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ABSTRACT 

Distillation is defined as a process in which a liquid or vapor mixture of two or more 

substances is separated into its component fractions of desired purity, by the application and 

removal of heat. The objective of present research work is to develop a control scheme for 

distillation column through dynamic simulations and experimentation. To fulfill this objective, 

an existing laboratory set-up of distillation column is used. The set-up is a continuous binary 

type distillation column (BDC) and contains a vertical column that has nine equally spaced 

trays mounted inside of it. Mixture of methanol and water is taken as feed to the column. The 

distillation column is interfaced with auxiliary components and transducers to facilitate 

monitoring and control of various parameters of the column. A reboiler is connected to the 

vertical shell through pipes. A controller unit is interfaced to the reboiler heat input for 

controlling the temperature profile of the distillation column.  

Due to inherent complexity of distillation process, it is difficult to achieve the 

simultaneous control of top and bottom composition. To overcome this difficulty Wood and 

Berry developed a linear model of BDC. The Wood and Berry model of distillation column is a 

simplified linear model and may not  represent the BDC exactly therefore; a mathematical 

model that uses the fundamental physical and chemical laws along with valid normal 

assumptions has been utilized  in this thesis work. Distillation column is divided into three 

different sections from the modeling point of view. Ist section is reboiler section, IInd section is 

Tray section, and IIIrd section is condenser section. The balance equations are obtained by 

applying material and energy conservation laws to these sections. All these equations are 

solved to develop the model. The manipulated variables are reflux flow and reboiler heat 

duty. To validate the model, results obtained from this model have been compared with the 

results obtained from the experimental set-up. In experimental set-up, reflux flow-rate and 

reboiler heat duty have been varied similarly as in case of the equations based model. It is 

observed from the results that this equations based model is in good agreement with the 

experimental outputs. The results obtained in this study prove that this equation based model 

could be use to represent the existing experimental set-up of BDC. This equations based 

model has been used for the analysis and implementation of different control schemes to 

hold the product composition nearly to the set point under different types of disturbances i.e. 

disturbance in heat input, reflux ratio and feed flow.  

As neural network method does not require a deep mathematical knowledge of the 

system to develop the system‘s model accurately, in this thesis, a neural network model is 

proposed for BDC. The neural model gives methanol composition as output based upon the 

knowledge of the six inputs namely; tray temperature, reflux flow-rate, feed flow-rate, reboiler 

duty, reflux drum top pressure and reboiler bottom pressure. For the training of the neural 

network, the data has been acquired by the operation of experimental set-up of BDC. Two 
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neural network topologies namely; Feed Forward Neural Network (FFNN) and Recurrent 

Neural Network (RNN) are utilized for the development of the neural network model.  

Inferential control scheme is the technique in which secondary variables are used as 

the controlled variables. For the laboratory set-up of BDC, it is found by the sensitivity 

analysis that at constant pressure, the temperature of fourth tray is an exact indicator of the 

corresponding concentration of methanol output. Therefore; temperature of the tray is used 

as a secondary variable. By using the experimental results obtained with laboratory set-up, a 

relation has been established between the controller current and the tray temperature by 

curve-fitting method.  This relation has been utilized to control the temperature of the tray. A 

PID controller is used to control the temperature of the tray. The parameters of the PID 

controller have been tuned using the Genetic Algorithm in MATLAB
® /Simulink environment. 

This PID controller has also been implemented on the experimental set-up of BDC in the 

laboratory. The results obtained show that the simulated and hardware PID controller are in 

good agreement to each other. 

Model Predictive Control (MPC) is one of the main process control techniques explored 

in the recent past for various chemical engineering applications, therefore; the linear MPC 

(LMPC) scheme utilize the equations based model of BDC and the nonlinear Neural Network 

based Model Predictive Control (NN-MPC) scheme utilize the ANN based model of BDC  to 

control the methanol composition. In NN-MPC scheme, a three layer feed forward neural 

network model has been developed which is used to predict the methanol composition over a 

prediction horizon using the MPC algorithm for searching the optimal control moves. The 

training data is acquired from the existing laboratory set-up of BDC. Two cases have been 

considered, one is for reference tracking and another is for feed flow disturbance rejection. 

The performance of the control schemes are compared on the basis of performance 

parameters namely rise time, settling time and MSE. NN-MPC and LMPC schemes are also 

compared with conventional PID controller. The results show the improvement in rise time 

and MSE with NN-MPC scheme as compared to LMPC and conventional PID controller for 

both the cases.  

The neural network has the ability to represent arbitrary non-linear relations and can be 

trained even for an uncertain system. These qualities have been exploited by many 

researchers in the past. In the present work, direct inverse control (NN-DIC) and internal 

model control (NN-IMC) schemes have been developed to control the final composition of 

methanol.  Forward model and inverse model of BDC have been developed utilizing the ANN 

approach. In developing the NN-DIC scheme, inverse model is utilized. In NN-IMC scheme, 

both forward and inverse models are used. Two input variables, reflux flow-rate and reboiler 

heat duty are used as manipulated variables. The results obtained show the improvement in 
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the rise time, settling time and MSE with NN-IMC scheme as compared to NN-DIC and NN-

MPC schemes. 

Soft computing is a collection of various approaches like fuzzy system, neural networks 

and genetic algorithm. It is useful to tackle imprecision and uncertainty involved in a complex 

nonlinear chemical system. Recent reviews on soft computing around the world indicate that 

the number of soft computing based engineering applications is increasing. Neuro-fuzzy is 

one of the extensively used soft computing approaches. It is a hybridization of artificial neural 

networks and fuzzy inference system. Adaptive Neuro-Fuzzy inference system (ANFIS) is an 

example of Neuro-Fuzzy systems in which a fuzzy system is implemented in the framework 

of adaptive neural networks. ANFIS constructs an input-output mapping based on both the 

human knowledge (in the form of fuzzy rules) and the generated input-output data pairs. In 

this work, ANFIS controller is applied on the ANN based model of BDC. The controller 

controls the methanol composition in BDC by the variation of reflux flow-rate and reboiler 

heat duty. The performance of ANFIS controller has been compared with NN-IMC control 

scheme. The obtained result shows the improvement in the rise time, settling time and MSE 

with ANFIS scheme as compared to NN-IMC scheme. 

The present thesis concludes that the discussed models namely; equation based model 

and ANN based model have been developed and validated for existing experimental set-up 

of BDC. A PID controller tuned by GA is studied in simulation and, subsequently, it is 

implemented on the experimental set-up of BDC in laboratory. The results obtained show 

that the simulated and hardware PID controller are in good agreement to each other. The 

developed equation based model and ANN based models are utilized to control the methanol 

composition by the application of different control schemes namely; LMPC, NN-MPC, PID, 

NN-DIC, NN-IMC and ANFIS. A comparison is conducted among these control schemes 

based on performance parameters namely; rise time, settling time, overshoot and MSE. 

Overall, ANFIS control scheme shows a superior performance over the above studied control 

schemes by presenting a shorter rise time, shorter settling time and smaller MSE.  
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Chapter 1: INTRODUCTION  

This chapter introduces the research work carried out in this thesis. It describes the distillation process 

and discusses the existing laboratory experimental set-up of distillation column. The literature survey 

of modelling and control schemes of the distillation column has also been performed. In the end, 

scope of work, author’s contribution and thesis outlines are explained. 

1.1 Introduction to Distillation Process 

Distillation is a process in which a liquid or vapour mixture of two or more substances is 

separated into its component fractions of desired purity, by the application and removal of 

heat. The objective of separation is achieved by the creation of two phases which differ on 

the basis of volatilities, gravity or phase state. Because the different components of the 

mixture have different volatilities, each component will part itself between the liquid and 

vapor phases to a different extent. Trays or packing are used to bring the two phases into 

intimate contact. The end result is that the lower volatile components will be concentrated in 

the lower sections of the column, with the highly volatile components concentrated in the 

higher sections of the column. Distillation column is the required equipment for carrying out 

the process of distillation. Distillation columns are made up of several components, each of 

which is used either to transfer heat energy or enhance material transfer. A typical distillation 

column contains following major components: 

 Vertical shell: In vertical shell, the separation of feed components is carried out. 

 Column internals: Trays or plates are used to enhance component separations.  

 Reboiler: Reboiler is used to provide the necessary vaporization for the distillation 

process.  

 Condenser:  It is used to cool and condense the vapor leaving from the top of the 

column. 

 Reflux drum: It is used to hold the condensed vapor from the top of the column so that 

liquid (reflux) can be recycled back to the column. 

Distillation columns can be classified on the basis of their operation, nature of processing 

feed and the types of column internals. 

1.2 Types of Distillation Column 

On the basis of the operation, the distillation columns are classified in the following two 

types: 

Batch columns: The feed to the column is supplied batch-wise in these types of 

distillation columns. The column is charged with a 'batch' and then the distillation process is 

carried out. The next batch of feed is supplied after distillation of the current batch is 

completed.  
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Continuous columns: In contrast to the batch column, continuous column consists a 

continuous feed stream without any interruption. These columns are capable of handling high 

throughputs and are more in use out of the two types.  

On the basis of nature of processing feed, distillation column can be classified in two 

categories: 

Binary column: In binary column, the feed mixture contains only two components. 

Multi-component column: In this type of distillation column, feed mixture contains 

more than two components.  

On the basis of column internal architecture, distillation columns can be classified as: 

Tray column: In this type of column, the trays are used to hold up the liquid to provide 

better contact between vapour and liquid. Different types of trays are used; bubble cap trays 

and sieve trays are the examples of these types of trays. 

Packed column: In the packed column, instead of trays, 'packings' are used to 

enhance the contact between vapor and liquid. 

1.3 Basic Operation of Distillation Column 

The liquid mixture that is to be processed is known as feed. Normally the feed is input 

at the middle tray of the column known as the ‗feed tray‘. The feed tray divides the column 

into two sections, top (enriching or rectification) section and bottom (stripping) section.  

Rectifying Section: In this section, vapor rising is washed with liquid flowing down 

from the top to remove lower volatile component.  

Stripping Section: In this section, liquid has been removed from the highly volatile 

stream by partial vaporization in the reboiler. 

The feed flows down the column where it is collected at the bottom in the reboiler. Heat 

is supplied to the reboiler to vaporise the liquid. The source of heat is steam. In refineries, the 

heating source may be the steam exhausted from other columns.  The vapor moves up in the 

column and as exits from the top of the unit where a condenser is used for condensation of 

the vapor. The condensed vapor is stored in a holding vessel known as the reflux drum. 

Some part of this condensed liquid is fed back to the top of the column and this is called the 

reflux. The condensed vapor which is the output of the system is known as the distillate or 

top product.    

On each tray, the mass is transferred in such a way that the higher volatile component 

passes from the liquid to the vapor and the lower volatile component passes from the vapor 

to the liquid state. Thus there is an increase in the concentration of the higher volatile 

component in the vapor as it passes up in the column from tray to tray. There is also an 

increase in the concentration of the lower volatile component in the liquid as it passes down 

in the column from tray to tray. 
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1.4 Constructional Details of Laboratory Set-up of Distillation Column 

The schematic of laboratory set-up of Binary Distillation Column (BDC) is shown in 

Figure 1.1. It consists of the following components:  

 Vertical Column: The distillation column has been built as a vertical cylindrical column. 

There are nine equally spaced trays mounted inside the column. Every tray has one 

conduit on alternate side, called down comer. Due to the gravity, the liquid flows down 

from each tray to the next tray through these down comers. A weir is present on one side 

of each tray to maintain liquid level at a suitable height. In the present laboratory set-up, 

bubble cap type of trays has been placed. 

 Reboiler: In order to create and sustain the two phases, needed for the separation, the 

heat exchange to the column must be regulated. The reboiler is a heat transfer unit which 

is connected to the vertical column through suitable piping to heat the liquid for 

vaporization. It has three electric heaters of 4kW, 2 kW and 2 kW capacities. 

 

Fig. 1.1 Laboratory Set-up of BDC with Instrumentation 
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 Condenser: The condenser is a heat exchanger connected to the column through the 

piping. The primary function of the condenser is to remove heat from the vapor coming 

out of the highest stage of the column for the condensation. Water is used as coolant in 

the condenser. 

 Feed Tanks: Feed tanks are used to store and supply the feed to the distillation column. 

There are two feed tanks in the existing column. 

 Rota-meters: There are three rota-meters to measure the liquid flow-rate and to control 

the feed flow, bottom product and cooling water. 

 Pressure Regulator: It is used to regulate the pressure in the distillation column. 

 Automatic Control Valve: This valve is used to fix and control the flow of feed mixture. It 

can be placed to control the liquid flows at other points also. This control valve is electric 

type and accepts input in the range of 4-20 mA current signal. 

 Compressor: The compressor is provided to develop necessary pressure for circulating 

the feed. 

 Tanks: Three tanks are provided to store cooling water, distillate and bottom product. 

 Controller Unit: The controller unit controls the heat input to control the tray temperature 

at the desired set point. 

 Reflux Divider Unit: This unit is used to control the reflux ratio through reflux flow in the 

steady state condition. 

1.5 Transducers used in Distillation Column 

Following transducers are interfaced with the laboratory set-up to facilitate the 

monitoring and the control of various parameters of the column. 

 Temperature Transducer: Total twelve Resistance Temperature Detectors (RTD) are 

provided for sensing the temperature at all the trays, reflux drum, and condenser inlet 

and outlet. Out of twelve RTD‘s,  nine are fitted in the trays, one in reflux drum, one in 

condenser inlet and one in condenser outlet. 

 Level Sensor: The level sensor is used to sense the level of reflux in reflux drum. 

 Pressure Sensor: These sensors are used to measure the vapour pressure at the top 

and at the bottom of the distillation column. 

1.6 Modeling of Distillation Column 

The following are the different models of distillation column discussed in the literature. 

1.6.1 Mathematical Modeling and Validation of BDC 

An accurate mathematical model is the need of the process control. The mathematical 

modelling of distillation process is based on the mass and enthalpy equations. Different 

techniques have been used for distillation process modelling by the researchers.  

A robust mathematical model based on mass balance and relative volatility is developed 

by Bonsfills and Puigjaner [1]. The model was tested in a variety of situations using a batch 
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distillation pilot plant. For validation of batch distillation column, Mehlhorn et al. [2] developed 

a simulation model. Its novelty consists in the use of both the non-equilibrium and the 

equilibrium model which makes it a better integrated model. Simulation results have been 

compared with experimental results and it shows that there is a good agreement between 

simulation and experimental results.  It also verifies that the mathematical model is 

compatible with experimental set-up of distillation column. A model for efficient utilization of 

resources is developed and validated by Babu and Ramakrishna [3] using technology, 

management and waste emissions (TMW) process.  

Darnon et al. [4] proposed a method to overcome the difficulty of limitation of 

downstream processing which requires a lot of experimentation. The approach is based on 

non steady state mass balance equations. On the assumption of constant transmission rates, 

these equations can be solved analytically. When these assumptions are not accurate, a 

numerical resolution is proposed. The simulation results are compared with the experimental 

results obtained with a synthetic bio-solution. Operation of a conventional batch distillation 

column can be conveniently described in three parts: 1) startup period, 2) production period 

and 3) shutdown period. For standard separation processes, the production period is the 

most time consuming. However, for high purity separations, the startup time may also be 

significant. Sorensen and Skogestad [5] presented the optimal operation taking the start-up 

time into consideration. Alternative ways of reducing the duration of the startup period were 

discussed. 

A new approach is addressed by Gupta et al. [6] to calculate the effective thermal 

conductivity of poly dispersed packed beds. The proposed approach is validated with the 

experimental measurements of binary and ternary beds. The effect of the thermal variations 

on the inlet temperature to predict the variations of key output variables is studied by H. Ben 

Bacha et al. [7]. Such variables include water temperature, air temperature, humidity in the 

evaporation and condensation chambers and the amount of produced distilled water. A 

series of experiments was conducted to validate the dynamic model of the distillation 

module. Experimental results were compared with the simulation results. It was shown that 

the developed model is able to predict accurately the trends of the heat and mass 

characteristics of the evaporation and condensation chambers. Schoenmakers and Bessling 

[8] developed the simulation model based on equilibrium and applied to a large industrial set-

up. The scale-up from the mini plant is used for the experimental validation for conventional 

distillation, but it is complicated for reactive distillation. Reference plant experience on an 

industrial scale is necessary to overcome these problems. The combination of a chemical 

reaction and a distillation separation in one apparatus shows several advantages compared 

to the separately performed processes. Several possible models of different complexity have 

been compared by Sundmacher et al. [9] for the reactive distillation process. These models 

consider multiple chemical main and side reactions which are always present in the industrial 
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production. The simulation results are compared with the experimental results for the 

validation of the developed models for two packed laboratory scale columns. Wang et al. [10] 

reported the model parameters for binary mixtures and studied the feasibility of these 

parameters. This method is used for obtaining reasonably reliable vapor‐liquid equilibrium at 

constant temperature or at constant pressure. In 2003, Sundmacher and Qi [11] presented a 

comparative study on the conceptual design of reactive distillation process configurations. 

The reversible reactions are considered for an ideal binary mixture as a sample model 

system. The design aspects are discussed in terms of operating parameters. 

A detailed approach for modeling and simulation of catalytic distillation including all 

major aspects of the description of column hydraulics, mass and energy transfer, chemical 

reactions and thermodynamic non-idealities is presented [12] in the principle component 

analysis (PCA). PCA  is used by Zullo [13] to identify and monitor the operating modes of 

continuous distillation plants. The PCA is used to reduce dimensionality and to remove the 

collinearity of the original data set. Tapp et al. [14] developed an experimental technique for 

measurement of the residue curves. The modified form of time dependent profiles of the 

apparatus is developed which is mathematically equivalent to the position dependent profiles 

in a continuous distillation column. This method facilitates to simulate a distillation column 

profile in a small batch apparatus. The accuracy of the apparatus is determined by the 

comparison of experimental results and simulations. Doma et al. [15] developed a 

methodology for identifying MIMO step response models while the process is operating 

under multivariable control. The identification of MIMO step response models is achieved by 

adding an external signal considering one variable at a time. The approach is applied to a 

distillation tower in a petroleum refinery. Lith et al. [16] developed a simple model, describing 

the product quality and production over time of an experiment batch distillation column, 

including the start-up time. The knowledge about dynamics having general validity is used 

and additional information about the specific column behavior is derived from the measured 

process data. Deshpande [17] has discussed the detailed mathematical modeling of 

distillation process.  

Henrion and Moller [18] have dealt with a continuous distillation process under 

stochastic rate of inflows collected in the flow tank. A pilot plant has been built and operation 

was optimized by Schneider et al. [19] with the help of synthesis methods for the validation 

and verification of the structure alternatives of simulation tools. Luyben [20] has explained 

the mathematical modeling of distillation process for simulation using different examples. The 

different algorithms are presented by using different aspects of mathematical modeling. The 

conventional Luyben algorithm is used by John and Lee [21] for the dynamic simulation of 

reactive distillation unit with ethyl tert-butyl ether (ETBE) synthesis. The unit has twenty 

stages and five feed components. Akanksha et al. [22] developed a diffusion–convection–

reaction model taking momentum, mass and heat transfer effects into account. The resultant 
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equations were solved using a finite difference backward implicit scheme. The results 

indicated that the predicted conversion was in close agreement with the experimental results. 

The fundamental dynamic model approach has been used by Can et al. [23] for binary 

distillation column. Bansal et al. [24] developed a dynamic distillation model for separation of 

benzene and toluene. This model consists of differential-algebraic equations for trays, 

reboiler, condenser and reflux drum. Diehl et al. [25] developed the differential algebraic first 

principle model for  binary mixture of methanol and n-propanol. This model was described by 

means of material and energy balances, hydrodynamic effects, equilibrium relationships for 

each tray, reboiler and the condenser. The model reduction techniques have been used in 

references [26]-[27] to derive a simplified dynamic model from complex higher order models. 

Higler et al. [28] applied the non-equilibrium model for a complete three-phase distillation. 

The model consists of a set of mass and energy balances for each of the three possible 

phases present. The results obtained for the non-equilibrium model are in good match with 

the experimental data for the water-ethanol-cyclohexane system. Bian and Henson [29] 

proposed a nonlinear model for high purity distillation column in separation of benzene-

toluene. A new computational mass transfer model is proposed by Li and Lee [30] for the 

distillation process. This model is developed by utilizing the fluctuating mass flux for the 

closure of turbulent mass transfer equation in order to obtain the concentration profile and 

the separation efficiency of distillation column. Muntean et al. [31] has proposed a general 

modeling framework to provide a fast and easy solution for modeling of distillation columns. 

1.6.2 ANN Modeling of BDC   

ANN can provide good empirical models of complex nonlinear processes which are 

useful for many purposes including process control. The ANN is used for various 

applications. Some of the applications of ANN in the process modelling are presented here. 

In 1991 and 1992, Marmol et al. [32, 33] described the model of multi-component batch 

distillation. Two approaches were explored to estimate the distillate composition: a rigorous 

steady state model and a quasi-dynamic non-linear model. The models developed provide 

the estimation of distillate composition using only one temperature measurement. Bhagat 

[34] has discussed briefly the neural networks. Two examples were taken to demonstrate this 

practical application. In the first one, the change in concentration of outlet stream with 

respect to the change in inlet stream concentration was studied. The second example 

involved the identification of degree of mixing in a reactor or vessel. In 1994, Morris et al. [35] 

examined the contribution of various network methodologies to the process modelling. Feed 

forward networks with sigmoidal activation functions, radial basis function networks and auto 

associative networks were reviewed and studied using data from industrial processes. In 

1995, Macmurray and Himmelblau [36] described the ANN modeling of packed distillation 

column. This modelling is an interesting example of complex modeling because the column 

exhibits a change in the sign of the gain under various operating conditions. It is 
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demonstrated that the ANN model is as good as or better than a simplified first principles 

model when used for model predictive control. 

A group of feed-forward neural networks, each providing the prediction of an individual 

process output at a future step, is used as the dynamic prediction model for the model-based 

predictive control (MPC) scheme by Ou and Rhinehart [37]. These ANNs are trained and 

implemented in parallel. Therefore, the complexity and effort in the training stage is 

decreased and compounded error propagation is eliminated from the prediction. A new 

strategy of compensating for the process-model mismatch under this grouped-NN model 

structure is also developed. Effectiveness of the scheme as a general nonlinear MPC is 

demonstrated by simulation results.  

