargas, P. Cortes,  U. Ammann, J.  Rodriguez and J. Pontt , “ Predictive control 

of a three-phase neutral-point-clamped inverter”, IEEE Transactions on Industrial 

Electronics, vol. 54, no. 5, pp. 2697-2705, 2007. 

99. S. Kouro, P. Cortes, R. Vargas, U. Ammann and J. Rodriguez, “Model Predictive 

Control—A Simple and Powerful Method to Control Power Converters”, IEEE 

Transactions on Industrial Electronics, vol. 56, no. 6, pp. 1826-1838, 2009. 

100. P. Cortes, M. P. Kazmierkowski, R. M. Kennel, D. E. Quevedo and J. Rodriguez, 

“Predictive Control in Power Electronics and Drives”,  IEEE Transactions on 

Industrial Electronics vol. 55, no. 12, pp. 4312-4324, 2008. 

101. P. E. Kakasimos and A. G. Kladas, “Implementation of photovoltaic array MPPT 

through fixed step predictive control technique”, Renewable Energy, vol. 36, pp. 

2508-2514, 2011. 

102. M. Kumar and I. N. Kar, “Design of Model-Based Optimizing Control Scheme for 

an Air Conditioning System”, HVAC&R Research, vol. 16, no 5, pp. 565-597, 
2010. 



168 

 

103. K.S. Narendra and K. parthasarathy, “Identification and control of dynamical 

system using neural networks”, IEEE transactions on neural networks, vol. 1, pp. 

4-27, 1990. 

104. S.I. Sudharsanan, I. Muhsin and M. K. sundareshan, “ Self tuning adaptive control 

of Multi input multi output nonlinear systems using multilayer recurrent neural 

networks with application to synchronous power generators”, in Proc. IEEE 

international conference on neural networks, Piscataway, NJ., USA, pp. 1301-

1306, 1993. 

105. S. R Chu and R. Shoureshi, “ Neural based identification of continuous nonlinear 

systems”,  in Proc. American control conference, San Fransisco, California, pp. 

1440,1444, 1993. 

106. R. Adomaitis, R.M. Farber, J.L. Hudson, I.G. Kevrekidis, M. Kube, and A.S. 

Lapedes, “Application of neural nets to system identification and bifurcation 

analysis of real world experimental data”,  Neural networks: Biological computers 

or Electronic brains, Springer –Verlag, Paris France, pp. 87-97, 1990. 

107. S. Chen, S. A. Billings, C. F. N. Cowan and P.M. Grant, “ Practical identification 

of NARMAX models using Radial basis function”, International journal of 

control, vol. 52, no. 6, pp. 1327- 1350, 1990. 

108. E. Levin, Gewirtzman and G.F. Inbar, “Neural network architecture for adaptive 

system modeling and control”, Neural networks , vol. 4, pp. 185-191, 1991. 

109. S. Haykin, “Neural Networks a Comprehensive Foundation”, Englewood Cliffs, 

NJ: Prentice-Hall, 1999. 

110. J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, pp. 179–211, 

1990. 

111. A. F. Konar, Y. Becerikli, and T. Samad, “Trajectory tracking with dynamic neural 

networks,” in Proc. IEEE International Symposium Intelligent Control, Ístanbul, 

Turkey, pp. 173–180, 1997. 

112. Z. G. Hou, M. M. Gupta, P. N. Nikiforuk, M. Tan, and L. Cheng, “A recurrent 

neural network for hierarchical control of interconnected dynamic systems”, IEEE 

Transactions on Neural Networks, vol. 18, no.2, pp.466–481, 2007. 



169 

 

113. M. S. Ballal, H. M. Suryawanshi, M. K. Mishra, “ANN based real time incipient 

fault detection and protection system for induction motor”, International Journal of 

Power and Energy Conversion, vol. 1, no.2/3, pp.125 – 142, 2009. 

