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ABSTRACT 

In the field of medical imaging technologies, ultrasound imaging (US) has an important 

role in the diagnosis of several diseases because of its safe application for patients, low cost 

and portability. In usual, the diagnostic procedures based on the perception of medical 

images are performed in a subconscious way which is based on the conclusion drawn upon 

how the clinicians understand and interpret them. It is only since the last couple of years that 

computers have been used to process the images digitally in the equipment to some extent 

and thus help the clinician in their diagnostic decision. However, it is a difficult task in the 

case of US images because of the presence of speckles and other artifacts. The image 

segmentation is also a key step in several computer aided diagnosis systems used to identify 

a particular region of interest such as the tumor, lesion and other abnormalities, to measure 

the growth of tumors and to help in treatment planning. 

Speckle considered as multiplicative noise is a prime factor that degrades the contrast 

resolution and masks the meaningful texture information present in the US images. This 

makes accurate identification of object boundaries and contours of anatomical structures a 

challenging task. Hence, the image denoising can be considered as a fundamental task to 

improve the quality of the US images by suppressing the speckle noise without affecting the 

edge information. Thus, in the above perspective, the image denoising algorithms should 

fulfil the following three principal criteria: 

1. The algorithm must be capable of suppressing the maximum amount of noise from a 

particular region. 

2. The true tissue information, including the edges and other fine details should also be 

preserved and if possible, may be enhanced. 

3. The denoising algorithm must be computationally efficient, stable and robust. 

With the above background, the main objective of the present research work has been 

to design and develop the effective algorithms to achieve the improved performance in image 

denoising and segmentation. To obtain these objectives, it has been necessary to analyze 

and identify better approaches among the existing remarkable denoising and segmentation 

approaches and also it necessitated to improve the performance of the best identified 

approach, either by modifying the earlier algorithm or by suggesting a new algorithm. 

Accordingly, the entire research work has been planned and carried out in the following three 

different steps. 

1. Comparison of several existing image denoising methods has been carried out under 

two major categories, i.e. spatial domain category and transform domain category, and 

an optimum approach suitable for the US medical images has been identified. 

2. Based on the post-analysis of the approaches from two major categories mentioned 

above, new suitable denoising approaches have been designed and implemented to 
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improve the quality of the US images by suppressing the noise and preserving the 

edges. 

3.  A comparative evaluation of several existing segmentation approaches used for the US 

medical images have been carried out and new segmentation algorithms for the US 

images have been designed and implemented. 

In order to achieve the first objective of the initial phase of work, the performance of 

various existing denoising methods namely, adaptive weighted median filter (AWMF), wiener 

filter (WF), maximum homogeneity over a pixel neighborhood filter (MHOPNF), anisotropic 

diffusion filter (ADF), speckle reducing anisotropic diffusion (SRAD), nonlinear complex 

diffusion filter (NCDF), total variation filter (TVF), nonlocal means filter (NLMF) in spatial 

domain, while wavelet, ridgelet, curvelet and shearlet based methods in the transform 

domain category, have been evaluated on the test images degraded by different types of 

noise such as speckle and Gaussian noise and on real US images. Their performance is not 

only analyzed and evaluated in terms of visual perception, but also in terms of different 

performance measures such as the peak signal to noise ratio (PSNR), signal to noise ratio 

(SNR), structural similarity index metric (SSIM), figure of merit (FOM) and edge keeping 

index (EKI). Besides the above parameters, mean to variance ratio (MVR) has also been 

used for the quantitative analysis of the US images because of the nonavailability of the 

reference US images. From the experimental results, it is observed for all noise levels that 

the TVF, NLMF, curvelet and shearlet based approaches are able to suppress good amount 

of noise with better edge preservation in terms of quantitative measures, but in curvelet 

based method, some visual distortion like oscillations occur in the denoised images. For 

some images, ridgelet based approach also provides a competitive performance than others, 

but further it leads to some visual distortion. Moreover, diffusion based and the TVF 

approaches suffer from the loss of edge information. It is also observed that the better 

perceptual quality is obtained by the TVF, NLMF and shearlet based approaches. The 

diffusion, ridgelet and curvelet based approaches are also suitable to provide better 

denoising performance, but at the cost of blurring the edges and introducing some visual 

distortion.  

Under the second objective, six different algorithms are proposed in the present work. 

Based on the results obtained from the above comparative analysis, the first denoising 

approach based on M-band ridgelet transform is proposed in the present work. It utilizes the 

features of M-band wavelet transform in place of the 2-band wavelet transform (WT) used in 

the implementation of the ridgelet transform. The proposed approach utilizes the variation of 

the frequency resolution feature of the À trous algorithm by which a noisy image has been 

decomposed into different scales. NeighShrink (NS) thresholding is also utilized in the 

proposed approach to provide the approximated modified image coefficients that also 



 

iii 

 

improve the noise reduction efficiency. Based on the experimental results, it is observed that 

the proposed M-band ridgelet thresholding (MBRT) approach is able to produce better 

results by suppressing a sufficient amount of the speckle noise with more edges being 

preserved. 

It is observed on the basis of the findings obtained from the first objective, that the 

curvelet based approach also produces better denoising results. Curvelet transform (CVT) 

uses a parabolic scaling law to resolve the two dimensional singularities along ܥଶ curves. It 

also overcomes the limitation of the wavelet and ridgelet, which are less efficient to represent 

the sharp transition like line and curve singularities available in the images. To represent the 

edges more efficiently, ripplet transform (RT) has been evolved by incorporating two new 

additional parameters. It also provides a new tight frame with a sparse representation for the 

source images with discontinuities along the ܥௗ curves, where ݀ ൌ 2 refers to parabolic 

scaling same as the curvelets and for ݀ ൌ 3, ripplet has the cubic scaling and so forth. Based 

on the literature review and comparative evaluation performed earlier, the WT thresholding 

approach has improved its performance by incorporating some spatial domain techniques. 

Considering their merits, two different nonlinear filtering approaches in ripplet domain have 

been proposed here using the NS and BlockShrink (BS) thresholding approach that are 

named as the RTNLF-1 and the RTNLF-2, respectively. Nonlinear bilateral filtering (NLBF) is 

applied to the low frequency ripplet coefficients. The performance of these proposed 

denoising methods depend on the decomposition levels, different parameters of the RT and 

NLBF approach. The optimal values of these parameters have been decided by conducting 

the several experiments on the available test image datasets for the different levels of 

speckle noise with several combinations of these parameters. The results of the proposed 

RTNLF-1 and RTNLF-2 methods are compared with the bilateral, wavelet based NeighShrink 

(WT-NS), wavelet based NeighShrink using the NLBF (WT-NLBF-NS), wavelet based 

BlockShrink (WT-BS), linear homogeneous mask area filter (LHMAF), ADF, Fourth order 

PDE filter (FOPDEF), SRAD, NCDF, improved nonlinear complex diffusion (INCDF), wavelet 

based approach using generalized Gaussian distribution (WT-GGD), squeez box filter (SBF) 

and TVF approach. It is observed from their comparative results that proposed RTNLF-1 and 

RTNLF-2 methods provide better quality of images by suppressing more speckle noise as 

compared to others. Moreover, the RTNLF-2 approach performs better than the RTNLF-1. 

The higher SNR and PSNR values with larger EKI and SSIM values obtained by the 

proposed approaches indicate that the noise suppression is neither at the cost of blurring the 

edges nor at the loss of edge information. 

From the analysis of experimental results obtained earlier, it is observed that the TVF 

approach is quite good and has the ability to suppress the noise, but it performs noise 

reduction with the loss of edge information which means that some edge information is lost 
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within the noise residual. Thus, a remnant approach for adaptive fusion based noise filtering 

(RBAF) is proposed using the TVF and shearlet thresholding using cycle spinning (CSST) 

approach. The proposed RBAF approach fuses three different images processed by the (a) 

TVF approach, (b) CSST approach and (c) extracted edges structured information (ESI) from 

the remnant of TVF approach and processed by the CSST approach. The proposed RBAF 

approach fuses these images based on the 3×3 block variance map evaluated for all three 

above processed images. The RBAF approach improves both the perceptual quality and the 

detectability of real US images and several test images corrupted with the speckle and 

Gaussian noise of different levels (characterized by their standard deviation and variance). 

To assess the performance of the proposed RBAF approach, the results of other methods 

such as the TVF, TI-WT, curvelet thresholding using cycle spinning (CSCVT) approach, 

CSST, CVT with the TVF approach (CVT-TVF) are considered. It is observed from the 

analysis of all the experimental results that the higher values of EKI and FOM with improved 

values of the SNR, PSNR and SSIM are obtained for the proposed RBAF approach. Further, 

it indicates that the improved noise suppression provided by the proposed RBAF approach 

does not produce the blurred edges. Besides this improved performance, the proposed 

RBAF approach also helps to suppress the staircase/blocking effects produced by the TVF 

method and the fuzzy edges introduced by the CVT and ST based methods. 

Based on the outcomes of the different experiments performed earlier and the 

literature, it is observed that anisotropic diffusion is widely used for denoising of the US 

image, but it suffers from the loss of edges information available in the images that are also 

very important for visual perception. To represent more edges, nonsubsampled shearlet 

transform (NSST) has been presented by providing both the multiscale and direction analysis 

of an image. Further, two different noise filtering approaches using the modified nonlinear 

adaptive anisotropic diffusion (NADF) equations in the NSST domain and thresholding 

approach (similar to the CVT and ST thresholding) have also been proposed. In the modified 

diffusion process, an adaptive gray variance is also incorporated with the gradient 

information of eight connected neighboring pixels to preserve the edges, effectively in the 

first proposed approach and named as the NSST-NADF. Motivated by the better noise 

reduction results of the NLMF presented in the first comparative analysis, the nonlocal pixel 

information is also incorporated to evaluate the gradient of eight connected neighboring 

pixels with an adaptive gray variance in the second proposed approach and is named as the 

NSST-NLNADF. Their denoising performance is also compared with all aforementioned 

existing methods, including the speckle reducing bilateral filter. The proposed methods are 

also adapted to both the speckle and Gaussian noise. Based on the experimental results, it 

is observed that the proposed NSST-NLNADF approach ensures an improvement in noise 

reduction and preservation of more edges by providing higher SNR, PSNR, FOM, SSIM and 
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EKI values than the NSST-NADF approach and others and thus providing the processed 

images with better visual quality.  

In order to achieve the next objective of the present work, two different segmentation 

methods are proposed to delineate the region of interest in the US medical images using 

clustering and level set methods. Based on the literature, the performance of the traditional 

active contour segmentation methods is subjected to appropriate and accurate contour 

initialization and optimal configuration of the contour propagation controlling parameters, 

which also require extensive manual intervention. Therefore, two different segmentation 

approaches, namely hybrid edge-based active contour model (EBACM) with the kernel fuzzy 

c-mean clustering (KFCM) and region-based active contour model (RBACM) with the 

Gaussian kernel fuzzy clustering (GKFCM) have been proposed here to segment the US 

medical images.  

In the first proposed segmentation approach, the features of both the edge-based 

active contour model using the distance regularized level set and the KFCM clustering are 

merged to detect the abnormalities from the US images. In the proposed approach, the fuzzy 

membership function from the variants of KFCM with spatial constraints, i.e. KFCM_S1 and 

KFCM_S2 clustering, is employed to initialize the curve that evolves to extract the desired 

object of interest. In addition to contour initialization, the results of the fuzzy clustering are 

also used for further evaluation of the contour propagation controlling parameters. Thus, two 

different segmentation approaches, namely the EBACM-KFCM_S1 and EBACM-KFCM_S2 

are proposed, which start with the KFCM_S1 and KFCM_S2 methods, respectively, to 

initialize the curve and evaluate the curve evolution controlling parameters. The 

segmentation results of both the EBACM-KFCM_S1 and EBACM-KFCM_S2 methods are 

compared with the different variants of fuzzy c-means using spatial constraints (FCM_S1 and 

FCM_S2), KFCM_S1, KFCM_S2, geodesic active contour (GAC), region-based active 

contour driven by region scalable fitting (ACMRSF), edge-based active contour model 

(EBACM) applied on the large database of the US images. Their performances are 

estimated, quantitatively in terms of different performance measures such as true positive 

(TP), false positive (FP), accuracy (ACC), Jaccard similarity index (JSI), dice coefficient (DC) 

and Hausdorff distance (HD). The quantitative analysis shows that the results of the 

proposed segmentation methods provide higher segmentation accuracy compared to the 

others. It also provides better values of other performance metrics such as the TP, FP, JSI, 

DC and HD. For the proposed EBACM-KFCM_S2 method, when tested on the US images, 

the averaged performance measures such as the TP, ACC, JSI, and DC are higher than the 

EBACM-KFCM_S1 method. The proposed approaches also help to remove the need of 

manual intervention and decrease the processing time. 
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In the second proposed segmentation approach, the features of the RBACM driven by 

the RSF energy and the two different variants of the Gaussian kernel fuzzy c-mean clustering 

with spatial information such as the GKFCM_S1 and GKFCM_S2 are utilized. In addition to 

the previously described methods in the earlier paragraph, two more hybrid segmentation 

methods using the RBACM approach have been proposed, which starts with the GKFCM_S1 

and GKFCM_S2 approach, individually. The proposed approaches utilize the GKFCM_S1 

and GKFCM_S2 clustering, individually, not only to initialize the contour, but also to estimate 

the several contour propagation controlling parameters. These proposed approaches are 

named as the RBACM-GKFCM_S1 and RBACM-GKFCM_S2. In these segmentation 

approaches, the intensity information in the local regions as against the global regions in 

conventional RBACM approach, are utilized to drive the motion of contour toward the desired 

object boundaries. The RSF formulation is also responsible for attracting the contour toward 

the object boundaries, thus increasing the speed of the contour propagation. The 

effectiveness of the proposed approaches is illustrated through several experiments 

performed on the similar US images, synthetic test images and also compared with the 

results of the above segmentation methods, including the RBACM using spatial fuzzy 

clustering (RBACM-SFCM) approach. From the experimental results, it is observed that the 

segmented images obtained by the proposed approaches are approximately similar to that of 

the manually delineated region compared to others. It is further observed that the proposed 

approaches achieve higher segmentation accuracy than the GAC, ACMRSF, RBACM-SFCM 

and EBACM, which itself signifies improvement in the results of the proposed approaches. 

These proposed methods also take comparatively less time to segment the image. 

For the purpose of implementing and evaluating the performance of the above 

discussed proposed methods, the US images were acquired from the image database 

available at (http://rad.usuhs.edu/medpix/parent.php3?mode=home_page), (http://ultrasonic 

s.bioenggineering.illinois.edu), (http://www.ultrasoundcases.info/), (http://radiologyinfo.org/en 

/photocat/), (http://thelivercarefoundation.org) and from the database of GE, Phillips and 

Siemens. 
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CHAPTER 1: INTRODUCTION 

This chapter presents an introduction to the research work carried out in this thesis. It starts with some 

background on medical imaging and different imaging modalities in which ultrasound imaging is most 

commonly used because of its advantages compared to the others. This chapter also presents an 

exhaustive review of the work done on different image denoising and segmentation algorithms for the 

ultrasound images. The objectives for present study have been decided on the basis of these reported 

works. The organization of the present thesis is also given at the end of this chapter. 

1.1 Motivation 

A large number of diseases have become an important public health issue in the world 

today. The diagnosis of some diseases is delayed or missed because of absence of 

generally no symptoms until the disease has reached an advanced stage. Also, the 

symptoms may vary from patient to patient. In addition, some symptoms may not be very 

specific to a particular disease and may resemble with the symptoms of other diseases. This 

needs some hidden information from the human body where medical imaging plays an 

important role. The clinical examination and the various branches of the pathology are the 

other constituents. Several imaging modalities used for taking the medical images of 

patients’ internal body parts are now available for the diagnosis of different diseases. These 

include X-ray, computed tomography (CT), magnetic resonance (MR), ultrasound (US), 

positron emission tomography (PET), single photon emission computed tomography 

(SPECT), functional magnetic resonance (fMR) and angiography etc. The US imaging is 

widely used in the medical diagnosis because of its cost effectiveness, portability, 

acceptability and safety. Moreover, the applications of the medical imaging are not only 

limited to the diagnosis, but also open surgery is being replaced by minimum invasive 

procedures and image guided intervention is becoming more common. 

Any diagnosis is based on the perception of these images obtained by different 

imaging modalities in a subconscious way, which can be stated that it is a conclusion drawn 

upon what we see, understand and interpret. But to achieve these objectives, the image 

needs to be noise free as much as possible. Thus, image denoising is considered as a 

fundamental step among the various image processing tasks such as compression, 

segmentation and feature extraction. Besides the image denoising, image segmentation is 

the key step in several computer aided diagnosis systems which results in partitioning of the 

image into distinct regions that have some specific clinical meaning. Although manual 

segmentation done by the experts remains superior in quality and accuracy, but it has two 

main drawbacks. The first is that producing a manual segmentation is time consuming and 

second is that the segmentation is subject to variations between both the inter-observers and 

intra-observer. The computer aided systems for the accurate segmentation of the medical 

images allow more precise and less time consuming process and also help the medical 
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practitioner in making the speedy decisions. These motivations motivated to search for better 

denoising and segmentation approaches that may be helpful in better diagnosis. 

1.2 Medical Imaging Modalities: A Brief Overview 

Medical imaging plays a prominent role in the diagnosis and treatment of diseases. The 

challenging problem of extracting the clinically useful information about anatomical structures 

imaged through different imaging modalities has received enormous attention. There is no 

single imaging modality which suits for the radiological applications and requirements. In 

addition, each medical imaging modality is limited by the respective physics of energy 

interaction with cells of the human body, instrumentation and physiological constraints. 

Medical imaging modalities that do not make the incision physically are noninvasive. The 

noninvasive imaging techniques are used for the detection of a disease during a mass 

screening and to gather important information such as its shape and size, but in the few 

cases, biopsy as invasive approach is also used in diagnosis especially for tissue genocity. 

Biopsy brings useful information by removing a small amount of tissue, but it's quite difficult 

to be accepted by the patients because of its invasiveness and also its possible side effects 

(pain in one third of the patient, severe complications in 0.3% and even death in 0.03%). 

There are various different medical imaging modalities that are based on the different types 

of energy sources used in imaging process and provides the internal views of the anatomical 

structure, where a radiologist/clinician examine and analyze the images. This categorization 

of different medical imaging modalities with respect to the energy sources used in the 

imaging process is shown in Table 1.1 [74]. 

Table 1.1  Classification of different medical imaging modalities based on the types of energy 
sources used for imaging 

Imaging modalities Energy sources used 

(1) X-ray radiography, X-ray mammography, X-ray computed 
tomography 

External energy source (2) Ultrasound imaging 

(3) Optical transmission and Trans-illumination imaging 

(1) Nuclear Medicine: Single photon emission tomography (SPECT) 
Internal energy source 

(2) Nuclear Medicine: Positron emission tomography (PET) 

(1) Magnetic resonance imaging, MRI, fMRI 
Combined: Internal and 
external energy source 

(2) Optical fluorescence imaging 

In the case of the external energy source, X- ray is commonly used imaging technique 

for anatomical structure that is based on the energy of ionized radiations. This imaging 
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modality develops an image according to the attenuation coefficients of radiation passing 

through the body that are further based on the density of tissue or part of the body being 

imaged [74]. This radiation based technique also includes X-ray radiographs, mammography 

and computed tomography imaging. X-ray mammography is a specialized radiographic 

imaging approach that is utilized for breast imaging (diagnosis of breast disease). X-ray 

computed tomography (CT) is another radiographic inspection technique that utilizes a 

computer to gather the multiple images of a cross sectional plane of an object.  

Another technique of external energy sources based imaging is the US imaging that 

relies on reflected sound waves to generate an image. A common medical US device sends 

the US waves into the tissue and analyzes the reflecting waves in order to obtain the images. 

The standard US image represents a spatial map of the tissue region of interest with different 

acoustic properties. When the US passes through different tissues, echoes are produced at 

the boundaries that describe or separate them. For example, tumors may produce echoes 

that are different from the echoes made by healthy tissues.  

For trans-illumination imaging, the use of laser light to produce images of tissue 

continues to be explored for its possible applications in cancer detection. This method, 

sometimes referred to as laser optical tomography and is similar to an X-ray CT, except that 

the light in the near-infrared region (700–1200 nm), rather than X-rays, is used as the energy 

probe [74]. 

Nuclear medicine imaging modalities utilize an internal energy source through an 

emission process to image the human body which provides useful metabolic information 

about the physiological functions of the organs. In this approach, radioactive pharmaceuticals 

are injected into the patient's body to interact with selected body matter/tissue to generate an 

internal source of radioactive energy and to emit gamma ray with photon energy (140 KeV) 

used for imaging. At this energy level, photons penetrate well through the tissue, and the 

same can still be effectively detected. For SPECT imaging technique, the gamma camera is 

mounted on a rotational gantry and is used as an area detector [74]. The acquired data are 

topographically reconstructed to produce 2D slices. 

Furthermore, MR imaging or MRI is a procedure that utilizes a powerful magnet and 

radio waves to generate detailed images of the body's organs and structures. This type of 

imaging is done without use of X-rays or other radiation. The images produced by the MR 

imaging show the exact details of inside the body. The MRI allows acquisition of images with 

excellent anatomical details and high contrast of soft tissue.  

Another emerging imaging modality is fluorescence imaging that utilizes an external 

ultraviolet energy source to stimulate the internal biological molecules of interest, which 

absorbs the ultraviolet energy, become an internal source of energy and then emit the 

energy at visible electromagnetic radiation wavelengths. 
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As there is no perfect common imaging modality for all radiological applications, there 

is a need to choose the best suitable modality for a particular application. The choice of the 

best imaging modality to solve any particular clinical problem is actually based on the factors 

such as resolution, contrast, mechanism, speed, convenience, acceptability and safety. For 

imaging the soft tissues, US imaging scores high for all of these factors [250]. Further, the 

US imaging has following advantages over the CT, MR and other imaging techniques. 

1. The US imaging is a most popular and primarily used technique in developing countries 

for the detection of several diseases because of its low cost and real time imaging 

capabilities. The CT and MRI are of higher cost in comparison to the US and incur huge 

costs to patients. Therefore, these imaging techniques put more financial burden to the 

patients in a country like India, where most of the patients generally come from rural 

environment. Moreover, it is very difficult for those patients to frequently go through the 

sequence of costly imaging procedures. Thus, the US imaging is preferred in 

developing countries on account of its least expensiveness as one of the qualities. 

2. The US imaging is used for initial diagnosis, while the CT and MRI are utilized as a 

method of characterization and evolution of the diseases. Moreover, the amount of the 

information obtained from the CT and MRI is very large and it is very difficult for the 

inexperienced radiologist to interpret all these images in a short duration of time, 

whereas the US examination is relatively simpler than the CT and MRI. Therefore, the 

clinical relevance of the US examination is high worldwide due to the versatility and 

widespread availability of the US systems, and the relative simplicity of performing the 

US examination in comparison to the CT and MRI. 

3. The US imaging is recognized as one of the most risk free system to diagnose any 

disease in the soft tissue of human body. For example, the US is the initial examination 

performed in most of the patients clinically suspected having a liver mass as compared 

to the CT and MRI. 

4. All the US, CT and MR are noninvasive imaging modalities. But, on the electromagnetic 

and radiation level, the CT and MRI are quite invasive. From the high energy photons in 

X-ray CT, to the 2+ Tesla coils of an MR imaging device, these modalities alter the 

physical and chemical reactions of the body in order to obtain data [167]. On the other 

hand, no harmful effects on the tissues as a result of the US examination have ever 

been observed at the doses and energies used in today's clinical practice. Sonography 

uses high frequency pressure waves and thus affects and measures the total kinetic 

energy of the molecules in the tissue rather than the internal energy of their electrons or 

nuclei. The fact that the US is noninvasive allows the radiologist to obtain several 

images of human anatomy which is of particular interest, and no special precautionary 

measures to be taken. 
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5. The logistics of storage and installation of US machines are easier than the CT and 

MRI, since ultrasound machines are smaller and lighter. Further by obtaining a real 

time image, a working diagnosis could be made without delay using the US. 

Although, the US imaging is an attractive medical imaging technique in general, 

because of its several advantages. The diagnostic accuracy of the US used for the detection 

purpose is estimated to be lower than the CT and MR. The MR imaging has the highest 

diagnostic accuracy. Furthermore, the limitation with US imaging is operator dependent, but 

it is overcome once the observer is trained. Speckle is another factor that affects the quality 

of the US images. Due to the presence of these speckles, an expert may not be able to 

extract the most useful information from the images. Thus, the interpretation of the different 

experts/radiologist may be different from the same US image. Regardless of all the 

limitations, the US imaging is preferred imaging in India on account of its widespread 

availability and low cost. Therefore, in this thesis, the US images have been chosen for 

study. 

1.3 Ultrasound Imaging 

 Ultrasound imaging is a procedure in which high energy acoustic waves with a 

frequency greater than 20 KHz are bounced off from internal organ or tissues of a human 

body and make echoes [167]. These echo patterns are shown on the screen of the US 

machine, forming a picture of body tissue called a sonogram or ultrasonography.  The basic 

principle of the US imaging is the transmission of high frequency acoustic waves into the 

patient's body followed by its reception, processing and display of echoes reflected back from 

the tissue's structures or medium within the body [167]. It has been recognized as a highly 

useful and powerful tool for the diagnosis and evaluation of the several clinical entities. In 

order to take the US image, it is very essential to understand how the US imaging system 

works and how acoustic wave is converted into an image. 

In the US imaging process, the radiologist/clinician scans the desired portion of the 

body/organ by properly locating a medical ultrasound probe on the surface of the body. In 

order to provide a good acoustic contact, the skin is smeared with a jelly like substance 

[158]. Very short pulses are transmitted approximately 500 times each second by a 

piezoelectric transducer of material such as lead zirconate titanate, barium titanate that is 

able to convert electric signal into mechanical waves. The similar transducer also acts as a 

receiver that can also receive the sound echoes reflected back from the body tissues/organs 

and then converted back into the electrical signal. Due to different arrangements of the 

piezoelectric elements and the different shape of the transducer, transducers are classified 

into three different types such as a linear array (side by side arrangement of the elements), 

convex array (the elements are arranged into a sector like field) and phased array (each 

element fires the acoustic beam in proper order).  
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Low frequency transducers (3.0-3.5 MHz) are utilized for viewing large structures that 

are not close to the transducer, while the high frequency transducer (5-10 MHz) are used for 

those structures, which are close to the transducer [158]. The ideal transducer used for the 

US imaging would be perfectly matched to the human body with respect to shape and size; 

would also have high efficiency as a transmitter and high sensitivity as a receiver, a wide 

dynamic range and a wide frequency response for pulse operation. The pulse echo method 

depends on the measurement of time elapsed between the transmission of a pulse of US 

and the reception of its echo from a reflecting or scattering target, and measurement of the 

amplitude of its echo returned back from the target [158]. The amplitude of an echo provides 

the information about the depth of penetration of US waves and the effect of attenuation of 

US by the tissue. Further, if the transducer is moved across the patient's body while all the 

echoes are recorded and maintained on a video screen, a two dimensional image (B scan) 

will be generated. This is termed as brightness mode scanning. It modulates the brightness 

of a dot to denote the amplitude of a signal displayed at the location of the interface. The 

spot shown on the screen become brighter with stronger echo signal. Changes in the echo 

amplitude between maximum and minimum can be made to produce perceptible changes in 

the image brightness. Each pixel's brightness is displayed as one of 256 gray levels in black 

and white represented by 0 and 255, respectively. Black pixels represent fluid filled 

structures while white pixels refer to the dense tissues that reflect the major portion of 

incident sound beam. The spatial resolution of the image in US imaging depends upon the 

ultrasonic frequency as explained in the following subsections. 

1.3.1 Propagation of ultrasonic waves through biological tissues 

The Figure 1.1 shows the operation of ultrasonic transducer being used in medical 

imaging with an aperture that is usually in the form of a circle or a rectangle. The continuous 

wave excitation of a transducer produces effects in the near and far field and is given by the 

following equation [214]. 

ௗܫ
ܫ
ൗ ൌ ଶ݊݅ݏ ቄቀ

గ

ఒ
ቁ ቂሺܽଶ  ݀ଶሻ

ଵ
ଶൗ െ ݀ଶቃቅ       (1.1) 

where ܫ is the intensity at the surface of the transducer, ܫௗ refers to the intensity at a 

distance ݀ from the transducer along the central axis of the beam, ܽ refers to the radius of 

the transducer and ߣ is the wavelength. In the near field, the beam is roughly cylindrical, with 

a series of axial maxima and minima of decreasing complexity, moving away from the 

transducer, whereas in the far field, the last maxima is formed at ݀	 ൌ
మ

ఒ
; 	݂݅	ܽଶ 	 ݀ଶ.  

The Eqn. (1.1) characterizes the intensity of wave along the depth of penetration and 

its relation with respect to the ratio of the wavelength and the size of the transducer. 

Similarly, the speed of the US wave depends upon the medium through which, it propagates. 

With the elasticity of the medium ሺߢሻ and the density of the medium ሺߩሻ, the speed ሺܿሻ of the  
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Figure 1.1 Propagation of the US beam produced by a disc transducer in the homogeneous medium 
[214] 

US waves is given by  

ܿ ൌ ටߢ ൗߩ           (1.2) 

At a plane boundary between two media where the speed changes from ܿ to ܿ′, relationship 

is given by 

ܿᇱ ൌ ቀୱ୧୬ఏ
ୱ୧୬ఏ

ቁ ܿ          (1.3) 

where ߠ௧ and ߠ are the angles of refraction and incidence of the US waves, respectively. 

At the normal incidence, with heterogeneous boundary having acoustical impedances 

of the two mediums as the ܼଵ and ܼଶ, intensity of reflected waves is given by 

ܫ ൌ ܫ ቀ
మିభ
మାభ

ቁ
ଶ
          (1.4) 

where ܫ and ܫ are the intensities of the incident and reflected waves, respectively. The 

acoustic impedances are characterized by the material properties. The impedance is defined 

by the product of the density of a material and the speed of sound. For different biological 

materials, the impedance values with its attenuation effects are shown in Table 1.2 [249]. 

The Eqn. (1.2) shows the effect of different biological material constant such as ߢ and ߩ 

on the speed of US waves whereas the Eqn. (1.4) gives the effects of acoustical impedances 

on the intensity of reflected waves. In addition, different biological materials exhibit different 

acoustical impedances. From the Eqn. (1.4), it is evident that the reflection of an incident 

wave is stronger, if the difference of acoustic impedance between two tissues at the interface 

is high. Reflection at a smooth boundary interface that has a diameter greater than that of the 

US beam is known as specular reflection [158]. The air has a low value of acoustic 

impedance. The sound is to be reflected entirely at a tissue air interface. Thus, if any air 

bubble exists along the propagation path of the US wave, a dark spot has appeared on the 

screen during the US scan. Moreover, the attenuation of the US energy is very high in the air 
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and thus, no reflection will be received by the transducer, when the US beams propagate 

through the air. Thus, coupling gel is required to put on the skin surface at the spot where the 

clinicians put the transducer during the US scanning. The best coupling agents are water 

soluble gels, but water is suitable for very short examination. The common coupling gel is a 

composition of 10 g Carbomer, 0.25 g ethylenediamine tetraacetic acid (EDTA), 75 g 

propylene glycol, 12.5 g trolamine  and up to 500 ml demineralized water [158].  

Table 1.2 Properties of some materials and body parts related to the US imaging  

Material 
Propagation speed ܿ

ሺ݉ିݏଵሻ 
Impedance ܼ 

ሺ10 ݇݃ ݉ିଶ  ଵሻିݏ
Attenuation coefficients ߙ 

at 1 MHz ሺ݀ܤ	ܿ݉ିଵ)  

Air 330 0.0004 1.2 

Blood 1570 1.61 0.2 

Brain 1540 1.58 0.9 

Fat 1450 1.38 0.6 

Liver 1550 1.65 0.9 

Muscles 1590 1.7 1.5 to 3.5 

Skull bone 4000 7.8 13 

Soft tissue (mean value) 1540 1.63 0.6 

Water 1480 1.48 0.002 

The boundaries of tissue including the organ surface and vessel walls are not smooth, 

but are seen rough by the US beam, i.e. there are irregularities at a scale similar to the 

wavelength of the US. These interfaces causes nonspecular reflection, called as 

backscattering, over a large angle [158]. Some of these reflections will reach the transducer 

and contribute to the construction of the image. The apparent conclusion is that the spatial 

resolution improves as the wavelength is decreased or the frequency is increased. 

1.3.2 Typical medical ultrasound imaging system 

A block diagram of a typical medical US imaging system is shown in Figure 1.2. A 

typical medical US device sends the US waves into the tissue using a piezoelectric crystal 

based transducer and analyzes the reflecting waves in order to obtain images of the 

structure of interest or mechanical parameters of the tissue. As the acoustic waves are 

transmitted into the body, it is reflected at the junction of different tissues, some of them are 

absorbed by the tissue, some of them will continue the propagation into deeper tissue of the 

body, some of them are diffracted as well as scattered into the different directions and some 

are reflected at the interface of media with different acoustic impedances. The strong 

absorption and scattering of acoustic waves in tissues indicate that the US imaging has quite 

poor signal to noise ratio compared to the others. The reflected echoes from different depths 

of the body are received by the transducer. The depth of each reflector can be estimated 
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from the time recorded between the transmission of US pulse and the reception of its echo 

using pulse echo method. 

The US imaging system presented in Figure 1.2 consists a transducer of piezoelectric 

material, control panel with pulse generation and timing circuit, computer processing and 

display system. Furthermore, the US machine has several control knobs which are very 

important to control the image. For example, gain control is utilized to control to adjust the 

sensitivity of a signal. Gain is the ratio of the output of electrical power to input. Time gain 

compensation (TGC) is provided to compensate the decreased signal strengths of deeper 

tissues to the greater attenuation over a long path.  

 

Figure 1.2 Block diagram of a conventional ultrasound imaging system [74] 

The following four different modes of the US imaging are used in medical applications: 

A-mode: This is the simplest US imaging mode in which a single transducer probe is used 

and the echoes are plotted on a screen along the distance (time) axis as peaks proportional 

to the amplitude (intensity) of each signal. This method is rarely used today, as it conveys 

limited information as a measurement of distance [158]. 

B-mode: B-mode (brightness) is a similar approach, but the echoes are displayed as points 

of different grayscale or brightness corresponding to the amplitude (intensity) of each signal 

[158, 197]. The B-mode of the US imaging provides a two dimensional image representing 

the changes in acoustic impedance of the tissue. To obtain a two dimensional image of the 

tissue structure, the transducer is pivoted at a point about an axis and is used to provide a V-

shaped imaging region. Using the computer processing system, several versions of the 

acquired data can be displayed to show the acoustic characteristics of the tissue structure 

and its medium. The returned echoes are processed with proper pre-amplification and 



 

10 

 

adaptive gain amplifiers for acquiring the raw data that are converted into an image for 

display. Dynamic B-mode scanners provide real time US images using multiple transducer 

arrays and computer controlled data acquisition and display systems. 

M-mode: In the M-mode (time motion), the depth in tissue is displayed along the one axis 

while the other axis represents time [158]. It is used to analyze moving structures such as 

heart valves. The echoes generated by a stationary transducer are recorded continuously 

over time. 

Doppler mode: Doppler US imaging techniques include the capability of accurately 

measuring velocities of moving material, such as blood in arteries and veins. Doppler 

capability is most often combined with B-mode scanning to produce the images of blood 

vessels from which blood flow can be directly measured. This technique is used extensively 

to investigate heart valve defects, arteriosclerosis, and hypertension, particularly in the heart, 

but also in the abdominal aorta and the portal vein of the liver. Various types of Doppler 

systems such as continuous wave (CW) Doppler, pulse wave (PW) Doppler, spectral 

Doppler and color flow duplex are used in medical diagnosis [158]. 

1.3.3 Image quality and resolution 

The image quality is the thing that keeps the clinicians more concerned. As the quality 

of US image is in best phase, the physicians get more diagnostic information from the 

images. There are few theoretical issues that affect the image quality. The quality of the US 

images depends on the image resolution such as axial and lateral. For different organs, 

different transducers with different frequencies are chosen. A higher frequency allows a 

higher axial and lateral resolution. Resolution refers to the minimum distance between two 

points at which they can be represented as distinct.  

The axial resolution represents as the ability to differentiate between two points along 

the direction of the US propagation (axial direction) [158]. It depends on the pulse length and 

makes better, if the pulse length shortens. A transducer having high transmission bandwidth 

with high frequency (3-7 MHz) are more suitable for providing short acoustic pulses and then 

better axial resolution. Higher the frequency or smaller the wavelength ሺ݂ ∝  ሻ refers to theߣ/1

better axial resolution. 

The lateral resolution is observed in a direction at right angle to the axis of the US wave 

propagation [158]. It depends on the diameter of an US beam. It is determined by measuring 

the width of the main lobe of a beam pattern at either -3dB or -6dB. A large transducer 

provides a narrower beam because of diffraction, but the size of the transducer is limited by 

some certain applications. A narrower beam can be accomplished at the cost of large side 

lobes that also reduce the contrast in an image because of interference of the reflections 

from the main lobes and side lobes. Good lateral resolution is achieved by focusing the 

transducer at a point within the certain depth. 
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Another important factor affecting the quality of an image is contrast resolution that is 

also decreased by inducting the noise in the image because of the multiple reflections 

(reverberation) of the US pulse [172]. The other factor is the penetration depth which is also 

related to the frequency as well as the wavelength. The higher frequencies are attenuated by 

tissue more than lower frequencies in the tissue medium. Higher frequency denotes lower 

wavelength and greater resolution, but lower depth of penetration. Normally, clinicians use 

lower frequencies for adults and higher frequency for children. Therefore, there is a trade off 

between the necessary depth of penetration and the desired image resolution. 

1.3.4 Speckle  

The US speckle is a granular pattern caused by constructive and destructive coherent 

interference of backscattered echoes from the randomly distributed scatters that are smaller 

in size. Because of the existence of these speckles, the US images become very complex to 

decipher. Speckle is also a main factor that limits the contrast resolution in the US imaging, 

thereby limiting the detectability of small, low contrast region and making the US images 

generally difficult for the non-specialist to interpret. In fact, due to the presence of speckle, 

even US experts with sufficient experience may not be able to extract correct and useful 

information from the speckled images. Speckle noise also limits the effective application of 

the image processing and analysis algorithms. Therefore, speckle is most often considered a 

dominant source of noise that is multiplicative in nature. Speckle occurs especially with 

images of liver and kidney whose underlying structures are too small to be resolved by large 

US wavelength [167]. 

The phenomenon of speckle occurs when a coherent source and a noncoherent 

detector are used to interrogate a medium. Several microscopic tissue components smaller 

than the spatial resolution of technique act together to reflect the sound waves incoherently. 

Speckle is manifested in a granular pattern due to image formation under coherent waves 

that are backscattered by the targeted surfaces and arrive out of phase at the transducer. 

When waves of a single wavelength are reflected from a rough surface, each point on the 

surface effectively behaves as a source of spherical waves [35]. These numerous spherical 

waves will have many different phases that will cause the waves to interact constructively at 

a few points in space and destructively at other points. If the surface is rough enough to 

cause a phase difference greater than 2ߨ then the resultant intensity pattern will be random 

[35, 167]. The maximum possible intensity would be the sum of the amplitudes of a large 

number of large amplitude spherical waves, whereas the minimum intensity when all the 

waves interact destructively, would be zero. In the regions of low average signal intensity, 

constructive interactions will produce only medium or low amplitudes, while higher amplitude 

waves are present in the region of high average signal intensity. The overall result is that the 

random noise signal will have an average amplitude that increases with overall signal 
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intensity. In an image this appears as many bright specks in the lighter regions. This is 

speckle noise. In contrast to Gaussian 'additive noise', speckle is called multiplicative noise 

[35]. Finally, it can be said that the speckle is a complex phenomenon in the US imaging. 

Besides the speckles available in US images, different artifacts are also introduced in the US 

images because of the poor nature of machines, the human operator error such as wrong 

selection of the gain and incorrect placement of the transducer and other physiological and 

pathological conditions of the human body. Therefore, the US images are characterized by 

the speckle which makes the interpretation of these images very difficult.  

1.4 Need of Image Denoising 

The US imaging is one of the most important and cheapest instruments used for the 

diagnostic purpose among the clinicians. Due to inherent limitations of the acquisition 

methods and systems, the US images are degraded by the multiplicative speckle noise. As 

mentioned earlier, speckle is considered as a prime factor that degrades the quality of US 

images and most importantly meaningful texture information present in the US images. It has 

an undesirable interference effect on the images that obscure fine details in the images such 

as lesions with the faint gray value transition and small details and makes the US images 

generally difficult for the nonspecialist to interpret. In fact, the experts with a lot of experience 

may not be able to draw the final conclusions from these images. The presence of these 

speckles affects human interpretation of the images as well as computer assisted method 

also. Apart from this, the other image processing tasks such as segmentation, feature 

extraction, analysis, recognition, quantitative measurement etc. may also become difficult. 

The detection and enhancement of the boundaries between different cavities and 

organs are of great need in the US imaging and are considered as a challenging problem. 

Although, image acquisition techniques yield an ever-improving quality, the presence of the 

noise introduced by the image formation process, image recording and transmission etc. is 

unavoidable. Hence, there is a need of image denoising for most of the post processing 

algorithms. To improve the quality of the images, the most important issue is the reduction of 

speckle noise. Sometimes, the noise reduction process may suppress the important details 

of the images. Thus, the noise reduction approach should be designed in such a manner that 

they can suppress the noise as much as possible without any significant loss of (boundary) 

edge information [5, 20, 25, 51, 166, 167, 210, 253, 277]. So, it becomes more difficult and 

challenging task to design and develop the image denoising approaches with edge 

preservation that simultaneously fulfil three different criteria such that the approach must be 

capable to suppress the maximum amount of the noise from the region of interest with the 

preservation of edge information and it must be stable and robust. Image denoising may also 

become a preprocessing step for the different image processing applications. 
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1.5 Need of Image Segmentation 

Ultrasound image segmentation is an important issue in medical image analysis and 

visualization. The main objective of image segmentation is to change the representation of 

an image into more meaningful clinical information extracted from the US images and easier 

to analyze. In other words, image segmentation approach is used to partition the given image 

into several parts or different anatomical structures such as blood vessels and liver tumors 

from their background. Boundary identification, which is resultant of segmentation, is 

important for deriving the morphological information of the US image, which often serves as 

a crucial descriptor in both quantitative and qualitative US image analysis.  

Furthermore, image segmentation is required for several other purpose such as 

localization of tumor, lesion and other abnormalities, measure the tissue volume to measure 

the growth of tumors (also recession in tumor size with treatment) and to help in treatment 

planning prior to radiation therapy, in radiation dose calculation. The accurate segmentation 

provides more meaningful and useful information from the US images used for clinical 

purpose. For example, in quantitative examination, instead of using only the diameter to 

quantify the scale of tumor, area and the boundary of tumor may be added for a more 

comprehensive characterization. In qualitative analysis, segmentation of the US image may 

provide better visualization of surface for a particular region of interest [250]. Segmentation 

accuracy determines the eventual success or failure of the computerized analysis algorithms. 

Moreover, the segmentation of US image is a challenging task because of its poor resolution, 

weak edges, the presence of speckle noise/artifacts and patient movement. Therefore, it is 

an area of prime concern for researchers and still there is a need of segmentation approach 

for the US images that can accurately provide the segmented images used for clinical 

purpose and analyze these image for the extraction of features of interest involving edges, 

regions and texture for further analysis [75].  

1.6 Literature Review 

The US images are very difficult to diagnose because of the existence of speckle, 

which hampers the perception and extraction of fine details from the image. In literature, 

many researchers have proposed the image denoising and segmentation methods for the 

US medical images; a review of the work reported, is being presented here. 

1.6.1 Developments in image denoising aspects 

A variety of the noise reduction/image enhancement algorithms for the US images 

have been implemented in previous years. Bamber and Daft [18] reported that the lesion 

detectability gets reduced by approximately a factor of eight due to the presence of speckle 

in the image. They proposed a noise reduction filter that changes the amount of the 

smoothing according to the ratio of local variance to local mean. Consequently, the most of 
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the enhancement algorithms to improve the visual quality of the US image are relied on 

speckle reduction treating speckles as a random noise. The noise reduction methods can be 

primarily classified as image averaging (compounding) and image filtering (post-acquisition) 

[168]. Compounding methods are based on the average of multiple images which are 

obtained by sampling the same object at different time, from different views, or with different 

frequencies and thus, reduce speckle up to limit. This approach has been proposed in the 

majority of the speckle noise suppression techniques [148, 178, 197]. Donnell et al. [178] 

made incoherent averaging of measurements at different view and direction, which are used 

to reduce speckle noise in the US images. In their work, an analytic expression for the 

correlation between two measurements made at different spatial positions is derived. Thus, 

the optimum aperture displacement for efficient incoherent averaging is computed using their 

derived expression and found to be equal to approximately one half of the aperture length 

[178]. However, the image averaging methods suffer from the loss of spatial resolution.  

Filtering methods have the advantage that they are not affected by the acquisition 

procedure. Filtering methods present a practical alternative for most of the clinical 

applications.  Filtering methods can be classified as single scale spatial filtering such as 

linear [157, 192], nonlinear adaptive methods [103], multiscale spatial filtering such as 

diffusion based methods [11, 33, 140, 142, 168, 176, 186, 266]  and several multiscale 

methods in different transform domain such as pyramid [88], wavelet [80, 92, 234], ridgelet 

[174, 194], and curvelet [13, 225] based approaches. In the category of filtering approach, 

there has been a continuous research in both the domain such as spatial and frequency 

domain. The various popular filters used in the spatial domain are wiener filter [103, 126], 

proximity based filters [228, 262] and order statistic filters [163, 183]. Wiener filter applied to 

an image tailors itself to the local image variance from the neighborhood of each pixel, so as 

to perform little smoothing wherever the variance is large, and vice versa. This filter works 

best when the noise is of constant-power additive noise, such as Gaussian noise. The widely 

used proximity based filters though do not require a prior knowledge about the image like 

wiener filter; they help to remove noise at the cost of blurring the edges. Simple 

mathematical linear spatial filters such as mean filter degrade sharp details such as line and 

edges [103, 254], because in these filters neighboring pixels are averaged together at the 

cost of resolution. Most popular nonlinear nonadaptive filters such as median filter [122], 

which is a specific case of an order statistic filter, are applied to all the pixels whether they 

are corrupted or not. Nonlinear filter, e.g. the weighted median filter [36] is also used to retain 

the edges as compared to classical median filter, but it results in a loss of resolution by 

suppressing fine details. Another approach is adaptive filtering that entails a trade-off 

between smoothing efficiency and the preservation of discontinuities. An example of adaptive 

filtering is the adaptive weighted median filter [157]. It is an enhanced version of the weighted 
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median filter for suppressing the speckle in the US images. The weighted median of a 

window is defined as the median of an extended sequence formed by replicating pixels in 

such region by an amount estimated from their distance from the central pixel and an 

estimation of the local homogeneity. Singh et al. [217] proposed an adaptive rank ordered 

mean filter that is also able to reduce the impulse noise and preserve the image details. 

Other stochastic approach used for speckle reduction in the US image has been proposed in 

[232] and known as a squeeze box filter (SBF). It is a local averaging method that removes 

the local extreme assumed to be outliers in a robust statistical estimation framework [69]. 

Rayleigh-maximum likelihood (R-ML) filter has been proposed using similar methodological 

tools in [17]. 

Most widely cited filters used for speckle noise reduction in the statistical category 

include the filters proposed by Lee [142, 143], Frost [96] and Kuan [139]. These filtering 

approaches are not based on the mean or median filtering rather they depend on the 

coefficient of variation (COV). The lee filter attempts to distinguish whether a pixel is a noisy 

pixel or an image detail. Both the Lee and Kuan filters provide an output image by computing 

a linear combination of the center pixel intensity in a filter window with the average intensity 

of the window. Therefore, the filter achieves a balance between straightforward averaging (in 

homogeneous regions) and the identity filter (where edges and point features exist). This 

balance depends on the COV inside the moving neighboring window. The Frost filter also 

strikes a balance between averaging and the all pass filter. In this case, the balance has 

been achieved by forming an exponentially shaped filter kernel. These filters are sensitive to 

the size and shape of the filter window and provide over smoothing and blurring the edges, if 

the size of the window is too large, while in case of the small window's size, it is not able to 

completely suppress the speckle noise. Motivated by the relationship between a Gaussian 

operator and a linear diffusion equation, Perona and Malik [186] suggested an approach 

based on the nonlinear anisotropic diffusion filter. Based on the work presented in [186], 

several researchers [1, 7, 11, 33, 53, 88, 112, 128, 138, 152, 154, 160, 168, 216, 227, 231, 

266, 274] proposed anisotropic diffusion methods, where the anisotropic diffusion equations 

provide the approach for selective image smoothing. Black et al. [33] described that the 

anisotropic diffusion can be seen as a robust estimation procedure which estimates a 

piecewise smooth image from a noisy input image. Abd-Elmoniem et al. [1] introduced a 

nonlinear coherent diffusion model for speckle reduction and coherence enhancement of the 

US image. Yu and Acton [266] provided the derivation of speckle reducing anisotropic 

diffusion (SRAD). This method has adopted the concept of Lee and Frost filtering 

approaches into anisotropic diffusion algorithm by exploiting the instantaneous coefficient of 

variation that also serves as the edge or high contrast feature detector in the speckled image 

[167]. The SRAD approach makes fine details to be more visible in the image; still it has a 
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limitation in preserving subtle features such as small cysts and lesions in the US images 

because of blurring of the edges. Later on, several variants such as robust SRAD (RSRAD) 

[231], detail preserving anisotropic diffusion (DPAD) [11], oriented SRAD (OSRAD) [138], 

improved SRAD (ISRAD) [227] and robust DPAD (RDPAD) [154]. In RSRAD, the relations 

between anisotropic diffusion and robust statistics are described. Tabuer [231] presented a 

new edge stopping function based on Tukey's biweight robust estimator that also provides 

sharper boundaries and improves the stopping criterion of the diffusion process. In DPAD 

approach, Fernández et al. [11] modified the SRAD algorithm to rely on the Kuan filter 

instead of the Lee filter. The OSRAD is used to perform directional filtering of the image by 

adding a nonscalar component to the SRAD algorithm. The ISRAD makes use of an 

alternative diffusion threshold estimator for better preservation of low contrast features in the 

image, while the RDPAD approach is a modified version of the DPAD algorithm using 

Tukey's error norm and is able to provide better preservation of detail in the diffused image. It 

is also less sensitive to the number of iterations. However, it suffers from the over diffusion 

problem. Giloba et al. [100] proposed nonlinear complex diffusion filter (NCDF) used for 

image enhancement that is further utilized by Salinas and Fernandez [208] for suppressing 

the speckle in optical coherence tomography images (OCT). Bernards et al. [20] has also 

proposed an improved and adaptive version of the NCDF approach named as INCDF and 

applied to the OCT images. Yu et al. [273] also introduced another variant of the anisotropic 

diffusion using the SUSAN edge detector [218] instead of gradient edge detector as used in 

the conventional diffusion model. The PDE based diffusion methods provide better denoising 

effect. However, they tend to overblur the image with many edge/texture details getting lost. 

Another PDE based approach is the total variation filtering (TVF) used for image 

denoising that has been proposed by Rudin et al. [204] and named as ROF model. It is 

based on a total variation iterative algorithm where the total variation norm of the image is 

minimized subject to the constraints estimated from the noise statistics. These constraints 

are imposed using Lagrange multipliers. The ROF model is solved using this minimization 

problem through PDE-based schemes. Several approaches have been proposed to minimize 

the total variation of the ROF model such as a nonlinear projection based approach 

proposed by Chambolle [47]. However, the TV based methods have to undergo several 

iterations for denoising and also fine structures, details and textures are not properly 

preserved by these methods [25]. The TV minimization approach has also been adapted to 

the US imaging in [3, 25, 27, 76, 159]. Unlike the previous adaptive filters, all the considered 

PDE based filtering techniques are iterative and provide smooth images while preserving the 

edges. Nevertheless, most importantly structural details are unfortunately suppressed during 

iterations [69]. In the recent years, a particular attention paid to another nonlinear bilateral 

filter (NLBF) is proposed by Tomasi and Manduchi [237] to take into account local structure 
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in addition to intensity and geometric feature [162] and used in several image processing 

applications [119, 188, 280]. Several authors [203, 229, 239, 272, 280, 281] also utilized the 

NLBF approach either in spatial domain or transform domain using the hybrid filtering 

technique for the noise reduction purpose. However, it has a tendency to oversmooth and 

sharpen edge and texture. An adaptive fast bilateral filter has also been proposed by Shao 

and Paul [213] for suppressing the speckle in case of US images. In this approach a local 

histogram is introduced to speed up the processing of bilateral filter. Similarly, Buades et al. 

[37] proposed a nonlocal means filtering (NLMF) approach in which each pixel is estimated 

by the weighted averaging of other pixels whose neighborhood have similar geometrical 

configuration. Initially, it is developed for the additive Gaussian noise. In Coupe et al. [69], 

the nonlocal mean theory has been adapted for speckle reduction in the US medical images. 

In another approach, Zhang et al. [283] proposed a two directional nonlocal variation model 

used for image denoising. This approach consists of three components such as a scaled 

version of the original image and other two are estimated using the similarities. Further, the 

nonlocal denoising approaches are moment based [127] or group similar block by block 

matching and then apply 3D transform domain filtering [71, 72]. Another iterative weighted 

maximum likelihood filter has also been employed for reducing the speckle noise with 

probabilistic patch based weights [73]. 

In another category of multiscale denoising, initially spatial information of the image is 

transformed into frequency domain using one of the transformation techniques such as 

wavelet, ridgelet, contourlet, curvelet etc. Later such information is processed for better 

image enhancement. Presently, lots of research work on image processing is concentrated in 

transform domain. In that series, there has been considerable interest in using the wavelet 

transform (WT) as a powerful tool for image denoising [5, 6, 28, 51, 79, 80, 82, 111]. The first 

wavelet based method for speckle reduction was reported by Gao et al and Guo et al.[99, 

105]. Donoho et al. [79-82] proposed wavelet thresholding approach, which is a true signal 

estimation technique that exploits the capabilities of the WT for signal denoising [31, 79, 

111]. The well known thresholding methods include VisuShrink [82] and SureShrink [81]. In 

wavelet thresholding approach, a signal is decomposed into low frequency (LF) component 

(approximation subband) and high frequency (HF) components (detail subbands); since 

approximation subband has most of the signal information and detail subband are processed 

with the thresholding approach. These thresholding procedures generally result some 

artifacts in the denoised image [94]. To over this limitation, BayesShrink approach is 

introduced by Chang et al. [51], which determines the threshold value in Bayesian framework 

through modelling the distribution of the wavelet coefficients as Gaussian [281]. Fodor and 

Kamath [92] also presented an empirical study on the image denoising by wavelet shrinkage 

such as soft, hard, garrote and semisoft and also showed that SureShrink and BayesShrink 
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give better results. In 2006, Saad et al. [205] proposed a comparison between two multi-

resolution approaches such as soft thresholding and power law used for speckle reduction in 

the US images. The method of enhancement uses a wavelet approach for soft threshold and 

power law with nonlinear upper and lower cut-off. All the standard wavelet thresholding 

methods assume that the noise is white Gaussian noise and independent of noise-free 

signal. However, these techniques become ineffective when applied to medical US image 

degraded by speckle noise. Therefore, the wavelet domain despeckling techniques are 

applied to the image logarithm, since after the logarithmic transformation, speckle noise 

becomes approximately additive Gaussian noise. These techniques are called homomorphic 

speckle filtering techniques [5, 19, 28, 94, 104, 111, 155] in which the WT coefficients of the 

logarithm of speckled image are considered. These coefficients are subsequently shrunk or 

adaptively thresholded [97].  

In this category, initially, the researchers [5, 52] applied statistical approach such as the 

Bayesian approach for image denoising. This approach has been extended by the 

researchers in [6, 28, 70, 94, 111, 136, 166] by considering various noise models for the 

distribution of noisy wavelet coefficients like hidden Markov model [70], Gaussian [95], 

Fisher-Tippet [166], Rayleigh [111]. Dependency of these approaches to a specific noise 

model decreases their flexibility. In [209], the Bayesian based approach using Sylvester-

Lyapunov (S-L) equation has been presented for both additive Gaussian and multiplicative 

noise. Further, some of the researchers [189, 190, 198, 199] proposed a mixture of statistical 

model which has additional computational complexity. For example, Rabbani et al. [199] 

proposed a mixture of Laplacian and Gaussian model for estimating noise free wavelet 

coefficients and mixture of Gaussian and Rayleigh model. Apart from these denoising 

methods used in the WT domain, Cai and Silverman [38] presented two different 

thresholding methods such as Neighblock and Neighcoeff for one dimensional signal using 

overlapping block rather than individual wavelet coefficients. In 2005, Chen et al. [56] 

motivated and applied Neighcoeff to image denoising and named as NeighShrink approach 

that has a basic limitation of using universal threshold and constant window size for all the 

wavelet coefficients. Further, it is improved by Dengwen and Wengang [289] and this 

approach is used an optimal threshold and window's size estimated by minimizing the Stein's 

unbiased risk estimate (SURE). Several thresholding approaches [19, 31, 39, 173, 189, 282] 

were also proposed for image denoising purpose. 

The main strength of wavelet based approaches is its capability to treat the different 

subbands of an image separately [203]. However, the WT based method may introduce 

many visual artifacts in the denoised images. The WT is able to efficiently represent a 

function with one dimensional point singularity. However, it is less efficient in representing 

the sharp transition like line and curve singularities due to its limitation of direction. To 
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overcome the limitation of the WT, ridgelet transform has been evolved to provide the 

information about the orientation of linear edges [77]. However, it is unable to represent the 

curve singularities effectively. Ridgelet transform provides the information about the 

orientation of the linear edges. Donoho et al. [225] presented curvelet transform (CVT) used 

to represent two dimensional singularities with the smooth curve and also provides better 

denoising with edge preservation results. However, the CVT does not provide a multi-

resolution representation of the geometry and the curvelet is also not built directly in the 

discrete domain [106, 165]. Contourlet transform proposed by Vetterli et al. [78] performs 

well in noise reduction due to the application of multiscale Laplacian pyramid (LP) followed 

by directional filter banks. However, it has less directional features than curvelets. To 

represent the edges more efficiently, Labate et al. [106, 141] proposed a new multiscale 

analysis tool named as shearlet. The decomposition of shearlet is similar to the contourlets 

except that there is no limitation on the number of directions. Presently, it is also utilized in 

different image processing applications [83] such as edge detection [264], denoising [57, 58, 

84, 118, 149, 285] and fusion [60, 165, 246] and quoted that it provides better results than 

the others. 

Later efforts in this area have suggested that the perceptual quality obtained in the WT 

domain could be substantially improved using further spatial operation. Therefore, the 

aforementioned approaches can be combined in order to utilize both the features and to take 

advantage of the different paradigms. For such purpose, some researchers [14, 239, 281] 

proposed wavelet transform based bilateral filtering approach. It provides better denoising 

and also effectively preserves the edges. In addition, Yu et al. [272] have proposed trivariate 

shrinkage in the wavelet domain and joint bilateral filter in the spatial domain. Some authors 

[27, 76, 84, 149, 159] proposed several denoising methods using the TVF approach with the 

different transformation techniques with their advantages. In another approach, Abrahim et 

al. [3] presented a wavelet based total variation filtering approach for suppressing the 

speckle noise in the US image in which noisy image undergoes several iterations for 

suppressing the noise, but it leads to blurring effect. To overcome such limitation, the fusion 

of the noisy images processed by total variation and curvelet based approach are presented 

in [25]. This method is applied to the CT medical images and shows a better denoising 

method by providing better results, but it also suffers from the limitations of curvelet. Most of 

the recent work [88, 89, 128, 176, 200] on speckle suppression techniques are also based on 

fusion of diffusion and multiscale techniques. Moreover, Yap et al. [263] conducted a survey 

on a group of non-radiologists and a group of proficient radiologists to envision the effect of 

computer processed images in improving human performance in the US breast cancer 

detection. They concluded that the condition of computer processed images beside the 

original US images; considerably improve the detection tasks of nonradiologist, but only 
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marginal improvements are shown in the detection and classification tasks of the group of 

proficient radiologist. These surveillances clearly proved the effectiveness of using imaging 

algorithms in computer-assisted diagnosis systems. 

1.6.2 Developments in image segmentation aspects 

Image segmentation is an important step for quantitative and qualitative analysis of the 

medical image. An accurate segmentation provides more meaningful information of the 

medical images. The US image segmentation is a very difficult task due to speckle and weak 

edges of a particular object of interest. In past years, several researchers proposed different 

segmentation methods based on either discontinuity (edge based) or similarity criterion 

(thresholding, region growing, region split and merge, watershed) [103, 181]. The traditional 

edge detection techniques are susceptible to spurious responses when applied to the US 

image. Image thresholding is a basic approach used for segmentation purpose. It is spatially 

blind image segmentation technique [241] in which the partitioning of object from background 

area is performed by the choice of the proper range of gray scales [117]. This approach is 

very convenient and easy for segmentation, but due to the noise and artifacts present in the 

US images, accurate segmentation is not achieved. The region boundary obtained by such 

type of techniques provides false interpretation of the object shape. Another spatial blind 

image segmentation approach is clustering, which is utilized to partition a given set of objects 

within a given set of cluster [130, 241]. The clustering, particularly fuzzy c-means (FCM) 

clustering and its different variants are widely used for image segmentation purpose and it is 

able to retain much more information [187]. However, it is very sensitive to noise and other 

imaging artifacts because it does not consider any spatial context. To overcome this 

problem, Ahmed et al. [9] proposed an improved FCM called as the bias corrected FCM 

(BCFCM) by incorporating the spatial neighborhood term and successfully applied on the MR 

images. It works well by providing better segmented images than the conventional FCM 

approach, but it takes too much time than the FCM. To solve this problem, Chen and Zhang 

[222] modified the cost function of the BCFCM by incorporating the kernel induced distance 

instead of Euclidean distance and named as kernel FCM. These methods are also highly 

affected by their parameters. Yang and Tsai [260] introduced a Gaussian kernel based FCM 

(GKFCM) with spatial information.  Chuang et al. [63] presented another variant of the FCM 

approach by incorporating the spatial information into the membership function for clustering 

purpose. Kang et al. [129] also proposed a novel modified FCM approach in which spatial 

neighborhood information is incorporated into the conventional FCM algorithm with an 

adaptive weighted averaging filter. It also improves the segmentation results. Krinidis and 

Chatzis [137] proposed a robust fuzzy local information c-means approach (FLIFCM) that 

includes a fuzzy factor into the cost function of the FCM and the local spatial information. 
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Presently, several fuzzy based methods used for the image segmentation purpose can be 

found [116, 130, 131, 156, 175, 191, 258]. 

In another category of image segmentation approach, region and energy-based 

techniques are spatially guided approaches that are dependent upon the spatial relationship 

of the pixels used for image segmentation. They include region growing, split and merge and 

hybrid growing-merging in the region-based approach while energy based approach includes 

active contour, graph-based, watershed and marker-based watershed segmentation 

methods. Region growing segmentation approach starts from a single pixel or some 

predefined labelled set of pixels called a seed based on the homogeneity criterion and it 

stops, when pixels satisfying the homogeneity criterion, are no longer found. Using this 

method, the segmentation performance totally depends upon the seed pixels. Several 

authors [2, 8, 86, 87, 233] developed different segmentation approaches using region 

growing method. But, this method suffers from the problem of oversegmentation. Another 

region-based approach is region split and merge that is initiated with the repetitively split until 

segments satisfying a particular homogeneity criterion are obtained [23, 40]. In the category 

of energy and contour based segmentation, watershed is a popular approach used for 

segmentation purpose that utilizes image morphology [103, 241]. It utilizes region as well as 

contour information for the image segmentation. The main advantages of the watershed 

segmentation approach are that it is very simple and always provides a complete division of 

the image [22, 123]. It is highly sensitive to noise and suffers from the problem of 

oversegmentation. Some authors also tried to use the watershed approach for the hybrid 

image segmentation purpose [114, 115, 211, 215, 286]. In one hybrid watershed 

segmentation approach, both morphological and region merging are used to detect the 

objects. Though, it overcomes the problem of the watershed, but still oversegmentation, poor 

detection of thin structures, poor detection of significant areas with low contrast boundaries 

and missing of boundaries are the prominent limitations because of the existence of speckles 

in US images. The active contour model is based on the energy minimization and gives 

closed contour shape of the object. It can be categorized based on their implementation as 

being either parametric or geometric [241]. Active contour model or snake model proposed 

by Kass et al. [133] in 1988 and proved to be an efficient framework for delineating an object 

boundary from a noisy two dimensional image. The main problem associated with this model 

is the initialization and poor convergence in noisy image. It is also a time consuming process. 

The snake model is also successfully applied to the echocardiographic US images, but in 

case of the liver US images, it is very difficult to segment because of the high concentration 

of blood vessel in the liver. The gradient vector flow (GVF) algorithm [255] is proposed to 

overcome the convergence problem in Kass model. The authors also presented their 

performance on twelve different US images of liver tumors having different sizes. To 
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overcome the problems of snake model, Osher and Sethian [180] modelled the propagating 

curve as the specific levels of higher dimensional surface. The surface can change to take on 

the desired shape with time. This surface is called level set function (LSF) and the middle 

front is called zero level set. In 1995, Malladi et al. [161] used the levels set techniques 

proposed by Osher and Sethian for shape recovery. To increase the robustness, Gong et al. 

[102] proposed a hybrid level set approach by incorporating the shape constraints into a 

region-based contour evolution. The active contour model in the level set formulation is 

further categorized as edge-based and region-based approach. Edge-based level set models 

utilize image gradient of a given image for stopping and evolution purpose of the curve.  

Geodesic active contour (GAC) model is most popular edge based segmentation 

method that utilizes edge-based stopping term and a balloon force term employed for 

controlling the moving curve [45, 182, 248], but it is very difficult to design the balloon force. 

Furthermore, it is usually sensitive to noise and suffers from initializing the curve. In the 

conventional level set methods, some irregularities occur during the evolution of the level set 

function. In conventional level set approaches, it is a prime requirement to keep the moving 

curve close to signed distance function [64, 185]. Re-initialization is the process which is 

used to provide a stable curve motion and better segmentation results. Many researchers 

[179, 185, 212, 248] have tried to re-initialize the regularity of the level set function (LSF) and 

make it stable. However, sometimes it moves the zero LSF away from the estimated 

position. In order to solve this problem, Li et al. [64] introduced a variational formulation for 

the GAC with a penalty term that drives the level set function to be close to the signed 

distance function. This method completely eliminates the periodic re-initialization process of 

the level set function during the evolution process by considering the variational energy 

function as a combination of the internal and external energy term, where the external energy 

forces the zero level set function to the expected position while internal energy is used to 

penalize the deviation of the LSF from a signed distance function. However, some unwanted 

side effects are produced on the level set function because of the penalty term and thus it 

may affect the segmentation accuracy. Furthermore, Li et al. [65] extended their previous 

method and introduced a new distance regularization term and external energy term that 

forces the motion of contour toward the expected position. This distance regularizing term 

completely eliminates the requirement of re-initialization and also helps to avoid the 

undesirable effects introduced by the penalty term in their previous approach. 

