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ABSTRACT

Over the years, great extent of research efforts are devoted towards the investigation of

hydrodynamic characteristics of thermally driven flows and transport processes, due to

their fundamental and pragmatic significance. Thermally (or buoyancy) driven flows are

widely encountered in diverse fields of nuclear reactor systems, meteorology, geophysics,

energy storage and conservation, fire control, and chemical, food, and metallurgical in-

dustries, as well as in the conventional fields of the fluid and heat transfer processes (Roy

and Basak, 2005).

Among others, investigation of natural convection heat transfer in closed, as well as open,

ended cavities is considered as an important research field due to the wide ranges of the

industrially important applications namely chemical vapor deposition (Spall, 1996), cool-

ing devices in electronic equipment (Bilgen and Muftuoglu, 2008; Hsu and Wang, 2000;

Du et al., 1998), polymer and material processing (Hsiao, 2007; Habib et al., 2005), solar

collectors (Hobbi and Siddiqui, 2009), electronic card arrays (Manca and Nardini, 2010)

and domestic refrigerators, oven (Skok et al., 1990). It is not to be mentioned that the

flow and heat transfer in cavity is also considered as one of the bench marking problem in

the development and testing of numerical and computational fluid dynamics solver. An

ideal representation of natural convection heat transfer is generally based on the thermal

conditions on the cavity walls, i.e., one wall maintained isothermally at higher temper-

ature while other walls are either kept isothermally at lower temperature or maintained

adiabatically or open to the ambient. In chemical and process industries, however, such

ideal conditions deviate due to the practical and measurement limitations and they, in

turn, leads to the non-linear heating/cooling of the cavity walls. It, therefore, necessi-

tates the investigation of the partially/non-linearly heated cavities and their influences on

the natural convection characteristics. In spite of their wide occurrence in the ranges of

practical/industrial applications, very limited results are available for cavity having varied
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combinations of partial heating arrangements (Varol et al., 2008; Aghajani Delavar et al.,

2011; Sankar et al., 2011; Nikbakhti and B., 2012; Jmai et al., 2013). Thus, in this work,

an attempt have been made to fulfill the gap available in literature for convective heat

transfer in enclosures. The natural convection heat transfer in enclosure (closed as well

as open ended) is, therefore, studied herein for laminar range of Rayleigh number (heat

intensity parameter for buoyancy driven flows), Prandtl numbers, heating size and loca-

tions. Further attempts are also made to investigate the magneto-hydrodynamic (MHD)

effects on natural convection heat transfer in partially heated square cavity.

Similarly, the flow and heat transfer across bluff bodies in particular cylinders and spheres,

is considered as one of the fundamental as well as classical problem in the area of fluid

mechanics. Owing to its fundamental and practical significance, the flow across bluff

bodies (cylinder of circular and non-circular cross-sections and spheres) have been explored

well over the centuries, for instance, see (Zdravkovich, 1997a,b; Chhabra, 1996, 1999;

Dhiman et al., 2006a,b, 2007; Bharti et al., 2007). The review of the available literature

suggests that the flow across circular cylinders have been explored in greater details in

comparison of rectangular cylinders (?Sharma and Eswaran, 2005; Dhiman, 2006; Bharti

et al., 2007; Dhiman et al., 2007; Sahu, 2010), etc. It is, however, greatly acknowledged

that the flow characteristics of square cylinders, i.e., gross engineering parameters such as

drag coefficient, Nusselt number, wake size, etc., are often used in the designing of cooling

towers, antennas, chimneys, support structures, high rise buildings, etc (Chatterjee et al.,

2009; Sharma et al., 2012). Though reasonable amount of information is available for flow

past bluff bodies other than circular cylinder, it is neither extensive and comprehensible.

The available literature encompasses the influence of wall blockage on flow and thermal

characteristics have been explored, but for the limited range of blockage (β ≤ 1/8) and/or

aspect ratio (AR ≤ 6). The present work aims to extend the literature knowledge for the

wide ranges of both blockage and aspect ratios of a rectangular cylinder. In particular, the

influences of wall blockage and aspect ratio on forced convection flow and heat transfer

from rectangular cylinders have been investigated numerically for the wide ranges of the

flow governing parameters.

Over the past decades, the lattice Boltzmann method (LBM) has been established as a

promising numerical tool of computational fluid dynamics (CFD) for solving various prob-

lems of complex fluid flows and heat transfer. The lattice Boltzmann method has derived

from Boolean variables based lattice gas automata (LGA). It is, therefore, considered as

an alternative numerical tool to conventional CFD numerical tools, which are based on

the macroscopic continuum equations (Mishra et al., 2005; Mishra and Roy, 2007; Mishra
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et al., 2008; Mondal and Mishra, 2009). The lattice Boltzmann method basically solves a

kinetic and discrete velocity based Boltzmann equation (in statistical physics) (Succi et al.,

1989; Chen and Doolen, 1998). The LBM has been successfully applied in the varieties

of complex fluid flows involving porous structures (Succi et al., 1989; Kao et al., 2007),

magneto-hydrodynamic (Chen et al., 1991a; Sheikholeslami et al., 2012), non-Newtonian

rheology Delouei et al. (2014); Nazari and Ramzani (2014), reaction-diffusion (Dawson

et al., 1993), diffusion-dispersion (Mohamad et al., 2009), suspension flows (Sankara-

narayanan et al., 2002), compressible flows (Yu and Zhao, 2000), multiphase flows (Chen

et al., 1991b), nanotube effect (Jafari et al., 2014) etc. The advantages of the LBM are

simplicity of coding and algorithm, ease in application of boundary conditions (thus, suit-

able for complex fluid flow problems), ease of parallel computing, an adroitness estimation

of pressure field as compared to conventional CFD tools, etc (Chen and Doolen, 1998).

Keeping in mind the simplicity and efficiency, aforementioned investigations have been

carried out by using lattice Boltzmann method (LBM) based computational flow solver,

developed in C++ programming language in the present work. The flow and thermal field

in LBM can be simulated by using three approaches, viz., multispeed, double distribution

function (DDF) approach and passive scalar (or simplified DDF). In the present work,

passive scalar- thermal lattice Boltzmann method (PS-TLBM) based on simplified double

distribution function model (He et al., 1998; Peng et al., 2003b) is used to solve field

equations.

The basic validation of the present LBM code is ascertained through the standard bench-

mark problems of 2D lid driven cavity (Ghia et al., 1982b) and flow between parallel walls.

For validation of flow through channel, the comparison of analytical solution of the fully

developed velocity profile along vertical axis of channel is carried out. The comparison

of present results with available for both cases shows close agreement, thus lending the

credibility in the reliability and accuracy of the numerical results developed by in-house

LBM code.

Further, optimum grid size is chosen by carrying out grid independence for all considered

problems herein. For the problems of flow past a rectangular cylinders, the proper choice

of domain parameters (upstream length, downstream length, etc.) is very important as

it has influence on the accuracy of the solution. Thus, systematic study is carried out for

the selection of these parameters.

In this work, the extensive results elucidating the influence of flow governing parameters

on the local and global flow and thermal characteristics of flow problems (briefed in
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Table 1: Flow problems considered in this work with their ranges of parameters.