114. H. Jack, D. M. A. Lee, R. O Buchal, W. H. Elmaraghy, “ Neural networks and the 

inverse kinematics problem”, Journal of intelligent manufacturing, vol. 4, pp-43-

66, 1993. 

115. A. Guez and J. Selinsky, “A neuromorphic controller with a human teacher”, in 

Proc. IEEE international conference on neural networks Icnn’88, san Diego, 

California, vol. 2, pp. 595- 602,1988. 

116. T. Troudet, W. C. Merrill, “Neuromorphic learning of continuous valued mapping 

in the presence of noise: application to real time adaptive control”, in Proc. IEEE 

international symposium on intelligent control, Washington, D.C, National 

Aeronautics and Space Administration, pp.312- 319, 1989. 

117. M. Norgaard, O. Ravn, N. K. Poulsen  and L.K. Hansen, “Neural networks for 

modeling and control of dynamic systems: A practitioner’s handbook”, springer, 

Boston, MA,2000. 

118. A. Olurotimi. Dahunsi and J. O. Pedro, “Neural network based identification and 

approximate predictive control of a servo  hydraulic vehicle suspension system”, 

Engineering letters, vol. 8, no. 4, 2010. 

119. H. Demuth and M. Beale, “Neural networks toolbox user guide: For use with 

MATLAB”, The Math Works, Inc., Natick, Massachusetts, 2002. 

120. S. Haykin, “Neural Networks and learning machines”, Pearson Education,Inc., 

New Jersey, 2009. 

121. B. M. Akesson, H. T. Toivonen, “A Neural Network Model Predictive controller”, 

Journal of Process control, vol.16, pp 937-946, 2006. 

122. J.Taheri, A. Y. Zomaya, P. Bouvry and S. U. Khan, “Hopfield neural network for 

simultaneous job scheduling and data replication in grids”, Future Generation 

Computer Systems, vol. 29, pp. 1885–1900, 2013. 



170 

 

123. R. Thangaraj, T.  Chelliah, M. Pant, A. Abraham and P. Bouvry, “Applications of 

Nature Inspired Algorithms for Electrical Engineering Optimization Problems”, 

Editors: I. Zelinka, V. Snasel, A. Abraham,  Handbook of Optimization, Springer-

Verlag Berlin Heidelberg, pp. 991–1024,  2012. 

124. R. Thangaraj, M. Pant, A. Abraham and V. Snasel, “ Modified particle swarm 

optimization with time varying velocity vector”, International Journal of 

Innovative Computing, Information and Control, vol. 8, no. 1(A) , pp. 201-218, 

2012. 

125. Y. Shi and R. Eberhart, “Modified particle swarm optimizer,” in Proc. IEEE 

Conference on Evolutionary Computation, ICEC, pp: 69-73, 1998. 

126. D. Zhao and P. Liang, “Support Vector Machine Predictive Control for 

Superheated Steam Temperature Based on Particle Swarm Optimization”, in proc. 

IEEE International conference, South China University of Technology, 2010. 

127. W. Sun and Y. X. Yuan, “

128. T. Howley, M. G. Madden, “The Genetic kernel Support vector machine: 

Description and Evaluation”, Artificial Intelligence review, vol. 24, pp. 379-395, 

2005. 

Optimization theory and methods: nonlinear 

programming”, Springer, 2006. 

129. J. Stolfa, O. Koberskay, P.  Kromer, S. Stolfa, M. Kopka and V. Snasel, 

“Comparison of Fuzzy Rules and SVM Approach to the Value Estimation of the 

Use Case Parameters”, in Proc. IEEE, IFSA World Congress and NAFIPS Annual 

Meeting (IFSA/NAFIPS),  pp. 789-794, 2013. 

130. S. K. Aggarwal, L. M. Saini and A. Kumar, “Day-ahead Price Forecasting in 

Ontario Electricity Market Using Variable-segmented Support Vector Machine-

based Model”, Electric Power Components and Systems, vol. 37, pp.495–516, 

2009. 