A novel multilayer discrete-time neural network is presented for the identification of 

multi-input multi-output (MIMO) nonlinear dynamical systems [38]. The major novelty of this 

approach is a rigorous proof of identification error convergence which reveals a requirement 

for a new identifier structure and nonstandard weight tuning algorithms. The NN identifier 

includes modified delta rule weight tuning and exhibits a learning-while-functioning feature 

instead of learning-then-functioning, so that the identification is on-line with no explicit off-line 

learning phase needed. A new approach has been presented to control nonlinear discrete 

dynamic systems, which relies on the identification of a discrete model of the system by ANN 

[39]. A locally equivalent optimal linear model is obtained from the ANN model at every 

operating point the system goes through during the control task. A study has been given 

regarding Nonlinear system identification via discrete-time recurrent single layer and 

multilayer neural networks [40]. Gupta et al. [41] discussed the performance of Recurrent 

Neural Networks (RNNs) using Compensatory Neuron Model (CNM).The simulation results 

show that the proposed model performs significantly better than the existing model when 

used with RNNs. Singh et al. [42, 43] has applied the Levenberg–Marquardt (LM) approach 

for the development of ANN model of distillation process. The developed model predicts the 

composition of distillate using column pressure, reboiler duty, and reflux flow along with the 

temperature profile of the distillation column as inputs.  

1.7 Control Schemes 

A control action is called effective when it hold the measured output near to the desired 

set point. For distillation column control, product composition should be around desired value 

under all types of disturbances in feed, reflux and feed input. The following control schemes 

for the control of distillation column are discussed in the literature. 

1.7.1 PID Control Scheme and Tuning 

The PID controller [44] is consists of proportional, integrative and derivative elements. It 

is widely used in feedback control of industrial processes.  Ziegler-Nichols method is mostly 

used to acquire the tuning parameters of PID controllers [45]. This method requires open 

loop characteristics of the plant to determine the controller parameters. Zhen-Yu Zhao [46] 
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has developed a fuzzy gain scheduling scheme to determine the PID controller parameters. 

The comparison of results by Quadratic Matrix control (QDMC) and conventional PI controller 

to distillation column has been done by Hsie and Mcavoy [47]. A computational algorithm is 

presented by Nagar et al. [48] for the design of digital controllers. The adopted design 

procedure is based on the matching frequency of open loop system with a reference model. 

The controller parameters are obtained by formulating the design problem as unconstrained 

optimization problem.  

Porter and Jones [49] have utilized genetic algorithms to optimize the parameters of 

PID controllers. Skogestad [50] has presented analytic tuning rules which result in a good 

closed-loop behavior. The integral term has been modified to improve disturbance rejection 

for integrating processes. Upreti [51] has presented a new optimal control technique to 

provide good quality, robust solutions for chemical engineering problems, which are 

generally non-linear and highly constrained. The technique neither uses any input of feasible 

control solution, nor any auxiliary condition. The technique generates optimal control by 

applying the genetic operations of selection, crossover, and mutation on an initial population 

of random, binary-coded deviation vectors. Gupta and Garg [52] have found the Multi 

Objective Genetic Algorithm (MOGA) more meaningful and relevant for solving industrial 

problems. One of the MOGA algorithms was the elitist non-dominated sorting genetic 

algorithm (NSGA-II). Several bio-mimetic adaptations have been developed to improve the 

rate of convergence. Some of these are heat exchanger networks, industrial catalytic 

reactors etc. Chen et al. [53] have presented a method of PID controller parameters 

optimization based on Improved Genetic Algorithm (IGA). 

1.7.2 Neural Network based Schemes  

Considering the complexity and non-linear behaviour of the distillation process, ANN 

based approaches are more suitable to maintain the product quality at the desired level. 

Joseph and Brosilow [54] developed an inferential control scheme by using the estimated 

composition to determine valve position directly, or by manipulate the set point of a 

temperature controller as in parallel cascade control. In this inferential control scheme, 

selected tray temperatures are used as secondary outputs. The measurements of secondary 

outputs and manipulated variables are used to estimate the effect of unmeasured 

disturbances in the feed on product quality to achieve improved composition control. Up to 

1958, the digital computers for calculations were not utilized up to its strength. For general 

multi-component mixtures, solution becomes difficult because the coefficients depend in a 

highly non-linear fashion on compositions. Amundson and Pontinen [55] introduced the use 

of digital computers to solve this distillation column problem. 

A number of applications of ANNs to process control problems have been reported. 

Piovoso et al. [56] have compared ANN modeling to other modeling approaches for Internal 

Model Control and it was reported that ANNs give better performance in the case of 
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process/model mismatch. Nahas et al. [57] proposed a neural network based nonlinear 

internal model control (NIMC) strategy for SISO processes. The neural network model is 

identified from input—output data using a three-layer feed forward network trained with a 

conjugate gradient algorithm. The NIMC controller consists of a model inverse controller and 

a robustness filter with a single tuning parameter. The proposed strategy includes time delay 

compensation in the form of a Smith predictor and ensures offset-free performance. Pottman 

and Seborg  [58] used Radial Basis function Neural Network (RBFNN) for non-linear control. 

It was found that the ANN based controllers are better than the other controllers in terms of 

their ease of design and their robustness. 

In the late 1980s, ANNs were applied to map the measured output to the control input. 

It was established that standard multi layer feed forward network with one hidden layer are 

capable of approximating any measurable function [59]. Some basic concepts relating to 

ANNs are explained as well as how these can be used to model the process. The need for 

modelling is pointed out for closed loop control. It is concluded that the accuracy of ANN 

modelling is fully comparable with the accuracy achieved by more traditional modelling 

schemes [60]. A noval technique using ANN is proposed for the adaptive control of nonlinear 

systems [61]. The ability of ANNs to model nonlinear functions and the inverses is exploited. 

The use of nonlinear function inverses raises questions of the existence of the inverse 

operators. These are investigated and results are given characterising the invertibility of a 

class of nonlinear dynamical systems. The control structure used is internal model control. It 

is used to directly incorporate networks modelling the plant and its inverse within the control 

strategy. The potential of the proposed method is demonstrated by an example. Hunt and 

Sbarbaro [62] observed that ANN is suitable for the identification and control of nonlinear 

plants. Narendra and Parthasarathy [63] explained how neural networks, trained by a back 

propagation algorithm for adjustment of parameters, can be effectively used for identification 

and control of nonlinear dynamic systems. The use of multi-layer ANN trained by back 

propagation algorithm for dynamic modeling and control of chemical processes have been 

discussed by Bhat and Avoy [64]. Two approaches were proposed for modeling and control 

of nonlinear systems. The first approach utilizes a trained NN model of the system in a model 

based control work frame and the second approach utilizes an inverse model of the plant 

extracted using NN in the internal model control structure. Willis et al. [65] discussed ANN 

models from the process engineering point of view and explained some of the approaches.  

Some of the industrial applications have been considered for use of ANN in modeling and 

control applications whereby an ANN is trained to characterize the behavior of the systems, 

namely industrial, continuous and fed-batch fermenters, and a commercial scale, industrial, 

high purity distillation column. A scheme has been presented by Nguyen and  Widrow [66] for 

use of ANNs to solve highly nonlinear control problems. Noriega and Wang [67] presented a 

direct adaptive ANN control strategy for unknown nonlinear systems. Chen et al. [68] 
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proposed an improved differential evolutionary algorithm to encode prior knowledge 

simultaneously into networks in training process. Different classifications are found in the 

literature for neuro-controllers [69-71]. In general the inversion of nonlinear models is not an 

easy task and analytical solutions may not exist, so solutions have to be found numerically. 

There are several strategies for obtaining the inverse model so that the nonlinear 

performance can be fully exploited in order to cope with a complex plant [72]. Few 

researchers applied ANNs to generalize well known nonlinear control methods [73]. Since 

early 2000s, in some of the research works, it is reported that even after ANN compensation, 

the resultant dynamics was nonlinear and the process was controlled using nonlinear control 

methods [74]. The ANN based internal model control (NN-IMC) is one of those methods [75]. 

Two ANN models are utilized in this scheme. One model is trained to learn forward dynamics 

of the process (forward model) while another model is trained to learn the inverse dynamics 

of the process (inverse model). Inverse model is utilized as a controller to the process in NN-

IMC scheme. Singh et al. [76] utilized forward and inverse models in two approaches 

namely: Neural Network based Direct Inverse control (NN-DIC), and Neural network based 

internal model control (NN-IMC) to control the methanol composition in BDC. Recently ANN 

based control schemes are used in various industrial applications by researchers [77, 78]. 

1.7.3 Model Predictive Schemes 

Model Predictive Control (MPC) is a multivariable control algorithm to predict the future 

control action and future control trajectories by using the past control actions and the 

available current output variables [79]. MPC uses a dynamic model of the plant to predict the 

future actions of manipulated variables on the plant output. The future moves of the 

manipulated variables can be determined by minimising the difference between the set point 

and the predicted output.  MPC has been widely used in various industrial fields, such as 

chemicals, food processing, automotive, and aerospace engineering, etc. MPC has come a 

long way since its inception almost five decades ago. Hussain [80] has carried out an 

extensive review on MPC. A survey on industrial MPC technology has been carried out in 

reference [81]. For the successful implementation of MPC, the existence of an accurate 

process model is a must. Distillation processes have been traditionally controlled using linear 

system analysis even though these are inherent nonlinear process. One solution to get the 

accurate model is the identification of distillation process by using the neural networks [82-

84].  

Neural network based model predictive control (NN-MPC) is one of the latest 

approaches where MPC scheme is implemented by using the neural network model of the 

process. NN-MPC has been widely used in the field of chemical engineering by.  Konakom et 

al. [85] applied the NN-MPC scheme for reactive distillation column. Arumugasamy and 

Ahmad [86] presented a paper which surveys the concept of Feed forward Neural Networks 

used in MPC for various Chemical and Biochemical processes.  
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1.7.4 ANFIS Scheme 

Adaptive Neuro-Fuzzy Inference System (ANFIS), proposed by Jang [87] is one of the 

examples of Neuro-Fuzzy systems in which a fuzzy inference system is implemented in the 

framework of adaptive networks. The input output mapping of ANFIS is based on both the 

human knowledge (in the form of fuzzy if then rules) and on generated input output data 

pairs by using a hybrid algorithm which is a combination of gradient descent and least square 

estimation. ANFIS works well with optimization techniques. It can be used in modeling and 

controlling studies, and also for estimation purposes.  

Belarbi et al. [88] proposed a fuzzy neural network that learns rules of inference for a 

fuzzy system by classical back-propagation. The network has been trained off-line in a 

closed loop simulation to design Fuzzy Logic Controller (FLC). Another network was used as 

a design model to back -propagate the error signal. Controller rules were extracted from the 

trained network to build the rule base of the FLC. The framework was used for the estimation 

and control of a batch pulp digester. The controlled variable was estimated with same type of 

FNN by the measurements of the batch temperature and concentration of the alkali. FLC with 

nine rules showed good degree of robustness in the face of parameter variations and 

changes in operating conditions. To predict the controlled variable for the continuous 

digester, Leiviska [89] has applied linguistic equations (fuzzy models) and NN models by 

using the actual training data collected from a continuous digester house.  

Oh et al. [90] has introduced an identification method in the form of Fuzzy-Neural 

Networks for nonlinear models. Buragohain and Mahanta [91] have proposed an ANFIS 

based model for complex ill-defined real world systems for optimization of the training of the 

neural network. The proposed model is experimentally validated by using it for gas furnace 

and thermal power plant. Fernandez et al. [92] has applied the ANFIS modeling and indirect 

control of the heavy and light product composition in a binary methanol-water distillation 

column by using the adaptive Levenberg–Marquardt approach. The results obtained 

demonstrate the potential of the adaptive ANFIS scheme for the dual control of composition 

both for changes in set points with null stationary error even in the presence of disturbances. 

Fernandez  et al. [93] have suggested the use of inferential composition estimators to assist 

the monitoring and control of continuous distillation columns. In this paper, an ANFIS 

predictor is used to estimate the product compositions in a binary methanol-water continuous 

distillation column from available on-line temperature measurements.  

1.8 Author's Contribution 

The aim of present research work is to develop the suitable models and control 

schemes for the distillation process. The various contributions made through this work are 

summarized as follows: 

 A detailed literature survey of distillation process, modeling of distillation column and 

the various control schemes developed for the output control has been carried out. 

http://www.sciencedirect.com/science/article/pii/S0957417413002492
http://www.sciencedirect.com/science/article/pii/S0957417413002492
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 The equations based model which is based on the fundamental physical and chemical 

laws along with valid normal assumptions has been validated experimentally. A neural 

network based model is also developed for the distillation column with the use of 

experimental data. Two neural network topologies namely; FFNN and RNN have been 

utilized for the model development. 

 Temperature of the tray is used as a secondary variable to develop the inferential 

control scheme to control the composition of methanol output of BDC.  A PID controller is 

used to control the temperature of the tray. The parameters of the PID controller have been 

tuned using the Genetic Algorithm. 

 Different control schemes namely; PID, LMPC and NN-MPC are developed to control 

the methanol composition for BDC. These control schemes are evaluated on the basis of 

rise time, settling time and mean squared error. 

 The forward and inverse models of BDC have been developed utilizing the ANN 

approach. These models are used in ANN based Direct Inverse Control (NN-DIC) and ANN 

based Internal Model Control (NN-IMC) schemes to control the methanol composition.  

 The ANFIS control scheme is utilized to control the composition of methanol output in 

BDC by the variation of reflux flow-rate and reboiler heat duty. Two separate ANFIS 

controllers are designed to control the reflux flow and reboiler heat duty respectively. 

1.9 Organization of Thesis 

The thesis is organized in the following chapters: 

Chapter 1: The distillation process and laboratory set-up of distillation column with all 

the auxiliary components and instrumentation is introduced in this chapter. All the key parts 

of the experimental set-up are briefly described to give a clear idea of the process.  A 

detailed literature review is given regarding modeling and control schemes applied on the 

distillation column. The author‘s objective and contribution is also defined in the chapter. 

Chapter 2: In this chapter, equation based model is developed for the existing 

experimental set-up of distillation column. In the equation based modeling, a model of BDC is 

constructed based on mass balance and constant relative volatility with valid assumptions. 

Experiments on the experimental set up are carried out in order to validate the model. The 

Validation of the proposed model has been verified with a step change in reflux flow-rate and 

reboiler heat duty. A neural network based model has also been developed for the distillation 

column with the use of experimental data. Two neural network topologies namely; FFNN and 

RNN have been utilized for the model development. 

Chapter 3: In this chapter, secondary measurement is used to compute the output 

methanol composition of distillation column. The temperature of selected tray is chosen as 

the secondary measurement variable. A relation is established between the controller current 

and the tray temperature by curve-fitting method.  This relation is used as a distillation 
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column model for the application of the controller. GA tuned PID control technique is used to 

control the temperature of the tray. 

Chapter 4: Here, in this chapter, LMPC and NN-MPC Methodologies are implemented 

on the developed models of BDC to control the methanol composition. The performance of 

LMPC and NN-MPC are also Compared with conventional PID controller. In NN-MPC 

scheme, a three layered feed forward neural network is developed to model the distillation 

process. Then this model is used to predict the future process response in the MPC 

algorithm for controlling the methanol composition in distillation process. These control 

schemes are compared for two cases one for reference tracking and another for disturbance 

rejection.  

Chapter 5: In this chapter, two neural network based control schemes; Neural 

Network based Direct Inverse Control (NN-DIC) and Neural Network based Internal Model 

Control (NN-IMC) are introduced to cover both well-established and emergent methods. 

These approaches are simulated and their performances are assessed. These control 

schemes are used to produce an efficient control to get the desired methanol composition. 

The main goal is to control a single output variable, methanol composition, by changing two 

manipulated variables, reflux flow-rate and steam flow-rate. 

Chapter 6:  Here, ANFIS controller has been applied on the non-linear ANN based 

model of BDC. Experimental work has been done on experimental set-up of nine trays BDC. 

In distillation column, a mixture of methanol (30%) and water (70%) is used as a feed.  In this 

study, ANFIS controller is designed to control the methanol composition by the variation of 

reflux flow-rate and reboiler heat duty. Two ANFIS controllers are designed to control the 

Reflux flow and reboiler heat duty respectively. ANFIS controllers are evaluated for two 

cases; one is for reference tracking and another is for disturbance rejection case. 

Performance of ANFIS controller is further compared with the NN-IMC controller. 

Chapter 7: The conclusion and future scope of the work is discussed in this chapter. 

The work carried in this thesis has been summarised and conclusions have been made. The 

scope for future extension of work has also been discussed.  
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Chapter 2: DEVELOPMENT  AND VALIDATION OF MODEL OF BINARY 

DISTILLATION COLUMN 

In this chapter, a BDC model based on the fundamental physical and chemical laws with few 

assumptions has been proposed. The model has been validated with the experimental set-up of 

distillation column. A neural network based model has also been developed for the distillation column 

with the use of experimental data. Two neural network topologies namely Feed Forward Neural 

Network and Recurrent Neural Network have been utilized for the model development. 

2.1 Introduction 

Distillation is one of the most important processes in chemical engineering because it is 

most frequently used for separation of gases or liquids in the chemical and petroleum 

industries. Several models have been reported for distillation column in the literature. These 

models can be categorized under two major groups (i) fundamental models, which are 

derived from mass, energy and momentum balance equations involved in the process (ii) 

empirical models which are derived from input-output data of the process. 

Several works have been carried out to develop the fundamental models of the 

distillation column.  Wood and Berry have presented a linear model for a binary distillation 

column [94]. The fundamental dynamic model approach has been used by Can et al. for 

binary distillation column [23]. Bansal et al. have developed the dynamic distillation model for 

separation of benzene and toluene [24]. This model consists of differential-algebraic 

equations for the trays, reboiler, condenser and reflux drum. Diehl et al. have developed the 

first principle model for a binary mixture of methanol and n-propanol [25]. This model is 

described by the means of material and energy balances, hydrodynamic effects, and 

equilibrium relationships for each tray, reboiler and condenser.  

In the present work, an equation based model has been developed. This equation 

based model has been validated for the existing laboratory set-up of BDC. The modelling of 

BDC has been described in the following sections. 

2.2 Mathematical Modeling of Binary Distillation Column  

Fig. 2.1 shows the schematic of a typical distillation unit with a single feed and two 

product streams. Feed is a mixture of methanol and water. In binary distillation unit, the 

methanol composition in the top and bottom is controlled by manipulating the reflux flow-rate 

and the steam flow-rate respectively. It is difficult to achieve the simultaneous control of top 

and bottom composition due to inherent complexity in distillation process. A linear model of 

BDC has been proposed by Wood and Berry to overcome this difficulty [94]. The model 

represents an approximation of the dynamical behavior of a BDC separating methanol from 

water. In this dynamic model, the distillate and bottom methanol weight fraction are 

expressed as a function of the reflux and reboiler steam flow-rate. 
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Fig. 2.1 Schematic of a BDC 

Wood and Berry model does not represent the real characteristics of the laboratory set-

up of BDC exactly. Therefore; in the present work an equation based mathematical model is 

developed and validated for the existing laboratory set-up of BDC. The mathematical model 

is easy to use for the design of distillation column control schemes. To develop the equation 

based model, the following information has been taken directly from the existing 

experimental set-up of BDC: 

(1) Liquid composition on each tray 

(2) Liquid flow-rates from each tray  

(3) Temperature of each tray 

(4) Condenser and reboiler duties 

An extremely rigorous model that includes every phenomenon would be so complex 

that it may lose its practical applicability. To simplify the mathematical equations used in the 

development of the model,  the following assumptions have been considered [95]: 

1) The relative volatility ‗α‘ is constant throughout the column. 

It is assumed for binary distillation process that the vapour leaving the tray is in 

equilibrium with the liquid on the tray. This means that the simple vapour - liquid equilibrium 

relationship can be used. This relation will remain same throughout the process. 

1 ( 1)

x
y

x






 
 2.1 
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Where  

α = Relative volatility 

x= Composition of more volatile component in liquid, mole fraction, 

y= Composition of more volatile component in vapour, mole fraction 

2) The overhead vapour is totally condensed in the condenser. 

3) The holdup of vapour is negligible throughout the system.     

4) The molar flow-rates of the vapour and liquid through the stripping and rectifying 

sections are constant: 

Vi = Vi+1 =…= VN+1 ;   

 Li+1=Li+2=….=LN+2  

where i= 1,…………N (N= total number of trays) 

Vi = Total vapour flow-rate leaving tray i, kg-moles/hr, 

Li = Total liquid flow-rate leaving tray i, kg-moles/hr, 

5) Reboiler and condenser are also considered as a tray. Numbering of the trays is started 

from the bottom i. e. boiler is considered as the first tray and condenser is considered as 

the last tray. This means that if there are N number of column trays then boiler is Ist tray 

and condenser is (N+2)th  tray.  

From the modeling point of view, the distillation column is divided into three different sections 

as shown in Fig. 2.2. 
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Fig. 2.2 Distillation column used in modelling 



 

18 

Ist section is reboiler section, IInd section is Tray section, and IIIrd section is condenser 

section. The mass and energy balance equations are obtained by applying conservation laws 

to each tray, condenser and reboiler [95]. 