Sr. No. Problem Physical parameters
1. Differentially heated cavity∗ 0.71 ≤ Pr ≤ 100

104 ≤ Ra ≤ 106

2. Partially-differentially heated cavity∗ 104 ≤ Ra ≤ 106

Pr = 0.71; Lh = Lc = 1/2
3. Magneto-hydrodynamic partially heated cavity∗ Pr = 1; 103 ≤ Ra ≤ 105

0 ≤ Ha ≤ 120; θ = 0o, 45o, 90o

1/6 ≤ Lc ≤ 1; Lh = 1/2
4. Partially heated open ended cavity∗ 0.71 ≤ Pr ≤ 7; 103 ≤ Ra ≤ 106

Ll=Middle, top, bottom
Lh = 1/4, 1/2, 3/4

5. Square cavity with built-in heated square block∗ 0.71 ≤ Pr ≤ 10
104 ≤ Ra ≤ 106

Hs = 0.15H

6. Flow past rectangular cylinder# 5 ≤ Re ≤ 40; 1/8 ≤ β ≤ 1/20
Pr = 1; AR = 1, 2, 4, 6

*: Natural convection, #: Forced convection, θ: Angle of magnetic field, Ll : Heating location,
Lh : Heater size, AR: aspect ratio of rectangular cylinder (width/height), β(b/H): Blockage

ratio, b: side of square, H: Height of channel, Hs: height of square cylinder

next paragraphs) are obtained by using the in-house developed PS-TLBM solver. In

particular, dependence of local characteristics (streamlines, vorticity, pressure, isotherm

profiles) and gross engineering parameters (individual and total drag coefficients, local and

average Nusselt numbers, etc.) on the flow and geometrical parameters (Reynolds number,

Rayleigh number, Prandtl number, heater and cooler size, heating location, Hartmann

number etc.) are presented. The ranges of conditions used in various problem is detailed

in Table 5.1.

A brief description of the problems considered herein is presented below.

1. Natural convection in differentially heated square cavity: Effect of Prandtl

and Rayleigh numbers

The influence of wide range of Prandtl numbers on natural convective heat transfer in

differentially heated closed cavity have been elucidated by using thermal lattice Boltz-

mann method (TLBM) for laminar range of Rayleigh number. Natural convection effect

increases with the increase in Prandtl number (Pr) for all values of the Rayleigh number

(Ra) due to the increasing dominance of viscous forces over the inertial forces. As ther-

mal diffusion is inversely proportional to Prandtl number, velocity is more diffused than

thermal energy. The average Nusselt number (dimensionless heat transfer coefficient) of
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isothermal wall is seen to increase with increasing value of both the Prandtl and Rayleigh

numbers.

2. Natural convection in partially-differentially-simultaneously heated/cooled

square cavity

The influence of one wall of cavity exposed to contrast (i.e., both hot and cold) thermal

conditions on natural convective heat transfer have been explored. The one wall of cavity

is equally exposed to hot and ambient conditions and other wall exposed to ambient. The

flow governing parameters used for numerical experimentation are Rayleigh number in

laminar range with heater size, Lh = 1
2

with air (Pr = 0.71) as a working fluid. The

results indicated the formation of convection cell near lower part of mixed heated wall of

cavity is observed for Ra ≥ 104, as low temperature fluid retained in that region. The

size of convection cell increases with the increase in Rayleigh number (Ra). The average

Nusselt number (Nu) and overall Nusselt number (N̂u) value show linear increase with

Rayleigh number.

3. Magneto-hydrodynamic natural convection in partially heated square cavity

In this problem, the influence of cooler size, Hartmann number, Rayleigh number and

angle of magnetic field direction on natural convection heat transfer in differentially as

well as partially heated cavity is elucidated. The cavity considered is partially heated

at middle location (1/4 ≤ Lh ≤ 3/4) at one wall while other wall is partially cooled

for different cooling length (Lc). The other part of vertical walls except heated/cooled

are kept at adiabatic thermal condition. The top and bottom walls are also maintained

adiabatically. It is observed that temperature contours move towards partially heated wall,

which increases the temperature gradients, hence, enhancing the rate of heat transfer

(average Nusselt number values). Also the rate of heat transfer increases with both

Hartmann and Rayleigh number, while the angle of magnetic field has marginal influence

on heat transfer rate.

4. Natural convection in partially heated open ended square cavity

The natural convection heat transfer analysis in a partially heated open ended square

cavity have been carried out to elucidate the influence of heater size and heating lo-

cation. First, effect of three heating locations (middle, top, bottom) and heater size

(Lc = 1/4, 1/2, 3/4) for Pr=0.71 and, secondly, effect of Prandtl number (0.71 ≤ Pr ≤ 7)

on partially heated open ended cavity (heated at the middle location of vertical wall),

on heat transfer characteristics are analyzed herein. Linear dependence of the average

Nusselt number (Nu) on the Rayleigh number is observed, irrespective of the heating

locations and heater size. However, average Nusselt number (Nu) shows a proportional
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dependence for the bottom and middle locations and inversely proportional dependence

for the top heating location on the heater size, i.e., an increasing value of Lh enhanced Nu

for the bottom and middle locations and deteriorated Nu for the top heating location.

Over the range of Rayleigh number, middle partial heating location shows higher heat

transfer rate followed by bottom and top heating locations.

The results also indicated the strong influence of Prandtl numbers on rate of heat transfer.

As expected, the average Nusselt number values increased with both Prandtl and Rayleigh

number. Finally, a closure relationship between average Nusselt number with Prandtl and

Rayleigh numbers have developed in standard form.

5. Natural convection in square cavity with built-in square block

In this problem, the vertical walls of square cavity is exposed to the ambient (Tc) with

horizontal walls maintained at adiabatic condition. A heated square block (Th) is placed at

the center of cavity. The natural convection characteristics have been explored for range

of fluids (0.71 ≤ Pr ≤ 10). It is observed that the heated block has significant effect

on the nature of flow inside cavity. The circulation of fluid between active wall causes

formation of plume over the top wall of square block. The Prandtl number variation

causes significant change in structure of the plume. With the increase in Prandtl number

the length of plume decreases. Moreover, the increase in Prandtl number causes isotherms

patterns to be more confined towards the heated walls. The circulation of fluid between

cold cavity walls with heated square block is decipited in the form of streamlines. The

Prandtl number has remarkable influence on the size of this quasi-motionless region, i.e.,

increasing in Prandtl number decreases the size of this region.

6. Wall effects on forced convection flow and heat transfer from channel built-

in rectangular cylinder

The effect of wall confinement on the momentum and heat transfer characteristics of a

channel built-in rectangular cylinder (1 ≤ AR ≤ 6) for blockage ratios (1/8 ≤ β ≤ 1/20),

Reynolds numbers (5 ≤ Re ≤ 40) and Prandtl number (Pr = 1) have been explored.

The results indicated that the increase in blockage ratio causes marginal increase in re-

circulation length for considered range of Reynolds number. The drag coefficient values are

found to be in inverse proportion with blockage ratio and Reynolds number. Furthermore,

for a fixed Reynolds number, increase in blockage ratio causes crowding of isotherms in the

vicinity of cylinder. Higher surface pressure coefficient (CP ) values are obtained for front

face of cylinder at low blockage ratio. Thus, increasing blockage ratio reduces CP values

along the cylinder surface. Linear increase in average Nusselt number (Nu) is observed

with Reynolds number and lower blockage ratio. Thus, increase in blockage ratio impedes
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rate of heat transfer. The Colburn heat transfer factor jH is strongly dependent on

blockage ratio. Finally, an empirical correlations relating total drag coefficient (CD) and

average Nusselt number (Nu) with blockage ratio (β) and Reynolds number (Re) have

been developed for its possible use in engineering design purpose. It is observed that drag

as well as average Nusselt number have linear dependence on aspect ratio of rectangular

cylinder.

In summary, the detailed insights of the natural and forced convection flow and heat

transfer have been gained and presented for wide ranges of flow governing parameters and

geometrical parameters. In addition, the present study also successfully developed and

utilized the passive scalar thermal lattice Boltzmann method (PS-TLBM) with acceptable

level of accuracy.
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Chapter 1

INTRODUCTION

Though, the heat transfer fundamentals have been studied over the centuries, its devel-

opment is still one of the developing research area in the field of the applied thermal

science. Among the three modes of heat transfer (conduction, convection and radiation),

the convective heat transfer mechanics is abundantly found in domestic as well as indus-

trial applications. The study of heat transfer enhancement is given prime importance

due to its prime significance in the chemical and process industries. The heat transfer by

convection correlates two basic fields, namely, heat transfer and fluid mechanics. Thus,

the study of convective heat transfer problems is based on fundamental principles of heat

transfer and fluid mechanics (Bejan, 2003).