131. N. Cristianini, J. S. Taylor, “An Introduction to Support Vector Machines and 

Other Kernel-Based Learning Methods”, Cambridge, U.K., Cambridge University 

Press, 2000. 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596206�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596206�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6596206�


171 

 

132. M. Kumar and I.N. Kar, “Fault Diagnosis of an Air-Conditioning System Using  LS-

SVM”,  Pattern recognition and machine intelligence-Lecture notes in computer 

science, vol. 5909, pp. 555-560, 2009. 

133. A. J. Smola and B. Scholkopf, “A Tutorial on support vector regression”, Statistics 

and computing, vol. 14, no.3, pp. 199-222,  2004. 

134. K. D. Brabanter, P. Karsmakers, F. Ojeda, C. Alzate, J. D. Brabanter, K. 

Pelckmans, B. De Moor, J. Vandewalle and J. A. K. Suykens, “LS-SVM lab 

Toolbox User’s Guide ,version1.8, 2011. 

135. C. Cercignani , “The Boltzmann equation and its applications”, Berlin: Springer-

Verlag; 1988. 

136. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth and A. H. Teller, “ Equations 

of state calculations by fast computing machines”, Journal of  Chemical  Physics, 

vol. 21,no. 6, pp. 1087–1092, 1953. 

137. S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing”, 

Science, vol. 220, no. 4598, pp.671–680,1983. 

138. P. F. Pai, W. C. Hong, “Support vector machine with simulated annealing 

algorithms in electricity load forecasting”, Journal of Energy conversion and 

management, vol.46, no.17, pp.2669-2688, 2005. 

139. M. E. Tipping, "Bayesian inference: An introduction to Principles and practice in 

Machine learning." Editors: O. Bousquet, U. V. Luxburg, and G. Ratsch , Advanced 

Lectures on Machine Learning, pp. 41-62. Springer, 2004. 

140. C. M. Bishop, M. E.Tipping, “Variational Relevance Vector Machines”, in Proc. 

Uncertainity in Artificial Intelligence, pp. 46-53, 2000. 

141. J. O. Berger, “Statistical Decision Theory and Bayesian Analysis”, Springer-

Verlag, New York, Inc. 1980. 

142. Z. Aydin, A. Singh, J. Bilmes, and W. S. Noble, “Learning sparse models for a 

dynamic Bayesian network classifier of protein secondary structure”, 

Bioinformatics, vol.12, no. 154, pp.1-21, 2011. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Aydin%20Z%5Bauth%5D�
http://www.ncbi.nlm.nih.gov/pubmed/?term=Singh%20A%5Bauth%5D�
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bilmes%20J%5Bauth%5D�
http://www.ncbi.nlm.nih.gov/pubmed/?term=Noble%20WS%5Bauth%5D�


172 

 

143. Y. Chen, B. Yang,  A.  Abraham and L. Peng, “Automatic Design of Hierarchical 

Takagi–Sugeno Type Fuzzy Systems Using Evolutionary Algorithms”, IEEE 

Transactions on fuzzy systems, vol. 15, no. 3, 2007. 

144. S. Bansal, L. M. Saini, D. Joshi, “ Design of PI and Fuzzy Controller for High-

Efficiency and Tightly Regulated Full Bridge DC-DC Converter” World Academy 

of Science, Engineering and Technology, International Journal of Electrical, 

Electronic Science and Engineering, vol:7, no:4, pp. 100-106, 2013. 

145. S. R. Kolla and L. Varatharasa, “Identifying three-phase induction motor faults 

using artificial neural networks” ISA Transactions, vol. 39, pp: 433- 439, 2000. 

146. S. R. Kolla, "Fuzzy logic control of an electric motor drive system," in Proc. of 

Electrical Manufacturing & Coil Winding Conference," Cincinnati, OH, October 6-

8, 1998. 