2.2.1 Reboiler Section 

Component material balance Equations 

The schematic diagram of reboiler is shown in Fig. 2.3. It is assumed that the level 

remains constant in reboiler at all times. Thus the molar holdup in reboiler has been 

considered to be constant i.e. dMB/dt=0,  

B=L1-VB           2.2 

 

Tray 1

L1   , x1,jVB

MB

h1,

  

QB

B

hB

XB,j

HB

yB,j

Reboiler

 

Fig. 2.3 Modeling of reboiler 

 
Component material balance around reboiler is given as: 

j,BBj,BBj,

j,B

B x)VL(yVxL
dt

dx
M  111  

 

 2.3 

Where  

MB= Liquid molar hold up in reboiler, kmoles, 

L1= Total liquid flow-rate from tray-1 entering to reboiler, kg-moles/hr, 

xB,j = Liquid fraction of component j in bottom product ,% mole fractions, 

VB = Total vapour flow-rate leaving reboiler, kg-moles/hr, 

yB,j  = Vapour fraction of component j in bottom product ,% mole fractions, 

B   = Total bottom product rate, kg-moles/hr, 
 

 The vapour fraction of component j from reboiler is given as:  

, 1, ,1,

v
B j j B jj

y k x  2.4 

 Where 

        1,
v

j
= vaporisation efficiency of component j in reboiler, 

        k1,j = Equilibrium constant of component j in reboiler 
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Total enthalpy balance equations  

   The enthalpy is defined as the sum of internal energy and the product of pressure 

and volume. Total enthalpy balance equation for reboiler is given as: 

. 1 1 1( )B
B B B B B B

dh
M L h V H L V h Q

dt
      2.5 

Where 

h1 = Total molar enthalpy of liquid entering from tray-1 to reboiler, kJ/kmole, 

hB = Total molar enthalpy of liquid leaving reboiler, kJ/kmole ,  

HB = Total molar enthalpy of vapour leaving reboiler, kJ/kmole,  

QB = Reboiler heat duty, kW  

2.2.2 Tray Section 

In the second section, modelling for general ith tray is considered. Material balance and 

energy balance equations are written for this section. 

Component material balance Equations 

The schematic diagram of general tray-i is shown in Fig. 2.4.  
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     Fig. 2.4 Modeling of general tray-i 

 

Component material balance Equation for ith tray is given as:
 

Fijij,iiijiijij,ii

iji
xFyVyVxLxL

dt

)xM(d
  1111  2.6 

yij  is calculated as  

jijiijijij yyyy ,1,1 )( 

   2.7 

Where 

Mi= Molar liquid hold up on tray i, kmole 

xij =  Liquid fraction of component j, leaving the tray i , % mole fraction 

Li = Total liquid flow-rate leaving tray-i, kg-moles/hr, 

Vi = Total vapour flow-rate leaving tray-i, kg-moles/hr, 

Fi = Total feed flow-rate injected to tray-i, kg-moles/hr, 
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xFij = Liquid fraction of component j in feed on tray i ,% mole fractions, 

yij = vapour fraction of component j leaving the tray i ,% mole fractions, 

ƞij = Murphree stage efficiency based on vapour phase of component j on tray i 

yij
* = Equilibrium vapour fraction of component j on tray i

 
Li is an additional variable and it is related to Mi through

 

 
3600

3.33 .
2.204

i w i net Di w DiL l M A M h M     2.8 

Where 

 lw = Length of the weir, ft 

Anet = Net area of the tray, ft2 

hw = Height of the weir, ft 

MDi = Average molar density of liquid on tray I, kmole/ft3  

   Total Material Balance Equation for ith tray is given as: 

iiiii
i FVVLL

dt

dM
  11  2.9 

Where   

 Li+1 = Total liquid flow-rate entering to tray i, kg-moles/hr, 

Vi-1 = Total vapour flow-rate entering to tray i, kg-moles/hr, 

Fi    = Total feed flow-rate injected on tray i, kg-moles/hr,
 

Enthalpy balance equation for tray i 

Enthalpy balance equation for tray i is given as: 

( )

1 1 1 1

d M hi i L h L h V H V H F hi i i i i i i i i Fidt
       

 2.10 

Where 

hi = Total molar enthalpy of liquid leaving tray I, kJ/kmole, 

Hi = Total molar enthalpy of vapour leaving tray I, kJ/kmole     

 Enthalpy on any tray is calculated by mixing rule and is given as: 





NC

j

ijiji xhlh
1

 2.11 





NC

j

ijiji yHvH
1

 2.12 

Where  

hlij = Pure component enthalpy of component j in liquid, kJ/kmole, 

Hvij = Pure component enthalpy of component j in liquid, kJ/kmole    

2.2.3 Condenser Section 

Component material balance Equations 
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Fig. 2.5 Modeling of condenser 

 
The schematic diagram of condenser is shown in Fig. 2.5. It is assumed that the reflux 

drum level remains constant in condenser at all the time. Thus Reflux drum level is 

considered constant. This means at any time  

D=VNT-R          2.13 

Component material balance around condenser is given as:  

j,DNTj,NTNT

j,D

D xVyV
dt

dx
M   2.14 

Where  

MD= Liquid molar hold up in the reflux drum, kmole, 

D = Distillate flow-rate, kmole/hr, 

xD,j = Liquid fraction of component j in reflux drum, % mole fractions 

yNT,j  = Vapour fraction of component j leaving tray NT ,% mole fractions, 

R = Total liquid flow-rate entering to the tray NT from reflux drum, kg-moles/hr, 

VNT = Total vapour flow-rate leaving the tray NT, kg-moles/hr,
 

Enthalpy balance equation 

The enthalpy balance equation for liquid and vapour for condenser is 

cDNTNTNT
D

D QhVHV
dt

dh
M   2.15 

Where  

hD = Total molar enthalpy of liquid leaving the reflux drum, kJ/kmole ,  

HNT = Total molar enthalpy of vapour leaving the last tray NT, kJ/kmole,  

QC = Condenser duty, kW  

2.3 Simulation Algorithm 

All the above equations (2.1) to (2.15) have been utilized to determine the methanol 

composition. The steps involved to get the desired methanol composition are given in the 

form of a flow chart as shown in Fig. 2.6. This algorithm is simulated in the environment of 

MATLAB®/Simulink. 
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Input data for variables: liquid phase 

compositions for all trays(including reflux 

drum and reboiler drum) and liquid holdups 

for all trays (excluding reflux drum and 

reboiler drum).

Input data for constant parameters: liquid 

feed rate, vapour feed rate, vapour distillate 

rate, relative volatility, liquid holdups in reflux 

drum and in reboiler drum.

Input the values of reflux flow rate and 

reboiler heat duty.

Calculate the internal liquid flow rate using 

 (2.8) for all trays. Also compute the vapour 

flow rate from assumption 5.

Calculate the vapour phase composition for 

all trays (including reflux drum and reboiler 

drum) from assumption 2.

Compute the liquid bottom flow rate using 

(2.2) and distillate flow rate using ( 2.13).

Update the liquid phase compositions on all 

trays (including reflux drum and reboiler 

drum) and liquid holdup on all trays 

(excluding reflux drum and reboiler drum) for 

the next time step by solving the  (2.6). 

To Predict the column dynamics for the next 

time step, go back to step 3.
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Fig. 2.6  Simulation Algorithm 

2.4 Validation of Equation based Model 

The experiments are carried out on the experimental set-up of BDC to separate the 

mixture of methanol and water. The details of BDC set-up is given in chapter-1. The 

composition of the feed mixture is taken as 70% water and 30% methanol. This mixture is 

fed at fifth tray of BDC set-up. Methanol is collected at the top of the column [35]. The feed 

mixture from the feed tray descends throughout the column until it reaches the bottom, where 

the heaters of reboiler heats and vaporizes this mixture. The vapour mixture rises up along 

the column and reaches to the condenser. The condensed vapour is received at the upper 

part of the column as the distillate. Then, the reflux is feeded back until a stable situation 

(temperature stabilises) is reached. At this moment the rate of vaporization is equal to the 

rate of condensation. This is thermal equilibrium condition and the output distillate 

temperature does not vary with time. BDC may show a high transition period until the thermal 

equilibrium condition is achieved. The existing laboratory set-up of BDC takes around 45 

minutes to achieve the thermal equilibrium condition. The values of parameters of BDC set-

up at thermal equilibrium condition are given in Table 2-1 and the temperature profile of all 
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the trays is shown in Table 2-2. At this condition, reflux flow-rate is at 3 kg-moles/hr, while 

the methanol composition is at 0.83 mol fraction. The equation based model is initialized with 

these values in order to validate with the experimental set-up of BDC. 

Table 2-1 Parameters at thermal equilibrium condition 

Column pressure 115.21 kPa 

Feed flow-rate 2.5   kg-moles/hr 

Feed temperature 34.5 °C 

Heat input 6 kW 

Murphree vapour efficiency 0.60 

Relative volatility 1.5 

 
Table 2-2 Temperature profile of trays at thermal equilibrium condition 

Temperature (°C) 

Tray1 Tray 2 Tray 3 Tray 4 Tray 5 Tray 6 Tray 7 Tray 8 Tray 9 

89.5 86.9 85.0 83.0 81.0 74.9 69.8 65.9 65.2 

 

After the establishment of thermal equilibrium, the reflux flow-rate has been increased 

from 3.0 kg-moles/hr to 3.1 kg-moles/hr whereas, reboiler heat duty has been increased from 

6 kW to 7 kW. The variation in output methanol composition is observed for this variation in 

reflux flow-rate and reboiler heat duty. The measurement of output methanol composition 

has been made at the interval of 1 minute. Now for the same parameter values the 

simulation has been performed using equation based model as explained in section 2.3 and 

the final methanol composition has been determined. 

 

Fig. 2.7 Output of experimental set-up and equation based model  

The comparison between the experimental set-up and equation based model is given 

in Fig. 2.7. The Mean Squared Error (MSE) between the experimental output and the 

equation based model output is shown in Fig. 2.8. It is observed from the above results that 

the output of equation based model closely matches with the experimental output; therefore, 

0 100 200 300 400 500 600
0.82

0.84

0.86

0.88

0.9

0.92

0.94

No. of samples

M
et

ha
no

l c
om

po
si

tio
n 

(m
ol

e 
fr

ac
tio

n)

 

 

Equation based model output

Experimental output



 

24 

this model can be used as a model for laboratory set-up of BDC for the analysis and control 

of the BDC.  

 

Fig. 2.8 MSE between experimental output and equation based model output 

Mathematical models are inherently hard to build due to lack of knowledge of the 

process and measurements. Due to above reasons, many iterations and experiments are 

required to get an accurate mathematical model for distillation column. ANN based models 

are good alternatives to avoid these limitations, therefore; ANN based model of BDC has 

also been developed in the present work. 

2.5 Artificial Neural Network based Model of BDC 

In chemical process, parameter variations and uncertainty play an important role in the 

system dynamics and are difficult to be modelled accurately. In such cases, input-output 

characteristics are used for the modelling. Such methods do not require an in depth 

knowledge of internal mathematical relations. In this work a neural network model has been 

proposed to get the methanol composition in BDC.  A neural network is composed of simple 

elements (artificial neurons) operating in parallel. The network function is determined by the 

connections (weights) between the elements. The neural network is trained to approximate a 

given function by adjusting the values of the connections between elements. Neurons are 

arranged in ‗layers‘. There are a variety of neural networks suitable for different purposes 

[35].  

First step to develop the ANN model of BDC is to determine the inputs. The reboiler 

duty, reflux flow, feed flow, top and bottom pressure of the column along with the 

temperature of selected tray are taken as inputs while the output is methanol composition. A 

single hidden layer is taken in the present work. Number of neurons in hidden layer is 

selected on the basis of gradient and MSE. Selection of the proper topology is the next step 

in ANN modelling. Topology of ANN can be classified on the basis of the direction in which 

signal travels. ANN either allows signals to travel one way only; from input to output or; It 
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allows signal travelling in both directions by introducing loops in the network. The ANN which 

allows signals in only one direction is called Feed Forward Neural Network (FFNN) and the 

ANN which allows signals in both directions is called Recurrent Neural Network (RNN). In the 

following section both FFNN and RNN topologies are utilized for the development of the 

model for BDC.  

2.5.1 Feed Forward Neural Network based Model (FFNN) 

The FFNN model for BDC is given in Fig. 2.9 [96]. The suitable structure for FFNN 

model of BDC is determined on the basis of gradient and MSE. In the present model of BDC, 

the Tangent sigmoid function is considered as activation function for the hidden layer while 

linear activation function is considered for output layer. 
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t 1    = Tray temperature,               Wj,i = Weights between inputs and hidden neurons (j=1,…,6, i= 1,…,N) 
uF   = Feed flow rate, ni = Output of the first layer,

uS  = Reboiler duty, bi   = Bias of the neurons in first layer
uPB  = Reboiler bottom pressure, vi    = Output of the tansig functions in hidden layer
uPT  = Reflux drum top pressure, wi   = Weights between hidden neurons and output 
uR    = Reflux flow rate, b   = Bias in the output neuron
XDm = Methanol composition N    = No. of hidden neurons

 
Fig. 2.9 FFNN model of BDC 

The output of the neural network model xDm is the distillate output composition. The 

relationship between ni, the output of the first layer, and the input variables is given as  
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Where N is the number of neurons in hidden layer and ni is the weighted sum of the 

input variables, which is fed to hyperbolic tangent sigmoid transfer function which is given as: 
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The output of the hyperbolic tangent sigmoid function is vi,   
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For FFNN model, ni multiplies with the corresponding weight and sum up with the bias. 

A pure linear function is considered as the activation function for the output. For FFNN 

model, the output of the activation function is the distillate composition xDm as shown 
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In the next section, RNN topology has been utilized for the ANN model development.  

2.5.2 Recurrent Neural Network based Model (RNN) 

In the RNN topology the output of the recurrent network is a function not only of the 

weights, biases, and network input, but also depends on the outputs of the network at 

previous instant [96]. The RNN model of BDC is given in Fig. 2.10.  
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t 1    = Tray temperature,               Wj,i = Weights between inputs and hidden neurons (j=1,…,6, i= 1,…,N) 
uF   = Feed flow rate, ni = Output of the first layer,

uS  = Reboiler duty, bi   = Bias of the neurons in first layer
uPB  = Reboiler bottom pressure, vi    = Output of the tansig functions in hidden layer
u PT = Reflux drum top pressure, wi   = Weights between hidden neurons and output 
uR    = Reflux flow rate, b   = Bias in the output neuron
XDm = Methanol composition N    = No. of hidden neurons

Z
-1 wxDm,i

 
Fig. 2.10 RNN model of BDC 

The suitable structure for RNN model of BDC is determined on the basis of gradient 

and MSE. For RNN model, the output of the first layer ni is given as 
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ni is fed to hyperbolic tangent sigmoid transfer function. The output of the hyperbolic tangent 

sigmoid function is vi,  
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The distillate output is given as  

1

 
N
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i
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The output xDm is fed back to the input of the second layer. The difference between the 

output of the plant and the output of the network is called the prediction error ‗e‘ is given in 

(2.24), where xDr is the value of the output of the real BDC and xDm is the output of the ANN 

model of the BDC. 

 Dr Dme x x        2.24 

The Mean Square of the Error (MSE) ‗ε‘ is minimized for the adjustment of weights and 

biases in the network.  
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2
  Dr Dmx x  2.25 

The Gradient Descent method has been used for the minimization of MSE. The 

weights (wj,I , wxDm,I , wi) and biases (bi,b)  are updated as shown below in this iterative 

method.  
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Where η= learning rate and,
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In the next section, both the above topologies are utilized to develop the neural network 

model for BDC. The training performance of FFNN and RNN models are evaluated on the 

basis of gradient and MSE.

 

2.5.3 Neural Network Training  

The proposed ANN model of BDC has two layers namely: input (hidden) layer and 

output layer. Number of neurons in the hidden layer affects the performance of the training. 

Number of neurons which gives the minimum MSE (between the trained output and desired 

target output) is the desired number of neurons in the hidden layer.  

The data for training and testing of FFNN and RNN have been acquired experimentally 

from the BDC set-up available in the laboratory. The BDC set-up is interfaced with a 

computer and the Input–output data samples for training and testing are acquired from 

various transducers connected in BDC by using Labview® software with National Instruments 

modules (FP-RTD-122, FP-AI-110 and FP-1600). The data samples are acquired when the 

thermal equilibrium condition has been established. Total 579 data samples are recorded for 

each input and output at the sampling interval of one minute. The operating range of inputs 

and output is given in Table 2-3.  

Table 2-3 Range of Inputs and output 

I/O Process Variable Minimum value 
Maximum 

value 

Inputs 

uR:   Reflux flow-rate (kg-mole/hr)       2.9         3.11 

uS:  Reboiler heat duty (kW)       5.5         7.0 

uT1 :  Tray temperature(Deg C)       75          85 

uF :   Feed flow-rate(kmole/hr)       2.5         3.5 

uPT :  Reflux drum top pressure(kPa)    101.42        106 

uPB :  Reboiler bottom pressure(kPa)    115.21        120 

Output xDm:  Distillate Composition (mole fraction)      0.84        0.98 

 
60 % experimentally acquired data has been taken for the training whereas, 20 % data 

for the validation and 20 % data for testing. Table 2-4 shows the gradient value and the MSE 

for FFNN and RNN architectures with different number of hidden neurons. These two 

parameters are utilized for the selection of the ANN structure. Considering the convergence, 

the number of hidden neurons taken in the range of 6 to 22. Training of the network off the 

range of the number of neurons shows the non-convergence. 

 It is observed that the value of gradient and MSE is minimum when the number of 

hidden neurons of the FFNN structure is 14. The best structure of FFNN is 6-14-1 with 

learning rate 0.80; whereas, the most suitable structure of RNN on the basis of minimum 

gradient and MSE is 6-18-1 with learning rate 0.65. 
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Table 2-4 Training performance of FFNN and RNN 

Architect
ure 

Gradient MSE for RNN MSE for FFNN 

RNN FFNN Training Testing Validation Training Testing Validation 

6-6-1 8.09e-8 7.08e-7 4.62e-7 6.18e-6 5.76e-7 5.38e-7 8.04e-7 1.21e-7 

6-8-1 2.51e-8 4.40e-6 2.51e-8 1.81e-7 1.31e-7 1.12e-7 4.40e-6 4.02e-6 

6-10-1 7.65e-8 6.63e-7 8.37e-8 2.30e-7 5.72e-8 6.50e-7 9.54e-7 5.24e-7 

6-12-1 4.60e-8 7.74e-7 4.60e-8 4.04e-8 3.89e-8 2.78e-7 5.55e-7 4.32e-7 

6-14-1 4.27e-8 1.13e-7 4.27e-8 1.27 e-7 3.49e-8 4.19e-7 1.13e-7 1.12e-7 

6-16-1 4.57e-8 3.13e-6 4.57e-8 1.34 e-7 4.42e-8 3.86e-6 4.32e-6 2.32e-6 

6-17-1 3.58e-8 4.64e-7 3.58e-8 9.37e-8 5.95e-8 3.00e-6 4.64e-7 3.04e-7 

6-18-1 2.36e-8 1.08e-5 2.36e-8 6.12e-8 8.94e-8 2.10e-7 2.13e-5 1.92e-5 

6-20-1 2.42e-7 5.53e-7 7.60e-7 1.17e-6 6.94e-7 1.52e-7 3.64e-7 2.65e-7 

6-22-1 5.80e-8 5.63e-6 5.80e-8 1.49e-7 3.92e-8 6.98e-6 5.63e-6 4.89e-6 

 

To obtain the methanol composition from the developed ANN model of BDC, the value 

of four inputs namely, Feed flow-rate, First tray temperature, Reflux drum top pressure and 

reboiler bottom pressure are fixed at the initial values as given in Table 2-1 while, the 

remaining two inputs namely: reflux flow-rate and reboiler heat duty are varied similarly as in 

the case of equation based model and experimental setup.   

2.6 Validation of Neural Network based Model 

To validate the ANN based model, the outputs obtained from FFNN and RNN models 

are compared with the experimental output in terms of the methanol mole fraction in product 

streams. The results given in Fig. 2.11 show the great agreement between predicted and 

experimental methanol composition. The MSE for FFNN and RNN models is shown in Fig. 

2.12.  

 

Fig. 2.11  Output of FFNN and RNN models with experimental results 

0 100 200 300 400 500 600
0.82

0.84

0.86

0.88

0.9

0.92

0.94

No. of samples

M
et

ha
no

l c
om

po
si

tio
n 

(m
ol

 f
ra

ct
io

n)

 

 

Experimental output

RNN output

FFNN output



 

30 

 

Fig. 2.12 MSE of FNN and RNN models with experimental results 

The performance of FFNN and RNN topologies are also compared with the equation 

based model as shown in Fig. 2.13. The MSE between the outputs of the models is given in 

Fig. 2.14.  

 

Fig. 2.13 Output of equation based model and ANN models 

 

Fig. 2.14 MSE of equation based model and ANN models 
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It is observed that both the ANN and equation based models are in good agreement 

with the experimental results. The insignificant values of MSE validate both the developed 

models and can be used for purpose of analysis and controller designing.   

2.7 Conclusion 

This chapter presents the modelling of distillation column. An equation based model is 

validated for existing experimental setup of BDC. Experiments on the laboratory set up are 

carried out in order to acquire data to validate the model. The result shows that the equation 

based model is in good agreement with the experimental set-up. ANN based model has also 

been developed for BDC. Two ANN topologies namely: FFNN and RNN have been used for 

the modelling. The training of the developed ANN based model of BDC has been carried out 

by the data acquired from experiments performed on the laboratory set-up of BDC. The ANN 

models are also compared with the equation based model of BDC. 
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Chapter 3: DESIGN OF INFERENTIAL PID CONTROL SCHEME FOR TRAY 

TEMPERATURE CONTROL OF BDC 

In this chapter, inferential control scheme is used to control the methanol composition of BDC. 

Temperature of the selected tray is used as a secondary variable. A relation is established between 

the tray temperature and controller current by curve fitting method. This relation is utilized to design a 

PID controller which controls the temperature of the tray and hence the composition of methanol. 

3.1 Introduction 

A major problem to measure the product quality (e.g. methanol composition) is the lack 

of on-line instrumentation (e.g. online chromatograph). Other problems that are associated 

with online measurement are higher cost, substantial measurement delay and infrequent 

feedback. Inferential control scheme is a method which has been designed to overcome this 

problem [54]. Inferential control scheme utilized the secondary variables measurement (e.g. 

temperature, pressure, flow, etc.) which are associated with a process in spite of primary 

variable (product quality). Changes in some of the secondary variables are indicative of 

changes in product quality. Thus by monitoring suitable secondary variables, it is often 

possible to get the desired value of the primary variable.  