Over the past decades, the use of computers for solving problems of engineering fields

have witnessed tremendous increase, particularly the problems of fluid flow and heat

transfers, which are abundantly observed in the areas of automobile industry, power sec-

tor, aerospace, hydrology, etc. The reasons which are responsible for the rapid growth

in the use of computers for solving engineering problems are necessity of speedy solution

with moderate to high accuracy, very high cost involved in the laboratory experiments, etc

(Murlidhar and Sundararajan, 2003). The availability of high speed computers has consti-

tuted the quick and cheap solution of such problems and the solution of complex problems

1
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can be obtained at very less time. A brief discussion on the fundamental approaches for

the solution of fluid flow and heat transfer problems is presented in the preceeding section.

1.1 Fundamental approaches for the solution of fluid

mechanics-heat transfer problems

For the solution of the problems of the fluid mechanics and heat transfer, generally three

appraoches are available. It can be seen from Figure 1.1, the physical problem can be

solved via three ways, viz., experimental, theoretical and numerical/CFD (Anderson,

1995). In order to illustrate the comparison between them let us consider an example

of determination of pressure coefficient on the surface of circular cylinder as reported

by Anderson (1995). In experimental investigation, first a circular cylinder of desired

Figure 1.1: Different approaches of solving thermo-hydrodynamic problem.

dimension need to be designed and manufactured. The model should have provision for

pressure estimation along the wall of circular cylinder, along with capability of producing

required free-stream conditions in the test section. The match of flow conditions in wind

tunnel can prove troublesome. Once the model and the wind tunnel flow conditions

finalized, the actual testing can be started. The test time should be kept minimum as it

requires maximum energy. Once the measurements are over, the wind tunnel correlation
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factors should be applied to the raw data and final useful results should be obtained.

Thus the experimental results are realistic answer to the problem but with the greater

cost (Anderson, 1995).

In theoretical approach, assumptions are made to simplifying the problem. A general

assumption is Newtonian fluid of perfect gas. This approach is useful in preliminary

design of system and reasonable answers of problem can be obtained.

From the inception of the powerful computers, the development of computational/numer-

ical methods have emerged as a strong way to explore and analyze the physical insights

of complex flow and heat transfer phenomenon (Mohamad, 2011). For an instance, the

development of finite element method (FEM) took pace in 1950’s followed by finite differ-

ence (FDM) and finite volume method (FVM) impressed the worldwide researchers from

1980’s to solve partial differential equations (PDE), in order to investigate the fluid flow

and heat transfer characteristics. In conventional approaches, the Navier-Stokes equations

are used to describe the fundamental physics of flow and heat transfer. In computational

fluid dynamics (CFD), basically there are two approaches for solving field equations, i.e.,

continuum and discrete. The solution of conservation of energy, mass, and momentum for

an infinitesimal control volume by using partial differential equations are required in the

continuum approach (finite difference, finite volume, finite element, etc), which is macro-

scopic scale. While the discrete approach uses the medium made of small particles such

as, atom, molecules, etc. such that these particles collide with each other. For solution

of such discrete domain lattice Boltzmann method (mesoscale) and molecular dynamics

(Microscopic) are used (Mohamad, 2011; Sukop and Throne, 2005). Figure 1.2 illustrates

the various ways of solution of field equations.
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1.2 CFD numerical methods

The most popular CFD methods can be discretized on the basis of its problem solution

approach, like macroscopic tools (finite difference, finite volume and finite element), meso-

scopic (lattice gas automata, lattice Boltzmann method) and microscopic (Monte Carlo

simulation). The brief discussion of all these methods are given below.

Figure 1.2: Various numerical/computational approaches of solving field equations.

1.2.1 Macroscopic numerical methods

This are conventional CFD tools. In these methods, macroscopic continuum equations

are discretized over a considered physical domain of problem of consideration.
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1.2.1.1 Finite difference method (FDM)

It is first numerical method developed for solution of partial differential equation. It was

first used by Euler, probably in the year of 1768 (Blazek, 2001). The fundamental idea

of FDM is to employ a Taylor series expansion for the discretization of the derivatives of

the flow variables. The discretizations by finite difference method is done by using three

ways, namely, central, forward and backward finite difference approach.

The advantages of FDM include its simplicity, possibility to obtain high-order approxi-

mations and thereby achieving high-order accuracy of the spatial discretisation, etc. The

drawbacks are low application range as requires a structured grid, can not be applied to

the body-fitted curve, etc (Blazek, 2001; Anderson, 1995).

1.2.1.2 Finite element method (FEM)

The development of finite element method was took place in 1956 for structural analysis.

After a decade, researchers started to utilize the finite element method for the numerical

solution of field equations in continuous medium. However, after 90’s only FEM were

successfully applied for the solution of Euler’s and Navier-Stokes equations. In FEM,

the physical domain is divided into triangular (2D) and tetrahedral (3D) elements. Thus

generation of unstructured grid is required. Depending on the element type and the re-

quired accuracy, a certain number of points at the boundaries and/or inside an element

is specified, where the solution of the flow problem has to be found. The total number of

points multiplied with the number of unknowns determines the number of degrees of free-

dom. Furthermore, the so-called shape functions have to be defined, which represent the

variation of the solution inside an element. In practical implementations, linear elements

are usually employed, which use the grid nodes exclusively. The shape functions are then

linear distributions, whose value is zero outside the corresponding element. This results

in a second-order accurate representation of the solution on smooth grids
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The finite element method has received much impetus from research community because

of its integral formulation and the use of unstructured grids, which are both preferable for

flows in or around complex geometries. The method is also particularly suitable for the

simulation of non-Newtonian fluids. But. the finite element method has a very rigorous

mathematical foundation, particularly for elliptic and parabolic problems. Although it

can be proved in certain cases that the FEM is mathematically equivalent to the finite

volume method in discretisation way, but the numerical effort is much more, which may

explain why the finite volume method became more popular among conventional numerical

method(Blazek, 2001; Anderson, 1995).

1.2.1.3 Finite volume method (FVM)

In FVM, the integral from of Navier-stokes/ Euler equations are directly utilized for

discretization. Unlike the other numerical methods like finite difference and finite element

method, where values are calculated at discrete places on a meshed geometry, FVM uses

a finite small volume near the mesh node. In finite volume method discretization, the

physical space is divided into a number of arbitrary polyhedral control volumes. The

accuracy of the spatial discretisation rely upon the particular scheme with which the

fluxes are estimated.

The main advantage of the FVM is that the spatial discretisation is carried out directly

in the physical space. Thus, there are no problems with any transformation between

coordinate systems, like in the case of the finite difference method. Compared to the

finite differences, one further advantage of the finite volume method is that it is very

flexible - it can be rather easily implemented on structured as well as on unstructured

grids. This renders the finite volume method particularly suitable for the treatment of

flows in complex geometries (Blazek, 2001; Anderson, 1995).
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1.2.2 Mesoscopic methods

In mesoscopic methods, the group/population of molecules/discrete particles are consid-

ered. There two methods which makes in mesoscopic numerical tool, namely, lattice gas

automata (LGA) and lattice Boltzmann method (LBM).

1.2.2.1 Lattice Gas Automata (LGA)

The fundamental idea of lattice gas automata was introduced by Von Neumann in 1940’s.

The basic idea of LGA was to divide the physical domain into discrete space and time

(Sukop and Throne, 2005). In particular, the Frisch-Hasslacher-Pomeau (FHP) model of

(Frisch et al., 1986) presented popular LGA model. In LGA model, a cellular automata or

an algorithmic entity is considered, which occupies a position on a lattice point in space.