Besides the edge-based active contour models, region-based models aim to identify 

each region of interest in the given image by incorporating the region based information into 

their energy functional. Region-based active contour models have shown many advantages 

over the edge-based active contour models such as the unrestricted position of the initial 

contour, the automatic detection of estimated boundaries and effective reasonable 
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segmentation because of global energy minimization based on the statistical properties 

inside and outside the evolving contour on which it evolves the deformable shapes and 

keeps the regularity of the active contour. Chan and Vese [48] proposed a region-based 

active contour model that is named as CV model used for segmentation purpose. It is based 

on the Mumford and Shah model [169] to extract the object of interest whose boundaries are 

not detected by the gradient. The CV model provides better performance than the GAC 

model because of its ability to obtain a large convergence rate. However, image 

segmentation using the CV model depends on the placement of initial contour. Due to 

improper initialization of contour, different results may be obtained using different contours 

selected for a similar image. To overcome this limitation of the CV model, many researchers 

[202, 221, 242, 265, 268] have tried to introduce some efficient techniques. Solem et al. [221] 

propsoed the initialization methods for contour which is estimated using a search method. It 

is also a time consuming process and often fails during the small difference between the 

object and its background. In [202], initializing curve is generated by iteratively connecting 

edge points estimated by the canny detector and morphological filter, while in [265, 268], 

these schemes are introduced without solving the PDE's. However, these are still sensitive to 

initialization of contour and noise. Further, Li et al. [66] introduced a variational level set 

formulation for image segmentation that works on the region scalable fitting (RSF) energy 

function and regularization function. The RSF function is capable to obtain the intensity 

information in the local regions at a fixed scale to compute the two fitting functions and drives 

the contour toward the estimated boundaries of the object. The regularity term available in 

this model is used to control the length of the object boundaries and prevents the 

oversegmentation. Currently, several researchers [236, 275, 276, 278] tried to utilize these 

methods for the US image segmentation purpose. Moreover, Zhang et al. [279] presented 

another region-based active control model that utilizes both the features of the GAC and the 

CV model. In this approach, signed pressure function has been used instead of edge 

stopping function to control the direction of the curve evolution. Several quantitative 

evaluations have been performed on this approach and it has been reported that it performs 

better than the conventional level set methods. 

In another graph based model [91] used for image segmentation, firstly graph is 

constructed by considering each vertex corresponding to a pixel in the image and the edge 

connects the pixel to its neighbor. After constructing the graph, the different subgraphs of 

similar intensity levels are now merged and produce larger subgrpah. Finally, by repeating 

the merging process, an image is segmented into the larger homogenous region. It produces 

better segmented images with higher accuracy; however, it is sensitive to the parameter 

selection. Recently, several approaches based on graph theory have been employed by 

many researchers [120, 121, 184] for the segmentation of the US images. In the present 
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work, only edge-based and region-based active contour models and clustering approaches 

are considered to implement the proposed approaches. Besides all these aforementioned 

segmentation approaches, many other algorithms such as Markov random field [34, 108], 

neural network [125, 251], fuzzy logic [2], cell-competition [54], fast marching [43] are also 

presented by several researchers.  

1.7 Objectives of the Present Study 

The main objective of the present study is to develop the denoising and segmentation 

methods for the US medical images. It has been recognized and emphasized in the previous 

sections that speckle noise reduction and simultaneously edge preservation improve the 

perception of the US images. Therefore, edge preserved denoising of US images has been 

targeted as a problem here under consideration. Another main problem is the accurate 

segmentation of the US medical images. For achieving these two objectives, different 

techniques have been proposed by several researchers as summarized in the previous 

section. With these objectives, initially it has been necessary to analyze and identify a better 

approach among the existing popular denoising and segmentation approaches. After 

identification of the suitable approaches, the task has been to improve the performance of 

the identified approach, either by modifying the earlier algorithm or by suggesting a new 

approach. Thus, based on the above observation following objectives have been identified 

for this study: 

1. Comparative analysis of the speckle reduction performance provided by the several 

existing approaches and identification of an optimum approach for the denoising of US 

medical images. 

2. Design, development and implementation of image denoising methods.  

 In order to achieve this objective, different denoising approaches are proposed in the 

present study that also leads to further different sub-objectives. For such purpose, 

efforts have been made for the improvement in their computational performances such 

as robustness, stability and efficiency, and finally targeted to make the superior 

performance of image denoising approach for the qualitative and quantitative measures 

like noise suppression and most importantly edge preservation while denoising. 

3. Design, development and implementation of image segmentation algorithms for the US 

medical images.  

 To fulfil this objective, two different edge-based and region-based active contour 

segmentation methods are proposed in the present study. 

1.8  Organization of the Thesis 

The research work carried out here in this thesis is reported under two different 

aspects. The first aspect refers to the denoising of US medical images, while the second 
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deals with the segmentation of US medical images. This thesis comprises of eight chapters. 

The present chapter 1 introduces the topic and states the objectives. The rest of the thesis is 

organized as follows: 

Chapter 2 presents the details of an effort to evaluate the performance of various 

existing denoising approaches on the US images. The quantitative and qualitative analysis of 

these approaches is carried out in terms of noise suppression and edge preservation. At the 

end of this chapter, the detailed description of the proposed M-band ridgelet based 

thresholding approach is provided with a comparative analysis of the denoising results 

obtained by the different approaches. Based on the quantitative analysis, advantages and 

limitations of the approaches are mentioned at the end. 

Chapter 3 provides details of developed two nonlinear filtering approaches in ripplet 

domain using a bilateral filter and thresholding methods such as NeighShrink and 

BlockShrink. The denoising performance of the proposed approaches is evaluated for both 

the test and real US images quantitatively and qualitatively. A comparative analysis of the 

denoising results provided by the proposed and other existing approaches is also presented 

at the end of the chapter. 

Chapter 4 presents the proposed remnant approach for adaptive fusion based noise 

filtering in the US images that fuses the images denoised by the TVF, shearlet thresholding 

using cycle spinning (CSST) approach, separately and edge information extracted from the 

remnant of TVF and processed by the CSST approach. The denoising results and behavior 

of the proposed approach are explained at the end of this chapter. 

Chapter 5 introduces two different denoising approaches developed based on 

nonsubsampled shearlet transform (NSST) using modified nonlinear diffusion equations. The 

first approach is based on the modified diffusion equations by incorporating an adaptive gray 

variance with the gradient information for increased template size, while in the second 

approach, nonlocal pixel information is incorporated to evaluate the gradient with an adaptive 

gray variance. The improved performance of the proposed approaches is compared with the 

others and discussed in this chapter. 

Chapter 6 presents the proposed hybrid segmentation technique for the US images 

using two approaches, i.e. kernel fuzzy clustering and edge-based active contour model. The 

proposed approach starts with kernel fuzzy clustering and then the results of clustering 

method are employed to initialize the curve and to estimate the several controlling 

parameters. To provide in-depth insight, a comparison is also made between the 

segmentation results obtained by the proposed and other approaches. 

Chapter 7 introduces another hybrid segmentation approach for the US medical 

images by utilizing both the features of the Gaussian kernel fuzzy clustering and region-
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based active contour segmentation approach. At the end of this chapter, a comparative 

analysis of the segmentation performance obtained by the proposed and other existing 

methods is presented for both the synthetic test images and real US images. 

Chapter 8 concludes the work stating the important features and advantages of the 

proposed schemes. The outlook for future work is also given at the end of this chapter. 
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CHAPTER 2: VARIOUS DENOISING APPROACHES AND THEIR 
PERFORMANCE EVALUATION 

This chapter describes different types of noise present in the ultrasound medical images. These 

noises such as Gaussian and speckle can have a significant impact on the quality of ultrasound 

images. In this chapter, the work is concentrated on speckle noise known as multiplicative noise 

considered as a most prominent factor that affects the human interpretation and accuracy of 

computer- assisted methods for processing of ultrasound medical images. Based on the noise model 

introduced in this chapter, several denoising approaches are derived and explained in detail. The 

performance of these denoising methods is also discussed, qualitatively and quantitatively in terms of 

different performance evaluation parameters whose mathematical formulations are presented in this 

chapter. In the last part of this chapter, one of the proposed approach has been extensively analyzed, 

evaluated and compared with the others based on various performance measures. 

2.1 Introduction 

Currently, the research in medical imaging has produced many different imaging 

modalities for the clinical purpose. Among the different imaging modalities, the US imaging is 

of a particular interest in the medical diagnosis of neck, chest, liver, abdominal cavity, 

gallbladder, pancreas, spleen, adrenal glands, kidney, prostate and scrotum. The main 

advantages of the US imaging, besides, there being no tissue damage in the process, are 

that it allows faster and accurate procedures due to its real time capabilities and low cost of 

the scan. However, the US images are of relatively poor quality because of various noises 

and artifacts present in them. These are the main factors that limit the contrast resolution in 

the US imaging that also affect the detection of small and low contrast regions and thus, 

making the US images difficult to interpret for the specialist. In fact, due to the presence of 

these noises, even the US experts may not be able to extract the correct and useful 

information from the images. This also limits the effective application of the image processing 

and analysis algorithms. Among all the noises and artifacts present in the US images, 

speckle is considered as one of the most prime sources of noise. Speckle occurs especially 

with the liver and kidney images whose underlying structures are too small to be resolved by 

the large US wavelength. Sometimes, the US images also suffer from the random additive 

Gaussian noise. Therefore, these noises should be filtered out [145, 154, 155, 166, 209]. 

In the above context, Image denoising is mostly considered as the first step required 

before the image is studied. The detection and enhancement of the boundaries between 

different cavities and organs are in great need in US images and is also considered as a 

challenging problem because of some limitations of the image denoising methods such as 

the blurring of edges and loss of some detailed information present in the US images. To 

overcome such denoising problems, many researchers have introduced several denoising 

algorithms in last two decades [7, 31, 128, 145, 174, 231, 232, 266, 274]. Each approach has 
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its assumptions, advantages and limitations. Thus, denoising and particularly, edge 

preserved denoising algorithms should be designed in such a manner that they suppress the 

noise as much as possible without any significant loss of information present in the US 

images. Therefore, it is an area of prime concern for the researcher and still there is a need 

of denoising methods that can efficiently remove the noise, retain sharp features of the 

images from the blurred one, and simultaneously enhance its clinical useful features. 

In the following sections of this chapter, after introducing the sources of noise present 

in the US images and their noise models in the initial parts of the chapter, efforts have been 

made to describe the various denoising methods and evaluate their performance on the 

basis of their noise reduction and edge preservation capability. In the later part of this 

chapter, one of the proposed approach is analyzed and evaluated based on the different 

performance measure as discussed in this chapter. 

2.2 Sources of Noise 

Most of the images are assumed to have one or more sources of noise in different 

imaging modalities.  Information and awareness about the sources of noise present in the 

original image play an important role in the development of image denoising model. When 

we are aware about the information on the degradation effect of noise and its model, the 

inverse process can be applied on the noisy image to restore back in its original form. 

Therefore, the basic sources of the noise in US imaging and its effects on the digital image 

are discussed here.  

The US medical images largely show the noise variation and spatial resolution 

degradation that completely depends on the different patient because of a heterogeneous 

mixture of fat, muscles, parenchymatic and connective tissue presented in the propagation 

path of US waves. Figure 2.1 presents the simulated wave propagation of 7.5 MHz pulse 

excitation from a focused circular transducer with a diameter of 4.8 mm. 

 

Figure 2.1  Simulated beam propagation of 7.5 MHz pulse excitation from a focused circular 
transducer with the diameter of 4.8 mm [171] 
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Three main important factors causing noise in the US images are as follows [171]: 

1. Aberration: Aberration takes place due to the variation of the tissue parameter in 

space that affects the US wave propagation. It happens because of the variation in 

velocity of the wave propagation due to the inhomogeneous speed of sound. This 

actually distorts the focusing of the US beam that also leads further strengthening of 

side-lobes. This leads to a reduction of both the spatial and contrast resolution 

because of widening the width of main lobe and increasing the side lobe energy, 

respectively and resulting in blurring of the image [171]. 

2. Reverberation: A large number of multiple scattering of a transmitted pulse because 

of non-homogeneous nature of tissue medium produces noise, named as 

reverberation. This scattering follows and appears as an additive noise in the image. 

This also leads to reduce the contrast resolution and builds the false copies of 

interfaces at deeper depth than the exact location of the original one, which makes it 

harder to distinguish the real structure being imaged [172]. 

3. Attenuation: The term attenuation refers to decrease in energy, amplitude and 

intensity of the transmitted pulse when it propagates. It happens because of two 

prominent mechanisms such as scattering and absorption. The attenuation in the 

different tissues has a relation to the distance travelled by the US pulse and the 

frequency of the US pulse that is transmitted. Higher attenuation comes with the 

higher frequency US waves than the lower frequency. Hence, it becomes necessary 

to decrease the frequency and resolution, where structures are larger and need 

greater depth of penetration. 

In addition, because of the finite size of aperture, beam side lobe appears in a beam 

pattern around the beam main lobe as shown in Figure 2.1. They also affect the contrast 

resolution. By incorporating the apodization, the side lobe level gets decreased by reducing 

the amplitude of vibration at the edge of the transducer. This also leads to increase the 

contrast resolution, but the width of the main lobe widens and thus reducing the spatial 

resolution. Hence, there is a trade-offs between spatial resolution and side lobe levels for 

selecting an appropriate apodization profile or window function [223]. Sometimes improper 

interface of transducer probe also introduces the random noise. 

2.3 Types of Noise and Noise Models 

The noise commonly present in an image generated by the different sources can be 

classified into two categories: 

1. Additive noise, found in most of the imaging application. 

2. Multiplicative speckle noise, observed in the US, laser and SAR images. 
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In general, digital images such as digital photographs, videos consist of discrete 

samples of scalar or vector functions defined on the Cartesian grids in multidimensional 

domain. The black and white photographs and gray scale images consist of scalar data on a 

two dimensional grid, whereas colour images contain three dimensional data (the RGB 

colour) on a two dimensional grid. Moreover, the colour videos consist three dimensional 

information on a three dimensional grid rather than two dimensional where the third 

dimension acts as a time grid [103]. Most of the medical images are of gray scale or colour 

images having pixel value in terms of gray intensity of two and three dimensional data 

(RGB), respectively on two dimensional grid [16]. Let us consider, its representation as a two 

dimensional array of data ݃ሺݔ, ,ݔሻ, where ሺݕ  ሻ refers to the pixel location. The pixel valueݕ

corresponds to the gray intensity value of the image at a pixel location ሺݔ,   .ሻݕ

2.3.1 Additive noise 

The common noise model such as a Gaussian, uniform and impulse can be grouped 

into the category of additive noise that is defined by the following mathematical formulations. 

,ݔሺݏ ሻݕ ൌ ݂ሺݔ, ሻݕ  ݊ሺݔ,  ሻ        (2.1)ݕ

where ݏሺݔ, ,ݔሻ is the noisy image, ݂ሺݕ ,ݔሻ is the noise free image and ݊ሺݕ  ሻ represents theݕ

additive noise. 

From Eqn. (2.1), it is clear that additive types of noise are not dependent on the original 

pixel values of the image. The original pixel values are randomly modified by adding the 

random gray levels of noise. Different researchers modelled these types of noise by the 

probability density function (PDF) of the gray value distribution in the spatial domain. Among 

such PDF distribution, the most common type of noise model is Gaussian noise, according to 

which every noisy image pixel is a combination of the original pixel value and a randomly 

distributed Gaussian noise value which has a bell shaped PDF and is represented as follows: 

ሻݏሺܨ ൌ
ଵ

√ଶగఙ
݁ିሺ௦ିఓሻ

మ ଶఙ⁄         (2.2) 

where ߤ and ߪ refer to the mean and variance of the noise, respectively. 

2.3.2 Multiplicative noise 

The US images are very complex to diagnose because of the existence of speckle, 

which restrains the extraction of fine details from the image. It is a granular pattern 

developed in the image due to the noise produced from the different sources. Speckle is 

manifested in a granular pattern due to the image formation under coherent waves which are 

backscattered by the targeting surfaces and arrived out of phase at the sensor. The speckle 

is also modelled as multiplicative noise that represents one of the major sources of image 

quality degradation and reduces the ability of human observer to interpret the fine details in 

diagnostic examination. 
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Figure 2.2 Block diagram of an 'acoustic tissue model' and kind of information that can be derived 
with ultrasonic characterization [235] 

The most commonly used diagram to explain the effects that are present when a tissue 

is intensified, is depicted in Figure 2.2. A universally agreed upon definition of a model still 

seems to be lacking. Nevertheless, a number of possible mathematical formulations exist, 

whose feasibility needs to be verified by their practical use. Therefore, the most relevant 

noise model useful for the US image denoising cannot be easily represented. Besides this, if 

the speckle is fully developed, it follows the Rayleigh distribution [17, 243, 271]. Some 

studies also demonstrated that the speckle follows the K-distribution [288], Fisher-Tippett 

distribution [209] and Gamma distribution [200]. Another multiplicative speckle model has 

been presented by Achim et al. [5, 28]. The noisy speckled image in spatial domain can be 

mathematically expressed as 

,ݔሺݏ ሻݕ ൌ ݂ሺݔ, ,ݔሻ݃ሺݕ ሻݕ  ݊ሺݔ,  ሻ       (2.3)ݕ

where ݏሺݔ, ,ݔሻ refers to the noisy image, ݂ሺݕ ,ݔሻ is the noise free image and ݃ሺݕ ,ݔሻ and ݊ሺݕ  ሻݕ

refer to the multiplicative and additive noise (sensor noise) functions, respectively. This 

model has been successfully used in both the US and SAR imaging. The additive term has a 

lesser effect than the multiplicative one. Thus, only multiplicative noise term is considered in 

case of the US images [5]. Therefore, the Eqn. (2.3) can be formulated by ignoring the 

additive component as follows: 

,ݔሺݏ ሻݕ ൌ ݂ሺݔ, ,ݔሻ݃ሺݕ  ሻ        (2.4)ݕ

The statistical properties of the speckle noise have also been studied by Goodman [104]. 

This noise model was developed in [5, 104] and utilized in [28, 29, 111, 153, 164, 166, 234, 
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277] to design the useful denoising method for speckle reduction in the US images. The 

wave received at the US sensor is a combination of the multiple reflected waves from the 

target interface. The mathematical expression defined for a signal observed at any point is 

given as follows: 

ܱሺݔ, ሻݕ ൌ ,ݔሺݏ∑∑ ሻݕ . ݄൫ݔ െ ,ଵݔ ݕ െ  ଵ,൯      (2.5)ݕ

where ݄ሺݔ, ,ݔሺݏ ,ሻ refers to the impulse response of the acquisition systemݕ  ሻ is theݕ

scattered signal and ܱሺݔ, ,ݔሺܫ ሻ is an observed signal. At this point, the intensityݕ  ሻ definedݕ

in the multiplicative form is given below: 

,ݔሺܫ ሻݕ ൌ ║ܱሺݔ, ║ሻݕ
ଶ
ൌ ,ݔሺݏ .ሻଶݕ ݃ሺݔ,  ሻ      (2.6)ݕ

where ݃ሺݔ,  ሻ represents noise, independent from the useful signal. This model also offers aݕ

good approximation for the US images within the homogeneous region. Besides this, Loupas 

et al. [157] presented a signal dependent noise model by considering the proportional 

relation of the mean and variance, directly rather than the standard deviation. Furthermore, 

this empirical model has also been employed to implement the speckle reduction algorithms 

[113, 132]. 

ݏ ൌ ݂  ݊ඥ݂           (2.7) 

where ݏ is the observed signal, ݂ is the true signal and ݊  is the speckle noise. In this model, 

a uniform area has been assumed. The variance of the observed signal ሺߪሻ is equal to the 

 of the output signal is ߤ ଵ refers to the noise variance. If the arithmetic meanߪ ଵ, whereߪ݂

utilized as an expectation of ݂, then the ߪ ൌ  can be used to ߤ/ߪ ଵ. In such a way, the ratioߪߤ

describe the baseline noise level in the homogeneous region. Figure 2.3 and Figure 2.4 

show the gray-level histograms for uniform speckle regions in a real US image. In this 

chapter, while analyzing and evaluating the different denoising approaches, same model has 

been used for simulating the speckle in the test images. The performance of different 

approaches has been evaluated based on several performance measures as given in the 

next section. 

 

 

 
(a) (b) 

Figure 2.3 Uniform speckle ultrasound image (a) Original image (b) Gray level histogram 
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(a) 

  
(b) (c) 

Figure 2.4 (a) Original ultrasound image. Gray level histogram of (b) Region A (c) Region B 

2.4 Performance Measures 

In the medical imaging context, where the ultimate use of an image is their visual 

assessment and interpretation, subjective and diagnostic evaluation methods are the most 

appropriate. However, they demand time consuming procedures and are largely dependent 

on the specific task. Quantitative evaluations are often used to facilitate the conclusions by 

computing some numerical values and quantify the quality of denoised images in comparison 

to original one. They are very easy to compute and also applicable to all types of images 

regardless of the nature of applications. Therefore, our main emphasis in this study is to 

improve the following two principal performance of denoising. 

(1) Noise suppression performance  

(2) Edge preservation performance 

For quantitative evaluation of the performance achieved for these two objectives, 

different performance measures have been used in the different sections of the thesis. The 

peak signal to noise ratio, and signal to noise ratio [112] are commonly used performance 

indices to measure the noise suppression capability of the denoising methods. However, 

they are not sufficient to reflect the performance for visual perception and edge preservation 

capability. Therefore, additional performance metric like structural similarity index metric  

[247] has been used as a measure of overall performance of noise suppression and visual 

perception. Besides these, Pratt's figure of merit [112, 192] and edge keeping index [30, 88, 

168] are also used to evaluate the edge preservation capability. The mathematical 

formulations for the aforementioned performance measures are given as follows: 

A 

B 
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(a) Peak signal to noise ratio (PSNR): The PSNR analysis uses a standard mathematical 

model to measure an objective difference between two images. It estimates the noise 

suppression performance in the reconstructed image with respect to an original image. The 

PSNR is defined as given below: 

ܴܲܵܰ ൌ ଵ݃20݈ ቀ
ெ

√ெௌா
ቁ         (2.8) 

where ܺܣܯ is the maximum pixel value of the image and ܧܵܯ is the mean squared error 

which is equal to the mean difference between the original and the restored image. The MSE 

is evaluated as 

ܧܵܯ ൌ
ଵ

ெே
∑ ∑ ሺݏሺݔ, ሻݕ െ ,ݔሺݏ̂ ሻሻଶேݕ

௬ୀଵ
ெ
௫ୀଵ        (2.9) 

where ݏሺݔ, ,ݔሺݏ̂ ሻ is original image andݕ ܯ ሻ is denoised image of sizeݕ ൈܰ. 

(b) Signal to noise ratio (SNR): The SNR is a commonly used measure to quantify the noise 

suppression quality of denoised image. It gives a better indication of signal preservation. A 

higher SNR value indicates a better image denoising capability. The SNR is the ratio of the 

variance of noise free image to noise variance. It is defined as given below: 

ܴܵܰ ൌ 10 ଵ݈݃ ቀ
௩ሺ௦	ሻ

௩ሺ	௦ሻ
ቁ       (2.10) 

(c) Structural similarity index metric (SSIM): The SSIM index is used to study the structural 

and perceptual closeness between the original and filtered image. For the default value of 

K1=0.01 and K2=0.03 and the dynamic range (L) of the pixel is 255, the SSIM is evaluated as 

ܯܫܵܵ ൌ
ሺଶఓೞൈఓೞොାభሻ൫ଶఙೞ,ೞොାమ൯

൫ఓೞ
మାఓೞො

మାభ൯൫ఙೞ
మାఙೞො

మାమ൯
         (2.11) 

where ܥଵ ൌ 	 ሺܭଵ ൈ ଶܥ ሻଶ andܮ ൌ 	 ሺܭଶ ൈ ௦,௦̂ߪ ,ሻଶܮ ൌ
ଵ

ିଵ
∑ ሺݏ െ ݏ௦ሻሺ̂ߤ െ ௦̂ሻߤ

ୀଵ  is the covariance 

in moving template, s is the original image and sො is the denoised image with mean ߤ௦ , ߤ௦̂ and 

variance ߪ௦ and ߪ௦̂, respectively.  If the value is closer to 1, then denoised image is closer to 

original one. 

(d) Pratt's Figure of merit (FOM): The FOM is most commonly used to quantitatively estimate 

the edge preservation. The FOM is defined as given below:  

ܯܱܨ ൌ
ଵ

௫ሺ௦ವ,௦ሻ
∑ ൬ ଵ

ଵାఈௗ
మ൰

௦ವ
ୀଵ         (2.12) 

where ݏ is the number of detected edge pixels, ݏூ is the number of ideal edge pixels, ݀ is 

the deviation or Euclidean distance between the ݅௧ detected edge pixel and the nearest 

ideal edge pixel and α is the positive scaling factor, typically set to 1/9. The FOM ranges 

between 0 and 1, and as it is closer to one, it indicates better ability of the denoising method 

to preserve the edges. The Canny edge operator is used to locate the edges in all the 

processed results with the threshold of 0.5 [138, 266]. 
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(d) Edge keeping index (EKI): The EKI is used as another objective criterion to evaluate the 

edge preservation capability of denoising methods, and is evaluated as 

ܫܭܧ ൌ
ூ൫௱௦ି௱௦തതതത,௱௦̂ି௱௦̂തതതത൯

ටூሺ௱௦ି௱௦തതതത,௱௦ି௱௦തതതതሻ∙ூ൫௱௦̂ି௱௦̂തതതത,௱௦̂ି௱௦̂തതതത൯
	        (2.13) 

where Δs and Δsො represent the high pass filtered versions of s and sො, respectively, calculated 

by 3×3 standard approximation of a Laplacian operator with the mean intensity value as ݏ߂തതത 

and ݏ̂߂തതത. The function ܫ is defined as ܫሺݏଵ, ଶሻݏ ൌ ∑ ∑ ,ݔଵሺݏ ,ݔଶሺݏሻݕ ሻݕ
ே
௬ୀଵ

ெ
௫ୀଵ , where M×N is the 

size of the image. This quantitative performance measure should be close to unity for better 

preservation of edges. 

2.5 Overview of Denoising Methods 

The image denoising plays a significant role in modern applications of various fields, 

including medical imaging and pre-processing for computer vision. This is because of noise 

and artifacts that are introduced in the US images due to inherent limitations of its acquisition 

techniques and systems. The term denoising is always a trade-off between noise reduction 

and loss of significant information from the clinical point of view. The denoising process is, 

therefore, attractive to retain the important information as much as possible. So, it is very 

difficult to suggest a robust technique for noise suppression which is also equally useful for 

the US images. This section presents an overview of some existing remarkable denoising 

methods which are also implemented here for their qualitative and quantitative performance 

evaluation on the US images. 

2.5.1 Adaptive weighted median filter 

The median filter [122] is a nonlinear filter that is employed to all the pixels whether 

they are corrupted or not. In this approach, the value of middle pixel is replaced with the 

median value of its neighboring pixels in a moving template. Loupas et al. [157] presented an 

adaptive weighted median filter (AWMF) that also originates from the median by 

incorporating the weighted coefficients. Usually, the weighted median of a region Ըሺݔ,  ሻ isݕ

defined as an extended sequence which is formed by replicating each term ܶሺݔሻ within the 

region for ሾ݉ሺݔሻሿ times, where ݉ሺݔሻ is the corresponding weight coefficients. For example, if 

݉ሺ1ሻ ൌ 3, ݉ሺ2ሻ ൌ 4 and ݉ሺ3ሻ ൌ 2, then the weighted median of the sequence 

ሾܶሺ1ሻ, ܶሺ2ሻ, ܶሺ3ሻሿ is given by 

ܻ ൌ ݉݁݀݅ܽ݊ሾܶሺ1ሻ, ܶሺ1ሻ, ܶሺ1ሻ, ܶሺ2ሻ, ܶሺ2ሻ, ܶሺ2ሻ, ܶሺ2ሻ, ܶሺ3ሻ, ܶሺ3ሻሿ   (2.14) 

Adapting filtering techniques have also been developed for feature detection in the US 

images and to evaluate the filter output at each pixel using appropriately shaped and sized 

local filtering kernels surrounding the pixel of interest [21]. The main concept behind the 

AWMF is to select the weights that decrease as one moves away from the center pixel of a 
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given template, and the decreasing rate is also controlled by the local image content [157]. In 

the AWMF, signal preservation is inversely proportional to noise reduction. The main 

advantage of the AWMF is that the ratio of variance and mean can characterize the local 

image content using weighted median filtering with the weights adjusted according to the 

local statistics of the image. This results not only in the maximum noise reduction in uniform 

areas, but also preserves the resolvable structures and can be given as  

݉ሺݔ, ሻݕ ൌ ሾ݉ሺ݇  1, ݇  1ሻ െ  ሿା      (2.15)ߤ/ଶߪ݀ݏ

where ݏ is a scaling constant, ݀ is the distance of the point from the center pixel within the 

template ሺ݇  1, ݇  1ሻ. The parameters ߤ and ߪଶ are the local mean and variance inside the 

template of size ሺ2݇  1ሻ ൈ ሺ2݇  1ሻ. The AWMF parameters like scaling constant and 

window size are selected experimentally in terms of the quality of the processed image. In 

the above equation, the sign '+' means the nearest integer to the quantity within the bracket, 

if the quantity is positive, otherwise it becomes zero. 

2.5.2 Wiener filter 

The wiener filter (WF) uses a pixel wise adaptive method based on the first order 

statistics such as mean and variance that are estimated from a local neighborhood of the 

pixels within a moving template. The filter may use the following equation for the 

reconstruction of an image [139, 140, 155]. 

,ݔሺݏ̂ ሻݕ ൌ ௦ሺ௫,௬ሻߤ  ,ݔሺܭ ,ݔሺݏሻ൫ݕ ሻݕ െ  ௦ሺ௫,௬ሻ൯      (2.16)ߤ

where ݏሺݔ, ,ݔሺݏ̂ ,ሻ is the noisy pixel valueݕ  ௦ሺ௫,௬ሻ is theߤ  ሻ is the denoised pixel value andݕ

local mean of the pixel values in a moving template. The parameter ܭሺݔ,  ሻ is a weightingݕ

factor that is a function of local statistics within a moving template and having the value in 

between 0 and 1. It can be estimated as [142] 

,ݔሺܭ ሻݕ ൌ ሺߪଶ െ ଶሻߪ ⁄ଶߪ         (2.17) 

where ߪଶ and ߪଶ refer to the variance in the moving template and the variance of noise in the 

whole image, respectively. The noise variance ߪଶ can be estimated as given below: 

ଶߪ ൌ ∑ ଶߪ

௫ୀଵ ௦ൗߤ          (2.18) 

where ߪଶ is the variance and ߤ௦ is the mean of noise in a pre-defined template, respectively. 

The parameter  is an index for all templates in the whole image [1]. Here, the template size 

5×5 is selected for evaluating the denoising performance. 

2.5.3 Maximum homogeneity over a pixel neighborhood filter 

The maximum homogeneity over a pixel neighborhood filter (MHOPNF) is based on the 

estimation of most homogenous neighborhood around every pixel of an image [12, 155, 210]. 

The MHOPNF operates by considering only those pixel values that fall in the processed 
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neighborhood within a moving template. It uses the following equation to reconstruct the 

output filtered image. 

,ݔሺݏ̂ ሻݕ ൌ ሾߙሺݔ, ,ݔሺݏሻݕ ሻሿݕ ∑ ,ݔሺߙ ⁄ሻ,ݕ        (2.19) 

,ݔሺߙ ሻݕ ൌ ൜
1 ሺ1 െ ௦ሺ௫,௬ሻߤሻߪ2  ,ݔሺݏ ሻݕ  ሺ1  ௦ሺ௫,௬ሻߤሻߪ2
0 ݁ݏ݅ݓݎ݄݁ݐ

    (2.20) 

where ݏሺݔ, ,ݔሺݏ̂ ,ሻ is the noisy pixel valueݕ  ௦ሺ௫,௬ሻ is theߤ  ሻ is the denoised pixel value andݕ

local mean of the pixel values in a moving template. There is no need to tune any thresholds 

or parameters for implementing the MHOPNF approach and thus it makes it a suitable filter 

for interpretation. 

2.5.4 Anisotropic diffusion filter 

The diffusion methods are derived from the concept of partial differential equations 

(PDE) based methodology. The PDE based noise suppression method allows the generation 

of an image scale space due to filter window size and shape [186]. The PDE based 

technique offers two types of the diffusion such as linear and nonlinear diffusion. Between 

these formulations, linear diffusion has its own limitations such as it diffuse the data equally 

in all the directions so that it not only removes unwanted noise, but also affects important 

features of the image by blurring and dislocation of the edges. On the other hand, the 

anisotropic diffusion filter (ADF) introduced by Perona and Malik (PM) [186] provides a 

multiscale nonlinear diffusion technique that offers a good compromise between noise 

removal and edge preservation. The main idea behind the ADF is to differentiate the edges 

and noise by incorporating the image gradient operator and then iteratively eliminate small 

variations due to noise and meanwhile preserve large variations due to the edges [274]. The 

mathematical formulation of the ADF was based on the heat equation that is given as  

డ௦ሺ௫,௬;௧ሻ

డ௧
ൌ ,ݔሺݏ‖ሺ݃ሺݒ݅݀ ;ݕ .ሻ‖ሻݐ ,ݔሺݏ ;ݕ ሻሻݐ
																																																				

       (2.21) 

where ݀݅ݒ is the divergence operator, ݃ሺ∙ሻ is the diffusion parameter. The coefficients 

݃ሺ‖ݏሺݔ, ;ݕ  ሻ‖ሻ varying normally in the range of [0, 1] allows the controlling of the diffusionݐ

regularization process more accurately. If ݃ is a constant parameter, i.e. independent of 

image positions ሺݔ,  :it leads to a linear diffusion equation as written below ,ݐ ሻ or timeݕ

డ௦

డ௧
ൌ .൫݃ݒ݅݀ ,ݔሺݏ ;ݕ ሻ൯ݐ ൌ ,ݔሺݏଶ݃ ;ݕ  ሻ      (2.22)ݐ

To preserve the edges, Perona and Malik also suggested two diffusion parameters that can 

be expressed as 

݃ሺ‖ݏሺݔ, ;ݕ ሻ‖ሻݐ ൌ 	
ଵ

ଵାቀ
‖ೞሺೣ,;ሻ‖

಼
ቁ
మ
൨
        (2.23) 

݃ሺ‖ݏሺݔ, ;ݕ ሻ‖ሻݐ ൌ ݔ݁ ൬െ ቂ
‖௦ሺ௫,௬;௧ሻ‖


ቃ
ଶ
൰		      (2.24) 
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where ܭ is the edge magnitude parameter on which the behavior of the ADF depends. 

If	‖ݏሺݔ, ;ݕ ‖ሻݐ ≫ ,ݔሺݏ‖then the diffusion coefficient becomes zero (݃ሺ ,ܭ ;ݕ ሻ‖ሻݐ → 0) and we 

achieve all pass filter. On the other hand, if	‖ݏሺݔ, ;ݕ ‖ሻݐ ≪  then the diffusion coefficient ,ܭ

becomes one (݃ሺ‖ݏሺݔ, ;ݕ ሻ‖ሻݐ → 1) and becomes isotropic diffusion.  

2.5.5 Speckle reducing anisotropic diffusion 

In case of the images containing speckles, isotropic diffusion will actually enhance the 

speckles instead of suppressing the noise [231]. Therefore for speckle reduction, an 

alternative adaptive filtering approach based on the PDE is proposed and named as speckle 

reducing anisotropic diffusion (SRAD) [266]. This method has adopted an idea of Lee's 

adaptive filtering [144] into anisotropic diffusion algorithm by exploiting the instantaneous 

coefficient of variation (ICOV). The SRAD method is outlined by first representing the 

discrete form of the anisotropic diffusion equation by replacing the diffusion coefficient 

݃൫ሺݏ	ሺݔ, ;ݕ  :ሻሻ൯ with the ICOV and it can be written as below [266]ݐ

,ݔሺݏ ;ݕ ݐ  ሻݐ∆ ൌ ,ݔሺݏ ;ݕ ሻݐ 
∆௧

หఎ,ೕห
∑ ݃൫ሺܸܱܥܫ	ሺݔ, ;ݕ ሻሻ൯ݐ ∙∈ఎ,ೕ ൫ሺݏሺݔ, ;ݕ  ሻሻ൯   (2.25)ݐ

and 

݃ሺܸܱܥܫሻ ൌ
ଵ

ଵାቆ
ೀೇమషೀೇబ

మ

ೀೇబ
మశೀೇబ

రቇ
					        (2.26) 

݃ሺܸܱܥܫሻ ൌ ݔ݁ ቂെ ቀ
ூைమିூைబ

మ

ூைబ
మାூைబ

రቁቃ        (2.27) 

where หߟ,ห is the total number of the pixels in the spatial neighborhood of the pixel ሺߟ,ሻ and 

ܱܥܫ is the time step parameter. The ݐ∆ ܸ is speckle scale function that effectively controls the 

amount of smoothing applied to an image by the SRAD. The ICOV estimated in terms of the 

approximations to the derivatives of ݏ in the given 3×3 template can be written as  

ܸܱܥܫ ൌ ඩ
ቀ
భ
మ
ቁቀ
‖ೞ‖
ೞ
ቁ
మ
ିቀ

భ
ర
ቁ
మ
൬
మೞ
ೞ
൰
మ

ଵାቀ
భ
ర
ቁ൬
మೞ
ೞ
൰൨
మ 			        (2.28) 

This ICOV combines a normalized gradient magnitude operator and a normalized Laplacian 

operator to act like an edge detector for a noisy image. High relative gradient magnitude and 

low relative Laplacian tend to indicate an edge. The speckle scale function is also estimated 

by  

ܱܥܫ ܸ ൌ
ଵ.ସ଼ଶൈெሺூሻ

√ଶ
         (2.29) 

where MAD stands for the median absolute deviation [11, 267]. The divergence can be 

iteratively calculated as follows with the time step size of ∆ݐ and sufficiently small spatial step  

size of ݀ ൌ 1 in x and y directions within a template having size of 3×3 at iteration t. 
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݂ሺݔ, ;ݕ ሻݐ ൌ
ଵ

ௗమ

ۏ
ێ
ێ
ێ
ۍ ݃ሺݔ  1, ;ݕ ݔሺݏሻ൫ݐ  1, ;ݕ ሻݐ െ ,ݔሺݏ ;ݕ ሻ൯ݐ

݃ሺݔ െ 1, ;ݕ ݔሺݏሻ൫ݐ െ 1, ;ݕ ሻݐ െ ,ݔሺݏ ;ݕ ሻ൯ݐ

݃ሺݔ, ݕ  1; ,ݔሺݏሻ൫ݐ ݕ  1; ሻݐ െ ,ݔሺݏ ;ݕ ሻ൯ݐ

݃ሺݔ, ݕ െ 1; ,ݔሺݏሻ൫ݐ ݕ െ 1; ሻݐ െ ,ݔሺݏ ;ݕ ےሻ൯ݐ
ۑ
ۑ
ۑ
ې

    (2.30) 

The final SRAD update function results in  

,ݔሺݏ ;ݕ ݐ  1ሻ ൌ ,ݔሺݏ ;ݕ ሻݐ 
∆௧

ସ
݂ሺݔ, ,ݕ        (2.31)						ሻݐ

2.5.6 Nonlinear complex diffusion filter 

Nonlinear complex diffusion filter (NCDF) [100] is derived from the concept of the PM 

formulation by extending the analysis from real axis to the complex domain and becomes a 

process with complex value diffusion coefficient. This method is based on the combination of 

diffusion equations and the free Schrödinger equation and offers a generalized form of the 

linear scale space in the complex domain. The mathematical formulation of the NCDF 

method is expressed as 

డ௦

డ௧
ൌ  ∙ ൫݃൫݉ܫሺݏሻ൯ݏ൯         (2.32) 

where ݃ refers to the diffusion coefficient and ݉ܫሺ∙ሻ denotes the imaginary values. The 

coefficient of diffusion can be estimated by [100, 208] 

݃൫݉ܫሺݏሻ൯ ൌ ݁ఏ

1  ቀூሺ௦ሻ

ఏ
ቁ
ଶ
൨൙         (2.33) 

where ߠ refers to the phase angle of the diffusion coefficient and it should be a small value 

ሺߠ ≪ 1ሻ and ߢ refers to the threshold parameter. This choice of the small value of ߠ → 0 

relies on the fact that the imaginary part can be considered as smoothed second derivative of 

the initial signal; factored by ߠ and time [100, 160, 208]. 

limఏ→
ூሺ௦ሻ

ఏ
ൌ ఙܩ∆ݐ ∗          (2.34)ݏ

where ܩఙ  refers to a Gaussian kernel with limఏ→ ߪ ൌ  and ∆ represents a second order ݐ2√

derivative (Laplacian) offers the zero crossing points. The diffusion process becomes easier 

for the smooth region and attenuated at edge points present in an image because the 

evaluation of the diffusion coefficient does not consider the image derivatives [20]. This is the 

main advantage of the NCDF compared to the real diffusion coefficients because the 

estimation of the image derivatives is highly ill-posed at the early stages, if the noise is 

present [20]. The authors [100] has already mentioned that the imaginary part of the initial 

signal is considered as a smooth function of its second derivative and the ratio ሺ݉ܫሺݏሻ ⁄ߠ ሻ is 

proportional to its Laplacian. Another benefit of the NCDF method is that it removes noise 

from edges and also avoids the staircasing effects. The parameters ߠ ൌ ߢ and 3/ߨ ൌ 20 are 

used for evaluating the performance of the NCDF method. The NCDF method helps to 

remove more noise. However, the time step and threshold parameter are constant in the 
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NCDF. Therefore, Bernardes et al. [20] improved the NCDF model by modifying the adaptive 

time step and threshold parameter and named as improved NCDF (INCDF). 

2.5.7 Total variation filter 

Total variation filter (TVF) proposed by Rudin, Osher and Fatemi (ROF) [204] is an 

iterative- based constrained optimization approach that is also known as the ROF method on 

the basis of the first letter of their authors' name. It is able to suppress the noise by 

smoothing the homogenous region present in the images. The TVF is based on minimization 

of the total variation norm of the image subject to some constraints that are estimated from 

the noise statistics. The constraints are imposed using the Lagrange multipliers. The ROF 

model is solved using the minimization problem through the PDE based schemes which are 

also numerically intensive. The regularization criterion used for image denoising is given 

below: 

݉݅݊௦̂∈
‖௦ି௦̂‖మ

ଶఒ
  ሻ          (2.35)ݏሺ̂ܬ

where ݏ ൌ ,ݔሺݏ ݏ̂ ሻ is the noisy image andݕ ൌ ,ݔሺݏ̂  ሻ refers to the approximated image of theݕ

same size of original image; ܺ denotes the Euclidean space Թெൈெ, ‖∙‖ଶ is the Euclidean 

norm in and ߣ  0 is a Lagrange multiplier. The function ܬሺ̂ݏሻ is the discrete total variation of ̂ݏ 

and is given as 

ሻݏሺ̂ܬ ൌ ∑ ,ݔሺݏ| ሻ|ଵஸ௫,௬ஸெݕ         (2.36) 

where  

,ݔሺݏ ሻݕ ൌ ,ݔ௫ሺݏൣ ,ݔ௬ሺݏሻݕ  ሻ൧       (2.37)ݕ

,ݔ௫ሺݏ ሻݕ ൌ ݔሺݏ  1, ሻݕ െ ,ݔሺݏ ,ݔ௬ሺݏ ሻ andݕ ሻݕ ൌ ,ݔሺݏ ݕ  1ሻ െ ,ݔሺݏ ,ݔ ሻ forݕ ݕ ൌ 1,2, . . . ,   ܯ
           (2.38) 

Several different methods have been presented for the minimization of the ROF function. 

One of them is Chambolle's approach [47] that is a projection based approach used in the 

present study to minimize the ROF function and solved the above mentioned function as 

given below: 

ݏ̂ ൌ ݏ െ  ൯         (2.39)൫ݒ݅݀ߣ

where ݀݅ݒ൫൯ refers to the nonlinear projection in two dimensions and an algorithm is used 

to compute the optimal solution  as follows. Let  ൌ 0 and the step size is taken 0 ൏ ߬ ൏

0.25 to ensure the convergence of the ݒ݅݀ߣ൫൯ 

,ݔାଵሺ ሻݕ ൌ
ሺ௫,௬ሻାఛቀ൫ௗ௩൫൯ି௦/ఒ൯ቁሺ௫,௬ሻ

ଵାఛቚቀ൫ௗ௩൫൯ି௦/ఒ൯ቁሺ௫,௬ሻቚ
      (2.40) 

2.5.8 Non local means filter 

Non local means filter (NLMF) proposed by Buades et al. [37] is one of the most 

prominent denoising algorithm that considers both the image geometries either local or 
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nonlocal. The denoising process is performed using the NLMF by replacing each pixel in the 

degraded image by a weighted average of all the other pixel intensities and averaging is 

performed over a smaller window centered on a pixel of interest [230, 270]. The 

mathematical formulation of the NLMF can be represented as [37, 69] 

ሻ൯ݔሺݏ൫ܯܮܰ ൌ ∑ ߱ሺݔ, ሻ௬∈௦ݕሺݏሻݕ         (2.41) 

with 

 0  ߱ሺݔ, ሻݕ  1 and ∑ ߱ሺݔ, ሻݕ ൌ 1௬        (2.42) 

where ݏሺݔሻ and ݏሺݕሻ refer to the denoised image pixel and noisy image pixel, respectively. ݔ 

and ݕ are the image pixel counts and ݏ is the set of all the image pixels. ߱ሺݔ,  ሻ refers to theݕ

weights that are based on the similarity between the square neighborhood ܰሺݔሻ and ܰሺݕሻ of 

a fixed size centered at pixels ݔ and ݕ, respectively.  The similarity ߱ሺݔ,  ሻ is evaluated asݕ

߱ሺݔ, ሻݕ ൌ
ଵ

ሺ௫ሻ
ݔ݁ ቀ

ିఈሺ௫,௬ሻ

మ
ቁ        (2.43) 

,ݔሺߙ ሻݕ ൌ ሻ൯ݔ൫ܰሺݏீฮߢ െ ሻ൯ฮݕ൫ܰሺݏ
ଶ
       (2.44) 

ܼሺݔሻ ൌ ∑ ݔ݁ ቀ
ିఈሺ௫,௬ሻ

మ
ቁ௬          (2.45) 

where ܿሺܰሺݔሻሻ and ܿሺܰሺݕሻሻ are the intensity gray level vectors, ߢீ is the Gaussian kernel, 

ܽ  0 represents the standard deviation and the parameter h acts as a degree of filtering that 

controls the decay of the exponential function. For the computational efficiency, the NLMF 

algorithm is restricted to a predefined search window that has much smaller size than the 

original image size. Pierrick et al. [69] also presented an optimized Bayesian NLMF with 

block-wise approach for the particularly log compressed images. In the present work, the 

NLMF approach is used with the search window ܵ ൌ 15 ൈ 15, square local neighborhood 

ܰ ൌ 5 ൈ 5, and ݄ ൌ 10 ൈ   .where both the ܰ and ܵ are nonlocal template's size ,ߪ

2.5.9 Wavelet based method 

Wavelet based denoising proposed by several authors [3, 28, 111, 216, 220, 234] is 

another class of methods by decomposing an image into different wavelet coefficients such 

as approximation (low frequency (LF) subband) and detail (high frequency (HF) subband) 

coefficients. Firstly, the concept of soft thresholding proposed by Donoho [79] is used to 

suppress the speckles in the US images and is also explored by other researchers [5, 31, 

111, 234]. This method makes an effort to suppress the noise by using thresholding methods 

named as wavelet shrinkage such as hard and soft thresholding. These thresholding 

methods are investigated on a logarithmic scale for despeckling of the US images since after 

the logarithmic transformation. This technique is called homomorphic speckle filtering 

technique in which the wavelet transform (WT) coefficients of the logarithm of a noisy image 

are considered. For an estimated threshold value ሺܶሻ, the wavelet coefficients ݏௐ்ሺݔ,   ሻ of anݕ
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image ݏሺݔ,  :ሻ are modified using hard and soft thresholding as followsݕ

ுௗݏ
ௐ் ሺݔ, ሻݕ ൌ ൜ݏ

ௐ்ሺݔ, ሻݕ ,ݔௐ்ሺݏ| |ሻݕ  ܶ
0																	 												݁ݏ݅ݓݎ݄݁ݐ

      (2.46) 

ௌ௧ݏ
ௐ் ሺݔ, ሻݕ ൌ ቐ

,ݔௐ்ሺݏ ሻݕ െ ܶ ,ݔௐ்ሺݏ		 ሻݕ  ܶ			
,ݔௐ்ሺݏ ሻݕ  ܶ ,ݔௐ்ሺݏ		 ሻݕ ൏ െܶ
0																							 ,ݔௐ்ሺݏ|		 |ሻݕ ൏ ܶ

     (2.47) 

where ݏுௗ
ௐ் ሺݔ, ௌ௧ݏ ሻ andݕ

ௐ் ሺݔ,  ሻ represents the modified wavelet coefficients using a hardݕ

and soft threshold, respectively. In this method, the main task is to choose the threshold 

value that is called universal threshold and is estimated as  

ܶ ൌ  ሺ݊ሻ         (2.48)	ඥ2logߪ

where ݊ is the length of signal coefficients and ߪ is an estimated noise variance that is 

computed using the median of absolute value [289] as mentioned above. Besides these 

schemes, various shrinkage methods such as SureShrink [92], BayesShrink [92], 

NeighShrink [56], ProbShrink [189] have also been proposed by several researchers and 

shows their success in a range of situations where many previous non wavelet methods 

have met partial success [92]. Generally, hard thresholding is useful to preserve the features 

present in an image, while soft thresholding provides the smoothing, but it may lead to some 

oscillations [155, 257]. To minimize these oscillation, translation invariant wavelet transform 

(TI-WT) has been proposed in [196] and proved the ability to provide better noise reduction 

performance than wavelet. In this study, bior6.8 wavelet filter with four levels decomposition 

is used to perform the experiments. The reason of selecting bior6.8 wavelet filter is that it 

provides better edge preservation [30, 234]. 

2.5.10 Ridgelet based method 

In literature, wavelet plays a dominant role in any frequency domain analysis. It also 

provides good results with the different thresholding and other denoising algorithms as 

mentioned above. The WT is able to efficiently represent a function with one dimensional 

point singularity. Similarly, if the line and curve edges are present in the images, then the 

entire wavelet coefficient gets affected. It means that the WT is less efficient in representing 

the sharp transitions. For such type of transitions, the WT generates a large number of 

wavelet coefficients even at the finer scales and is repeated at the scale after scale. 

Therefore, it is said that the reconstruction of the edges performed by the WT based 

thresholding methods gets affected. The concept of the ridgelet transform [77] has been 

evolved to overcome the limitation of the wavelet transform. Ridgelet transform is 

implemented by applying one dimensional WT to the slices of radon transform that can also 

be obtained by evaluating one dimensional inverse Fourier transform to the two dimensional 

Fourier transform of function restricted to radian lines through the origin. For a given 

integrable bivariate signal ݏ	ሺݔ,   ሻ, continuous ridgelet coefficients (CRT) are defined asݕ
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below [77]: 

,ሺܴܽܶܥ ܾ, ሻߠ ൌ  ,ݔሺݏ ,ݔሻ߰,,ఏሺݕ Թమݕ݀ݔሻ݀ݕ ൌ  ߰,ሺݐሻܴሺߠ, Թݐሻ݀ݐ     (2.49) 

where the bivariate ridgelet ߰,,ఏ in two dimensional is defined from a wavelet function in 

one dimensional ߰ሺݔሻ as follows: 

߰,,ఏሺݔ, ሻݕ ൌ ܽିଵ/ଶ߰ሺሺݔ	ߠݏܿ  ߠ݊݅ݏ	ݕ െ ܾሻ ܽ⁄ ሻ     (2.50) 

This function ߰,,ఏሺݔ, ߠݏܿ	ݔ ሻ has constant value along the linesݕ  ߠ݊݅ݏ	ݕ ൌ  and the ,ܭ

radon transform ܴሺߠ,  ሻ is defined asݐ

ܴሺߠ, ሻݐ ൌ  ,ݔሺݏ ሻԹమݕ ߠݏܿݔሺߜ  ߠ݊݅ݏݕ െ  (2.51)     ݕ݀ݔሻ݀ݐ

The discrete version of the ridgelet transform has also been developed by several 

researchers [77, 252] and also applied to image denoising problem using thresholding 

methods as similar to the WT [101, 159, 174]. In the present work, the Neighcoeff 

thresholding approach [56] is used with the ridgelet transform as mentioned in [101]. This 

method provides good results by thresholding the ridgelet coefficients based on the universal 

threshold and sum of squares of all the ridgelet coefficients within a square neighborhood 

template, as expressed below: 

,ݔோௗ௧ሺݏ̂ ሻݕ ൌ ቀ1 െ
்మ

ௌమሺ௫,௬ሻ
ቁ
ା
,ݔோௗ௧ሺݏ  ሻ      (2.52)ݕ

ܵଶሺݔ, ሻݕ ൌ ∑ ,ோௗ௧ሺܽݏൣ ܾሻ൧
ଶ

ሺ,ሻ∈ௐሺ௫,௬ሻ       (2.53) 

where ܶ refers to threshold value obtained using the universal threshold, ݏோௗ௧ሺݔ,  ሻ andݕ

,ݔோௗ௧ሺݏ̂  ሻ represent the ridgelet coefficients of noisy image and modified noise freeݕ

ridgelet coefficients after thresholding process. 

2.5.11 Curvelet based method 

The concept of the curvelet transform (CVT) is evolved to overcome the limitations of 

the wavelet and ridgelet transform and to represent a curve as a superposition of the 

functions of various lengths and widths obeying the scaling law [225]. It is performed by 

decomposing the image into different sub-images using two dimensional wavelet transform 

and then each subimages are analyzed using a local ridgelet transform. The curvelet function 

is defined as 

,ሬԦ,ఏߛ ൌ ,ሬሬԦ,ߛ ቀܴఏ൫ݔԦ െ ሬܾԦ൯ቁ        (2.54) 

where ܴఏ ൌ ቂ ߠݏܿ ߠ݊݅ݏ
െߠ݊݅ݏ ߠݏܿ

ቃ represents a rotation matrix that rotates ߠ radians. ݔԦ and ሬܾԦ are 

the two dimensional vectors, ߛ,ሬሬԦ, is the element curvelet function. The curvelet family has 

another parameter to provide directional information, including the position and scaling 

information as compared to the wavelet. Like the ridgelet, curvelet occur at all the scales, 

positions and orientations. Curvelets have a variable length and width in comparison to 
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ridgelet that have a global length and variable width. In the curvelet functions, parabolic 

scaling is used to provide the effective length and width of the region ሺ݄ݐ݀݅ݓ ൌ  ଶሻ that݄ݐ݈݃݊݁

leads to anisotropic behavior of curvelets and ensures for capturing the curve singularities for 

which the WT and ridgelet transform are not efficient. Due to this feature, very few 

coefficients of curvelet transform are required for capturing the arbitrary waveforms like line 

and curve singularity. The anisotropic property is also illustrated in Figure 2.5 that implies 

that a very few non-zero coefficients are sufficient to capture the curve edges than the 

wavelet. It ensures that the handling capacity of curvelet for capturing the curve is better than 

the others.  

 

Figure 2.5 Comparative representations of curve discontinuity by the (a) WT (b) CVT [13] 

Candes et al. [41] proposed the two efficient and generalized versions of the CVT for 

image denoising. The one successful image denoising approach has also been introduced 

by Stark et al. [225] and they extended their method for another application of the contrast 

enhancement of gray scale and colour image [224]. They also reported that thresholding of 

the CVT coefficients is easy and effective for image denoising with better edge preservation 

due to anisotropic property of the CVT. Saevarsson et al [207] introduced the time invariant 

image denoising approach using the CVT named as curvelet based cycle spin (CS) 

denoising algorithm and showed better edge preservation results. Based on this conclusion, 

another denoising approaches have been proposed with the CVT for additive Gaussian noise 

[10]. In the first method, hard thresholding function is employed and in another, cycle 

spinning approach is combined with the curvelet (CSCVT). The author also presented that 

the CSCVT provides good denoising and edge preservation results. Therefore, in this study, 

the noisy image is processed using the CVT based hard thresholding developed in [225] and 

cycle spinning approach in the same manner as the WT based thresholding approach. The 

thresholding function can be written as  

ఒݏ̂
்ሺݔ, ሻݕ ൌ ൜ݏఒ

்ሺݔ, ሻݕ หݏఒ
்ሺݔ, ߪ/ሻหݕ  ఒߪܭ

0																	 																				݁ݏ݅ݓݎ݄݁ݐ
     (2.55) 
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where ܭ is the scale dependent constant parameter that is taken 4 for first scale and 3 for 

the others. The parameter ߪఒ is the individual standard deviation of noisy subimage 

coefficients at each scale decomposed using the CVT. Here, ݏఒ
்ሺݔ, ఒݏ̂ ሻ andݕ

்ሺݔ,  ሻݕ

represent the noisy curvelet coefficients and approximated noiseless curvelet coefficients. 

2.5.12 Shearlet based method 

To efficiently represent more edges, Labate et al. [106, 107, 141] introduced the 

concept of shearlet transform (ST). It has all the properties such as multiscale, localization, 

anisotropy and directionality similar to the other multiscale geometric analysis tools. The 

decomposition of ST consists of multiscale and multidirectional decomposition, which are 

similar to contourlets introduced by Do and Vetterli [78] except that there is no limitation on 

the number of directions. The ST overcomes the limitation of other transforms and also 

provides the sparse representation for the objects. It can also be constructed in discrete 

domain which is the major limitation of the CVT because of introducing the two different 

discrete implementations of the CVT by the researchers [41, 225]. The ST combines the 

multi-scale and direction analysis, separately. Firstly, Laplacian pyramid is used to 

decompose the noisy image into high and low frequency components, then direction filtering 

is used to get different subbands and different direction shearlet coefficients. Direction 

filtering is achieved using the shear matrix. Hence, the shearlet transform as given in [85], is 

defined as below: 

߰,,
ሺሻ ሺݔሻ ൌ 2

య
మ߰ሺሻ൫ܵ

ܦ
ݔ െ ݉൯ and ߰,,

ሺଵሻ ሺݔሻ ൌ 2
య
మ߰ሺଵሻ൫ ଵܵ

ܦଵ
ݔ െ ݉൯  (2.56) 

where ݆  0,െ2  ݇  2 െ 1,݉ ∈ Ժଶ, 

߰ሺሻሺߦሻ ൌ ߰ሺሻሺߦଵ, ሻ	ଶߦ ൌ ߰ଵሺߦଵ	ሻ ߰ଶሺߦଶ ⁄ଵߦ ሻ	 and ߰ሺଵሻሺߦሻ ൌ ߰ሺଵሻሺߦଵ, ሻ	ଶߦ ൌ ߰ଵሺߦଶ	ሻ ߰ଶሺߦଵ ⁄ଶߦ 	ሻ 

where ܦ and ܵ refer to the anisotropic and shear matrix, respectively, ݆ and, ݇ and m are 

scale, direction and shift parameter, respectively. The symbols D and S both denote 2×2 

invertible matrices with ݀݁ݐ|ܵ| ൌ 1. The detailed explanation of ST will be discussed in 

Chapter 4. 

In this study, the noisy image is processed using the similar approach of the hard 

thresholding as discussed above in the curvelet based method using the CS approach. For 

the decomposed noisy shearlet coefficients ݏఒ
ௌ்ሺݔ,  ሻ, the estimated denoised coefficientݕ

ఒݏ̂
ௌ்ሺݔ,  .ሻ is computed by similar Eqn. (2.55)ݕ

ఒݏ̂
ௌ்ሺݔ, ሻݕ ൌ ൜ݏఒ

ௌ்ሺݔ, 		ሻݕ หݏఒ
ௌ்ሺݔ, ሻหݕ  ఒߪߪܭ

0																	 																	݁ݏ݅ݓݎ݄݁ݐ
      (2.57) 

2.6 Experimentation  

To analyze the noise suppression and edge preservation capability of the denoising 

approaches introduced above, different quantitative performance measures are used. To 

assess the performance of these denoising methods, three different experiments are 
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conducted on the several test images degraded by different noises such as multiplicative 

speckle noise and additive Gaussian noise and various real US images.  

Experiment 1: Denoising of simulated test images corrupted by multiplicative speckle noise - 

To perform this experiment, two sets of the simulated images acquired from http://field -

ii.dk/examples and a two dimensional phantom image are considered as noise free images. 

The testing gray scale images of kidney, fetus and phantom images are corrupted with the 

multiplicative speckle noise of three different noise levels that were used by setting the 

different variance of noise (ߪ ൌ 0.1, 0.2 and 0.3) to analyze and compare the performance of 

the aforementioned denoising methods. The original noise free images are shown in Figure 

2.6 and Figure 2.7 shows the noisy kidney, fetus and phantom images contaminated by 

speckle noise with their variance ߪ ൌ 0.1, 0.2 and 0.3, respectively. 

Experiment 2: Denoising of additive Gaussian noise in standard test images - To investigate 

the robustness of above mentioned denoising methods, three different standard test images 

such as Lena, Girl and Boat images are also taken to evaluate the performance of denoising 

approaches for additive Gaussian noise reduction. For such purposes, these three test 

images are degraded with the Gaussian noise by setting different noise standard deviation 

like ߪ ൌ 10,	20 and 30. Figure 2.8 shows the original Lena, girl and boat images and their 

noisy version with ߪ ൌ 20 are shown in the Figure 2.9. 

 

Figure 2.6 Original test images used to investigate the performance of denoising methods by 
suppressing the multiplicative speckle noise (a) Kidney (b) Fetus (c) Phantom image 

 

Figure 2.7 (a) Kidney (b) Fetus (c) Phantom image corrupted by speckle noise with the noise level of 
different variance σ = 0.1, 0.2 and 0.3, respectively 
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Figure 2.8 Standard test images used to investigate the performance of denoising methods by 
reducing the additive Gaussian noise (a) Lena image (b) Girl image (c) Boat image 

 

Figure 2.9 (a) Lena (b) Girl (c) Boat images corrupted by Gaussian noise with a noise level of σn = 20 

 

Figure 2.10 Original ultrasound images (a) Prostate (b) splenic cyst (c) Multiple liver masses 
ultrasound images 

Experiment 3: Denoising of the real US medical images for speckle reduction - In this 

experiment, several real US images acquired from the open image source database (http://r 

ad.usuhs.edu/medpix/parent.php3?mode=home_page), (http://ultrasonics.bioenggineering.il 

linois.edu),(http://thelivercarefoundation.org) and (http://www.ultrasoundcases.info/) are used 

to evaluate the performance of the denoising methods. Dr. T.S.A. Geertsma, Netherland also 

granted to utilize the different US medical images of different patients. All the denoising 
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methods are tested on several US images. Out of them, three US images such as prostate, 

splenic cyst and multiple liver masses US images are shown in Figure 2.10 and considered 

to present the validation results obtained from the different denoising methods, qualitatively 

and quantitatively in the present and next three subsequent chapters. 

2.7 Results and Discussions 

Experiment 1: To validate the experimental objectives, the denoised kidney, fetus and 

phantom images corresponding to their noisy version images are shown in Figure 2.11, 

Figure 2.12 and Figure 2.13, respectively, and their results from (a)-(l) also illustrate the 

denoised images obtained by the AWMF, WF, MHOPNF, ADF, SRAD, NCDF, TVF, NLMF, 

TI-WT, ridgelet, curvelet and shearlet transform based methods, respectively. From the 

Figure 2.11; it is observed that the denoised kidney images obtained from the TVF, NLMF 

and shearlet based methods provide better denoising results compared to the others in terms 

of visual quality. Moreover, the diffusion based methods such as ADF, SRAD and NCDF 

approaches also produce good results by reducing the speckle, but it also leads to remove 

the edge details present in the images. By comparing the visual analysis of the results 

produced by the diffusion based method, the NCDF method seems to be good similar to the 

SRAD for suppressing the speckles. On the other hand, the TVF and NLMF provide the best 

denoising results among all of them. However, the TVF suffers from the loss of the edge 

information. As mentioned in the literature about the transform domain approaches, in 

curvelet based methods, some visual distortion like oscillations occur in the denoised kidney 

images. Shearlet based method is also able to reduce a good amount of speckle than CVT 

and remove the limitations of the TI-WT and CVT based methods.  

In case of the denoised fetus images shown in Figure 2.12, the same denoising 

methods achieve good performance in accordance with the visual results except for the TI-

WT and ridgelet based method. The ridgelet based method also provides a competitive 

performance as compared to other remarkable denoising methods, but in addition, it leads to 

some visual distortion similar to curvelet based methods. The TVF and NLMF approaches 

generate much better denoised images for the phantom images as shown in Figure 2.13 as 

compared to the others. The WF method does not produce a satisfactory result in reducing 

the speckle, while the AWMF generates better results than the WF, but it is also not able to 

remove sufficient amount of speckle noise. Moreover, the shearlet based method also yields 

better denoising performance with good edge preservation results. These subjective 

outcomes mentioned above are validated with the various quantitative evaluations. These 

quantitative outcomes are also supported by four metrics such as PSNR, SNR, SSIM and 

EKI and mentioned in Table 2.1 for the processed kidney image.  
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Figure 2.11 Visual comparison of various noise reduction methods applied to kidney image degraded 
by speckle noise (a) AWMF (b) WF (c) MHOPNF (d) ADF (e) SRAD (f) NCDF (g) TVF (h) 
NLMF (i) TI-WT (j) Ridgelet (k) Curvelet (l) Shearlet 

From the results mentioned in Table 2.1, it is observed that the NLMF method 

produces better noise suppression performance for low level noise, but for noise level 

ߪ ൌ 0.3, shearlet based method gains higher values of the SNR and PSNR as 16.43 and 

27.05, respectively. This also achieves competitive structural similarity and edge 

preservation performance compared to the NLMF approach that provides the best denoising 

performance among all the above mentioned methods. Curvelet and ridgelet based methods 
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exhibit similar performance as mentioned in the literature. Another quantitative assessment is 

done to fetus image, processed by the different aforementioned methods and shown in Table 

2.2. The NLMF approach behaves similar to previous assessments and provides better 

results than others. After that, shearlet also provides satisfactory and competitive results than 

the NLMF. Obviously, it achieves better noise suppression performance with edge 

preservation performance by achieving higher EKI values than others. The ridgelet based 

method which adopts a Neighcoeff thresholding approach, provides better speckle reduction 

performance with more edge preservation in case of low level noise and also gains a 

competitive PSNR and SNR values with larger edge preservation than the wavelet and 

curvelet based methods at higher noise level. 