147. R. Thangaraj, M. Pant, A. Abraham and P. Bouvry, “Particle swarm optimization: 

Hybridization perspectives and experimental illustrations”, Applied Mathematics 

and Computation, vol. 217, no.12, pp. 5208–5226, 2011. 

148. I. H. Altas, A. M. Sharaf, “A novel on-line MPP search algorithm for PV arrays”,   

IEEE Transactions on Energy Conversion, vol. 11, no. 4, pp. 748–754, 1996. 

149. C. Hua, J. Lin and C. Shen, “ Implementation of a DSP-controlled photovoltaic 

system with peak power tracking”, IEEE Transactions on industrial Electronics, 

vol. 45,no. 1,pp.  99–107, 1998. 

150. O. Wasynczuk, “Dynamic behavior of a class of photovoltaic power Systems”, 

IEEE Transactions on  Power Apparatus and  Systems, vol.102, no.9, pp. 3031–

3037, 1983. 

151. S. Azadeh and S. Mekhilef, “ Simulation and Hardware Implementation of 

Incremental Conductance MPPT with Direct Control Method Using Cuk 

Converter”, IEEE Transaction on Industrial Electronics, vol. 58, no.4, pp.1154-

1161, 2011. 

152. I. Houssamo, F. Locment and M. Sechilariu, “Maximum power tracking for 

photovoltaic power system: development and experimental comparison of two 

algorithms”, Renewable Energy, vol. 35, no.10, pp. 2381 -2387, 2010. 



173 

 

153. P. Kromer, V. Snasel, J. Platos, A. Abraham, L. Prokop and S. Misak, “Genetically 

Evolved Fuzzy Predictor for Photovoltaic Power Output Estimation”, in Proc. 3rd

154. T. Hiyama, S. Kouzuma, T. Iimakudo, “Identification of optimal operating point of 

PV modules using neural network for real time maximum power tracking control”, 

IEEE Transactions on Energy Conversion,vol. 10, no.2, pp. 360–367, 1995. 

 

IEEE International Conference on Intelligent Networking and Collaborative 

Systems, pp. 41-46, 2011. 

155. T. Hiyama, S. Kouzuma, T. Imakubo, T. H. Ortmeyer, “ Evaluation of neural 

network based real time maximum power tracking controller for PV system”,  

IEEE Transactions on Energy Conversion, vol. 10, no. 3, pp. 543–548, 1995. 

156. T. Hiyama and K. Kitabayashi, “Neural network based estimation of maximum 

power generation from PV module using environmental information”, IEEE 

Transactions on Energy Conversion, vol. 12, no. 3, pp. 241–247, 1997. 

157. J. Shi, W. Lee, Y. Liu, Y. Yang and P. Wang, “Forecasting power output of 

photovoltaic systems based on weather classification and support vector machines”,  

IEEE Transactions on industry applications, vol. 48,no.3, pp. 1064-1069, 2012. 

158. A. D. Karlis, T. L. Kottas, Y. S. Boutalis, “ A novel maximum power point 

tracking method for PV systems using fuzzy cognitive networks (FCN)”,. Electric 

Power Systems Research vol. 77, pp. 315–327, 2007. 

159. C. Chiu, “T-S fuzzy maximum power point tracking control of solar power 

generation systems”, IEEE Transactions on Energy Conversion, vol. 25, no. 4, 

pp.1123-1132, 2010. 

160. N. Gounden, S. Annpeter, H. Nallandula and S. Krithiga, “Fuzzy logic controller 

with MPPT using line-commutated inverter for three-phase grid-connected 

photovoltaic systems”,  Renewable Energy, vol. 34, no.3, pp. 909 -915, 2009. 

161. C. Larbes, S. A. Cheikh, T. Obeidi and A. Zerguerras, “ Genetic algorithms 

optimized fuzzy logic control for the maximum power point tracking in 

photovoltaic system”,  Renewable Energy, vol. 34, pp. 2093 -2100, 2009. 