That is why it also called as lattice gas cellular automata. At a particular time, a cellular

automata analyze its own state along with its neighbors. Thus, collision rules along with

initial and boundary conditions yield the evolution of system in time (Sukop and Throne,

2005; Miller, 1995; Chen and Doolen, 1998). The one dimensional cellular automata,

which is simplest LGA model considers its own and neighboring lattice states. There are

256 possible ways to update, if automation have two possible states (Frisch et al., 1986;

Miller, 1995; Chen and Doolen, 1998; Sukop and Throne, 2005). The advantages of lattice

gas automata, are exact computing (no round off error), ease in parallel simulation, etc.

But it has more drawbacks associated with it than advantages. For example, Galilean

In-variance, statistical noise, difficulty in 3D simulation, Boolean mathematics, etc (Chen

et al., 1992; Chen and Doolen, 1998; Sukop and Throne, 2005).

1.2.2.2 Lattice Boltzmann method (LBM)

In recent years, scientific and researchers community are widely using, an alternative

approach to solve Navier-Stokes field equations. This approach is called as the lattice

Boltzmann method (LBM) or lattice Boltzmann equation method (LBE). The lattice
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Boltzmann method is mesoscopic method as it utilizes a kinetic Boltzmann equation. The

concept of LBM has been derived from lattice gas cellular automata (LGA or LGCA).

The LBM solves a fully discrete kinetic equation for populations f(x, t), called particle

distributions functions (PDF) designed to reproduce the Navier-Stokes equations within

hydrodynamic limit. The particle distribution functions corresponding to the discrete

velocity (ek) fitting into the regular spacial domain with nodes x, which enables the

very efficient stream and colloid steps of lattice Boltzmann algorithm (Chikatamarla and

Karlin, 2009).

1.2.3 Microscopic methods

The Monte Carlo simulation falls under the category of microscopic methods. The de-

scription of which is given below.

1.2.3.1 Monte Carlo simulation

The development of this method started back in 1950’s. The fundamental idea of this

method is to select points/nodes in the region enclosed by the boundary and then take

the weighted data as the estimated value of the integral. A Monte Carlo method is a

methodology that involves using random numbers and probability to solve problems. In

this method, for iteratively evaluating a deterministic model using sets of random numbers

as inputs. This method is often used when the model is complex, nonlinear, or involves

more than just a couple uncertain parameters. A simulation can typically involve over

10,000 evaluations of the model, a task which in the past was only practical using super

computers (Metropolis and Ulam, 1949; Hoffman, 1998; Wittwer, 2004).
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1.3 Problems considered

The convection heat transfer phenomenon get complicated by the fact that it involves

fluid motion as well as heat conduction. The fluid motion increases heat transfer, since it

brings hotter and cooler lumps of fluid into contact, initiating higher rates of conduction

at a greater number of locations in a fluid. Therefore, the rate of heat transfer through a

fluid is higher by convection than it is by conduction. In fact, the higher the fluid velocity,

higher the heat transfer rate (Cengel and Afshin, 2011).

After exploring the various numerical tools for computational fluid dynamics (CFD), now

the fundamental of the physical problems considered for present doctoral work have been

discussed herein. The lattice Boltzmann method (LBM) is used for simulating the two

basic problems diversely found in the industrial as well as domestic activities, as given

below:

1. Convective flow and heat transfer in enclosure.

2. Convective flow and heat transfer from channel built-in rectangular cylinder.

The fundamentals of these problems are discussed herein.

1.3.1 Natural convection heat transfer in enclosures

Natural convection in enclosures has received huge impetus of investigators as the trans-

port process in a fluid where the fluid motion is derived by the interaction of a difference

in density with a gravitational field, which is quite common in several engineering, sci-

entific and environmental problems (Davis, 1968; Calcagni et al., 2005). It is quite clear

that the effectiveness and efficiency of industrial and domestic equipment can often be

improved by investing their thermal behavior/performance. The use of natural convec-

tive heat transfer for attaining enhanced, uniform heating in enclosed spaces (viz., high

viscosity oil tanks, ovens, furnaces, or for cooling electronic components and refrigerator
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condensers), eliminates the necessity for recirculating pumps or fans which are mainte-

nance (Ekundayo, 1994). This problem is used as a benchmark problem for validation of

numerical algorithms due to its simple configuration, still possessing a rich variety of heat

transfer and fluid flow characteristics. Figure 1.3 represents the idealized flow of fluid

Figure 1.3: Cavity with differentially heated walls.

inside the cavity with differentially heated walls. It is simplest problem thus used for ini-

tial validations. The physical insight of cavity represented by circular motion is idealized

one. The circulation takes place in clockwise direction between hot and cold walls due to

difference density. The natural convection in a square enclosure is considered as very good

model and vehicle for both experimental and theoretical investigations (Calcagni et al.,

2005).

1.3.2 Heat transfer from built-in square/rectangular cylinder

In fluid mechanics, the bodies are differentiated into two types, a streamlined and bluff

body. The streamlined bodies are one which do not alter or disturb the streamline distri-

bution or simply saying streamlines follow smoothly over the surface of body (e.g., airfoil).

In contrast, the body which alerts or breaks the streamline distribution along with the

change in velocity, direction, etc. is called as bluff body (Bharti, 2006). Examples of

generally observed bluff bodies are flat plates, triangular, square, rectangular, circular,
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elliptical, polygonal cylinders, etc. The point of separation is usually fixed at the sharp

edge for bluff bodies with sharp edges (triangular, square, rectangular, etc.).

The fundamental factor which differentiates the streamlined body with bluff one is size

of wake formation. In case of streamlined bodies, losses are generally occur inside the

boundary layer region resulting in small/thin wake size. On the other hand, in bluff body

case, the separation of boundary layer take place, due to high pressure gradient, resulting

in large wake containing energetic eddies dissipating large amount of mechanical energy,

hence, increasing drag (Bharti, 2006).

Over the century, the flow past a bluff bodies has posed a challenging fluid mechanics

problem involving the interaction of a boundary layer, a separating free shear layer, and

a wake, each with varying or coupled processes of developing instabilities as the Reynolds

number is increased. Such kind of fluid flows constitute an important class of engineering

applications. The nature of the flow regulate the device performance affecting force,

vibration, or heat transfer rates for many engineering applications (Sharma and Eswaran,

2004). Contrary to the circular cylinder, the separation points of the square cylinder are

fixed at its leading/trailing edges. Additionally, the width of the wake immediately behind

the cylinder is at least one diameter, whereas it is less than half a diameter for circular

cylinder. Consequently, the Karman vortex street is significantly longer and broader for

the square cylinder than for the circular cylinder. Thus, the square cylinder is a more bluff

body than circular cylinder. From an engineering standpoint, the flow around structures

that typically have rectangular or near-rectangular cross sections-i.e., buildings, electronic

equipment, etc., are more equivalent to the flow around square cylinders than circular

ones. Thus, the flow past a square cylinder is an important and fundamental problem of

engineering/scientific point of interest (Sharma and Eswaran, 2004).
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1.4 Outline of thesis

This dissertation has been divided into 12 chapters, which are arranged as follows. Chap-

ter 2 provides the critical review of literature related to the problems of heat transfer in

enclosures (differential heated, open ended, partially heated, magneto-hydrodynamic) and

channel confined heated rectangular cylinder. It expedite the objectives of present work.

It is followed by, the general assumptions along with governing field equations and physical

flow governing parameters in Chapter 3. The detailed description of the lattice Boltzmann

method (LBM), its recovery to mass, momentum and energy equations, kinetic boundary

conditions, flow and thermal field algorithm, advantages and disadvantages of the numer-

ical scheme are explored in Chapter 4. The validation of present in-house developed LBM

code is ascertained by solving the benchmark problems of lid driven cavity, channel flow

(for flow field) and differential heated cavity (for thermal field). The numerical validation

is elucidated in Chapter 5.