 

Figure 2.12 Visual comparison of various noise reduction methods applied to fetus image degraded by 
speckle noise (a) AWMF (b) WF (c) MHOPNF (d) ADF (e) SRAD (f) NCDF (g) TVF (h) 
NLMF (i) TI-WT (j) Ridgelet (k) Curvelet (l) Shearlet 
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Figure 2.13 Visual comparison of various noise reduction methods applied to 2D phantom image 
degraded by speckle noise (a) AWMF (b) WF (c) MHOPNF (d) ADF (e) SRAD (f) NCDF 
(g) TVF (h) NLMF (i) TI-WT (j) Ridgelet (k) Curvelet (l) Shearlet 

Besides these, the diffusion based methods like the ADF, SRAD and NCDF methods 

also produce good values of the SNR and PSNR, but the EKI values provided by these 

methods are less in comparison to others, which is also reflected in the visual analysis of the 
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denoised images as illustrated above. In the case of phantom image, all the assessment 

parameters are evaluated for all noise levels and given in the Table 2.3. From the results 

mentioned in Table 2.3, the TVF method extends its capability to reduce the speckle noise by 

producing higher SNR and PSNR values as 13.69 and 25.86, respectively than the shearlet 

method for noise level ߪ ൌ 0.1. In case of high noise level ሺߪ ൌ 0.3ሻ, the shearlet based 

method produces higher SNR and PSNR values as 11.31 and 23.48, respectively. The 

ridgelet based method also shows good noise suppression performance with better edge 

preservation than the curvelet based method for ߪ ൌ 0.1 and for high noise levels, it 

produces the competitive values.  

Table 2.1 Comparative speckle reduction performance of twelve denoising methods for kidney image  

Metrics ߪ	 ൌ ߪ 0.1	 ൌ 	ߪ 0.2 ൌ 	0.3 

Methods PSNR SNR SSIM EKI PSNR SNR SSIM EKI PSNR SNR SSIM EKI 

AWMF 21.39 10.77 0.7376 0.4388 20.69 10.07 0.7068 0.4209 20.95 10.33 0.6896 0.3260 

WF 20.05 9.44 0.7119 0.4058 19.76 9.14 0.6937 0.3899 19.35 8.74 0.6792 0.3187 

MHOPNF 20.49 9.87 0.7435 0.3301 20.11 9.48 0.7161 0.3235 19.19 8.57 0.6847 0.3226 

ADF 21.74 11.11 0.7610 0.3181 20.79 10.17 0.7190 0.3041 20.46 9.84 0.6974 0.3011 

SRAD 25.86 15.24 0.7197 0.4598 25.04 14.42 0.6944 0.3332 24.69 14.07 0.6873 0.3211 

NCDF 25.22 14.61 0.6869 0.4277 24.27 13.65 0.6368 0.3139 23.54 12.92 0.6256 0.3024 

TVF 25.85 15.23 0.6747 0.4149 25.65 15.03 0.6527 0.4036 25.52 14.90 0.6331 0.3931 

NLMF 28.37 17.75 0.7829 0.4827 27.37 16.75 0.7797 0.4519 26.20 15.58 0.7612 0.4236 

TI-WT 27.48 16.86 0.7412 0.4319 27.31 16.69 0.7391 0.4307 26.91 16.29 0.7353 0.4218 

Ridgelet 24.54 13.93 0.7375 0.4136 23.75 13.13 0.7325 0.3782 22.09 11.47 0.7146 0.3672 

Curvelet 26.77 16.15 0.7666 0.4340 26.57 15.95 0.7633 0.4318 26.27 15.65 0.7407 0.4193 

Shearlet 27.54 16.92 0.7603 0.4567 27.28 16.66 0.7548 0.4349 27.05 16.43 0.7560 0.4231 

 

Table 2.2 Comparative speckle reduction performance of twelve denoising methods for fetus image 

Metrics ߪ	 ൌ ߪ 0.1	 ൌ 	ߪ 0.2 ൌ 	0.3 

Methods PSNR SNR SSIM EKI PSNR SNR SSIM EKI PSNR SNR SSIM EKI 

AWMF 16.89 11.90 0.5382 0.5408 14.42 9.43 0.4485 0.4321 14.52 9.53 0.4005 0.3287 

WF 16.93 11.93 0.6691 0.5014 13.98 9.01 0.5762 0.5538 11.11 6.13 0.5009 0.3360 

MHOPNF 15.73 10.75 0.5635 0.3451 13.29 8.31 0.5110 0.2975 10.82 5.83 0.4732 0.2773 

ADF 17.06 12.08 0.5925 0.3572 15.72 10.73 0.5375 0.3246 15.58 10.59 0.4978 0.3092 

SRAD 18.33 13.34 0.6286 0.3828 16.66 11.67 0.5512 0.3866 15.39 10.40 0.4445 0.3625 

NCDF 17.63 12.64 0.5683 0.3337 16.11 11.12 0.4789 0.3498 15.56 10.57 0.4334 0.3131 

TVF 17.84 12.85 0.5854 0.3696 17.01 12.02 0.5631 0.3531 16.13 11.14 0.5325 0.3105 

NLMF 19.56 14.57 0.6800 0.6336 18.13 13.14 0.6369 0.5454 17.91 12.92 0.5752 0.4541 

TI-WT 18.31 13.32 0.6077 0.3785 17.40 12.41 0.5758 0.3579 16.50 11.51 0.5445 0.3167 

Ridgelet 18.71 13.69 0.6001 0.5242 16.71 11.72 0.5678 0.4824 16.21 11.22 0.5412 0.3951 

Curvelet 18.03 13.04 0.6381 0.4277 17.15 12.16 0.6164 0.4089 16.38 11.39 0.5816 0.3730 

Shearlet 18.80 13.81 0.6490 0.4387 17.75 12.76 0.5764 0.4192 16.82 11.83 0.5095 0.3879 
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Table 2.3 Comparative speckle reduction performance of twelve denoising methods for phantom 
image 

Metrics ߪ	 ൌ ߪ 0.1	 ൌ 	ߪ 0.2 ൌ 	0.3 

Methods PSNR SNR SSIM EKI PSNR SNR SSIM EKI PSNR SNR SSIM EKI 

AWMF 21.71 9.55 0.7590 0.5327 20.75 8.58 0.7264 0.4738 20.02 7.86 0.6222 0.2413 

WF 22.23 10.06 0.7563 0.4696 21.18 9.01 0.6718 0.4208 20.19 8.02 0.6954 0.3775 

MHOPNF 22.67 10.49 0.7367 0.7034 20.54 8.37 0.7266 0.5361 19.13 6.95 0.7143 0.4341 

ADF 21.98 9.81 0.7650 0.7381 21.12 8.95 0.7451 0.5159 19.98 7.81 0.7305 0.3945 

SRAD 22.74 10.57 0.8035 0.5995 22.31 10.14 0.7855 0.5939 22.10 9.92 0.7686 0.5909 

NCDF 23.23 11.06 0.7726 0.6998 22.74 10.57 0.7079 0.6086 22.25 10.08 0.6636 0.5376 

TVF 25.86 13.69 0.6883 0.6452 24.07 11.90 0.6944 0.5878 23.20 11.03 0.6986 0.5354 

NLMF 27.31 15.14 0.8492 0.7933 24.69 12.53 0.8135 0.6326 23.14 10.97 0.7829 0.6180 

TI-WT 24.71 12.54 0.7920 0.5930 23.64 11.47 0.7680 0.5600 23.12 10.95 0.7529 0.5312 

Ridgelet 24.14 11.97 0.7894 0.6834 22.21 10.03 0.7548 0.5239 20.11 7.93 0.7347 0.4585 

Curvelet 25.01 12.84 0.7970 0.6121 24.12 11.95 0.7923 0.5799 23.38 11.22 0.7813 0.5521 

Shearlet 25.55 13.39 0.8365 0.6850 24.44 12.27 0.7974 0.6267 23.48 11.31 0.7823 0.5397 

 

 

 

 

Figure 2.14 Comparative performance of the FOM values obtained by different denoising methods 
applied to speckled (a) Kidney image (b) Fetus image (c) Phantom Image 
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Besides all the performance measure such as the PSNR, SNR, SSIM and EKI measured for 

all the speckled images, another performance metric such as the FOM is also measured and 

represented in Figure 2.14 for all three images corrupted by all three noise levels. From 

Figure 2.14 (a), it is observed that NLMF and shearlet based methods achieve higher FOM 

value compared to the others for all three noise levels. It means more edge preservation by 

the NLMF and shearlet based methods than the others. The diffusion based methods also 

have a competitive value of the FOM with the TVF method. Similarly, in Figure 2.14 (b), the 

shearlet based method gains higher FOM values than other transform based methods (such 

as TI-WT, ridgelet and curvelet), especially for higher noise level. In the Figure 2.14 (c), 

shearlet method also shows larger FOM values than others. For low level noise, the NCDF, 

TVF and NLMF methods provides good FOM values, but fail to maintain its consistency to 

achieve the higher FOM values. Therefore, it can be said that the transform based method 

such as shearlet, ridgelet, curvelet and the TVF, NLMF or their integration can reflect as a 

good option for denoising. 

Experiment 2: In this experiment, different images degraded with additive Gaussian 

noise are considered to investigate the robustness of all denoising techniques. The denoised 

images corresponding to noisy Lena, girl and boat images shown in Figure 2.9 are illustrated 

in Figure 2.15, Figure 2.16 and Figure 2.17, respectively. From these figures, it is observed 

that the WF approach works better than the AWMF. The MHOPNF method provides better 

noise reduction performance, but it leads to loss of edge information. The diffusion based 

method does not work better to remove the Gaussian noise and the edges available in the 

original images are completely lost in the denoised images because of smoothing of the 

edges, which leads to blurred images. The TVF and NLMF methods present their ability to 

suppress the noise, but edge information is also lost, if the noise level is increased. 

Sometimes, the TVF method shows the blocking effect in the images because of loss of the 

important image information that goes out with the residual of the denoised images. In 

additive noise reduction, most of the edges are preserved by the transform based denoising 

methods. In context to transform based denoising method, curvelet based method are able to 

preserve more edges than the wavelet and ridgelet based methods as mentioned in the 

literature. However, it leads to some visual distortion as seen in the denoised Lena, girl and 

boat images. The ST becomes an alternative that produces the denoised images of better 

visual quality than the curvelet based method with the preservation of more edges. In the 

denoised images produced by the shearlet based method, the problem of visual distortion 

occurred with the CVT based method becomes less, but it is not completely removed. 

Furthermore, based on the visual quality of the denoised images, it is observed that shearlet 

and curvelet based methods provide better results by preserving the image information. 

Moreover, the TVF/NLMF method can also be a suitable method for more noise suppression. 
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Figure 2.15 Visual comparison of various noise reduction methods applied to Lena image corrupted by 
Gaussian noise (a) AWMF (b) WF (c) MHOPNF (d) ADF (e) SRAD (f) NCDF (g) TVF (h) 
NLMF (i) TI-WT (j) Ridgelet (k) Curvelet (l) Shearlet 

The objective outcomes are listed in Table 2.4 corresponding to a noisy Lena image 

corrupted by additive Gaussian noise. From the results mentioned in Table 2.4, it is clear that 

the NLMF and shearlet based methods outperform the others in terms of noise suppression 
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and edge preservation by providing higher SNR, PSNR, SSIM and EKI values. The curvelet 

based method and TVF also behave like a competitor with these denoising methods.  

 

Figure 2.16 Visual comparison of various noise reduction methods applied to Girl image corrupted by 
Gaussian noise (a) AWMF (b) WF (c) MHOPNF (d) ADF (e) SRAD (f) NCDF (g) TVF (h) 
NLMF (i) TI-WT (j) Ridgelet (k) Curvelet (l) Shearlet 
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Figure 2.17 Visual comparison of various noise reduction methods applied to boat image corrupted by 
Gaussian noise (a) AWMF (b) WF (c) MHOPNF (d) ADF (e) SRAD (f) NCDF (g) TVF (h) 
NLMF (i) TI-WT (j) Ridgelet (k) Curvelet (l) Shearlet 

The quantitative results obtained from the denoised girl images are given in Table 2.5. 

From the results mentioned in Table 2.5, the NLMF method achieves higher PSNR and SNR 

values as 34.17 and 29.61, respectively, for ߪ 	ൌ 	10, but for high noise level, shearlet based 
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thresholding gains higher PSNR and SNR values than the NLMF. For higher level of noise, 

the TVF approach is also able to achieve a competitive value of SNR and PSNR in 

comparison to the NLMF and shearlet method. Moreover, the shearlet based denoising 

method also outperforms the others in case of phantom image as mentioned in Table 2.6. 

From the results given in Table 2.6, it is observed that both the NLMF and shearlet methods 

have approximately same PSNR and SNR values for ߪ 	ൌ 	10, but the shearlet method 

shows its superiority over the NLMF for higher noise level. The TVF also acts as a good 

noise suppressing method, if the noise level gets increased, but at the cost of losing the edge 

information available in the source images. By considering, all the results mentioned in all 

three tables, the wiener filter can also be a good denoising option, if the noise level is too low 

otherwise, the transform based denoising methods may be better options. 

Table 2.4 Comparative denoising performance of twelve different approaches applied to Lena image 
corrupted by additive Gaussian noise 

Metrics ߪ 	ൌ ߪ 10 ൌ ߪ 20 ൌ 	30 

Methods PSNR SNR SSIM EKI PSNR SNR SSIM EKI PSNR SNR SSIM EKI 

AWMF 32.42 26.77 0.9265 0.6336 28.49 22.83 0.8032 0.4319 25.62 19.97 0.6815 0.3002 

WF 33.04 27.38 0.9439 0.6582 29.13 23.47 0.8265 0.5236 25.81 20.15 0.7026 0.3532 

MHOPNF 27.56 21.90 0.8724 0.5750 27.32 21.67 0.8207 0.4599 26.98 21.33 0.7986 0.4360 

ADF 26.82 21.16 0.9105 0.5908 25.09 19.43 0.8333 0.4729 23.85 18.19 0.8060 0.3970 

SRAD 27.82 22.17 0.8963 0.2914 23.85 18.20 0.8397 0.3338 21.89 16.23 0.7992 0.3396 

NCDF 27.75 22.09 0.8826 0.4791 26.90 21.25 0.8654 0.3198 25.70 20.04 0.8348 0.2199 

TVF 29.99 24.33 0.8767 0.7216 29.98 24.33 0.8837 0.6863 29.45 23.79 0.8751 0.6520 

NLMF 35.52 29.87 0.9600 0.8447 32.13 26.47 0.9203 0.7348 29.91 24.26 0.8802 0.6130 

TI-WT 35.15 29.49 0.9609 0.8244 31.53 25.88 0.9204 0.6701 29.44 23.78 0.8833 0.5442 

Ridgelet 28.30 22.64 0.9113 0.6061 27.97 22.31 0.8784 0.6013 27.49 21.83 0.8338 0.5934 

Curvelet 34.83 29.17 0.9569 0.8313 31.66 26.01 0.9178 0.7386 29.73 24.07 0.8805 0.6724 

Shearlet 35.63 29.98 0.9643 0.8509 32.65 26.99 0.9300 0.7536 30.77 25.12 0.8932 0.6748 

Table 2.5 Comparative denoising performance of twelve different approaches applied to girl image 
corrupted by additive Gaussian noise 

Metrics ߪ 	ൌ ߪ 10 ൌ ߪ 20 ൌ 	30 

Methods PSNR SNR SSIM EKI PSNR SNR SSIM EKI PSNR SNR SSIM EKI 

AWMF 32.12 27.56 0.8244 0.5483 28.44 23.89 0.7091 0.3794 25.59 21.04 0.6858 0.2616 

WF 33.24 28.69 0.8391 0.6601 28.99 24.44 0.7314 0.4702 25.69 21.13 0.7074 0.3252 

MHOPNF 28.70 24.15 0.8872 0.6133 28.34 23.79 0.8686 0.6003 27.82 23.26 0.8391 0.5696 

ADF 27.02 22.47 0.9201 0.6152 25.23 20.68 0.8617 0.5249 23.96 19.41 0.8419 0.4590 

SRAD 21.35 16.79 0.8656 0.3391 20.39 15.85 0.8188 0.3144 19.58 15.03 0.7770 0.3072 

NCDF 29.43 24.87 0.8999 0.5552 28.24 23.69 0.8854 0.3775 26.67 22.12 0.8555 0.2786 

TVF 30.55 25.99 0.8660 0.6806 30.73 26.18 0.8769 0.6406 30.17 25.62 0.8684 0.6075 

NLMF 34.17 29.61 0.9436 0.7309 32.04 27.49 0.9098 0.6694 30.41 25.86 0.8784 0.5859 

TI-WT 33.73 29.18 0.9420 0.7232 31.24 26.68 0.9023 0.6021 29.63 25.07 0.8696 0.5088 

Ridgelet 29.23 24.68 0.9206 0.6018 28.81 24.26 0.8922 0.5988 28.18 23.63 0.8494 0.5923 

Curvelet 33.42 28.87 0.9370 0.7195 31.27 26.72 0.8971 0.6559 29.83 25.28 0.8657 0.6201 

Shearlet 34.02 29.47 0.9371 0.7325 32.14 27.59 0.9112 0.6686 30.84 26.29 0.8808 0.6208 
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Table 2.6 Comparative denoising performance of twelve different approaches applied to boat image 
corrupted by additive Gaussian noise 

Metrics ߪ 	ൌ ߪ 10	 ൌ ߪ 20 ൌ 	30 

Methods PSNR SNR SSIM EKI PSNR SNR SSIM EKI PSNR SNR SSIM EKI 

AWMF 29.68 24.33 0.9238 0.5696 27.09 21.75 0.8236 0.4034 24.79 19.45 0.7165 0.2835 

WF 32.14 26.79 0.9455 0.6774 28.37 23.02 0.8549 0.5925 25.36 20.01 0.7450 0.4212 

MHOPNF 25.51 20.17 0.8248 0.4656 25.40 20.05 0.7887 0.4568 23.24 17.90 0.7323 0.4387 

ADF 24.79 19.45 0.8549 0.5358 23.33 17.99 0.7838 0.4162 22.31 16.97 0.7247 0.3761 

SRAD 26.47 21.12 0.8314 0.5590 23.55 18.19 0.7934 0.4865 21.16 15.82 0.7348 0.4056 

NCDF 25.43 20.09 0.8132 0.4899 24.95 19.61 0.8033 0.3371 24.21 18.87 0.7829 0.2488 

TVF 27.48 22.14 0.8079 0.6637 27.43 22.09 0.8203 0.6395 27.12 21.77 0.8223 0.6084 

NLMF 33.31 27.97 0.9480 0.8659 29.82 24.48 0.8816 0.7662 27.71 22.37 0.8265 0.6363 

TI-WT 33.26 27.92 0.9540 0.8523 29.36 24.02 0.8940 0.7021 27.47 22.12 0.8395 0.5612 

Ridgelet 25.66 20.32 0.7468 0.4340 25.47 20.13 0.7693 0.4317 25.20 19.85 0.7619 0.4261 

Curvelet 32.71 27.37 0.9488 0.8495 29.49 24.15 0.8893 0.7445 27.49 22.15 0.8357 0.6475 

Shearlet 33.32 27.98 0.9568 0.8613 30.01 24.66 0.9056 0.7521 28.19 22.85 0.8568 0.6535 

 

Table 2.7 Comparative denoising performance of some existing approaches based on the PSNR 
values for Lena image degraded by different noise levels 

S. 
No. 

Methodology 
PSNR for various noise levels 

ߪ ൌ ߪ 10	 	ൌ ߪ 20	 ൌ 30 

1 Soft shrinkage using universal  threshold [92] 28.10 22.14 18.62 

2 Hard shrinkage using universal  threshold [92] 30.49 27.49 25.93 

3 Visu shrinkages using universal  threshold [82] 28.76 26.46 25.14 

4 Sure shrinkages (sub band adaptive of visu shrinkage  version) [79] 33.38 30.22 28.18 

5 Bayes shrinkage [51] 33.32 30.17 27.13 

6 Probshrinkage [189] 33.80 30.49 --- 

7 Zhang’s  shrinkage with TNN [282] 33.60 30.49 28.62 

8 Shrinkage function by Nasri et al. with TNN [173] 33.82 30.56 28.77 

9 Image denoising based on statistical modeling 7X7 [136] 34.24 30.92 --- 

10 HMT [70] 33.84 30.39 28.35 

11 BLS-GSM [190] 34.19 30.89 29.06 

12 Laplacian mixture shrinkage (7x7)  using WT [199] 34.18 30.88 28.99 

13 Image denoising in steerable pyramid domain 7x7 (SoftLMAP) [198] 34.19 30.94 29.14 

14 Bivariate shrinkages with adaptive dual Tree complex wavelet packet [259] 34.73 31.43 29.37 

15 Pointwise shape-adaptive DCT for high-quality denoising [93] 35.58 32.60 30.86* 

16 WTTNN approach [31] 34.21 30.72 28.88 

17 WT based thresholding neural network with adapting learning rate [31] 34.33 30.91 29.04 

18 Adaptive thresholding function using WT with db8 [29] 34.27 30.81 28.97 

19 Adaptive thresholding function using WT with bior 6.8 [29] 34.36 30.93 29.06 

20 Subband adaptive thresholding function using PSO [32] 34.34 30.94 --- 

21 WT domain with Trivariate shrinkage and joint bilateral filter [272] 35.70 32.80 31.08 

22 Adaptive fusion using wavelet and curvelet transform [30] 35.59 32.33 30.38 

23 RADWT based nonlinear filtering [109] 33.80 30.39 28.37 

24 Curvelet based thresholding using cycle spinning approach  34.83 31.66 29.73 

25 Shearlet based thresholding using cycle spinning approach 35.63* 32.65* 30.77 
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Apart from all the comparisons between the performance of all the twelve denoising 

methods, another comparative quantitative performance is used with some other existing 

approaches based on the PSNR values achieved for the denoised Lena images, as 

presented in Table 2.7. From the quantitative results, it has been observed that the PSNR 

values achieved by the shearlet based methods are better in almost all the approaches 

except for the approach presented in [272] and [93] (for ߪ 	ൌ 	30). In case of the 

methodology mentioned in [272], the PSNR values are higher because of the usage of 

additional spatial domain filtering. In case of method mentioned in [93], some additional 

computational complexity occurs. Thus, to analyze the performance of the curvelet and 

shearlet based methods along with all others denoising methods on the real US images, 

another experiment is performed and presented in the next section of this chapter in which 

the performance evaluation of speckle reduction performed by the various aforementioned 

denoising methods is addressed. 

Experiment 3: As mentioned above in the experimental section, different US images 

are considered to conduct this experiment and processed by all the aforementioned 

denoising methods. Out of them, the denoised prostate US images are illustrated in Figure 

2.18. In case of the diffusion based method, the process is stopped automatically when the 

residual error, defined as mean square error of the image between two iterations is smaller 

than 0.01. The time step is set to 0.25 for the ADF and SRAD methods. The parameters are 

set similar to those as previous one. The subjective outcomes of two other US images such 

as splenic cyst and multiple liver masses are shown in Figure 2.19 and Figure 2.20, 

respectively. From these results, it is evident that the NLMF output gives better speckle 

reduction performance for prostate and splenic cyst US images, but all the edge information 

is lost, while reducing the speckle. The similar thing happens with the third US images that 

the SRAD outperforms the others by reducing the speckle from the US image, but all the fine 

details and edge information that have also some clinical meaning, are lost during the 

smoothing of the image. The ADF method shows some blurring effect in the image because 

of smoothing the edges and fine details, but the NCDF provide better results than the ADF. 

The transform domain methods also introduce some false edges in all the processed US 

images. Besides these, the ridgelet based method using Neighcoeff approach is able to 

suppress the speckles with preserving some edge information. In all these methods, the 

shearlet method produces the despeckled US images with good visual quality and it has also 

capability to capture more edges during the denoising process. The amount of the visual 

distortion or fuzzy edges that are introduced in the other transform based methods, becomes 

very less in case of the shearlet transform. 

Apart from the visual assessments, any denoising performance requires a support of 

the objective evaluations for the validation purposes, but it is very difficult to analyze the 
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denoising results of the real US images processed with different denoising methods in terms 

of different performance measures, since there are no noise free reference images. 

 

Figure 2.18 Visual comparison of various denoising methods applied to prostate ultrasound image (a) 
AWMF (b) WF (c) MHOPNF (d) ADF (e) SRAD (f) NCDF (g) TVF (h) NLMF (i) TI-WT (j) 
Ridgelet (k) Curvelet (l) Shearlet 
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Figure 2.19 Visual comparison of various denoising methods applied to splenic cyst ultrasound image 
(a) AWMF (b) WF (c) MHOPNF (d) ADF (e) SRAD (f) NCDF (g) TVF (h) NLMF (i) TI-WT 
(j) Ridgelet (k) Curvelet (l) Shearlet 
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Figure 2.20 Visual comparison of various denoising methods applied to multiple liver masses 
ultrasound image (a) AWMF (b) WF (c) MHOPNF (d) ADF (e) SRAD (f) NCDF (g) TVF (h) 
NLMF (i) TI-WT (j) Ridgelet (k) Curvelet (l) Shearlet 

Therefore, mean to variance ratio (MVR) is used as an index for estimating the speckle 

noise level in the US images over different image regions. A larger value of the MVR 
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represents a better quantitative performance of the different denoising methods on existing 

real US images. For such purpose, four different US images out of the dataset are presented 

in Figure 2.21. In this figure, two different image regions are marked with the red and blue 

rectangle on each US image for the quantitative analysis. Red and blue rectangles represent 

region 1 and region 2, respectively. The MVR values obtained for both the regions 1 and 2 as 

MVR 1 and MVR 2, respectively, are shown in Figure 2.22 (a)-(d). From the MVR values as 

mentioned in Figure 2.22, the TVF, NCDF and shearlet based methods achieve larger MVR 

values which means that these methods outperform the others exhibited in terms of speckle 

suppression by obtaining higher MVR values. 

 

Figure 2.21 Real ultrasound images with two selected image regions as Region 1 and 2 for the 
quantitative measure of MVR. Region 1 is marked as red rectangle and Region 2 as blue 
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Figure 2.22 Plot of MVR values obtained by the different denoising methods for two image regions 

shown in the Figure 2.21 (a)-(d). Here, methods 1-12 refer to the AWMF, WF, MHOPNF, 
ADF, SRAD, NCDF, TVF, NLMF, TI-WT, Ridgelet, Curvelet and Shearlet, respectively 
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Table 2.8 Performance comparison of the various denoising methods using the averaged MVR 
values over 100 different regions obtained on 50 ultrasound images 

S. No. Methodology MVR 

1 Noisy 14.04 ± 3.04 

2 AWMF 16.27 ± 4.69 

3 WF 15.64 ± 3.42 

4 MHOPNF 16.70 ± 3.49 

5 ADF 18.26 ± 4.23 

6 SRAD 19.45 ± 3.97 

7 NCDF 19.32 ± 3.69 

8 TVF 21.45 ± 4.95 

9 NLMF 21.51 ± 4.13 

10 TI-WT  18.16 ± 3.14 

11 Ridgelet based method 17.47 ± 3.69 

12 Curvelet based method 18.22 ± 4.57 

13 Shearlet based method 20.94 ± 3.88 

 

In addition, to further assess the performance of aforementioned denoising methods, 

100 measurements are taken on fifty different US images, in which two measurements at the 

different locations for each image, to evaluate the MVR values. Table 2.8 shows the 

averaged MVR values obtained for different denoising techniques. The results presented in 

Table 2.8 also show the superiority of the TVF, NLMF and shearlet based methods to 

provide the effective noise suppression as compared to the others. 

2.8 Proposed M-band Ridgelet Based Thresholding Approach 

The M-band ridgelet transform overcomes the limitations of ordinary ridgelet transform 

by replacing the 2-band WT to analyze the edges and features present in the images. As 

mentioned above, to provide a solution for the limitations of the WT, ridgelet transform has 

been introduced as a representation of multidimensional signals which is used to map the 

line singularities to the point singularities using radon transform and after that the WT is used 

to provide better performance for characterizing the point singularities in the Radon transform 

[77]. Although, ridgelet transform provides better result and breaks the limitation of the 

wavelets, however, 2-band WT must be performed in radon domain to complete the ridgelet 

transform. It also derives another shortcoming of the standard wavelet. They are only 

capable to analyze low frequency signals, not for high frequency signals [194, 226]. 

Therefore, in this section, M-band ridgelet transform is used for reducing the speckle present 

in the US images using M-band wavelet decomposition in radon domain. The decomposition 

using M-band ridgelet transform also helps to enlarge the high frequency components. 
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2.8.1 M-band ridgelet transform 

Consider there is a univariate function ߰:	Թ → Թ which satisfy the admissibility 

condition as [225] 

 ห ߰ሺߦሻห
ଶ
ଶൗ|ߦ| ߦ݀ ൏ ∞         (2.58) 

where ߰ denotes the Fourier transform of the univariate function ߰ which has a vanishing 

mean ߰ሺݐሻ݀ݐ ൌ 0. For each ܽ  0, ܾ ∈ ܴ and ߠ ∈ ሾ0,2ߨሿ, the bivariate ridgelet ߰,,ఏ: Թଶ →

Թଶ is defined as follows: 

߰,,ఏሺݔ, ሻݕ ൌ ܽିଵ/ଶ߰ሺሺݔ	ߠݏܿ  ߠ݊݅ݏ	ݕ െ ܾሻ ܽ⁄ ሻ     (2.59) 

This function ߰,,ఏሺݔ, ߠݏܿ	ݔ ሻ has constant value along the linesݕ  ߠ݊݅ݏ	ݕ ൌ   .ܭ

where ܭ is constant, ܽ  0 is the scale parameter, ܾ is the location parameter and ߠ is an 

orientation parameter. For a given integrable bivariate signal ݏሺݔ,  ሻ, ridgelet coefficients ሺ்ܴሻݕ

are defined as  

்ܴሺܽ, ܾ, ሻߠ ൌ  ,ݔሺݏ ,ݔሻ߰,,ఏሺݕ Թమݕ݀ݔሻ݀ݕ       (2.60) 

Due to  

߰,,ఏሺݔ, ሻݕ ൌ  ߰,ሺݐሻԹ ߠݏܿݔሺߜ  ߠ݊݅ݏݕ െ  (2.61)     ݐሻ݀ݐ

where ߰ሺݐሻ ൌ ܽିଵ/ଶ߰ሺሺݐ െ ܾሻ ܽ⁄ ሻ and 

்ܴሺܽ, ܾ, ሻߠ ൌ  ,ݔሺݏ ሻൣݕ ߰,ሺݐሻԹ ߠݏܿݔሺߜ  ߠ݊݅ݏݕ െ Թమݕ݀ݔ൧݀ݐሻ݀ݐ    (2.62) 

்ܴሺܽ, ܾ, ሻߠ ൌ   ,ݔሺݏ ሻԹݐሻ߰,ሺݕ ߠݏܿݔሺߜ  ߠ݊݅ݏݕ െ Թమݕ݀ݔሻ݀ݐ  (2.63)   ݐ݀

்ܴሺܽ, ܾ, ሻߠ ൌ  ߰,ሺݐሻ  ,ݔሺݏ ሻԹమݕ ߠݏܿݔሺߜ  ߠ݊݅ݏݕ െ Թݐ݀ݕ݀ݔሻ݀ݐ    (2.64) 

்ܴሺܽ, ܾ, ሻߠ ൌ  ߰,ሺݐሻܴሺߠ, Թݐሻ݀ݐ        (2.65) 

where ܴሺߠ, ,ݔሺݏ ሻ refers to the radon transform of the signalݐ  :ሻ and is given as followsݕ

ܴሺߠ, ሻݐ ൌ  ,ݔሺݏ ሻԹమݕ ߠݏܿݔሺߜ  ߠ݊݅ݏݕ െ  (2.66)     ݕ݀ݔሻ݀ݐ

Thus, the ridgelet transform is evaluated by applying one dimensional wavelet transform to 

the slices of radon transform. For a 2D signal, the radon transform can be obtained with the 

fast Fourier transform (FFT) as per following three steps: 

1. Compute the two dimensional FFT of a given image. 

2. Cartesian to polar conversion using an interpolation scheme that means we can 

 obtain the samples on a polar grid by substituting from nearby samples at square grid 

 as shown in Figure 2.23. It is the intersection between the set of 2M radial lines and 

 that of Cartesian lines parallel to the axes for an image of size M × M.  

3. Evaluate the one dimensional inverse FFT on each angular line. 

Yu et al. reported the M-band ridgelet transform for texture classification [194] in which 

one dimensional 2-band WT is replaced by the M-band WT along the radial and angular lines  
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Figure 2.23 An illustration of the rectopolar grid in the frequency domain for an 8×8 image 

separately. The M-band wavelet transform is used to decompose the signal into M×M 

channels that are also capable to zoom the noisy subimage coefficients. At the initial stage, 

the À trous algorithm is employed to decompose the data in different scales and obtain the 

low frequency part which has the same size as the original image.  

2.8.2 NeighShrink thresholding 

Various thresholding schemes are provided in the literature. The thresholding scheme 

provides the modified coefficients by comparing the transformed coefficients against a 

threshold to remove the noise from a signal while preserving the important information of the 

original signal. The subband containing high frequency coefficients is processed with the 

thresholding techniques such as soft and hard thresholding, but sometimes they carry the 

edges and features with large magnitude. The main task of thresholding approach is the 

proper selection of the threshold value (T). Now, thresholding is concentrated on the 

neighborhood thresholding, called as NeighShrink (NS) which has been improved further by 

Zhou et al. [289]. Several quantitative evaluations have been performed and shown that the 

NS approach performs better than the other existing methods. The performance of the M-

band ridgelet filtering algorithm is evaluated by denoising the high frequency coefficients 

using soft and the NS thresholding algorithms. Soft thresholding is used to approximate the 

noisy M-band ridgelet coefficients ݏெ
ோௗ௧ሺݔ,  ሻ of the signal [79]. The coefficients, whoseݕ

absolute values are lower than the particular threshold ሺܶሻ, are first set to zero and then 

scaling the nonzero coefficients having values greater than the threshold ሺܶሻ.  
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To achieve the threshold coefficient, an improved NS algorithm based on the Stein’s 

unbiased risk estimate (SURE) is presented. Therefore, for the noisy coefficient 

ெݏ
ோௗ௧ሺݔ, ,ݔሺݓ ሻ to be thresholded, consider a square windowݕ  ሻ centered at a noisyݕ

coefficient. Let ܵଶሺݔ, ሻݕ ൌ 	∑ ൫ݏெ
ோௗ௧ሺ݇, ݈ሻ൯

ଶ
ሺ,ሻ∈௪ሺ௫,௬ሻ  and the thresholding expression is 

given by 

ெݏ̂
ோௗ௧ሺݔ, ሻݕ ൌ ቀ1 െ

்మ

ௌమሺ௫,௬ሻ
ቁ
ା
ெݏ
ோௗ௧ሺݔ,  ሻ      (2.67)ݕ

where ̂ݏெ
ோௗ௧ሺݔ,  ሻ is the estimator of the unknown noiseless coefficient and thresholdingݕ

factor. 

∅ ൌ ሺ1 െ ܶଶ ܵଶሺݔ, ⁄ሻݕ ሻା        (2.68) 

Here, the ‘+’ sign means to keep only the positive values while it is set to zero when it is 

negative and ܶ is the threshold value. The optimal value of the threshold ܶ and window size ݈ 

is determined for every subband using SURE by minimizing the mean squared error or risk of 

the corresponding subband. Stein showed that for almost fixed estimator ̂ݏெ
ோௗ௧ ൌ

ெݏ̂
ோௗ௧ሺݔ, ெݏ ሻ based on the dataݕ

ோௗ௧ ൌ ெݏ
ோௗ௧ሺݔ, ሻ, the risk Eݕ ቄฮ̂ݏெ

ோௗ௧ െ ெݏ
ோௗ௧ฮ

ଶ
ቅ 

can be estimated. 

ܧ ቄฮ̂ݏெ
ோௗ௧ െ ெݏ

ோௗ௧ฮ
ଶ
ቅ ൌ ெݏሺܧ൛ܷܴܵܧ

ோௗ௧, ܶ, ݈ሻൟ    (2.69) 

where ܷܴܵܧሺݏெ
ோௗ௧, ܶ, ݈ሻ ൌ ܰ  ܧ ቄฮܩ൫ݏெ

ோௗ௧൯ฮ
ଶ
 ߘ2 ∙ ெݏ൫ܩ

ோௗ௧൯ቅ  

and ܩ൫ݏெ
ோௗ௧൯ ൌ ሼܩሺ݅ሻሽୀଵ

 ൌ ெݏ̂
ோௗ௧ െ ெݏ

ோௗ௧, n is the number of the noisy coefficients 

in a subband, arranged in 1D vector. This is the expected risk estimated on a particular 

subband for a square neighboring window. The optimal threshold ܶ and neighboring window 

size ݈ for different subband minimize ܷܴܵܧሺݏெ
ோௗ௧, ܶ, ݈ሻ. Accordingly, 

ሺܶ, ݈ሻ ൌ ெݏ൫ܧሾܷܴܵ݊݅݉݃ݎܽ
ோௗ௧, ܶ, ݈൯ሿ       (2.70) 

2.8.3 Implementation steps 

For the noise reduction and implementing the above aspects, the proposed algorithms 

are formulated as follows: 

Step 1:  Start with the noisy image ݏሺݔ, 	݇ ሻ and apply the À trous algorithm [284] withݕ ൌ 	3 

scales. The decomposition of an image using À trous algorithm is considered as a 

superposition of the form. 

,ݔ்ሺݏ  ሻݕ ൌ ,ݔሺݏ ሻݕ  ∑ ݀

ୀଵ ሺݔ,  ሻ      (2.71)ݕ

 A summary of the À trous algorithm is as follows 

 1. Start with an image	ݏሺݔ,  .ሻ and initialize k to 0ݕ

 2. Evaluate the coarser approximation ݏିଵሺݔ, ሻ of the original image byݕ

 computing a convolution of the data with the help of 2D low pass filter: 
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      (2.72) 

  This filter leads to an iterative convolution with a template of 5×5. 

 3. Compute the difference between two consecutive approximations. 

  ݀ሺݔ, ሻݕ ൌ ,ݔିଵሺݏ ሻݕ െ ,ݔሺݏ  ሻ     (2.73)ݕ

 4. Go to step 2, if ݇ ൏  is the number of resolutions for evaluating ݎ݊ where ,ݎ݊

 the approximations. 

 5. ݀ሺݔ,  .ሻ includes the information of the two successive approximationsݕ

  ݀ሺݔ, ሻݕ ൌ ሼ݀ሺݔ, ,ሻݕ ݀ଵሺݔ, ,ሻݕ … , ݀ሺݔ,  ሻሽ    (2.74)ݕ

Step 2:  Evaluate the radon transform on each detail subbands of k scale as mentioned 

above. 

Step 3:  Apply M-band wavelet transform on radon coefficients to compute the M-band 

ridgelet coefficients ݏெ
ோௗ௧ሺݔ,  ሻ. Here, 3-band wavelet transform is used toݕ

implement the above aspects. 

Step 4:  After getting the coefficients from step 3, calculate the optimal value of the 

threshold ሺܶሻ corresponding to minimize the risk as per Eqns. (2.69) and (2.70). 

Step 5:  Apply the threshold on the M-band ridgelet coefficients ݏெ
ோௗ௧ሺݔ,  ሻ obtained fromݕ

the step 3, to compute the approximated or threshold coefficients ̂ݏெ
ோௗ௧ሺݔ,  ሻݕ

using Eqns. (2.67) and (2.68). 

Step 6:  Reconstruct the denoised image ̂ݏሺݔ,  ,ሻ with the approximated coefficientsݕ

obtained from step 5. 

2.8.4 Results and discussions 

In order to investigate the results of the proposed M-band ridgelet using the NS 

thresholding approach, same test images such as kidney, fetus and phantom images and the 

US images such as prostate, splenic cyst and multiple liver masses US images are used to 

investigate the performance of the M-band ridgelet based denoising approach. For all three 

different noise levels, the denoised images produced by the proposed M-band ridgelet 

thresholding (MBRT) approach are illustrated in Figure 2.24, which shows the speckle 

reduction capability of the proposed MBRT approach. From the visual results of these 

images processed by the proposed MBRT approach, it is seen that this method is capable to 

produce good quality images by suppressing the speckle noise with more edge preservation. 

Among all three different images, this method seems to provide better speckle reduction 

performance in fetus images.  
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Figure 2.24 Visual results of denoised images obtained by the proposed MBRT approach. a, b and c 
represent the denoised images corresponding to σ = 0.1, 0.2 and 0.3, respectively. 1, 2 
and 3 shows the kidney, fetus and phantom image, respectively 

Table 2.9 Speckle reduction performance obtained by the proposed MBRT approach applied to 
kidney, fetus and phantom images illustrated in Figure 2.6 

Images Noise level PSNR SNR SSIM FOM EKI 

Kidney image 

ߪ ൌ 	0.1 27.49 16.88 0.8184 0.7578 0.4601 

ߪ ൌ 	0.2 26.35 15.73 0.7714 0.7553 0.4417 

ߪ ൌ 	0.3 25.88 15.26 0.7696 0.7381 0.4319 

Fetus image 

ߪ ൌ 	0.1 19.68 14.69 0.6391 0.9199 0.5257 

ߪ ൌ 	0.2 18.73 13.73 0.5866 0.7872 0.5026 

ߪ ൌ 	0.3 18.01 13.02 0.5519 0.7163 0.4164 

Phantom image 

ߪ ൌ 	0.1 25.46 13.29 0.8227 0.8496 0.7766 

ߪ ൌ 	0.2 23.56 11.39 0.8052 0.8259 0.6862 

ߪ ൌ 	0.3 22.25 10.08 0.7803 0.7519 0.6346 
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Apart from the visual assessment, the performance has been extensively analyzed and 

evaluated using the different performance measures as mentioned in Table 2.9. The 

quantitative results are evaluated for all the images corrupted by multiplicative speckle noise 

of different variance 0.1, 0.2 and 0.3 as mentioned above. In these objective results, PSNR 

and SNR values show the speckle reduction capability of the proposed MBRT approach, 

while SSIM values present the structural similarity of the denoised and reference images with 

the noise suppression performance. The edge preservation capability is also described by 

the higher FOM and EKI values, i.e. closer to unity value. It is observed from the Table 2.9 

that the SSIM and FOM achieve the value approx between 0.6-0.8 and 0.7-0.9, respectively, 

which indicates that the proposed MBRT approach is producing more detailed images in 

which most of the structural features are preserved. To investigate the superiority of the 

denoising methods two different experiments are performed as follows: 

Experiment 1: Comparative performance analysis of speckle reduction obtained by the 

proposed MBRT approach and others for simulated kidney, fetus and phantom images - To 

compare the despeckling ability of the proposed MBRT approach, some other remarkable 

methods such as the ADF, SRAD, TVF, wavelet-NS and ridgelet-NS approaches are used, in 

which, wavelet and M-band ridgelet transform are integrated with the NS approach [289]. 

Table 2.10 shows the comparative evaluation of six different denoising methods based on 

the values of different objective indices. From Table 2.10, it is observed that the proposed 

method provides higher PSNR (27.49, 26.35 and 25.88) and SNR (16.88, 15.73 and 15.26) 

values for kidney images as compared to the others. Similarly, for fetus images, the 

proposed MBRT approach produces better noise suppression results by providing higher 

SNR and PSNR values. In case of the phantom images, the SNR and PSNR values obtained 

by the TVF approach as 25.86, 24.07, 23.20 and 13.69, 11.90, 11.03, respectively are higher 

than the proposed MBRT approach. Moreover, the proposed method gains the competitive 

values of the PSNR as 25.46, 23.56, 22.25 and SNR as 13.29, 11.38, 10.08 with higher 

SSIM, FOM and EKI values as compared to all the other denoising methods. From these 

results, it can be observed that the proposed approach is not only better in computational 

efficiency but also gives better performance of denoising reflected in all performance indices 

used here. There is a significant improvement in edge preservation performance in all the 

test images used for speckle reduction purpose. The TVF approach can also be utilized as 

another option for denoising in its similar or some modified form and integrating with an 

appropriate transform based approach. 

Experiment 2: Comparative analysis of real US images processed by the proposed 

MBRT and other approaches - For such comparison, similar denoising methods are 

considered to compare the speckle reduction capability of the proposed MBRT approach 

applied to the real US images. 
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Table 2.10 Comparison between the quantitative results obtained by the proposed MBRT with other methods 

Noise 
level 

Methods 
Kidney image 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Fetus image 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

Phantom image 

PSNR SNR SSIM FOM EKI PSNR SNR SSIM FOM EKI PSNR SNR SSIM FOM EKI 

	ߪ ൌ 	0.1 

ADF [186] 21.74 11.11 0.7610 0.3831 0.3181 17.06 12.08 0.5925 0.6121 0.3572 21.98 9.81 0.7650 0.4311 0.7381 

SRAD [266] 25.86 15.24 0.7197 0.5124 0.4598 18.33 13.34 0.6286 0.6758 0.3828 22.74 10.57 0.8035 0.8202 0.5995 

TVF [47] 25.85 15.23 0.6747 0.4893 0.4149 17.84 12.85 0.5854 0.7819 0.3696 25.86 13.69 0.6883 0.8426 0.6452 

Wavelet-NS [289] 23.15 12.53 0.7305 0.4973 0.3962 18.38 13.39 0.6243 0.7627 0.4883 23.52 11.34 0.7734 0.4931 0.6825 

Ridgelet [101] 24.54 13.93 0.7375 0.5432 0.4136 18.71 13.69 0.6001 0.8269 0.5242 24.14 11.97 0.7894 0.4915 0.6834 

Proposed MBRT 27.49 16.88 0.8184 0.7578 0.4601 19.68 14.69 0.6391 0.9199 0.5257 25.46 13.29 0.8227 0.8496 0.7766 

	ߪ ൌ 	0.2 

ADF [186] 20.79 10.17 0.7190 0.3776 0.3041 15.72 10.73 0.5375 0.5037 0.3246 21.12 8.95 0.7451 0.4601 0.5159 

SRAD [266] 25.04 14.42 0.6944 0.5087 0.3332 16.66 11.67 0.5512 0.6681 0.3866 22.31 10.14 0.7855 0.5337 0.5939 

TVF [47] 25.65 15.03 0.6527 0.4822 0.4036 17.01 12.02 0.5631 0.6876 0.3531 24.07 11.90 0.6944 0.6328 0.5878 

Wavelet-NS [289] 21.68 11.05 0.7293 0.5131 0.3493 16.54 11.55 0.5572 0.6010 0.3755 21.11 8.93 0.7597 0.3554 0.4641 

Ridgelet [101] 23.75 13.13 0.7325 0.5201 0.3782 16.71 11.72 0.5678 0.7586 0.4824 22.21 10.03 0.7548 0.3957 0.5239 

Proposed MBRT 26.35 15.73 0.7714 0.7553 0.4417 18.73 13.73 0.5866 0.7872 0.5026 23.56 11.38 0.8052 0.8259 0.6862 

	ߪ ൌ 	0.3 

ADF [186] 20.46 9.84 0.6974 0.3851 0.3011 15.58 10.59 0.4978 0.4447 0.3092 19.98 7.81 0.7305 0.4267 0.3945 

SRAD [266] 24.69 14.07 0.6873 0.4972 0.3211 15.39 10.40 0.4445 0.6472 0.3625 22.10 9.92 0.7686 0.5291 0.5909 

TVF [47] 25.52 14.90 0.6331 0.4802 0.3931 16.13 11.14 0.5325 0.6210 0.3105 23.20 11.03 0.6986 0.6494 0.5354 

Wavelet-NS [289] 19.74 9.12 0.7148 0.5132 0.3323 15.53 10.55 0.5367 0.6458 0.3650 19.66 7.49 0.7389 0.2614 0.4386 

Ridgelet [101] 22.09 11.47 0.7146 0.5404 0.3672 16.21 11.22 0.5412 0.7097 0.3951 20.11 7.93 0.7347 0.3613 0.4585 

Proposed MBRT 25.88 15.26 0.7696 0.7381 0.4319 18.01 13.02 0.5519 0.7163 0.4164 22.25 10.08 0.7803 0.7519 0.6346 

 



 

73 

 

 

Figure 2.25 Comparative visual analysis of prostate ultrasound image, processed by (a) ADF (b) 
SRAD (c) TVF (d) Wavelet-NS (e) Ridgelet (f) Proposed MBRT approach 

 

 

Figure 2.26 Comparative visual analysis of splenic cyst ultrasound image, processed by (a) ADF (b) 
SRAD (c) TVF (d) Wavelet-NS (e) Ridgelet (f) Proposed MBRT approach 
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Figure 2.27 Comparative visual analysis of multiple liver masses ultrasound image, processed by (a) 
ADF (b) SRAD (c) TVF (d) Wavelet-NS (e) Ridgelet (f) Proposed MBRT approach 

In this experiment, visual assessments are done with the processed prostate, splenic 

cyst and multiple liver masses US images. The denoised prostate US image produced by 

different methods is shown in Figure 2.25. From the results, it is observed that diffusion 

based approach produces a blurring effect in the images because of smoothing of the edges. 

Thus, the edge and other image information are lost during the smoothing process. On the 

other side, wavelet based approach does not produce a good denoised image. Moreover, in 

the processed prostate US images obtained by the wavelet method does not show its 

capability of capturing the edge information, but introduces some visual distortion in the 

resultant image. The proposed method and the TVF approach provide good quality of image 

that is also evident by presenting the processed splenic cyst US image in Figure 2.26. From 

the results presented in Figure 2.26, it is observed that the diffusion based ADF and SRAD 

approaches are able to suppress the noise, but at the cost of losing the edge information. 

Similarly, another US image processed by the proposed and other methods are shown in 

Figure 2.27 and approximately similar results are found with respect to speckle reduction in 

US images, except one change that the SRAD method provides better noise reduction 

performance. However, all the edges information, which are clinically relevant, are lost during 

speckle reduction process, but for further analysis using image processing techniques, it may 

be useful. 

For performing another comparative analysis, a liver cyst US image acquired from the  
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Figure 2.28 Despeckling results of considered (a) Ultrasound image with marked red line. Results 
processed by (b) Wavelet-WF (c) Wavelet-NS (d) Wavelet-BF-NS (e) Wavelet-TVF (f) 
Ridgelet (g) Proposed MBRT approach. Here, 1 indicates the image results after 
processed by these mentioned methods and 2 refers to the line profile corresponding to 
the results obtained from (a)-(g) 

samsung medison website (www.medison.ru/uzi/eho156.htm) and shown in Figure 2.28 (a), 

is considered which is processed by other integrated denoising methods different from 

previous mentioned methods. The despeckled images obtained by the different denoising 

methods such as wavelet-WF, wavelet-NS [289], wavelet transform with the NS and bilateral 

filter (wavelet-BF-NS) [14], the TVF with wavelet transform (wavelet-TVF) [3], ridgelet based 

method (similar as mentioned above), are shown in Figure 2.28 (a1)-(g1), respectively. 

Another analysis is also done based on the line profile that indicates the gray level intensities 

across a predefined line marked by red on the US image. It is also observed from the line 

profile analysis as shown in Figure 2.28 (a2)-(g2) that the content of the image are well 

preserved and the transitions of the despeckled US images are smoother than noisy image. 
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Table 2.11 Averaged PSNR, SNR, SSIM and EKI measured by various approaches for the test 
images degraded by speckle noise 

Noise 
level 

Denoising methods PSNR SNR SSIM EKI 

σ = 0.1 

AWMF 19.99 ± 2.69 10.74 ± 1.18 0.6783 ± 0.1218 0.5041 ± 0.0567 

WF 19.74 ± 2.66 10.48 ± 1.29 0.7124 ± 0.0436 0.4589 ± 0.0487 

MHOPNF 19.63 ± 3.55 10.37 ± 0.45 0.6812 ± 0.1020 0.4595 ± 0.2113 

ADF 20.26 ± 2.77 11.01 ± 1.14 0.7062 ± 0.0985 0.4711 ± 0.2320 

SRAD 22.31 ± 3.78 13.05 ± 2.35 0.7173 ± 0.0875 0.4807 ± 0.1099 

NCDF 22.03 ± 3.94 12.77 ± 1.78 0.6759 ± 0.1026 0.4871 ± 0.1901 

TVF 23.18 ± 4.63 13.92 ± 1.21 0.6495 ± 0.0559 0.4765 ± 0.1477 

NLMF 25.08 ± 4.81 15.82 ± 1.69 0.7707 ± 0.0853 0.6365 ± 0.1553 

TI-WT 23.50 ± 4.70 14.24 ± 2.30 0.7136 ± 0.0952 0.4678 ± 0.1117 

Ridgelet 22.46 ± 3.26 13.19 ± 1.07 0.7090 ± 0.0978 0.5404 ± 0.1356 

Curvelet 23.27 ± 4.62 14.01 ± 1.86 0.7339 ± 0.0843 0.4913 ± 0.1047 

Shearlet 23.96 ± 4.58 14.71 ± 1.93 0.7486 ± 0.0943 0.5268 ± 0.1373 

Proposed MBRT  24.21* ± 4.05 14.95* ± 1.81 0.7601* ± 0.1048 0.5875* ± 0.1669 

            

σ = 0.2 

AWMF 18.62 ± 3.64 9.36 ± 0.75 0.6272 ± 0.1551 0.4423 ± 0.0279 

WF 18.31 ± 3.81 9.05 ± 0.08 0.6472 ± 0.0625 0.4548 ± 0.0871 

MHOPNF 17.98 ± 4.07 8.72 ± 0.66 0.6512 ± 0.1216 0.3857 ± 0.1309 

ADF 19.21 ± 3.03 9.95 ± 0.91 0.6672 ± 0.1131 0.3815 ± 0.1168 

SRAD 21.34 ± 4.27 12.08 ± 2.17 0.6769 ± 0.1181 0.4379 ± 0.1377 

NCDF 21.04 ± 4.34 11.78 ± 1.64 0.6079 ± 0.1172 0.4241 ± 0.1608 

TVF 22.24 ± 4.60 12.98 ± 1.77 0.6367 ± 0.0670 0.4481 ± 0.1235 

NLMF 23.39 ± 4.75 14.14 ± 2.28 0.7434 ± 0.0937 0.5433* ± 0.0904 

TI-WT 22.78 ± 5.01 13.52 ± 2.78 0.6943 ± 0.1036 0.4495 ± 0.1024 

Ridgelet 20.89 ± 3.70 11.63 ± 1.55 0.6850 ± 0.1021 0.4615 ± 0.0751 

Curvelet 22.61 ± 4.89 13.35 ± 2.25 0.7240* ± 0.0943 0.4735 ± 0.0928 

Shearlet 23.16* ± 4.88 13.89* ± 2.41 0.7095 ± 0.1172 0.4936 ± 0.1155 

Proposed MBRT 22.88 ± 3.86 13.62 ± 2.17 0.7211 ± 0.1177 0.5435 ± 0.1273 

            

σ = 0.3 

AWMF 18.49 ± 3.48 9.24 ± 1.26 0.5708 ± 0.1513 0.2987 ± 0.0497 

WF 16.88 ± 5.02 7.63 ± 1.35 0.6252 ± 0.1079 0.3441 ± 0.0302 

MHOPNF 16.38 ± 4.82 7.12 ± 1.38 0.6241 ± 0.1315 0.3447 ± 0.0807 

ADF 18.67 ± 2.69 9.41 ± 1.44 0.6419 ± 0.1259 0.3349 ± 0.0517 

SRAD 20.73 ± 4.79 11.46 ± 2.27 0.6335 ± 0.1686 0.4248 ± 0.1453 

NCDF 20.45 ± 4.28 11.19 ± 1.52 0.5742 ± 0.1234 0.3844 ± 0.1328 

TVF 21.62 ± 4.89 12.36 ± 2.21 0.6214 ± 0.0837 0.4130 ± 0.1138 

NLMF 22.42* ± 4.19 13.16* ± 2.31 0.7064 ± 0.1142 0.4986 ± 0.1046 

TI-WT 22.18 ± 5.27 12.92 ± 2.93 0.6776 ± 0.1156 0.4232 ± 0.1073 

Ridgelet 19.47 ± 2.99 10.21 ± 1.98 0.6635 ± 0.1064 0.4069 ± 0.0468 

Curvelet 22.01 ± 5.09 12.75 ± 2.51 0.7012* ± 0.1055 0.4481 ± 0.0929 

Shearlet 22.45 ± 5.19 13.19 ± 2.82 0.6826 ± 0.1505 0.4502 ± 0.0795 

Proposed MBRT 22.05 ± 3.94 12.79 ± 2.59 0.7006 ± 0.1289 0.4943* ± 0.1218 

* means the second highest value of the each performance measure in the table.  
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Besides all the performance analysis of various denoising methods with one proposed 

MBRT approach, a new comparative analysis is also done by evaluating all the performance 

measures such as PSNR, SNR, SSIM and EKI (mean ± standard deviation) obtained by all 

the denoising methods applied to all test images. The averaged performance of the PSNR, 

SNR, SSIM and EKI are presented in Table 2.11. From the results mentioned in Table 2.11, 

it is observed that the averaged values of all the performance measure obtained by the 

NLMF, shearlet and proposed MBRT approaches produce higher values than the others. For 

low level noise variance ߪ ൌ 0.1	, the proposed MBRT approach provides better results by 

providing higher averaged SNR, PSNR, SSIM and EKI values such as 14.95, 24.21, 0.7601 

and 0.5875, respectively, than the other methods except the NLMF method. For noise 

variance ߪ ൌ 0.2 and 0.3, the NLMF is still able to produce higher values of performance 

measures than the shearlet and the proposed MBRT methods, but the EKI values obtained 

using the proposed MBRT approach are still higher than the NLMF and shearlet for noise 

level ߪ ൌ 0.2. It also provides the competitive values of other performance measures to the 

NLMF, TVF and shearlet based methods for ߪ ൌ 0.3. From the analysis of all these 

performance indices, it can be summarized that the MBRT approach obviously outperforms 

the other methods. In addition, proposed method gains approx 19.25-21.11%, 22.64-30.63%, 

23.33-34.62%, 18.1-19.5%, 6.37-8.52%, 7.82-9.9%, 1.99-4.44%, 0.44-3.02%, 7.79-13.25% 

and 0.18-4.04% higher PSNR values (in dB) than the AWMF, WF, MHOPNF, ADF, SRAD, 

NCDF, TVF, TI-WT, ridgelet and curvelet methods, respectively. Only the NLMF method 

outperforms in terms of PSNR by 1.68-3.59%. The proposed method also provides the stable 

SNR value with approx 38.42-45.51%, 42.65-67.63%, 11.61-36.88%, 3.48-7.4% higher than 

the AWMF, WF, diffusion based approaches and the TVF method. The proposed MBRT 

approach outperforms the ridgelet based approach by obtaining approx 13.34-25.27%, 5.27-

7.21% and 8.72-21.48% higher SNR, SSIM and EKI values. Besides this, the NLMF method 

shows better noise suppression performance by achieving higher SNR (2.89-5.82%) and 

SSIM values (0.83-3.09%) than the proposed approach. Sometimes; it leads to loss of edge 

information reflected in the EKI values. For noise variance ߪ ൌ 0.2 and 0.3, the shearlet also 

produces the competitive values of the PSNR, SNR, SSIM and EKI to the NLMF and the 

proposed method. By analyzing the results mentioned in Table 2.11, it is observed that the 

NLMF, TVF and diffusion based approach along with the transform based methods such as 

shearlet, proposed MBRT can be available as the better option for suppressing the speckle 

as much as possible depending upon the applications. 

2.9 Summary 

The denoising is a most important step in the image processing applications and 

especially in case of the US images having speckles as it is difficult to extract the relevant 

clinical information from the US images in the presence of speckle. Firstly, a comparative 
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analysis is performed to investigate the noise suppression (speckle as well as Gaussian) 

performance of the twelve denoising methods on both the test images and real US images. 

Based on the results obtained from this comparative analysis, one method is also proposed 

using M-band ridgelet transform as described in the last part of this chapter. This method 

also exploits the features of the M-band WT in place of 2-band WT. The proposed approach 

utilizes the variation of the frequency resolution feature of the À trous algorithm by which a 

noisy speckled image has been decomposed into different scales. Thresholding provides the 

approximated modified image coefficients that also improve the despeckling efficiency. The 

proposed method is also able to produce better results by suppressing sufficient amount of 

the speckle noise with more edge preservation. Few methods such as the TVF, NLMF, 

curvelet and shearlet based approach exhibit better speckle reduction performance than 

others. However, it leads to some limitations also such as the TVF and NLMF suffer from 

losing the edges in case of higher noise level, The TVF method also produces some blocking 

effects in the denoised images. Anisotropic diffusion is also able to smooth the US images, 

but at the cost of blurring the edges. The curvelet based method has some visual distortion in 

the denoised images rather than providing good quality images. Shearlet method has less 

distortion than the curvelet based method. The NS thresholding used with the proposed M-

band ridgelet transform also provides better noise reduction results with good edge 

preservation. One important point can be observed in the comparative PSNR analysis of the 

Lena image that the transform based method with spatial domain processing achieves better 

noise suppression performance. Based on all the analysis, it is concluded that transform 

based methods outperform others by preserving more edges with the sufficient amount of 

noise suppression and the diffusion and TVF approaches provide a considerable amount of 

noise suppression at the cost of losing the edges, which must be preserved in the denoised 

images as much as possible. 
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CHAPTER 3: RIPPLET DOMAIN NONLINEAR FILTERING APPROACH 

This chapter presents two different approaches for reducing the speckle in ultrasound medical images. 

For such purpose, two nonlinear filtering approaches have been used in the ripplet domain that is 

employed to provide an effective representation of the noisy image coefficients. In this chapter, the 

methodologies used to present the proposed methods are explained in detail and based on this; the 

design steps of ripplet domain nonlinear filtering approaches are discussed. The performance of these 

speckle reduction algorithms are discussed in both the subjective and objective manner and a detailed 

comparative analysis has also been presented in the last section of this chapter for assessing the 

performance of speckle reduction obtained by the proposed methods. 

3.1 Introduction 

It has been analyzed and emphasized in the previous chapter that the noise reduction 

along with the preservation of more edge information available in the source images is able 

to improve the visual assessment of the US images. Currently, lots of research work on 

image denoising methods is concentrated in the transform domain, which is already 

observed in previous chapter 2, where ridgelet, curvelet and shearlet transform have been 

used for speckle reduction. The performance of ridgelet transform has also been improved 

using the M-band ridgelet transform. Each transform has its own advantages and limitations 

that are also discussed in chapter 2, where a detailed comparative analysis of several 

existing denoising methods was carried out on the US images. Based on the subjective and 

objective outcomes of that comparative analysis, it was observed that the curvelet and 

shearlet based methods produce better denoising results. Along with these observations, 

one more comparative analysis has been performed in which the WT thresholding method 

improved its performance by incorporating some spatial domain techniques [272]. These 

outcomes have motivated to address and utilize the transformation technique with some 

spatial domain approaches.  

Recently, many researchers tried to explore the applications of the ridgelet and CVT for 

image denoising because of their anisotropic property. The WT is less efficient in 

representing the sharp transition like line and curve singularities due to its limitation of 

direction. The ridgelet transform is able to perfectly capture the line singularities of the 

images, but it is not able to efficiently represent the curve singularities. Further, the CVT has 

been introduced by Starck et al. [225] to represent two dimensional singularities with arbitrary 

shaped curve because most of the images inherently have gray level transitions or 

discontinuities along the curve. The main idea of the curvelets is to represent a curve as a 

superposition of the functions of various lengths and widths obeying the scaling law. To 

represent the edges more efficiently in images, Jun et al. [256] introduced a new multiscale 

geometric analysis tool called ripplet transform (RT) type I that presents a generalized 

version of the CVT with two new additional parameters for providing the anisotropy 
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capability. This guarantees to effectively represent the singularities along the arbitrary 

shaped curves. The RT with their different features such as anisotropy, localization, 

directionality, multiscale and multiresolution is employed to provide effective representation 

of the image coefficients. The RT also overcomes the limitations of other transforms and 

provides the sparse representation for the objects [256]. With the RT, a nonlinear bilateral 

filter (NLBF) approach is used to propose two denoising approaches using the NeighShrink 

(NS) and BlockShrink (BS) thresholding after decomposing an image into different subbands.  

In the following sections of this chapter, after introducing the overview of the RT and its 

decomposition structure, some efforts have been made to explain an idea of the NLBF and 

thresholding approaches used in the proposed methods. Next section illustrates the 

proposed method. Many efforts have been made to evaluate and compare their denoising 

performance with others in terms of speckle reduction with retention of more edges. 

3.2 Ripplet Transform 

The RT is a higher dimensional generalization of the CVT and is capable to represent 

the two dimensional signals at the different scales and different directions. To realize 

anisotropic directionality, the CVT uses a parabolic scaling law as mentioned in the previous 

chapter. From this perspective, the anisotropic properties of the CVT guarantees to resolve 

the two dimensional singularities along ܥଶ curves [225]. On the other side, the RT also 

provides a new tight frame with sparse representation for the source images with 

discontinuities along ܥௗ  curves [256]. If ݀ ൌ 1, then ripplet does not show the anisotropy 

behavior. For ݀ ൌ 2, it has parabolic scaling same as the curvelets and for ݀ ൌ 3, ripplet has 

the cubic scaling and so forth. The anisotropic capabilities of RT type-1 are capable to 

efficiently represent the singularities along the arbitrary shaped curves because of these 

added new parameters support ܿ and degree ݀. The RT is a generalized version of the CVT 

with the parameters ܿ	 ൌ 	1 and ݀ ൌ 2. Thus, the CVT is just a special case of ripplet.  