174 

 

162. L. Chen, C. Tsai, Y. Lin and Y. Lai, “A biological swarm chasing algorithm for 

tracking the PV maximum power point”,  IEEE Transactions on Energy 

Conversion, vol. 25, no.2, pp. 484-493, 2010. 

163. S. L. Brunton, C. W. Rowley, S. R. Kulkarni and C. Clarkson, “Maximum power 

point tracking for photovoltaic optimization using ripple based extremum seeking 

control”, IEEE transactions on power electronics, vol. 25, no.10,pp. 2531-2540, 

2010. 

164. Y. H. Liu, C. L. Liu, J. W. Huang and G. H. Chen, “Neural network based 

maximum power point tracking methods for photovoltaic systems operating under 

fast changing environments”, Solar energy, vol. 89, pp. 42-53, 2013. 

165. M. Khalid and A. V. Savkin, “A model predictive control approach to the problem 

of wind power smoothing with controlled battery storage”, Renewable Energy, vol. 

35, pp. 1520-1526, 2010. 

166. C. Hua, C. Wu and C. Chuang, “A digital predictive current control with improved 

sampled inductor current for cascaded inverters”,  IEEE Transactions on Industrial 

Electronics, vol. 56, no. 5, pp. 1718-1726, 2009. 

167. J. Rodriguez, M. P. Kazmierkowski, J. R. Espinoza, P. Zanchetta, H. Abu-Rub, H. 

A. Young, and C. A. Rojas, “State of the Art of Finite Control Set Model Predictive 

Control in Power Electronics”, IEEE Transactions on Industrial Informatics, vol. 9, 

no. 2, pp. 1003-1016, 2013. 

168. M. V. Cleef, P. Lippens and J. Call, “Superior energy yields of UNI-SOLAR_ 

triple junction thin film silicon solar cells compared to crystalline silicon solar cells 

under real outdoor conditions in Western Europe,” in proc. 17th European 

Photovoltaic Solar Energy Conference and Exhibition, Munich, 2001. 

169. E. Bum, N. Cereghetti, D. Chianese, A. Realini, and S. Reuonieo, “PV module 

behavior in real conditions: Emphasis on thin film modules”, Ph. D. dissertation, 

CH-Testing Centre for PV-Modules, University of Applied Sciences of Southern 

Switzerland. 



175 

 

170. M. G. Villalva, J. R. Gazoli and E. R. Filho, “Comprehensive approach to modeling 

and simulation of photovoltaic arrays”, IEEE Transactions on Power Electronics, 

vol. 24, no. 5, pp. 1198-1208, 2009. 

171. S. Chowdhury , G. A. Taylor, S. P. Chowdhury, A. K. Saha, Y. H. Song, 

“Modelling, simulation and performance analysis of a PV array in an embedded 

environment”, in Proc.  42nd

172. A.D. Hansen, P. Sorensen, L.H. Hansen, and H. Bindner, “Models for a stand-alone 

PV system”, Riso National Laboratory, Roskilde, 2000. 

 International universities power engineering 

conference. (UPEC), Brunel University, London, pp. 781–785, 2007. 

173. T. Esram, and P.L. Chapman, “Comparison of photovoltaic array maximum power 

point tracking techniques,” IEEE Transactions on Energy Conversion, vol. 22, no. 

2, pp. 439–449, 2007. 

174. A.K. Sahani, S.K. Nagar, “Design of digital controllers for multivariable systems 

via time-moments matching”, Computers & Electrical Engineering, vol. 24, pp. 

335-347, 1998. 

175. B. Bandyopadhyay, H. Unbehauenu and B. M. Patre, “Control of higher order 

system via its reduced model”, in Proc. 10th

176. B. Bandyipdhyay, F. Deepak, K. S. Kim, “Sliding mode control using novel sliding 

surfaces Lecture Notes in Control and Information Sciences”, Editors: M. Thoma, 

F. Allgower, M. Morari, Springer-Verlag Berlin Heidelberg, 2009. 

 IEEE international conference on 

global connectivity in energy, computer communication and control, vol. 1, pp. 