Extensive results obtained from the numerical simulation of present work for flow and

heat transfer in enclosures and from heated square/rectangular cylinders are presented in

discussed in Chapters 6-10. The problem description along with boundary conditions, grid

independence, validation and then the details analysis of the results are illustrated in these

chapters. The detailed physical insights of heat and flow characteristics are illustrated by

presenting the evaluation of isotherms and streamline, vorticity patterns, respectively, for

the ranges of the conditions considered herein.

In case of heat transfer in enclosures, the investigation of heated cavity is carried out for

laminar range of Rayleigh and Prandtl numbers (Chapter 6). The influence of one vertical

wall exposed to both hot and cold conditions and other wall at cold condition is explored

for laminar Rayleigh number range (Chapter 7). The influence of magnetic field and cooler

size (placed at middle of one vertical wall) on laminar natural convection heat transfer

characteristics (Chapter 8). In the problem of natural convection in partially heated

open ended enclosure, the influence of heating location, heater size, Rayleigh number and

Prandtl number on heat transfer rate have been explored (Chapter 9).
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Moreover, the effect of Prandtl number on natural convection heat transfer in square

cavity with cold vertical walls and adiabatic horizontal wall containing built-in heated

square block at center is explored in Chapter 10 for laminar range of Rayleigh number.

In numerical simulations of forced convection from heated built-in square/rectangular

cylinder, the influence of wall confinement (blockage ratio, β), aspect ratio of cylinder

(ar) and Reynolds number (Re) on fluid flow nature and heat transfer rate have been ex-

plored for laminar range of Reynolds number (Chapter 11). Finally, the simple empirical

correlations have been developed for possible utilization in engineering/scientific applica-

tions for all problem considered herein. In particular, the Thesis explores the results of

the following cases by using thermal lattice Boltzmann method (TLBM).

1. Natural convection analysis of differentially heated square cavity: Effect of Prandtl

and Rayleigh numbers.

Nu = f(Ra, Pr) (1.1)

2. Natural convection analysis of partially-differentially-simultaneously heated square

cavity: Effect of Rayleigh numbers.

Nu = f(Ra) (1.2)

3. Magneto-hydrodynamic natural convection in partially-differentially heated square

cavity: Effect of cooler length, magnetic field direction and Hartmann number.

Nu = f(Lc, Ra,Ha, θM) (1.3)

4. Natural convection heat transfer in an open ended square enclosure with partially

heated wall: Effect of heater size and location.

Nu = f(Ra, Lh) (1.4)
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5. Natural convection heat transfer in an open ended square enclosure with partially

heated wall: Effect of Prandtl number.

Nu = f(Ra, Pr) (1.5)

6. Natural convection heat transfer square cavity containing heated square block: Ef-

fect of Prandtl number.

Nu = f(Ra, Pr) (1.6)

7. Forced convection heat transfer from built-in heated rectangular cylinder: Effect of

blockage ratio, aspect ratio of cylinder and Reynolds number.

Nu = f(Re, a, β) (1.7)

Finally, Chapter 12 the major findings of this thesis is discussed, followed by recommen-

dations for future work.



Chapter 2

LITERATURE REVIEW

In recent decades, the advances in the computational fluid dynamics (CFD) have enabled

the analysis of detailed physical insight of the system at much better level and lower

cost. In particular, the exploration of the fluid flow and heat transfer characteristics

of system has received much impetus from global research community. The problem of

the natural convection in cavity (differential heated, open ended, etc) and flow past a

cylinder represents the idealization of domestic as well as industrial activities. These flow

and heat transfer problems are also widely used to benchmark the numerical algorithms

and/or solvers.

The study of heat transfer in heated enclosures is considered as an important problem

owing to its wide theoretical and pragmatic relevance. Among others, the investigation

of natural convection heat transfer in closed, as well as open, ended cavities is considered

as an important research field due to the wide ranges of the industrially important ap-

plications including chemical vapor deposition (Spall, 1996), cooling devices in electronic

equipment (Bilgen and Muftuoglu, 2008; Hsu and Wang, 2000; Du et al., 1998), polymer

and material processing (Hsiao, 2007; Habib et al., 2005), solar collectors (Hobbi and

Siddiqui, 2009), electronic card arrays (Manca and Nardini, 2010), domestic refrigerators

and oven (Skok et al., 1990) etc. The cavities can be differentiated on the basic of its

heating of walls, for instance, cavity with differentially heated vertical walls, top heating

15
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and bottom cooling (Rayleigh-Benard convection), heated cavity with open end (open

ended cavity).

Similarly, flow past a cylinder is also considered to be as very important owing to its

overwhelming theoretical and practical relevance (hot wire anemometry, tubular and pin

heat exchangers, sensors and probes, filtration screens and aerosol filters, RTM process

of manufacturing fiber reinforced composites, etc. (Bharti, 2006)). The flow of fluids,

especially Newtonian fluid, over bluff bodies of different shapes (circular, square, elliptic,

triangular, spheres and spheroids, for instance, has been explored well over century (Dhi-

man et al., 2006a,b, 2007; Sahu et al., 2009; Koteswara Rao et al., 2011; Sharma et al.,

2012). The study of flow past a square cylinder is very important to gain the knowl-

edge of engineering parameters such as drag coefficient, Nusselt number, wake size, etc.,

which are often used to design of cooling towers, antennas, chimneys, antennas, support

structures, high rise building, etc (Chatterjee et al., 2009; Sharma et al., 2012). Though,

a reasonable amount of information is available for flow past shapes other than circular

cylinder (Bharti, 2006), it neither extensive nor comprehensible. The subsequent sections

presents the detailed review of convective flow and heat transfer in enclosures and of a

square/rectangular cylinder.

2.1 Heat Transfer in Enclosures

The study of convective heat transfer mechanism is important owing to its diverse ap-

plications in domestic as well as industrial fields (Davis, 1968; de Vahl Davis, 1983; Lin

and Nansteel, 1987). Heat transfer in enclosure is considered as benchmark problem for

testing new numerical algorithms (de Vahl Davis, 1983). Heat transfer in differentially

heated cavity is considered as one of the simplestproblem. Numerous studies exploring

the heat transfer characteristics of cavity with differential heated walls are available by

various approaches (Lin and Nansteel, 1987; Hiller et al., 1989; Djebali et al., 2009). Many

industrial as well as theoretical problems, among others, can be represented by the various

configuration of heat transfer in enclosures (Figure 2.6). The following sections explore
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the relevent literature of these heat transfer cases. Figure 2.1 represent the these listed

enclosures in schematic form.

Figure 2.1: Schematic representation of various configuration of heat transfer in en-
closures: (1) differentially heated, (2) partially-differentially heated, (3) open ended, (4)

open ended with partial heating and (5) cavity with heated built-in square block.

2.1.1 Differentially Heated Cavity

Natural convection heat transfer characteristics in a differentially heated cavity is consid-

ered as one of the benchmark problem (Davis, 1968; Cormack et al., 1974a,b; Imberger,

1974a; Bejan and Tien, 1978; Patterson and Imberger, 1980; de Vahl Davis, 1983; Markatos

and Pericleous, 1984; Phillips, 1984; Lin and Nansteel, 1987; Hiller et al., 1989; Basak et al.,

2006; Djebali et al., 2009; Teamah et al., 2011), which is used to test new algorithms and

numerical methods. A tremendous amount of literature delineating heat transfer charac-

teristics in differentially heated cavity have been explored over the century. For instance,
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a comprehensive review of natural convection in enclosures is given by Ostrach (1972).