In BDC, at constant pressure, the tray temperatures of BDC reflect the output methanol 

composition, therefore; the tray temperature can be used as a secondary variable for 

controlling the output methanol composition. The selection of the tray for temperature control 

has been made on the basis of sensitivity. The sensitivity is defined as the cause- effect 

relationship for any process. In the present work, temperature sensitivity has been 

determined by creating the disturbances in feed flow, heat input and reflux flow. Temperature 

profile of the BDC trays can be controlled through the most sensitive tray [97]. The most 

sensitive tray can be selected by utilizing the sensitivities for BDC. In the following section 

sensitivity analysis has been carried out to select the most temperature-sensitive tray. 

3.2 Tray Selection using Sensitivity Analysis 

Experimentation has been performed on laboratory set-up of BDC to select the most 

temperature-sensitive tray with respect to reflux flow-rate, feed flow-rate and heat input. The 

BDC set-up has been run for distillation of methanol from water-methanol mixture at the 

initial thermal equilibrium state. At this moment the rate of vaporization is equal to the rate of 

condensation. This is thermal equilibrium condition and the output distillate temperature does 

not vary with time. The values of parameters of BDC set up at thermal equilibrium condition 

are given in Table 3-1. At this condition, reflux flow-rate is at 3 kg-moles/hr while the 

methanol composition is at 0.83 mol fraction. 
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Table 3-1 BDC Parameters at thermal equilibrium condition 

Column pressure 115.21 kPa Heat input 6 kW 

Feed flow-rate 2.5   kg-moles/hr Murphree vapour efficiency 0.60 

Feed temperature 34.5 °C Relative volatility 1.5 

 

Temperatures of different trays have been recorded till the thermal equilibrium 

condition has been established and temperature differences between the successive trays 

have been calculated. Temperature and temperature difference between the trays are shown 

in Table 3-2. It is observed from the table that the maximum change occurred between tray-3 

and tray-4 Therefore; it is concluded that the change of temperature is highest between tray-

3 and tray-4. 

Table 3-2 Temperature and Temperature difference between trays 

Tray no. 
Temperature of trays at 

Initial equilibrium state(°C) 

Temperature 
difference b/w 

successive trays (°C) 

Tray-1 92 
2 

Tray-2 90 

2 
Tray-3 88 

8 

Tray-4 80 
5 

Tray-5 76 
5 

Tray-6 71 

3 
Tray-7 68 

2 
Tray-8 66 

2 
Tray-9 64 

2 Reflux section 62 

 

To determine the temperature sensitivities with respect to reflux flow-rate (δT/δR), feed 

flow-rate (δT/δF) and heat input (δT/δH) respectively, the perturbation has been created in 

the reflux flow-rate, feed flow-rate and heat input considering one at a time and keeping all 

other process variables constant. 

First, an increment of 1% is made in reflux flow-rate (ΔR) and the temperature of all the 

trays of the column are recorded at equilibrium state. The change in reflux flow is done by 

the rota-meter connected in reflux flow line. These temperatures have been compared with 

the initial equilibrium state temperatures and change in temperatures (ΔT) is reported in 

Table 3-3. It is observed from this table that the maximum drop in temperature occurred in 

tray-4. 



 

35 

Table 3-3 Temperature sensitivity w.r.t. reflux flow 

Tray no. 

Temperature of 

trays when ΔR=1%  

(T1) (°C) 

Temperature of trays at 

Initial equilibrium state 

T2 (°C) 

Change in 

temperature 

(°C) 

 

ΔT/ΔR 

Tray-1 91 92 1 1 

Tray-2 86.5 90 3.5 3.5 

Tray-3 82 88 6 6 

Tray-4 70 80 10 10 

Tray-5 68 76 8 8 

Tray-6 62 71 9 9 

Tray-7 61.5 68 6.5 6.5 

Tray-8 61 66 5 5 

Tray-9 61 64 3 3 

Now, the feed flow is increased by 1% (ΔF) from its initial value at thermal equilibrium 

condition and the tray temperatures have been recorded after the establishment of 

equilibrium. This increment in feed flow is made by the rota-meter connected in BDC set-up. 

The change in tray temperatures with the initial equilibrium state is given in Table 3-4. These 

results show that maximum change in temperature occurred in tray-4.  

Table 3-4 Temperature sensitivity w.r.t. feed flow 

Tray no. 

Temperature of 

trays when ΔF=1% 

(T1) (°C) 

Temperature of trays 

at Initial equilibrium 

state T2 (°C) 

Change in 

temperature 

(°C) 

ΔT/ΔF 

Tray-1 91 92 1 1 

Tray-2 88.5 90 1.5 1.5 

Tray-3 86 88 2 2 

Tray-4 85.5 80 4.5 4.5 

Tray-5 72.5 76 3.5 3.5 

Tray-6 67 71 4 4 

Tray-7 65 68 3 3 

Tray-8 64 66 2 2 

Tray-9 62.5 64 1.5 1.5 

 
Now, the heat input is incremented by 1kW and the effect of variation is observed on 

the temperature profile of the BDC. Heat input in BDC is changed by the manual switch of 

connected heater. Table 3-5 shows the change in tray temperatures from the initial 

equilibrium state. It is observed from the table 3-5 that the tray-4 is the most sensitive tray.  
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Table 3-5 Temperature sensitivity w.r.t. heat input 

Tray 

no. 

Temperature of trays 

when ΔH=1% 

(T1) (°C) 

Temperature of trays 

at Initial equilibrium 

state T2 (°C) 

Change in 

temperature 

(°C) 

ΔT/ΔH 

Tray-1 93 92 1 1 

Tray-2 92 90 2 2 

Tray-3 91 88 3 3 

Tray-4 86 80 6 6 

Tray-5 80 76 4 4 

Tray-6 75 71 4 4 

Tray-7 71.5 68 3.5 3.5 

Tray-8 68.5 66 2.5 2.5 

Tray-9 66 64 2 2 

 

It is evident from the above sensitivity analysis that the tray-4 is the most sensitive tray. 

The desired output i.e. methanol composition can be controlled by keeping the temperature 

of the tray at a given reference temperature. The reference temperature is the temperature 

corresponding to the desired methanol composition. The desired methanol composition in 

the present work is considered as 98% (0.98 mole fraction). In the next step, the suitable 

reference temperature of tray-4 has been determined in the following manner. 

BDC set-up has been started with the minimum heat input. The feed flow has been set 

at 2.5 kg-mol/hr. At equilibrium point of BDC, tray-4 temperature and final methanol 

composition has been recorded. This process has been repeated by increasing the heat 

input (i.e. tray-4 temperature). At each equilibrium state, tray-4 temperature and final 

methanol composition has been recorded which is given in Table 3-6. It is observed from this 

table that the desired output of methanol composition 98%, is obtained when the 4th tray 

temperature is 85 °C. Therefore, it is concluded that the reference temperature of the tray-4 

is 85 °C when the feed flow is 2.5 kg-mol/hr.  At the point when the temperature of tray-4 is 

85°C, the tray-1 is at 95°C because it is the nearest tray to the reboiler. If the temperature of 

tray-4 is further increased from 85 °C, the temperature of tray-1 approaches to 100°C which 

is the boiling point of water and at this point water starts to vaporize, thus the methanol 

composition in output distillate decreases as shown in Table 3-6. After selecting the most 

temperature-sensitive tray and its reference temperature for the desired output, the objective 

is to control the temperature of this tray to obtain the given methanol composition. 
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Table 3-6 Output methanol composition vs. temperature of tray-4 

S. 

No. 

Methanol 

Composition (%) 

Temperature set 

point (°C) 
S. No. 

Methanol 

Composition (%) 

Temperature 

set point (°C) 

1 83 80 11 97 86 

2 85 80.5 12 96 88 

3 88 81 13 95 89 

4 90 82 14 94 90 

5 92 82.5 15 93 91 

6 94 83 16 92 92 

7 95 83.5 17 91 94 

8 96 84 18 90 96 

9 97 84.5 19 89 97 

10 98 85 20 88 98 

 

In BDC, the measurement of methanol composition is difficult therefore it is estimated 

using the measurement of secondary variables. Inferential control scheme is the technique in 

which secondary variable is controlled to get the desired output. As discussed in sensitivity 

analysis, temperature of tray-4 in BDC is found the most suitable secondary variable to 

implement inferential control scheme.  

3.3 Inferential Control Scheme for Tray-4 Temperature Control 

The block diagram of inferential control scheme for BDC is shown in Fig. 3.1. A PID 

controller is designed to minimize the error between the reference temperature and 

measured temperature of tray-4. Genetic Algorithm (GA) is used to determine the optimal 

parameters of the PID controller KP, KI and KD [49].  

+

Where, 

Tref: Reference temperature (°C), T= Tray-4 temperature (°C)
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Fig. 3.1 Inferential PID control scheme for BDC 
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The schematic diagram of the temperature control scheme is shown in Fig. 3.2. In the 

laboratory set-up of BDC, a resistance temperature detector (RTD) has been used to 

measures the temperature of the tray. The output of the RTD is fed to the controller box. In 

the controller box actual measured temperature is compared with the reference temperature. 

The error (reference temperature-actual temperature) is fed into a Proportional-Integral-

Derivative (PID) controller.  

Current to voltage 

converter

PID Controller
T

RTD

A. C. 

Power

4-20 mA Distillation 

Column

4 
th
 tray

Reboiler Heater

Power Module

Control pulses

                      

Fig. 3.2 Schematic diagram of tray temperature control 

 

The output of the PID controller is a current signal of 4-20 mA when temperature varies 

between 0-200 °C. This signal is utilized to control the heat generated by the heater of 

reboiler. If actual temperature of tray-4 is less than the reference temperature, the controller 

output signal is used to increase the input power of the reboiler heater or vice-versa. The 

closed loop block diagram is shown in Fig. 3.3. The parameters of the PID controller should 

be selected optimally for the efficient operation of the BDC.  

 

PID 

Controller
System

Power 

Ckt

Tray-4 reference 

temperature

4-20 mA 

signal

Tray-4 actual 

temperature

+

-

Plant

 

Fig. 3.3 Block diagram of tray-4 temperature control scheme 

The dynamics of the plant shown in Fig.3.3 must be known to obtain the optimal 

parameters of PID. It is difficult to determine this dynamics for the experimental set-up 
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therefore; this dynamics has been determined experimentally in the following manner. 

Consider the open loop system as shown below in Fig. 3.4. For the experimentation the 

realization of this block diagram is shown in Fig. 3.5. The objective here is to develop the 

dynamics between plant input (current signal, I) and plant output (tray-4 temperature T4). 

BDC Set up
Power 

Ckt

4-20 mA 

Signal

Tray-4  

temperature

Plant

 

Fig. 3.4 Block diagram of open loop plant 
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Fig. 3.5 Open loop diagram of distillation plant 

The plant input current has been varied utilizing the circuit shown in Fig. 3.6.  In this 

circuit, a 1-5 V DC variable power supply is used to get the 4-20 mA current signal. A 250 Ω 

resistor is utilized as this will give a voltage drop of 5 V DC at 20 mA and a minimum of 1 V 

DC at 4 mA.  

Variable Power 

Supply 

(1-5 Volt)

Power Ckt Ammeter

250 Ω

4-20 

mA

 

Fig. 3.6 Circuit for the variation of current signal 
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The sensitivity of power supply is 0.1 Volt. BDC plant has been started at minimum 

current 4mA. Now the current has been increased gradually and the tray-4 temperature has 

been recorded as given in Table 3-7.  

Table 3-7 Recorded data between current and tray-4 temperature 

S. 
No. 

Controller 

current 

(mA) 

Tray-4 

temperature 

(°C) 

S. 

No. 

Controller 

current 

(mA) 

Tray-4 

temperature 

(°C) 

S. 

No. 

Controller 

current 

(mA) 

Tray-4 

temperature 

(°C) 

1 4 0 15 9.6 70 29 15.2 140 

2 4.4 5 16 10.0 75 30 15.6 145 

3 4.8 10 17 10.4 80 31 16.0 150 

4 5.2 15 18 10.8 85 32 16.4 155 

5 5.6 20 19 11.2 90 33 17.0 160 

6 6.0 25 20 11.6 95 34 17.4 165 

7 6.4 30 21 12.0 100 35 17.8 170 

8 6.8 35 22 12.4 105 36 18.2 175 

9 7.2 40 23 12.8 110 37 18.6 180 

10 7.6 45 24 13.2 115 38 19.0 185 

11 8.0 50 25 13.6 120 39 19.4 190 

12 8.4 55 26 14.0 125 40 19.8 195 

13 8.8 60 27 14.4 130 41 20.0 200 

14 9.2 65 28 14.8 135    

 

The following relation is achieved by utilizing the data between current and tray-4 

temperature by using curve fitting method- 

 

4 12.5 50T I         3.1 

This experimentally established relation (3.1) is utilized for determining the optimal 

parameters of PID controller. The output of the PID controller is a current signal ranging 4-20 

mA. The PID controller [44] used in this work can be given as: 

( ) ( ) ( ) ( )P I D
d

I t K e t K e t dt K e t
dt

 
   
 

  3.2 

Where 

e(t)=  Tref -T4,    

I(t)  :  Current signal (mA) 

Tref :   Reference temperature of tray-4 (°C),  

T4   :   Measured temperature of tray-4 (°C), 

KP   :   Proportional constant, 

KI    :   Integral constant,       

KD   :   Derivative constant, 
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KP, KI and KD are the parameters of PID controller. Proportional action KP improves the 

system rising time, and reduces the steady state error. However, the higher value of KP 

produces large overshoot and steady state error so integral action KI is used to eliminate the 

steady state error. Integral control reduces the steady state error but it may make the 

transient response worse, therefore, derivative gain KD will have the effect of increasing the 

damping in system to reduce the overshoot, and improve the transient response. Therefore, 

the determination of optimal values of PID parameters (KP, KI and KD) is must for the desired 

response. In this work, Genetic Algorithm (GA) is used to search the optimal values of PID 

controller. 

The GA has some meaningful advantages over ordinary optimization tools [98]: (1) 

Genetic Algorithms search a population of points in parallel, not from a single point, (2) it 

does not require derivative information or any other auxiliary knowledge of the system but it 

needed only the objective function and corresponding fitness levels to influence the direction 

of the search. In this work, an objective function is required to find a PID controller that will 

minimise the error of the controlled system. In genetic algorithms, each chromosome in the 

population is passed into this objective function one at a time. A chromosome is a set of 

parameters which define a proposed solution to the problem that the genetic algorithm is 

trying to solve. In this work, the chromosome is represented as a finite bit string. Each 

chromosome consists of three separate strings constituting a P, I and D term. When the 

chromosome enters the objective function, it is split up into its three terms. The controlled 

system is then given a PID controller input initialize with the initial values of P, I and D. Error 

is assessed using error performance criterion MSE. The chromosome is assigned an overall 

fitness value according to the magnitude of the error, the smaller the error the larger the 

fitness value.  

The basic operations include in GA are reproduction, crossover, and mutation, which 

perform the task of copying strings, exchanging portions of strings as well as changing some 

bits of strings respectively. Finally, the string which contains the largest value of fitness 

function is found and decoded from the last pool of mature strings. The general structure of 

GA is described in Appendix E. The steps involved in the tuning of PID controller for BDC 

using GA are described below. 

Step 1: Initialize the settings of GA parameters and generate an initial, random 

population of individuals 

GA is implemented with double vector type population with population size 20. The 

smaller population size optimizes the controller faster than bigger population size therefore; 

the initial parameters of GA are selected as [98]  :  

Population size: 20,  

Crossover rate: 0.8,  

Mutation rate: 0.01, 

http://en.wikipedia.org/wiki/Genetic_algorithm
http://en.wikipedia.org/wiki/String_(computer_science)
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The Stopping criterion for GA search is error convergence. The value of converging 

error is set to 1x10-6. The selected upper and lower bounds of KP, KI and KD are [0, 5], [0, 5] 

and [0 0.5] respectively. The initial population is set by encoding the PID parameters [KP, KI 

and KD] into binary strings known as chromosome. The length of strings depends on the 

required precision which is about 4 significant figures. The required bits string is calculated 

based on the following equation- 

1 42 ( ) 10 2 1n n
j jb a       3.3 

Where n is the number of bits, and bj and aj are upper and lower bound of PID 

parameters. For BDC, [0,5]PK  , [0,5]IK  and [0,0.5]DK  . The required bits calculated 

based on (3.3) are equal to 16, 16 and 13 bits respectively. The total length of chromosome 

is 45 bits which can be represented as Fig. 3.7. A random value is selected for the 

Initialisation of chromosomes. 

     
16 16 13

0000101010001001 0000111000110010 0001010010001

K K KP I D

bits bits bits

    

Fig. 3.7 A chromosome representing PID parameters 

 

Step 2: Evaluate the fitness of each individual 

 

The fitness of each chromosome is evaluated by converting its binary string into a real 

value which represents the PID parameters.  The conversion process of each chromosome 

is done by encoding into real numbers as follows:  

( )
( )

2 1

j j
j j j n

b a
x a decimal substring


  


 3.4 

Where, xj is the real value of the parameter. 

The corresponding values of KP, KI and KD are given below: 

Binary string Decimal value 

KP: 0000101010001001 2697 

KI: 0000111000110010 3634 

KD: 0001010010001 657 
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Therefore, the real number becomes: 

16

16

13

5 0
0 2697 0.21,

2 1

5 0
0 3634 0.11,

2 1

0.5 0
0 657 0.06

2 1

P

I

D

K

K

K


   




   




   



 

Each set of PID parameters is passed to PID controller. A complete response of the 

system for each PID set and its initial fitness value is computed using a defined objective 

function. In this work, the Mean Square Error (MSE) is chosen as the objective function as 

shown in (3.5). 

21
( ( ))

T

o

MSE e t dt
t

     3.5 

Where  

e(t) = Tref(t)-T4 

 
Step 3: Perform selection, crossover and mutation 

All individuals go through the selection process based on their fitness values. The 

probability of selection of an individual is higher if the fitness value is higher of that individual. 

Roulette method is utilized as a selection strategy to improve the searching performance of 

GA. Crossover is the next operation after selection process. For selection, single point 

crossover method is utilized in the present work. Two mating individuals are selected 

randomly and one single point is used to swap the right part of the two parents to generate 

the offspring. Mutation is the next operation after crossover. Mutation prevents the GA 

algorithm to be trapped in local minima and maintain the diversity in the population. Lower 

mutation rate is used otherwise search process will become random. 

Step 4: Repeat step 2 until end of generations 

After the completion of selection, crossover and mutation processes, a new set of PID 

parameters is sent to PID controller to compute a new fitness value. This process will go 

through steps 2 to 3 sequentially and repeat until the end of generations where the best 

fitness is achieved. The application of GA for determination of the optimal parameters of PID 

controller is shown in the form of a flow chart in Fig. 3.8.  

In the next section, the results of implemented PID controller are discussed which is 

tuned by Genetic Algorithm (GA). GA requires several iterations to obtain the optimal 

solution. For the present work, the obtained optimal values of PID parameters KP, KI and KD 

by GA are 1.9, 2.2 and 0.1 respectively and the minimum value of MSE is 2.978x10-6. The 

convergences of the parameters are shown in Fig. 3.9. 
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Fig. 3.8 Flow chart of GA algorithm for PID tuning 

 

Fig. 3.9 Illustration of the Genetic Algorithm Converging through Generations 
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3.4 Performance of the Designed PID Temperature Controller 

In this section, the performance of designed PID controller is evaluated for simulation 

and implementation phase. In the simulation phase, the parameters of PID controller are 

obtained by GA in the environment of MATLAB®/SIMULINK. The established relation 

between the tray-4 temperature and current (to the power circuit) is utilized to search the 

optimal PID parameters. In the implementation phase, Yokogawa PID controller (Model-

UT320) is used to control the tray-4 temperature of laboratory set-up of BDC [99]. The 

obtained optimal PID parameters are incorporated in this controller and then the performance 

of the controller is evaluated. 

3.4.1 Simulation Results 

In the simulation phase, the set-point of tray-4 temperature is 85°C. The performance 

of simulated PID controller is evaluated on the basis of rise time and settling time as shown 

in Fig. 3.10.  

. 

 

Fig. 3.10 Output of simulated PID controller 

3.4.2 Implementation Results 

In this phase, the obtained parameters of PID controller are incorporated in the 

hardware PID controller attached with BDC set-up. The performance of hardware PID 

controller involves reference tracking and disturbances rejection cases. 

3.4.2.1 Reference Tracking  

 In this case, feed flow-rate is fixed at 2.5 kg-mole/hr and all the other parameters of 

BDC are at their rated value as shown in Appendix-A. It is observed from the sensitivity 

analysis that the desired output of methanol composition (98 %), is obtained when the 4 th tray 

temperature is 85 °C. Therefore, the reference temperature of the tray-4 is kept at 85 °C 

when the feed flow is 2.5 kg-mol/hr. The performance of the hardware PID controller is 

compared with simulation results on the basis of rise time, settling time and MSE. The results 
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obtained show that rise time is 18.5 seconds and 140 seconds for simulated and hardware 

PID controllers respectively. The settling time is 90 seconds for simulated controller and 340 

seconds for hardware controller as shown in Fig. 3.11. 

 

Fig. 3.11 Output of hardware PID controller for reference tracking 

The rise time and settling time for hardware controller is seems to be much larger than 

the simulated controller. There are number of factors like time delays, disturbances, 

unmeasured variables, noise, nonlinearities, large time constant and multivariable 

interactions associated with the laboratory set-up of BDC, because of that the hardware PID 

controller takes longer time to approach the desired temperature of tray-4.The MSE for 

simulated and hardware controller is given in Fig. 3.12. MSE of hardware PID controller have 

oscillations due to the overshoot in the output. 

 
 

            Fig. 3.12 MSE of Simulated and hardware PID controller for reference tracking 
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3.4.2.2 Disturbance Rejection 

In this case, 10% increment in the feed flow is made. This change in feed flow affects 

the thermal equilibrium of distillation process. The performance of hardware PID controller is 

compared with simulated PID controller and hardware PID controller (reference tracking 

case) as shown in Fig. 3.13.  

 

Fig. 3.13 Output of hardware PID controller for disturbance rejection 

 
The rise time and settling time is 280 seconds and 410 seconds respectively. The 

comparison of MSE for both the controllers is shown in Fig. 3.14. 