226-229, 1998. 

177. F.G.Sinskey, “Process control systems: Applications, Design and tuning”, 4th

178. E. Eskinat, S. H. Johnson and W. L. Luyben, “Use of Auxillary information in 

system identification”, Industrial Engineering and Chemistry Research, vol. 32, pp. 

1981-1992, 1993. 

 

edition, McGraw-Hill, New York,1979. 

179. W.T. Wu, J.W. Ko and H.G.Lee, “Decoupling control of Multivariable system with 

a Desensitizer”, Industrial and Engineering Chemistry research, vol. 32, pp. 2937-

2941, 1993. 



176 

 

180. S. Skogestad and M. Morari, “Understanding the Dynamic Behavior of Distillation 

Columns”, Industrial Engineering Chemistry Research, vol. 27, pp. 1848-1862, 

1988. 


	Thesis front page
	Abstract
	Acknowledgement
	Contents
	List of symbols
	List of acyronyms
	Chapter 1
	Nonlinear MPC uses the nonlinear dynamic model of the plant explicitly to control the upcoming behaviour of the plant. Two challenging tasks in nonlinear model predictive controller are acquiring an accurate nonlinear model and solving nonlinear optim...
	1.4.1 Nonlinear system modeling
	Nonlinear optimization

	LITERATURE REVIEW
	First principle model
	Empirical models
	1.6.2.1 Hammerstein model, Volterra model and Collocation model
	Neural networks for nonlinear modeling

	Online Nonlinear Optimization Techniques
	1.6.6.1 Nonlinear Programming


	Chapter 2
	Simulation Results
	PERFORMANCE COMPARISON OF NN BASED MPC WITH DIFFERENT ONLINE OPTIMIZATION TECHNIQUES
	Particle Swarm Optimization
	2.8.3 Simulation Results

	CONCLUSION

	Chapter 3
	3.2.1 Least Squares Support Vector Machines
	3.2.2.1    Principle of coupled Simulated Annealing
	3.3.1 Bayesian inference and Relevance vector machine
	The schematical representation of the above equation is,
	3.3.2 Sparse Bayesian learning for regression using RVM
	COMPARISON OF SVM AND RVM
	Prediction accuracy of Relevance vector regression model
	Significance of accurate and sparse model in MPC

	Neuro-Fuzzy Techniques
	3.5.2 Extreme ANFIS Learning Algorithm
	Prediction accuracy of Extreme ANFIS model
	CONCLUSION


	Chapter 4
	Chapter 5
	STRUCTURE OF PHOTOVOLTAIC CELLS, MODULES AND ARRAYS
	STRUCTURE OF OVERALL SYSTEM
	PV SYSTEM CONFIGURATION AND CHARACTERISTICS
	ANALYSIS OF PROPOSED CONTROL ALGORITHM
	MPPT based on Extreme ANFIS, RVM and SVM models
	Different machine learning techniques Based MPC Principle

	RESULTS AND DISCUSSIONS
	Tabulation of performance indices for different controlling techniques

	CONCLUSION

	Chapter 6
	BASIC STRUCTURE OF MPC FOR A MIMO SYSTEM
	Cost function formulation

	BINARY DISTILLATION COLUMN PROCESS
	Training and testing the model
	Performance of NN-PSO-CREV-MPC

	SVM BASED MPC OF BINARY DISTILLATION COLUMN PROCESS
	Training and testing the model
	Performance of SVM-PSO-CREV-MPC

	RVM BASED MPC OF BINARY DISTILLATION COLUMN PROCESS
	Training and testing the model
	Performances of RVM-PSO-CREV-MPC
	Training and Testing the Model
	Performances of Extreme ANFIS-MPC

	TABULATION OF PERFORMANCE INDICES OF DIFFERENT CONTROLLING TECHNIQUES
	CONCLUSION

	Chapter 7
	CONCLUSIONS

	Publications
	Bibliography