Imberger (1974b) carried out experimental investigation of the natural convection in a

shallow cavity with differentially heated walls. In their study, the depth to length ratios

of cavity were chosen as 10−2 and 1.9 × 10−2 to present the experimental results of the

core flow of cavity. Later, Mcdonough and Catton (1982) elucidated the effect of Prandtl

number (0.71 ≤ Pr ≤ 650) on Rayleigh-Benard convection in thin horizontal fluid layers

by using mean field approximation obtained from Boussinesq approximation. For the wide

range of Rayleigh numbers (2000 ≤ Ra ≤ 25000), they noted that the physical significance

of Prandtl number in Benard convection is primarily setting the preferred wave-number,

i.e., size of the convection cell. Subsequently, Hart (1983) numerically analyzed the nat-

ural convection in the differentially heated rectangular cavity for low Prandtl number

fluids (Pr = 0.01, 0.03, 1) and for a range of Rayleigh number (103 ≤ Ra ≤ 105). They

concluded that a parallel flow core will exist with approximately unit non-dimensional

amplitude (=1) up to Gr ≈ 8000 for smaller Prandtl number (< 0.1) and aspect ratio

(AR < 1). Similarly, Janssen et al. (1993) explored the heat transfer characteristics of

the steady and time-periodic flow of air in a differentially heated cubical cavity by using

finite volume method (FVM). They observed that in the periodic flow regime, the calcu-

lated frequency was almost the same as for the two-dimensional square cavity, implying

the same instability mechanism is in both cases responsible for the bifurcation. Henkes

and Hoogendoorn (1993) reported the scaling of the natural convection in a differentially

heated enclosure for two fluids (air and water) at high Rayleigh numbers. They presented

scaling of Navier-Stokes equation for various regions of cavity such as vertical boundary

layer, core, corner and horizontal layer. Afterwards, Janssen and Armfield (1996) delin-

eated the stability of vertical boundary layers in differentially heated enclosures. They

reported the convective instability sets in for Rayleigh numbers much smaller than those

at which the absolute instability occurs, which are in excellent agreement with those for

the boundary layer along a plate (Bejan, 2003).



Chapter 2. 19

Quere and Behnia (1998) investigated the onset of unsteadiness, the route to chaos and

the dynamics of fully chaotic natural convection in a square differentially heated enclo-

sure containing air (Pr = 0.71) and having top and bottom adiabatic walls for Rayleigh

number up to Ra ≤ 1010. They noted that the internal gravity waves have significant

role in the time-dependent dynamics of the solutions, both at the onset of unsteadiness

and in the fully chaotic regime. Subsequently, the low-order modeling for the flow in

a differentially heated cavity was reported by Podvin and Quere (2001) by using the

proper orthogonal decomposition (P.O.D.) for cavity with aspect ratio of 4 containing air

(Pr = 0.71). They observed two situations of moderate complexity. Later, low Prandtl

number (Pr=0.0321) natural convection in volumetrically heated rectangular enclosure,

i.e., slander cavity AR = 4.0 (Piazza and Ciofalo, 2000), square cavity, AR = 1.0 (Ar-

cidiacono et al., 2001) and shallow cavity, AR = 0.25 (Arcidiacono and Ciofalo, 2001) has

been investigated by using implicit finite volume method for wide range of the Grashof

number (104 ≤ Gr ≤ 1011). These studies have demarcated the different flow regimes,

such as steady, time-periodic and chaotic, etc. Subsequently, Ahlers and Xu (2001) exper-

imentally measured the dependence of Prandtl number (4 ≤ Pr ≤ 34.1) on heat transfer

characteristics in turbulent Rayleigh-Benard convection in the cylindrical cells with aspect

ratio of AR = 0.5 and 1.0 for wide range of the Rayleigh number (3 × 107 ≤ Ra ≤ 1011).

They found smaller (≈ 2%) dependence of Prandtl number (Pr) on the Nusselt number

(Nu) for the fixed value of the Rayleigh number (Ra), which is in agreement of the theory

of low Reynolds number, (Re). Roy and Basak (2005) have used the penalty finite element

method with bi-quadratic rectangular elements to compute the natural convection in a

square enclosure with non-uniformly heated walls for broad range of Rayleigh number

(103 ≤ Ra ≤ 106) and Prandtl number (0.2 ≤ Pr ≤ 100). Similarly, Sathiyamoorthy

et al. (2007) investigated steady natural convection flow in a square cavity with linearly

heated side walls for the wide range of governing parameters (0.71 ≤ Pr ≤ 10 and

103 ≤ Ra ≤ 106). They used penalty based Galerkin finite element method to solve the

non-linear coupled partial differential equations, governing the flow and thermal fields.

Subsequently, the effects of Prandtl number (0.01 ≤ Pr ≤ 15) on natural convection in
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triangular cavity (aspect ratio, AR = 1.0) having the localized heating for range of dimen-

sionless heating location (0.15 ≤ Lhc ≤ 0.95) from bottom have been elucidated (Koca

et al., 2007) by using the stream function vorticity based finite difference method. They

found that the momentum and heat transfer characteristics are greatly influenced with the

change in Prandtl number. Jami et al. (2007a) have carried out numerical investigation of

natural convection in a square enclosure with cylindrical heat conducting body by thermal

lattice Boltzmann method for fixed value of Prandtl number, (Pr = 0.71) and Rayleigh

number in the range as 103 ≤ Ra ≤ 106 and for wide range of temperature difference

(∆T = 0 − 50). The average Nusselt number (Nu) at both hot and cold walls found

to vary linearly with temperature difference (∆T ) under otherwise identical conditions.

Kao and Yang (2007) investigated the oscillatory flows in Rayleigh-Benard convection

in a square enclosure using passive scalar thermal approach based on lattice Boltzmann

method. In the range of Prandtl number of 0.71 ≤ Pr ≤ 70 and for Rayleigh number

of Ra ≤ 105, they noted the bifurcation to secondary instability takes place at a specific

Prandtl numbers (Pr), particularly, at Ra = 48000 for Pr = 6.0 and at Ra = 76000 for

Pr = 25. Subsequently, Varol et al. (2009b) used finite difference method to investigate

the natural convection heat transfer in a square enclosure filled with a porous medium

with partition. For fixed value of the Prandtl number (Pr = 0.71), the effect of partition

on the rate of heat transfer resulted in low heat transfer when partition angle is 45o than

that of 135o. The investigation of Prandtl number (Pr) dependence on natural convec-

tion have been studied in two different systems viz.,triangular enclosure (Yu et al., 2010a)

with coaxial cylindrical obstacle and cylindrical enclosure in a coaxial triangular obstacle

(Yu et al., 2010b). They observed that for low Prandtl number (Pr ≤ 0.1) heat and

flow characteristics are of same order, and are nearly independent of Prandtl number for

Pr ≥ 0.71. Cheng (2011) has numerically investigated the mixed convection heat transfer

characteristics in lid driven square cavity for wide ranges of flow governing parameters

(0.01 ≤ Pr ≤ 50, 0.01 ≤ Ri ≤ 100, 100 ≤ Gr ≤ 4.84 × 106 and 10 ≤ Re ≤ 2200).

Lai and Yang (2011) used lattice Boltzmann method (LBM) to investigate natural con-

vection in square cavity filled with Al2O3/water They found that the Nusselt number

increased with increasing value of the Rayleigh number (Ra) and the concentration of
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the nanoparticles. Subsequently, Kefayati et al. (2012a) investigated the effect of Prandtl

number (0.025 ≤ Pr ≤ 6.2), Rayleigh number (104 ≤ Ra ≤ 106) and Hartmann num-

ber (0 ≤ Ha ≤ 150) on natural convection magneto-hydrodynamics (MHD) in an open

cavity by using lattice Boltzmann approximation. Their results (Nusselt number) found

to decrease with increasing value of the Hartmann number (Ha). Recently, Park et al.