3.2.1 Continuous ripplet transform 

The continuous RT is defined as inner product of two dimensional integrable function 

 :Ԧሻ as follows [256]ݔ,ሬԦ,ఏሺ Ԧሻ and rippletsݔሺݏ

ܴ൫ܽ, ሬܾԦ, ൯ߠ ൌ ൻݏ, ,ሬԦ,ఏൿ ൌ  Ԧሻݔሺݏ  Ԧ      (3.1)ݔԦሻ݀ݔ,ሬԦ,ఏሺ

where ܴ൫ܽ, ሬܾԦ,  ൯ is the ripplet coefficients and ሺ∙ሻ shows the conjugate operation. The rippletߠ

function is defined as 

Ԧሻݔ,ሬሬሬԦ,ఏሺ ൌ ,,ሬሬሬሬԦ ቀܴఏ൫ݔԦ െ ሬܾԦ൯ቁ        (3.2) 

where ,ሬሬሬԦ,ሺݔԦሻ is a ripplet element function, ܴఏ ൌ ቂ ߠݏܿ ߠ݊݅ݏ
െߠ݊݅ݏ ߠݏܿ

ቃ is a rotation matrix, which 

rotates ߠ radians. ݔԦ and ሬܾԦ are two dimensional vectors.  
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The ,ሬሬሬԦ,ሺݔԦሻ can also be represented in the frequency domain as follows: 

,ݎሺ̂ ߱ሻ ൌ
ଵ

√
ܽ
భశ
మ ܹሺܽ ∙ ሻܸݎ ቀ

భ/

∙
∙ ߱ቁ       (3.3) 

where ̂ሺݎ, ߱ሻ is the Fourier transform of the ripplet element function ,ሬሬሬԦ,ሺݔԦሻ in polar co-

ordinate. ܽ, ሬܾԦ and θ are the scale, position and rotation parameter, respectively. ܹሺݎሻ and 

ܸሺ߱ሻ represent the radial window and angular window having compact supports on [1/2, 2] 

and [-1, 1], respectively, that satisfy the two admissibility conditions as follows: 

 ܹଶሺݎሻ
ௗ


ൌ 1

ଶ
ଵ/ଶ  and  ܸଶሺݐሻ

ଵ
ିଵ ݐ݀ ൌ 1      (3.4) 

These two windows divide the polar frequency domain into wedges shown in Figure 3.1 (a). 

The main issue with the continuous ripplet transform is that it can only capture the behavior 

of the high frequency components of the original signal. So the full continuous ripplet 

transform is established by the combination of finer scale RT and coarse scale isotropic WT 

which represent the characteristic of the high and low frequency components, respectively. 

The approximated image can be reproduced by the inverse of the ripplet transform and it is 

expressed as given below [256]: 

Ԧሻݔሺݏ ൌ ,൫ܴܽ ሬܾԦ, ܽ/ߠԦሻ݀ܽ݀ሬܾԦ݀ݔ,ሬԦ,ఏሺ൯ߠ
ଷ      (3.5) 

where ܴ is a ripplet coefficient of the input signal, ܽ is the scale parameter, ሬܾԦ is a positional 

parameter and θ is a rotation parameter. 

3.2.2 Discrete ripplet transform 

In the field of digital image processing, discrete transforms are needed for their 

computerized algorithm implementation. So, discrete RT is evaluated by discretizing the 

parameters of ripplets. The parameter ܽ is sampled at dyadic intervals whereas ሬܾԦ and ߠ are 

sampled at equally spaced intervals. The scale parameter ሺܽሻ, the position parameter ሺܾሻ 

and rotation parameter ሺߠሻ are substituted with	 ܽ, ሬܾԦ and ߠ, respectively, that satisfy 

ܽ ൌ 2ି, ሬܾԦ ൌ ሾܿ ∙ 2ି ∙ ݇ଵ,2ି/ௗ ∙ ݇ଶ,ሿ் and ߠ ൌ ሺ2ߨ ܿሻ ∙ ሺ2ିሾሺଵିଵ/ௗሻሿሻ⁄ ∙ ݈, where ሬ݇Ԧ ൌ ሾ݇ଵ	݇ଶ	ሿ், 

ሺ∙ሻ் denotes the transpose of a vector and ݆, ݇ଵ,݇ଶ,݈ ∈ Ժ . The frequency response of ripplet 

function is given as 

,ݎሺ̂ ߱ሻ ൌ
ଵ

√
ܽ
భశ
మ ܹሺ2ି ∙ ሻܸݎ ቀ

ଶషೕሺభ/షభሻ


∙ ߱ െ ݈ቁ     (3.6) 

where W and V satisfy the following conditions. 

∑ หܹሺ2ି ∙ ሻหݎ
ଶஶ

ୀ ൌ 1 and ∑ ቚܸ ቀ
ଶషೕሺభ/షభሻ


∙ ߱ െ ݈ቁቚ

ଶ
ஶ
ୀିஶ ൌ 1    (3.7) 

For a fixed value of ܿ, degree ݀ is used to control the resolution in the directions at each high 

pass band. For given a fixed value of ݀, parameter ܿ controls the number of directions at all 

high pass bands. The ܿ and ݀ in combination are used to determine the final number of 
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directions at each band together. The discrete ripplet transform of the two dimensional signal 

,ݔሺݏ ܯ ሻ with sizeݕ ൈܰ is given by ripplet coefficients ܴ,ሬԦ ,. 

ܴ,ሬԦ , ൌ ∑ ∑ ,ݔሺݏ ,ሬԦሻݕ ,ሺݔ, ሻݕ
ேିଵ
௬ୀ

ெିଵ
௫ୀ        (3.8) 

An approximated image ̂ݏሺݔ,  ሻ can be reconstructed through inverse discrete RT as givenݕ

below: 

,ݔሺݏ̂ ሻݕ ൌ ∑ ∑ ∑ ܴ,ሬԦ ,,ሬԦ ,ሺݔ, ሻሬԦݕ        (3.9) 

Figure 3.1 (b) shows a real ultrasound image and decomposition of the image processed 

using the RT is illustrated in Figure 3.1 (c). 

 

 

Figure 3.1 (a) The tiling of the polar frequency domain. The dashed wedge corresponds to the 
frequency transform of the element function. (b) Original ultrasound image (c) Different 
subbands after decomposition using ripplet transform with support (c=1) and degree 
(d=4). 
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3.3 Nonlinear Bilateral Filter 

Bilateral filter is a nonlinear filtering approach to perform the edge preserved denoising 

within the spatial domain [14, 237, 239, 280]. Bilateral filter replaces the pixel values by a 

weighted sum of the pixels in a local neighborhood. It is achieved by the combination of two 

Gaussian filters, spatial (domain) and intensity (range) filter. The range filter coefficients are 

proportional to the intensity distance ൫ݏሺݕሻ െ  .ሻ൯ around the local neighborhood of a pixelݔሺݏ

The domain filter coefficients are proportional to the spatial distance ሺݕ െ  ሻ of the pixel inݔ

approximation subband coefficients around its neighborhood. Thus, at a pixel location x, the 

response of the NLBF can be computed as [281] 

ሻݔሺݏ̂ ൌ
ଵ


∑ ,ݔሺܦ ሻ௬∈ேೞሺ௫ሻݕ ܴሺݔ,  ሻ      (3.10)ݕሺݏሻݕ

where ݔ and 	ݕ are the coordinate vectors, ܦሺݔ, ,ݔሻ and ܴሺݕ  ሻ are spatial and intensity filterݕ

components of the bilateral filter, respectively. They are defined as 

,ݔሺܦ ሻݕ ൌ ݔ݁ 
ି‖௬ି௫‖మ

ଶఙ
మ ൨												

ܴሺݔ, ሻݕ ൌ ݔ݁ ቂ
ି‖௦ሺ௬ሻି௦ሺ௫ሻ‖మ

ଶఙೝ
మ ቃ			

					ൢ       (3.11) 

௦ܰሺݔሻ is the spatial neighborhood and ݄ is the normalization constant defined as 

݄ ൌ ∑ ,ݔሺܦ ሻ௬∈ேೞሺ௫ሻݕ ܴሺݔ,  ሻ        (3.12)ݕ

where both the spatial and intensity domain behaviors are characterized by the ߪௗ and ߪ, 

respectively.  

In bilateral filter, the choice of the parameters ߪௗ and ߪ is very important. These 

parameters have been analyzed as a function of noise variance, but the optimal value of ߪௗ 

is relatively insensitive to noise variance while ߪ value changes, significantly by changing 

the noise variance [229, 281]. Therefore, the optimal values of the NLBF parameters are 

selected by repeating the experiments for different combinations of the ߪௗ and ߪ for a 

constant noise variance. In the case of additive model, it works as a good filter, but in the 

presence of the speckle noise, the relationship between ߪ and noise variance ሺߪሻ is not 

established because of the multiplicative nature. This problem can be solved by the modified 

range filter which is given below: 

ܴሺݔ, ሻݕ ൌ ݔ݁ ቂ
ି‖௦ሺ௬ሻି௦ሺ௫ሻ‖మ

ଶ‖௦ሺ௫ሻ‖మఙೝ
మ ቃ        (3.13) 

More noise components are suppressed with a larger value of ߪ. However, some artifacts 

may also be introduced with the increasing value of ߪ. 

3.4 Thresholding Approaches 

In recent years, the thresholding schemes are considered in many studies for image 

denoising purpose. The most important task is to select a proper threshold value by which 

the decomposed image coefficients are compared and result in the modified thresholded 
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coefficients. For such purposes, soft and hard thresholding is generally used for evaluating 

the threshold value using the universal threshold as mentioned in chapter 2. However, they 

also carry the edges and features with large magnitude. The two other important thresholding 

methods such as the NeighShrink (NS) and BlockShrink (BS) have been introduced and 

further improved by Dengwen et al [289, 290] and Cai et al. [39]. They have reported better 

denoising results than the other existing methods using WT. The performance of the 

proposed methods mentioned in this chapter is evaluated by suppressing the speckle noise 

of high frequency coefficients using soft with NeighShrink (in scheme-1) and BlockShrink (in 

scheme-2) thresholding algorithms. 

3.4.1 NeighShrink thresholding  

The NS thresholding approach based on Stein’s unbiased risk estimate (SURE) is 

discussed in chapter 2. After estimating the noisy ripplet coefficients, a threshold value ሺܶሻ is 

required. The thresholding function is given as  

,ݔோ்ሺݏ̂ ሻݕ ൌ ൬1 െ
்మ

∑ ሺ௦ೃሺ,ሻሻమሺౡ,ౢሻ∈౭ሺ౮,౯ሻ
൰
ା
,ݔோ்ሺݏ  ሻ     (3.14)ݕ

where ݏோ்ሺݔ, ሻݕ ൌ ,ݔோ்ሺݏ̂ ோ் is the noisy ripplet coefficients andݏ ሻݕ ൌ  ோ் refers toݏ̂

approximated ripplet coefficients after thresholding process; ݓሺݔ,  ሻ is a squared templateݕ

that is centered at noisy coefficients. Here ‘+’ sign means to keep only the positive values 

and put zero in case of negative values. The optimal value of the threshold is estimated by 

minimizing the SURE risk of the corresponding subimage coefficients obtained after 

decomposing the image using the RT as mentioned in Eqns. (2.69) and (2.70) (in subsection 

2.8.2). In this mathematical expressions, ݏெ
ோௗ௧ and ̂ݏெ

ோௗ௧ are replaced by the ݏோ் and 

 .ோ், respectivelyݏ̂

3.4.2 BlockShrink thresholding  

To evaluate the noise free ripplet coefficients, an improved data driven BS thresholding 

approach is introduced that is based on the SURE [39, 290]. For the noisy ripplet coefficients 

,ݔோ்ሺݏ ሻ to be threshold, Let ܵ௪భ,௪మݕ
ଶ ሺݔ, ሻݕ ൌ ∑ ሺݏோ்ሺݔ, ሻሻଶ௫∈௫௪భ,௬∈௬௪మݕ

 and the thresholding 

expression now on ݓଵ ൈ  :ଶth block is given as belowݓ

,ݔோ்ሺݏ̂ ሻݕ ൌ ,ݔோ்ሺݏ ሻݕ ቀ1 െ
்

ௌమሺ௫,௬ሻ
ቁ
ା

 for ݔ ∈ ݕ ଵ andݓݔ ∈  ଶ   (3.15)ݓݕ

where ݓݔଵ ൌ 	 ሼݔ: ሺݓଵ െ 1ሻ݈  1  ݔ  ଶݓݕ ଵ݈ሽ andݓ ൌ 	 ሼݕ: ሺݓଶ െ 1ሻ݈  1  ݕ   .ଶ݈ሽݓ

,ݔோ்ሺݏ̂  ଶ are theݓ ଵ andݓ ,ሻ is the estimator of the unknown noiseless ripplet coefficientsݕ

number of blocks in ݔ and ݕ direction, respectively, and the thresholding factor ߶ ൌ

	ቀ1 െ
்

ௌమሺ௫,௬ሻ
ቁ
ା

. The optimal values of threshold ሺܶሻ and block size are determined for every 

subband by minimizing the SURE risk of the corresponding subband. Stein showed that for 
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almost any estimator ̂ݏோ் ൌ ,ݔோ்ሺݏ̂ ோ்ݏ ሻ based on dataݕ ൌ ,ݔோ்ሺݏ  ሻ, the SURE risk can beݕ

estimated as 

,ோ்ݏ൫ܧܴܷܵ  ܶ, ݈
ଶ൯ ൌ ∑ ே/್ܧܴܷܵ

௪భ,௪మୀଵ
൫ݏோ்ሺݓଵ,ݓଶሻ, ܶ, ݈

ଶ൯    (3.16) 

where 

,ଶሻݓ,ଵݓோ்ሺݏ൫ܧܴܷܵ ܶ, ݈
ଶ൯ ൌ ݈

ଶ  ൬
்మିଶ்ሺ್

మିଶሻ

ௌೢభ,ೢమ
మ ൰ฬ

ௌೢభ,ೢమ
మ வ்

 ൫ܵ௪భ,௪మ
ଶ െ 2 ൈ ݈

ଶ൯ห
ௌೢభ,ೢమ
మ ஸ்

 (3.17) 

The value of optimal threshold ܶ and block size ݈ is obtained by minimizing ܷܴܵܧ൫ݏோ், ܶ, ݈
ଶ൯. 

Accordingly, 

ሺܶ, ݈ሻ ൌ ,ோ்ݏ൫ܧܴܷܵ݊݅݉݃ݎܽ ܶ, ݈
ଶ൯       (3.18) 

3.5 Proposed Ripplet Domain Nonlinear Filtering Approach 

For reducing speckle in the US medical images and implementing the above aspects, 

the proposed filtering approaches using two different thresholding schemes are formulated in 

three following steps. 

1. Choose the optimal values of the ripplet parameters ܿ and ݀ and compute the ripplet 

coefficients from the speckled images. 

2. Select and perform the appropriate filtering method on these ripplet speckled 

coefficients to get the modified ripplet coefficients. 

3. Finally, estimate the reconstructed signal by taking the inverse RT of these modified 

ripplet coefficients. 

The process flow of the proposed filtering approach is given in Figure 3.2. In this figure, two 

different filtering approaches are proposed in which the NS thresholding algorithm is used in 

the first approach named as the RTNLF-1 (approach-1) and the BS thresholding is utilized in 

the RTNLF-2 (approach-2). Both the thresholding methods are applied to only the high 

frequency subband coefficients after performing the ripplet decomposition. In conventional 

thresholding using any transformation technique, low frequency coefficients named as the 

approximation or coarser coefficients are left as similar as it is obtained after the 

decomposition, but in the proposed methods, the NLBF is applied to the low frequency ripplet 

coefficients before taking the inverse of RT of modified noise free ripplet coefficients. In the 

proposed approaches, homomorphic filtering technique is adapted in which the RT is applied 

on the log transformed image coefficients rather than the original one and finally, 

approximate the despeckled image by applying an exponential operator.  

Implementation steps 

Based on all these aspects, the proposed filtering approach is formulated in the 

following implementation steps. 

Step 1: Start with the speckled images and apply the log transformation on these images. 
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Step 2: The multiscale decomposition is performed on the log-transformed image using 

 the RT to obtain the speckled ripplet coefficients. After applying the RT at 

 different scales, it is decomposed into a set of the ripplet coefficients as a vector 

 consisting of different subbands ሺܮ  1ሻ with the different spectral resolution such 

 as, 

,ݔோ்ሺݏ  ሻݕ ൌ ܴܶ൫ݏᇱሺݔ, ሻ൯ݕ ൌ ሾ݈௦, ݄
௦ሿ, where ݅ ൌ 1, 2, . . . , L   (3.19) 

 where ݈௦ and  ݄
௦ refer to the low and high frequency ripplet coefficients, 

 respectively. 

Step 3: For RTNLF-1 (approach-1) 

(a) For applying the NS algorithms, firstly, calculate the optimal value of the threshold 

by minimizing the SURE risk as mentioned in chapter 2 using Eqns. (2.69) and 

(2.70). 

 For RTNLF-2 (approach-2) 

(b) For implementing the BS algorithm on the high frequency subimage ripplet 

coefficients, estimate the optimal value of the threshold and block size by 

minimizing the risk as per Eqns. (3.16)- (3.18) 

Step 4: For RTNLF-1 (approach-1) 

(a) Now apply the threshold on ripplet coefficients obtained from step 2, to compute 

the approximated or threshold coefficients using Eqn. (3.14) 

݄ݎ 
௦ሺݔ, ሻݕ ൌ ܰܵ൫݄

௦ሺݔ,  ሻ൯       (3.20)ݕ

 For RTNLF-2 (approach-2) 

(b) Apply the threshold on noisy ripplet coefficients obtained from step 2. 

݄ݎ 
௦ሺݔ, ሻݕ ൌ ൫݄ܵܤ

௦ሺݔ,  ሻ൯        (3.21)ݕ

 where ݄ݎ
௦ refers to the threshold ripplet high frequency subband coefficients. 

Step 5: For RTNLF-1 and RTNLF-2 

The approximation i.e. low frequency ripplet coefficients ሺ݈௦ሻ are processed using 

the NLBF approach to get the filtered coefficients after estimating the optimal 

values of the bilateral filter parameters i.e. ߪௗ and ߪ. 

,ݔ௦ሺ݈ݎ  ሻݕ ൌ ,ݔ൫݈௦ሺܨܤܮܰ  ሻ൯        (3.22)ݕ

Step 6: After applying above filtering methods, the modified ripplet coefficients are given 

 as below: 

,ݔோ்ሺݏ̂  ሻݕ ൌ ሾ݈ݎ௦, ݄ݎ
௦ሿ ൌ ሾ݈ݎ௦, ଵ݄ݎ

௦, ଶ݄ݎ
௦, ଷ݄ݎ

௦, … , ݄ݎ
௦ሿ    (3.23) 

Step 7: The filtered approximated ripplet coefficients are processed with inverse ripplet 

 transform to obtain the estimate of ݏᇱሺݔ,  .ሻݕ

,ݔሺ′ݏ̂  ሻݕ ൌ ܴܶିଵሺ̂ݏோ்ሺݔ, ሻሻ       (3.24)ݕ
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Figure 3.2 Process flow of the proposed nonlinear filtering approaches in ripplet domain 
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Step 8: Finally, reconstruct the enhanced despeckled image ̂ݏሺݔ,  ሻ with the modifiedݕ

 coefficients obtained from steps 4 and 5 by taking the exponential of the 

 estimated image ̂ݏ′ሺݔ,  ሻݕ

3.6 Experimentation 

Three different experiments are conducted on the given test images and real US 

images for analyzing the performance of their speckle reduction with the preservation of 

more and more edges information. For presenting the performance of the proposed 

denoising approaches based on the RT, same dataset as mentioned in chapter 2 such as 

kidney, fetus and phantom images synthesized using MATLAB and prostate, splenic cyst, 

multiple liver masses US images, are used here. The performance measures used for 

assessing the performance of the proposed methods quantitatively are also discussed in 

chapter 2. The experiments are discussed below: 

Experiment 1: Analysis and evaluation of the proposed RTNLF-1 approach. 

1.1: Estimation of the optimal values of the NLBF parameters. 

1.2: Denoising of simulated test images corrupted by multiplicative speckle noise. 

1.3: Denoising of real US medical images for speckle reduction. 

Experiment 2: Analysis and evaluation of the proposed RTNLF-2 approach. 

2.1: Estimation of the optimal values of the NLBF parameters. 

2.2: Denoising of simulated test images degraded by multiplicative speckle noise. 

2.3: Denoising of real US medical images for speckle reduction. 

Experiment 3: Comparative evaluation of the proposed approaches. 

3.1: Comparison of the proposed RTNLF approach-1 and 2 with other methods for denoising 

in noisy test images. 

3.2: Comparison of the proposed RTNLF approach-1 and 2 with other methods for speckle 

reduction in existing real US images 

3.7 Results and Discussions 

3.7.1 Experiment 1: Analysis and evaluation of the proposed RTNLF-1 approach 

In order to validate the experimental objective, it is further decomposed into three 

different sub experiments as listed below: 

1.1: Estimation of the optimal values of the NLBF parameters - The performance of the 

proposed RTNLF-1 depends on the decomposition levels and the parameters (window 

size	ሺݓ௦ሻ, ߪௗ and ߪ) of the NLBF. The optimal values of these parameters have been 

decided by conducting the several experiments on the available noise free dataset for 

different noise levels. Table 3.1 shows the comparative analysis for various combinations of 

the ripplet parameters (ܿ and ݀) using the average values of different performance 
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measures. From Table 3.1, it is observed that the PSNR and SNR have obtained higher 

values for the parameters ܿ ൌ 1 and ݀ ൌ 5. However, the edge preservation factors FOM and 

EKI have larger values for parameters ܿ ൌ 1 and ݀ ൌ 4. Also, the computed averaged values 

of PSNR and SNR do not show a large difference for the decomposition of images with 

ripplet parameters ݀ ൌ 4 and ݀ ൌ 5. If the value of the parameter ݀ goes higher, it leads to 

edge loss with less noise suppression. Based on the experimental results shown in Table 

3.1, the ripplet parameters ܿ ൌ 1 and ݀ ൌ 4 have been chosen for further analysis. 

The optimal parameters involved in the NLBF approach are selected by evaluating the 

various combinations of the ߪௗ, ߪ and window size. The several combinations of parameters 

are selected as: 1  ௗߪ  5, 1  ߪ  8	 and 3  window size  15 at regular interval of 0.2, 

1 and 2, respectively. All these experiments have been performed for the different noise 

levels. The SNR and EKI values are obtained for all the combinations as shown in Table 3.2. 

It provides the average values of SNR and EKI obtained for the different combinations of the 

window size and various noise levels. As shown in Table 3.2, the SNR and EKI (in %) 

achieve higher values within the range of window size 11 to 15. The obtained values of SNR 

and EKI did not show a large difference over this range of any values of ߪௗ and ߪ. 

Therefore, the optimal value of the window size for a particular value of the ߪௗ and	ߪ can be 

considered for the other values of ߪௗ and	ߪ. Based on the result of Table 3.2, the window 

size =11 has been chosen for the next analysis. 

Table 3.1 Averaged PSNR, SNR, FOM and EKI values obtained for various combinations of ripplet 
parameters (c and d) and the NLBF parameters (window size ൌ d ൌߪ	,9	 ൌ	rߪ ,5  (ߪ2

Ripplet parameters Decomposition PSNR SNR FOM EKI 

ܿ	 ൌ 	1 ݀ ൌ 	3 [1, 2, 4, 4, 8] 24.17 14.91 0.86208 0.70394 

ܿ	 ൌ 	1 ݀ ൌ 	4 [1, 2, 4, 8, 8] 24.95 15.69 0.87919 0.71251 

ܿ	 ൌ 	1 ݀ ൌ 	5 [1, 2, 4, 8, 16] 24.98 15.72 0.87785 0.70884 

ܿ	 ൌ 	1 ݀ ൌ 	6 [1, 2, 4, 8, 16] 24.82 15.56 0.87371 0.70014 

Table 3.2 Averaged SNR and EKI values obtained for various window sizes, ߪd ൌ 3 and ߪr	ൌ  ߪ2

Noise level Metrics 
Window size 

3 5 7 9 11 13 15 

	ߪ ൌ 	0.1 
SNR 16.0018 16.0053 16.0103 16.0120 16.0127 16.0127 16.0127 

EKI (%) 71.1974 71.3454 71.3464 71.4614 71.7684 71.8644 71.7664 

	ߪ ൌ 	0.2 
SNR 14.5810 14.5817 14.5820 14.5822 14.5832 14.5831 14.5831 

EKI (%) 61.6120 61.6340 61.6370 61.9010 62.1300 62.1330 62.1300 

	ߪ ൌ 	0.3 
SNR 12.9898 12.9899 12.9900 12.9900 12.9910 12.9909 12.9909 

EKI (%) 57.8853 57.9963 58.0283 58.0533 58.0583 58.0583 58.0553 
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To choose the optimal values of ߪௗ and ߪ, the similar experiments have been 

performed in the various combinations for ߪௗ,	ߪ and at the different noise levels. The 

different performance measures such as the PSNR, SNR, FOM and EKI are evaluated for 

each combination. The average values of performance measures are given in Table 3.3. As 

shown in Table 3.3, the optimal range of ߪௗ values is approx ሾ1.4 െ 2.0ሿ for which the PSNR, 

SNR, FOM (%) and EKI (%) values are higher under varying noise levels ሺߪሻ. Also, the 

evaluated values of PSNR and SNR do not vary significantly on larger values of ߪௗ. 

However, the EKI values decrease on larger values of ߪௗ. Therefore, ߪௗ ൌ 1.8 has been 

selected for the present study. 

The optimal choice of ߪ value is obtained by successive experiments for varying noise 

levels and the optimal values of ߪௗ ൌ 1.8 and window size	ൌ 11. Figure 3.3 gives the plot of 

average values of the SNR and EKI (in %) obtained from the different values of ߪ at different 

noise levels ሺߪሻ. Based on the performance comparison as shown in Figure 3.3, the optimal 

range of the parameter ߪ has been identified between 1ߪ to 3ߪ for which the SNR and EKI 

values get higher for different noise levels. Therefore, the parameter ߪ ൌ  has been ߪ2

chosen to investigate the performance of the proposed method. Based on all these outcomes 

obtained by performing this experiment discussed earlier, the following parameters such as 

ܿ ൌ 1, ݀ ൌ 4, window size	ൌ ௗߪ	,11 ൌ 1.8 and ߪ ൌ  are selected for the proposed ߪ2

denoising approach-1. 

 

Figure 3.3 Comparative performance of the SNR and EKI obtained for different values of ߪr, ߪd ൌ 1.8, 

window sizeൌ 11 and different noise variance (a) 0.1 (b) 0.2 (c) 0.3 
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Table 3.3 Averaged PSNR, SNR, FOM (%) and EKI (%) values obtained from different values ߪd, 

ൌ	rߪ  ൌ 11	and window size ߪ2

 ௗߪ
	ߪ ൌ ߪ 0.1	 ൌ 	ߪ 0.2 ൌ 	0.3  

PSNR SNR 
FOM 
(%) 

EKI 
(%) 

PSNR SNR 
FOM 
(%) 

EKI 
(%) 

PSNR SNR 
FOM 
(%) 

EKI 
(%) 

1 25.2943 16.0310 88.4089 71.7746 23.8719 14.6086 84.6335 62.1309 22.2784 13.0151 83.5854 58.0614 

1.2 25.2990 16.0357 88.4644 71.7773 23.8785 14.6153 84.5463 62.1316 22.2859 13.0226 83.5855 58.0618 

1.4 25.3124 16.0491 88.5069 71.7789 23.8892 14.6259 84.6623 62.1319 22.2955 13.0325 83.6164 58.0624 

1.6 25.3049 16.0416 88.6599 71.7798 23.9010 14.6380 84.7190 62.1319 22.3076 13.0446 83.6551 58.0628 

1.8 25.2900 16.0267 88.2633 71.7800 23.9166 14.6533 85.0700 62.1330 22.3233 13.0600 83.7067 58.0630 

2 25.2863 16.0233 88.4459 71.7793 23.8657 14.6024 84.8432 62.1317 22.3429 13.0796 83.5930 58.0627 

2.2 25.2838 16.0205 88.2214 71.7779 23.8612 14.5982 84.7937 62.1314 22.2728 13.0096 83.2826 58.0622 

2.4 25.2814 16.0181 88.2521 71.7759 23.8562 14.5929 84.7153 62.1311 22.2665 13.0032 83.0734 58.0614 

2.6 25.2790 16.0160 88.2548 71.7735 23.8525 14.5892 84.7462 62.1307 22.2618 12.9986 82.9296 58.0604 

2.8 25.2775 16.0142 88.1445 71.7710 23.8493 14.5860 84.7084 62.1304 22.2578 12.9945 82.9974 58.0594 

3 25.2760 16.0127 88.2602 71.7684 23.8465 14.5832 84.5813 62.1300 22.2543 12.9910 83.1282 58.0583 

1.2: Denoising of simulated test images corrupted by multiplicative speckle noise - To 

investigate the performance of the proposed RTNLF-1, all three simulated kidney, fetus and 

phantom images are used that are corrupted by the speckle noise with the noise level 

characterized by the noise variance. The denoising results are also compared with the 

bilateral filter [229] with ߪௗ ൌ 1.8 and ߪ ൌ  WT-NS [289], WT-NLBF-NS [14], ridgelet ,ߪ2

[101], curvelet [10] based methods. The denoised kidney images processed by all these 

methods are shown in Figure 3.4. From these figures, it is observed that the proposed 

RTNLF-1 provides much better results in comparison to the others. The bilateral filter and 

WT-NLBF-NS method also provide better noise suppression results, but still the preservation 

of more edges becomes a problem. The quantitative outcomes obtained by these methods 

are listed in Table 3.4. Besides the visual assessments, the results in Table 3.4 show that the 

RTNLF-1 also produces better noise suppression and edge preservation results by 

estimating higher PSNR, SNR SSIM, FOM and EKI values as compared to others. For low 

level noise, bilateral filter and curvelet has a competitive noise suppression performance with 

lower edge preservation performance than the proposed RTNLF-1, while in case of the high 

level noise ߪ ൌ 0.3, the RTNLF-1 achieves higher edge preservation results with the 

competitive value of noise suppression performance parameters than the curvelet based 

method. 

For another visual assessment of the denoising techniques, the denoised fetus images 

corresponding to ߪ ൌ 0.2 and a synthetic 2D phantom image corresponding to ߪ ൌ 0.3 are 

shown in Figure 3.5 and Figure 3.6, respectively. From visualizing these denoised images, 

the RTNLF-1 provides better quality of images than others by suppressing a good amount of 

the speckle noise with better edge preservation. This is also validated by the evaluation of 

image quality measures for three different noise levels. From Figure 3.5 (f), it is visualized 
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that the proposed method generates the most similar result as the noise free image. From 

the results mentioned in Table 3.5, it is also observed that the SNR, PSNR, SSIM, FOM and 

EKI values obtained by the proposed RTNLF-1 are higher than others in all the cases. 

 

Figure 3.4 Visual comparison of simulated kidney image denoised by (a) Bilateral filter (b) WT-NS (c) 
WT-NLBF-NS (d) Ridgelet (e) Curvelet (f) Proposed RTNLF-1 

Table 3.4 Performance comparison between the proposed RTNLF-1 approach with others for kidney 
image degraded by speckle noise 

Noise level Methods PSNR SNR SSIM FOM EKI 

	ߪ ൌ 	0.1 

Bilateral 26.05 15.43 0.7186 0.5387 0.4685 

WT-NS 23.15 12.53 0.7305 0.4973 0.3962 

WT-NLBF-NS 25.96 15.34 0.7596 0.6572 0.4304 

Ridgelet 24.54 13.93 0.7375 0.5432 0.4136 

Curvelet 26.77 16.15 0.7666 0.5460 0.4340 

Proposed RTNLF-1 28.10 17.47 0.7981 0.7924 0.5175 

   

	ߪ ൌ 	0.2 

Bilateral 25.11 14.49 0.7114 0.5248 0.3284 

WT-NS 21.68 11.05 0.7293 0.5131 0.3493 

WT-NLBF-NS 24.73 14.12 0.7426 0.6151 0.3916 

Ridgelet 23.75 13.13 0.7325 0.5201 0.3782 

Curvelet 26.57 15.95 0.7633 0.5663 0.4318 

Proposed RTNLF-1 27.41 16.79 0.7852 0.7891 0.4811 

  

	ߪ ൌ 	0.3 

Bilateral 24.83 14.21 0.7045 0.5134 0.3387 

WT-NS 19.74 9.12 0.7148 0.5132 0.3323 

WT-NLBF-NS 23.15 12.53 0.7221 0.5862 0.4322 

Ridgelet 22.09 11.47 0.7146 0.5404 0.3672 

Curvelet 26.27 15.65 0.7407 0.5828 0.4193 

Proposed RTNLF-1 25.84 15.22 0.7621 0.7551 0.4743 
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Figure 3.5 Visual comparison of fetus image denoised by (a) Bilateral filter (b) WT-NS (c) WT-NLBF-
NS (d) Ridgelet (e) Curvelet (f) Proposed RTNLF-1 

Table 3.5 Performance comparison between the proposed RTNLF-1 approach with others for fetus 
image degraded by speckle noise 

Noise level Methods PSNR SNR SSIM FOM EKI 

	ߪ ൌ 	0.1 

Bilateral 18.58 13.60 0.6157 0.6847 0.3758 

WT-NS 18.38 13.39 0.6243 0.7627 0.4883 

WT-NLBF-NS 18.43 13.44 0.6558 0.7673 0.5268 

Ridgelet 18.71 13.69 0.6001 0.8269 0.5242 

Curvelet 18.03 13.04 0.6381 0.8258 0.4277 

Proposed RTNLF-1 20.59 15.60 0.6712 0.9102 0.7174 

	ߪ ൌ 	0.2 

Bilateral 16.72 11.75 0.5689 0.6741 0.3951 

WT-NS 16.54 11.55 0.5572 0.6010 0.3755 

WT-NLBF-NS 16.68 11.69 0.6236 0.7561 0.5036 

Ridgelet 16.71 11.72 0.5678 0.7586 0.4824 

Curvelet 17.15 12.16 0.6164 0.7276 0.4089 

Proposed RTNLF-1 19.38 14.39 0.6397 0.9006 0.6587 

	ߪ ൌ 	0.3 

Bilateral 16.54 11.55 0.4763 0.6698 0.3609 

WT-NS 15.53 10.55 0.5367 0.6458 0.3650 

WT-NLBF-NS 15.79 10.81 0.5661 0.7085 0.4495 

Ridgelet 16.21 11.22 0.5412 0.7097 0.3951 

Curvelet 16.38 11.39 0.5816 0.7086 0.3730 

Proposed RTNLF-1 18.31 13.32 0.6085 0.8970 0.5464 

 

In case of phantom image shown in Figure 3.6, bilateral and curvelet methods also 

produce good denoised images; the proposed RTNLF-1 outperforms the other methods. It is 

supported by some objective evaluations as listed in Table 3.6. From these results, it is seen 

that bilateral and WT-NLBF-NS methods achieve competitive EKI values to the RTNLF-1, but 

in case of noise suppression performance exhibited by the SNR and PSNR values, the WT-

NLBF-NS and curvelet based methods are better. Moreover, the proposed RTNLF-1 shows 
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better noise suppression and edge preservation by providing higher SNR, PSNR, SSIM, 

FOM and EKI values than the bilateral, WT-NLBF-NS and curvelet based methods. 

 

Figure 3.6 Visual comparison of phantom image denoised by (a) Bilateral filter (b) WT-NS (c) WT-
NLBF-NS (d) Ridgelet (e) Curvelet (f) Proposed RTNLF-1 

Table 3.6 Performance comparison between the proposed RTNLF-1 approach with others for 
phantom image degraded by speckle noise 

Noise level Methods PSNR SNR SSIM FOM EKI 

	ߪ ൌ 	0.1 

Bilateral 23.59 11.41 0.7865 0.8698 0.6885 

WT-NS 23.52 11.34 0.7734 0.4931 0.6825 

WT-NLBF-NS 25.12 12.94 0.8026 0.8894 0.6862 

Ridgelet 24.14 11.97 0.7894 0.4915 0.6834 

Curvelet 25.01 12.84 0.7970 0.6494 0.6121 

Proposed approach-1 27.18 15.01 0.8436 0.9653 0.9185 

	ߪ ൌ 	0.2 

Bilateral 22.93 10.76 0.7389 0.6922 0.6123 

WT-NS 21.11 8.93 0.7597 0.3554 0.4641 

WT-NLBF-NS 22.23 10.06 0.7918 0.8212 0.6135 

Ridgelet 22.21 10.03 0.7548 0.3957 0.5239 

Curvelet 24.12 11.95 0.7923 0.4688 0.5799 

Proposed approach-1 24.95 12.78 0.8192 0.8624 0.7242 

	ߪ ൌ 	0.3 

Bilateral 22.41 10.23 0.7104 0.6472 0.5469 

WT-NS 19.66 7.49 0.7389 0.2614 0.4386 

WT-NLBF-NS 21.83 9.66 0.7872 0.6941 0.5631 

Ridgelet 20.11 7.93 0.7347 0.3613 0.4585 

Curvelet 23.38 11.22 0.7813 0.4435 0.5521 

Proposed approach-1 22.81 10.64 0.7889 0.8591 0.7212 
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1.3: Denoising of real US medical images for speckle reduction - In order to investigate the 

performance of the proposed RTNLF-1 approach on the real US images, the same images 

are taken as shown in chapter 2 to conduct this experiment. Out of them, the prostate US 

images processed by the different denoising methods as discussed in the previous section 

are presented in Figure 3.7. As mentioned earlier in the previous chapter, the curvelet 

method adds some fuzzy edges in the form of visual distortion in the US images. By 

visualizing all the images shown in Figure 3.7, the bilateral filter and the WT-NLBF-NS 

methods are also capable to remove the speckle but some edges are lost during the 

despeckling process. Among all these images, it is observed that the proposed RTNLF-1 

approach produces better quality images with more edges than others.  

For another investigation, the despeckling results of the splenic cyst US images are 

shown in Figure 3.8. Also from the results illustrated in Figure 3.8, similar patterns of all the 

denoising methods as mentioned before are observed in which the proposed RTNLF-1 

approach is able to produce better visual quality of the splenic cyst image. Besides this, the 

WT-NLBF-NS approach is also a good competitor to the bilateral approach.  

Another US image of multiple liver masses processed by all the methods is shown in 

Figure 3.9. From the visual results of Figure 3.9, it is observed that the results obtained from 

the WT-NS and WT-NLBF-NS methods are blurred and large amount of edge information is 

also lost. Besides this, ridgelet method is able to remove sufficient amount of the speckle 

noise, while the bilateral produces the results by reducing considerable amount of speckle 

 

Figure 3.7 Visual comparison of prostate ultrasound image, processed by (a) Bilateral filter (b) WT-
NS (c) WT-NLBF-NS (d) Ridgelet (e) Curvelet (f) Proposed RTNLF-1 
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Figure 3.8 Visual comparison of splenic cyst ultrasound image, processed by (a) Bilateral filter (b) 
WT-NS (c) WT-NLBF-NS (d) Ridgelet (e) Curvelet (f) Proposed RTNLF-1 

 

Figure 3.9 Visual comparison of multiple liver masses ultrasound image, processed by (a) Bilateral 
filter (b) WT-NS (c) WT-NLBF-NS (d) Ridgelet (e) Curvelet (f) Proposed RTNLF-1  
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in the US images. The proposed RTNLF-1 approach produces good quality of denoising 

results with more edge preservation than the others. As mentioned in the previous chapter, 

the quantitative analysis of the denoising process is too much difficult in case of the US 

images because of non-availability of the reference noise free images. To achieve this 

objective, the MVR values are evaluated for the different regions marked on each US image 

of our datasets as shown in Figure 2.21. The estimated MVR values for both the regions of 

four different US images are shown in Figure 3.10 (a)-(d), respectively. From the bar graph 

presented in the Figure 3.10, it is observed that the proposed RTNLF-1 approach achieves 

higher value of the MVR for both the regions, which also describes the better speckle 

reduction performance of the proposed RTNLF-1 approach than the others. Besides the 

proposed RTNLF-1 approach, the approximately similar MVR values are obtained for both 

the bilateral and WT-NLBF-NS methods. Moreover, the proposed RTNLF-1 approach 

outperforms the others in terms of speckle suppression in the existing real US images. 
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Figure 3.10 Plot of the MVR values obtained from the different denoising methods for two image 
regions shown in Figure 2.21 

Apart from all these performances of the proposed RTNLF-1 approach, 100 different 

subsequent measurements are taken on two different image regions of each US image to 

evaluate the MVR values. The averaged values of the MVR are shown in Table 3.7. The 

results presented in Table 3.7 also show the superiority of the proposed RTNLF-1 approach. 

Table 3.7 Performance comparison of the denoising methods with the proposed RTNLF-1 using the 
averaged MVR values over 100 different regions marked on 50 ultrasound images 

Methods Noisy Bilateral WT-NS WT-NLBF-NS Ridgelet Curvelet 
Proposed 

Approach -1 

MVR 14.04 ± 3.04 19.69 ± 3.23 16.97 ± 4.21 17.89 ± 3.83 17.47 ± 3.69 18.22 ± 4.57 21.98 ± 3.93 
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3.7.2 Experiment 2: Analysis and evaluation of the proposed RTNLF-2 approach 

To validate the experimental objective of the proposed RTNLF-2 approach, three 

different experiments are considered. These sub-experimental objectives are listed as below: 

2.1: Estimation of the optimal values of the NLBF parameters - As mentioned in the previous 

subsection 1.1 of section 3.7.1, the optimal value of the NLBF and ripplet parameters are 

decided by the successive experiments on the test image dataset. For choosing the optimal 

values of the ripplet parameters ܿ and ݀, the performance measures are obtained for 

different values of the ܿ and ݀ with the window size ሺݓ௦ሻ ൌ ௗߪ ,9 ൌ 5 and ߪ ൌ  Table 3.8 .ߪ2

shows that the PSNR and SNR have obtained higher mean values for the parameters ܿ ൌ 1 

and ݀ ൌ 5. However, the edge dislocation and preservation factor such as the FOM have 

higher mean value for the parameters ܿ ൌ 1 and ݀ ൌ 3 and the SSIM and EKI have larger 

mean value for ܿ ൌ 1 and ݀ ൌ 4. Furthermore, the evaluated mean values of PSNR and SNR 

do not exhibit a large difference for the decomposition of images with ripplet parameter ݀ ൌ

4, ݀ ൌ 5 and ݀ ൌ 6. Similarly, Table 3.8 does not show a large difference between the FOM, 

SSIM and EKI values for ݀ ൌ 3 and ݀ ൌ 4. If the value of the parameter ݀ goes higher, it 

leads to edge loss with less noise suppression. Based on the results shown in Table 3.8, 

ripplet parameters ܿ ൌ 1 and ݀ ൌ 4 are used for the next analysis. 

Now by selecting different combinations as 1  ௗߪ  5, 1  ߪ  7	 and 3  ௦ݓ  15 at 

regular interval of 0.2-0.4, 1 and 2, respectively, the optimal parameters of the NLBF are 

chosen. For such purpose, Table 3.9 shows the average values of the SNR, SSIM (%) and 

EKI (%) for different ݓ௦ and fixed ߪௗ ൌ 3 and ߪ ൌ  From these results, it is observed that .ߪ2

the values of the SNR, SSIM and EKI achieve higher values within 9  ௦ݓ  15. The average 

values of SNR, SSIM and EKI shown in Table 3.9 did not show a large difference over 

11  ௦ݓ  15 for different values of ߪௗ and ߪ. Therefore, the optimal value of the window 

size for the particular values of ߪௗ and	ߪ can be considered for other values of ߪௗ and	ߪ. 

Based on the result of Table 3.9, we chose the window size ݓ௦ ൌ 11 for the next evaluation. 

For choosing the optimal values of ߪௗ and	ߪ, Table 3.10 shows the average values of 

the performance measures evaluated for different values of the ߪௗ with optimal value of the 

௦ݓ ൌ 11 and 	ߪ ൌ  ௗ value is approx [1.4-2.0] for which theߪ The optimal range for the .ߪ2

values of PSNR, SNR, SSIM, FOM, and EKI are higher under varying noise levels ሺߪሻ. 

Table 3.8 Performance measures obtained for several combinations of ripplet parameters (c and d) 
and the NLBF parameters (window size ൌ d ൌߪ ,9 	5 and ߪr	ൌ   (ߪ2	

Ripplet parameters Decomposition PSNR SNR SSIM FOM EKI 

ܿ	 ൌ 	1 ݀	 ൌ 	3 [1, 2, 4, 4, 8] 24.92 15.66 0.78718 0.88517 0.71817 

ܿ	 ൌ 	1 ݀	 ൌ 	4 [1, 2, 4, 8, 8] 25.08 15.82 0.78752 0.88102 0.71856 

ܿ	 ൌ 	1 ݀	 ൌ 	5 [1, 2, 4, 8, 16] 25.27 16.01 0.78617 0.87823 0.70075 

ܿ	 ൌ 	1 ݀	 ൌ 	6 [1, 2, 4, 8, 16] 25.14 15.88 0.73911 0.83621 0.65182 
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Table 3.9 The SNR, SSIM and EKI values obtained for various window sizes, ߪd ൌ 	3 and ߪr	ൌ   ߪ2	

Noise level Metrics 
Window size 

3 5 7 9 11 13 15 

	ߪ ൌ 	0.1 

SNR 16.4616 16.4727 16.4648 16.4699 16.4727 16.4729 16.4729 

SSIM (%) 78.8037 78.8041 78.8041 78.8045 78.8046 78.8014 78.8012 

EKI (%) 72.7587 72.9298 73.0376 73.1442 73.3531 73.3527 73.3511 

	ߪ ൌ 	0.2 

SNR 14.8836 14.8850 14.8852 14.8854 14.8866 14.8865 14.8865 

SSIM (%) 74.9851 74.9851 74.9854 74.9857 74.9857 74.9856 74.9847 

EKI (%) 63.8569 63.8569 63.8569 63.8458 63.8569 63.8559 63.8552 

	ߪ ൌ 	0.3 

SNR 13.4862 13.4865 13.4866 13.4877 13.4877 13.4873 13.4873 

SSIM (%) 72.0179 72.0182 72.0185 72.0185 72.0187 72.0184 72.0173 

EKI (%) 59.0378 59.0378 59.0378 59.0389 59.0399 59.0399 59.0391 

 

Therefore, ߪௗ ൌ 2 has been selected for further study.  

Figure 3.11 gives a plot of average values of the SNR and EKI obtained from the 

different values of ߪ at different noise levels and the optimal values of ߪௗ ൌ 2 and ݓ௦ ൌ 11. 

Based on the results presented in Figure 3.11, the optimal range of the parameter ߪ is 

identified between 1ߪ to 3ߪ for which the SNR and EKI values rise higher for different noise 

levels. Therefore, the parameter ߪ ൌ  is chosen to analyze the performance of the ߪ2

proposed method. Based on all the experiments presented earlier, the following parameters 

are selected for the proposed method: ܿ ൌ 1, ݀ ൌ ௦ݓ ,4 	ൌ ௗߪ	,11 ൌ 2 and ߪ ൌ  .ߪ2

Table 3.10 Performance measures obtained from the different values of ߪd, ߪr	ൌ  and window ߪ2	
size	ൌ 11 

Noise 
level 

Metrics 
 ௗߪ

1 1.4 1.8 2 2.4 2.8 3 

	ߪ ൌ 	0.1 

PSNR 25.7557 25.7583 25.7510 25.7464 25.7381 25.7309 25.7327 

SNR 16.4957 16.5016 16.4910 16.4867 16.4781 16.4742 16.4727 

SSIM (%) 78.8129 78.8146 78.8184 78.8134 78.8112 78.8059 78.8046 

FOM (%) 89.6799 89.7344 89.7969 89.5333 89.5248 89.4145 89.5302 

EKI (%) 73.3562 73.3605 73.3614 73.3616 73.3609 73.3551 73.3531 

	ߪ ൌ 	0.2 

PSNR 24.1786 24.1893 24.2011 24.2167 24.1613 24.1494 24.1466 

SNR 14.9187 14.9293 14.9414 14.9567 14.9016 14.8894 14.8866 

SSIM (%) 75.0169 75.1015 75.2123 75.3767 75.2548 75.0158 74.9857 

FOM (%) 85.4668 85.3796 85.5523 85.9033 85.6270 85.1940 85.1262 

EKI (%) 64.0073 64.0079 64.0089 64.0100 63.9988 63.8912 63.8569 

	ߪ ൌ 	0.3 

PSNR 22.7725 22.7779 22.8010 22.8134 22.7566 22.7509 22.7444 

SNR 13.5125 13.5179 13.5413 13.5567 13.4999 13.4912 13.4877 

SSIM (%) 72.1141 72.1324 72.1875 72.2467 72.1846 72.1274 72.0187 

FOM (%) 84.2463 84.2697 84.3084 84.3600 83.7267 83.5829 84.3096 

EKI (%) 59.1074 59.1084 59.1092 59.1100 59.1074 59.0410 59.0399 
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Figure 3.11 Comparative performance of the SNR and EKI obtained for the different values of ߪr, ߪd 

ൌ 1.8, window sizeൌ 11 and different noise variance (a) 0.1 (b) 0.2 (c) 0.3 

2.2: Denoising of simulated test images degraded by multiplicative speckle noise - In order to 

assess the denoising performance of the RTNLF-2, similar test images are considered as in 

the section 3.7.1. The denoised images of all three different test images degraded by 

multiplicative speckle noise of noise variance ߪ ൌ 0.1, 0.2	and 0.3, respectively are shown in 

Figure 3.12. In the Figure 3.12, four different remarkable denoising methods such as bilateral 

filter approach [229], WT-BS [39, 290], curvelet [10] and the proposed RTNLF-2 approach 

are considered. From these figures, it is observed that the proposed RTNLF-2 approach 

provides much better denoising results of kidney and fetus images as compared to the 

others. Another assessment of the visual quality of the phantom image, the WT-BS method 

also provides the denoised image of good quality along with the proposed RTNLF-2 

approach. Furthermore, it is concluded from these results that the proposed RTNLF-2 

approach outperforms the other existing methods considered in the present work. These 

visual results are also validated by the quantitative results as shown in Table 3.11. From the 

results mentioned in Table 3.11, it is seen that the proposed RTNLF-2 approach achieves 

approx 6.48-10.23%, 14.09-17.94% and 3.21-17.5% larger PSNR values, 11.33-17.67%, 

16.47-25.36% and 7.23-36.28% higher SNR values, 8.7-15.28%, 11.3-28.13% and 8.1-

11.88% higher SSIM values and 15.8-50%, 54.8-94.7% and 21.26-34.57% higher EKI values 

than bilateral filter approach for simulated kidney, fetus and phantom images, respectively. 

The proposed RTNLF-2 approach also gains approx 20.95-31.22%, 10.56-19.2% and 14.72-

16.47% higher PSNR values, 38.15-66%, 14.37-28.04% and, 31.89-42.65% higher SNR 

values than the WT-BS approach with the approx 35.9-45.69%, 48.3-66.5% and 35.6-65.7%  
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Figure 3.12 Visual comparison of kidney, fetus and phantom images denoised by (a) Bilateral filter (b) 
WT-BS (c) Curvelet (f) Proposed RTNLF-2. Here, 1, 2 and 3 refer to kidney, fetus and 
phantom images, respectively 

higher EKI values for all three different noisy images corrupted by the different noise levels. 

Sometimes, the curvelet method produces approx 1-2% higher SNR and PSNR values than 

the proposed RTNLF-2 approach in the case of phantom image. Moreover, the performance 

measures such as the PSNR, SNR, SSIM, FOM and EKI values obtained from the RTNLF-2 

are increased by approx 0.65-7.17%, 1.09-11.89%, 3.39-8.06%, 31.67-46.28% and 14.08-

25% for kidney images, 14.99-15.3%, 21.13-21.86%, 4.33-7.4%, 11.54-27.04% and 49.79-

71.08% for fetus images and 4.68-10.84%, 9.54-21.11%, 1.28-6.74%, 48.78-94.63%, 28.04-

51.36% for phantom images than the curvelet based method.  

2.3: Denoising of real US medical images for speckle reduction - For analyzing the 

performance of the proposed RTNLF-2 approach on the real US images, same US images 

as presented in section 3.7.1 are considered to conduct this experiment. The processed 

prostate, splenic cyst and multiple liver masses US images are shown in Figure 3.13. By 

analyzing the visual results illustrated in Figure 3.13, it is visualized that the proposed 

RTNLF-2 approach produces better quality images than the others with retention of more 

edge information. Besides this, the MVR values are also calculated for two different image 

regions marked on the several US images by the same approach as used in previous section 

and a comparison between all the denoising methods is also shown in Figure 3.14. From this  
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Table 3.11 Performance comparison between the proposed RTNLF-2 approach with others 

Images Noise Level Metrics 
Denoising methods 

Bilateral WT-BS Curvelet 
Proposed 

approach-2 

Kidney  
image 

	ߪ ൌ 	0.1 

PSNR 26.05 23.72 26.77 28.69 

SNR 15.43 13.08 16.15 18.07 

SSIM 0.7186 0.7341 0.7666 0.8284 

FOM 0.5387 0.5197 0.5460 0.7987 

EKI 0.4685 0.3991 0.4340 0.5425 

	ߪ ൌ 	0.2 

PSNR 25.11 22.13 26.57 27.68 

SNR 14.49 11.51 15.95 17.05 

SSIM 0.7114 0.7342 0.7633 0.7915 

FOM 0.5248 0.5312 0.5663 0.7958 

EKI 0.3284 0.3556 0.4318 0.4926 

	ߪ ൌ 	0.3 

PSNR 24.83 20.15 26.27 26.44 

SNR 14.21 9.53 15.65 15.82 

SSIM 0.7045 0.7174 0.7407 0.7658 

FOM 0.5134 0.5372 0.5828 0.7674 

EKI 0.3387 0.3318 0.4193 0.4834 

  

Fetus 
image 

	ߪ ൌ 	0.1 

PSNR 18.58 18.84 18.03 20.83 

SNR 13.6 13.85 13.04 15.84 

SSIM 0.6157 0.6254 0.6381 0.6853 

FOM 0.6847 0.7921 0.8258 0.9211 

EKI 0.3758 0.4935 0.4277 0.7317 

	ߪ ൌ 	0.2 

PSNR 16.72 16.67 17.15 19.72 

SNR 11.75 11.69 12.16 14.73 

SSIM 0.5689 0.5716 0.6164 0.6431 

FOM 0.6741 0.7154 0.7276 0.9076 

EKI 0.3951 0.4115 0.4089 0.6852 

	ߪ ൌ 	0.3 

PSNR 16.54 15.83 16.38 18.87 

SNR 11.55 10.84 11.39 13.88 

SSIM 0.4763 0.5372 0.5816 0.6103 

FOM 0.6698 0.6631 0.7086 0.9002 

EKI 0.3609 0.3715 0.3730 0.5587 

  

Phantom 
image 

	ߪ ൌ 	0.1 

PSNR 23.59 23.97 25.01 27.72 

SNR 11.41 11.79 12.84 15.55 

SSIM 0.7865 0.7754 0.7970 0.8507 

FOM 0.8698 0.4992 0.6494 0.9662 

EKI 0.6885 0.6831 0.6121 0.9265 

	ߪ ൌ 	0.2 

PSNR 22.93 22.01 24.12 25.25 

SNR 10.76 9.84 11.95 13.09 

SSIM 0.7389 0.7618 0.7923 0.8267 

FOM 0.6922 0.3631 0.4688 0.8737 

EKI 0.6123 0.5084 0.5799 0.7425 

	ߪ ൌ 	0.3 

PSNR 22.41 19.86 23.38 23.13 

SNR 10.23 7.69 11.22 10.97 

SSIM 0.7104 0.7452 0.7813 0.7913 

FOM 0.6472 0.3126 0.4435 0.8632 

EKI 0.5469 0.4412 0.5521 0.7312 
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Figure 3.13 Visual comparison of three different ultrasound images, processed by (a) Bilateral filter (b) 
WT-NS (c) Curvelet (d) Proposed RTNLF-2 approach. Here, 1, 2 and 3 refer to prostate, 
splenic cyst and multiple liver masses ultrasound images, respectively 

comparison illustrated in Figure 3.14, it is observed that the MVR values are also higher 

produced by the proposed RTNLF-2 approach than others. The averaged MVR value 

obtained by the RTNLF-2 is 22.17, which is also higher than others including RTNLF-1.
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Figure 3.14 Plot of a comparison of the MVR values obtained from the denoising techniques for two 
different image regions shown in Figure 2.21 

3.7.3 Experiment 3: Comparative evaluation of the proposed approaches 

In order to investigate the performance of both the proposed approaches, two 

subsequent experimental objectives are considered, which are presented as follows: 

3.1: Comparison of the proposed RTNLF approach-1 and 2 with other methods for denoising 

in noisy test images - In this section, a detailed comparison of the denoising performance of 

both the proposed RTNLF-1 and RTNLF-2 approaches with existing methods are presented 

for aforementioned all three different test images that are used to analyze the performance of 

these methods. The denoising methods used for such purpose are given below: 

Method 1: The linear homogeneous mask area filter (LHMAF) as described in [170, 210] with 

5×5 square neighborhood window and 15 iterations. 

Method 2: The Kuan filter as described in [139]. 

Method 3: Anisotropic diffusion filter (ADF) as described in [186] with 50 iterations and 

߬ ൌ 0.25. 

Method 4: Fourth order PDE filter (FOPDEF) as described in [269] with 250 iterations, 

݇ ൌ 0.5 and time step ݐ߂ ൌ 0.25. 

Method 5: The SRAD (speckle reducing anisotropic diffusion) approach as discussed in [266] 

with second diffusivity equation, 35 averaged iterations and ߬ ൌ 0.2. 

Method 6: Nonlinear complex diffusion filter (NCDF) as described in [100] with ߠ ൌ  and 30/ߨ

ߢ ൌ 20. 

Method 7: Improved adaptive complex diffusion (INCDF) as described in [20] with ߬௫ ൌ

ߢ ,ݏ10 ൌ ௫ߢ ,2 ൌ 28, and ߠ ൌ  .30/ߨ

Method 8: A wavelet thresholding approach based on generalized Gaussian distribution (WT-

GGD) assumption for  noise free coefficients of a logarithmic transformed medical image with 
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the threshold parameter (T) which depends on the standard deviation of noise and subband 

variance [111]. Four level decomposition is considered using bior 6.8 wavelet [234] 

Method 9: The squeez box filter (SBF) as described in [232] with 7×7 square window and 

500 iterations. 

Method 10: A nonlinear total variation filtering approach (TVF) [47] as described in chapter 2. 

Method 11: The proposed RTNLF-1 as discussed in this chapter. 

Method 12: The proposed RTNLF-2 as discussed in this chapter. 

To perform this experiment, same kidney, fetus and phantom images are used as 

testing images degraded by three different noise levels ߪ ൌ 0.1, 0.2 and 0.3, respectively. 

The outcomes of kidney images processed by the various denoising methods corresponding 

to ߪ	 ൌ 	0.1 are presented in Figure 3.15. From these figures, it is observed that the proposed 

RTNLF-1 and RTNLF-2 methods provide better quality of images by suppressing a good 

amount of the speckle noise compared to others. With the proposed method, the TVF 

method also produces a considerable quality of image, but some information is lost during 

the TVF process. Apart from the visual assessment, Table 3.12 summarizes all the 

performance measures evaluated by all the twelve different methods at three different noise 

levels. From the objective results listed in Table 3.12, it is observed that the proposed 

RTNLF-1 achieves approx 45.67%, 28-37%, 26.3-31.84%, 11.72-18.4%, 4.46-8.66%, 9.77-

11.42%, 3.4-9.07%, 5.6-8.7%, 4.32-7.83% and 1.25-8.7% higher PSNR values and 100%, 

55.7-78.43%, 54.67-65.09%, 21.66-33.89%, 8.17-16.44%, 17.8-23%, 5.92-15.71%, 9.97-

14.71%, 7.64-13.37% and 2.15-14.71% higher SNR values than the LHMAF, Kuan, ADF, 

FOPDEF, SRAD, NCDF, INCDF, WT-GGD, SBF and TVF methods, respectively. The 

proposed RTNLF-1 approach also achieves approx 7.76-11.71%, 5.07-24.87%, 4.88-9.28%, 

5.7-8.99%, 10.9-13.08%, 16.19-23.3%, 4.26-9.54%, 5.37-5.94%, 6.5-7.3% and 18.29- 20.4% 

Table 3.12 Image quality measures obtained by different denoising techniques for the processed 
kidney images  

Metrics ߪ	 ൌ ߪ 0.1	 ൌ 	ߪ 0.2 ൌ 	0.3 

Methods PSNR SNR SSIM EKI PSNR SNR SSIM EKI PSNR SNR SSIM EKI 

LHMAF 19.29 8.67 0.7406 0.3235 18.55 7.94 0.7151 0.3177 18.07 7.44 0.6822 0.3177 

Kuan 21.84 11.22 0.7596 0.3333 20.03 9.41 0.6770 0.3150 19.37 8.75 0.6103 0.3046 

ADF 21.74 11.11 0.7610 0.3181 20.79 10.17 0.7190 0.3041 20.46 9.84 0.6974 0.3011 

FOPDEF 23.95 13.33 0.7323 0.3734 23.15 12.54 0.7249 0.3293 23.13 12.51 0.7208 0.3291 

SRAD 25.86 15.24 0.7197 0.4598 25.04 14.42 0.6944 0.3332 24.69 14.07 0.6873 0.3211 

NCDF 25.22 14.61 0.6869 0.4277 24.27 13.65 0.6368 0.3139 23.54 12.92 0.6256 0.3024 

INCDF 26.84 16.22 0.7286 0.4962 25.13 14.51 0.7531 0.3234 24.99 14.37 0.7197 0.4029 

WT-GGD 25.85 15.23 0.7574 0.4664 25.74 15.12 0.7412 0.4305 24.47 13.84 0.7215 0.4294 

SBF 26.23 15.61 0.7438 0.3719 25.42 14.81 0.7371 0.3397 24.77 14.14 0.7123 0.3242 

TVF 25.85 15.23 0.6747 0.4149 25.65 15.03 0.6527 0.4036 25.52 14.90 0.6331 0.3931 

RTNLF-1 28.10 17.47 0.7981 0.5175 27.41 16.79 0.7852 0.4811 25.84 15.22 0.7621 0.4743 

RTNLF-2 28.69 18.07 0.8284 0.5425 27.68 17.05 0.7915 0.4926 26.44 15.82 0.7658 0.4834 
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Figure 3.15 Visual comparison of kidney image denoised by (a) LHMAF (b) Kuan (c) ADF (d) 
FOPDEF (e) SRAD (f) NCDF (g) INCDF (h) WT-GGD (i) SBF (j) TVF (k) Proposed 
RTNLF-1 (l) Proposed RTNLF-2 

higher SSIM values and 49.29-59.97%, 52.73-55.71%, 57.52-62.68%, 38.59-46.1%, 12.55-

47.71%, 21-56.85%, 4.29-48.76%, 10.46-11.75%, 39.15-46.3% and 19.2-24.73%  larger the 

EKI values than the methods 1-10, respectively. From these results, it is also observed that 

the diffusion based methods, WT-GGD, SBF and TVF method are capable to suppress the 

noise at each level, but the problem of losing edge information still exists and it becomes 



 

107 

 

larger, if noise level is increased. Besides this, the proposed RTNLF-2 method produces 

0.99-2.32%, 1.55-3.94%, 0.8-3.8%, 1.92-4.83% higher the PSNR, SNR, SSIM and EKI 

values than the RTNLF-1 method. 

In another assessment of fetus image illustrated in Figure 3.16, the WT-GGD method 

produces a good quality of fetus image in comparison to the proposed methods. The output 

image produced by the SBF is blurred. By visualizing the denoised fetus images, it is seen 

that the proposed RTNLF-2 approach is more capable to provide better quality of images 

than the RTNLF-1. The diffusion methods are also reliable to remove the speckles, but at the 

cost of removing the edge information. All these subjective outcomes are supported by some 

objective measures as listed in Table 3.13. By analyzing these results, it is observed that the  

 

Figure 3.16 Visual comparison of fetus image denoised by (a) LHMAF (b) Kuan (c) ADF (d) FOPDEF 
(e) SRAD (f) NCDF (g) INCDF (h) WT-GGD (i) SBF (j) TVF (k) Proposed RTNLF-1 (l) 
Proposed RTNLF-2 
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proposed RTNLF-2 approach produces approx 1.17-3.06%, 1.54-4.2%, 0.3-2.1% and 1.99-

4.02% higher PSNR, SNR, SSIM and EKI values than the RTNLF-1 approach. The RTNLF-2 

also achieves approx 80-95% higher EKI value than the SBF and TVF methods. It also gains 

approx 5.91-8.95%, 8.15-12.48%, 3.49-8.06%, 19.12-56.06% higher PSNR, SNR, SSIM and 

EKI values than the WT-GGD method. Apart from this, the proposed RTNLF-1 also gains 

better results than other aforementioned denoising methods 1-10 such as diffusion, 

WT_GGD, SBF and TVF based approaches. 

The subjective results of another investigation of the phantom image degraded by 

speckle noise with ߪ ൌ 0.3, processed by all these methods are shown in Figure 3.17. From 

the visual results, it is observed that the ADF, SRAD, INCDF, WT-GGD and TVF methods 

are capable to remove the speckle noise along with the proposed methods. As the noise 

level ߪ ൌ 0.3 is concerned, the TVF method provides better quality images than the proposed 

RTNLF-1 and 2 approaches. This is also reflected in the quantitative results that are shown 

in Table 3.14. At the noise level ߪ ൌ 0.3, the PSNR and SNR values obtained by the TVF 

method are approx 1.7% and 3.67% higher than the proposed RTNLF-2 method, but the 

SSIM and EKI values are approx 11.45% and 25.76% lower than the RTNLF-2 approach that 

reflects the loss of edge information in the TVF process. Besides this, the proposed RTNLF-2 

method gains approx 1.2-1.99%, 2.43-3.6%, 0.3-0.92% and 0.87-2.53% higher PSNR, SNR, 

SSIM and EKI values than the proposed method-1 that also provides approx 5.1%, 9.64%. 

22.56%, 42.36% and 3.66%, 7.39%, 17.97%, 23.21% higher PSNR, SNR, SSIM, EKI values 

than the TVF method for the noise level ߪ ൌ 0.1 and 0.2, respectively. Furthermore, both the 

proposed RTNLF-1 and 2 methods produce 0.7-4.57%, 1.28-9.79%, 0.32-5.38%, 4.64-

20.27% and 2.7-5.83%, 4.93-12.46%, 0.62-6.27%, 7.28-21.3% higher PSNR, SNR, SSIM 

and EKI values than the WT-GGD, respectively.  