 

Fig. 3.14 MSE of simulated and hardware PID controller for disturbance rejection 
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is controlled to get the desired output. For the laboratory set-up of BDC it is found by the 

sensitivity analysis that the temperature of fourth tray is an exact indicator of the 

corresponding methanol composition. A relation between the controller current and the tray-4 

temperature has been established and used to control the temperature of the tray by a PID 

controller. The optimal parameters of the PID controller have been determined using GA. 

The controller has been implemented in laboratory set-up of BDC using embedded PLC 

(Yokogawa PID controller). It is evident by the results that the rise time and settling time for 

hardware controller are larger than the simulated controller as there are various factors (i.e. 

associated time delay, larger time constant) involved in the distillation process. 
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Chapter 4: LINEAR MODEL PREDICTIVE CONTROL AND NEURAL NETWORK 

BASED MODEL PREDICTIVE CONTROL SCHEME FOR BDC 

In this chapter, Linear Model Predictive Control (LMPC) and Neural Network based Model Predictive 

Control (NN-MPC) Methodologies are evaluated for the purpose of getting the desired methanol 

composition in distillation process. The equation based model and ANN based model of BDC as 

described in the second chapter, are utilized for the application of above control schemes. The 

performance of LMPC and NN-MPC schemes are also evaluated and compared with conventional PID 

controller.  

4.1 Introduction 

A PID controller is connected with the experimental set-up of BDC to control the tray 

temperature. This PID controller is utilized in the inferential control scheme. There are few 

limitations associated with the experimental set-up of BDC. One limitation is that the close 

loop control is possible only for tray-temperature and another limitation is that the facility of 

direct measurement of distillate composition is not available. Due to these limitations, other 

control schemes can not be implemented on the experimental set-up of BDC. Therefore, 

equation based model and ANN based model (developed in chapter-2) are utilized to 

implement the various control schemes described in the following chapters. 

Model Predictive Control (MPC) is a powerful technique for optimizing the performance 

of control systems, with several advantages: 

 MPC can directly take the constraints on process inputs and outputs into account 

[100].  

 MPC is more effective than the PID control, even in the case of a single loop without 

constraint control problem [101].  

Because of the above advantages, MPC has been used widely in various industrial 

applications, such as chemical, food processing, aerospace engineering, etc. The existence 

of an accurate process model is the key for the successful implementation of MPC scheme. 

MPC scheme has come a long way since its inception almost five decades ago. Hussain [80] 

carried out an extensive review on MPC. A survey on industrial application of MPC has been 

performed by Qin et. al. [81].  

Traditionally, the distillation process has been controlled by utilizing the linear model of 

the process despite of the fact that this is inherent nonlinear process. One of the ways to get 

the accurate model is identification of distillation process by using the neural networks. NN-

MPC is the latest approach where MPC scheme is implemented by using the neural network 

model of the process. Arumugasamy et al. [86]  have presented a review which surveys the 

concept of incorporating Feed forward Neural Networks into Model Based Predictive Control 

approach in various Chemical and Biochemical systems. Recently, NN-MPC has been 

utilized by many researchers [85] in the field of chemical engineering.  
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In this chapter, LMPC and NN-MPC are designed for the proposed ANN model of BDC 

to control the methanol composition as described in chapter 2, section 2.5. The performance 

of the LMPC and NN-MPC schemes have also been evaluated and compared with 

conventional PID controller. 

4.2 Proportional-Integral-Derivative (PID) Control Scheme 

The PID controller consists of proportional, integrative and derivative elements [44]. It 

is widely used in feedback control of industrial processes. In this work, the PID controller is 

designed to control the purity of methanol composition of BDC. Two PID controllers are 

designed in this work to control the two manipulated variables namely; reflux flow-rate and 

reboiler heat duty. The control scheme is shown in Fig. 4.1.  

xDSP Binary  

distillation 

column plant

PID (reflux 

flow rate loop)

XD(k)
uS(k)

uR(k)

+

-

PID (reboiler 

heat duty loop)

e(k)

 
Fig. 4.1 PID control scheme for BDC 

The structure of each PID controller [7] is considered as given in (4.1). KP, KI and KD  

are the parameters of PID controller. Ziegler-Nichols method is used to get the parameters of 

each PID controller [45]. 

0
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4.1 

 Where 

( ) ( ) ( )DDSP
e k k x kx  , 

( )
DSP

kx :   Desired methanol composition (mol fraction),  

( )Dx k      :   Measured methanol composition (mol fraction), 

ηi             :   Integral time(seconds), 

ηd            :   Derivative time (seconds),       

TS           :   Sampling interval (seconds), 

u(k)         :  Controller output (either uR(k) or uS(k)), 

m            :   No. of samples 
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u(k) is the output of the PID controller. e(k) is the difference between the desired methanol 

composition and actual methanol composition. The inputs are same for both the PID 

controllers but the outputs are different. Outputs of PID controllers are reflux flow-rate and 

reboiler heat duty respectively. Industrial process are normally stochastic in nature therefore, 

frequent tuning of PID controllers are required. PID controllers are also incapable to 

incorporate the non-linearities and parameter variation in the system. MPC has been 

designed in the following section to minimize these problems. 

4.3 Model Predictive Control 

Model Predictive Control is an approach where a process model is used to predict the 

future behaviour. Model Predictive Control  is a multivariable control approach to predict the 

future control action by using the past control actions and the available present output 

variables [79]. MPC uses a dynamic model of the plant to predict the future actions of 

manipulated variables on the plant output. The future moves of the manipulated variables 

can then be determined by minimising the difference between the set-point and the predicted 

output. The structure of linear MPC is given in Fig 4.2. In this figure, distillation process is the 

actual plant. The ANN model with six inputs (reflux flow, reboiler heat duty, feed flow, top and 

bottom pressure of the column, tray temperature) and single output (methanol composition), 

developed in chapter 2, section 2.5 has been considered as the actual plant. In this work, 

four outputs namely: feed flow, top and bottom pressure of the column and tray temperature 

are kept constant at the values as given in Table 2-1.  

BDC Plant
Optimizer

Process model

Set 

point

(xDSP)

MPC

+

-

Objective

function
Constraints

Plant output

(xD(k))

Future Inputs

Reflux flow

 rate (uR(k))

Reboiler 

heat 

Duty (uS(k))

Predicted Output

+

-

 

Fig. 4.2 MPC scheme for BDC 

The two inputs reflux flow-rate (uR) and reboiler heat duty (uS) are the manipulated 

variables. The process model is the mathematical model or ANN based model of the actual 

plant which has been utilized to predict the output of the plant model. MPC can be 

categorized as linear or nonlinear based on the model considered for the plant.  
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In linear MPC, the linear equation based model developed in chapter 2, section 2.2 has 

been used as process model. The actual model of the BDC is nonlinear in nature therefore, 

ANN based model is used as the process model to implement NN-MPC scheme. For linear 

MPC, an optimum solution is obtained by using the least square method while; for NN-MPC, 

Sequential Quadratic Programming (SQP) is used to solve nonlinear constrained 

optimization problem [102]. These two approaches are explained in the following sections. 

The system model of the process is used to predict the system‘s future outputs based on the 

present value of the system output and future value of inputs. This information is used to 

obtain the control signal by minimizing an objective function. This objective or cost function 

considers the deviations from the set-point. 

4.3.1 Linear Model Predictive Control (LMPC) 

The first step to design the LMPC is to determine the Step Response Coefficients 

(SRC). SRC is determined in this work by using the Finite Step Response (FSR) of the BDC. 

Initially the thermal equilibrium is achieved without any control at time t0. Now the reflux flow-

rate (uR) is increased by 5% while keeping the reboiler heat duty (uS) same as at steady 

state. At this condition the output (methanol composition, xD) has been determined and SRC 

are calculated as given below: 

At any time 0t t , reflux flow-rate can be written as: 

( )R R Ru t u u    for t≥t0 4.2 

At this step change, measure xD(t) at regular intervals 

0( )D D sk
x x t kh  , k=1,2,…,N 4.3 

Where hs=sampling interval, N is equal to the prediction horizon which is explained later.  

The step response coefficient for the input uR are defined as: 

0
1,

D Dk
k

R

x x
a

u





 

4.4 

Now, the reboiler heat duty input (uS) is increased by 5% keeping the uR constant and 

similarly SRC for input uS has been determined. SRC for input uS is denoted as 2,ka . After 

obtaining the SRC for both the inputs, the dynamic matrix [A] is obtained by arranging the 

SRC in specify form of matrix as follows: 

1, 2,i iA A A 
   4.5 

Where 

1,1

1,2 1,1

1, 1, 1 1,11,

1, 1 1, 1,2

1, 1, 11, 1

0 0

0

0





 

 
 
 
 
 
 

    
 
 
 
 
 
  





  





   



H Hc ci

H Hc c

H H Hp H p cp

a

a a

a a a
A

a a a

a a a

 and, 



 

53 

2,1

2,2 2,1

2, 2, 1 2,12,

2, 1 2, 2,2

2, 2, 12, 1
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0
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Hp is the prediction horizon and Hc is control horizon. The number of future control 

moves which are calculated during each time step is called the control horizon (HC). The 

number of future controlled variables that are calculated using the control horizon is called 

the prediction horizon (HP). A step response model can be represented as given in (4.6). 

1

1, 2, 1
0
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ˆ ( 1) ( ) [ ][ ]

H p

D D i i k i
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x k x k A A u



 


   


 

4.6 

Where 

  R

S

u
u

u

 
  

 
  4.7 

 ΔuR : Change in reflux flow-rate, 

 ΔuS : Change in reboiler heat duty, 

ˆ ( 1)Dx k  : The predicted value of the controlled variable at future instance k+1, 

( )Dx k
    :  The value of the controlled variable at the kth instant, 

ˆDx       :   Future changes in the controlled variable due to past moves in Δu, 

ˆDx
 can be written in matrix form: 

ˆ[ ] [ ].[ ]Dx A u   4.8 

The objective of the controller is to minimise the closed loop error (between the future 

controlled variables and the set point). The objective function to be minimized can be written 

as:  
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x x k xOBJ uw w



   

     

 

 
4.9 

Where 

DSP
x        :  Set-point of methanol composition, 

ˆ ( 1)Dx k   :  The predicted value of the controlled variable at future instance k+1, 

Where Δu is the change in manipulated variable and wP and wC are the weights. The 

value of wP determine the importance placed on the controlled variable and the value of wC 
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penalize the changes in manipulated variables. This objective function can be reorganized in 

the quadratic form as follows: 

   min


          
    

T
Tk

P C
u

kOBJ e A u e A u u uw w  4.10 

Where  ˆ ( 1)k
DDSP

e x x k     and 
 
ˆ[ ] [ ].[ ]Dx A u   

An optimum solution is obtained by using the least square method [79]. The optimum 

value of Δu determined by this method is given as: 

1( )T T k
cP P

u A w A w A w e    
4.11 

Now using this Δu, value of ˆDx  is updated using (4.8). The predicted value for the next 

step is given in (4.12). 

ˆ ( 1) ( ) ˆD D D
x k kx x    4.12 

Where ( )
D

kx  : The value of the methanol composition at the kth instant.   

The steps involved in designing the LMPC controller are given in the form of flow chart 

as shown in Fig. 4.3. 

Calculate the control moves (Δu) by minimizing the 

quadratic cost function
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the current measured values xDi  and its predicted 

values 

Implement the manipulated variables 
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Fig. 4.3  Linear MPC algorithm  
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The adjustable coefficients which affect the performance of MPC scheme are wP, wC, 

HP and HC. The Prediction horizon (HP) is selected longer than the control horizon (HC). To 

determine the HP, the control horizon is set to 2. The response of the system is determined at 

different values of the prediction horizon, i.e., 10, 5 and 2.  For HP=10, the system gives the 

fastest response as shown in Fig. 4.4. To determine the best value of control horizon the 

value of prediction horizon is set to 10 and the system response is determined at different 

values of HC i.e. 1, 2 and 3 as shown in Fig. 4.5. The best response is obtained at HC=2. 

 

Fig. 4.4 Effect of prediction horizon on performance of MPC 

 

 
Fig. 4.5 Effect of control horizon on performance of MPC 
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0.5 to 0.8, system gives faster response as shown in Fig. 4.6. The effect of change in wP is 

negligible in the response, therefore the value of wP is considered 0.1 throughout the study. 

 

Fig. 4.6 Effect of weighting coefficient (wc) on performance of MPC 

The major drawback associated with Linear MPC that it does not perform uniformly well 

in case of wide variation in operating conditions (i.e. change in feed flow-rate and feed 

composition) and large disturbances. Neural network based MPC has been designed and 

described in the following sections to overcome the shortcomings of MPC. 

4.3.2 Neural Network based Model Predictive Control 

The need to handle difficult control problem has led to use artificial neural network 

(ANN) in MPC and has recently attracted more attention. ANNs have found wide applicability 

in modeling and control of non-linear systems because of their inherent capability of 

capturing the non-linear behavior of system. The advantage of the neural network approach 

is that an accurate representation of a process can be obtained by the training of the 

network. Neural networks are capable of handling complex and nonlinear problems and can 

reduce the engineering effort required in the model development of a controller. Following 

section has utilised the neural network in model predictive control algorithm to control the 

methanol composition in distillation column. 

4.3.2.1 Neural Network Modeling of BDC 

  In this approach, the neural network model has been used as the plant model. The 

relation between inputs and output for the neural network model is expressed mathematically 

as shown in (4.13) 
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Where  

ˆ ( 1)Dx k   = Predicted value of methanol composition by neural model  

xD(k)      =  Present value of methanol composition  

xD(k-1)   = Methanol composition at previous instant 

uR(k)        =  Present value of Reflux flow-rate  

uR(k-1)   = value of Reflux flow-rate at previous instant 

uS(k)      = Present value of reboiler heat duty 

uS(k-1)   = value of reboiler heat duty at previous instant 

The structure of neural network model for distillation column is shown in Fig. 4.7. This 

model has six inputs and a single output. In the neural network design, sigmoid activation 

function is used for hidden nodes whereas linear function is used for output. This neural 

network model is trained with the Levenberg-Marquardt algorithm [103]. Total 8000 sample 

data is used for the training and validation. The final structure of the neural network model 

has 6 inputs, 8 hidden neurons and 1 output layer. This neural network model is utilized as 

the system model in MPC structure.  

 

     uR(k)

  uR(k-1)

uS(k)

uS(k-1)

xD(k)

xD(k-1)

6 

inputs

8 hidden 

neurons

1 

output

ˆ ( 1)Dx k 

 

Fig. 4.7 Proposed structure of ANN model of BDC 

Number of such model can be cascaded to predict the output several step ahead. 

Cascading of such models is shown in Fig. 4.8. The output from the first prediction ˆ ( 1)Dx k 

is used as input for the next iteration to predict ˆ ( 2)Dx k  . With this iterative procedure, 

multiple outputs can be predicted p steps ahead. Other inputs to the neural model are the 

direct measurements of reflux flow-rate and reboiler heat duty at the current and previous 

steps. 
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Fig. 4.8  Neural network based iterative method 

4.3.3 Control Scheme 

The MPC structure shown in Fig. 4.2 has been modified to incorporate NN model of 

BDC as shown in Fig. 4.9. The optimization block in this figure optimises the objective 

function (4.9) to get the optimum values of manipulated variables. The error between the 

predicted output and set point is passed to an optimization routine which produces the future 

control outputs. 

xDSP

Binary  distillation 

column plant

Neural network 

model of distillation 

column

Z
-1

Z
-1

Z
-1

Optimization

 

         

-

+

-

XD(k)
uS(k)

uR(k)

+

-
uR(k)

+

uR(k-1)

uS(k-1)

uS(k)

XD(k-1)

    ΔuR    ΔuS

ˆ ( 1)Dx k 

Objective 

function
Constraints

                  
 

Fig. 4.9  NN-MPC scheme for BDC 

The optimization problem is formulated as: 

Minimize the objective function given by (4.9). 
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Subjected to: 

 Constraint on manipulated variables: 

min max

min max

,
i

i

R R R

S S S

u u u

u u u

   
 

   

(i=0,…,HC-1) 

 Constraint on control moves: 

min max

min max

,
i

i

R R R

S S S

u u u

u u u

      
 
      

(i=0,…,HC-1) 

 Constraint on process variable: 

min max
,

iD D Dx x x   (i=1,…,HP-1). 

 Sequential Quadratic Programming (SQP) is utilized to solve this optimization 

problem. The steps involved in SQP procedure are described in Appendix-D [11]. The 

adjustable parameters (HP, HC, wP and wC) are obtained in the similar manner as explained in 

section 4.4.2. The best values obtained for NN-MPC approach are HP=8, HC=2, wC=1 and 

wP=0.1. The operation of the NNMPC algorithm is summarized in the form of flow chart and 

shown in Fig. 4.10. 

Define upper and lower bound on manipulated 

variables, controlled variable and control move.

Calculate the control moves (Δu) by minimizing the 

quadratic cost function SQP procedure:

Neural network model is utilised to get the next 

predicted value of methanol composition (               ).

Implement the manipulated variables 

uR(k)and uS(k) for the column.
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Fig. 4.10  Flow chart for NN-MPC algorithm 

4.4 Simulation Results 

The performance of linear and nonlinear MPC has been determined for the two cases: 

Case a: Reference Tracking and Case b: Disturbance Rejection. The simulation study has 
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been carried out in MATLAB®/SIMULINK environment. The results of LMPC and NN-MPC 

schemes are also compared with the conventional PID control scheme. The optimal 

parameters of PID (KP, KI and KD) determined using Ziegler-Nicholas approach is given in 

Appendix-C. 

4.4.1 Case a:  Reference Tracking 

Initially the feed flow-rate has been kept at 2.5 kg-mol/hr. At this flow-rate and without 

any control on BDC the final composition was 0.83 mol fraction. Now methanol purity has 

been set to 0.98 mol fractions and the response of PID, LMPC and NN-MPC schemes have 

been simulated. Fig. 4.11 illustrates the comparative behaviour of LMPC, NN-MPC and PID 

control schemes with a change in methanol composition from 0.83 mol fractions to 0.98 mole 

fractions. Mean Squared Error (MSE) of these schemes are shown in Fig. 4.12. Performance 

parameters i.e. rise time, settling time and overshoot for all the three schemes are given in 

Table 4-1. 

 

Fig. 4.11 Output of PID, LMPC and NN-MPC schemes for reference tracking 

 

Fig. 4.12 MSE of PID, LMPC and NN-MPC schemes for reference tracking 
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4.4.2 Case b: Disturbance Rejection 

In this case, the performances of NN-MPC, LMPC and PID control schemes are 

compared when a disturbance is created in the feed flow-rate. To simulate this change of 

+10% (2.5 kg-mole/hr to 2.75 kg-mole/hr) in feed flow-rate has been considered along with 

the set point of 0.98 mol fraction. The output and MSE for all the control schemes is shown in 

Fig. 4.13 and Fig. 4.14 respectively. 

 

Fig. 4.13 Output of PID, LMPC and NN-MPC schemes at +10% change in feed flow-rate  

 

 

Fig. 4.14 MSE of PID, LMPC and NN-MPC schemes at +10% change in feed flow-rate  
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the feed flow-rate is considered, the distillation process takes more time to get the desired 

methanol composition. For this case NN-MPC takes minimum time to achieve the desired 

composition with minimum associated MSE. It is observed from the results that NN-MPC 

scheme is comparatively better in all the three schemes. 

Table 4-1 Performance parameters of PID, LMPC and NN-MPC schemes 

 P
e
rf
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rm

a
n
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e
 

In
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ic

a
to

rs
 

Case a Case b(10% disturbance) 

At Feed flow  

(2.5 kg-mole/hr) 

At Feed flow  

(2.75 kg-mole/hr) 

PID LMPC NN-MPC PID LMPC NN-MPC 

Rise time(sec.) 36 25 31 41 37 45 

Settling time(sec.) 70 100 70 240 280 110 

MSE 2.1x10
-5
 1.8x10

-5
 1.55x10

-5
 2.5x10

-5
 1.9x10

-5
 1.6x10

-5
 

Overshoot (%) 0 0 0 1.22 0.2 0 

 

4.5 Conclusion 

In this chapter Linear MPC and NN-MPC schemes have been developed to control the 

methanol composition in distillation column. In Linear MPC scheme, equation based model of 

BDC is utilized to develop the scheme. This scheme does not perform well when large 

changes in operating condition (change in feed flow-rate and feed composition) are 

considered, because BDC model is inherently nonlinear. To overcome this, a nonlinear MPC 

based on neural network process model is developed. Performance of these controllers has 

also been compared with PID controller. It can be concluded from the results that NN-MPC 

performs better than the other schemes on the basis of rise time, settling time, MSE and 

percentage overshoot. 
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Chapter 5: NEURAL NETWORK BASED DIRECT INVERSE CONTROL AND 

INTERNAL MODEL CONTROL FOR BDC 

In this chapter, two neural network based control schemes namely; NN-DIC and NN-IMC are 

introduced to control the methanol composition in a binary distillation column. The proposed schemes 

are also compared with NN-MPC control scheme and on the basis of performance parameters it is 

observed that the NN-IMC scheme is better than the other schemes.  

5.1 Introduction 

 Model predictive control scheme proposed in the last chapter has some shortcomings 

[79]:  

 Need of fast computation as online optimization involved in MPC. 

 MPC models are limited to stable processes and require a large number of 

model coefficients to describe a response. 

 MPC requires exact formulation of prediction horizon otherwise the 

performance gets affected. 

 MPC is not suitable for the systems having a wide range of operating 

conditions.  

Artificial Neural Network (ANN) is utilized in the different control methods to overcome 

the above shortcomings of MPC controller. ANN has shown an excellent ability to model any 

nonlinear, unstable process and not require a large number of model coefficients.  ANN is 

suitable for the processes having wide range of operating conditions. Computation speed is 

not a big issue in ANN as online optimization is not involved [59], [62], [104].  

 In this work, neural networks have been incorporated in the inverse-model control 

scheme. This scheme has been used in two different ways i.e. direct inverse control (DIC) 

and the internal model control (IMC). In the direct inverse control approach, neural networks 

are used as the inverse model of the plant. In this approach, the neural network acting as the 

controller has to learn to supply at its output, the appropriate control parameters for the 

desired targets at its input.  