(2012) studied natural convection heat transfer in a square enclosure consisting of hot

and cold cylinders. They utilized finite volume method in conjunction with immersed

boundary condition to investigate the effects of Rayleigh number (103 ≤ Ra ≤ 106) on

the momentum and heat transfer characteristic on the vertical center-line of an enclosure

at constant Prandtl number (Pr = 0.71). In addition to the literature discussed herein

this section, Table 2.1 summarizes the physical parameters used in various studies.

Table 2.1: A summary of the physical parameters accounted in the literature on
natural convection in square enclosure.

Source Pr Ra Numerical method
Lin and Nansteel (1987) 7.0 103 − 106 ψ − ξ formulation with central difference
Hiller et al. (1989) 5.8 − 6 × 103 104 − 2 × 107 Experimental
Peng et al. (2003b) 0.71 103 − 105 Nonuniform grid LBGK (3D)
Roy and Basak (2005) 0.2 − 10.0 103 − 106 Galerkin FEM
Basak et al. (2006) 0.7 − 10.0 103 − 106 Penalty FEM
Dixit and Babu (2006) 0.71 103 − 1010 Interpolation based LBGK
Kuznik et al. (2007) 0.71 103 − 108 Taylor series least square DDF TLBM
Kao and Yang (2007) # 0.71 − 70.0 103 − 106 LBGK-DDF passive scalar
Djebali et al. (2009) 0.025 − 6 103 − 106 LBGK-DDF passive scalar
Mezrhab et al. (2010) 0.71 103 − 106 Double MRT-LBM
Mondal and Li (2010) 0.71 103 − 106 Nonuniform grid LBGK
Teamah et al. (2011) ∗ 0.01, 100 103 − 106 FVM

* Double diffusive convection, # Rayleigh Benard convection

2.1.2 Partially-differentially heated cavity

The cavity with one wall heated whereas other exposed to ambient represents the idealized

model. However, there are many applications where cavity is exposed to the non-linear

thermal conditions. Such cases can be well represented by partially differentially heated

cavity. Few studies have delineated the influence of partial heating and cooling on the
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natural convection in cavity (Yucel and Turkoglu, 1994; Aydin and Yang, 2000; Li et al.,

2006; Cheikh et al., 2007; Oztop, 2007; Nithyadevi et al., 2007; Deng, 2008; Kandaswamy

et al., 2008; Ben-Cheikh et al., 2011; Yesiloz and Aydin, 2011; Cianfrini et al., 2013).

Among others, Oztop and Abu-Nada (2008) presented the numerical analysis of natural

convection heat transfer characteristics of a partially heated rectangular cavity filled with

nanofluids for the wide range of Rayleigh number (103 ≤ Ra ≤ 5 × 105), length of heater

(0.25 ≤ Lh ≤ 0.75), aspect ratio (0.5 ≤ AR ≤ 2) and volume fraction of nanoparticles

(0 − 0.2). The major finding of the study was the heat transfer enhancement, using

nanofluids, is more significant at low aspect ratio. The investigation of natural convection

heat transfer in square cavities due to discrete source-sink pairs is explored by Deng

(2008). Their study elucidated the influence of the location and size of heating source

on heat transfer characteristics in cavity with the sizes of sources and sinks were, H/4

for two sources-sinks pairs and H/6 for three sources-sinks pairs, respectively at Rayleigh

number of 102 ≤ Ra ≤ 106 and Prandtl number of Pr = 0.71. They reported rise in

heat transfer rate with number of eddies formed in the cavity. Likely, Varol et al. (2009b)

studied the natural convection inside the right angle trapezoidal enclosure filled with

a fluid-saturated porous medium having the left heated vertical wall of the cavity and

the inclined wall is partially cooled. For numerical experimentation they studied three

cases with cooler located (a) adjacent to the top wall, (b) in the middle inclined wall

and (c) adjacent to the bottom wall for range of Rayleigh numbers (100 ≤ Ra ≤ 1000)

and aspect ratio (AR = 0.25, 0.5, 0.75). Their case (a) yielded higher heat transfer.

Subsequently, Ben-Cheikh et al. (2010) presented 3D analysis of momentum and thermal

characteristics in cavity with partially heated from below and entirely cooled from above.

They investigated the influence of partially heated walls on heat transfer behavior of cavity

for two fluids (air, Pr=0.71 and di-electric liquids, Pr=25) for laminar range of Rayleigh

numbers (103 ≤ Ra ≤ 106). The higher heat transfer rate is observed for dielectric

liquids. The experimental as well as numerical investigation of natural convection heat

transfer in an inclined quadrangle cavity heated and cooled on side by side walls is carried

out by Yesiloz and Aydin (2011). For visualization of the fluid motion in the enclosure,

the particle tracing method (PTM) is utilized in their work and numerical simulation
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are obtained by using commercial CFD package FLUENT. The influence of Rayleigh

number (105 ≤ Ra ≤ 107) and inclination angle (0o ≤ φ ≤ 360o) on heat transfer

rate has been elucidated by using distilled water as a working fluid (Yesiloz and Aydin,

2011). Later, Sheikhzadeh et al. (2011a) delineated the influence of partially heated wall

with different heating and cooling positions on natural convection in a square cavity for

Rayleigh number of 103 ≤ Ra ≤ 106. They numerically studied the effect of location

(middle, top and bottom) on both vertical walls on rate of heat transfer. and observed

maximum heat transfer rate for cavity with middle-middle postion. Subsequently, the

influence of isothermal as well as non-isothermal heating on natural convection in tilted

(at 30o) square cavity is reported by Singh et al. (2012) by using Galerkin finite element

method for broad range of Rayleigh number (103 ≤ Ra ≤ 105) and Prandtl number

(Pr = 0.025, 998.24). They observed that the overall heat transfer rate is larger for the

uniform heating case as compared to that of a nonuniform heating case irrespective of

Prandtl number. A summary of physical domain, physical parameters and numerical

methods used in the discussed literature are summarized in Table 2.2.

2.1.3 Magneto-hydrodynamic natural convection in enclosure

The study of influence of magnetic field on natural convection heat transfer and fluid

flow characteristics is primarily important in the field of science and technology (Qiana

and Bau, 2009; Benos et al., 2014). A magneto-hydrodynamic is a suitable method to

accelerate to shoot plasma into fusion devices or to yield the high energy wind tunnels for

simulating hyper-sonic flight. Such problems found applications in electronic packages,

microelectronic devices during their actions. Although the application of the magnetic

field does not limit to these applications and it was utilized at various industries such as

crystal growth in liquids, cooling of nuclear reactors, and so on (Qiana and Bau, 2009;

Rahman et al., 2011b; Kefayati, 2013b; Benos et al., 2014). Moreover, the magnetic field

used to supress the convective flow and thus help to control crustal growth and has similar
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Table 2.2: A summary of related literature on natural convection in differentially cavity with partially heated walls.