Table 3.13 Image quality measures obtained by different denoising techniques for the processed 
fetus images 

Metrics ߪ	 ൌ ߪ 0.1 ൌ 	ߪ 0.2 ൌ 	0.3 

Methods PSNR SNR SSIM EKI PSNR SNR SSIM EKI PSNR SNR SSIM EKI 

LHMAF 15.21 10.22 0.5249 0.3334 12.89 7.91 0.4345 0.3120 10.79 5.81 0.3804 0.2952 

Kuan 17.12 12.13 0.4722 0.3580 16.22 11.23 0.3945 0.2944 15.17 10.18 0.3536 0.2754 

ADF 17.06 12.08 0.5925 0.3572 15.72 10.73 0.5375 0.3246 15.58 10.59 0.4978 0.3092 

FOPDEF 17.63 12.64 0.6573 0.4603 16.39 11.41 0.6200 0.3540 15.82 10.81 0.5344 0.3188 

SRAD 18.33 13.34 0.6286 0.3828 16.66 11.67 0.5512 0.3866 15.39 10.40 0.4445 0.3625 

NCDF 17.63 12.64 0.5683 0.3337 16.11 11.12 0.4789 0.3498 15.56 10.57 0.4334 0.3131 

INCDF 18.69 13.71 0.6381 0.4714 16.85 11.86 0.5893 0.4066 15.94 10.95 0.5079 0.3863 

WT-GGD 19.20 14.21 0.6537 0.5722 18.62 13.62 0.6214 0.5752 17.32 12.34 0.5648 0.3580 

SBF 17.95 12.97 0.6482 0.4072 16.79 11.80 0.6194 0.3646 16.34 11.36 0.5613 0.3154 

TVF 17.84 12.85 0.5854 0.3696 17.01 12.02 0.5631 0.3531 16.13 11.14 0.5325 0.3105 

RTNLF-1 20.59 15.60 0.6712 0.7174 19.38 14.39 0.6397 0.6587 18.31 13.32 0.6085 0.5464 

RTNLF-2 20.83 15.84 0.6853 0.7317 19.72 14.73 0.6431 0.6852 18.87 13.88 0.6103 0.5587 
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Figure 3.17 Visual comparison of phantom image denoised by (a) LHMAF (b) Kuan (c) ADF (d) 
FOPDEF (e) SRAD (f) NCDF (g) INCDF (h) WT-GGD (i) SBF (j) TVF (k) Proposed 
RTNLF-1 (l) Proposed RTNLF-2  

Moreover, both the proposed RTNLF-1 and 2 achieve better noise suppression and 

edge preservation performance, but the RTNLF-2 approach outperforms the RTNLF-1. 
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Table 3.14 Image quality measures obtained by different denoising techniques for the phantom 
images 

Metrics ߪ	 ൌ ߪ 0.1 ൌ 	ߪ 0.2 ൌ 	0.3 

Methods PSNR SNR SSIM EKI PSNR SNR SSIM EKI PSNR SNR SSIM EKI 

LHMAF 21.51 9.33 0.7553 0.3729 19.85 7.67 0.6827 0.3334 18.71 6.55 0.6282 0.3177 

Kuan 21.62 9.45 0.7039 0.4476 20.27 8.09 0.6418 0.3391 19.82 7.65 0.6062 0.2978 

ADF 21.98 9.81 0.7650 0.7381 21.12 8.95 0.7451 0.5159 19.98 7.81 0.7305 0.3945 

FOPDEF 22.43 10.26 0.7760 0.5911 22.07 9.91 0.7614 0.5779 21.81 9.64 0.7599 0.4505 

SRAD 22.74 10.57 0.8035 0.5995 22.31 10.14 0.7855 0.5939 22.10 9.92 0.7686 0.5909 

NCDF 23.23 11.06 0.7726 0.6998 22.74 10.57 0.7079 0.6086 22.25 10.08 0.6636 0.5376 

INCDF 24.52 12.35 0.8224 0.6932 23.68 11.51 0.8071 0.6470 23.06 10.88 0.7718 0.5857 

WT-GGD 26.99 14.82 0.8005 0.7637 23.86 11.64 0.7893 0.6921 22.24 10.07 0.7864 0.6162 

SBF 24.41 12.24 0.7967 0.5872 22.41 10.26 0.7911 0.5603 21.89 9.71 0.7834 0.5389 

TVF 25.86 13.69 0.6883 0.6452 24.07 11.90 0.6944 0.5878 23.20 11.03 0.6986 0.5354 

RTNLF-1 27.18 15.01 0.8436 0.9185 24.95 12.78 0.8192 0.7242 22.81 10.64 0.7889 0.7212 

RTNLF-2 27.72 15.55 0.8507 0.9265 25.25 13.09 0.8267 0.7425 23.13 10.97 0.7913 0.7312 

 

3.2: Comparison of the proposed RTNLF approach-1 and 2 with other methods for speckle 

reduction in the real US images - In this experiment, another detailed comparison is done for 

real US images as utilized in chapter 2, but processed by all twelve denoising methods as 

discussed above. The processed prostate US images are shown in Figure 3.18. Another two 

denoised splenic cyst and multiple liver masses US images are shown in Figure 3.19 and 

Figure 3.20, respectively. From these visual results, it is observed that the proposed RTNLF-

1 and RTNLF-2 methods produce better quality of the US images than others. The outcomes 

of the diffusion based methods get blurred and the resolution of the processed US images is 

very poor, but in case of the multiple liver masses, the SRAD achieves good noise 

suppression results, but all the edge information is lost during the smoothing process. The 

resultant US images obtained from the WT-GGD are not able to produce good results. 

Besides it, the TVF approach is capable to remove speckles from the US images, but it 

suffers from the loss of information that is also more important for the clinical diagnosis. The 

proposed RTNLF-2 approach outperforms the others, including the proposed RTNLF-1 

approach. The validation of the visual results of the US images processed by the different 

denoising methods is very difficult as discussed in the previous chapter. Moreover, for the 

validation of the visual results, the MVR values as discussed in the previous chapters are 

estimated for all the US images with two different image regions marked on them. Out of 

them, the four different US images are considered to evaluate the MVR values for both the 

regions 1 and 2 marked by the red and blue rectangle, respectively shown in Figure 2.21 as 

MVR1 and MVR2. The results are presented in a bar graph as shown in Figure 3.21. From 

the bar graphs, it is observed that the proposed RTNLF-1 and RTNLF-2 methods gain higher 
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MVR values than the others. Moreover, the proposed RTNLF-2 exhibits its superiority by 

providing the highest MVR value. 

 

Figure 3.18 Visual comparison of prostate ultrasound image processed by the (a) LHMAF (b) Kuan (c) 
ADF (d) FOPDEF (e) SRAD (f) NCDF (g) INCDF (h) WT-GGD (i) SBF (j) TVF (k) 
Proposed RTNLF-1 (l) Proposed RTNLF-2 
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Figure 3.19 Visual comparison of splenic cyst ultrasound image processed by the (a) LHMAF (b) Kuan 
(c) ADF (d) FOPDEF (e) SRAD (f) NCDF (g) INCDF (h) WT-GGD (i) SBF (j) TVF (k) 
Proposed RTNLF-1 (l) Proposed RTNLF-2 
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Figure 3.20 Visual comparison of multiple liver masses ultrasound image processed by the (a) LHMAF 
(b) Kuan (c) ADF (d) FOPDEF (e) SRAD (f) NCDF (g) INCDF (h) WT-GGD (i) SBF (j) TVF 
(k) Proposed RTNLF-1 (l) Proposed RTNLF-2 
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Figure 3.21 Comparison between the MVR values obtained from the different denoising methods for 
two image regions shown in Figure 2.21  

In addition, Table 3.15 shows the MVR values (mean ± standard deviation) estimated 

for all 100 measurements that are conducted on fifty different US images in which two 

measurements at two different regions for each images are considered and the results 

mentioned in Table 3.15 exhibit the superiority of the proposed methods in the effective 

speckle reduction as compared to the others. 

Table 3.15 Performance comparison of the various denoising methods with both the proposed 
RTNLF approaches-1 and 2 using the averaged MVR values over 100 different regions 
marked on 50 different ultrasound images 

S. No. Methodology MVR 

1 Noisy 14.04 ± 3.04 

2 LHMAF 15.19 ± 3.46 
3 Kuan 16.56 ± 4.98 

4 ADF 18.26 ± 4.23 
5 FOPDEF 19.27 ± 4.46 

6 SRAD 19.45 ± 3.97 
7 NCDF 19.32 ± 3.69 

8 INCDF 21.05 ± 3.15 
9 WT-GGD 20.49 ± 4.57 

10 SBF 20.12 ± 4.87 
11 TVF 21.45 ± 4.95 

12 Proposed approach-1 21.98 ± 3.93 
13 Proposed approach-2 22.17 ± 4.33 
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3.8 Summary 

In this chapter, two different denoising approaches are proposed using the NLBF and 

thresholding methods such as the NS and BS algorithms, named as RTNLF-1 and RTNLF-2, 

respectively. In the proposed methods, the features of the RT are used that also provides the 

multiscale and direction analysis of the images. Besides it, the features of the bilateral filter 

applied on the low frequency approximation coefficients are utilized to suppress the large 

amplitude noise components and thresholding approaches provide the approximated 

threshold coefficients which improve the denoising efficiency with better edge preservation. 

The proposed method is also analyzed to improve not only the perceptual quality of the 

images, but also to preserve more edge information. From the experimental results, it is 

observed that the proposed approaches do not only achieve higher SNR and PSNR values 

but also improves the SSIM and EKI values. The higher SNR and PSNR values with larger 

EKI and SSIM values indicate that the noise suppression is neither at the cost of blurring the 

edges nor the loss of edge information. A detailed comparative study with the proposed 

RTNLF-1 and 2 is also presented in the last section of this chapter, which depicts the 

superiority of the proposed approaches. But in all the experimental results, one pattern is 

observed that among all the other denoising methods, the TVF approach is good. This 

method has an ability to suppress the speckle noise, but noise reduction is performed with 

the loss of edge information that means some edge information is lost within the noise 

residual. Furthermore, it is concluded that the proposed method ensures an improvement in 

effective suppression of speckle noise and preservation of more edges, thus providing the 

despeckled images with good visual appearance. 
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CHAPTER 4: REMNANT APPROACH FOR ADAPTIVE FUSION BASED 
NOISE FILTERING 

This chapter presents a remnant approach for adaptive fusion based noise filtering, which is used to 

suppress the speckle noise in the ultrasound images. The present method utilizes both the features of 

the shearlet transform and total variation algorithm. In the proposed method, three different denoised 

images processed by the total variation approach, shearlet thresholding, separately and the edge 

structured information recovered from the remnant of the total variation filtering approach, are fused 

adaptively. For such purpose, different weights are evaluated from the different variance map of 

individual denoised image and the edge extracted information from the remnant of total variation 

approach. The performance of the proposed remnant approach are discussed in both the subjective 

and objective manner and a comparative study has also been presented in the last section of this 

chapter for investigating the noise reduction performance obtained by the proposed method. 

4.1 Introduction 

Imaging systems and sub-resolution scatterers are two main factors that degrade the 

quality of the US medical images and thus cause a problem for the radiologist to discriminate 

the fine details of the images during the diagnostic examinations. As a result, image 

processing for reducing the speckle noise and blurring is a critical pre-processing step. From 

the previous chapters, it is analyzed that the noise reduction with better edge preservation 

improves the quality of the US images, thus leads to increase the accuracy of the diagnostic 

process. In the chapter 3, two different approaches have been discussed with their 

despeckling performances. Based on both the subjective and objective analysis, it is 

observed that the proposed approaches presented in the chapter 3 have produced better 

denoising results. However, at a higher noise level, the TVF approach outperforms them in 

terms of noise suppression parameters such as the SNR and PSNR values, but it suffers 

from the loss of edge information by achieving lower EKI values. Based on the comparative 

analysis of several denoising methods presented in chapter 2, the ST produces better 

denoising results, especially in terms of edge preservation than the curvelet and other 

methods. The ST based method also produces less visual distortion (fuzzy edges) near the 

original edges or in the homogeneous region than the CVT based methods. These outcomes 

concluded from the previous chapters have motivated to address and utilize both the 

features of the TVF and ST based method in one common remnant based adaptive fusion 

(RBAF) approach used for noise reduction in the US medical images. 

With this motivation, a new concept has been evolved that the disturbed homogenous 

region by the curvelet and shearlet domain may result in more effective edge preserved 

image denoising [30]. In chapter 2, the performance of TVF approach has been discussed 

with the observation of better denoised homogenous region of the image. Thus, it has 

become a suitable choice for fusing the homogeneous region of the image. Accordingly, in 
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this chapter, the RBAF approach is introduced to overcome the limitations of the TVF and the 

ST. In the proposed approach, a fusion algorithm is presented to fuse the information of the 

images obtained by the TVF approach and ST based method, separately and extracted 

edges structured information (ESI) from the remnant of the TVF method after denoising by 

the ST based method. 

The subsequent part of this chapter is structured as follows. Next two sections provide 

the brief idea of ST and TVF methods used to implement the proposed RBAF approach. 

After that, the proposed RBAF approach and its implementation are discussed. The 

performance of the proposed RBAF method is also analyzed in the presence of speckle as 

well as Gaussian noise. Many efforts have been made to evaluate and compare the 

denoising performance with others in terms of noise suppression and edge preservation. 

4.2 Shearlet Transform 

To address the limitations of other transformation techniques such as difficult to handle 

the different singularities available in the images, the ST has been applied to different 

application in the last few years [57, 83, 84, 149, 153, 264, 285]. Shearlet transform 

combines the multiscale and direction analysis, separately. Shearlet is very similar to the 

contourlets introduced by Vetterli et al. [78] except that there is no limitation of the directions 

like contourlets. Shearlet can also be constructed in discrete domain realized by the 

combination of Laplacian pyramid (LP) and directional filters bank (DFB) [85, 141, 151]. 

Firstly, Laplacian pyramid is used to decompose the noisy image into high and low frequency 

components, then direction filtering is utilized to get the different subbands and different 

direction shearlet coefficients. Direction filtering is achieved using the shear matrix. In two 

dimensional space, shearlets are defined as 

ௌܣ ൌ ൛߰,,ሺݔሻ ൌ ݐ݁݀| ݔܦ/ଶ߰൫ܵ|ܦ െ ݉൯: ݆, ݇ ∈ Ժ,݉ ∈ Ժଶൟ   (4.1) 

where ܦ refers to the anisotropic matrix, ܵ denotes the shear matrix and ݆, ݇ and ݉ are 

scale, direction and shift parameter, respectively, ߰ refers to a generating function. The ܦ 

and ܵ both are 2×2 invertible matrices and |det S| ൌ 1. The elements of the system are called 

composite wavelet, if it forms a Parseval frame for ܮଶሺԹଶሻ, which is also an affine like system. 

For any ݂ ∈   ଶሺԹଶሻܮ

∑ ห〈݂, ߰,,〉ห
ଶ

,, ൌ ‖݂‖ଶ        (4.2) 

The anisotropic dilation matrix ቂd 0
0 dଵ/ଶ

ቃ 	or	 d
ଵ/ଶ 0
0 d

൨	,	where d  0 controls the scale of 

shearlets, which ensures that the frequency support of shearlets becomes increasingly 

stretched at finer scales. The shear matrix S ൌ ቂ1 s
0 1

ቃ 	or	 ቂ1 0
s 1

ቃ controls only the direction of 

shearlets. The shearlet transform function is  
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߰,,
ሺሻ ሺݔሻ ൌ 2

య
మ߰ሺሻ൫ܵ

ܦ
ݔ െ ݉൯       (4.3) 

߰,,
ሺଵሻ ሺݔሻ ൌ 2

య
మ߰ሺଵሻ൫ ଵܵ

ܦଵ
ݔ െ ݉൯       (4.4) 

where ݆  0,െ2  ݇  2 െ 1,݉ ∈ Ժଶ, 	 ߰ሺሻሺߦሻ ൌ ߰ሺሻሺߦଵ, ሻ	ଶߦ ൌ ߰ଵሺߦଵ	ሻ ߰ଶሺߦଶ ⁄ଵߦ ሻ	 and  

߰ሺଵሻሺߦሻ ൌ ߰ሺଵሻሺߦଵ, ሻ	ଶߦ ൌ ߰ଵሺߦଶ	ሻ ߰ଶሺߦଵ ⁄ଶߦ 	ሻ 

For any ሺߦଵ, ሻ	ଶߦ ∈ ܦ ,ܦ ൌ ቄሺߦଵ, ሻ	ଶߦ ∈ Թଶ:	|ߦଵ| 
ଵ

଼
, ଶߦ| ⁄ଵߦ |  1ቅ and ܦଵ ൌ ቄሺߦଵ, ሻ	ଶߦ ∈

Թଶ:	|ߦଶ| 
ଵ

଼
, ଵߦ| ⁄ଶߦ |  1ቅ consist of supports of ߰,,

ሺሻ ሺݔሻ and ߰,,
ሺଵሻ ሺݔሻ. The decomposition of 

the US images in both the horizontal and vertical cone is shown in Figure 4.1 (a) and (b), 

respectively. 

4.3 Shearlet Thresholding  

In the recent years, various thresholding (shrinkage) schemes are considered for 

image denoising. The thresholding scheme provides the threshold coefficients by comparing 

the transformed coefficients against a threshold to remove the noise from a signal, while 

preserving the most important information of the original signal. In the present study, the hard 

thresholding is performed using the ST and the cycle spinning (CS) approach, independently 

in each noisy shearlet coefficient. The fundamental principle of hard thresholding using the 

ST is same as the thresholding used with the WT and CVT. To achieve the threshold 

coefficients from the noisy ST coefficients ݏௌ்ሺݔ,  ሻ, the thresholding expression is given asݕ

,ݔௌ்ሺݏ̂ ሻݕ ൌ ൜ݏ
ௌ்ሺݔ, ,ݔௌ்ሺݏ|										,ሻݕ |ሻݕ  	ଶߪଵߪܭ
0	,																								otherwise																	

     (4.5) 

where ̂ݏௌ்ሺݔ,  ሻ is the estimator of unknown noiseless coefficients using the hardݕ

thresholding, 1ߪ is the standard deviation of the noisy images, ߪଶ is the standard deviation of 

noisy subband at each scale decomposed using the ST. The noise variance of each subband 

is estimated from the noisy shearlet coefficients using Monte Carlo technique [225].  

ଶߪ ൌ ට
ଵ

ೌ್
∑ ∑ ,ݔௌ்ሺݏ ,ݔௌ்∗ሺݏሻݕ ሻ್ݕ

௬ୀଵ
ೌ
௫ୀଵ       (4.6) 

where ݏௌ்∗ሺݔ, ,ݔௌ்ሺݏ ሻ is the complex conjugate ofݕ ܮ ሻ andݕ ൌ ܮ ൈ   is the size of theܮ

subband at each scale. For each high frequency shearlet subbands, the scale dependent 

parameter ܭ is chosen as 4 for first scale and 3 for others. 

In this present study, hard thresholding combined with the concept of CS approach [10] 

is applied to every detailed coefficients of shearlet decomposition for denoising purpose. 

Firstly, the CS approach is applied to the noisy image to get the shifted version of a noisy 

image within a specified range of circular shifts that depend on the length of the input vector 

scale ߛሺ݅ሻ. The total number of translations along the horizontal axis is equal to 2ି and 

2ିఊሺሻ for the vertical axis, respectively, where L denotes the length of the input vector, ߛሺ݅ሻ  
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(a) 

(b) 

Figure 4.1 Shearlet decomposed coefficients of an ultrasound image for the (a) Horizontal cone (b) 
Vertical cone 

refers to the size of the shearlet along the scale i.e. scale value and ݅ represents as an index. 

Subsequently, the ST is applied to the shifted version of the noisy image ݏሺݔ,  ሻ to get noisyݕ

shearlet coefficients ݏௌ்ሺݔ,  ሻ. After applying the thresholding scheme on the noisy shearletݕ

coefficients, the inverse ST is applied on the threshold coefficients and finally resulting 

denoised images are shifted back to original position and the results are averaged out. In the 

case of multiplicative noise, such process is applied on the log transformed image and at 
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last, exponential operator is applied to reconstruct the denoised image. A summary of the 

algorithm is given as follows: 

Step 1:  Apply the circular shifts on the noisy image. 

,ݔሺ′ݏ  ሻݕ ൌ ,ݔሺݏ൫ݐ݂݄݅ݏ_ݎ݈ܽݑܿݎ݅ܿ ,ሻݕ ,௦௧ݔൣ  ௦௧൧൯    (4.7)ݕ

 The number of shifts depends on the length of the input vector scale. 

Step 2:  Perform the multiscale decomposition of the shifted version of an image using the 

ST to obtain the noisy ST coefficients. 

,ݔௌ்ሺݏ  ሻݕ ൌ ܵܶ൫ݏ′ሺݔ,  ሻ൯       (4.8)ݕ

Step 3: Apply the thresholding scheme on the noisy ST coefficients to get the threshold ST 

coefficients. 

,ݔௌ்ሺݏ̂  ሻݕ ൌ ,ݔௌ்ሺݏ௧൫߆  ሻ൯       (4.9)ݕ

Step 4: Invert the multiscale decomposition to reconstruct the denoised image. 

,ݔሺ′ݏ̂  ሻݕ ൌ ܵܶିଵ൫̂ݏௌ்ሺݔ,  ሻ൯       (4.10)ݕ

Step 5: After taking the ܵܶିଵ, the inverse shift is performed and resulting denoised image 

are shifted back to the original position and then the translated results are averaged 

to get the approximated image. 

,ݔሺݏ̂  ሻݕ ൌ ,ݔሺ′ݏ൫̂ݐ݂݄݅ݏ_ݎ݈ܽݑܿݎ݅ܿ ,ሻݕ ൣെݔ௦௧, െݕ௦௧൧൯    (4.11) 

4.4 Total Variation Filtering 

As discussed in section 2.5.7 of chapter 2, the TVF algorithm proposed by Rudin, 

Osher and Fatemi is used as a regularization criterion for image denoising [204]. Several 

methods have been presented for the minimization of the ROF function. In the present study, 

a projection based approach presented by Chambolle [47] is used to minimize the ROF 

function. All the mathematical formulations involved in the implementation of the TVF method 

have already been presented in the chapter 2. In the implementation of the TVF method, the 

most important task is to estimate the weighting parameter ሺߣሻ. In the present work, the 

simple automatic approach for the selection of this parameter has been used. To estimate 

the parameter ߣ, the implementation of the TVF algorithm is given as follows: 

Step 1: Start with the noisy image ݏ ൌ ,ݔሺݏ 	ߣሻ, a weighting parameter ሺݕ  	0ሻ and algorithm 

tolerance ሺܶ	  	0ሻ. 

Step 2: Initialize  ൌ 0. 

Step 3: Calculate the values ܽ ൌ  ቀ݀݅ݒ൫ െ ,ݔ൯ቁ for all the pixel values ሺߣ/ݏ  ሻ in theݕ

image. 

Step 4: Update the values of ାଵ ൌ
ାఛ

ଵାఛ||
 for all the pixel values ሺݔ,  .ሻ in the imageݕ

Step 5: Evaluate ̂ݏ ൌ ݏ െ ܾ ାଵሻ andሺݒ݅݀ߣ ൌ ݏ െ ݏ̂ ൌ  .ାଵሻሺݒ݅݀ߣ
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Step 6: Update the values of ߣ using ܿ ൌ ‖ܾ‖ ൌ ݏ‖ െ ᇱߣ and ‖ݏ̂ ൌ ቀ√ఙ

ቁ  refers to ܮ where ,ߣ

the total number of pixels and ߪ denotes the noise variance. 

Step 7: Evaluate the value of ൫ାଵ െ ାଵ൯ and check if ൫ െ ൯  ܶ, update ݏ ൌ  and ݏ̂

ߣ ൌ  .ᇱߣ

Step 8: Repeat the procedure from step 3 to 7. 

In the present work, some experiments are performed on the different images and 

processed by the TVF algorithm for different noises. Figure 4.2 (a)-(f) represent the remnant 

of the denoised images by the TVF method. It can be observed from Figure 4.2 (a)-(f) that 

some texture and edge information are lost in the remnant of the denoised image obtained 

by the TVF method. To extract the edge information from the remnant of the denoised image 

by the TVF method, shearlet denoising is used as mentioned above. 

 

Figure 4.2 The edge information lost in denoised images (a) Lena image (b) Girl image (c) Boat 
image (d) Kidney image (e) Fetus image (f) Phantom image 

4.5 Proposed Remnant Approach for Adaptive Fusion Based Noise Filtering 

In the proposed RBAF noise filtering approach, the fusion algorithm is presented to 

fuse the information of images which are processed with the TVF, ST thresholding using 

cycle spinning (CSST) approach, separately and extracted edges from the remnant of TVF 

method. Figure 4.3 shows the ESI extracted from the different methods such as the TI-WT, 

CVT and ST based methods for the Lena, girl and boat images degraded by the additive 

noise. Similarly, Figure 4.4 also shows the extracted ESI from the aforementioned denoising 

methods for kidney, fetus and phantom image corrupted by multiplicative speckle noise. 

Firstly, such noisy images are processed by the TVF algorithm and shearlet thresholding 

using cycle spinning (CSST) approach. It is also observed from Figure 4.2 that the edge 

information is lost during the TVF method. The remnants of the denoised images by the TVF  
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Figure 4.3 (a) Image contaminated with Gaussian noise (b) Remnant of the denoised images by TVF 
approach. Extracted edge structured information from (c) TI-WT method (d) CVT based 
method (e) ST based method. Here, 1, 2 and 3 represent Lena, girl and boat images, 
respectively 
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Figure 4.4 (a) Image contaminated with speckle noise (b) Remnant of the denoised images by TVF 
method. Extracted edge structured information from (c) TI-WT method (d) CVT based 
method (e) ST based method. Here, 1, 2 and 3 represent kidney, fetus and phantom 
images, respectively 

approach are obtained and shown in Figure 4.3 (b) and Figure 4.4 (b). Furthermore, the ESI 

shown in Figure 4.3 (c)-(e) and Figure 4.4 (c)-(e) are extracted back by processing the 

remnant of the TVF method by TI-WT, CSCVT and CSST methods, respectively. It is also 

observed from both the figures that the edges extracted by the TI-WT does not tend to give 
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better performance and also provides less edge information as compared to others. The ESI 

extracted by the CSCVT provides better results than the TI-WT method. To investigate and 

compare the performance of the CSST, it is utilized to recover the ESI as shown in Figure 

4.3 (e) and Figure 4.4 (e) for additive and multiplicative noise corrupted images, respectively. 

The results mentioned in both the above figures also show that it provides more ESI from the 

remnant of the denoised image obtained by the TVF method. 

Finally, the concept of fusing the information in the denoised image is carried out in 

three different denoised images by (a) TVF approach (b) CSST approach and (c) the ESI 

recovered by the CSST method from the remnant of the denoised image by the TVF 

approach. Although, the edge information has been extracted from the remnant of the TVF 

method, but it cannot be added directly in the denoised image obtained by CSST method. It 

does not provide good performance. Therefore, for better edge preservation, it is proposed to 

fuse all the denoised images by an adaptive fusion algorithm. The process flow involved in 

the implementation of adaptive fusion based denoising method is shown in Figure 4.5. 

 

Figure 4.5 Process flow of the proposed RBAF approach 
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In Figure 4.5, Img_TVF, Img_CSST and Img_Edge refer to the images processed with 

the TVF approach, CSST approach and the ESI extracted from the remnant of TVF method 

using CSST approach, respectively. After getting these images, variance map of the 

denoised images and extracted edge information have been estimated by taking the 3×3 

block variance at each pixel of the above results (Img_TVF, Img_CSST and Img_Edge) and 

then it has been normalized. Now, the three different variance maps Var_TVF, Var_CSST 

and Var_Edge are obtained. By subtracting the Var_TVF and Var_CSST, ݓଵ is evaluated 

and ݓଶ is estimated directly from Var_Edge. Both ݓଵ and ݓଶ are used as weight factors for 

the fusion process. Finally, all the three images are fused as follows, 

Output ൌ ሺ1 െ ଵሻݓ ൈ Img	_TVF  ଵݓ ൈ Img	_CSST  ଶݓ ൈ Img	_	Edge   (4.12) 

Implementation steps 

Based on the above discussed concept, the main frame of denoising based on the 

proposed RBAF approach is formulated in the following implementation steps:  

Step 1: Perform the TVF and the CSST approach on a noisy image, separately. 

Step 2: Compute the remnant of the TVF approach in which edge information is lost during 

the TVF denoising.  

Step 3: Apply the CSST method for extracting the edge information from the remnant of TVF 

approach obtained from step 2. 

Step 4: By taking the 3×3 block variance at each pixel of the denoised images obtained from 

the TVF, CSST and the edge information extracted from step 3, variance of these 

images are obtained. 

Step 5: Convert the variance images obtained from step 4 into percentage normalized 

variance images (PNVI's) by multiplying with (100/ maximum value of the variance of 

the respective images) then the PNVIs are converted into binary by MATLAB 

command im2bw. Now, three different variance images such as the Var_TVF, 

Var_CSST and Var_Edge are obtained for the image processed by the TVF method, 

CSST method and extracted edge information by the CSST approach, respectively. 

Step 6: Compute the difference between the PNVI's of denoised images processed with the 

TVF and CSST method. This difference value is used as a weight factor ݓଵ for the 

Img_CSST and the value of ሺ1 െ  .ଵሻ is used for Img_TVFݓ

Step 7: The PNVI value of the extracted edge information is used as a weight factor ݓଶ for 

the edge information Img_Edge. 

Step 8: Perform the fusion with adaptive weight factors within 3×3 template and reconstruct 

the image using Eqn. (4.12). 

4.6 Experimentation 

In this section, three different experiments are conducted to assess the performance of  
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the proposed RBAF noise filtering approach. For such purpose, the same test images are 

considered as used in the chapter 2 for Gaussian and speckle noise removal. The 

performance measures such as the SNR, PSNR, SSIM, FOM and EKI used for investigating 

the performance of the proposed RBAF method quantitatively are also considered similarly 

as used in chapter 2 and 3. Three different experiments are discussed as given below: 

Experiment 1: To analyze and evaluate the performance obtained by the proposed RBAF 

method for multiplicative speckle noise removal.  

Experiment 2: To analyze and evaluate the performance obtained by the proposed RBAF 

method for suppressing the additive Gaussian noise. 

Experiment 3: To analyze and evaluate the proposed RBAF approach for real US images. 

4.7 Results and Discussions 

Experiment 1: Analysis and evaluation of the RBAF approach for speckle noise 

removal - In order to validate the experimental objectives, the same three different images 

such as the kidney, fetus and phantom images are considered as in the previous chapters. 

To asses and compare the performance of the proposed RBAF noise filtering approach, 

another set of different remarkable denoising methods are considered as follows: 

Method 1: A nonlinear TVF approach as described above. 

Method 2: The TI-WT based thresholding approach as discussed in chapter 2. 

Method 3: The CSCVT approach as described in [10] and also in chapter 2. In this 

experiment, scale dependent constant parameter is chosen as k=4 for the first scale and k=3 

for the others. 

Method 4: The CSST approach as discussed above and also in [110]. 

Method 5: The TVF with CVT approach (CVT-TVF) as described by Bahdauria et al. in [25]. 

Method 6: The proposed RBAF noise filtering approach as discussed above. In the proposed 

approach, the denoised images processed with the TVF and CSST approach, separately and 

extracted ESI from the remnant of TVF are fused together based on the 3×3 block variance 

map evaluated for all three processed images. From the variance images, it is observed that 

the images which have more edge information show the higher variance values within 3×3 

block. Based on this concept, the weight factor ݓଶ achieves higher value than ݓଵ for 

speckled images. For the additive noise, the weight factor ݓଵ gains higher values than ݓଶ for 

some regions within 3×3 block. 

Based on all the aforementioned denoising methods, the processed images of noisy 

version of kidney, fetus and phantom images are presented in Figure 4.6, Figure 4.7, and 

Figure 4.8, respectively. From the results shown in these figures, it is observed that the 

proposed RBAF noise filtering approach is more capable to reflect more edges after 

denoising process. From the visual assessment, it is observed that the proposed RBAF 
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approach gets much better visual results than the TVF, TI-WT, CSCVT methods and 

provides a significant improvement in noise reduction than the CSST and TVF-CVT methods 

for the speckle noise. Further, it gets much better edge preservation performance than the 

CSST and TVF-CVT method. For kidney images illustrated in Figure 4.6, the image 

processed by the CSST method reflects better results than the CVT-TVF method, but in case 

of fetus and phantom images, it becomes reversed. The CVT-TVF method provides more 

noise suppression performance than the CSST method. Moreover, the proposed RBAF 

outperforms both the CSST and CVT-TVF methods for all the images. The results of visual 

assessment are also validated by evaluating the different objective measures as presented in 

the previous chapter. The quantitative outcomes are listed in Table 4.1 corresponding to all 

these images. 

 

Figure 4.6 Visual comparison of the denoising methods for (a) Kidney image corrupted by speckle 
noise (b) Method 1 (c) Method 2 (d) Method 3 (e) Method 4 (f) Method 5 (g) Method 6 
(Proposed RBAF)  

 

Figure 4.7 Visual comparison of the denoising methods for (a) Fetus image corrupted by speckle 
noise (b) Method 1 (c) Method 2 (d) Method 3 (e) Method 4 (f) Method 5 (g) Method 6 
(Proposed RBAF) 
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Figure 4.8 Visual comparison of the denoising methods for (a) Phantom image corrupted by speckle 
noise (b) Method 1 (c) Method 2 (d) Method 3 (e) Method 4 (f) Method 5 (g) Method 6 
(Proposed RBAF) 

From the results mentioned in Table 4.1, it is observed that the noise reduction 

performance of the proposed RBAF method achieves approx 6.11-16.09%, 0.63-9.21%, 

3.08-12.10%, 0.11-8.97% and 1.23-4.31% higher PSNR than the TVF, TI-WT, CSCVT, 

CSST and CVT-TVF methods, respectively for kidney image. With higher SNR values, the 

RBAF approach also gains approx 10.47-27.31%, 1.04-15.01%, 5.18-20.06%, 0.18-14.60% 

and 2.1-6.83% higher SNR values than the methods 1-5, respectively. It also achieves 

approx 12.22-17.91%, 7.80-9.89%, 7.28-10.54%, 1.95-9.55% and 4.09-6.60% larger EKI 

values than the TVF, TI-WT, CSCVT, CSST and CVT-TVF methods, respectively. For fetus 

image, the RBAF method also produces higher PSNR (8.06-16.93%, 5.6-13.93%, 6.41-

15.70%, 3.63-10.96% and 1.04-1.56%), SNR (11.67-23.50%, 8.08-19.14%, 9.22-21.70%, 

5.16-14.92% and 1.55-2.06%), SSIM (15.44-16.89%, 12.60-12.89%, 5.27-7.24%, 5.44-

20.65% and 2.61-3.07%) and EKI values (50.56-84.31%, 47.62-79.97%, 25.34-59.27%, 

20.5-55.3% and 2.67-10.97%) than the TVF, TI-WT, CSCVT, CSST and CVT-TVF methods, 

respectively. Similarly, the proposed method shows better noise reduction performance than 

the CSST and CVT-TVF methods in terms of higher PSNR (0.77-4.81% and 1.05-1.90%) 

and SNR values (1.59-9.11%, 2.06-3.54) for the denoised phantom images. It also produces 

larger EKI values approx 6.11-20.19% and 0.38-1.22% than the CSST and CVT-TVF 

methods. Moreover, the quantitative results show that with low levels of noise, the proposed 

RBAF approach produces competitive edge preservation results as compared to the others 

and outperforms the others with better noise suppression. In case of high levels of noise, the 

RBAF approach produced the competitive noise suppression results compared to others with 

better edge preservation performance. Furthermore, the proposed approach outperforms all 

the other methods. This is also reflected visually that the proposed RBAF approach is able to  
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Table 4.1 Image quality measures obtained by the different denoising methods for kidney, fetus and 
phantom images corrupted by multiplicative speckle noise 

Images Noise level Metrics Method 1 Method 2 Method 3 Method 4 Method 5 
Proposed 

RBAF 

Kidney 
image 

	ߪ ൌ 	0.1 

PSNR 25.85 27.48 26.77 27.54 28.77 30.01 

SNR 15.23 16.86 16.15 16.92 18.15 19.39 

SSIM 0.6747 0.7412 0.7666 0.7603 0.8164 0.8432 

EKI 0.4149 0.4319 0.4340 0.4567 0.4473 0.4656 

	ߪ ൌ 	0.2 

PSNR 25.65 27.31 26.57 27.28 27.53 28.11 

SNR 15.03 16.69 15.95 16.66 16.91 17.49 

SSIM 0.6527 0.7391 0.7633 0.7548 0.7711 0.7962 

EKI 0.4036 0.4307 0.4318 0.4349 0.4383 0.4655 

	ߪ ൌ 	0.3 

PSNR 25.52 26.91 26.27 27.05 26.75 27.08 

SNR 14.90 16.29 15.65 16.43 16.13 16.46 

SSIM 0.6331 0.7353 0.7407 0.7560 0.7606 0.7679 

EKI 0.3931 0.4218 0.4193 0.4231 0.4348 0.4635 

Fetus 
image 

	ߪ ൌ 	0.1 

PSNR 17.84 18.31 18.03 18.80 20.54 20.86 

SNR 12.85 13.32 13.04 13.81 15.55 15.87 

SSIM 0.5854 0.6077 0.6381 0.6490 0.6639 0.6843 

EKI 0.3696 0.3785 0.4277 0.4387 0.6635 0.6812 

	ߪ ൌ 	0.2 

PSNR 17.01 17.40 17.15 17.75 18.66 18.90 

SNR 12.02 12.41 12.16 12.76 13.67 13.91 

SSIM 0.5631 0.5758 0.6164 0.5764 0.6324 0.6489 

EKI 0.3531 0.3579 0.4089 0.4192 0.5346 0.5652 

	ߪ ൌ 	0.3 

PSNR 16.13 16.50 16.38 16.82 17.25 17.43 

SNR 11.14 11.51 11.39 11.83 12.25 12.44 

SSIM 0.5325 0.5445 0.5816 0.5095 0.5979 0.6147 

EKI 0.3105 0.3167 0.3730 0.3879 0.4213 0.4675 

Phantom 
image 

	ߪ ൌ 	0.1 

PSNR 25.86 24.71 25.01 25.55 26.28 26.78 

SNR 13.69 12.54 12.84 13.39 14.11 14.61 

SSIM 0.6883 0.7920 0.7970 0.8365 0.8440 0.8500 

EKI 0.6452 0.5930 0.6121 0.6850 0.8202 0.8233 

	ߪ ൌ 	0.2 

PSNR 24.07 23.64 24.12 24.44 24.79 25.05 

SNR 11.90 11.47 11.95 12.27 12.62 12.88 

SSIM 0.6944 0.7680 0.7923 0.7974 0.8314 0.8302 

EKI 0.5878 0.5600 0.5799 0.6267 0.6799 0.6870 

	ߪ ൌ 	0.3 

PSNR 23.20 23.12 23.38 23.48 23.97 23.66 

SNR 11.03 10.95 11.22 11.31 11.80 11.49 

SSIM 0.6986 0.7529 0.7813 0.7823 0.7884 0.7831 

EKI 0.5354 0.5312 0.5521 0.5397 0.5658 0.5727 
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suppress the speckle noise along with the preservation of more edges. 

Apart from the analysis of the SNR, PSNR, SSIM and EKI values, another index such 

as the FOM is used to investigate the robustness of edge preservation performance for all 

methods stated above. The FOM values closer to 1, indicate better edge preservation and 

less edge dislocation in the denoised images. Figure 4.9 shows a comparative analysis of 

the FOM values for the images corrupted by the multiplicative speckle noise. From the Figure 

4.9, it is clear that the proposed RBAF method achieves higher FOM values (approx 0.7-0.8) 

than all the other existing methods as mentioned above. The TVF-CVT method gains an 

improvement in the FOM values than the TVF, TI-WT, CSCVT and CSST methods. In case 

of phantom image, the FOM values approx 0.82 obtained by the CSST and CVT-TVF 

methods are similar. Moreover the proposed RBAF methods also show a significant 

improvement in the FOM values produced by the CVT-TVF method that indicates better 

edge preservation performance of the proposed method. 

 

 

 

Figure 4.9 Comparative performance of the FOM values produced by different denoising methods 
applied to (a) Kidney image (b) Fetus image (c) Phantom image 
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Finally, it can be concluded from Table 4.1 and Figure 4.9 that there is a considerable 

improvement in noise suppression with higher values of the PSNR and SNR that is not at the 

cost of edge loss shown by the higher values of EKI and FOM. 

Experiment 2: Analysis and evaluation of the RBAF approach for Gaussian noise 

removal - In order to investigate the robustness of the proposed RBAF approach, Lena, girl 

and boat images with additive Gaussian noise model are considered. Different levels of noise 

are added by setting different standard deviation of noise ߪ ൌ 10, 20 and 30 to investigate 

the performance of different methods. The denoised images corresponding to noisy Lena,

 

Figure 4.10 Visual comparison of the denoising methods for (a) Lena image corrupted by Gaussian 
noise (b) Method 1 (c) Method 2 (d) Method 3 (e) Method 4 (f) Method 5 (g) Method 6 
(Proposed RBAF) 

 

Figure 4.11 Visual comparison of the denoising methods for (a) Girl image corrupted by Gaussian 
noise (b) Method 1 (c) Method 2 (d) Method 3 (e) Method 4 (f) Method 5 (g) Method 6 
(Proposed RBAF) 
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girl and boat image are shown in Figure 4.10, Figure 4.11 and Figure 4.12, respectively. 

From the visual assessment of these results, it is observed that the CSST method produces 

better quality of images by capturing more edges than the TVF, TI-WT and CSCVT methods. 

It is also capable to reduce the fuzzy edges produces by the CVT method. The TVF-CVT is 

also a better competitor of the CSST that shows a considerable amount of improvement in 

the SNR/PSNR and EKI values. Furthermore, the proposed RBAF method is capable to 

effectively retain the edges and thus, providing better quality images with good resolution. 

The outcomes of the methods supported by four different parameters are listed in Table 4.2. 

From the results mentioned in Table 4.2 for denoised kidney images, the proposed RBAF 

method produces better noise suppression as compared to the TVF, TI-WT, CSCVT, and 

CSST methods with improved edge preservation performance. The RBAF noise filtering 

approach also achieves better edge preservation performance by providing higher EKI 

values and a competitive noise suppression performance than the CVT-TVF approach.  

Besides this, it produces approx 0.37-1.85%, 0.43-2.28% higher PSNR and SNR values, 

respectively, with approx 0.61-2.91 larger EKI values than the CVT-TVF method. Similarly, in 

case of girl image, the proposed RBAF approach gains approx 2.49-13%, 2.34-4.35%, 3.29-

3.65%, 0.26-1.47% and 1.14-2.28% higher PSNR values than the TVF, TI-WT, CSCVT, 

CSST, and CVT-TVF methods with higher SNR, SSIM and EKI values. It achieves approx 

0.3-1.7%, 1.38-2.67% higher SNR, 0.3-1.13%, 0.18% higher SSIM values and 0.51-8.05%, 

0.66-4.10% larger EKI values than the CSST and CVT-TVF methods for girl image. Similarly, 

the proposed method produces an improved performance for a boat image. From the 

objective results mentioned in Table 4.2, it is concluded that the proposed method improves 

its edge preservation performance with approx 13.33-31.35%, 2.29-22.87%, 2.62-6.48%, 1.2  

 

Figure 4.12 Visual comparison of the denoising methods for (a) Boat image corrupted by Gaussian 
noise (b) Method 1 (c) Method 2 (d) Method 3 (e) Method 4 (f) Method 5 (g) Method 6 
(Proposed RBAF) 
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Table 4.2 Image quality measures obtained by the different denoising methods for Lena, girl and 
boat images corrupted by additive Gaussian noise  

Images Noise level Metrics Method 1 Method 2 Method 3 Method 4 Method 5 
Proposed 

RBAF 

Lena 
image 

	ߪ ൌ 	10 

PSNR 29.99 35.15 34.83 35.63 35.61 35.74 

SNR 24.33 29.49 29.17 29.98 29.96 30.09 

SSIM 0.8767 0.9609 0.9569 0.9643 0.9646 0.9652 

EKI 0.7216 0.8244 0.8313 0.8509 0.8505 0.8557 

	ߪ ൌ 	20 

PSNR 29.98 31.53 31.66 32.65 32.32 32.66 

SNR 24.33 25.88 26.01 26.99 26.66 27.00 

SSIM 0.8837 0.9204 0.9178 0.9300 0.9348 0.9349 

EKI 0.6863 0.6701 0.7386 0.7536 0.7728 0.7845 

	ߪ ൌ 30 

PSNR 29.45 29.44 29.73 30.77 30.26 30.82 

SNR 23.79 23.78 24.07 25.12 24.61 25.17 

SSIM 0.8751 0.8833 0.8805 0.8932 0.9051 0.9061 

EKI 0.6520 0.5442 0.6724 0.6748 0.7144 0.7352 

Girl 
 image 

	ߪ ൌ 	10 

30.55 33.73 33.42 34.02 33.75 34.52 

SNR 25.99 29.18 28.87 29.47 29.19 29.97 

SSIM 0.8660 0.9420 0.9370 0.9371 0.9470 0.9477 

EKI 0.6806 0.7232 0.7195 0.7325 0.7314 0.7362 

	ߪ ൌ 	20 

PSNR 30.73 31.24 31.27 32.14 31.86 32.39 

SNR 26.18 26.68 26.72 27.59 27.31 27.84 

SSIM 0.8769 0.9023 0.8971 0.9112 0.9156 0.9139 

EKI 0.6406 0.6021 0.6559 0.6686 0.6809 0.6874 

	ߪ ൌ 30 

PSNR 30.17 29.63 29.83 30.84 30.57 30.92 

SNR 25.62 25.07 25.28 26.29 26.01 26.37 

SSIM 0.8684 0.8696 0.8657 0.8808 0.8883 0.8899 

EKI 0.6075 0.5088 0.6201 0.6208 0.6444 0.6708 

Boat 
image 

	ߪ ൌ 	10 

PSNR 27.48 33.26 32.71 33.32 33.25 33.61 

SNR 22.14 27.92 27.37 27.98 27.90 28.27 

SSIM 0.8079 0.9540 0.9488 0.9568 0.9610 0.9691 

EKI 0.6637 0.8523 0.8495 0.8613 0.8654 0.8718 

	ߪ ൌ 	20 

PSNR 27.43 29.36 29.49 30.01 29.81 30.26 

SNR 22.09 24.02 24.15 24.66 24.47 24.92 

SSIM 0.8203 0.8940 0.8893 0.9056 0.9139 0.9161 

EKI 0.6395 0.7021 0.7445 0.7521 0.7631 0.7665 

	ߪ ൌ 30 

PSNR 27.12 27.47 27.49 28.19 28.23 28.40 

SNR 21.77 22.12 22.15 22.85 22.89 23.05 

SSIM 0.8223 0.8395 0.8357 0.8568 0.8594 0.8693 

EKI 0.6084 0.5612 0.6475 0.6535 0.6796 0.6895 
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-5.52% and 0.45-1.46% higher EKI values than the methods 1-5, respectively. Moreover, the 

proposed RBAF method outperforms all other denoising techniques for the different noise 

levels in terms of noise reduction and edge preservation as much as possible. 

Experiment 3: Analysis and evaluation of the RBAF approach for speckle reduction in 

the existing real US images - In order to fulfil the experimental objective, prostate US image 

is considered. The denoised prostate US images obtained by the various aforementioned 

methods are shown in Figure 4.13. From the visual assessment of the results illustrated in 

Figure 4.13, it is observed that the TVF and TI-WT methods are able to suppress the 

speckle, but some edges that are available in the original US image are lost during the 

filtering process. Besides it, the CSST method produces better noise suppression 

performance by preserving more edges presented in prostate US images than the TVF, TI-

WT and CSCVT methods, but the CVT-TVF approach produces denoised images with better 

visual quality than the CSST approach. Furthermore, the proposed RBAF approach provides 

better results in terms of speckle reduction than both the CSST and CVT-TVF approach.  

For another visual assessment of the performance obtained by the proposed approach, 

a liver US image is taken and processed by all the denoising methods as mentioned above. 

The denoised liver US images are shown in Figure 4.14, by which it is observed that the 

proposed RBAF approach provides better results than others as similar to the previous 

results. Besides these results, the quantitative evaluation of the MVR values is performed in 

support of the visual results obtained by the different denoising methods. A larger value of 

MVR represents a better quantitative performance of denoising methods. For such purpose, 

four different bar graphs are presented in Figure 4.15 for two different image regions marked  

 

Figure 4.13 Visual comparison of the (a) Prostate ultrasound image, processed by different denoising 
methods (b) Method 1 (c) Method 2 (d) Method 3 (e) Method 4 (f) Method 5 (g) Method 6 
(Proposed RBAF) 
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Figure 4.14 Visual comparison of the (a) Liver ultrasound image, processed by different denoising 
methods (b) Method 1 (c) Method 2 (d) Method 3 (e) Method 4 (f) Method 5 (g) Method 6 
(Proposed RBAF) 

on four different US images illustrated in Figure 2.21. From the MVR values shown in Figure 

4.15, it is observed that the CVT-TVF approach provides larger MVR values than the TVF, 

TI-WT CSCVT, and CSST method and also produce the competitive MVR values to the 

proposed RBAF approach for some images. Moreover, the proposed RBAF approach 

outperforms the CVT-TVF method as well as others by producing higher MVR values. 
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Figure 4.15 Comparison between the MVR values obtained from the different denoising methods for 
two different image regions illustrated in Figure 2.21 
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Table 4.3 Performance comparison of the denoising methods with the proposed RBAF approach 
using averaged MVR values over 100 different image regions on 50 ultrasound images 

Methods Noisy Method 1 Method 2 Method 3 Method 4 Method 5 
Proposed 

RBAF 

MVR 14.04 ± 3.04 21.45 ± 4.95 18.16 ± 3.14 18.22 ± 4.57 20.94 ± 3.88 21.31 ± 4.85 22.23 ± 3.98

 
In addition, to further assess the performance of different denoising methods, Table 4.3 

shows the averaged MVR values for each denoising method including the proposed RBAF 

method applied on two different locations of fifty different US images. In this way, 100 

different observations (two measurement for each image) are considered to present the 

averaged (average ± standard deviation) MVR values. The results of Table 4.3 show the 

superiority of the proposed RBAF method in terms of effective noise reduction performance 

by providing higher average MVR value (22.23) compared to the others.  

4.8  Summary 

This chapter presents a hybrid noise reduction technique using a remnant approach 

based on adaptive fusion by the TVF and ST based methods and named as the RBAF noise 

filtering approach. This hybrid approach takes the advantage of both the TVF method for 

noise suppression and the ST based method for denoising and recovering of edges which 

have been lost during the TVF method. The three denoised images are fused adaptively by 

varying the weights of the denoised image by the TVF method, shearlet denoising and 

extracted edges from the remnant of the denoised image by TVF method. The proposed 

RBAF approach also helps to suppress the staircase or blocking effects produced by the 

TVF method and the fuzzy edges introduced by the CVT and ST based methods. The 

denoising capabilities of the proposed RBAF approach are also compared with others using 

a number of standard test images corrupted with Gaussian noise, simulated speckled images 

and real US images. Experimental results show a significant improvement in the PSNR and 

SNR values obtained by the proposed RBAF approach as compared to others. The improved 

values of EKI also indicate that the improvement in the PSNR and SNR values is not at the 

cost of blurring the edges of denoised image. The proposed method also tends to efficiently 

retain the structural similarity and edges as can be seen from the results of SSIM and FOM 

values. Finally, it is concluded that the proposed RBAF approach does not only ensure an 

improvement in the visual appearance of enhanced regions, but also exhibits the improved 

performance in terms of edge preserved noise reduction in the images. 

 

 

 

 

 



 

138 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

139 

 

CHAPTER 5: NOISE FILTERING USING ADAPTIVE ANISOTROPIC DIFFUSION 
EQUATIONS IN NONSUBSAMPLED SHEARLET DOMAIN 

In this chapter, two different approaches are discussed for removing the different types of noises. For 

such purpose, the anisotropic diffusion equations are modified and used in the nonsubsampled 

shearlet domain that is employed to provide the effective representation of the image coefficients. The 

modified diffusion equations are applied to the noisy coarser nonsubsampled shearlet coefficients to 

improve the noise reduction efficiency and effectively preserve the edge features. The methodologies 

used to present the proposed approaches are also discussed in this chapter. The performance of the 

proposed methods is also assessed for both the additive Gaussian and multiplicative speckle noise, 

qualitatively and quantitatively. A detailed comparative analysis has also been done and presented in 

the last section of this chapter for assessing better performance of the noise reduction produced by 

the proposed methods. 

5.1 Introduction 

It has been analyzed and emphasized in previous chapters that the image denoising is 

an important process in image processing, but it becomes more important in any image 

denoising process that there is no blurring effect produced in the denoised image with no 

edge dislocations. As mentioned in previous three chapters that are based on noise filtering 

in the transform domain, each method has some advantages and limitations. From a 

comparative analysis presented in chapter 2, it has been analyzed that the PDE based 

methods also serve the same denoising purpose, but at the cost of some blurring effects 

introduced in the processed images. Besides this, it is also recognized from chapter 3 that 

the transformation techniques such as the CVT, ST and RT are able to represent the 

singularities present in the images, but it generally leads to shift variance and pseudo-Gibbs 

oscillations. Thus, some visual distortions are reflected in the denoised images. To overcome 

such limitations, chapter 4 presented an RBAF approach using the TVF algorithm and 

shearlet based method. Shearlet can be reconstructed in the discrete domain realized by the 

combination of the LP and DFB, but still the lack of shift invariance problem cannot be 

overcome. Although, some methods based on shearlet have also been presented for the 

different applications [57, 58, 84, 149, 153, 285]. To solve this problem, Easley et al. [85] 

introduced a nonsubsampled ST (NSST) to provide both the multiscale and direction analysis 

for an image. The NSST is realized using nonsubsampled Laplacian pyramid (NSLP) 

followed by several shearing filters. The NSST also provides flexible directional selectivity 

and shift invariance [85, 98, 118]. Thus, in the present study, the NSST is used to 

decompose an image into finer and coarser coefficients. The NSST thresholding is also 

applied on the high frequency finer NSST subimage coefficients as similar to the CVT and 

ST thresholding. Besides the NSST thresholding, the PDE based method such as nonlinear 

anisotropic diffusion is also used to improve the denoising performance. 
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In the present work, the modified adaptive anisotropic diffusion model is applied to the 

noisy coarser NSST subimage coefficients rather than keeping the coarser subimage 

coefficients unchanged. In the modified diffusion process, an adaptive gray variance is also 

incorporated with the gradient information of eight connected neighboring pixels to preserve 

the edges, effectively in one approach. Motivated from better noise reduction results of the 

NLMF approach presented in the comparative analysis of chapter 2, the nonlocal pixel 

information is also incorporated to evaluate the gradient of eight connected neighboring 

pixels with an adaptive gray variance to present another denoising approach. Accordingly, in 

this chapter, two different approaches are presented in which one is based on the NSST and 

nonlinear adaptive diffusion filtering approach (NSST-NADF) and another is based on 

nonlocal information (NL) based NADF using the NSST decomposition (NSST-NLNADF). 

The remaining part of this chapter is arranged as follows. The next section describes a 

brief idea of the NSST thresholding and ADF approaches that are utilized to present the 

proposed NSST-NADF and NSST-NLNADF methods. The performance of the proposed 

methods is also analyzed for both the speckle and Gaussian noise reduction. Many efforts 

have been made to estimate and compare the noise reduction and edge preservation 

performance with the other existing methods. 

5.2 Nonsubsampled Shearlet Transform 

The NSST is an extension of the ST in multidimensional and multidirectional case 

which combines the multiscale and direction analysis, separately. Firstly, the NSLP is used to 

decompose an image into low and high frequency subimage coefficients and then the 

direction filtering is employed to get the different subbands and different direction shearlet 

coefficients. Direction filtering is achieved using the shear matrix which provides many more 

directions. The complete mathematical formulation of the ST has been discussed in the 

previous chapter. The main difference between the NSST and ST is that the downsampling 

and upsampling are not used to implement the NSST which is fully shift invariance version of 

the ST. The NSLP analysis is utilized through an iterative process that is expressed as 

below: 

ܮܵܰ ܲାଵ ൌ ݏܨ ൌ ሺ݄ܣଵ ∏ ݄ܣ
ିଵ
ୀଵ ሻ(5.1)       ݏ 

where ݏ refers to an original image, ܰܵܮ ܲାଵ is the detail coefficients at ݉  1௧ and ݄ܣ	 

and ݄ܣଵ  refer to the lowpass and highpass filters, respectively. 

As mentioned above, the NSLP and shearing filters (ShF) are utilized to provide the 

multiscale and multidirectional decomposition. At each level of the NSLP decomposition, one 

high frequency and one low frequency subimages are produced and further the low 

frequency subband is decomposed, iteratively. At the decomposition level ݉, an image is 

decomposed into ݉  1 subbands with the same size of the source image in which one is the 
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low frequency subband and others ݉ are the high frequency subband images. Shearing filter 

is also used to decompose the high frequency subimages using the NSST decomposition 

without sub-sampling that satisfy the shift invariance property. Using the ShF at level ܭ, the 

high frequency subband images are obtained from the NSLP at each decomposition level 

and 2 directional subband image coefficients are produced with the same size as the 

source images. Three level NSST decomposition is shown in Figure 5.1 which illustrates the 

NSLP and its corresponding directional decomposition. In the present work, three level 

݉ ൌ 3 decomposition is used and the number of shearing directions is taken to be 8, 8, 4 

from finer to coarser level decomposition of an image. An example of three level NSST 

decomposition of a zone plate image is also shown in Figure 5.2. 

 

Figure 5.1 Three level multiscale and multidirectional decomposition of the NSST 

5.3 NSST Thresholding  

The NSST thresholding is the same as thresholding used with the ST and CVT. A 

summary of the algorithm is as follows: 

Step 1: Apply the circular shifts on the noisy image ݏሺݔ,  .ሻݕ

,ݔሺ′ݏ ሻݕ ൌ ,ݔሺݏ൫ݐ݂݄݅ݏ_ݎ݈ܽݑܿݎ݅ܿ ,ሻݕ ,	௦௧ݔൣ  ൧൯    (5.2)	௦௧ݕ

The number of shifts depends on the length of the input vector scale. 

Step 2: Perform the multiscale decomposition of the shifted copies of an image using the 

NSST to obtain the noisy NSST coefficients. 

,ݔேௌௌ்ሺݏ ሻݕ ൌ ܰܵܵܶ൫ݏ′ሺݔ,  ሻ൯       (5.3)ݕ
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Figure 5.2 NSST decomposition of (a) Original zoneplate image (b) Approximate NSST component. 
The detail NSST components at (c) scale 3 (d) scale 2 (e) scale 1 

Step 3: Apply the thresholding scheme on high frequency NSST coefficients ൫ݏఊேௌௌ்ሺݔ,  ሻ൯ toݕ

get the threshold coefficients. 

,ݔఊேௌௌ்ሺݏ̂ ሻݕ ൌ Θ௧൫ݏఊேௌௌ்ሺݔ, ሻ൯ݕ ൌ ൜
,ݔఊேௌௌ்ሺݏ ,ݔఊேௌௌ்ሺݏห				ሻ,ݕ ሻหݕ  ఊߪߪߚ
0	,																																										otherwise

  (5.4) 

where ̂ݏఊேௌௌ்ሺݔ,  ሻ is the estimator of the unknown noiseless coefficients using hardݕ

thresholding, ߪ is the standard deviation of the noisy image, and  ߪఊ is the standard 

deviation of the noisy subband at each scale decomposed using the NSST. The 

noise variance of each subband is estimated from the noisy NSST coefficients using 

Monte Carlo techniques [225]. 

ఊߪ ൌ
ଵ

ം
ට∑ ∑ ఊݏ

ேௌௌ்ሺݔ, ఊݏሻݕ
ேௌௌ்⋆ሺݔ, ሻݕ

ം
௬ୀଵ

ം
௫ୀଵ       (5.5) 

where ݏఊேௌௌ்
⋆
ሺݔ, ,ݔఊேௌௌ்ሺݏ ሻ is the complex conjugate ofݕ  ఊ refers to the lengthܮ ሻ andݕ

of subband at ߛ ൌ 1, 2, 3, … , ܭ െ 1th scale. For each high frequency NSST subbands, 

the scale dependent parameter ߚ is computed using ൌ ඥlog	ሺܮఊሻ . 

Step 4: Invert the multiscale decomposition to reconstruct the denoised image. 

,ݔሺ′ݏ̂ ሻݕ ൌ ܰܵܵܶିଵ ቀ̂ݏఊேௌௌ்ሺݔ,  ሻቁ       (5.6)ݕ

Step 5: Perform the inverse shift and resulting denoised image are shifted back to the 

original position and average the translated results to get the approximated image. 

,ݔሺݏ̂ ሻݕ ൌ ,ݔሺ′ݏ൫̂ݐ݂݄݅ݏ_ݎ݈ܽݑܿݎ݅ܿ ,ሻݕ ൣെݔ௦௧	, െݕ௦௧	൧൯     (5.7) 
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5.4 Anisotropic Diffusion 

Anisotropic diffusion is modelled by Perona and Malik (PM) for defining a scale space 

image [186]. This model is an extension of the heat equation that is based on the PDE. Let 

,ݔሺݏ ;ݕ ,ݔሻ is an image with coordinates ሺݐ  and the continuous anisotropic ,ݐ ሻ at timeݕ

diffusion is defined as  

డ௦ሺ௫,௬;௧ሻ

డ௧
ൌ ,ݔሾ݃ሺݒ݅݀ ;ݕ ,ݔሺݏߘሻݐ ;ݕ  ሻሿ       (5.8)ݐ

where ݀݅ݒ is the divergence operator, ݃ is the diffusion coefficient and  refers to a gradient 

operator with respect to space variables. The diffusion model becomes isotropic, if ݃ is a 

constant parameter. If ݃ is a function of directional parameters, the diffusion model becomes 

anisotropic. They also suggested two well known diffusion coefficients considered as below: 

݃ሺ݂ሻ ൌ 1/ 1  ቀ
ఒ
ቁ
ଶ
൨         (5.9) 

݃ሺ݂ሻ ൌ ݔ݁ െ ቀ


ఒ
ቁ
ଶ
൨         (5.10) 

where ݂ ൌ  serves as a threshold of gradient size. Instead of having ߣ	and the parameter |ݏ|

many computational and theoretical properties, there is one serious problem with the 

diffusion method. It is very sensitive to the noise which may introduce large oscillations in the 

gradient. Furthermore, the PM method cannot differentiate between true edges and noises. 

Another problem is that staircasing effects arise around smooth edges [128]. To provide the 

solution of this problem, Catte et al. [46] proposed that a Gaussian kernel ܩఙ is convolved 

with the images to reduce the effect of noise. It is very sensitive to the number of diffusion 

iteration by considering only the gradient information of the pixel. Normally, large gradient 

values are treated as edges but sometimes the important details along with edges may have 

low gradient magnitude [53]. Therefore, the gray level variance is incorporated along with the 

gradient of pixels to evaluate the diffusion coefficients using nonlocal information around the 

center pixel. In the PM method, the derivative term (ݏ) is calculated using a template of four 

closest neighbors of the pixel ሺݔ,  ሻ. This term can be evaluated more accurately byݕ

considering the large number of neighboring pixels within a template. Moreover, eight 

nearest neighboring pixels are used within 3×3 template to evaluate the gradient term and 

the adaptive gray variance is also included along with the gradient to estimate the diffusion 

coefficients. In the NSST-NLNADF approach, the nonlocal information around the center 

pixel is estimated based on non local means theory [37, 69]. 

5.5 Proposed Nonlinear Adaptive Diffusion in NSST Domain Based Noise Filtering 

In the proposed methods, the NSST thresholding and modified nonlinear anisotropic 

diffusion equations are utilized to increase the noise reduction performance. As mentioned in 

the NSST thresholding approach, the high frequency coefficients are thresholded and the low 
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frequency approximation coefficients remain unchanged. It preserves more edges than the 

WT and CVT, but it also adds some unwanted fuzzy edges in the homogeneous region like 

others. In order to solve this problem, coarser (approximation) NSST coefficients are 

processed with the modified diffusion model. The process flow of the proposed method is 

shown in Figure 5.3. 

Implementation steps 

Let ݏሺݔ,  ሻ be an observed noisy image and the implementation steps of the proposedݕ

model are as follows: 

Step 1: Perform the NSST to an image ݏሺݔ, ݏ different scales. Let ܭ ሻ atݕ
ேௌௌ்ሺݔ,  ሻ representݕ

the approximation coefficients at ܭ௧ coarser scale and ൫ݏఊேௌௌ்ሺݔ,  ሻ൯ denote theݕ

detail subband coefficients of the image, where ߛ ൌ 1, 2, 3, … , ܭ െ 1. 

Step 2: Apply the thresholding function Θ௧ሺ∙ሻ to each detail coefficients ൫ݏఊேௌௌ்ሺݔ,  ሻ൯ of theݕ

NSST decomposition and evaluate the modified coefficients ቀ̂ݏఊேௌௌ்ሺݔ, ሻݕ ൌ

Θ௧൫ݏఊேௌௌ்ሺݔ,  .ሻ൯ቁ for each scale from 1 to K-1ݕ

Step 3: Now the coarser scale approximation NSST coefficients are processed using the 

modified nonlinear diffusion model. Let ܿሺݔ, ;ݕ ሻݐ ൌ ݏ
ேௌௌ்ሺݔ, ;ݕ  ሻ be the coarserݐ

approximation NSST coefficients at coordinates ሺݔ,  The discrete .ݐ ሻ and iterationݕ

implementation of the anisotropic diffusion in Eqn. (5.8) using four nearest neighbor 

is given as, 

ܿሺݔ, ;ݕ ݐ  1ሻ ൌ 	ܿሺݔ, ;ݕ ሻݐ  ߬

ۏ
ێ
ێ
ۍ
݃ாሺݔ, ;ݕ ,ݔܿሺሻݐ ;ݕ ሻݐ

݃ௐሺݔ, ;ݕ ,ݔܿሺሻݐ ;ݕ ሻݐ
݃ேሺݔ, ;ݕ ,ݔܿሺሻݐ ;ݕ ሻݐ
݃ௌሺݔ, ;ݕ ,ݔୗܿሺሻݐ ;ݕ ሻݐ ے

ۑ
ۑ
ې
   (5.11) 

where 0  ߬  1/4 and E, W, N and S refer to east, west, north and south, 

respectively. The gradient ሺ୨ሻ is evaluated as nearest neighbor differences as 

follows: 

,ݔܿሺ ;ݕ ሻݐ ൌ
ሺ௫ାଵ,௬;௧ሻିሺ௫,௬;௧ሻ

ௗ

,ݔܿሺ ;ݕ ሻݐ ൌ
ሺ௫ିଵ,௬;௧ሻିሺ௫,௬;௧ሻ

ௗ

,ݔܿሺ ;ݕ ሻݐ ൌ
ሺ௫,௬ାଵ;௧ሻିሺ௫,௬;௧ሻ

ௗ

,ݔୗܿሺ ;ݕ ሻݐ ൌ
ሺ௫,௬ିଵ;௧ሻିሺ௫,௬;௧ሻ

ௗ

										

ۙ
ۖۖ
ۘ

ۖۖ
ۗ

      (5.12) 

Here, ݀ represents a spatial step size between two consecutive pixels in horizontal 

and vertical direction in the image. 