The other approach is the internal model control (IMC) technique. In this method both 

the forward and inverse ANN models of the plant are used directly as elements within the 

feedback loop. Except for two additions, the IMC approach is similar to the direct inverse 

approach above. In the first addition the forward model of the plant is placed in parallel with 

the plant, to cater for plant or model mismatches and second is that the error between the 

plant output and the neural network forward model is subtracted from the set-point before 

being fed into the inverse model. The other inputs to the inverse model are similar to the 

direct method. 
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The forward and inverse neural network models of the BDC are required to design the 

NN-DIC and NN-IMC control schemes for BDC. These models are explained in the following 

sections. 

5.2 Development of Forward and Inverse Models 

For the development of forward and inverse models, Input/output data of plant acquired 

from experimental set-up of BDC has been used. The ability of ANN to represent nonlinear 

relations leads to the idea of using networks directly in a model-based control strategy. The 

development of forward and inverse models involves selection of the input and output 

variables, collection of input-output patterns, selection of network structure and training of the 

neural network. 

5.2.1 Forward Models 

The procedure of training a neural network to represent the forward dynamics of a 

system (i.e. the outputs for the given inputs) is referred as forward modelling. The past inputs 

and past output data samples of the model have been utilized to predict the output in the 

next instant. Neural Network based forward model is designed similarly as explained in 

chapter 2. The only difference in this model is that it has two inputs with their past two values 

and one step ahead output. BDC has two inputs namely: reflux flow-rate (R(k)) and reboiler 

heat duty (S(k)) whereas; the output is methanol composition (xD(k)). For the forward model, 

two past values for inputs {R(k-1), R(k-2), S(k-1), S(k-2)} and one step ahead output

ˆ{ ( 1)}Dx k   are considered as shown in Fig. 5.1.  

xD(k-1)

R(k-2)

S(k)

R(k)

S(k-1)

R(k-1)

xD(k+1)xD(k)

S(k-2)

Input data

Ouput data

xD = methanol composition

R = reflux flow rate

S = reboiler heat duty 
 

 
Fig. 5.1 Input and output data node assignment for BDC forward model 
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The schematic for learning of ANN based forward model is shown in Fig. 5.2. In this 

procedure, the network is fed with the present input, past inputs as well as the past outputs 

to predict the output. Various important steps to be followed for performing this procedure 

includes: proper selection of model structure and size, selection of data set, selection of 

suitable inputs and proper training method. The training Input-output pairs containing output 

(methanol composition) w.r.t. both the inputs (i.e. reflux flow-rate and reboiler heat duty) have 

been acquired from the experimental set-up of BDC for the complete operating range. The 

maximum and minimum values of inputs and outputs are given in Table 5-1. 

BDC plant

NN Forward 

Model

Z-1

Z
-1

Z-1

Z
-1

Z
-1

Z
-1

xD(k+1)

R(k)

S(k)

ˆ ( 1)Dx k 

 

Fig. 5.2 Learning of forward model 

 

Table 5-1 Range of I/O Variables 

I/O Process Variable Minimum value Maximum value 

Inputs 
Reflux flow-rate (kg-mole/hr) 2.9 3.1 

Reboiler heat duty (kW) 5.5 8.0 

Output Distillate Composition (mole fraction) 0.83 0.99 

 
Total 1800 patterns have been acquired out of which 70% and 30% patterns have been 

used for training and testing respectively. The training is performed using Levenberg-

Marquardt algorithm (explained in Appendix-E) until a reasonable reduction in the error is 

achieved. Then training is repeated using the test data set until the error decreases again to 

another reasonable minimum. Once a reasonable reduction in the error is achieved for both 

sets of data, the training is stopped. The details of ANN based forward model is given in 

Table 5-2. The predicted output of forward model is compared with actual output in Fig. 5.3. 
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Table 5-2 Network for forward model 

Number of inputs 8 {R(k), R(k-1), R(k-2), S(k), S(k-1), S(k-2),XD(k), XD(k-1)} 

Number of outputs 1{XD(k+1)} 

Number of training patterns 120 

Network type Feed-forward back-propagation 

Training method Levenberg-Marquardt method 

Number of hidden layers 1 

Number  of hidden layer neurons 20 

Transfer function of hidden layer Tangent sigmoid 

Number of epochs 150 

Learning rate 0.001 

MSE 8x10
-8
 

 

 

Fig. 5.3 Training performance of forward model 

 

The MSE between the predicted output and the actual output is shown in Fig. 5.4. The 

results shows that the value of MSE is very low therefore estimated output matches the 

actual output. 

 

Fig. 5.4 Training MSE of forward model 
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5.2.2 Inverse Models 

Inverse models are the neural network structure representing the inverse of the system 

dynamics. The inputs and outputs of the inverse model are shown in Fig. 5.5. In this work, 

reflux flow-rate (R(k)) and reboiler heat duty (S(k)) are the control actions. e(k) is the error 

between the desired output(xDSP) and the plant output (xD(k+1)). The training, test and 

validation data set generated for the networks are similar to that used for forward modelling 

but with the different configuration as shown in Fig. 5.5. The structure to train the inverse 

model is shown in Fig. 5.6. Input and output of the NN inverse model are taken as give in 

Fig. 5.5. Levenberg-Marquardt algorithm is used for the training and given in Appendix-E.  

e(k)

xD = methanol composition

xD(k-1)

R(k-2)

S(k)

R(k)

S(k-1)

R(k-1)

xD(k)

S(k-2)

Input data

Output data
R = reflux flow rate

S = reboiler heat duty 

e  =  error

 

Fig. 5.5 Input and output data node assignment for BDC inverse model 
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Fig. 5.6 Learning of inverse model 

The details of ANN based inverse model is given in Table 5-3. Output of the NN-

inverse model are reflux flow-rate and reboiler heat duty. These outputs are compared with 

the actual outputs as shown in Fig. 5.7 and Fig. 5.8 respectively.  
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Table 5-3 Network for inverse model 

Number of inputs 7{e(k), R(k-1), R(k-2), S(k-1), S(k-2), XD(k), XD(k-1)} 

Number of outputs 2{ R(k), S(k)} 

Number of training patterns 120 

Network type Feed-forward back-propagation 

Training method Levenberg-Marquardt method 

Number of hidden layers 1 

Number  of hidden layer neurons 14 

Transfer function of hidden layer Tangent sigmoid 
Number of epochs 110 

Learning rate 0.01 

MSE 2x10
-7

(for reflux flow-rate),1x10
-7

(for reboiler heat duty) 

 

 

 Fig. 5.7 Training performance of inverse model for reflux flow-rate 

 

 

Fig. 5.8 Training performance of inverse model for reboiler heat duty 

The MSE between the predicted output and actual output is shown in Fig. 5.9. The value of 

MSE is 2x10-7 and 1x10-7 for reflux flow-rate and reboiler heat duty respectively. It signifies that 

inverse model has been trained properly. 
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Fig. 5.9 Training MSE of inverse model 

The forward and inverse models are utilized in the designing of ANN based Direct 

Inverse Control (NN-DIC) and ANN based Internal Model Control (NN-IMC) schemes as 

described in the following section. 

5.3 ANN based Direct Inverse Control (NN-DIC) 

Consider a system shown in the diagram below: 

Gc(z) GP(z)
Set-point Output

 

Fig. 5.10 Open loop control strategy 

GC(z) is a controller used to control the process GP(z). Suppose ( )PG z is a neural 

network model of GP(z). By setting GC(z) to be the inverse of the model of the process, 

1( ) ( ) ,c PG z G z    5.1         

and if ( ) ( ),P PG z G z  (the model is an exact representation of the process), then it is 

clear that the output will always be equal to the set-point. This ideal control performance is 

achieved without feedback. It shows that if the complete knowledge of the process is known 

then the perfect control can be achieved. The ANN based inverse model of the BDC has 

been used as the controller to determine the controlled input (reflux flow-rate and reboiler 

heat duty) to the actual plant. The complete scheme of NN-DIC is shown in Fig. 5.11. 
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Fig. 5.11 Schematic diagram of NN-DIC scheme  

 

The main limitations of the DIC scheme are: 

(1) DIC does not work for systems with unstable inverse. 

(2) DIC does not work when inverse models are not well-damped. 

(3) DIC does not work when there is a lack of tuning options. 

(4) DIC scheme has high sensitivity to disturbance & noise. 

5.4 ANN based Internal Model Control (NN-IMC) 

The problems of DIC approach can be eliminated using the Internal Model Control 

(IMC) approach. IMC is an extension of DIC scheme. IMC scheme has the general structure 

depicted in Fig. 5.12.  
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Controller  Plant
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Fig. 5.12 The basic structure of IMC scheme  
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Where, d(k) is an unknown disturbance affecting the system. u(k) is the manipulated 

input to both the process and its model. The process output, y(k+1), is compared with the 

output of the model, resulting in a signal ˆ( )d k . That is, 

ˆ( ) [ ( ) ( )] ( ) ( )P Pd k G z G z U k d k         5.2      

 If d(k) is zero for example, then ˆ( )d k is a measure of the difference in behaviour 

between the process and its model. 

 If ( ) ( ),P PG z G z   then ˆ( )d k  is equal to the unknown disturbance. 

Thus ˆ( )d k may be regarded as the information that is missing in the model, ( )PG z , and 

can therefore be used to improve control. This is done by subtracting ˆ( )d k from the set-point 

R(k), which is very similar to affecting a set-point trim. The resulting control signal is given by, 

 

 ˆ( ) [ ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( ) ( )C P P CU k R k d k G z R k G z G z U k d k G z       
        5.3             

 

Thus,                  
 ( ) ( ) ( )

( )
1 ( ) ( ) ( )

C

P P C

R k d k G z
U k

G z G z G z




   


   5.4          

       Since  

( ) ( ) ( ) ( )PY k G z U k d k   5.5              

The closed loop transfer function for the IMC scheme is therefore 

 ( ) ( ) ( ) ( )
( ) ( )

1 ( ) ( ) ( )

C P

P P C

R k d k G z G z
Y k d k

G z G z G z


 

   


 
          

5.6 

or, 
( ) ( ) ( ) 1 ( ) ( ) ( )

( )
1 ( ) ( ) ( )

C P C P

P P C

G z G z R k G z G z d k
Y k

G z G z G z

   
   




 

        

5.7             

From this closed loop expression, it can be evident that if 
1( ) ( )C PG z G z   , and if 

( ) ( ),P PG z G z   then the perfect set-point tracking and disturbance rejection can be 

achieved. Notice that, theoretically, even if ( ) ( ), P PG z G z (Forward model), perfect 

disturbance rejection can still be realised provided 
1( ) ( ) ,C PG z G z   (Inverse model). In this 

work, ( )PG z is the ANN based forward model of the BDC and GC(z) is the ANN based 

inverse model of the BDC. The complete scheme of NN-IMC for BDC is shown in Fig. 5.13.  

The successful implementation of the NN-IMC approach relies on the accuracy of the 

forward and inverse models [62, 105]. NN-IMC scheme is capable to suppress the noisy 

measurements and high frequency disturbances whereas NN-DIC scheme can not handle 

such situations.  
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Fig. 5.13  Schematic of NN-IMC scheme 

5.5 Simulation Results  

The simulation studies have been carried out for two cases: 

1. Reference tracking, 

2. Disturbance rejection 

5.5.1 Case a: Reference Tracking  

Initially without any control of reflux flow and reboiler heat duty the output (methanol 

composition) of the BDC was 0.83 mole fraction. Now, the desired output has been set to 

0.98 mole fraction and NN-DIC and NN-IMC schemes have been applied on BDC plant. The 

NN-DIC and NN-IMC schemes developed in the previous section are utilized in both the 

cases. The simulation studies have been carried out in MATLAB®/SIMULINK environment. 

Fig. 5.14 and 5.15 shows the output response of NN-DIC and NN-IMC schemes respectively.  

 

Fig. 5.14 Output of NN-DIC scheme 
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Fig. 5.15 Output of NN-IMC scheme 

Outputs of these schemes have also been compared with the output of NN-MPC 

scheme (discussed in chapter 4) and shown in Fig. 5.16. Mean square error (MSE) obtained 

in all the schemes are compared in Fig. 5.17.  

 

           Fig. 5.16 Output of NN-DIC, NN-IMC and NN-MPC scheme for reference tracking 

 

Fig. 5.17 MSE of control schemes for reference tracking 
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The performance parameters, rise time, settling time and MSE are given in Table 5-4. It 

is observed from the result that rise time, settling time and MSE reduces in NN-IMC scheme 

compared to other schemes. 

5.5.2 Case b: Disturbance Rejection 

To simulate this case, feed flow-rate has been increased by 10% (from 2.5 kg-mol/hr. 

to 2.75 kg-mole/hr.). This change is considered as a disturbance in the feed flow. The 

responses of NN-DIC and NN-IMC schemes have been obtained at set-point of 0.98 mole 

fraction and at given disturbance Fig. 5.18 shows the response of NN-DIC and NN-IMC 

scheme.  

 
Fig. 5.18 Output of NN-DIC, NN-IMC and NN-MPC scheme for disturbance rejection 

The outputs of these schemes are also compared with the output of NN-MPC scheme. 

Fig. 5.19 compares the MSE of all the three schemes. Table 5-4 compares the performance 

parameters (rise time, settling time and MSE) of all the three schemes. 

 

Fig. 5.19 MSE of control schemes for disturbance rejection 
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The superiority of the NN-IMC scheme over the NN-DIC scheme becomes evident in 

the disturbance rejection case. In both case studies, the NN-IMC works effectively compared 

to the other schemes as given in Table 5-4. 

Table 5-4 Performance parameters of proposed schemes  

Performance 

parameters 

Control schemes 

Case 1: At Feed flow-rate= 

2.5 kg-mol/hr 

Case 2: At Feed flow-rate= 

2.75 kg-mol/hr 

NN-DIC NN-MPC NN-IMC NN-DIC NN-MPC NN-IMC 

Rise time(sec.) 50      31      30 60       45 35 

Settling time(sec.) 105      70      52 150      110 85 

MSE 2x10-5 1.55x10-5 1.4x10-5 2.5x10-5 1.6x10-5 1.5x10-5 

 

5.6 Conclusion 

In this chapter, ANN has been incorporated in the inverse-model control scheme in two 

different ways i.e. NN-DIC and NN-IMC methods. In NN-DIC scheme, ANN is used as the 

inverse model of the plant whereas; in NN-IMC approach, both the forward and inverse ANN 

models of the plant are used. These schemes are used to control the methanol composition 

in BDC. The two schemes are also compared with NN-MPC scheme on the basis of 

performance parameters (rise time, settling time and MSE). The performance of the schemes 

has been carried out for two cases (a) reference tracking (b) disturbance rejection.  It is 

concluded by the results that in both case studies, the NN-IMC approach is more capable 

compared to other schemes to reject the disturbance.  
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Chapter 6: ANFIS BASED CONTROL SCHEME FOR BINARY DISTILLATION 

COLUMN 

In this work, two ANFIS based controllers are designed to control the methanol composition in BDC by 

controlling the reflux flow-rate and reboiler heat duty. The performance of the proposed controller is 

compared with NN-IMC control scheme. The results obtained show the improvement in the settling 

time and MSE with ANFIS scheme as compared to the other schemes. 

6.1 Introduction  

As described in the previous chapter, distillation is one of the most frequently used 

separation technique in the chemical and petroleum industries. Considering the complexity of 

nonlinear control problems, it is necessary to evaluate the performance of advance control 

techniques to overcome the shortcomings of conventional control schemes. In chapter 5, 

different Neural Network (NN) schemes have been evaluated to control the methanol 

composition in BDC. Among various kinds of industrial process control techniques, Adaptive 

Neuro-Fuzzy Inference System (ANFIS)  is proposed in this work to control the methanol 

composition in BDC [87]. In ANFIS, ANN is incorporated in Fuzzy Inference System (FIS), 

which can use knowledge by learning algorithms of ANN. The learning capability is an 

advantage from the viewpoint of FIS and the formation of linguistic rule base is 

advantageous from the viewpoint of ANN. The literature review of ANFIS controller has been 

discussed in chapter 1. 

The ANN based model of BDC (described in chapter 2) is utilized as the plant in ANFIS 

control scheme. Two separate ANFIS controllers have been designed to control the reflux 

flow and reboiler heat duty respectively.  

6.2 Adaptive Neuro-Fuzzy Inference System  

An intelligent system is a system that is able to make decisions by its own. Intelligent 

systems adapt themselves using some example situations (inputs of a system) and correct 

decisions for future situations [106]. Neural networks and Fuzzy systems are the examples of 

the artificial intelligent systems. Fuzzy systems provide a unified framework to represent 

incomplete information by taking into account the gradual or flexible nature of variables [107]. 

This is an alternative approach to classical method that is based on the observations that, 

humans think using linguistic terms such as ―small‖ or ―large‖ rather than crisp numerical 

values. Fuzzy systems work on conditional if-then rules. These fuzzy if then rules use fuzzy 

sets as linguistic terms in antecedent and conclusion parts and can be determined from 

human experts or can be generated from observed data. The fuzzy systems are 

advantageous in a way that it is easy to interpret knowledge in the rule base [89]. ANFIS 

constructs an input-output mapping based both on human knowledge (in the form of fuzzy 

rules) and on generated input-output data pairs (in the form of ANN). Neuro-Fuzzy systems 

have advantages over fuzzy systems because acquired knowledge is easy to understand. 
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ANFIS is one of the examples of Neuro-Fuzzy systems in which a FIS is implemented in the 

framework of adaptive neural networks. The basic structure of a FIS consists of three 

conceptual components: a rule base, which contains a selection of fuzzy rules, a database, 

which defines the membership functions used in the fuzzy rules, and a reasoning 

mechanism, which performs the inference procedure upon the rules and a given condition to 

derive a reasonable output or conclusion. ANFIS is based on Takagi–Sugeno FIS [108]. In 

Takagi-Sugeno FIS, the output of each rule is a linear combination of input variables plus a 

constant term. The final output is the weighted average of each rule‘s output. These weights 

can be determined utilizing the ANN training algorithm. 

In distillation process, composition control is very important. A continuous column has 

to be operated as precisely as possible to meet the purity specifications. In this work, ANFIS 

controllers are designed to control the methanol composition in BDC.  

6.3 Design of ANFIS control scheme for BDC 

In a fuzzy control system selection of the range for each fuzzy set is a difficult task. For 

the best performance of a fuzzy controller, this range has to be tuned effectively. There is not 

an effective method in FIS for tuning Membership Functions (MF‘s) to minimize the output 

error and it is totally depends on human knowledge or experience. In ANFIS, using a given 

I/O data set, the ANFIS constructs a FIS whose MF‘s parameters are tuned to create the 

best IF-THEN rules. ANFIS architecture contains five layers. The first layer is ‗fuzzification‘ 

layer and adapts the parameters for the chosen MF‘s. The second layer represents the IF 

conditions to set the rules. The output of the second layer is normalized in the third layer. In 

the fourth layer, premise and consequent parameters (explained later) are determined using 

ANN approach. Weighted sum output of rules is obtained in the fifth layer. In this work, 

ANFIS based controller is designed and used in an adaptive way in the distillation column 

control scheme as shown in Fig. 6.1. ANN based model for BDC is used as a real plant to 

design the ANFIS based controller. 
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Fig. 6.1 ANFIS control scheme for BDC 
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 Two separate ANFIS controllers namely: ANFIS A and ANFIS B are designed for the 

reflux flow-rate and the reboiler heat duty respectively. Each ANFIS controller has three 

inputs. The inputs to ANFIS A are plant output, xD(k-1), error (between the desired process 

output and measured process output), e(k-1); and; reflux flow-rate, R(k-1). All inputs are 

measured at previous sampling instant.  The inputs to the controller ANFIS B are plant 

output, error (between the desired process output and measured process output), e(k-1); 

xD(k-1); and; reboiler heat duty, S(k-1).  

ANFIS is a kind of neural network that is based on Takagi-Sugeno FIS. Since it 

integrates both neural networks and fuzzy logic principles, it has potential to capture the 

benefits of both in a single framework. The working and design of an ANFIS controller is 

explained in the following section. 

6.3.1 Structure of ANFIS 

To understand the ANFIS architecture, consider three fuzzy if-then rules based on first 

order Sugeno model: 

Rule 1: If (I1 is A1) and (I2 is B1) and (I3 is C1) then (f1=p1I1+q1I2+r1I3+s1), 

Rule 2: If (I1 is A2) and (I2 is B2) and (I3 is C2) then (f2=p2I1+q2I2+r2I3+s2), 

Rule 3: If (I1 is A3) and (I2 is B3) and (I3 is C3) then (f3=p3I1+q3I2+r3I3+s3). 

Where I1, I2 and I3 are the inputs, Ai, Bi and Ci (i=1, 2, 3) are the fuzzy sets, fi are the 

outputs within the fuzzy region specified by the fuzzy rule. pi, qi, ri and si are the design 

parameters or weights, called consequent parameters which are determined during the 

training process. In the proposed scheme, I1, I2 and I3 inputs corresponds to xD(k-1), e(k-1) 

and R(k-1) which are fed to ANFIS A. For ANFIS B, I1, I2 and I3 inputs corresponds to xD(k-1), 

e(k-1) and S(k-1). The control output is R(k) and S(k) for the proposed controllers ANFIS A 

and ANFIS B respectively.  

The structure of ANFIS is shown in Fig. 6.2. In this figure A1, A2, A3, B1, B2, B3, C1, C2, 

C3, Π, N and Z are called the nodes. A node is either, a fixed node, or an adaptive node. In 

Fig. 6.2, square node represents the adaptive node and circle node represents the fixed 

node. Symbol 1
1Y means output signal of first node of first layer, where superscript 

corresponds to layer number and subscript to node number. Similarly other output signals 

are defined. 

First layer of ANFIS have adaptive nodes. The outputs of layer 1 are the fuzzy 

membership grade of the inputs which are given by: 

1
1( ),i Ai

IY  for i={1,2,3}, 1
2( ),j B j

IY  for j={1,2,3}, 1
3( ),k Ck

IY  for k={1,2,3} 

Where I1, I2 and I3 are inputs and 1
iY , 1

jY and 1
kY are the Membership Functions of Ai, Bj, 

and Ck respectively. 
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 Fig. 6.2  Architecture of ANFIS 

In this work, for each input, three Gaussian fuzzy sets (named ‗small‘, ‗medium‘ and 

‗large‘) have been considered as shown in Fig. 6.3. Where c is the centre of the 

corresponding fuzzy set; and ζ is the half-width. 