(a) In the first stage of diffusion model, all the eight nearest neighbors are used to 

calculate the derivative term in 3×3 template. Figure 5.4 shows the neighborhood 

pixel representation in 3×3 template. The derivation term is calculated in two groups.
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Figure 5.3 Process flow of the proposed NSST-NADF and NSST-NLNADF approaches 
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Figure 5.4 Discrete computational approach to evaluate the diffusion coefficient 

(i) For NSST-NADF (approach-1) 

In the first group, we consider only those neighboring pixels which have a distance ݀ 

from the center pixel ݏ
ேௌௌ்ሺݔ, ;ݕ  ሻ as shown in the Eqn. (5.12), while in the second group, theݐ

pixels which have the distance ݀√2 from the center pixel are computed as follows: 

,ݔܿሺ ;ݕ ሻݐ ൌ
ሺ௫ାଵ,௬ାଵ;௧ሻିሺ௫,௬;௧ሻ

ௗ√ଶ

,ݔܿሺ ;ݕ ሻݐ ൌ
ሺ௫ିଵ,௬ାଵ;௧ሻିሺ௫,௬;௧ሻ

ௗ√ଶ

,ݔୗܿሺ ;ݕ ሻݐ ൌ
ሺ௫ାଵ,௬ିଵ;௧ሻିሺ௫,௬;௧ሻ

ௗ√ଶ

,ݔୗܿሺ ;ݕ ሻݐ ൌ
ሺ௫ିଵ,௬ିଵ;௧ሻିሺ௫,௬;௧ሻ

ௗ√ଶ

							

ۙ
ۖۖ
ۘ

ۖۖ
ۗ

      (5.13) 

(ii) For NSST-NLNADF (approach-2) 

In the first group, we consider only those neighboring pixels which have a distance ݀ 

from the center pixel ܿሺݔ,  ሻ as shown in Figure 5.4 which are modified by replacing ܿ withݕ

the nonlocal information around the current pixels ܿே at the iteration t. It can be expressed 

as [37, 261] 

ܿேሺݔሻ ൌ ∑ ߱ሺݔ, ሻ௬∈௦ݕሻܿሺݕ         (5.14) 

߱ሺݔ, ሻݕ ൌ
ଵ

ሺ௫ሻ
ݔ݁ ቀ

ିఈሺ௫,௬ሻ

మ
ቁ        (5.15) 

,ݔሺߙ ሻݕ ൌ ሻ൯ݔீฮܿ൫ܰሺߢ െ ܿ൫ܰሺݕሻ൯ฮ
ଶ
       (5.16) 

ܼሺݔሻ ൌ ∑ ݔ݁ ቀ
ିఉሺ௫,௬ሻ

మ
ቁ௬         (5.17) 

,ݔሺߚ ሻݕ ൌ ீߢ ቛቀܿ൫ܰሺݔሻ൯ െ ܿ൫ܰሺݕሻ൯ቁ ቀܿ൫ܰሺݔሻ൯ െ ሻ൯ቁቛݕ൫ܰሺܿ
ଶ
   (5.18) 

where ܿேሺݔሻ and ܿሺݕሻ refer to the denoised image and noisy image, respectively. The ݔ and 

,ݔis the set of all the image pixels. The ߱ሺ ݏ are the image pixel counts and ݕ  ሻ is theݕ

similarity between the pixels ݔ and ݕ satisfying the condition 0  ߱ሺݔ, ሻݕ  1 and 
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∑ ߱ሺݔ, ሻݕ ൌ 1௬ ܽ ,ீ is a Gaussian kernelߢ ,  0 represents the standard deviation. ܿሺܰሺݔሻሻ 

and ܿሺܰሺݕሻሻ are the intensity gray level vectors where ܰሺݔሻ and ܰሺݕሻ denote the square 

neighborhood of a fixed size centered at pixels ݔ and ݕ, respectively, ܿ denotes the gradient 

operation and the parameter ݄ acts as a degree of filtering. Now Eqn. (5.12) is modified as  

,ݔܿேሺ ;ݕ ሻݐ ൌ
ಿಽሺ௫ାଵ,௬;௧ሻିಿಽሺ௫,௬;௧ሻ

ௗ

,ݔܿேሺ ;ݕ ሻݐ ൌ
ಿಽሺ௫ିଵ,௬;௧ሻିಿಽሺ௫,௬;௧ሻ

ௗ

,ݔܿேሺ ;ݕ ሻݐ ൌ
ಿಽሺ௫,௬ାଵ;௧ሻିಿಽሺ௫,௬;௧ሻ

ௗ

,ݔୗܿேሺ ;ݕ ሻݐ ൌ
ಿಽሺ௫,௬ିଵ;௧ሻିಿಽሺ௫,௬;௧ሻ

ௗ
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      (5.19) 

In the second group, the pixels which have the distance ݀√2 from the center pixel are 

computed as follows: 

,ݔܿேሺ ;ݕ ሻݐ ൌ
ಿಽሺ௫ାଵ,௬ାଵ;௧ሻିಿಽሺ௫,௬;௧ሻ

ௗ√ଶ
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ௗ√ଶ

,ݔୗܿேሺ ;ݕ ሻݐ ൌ
ಿಽሺ௫ାଵ,௬ିଵ;௧ሻିಿಽሺ௫,௬;௧ሻ

ௗ√ଶ

,ݔୗܿேሺ ;ݕ ሻݐ ൌ
ಿಽሺ௫ିଵ,௬ିଵ;௧ሻିಿಽሺ௫,௬;௧ሻ
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      (5.20) 

(b) For NSST-NADF and NSST-NLNADF (approach-1 and 2) 

In the second stage, gray level variance is incorporated with gradient to calculate the 

diffusivity term. This gray level variance is estimated at each pixel of the approximation 

coefficients ݏ
ேௌௌ்ሺݔ, ;ݕ  ሻ in block size 3×3 and normalized it. After incorporating the varianceݐ

ሺܸܽݎሻ and gradient in the diffusion equations, Eqns (5.9) and (5.10) become as  

݃ሺ݂, ሻݎܸܽ ൌ
ଵ

ଵାቀ
∙ೇೌೝ್

ഊ
ቁ
మ        (5.21) 

݃ሺ݂, ሻݎܸܽ ൌ ݔ݁ െ ቀ
∙್

ఒ
ቁ
ଶ
൨        (5.22) 

where ݂ ൌ ห୨′ܿேሺݔ, ;ݕ ′݆ ሻห andݐ ൌ ,ܰ,ܹ,ܧ ܵ, ,ܧܰ ܹܰ, ,ܧܵ ܹܵ which indicate the east, west, 

north, south, north-east, north-west, south-east and south-west direction, respectively from 

the center pixels in 3×3 template as shown in Figure 5.4 .  

(c) For NSST-NADF (approach-1) 

By incorporating the above formulations, the modified nonlinear anisotropic diffusion 

model is given as, 

ݏ
ேௌௌ்ሺݔ, ;ݕ ݐ  1ሻ ൌ ݏ

ேௌௌ்ሺݔ, ;ݕ  ሻݐ

߬

ۏ
ێ
ێ
ێ
ۍ ݃ாሺݔ, ;ݕ ݏሻݐ

ேௌௌ்ሺݔ, ;ݕ ሻݐ  ݃ௐሺݔ, ;ݕ ݏሻݐ
ேௌௌ்ሺݔ, ;ݕ ሻݐ

݃ேሺݔ, ;ݕ ݏሻݐ
ேௌௌ்ሺݔ, ;ݕ ሻݐ  ݃ௌሺݔ, ;ݕ ݏୗሻݐ

ேௌௌ்ሺݔ, ;ݕ ሻݐ
݃ோሺݔ, ;ݕ ݏሻݐ

ேௌௌ்ሺݔ, ;ݕ ሻݐ  ݃ேௐሺݔ, ;ݕ ݏሻݐ
ேௌௌ்ሺݔ, ;ݕ ሻݐ

݃ௌாሺݔ, ;ݕ ݏୗሻݐ
ேௌௌ்ሺݔ, ;ݕ ሻݐ  ݃ௌௐሺݔ, ;ݕ ݏୗሻݐ

ேௌௌ்ሺݔ, ;ݕ ሻݐ ے
ۑ
ۑ
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           (5.23) 
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(d) For NSST-NLNADF (approach-2) 

By incorporating the above formulations, the modified nonlinear anisotropic diffusion 

model is given as, 

ܿேሺݔ, ;ݕ ݐ  1ሻ ൌ ܿேሺݔ, ;ݕ ሻݐ  ߬

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

݃ாሺݔ, ;ݕ ,ݔܿேሺሻݐ ;ݕ ሻݐ
݃ௐሺݔ, ;ݕ ,ݔܿேሺሻݐ ;ݕ ሻݐ
݃ேሺݔ, ;ݕ ,ݔܿேሺሻݐ ;ݕ ሻݐ
݃ௌሺݔ, ;ݕ ,ݔୗܿேሺሻݐ ;ݕ ሻݐ
݃ோሺݔ, ;ݕ ,ݔܿேሺሻݐ ;ݕ ሻݐ
݃ேௐሺݔ, ;ݕ ,ݔܿேሺሻݐ ;ݕ ሻݐ
݃ௌாሺݔ, ;ݕ ,ݔୗܿேሺሻݐ ;ݕ ሻݐ
݃ௌௐሺݔ, ;ݕ ,ݔୗܿேሺሻݐ ;ݕ ሻݐ ے
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ې

   (5.24) 

Step 4: Finally, a filtered image ݏሺݔ,  ሻ is obtained after taking the inverse NSST transformݕ

on the processed subimages from step 2 and 3. 

5.6 Experimentation 

To investigate the denoising performance of the proposed methods, three experiments 

having different objectives are performed on the same dataset as given below: 

Experiment 1: Analysis and evaluation of the denoising performance of the proposed NSST-

NADF approach. 

1.1: Denoising of test images corrupted by multiplicative speckle noise. 

1.2: Denoising of test images corrupted by additive Gaussian noise. 

1.3: Denoising of real US medical images for speckle reduction. 

Experiment 2: Analysis and evaluation of the denoising performance of the proposed NSST-

NLNADF approach. 

2.1: Denoising of test images corrupted by multiplicative speckle noise. 

2.2: Denoising of test images corrupted by additive Gaussian noise. 

2.3: Denoising of real US medical images for speckle reduction. 

Experiment 3: Comparative analysis and evaluation of the proposed approaches. 

3.1: Comparison of the proposed approaches with others for the test images degraded by 

speckle noise. 

3.2: Comparison of the proposed approaches with others for the test images degraded by 

Gaussian noise. 

3.3: Comparison of the proposed NSST-NADF and NSST-NLNADF methods with others for 

speckle reduction in real US images. 

5.7 Results and Discussions 

5.7.1 Analysis and evaluation of the proposed NSST-NADF approach 

To validate the objective of this experiment, it is further decomposed into three different 

sub-experiments as listed below: 
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1.1: Denoising of test images corrupted by multiplicative speckle noise - To assess the 

performance of the NSST-NADF approach, same kidney, fetus and phantom images as 

shown in previous chapters are utilized. The denoised kidney images are shown in Figure 

5.5. From the visual analysis of the results presented in Figure 5.5, it is clear that the 

proposed NSST-NADF approach is able to provide better visual quality of kidney image than 

the others such as the ADF, NLMF, TI-WT, CSCVT and CSST methods. These subjective 

outcomes of kidney images are also validated by evaluating the performance measures as 

discussed in chapter 2. The performance measures obtained by the NSST-NADF approach 

for three different noise levels (ߪ ൌ 0.1, 0.2 and 0.3) are listed in Table 5.1. From the results 

mentioned in Table 5.1, it is observed that the proposed NSST-NADF approach achieves 

better speckle reduction performance by producing higher PSNR (28.55, 27.64 and 27.12) 

and SNR (17.93, 17.02 and 16.50) for all three noise levels. With higher values of the SNR 

and PSNR, it also gains larger FOM (0.7976, 0.7914 and 0.7556) and EKI (0.5276, 0.4619 

and 0.4538) values that indicate superior performance of the NSST-NADF than the others. 

Similarly, from the visual results of the denoised fetus and phantom images illustrated in 

Figure 5.6 and Figure 5.7, respectively, it is observed that the proposed NSST-NADF 

approach produces most similar results as the original images and the results produced by 

the NSST-NADF approach are better than the existing methods. The quantitative results 

produced by the denoising methods for the fetus images are presented in Table 5.2. The 

results mentioned in Table 5.2 show that the proposed NSST-NADF approach produces 

higher SNR, PSNR, SSIM, FOM and EKI values than the other existing methods. 

 

Figure 5.5 Denoised kidney images produced by the (a) ADF (b) NLMF (c) TI-WT (d) CSCVT (f) 
CSST (f) Proposed NSST-NADF 
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Table 5.1 Image quality measures obtained by the proposed NSST-NADF and other methods for 
kidney image degraded by speckle noise 

Noise level Methods PSNR SNR SSIM FOM EKI 

	ߪ ൌ 	0.1 

ADF 21.74 11.11 0.7610 0.3831 0.3181 

NLMF 28.37 17.75 0.7829 0.6785 0.4827 

TI-WT 27.48 16.86 0.7412 0.5484 0.4319 

CSCVT 26.77 16.15 0.7666 0.5460 0.4340 

CSST 27.54 16.92 0.7603 0.6258 0.4567 

Proposed NSST-NADF 28.55 17.93 0.8259 0.7976 0.5276 

	ߪ ൌ 	0.2 

ADF 20.79 10.17 0.7190 0.3776 0.3041 

NLMF 27.37 16.75 0.7797 0.6652 0.4519 

TI-WT 27.31 16.69 0.7391 0.5364 0.4307 

CSCVT 26.57 15.95 0.7633 0.5663 0.4318 

CSST 27.28 16.66 0.7548 0.6074 0.4349 

Proposed NSST-NADF 27.64 17.02 0.7892 0.7914 0.4619 

	ߪ ൌ 	0.3 

ADF 20.46 9.84 0.6974 0.3851 0.3011 

NLMF 26.20 15.58 0.7612 0.6584 0.4236 

TI-WT 26.91 16.29 0.7353 0.5457 0.4218 

CSCVT 26.27 15.65 0.7407 0.5828 0.4193 

CSST 27.05 16.43 0.7560 0.5962 0.4231 

Proposed NSST-NADF 27.12 16.50 0.7625 0.7556 0.4538 

 

 

Figure 5.6 Denoised fetus images produced by the (a) ADF (b) NLMF (c) TI-WT (d) CSCVT (f) CSST 
(f) Proposed NSST-NADF 

Similarly, Table 5.3 presents the performance measures for the denoised phantom 

images produced by the proposed NSST-NADF and other approaches. From all the results 

mentioned in Table 5.3, it is observed that the proposed NSST-NADF approach is capable to  
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Table 5.2 Image quality measures obtained by the proposed NSST-NADF and other methods for 
fetus image degraded by speckle noise 

Noise level Methods PSNR SNR SSIM FOM EKI 

	ߪ ൌ 	0.1 

ADF 17.06 12.08 0.5925 0.6121 0.3572 

NLMF 19.56 14.57 0.6800 0.8654 0.6336 

TI-WT 18.31 13.32 0.6077 0.8474 0.3785 

CSCVT 18.03 13.04 0.6381 0.8258 0.4277 

CSST 18.80 13.81 0.6490 0.8369 0.4387 

Proposed NSST-NADF 20.70 15.71 0.6820 0.9172 0.6792 

	ߪ ൌ 	0.2 

ADF 15.72 10.73 0.5375 0.5037 0.3246 

NLMF 18.13 13.14 0.6369 0.8453 0.5454 

TI-WT 17.40 12.41 0.5758 0.7524 0.3579 

CSCVT 17.15 12.16 0.6164 0.7276 0.4089 

CSST 17.75 12.76 0.5764 0.7854 0.4192 

Proposed NSST-NADF 19.22 14.23 0.6383 0.8995 0.5897 

	ߪ ൌ 	0.3 

ADF 15.58 10.59 0.4978 0.4447 0.3092 

NLMF 17.91 12.92 0.5752 0.8267 0.4541 

TI-WT 16.50 11.51 0.5445 0.7128 0.3167 

CSCVT 16.38 11.39 0.5816 0.7086 0.3730 

CSST 16.82 11.83 0.5095 0.7382 0.3879 

Proposed NSST-NADF 18.43 13.45 0.6050 0.8914 0.5474 

 

 

Figure 5.7 Denoised phantom images produced by the (a) ADF (b) NLMF (c) TI-WT (d) CSCVT (f) 
CSST (f) Proposed NSST-NADF 
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Table 5.3 Image quality measures obtained by the proposed NSST-NADF and other methods for 
phantom image degraded by speckle noise 

Noise level Methods PSNR SNR SSIM FOM EKI 

	ߪ ൌ 	0.1 

ADF 21.98 9.81 0.7650 0.4311 0.7381 

NLMF 27.31 15.14 0.8492 0.7424 0.7933 

TI-WT 24.71 12.54 0.7920 0.6292 0.5930 

CSCVT 25.01 12.84 0.7970 0.6494 0.6121 

CSST 25.55 13.39 0.8365 0.9135 0.6850 

Proposed NSST-NADF 27.59 15.42 0.8498 0.9187 0.8211 

	ߪ ൌ 	0.2 

ADF 21.12 8.95 0.7451 0.4601 0.5159 

NLMF 24.69 12.53 0.8135 0.6231 0.6326 

TI-WT 23.64 11.47 0.7680 0.5134 0.5600 

CSCVT 24.12 11.95 0.7923 0.4688 0.5799 

CSST 24.44 12.27 0.7974 0.8235 0.6267 

Proposed NSST-NADF 25.01 12.84 0.8205 0.8734 0.6768 

	ߪ ൌ 	0.3 

ADF 19.98 7.81 0.7305 0.4267 0.3945 

NLMF 23.14 10.97 0.7829 0.5387 0.6180 

TI-WT 23.12 10.95 0.7529 0.4687 0.5312 

CSCVT 23.38 11.22 0.7813 0.4435 0.5521 

CSST 23.48 11.31 0.7823 0.8116 0.5397 

Proposed NSST-NADF 23.51 11.34 0.7871 0.8698 0.6424 

 

provide better PSNR and SNR values with higher edge preserving parameters like EKI. 

Moreover, at higher noise level, it achieves competitive values of these parameters, but still 

higher than others. 

1.2: Denoising of test images corrupted by additive Gaussian noise - To perform this 

experiment and investigate the robustness of the proposed NSST-NADF approach, three 

different images such as Lena, girl and boat images presented in chapter 2 are considered. 

The denoised results corresponding to all three different images are shown in Figure 5.8, 

Figure 5.9 and Figure 5.10, respectively. From the visual assessment of the denoised 

images presented in these figures, it is observed that the proposed NSST-NADF approach 

produces better results by preserving more edges than the other methods as mentioned 

above. It does not only able to remove the fuzzy edges that are introduced during the 

CSCVT and CSST process, but also helps to preserve the edges that are lost during the 

ADF and NLMF approach. To analyze the denoising performance and validate the visual 

results of Lena, girl and boat images, the quantitative analysis is performed by evaluating the 

performance indices such as the PSNR, SNR, SSIM and EKI. The quantitative results 

corresponding to Lena, girl and boat images are listed in Table 5.4 for different levels of 

Gaussian noise. From the results shown in Table 5.4, it is observed that the proposed NSST-

NADF approach gains approx 29.5-32.9%, 0.42-3.24%, 1.48-4.89%, 2.41-3.87% 0.11-0.36% 
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Figure 5.8 Denoised Lena images produced by the (a) ADF (b) NLMF (c) TI-WT (d) CSCVT (f) CSST 
(f) Proposed NSST-NADF 

 

 

Figure 5.9 Denoised girl images produced by the (a) ADF (b) NLMF (c) TI-WT (d) CSCVT (f) CSST 
(f) Proposed NSST-NADF 
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Figure 5.10 Denoised boat images produced by the (a) ADF (b) NLMF (c) TI-WT (d) CSCVT (f) CSST 
(f) Proposed NSST-NADF 

higher PSNR and approx 38.65-41.82%, 0.47-3.96%, 1.76-6.06%, 2.88-4.78%, 0.1-0.4% 

higher SNR values than ADF, NLMF, TI-WT, CSCVT and CSST methods for Lena image. 

Besides this, the proposed approach also produces higher EKI values than ADF (approx 

44.69%, 63.42% and 79.85%), NLMF (1.2%, 5.17% and 16.48%), TI-WT (3.69%, 15.33% 

and 31.2%), CSCVT (2.83%, 4.63% and 6.19%) and CSST (0.46%, 2.55% and 5.81%) for 

ߪ ൌ 10, 20 and 30, respectively. Higher EKI values indicate that the proposed NSST-NADF 

approach is able to effectively preserve more edges in case of higher noise level as 

compared to others. Similarly, in case of girl image, the proposed approach achieves higher 

EKI values than ADF (19.91%, 30.35% and 47.41%), NLMF (0.93%, 2.21% and 15.48%), TI-

WT (2%, 13.64% and 32.98%), CSCVT (2.53%, 4.31% and 9.11%) and CSST (0.71%, 

2.33% and 8.99%) and higher SSIM values than the ADF (2.91%, 6.12% and 5.59%), NLMF 

(0.35%, 0.5% and 1.21%), TI-WT (0.52%, 1.34% and 2.23%), CSCVT (1.06%, 1.93% and 

2.69%), CSST (1.05%, 0.35% and 0.93%), for all three different noise levels, respectively. It 

also improves noise suppression performance by providing higher PSNR and SNR values. In 

case of the boat images, the proposed approach also produces similar results as produced in 

the case of Lena and girl images. It achieves approx 117%, 28.49%, 45.69%, 26.27%, 

25.11% higher EKI, 19.93%, 5.15%, 3.53%, 4%, 1.44% higher SSIM values with 35.71%, 

2.95%, 4.11%, 3.97% and 0.79% SNR values than the ADF, NLMF, TI-WT, CSCVT and 

CSST methods, respectively, for ߪ ൌ 30. It indicates better noise reduction with more edge 

preservation produced by the proposed NSST-NADF method than the other methods. 
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Table 5.4 Image quality measures obtained by the proposed NSST-NADF and other methods for 
Lena, girl and boat images corrupted by Gaussian noise 

Images 
Noise 
level 

Metrics ADF NLMF TI-WT CSCVT CSST 
NSST-
NADF 

Le
n

a 
im

ag
e

 

ߪ ൌ 10 

PSNR 26.82 35.52 35.15 34.83 35.63 35.67 

SNR 21.16 29.87 29.49 29.17 29.98 30.01 

SSIM 0.9105 0.9600 0.9609 0.9569 0.9643 0.9646 

EKI 0.5908 0.8447 0.8244 0.8313 0.8509 0.8548 

ߪ ൌ 20 

PSNR 25.09 32.13 31.53 31.66 32.65 32.69 

SNR 19.43 26.47 25.88 26.01 26.99 27.04 

SSIM 0.8333 0.9203 0.9204 0.9178 0.9300 0.9347 

EKI 0.4729 0.7348 0.6701 0.7386 0.7536 0.7728 

ߪ ൌ 30 

PSNR 23.85 29.91 29.44 29.73 30.77 30.88 

SNR 18.19 24.26 23.78 24.07 25.12 25.22 

SSIM 0.8060 0.8802 0.8833 0.8805 0.8932 0.9035 

EKI 0.3970 0.6130 0.5442 0.6724 0.6748 0.7140 

 

G
irl

 im
ag

e 

ߪ ൌ 10 

PSNR 27.02 34.17 33.73 33.42 34.02 34.36 

SNR 22.47 29.61 29.18 28.87 29.47 29.81 

SSIM 0.9201 0.9436 0.9420 0.9370 0.9371 0.9469 

EKI 0.6152 0.7309 0.7232 0.7195 0.7325 0.7377 

ߪ ൌ 20 

PSNR 25.23 32.04 31.24 31.27 32.14 32.32 

SNR 20.68 27.49 26.68 26.72 27.59 27.77 

SSIM 0.8617 0.9098 0.9023 0.8971 0.9112 0.9144 

EKI 0.5249 0.6694 0.6021 0.6559 0.6686 0.6842 

ߪ ൌ 30 

PSNR 23.96 30.41 29.63 29.83 30.84 30.97 

SNR 19.41 25.86 25.07 25.28 26.29 26.42 

SSIM 0.8419 0.8784 0.8696 0.8657 0.8808 0.8890 

EKI 0.4590 0.5859 0.5088 0.6201 0.6208 0.6766 

 

B
oa

t i
m

ag
e

 

ߪ ൌ 10 

PSNR 24.79 33.31 33.26 32.71 33.32 33.58 

SNR 19.45 27.97 27.92 27.37 27.98 28.24 

SSIM 0.8549 0.948 0.954 0.9488 0.9568 0.9597 

EKI 0.5358 0.8659 0.8523 0.8495 0.8613 0.9089 

ߪ ൌ 20 

PSNR 23.33 29.82 29.36 29.49 30.01 30.25 

SNR 17.99 24.48 24.02 24.15 24.66 24.91 

SSIM 0.7838 0.8816 0.894 0.8893 0.9056 0.9133 

EKI 0.4162 0.7662 0.7021 0.7445 0.7521 0.8417 

ߪ ൌ 30 

PSNR 22.31 27.71 27.47 27.49 28.19 28.37 

SNR 16.97 22.37 22.12 22.15 22.85 23.03 

SSIM 0.7247 0.8265 0.8395 0.8357 0.8568 0.8691 

EKI 0.3761 0.6363 0.5612 0.6475 0.6535 0.8176 
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1.3: Denoising of real US medical images for speckle reduction - To assess the performance 

of the proposed NSST-NADF approach on real US images, same US images as used in the 

previous chapters are considered. All the US images are processed by all aforementioned 

denoising methods and the visual results of prostate, splenic cyst and multiple liver masses 

US images are shown in Figure 5.11, Figure 5.12 and Figure 5.13, respectively. From the 

subjective analysis of the prostate US images, it is observed that the denoised image 

obtained by the proposed NSST-NADF approach is better than ADF, NLMF and TI-WT 

method. The CSST method produces some competitive results to the proposed approach in 

terms of edge preservation, but the proposed approach is still able to suppress more noise 

than the CSST method. In case of splenic cyst US images, the similar pattern is followed by 

the CSST and proposed method that the noise reduction is more in case of NSST-NADF 

approach, but the splenic cyst image, processed by the NLMF and CSCVT approach and 

shown in Figure 5.12 (b) and (d), respectively, suffers from the loss of edge information. 

Similarly, in case of multiple liver masses US images, the CSCVT adds some extra edges in 

the denoised image and the ADF and NLMF suffer from the loss of some edge information. 

Besides this, the proposed NSST-NADF approach is still able to remove the noise as much 

as possible. To support the subjective analysis, the MVR values are also evaluated for the 

proposed method and others. Figure 5.14 shows the bar graph of MVR values estimated for 

the two different regions marked on the four US images illustrated in Figure 2.21. From the 

 

Figure 5.11 Prostate ultrasound image processed by the (a) ADF (b) NLMF (c) TI-WT (d) CSCVT (f) 
CSST (f) Proposed NSST-NADF 
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Figure 5.12 Splenic cyst ultrasound image processed by the (a) ADF (b) NLMF (c) TI-WT (d) CSCVT 
(f) CSST (f) Proposed NSST-NADF 

 

 

Figure 5.13 Multiple liver masses ultrasound image processed by the (a) ADF (b) NLMF (c) TI-WT (d) 
CSCVT (f) CSST (f) Proposed NSST-NADF 
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Figure 5.14 Plot of MVR values obtained by the NSST-NADF approach with other existing methods for 
two image regions 

results presented in Figure 5.14, it is observed that the MVR values estimated by the 

proposed NSST-NADF approach are better than the ADF, NLMF, TI-WT, CSCVT and CSST 

methods for all the US images. It also indicates better speckle reduction performance 

provided by the proposed NSST-NADF approach. Similar to the previous chapters, another 

investigation is further considered to evaluate the MVR values for the 50 different US images 

in which 100 measurements i.e. two different regions on each of them are taken. For all the 

methods, the averaged MVR values (mean ± standard deviation) are listed in Table 5.5. 

From the MVR results, it is clearly observed that the NSST-NADF gains the higher mean 

value of MVR than the others which depicts the superiority of the proposed NSST-NADF 

approach to provide an effective speckle reduction performance. 

Table 5.5 Performance comparison of the proposed NSST-NADF approach with others in terms of 
the averaged MVR values over 100 different regions obtained on 50 different ultrasound 
images 

Methods Noisy ADF NMLF TI-WT CSCVT CSST NSST-NADF

MVR 14.04 ± 3.04 18.26 ± 4.23 21.51 ± 4.13 18.16 ± 3.14 18.22 ± 4.57 20.94 ± 3.88 21.95 ± 4.26 

5.7.2 Analysis and evaluation of the proposed NSST-NLNADF approach  

2.1: Denoising of test images corrupted by multiplicative speckle noise - In order to validate 

the results obtained by the proposed NSST-NLNADF approach, the denoised images 

corresponding to simulated kidney, fetus and phantom images that are degraded by 

multiplicative speckle noise characterized by different noise variance 0.1, 0.2 and 0.3, 

respectively, are shown in Figure 5.15. From the visual results presented in Figure 5.15, it is 
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observed that the kidney, fetus and phantom images processed by the proposed NSST-

NLNADF approach achieve good visual quality of images with the preservation of more 

edges compared to others. It is supported by the quantitative results which are mentioned in 

Table 5.6. From these quantitative results, it is clearly observed that the proposed NSST-

NLNADF approach gains higher PSNR (30.32, 28.72 and 27.91), SNR (19.7, 18.10 and 

17.29), SSIM (0.8929, 0.8790 and 0.8703) and EKI values (0.5614, 0.4806 and 0.4637) than 

ADF, NLMF, CSST methods for the kidney images. The proposed NSST-NLNADF approach 

 

Figure 5.15 Visual denoising performance obtained by the (a) ADF (b) NLMF (c) CSST (d) Proposed 
NSST-NLNADF. Here 1, 2 and 3 refer to kidney, fetus and phantom images, respectively 
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Table 5.6 Image quality measures obtained by the ADF, NLMF, CSST and proposed NSST-
NLNADF approaches for speckled test images 

Images Noise Level Metrics 
Denoising methods 

ADF NLMF CSST 
Proposed 

NSST-NLNADF

K
id

n
ey

 im
ag

e
 

	ߪ ൌ 	0.1 

PSNR 21.74 28.37 27.54 30.32 

SNR 11.11 17.75 16.92 19.70 

SSIM 0.7610 0.7829 0.7603 0.8929 

EKI 0.3181 0.4827 0.4567 0.5614 

	ߪ ൌ 	0.2 

PSNR 20.79 27.37 27.28 28.72 

SNR 10.17 16.75 16.66 18.10 

SSIM 0.7190 0.7797 0.7548 0.8790 

EKI 0.3041 0.4519 0.4349 0.4806 

	ߪ ൌ 	0.3 

PSNR 20.46 26.20 27.05 27.91 

SNR 9.84 15.58 16.43 17.29 

SSIM 0.6974 0.7612 0.7560 0.8703 

EKI 0.3011 0.4236 0.4231 0.4637 

F
et

us
 im

ag
e

 

	ߪ ൌ 	0.1 

PSNR 17.06 19.56 18.80 20.89 

SNR 12.08 14.57 13.81 15.90 

SSIM 0.5925 0.6800 0.6490 0.6851 

EKI 0.3572 0.6336 0.4387 0.7176 

	ߪ ൌ 	0.2 

PSNR 15.72 18.13 17.75 19.34 

SNR 10.73 13.14 12.76 14.35 

SSIM 0.5375 0.6369 0.5764 0.6398 

EKI 0.3246 0.5454 0.4192 0.6671 

	ߪ ൌ 	0.3 

PSNR 15.58 17.91 16.82 18.59 

SNR 10.59 12.92 11.83 13.60 

SSIM 0.4978 0.5752 0.5095 0.6270 

EKI 0.3092 0.4541 0.3879 0.5922 

P
ha

nt
om

 im
ag

e 

	ߪ ൌ 	0.1 

PSNR 21.98 27.31 25.55 28.90 

SNR 9.81 15.14 13.39 16.73 

SSIM 0.7650 0.8492 0.8365 0.8399 

EKI 0.7381 0.7933 0.6850 0.8624 

	ߪ ൌ 	0.2 

PSNR 21.12 24.69 24.44 25.62 

SNR 8.95 12.53 12.27 13.45 

SSIM 0.7451 0.8135 0.7974 0.8219 

EKI 0.5159 0.6326 0.6267 0.8075 

	ߪ ൌ 	0.3 

PSNR 19.98 23.14 23.48 24.32 

SNR 7.81 10.97 11.31 12.15 

SSIM 0.7305 0.7829 0.7823 0.7989 

EKI 0.3945 0.6180 0.5397 0.7278 
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also achieves higher PSNR (19.32%, 3.8% and 10.52%), SNR (28.42%, 5.26% and 

14.96%), SSIM (25.95%, 9.01% and 23.06%) and EKI (91.53%, 30.41% and 52.67%) than 

the ADF, NLMF and CSST methods, respectively in case of the fetus image corrupted by 

speckle noise of ߪ ൌ 0.3. The main focus of the proposed NSST-NLNADF approach is 

toward more edge preservation with the noise suppression as much as possible. Besides 

this, in the case of phantom image, the proposed NSST-NLNADF approach gains better 

edge preservation performance by obtaining higher EKI values approx (16.84%, 56.52% and 

84.49%), (8.71%, 27.65% and 17.77%) and (25.9%, 28.85% and 34.85%) than the ADF, 

NLMF and CSST methods, respectively. It also shows better noise suppression results by 

providing higher PSNR (21.72%, 5.1% and 3.58%) and SNR (55.57%, 10.76% and 7.43%) 

than the ADF, NLMF and CSST methods, respectively, in case of higher noise level ߪ ൌ 0.3. 

Finally, it is seen that the proposed NSST-NLNADF approach outperforms the others not 

only in terms of speckle reduction but also in edge preservation. 

2.2: Denoising of test images corrupted by additive Gaussian noise - In order to analyze the 

robust performance of the proposed NSST-NLNADF approach, the denoised images 

corresponding to noisy Lena, girl and boat images are shown in Figure 5.16. It is visualized 

in Figure 5.16 that the denoised Lena, girl and boat images produced by the proposed 

NSST-NLNADF approach have more edges as compared to the others, including ADF and 

NLMF approaches and reduced extra edges introduced by the CSST approach. Moreover, 

the subjective analysis is also supported by the objective analysis after evaluating the 

performance indices. From the quantitative results mentioned in Table 5.7, it is observed that 

the proposed NSST-NLNADF approach achieves higher PSNR from ADF (approx 33.56%, 

32.2% and 30.4%), NLMF (approx 0.84%, 3.24% and 3.98%) and CSST method (approx 

0.53%, 1.59% and 1.07%) for Lena image degraded by the different noise levels ߪ	 ൌ 10, 20 

and 30, respectively. From the higher PSNR values obtained by the proposed method, it is 

interpreted that the NSST-NLNADF approach shows better improvement in noise reduction 

performance in case of higher noise level compared to the NLMF and CSST approaches. 

Besides improved noise reduction performance, it gains approx 45.5-91.89%, 1.76-24.27% 

and 1.02-12.89% higher EKI values in comparison to the ADF, NLMF and CSST methods, 

respectively. In case of girl image, the NSST-NLNADF approach gains higher PSNR 

(29.84%, 2.3% and 0.88%), SNR (36.84%, 2.71% and 1.03%), SSIM (7.15%, 2.7% and 

2.42%) and EKI (48.95%, 16.69% and 10.13%) than the ADF, NLMF and CSST methods, 

respectively, for the noise level ߪ ൌ 30. Furthermore, in case of the boat image degraded by 

the noise level ߪ ൌ 30, the proposed NSST-NLNADF approach produces higher PSNR 

(27.57%, 2.71% and 0.96%), SNR (36.24%, 3.35% and 1.18%), SSIM (21.06%, 6.15% and 

2.39%) and EKI (118%, 28.96% and 25.57%) than the ADF, NLMF and CSST methods, 

respectively. 
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Figure 5.16 Visual denoising performance obtained by the (a) ADF (b) NLMF (c) CSST (d) Proposed 
NSST-NLNADF. Here 1, 2 and 3 refer to Lena, girl and boat images, respectively 

Moreover, it is concluded from both the subjective and objective analysis of the results 

obtained by the proposed NSST-NLNADF approach that it is able to produce better quality 

images with more edge preservation compared to the other methods. 
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Table 5.7 Image quality measures obtained by the ADF, NLMF, CSST and proposed NSST-
NLNADF approaches for the test images degraded by Gaussian noise 

Images Noise Level Metrics 
Denoising methods 

ADF NLMF CSST 
Proposed 

NSST-NLNADF

Le
n

a 
im

ag
e

 

	ߪ ൌ 	10 

PSNR 26.82 35.52 35.63 35.82 

SNR 21.16 29.87 29.98 30.16 

SSIM 0.9105 0.9600 0.9643 0.9688 

EKI 0.5908 0.8447 0.8509 0.8596 

	ߪ ൌ 	20 

PSNR 25.09 32.13 32.65 33.17 

SNR 19.43 26.47 26.99 27.52 

SSIM 0.8333 0.9203 0.9300 0.9387 

EKI 0.4729 0.7348 0.7536 0.7859 

	ߪ ൌ 	30 

PSNR 23.85 29.91 30.77 31.10 

SNR 18.19 24.26 25.12 25.44 

SSIM 0.8060 0.8802 0.8932 0.9181 

EKI 0.3970 0.6130 0.6748 0.7618 

G
irl

 im
ag

e 

	ߪ ൌ 	10 

PSNR 27.02 34.17 34.02 34.71 

SNR 22.47 29.61 29.47 30.16 

SSIM 0.9201 0.9436 0.9371 0.9457 

EKI 0.6152 0.7309 0.7325 0.7466 

	ߪ ൌ 	20 

PSNR 25.23 32.04 32.14 32.65 

SNR 20.68 27.49 27.59 28.10 

SSIM 0.8617 0.9098 0.9112 0.9194 

EKI 0.5249 0.6694 0.6686 0.6974 

	ߪ ൌ 	30 

PSNR 23.96 30.41 30.84 31.11 

SNR 19.41 25.86 26.29 26.56 

SSIM 0.8419 0.8784 0.8808 0.9021 

EKI 0.4590 0.5859 0.6208 0.6837 

B
oa

t i
m

ag
e

 

	ߪ ൌ 	10 

PSNR 24.79 33.31 33.32 33.80 

SNR 19.45 27.97 27.98 28.46 

SSIM 0.8549 0.9480 0.9568 0.9661 

EKI 0.5358 0.8659 0.8613 0.9138 

	ߪ ൌ 	20 

PSNR 23.33 29.82 30.01 30.96 

SNR 17.99 24.48 24.66 25.61 

SSIM 0.7838 0.8816 0.9056 0.9152 

EKI 0.4162 0.7662 0.7521 0.8530 

	ߪ ൌ 	30 

PSNR 22.31 27.71 28.19 28.46 

SNR 16.97 22.37 22.85 23.12 

SSIM 0.7247 0.8265 0.8568 0.8773 

EKI 0.3761 0.6363 0.6535 0.8206 
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2.3: Denoising of real US medical images for speckle reduction - In this section, the speckle 

reduction performance of the proposed approach is assessed on the real US images as used 

in the previous chapters. The outcomes of the experiments performed on the prostate, 

splenic cyst and multiple liver masses US images are shown in Figure 5.17. The quantitative  

 

Figure 5.17 Visual speckle reduction performance obtained by the (a) ADF (b) NLMF (c) CSST (d) 
Proposed NSST-NLNADF 
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assessment is also performed by evaluating the MVR values for all the US images. The MVR 

is used to estimate the speckle level in the US images over different selected image regions 

and shown in Figure 5.18. From the results mentioned in Figure 5.18, it is clearly observed 

that the proposed NSST-NLNADF approach outperforms the others exhibited in terms of 

larger MVR values. Moreover, the averaged MVR value obtained by the proposed NSST-

NLNADF approach is 22.42 with a standard deviation of 4.12, which is also higher than the 

proposed NSST-NADF approach and other existing methods. 

 

Figure 5.18 Plot for MVR values estimated for real ultrasound images with two selected image regions 

5.7.3 Comparative analysis and evaluation of the proposed approaches 

In order to investigate the performance of both the proposed NSST-NADF and NSST-

NLNADF approaches, three different subsequent objectives are considered as follows: 

3.1: Comparison of the proposed methods with others for the test images degraded by 

speckle noise - In this section, a detailed comparison of the performance of both the 

proposed NSST-NADF and NSST-NLNADF approaches with various different methods is 

presented for aforementioned three test images which are utilized to analyze the 

performance of these methods. The following denoising methods used for such purpose are 

given below: 

Method 1: The AWMF approach as discussed in chapter 2. 

Method 2: The WF approach as discussed in chapter 2 with 5×5 square window. 

Method 3: The  Kuan filter as described in [139] 
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Method 4: The LHMAF as described in [170, 210] with 5×5 square neighborhood window and 

15 iterations. 

Method 5: The MHOPNF approach as described in [12, 210] and chapter 2 with a square 

neighborhood of 3×3. 

Method 6: Fourth order PDE filter (FOPDEF) as described in [269] with 250 iterations, 

݇ ൌ 0.5 and time step ݐ߂ ൌ 0.25. 

Method 7: The speckle reducing anisotropic diffusion (SRAD) approach as discussed in [266] 

with second diffusivity equation, 35 averaged iterations and ߬ ൌ 0.2. 

Method 8: Nonlinear complex diffusion (NCDF) approach as discussed in [100] with ߠ ൌ

ߢ and 30/ߨ ൌ 20. 

Method 9: Improved adaptive complex diffusion (INCDF) as described in [20] with ߬௫ ൌ

ߢ ,ݏ10 ൌ ௫ߢ ,2 ൌ 28, and ߠ ൌ  .30/ߨ

 

Figure 5.19 Comparative visual performance of (a) Kidney image corrupted by speckle noise and 
processed by the (b) AWMF (c) WF (d) Kuan (e) LHMAF (f) MHOPNF (g) FOPDEF (h) 
SRAD (i) NCDF (j) INCDF (k) SBF (l) SRBF (m) TVF (n) Proposed NSST-NADF (o) 
Proposed NSST-NLNADF 
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Method 10: The squeez box filter (SBF) as described in [232] with 7×7 square window and 

500 iterations. 

Method 11: The speckle reducing bilateral filter (SRBF) as described in [229] with ߪௗ ൌ 1.8 

and ߪ ൌ  .ߪ2

Method 12: A nonlinear total variation approach (TVF) as discussed in the chapter 2. 

Method 13: The proposed NSST-NADF approach as discussed in this chapter. 

Method 14: The proposed NSST-NLNADF approach as discussed in this chapter. 

To perform this experiment, same kidney, fetus and phantom images are used as 

testing images degraded by three different noise levels. The outcomes of the kidney and 

fetus images are presented in Figure 5.19 and Figure 5.20, respectively. From these figures, 

it is observed that the proposed NSST-NLNADF approach provides better quality of images 

by suppressing a sufficient amount of speckle noise as compared to the others. Besides the 

proposed approaches, diffusion based methods and the TVF approach are able to suppress 

considerable amount of noise, but at the cost of losing the edges or blurring the images. 

Figure 5.21 shows the visual results of the phantom images denoised by all the methods as 

mentioned above. From the visual results of phantom image, it is observed that the proposed  

 

Figure 5.20 Comparative visual performance of (a) Fetus image corrupted by speckle noise and 
processed by the (b) AWMF (c) WF (d) Kuan (e) LHMAF (f) MHOPNF (g) FOPDEF (h) 
SRAD (i) NCDF (j) INCDF (k) SBF (l) SRBF (m) TVF (n) Proposed NSST-NADF (o) 
Proposed NSST-NLNADF 
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Figure 5.21 Comparative visual performance of (a) Phantom image corrupted by speckle noise and 
processed by the (b) AWMF (c) WF (d) Kuan (e) LHMAF (f) MHOPNF (g) FOPDEF (h) 
SRAD (i) NCDF (j) INCDF (k) SBF (l) SRBF (m) TVF (n) Proposed NSST-NADF (o) 
Proposed NSST-NLNADF 

NSST-NLNADF approach produces better quality image than the proposed NSST-NADF 

approach and other existing methods by preserving more edges with speckle reduction. The 

TVF approach is also capable to suppress a considerable amount of the speckle. For the 

quantitative comparison that supports all the visual results presented above, the results are 

listed in Table 5.8 for all three images degraded by the different noise levels. From the 

quantitative results, it is observed that the proposed NSST-NLNADF approach gains approx 

33.22-41.75%, 44.24-51.22%, 38.83-44.09%, 54.45-57.18%, 42.81-47.97%, 20.67-26.6%, 

13.04-17.25%, 18.34-20.22%, 11.68-14.29%, 12.68-15.59%, 12.4-16.39%, 9.37-17.29% and 

2.91-6.2% higher PSNR values and 67.38-82.92%, 97.83-108%, 75.6-97.6%, 127.2-132.9%, 

90.93-99.59%, 38.21-47.79%, 22.89-29.27%, 32.6-34.8%, 20.31-24.74%, 22.2-26.2%, 21.67  
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Table 5.8 Performance comparison between the proposed approaches and others for the test 
images such as kidney, fetus and phantom images corrupted by speckle noise 

Metrics ߪ	 ൌ ߪ 0.1	 ൌ 	ߪ 0.2 ൌ 	0.3 

Methods PSNR SNR SSIM EKI PSNR SNR SSIM EKI PSNR SNR SSIM EKI 

Kidney image 

AWMF 21.39 10.77 0.7376 0.4388 20.69 10.07 0.7068 0.4209 20.95 10.33 0.6896 0.3260 

AWF 20.05 9.44 0.7119 0.4058 19.76 9.14 0.6937 0.3899 19.35 8.74 0.6792 0.3187 

Kuan  21.84 11.22 0.7596 0.3333 20.03 9.41 0.6770 0.3150 19.37 8.75 0.6103 0.3046 

LHMAF 19.29 8.67 0.7406 0.3235 18.55 7.94 0.7151 0.3177 18.07 7.44 0.6822 0.3177 

MHOPNF 20.49 9.87 0.7435 0.3301 20.11 9.48 0.7161 0.3235 19.19 8.57 0.6847 0.3226 

FOPDEF 23.95 13.33 0.7323 0.3734 23.15 12.54 0.7249 0.3293 23.13 12.51 0.7208 0.3291 

SRAD 25.86 15.24 0.7197 0.4598 25.04 14.42 0.6944 0.3332 24.69 14.07 0.6873 0.3211 

NCDF 25.22 14.61 0.6869 0.4277 24.27 13.65 0.6368 0.3139 23.54 12.92 0.6256 0.3024 

INCDF 26.84 16.22 0.7286 0.4962 25.13 14.51 0.7531 0.3234 24.99 14.37 0.7197 0.4029 

SBF 26.23 15.61 0.7438 0.3719 25.42 14.81 0.7371 0.3397 24.77 14.14 0.7123 0.3242 

SRBF 26.05 15.43 0.7186 0.4685 25.11 14.49 0.7114 0.3284 24.83 14.21 0.7045 0.3387 

TVF 25.85 15.23 0.6747 0.4149 25.65 15.03 0.6527 0.4036 25.52 14.90 0.6331 0.3931 

Approach-1 28.55 17.93 0.8259 0.5276 27.64 17.02 0.7892 0.4619 27.12 16.50 0.7625 0.4538 

Approach-2 30.32 19.70 0.8929 0.5614 28.72 18.10 0.8790 0.4806 27.91 17.29 0.8703 0.4637 

Fetus image 

AWMF 16.89 11.90 0.5382 0.5408 14.42 9.43 0.4485 0.4321 14.52 9.53 0.4005 0.3287 

AWF 16.93 11.93 0.6691 0.5014 13.98 9.01 0.5762 0.5538 11.11 6.13 0.5009 0.3360 

Kuan  17.12 12.13 0.4722 0.3580 16.22 11.23 0.3945 0.2944 15.17 10.18 0.3536 0.2754 

LHMAF 15.21 10.22 0.5249 0.3334 12.89 7.91 0.4345 0.3120 10.79 5.81 0.3804 0.2952 

MHOPNF 15.73 10.75 0.5635 0.3451 13.29 8.31 0.5110 0.2975 10.82 5.83 0.4732 0.2773 

FOPDEF 17.63 12.64 0.6573 0.4603 16.39 11.41 0.6200 0.3540 15.82 10.81 0.5344 0.3188 

SRAD 18.33 13.34 0.6286 0.3828 16.66 11.67 0.5512 0.3866 15.39 10.40 0.4445 0.3625 

NCDF 17.63 12.64 0.5683 0.3337 16.11 11.12 0.4789 0.3498 15.56 10.57 0.4334 0.3131 

INCDF 18.69 13.71 0.6381 0.4714 16.85 11.86 0.5893 0.4066 15.94 10.95 0.5079 0.3863 

SBF 17.95 12.97 0.6482 0.4072 16.79 11.80 0.6194 0.3646 16.34 11.36 0.5613 0.3154 

SRBF 18.58 13.60 0.6157 0.3758 16.72 11.75 0.5689 0.3951 16.54 11.55 0.4763 0.3609 

TVF 17.84 12.85 0.5854 0.3696 17.01 12.02 0.5631 0.3531 16.13 11.14 0.5325 0.3105 

Approach-1 20.70 15.71 0.6820 0.6792 19.22 14.23 0.6383 0.5897 18.43 13.45 0.6050 0.5474 

Approach-2 20.89 15.90 0.6851 0.7176 19.34 14.35 0.6398 0.6671 18.59 13.60 0.6270 0.5922 

Phantom image 

AWMF 21.71 9.55 0.7590 0.5327 20.75 8.58 0.7264 0.4738 20.02 7.86 0.6222 0.2413 

AWF 22.23 10.06 0.7563 0.4696 21.18 9.01 0.6718 0.4208 20.19 8.02 0.6954 0.3775 

Kuan  21.62 9.45 0.7039 0.4476 20.27 8.09 0.6418 0.3391 19.82 7.65 0.6062 0.2978 

LHMAF 21.51 9.33 0.7553 0.3729 19.85 7.67 0.6827 0.3334 18.71 6.55 0.6282 0.3177 

MHOPNF 22.67 10.49 0.7367 0.7034 20.54 8.37 0.7266 0.5361 19.13 6.95 0.7143 0.4341 

FOPDEF 22.43 10.26 0.7760 0.5911 22.07 9.91 0.7614 0.5779 21.81 9.64 0.7599 0.4505 

SRAD 22.74 10.57 0.8035 0.5995 22.31 10.14 0.7855 0.5939 22.10 9.92 0.7686 0.5909 

NCDF 23.23 11.06 0.7726 0.6998 22.74 10.57 0.7079 0.6086 22.25 10.08 0.6636 0.5376 

INCDF 24.52 12.35 0.8224 0.6932 23.68 11.51 0.8071 0.6470 23.06 10.88 0.7718 0.5857 

SBF 24.41 12.24 0.7967 0.5872 22.41 10.26 0.7911 0.5603 21.89 9.71 0.7834 0.5389 

SRBF 23.59 11.41 0.7865 0.6885 22.93 10.76 0.7389 0.6123 22.41 10.23 0.7104 0.5469 

TVF 25.86 13.69 0.6883 0.6452 24.07 11.9 0.6944 0.5878 23.20 11.03 0.6986 0.5354 

Approach-1 27.59 15.42 0.8498 0.8211 25.01 12.84 0.8205 0.6768 23.51 11.34 0.7871 0.6424 

Approach-2 28.90 16.73 0.8399 0.8624 25.62 13.45 0.8219 0.8075 24.32 12.15 0.7989 0.7278 
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-27.67%, 16.04-29.35% and 4.79-9.87% higher SNR values than the methods 1-13, 

respectively, for kidney image. The proposed NSST-NLNADF approach also achieves 

approx 14.18-42.24%, 23.26-45.5%, 52.23-68.44%, 45.96-73.54%, 43.74-70.07%, 40.9-

50.35%, 22.1-44.41%, 31.26-53.34%, 13.14-48.61%, 41.48-50.95%, 19.83-46.35%, 17.96-

35.31% and 2.18-6.41% higher EKI values than the methods 1-13, respectively. In case of 

fetus image, the proposed NSST-NLNADF approach also outperforms the NSST-NADF 

approach by achieving higher PSNR (0.92%, 0.62%, 0.87%), SNR (1.21%, 0.84%, 1.12%), 

SSIM (0.45%, 0.23%, 3.64%) and EKI (5.65%, 13.13%, 8.18%) for different noise levels 

ߪ ൌ 0.1, 0.2 and 0.3, respectively. From these results, it is also observed that the proposed 

NSST-NLNADF approach outperforms other existing methods in terms of noise suppression 

and edge preservation performance by achieving higher PSNR, SNR, SSIM and EKI values. 

Moreover, in case of phantom images, the proposed NSST-NLNADF approach achieves 

higher PSNR (4.75%, 2.44% and 3.45%) and SNR (8.5%, 4.75% and 7.14%), than the 

NSST-NADF approach for the different noise levels ߪ ൌ 0.1, 0.2 and 0.3, respectively. With 

higher SNR/PSNR values, it also gains larger EKI values approx 5.03%, 19.31% and 13.29% 

than the NSST-NADF approach for the different noise levels. Furthermore, it also indicates 

from the results that the proposed NSST-NADF approach outperforms the other existing 

methods, but the proposed NSST-NLNADF approach shows its superiority in terms of 

speckle reduction and edge preservation over the NSST-NADF approach and other existing 

methods which is also illustrated by higher FOM values shown in Figure 5.22. 

 

 

 

Figure 5.22 Comparative FOM values obtained for (a) Kidney (b) Fetus (c) Phantom images. Here, 
PA-1 and PA-2 refer to the NSST-NADF and NSST-NLNADF approaches, respectively 
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3.2: Comparison of the proposed methods with others for the test images degraded by 

Gaussian noise - In this experiment, other comparative results are analyzed for the standard 

test images such as Lena, girl and boat image degraded by additive Gaussian noise of 

different noise levels. For such purpose, the denoised Lena images are shown in Figure 

5.23. From these visual results, it is observed that the proposed NSST-NADF and NSST-

NLNADF approaches are able to produce better quality of images by retaining more edges 

compared to others. In case of Gaussian noise, diffusion based methods are not able to 

produce good quality images, but the TVF method produces better results than diffusion 

based methods. In case of girl image, the denoised images are shown in Figure 5.24 from 

which, it is observed that the proposed approaches are still able to produce better denoised 

images as compared to the original images.  

 

Figure 5.23 Comparative visual performance of (a) Lena image corrupted by Gaussian noise and 
processed by the (b) AWMF (c) WF (d) Kuan (e) LHMAF (f) MHOPNF (g) FOPDEF (h) 
SRAD (i) NCDF (j) INCDF (k) SBF (l) SRBF (m) TVF (n) NSST-NADF (o) NSST-NLNADF 
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Figure 5.24 Comparative visual performance of (a) Girl image corrupted by Gaussian noise and 
processed by the (b) AWMF (c) WF (d) Kuan (e) LHMAF (f) MHOPNF (g) FOPDEF (h) 
SRAD (i) NCDF (j) INCDF (k) SBF (l) SRBF (m) TVF (n) Proposed NSST-NADF (o) 
Proposed NSST-NLNADF 

Similar results are obtained in the case of boat image illustrated in Figure 5.25. From 

the visual results shown in Figure 5.25, it is observed that the proposed methods outperform 

the diffusion based methods and others in terms of edge preservation performance. The 

quantitative results estimated and listed in Table 5.9 also support the subjective analysis of 

aforementioned results. From the quantitative results presented in Table 5.9, it is clearly 

seen that the proposed NSST-NADF approach improves the noise suppression and edge 

preservation performance by providing higher SNR/PSNR and SSIM/EKI values compared to 

others for all the images, while the proposed NSST-NLNADF approach outperforms the 

NSST-NADF method and other existing methods. Furthermore, the proposed NSST-
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NLNADF approach achieves higher PSNR (0.42%, 1.47% and 0.71%), SNR (0.5%, 1.78% 

and 0.87%), SSIM (0.44%, 0.43% and 1.62%) and EKI (0.56%, 1.7% and 6.69%) values 

than the proposed NSST-NADF approach for Lena images degraded with different noise 

levels ߪ	 ൌ 10,20 and 30. In case of girl and boat images, the NSST-NLNADF approach 

gains approx 0.45-1.02%, 0.32-2.35% higher PSNR and 0.53-1.17%, 0.39-2.81% higher 

SNR values, respectively, than the NSST-NADF approach. With higher PSNR and SNR 

values, the NSST-NLNADF approach is also able to provide higher EKI value approx (1.21%, 

1.93% and 1.05%) and (0.54%, 1.34% and 0.37%) for girl and boat images, respectively. 

Furthermore, the proposed methods suppress both the speckle and Gaussian noise of 

different levels, while preserving the edges supported by the quantitative results. 

 

Figure 5.25 Comparative visual performance of (a) Boat image corrupted by Gaussian noise and 
processed by the (b) AWMF (c) WF (d) Kuan (e) LHMAF (f) MHOPNF (g) FOPDEF (h) 
SRAD (i) NCDF (j) INCDF (k) SBF (l) SRBF (m) TVF (n) Proposed NSST-NADF (o) 
Proposed NSST-NLNADF 
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Table 5.9 Performance comparison between the proposed approaches and others for the test 
images such as Lena, girl and boat images corrupted by Gaussian noise 

Metrics ߪ	 ൌ ߪ 10	  ൌ 	ߪ 20 ൌ 	30 

Methods PSNR SNR SSIM EKI PSNR SNR SSIM EKI PSNR SNR SSIM EKI 

Lena image 

AWMF 32.42 26.77 0.9265 0.6336 28.49 22.83 0.8032 0.4319 25.62 19.97 0.6815 0.3002 

AWF 33.04 27.38 0.9439 0.6582 29.13 23.47 0.8265 0.5236 25.81 20.15 0.7026 0.3532 

Kuan  28.15 22.49 0.9091 0.5900 26.47 20.81 0.8191 0.4600 24.82 19.26 0.7324 0.3515 

LHMAF 27.01 21.35 0.8708 0.4346 25.85 20.20 0.7773 0.3854 24.54 18.88 0.6830 0.3340 

MHOPNF 27.56 21.90 0.8724 0.5750 27.32 21.67 0.8207 0.4599 26.98 21.33 0.7986 0.4360 

FOPDEF 27.35 21.69 0.8648 0.6023 26.87 21.22 0.8600 0.6121 26.10 20.45 0.8160 0.6081 

SRAD 27.82 22.17 0.8963 0.2914 23.85 18.20 0.8397 0.3338 21.89 16.23 0.7992 0.3396 

NCDF 27.75 22.09 0.8826 0.4791 26.90 21.25 0.8654 0.3198 25.70 20.04 0.8348 0.2199 

INCDF 30.75 25.09 0.9369 0.6292 29.71 24.06 0.8717 0.5371 27.79 22.13 0.7735 0.4641 

SBF 25.52 19.86 0.8014 0.4589 22.82 17.16 0.7493 0.4274 20.85 15.19 0.7059 0.3953 

SRBF 31.17 25.51 0.9099 0.6295 29.06 23.41 0.8006 0.5936 28.13 22.47 0.6756 0.3552 

TVF 29.99 24.33 0.8767 0.7216 29.98 24.33 0.8837 0.6863 29.45 23.79 0.8751 0.6520 

Approach-1 35.67 30.01 0.9646 0.8548 32.69 27.04 0.9347 0.7728 30.88 25.22 0.9035 0.7140 

Approach-2 35.82 30.16 0.9688 0.8596 33.17 27.52 0.9387 0.7859 31.10 25.44 0.9181 0.7618 

Girl image 

AWMF 32.12 27.56 0.8244 0.5483 28.44 23.89 0.7091 0.3794 25.59 21.04 0.6858 0.2616 

AWF 33.24 28.69 0.8391 0.6601 28.99 24.44 0.7314 0.4702 25.69 21.13 0.7074 0.3252 

Kuan  27.63 23.08 0.9077 0.5833 26.22 21.67 0.7464 0.4920 24.64 20.09 0.6407 0.4086 

LHMAF 28.41 23.86 0.8818 0.4337 26.83 22.28 0.7924 0.3885 25.18 20.63 0.7008 0.3360 

MHOPNF 28.70 24.15 0.8872 0.6133 28.34 23.79 0.8686 0.6003 27.82 23.26 0.8391 0.5696 

FOPDEF 29.27 24.72 0.8718 0.6275 28.64 24.09 0.8816 0.5528 27.78 23.23 0.8477 0.5878 

SRAD 21.35 16.79 0.8656 0.3391 20.39 15.85 0.8188 0.3144 19.58 15.03 0.7770 0.3072 

NCDF 29.43 24.87 0.8999 0.5552 28.24 23.69 0.8854 0.3775 26.67 22.12 0.8555 0.2786 

INCDF 31.49 26.94 0.9358 0.6708 30.16 25.61 0.8786 0.6046 28.01 23.45 0.7837 0.4485 

SBF 22.02 17.47 0.8265 0.5275 19.51 14.96 0.7702 0.4771 19.44 14.89 0.7047 0.4743 

SRBF 31.03 26.48 0.9197 0.6492 30.29 25.74 0.8126 0.5894 29.49 24.94 0.6834 0.3584 

TVF 30.55 25.99 0.8660 0.6806 30.73 26.18 0.8769 0.6406 30.17 25.62 0.8684 0.6075 

Approach-1 34.36 29.81 0.9469 0.7377 32.32 27.77 0.9144 0.6842 30.97 26.42 0.8890 0.6766 

Approach-2 34.71 30.16 0.9457 0.7466 32.65 28.10 0.9194 0.6974 31.11 26.56 0.9021 0.6837 

Boat image 

AWMF 29.68 24.33 0.9238 0.5696 27.09 21.75 0.8236 0.4034 24.79 19.45 0.7165 0.2835 

AWF 32.14 26.79 0.9455 0.6774 28.37 23.02 0.8549 0.5925 25.36 20.01 0.7450 0.4212 

Kuan  24.71 19.37 0.8541 0.4950 23.47 18.13 0.7525 0.3992 22.26 16.92 0.6787 0.3382 

LHMAF 24.99 19.64 0.8219 0.4167 24.29 18.94 0.7464 0.3727 22.51 17.17 0.6653 0.3229 

MHOPNF 25.51 20.17 0.8248 0.4656 25.40 20.05 0.7887 0.4568 23.24 17.90 0.7323 0.4387 

FOPDEF 24.70 19.36 0.8366 0.5439 24.31 18.97 0.8318 0.5303 23.77 18.43 0.8214 0.5635 

SRAD 26.47 21.12 0.8314 0.5590 23.55 18.19 0.7934 0.4865 21.16 15.82 0.7348 0.4056 

NCDF 25.43 20.09 0.8132 0.4899 24.95 19.61 0.8033 0.3371 24.21 18.87 0.7829 0.2488 

INCDF 28.46 23.12 0.9186 0.7201 27.92 22.58 0.8698 0.6534 26.58 21.23 0.7877 0.5156 

SBF 22.38 17.04 0.6509 0.3384 20.87 15.53 0.5909 0.3096 19.47 14.12 0.5479 0.2889 

SRBF 30.62 25.28 0.8528 0.7105 26.04 20.69 0.8300 0.4658 25.84 20.50 0.7143 0.4519 

TVF 27.48 22.14 0.8079 0.6637 27.43 22.09 0.8203 0.6395 27.12 21.77 0.8223 0.6084 

Approach-1 33.58 28.24 0.9597 0.9089 30.25 24.91 0.9133 0.8417 28.37 23.03 0.8691 0.8176 

Approach-2 33.80 28.46 0.9661 0.9138 30.96 25.61 0.9152 0.8530 28.46 23.12 0.8773 0.8206 
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3.3: Comparison of the proposed NSST-NADF and NSST-NLNADF methods with others for 

speckle reduction in real US images - In this experiment, a detailed comparative analysis is 

presented for the visual results of real US images used as similar in previous chapters and 

processed by all the fourteen denoising methods as mentioned above. The processed 

prostate, splenic cyst and multiple liver masses US images are presented in Figure 5.26. 

From these visual results, it is indicated that the proposed approaches are able to produce 

better quality US images by preventing from edge loss and suppressing the speckle as much 

as possible. Generally the diffusion based methods and TVF are also able to suppress a 

good amount of speckle available in the US images. Moreover, in case of the liver US image, 

the SRAD shows better noise suppression than others, but at the cost of more edge loss. 

Besides the diffusion based methods, the SRBF method is also capable to suppress the 

noise and retains more edges than the diffusion based approach. Moreover, the subjective 

analysis of the visual results processed by all denoising methods is validated by estimating 

the MVR values for different image regions marked on real US images.  
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Figure 5.26 Comparative visual performance of prostate, splenic cyst and multiple liver masses 
ultrasound images processed by the (a) AWMF (b) WF (c) Kuan (d) LHMAF (e) MHOPNF 
(f) FOPDEF (g) SRAD (h) NCDF (i) INCDF (j) SBF (k) SRBF (l) TVF (m) Proposed NSST-
NADF (n) Proposed NSST-NLNADF 

Figure 5.27 shows the four different bar graphs of the estimated MVR values as MVR 1 

and MVR 2 for both the regions defined as region 1 and region 2, respectively and for the 

aforementioned denoising methods. From the MVR values presented in the bar graphs, it is 

observed that the proposed NSST-NADF and NSST-NLNADF gain higher MVR values than 

others. Moreover, the proposed NSST-NLNADF approach exhibits the superiority by 

providing the highest MVR value among all the other methods, which is clearly shown in the 

Figure 5.27 (a)-(d). Further, Table 5.10 shows the MVR values (mean ± standard deviation) 

estimated for all hundred measurements performed on fifty different US images in which two  
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Figure 5.27 Comparison between MVR values obtained from the different denoising methods for two 
images regions illustrated in Figure 2.21 
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Table 5.10 Performance comparison of the proposed NSST-NADF and NSST-NLNADF approaches 
with others using the averaged MVR values over 100 different image regions marked on 
50 different ultrasound images 

S. No. Methodology MVR 

1 Noisy 14.04 ± 3.04 

2 AWMF 16.27 ± 4.69 

3 AWF 15.64 ± 3.42 

4 Kuan  16.56 ± 4.98 

5 LHMAF 15.19 ± 3.46 

6 MHOPNF 16.70 ± 3.49 

7 FOPDEF 19.27 ± 4.46 

8 SRAD 19.45 ± 3.97 

9 NCDF 19.32 ± 3.69 

10 INCDF 21.05 ± 3.15 

11 SBF 20.12 ± 4.87 

12 SRBF 19.69 ± 3.23 

13 TVF 21.45 ± 4.95 

14 Proposed NSST-NADF 21.95 ± 4.26 

15 Proposed NSST-NLNADF 22.42 ± 4.12 

 

measurements at two different image regions are considered for each image. The results 

listed in Table 5.10 exhibit the superiority of the proposed NSST-NADF approach in the 

effective speckle reduction compared to other existing methods. Moreover, the proposed 

NSST-NLNADF approach outperforms the other proposed NSST-NADF method. 

5.8 Summary 

In this chapter, two different denoising methods are presented in the NSST domain 

using nonlinear adaptive diffusion filtering (NADF) with and without nonlocal (NL) information 

and named as NSST-NADF and NSST-NLNADF. The proposed methods are also adapted 

for both the speckle and Gaussian noise. In the proposed methods, the NSST has several 

advantages over the other transformation techniques. The NSST also provides the multiscale 

and direction analysis of the noisy images. In NSST-NADF approach, the noise components 

are suppressed by applying modified adaptive diffusion on low frequency approximation 

coefficients and thresholding provides the modified coefficients which improve the denoising 

efficiency with better edge preservation. Furthermore, in the NSST-NLNADF approach, the 

NL information and adaptive gray level variance are incorporated in the modified diffusion 

equations within the large number of connecting neighborhood to effectively preserve more 

edges.  

The noise suppression abilities of the proposed methods and others using several US 

images and standard test images have also been compared here. Experimental results show 

an improved denoising performance obtained by the NSST-NLNADF compared to the NSST-

NADF approach. Furthermore, a detailed comparative study presented at the end of this 
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chapter, exhibits the superiority of the proposed approaches over other existing methods, 

including the TVF and NLMF methods that also produce competitive noise reduction 

performance to all the proposed RTNLF-1, RTNLF-2 and RBAF methods presented in the 

previous chapters for both the case of low/high noise levels. Finally, it is concluded that the 

proposed NSST-NLNADF approach ensures an improvement in noise reduction and 

preservation of more edges, thus providing the processed images with better visual quality. 
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CHAPTER 6: HYBRID EDGE-BASED ACTIVE CONTOUR METHOD WITH 
KERNEL FUZZY CLUSTERING 

This chapter presents a hybrid segmentation approach for ultrasound medical images by utilizing both 

the features of kernel fuzzy clustering with spatial constraints and edge-based active contour model 

using distance regularized level set function. This chapter starts with a brief idea of the different 

segmentation methods followed by the methodology used in the proposed approach. In the proposed 

segmentation approach, the results obtained by the kernel fuzzy clustering is utilized not only to 

initialize the curve that moves toward the estimated object's boundaries, but also helps to estimate the 

parameters, which are responsible for controlling the level set evolution. The performance of the 

proposed approach used for segmentation of ultrasound medical images is discussed in both the 

subjective and objective manner and a comparative study has also been presented in the last section 

of this chapter for investigating the segmentation performance obtained by the proposed approach. 

6.1 Introduction 

Segmentation of medical images plays an important role in several applications such 

as visualization, quantitative analysis and image guided intervention and surgery [177]. 

Segmentation is a process of partitioning the given image into distinct regions that have 

specific clinical meanings. It is a very crucial approach to extract the boundaries of a 

particular region of interest and visualize the human tissues during the clinical diagnosis. 

Among the medical images obtained from different imaging modalities, the US imaging is 

most widely used for the diagnosis of several living organs. However, the accurate 

segmentation that provides the meaningful information is still a very challenging problem 

because of the poor quality of US images, which needs manual intervention further. 

Moreover, in order to achieve better segmentation performance, mostly approaches require 

an expert/radiologist to manipulate the several controlling parameters used in a particular 

segmentation approach. Furthermore, an accurate and automatic extractions of the region or 

the object boundaries are in a great need for the US images. 

In past years, several algorithms have been presented in the literature as presented in 

chapter 1 from which it is observed that latest research work on the US image segmentation 

is concentrated on an active contour model (ACM) approach and its different modified 

variants [48, 64-66, 221, 236, 275, 276, 278, 279]. The performance of the traditional ACM 

approaches are based on the appropriate initialization of contour and choosing the 

appropriate controlling parameters used in the curve evolution. Thus, it is a very tedious job 

that is also time consuming, experience and knowledge dependent. By considering all these 

consequences, this chapter introduces a hybrid edge-based active contour model (EBACM) 

used for segmentation of the US medical images using the kernel fuzzy c-means clustering 

(KFCM). In this segmentation approach, the fuzzy membership function from the KFCM with 

spatial constraints clustering is employed not only to initialize the curve but also to evaluate 
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the contour propagation controlling parameters. The KFCM clustering is able to provide 

better results by incorporating the kernel induced distance in place of the Euclidean distance 

like conventional fuzzy c-means clustering [222]. 

The rest part of this chapter is structured as follows. The next section provides a brief 

idea of the different segmentation methods, including clustering and ACM methods that are 

employed to present the proposed hybrid segmentation approach using the EBACM and 

KFCM approaches and named as the EBACM-KFCM approach. After that, the proposed 

segmentation approach is also discussed and its implementation steps are also mentioned in 

the section. The performance of the EBACM-KFCM approach is also analyzed with both the 

synthetic noisy images and real US images and explained. Many efforts have been made to 

evaluate and compare the segmentation performance with other existing methods in terms of 

different performance measures discussed in the subsequent sections. 

6.2 Classification of Segmentation Methods 

Image segmentation is an important step for quantitative and qualitative analysis of the 

medical images and the accurate segmentation provides meaningful information in the 

diagnosis process. Segmentation process divides an image into its constituent subregions or 

objects by grouping together neighborhood pixels based on some predefined criterion. The 

complete segmentation results are the set of disjoint regions corresponding uniquely with 

objects in the input image. Most of the segmentation techniques are either based on 

discontinuity or similarity criterion. Segmentation methods based on the discontinuities are 

edge-based and those based on similarity are thresholding, region growing, region merging 

and splitting, and watershed [215, 241]. Some of the image segmentation methods are also 

discussed in brief as presented below: 

6.2.1 Thresholding based segmentation 

In thresholding approach, the partitioning of the object from the background of an 

image is performed by selecting the proper range of gray scales [117]. In thresholding 

approaches, threshold value has an important role that is usually selected from the image 

histogram. It is said that all pixels whose values (gray intensity, color, or other relevant 

feature) lie between two values of threshold belongs to one region. The different regions of 

an image are partitioned by delineating peaks, valleys and/or shapes in its corresponding 

intensity histogram [241]. The histogram thresholding does not require any prior information 

regarding the image to be segmented. This approach is very convenient and easy for 

segmentation. However, the accurate segmentation may not be achieved because of the 

presence of high noise level and texture type contents into the images. Furthermore, the 

region boundaries obtained by such type of techniques may give the false interpretation of 

the object shape. 
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A common thresholding algorithm is Otsu's method. In this thresholding approach, the 

distribution pattern of the pixels is analyzed based on the concept that the pixels in each 

class or cluster should be as similar as possible. It means that the variance inside each class 

should be minimized. Otsu defined the within-class variance as the weighted sum of the 

variances of each cluster. Minimizing within-class variance is equivalent to maximizing 

between-class variance. This method is most widely employed in literature and its result is 

robust and satisfactory. The problem gets severe in case of multimodal histograms with no 

sharp or well defined boundaries [4, 59]. It is often difficult to define functional and statistical 

measures only on the basis of gray level value. 

6.2.2 Edge-based segmentation 

Edges, lines and points carry a lot of information about the various regions in the image 

[4]. Though, the edges and lines are both formed where there are abrupt changes in the 

intensity of the pixels. Basically, the idea underlying most edge-detection techniques is the 

computation of a local derivative (gradient) operator. This gradient vector of an image ݏሺݔ,  ,ሻݕ

is obtained by the partial derivatives	߲ݔ߲/ݏ	and ߲ݕ߲/ݏ at every pixel location. There are 

several edge detection techniques having different characteristics that can be used to detect 

the edges [90]. A wide variety of edge detector operators that usually are named after their 

inventors, exist in the literature. The most common are Prewitt [103, 193], Sobel [103, 219], 

Laplace [103, 192] and Canny [42, 103]. A critical disadvantage of the gradient operation is 

that the derivative enhances the noise. As a second-order derivative, the Laplacian method 

is even more sensitive to noise. An alternative is the convolution of an image with the 

Gaussian smoothing function which is known as Laplacian of Gaussian. Sobel operators 

have the advantage of providing both a derivative and a smoothing effect. The canny edge 

detector is based on the extreme of first derivative of the Gaussian operator applied to an 

image. The operator first smoothens the image to eliminate noise and then finds high 

gradient regions. 

Mostly, edge detection by the gradient evaluation process is able to provide better 

results only in those images that have sharp intensity transition and relatively low noise. Due 

to its sensitivity to noise, some smoothing operation is generally required as pre-processing, 

and the smoothing effect consequently blurs the edge information. However, the 

computational cost is relatively lower than the other segmentation methods because the 

computation can be done by a local filtering operation, i.e. convolution of an image with a 

kernel. However, the principal limitation of the edge detection methods is also its 

dependence on the information contained in the local neighborhood of the image. Generally, 

the edge detection methods do not consider model based information embedded in an image 

[4]. In most of the cases, these edge detection techniques ignore the higher order 

organization which may be meaningfully presented in the image [4].  
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The goal of the edge-based segmentation methods is to connect the relevant edges in 

such a way that the object boundaries are produced. Because the edges are not always 

connected and are not always showing the object’s boundaries, the image’s objects which 

are resulted from edge detection could not be an appropriate segmentation result. It is also 

often difficult to identify and classify the spurious edges [215]. Therefore, the edge detection 

process is considered as a pre-processing step in such cases.  

6.2.3 Region-based segmentation 

The complement of the edge-based segmentation method is known as region-based 

segmentation [233]. Region-based segmentation looks for the similarity of pixels within a 

sub-region-based on a desired property such as intensity, color, and texture. It is based on 

the principle that neighboring pixels within a particular region of an image have similar 

characteristics. The criterion is to detect the regions that satisfy predefined homogeneity 

criteria. Region-based segmentation method is of two types such as split and merge 

approach, and region growing approach [103]. 

Region growing process [8, 86, 87] makes a group of pixels, or sub-regions into larger 

regions based on a predefined criteria. The goal of region growing is to use image 

characteristics to map individual pixels in an input image to sets of pixels called regions. The 

region growing method starts from pixel level and in each step unifies similar pixels one by 

one and continues till no similar character pixel is left to add. Region growing technique gives 

good results where borders are difficult to detect and to generate better results in noisy 

image [215].  

The region growing approach relies on a homogeneity criterion. This is based on 

finding parts of images which are homogeneous for a given set of properties. Region-based 

methods always provide closed contour regions and make use of relatively large 

neighborhoods for decision-making. Users select a point, which is known as ‘seed’, and a 

region grows out from this seed until some stopping growth criteria are met. This is a basic 

limitation of the region growing process that needs manual intervention to select seed point 

and to formulate the stopping criterion. Besides this, there is a fundamental problem of 

selecting the seed point and suitable properties to grow the regions. Selecting initial seeds 

can be often based on the nature of applications or images. Unlike gradient and Laplacian 

edge detection methods, the borders of the regions found by region growing are perfectly 

thin and connected. It is also sensitive to noise that cause holes in a segmented region or 

between two distinct regions to be connected. 

Split and merge process [55] begins with entire image, the image is divided into small 

regions, and in each step, heterogeneous region is divided into four rectangular smaller 

regions and so on till all regions are homogeneous. Now, the merging process starts and in 

this process all the similar neighboring homogeneous regions are unified. Because of 
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subsequent division of the segments into quarters, the boundaries produced by the split 

technique tend to be squarish and artificial [215]. 

6.2.4 Watershed transform based segmentation 

Watershed transform [115] is one of the methods based on region-based 

segmentation. The watershed transform is derived from the field of mathematical 

morphology. It is a powerful tool for image segmentation. The watershed transform has been 

widely used in many fields of image processing, including medical image segmentation due 

to the number of advantages that it possesses. It also produces a complete division of the 

image in separate regions, even if the contrast is poor and thus avoids the need for any kind 

of contour joining. The watershed segmentation embodies many concepts of the approaches 

such as detection of discontinuities and region processing. It provides more stable 

segmentation results including continuous segmented boundaries. Watershed transformation 

is built by the implementation of the flooding process on a grayscale image. 

The watershed transform approach utilizes region as well as contour information to 

segment the image by considering it as three dimensional topographic surfaces in which two 

are the spatial dimension and the third one being a particular specific attribute such as 

intensity or gradient. Based on this concept, an image is partitioned into two different sets 

such as catchment basins and the watershed lines, either by flooding the topographic 

surface from its minima or prevent from merging of the waters coming from the different 

sources. While simulating this process for image segmentation, two approaches may be 

used: either by finding basins first and then watersheds by taking a set complement or by 

computing a complete partition of the image in basins and subsequently find watersheds by 

boundary detection. To be more specific, the expression of watershed transform denotes 

labelling of the image such that all points of a given catchment basin have same unique 

label. In practice, it is noted that the watershed transform does not apply to the original 

image, rather it is applied to its morphological gradient [22, 241].  

The main advantages of the watershed approach are its simplicity to implement and 

less computational complexity. It is also capable to produce connecting boundaries, if the 

weak boundaries or low contrast regions exist [241]. However, the main drawback of the 

watershed approach is over segmentation because of the presence of noise irregularities in 

the images. 

6.2.5 Hybrid segmentation 

The hybrid segmentation method combines edge and region-based segmentation 

techniques and provides more accurate segmentation of the images. One can extract the 

features of both the region growing and edge-based segmentation methods by combining the 

strengths of these two distinct methods. For example, region joining decision is based not 
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only on pixel or neighborhood similarity but also on already extracted edges and completion 

of these edges [23, 62]. 

The morphological watershed segmentation is another type of hybrid technique. The 

watershed method is applied to the gradient of the image. This gradient of the image can be 

viewed as topography with boundaries between regions as ridges. There are several hybrid 

segmentation techniques that exist in literature providing better segmentation results [8, 26, 

114, 195, 201, 286, 287]. 

6.2.6 Clustering based segmentation 

Clustering techniques are most widely used to partition the image pixels into different 

clusters [15, 116, 150, 222]. It is used to group similar data points into a same cluster 

iteratively by minimizing its objective functions based on the Euclidean distance of the pixel 

to its cluster centroids. The results of the clustering methods would be better with the lower 

cost value. The K-means clustering is a common clustering based segmentation technique 

where each pixel is iteratively allocated to the nearest cluster center position and the location 

of cluster centroid is estimated. After each iteration, the value of objective function reduces 

until the cluster configuration converges at a stable point where it has a local minimum. In K-

means clustering, every object is limited to one and only one of K clusters. In contrast, a 

fuzzy c-means (FCM) clustering [24, 63] has been widely used for the medical image 

segmentation and provides better results. In the FCM, every pixel may belong to more than 

one cluster with the specified degree of membership. The standard FCM objective function 

for partitioning an image into the different cluster is given as [24] 

,ߤிெሺܬ ሻݒ ൌ ∑ ∑ ,ߤ
 ฮݏ െ ฮݒ
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ୀଵ


ୀଵ        (6.1) 

The membership functions are subject to the following constraints 

∑ ,ߤ ൌ 1
ୀଵ , ,ߤ ∈ ሾ0,1ሿ, ∑ ,ߤ  0

ୀଵ        (6.2) 

where ݏ ൌ ሺݏଵ, ,ଶݏ ,ଷݏ … ,  , is the membership of theߤ ,is the total number of the pixels ܮ ,ሻݏ

pixel ݏ in the ݆௧ cluster and ݒ is the ݆௧ cluster centroid. ‖ሺ∙ሻ‖ is the norm of a matrix and  

is a weighted exponent on each fuzzy membership that controls the amount of fuzziness of 

the final segmentation.  

The membership functions and cluster centroids are updated using the following 

equations by minimizing the ܬிெሺߤ,  ሻݒ
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A summary of the FCM is as follows: 
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Step 1: Set the number of the clusters ሺܥሻ and termination criterion  0 i.e maximum 

number of iterations. 

Step 2: Initialize the value of a fuzzy clustering matrix. 

Step 3: Set the loop counter ݈ ൌ 0. 

Step 4: Compute the cluster centroid ሺݒሻ and evaluate the value of the cost function ሺܬሻ. 

Step 5: Now, compute the membership values in the matrix for each pixel and each cluster. 

Step 6: If the cost function value between successive iteration < termination criterion ሺߝሻ 

then STOP, otherwise set ݈=݈+1 and return to step 4. 

The main drawback of the FCM clustering based segmentation is that it is very 

sensitive to noise and affects the segmentation accuracy also. Since, it does not include the 

spatial information of the pixels. To eliminate the limitations of conventional FCM, several 

researchers [9, 63, 150, 222] tried to incorporate local spatial information of the pixel into the 

cost function of standard FCM clustering approach and provides better results than the 

conventional FCM. Firstly, Ahmed et al. [9] proposed the objective function of the FCM_S by 

including the spatial information that is also robust to noise. The objective function of the 

FCM_S algorithm is given as 

ܬ
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The membership functions are subject to the following constraints 

∑ ,ߤ ൌ 1
ୀଵ , ,ߤ ∈ ሾ0,1ሿ, ∑ ,ߤ  0

ୀଵ 	      (6.6) 

where ܮ represents the set of the neighbors within a window around ݏ and ܮே is its 

cardinality. The parameter ߙ is also included in the cost function to control the effect of the 

neighborhood term. 

The membership functions and cluster centroids are updated using the following 

equations by minimizing the ܬ
ிெ_ௌሺߤ,  ሻݒ
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However, it takes more computation time than the conventional FCM because of the 

incorporation of additional spatial constraints and calculating the neighborhood term in each 

step. To overcome this problem, two different variants of the FCM_S are introduced [222] 

and named as FCM_X = FCM_S1 and FCM_S2 that make simpler to compute the 

neighborhood term by mean filtered and median filtered image, respectively. The cost 

function of the FCM_X can be written as follows: 
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and the membership functions and cluster centroids are updated by the equations as given 

below: 
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where ܺ refers to the ݏ
ெ and ݏ

ௌ for implementing the FCM_S1 and FCM_S2 

approaches, respectively. The ݏ
ெ and ݏ

ௌ are the average and median of the 

neighboring pixels within a window around ݏ, respectively. Cheng and Zhang [222] also 

extended the FCM to the kernel induced FCM (KFCM) with KFCM_S and its two different 

variants as KFCM_X = KFCM_S1 and KFCM_S2 (named as kernelized FCM with spatial 

constraints or spatial constrained KFCM). In the KFCM, the Euclidean distance is replaced 

ฮݏ െ ฮݒ
ଶ
 by the kernel induced distance function ฮΨሺݏሻ െ Ψሺݒሻฮ

ଶ
, where Ψ is a nonlinear 

map from the data space into the feature space with the corresponding kernel K. The 

objective function of a KFCM_X is given as 
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The membership functions are subject to the following constraints 
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‖ሺ∙ሻ‖ refers to the norm of a matrix. 

Thus, by minimizing the cost function ܬ
ிெ_ሺߤ,  ሻ of the KFCM_X, the membershipݒ

function ߤ, and centroid ݒ are updated iteratively and these are given by 
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where ܺ refers to the ݏ
ெ and ݏ

ௌ for implementing the KFCM_S1 and KFCM_S2 

approaches, respectively. The ݏ
ெ and ݏ

ௌ are the average and median of the 

neighboring pixels within a window around ݏ, respectively. In the present study, the 

KFCM_S1 and KFCM_S2 approaches are employed to evaluate the performance of the 

proposed segmentation methods, separately, by segmenting the image at initial stage. 
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6.3 Active Contour Based Segmentation 

Active contour refers to the dynamic curves or surfaces that move within the image 

domain to capture the desired object's boundaries. The motion of the curve initiated by any 

user is driven by the combination of two forces such as internal and external forces that also 

achieve a minimal energy state when the curve/surface reaches the estimated boundaries of 

an object. Active contour models have been extensively used in handling a variety of image 

understanding problems such as image segmentation, shape recovery and visual tracking. 

The existing active contour model can be classified as parametric active contour and 

geometric active contour models. The parametric active contours [61, 133] are represented 

explicitly as parameterized curves in a Lagrangian framework, while the geometric active 

contours [45, 161] are represented implicitly as level sets of a two dimensional function that 

evolves in Eulerian framework. 

6.3.1 Parametric active contour models 

Parametric active contour model or snake model introduced by Kass et al. [133] has 

been widely used for several image processing applications, especially to locate the object's 

boundaries. This active contour is an evolving contour around the object that moves from its 

initial position toward the desired actual boundaries of the object based on the energy 

minimization model. The contour curve is parameterized as ܥሺ݅ሻ ൌ ሾݔሺ݅ሻ,  ሺ݅ሻሿ, whereݕ

0  ݅  1 refers to the arc length of the contour ܥ. In this approach, the curve evolution is 

controlled by minimizing the energy associated with the current contour as the sum of the 

internal and external energies in the spatial domain. The mathematical formulation of the 

energy function is given as 

ܧ ൌ 
ଵ

ଶ

ଵ


ሺܥ|ߙᇱሺ݅ሻ|ଶ  ݏᇱᇱሺ݅ሻ|ଶሻ݀ܥ|ߚ   ሺ݅ሻ൯݀݅ܥ௫௧൫ܧ
ଵ
      (6.16) 

where ߙ and ߚ refer to the weighting parameters, which are responsible to control the 

tension and rigidity of the contour, respectively. The first integrating term refers to the internal 

energy function that determines the regularity of the contour, while the external energy term 

 .௫௧ is defined on image domain ሺΩሻ so that the desired features would have lower valuesܧ

The external energy derived from image features and used to extract the contour of the 

desired object's boundaries is given by ܧ௫௧ሺݔ, ሻݕ ൌ െ|ሺݏሺݔ, ௫௧ܧ ሻሻ|ଶ orݕ ൌ െ|ሺܩఙሺݔ, ሻݕ ∗

,ݔሺݏ ,ݔఙሺܩ denotes a gradient operator and  ሻሻ|ଶ, whereݕ  ሻ is a two-dimensional Gaussianݕ

function with the standard deviation ሺߪ). At the minima, the contour must satisfy the Euler-

Langrange equation. 

ᇱᇱሺ݅ሻܥߙ െ ᇱᇱᇱᇱሺ݅ሻᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥܥߚ
ி

െ ௫௧ᇣᇤᇥܧ
ிೣ

ൌ 0       (6.17) 

where ܨ௧ and ܨ௫௧ refer to the internal and external forces, respectively. The contour C is 

treated as a function of time and the Eqn. (6.17) can be solved as 
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பሺ,௧ሻ

ப௧
ൌ ,ᇱᇱሺ݅ܥߙ ሻݐ െ ,ᇱᇱᇱᇱሺ݅ܥߚ ሻݐ െ  ௫௧      (6.18)ܧ

where ܥሺ݅, 0ሻ ൌ  ሺ݅ሻ is the initial contour. A numerical solution of the Eqn. (6.18) on discreteܥ

grid can also be achieved using a finite difference approach. Despite their popularity, the 

conventional parametric snake models have two major drawbacks as small capture range 

and the difficulties associated with topological changes such as merging and splitting of the 

evolving curve. A number of methods have been proposed to address the capture range 

problem including the distance potential forces [67], pressure forces [68], multiresolution 

methods [146] and Gradient Vector Flow (GVF) [61, 134].  

6.3.2 Geometric active contour models 

The geometric active contours have been introduced by Caselles et al. [45] and Malladi 

et al. [161]. These models have also been known as geodesic active contour (GAC) [45] and 

conformal active contour model [135].  These models are based on curve evolution theory 

and level set method [179, 212]. The basic idea is to represent the active contours as the 

zero level set function (LSF), and to evolve the LSF according to a partial differential 

equation. Osher and Sethian [180] introduced the mathematical formulation of a level set 

theory to implement the active contour. In the mathematical level set formulation of an active 

contour model, the contour is represented by ܥ ൌ ሼሺݔ, ,ݔሻ|∅ሺݕ ሻݕ ൌ 0ሽ, and evolution of this 

contour is expressed by the zero LSF ∅ሺݐ, ,ݔ  .ሻ at time tݕ

The evolution of the LSF ∅ሺݔ,  ሻ is shown in Figure 6.1 (a) and the propagation of theݕ

corresponding contour is presented in Figure 6.1 (b). As the LSF ∅ሺݔ,  ሻ increases from itsݕ

initial stage, the corresponding set of contours ܥ, i.e. the red contour propagates toward 

outside. With this definition, the evolution of the contour is equivalent to the evolution of the 

LSF, i.e. ߲ݐ߲/ܥ ൌ ߲∅ሺݔ,  The advantage of using the zero level is that a contour can be .ݐ߲/ሻݕ

defined as a border between the positive and negative area, so the contours can be 

identified by just checking the sign of ∅ሺݔ,  .ሻݕ

 

Figure 6.1 Level set evolution and the corresponding contour propagation (a) Topological view of the 
LSF (b) The changes on the zero level set [180] 
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The evolution equation of the level set function ∅ is represented in the following form 

డ∅

డ௧
ൌ ,ݔሺ∅ ,|∅|ܨ ሻݕ ൌ ∅ሺ0, ,ݔ  ሻ        (6.19)ݕ

where ܨ denotes the speed function that controls the motion of active contour, |∅| denotes 

the normal direction and ∅ represents the initial contour. There are also several advantages 

of the geometric active contour over the traditional parametric active contour. For instance, 

the level set method exhibits the elastic behavior in terms of movement of the curve by 

evolving the LSF rather than directly moving the curve [245]. It can efficiently handle the 

topological changes which is also an important advantage of the geometric active contour. 

For the image segmentation, geometric active contour models can be classified into 

two categories viz. (a) Edge-based active contour model (EBACM) and (b) Region-based 

active contour model (RBACM). The EBACM is closely related to the edge-based 

segmentation that uses the several edge detection operators, usually based on the image 

gradient to attract the contour toward the desired boundaries of an object. On the other hand, 

the RBACM is able to identify the object of interest using the region descriptor to control the 

curve evolution. A brief description of the EBACM approach is given in the next section that 

is also employed to implement the proposed segmentation method, while the RBACM 

approach utilized in another proposed segmentation approach will be described in the next 

chapter. 

6.4 Edge-Based Active Contour using DRLSE Approach 

Edge-based active contour methods (EBACM) are closely related to the edge-based 

segmentation. Mostly the EBACM consists of two different parts such as the regularity part 

and the edge detection part that are used to estimate the shape of the curves and to attract 

the contour toward the edges, respectively. Previously, Osher and Sethian [180] addressed 

on motion of the active contour that is also controlled by the speed function ܨ represented in 

the form as 

ܨ ൌ ݒ݅݀ ቀ ∅

|∅|
ቁ          (6.20) 

Thus, the Eqn. (6.19) is represented as 

డ∅

డ௧
ൌ |∅| ቆ݀݅ݒ ቀ

∅

|∅|
ቁቇ         (6.21) 

Next popular EBACM based mean curvature motion is presented by Caselles et al. [44] and 

given by 

డ∅

డ௧
ൌ |∅|݃ ቀ݀݅ݒ ቀ

∅

|∅|
ቁ   ቁ        (6.22)ߙ

where ߙ refers to an inflation force that is able to push the curve toward the object, when the 

curvature becomes null or negative.	݃ ൌ 1/ሾ1  ,ݔఙሺܩ| ሻݕ ∗ ,ݔሺܫ  ሻ|ଶሿ is the edge function usedݕ

to stop level set evolution near the estimated object's boundary, where g vanishes. Here, ܩఙ 
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is the smoothing Gaussian function with standard deviation ሺߪሻ. Latter, Caselles et al. [45] 

introduced another EBACM approach. It starts with the minimization of energy functional 

defined on parameterized contours by which the curve evolution equations are derived in the 

Lagrangian formulation. By embedding the contour into the LSF, the Lagrangian formulation 

can be reformulated in terms of the LSF in the following Eulerian formulation. 

డ∅

డ௧
ൌ |∅| ቀ݀݅ݒ ቀ݃

∅

|∅|
ቁ   ቁ         (6.23)݃ߙ

This formulation is known as the GAC model in which the extra stopping term ݃ߙ makes the 

contour converge to the object boundary more accurately and has better performance in 

presence of weak edges. 

In traditional active contour methods, the LSF ሺ∅ሻ can develop socks, very sharp/flat 

shapes during the evolution, which makes further computation highly inaccurate. To avoid 

this problem, a common numerical scheme is used to initialize the LSF as a signed distance 

function before the evolution and then re-initialize the function ∅ as a signed distance 

function periodically during the evolution [185].  

డ∅

డ௧
ൌ ሺ∅ሻሺ1݊݃݅ݏ െ  ሻ         (6.24)|∅|

where ∅ is the function to be re-initialized. If ∅ is not smooth or much steeper on one side 

of the interface than the others, the zero level set of the resulting function ∅ can be moved 

incorrectly from that of the original function. In practice, the evolving LSF can deviate greatly 

from its estimated position within a small number of iteration steps, especially when the time 

step used in the discretized evolution equation is not small enough. Therefore, the re-

initialization process has become an important solution for maintaining a stable curve 

evolution process and ensuring the better segmentation results. For such purpose, many 

researchers have tried to re-initialize the regularity of the LSF and make it stable [179, 185, 

212, 248]. In order to solve re-initialization problem, Li et al. [64]  proposed a new variational 

formulation for the GAC with a penalty term that drives the level set function to be close to 

the signed distance function. This method completely eliminates the periodic re-initialization 

process of the level set function during the evolution. However, some unwanted side effects 

are produced on the level set function because of the penalty term. Furthermore, Li et al. [65] 

extended their previous method to distance regularized level set evolution (DRLSE) by 

incorporating the new distance regularization term with two well potential function and 

external energy term that force the motion of contour toward the expected position. The 

variational formulation is given as, 

௧ሺ∅ሻ்ܧ ൌ ሺ∅ሻܴߤ   ௫௧ሺ∅ሻ        (6.25)ܧ

where the overall energy  ்ܧ௧ሺ∅ሻ consists of two parts: ܴሺ∅ሻ refers the regularization term 

which forces ∅ to automatically approach the signed distance function during the evolution of 

the LSF and the parameter ߤ  0 is the weighting coefficient of the regularization term. 
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 ௫௧ሺ∅ሻ refers to the external energy that forces the zero LSF to the expected position. Theܧ

external energy for the function ∅ሺݔ,  ሻ is defined asݕ

௫௧ሺ∅ሻܧ ൌ ሺ∅ሻܮߣ   ሺ∅ሻ        (6.26)ܣߙ

where the first term and second term called as the contour length term and artificial balloon 

force term, respectively correspond to the gradient flows of the energy function. The first term 

drives the zero level set contour toward the estimated boundaries of an object while the 

second term is responsible to increase the moving speed of the contour. The parameter 

ߣ  0 is a weighting coefficient of the contour length to control the smoothness of contour 

during curve evolution and the weighting coefficients ߙ can be positive or negative depending 

upon the relative position of initial contour. The energy functional terms are defined as 

ሺ∅ሻܮ ≜  Ωݔ݀|∅|ఌሺ∅ሻߜ݃
							

ሺ∅ሻܣ ≜  ఌሺെ∅ሻΩܪ݃
											ݔ݀

ቑ        (6.27) 

where ݃, ߜఌሺݔሻ and ܪఌሺݔሻ are the edge indicator functions, Dirac delta function and Heaviside 

function, respectively. All these functions are defined as 

݃ ≜
ଵ

ଵା|ீ∗ூ|మ
          (6.28) 

ሻݔఌሺߜ ൌ ቊ
0,																														 |ݔ|			  ߝ
ଵ

ଶఌ
ቂ1  cos ቀ

గ௫

ఌ
ቁቃ , |ݔ|			  ߝ

       (6.29) 

ሻݔఌሺܪ ൌ ቐ

0,																																															 ݔ ൏ െߝ
1,																																																 ݔ  			ߝ
ଵ

ଶ
ቂ1 

௫

ఌ


ଵ

గ
sin ቀ

గ௫

ఌ
ቁቃ,												 |ݔ|  		ߝ

     (6.30) 

where ܫ is the original image and ݃ is the smoothed image obtained by convolving the 

Gaussian kernel ሺܩఙሻ with standard deviation ሺߪሻ. The ߝ is a constant parameter that 

regularizes the Dirac delta function. In this study, the parameter ߝ ൌ 1.5	 is taken as 

described in [65]. The regularization term ܴሺ∅ሻ for level set model is defined as  

ܴሺ∅ሻ ≜  ݔሻ݀|∅|ሺ
Ω

         (6.31) 

where ሺ|∅|ሻ is the potential function for the regularization term 	ܴሺ∅ሻ. A double well 

potential function is written as 

ሻݏሺ ൌ ቐ

ଵ

ଶ
ሺݏ െ 1ሻଶ	,																								 ݏ  1
ଵ

ସగమ
ሺ1 െ cosሺ2ݏߨሻሻ,								 ݏ  1

      (6.32) 

Using first derivative 

ሻݏሺ′ ൌ ቊ
ݏ െ 1															 ݏ  1
ୱ୧୬ሺଶగ௦ሻ

ଶగ
													 ݏ  1        (6.33) 

Thus, the total energy function is approximated by 

௧ሺ∅ሻ்ܧ ൌ ߤ  ሻ|∅|ሺ
Ω

 ߣ Ωݔ݀|∅|ఌሺ∅ሻߜ݃
 ߙ  ఌሺെ∅ሻΩܪ݃

 (6.34)   ݔ݀
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The Eqn. (6.34) minimized by solving the gradient flow can be defined as 

డ∅

డ௧
ൌ ݒ݅݀ߤ ቂቀ

′ሺ|∅|ሻ

|∅|
ቁ ቃ∅  ݒఌሺ∅ሻ݀݅ߜߣ ቂ݃

∅

|∅|
ቃ   ఌሺ∅ሻ    (6.35)ߜ݃ߙ

The Eqn. (6.35) refers to the EBACM with the DRLSE formulation. On the right side of 

DRLSE model, the first term is the distance regularization energy while the second and third 

terms are the gradient flows of the different energy function as described in Eqn. (6.27). In 

this formulation, the LSF ∅ሺݔ,  ሻ is initialized asݕ

∅ሺݔ, ሻݕ ൌ ൜
െc, ሺݔ, ሻݕ ∈ Ω
c, ݁ݏ݅ݓݎ݄݁ݐ

        (6.36) 

where c  0 is a constant and Ω is a region of interest in the given image domain Ω. The 

discretization of Eqn. (6.35) can be expressed in the following iteration form. 

∅௧ାଵሺݔ, ሻݕ ൌ ∅௧ሺݔ, ሻݕ  ߬
డ∅ሺ௫,௬ሻ

డ௧
       (6.37) 

where ߬ is the time step of level set evolution. For maintaining the stable level set evaluation, 

the time step parameter ߬ and penalty term ߤ must satisfy the condition ሺ߬ߤ ൏ 1/4ሻ. 

6.5 Proposed Hybrid Edge-Based Active Contour Method with KFCM Clustering 

In the proposed hybrid edge-based active contour model using the KFCM clustering 

(EBACM-KFCM) approach, both the features of the KFCM with spatial constraints clustering 

KFCM_X (KFCM_S1 and KFCM_S2) and the EBACM using DRLSE model are merged to 

formulate two algorithms for the segmentation of US medical images. The proposed method 

starts with the KFCM_S1 and KFCM_S2 clustering methods, individually, for the purpose of 

initial segmentation. At this stage, it generates spurious blobs and outliers in the image. 

Thus, the morphological operations such as erosion and dilation have been used to suppress 

such effects and to recover the object of interest.  

After that, the results of the KFCM_X = KFCM_S1 and KFCM_S2 are utilized to 

initialize the DRLSE formulation based active contour model and to evaluate the controlling 

parameters also which have a responsibility of accurate contour propagation. Let, the region 

of interest in the result of fuzzy clustering be expressed as ܫோ and μ୫
େ_ଡ଼ as the 

membership function for the KFCM_X method. Now, the initializing function of the level set 

model can be given as 

∅ሺݔ, ሻݕ ൌ ሺ4ܫோ െ 2ሻ(6.38)         ߝ 

where ߝ is a constant parameter which regularizes the Dirac delta function [64, 65, 179] and 

 :ோ refers to the binary image obtained using the following equation as given belowܫ

ோܫ ൌ ቊ
0,					 μ୫

େ_ଡ଼ ൏ ܶ

1,					 μ୫
େ_ଡ଼  ܶ

        (6.39) 

where ܶ ∈ ሾ0,1ሿ refers to the adjustable threshold value that is used to control the size of the 

contour. 



 

195 

 

The proposed automatic segmentation algorithm has both the property of 

autoinitialization of the LSF and autoconfiguration of several controlling parameters using the 

KFCM_S1 and KFCM_S2 clustering, individually. This also helps to control the parameter 

values used in the DRLSE model, which are provided manually and changed for every image 

data. In the EBACM model mentioned in Eqns. (6.35) and (6.37), it is prime requirement to 

estimate all the four parameters such as regularization term coefficient ሺߤሻ, coefficient of the 

contour length ሺߣሻ, balloon force ሺߙሻ and time step parameter ሺ߬ሻ. All these controlling 

parameters are estimated from the results of the KFCM_X clustering. The balloon force ሺߙሻ 

should be large and it depends on its sign either positive (means to shrink toward the object 

boundary) or negative (means to expand toward the object boundary). The balloon force is 

estimated using the result obtained by the KFCM_X model  

ߙ ൌ െ2൫μ୫
େ_ଡ଼ െ 0.5൯        (6.40) 

For the DRLSE approach, the weighting coefficient of the regularization term ሺߤሻ is evaluated 

by estimating the length and area of the initial LSF that is also the result of the KFCM_X 

method. The area and length of the contour produced by the KFCM_S1 and KFCM_S2, 

individually, estimated using the Dirac delta and Heaviside function are given as below: 

݄ݐ݃݊݁ܮ ൌ  ஐݕ݀ݔሺ∅ሻ݀ߜ         (6.41) 

ܽ݁ݎܣ ൌ  ஐݕ݀ݔሺ∅ሻ݀ܪ         (6.42) 

where the Heaviside function ܪሺ∅ሻ is  

ሺ∅ሻܪ ൌ ൜
0, 			∅ ൏ 0
1, 		∅  1          (6.43) 

The time step parameter ሺ߬ሻ is calculated by 

߬ ൌ


௧
          (6.44) 

For the stable and accurate curve evolution, the multiplication of time step parameter ሺ߬ሻ and 

weighting coefficient of the regularization term ሺߤሻ should be less than 1/4 [64, 65]. Based on 

the experimental results, the coefficient of the regularizing term ሺߤሻ is evaluated as  

ߤ ൌ 0.2/߬          (6.45) 

Thus, the weighting coefficient of the contour length is estimated as 

ߣ ൌ 0.1߬          (6.46) 

Therefore, the mathematical formulation of the EBACM approach using DRLSE can be given 

as below: 

డ∅

డ௧
ൌ ݒ݅݀ߤ ቂቀ

ᇱሺ|∅|ሻ

|∅|
ቁ ቃ∅  ݒఌሺ∅ሻ݀݅ߜߣ ቂ݃

∅

|∅|
ቃ െ 2݃൫μ୫

େ_ଡ଼ െ 0.5൯ߜఌሺ∅ሻ  (6.47) 

Now, Eqns. (6.37) and (6.47) refer to the formulation of EBACM using DRLSE approach 

used for the segmentation purpose. 
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Implementation Steps 

For the automated segmentation of US medical images and implementing the above 

aspects, the proposed algorithm is formulated as follows: 

Step 1: Start with the given US image. 

Step 2: Apply the KFCM_X clustering algorithm on the given input image. 

a) Set the number of the clusters ሺܥሻ,  and termination criterion  0. In the present 

work, the parameters such as  ൌ 2 and termination criterion	ൌ	0.001 are taken 

based on the experimental results. The parameter ሺܥሻ is considered according to the 

images and their region of interest. 

b) Compute the average and median value of the neighboring pixel for the KFCM_X = 

KFCM_S1 and KFCM_S2, respectively. 

c) Initialize the value of fuzzy clustering matrix and set the loop counter ݈ ൌ 0. 

d) Compute the cluster centroid using Eqn. (6.15) and evaluate the value of the 

objective function (J). 

e) Now, compute the membership values in the matrix using Eqn (6.14) for each pixel 

and for each cluster. 

f) If the cost function value between successive iteration < termination criterion, then 

STOP, otherwise set ݈=݈+1 and go to step d. 

Step 3: Select the region of interest in the result of KFCM_X = KFCM_S1 and KFCM_S2 

obtained from step 2 and evaluate the initial level set function using Eqn. (6.38). 

Step 4: Estimate the smooth image ሺ݃ሻ by convolving the original image and a Gaussian low 

pass filter of size 8×8 with the standard deviation of 0.5 using Eqn. (6.28) 

Step 5: Compute the value of the time step parameter ߬ and regularization parameter ߤ 

using Eqns. (6.44) and (6.45), respectively. 

Step 6: Compute the weighting coefficient of contour length ߣ using Eqn. (6.46). 

Step 7: Now, the balloon force coefficient is estimated using Eqn. (6.40). 

Step 8: Apply the EBACM with DRLSE evolution using Eqns. (6.47) and (6.37). 

6.6 Evaluation Criterion 

For the quantitative evaluation and analysis of the segmentation performance obtained 

by the different segmentation methods, several validation parameters are used such as the 

true positive (TP) [244], false positive (FP) [244], accuracy (ACC) [50], jaccard similarity 

index (JSI) [244], dice coefficient (DC) [240]  and Hausdorff distance (HD) [124, 244].  

(a) True positive (TP) ratio: The TP value denotes the pixels that become visible in both the 

binary mask of the segmented region generated by manual and computerized segmentation 

method. The TP is defined as 

ܶܲ ൌ
|ௌಾ∩ௌ|

|ௌಾ|
           (6.48) 
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where ܵெ indicates the manually segmented ground truth binary mask and ்ܵ denotes the 

binary mask of the region segmented by the computerized method. The higher value of the 

TP ratio means the more overlapping area between the real and segmented region. 

(b) False positive (FP) ratio: The FP value denotes the pixels that become visible in the 

segmented region generated by the test method, but it does not appear in the ground truth 

binary mask. When the FP takes lower value, fewer incorrect regions are covered by the 

segmented region. The FP ratio is given as 

ܲܨ ൌ
|ௌಾ⋃ௌିௌಾ|

|ௌಾ|
         (6.49) 

(c) Accuracy (ACC): The ACC means the proportion of the pixels contained within the 

correctly extracted region obtained by the test method out of all the pixels of manually 

delineated region. The segmentation accuracy is given as below: 

ܥܥܣ ൌ
்ା்ே

்ାிା்ேାிே
         (6.50) 

where TP, FP, TN, FN represent the true positive, false positive, true negative and false 

negative values, respectively. 

(d) Jaccard similarity index (JSI): The JSI is used as a statistical measure of similarity 

between the regions delineated by manual and computerized method and it is given as 

ܫܵܬ ൌ
|ௌಾ∩ௌ|

|ௌಾ∪ௌ|
           (6.51) 

If the value of the JSI metric is higher, it signifies that the more segmented region match to 

the manual segmentation.  

(e) Dice Coefficient (DC): The DC value is utilized to measure the similarity of the extracted 

region using test segmentation algorithms and manually delineated. The DC is defined as 

follows: 

ܥܦ ൌ 2 ൈ
|ௌಾ∩ௌ|

|ௌಾାௌ|
          (6.52) 

The values of dice coefficient should be close to unity that insures the exact overlapping of 

the segmented and manually delineated region.  

(f) Hausdorff distance (HD): Finally, the HD values are utilized as a measure of the structural 

difference between two objects. It is given as the maximum of the Euclidean distance 

between the least distant point pair in the structures [206]. For the two contours R and S, the 

HD index is estimated as follows: 

,ሺܴܦܪ ܵሻ ൌ ݔܽ݉ ൜sup
௫∈ோ

inf
௬∈ௌ

	݀ሺݔ, ,ሻݕ sup
௫∈ௌ

inf
௬∈ோ

	݀ሺݔ,  ሻൠ     (6.53)ݕ

where sup and inf refer to supremum and infimum operators, respectively and ݀ሺݔ,  ሻݕ

denotes the Euclidean distance between two points x and y. Therefore, the HD provides the 



 

198 

 

upper limit of the object misalignment between the contour of the extracted and manual 

delineated boundaries. The lower HD values indicate better segmentation performance with 

respect to the manual delineation. 

6.7 Experimentation  

To analyze the segmentation capability of the proposed methods introduced earlier, 

different objective measures are used. Here, the segmentation performance of two different 

proposed approaches-1 and 2 named as the EBACM-KFCM_S1 and EBACM-KFCM_S2, 

respectively, are investigated. The proposed approach-1 and 2 signify that the results of the 

KFCM_S1 and KFCM_S2 clustering methods are employed to initialize the LSF and to 

control the several contour evolution controlling parameters used in the EBACM approach, 

respectively. To assess the segmentation performance of the proposed approaches and 

other existing methods, two different experiments are conducted on both the synthetic test 

images including noisy images and several real US medical images.  

Experiment 1: To analyze and evaluate the segmentation performance of the proposed 

EBACM-KFCM_S1 and EBACM-KFCM_S2 approaches applied to the synthetic test images 

and present a comparative analysis of the proposed and other existing methods, qualitatively 

and quantitatively. 

Experiment 2: To analyze and evaluate the segmentation performance on the real US 

images processed by both the proposed approach-1 and 2 and demonstrate a comparison 

between the segmentation results provided by the proposed approaches and other existing 

methods. 

6.8 Results and Discussions 

 Experiment 1: Analysis and evaluation for the segmentation performance of the 

synthetic test images - In order to validate the experimental objective, several test images 

synthesized using the MATLAB are considered, in which two of them are presented to 

analyze the segmentation performance of the proposed EBACM-KFCM_S1 and EBACM-

KFCM_S2 approaches. For the first synthetic image of size 118 × 134 pixels, Figure 6.2 (a) 

and (c) show segmented images with the red contour mark on the estimated object 

boundaries that are extracted by the proposed approach-1 and 2, respectively. From Figure 

6.2 (a) and (c), it can be observed that the proposed approaches are able to successfully 

detect the object's boundaries. Moreover, the proposed EBACM-KFCM_S2 approach 

provides more accurate results by extracting the boundaries than the EBACM-KFCM_S1 

approach. Furthermore, it is clearly demonstrated by the plot of final LSF as shown in Figure 

6.2 (b) and (d) corresponding to Figure 6.2 (a) and (c), respectively.  

In order to evaluate the performance of the proposed approach-1 and 2 against noise, 

another synthetic noisy image of size 101 × 99 pixels is considered. Its segmentation results  



 

199 

 

 

Figure 6.2 Segmentation results of the synthetic image-1 (SI-1) produced by the (a) Proposed 
EBACM-KFCM_S1 approach (c) Proposed EBACM-KFCM_S2 approach. (b) and (d) 
represent the three dimensional display of the final LSF of a and c, respectively 

produced by the proposed EBACM-KFCM_S1 and EBACM-KFCM_S2 are shown in Figure 

6.3 (a) and (c), respectively, and their corresponding final LSF are also shown in Figure 6.3 

(b) and (d), respectively. From both the results, it can be observed that the proposed 

methods are still able to successfully extract the estimated objects' boundaries. 

Furthermore, to assess the superiority of the proposed segmentation approaches, their 

results were compared with the results obtained by the FCM_S1 method, FCM_S2 method, 

KFCM_S1 method, KFCM_S2 method, GAC method [45, 182], ACMRSF method [48, 66], 

and EBACM method [64, 65]. For the comparative analysis of the segmentation results 

obtained by aforementioned methods, the segmented images of both the synthetic test 

images are presented in Figure 6.4 (b)-(j) and Figure 6.5 (b)-(j), respectively. From these 

results, it is observed that the proposed method is able to successfully extract the estimated 

region and boundaries of the object. The subjective outcomes of the proposed and other 

methods are also supported by the six different performance measures. These quantitative 

outcomes are listed in Table 6.1 for both the synthetic images (SI-1 and SI-2).  
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Figure 6.3 Segmentation results of the noisy synthetic image-2 (SI-2) produced by the (a) Proposed 
EBACM-KFCM_S1 approach (c) Proposed EBACM-KFCM_S2 approach. (b) and (d) 
represent the three dimensional display of the final LSF of a and c, respectively 

 

Figure 6.4 Segmentation results for the synthetic test image-1 (a) Original image. Results obtained 
by (b) FCM_S1 (c) FCM_S2 (d) KFCM_S1 (e) KFCM_S2 (f) GAC (g) ACMRSF (h) 
EBACM (i) Proposed EBACM-KFCM_S1 (j) Proposed EBACM-KFCM_S2 
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Figure 6.5 Segmentation results for the synthetic test image-2 (a) Original image. Results obtained 
by (b) FCM_S1 (c) FCM_S2 (d) KFCM_S1 (e) KFCM_S2 (f) GAC (g) ACMRSF (h) 
EBACM (i) Proposed EBACM-KFCM_S1 (j) Proposed EBACM-KFCM_S2 

The results mentioned in Table 6.1 show that the proposed methods gain approx 98% 

segmentation accuracy which obviously outperforms the others. The other measures such as 

JSI and DC obtained by the proposed methods also achieve higher values than others. It 

indicates more similar region extracted by the proposed approach-1 and 2 than the other 

methods.  

Table 6.1  Performance measures obtained by various segmentation methods for the synthetic test 
images illustrated in Figure 6.4 and Figure 6.5 

Methods Images TP FP ACC JSI DC HD 

FCM_S1  
SI-1 96.3029 2.2958 97.0036 94.1416 96.9824 3 

SI-2 99.0883 7.6586 95.7148 92.0393 95.8546 2.8284 

FCM_S2  
SI-1 98.2707 6.2016 96.0346 92.5323 96.1213 3 

SI-2 95.1131 1.2188 97.4471 94.9054 97.3861 3 

KFCM_S1   
SI-1 94.0072 0.1193 96.9439 93.8952 96.8515 3 

SI-2 94.7848 2.2247 96.2801 92.7221 96.2236 2.8284 

KFCM_S2  
SI-1 95.4681 0.3578 97.5552 95.1277 97.5030 2.2361 

SI-2 95.7330 1.4376 97.6477 95.3159 97.6018 3 

GAC  
SI-1 94.0072 24.359 84.8241 75.5934 86.1005 4.899 

SI-2 90.1167 24.225 57.8957 51.6946 68.1561 6.5574 

ACMRSF  
SI-1 90.6977 1.6100 94.5438 89.2606 94.3256 3 

SI-2 97.1554 10.685 93.2349 87.7759 93.4901 5.7082 

EBACM 
SI-1 97.2570 2.8026 97.2272 94.6056 97.2208 3.4641 

SI-2 97.4836 1.5317 97.9759 96.0129 97.9659 3 

Proposed approach-1 
(EBACM-KFCM_S1) 

SI-1 96.2456 0.3287 97.7244 95.9831 97.9212 2.6458 

SI-2 97.5930 1.1670 98.2130 96.4672 98.2018 3 

Proposed approach-2 
(EBACM-KFCM_S2) 

SI-1 96.2135 0.2087 98.0024 96.0131 97.9660 2.2361 

SI-2 97.5930 1.1306 98.2312 96.5020 98.2199 3 
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The TP ratio obtained by the proposed methods is also high (approx 97%), but 

sometimes the proposed method exhibits lower TP values than others. This is because of the 

blurry regions around the boundaries that become very difficult to be differentiated with the 

real boundaries. Moreover, these blurry regions are also marked by an expert at the time of 

manual segmentation. In the results mentioned in Table 6.1, some methods have higher TP 

values than the proposed methods. However, these methods also gain higher FP values 

which indicate their inaccurate segmentation results. Besides it, the proposed methods also 

exhibit the abilities of accurately extracting the region of interest by achieving the lowest 

values of the Hausdorff distance. Moreover, the box plots of all six metric evaluations for all 

the synthetic test images are presented in Figure 6.6. In each box plot, the top and bottom of 

each rectangular box indicate the 25th and 75th percentile, respectively, with the median 

shown inside the box. It is clearly seen from Figure 6.6 that the median of the TP, JSI, ACC, 

DC and FP, HD values evaluated by the proposed approach-2 are highest and lowest, 

respectively. This also indicates the superiority of the proposed approach-1 and 2 over the 

others in terms of the successful extraction of the objects of interest. Moreover, the proposed 

EBACM-KFCM_S2 approach outperforms the EBACM-KFCM_S1 approach and others. 
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Figure 6.6 Box plot of the TP, FP, ACC, JSI, DC and HD measurements of all synthetic test images 
processed by the proposed EBACM-KFCM_S1 (M-8), EBACM-KFCM_S2 (M-9) and 
others, where M-1, M-2, M-3, M-4, M-5, M-6 and M-7 refer to the FCM_S1, FCM_S2, 
KFCM_S1, KFCM_S2, GAC, ACMRSF and EBACM methods, respectively 

Further, the processing time taken by all the segmentation methods individually, are 

also evaluated. For such purpose, all the experiments have been performed using MATLAB 

7.10 and PC having Intel® coreTM i7-2600 CPU @ 3.40 GHz processor and 4 GB RAM on 

windows 8 Pro. The details of averaged processing time and number of iterations to extract 

the regions of all the images are listed in Table 6.2. All the results are produced on the same 

machine. From the results mentioned in Table 6.2, it can be observed that the proposed 

methods do not take too much time and require less number of iterations as compared to 

others. The proposed approach-1 and 2 take lower averaged iteration as 30 and 20, 

respectively, than the GAC (275), ACMRSF (175), EBACM (35) methods. Therefore, the 

processing time required to achieve the outcomes produced by the proposed approach-1 

and 2 becomes lower (1.6818 and 1.5594, respectively) than others. By visualizing the 

results, it is clearly observed that the GAC and EBACM methods take higher computational 
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time to provide the segmented image. Finally, it can be concluded that the proposed 

approaches are able to produce better segmentation results with higher accuracy than other 

existing methods, but not at the cost of higher iteration values and computation time. 

Table 6.2 Comparative performance of the segmentation approaches with the averaged iterations 
and computational time for all the synthetic test images 

Methods 
Averaged 
resolution 

Averaged 
computational time, s 

Averaged 
iterations 

FCM_S1  94 × 95 0.3049 25 

FCM_S2  94 × 95 0.1998 7 

KFCM_S1   94 × 95 0.4252 27 

KFCM_S2  94 × 95 0.3351 18 

GAC  94 × 95 20.171 275 

ACMRSF 94 × 95 2.5843 175 

EBACM 94 × 95 5.8896 35 

Proposed approach-1 94 × 95 1.6818 30 

Proposed approach-2 94 × 95 1.5594 20 

 

Experiment 2: Analysis and evaluation for the segmentation performance of real US images 

- In order to investigate the segmentation performance of the proposed EBACM-KFCM_S1 

and EBACM-KFCM_S2 approaches and to present comparative analysis, fifty different US 

images are considered. For the present analysis, these US images were acquired from the 

image database (http://www.ultrasoundcases.info, http://radiologyinfo.org/en/photocat/ and 

http://ultrasonics.bioengineering.illinois.edu). In the present study, the segmentation results 

of ten different US images are presented in a qualitative manner. Figure 6.7 shows a 

comparison of the segmentation results of left ventricle US image obtained by the 

aforementioned segmentation methods. Figure 6.7 (a) shows the manual delineated region. 

From Figure 6.7 (i) and (j), it is observed that the proposed approaches accurately segment 

the object's boundaries. Figure 6.7 (b)-(h) presents the extracted region boundaries provided 

by the FCM_S1, FCM_S2, KFCM_S1, KFCM_S2, GAC, ACMRSF and EBACM, respectively. 

From these results, it can be observed that only FCM_S2, KFCM_S1, KFCM_S2, ACMRSF 

and proposed approach-1 and 2 are able to properly extract the boundary of the region of 

interest. Moreover, the proposed EBACM-KFCM_S1 and EBACM-KFCM_S2 approaches 

outperform all the other methods. Moreover, for ensuring the superiority of the proposed 

methods by providing better segmentation results, a comparative view of the different US 

images processed by aforementioned segmentation methods are presented in Figure 6.8 

and Figure 6.9. The segmentation results of five different US images are illustrated in Figure 

6.8. The image shown in first row is an US image of the left ventricle and another US image 

of splenic cyst is shown in the second row. The image shown in third row refers to the US 

image of benign tumor and last two images are the US images of liver metastases. In 
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addition, in Figure 6.9, four different US images are shown in the first column. The image in 

first row shows the US image of the brain showing dilated ventricles indicating too much fluid 

(hydrocephalus). The next image refers to the US image of benign cyst and last two images 

are the US images of multiple liver masses. Their manually delineated images are shown in 

both the Figure 6.8 (a) and Figure 6.9 (a) The outcomes of these different US images 

segmented by similar aforementioned methods are presented in Figure 6.8 (b)-(j) and Figure 

6.9 (b)-(j). From these results, it can be clearly observed that the proposed methods 

precisely segment the region and object boundaries. Moreover, the segmentation results 

obtained by the proposed methods are approximately similar to that of the manually 

delineated region as compared to others.  

 

Figure 6.7 Segmentation results obtained by (a) Manually segmented ultrasound image (b) FCM_S1 
(c) FCM_S2 (d) KFCM_S1 (e) KFCM_S2 (f) GAC (g) ACMRSF (h) EBACM (i) Proposed 
EBACM-KFCM_S1 (j) Proposed EBACM-KFCM_S2 

Besides all these subjective evaluations of all the US images, different quantitative 

analysis has also been done in terms of the different performance metrics as mentioned 

above. Their corresponding quantitative results are listed in Table 6.3, which shows the 

averaged performance measures such as the TP, FP, ACC, JSI and DC evaluated for all the 

US images. From these results, it is observed that the proposed methods obviously 

outperform the other existing methods. The proposed approach-1 and 2 gain approx 4.22-

4.71%, 3.24-3.73%, 2.63-3.1%, 0.22-0.71% 5.13-5.62%, 5.26-5.76% and 1.7-2.2% higher TP  
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Figure 6.8 Comparative visual analysis of the segmentation results of different ultrasound images 
obtained by the (a) Manual (b) FCM_S1 clustering (c) FCM_S2 clustering (d) KFCM_S1 
clustering (e) KFCM_S2 clustering (f) GAC method (g) ACMRSF method (h) EBACM 
method (i) Proposed EBACM-KFCM_S1 method (j) Proposed EBACM-KFCM_S2 method 
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Figure 6.9  Comparative segmentation performance obtained by (a) Manual (b) FCM_S1 clustering (c) FCM_S2 clustering (d) KFCM_S1 clustering (e) KFCM_S2 
clustering (f) GAC method (g) ACMRSF method (h) EBACM method (i) Proposed EBACM-KFCM_S1 method (j) Proposed EBACM-KFCM_S2 method 
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Table 6.3  Comparison of the averaged performance measures (TP, FP, ACC, JSI and DC) obtained 
by the different segmentation approaches for all the ultrasound images 

Methods 
TP 

(AVG ± STD) 
FP 

(AVG ± STD) 
ACC 

(AVG ± STD) 
JSI 

(AVG ± STD) 
DC 

(AVG ± STD) 

FCM_S1  0.8905 ± 0.0360 0.1184 ± 0.0906 0.9071 ± 0.0271 0.8445 ± 0.0394 0.9126 ± 0.0239 

FCM_S2  0.8989 ± 0.0384 0.1061 ± 0.0846 0.9110 ± 0.0275 0.8496 ± 0.0312 0.9155 ± 0.0248 

KFCM_S1   0.9043 ± 0.0572 0.0562 ± 0.0371 0.9141 ± 0.0236 0.8577 ± 0.0364 0.9225 ± 0.0231 

KFCM_S2  0.9260 ± 0.0290  0.0588 ± 0.0396 0.9236 ± 0.0180 0.8626 ± 0.0383  0.9260 ± 0.0253 

GAC  0.8828 ± 0.0156 0.3164 ± 0.2476 0.8332 ± 0.0902 0.7658 ± 0.0919 0.8626 ± 0.0316 

ACMRSF 0.8817 ± 0.0656 0.0963 ± 0.0533 0.8927 ± 0.0439 0.8101 ± 0.0532 0.8909 ± 0.0545 

EBACM 0.9124 ± 0.0498 0.0661 ± 0.0224 0.9231 ± 0.0174 0.8581 ± 0.0377 0.9227 ± 0.0246 

PA-1 0.9281 ± 0.0342 0.0361 ± 0.0226 0.9291 ± 0.0144 0.8675 ± 0.0328 0.9288 ± 0.0164 

PA-2 0.9325 ± 0.0363 0.0322 ± 0.0167 0.9315 ± 0.0171 0.8763 ± 0.0335 0.9326 ± 0.0189 

* PA-1: Proposed approach-1 (EBACM-KFCM_S1) 
* PA-2: Proposed approach-2 (EBACM-KFCM_S2) 

values than the FCM_S1, FCM_S2, KFCM_S1, KFCM_S2, GAC, ACMRSF, EBACM 

methods, respectively. It ensures that more overlapping area is obtained by the proposed 

methods compared to the others. The proposed method also exhibits an improvement in the 

segmentation accuracy by 1.98-2.68%, 0.59-1.9% than the FCM and KFCM clustering 

methods. Moreover, the accuracy of the proposed methods is increased by 11.79%, 4.34% 

and 0.9 -1.09% from GAC, ACMRSF and EBACM methods, respectively. The higher values 

of the JSI and DC obtained by the proposed methods assure more similarity between the 

region extracted by the computerized segmentation method and marked manually. They gain 

approx 2.1-3.76%, 0.56-2.16%, 13.28-14.42%, 7.08-8.17% and 1.09-2.12% higher values of 

the JSI and 1.45-2.3%, 0.3-1.2%, 7.67-8.23% 4.25-7.79% and 0.66-1.18% more DC values 

as compared to FCM_X, KFCM_X, GAC, RSF and LSE methods, respectively. Finally, the 

proposed methods also provide the lowest FP values that show the incorrect detection of the 

estimated region of interest. The averaged FP values obtained by the proposed methods are 

decreased by approx 69.51-72.80%, 65.97-69.65%, 35.76-42.70%, 38.60-45.23%, 88.59-

89.82%, 62.51-66.56%, 45.38-51.28% from the FCM_S1, FCM_S2, KFCM_S1, KFCM_S2, 

GAC, ACMRSF and EBACM methods, respectively. 

Furthermore, the Hausdorff distance is also evaluated for each US image segmented 

by all the aforementioned segmentation approaches. Table 6.4 illustrates the HD metric 

(average ± standard deviation) obtained by each method. The averaged HD values listed in 

Table 6.4 indicate the superiority of the proposed approach-1 and 2 over the other methods 

by achieving the lowest HD values. Moreover, the proposed EBACM-KFCM_S2 approach 

also outperforms the proposed approach-1. This is also illustrated by the quantitative results 

mentioned in both the Table 6.3 and Table 6.4. The computational time taken by all the 

segmentation approaches is evaluated for the US images. For such comparison, the 
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averaged computational time in seconds and averaged number of iterations taken by the 

individual segmentation methods are presented in Table 6.5. All the experiments are 

performed on the same machine as mentioned in previous experiment. From Table 6.5, it is 

concluded that the proposed methods take less number of iterations and comparatively less 

computation time as compared to the other methods.  

Table 6.4  Hausdorff distance obtained by the various segmentation methods for all the ultrasound 
images 

Methods HD 

FCM_S1  4.5742 ± 0.8436 

FCM_S2  4.2630 ± 0.6562 

KFCM_S1   3.3482 ± 1.4896 

KFCM_S2  3.6338 ± 0.9897  

GAC  6.9969 ± 3.0891 

ACMRSF 4.8472 ± 1.4808 

EBACM 3.5790 ± 1.3367 

Proposed approach-1 3.0125 ± 0.7155 

Proposed approach-2 2.9615 ± 0.7653 

Table 6.5  Comparative performance of the segmentation approaches with the averaged number of 
iterations and computational time for all the ultrasound images 

Methods 
Averaged 
 resolution 

Averaged  
computational time, s 

Averaged 
 iterations 

FCM_S1  294 × 310 0.5265 35 

FCM_S2  294 × 310 0.4916 38 

KFCM_S1   294 × 310 1.3451 39 

KFCM_S2  294 × 310 2.2393 48 

GAC  294 × 310 141.26 1250 

ACMRSF 294 × 310 15.448 242 

EBACM 294 × 310 13.378 100 

Proposed approach-1 294 × 310 4.3159 24 

Proposed approach-2 294 × 310 5.4439 20 

6.9 Summary 

The US image segmentation is a very difficult task because of its poor quality of 

images. Several algorithms have been presented in literature, but most of the methods 

require a manual intervention to initialize the curve and to set the different parameters used 

in these methods. Manual tracing is a time consuming process and does not provide the 

accurate results. Therefore, in this chapter, two hybrid approaches using edge-based active 

contour model initialized by the KFCM_S1 and KFCM_S2 clustering, individually, are 

presented for the segmentation of US medical images. These proposed approaches initiate 

with the result of KFCM_X clustering, which is responsible for successfully extracting the 
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estimated object boundaries by initializing the curve during the DRLSE process and 

evaluating the several controlling parameters. The DRLSE approach also helps to eliminate 

the re-initialization of the level set function in the EBACM approach. In addition to this, it 

eliminates the manual requirement and decreases the processing time. Experiments were 

carried out on both the several synthetic images and ultrasound images to make the 

subjective evaluation. From both the objective and subjective evaluation, it is concluded that 

the proposed methods are more robust and accurate to segment the required region of 

interest in the US images by ensuring an improvement in the segmentation accuracy. 
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CHAPTER 7: HYBRID REGION-BASED ACTIVE CONTOUR METHOD WITH 
GAUSSIAN KERNEL FUZZY CLUSTERING 

This chapter presents another hybrid segmentation approach for the ultrasound medical images by 

utilizing the features of the Gaussian kernel fuzzy c-means clustering and region-based active contour 

model driven by region scalable fitting energy function. This chapter starts with a brief idea of the 

region-based active contour models and Gaussian kernel fuzzy clustering method. In the proposed 

approach, the results of the Gaussian kernel fuzzy clustering is utilized to initialize the curve and to 

estimate the several controlling parameters used in the region-based active contour model. The 

segmentation performance obtained by the proposed approach are discussed qualitatively and 

quantitatively. A comparative analysis is also presented to investigate the segmentation performance 

of the proposed and other approaches. 

7.1 Introduction 

In the previous chapter, it has been mentioned that the existing active contour models 

can be classified into two major classes: edge-based models and region-based models. The 

EBACM rely on the edge detector function that depends on the image gradient to stop the 

contour evolution on the desired object's boundaries [291]. These models can detect objects 

only with edges defined by the gradient. In practice, the discrete gradients are bounded and 

thus the stopping function will hardly approach to zero at the edges. Therefore, the evolving 

contour may pass through the boundary of the desired object, especially in noisy images or 

when the boundary of the object is too weak [44, 161]. On the other hand, region-based 

models aim to identify each region of interest by using some region descriptors, e.g., 

intensity, color, and texture, to guide the motion of active contour. The RBACM approach has 

shown some attractive characteristics such as the unrestricted position of the initial contour, 

the automatic detection of interior boundaries, and reasonable segmentation due to global 

energy minimization. Region-based active contours evolve deformable shapes based on two 

factors: energy minimization based on statistical properties that pursue the uniformity within 

each region and curvature motion motivated by the LSF that also keeps the regularity of the 

active contours.  