1 22 3

Input variable
 

Fig. 6.3 Gaussian Membership Function 

For each input, membership grade can be determined in the following manner. 1( )Ai
I

, 2( )Ai
I and 3( )Ai

I are the membership grades for inputs I1, I2 and I3 respectively. 
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6.3 

Where , ,i j kc c c , ,i j   and k are called as premise parameters. These parameters 

are depending on the shape of membership function.  

Second layer has fixed nodes Π, indicating that they are simple multiplier nodes. 

Outputs of this layer are also called the firing strength, and represented as:  

2
1 2 31 ( ) ( ) ( ),

A B Ci j k
I I IY       i=1 & j=4 & k=7 6.4 

2
1 2 32 ( ) ( ) ( ),

A B Ci j k
I I IY        i=2 & j=5 & k=8 6.5 

2
1 2 33 ( ) ( ) ( ),

A B Ci j k
I I IY        i=3 & j=6 & k=9 6.6 

In third layer, nodes are also fixed nodes lebeled with N. This layer normalizes the 

output of previous layer. Outputs of third layer are called the normalized firing strengths, and 

represented as: 

2
3

2 2 2
2 3

, 1,2,3l
l

l

Y
Y l

Y Y Y
 

 
 

              

6.7 

The fourth layer nodes are adaptive nodes. The output of each node in this layer is 

simply the product of the normalized firing strength and a first order polynomial (for a first 

order Sugeno model). The outputs of this layer are given by: 

4 3

3
1 2 3( 1 ), 1, 2,3

l l l

l l l l l

Y Y f

Y p q I r I s l



    
 

                

6.8 

Where, pl, ql, rl and sl are the consequent parameters. The fifth layer node is a single 

fixed node labelled ‗Z‘. This node performs the summation of all incoming signals. The output 

of this node is given by: 

3
5 3

3
2

1 2 3

2 2 2
2 3

( )

 

  


 



l l
l

l l l l l
l

l

out

Y Y f

Y p I q I r I s

Y Y Y

f

 

                

6.9 

In ANFIS architecture first layer has two variables { , ; , ; , }i i j j k kc c c    for each input, 

which are related to the input membership functions and called premise parameters. Fourth 
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layer has four variables{ , , , ; , , , ; , , , }i i i i j j j j k k k kp q r s p q r s p q r s for each normalized input, 

pertaining to the first order polynomial, which are known as consequent parameters. The 

learning algorithm determines the premise and consequent parameters and discussed in the 

following section. 

6.3.2 Learning Algorithm of ANFIS 

The objective of the learning algorithm for ANFIS architecture is to determine the best 

value for premise and consequent parameters to make the ANFIS output match the training 

data. When the premise parameters { , ; , ; , }i i j j k kc c c   of the membership functions are 

fixed, the output of the ANFIS controller can be written as:  

3 3 3
1 1 2 2 3 3

3
1 1 1 1 2 1 3 1

3
2 2 1 2 2 2 3 2

3
3 3 1 3 2 3 3 3

( )

( )

( )

outf Y f Y f Y f

Y p I q I r I s

Y p I q I r I s

Y p I q I r I s

  

   

   

   

                 

6.10 

3 3 3 3
1 1 1 1 2 1 1 3 1 1 1

3 3 3 3
2 1 2 2 2 2 2 3 2 2 2

3 3 3 3
3 1 3 3 2 3 3 3 3 3 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

outf Y I p Y I q Y I r Y s

Y I p Y I q Y I r Y s

Y I p Y I q Y I r Y s

   

   

   

                 

6.11 

This is a linear combination of the consequent parameters

1 1 1 1 2 2 2 2 3 3 3 3{ , , , ; , , , ; , , , }p q r s p q r s p q r s . The optimal value of these parameters can be 

obtained by using any optimal approach. The hybrid learning algorithm is used to determine 

the ANFIS parameters. Hybrid learning algorithm combines the gradient method and the 

least square estimation (LSE) to determine these parameters. The output of ANFIS can be 

written as the following matrix format for n number of training samples. 

[ ] [ ][ ]f B X  6.12 

Where  

 

1

2

1 1 1 1 2 2 2 2 3 3 3 3.[ ] ,[ ]

.

out

out
T

outn

f

f

f X p q r s p q r s p q r s

f

 
 
 
  
 
 
  

and,  

                 

                 

               

3 3 3 3 3 3 3 3 3 3 3 3
1 1 1 2 1 3 1 2 1 2 2 2 3 2 3 1 3 2 3 3 3

1 1 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3 3 3 3 3
1 1 1 2 1 3 1 2 1 2 2 2 3 2 3 1 3 2 3 3 3

2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3
1 1 1 2 1 3 1 2 1 2 2 2 3 2 3 1 3 2 3

[ ]

n n n n n n n n

Y I Y I Y I Y Y I Y I Y I Y Y I Y I Y I Y

Y I Y I Y I Y Y I Y I Y I Y Y I Y I Y I Y
B

Y I Y I Y I Y Y I Y I Y I Y Y I Y I Y I


           

  3
3 3

n
Y

 
 
 
 
 
 
 
 

                 

6.13 
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Where [ ]X  is an unknown matrix, whose elements come from the consequent 

parameters set. This is a standard linear least squares problem, so The LSE of X, X*, is the 

best solution which minimizes the squared error 
2

f BX  

1( )T TX B B B f   6.14 

Where BT is the transpose of B and B-1 is the inverse of B. Now the Gradient method 

and the LSE method are combined to update the parameters in an adaptive network. For 

hybrid learning, each epoch is composed of a forward pass and a backward pass. In the 

forward pass, after an input vector is presented, the node outputs in the network are 

determined layer by layer until a corresponding row in the matrices [ ]f  and [ ]B in (6.12) are 

obtained. This process is repeated for all the training data entries to form the complete [ ]f

and [ ]B  ; then consequent parameters are determined by using Equ. 6.14. After the 

consequent parameters are identified, the measured error (between the desired methanol 

composition and measured methanol composition) is computed for each training data entry. 

In the backward pass, the error signals are propagated from the output end to the input end; 

the gradient vector is accumulated for each training data entry. At the end of the backward 

pass for all training data, the premise parameters are updated by the gradient method. In the 

gradient method, the error between the desired target and measured output is utilized. The 

error in the output of distillation column is Dref De x x  . 

The error function, to be optimized is 

221 1
( )

2 2
( )E Ex xe Dref D   

 
6.15 

Where ‗α‘ can take any value from the premise parameters set i.e. α may be either ic

or i , Cost function gradient δE/δα is determined by applying the chain rule to find the value 

of the parameter ‗α‘ as 
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Where
Dx

u




 is the plant Jacobian; u(k) is controller output; Reflux flow (R(k)) and 

reboiler heat duty (S(k))  are the controller outputs for ANFIS A and ANFIS B respectively. To 

minimize the error, the parameter change should be in the negative direction. Therefore, 

E
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Adaptation formula for the parameter   is calculated as 
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( ) ( 1)k k     
 6.19 

From (6.18) and (6.19) 

( ) ( 1)
E

k k  



  

  
6.20 

Where, η is the learning rate. Learning rate is the training parameter that controls the 

size of weight and bias changes during learning. All parameters in the controller are adapted 

according to (6.20). Table 6-1 summarizes the activities in each pass. 

Table 6-1 Hybrid learning procedure in ANFIS 

- Forward Pass Backward Pass 

Premise Parameters Fixed Gradient Descent 

Consequent Parameters Least Square Estimate Fixed 

Signals Node Outputs Error Signals 

 

6.3.3 Training and Testing of ANFIS Controller 

In this work, the training data set is acquired from the experimental set-up of BDC. The 

training data set should include data for each process variable (xD(k-1), e(k-1), R(k-1) and 

S(k-1)), evenly distributed throughout the operational range including the maximum and 

minimum values of input-output variables. The range of inputs and output is given in Table 5-

1 in chapter 5. The data for the training of the ANFIS are sampled at interval of 5 seconds 

and 2508 data sets have been collected. This frequency is fast enough to capture the system 

dynamics for training of the ANFIS controllers. Out of total 2508 data samples, 2048 data 

samples are used for the training purpose (each input and output containing 512 samples). 

Remaining 460 data samples are used for testing (each input and output containing 115 

samples). Gaussian membership functions are used for all the input variables. Each input is 

labelled with three linguistic variables Small (S), Medium (M) and Large (L). Table 6-2 lists 

the linguistic labels and the corresponding premise parameters. 

Table 6-2 Initial Premise parameters 

With these values the training and the testing of ANFIS controllers have been 

performed. Fig. 6.4 shows the performance of ANFIS A for training data. The output of 

ANFIS 
Inputs 

Linguistic 

label 
c σ 

ANFIS Input

s 

Linguistic 

label 
c σ 

ANFIS 

A 

I1 

Small 0.83 0.08 

ANFIS 

B 

I1 

Small 0.83 0.08 

Medium 0.91 0.08 Medium 0.91 0.08 

Large 0.99 0.08 Large 0.99 0.08 

I2 

Small -0.40 0.50 

I2 

Small -0.40 0.50 

Medium 0.15 0.55 Medium 0.10 0.50 

Large 0.70 0.60 Large 0.70 0.50 

I3 

Small 3.00 0.03 

I3 

Small 5.50 1.25 

Medium 3.03 0.02 Medium 6.75 1.05 

Large 3.06 0.03 Large 8.00 1.25 
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ANFIS A with testing data is shown in Fig. 6.5. The root mean square error (RMSE) of ANFIS 

A for testing data is shown in Fig. 6.6.  

 

 

Fig. 6.4 Training performance of ANFIS A  

 

Fig. 6.5 Output of ANFIS A for testing data 

 

Fig. 6.6 RMSE of ANFIS A for testing data 

0 20 40 60 80 100 120
3

3.01

3.02

3.03

3.04

3.05

3.06

Time(sec.)

R
e
fl
u
x
 f

lo
w

 (
k
g
-m

o
le

/h
r)

 

 

Target output

ANFIS A output

0 10 20 30 40 50 60 70 80 90

0.005

0.01

0.015

0.02

0.025

0.03

Time (sec.)

R
M

S
E

(R
o
o
t 

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r)

 

 

Testing error



 

86 

Similarly the training and testing for ANFIS B is performed. The training performance 

for ANFIS B is shown in Fig. 6.7. The output of ANFIS B with testing data is shown in Fig. 

6.8. The root mean square error (RMSE) of ANFIS B for testing data is shown in Fig. 6.9.  

 

Fig. 6.7 The training performance of ANFIS B  

 

Fig. 6.8 Output of ANFIS B for testing data 

 

Fig. 6.9 RMSE of ANFIS B for testing data 
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Hybrid learning algorithm described in section 6.3.2 has been used to determine the 

best value of premise and consequent parameters. The initial premise parameters given in 

Table 6-2 has been modified after learning and given in Table 6-3.  

Table 6-3 Premise Parameters after Learning 

The shape of the fuzzy sets considered initially has also been modified due to change 

in premise parameters. Initial and final shape of fuzzy sets for each input of ANFIS A is 

shown in Fig. 6.10.  

 
(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Fig. 6.10 Initial and final MFs for ANFIS A (a) Initial MF's for I1 (b) Initial MF's for I2 (c) Initial MF's for I3 
(d) Final MF's for I1 (e) Final MF's for I2 (f) Final MF's for I3 

 

ANFIS 
Inputs 

Linguistic 
label 

c σ 
ANFIS Input

s 
Linguistic 

label 
c σ 

ANFIS 

A 

I1 

Small 0.818 0.04 

ANFIS 

B 

I1 

Small 0.83 0.08 

Medium 0.90 0.06 Medium 0.91 0.08 

Large 0.95 0.08 Large 0.99 0.08 

I2 

Small -0.40 0.55 

I2 

Small -0.40 0.50 

Medium 0.10 0.50 Medium 0.15 0.60 

Large 0.43 0.40 Large 0.70 0.55 

I3 

Small 3.00 0.03 

I3 

Small 5.50 1.25 

Medium 3.035 0.01 Medium 6.75 1.25 

Large 3.06 0.03 Large 8.00 1.25 
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For ANFIS B, the initial and final shape of fuzzy sets is shown in Fig. 6.11. 

 
(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Fig. 6.11 Initial and final MFs for ANFIS B(a) Initial MF's for I1 (b) Initial MF's for I2 (c) Initial MF's for I3 
(d) Final MF's for I1 (e) Final MF's for I2 (f) Final MF's for I3 

6.4 Simulation Results  

In this section, the performance of the ANFIS controllers is evaluated for reference 

tracking and disturbance rejection cases. The objective of the controller is to get the desired 

purity of methanol composition by manipulating the reflux flow and reboiler heat duty. The 

performance of ANFIS controller has also been compared with NN-IMC controller for both 

the cases. 

6.4.1 Case a: Reference Tracking 

For reference tracking case, a step change from 0.83 to 0.98 mol fraction in methanol 

composition is considered. The output with ANFIS control scheme is shown in Fig. 6.12. The 

change in feed flow-rate affects the thermal equilibrium of the BDC; therefore, the value of 

feed flow-rate has been kept constant at 2.5 kg-mole/hr. The MSE with ANFIS control 

scheme is given in Fig. 6.13. These figures also compare the performance of ANFIS with 

NN-IMC control scheme. 
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Fig. 6.12 Output of ANFIS and NN-IMC controller at feed flow-rate 2.5 kg-mole/hr. 

 

 

Fig. 6.13 MSE of ANFIS and NN-IMC controller at feed flow-rate 2.5 kg-mole/hr 

 

The performance of the proposed ANFIS controller is evaluated on the basis of rise 

time, settling time and MSE. The values of these performance parameters with ANFIS 

scheme are given in Table 6-4. In this table the performance parameters (rise time, settling 

time and MSE) of all the schemes proposed in this thesis have also been compared. It is 

observed from these results that for reference tracking all the schemes give the satisfactory 

results. Amongst all the schemes best performance is obtained from ANFIS scheme. 

6.4.2 Case b: Disturbance Rejection 

Fig. 6.14 illustrates the comparative performance of ANFIS scheme at the +10% and 

change in feed flow-rate. The MSE at output with ANFIS control scheme is shown in Fig. 

6.15. These figures also compare the performance of ANFIS controller with NN-IMC 

controller for disturbance rejection case. 
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       Fig. 6.14 Output of ANFIS and NN-IMC controller at +10% change in feed flow-rate 

 

 

      Fig. 6.15 MSE of ANFIS and NN-IMC controller at +10% change in feed flow-rate 

In Table 6-5, the performance parameters (rise time, settling time and MSE) of all the 

schemes proposed in this thesis has also been compared for disturbance rejection case. The 

results obtained show that ANFIS controller works effectively for this case. It is observed 

from the results that BDC with ANFIS controller is faster and reaches the steady state values 

earlier as compared to the other controllers discussed in this thesis. 

Table 6-4 Performance parameters with different proposed control schemes for reference tracking 
case 

Performance 

Indicators 

Control Schemes 

PID LMPC NN-MPC NN-DIC NN-IMC ANFIS 

Rise time(sec.) 36 25 31 50       30 30 

Settling time(sec.) 70 100 70 105       52 45 

MSE 2.1x10
-5
 1.8x10

-5
 1.55x10

-5
 2x10

-5
 1.4x10

-5
 1.3x10

-5
 

0 20 40 60 80 100 120
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Time (sec.)

M
e
th

a
n
o
l 
c
o
m

p
o
s
it
io

n
 (

m
o
l 
fr

a
c
ti
o
n
)

 

 

ANFIS

NN-IMC

0 10 20 30 40 50
0

0.5

1

1.5
x 10

-5

Time (sec.)

M
ea

n 
S

qu
ar

ed
 E

rr
or

 (
M

S
E

)

 

 

ANFIS

NN-IMC

Feed flow: 2.75 kg-mol/hr.



 

91 

Table 6-5 Performance parameters with different proposed control schemes for disturbance rejection 
case 

Performance 

Indicators 

Control Schemes 

PID LMPC NN-MPC NN-DIC NN-IMC ANFIS 

Rise time(sec.) 41 37 45 60       35 30 

Settling time(sec.) 240 280 110 150       85 50 

MSE 2.5x10
-5
 1.9x10

-5
 1.6x10

-5
 2.5x10

-5
 1.5x10

-5
 1.4x10

-5
 

6.5 Conclusion 

In this work, ANFIS control scheme is proposed and its performance is evaluated to 

control the methanol composition in BDC. The nonlinear ANN model of BDC is used to 

implement the ANFIS control scheme. Two separate ANFIS controllers have been designed 

for the control of reflux flow-rate and reboiler heat duty. Performance of the ANFIS control 

scheme is evaluated for reference tracking and disturbance rejection cases. A perturbation of 

+10% is incorporated in feed flow-rate for disturbance rejection case. The performance of 

this ANFIS control scheme is compared with NN-IMC control scheme on the basis of 

considered performance indicators (rise time, settling time, MSE). For both of the cases, it is 

concluded that the settling time and MSE with ANFIS control scheme have been improved as 

compare to other control schemes.   
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Chapter 7: CONCLUSIONS AND FUTURE SCOPE 

7.1 Conclusion 

In this thesis, different control schemes for BDC have been developed. Laboratory set-

up of BDC has been utilized to generate the input data (reflux flow-rate and reboiler heat 

duty) and output data (methanol composition) for the development of accurate model of the 

column. The work carried out in this thesis has been summarized and concluded in the 

following paragraphs.  

In the first chapter, detailed description of the laboratory set-up has been given. A 

detailed literature survey about the BDC and its control schemes has also been carried out in 

this chapter. 

In second chapter, an equation based model of the existing set-up of BDC has been 

developed.  The concept of mass balance and constant relative volatility has been utilized to 

develop the equation based model. This equation based model has been validated with the 

experimental set-up results. The result shows that the developed equation based model is in 

good agreement with the experimental set-up. To develop the equation based model many 

assumptions have been considered, which give errors if large disturbances are considered. 

Therefore; an ANN based model is also developed for the BDC based upon the knowledge 

of the six inputs and single output acquired from the real BDC laboratory set-up. The inputs 

are tray temperature, reflux flow-rate, feed flow-rate, reboiler duty, reflux drum top pressure 

and reboiler bottom pressure. The output of the neural network model is methanol 

composition. Two neural network topologies namely: FFNN and RNN have been used for the 

modeling. The training of the ANN based model of BDC has been carried out by the data 

acquired from experiments performed on the laboratory set-up of BDC. Performance of the 

developed ANN models are also compared with the equation based model of BDC. The 

results obtained show that the ANN model more closely represents the existing set-up.  

In third chapter, inferential control scheme is developed to control the output methanol 

composition and implemented on the laboratory set-up of BDC. Inferential control scheme is 

the technique in which secondary variable is controlled to get the desired output. In the 

present work, tray temperature is used as the secondary variable. For the laboratory set-up, 

it is found by the sensitivity analysis that the temperature of fourth tray is an exact indicator of 

the corresponding output methanol composition. A relation between the controller current 

and the tray-4 temperature has been established and used to control the temperature of the 

tray with a PID controller. The optimal parameters of the PID controller have been 

determined using Genetic Algorithm. These parameters have been used to set the PID 

parameters of existing PID controller with laboratory BDC set-up. With these parameter 

settings, experiments have been performed for two cases. In first case, set-point is varied 

and output is observed at steady-state. In second case, feed flow-rate is increased by 10% 

and again the output is observed. It is observed in the first case that the output is following 
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the set-point. In second case, feed flow disturbance is rejected and final output is obtained as 

per the set-point. 

In fourth chapter, Linear Model Predictive Control (LMPC) and Neural Network based 

Model Predictive Control (NN-MPC) schemes have been developed to control the methanol 

composition in BDC. In linear MPC scheme, equation based model of BDC is utilized to 

develop the scheme. This scheme does not perform well when large changes in operating 

condition (change in feed flow-rate and feed composition) are considered, because BDC 

model is inherently nonlinear. To overcome this, a nonlinear MPC based on ANN model is 

developed. This model is utilized to predict the process future response in the MPC algorithm 

to get the desired methanol composition. Performance of these controllers has also been 

compared with PID controller. The performance of linear and nonlinear MPC has been 

evaluated for two cases: Case A: reference tracking and Case B: disturbance rejection. It can 

be concluded from the results that NN-MPC scheme performs better than the LMPC and PID 

schemes on the basis of rise time, settling time, MSE and percentage overshoot. 

In chapter five, direct inverse control (DIC) and internal model control (IMC) schemes 

have been developed to control the final composition of methanol. In this chapter forward 

model and inverse model of BDC have been developed utilizing the ANN approach. In 

developing the NN-DIC scheme, inverse model is utilized whereas, in NN-IMC scheme, both 

forward and inverse models are used. Both the schemes have been simulated for reference 

tracking and disturbance rejection cases. Results of both the schemes have also been 

compared with NN-MPC scheme. It is observed from the results that on the basis of rise 

time, settling time and MSE, the performance of the NN-IMC scheme is better than the NN-

DIC and NN-MPC schemes.  

In sixth chapter, Adaptive Neuro Fuzzy Inference System (ANFIS) based control 

scheme is proposed and its performance is evaluated to control the methanol composition in 

BDC. In ANFIS, ANN is incorporated with Fuzzy Inference System, which can use 

knowledge by learning algorithms. The learning capability is an additional advantage for FIS 

while the formation of linguistic rule base is useful for the training of ANN. The ANN based 

model of BDC is used to implement the ANFIS control scheme. Two separate ANFIS 

controllers have been designed for the control of reflux flow-rate and reboiler heat duty. 

ANFIS control scheme is evaluated for reference tracking and disturbance rejection cases. A 

perturbation of +10% is incorporated in feed flow-rate for disturbance rejection case. The 

performance of the proposed ANFIS control scheme is also compared with NN-IMC control 

scheme on the basis of performance indicators (rise time, settling time, MSE). It is concluded 

that the settling time and MSE with ANFIS control scheme have been improved as compare 

to other control schemes for both of the cases. 
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7.2 Future Scope 

In the present research work, the experimentation is performed for binary mixture of 

methanol and water. The equation based model and ANN based model is developed and 

validated with the experimental set-up. Various control schemes are developed for these 

models. The following suggestions are made for future work: 

1. The mathematical model (described in chapter-2) is developed for binary mixture. A 

mathematical model may be developed for multi-component mixture. 