In this chapter, a hybrid segmentation approach for US medical images is proposed 

that utilizes the features of RBACM approach and Gaussian kernel fuzzy c-means (GKFCM) 

clustering. In this segmentation approach, the intensity information in the local regions (as 

against the global regions in conventional RBACM approach) is used to guide the motion of 

contour toward the desired object. The proposed segmentation approach presents two 

different fitting functions that locally approximate the average image intensities on the two 

sides of contour. In this method, the fuzzy membership function is also incorporated into the 

data fitting functions to accurately segment the region of interest with higher accuracy. 

Furthermore, the fuzzy membership function from the GKFCM is utilized not only to initialize 
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the contour, but also to estimate the contour propagation controlling parameters. The RSF 

formulation that is responsible for attracting the contour toward the object boundaries, 

overcomes the requirement of the re-initialization process. In this way, it enhances the 

convergence speed of the contour propagation. The GKFCM clustering is also able to 

provide better results by adding a new term ሺߟሻ used to control the effect of neighboring 

term for each cluster.  

The remaining part of this chapter is structured as follows. The next two sections 

describe a brief idea of the RBACM and GKFCM approaches that are utilized to present a 

proposed hybrid segmentation approach and named as the RBACM-GKFCM. After that, the 

proposed segmentation approach is discussed and its implementation steps are also given in 

this section. This is further followed by the different experiments performed to evaluate the 

segmentation performance of the proposed method. A comparative analysis of the results 

obtained by the different segmentation methods represented in terms of objective and 

subjective manner is also discussed in the results and discussion section. 

7.2 Gaussian Kernel Fuzzy Clustering 

Fuzzy clustering is used to arrange a similar data points into a same cluster, iteratively 

by optimizing its cost function, which is based on the Euclidean distance of the pixels from 

the centroids of the different cluster. As mentioned in the previous chapter, the FCM is used 

to provide good results for medical image segmentation. However, it is very sensitive to 

noise that also affects the segmentation accuracy. Therefore, the different variants of the 

FCM such as the FCM_S1, FCM_S2, KFCM_S, KFCM_S1 and KFCM_S2 clustering 

methods have been introduced by the researchers [9, 222]. The main limitation of the FCM 

and KFCM based clustering is that the parameters of these methods heavily affect the final 

clustering results. In order to overcome the limitations of these methods, clustering method is 

concentrated on the Gaussian kernel fuzzy c-means clustering (GKFCM) that is modified by 

Yang and Tsai [260]. Several quantitative evaluations have been performed and shown that 

the two different variants of the GKFCM with spatial constraints known as the GKFCM_X = 

GKFCM_S1 and GKFCM_S2 perform better than others. Similar to the KFCM clustering, the 

Euclidean distance ฮݏ െ ฮݒ
ଶ
 is replaced by the kernel induced distance function ฮΨሺs୧ሻ െ

Ψሺv୨ሻ‖ଶ, where Ψ is a nonlinear map from the data space into the feature space with the 

corresponding kernel. The objective function of the GKFCM is a special case of the KFCM of 

the parameter of ߙ ൌ  . In the present work, the GKFCM_X clustering approach is utilizedߟ

as the initial stage in the implementation of the proposed approach. The objective function of 

the GKFCM_X is given below: 

ܬ
ீிெ_ሺߤ, ሻݒ ൌ ∑ ∑ ,ߤ

 ቀ1 െ ,ݏ൫ܭ ൯ቁݒ
େ
ୀଵ


ୀଵ  ∑ ∑ ,ߤߟ

େ
ୀଵ


ୀଵ ቀ1 െ ,൫ܺܭ  ൯ቁ (7.1)ݒ
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The fuzzy membership functions are subject to the following constraints  

∑ ,ߤ ൌ 1
ୀଵ , ,ߤ	 ∈ ሾ0,1ሿ, ∑ ,ߤ  0

ୀଵ        (7.2) 

where ܭ൫ݏ, ൯ݒ ൌ exp ൬െ
ฮ௦ି௩ೕฮ

ఙమ
൰, ߪଶ ൌ

ଵ


∑ ቛሺݏሻ െ ቀଵ


∑ ݏ

ୀଵ ቁቛ

ଶ

ୀଵ , ܵ ൌ ሺݏଵ, ,ଶݏ ,ଷݏ … ,  , isߤ ,ሻݏ

the membership of the pixel ݏ in the ݆௧ cluster and ݒ is the centroid of the ݆௧ cluster. ‖ሺ∙ሻ‖ 

is the norm of a matrix and  is a weighted exponent on each fuzzy membership that controls 

the amount of fuzziness of the final segmentation. The term ߟ is used to control the effect of 

the neighboring term for each cluster and is evaluated as given below: 

ߟ ൌ
୫୧୬

ೕ′ಯೕ
ቀଵି൫௩ೕ′,௩ೕ൯ቁ

୫ୟ୶ೖቀଵିሺ௩ೖ,௦ಾೌሻቁ
         (7.3) 

Thus, by minimizing the cost function ܬ
ீிெ_ሺߤ,  ሻ of the GKFCM_X, the membershipݒ

function and centroid are updated iteratively using the following equations. 

,ߤ ൌ
ଵ

∑ ቆ
ቂభష಼ቀೞ,ೡೕቁቃశആೕቂభష಼ቀ,ೡೕቁቃ

ൣభష಼൫ೞ,ೡೖ൯൧శആೕൣభష಼൫,ೡೖ൯൧
ቇ

భ షభ⁄

ೖసభ

       (7.4) 

ݒ ൌ
∑ ఓೕ

 ൫൫௦,௩ೕ൯௦ାఎೕ൫,௩ೕ൯൯
ಽ
సభ

∑ ఓೕ
ಽ

సభ ቀ൫௦,௩ೕ൯ାఎೕ൫,௩ೕ൯ቁ
       (7.5) 

where ܺ represents the ݏ
ெ and ݏ

ௌ for implementing GKFCM_S1 and GKFCM_S2, 

respectively. The ݏ
ெ and ݏ

ௌ are the average and median values of the neighboring 

pixels within a window around ݏ, respectively. Thus, in the present work, both the 

GKFCM_S1 and GKFCM_S2 clustering methods are used to initialize the LSF used for curve 

evolution in the RBACM-RSF approach, individually. 

7.3 Region-Based Active Contour Models 

Mumford and Shah [169] addressed the image segmentation problem as a variational 

problem to find an optimal piecewise-smooth approximation ܨሺݔ, ,ݔሺܫ ሻ of a given imageݕ  ሻݕ

and a set of boundaries ܥ, such that the approximation ܨሺݔ,  ሻ varies smoothly within theݕ

connected components of the subsets excluding the boundaries. They proposed the solution 

of the variational segmentation problem by minimizing the global energy function as given 

below: 

,ܨெௌሺܧ ሻܥ ൌ  ,ݔሺܫ| ሻݕ െ ,ݔሺܨ ஐݕ݀ݔሻ|ଶ݀ݕ   ,ݔሺܨ| ሻ|ଶஐ/େݕ ݕ݀ݔ݀   (7.6)  |ܥ|߭

where |ܥ| is the length of the contour. In practice, it is difficult to minimize the Eqn. (7.6) due 

to unknown contour ܥ of lower dimension. This type of region-based segmentation method 

relies on the homogeneity of the object to be segmented. This assumption is often violated in 

medical images due to the motion of organs, presence of noise or acquisition artifacts. Based 

on the Mumford and Shah segmentation model, Chan and Vese (CV) [48, 49, 242] 

introduced an active contour approach naming it as the CV model, where the function ܨሺݔ,  ሻݕ
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mentioned in Eqn. (7.6) is a piecewise constant function. They successfully solved the 

minimization problem by using the LSF that utilizes the global image statistic inside and 

outside the evolving curve rather than the gradients on the boundaries. They proposed the 

following energy function as given below:  

ܧ ൌ ଵߣ  ,ݔሺܫ| ሻݕ െ ௨௧௦ௗሺሻݕ݀ݔଵ|ଶ݀ܥ  ଶߣ  ,ݔሺܫ| ሻݕ െ ௦ௗሺሻݕ݀ݔଶ|ଶ݀ܥ  ߭ ∙ Area൫insideሺܥሻ൯ 

																																																																																																																																																								μ ∙ Lengthሺܥሻ 
           (7.7) 

where μ  0, ߭  0, ,ଵߣ ଶߣ  0 are the fixed parameters. 

The first two terms in above Eqn. (7.7) are called the global fitting energy terms. 

ଵሺCሻܨ  ଶሺCሻܨ ൌ  ,ݔሺܫ| ሻݕ െ ௨௧௦ௗሺሻݕ݀ݔଵ|ଶ݀ܥ   ,ݔሺܫ| ሻݕ െ ௦ௗሺሻݕ݀ݔଶ|ଶ݀ܥ  (7.8) 

where the terms outsideሺܥሻ and insideሺܥሻ represent the regions outside and inside the 

variable contour ܥ, respectively. The optimal constants ܥଵ and ܥଶ that minimize the above 

global fitting energy are the averages of intensities in the entire regions outsideሺܥሻ and 

insideሺܥሻ, respectively. From Figure 7.1, it can be easily seen that if contour ܥ is outside the 

object then ܨଵሺܥሻ  0 and ܨଶሺܥሻ ൎ 0. If contour C is inside the object then ܨଵሺܥሻ ൎ 0 and 

ሻܥଶሺܨ  0. If the contour ܥ is inside and outside the object, then ܨଵሺܥሻ  0	 and ܨଶሺܥሻ  0. 

Finally, the fitting energy term is minimized if ܥ	 ൌ  is on the boundary ܥ , i.e. if the contourܥ	

of the object. 

F1 (C) > 0 and F2 (C) ≈ 0 F1 (C) ≈ 0 and F2 (C) > 0 F1 (C) > 0 and F2 (C) > 0 F1 (C) ≈ 0 and F2 (C) ≈ 0 

 Fitting>0 Fitting>0  Fitting>0 Fitting=0 

 

Figure 7.1 All possible cases in the position of contour [48] 

The energy function in Eqn. (7.7) can be represented by a level set formulation and 

then the energy minimization problem can be converted to solve a level set evolution 

equation as  

డ∅

డ௧
ൌ ఌሺ∅ሻߜ ቂݒ݅݀ߤ ቀ

∅

|∅|
ቁ െ ߥ െ ,ݔሺܫଵሺߣ ሻݕ െ ଵሻଶܥ െ ,ݔሺܫଶሺߣ ሻݕ െ  ଶሻଶቃ    (7.9)ܥ

where constants ܥଵ and ܥଶ are the averages of the intensities in the entire regions outsideሺܥሻ 

and insideሺܥሻ, respectively and are represented as a function of ∅.  

ଵሺ∅ሻܥ ൌ
 ூሺ௫,௬ሻு൫∅ሺ௫,௬ሻ൯ௗ௫ௗ௬ಈ

 ு൫∅ሺ௫,௬ሻ൯ௗ௫ௗ௬ಈ

         (7.10) 
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ଶሺ∅ሻܥ ൌ
 ூሺ௫,௬ሻቀଵିு൫∅ሺ௫,௬ሻ൯ቁௗ௫ௗ௬ಈ

 ቀଵିு൫∅ሺ௫,௬ሻ൯ቁௗ௫ௗ௬ಈ

        (7.11) 

The CV model mostly works better for those images where the intensities in each region 

either insideሺܥሻ or outsideሺܥሻ	are always constant. However, it leads to poor segmentation 

for image with intensity inhomogeneity. The segmentation performance of the CV model is 

affected by the placement of initial contour. Different results may be obtained on the same 

image by selecting different initial contour. Thus, the proper initialization of a contour in the 

CV model is still a challenging problem to provide accurate segmentation results. 

A simultaneous and parallel effort to the work of Chan-Vese, Tsai et al. [238] proposed 

a reformulation of the Mumford Shah model from a curve evolution perspective, using a 

gradient flow formulation and a level set framework implementation. In order to overcome the 

limitations of the CV model, Li et al. [66] proposed a RBACM model using the new variational 

LSF, which works on the RSF energy and level set regularization term. The RSF energy 

function is defined in terms of the two fitting functions that are shown to be the averages of 

local image intensities on the two sides of the contour. In the resulting curve evolution that 

minimizes the associated energy function, intensity information in local regions at a certain 

scale is used to compute the two fitting functions and thus guide the motion of contour 

toward the estimated object boundaries. Because of the presence of level set regularization 

term in this formulation, the regularity of the LSF is preserved to ensure accurate curve 

evolution and it also avoids re-initialization procedure [66]. The overall energy function can 

be written as  

௧ሺ∅ሻ்ܧ ൌ ோௌிሺ∅ሻܧ   ோሺ∅ሻ        (7.12)ܧ

where ்ܧ௧ is the overall energy, ܧோௌி refers to the RSF energy which is defined as 

,ܥோௌிሺܧ ,ଵܨ ଶሻܨ ൌ ∑ ߣ  ݔሺܭ െ ሻݕሺܫ|ሻݕ െ ሻ|ଶΩݔሺܨ
ଶ
ୀଵ  (7.13)    ݕ݀

where ߣଵ and ߣଶ are two positive constants, ܨଵሺݔሻ and ܨଶሺݔሻ are two different fitting functions 

that approximate the average image intensities in	ݔ ∈ Ω and ܭሺܽሻ ൌ ൫1 ⁄ߪߨ2√ ൯. ݔ݁ ቀെ
||మ

ଶఙమ
ቁ is 

defined as a Gaussian kernel function with its standard deviation ߪ. Another term present in 

Eqn. (7.12), ܧோሺ∅ሻ is a combination of level set regularization term ܲሺ∅ሻ and contour length 

term ܮሺ∅ሻ. The formulation of the term ܧோሺ∅ሻ can be written as 

ோሺ∅ሻܧ ൌ ሺ∅ሻܲߤ   ሺ∅ሻ        (7.14)ܮߥ

where ܲሺ∅ሻ ൌ
ଵ

ଶ
|∅|ሺ െ 1ሻଶ݀ݔ and ܮሺ∅ሻ ൌ |∅|ఌሺ∅ሻߜ  ఌ denotes to Dirac deltaߜ where ,ݔ݀

function with a constant parameter ߝ  which is responsible to regularize the Dirac delta 

function. It is estimated as  

ఌሺ߶ሻߜ ൌ
ଵ

గ
ቀ ఌ

ఌమାథమቁ         (7.15) 

Now, the Eqn. (7.12) can be written as 
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,∅௧ሺ்ܧ ,ଵܨ ଶሻܨ ൌ  ,∅ோௌிሺܧ ଶሻΩܨଵܨ
 ߤ

ଵ

ଶ
 ሺ|∅| െ 1ሻଶ݀ݔ
Ω

 ߥ  Ω|∅|ఌሺ∅ሻߜ
 (7.16) ݔ݀

The Eqn. (7.16) minimized by solving the gradient flow is given as [66] 

డ∅

డ௧
ൌ െߜఌሺ∅ሻሺߣଵ݁ଵ െ ଶ݁ଶሻߣ  ߤ ቂଶ∅ െ ݒ݅݀ ቀ

∅

|∅|
ቁቃ  ݒఌሺ∅ሻ݀݅ߜߥ ቂ

∅

|∅|
ቃ   (7.17) 

where 

ቐ
݁ଵሺݔሻ ൌ  ݔሺܭ െ ሻݕ

Ωభ
ሻݕሺܫ| െ ݕሻ|ଶ݀ݔଵሺܨ

݁ଶሺݔሻ ൌ  ݔሺܭ െ ሻݕ
Ωమ

ሻݕሺܫ| െ ݕሻ|ଶ݀ݔଶሺܨ
      (7.18) 

In the above formulation mentioned in Eqn. (7.17) consists three different terms. The first 

term െߜఌሺ∅ሻሺߣଵ݁ଵ െ  ଶ݁ଶሻ denotes the data fitting term that is utilized to propagate theߣ

contour toward the estimated object boundaries. The second term ߤ ቂଶ∅ െ ݒ݅݀ ቀ
∅

|∅|
ቁቃ is the 

contour regularity term that is responsible to maintain the regularity of the LSF with its 

weighting coefficient ሺߤሻ named as regularization coefficient. Lastly, the third term 

ݒఌሺ∅ሻ݀݅ߜߥ ቂ
∅

|∅|
ቃ	 named as the contour length term is able to provide the smoothness on the 

zero LSF controlled by its controlling parameter ሺߥሻ. In Eqn. (7.18), ܨଵ and ܨଶ refer to the 

weighted averages of the intensities within a neighboring region of ݔ, whose size is 

proportional to the scale parameter ሺߪሻ and are given as 

ଵܨ ൌ
ሺ௫ሻ∗ൣெభ

ഄ൫∅ሺ௫ሻ൯ூሺ௫ሻ൧

ሺ௫ሻ∗ெభ
ഄ൫∅ሺ௫ሻ൯

         (7.19) 

ଶܨ ൌ
ሺ௫ሻ∗ቂቀெమ

ഄ൫∅ሺ௫ሻ൯ቁூሺ௫ሻቃ

ሺ௫ሻ∗ቀெమ
ഄ൫∅ሺ௫ሻ൯ቁ

        (7.20) 

where ܭఙ refer to the Gaussian kernel function and is defined similarly as used in Eqn. 

(7.13). The Heaviside function ܪ in the above formulation is approximated by the smooth 

function ܪఌ is given by 

ሻݔఌሺܪ ൌ
ଵ

ଶ
ቂ1 

ଶ

గ
݊ܽݐܿݎܽ ቀ

௫

ఌ
ቁቃ        (7.21) 

and ܯଵ
ఌሺ∅ሻ ൌ ଶܯ ,ఌሺ∅ሻܪ

ఌሺ∅ሻ ൌ 1 െ ,ݔఌሺ∅ሻ. In this formulation, the level set function ∅ሺܪ  ሻ isݕ

initialized as given below: 

∅ሺݔ, ሻݕ ൌ ቐ
െc, 											ሺݔ, ሻݕ ∈ Ω െ ߲Ω

0,						 ሺݔ, ሻݕ ∈ ߲Ω

c,				 					ሺݔ, ሻݕ ∈ Ωെ Ω

      (7.22) 

where c   Ω and ߲Ω	is a constant, Ω is a region of interest in the given image domain ߝ2

is the boundary of the Ω. The discretization of Eqn. (7.17) can be given as  

∅௧ାଵሺݔ, ሻݕ ൌ ∅௧ሺݔ, ሻݕ  ߬
డ∅ሺ௫,௬ሻ

డ௧
       (7.23) 

where ߬ is the time step of level set evolution. 
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7.4 Proposed Hybrid Region-Based Active Contour Method with GKFCM Clustering 

The segmentation performance of the active contour based models are subjected to 

appropriate contour initialization and optimal configuration of the contour propagation 

controlling parameters that also require extensive manual intervention. In the proposed 

approach, the GKFCM_X clustering and the RBACM model driven by the RSF energy are 

utilized to formulate two hybrid approaches for segmenting the US images. The proposed 

approaches start with the GKFCM_S1 and GKFCM_S2 clustering methods, individually. The 

results of the GKFCM_S1 and GKFCM_S2 are then individually employed to initialize the 

LSF that moves toward the object's boundaries. The results of the GKFCM_X also help to 

evaluate the several controlling parameters that control the accurate curve evolution. Let, the 

region of interest in the result of fuzzy clustering be expressed as ܫோ and μ୫
ୋେ_ଡ଼ as the 

membership function for the GKFCM_X method. Now, the initializing function of the level set 

model can be given as 

∅ሺݔ, ሻݕ ൌ ሺ4ܫோ െ 2ሻ(7.24)         ߝ 

where ߝ is a constant parameter which regularizes the Dirac delta function [66, 179] and ܫோ 

refers to an image obtained using the following equation as given below: 

ோܫ ൌ ቊ
0,					 μ୫

ୋେ_ଡ଼ ൏ ܶ

1,					 μ୫
ୋେ_ଡ଼  ܶ

        (7.25) 

where ܶ ∈ ሾ0,1ሿ refers to the adjustable threshold value that is used to control the size of the 

contour and μ୫
ୋେ_ଡ଼ is the membership function for the GKFCM_X method. 

The proposed hybrid segmentation approach has a property of autoinitialization of the 

LSF and autoconfiguration of the different contour propagation controlling parameters using 

the GKFCM_S1 and GKFCM_S2 clustering methods, individually. This also helps to control 

the parameter values used in the level set evolution that are provided manually and changing 

for every image data. In the RBACM approach driven by the RSF energy function mentioned 

in Eqns (7.17) and (7.23), it is a prime requirement to compute all four different parameters 

such as regularization term coefficient ሺߤሻ, time step parameter ሺ߬ሻ, coefficient of the contour 

length ሺݒሻ and other two parameters ߣଵ and ߣଶ. All these parameters are estimated using the 

results of the GKFCM_X clustering method. Firstly, the time step parameter ሺ߬ሻ is estimated 

by estimating the area and the length of the initial LSF and is given as 

߬ ൌ


௧
ൌ

 ுሺ∅బሻௗ௫ௗ௬ಈ

 ఋሺ∅బሻௗ௫ௗ௬ಈ

        (7.26) 

where ܪሺ∅ሻ ൌ ൜
0, 			∅ ൏ 0
1, 		∅  1   and now, the coefficient of the regularization term is evaluated 

as 0.2 times of the inverse of time step parameter based on successive experiments with the 

different values [65, 66, 147, 275]. This is because of the requirement of product of the time 

step parameter and weighting coefficient of the regularization term to be less than 1/4 for the  
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stable and accurate curve evolution. The coefficient of regularizing term is evaluated as 

ߤ ൌ 0.2/߬          (7.27) 

In the proposed approach, for achieving the smooth contour, the value of weighting 

coefficient of the contour length ሺݒሻ is estimated by 

ݒ ൌ 0.1߬          (7.28) 

The other two parameters ߣଵ and ߣଶ refer to the weights of two integral expressed in Eqn 

(7.17) that are used to force the contour toward object boundaries either inside or outside the 

contour. Thus, the values of the coefficients ߣଵ and ߣଶ is estimated as follows: 

ଵߣ ൌ ଶߣ ൌ
ଵ

ଶ
൫1 െ  ୋେ_ଡ଼൯        (7.29)ߤ2

Therefore, the mathematical formulation of the RBACM approach using the RSF energy can 

be given as below 

డ∅

డ௧
ൌ ൬െ

ଵ

ଶ
ఌሺ∅ሻ൫1ߜ െ 2μୋେ_ଡ଼൯ሺ݁ଵ െ ݁ଶሻ൰  ߤ ቆଶ∅ െ ݒ݅݀ ቀ

∅

|∅|
ቁቇ 

.ଶ

ఓ
ቆߜఌሺ∅ሻ݀݅ݒ ቀ

∅

|∅|
ቁቇ 

           (7.30) 

Now, the Eqns. (7.30) and (7.23) refer to a formulation of the RBACM using RSF energy 

approach. 

Implementation Steps 

For a proposed hybrid segmentation approach and implementing the above aspects, 

the algorithm is formulated by the following implementation steps. 

Step 1: Start with the given ultrasound image ሺܫሻ. 

Step 2: Perform the GKFCM_X clustering algorithm on the given input image. 

a) Set the number of the cluster ሺܥሻ,  and the termination criterion > 0. In the present 

study, the parameters such as  ൌ 2 and termination criterion	ൌ 0.001 are taken 

based on the experimental results. The parameter (C) is considered according to the 

images and their region of interest. 

b) Compute the average and median values of the neighboring pixel for GKFCM_X 

(GKFCM_S1 and (GKFCM_S2), respectively. 

c) Compute the value of the ߟ using Eqn. (7.3). 

d) Initialize the value of a fuzzy clustering matrix and set the loop counter ݈ ൌ 0. 

e) Compute the cluster centroids using Eqn. (7.5) and evaluate the corresponding cost 

function of GKFCM_S1 and GKFCM_S2, respectively. 

f) Now, evaluate the membership values in the matrix using Eqn. (7.4) for each pixel 

and each cluster. 

g) If the value of the cost function between successive iteration < termination criterion, 

then STOP. Otherwise, set ݈=݈+1 and go to step e. 

Step 3: Set the region of interest in the results of the GKFCM_X obtained from the step 2 

and initialize the LSF using Eqn. (7.24). 



 

223 

 

Step 4: Now, we evaluate the controlling parameters that are provided manually and 

changed for every image data in the conventional ACM model. The time step 

parameter ሺ߬ሻ and weighting coefficient of the regularization term ሺߤሻ are estimated 

using Eqns. (7.26) and (7.27), respectively. 

Step 5: Compute the weighting coefficient of the contour length ݒ using Eqn. (7.28). 

Step 6: Evaluate the values of the coefficients ߣଵ and ߣଶ using Eqn. (7.29). 

Step 7: Finally, apply the RBACM driven by RSF energy using the Eqns. (7.30) and (7.23). 

7.5 Experimentation 

In order to evaluate the segmentation performance obtained by the proposed 

approaches and other methods, different experiments are performed. To perform such 

experiments, same data sets as used in the previous chapter are considered. The 

performance of the proposed methods are investigated on both the test images synthesized 

using MATLAB and real US images. Here, the segmentation results are obtained by the two 

different proposed approaches-1 and 2 named as RBACM-GKFCM_S1 and RBACM-

GKFCM_S2, respectively. The proposed approach-1 and 2 signify that the results of the 

GKFCM_S1 and GKFCM_S2 clustering methods are employed, individually, to initialize the 

LSF. To assess the segmentation results provided by the proposed and other existing 

methods, two different experiments are conducted as given below: 

Experiment 1: Analysis and evaluation of the segmentation results obtained by the 

proposed RBACM-GKFCM_S1 and RBACM-GKFCM_S2 methods applied to the synthetic 

test images and demonstration of a comparison between the segmentation results provided 

by the proposed and other approaches.  

Experiment 2: Analysis and evaluation of the segmentation results on the real US images 

processed by both the proposed approaches and presentation of comparative analysis of the 

proposed and other existing methods in term of both the subjective and objective manner.  

Moreover, the results obtained by the proposed methods are also compared with some 

related segmentation approaches such as the FCM_S1 [222], FCM_S2 [222], GKFCM_S1 

[260], GKFCM_S2 [260], GAC model [45, 182], ACMRSF approach [48, 66], RBACM-SFCM 

approach [26] and EBACM approach [64, 65]. For the comparative analysis, same 

performance measures discussed in chapter 5 are utilized. The detailed discussion of all the 

segmentation results obtained by all these methods is presented in the next section. 

7.6 Results and Discussions 

Experiment 1: Analysis and evaluation for the segmentation results of synthetic test 

images - In order to investigate the performance of the proposed approach-1 and 2, three 

different test images including the noisy image are considered. The segmentation results of 

all the three different test images provided by the proposed RBACM-GKFCM_S1 and 
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RBACM-GKFCM_S2 approaches are shown in Figure 7.2 (a) and (c), respectively. For first 

two synthetic images of size 77 × 59 pixels, and 84 × 84 pixels, Figure 7.2 (a) and (c) show 

the segmentation results marked with red contour on the estimated boundaries of objects 

that are extracted by the proposed approach-1 and 2, respectively. From Figure 7.2 (a) and 

(c), it can be observed that the proposed approaches are able to provide accurate results by 

extracting the object boundaries. Moreover, it is clearly demonstrated by the plot of the final 

LSF shown in Figure 7.2 (b) and (d) correspond to Figure 7.2 (a) and (c), respectively. These 

results also show that the proposed methods are able to accurately segment the object 

boundaries. Furthermore, another noisy image of size 101 × 99 pixels is taken to investigate 

the effectiveness of the proposed methods against the noise. The third row of the Figure 7.2 

(a) and (c) present their segmented results obtained by the proposed approach-1 and 2, 

respectively, for the noisy synthetic image. Their final LSF is also shown in the Figure 7.2 (b) 

and (d). From these segmentation results, it is observed that the proposed approaches are 

still able to accurately extract the estimated object's boundaries. 

 

Figure 7.2 Segmentation results of the synthetic test images produced by (a) Proposed RBACM-
GKFCM_S1 approach (c) Proposed RBACM-GKFCM_S2 approach. (b) and (d) represent 
three dimensional display of the final LSF of a and c, respectively 

Moreover, the segmentation results obtained by the proposed methods are compared 

with aforementioned methods. For such comparative analysis, two different synthetic images 

out of several test images are taken as shown in Figure 7.3 (a) and Figure 7.4 (a). Their 

corresponding segmentation results are shown in Figure 7.3 (b)-(k) and Figure 7.4 (b)-(k). 
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Figure 7.3  Performance comparison of the synthetic image-1 (a) Original image. Results obtained by 
(b) FCM_S1 (c) FCM_S2 (d) GKFCM_S1 (e) GKFCM_S2 (f) GAC (g) ACMRSF (h) 
RBACM-SFCM (i) EBACM (j) RBACM-GKFCM_S1 (k) RBACM-GKFCM_S2 
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Figure 7.4 Performance comparison of the synthetic image-2 (a) Original image. Results obtained by 
(b) FCM_S1 (c) FCM_S2 (d) GKFCM_S1 (e) GKFCM_S2 (f) GAC (g) ACMRSF (h) 
RBACM-SFCM (i) EBACM (j) RBACM-GKFCM_S1 (k) RBACM-GKFCM_S2 

The segmented images shown in Figure 7.3 and Figure 7.4 also present that the 

proposed approaches provide better results than others. The proposed RBACM-GKFCM_S1 

approach is much better than the RBACM-GKFCM_S2 by successfully extracting the 



 

227 

 

estimated region and objects boundaries. These qualitative results are also supported by the 

quantitative results using all six performance measures used in the chapter 6. The averaged 

performance measures (average (STD)) such as the TP ratio (%), FP ratio (%), ACC (%), JSI 

(%), DC (%) and HD are listed in Table 7.1. From the results mentioned in Table 7.1, it is 

observed that the proposed approaches gain approx 95-96% higher averaged segmentation 

accuracy than the others. The other measures such as the JSI and DC gain higher values for 

the proposed methods. This indicates more similar region extracted by the proposed 

methods than the others. The proposed approaches also achieve higher TP ratio (approx 92-

93%), but sometimes a lower value of the TP ratio may be exhibited for the proposed method 

compared to some other methods. This is because of the blurry regions around the object 

boundaries that become very difficult to be differentiated with the real boundaries. Since, 

these blurry regions are also marked by an expert at the time of manual segmentation, 

sometimes the TP ratio becomes higher than the proposed methods. However, these 

methods also show their inaccurate segmentation results indicated by higher FP values. 

Besides it, the proposed methods exhibit the ability of accurately detecting the object of 

interest by gaining the lowest HD values. 

Table 7.1 Averaged performance measures obtained by the different segmentation methods for all 
synthetic test images 

Methods TP FP ACC JSI DC HD 

FCM_S1  
88.5713 2.5674 93.0019 86.1958 92.1279 2.7477 

(5.2673) (1.5430) (3.6933) (3.5021) (5.4266) (0.5168) 

FCM_S2  
90.7154 1.8551 94.5552 89.2289 94.1774 2.7159 

(5.8466) (0.9541) (2.7345) (7.5362) (4.3695) (0.3283) 

GKFCM_S1   
91.5110 0.0572 95.6019 91.2071 95.2605 2.6124 

(6.0950) (0.0461) (1.9674) (5.9365) (3.5248) (0.4837) 

GKFCM_S2  
91.3984 0.0481 95.5253 91.0534 95.1743 2.5454 

(6.1717) (0.0386) (1.9899) (5.9812) (3.5622) (0.6011) 

GAC 
84.1650 12.1461 79.7470 69.9560 81.6513 4.1302 

(12.3110) (4.0252) (15.2026) (14.6357) (10.4125) (1.9803) 

ACMRSF 
89.9492 3.1921 93.3785 87.1338 93.0084 3.2715 

(7.7889) (1.0412) (3.5023) (7.0434) (4.1165) (1.7100) 

RBACM-SFCM 
93.0288 8.2423 93.6432 89.1189 94.0451 3.1847 

(4.3238) (3.5138) (3.3766) (6.2907) (3.4655) (1.1932) 

EBACM 
92.7708 1.0836 95.6686 91.7403 95.6083 2.5820 

(6.0105) (0.3545) (3.0137) (5.1842) (3.1719) (0.8821) 

Proposed approach-1 
92.2195 0.3314 95.7547 91.7714 95.7556 2.4491 

(6.0065) (0.1934) (2.7646) (5.6932) (3.2819) (0.5793) 

Proposed approach-2 
93.3782 0.2352 96.4984 93.0224 96.3360 2.1771 

(4.8368) (0.1533) (2.4030) (4.7909) (2.6333) (0.7233) 
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Moreover, the proposed RBACM-GKFCM_S2 approach achieves higher TP, ACC, DC, 

JSI values and lower FP and HD values than the proposed RBACM-GKFCM_S1 approach. 

For a better representation of results, the performance measures obtained for all the 

synthetic test images are presented by box plot shown in Figure 7.5. From Figure 7.5, it can 

also be observed that the median of the TP, JSI, ACC, DC and FP, HD values obtained by 

the proposed method are highest and lowest, respectively. It also indicates the superiority of 

the proposed methods compared to others in terms of the successful extraction of the region 

of interest. 
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Figure 7.5 Box plot of the TP, FP, ACC, JSI, DC and HD measurements for all synthetic test images 
processed by the proposed RBACM-GKFCM_S1 (M-9) and RBACM-GKFCM_S2 (M-10) 
and others, where M-1, M-2, M-3, M-4, M-5, M-6, M-7 and M-8 refer to the FCM_S1, 
FCM_S2, GKFCM_S1, GKFCM_S2, GAC, ACMRSF, RBACM-SFCM, EBACM methods, 
respectively 

Furthermore, the computation time for all the segmentation methods has also been 

evaluated. The details of the processing time and averaged number of iterations to extract 

the regions for all images are listed in Table 7.2. All the results are produced on the same 

machine as mentioned in the previous chapter. From the results, it can be observed that the 

proposed approaches take less time and less number of iterations compared to the others. 

Table 7.2 Comparative performance of the segmentation approaches with the averaged number of 
iterations and computational time for all the synthetic test images 

Methods 
Averaged  
resolution 

Averaged  
iterations 

Averaged  
computational time, s 

FCM_S1  94 × 95 25 0.3049 

FCM_S2  94 × 95 7 0.1998 

GKFCM_S1   94 × 95 30 0.2262 

GKFCM_S2  94 × 95 15 0.1607 

GAC 94 × 95 275 20.171 

ACMRSF 94 × 95 175 2.5843 

RBACM-SFCM 95 × 95 50 2.3871 

EBACM 94 × 95 35 10.889 

Proposed approach-1  94 × 95 45 1.6671 

Proposed approach-2 94 × 95 30 1.4995 
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Experiment 2: Analysis and evaluation for the segmentation performance of real US 

images - In order to investigate the segmentation performance of the proposed methods and 

to present a comparison with other aforementioned methods, same dataset has been utilized 

as in the previous chapter. The results of two left ventricle US images are shown in Figure 

7.6 (a) and Figure 7.7 (a), respectively. Figure 7.6 (b) and Figure 7.7 (b) present the 

manually delineated region of both the left ventricle US images. The outcomes of both the 

US images segmented by all methods such as the FCM_S1, FCM_S2, GKFCM_S1, 

GKFCM_S2, GAC, ACMRSF, RBACM-SFCM, EBACM, proposed RBACM-GKFCM_S1 and 

proposed RBCAM-GKFCM_S2 are presented in Figure 7.6 (c)-(l) and Figure 7.7 (c)-(l), 

respectively. From these results, it is observed that the proposed methods precisely segment 

the region and object boundaries. Moreover, the segmentation results obtained by the 

proposed methods are approximately similar to that of the manually delineated region when 

compared with the others. Furthermore, to illustrate the superiority of the proposed 

approach-1 and 2 for providing the better segmentation results, a comparative view of 

segmented US images obtained by aforementioned methods are presented in Figure 7.8 and 

Figure 7.9. For such comparison, the US images used as similar in the previous chapter 

(presented in Figure 6.8 and Figure 6.9) are considered. Their segmentation results of four 

different US images are also shown in Figure 7.8 in which first is the US image of splenic 

cyst as shown in the first row and another US image of benign tumor shown in the second 

row. Last two images are of the US images of liver metastases. Moreover, in the Figure 7.9, 

all four different images shown in the four rows refer to the US image of the brain, benign 

cyst and multiple liver masses. Their manually delineated regions are also shown in the 

previous chapter. Their segmented images produced by aforementioned segmentation 

methods are shown in Figure 7.8 and Figure 7.9. From these results, it can be easily 

observed that the proposed approaches are able to produce better results than other 

methods and extract the region as similar to the manually delineated region of the US image. 

Besides the visual analysis of the segmented US images, several quantitative analysis 

have also been done in terms of the performance measures. Their corresponding 

quantitative results are mentioned in Table 7.3 that presents the averaged performance 

measures such as TP (%), FP (%), ACC (%), JSI (%) and DC (%) values for all US images 

utilized to perform the experiment. From the results listed in Table 7.3, it can be observed 

that the proposed approach-1 (RBACM-GKFCM_S1) and 2 (RBACM-GKFCM_S2) obviously 

outperform the other existing algorithms. Moreover, the proposed methods 1 and 2 achieve 

approx 4.27-5.73%, 3.29-4.74%, 0.7-2.1%, 0.6-1.96%, 5.18-6.65%, 5.31-6.78%, 9.29-

10.82% and 1.76-3.19% higher TP ratio than FCM_S1, FCM_S2, GKFCM_S1, GKFCM_S2, 

GAC, ACMRSF, RBACM-SFCM and EBACM method, respectively. These results ensure 

that the more overlapping area is obtained by the proposed method compared to the other 
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methods. The proposed methods also reveal an improvement in the segmentation accuracy 

by 2.6-3.16%, 0.96-1.13% than the FCM and GKFCM clustering methods.  

 

Figure 7.6 (a) Original ultrasound image-1. Segmentation results obtained by (b) Manual (c) FCM_S1 
(d) FCM_S2 (e) GKFCM_S1 (f) GKFCM_S2 (g) GAC (h) ACMRSF (i) RBACM-SFCM (j) 
EBACM (k) Proposed RBACM-GKFCM_S1 (l) Proposed RBACM-GKFCM_S2 
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Figure 7.7 (a) Original ultrasound image-2. Segmentation results obtained by (b) Manual (c) FCM_S1 
(d) FCM_S2 (e) GKFCM_S1 (f) GKFCM_S2 (g) GAC (h) ACMRSF (i) RBACM-SFCM (i) 
EBACM (k) Proposed RBACM-GKFCM_S1 (l) Proposed RBACM-GKFCM_S2 
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Figure 7.8 Comparative visual analysis of the segmentation results of different ultrasound images 
obtained by (a) FCM_S1 (b) FCM_S2 (c) GKFCM_S1 (d) GKFCM_S2 (e) GAC (f) 
ACMRSF (g) RBACM-SFCM (h) EBACM (i) Proposed RBACM-GKFCM_S1 (j) Proposed 
RBACM-GKFCM_S2  
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Figure 7.9 Comparative segmentation performance obtained by the different methods 
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Table 7.3 Averaged performance measures (TP, FP, ACC, JSI and DC) obtained by the different 
segmentation methods for all the ultrasound images 

Methods TP FP ACC JSI DC 

FCM_S1  0.8905 ± 0.0360 0.1184 ± 0.0906 0.9071 ± 0.0271 0.8445 ± 0.0394 0.9126 ± 0.0239 

FCM_S2  0.8989 ± 0.0384 0.1061 ± 0.0846 0.9110 ± 0.0275 0.8496 ± 0.0312 0.9155 ± 0.0248 

GKFCM_S1   0.9221 ± 0.0329 0.0476 ± 0.0541 0.9258 ± 0.0261 0.8588 ± 0.0463 0.9234 ± 0.0271 

GKFCM_S2  0.9234 ± 0.0326 0.0484 ± 0.0538 0.9253 ± 0.0311 0.8679 ± 0.0576 0.9266 ± 0.0345 

GAC 0.8828 ± 0.0156 0.3164 ± 0.2476 0.8332 ± 0.0902 0.7658 ± 0.0919 0.8626 ± 0.0316 

ACMRSF 0.8817 ± 0.0656 0.0963 ± 0.0533 0.8927 ± 0.0439 0.8101 ± 0.0532 0.8909 ± 0.0545 

RBACM-SFCM 0.8496 ± 0.1464 0.0535 ± 0.0679 0.9007 ± 0.0677 0.8113 ± 0.1316 0.8899 ± 0.0522 

EBACM 0.9124 ± 0.0498 0.0661 ± 0.0224 0.9231 ± 0.0174 0.8581 ± 0.0377 0.9227 ± 0.0246 

PA-1 0.9285 ± 0.0460 0.0331 ± 0.0385 0.9347 ± 0.0244 0.8760 ± 0.0436 0.9334 ± 0.0249 

PA-2 0.9345 ± 0.0409 0.0319 ± 0.0358 0.9358 ± 0.0246 0.8772 ± 0.0443 0.9345 ± 0.0253 

* PA-1: Proposed approach-1 (RBACM-GKFCM_S1) 

* PA-2: Proposed approach-2 (RBACM-GKFCM_S2) 

Moreover, the accuracy of the proposed methods is raised by approx 12.31%, 4.83%, 

3.9% and 1.26-1.38% from the GAC, ACMRSF, RBACM-SFCM and EBACM methods, 

respectively. It gains approx 3.11-3.87%, 0.93-2.14%, 14.6%, 8.13-8.28%, 7.97-8.12 % and 

2.09-2.23% higher values of the JSI and 1.96-2.40%, 0.73-1.20%, 8.21-8.34%, 4.89%, 4.8-

5.1% and 1.16-1.28% higher DC values compared to the FCM, KFCM, GAC, ACMRSF, 

RBACM-SFCM and EBACM methods, respectively. The higher values of the JSI and DC 

produced by the proposed methods assure more similarity between the region extracted by 

the computerized segmentation method and manually. Finally, the proposed approaches 

also get the lowest FP values that define the incorrect extraction of the region of interest in 

comparison to the manual delineated region. The averaged FP values obtained by the 

proposed methods are decreased by approx 72.04-73.06%, 68.8-69.93%, 30.46-32.98%, 

31.61-34.09%, 89.54-89.92%, 65.63-66.87%, 38.13-40.7% and 49.92-51.74% from the 

FCM_S1, FCM_S2, GKFCM_S1, GKFCM_S2, GAC, ACMRSF, RBACM-SFCM and EBACM 

methods, respectively. 

In addition, to further investigate the performance of the proposed segmentation 

approaches, Hausdorff distance is evaluated for each US image processed by all the 

aforementioned segmentation methods. Table 7.4 illustrates the averaged HD metric 

(average ± STD) obtained by each method. These results indicate the superiority of the 

proposed approach-1 and 2 by obtaining the smallest HD values. Moreover, the RBACM-

GKFCM_S2 also has lower HD value than the RBACM-GKFCM_S1 approach. 

Furthermore, the averaged resolution, iteration and computational time taken by all the 

segmentation approaches are compared and listed in Table 7.5 from which it is concluded 

that the proposed approaches also take less number of iterations with higher speed 

compared to the other methods. All the computations are performed on the same machine as 

mentioned in the previous chapter. 
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Table 7.4 Hausdorff distance obtained by the various segmentation methods for all the ultrasound 
images 

Methods HD 

FCM_S1  4.5742 ± 0.8436  

FCM_S2  4.2630 ± 0.6562  

GKFCM_S1   3.2424 ± 1.0615  

GKFCM_S2  3.2585 ± 1.1061  

GAC 6.9969 ± 3.0891  

ACMRSF 4.8472 ± 1.4808  

RBACM-SFCM 4.3482 ± 1.1641  

EBACM 3.5790 ± 1.3367  

Proposed approach-1  2.8658 ± 1.2053  

Proposed approach-2 2.5206 ± 1.2507 

 
Table 7.5 Comparative performance of the segmentation approaches with the averaged number of 

iterations and computational time for all the ultrasound images. 

Methods 
Averaged 
 resolution 

Averaged  
computational time, s 

Averaged  
iterations 

FCM_S1  294 × 310 0.5265 35 

FCM_S2  294 × 310 0.4916 38 

GKFCM_S1   294 × 310 1.5064 39 

GKFCM_S2  294 × 310 1.8986 48 

GAC 294 × 310 141.26 1250 

ACMRSF 294 × 310 15.448 242 

RBACM-SFCM 295 × 310 2.6215 100 

EBACM 294 × 310 13.378 100 

Proposed approach-1  294 × 310 2.1137 24 

Proposed approach-2 294 × 310 2.9411 20 

7.7 Summary 

The accurate segmentation of a particular region of interest in the US image is one of 

the vital tasks because of the poor quality of images. In this chapter, two hybrid segmentation 

approaches for the US images are proposed that utilize both the features of the RBACM 

driven by the RSF energy and the GKFCM_X clustering method. These hybrid segmentation 

methods initiate with the results of the GKFCM_X method that is responsible for successfully 

extracting the estimated object boundaries by initializing the curve during level set evolution 

and for evaluating the several controlling parameters also. Besides this, it eliminates the 

requirement of manual tracing and decreases the computation time also. Several 

experiments have been performed on both the synthetic and real ultrasound images. From 

both the subjective and objective evaluation, it is concluded that the proposed methods 

provide better performance compared to the others. It does not only ensure an improvement 

in the segmentation performance by correctly identifying the estimated boundaries, but 

exhibits the improved performance in terms of the processing speed also. 
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CHAPTER 8: CONCLUSIONS AND SCOPE FOR FUTURE WORK 

This chapter presents the conclusions based on the performance of all the proposed denoising and 

segmentation methods discussed in the previous chapters. The conclusion based on the comparative 

analysis among all the proposed denoising and segmentation approaches illustrated in Appendix A 

and B, respectively, is also presented here. The chapter also suggests several possible directions of 

the present work to be investigated in the future. 

8.1 Conclusions 

This thesis has focused on the edge preserved noise reduction in the US images and 

segmentation of these images. The major objectives of this study has been to design and 

develop the effective methods to improve the visual perception of the images by suppressing 

the noise and extract (segment) a particular region from the US images that may be used for 

further analysis. Besides despeckling of the US medical images, attention has also been 

given to develop more generalized algorithms so that they can be applied not only to 

suppress multiplicative speckle noise, but also to additive noise like Gaussian noise (which is 

inherently observed in most of the images). 

Accurate segmentation of the US images is a very difficult task due to the presence of 

noise in the images. Thus, six denoising approaches such as the MBRT, RTNLF-1, RTNLF-

2, RBAF, NSST-NADF and NSST-NLNADF have been developed to enhance the quality of 

the US images, while four segmentation methods such as the EBACM-KFCM_S1, EBACM-

KFCM_S2, RBACM_GKFMC_S1 and RBACM-GKFCM_S2 have also been developed to 

provide accurate segmentation.  

Based on the experimental results, distinct conclusions have been drawn at various 

stages of the present work, which are summarized as below: 

8.1.1 Evaluation of the existing denoising approaches 

Among two different category viz, spatial and transform domain, it has been observed 

that many researchers are working on diffusion, total variation, nonlocal mean filtering from 

the spatial domain categories on one side and wavelet, ridgelet and curvelet based 

approaches from the transform domain on the other side. Thus, a comparative analysis of 

existing denoising methods like the AWMF, WF, MHOPNF, ADF, SRAD, NCDF, TVF, NLMF, 

TI-WT, ridgelet, curvelet and shearlet based approaches have been carried out on the 

several test images and US images. As noise suppression and edge preservation are 

conflicting parameters, this comparative evaluation is performed keeping these two aspects 

in mind. Based on the analysis, another M-band ridgelet based thresholding (MBRT) 

approach has also been proposed to fulfil the requirement of denoising with edge 

preservation. A comparative analysis of all the existing methods and proposed method is 

also presented. The conclusions drawn from this comparison are presented below: 
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On the basis of quantitative analysis, it has been observed that the NLMF and shearlet 

based approach produce better speckle noise reduction performance in case of low and high 

noise level, respectively by providing higher PSNR and SNR values. Besides better speckle 

noise reduction, the MBRT approach is able to provide better edge preservation performance 

by achieving higher EKI values compared to the other methods. It is also observed from the 

experimental results that the image processed by the transform based approaches such as 

ridgelet, curvelet and shearlet produce a better visual appearance compared to aforesaid 

methods. However, it also produces some visual distortion by introducing some fuzzy edges 

near the original edges and in the homogeneous region of images. Moreover, the diffusion 

based and TVF approaches also show a considerable improvement in terms of noise 

suppression and edge preservation. However, as the noise level available in the image 

increased, the denoising performance deteriorated due to loss of edge information with the 

noise residual. The TVF approach also introduces some staircasing effect in the denoised 

images and the diffusion approaches exhibit the maximum amount of blurring effect which is 

verified by lower EKI values. Further, the proposed MBRT approach produces higher 

performance measures than wavelet, ridgelet and curvelet based approaches in terms of 

both the noise suppression and edge preservation. The shearlet and proposed MBRT 

methods have less distortion than the curvelet. 

8.1.2 Proposed ripplet domain nonlinear filtering approach 

The efforts in the previous section have been made to evaluate and analyze the 

performance of existing and the proposed MBRT approach applied to all the US and test 

images. To preserve more edges and to overcome the limitation of curvelet, two different 

ripplet domain nonlinear filtering approaches such as the RTNLF-1 and RTNLF-2 have been 

proposed that utilize both the features of nonlinear bilateral filter (NLBF) and two thresholding 

approaches such as NeighShrink and BlockShrink. Quantitative analysis of the experimental 

results using the various performance measures shows that the proposed RTNLF-1 and 2 

approaches are able to reduce the noise in a better way than the other methods without 

distorting the information.  

From the comparative evaluation and analysis shown in Table A.1 (in appendix A), it is 

observed that the proposed approach RTNLF-1 gains approx (4.46%, 4.52%, 1.24%), 

(7.18%, 7.61%, 2.14%), (1.43%, 3.73%, 2.74%), (5.57%, 7.75% and 13.83%) and (22.18%, 

14.31%, 17.46%), higher averaged PSNR, SNR, SSIM, FOM and EKI values (for different 

noise levels as ߪ ൌ 0.1, 0.2 and 0.3, respectively), respectively, than the proposed MBRT 

method. It indicates better denoising performance provided by the proposed RTNLF-1 

approach. Moreover, the proposed method RTNLF-2 approach outperforms both the MBRT 

and RTNLF-1 method. The proposed RTNLF-2 approach also achieves approx (6.35%, 

5.84%, 3.48%), (10.25%, 9.84%, 6.02%), (3.68%, 4.53%, 3.13%), (6.28%, 8.80%, 14.71%), 
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(24.87%, 17.77, 19.58%) higher averaged PSNR, SNR, SSIM, FOM and EKI values (for 

different noise levels similar as above), respectively, than the MBRT approach, while the 

approx 1.81-2.21%, 2.07-3.8%, 0.38-2.22%, 0.67-0.98% and 1.81-3.03% higher PSNR, 

SNR, SSIM, FOM and EKI values are achieved by the proposed RTNLF-2 approach as 

compared to the RTNLF-1 approach. Further, the proposed RTNLF-2 method provides the 

US images with better perceptual quality than the others and it is validated by analyzing the 

evaluated MVR values shown in Table A.2 i.e. 22.17 higher than the MBRT (21.12) and the 

proposed RTNLF-1 approach (21.98). Thus, from the observation, it is clear that the 

proposed methods show a significant improvement in terms of enhancement of image quality 

and detectability. 

8.1.3 Proposed remnant approach for adaptive fusion based noise filtering 

Based on the comparative analysis shown in chapter 2 and 3, it is observed that the 

TVF approach also produces the competitive results than the above mentioned methods. 

However, the edge information is lost during the TVF process. Besides the TVF approach, 

curvelet and shearlet based approach also provide better edge preservation, but they suffer 

from serious issues as mentioned above. Thus, the RBAF approach based on the adaptive 

fusion process which is utilized to fuse three different images processed by the (a) TVF 

approach, (b) CSST approach, separately and (c) edge structured information extracted by 

noise residual of the TVF method and further processed by the CSST approach, has been 

proposed. The proposed RBAF approach is able to overcome the limitation of TVF, CVT and 

ST methods, i.e. it helps to reduce the fuzzy edges and staircase effects from the test and 

US images. From the quantitative analysis of the experimental results shown in chapter 4, it 

is observed that the proposed RBAF approach shows an improved noise suppression 

performance than the MBRT and RTNLF approaches by achieving higher PSNR and SNR by 

approx (3.07-6.91%, and 5.29-11.17%) and (0.45-2.35% and 0.73-3.72%), respectively. 

Sometimes, the RTNLF-2 approach outperforms the RBAF approach by producing higher 

performance measures in case of test images, while for the US images, the RBAF approach 

produces much better denoised images with better visual quality than the proposed MBRT, 

RTNLF approaches. This is also verified by Table A.2 that shows higher averaged MVR 

value (22.23) produced by the RBAF approach as compared to the MBRT (21.12), RTNLF-1 

and 2 (21.98 and 22.17, respectively). Thus, it is concluded that the proposed RBAF 

approach helps to remove the noise as much as possible without loss of edge information. 

8.1.4 Proposed nonsubsampled shearlet domain noise filtering approach using 

nonlinear adaptive diffusion equations 

The efforts in the earlier chapters were focused on the improvement in noise reduction 

performance with better edge preservation. These efforts have been successful to 
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considerable extent resulting in more usefulness of the approaches, while improving or 

maintaining the qualitative performance. Thus, two approaches such as the NSST-NADF and 

NSST-NLNADF approaches are proposed, considering the merits of the ADF and NLMF 

approaches as shown in chapter 2. However, these methods suffer from the loss of edge 

information in the denoised images. To overcome this limitation and better representation of 

edges, these approaches are utilized to modify the diffusion equations by incorporating the 

adaptive gray variance with the gradient information of a large size, i.e. eight connected 

neighboring pixels in the NSST-NADF approach, while nonlocal pixel information is 

incorporated to evaluate the adaptive gray variance within the same neighborhood in the 

NSST-NLNADF approach. The NSST also overcomes shift invariance problem of the ST as 

mentioned in the literature. 

From the results shown in Table A.1, it is observed that the proposed NSST-NLNADF 

approach outperforms all the other proposed methods in both the terms either in noise 

suppression or in edge preservation. This approach is also suitable for both additive and 

multiplicative noise corrupted images. The NSST-NLNADF approach achieves higher PSNR 

(7.08-10.3%, 2.7-5.76%, 1.42-3.7%, 2.25-3.89% and 2.52-4.26%), SNR(12.2-16.7 %, 4.41-

9.85%, 2.3-5.83%, 3.66-6.56% and 4.11-6.67%), SSIM (6.04-9.25%, 4.3-6.34%, 2.27-5.94%, 

1.7-6.03% and 2.5-6.57%), FOM (5.3-17%, 2.7-2.82%, 1.8-1.99%, 0.98-2.58% and 1.11-

2.56%) and EKI (29.91-21.5%, 2.41-4.89%, 0.59-1.81%, 8.69-18.64% and 5.59-8.52%) than 

the other proposed MBRT, RTNLF-1, RTNLF-2, RBAF and NSST-NADF approaches. 

Sometime in case of lower noise level, the RTNLF-1 and 2 approaches provide better edge 

preservation by obtaining higher EKI values for the test image datasets. Besides the 

superiority of the NSST-NLNADF approach, in case of high level of speckle noise ሺߪ ൌ 0.3ሻ, 

the proposed NSST-NADF approach also shows better noise reduction by providing higher 

SNR (7.64%, 5.39%, 1.52% and 2.23%) and PSNR (4.41%, 3.14%, 0.91% and 1.31%) than 

the proposed MBRT, RTNLF-1, RTNLF-2 and RBAF methods, while the RTNLF-1 and 2 

methods outperform the NSST-NADF approach in terms of edge preservation performance. 

Moreover, based on the comparative MVR analysis shown in Table A.2, it is observed that 

the higher averaged MVR value (22.42) achieved by the proposed NSST-NLNADF approach 

shows its superiority over the other proposed MBRT (21.12), RTNLF-1 (21.98), RTNLF-2 

(22.17), RBAF (22.23) and NSST-NADF (21.95). In view of the above conclusions, it is finally 

stated that the work on denoising methods presented in the thesis contributed significantly 

toward the state-of-art of denoising of the US images. 

8.1.5 Proposed hybrid edge-based active contour method with KFCM 

Most of the segmentation methods used for extracting the boundaries of a region or 

object of interest in the US images are thresholding and active contour based approaches. 

All of these require extensive manual intervention. Thus, in this part of the thesis, two hybrid 
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EBACM with the KFCM_S1 and KFCM_S2 clustering approaches, i.e. EBACM-KFCM_S1 

and EBACM-KFCM_S2, are proposed that utilize both the features of EBACM using distance 

regularized level set evolution and KFCM approaches.  

These proposed EBACM-KFCM_S1 and EBACM-KFCM_S2 segmentation methods 

use kernel fuzzy clustering to initialize the counter, which propagates toward the desired 

object's boundaries against the manual initialization in case of traditional active contour 

methods. The proposed methods estimate the contour propagation controlling parameters 

automatically from the results of KFCM_S1 and KFCM_S2, individually. From the subjective 

analysis, it is found that the segmented regions extracted by the proposed approaches are 

close to the manually delineated region. Experimental results shown in Table B.1 illustrate 

that the proposed EBACM-KFCM_S1 (92.91%, 86.75%, 92.88%) shows a significant 

improvement in terms of averaged segmentation ACC, JSI and DC values, respectively, on 

the US images as compared to the FCM_S1 (90.71%, 84.45%, 91.26%), FCM_S2 (91.1%, 

84.96%, 91.55%), KFCM_S1 (91.41%, 85.77%, 92.25%), KFMC_S2 (92.36%, 86.26%, 

92.60%), GAC (83.32%, 76.58%, 86.26%), ACMRSF (89.27%, 81.01%, 89.09%) and 

EBACM (92.31%, 85.81%, 92.27%) methods. It also takes much less time to segment the 

images than the others. Moreover, the proposed EBACM-KFCM_S2 approach also 

outperforms the proposed EBACM-KFCM_S1 approach by achieving higher averaged ACC 

(93.15%), JSI (87.63%) and DC (93.26%) against the 92.91%, 86.75% and 92.88%, 

respectively. Thus, it is concluded from these results that the proposed segmentation 

methods outperform all other state-of-art methods in terms of accurate extraction of the 

object boundaries of interest.  

8.1.6 Proposed hybrid edge-based active contour method with GKFCM 

In the last part of this work, two efficient hybrid region-based segmentation methods, 

i.e. RBACM-GKFCM_S1 and RBACM-GKFCM_S2 are proposed using the Gaussian kernel 

fuzzy clustering. These proposed segmentation methods utilize the features of the RBACM 

approach driven using the RSF energy function and the GKFCM. Because of incorporating 

the fuzzy membership function, the proposed methods are able to overcome the problem of 

contour initialization and to estimate the curve evolution controlling parameters. These 

proposed approaches start with the GKFCM and then the results of the clustering approach 

are utilized for initializing the curve applied to the RBACM approach. It is observed that the 

proposed approaches use the intensity information in local regions of the image to propagate 

the contour toward the object's boundary as against the global region of RBACM approach. 

From the quantitative evaluation and analysis of the experimental results shown in 

chapter 7, it is observed that the proposed RBACM-GKFCM_S1 and RBACM-GKFCM_S2 

approaches outperform the other existing methods mentioned in chapter 7. Further, another 

comparative analysis is presented among all the proposed segmentation approaches and 
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listed in Table B.1. Based on these results, it is observed that the proposed RBACM-

GKFCM_S1 approach gains higher averaged ACC, JSI, DC and lower HD values (93.47%, 

87.60%, 93.34% and 2.8658) against the EBACM-KFCM_S1 (92.91%, 86.75%, 92.88% and 

3.0125) and EBACM-KFCM_S2 (93.15%, 87.63%, 93.26% and 2.9615). These results show 

the superiority of the proposed RBACM-GKFCM_S1 over the other existing methods, while 

the second proposed RBACM-GKFCM_S2 outperforms the RBACM-GKFCM_S1 approach 

by providing higher performance measures (93.58%, 87.72%, 93.45%) against the ACC, JSI 

and DC (93.47%, 87.60% and 93.34%), respectively, estimated by the RBACM-GKFCM_S1. 

Finally, it is stated that the developed methods such as MBRT, RTNLF-1, RTNLF-2, 

RBAF, NSST-NADF and NSST-NLNADF for denoising of the US images and the EBACM-

KFCM_S1, EBACM-KFCM_S2, RBACM-GKFCM_S1 and RBACM-GKFCM_S2 used for the 

segmentation of the US medical images contributed significantly toward the state-of-art of 

denoising and segmentation of the US images and synthetic images, too. 

8.2 Scope for the Future Work 

Although the present work could contribute in the area of the noise reduction and 

segmentation, following suggestions are made for future work in this area: 

(1) The proposed denoising work resulted in the preservation of more edges, which may be 

utilized to improve the performance of several image processing tasks such as 

segmentation, registration, classification and fusion. 

(2) In this study, the present segmentation methods use Gaussian kernel fuzzy clustering to 

initialize the contour. The performance of these proposed approaches may be analyzed 

by the other initialization technique such as thresholding.  

(3) The research work was carried out on 2D US images as 3D datasets were not available. 

In future, a 3D model may be developed.  

(4) The performance and efficiency of the proposed methods may be analyzed on image 

datasets acquired from the different medical imaging modalities. 

(5) After extracting the particular abnormalities in the US images, based on its both imaging 

features and anatomical locations, a classification system may be developed. 

(6) The denoised images obtained by the proposed methods may be validated by the expert 

radiologists by implementing on large database. 

(7) It would still be a wonderful idea to develop an expert system that may assist the 

radiologists in taking decisions. 
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APPENDIX – A 

Table A.1 Averaged PSNR, SNR, SSIM, FOM and EKI values evaluated for all the proposed 
denoising approaches applied on the test images 

Noise 
level 

Methods PSNR SNR SSIM FOM EKI 

σ = 0.1 

MBRT 24.21 ± 4.05 14.95 ± 1.81 0.7601 ± 0.1048 0.8424 ± 0.0813 0.5875 ± 0.1669 

RTNLF-1 25.29 ± 4.09 16.03 ± 1.28 0.7709 ± 0.0893 0.8893 ± 0.0883 0.7178 ± 0.2005 

RTNLF-2 25.75 ± 4.29 16.49 ± 1.38 0.7881 ± 0.0898 0.8953 ± 0.0867 0.7336 ± 0.1920 

RBAF 25.88 ± 4.64 16.62 ± 2.48 0.7925 ± 0.0938 0.8789 ± 0.0749 0.6567 ± 0.1801 

NSST-NADF 25.61 ± 4.28 16.35 ± 1.37 0.7859 ± 0.0908 0.8778 ± 0.0695 0.6760 ± 0.1468 

NSST-NLNADF 26.70 ± 5.08 17.44 ± 1.99 0.8060 ± 0.1080 0.8875 ± 0.0688 0.7138 ± 0.1505 

  

σ = 0.2 

MBRT 22.88 ± 3.86 13.62 ± 2.17 0.7211 ± 0.1177 0.7895 ± 0.0354 0.5435 ± 0.1273 

RTNLF-1 23.91 ± 4.11 14.65 ± 2.02 0.7479 ± 0.0953 0.8507 ± 0.0567 0.6213 ± 0.1258 

RTNLF-2 24.22 ± 4.08 14.96 ± 1.99 0.7538 ± 0.0974 0.8589 ± 0.0573 0.6401 ± 0.1309 

RBAF 24.02 ± 4.69 14.76 ± 2.42 0.7584 ± 0.0964 0.8579 ± 0.0627 0.5726 ± 0.1109 

NSST-NADF 23.96 ± 4.31 14.70 ± 2.13 0.7493 ± 0.0974 0.8548 ± 0.0564 0.5761 ± 0.1081 

NSST-NLNADF 24.56 ± 4.78 15.30 ± 2.47 0.7802 ± 0.1249 0.8746 ± 0.0637 0.6517 ± 0.1640 

σ = 0.3 

MBRT 22.05 ± 3.94 12.79 ± 2.59 0.7006 ± 0.1289 0.7354 ± 0.0179 0.4943 ± 0.1218 

RTNLF-1 22.32 ± 3.78 13.06 ± 2.29 0.7198 ± 0.0973 0.8371 ± 0.0735 0.5806 ± 0.1269 

RTNLF-2 22.81 ± 3.79 13.56 ± 2.44 0.7225 ± 0.0980 0.8436 ± 0.0685 0.5911 ± 0.1270 

RBAF 22.72 ± 4.89 13.46 ± 2.64 0.7219 ± 0.0931 0.8388 ± 0.0680 0.5012 ± 0.0619 

NSST-NADF 23.02 ± 4.37 13.76 ± 2.59 0.7182 ± 0.0988 0.8389 ± 0.0730 0.5479 ± 0.0943 

NSST-NLNADF 23.61 ± 4.70 14.35 ± 2.65 0.7654 ± 0.1251 0.8604 ± 0.0576 0.5946 ± 0.1321 

 

Table A.2 Comparative MVR analysis for all proposed denoising approaches applied on the 
ultrasound images  

Methods MBRT RTNLF-1 RTNLF-2 RBAF NSST-NADF NSST-NLNADF 

MVR 21.12 ± 4.93 21.98 ± 3.93 22.17 ± 4.33 22.23 ± 3.98 21.95 ± 4.26 22.42 ± 4.12 
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APPENDIX – B 

Table B.1 Averaged performance measures (TP, FP, ACC, JSI, DC and HD) evaluated for all the 
proposed segmentation approaches applied on the ultrasound images 

Metrics 

(AVG ± STD) 
EBACM-KFCM_S1  EBACM-KFCM_S2  RBACM-GKFCM_S1  RBACM-GKFCM_S2  

TP 0.9281 ± 0.0342  0.9325 ± 0.0363  0.9285 ± 0.0460  0.9345 ± 0.0409  

FP 0.0361 ± 0.0226  0.0322 ± 0.0167  0.0331 ± 0.0385  0.0319 ± 0.0358  

ACC 0.9291 ± 0.0144  0.9315 ± 0.0171  0.9347 ± 0.0244  0.9358 ± 0.0246  

JSI 0.8675 ± 0.0328  0.8763 ± 0.0335  0.8760 ± 0.0436  0.8772 ± 0.0443  

DC 0.9288 ± 0.0164  0.9326 ± 0.0189  0.9334 ± 0.0249  0.9345 ± 0.0253  

HD 3.0125 ± 0.7155  2.9615 ± 0.7653  2.8658 ± 1.2053   2.5206 ± 1.2507  

 