2.  A hybrid model for BDC may be developed by utilizing the advantages of both 

mathematical modeling and ANN based modelling. 

3. In the present work, only temperature closed loop control is existing therefore; tray 

temperature is utilized as a secondary measurement variable in inferential control 

scheme. There is a scope to add more closed loops (reflux flow, steam flow etc.) for 

the better inferential control of BDC. 

4. The inferential control of distillation process is carried out on the basis of single tray 

temperature control for the laboratory set-up of BDC. As the set-up is of small 

capacity, the single tray temperature control was enough for controlling temperature 

profile of distillation process; however for large distillation columns, single tray 

temperature control may not be sufficient and it may become necessary to control two 

or more tray temperatures for smooth control of the temperature profile of distillation 

process that produces desired concentration of the distillate.  

5. The existing refractometer, which is connected with the output distillate flow path, 

produces its output in the form of 4-20mA signal. This signal may be utilized as one of 

the manipulated variable to get the desired purity of output distillate with some 

modifications in the existing set-up of BDC. 

6. Field-programmable gate arrays (FPGAs) have become an alternative solution for 

fast realization of digital control systems. Various control schemes developed in the 

present work (ANN schemes, MPC based scheme, ANFIS scheme) may be 

implemented on FPGA platform. 
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EXPERIMENTAL SET UP OF DISTILLATION COLUMN 
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APPENDIX-A 

Table A-1 Column and mixture details for binary mixture  

Number of trays 9 

Weir height in stripping section 0.47 inch  

Weir length in stripping section 0.47 inch  

Column diameter in stripping section 4.80 inch  

Weir height in rectifying section 5.91 inch 

Weir length in rectifying section 5.91 inch 

Column diameter in rectifying section 4.80 inch  

Volumetric hold up in column base 0.5414 ft3 

Volumetric hold up in reflux drum 0.0001 ft3 

Liquid feed rate  2.5 kg-moles/hr 

Liquid feed temperature  34.5 deg-C  

Pressure in the bottom  115.21 kPa 

Pressure in the reflux drum  101.42 kPa 

Reboiler heat input  6.0 kW 

Reflux flow-rate  3.0 kg-moles/hr  

Vapor distillate product flow-rate   0.0 kg-moles/hr 

Murphree vapor efficiency  0.60 
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APPENDIX-B 

B.1 REFLUX DIVIDER UNIT 

 The reflux divider controls the reflux ratio of the process and hence the reflux flow-

rate. The connection diagram of reflux divider is shown in Fig. B.1.The timer controls the on-

off switching time of the relay and by using a transformer for step down the voltage and AC 

to DC converter, the relay is operated. The output of the relay is converted to 230 V AC to 

energize the coil and magnetize the core. At the time of magnetization, the core attracts the 

upper part of metallic funnel and lower portion of funnel gets the opposite direction and the 

flow of liquid goes in reflux. When the timer is off the magnetic core gets discharged and the 

metallic funnel occupies its normal position and the liquid goes to the distillate container. 

Timer Transformer

AC

 to 

DC

Relay 

24 V DC, 25 mA

Magnetic Core

From 

Condenser

Reflux 

Divider

Reflux Distillate

Coil

230 V AC

24 V 

DC

24 V 

AC

Switch

230 V 

AC

+

-

 

Fig. B.1 Schematic diagram of reflux divider unit 
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APPENDIX-C 

The parameters of PID controllers obtained by the Ziegler-Nichols method [45] are 

given in Table C-1. 

Table C-1 PID controller parameters 

Tuning         

parameters 

PID controller-1  

(Reflux flow-rate loop) 

       PID controller 2 

(Reboiler heat duty loop) 

     KP   2        5 

     Ki  10       15 

     Kd      0.01            0.02 
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APPENDIX-D 

D.1 Sequential Quadratic Programming (SQP) 

To understand the use of SQP [109] in problems with general constraints, we begin by 

considering the equality-constrained problem, 

Minimize f(x) 

Subject to ( ) 0ˆ j xc  , j=1,…, m̂  

The idea of SQP is to model this problem at the current point xk by a quadratic sub-

problem and to use the solution of this sub-problem to find the new point xk+1. SQP is in a 

way the application of Newton‘s method to the KKT optimality conditions. 

The Lagrangian function for this problem is ˆ ˆ ˆ( , ) ( ) ( )TL x f x c x   . 

 We define the Jacobian of the constraints by 

ˆ1ˆ ˆ ˆ( ) ( ) [ ( ),..., ( )]T T
mA x c x c x c x     D.1 

Which is an n x m matrix and ( ) ( )g x f x  is an n-vector as before. 

 Applying the first order KKT conditions to this problem we obtain 

ˆ( ) ( )
0

ˆ( )

Tg x A x

c x

 
 

  

 D.2 

This set of nonlinear equations can be solved using Newton‘s method, 

ˆ

ˆˆ( , ) ( )

( ) 0

TT k k k k

k

p g AW x A x

p cA x 

       
     

         

 D.3 

Where the Hessian of the Lagrangian is denoted by 2ˆ ˆ( , ) ( , )xxW x L x  and the 

Newton step from the current point is given by 

1

ˆ1
ˆ ˆ

k k k

k k

x x p

p
 





     
      

         

 D.4 

An alternative way of looking at this formulation of the SQP is to define the following 

quadratic problem at ˆ( , )k kx   

minimize 
1

2

T T
k kp W p pg  

Subject to ˆ 0k kA p c   

  This problem has a unique solution that satisfies 

ˆ 0T
k k kk

W p g A     

ˆ 0k kA p c   

By writing this in matrix form, we see that pk and μk can be identified as the solution of 

the Newton equations we derived previously. 
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1
ˆ ˆ0

T
k kk k

kkk

p gW A

cA  

      
     

      

 D.5 

This problem is equivalent to (D.3), but the second set of variables, is now the actual 

Lagrange multipliers  1
ˆ
k  instead of the Lagrange multiplier step, ˆp


. To obtain (D.3) 

simply substitute ˆ
k by ˆ kp


 in (D.5). 

A line search SQP algorithm: 

1. Choose parameters 0<η<0.5, 0<η<1 and the initial point (x0, λ0). 

2. Initialize the hessian estimate, say B0=I. 

3. Evaluate f0, g0, c0 and A0. 

4. Begin major iteration loop in k: 

4.1 If termination criteria are met, then stop. 

4.2 Compute pk by solving (D.3). 

4.3 Choose μk such that pk is a descent direction for θ at xk. 

4.4 Set αk =1, 

I. While ( , ) ( , ) ( , )k k k k k k k k kx p x D x p          

II. Set k k   for some 0 .    

4.5 Set 1 .k k k kx x p    

4.6 Evaluate fk+1, g k+1, c k+1 and A k+1. 

4.7 Compute λk+1 by solving 
1

1 1 1 11
T

k k k kk
A A gA


   

  
 

 

4.8 Set 1 1 1, ( , ) ( , ).k k k k x k k x k ks p y L x L x        

4.9 Obtain Bk+1 by updating Bk using a quasi- Newton formula. 

5. End major iteration loop. 
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APPENDIX-E 

E.1 LEVENBERG-MARQUARDT ALGORITHM 

The Levenberg-Marquardt algorithm [110, 111] iteratively adjusts estimates of model 

parameters {β} to minimize residuals between measured dependent variable outputs {y} and 

predictions from a numerical model f(.) based on independent variable inputs {x} as shown in 

(E.1).  For a given set of model parameters {β}k at iteration k each measured training pair {x}i 

and {y}i will have residuals {e}i,k as shown in (E.2).  For parameter updates {Δβ} shown in 

(E.3), the Taylor series expansion for residuals at iteration k+1 may be written as shown in 

(E.4) using the Jacobian [J] of the numerical model with respect to model parameters in 

(E.5). 
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E.5 

If only one training pair is available and the number of dependent variable outputs is 

equal to the number of parameters (nobs=1 and nout=npar), Equation E.4 is deterministic 

and one can try to drive all nout residuals {e}i,k+1 to zero using (E.6).  This provides the 

classical Newton-Raphson root finding algorithm shown in (E.7). 
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If only one training pair is available and the number of dependent variable outputs is 

larger than the number of parameters (nobs=1 and nout>npar), residuals {e}i,k+1 at iteration 

k+1 can be minimized by the standard linear least squares solution shown in (E.8). 
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However, if the number of parameters is greater than the number of dependent 

variable outputs, E.8 is row insufficient and multiple training pairs are required (nobs>1 for 
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nout<npar).  Residuals from all training pairs at iteration k shown in (E.2) may be 

concatenated as shown in (E.9) providing an aggregate sum of squares (SSQ) over all 

observations.  Similarly all residuals predicted at iteration k+1 for update {Δβ} in (E.4) may be 

concatenated as shown in (E.10).  The linear least squares solution for parameter updates 

that will minimize the predicted aggregate SSQ after at iteration k+1 is then shown in (E.11) 

and (E.12). 
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Equation E.12 provides rapid second order Newtonian convergence but can become 

unstable if the square Jacobian summation is nearly singular.  Levenberg and Marquardt 

showed that a positive factor λ added to the diagonal elements of the square Jacobian 

summation matrix as shown in Equation E.13 can provide both rapid and stable 

convergence.  For very small values of λ, this provides Newtonian convergence similar to 

Equation E.12. For larger values of λ, this provides small but stable steps along the gradient 

shown in Equation E.14. 
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E.14 

If parameter updates provide a stable step with smaller aggregate SSQ than prior 

iterations, factor λ is reduced in preparation for the next iteration.  If parameter updates 

provide an unstable step with larger aggregate SSQ than prior iterations, those updates are 
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rejected, factor λ is increased and the process is repeated.  Typically λ is started at a value of 

0.1, is reduced by a factor of 10 for stable steps, and is increased by a factor of 10 for 

unstable steps. 

Convergence may be assessed by observing when absolute values of parameter 

updates are small while the aggregate SSQ approaches the expected standard deviation of 

residuals.  Observing the progression of factor λ can also help indicate convergence. 

The algorithm may be summarized as follows. 

1)  Postulate initial estimates for parameters {β} 

2)  Evaluate aggregate SSQ over all training pairs for initial parameter estimates (E.9) 

3)  Set factor β = 0.1  

4)  Proceed through all training pairs 

 a)  Evaluate all residuals {e}i,k (E.2) 

 b)  Evaluate all Jacobians [J]i.k (E.5) 

 c)  Accumulate summations          


nobs

1i

k,i

T

k,i

nobs

1i

k,i

T

k,i eJandJJ  (E.12) 

5)  Add factor λ to diagonal and compute parameter updates {Δβ} (E.14) 

6)  Update parameters {β}k+1 (Equation 3) 

7)  Evaluate aggregate SSQ over all training pairs for new parameter estimates (E.9) 

8)  If aggregate SSQ has been reduced: 

 a)  Reduce factor λNEW = λOLD / 10 

 b)  Proceed with the next iteration at step 4) 

9)  If aggregate SSQ has increased: 

 a)  Discard the new parameter estimates and use immediate prior values 

 b)  Increasee factor λNEW = λOLD * 10 

 c)  Proceed with the next iteration at step 5) 

Because of its robust performance, Levenberg-Marquardt method is often used with 

finite difference numerical approximations for the Jacobian [J] of the numerical model with 

respect to model parameters.  Note that this Jacobian must be re-evaluated for each training 

pair for each iteration whether analytically or numerically. Penalty functions may be added to 

residuals to impose explicit or implicit inequality constraints on parameters.  However as with 

any gradient technique, convergence may dither across constraint boundaries if the minimum 

SSQ is at a constraint boundary. 
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APPENDIX-F 

F.1 CONTROLLER UNIT FOR DISTILLATION COLUMN 

The controller unit works in automatic mode to control tray temperature to desired set 

point. In the present work PID controller unit is used so that the distillate composition can be 

controlled and also to generate temperature patterns with constant temperature of selected 

trays. 

The three variables associated with the controller unit are: 

 Process Variable: It is the temperature of the tray connected to the controller unit. 

 Set Point: It is the desired tray temperature that is fed into the controller either directly or 

through the designed modules. 

 Control Output: It is the controller output in the form of current signal, which is given to 

SCR based temperature controller. The SCR based temperature controller is connected 

to the reboiler heater. Therefore the controller signal indirectly controls the reboiler 

heaters to keep the temperature of the connected tray at the desired value; by controlling 

the average voltage applied to heater and in turn the heat input to reboiler. The 

schematic diagram for controller unit is shown in Fig. F.1. The working principle of SCR is 

shown in Fig. F.2. 
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Fig. F.1 Schematic diagram of controller unit with distillation column 

  

 In the present work, digital indicating controller unit [99] model No. UT320 

manufactured by Yokogawa is used. It has the following features 

 Digital indicating controller 

 Universal input process variable 

 Programmable multiple set points and control output setting 

 Three alarm facility available 

 Fully programmable controller 

 RS-485 interface available 
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 Fig. F.2 SCR interfacing for switching action 
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APPENDIX-G 

G.1 Genetic Algorithms 

Genetic algorithms (GA) were first introduced by John Holland in the 1970s (Holland 

1975) as a result of investigations into the possibility of computer programs undergoing 

evolution in the Darwinian sense. GA is part of a broader soft computing paradigm known as 

evolutionary computation. They attempt to arrive at optimal solutions through a process 

similar to biological evolution. The GA methodology is particularly suited for optimization, a 

problem solving technique in which one or more very good solutions are searched for in a 

solution space consisting of a large number of possible solutions. GA reduces the search 

space by continually evaluating the current generation of candidate solutions. GA work on a 

population of individuals represents candidate solutions to the optimization problem. These 

individual are consists of a strings (called chromosomes) of genes. The genes are a practical 

allele (gene could be a bit, an integer number, a real value or an alphabet character etc. 

depending on the nature of the problem). GAs applying the principles of survival of the fittest, 

selection , reproduction , crossover (recombining) , and mutation on these individuals to get , 

hopefully , a new butter individuals (new solutions) . GAs are applied for those problems 

which either cannot be formulated in exact and accurate mathematical forms and may 

contain noisy or irregular data or it take so much time to solve or it is simply impossible to 

solve by the traditional computational methods. 

G.2 How Genetic Algorithms Work 

Genetic algorithm maintains a population of individuals, say P(t), for generation t. Each 

individual represents a potential solution to the problem at hand. Each individual is evaluated 

to give some measure of its fitness. Some individuals undergo stochastic transformations by 

means of genetic operations to form new individuals. There are two type of transformation: 1) 

Mutation, which creates new individuals by making changes in a single individual. 2) 

Crossover, which creates new individuals by combining parts from two individuals. The new 

individuals, called offspring C(t), are then evaluated. A new population is formed by selecting 

the more fit individuals from the parent population and offspring population. After several 

generations, genetic algorithm converges to the best individual, which hopefully represents 

an optimal or suboptimal solution to the problem.  

The general structure of the Genetic algorithms is as follow: 

Begin 

{ 

t=0; 

Initialize P(t); 

Evaluate P(t); 

While (not termination condition) do 
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Begin 

{ 

Apply crossover and mutation to P(t) to yield C(t); 

Evaluate C(t); 

Select P(t+1) from P(t) and C(t); 

t=t+1; 

} 

End 

} 

End 

G.3 Encoding 

How to encode the solutions of the problem into chromosomes is a key issue when 

using genetic algorithms. Various encoding methods have been created for particular 

problems to provide effective implementation of genetic algorithms. According to what kind of 

symbol is used as the alleles of a gene, the encoding methods can be classified as follows:1) 

Binary encoding, 2) Real-number encoding and, 3) Integer or literal permutation encoding. 

Binary encoding (i.e., the bit strings) method is used in the present problem. 

G.4 Genetic Algorithms Operators 

There are two basic genetic algorithms operators which are crossover and mutation. 

These two operators are work together to explore and exploit the search space by creating 

new variants in the chromosomes. There are many empirical studies on a comparison 

between crossover and mutation. It is confirmed that mutation operator play the same 

important role as that of the crossover. 

G.4.1 Crossover 

One of the unique aspects of the work involving genetic algorithms (GAs) is the 

important role that Crossover (recombination) plays in the design and implementation of 

robust evolutionary systems. In most GAs, individuals are represented by fixed-length strings 

and crossover operates on pairs of individuals (parents) to produce new strings (offspring) by 

exchanging segments from the parents‘ strings. Traditionally, the number of crossover points 

(which determines how many segments are exchanged) has been fixed at a very low 

constant value of 1 or 2. A commonly used method for crossover is called single point 

crossover. In this method, a single point crossover position (called cut-point) is chosen at 

random (e.g., between the 4th and 5th variables) and the parts of two parents after the 

crossover position are exchanged to form two offspring, as shown in figure (1). The other 

crossover methods are multi point crossover and uniform crossover method. 
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Crossover 
 

Fig. G.1 Single point crossover 

 

G.4.2 Mutation 

Mutation is a common operator used to help preserve diversity in the population by 

finding new points in the search pace to evaluate. When a chromosome is chosen for 

mutation, a random change is made to the values of some locations in the chromosome. A 

commonly used method for mutation is called single point mutation. Though, a special 

mutation types used for varies problem kinds and encoding methods. Single gene 

(chromosome or even individual) is randomly selected to be mutated and its value is 

changed depending on the encoding type used, as shown in figure (2). 

 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 

Mutation 
 

Fig. G.2 Single point mutation 

 
G.4.3 Selection 

Selection is the process of determining the number of times a particular individual is 

chosen for reproduction and, thus, the number of offspring that an individual will produce. 

The principle behind genetic algorithms is essentially Darwinian natural selection. Selection 

provides the driving force in genetic algorithms. With too much force, genetic search will 

terminate prematurely. While with too little force, evolutionary progress will be slower than 

necessary. 

Typically, a lower selection pressure is indicated at the start of genetic search in favor 

of a wide exploration of the search space, while a higher selection pressure is recommended 

at the end to narrow the search space. In this way, the selection directs the genetic search 

toward promising regions in the search space and that will improve the performance of 

genetic algorithms. Many selection methods have been proposed, examined and compared. 

The most common types are:  

1) Roulette wheel selection,  

2) Rank selection,  

3) Tournament selection,  

4) Steady state selection and,  

5) Elitism.  
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In the present work, ‗Roulette Wheel’ selection method is used for reproduction. For 

example as shown in figure 3, each individual in the population is allocated a section of a 

roulette wheel. The size of the section is proportional to the fitness of the individual. A pointer 

is spun and the pointed individual is selected. The number of times the roulette wheel is spun 

is equal to size of the population. This process continues until the selection criterion has 

been met. Thus, the probability of an individual being selected is related to its fitness. This 

ensures that fitter individuals are more likely to leave offspring. Multiple copies of the same 

string may be selected for reproduction and the fitter strings should begin to dominate. For 

example, there are three chromosomes 10001, 10000 and 01110 as shown in figure 3. The 

number of times the roulette wheel is spun is equal to size of the population. It is shown in 

figure 3 the way how wheel is now divided. Each time the wheel stops this gives the fitter 

individuals the greatest chance of being selected for the next generation. 
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Fig. G.3 Roulette wheel approach: based on fitness 

 

G.5 Genetic Algorithms Parameters 

One of the more challenging aspects of using genetic algorithms is to choose the 

configuration parameter settings. Discussion of GA theory provides little guidance for proper 

selection of the settings. The population size, the mutation rate, and the type of 

recombination have the largest effect on search performance. They are used to control the 

run of a GA. They can influence the Population and the Reproduction part of the GAs. In 

traditional GAs the parameters has fixed values. Some guidelines are used in selecting these 

parameter settings are given in the following subsections. 

G.5.1 Population Size 

The population size is one of the most important parameters that play a significant role 

in the performance of the genetic algorithms. The population size dictates the number of 

individuals in the population. Larger population sizes increase the amount of variation 

present in the initial population at the expense of requiring more fitness evaluations. It is 

found that the best population size is both applications dependent and related to the 
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individual size (number of chromosomes within). For larger individuals and challenging 

optimization problems, larger population sizes are needed to maintain diversity (higher 

diversity can also be achieved through higher mutation rates and uniform crossover) and 

hence better exploration.  

G.5.2 Crossover Rate  

Crossover rate determines the probability that crossover will occur. The crossover will 

generate new individuals in the population by combining parts of existing individuals. The 

crossover rate is usually high and ‗application dependent‘.  

G.5.3 Mutation Rate 

Mutation rate determines the probability that a mutation will occur. Mutation is 

employed to give new information to the population (uncover new chromosomes) and also 

prevents the population from becoming saturated with similar chromosomes, simply said to 

avoid premature convergence. Large mutation rates increase the probability that good 

schemata will be destroyed, but increase population diversity. 

G.6 Advantages and Disadvantage of Genetic Algorithms 

Crossover is a crucial aspect of any genetic algorithm as in biology; crossover can lead 

to new combinations of genes which are more fit than any in the previous generations. 

Creating new variants is the key to genetic algorithms, as there is a good chance of finding 

better solutions. This is why mutation is also a necessary part of the genetic algorithms. It will 

create offspring which would not have arisen otherwise, and may lead to a better solution.  

Other optimization algorithms have the disadvantage that some kind of initial guess is 

required and this may bias the final result. GA on the other hand only requires a search 

range, which need only be constrained by prior knowledge of the physical properties of the 

system. Effectively they search the whole of the solution space, without calculating the 

fitness function at every point. This can help avoid a danger in any optimization problem 

which is being trapped in local maxima or minima. There are two main reasons for this: 

1) The initial population, being randomly generated, will sample the whole of the 

solution space, and not just a small area. 

2) Variation inducing tactics, i.e. crossover and mutation, prevent the algorithm being 

trapped in one part of the solution space. 

Genetic algorithms can be employed for a wide variety of optimization problems. They 

perform very well for large scale optimization problems which may be very difficult or 

impossible to solve by other traditional methods.  

The disadvantage of genetic algorithms is that it, Sometimes, have trouble finding the 

exact global optimum because there is no guaranty to find best solution. Another drawback is 

that GA requires large number of response (fitness) function evaluations depending on the 

number of individuals and the number of generations. Therefore, genetic algorithms may 

take long time to evaluate the individuals. 