S.N. Source Cavity type Parameters Numerical method Remarks

1. Yucel and Turkoglu (1994) Square Ra = 2 × 104, 105, 5 × 105 FVM-SIMPLE Effect of cooler size
Pr=0.71, size of cooler=1/4,2/4,3/4,4/4 on heat transfer rate

2. Aydin and Yang (2000) Rectangular 103 ≤ Ra ≤ 106 ADIM,SOR Nu ∝ Ra
Heater size=1/5,2/5,3/5, 4/5

3. Cheikh et al. (2007) Square 103 ≤ Ra ≤ 107 FVM-QUICK maximum temperature at
Heater size=0.2H-0.5H, Pr=0.71 the heated surface does

not change significantly for the

diffusion dominated cases

4. Chen and Chen (2007) Square 102 ≤ Ra ≤ 107 FVM-QUICK Heat source length ∝ Nu
Different heater lenght and strength

5. Varol et al. (2010) Differentially heated 103 ≤ Gr ≤ 105, P r = 0.71, 7 FDM-SUR Inclination angle
partition 0o ≤ φ ≤ 360o

6. Oztop (2007) inclined porous 10 ≤ Ra ≤ 1000 SAINTS-SIMPLE-TDMA Nu ∝ Ra

rectangular center of heating location (0.1 − 0.9) Nu ∝ Ra
cooler size (0.25 − 0.75)
inclination angle (0o − 90o)

7. Nithyadevi et al. (2007) Rectangular 103 ≤ Gr ≤ 105, P r = 0.71 FVM-SUR Effect of Heating location
0.5 ≤ AR ≤ 5 rate of heat transfer

8. Ben-Cheikh et al. (2011) Parallelepiped 103 ≤ Ra ≤ 107, P r = 0.71, 6.8 FVM-Multigrid Nu ∝ Ra, Pr
Heater size=H/3

9. Sivasankaran and Bhuvaneswar (2011) Rectangular 103 ≤ Gr ≤ 106, Ha = 10, 25, 100 FVM-Implicit Nu 1

∝
Ha

Heater size=H/2, Pr=0.054 Nu ∝ Gr, Aspect ratio
inclination angle (0o, 45o, 90o)

10. Cianfrini et al. (2013) Rectangular 103 ≤ Ra ≤ 106, 0.25 ≤ H/L ≤ 4 FVM-SIMPLE Nu ∝ Ra, Heater size
Heater size=0.2H-0.8H

ADIM: Alternate direction implicit method, FEM: Finite element method, SUR: Successive Under Relaxation, SAINTS: Software for arbitrary integration of NavierStokes equation

with Turbulence and Porous Media Simulator, SIMPLE: Semi implicit method for pressure linked equation QUICK: Quadratic Upstream Interpolation for Convective Kinematics
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application in solidification process (Kakarantzas et al., 2009; Yu et al., 2013). The pio-

neering work delineating the fundamentals of magneto-hydrodynamics phenomenon can

be found elsewhere (Elsasser, 1954; Poots, 1961; Sparrow and Cess, 1961; Siscoe, 1983;

Cowling, 1962; Roberts and Soward, 1972). A very limited amount of literature is avail-

able for elucidating the influence of magnetic field on natural convection heat transfer

and fluid flow characteristics in an enclosure. For instance, applicability of lattice Boltz-

mann method (LBM) for simulation of magneto-hydrodynamic problem is reported by

Chen et al. (1991a). The influence of magnetic field on non-linear natural convection

heat transfer in cavity is explored by Kandaswamy and Kumar (1999). They solved the

field equations by using finite difference scheme consisting of ADI (Alternating Direction

Implicit) and SOR (Successive Over Relaxation) methods. The physical insights were

determined for flow governing parameters, such as, Hartmann number (0 ≤ Ha ≤ 100),

hot wall temperature (4oC ≤ Th ≤ 12oC) with cold wall temperature (Tc = 0oC). The

increase in magnetic field causes shift in heat transfer mechanism from convection to

conduction. A two and three dimensional applicability of the lattice Boltzmann method

for magneto-hydrodynamic (including Lorentz force due to the magnetic field) problem

is reported by Dellar (2002). For numerical experimentation, they used with Hartmann

flow, the OrszagTang vortex and the doubly periodic coalescence instability. For rep-

resentation of magnetic field, they used a separate vector-valued magnetic distribution

function which obeys a vector Boltzmann-BGK equation. Subsequently, Breyiannis and

Valougeorgis (2006) provided three dimensional lattice Boltzmann method application to

MHD problems based on the BGK modeling of the collision term, which is rather sim-

pler approach than the conventional approach, one tensor-valued distribution function to

present both the fluids variables (density and momentum) and the magnetic field. Fur-

thermore, their LBM algorithm correctly recovers the field equations. Similarly, the lattice

Boltzmann method for magneto-hydrodynamic approach relevant to the fusion problems

was delineated by Pattison et al. (2008) by using multiple relaxation time (MRT) LBM.

The evolution of the magnetic induction is expressed by introducing a vector distribution

function and solving a suitable lattice kinetic equation for this function. The solution

of both distribution functions are obtained through stream-and-collide algorithm. They
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reported the enhancement of numerical stability by using MRT collision term over that

of a single relaxation time approach. For numerical experimentation, they used 3-D

MHD lid driven cavity flow, high Hartmann number flows and turbulent MHD flows,

with excellent agreement with previous literature. A three dimensional (3D) analysis of

free-decaying MHD turbulence by using lattice Boltzmann method (LBM) on a spatial

grid of 8000 × 8000 × 8000 is reported for low and high magnetic Prandtl number. They

reported numerical instabilities for Rem → ∞, where Rem is magnetic Reynolds number.

Later, the influence of low Prandtl number magneto-convection around an adiabatic body

inside a square enclosure is presented numerically by Sheikhzadeh et al. (2011b). The

body is placed at the center of cavity. The field equations are solved by using finite vol-

ume method with SIMPLER algorithm for range of Rayleigh number (103 ≤ Ra ≤ 106),

Hartmann number (0 ≤ Ha ≤ 100) and Prandtl number (0.005 ≤ Pr ≤ 0.1). The

ratio of the buoyancy force to the Lorentz force (Ra/Ha2) is introduced as an index to

compare the contribution of natural convective heat transfer and magnetic field strength

on rate of heat transfer. Their results indicated insignificant effect of Prandtl number

on rate of heat transfer at low Ra. Also the rate of heat transfer has linear dependence

on Prandtl number. Mixed convection heat transfer analysis in an open channel with

triangular cavity is reported by Rahman et al. (2012). The field equations representing

the flow and thermal field under magnetic field and Joule effect are numerically solved

by using Galerkin weighted residual finite element technique. The flow governing param-

eters used in their work are Reynolds number (100 ≤ Re ≤ 2000), Hartmann number

(10 ≤ Ha ≤ 100), Rayleigh number (103 ≤ Ra ≤ 105), Joule parameter (0 ≤ J ≤ 5)

and Prandtl number (1 ≤ Pr ≤ 10). The heat transfer rate was found to vary in inverse

proportion with Hartmann number. Further, the extension of lattice Boltzmann method

for simulation of Braginskii magneto-hydrodynamics (single-fluid elucidation of large-scale

motions in a strongly magnetized plasma, one in which the ion gyro-radius is much smaller

than the mean free path between collisions in an nonmagnetic plasma of the same density

and temperature) is reported by Dellar (2011). They introduced an anisotropic colli-

sion operator for the hydrodynamic distribution functions for simulation of Braginskii

magneto-hydrodynamics, which has a different relaxation time to the component of stress
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directed parallel to the magnetic field. Subsequently, Taghikhani and Najafkhani (2013)

delineated the influence of magnetic field on natural convection flow and heat transfer in

a cavity with internal heat generation by using fast stream-function and vorticity method

(ψ−Ω). They solved stream function equation by using fast Poisson’s equation solver on a

rectangular grid (POICALC function in MATLAB), vorticity and temperature equations

are solved using red-black Gauss-Seidel and bi-conjugate gradient stabilized (BiCGSTAB)

methods, respectively. In order to compare the contribution of natural convection and

magnetic field strength on heat transfer rate, they introduced a parameter, which is ratio

of Lorenz force to buoyancy force Ha2

Ra
. They observed a thermally driven natural con-

vection for Ha2

Ra
< 0.005, electromagnetically driven flows occur when Ha2

Ra
> 0.1, while,

combined effect of thermally as well as electromagnetically driven flows is observed for

0.05 ≤ Ha2

Ra
≤ 0.1.

Recently, Chatterjee and Halder (2014) presented the MHD mixed convection heat trans-

fer characteristics in square enclosure containing two rotating circular cylinders by using

finite volume method for range of flow governing parameters such as Reynolds number

(Re = 100), Rayleigh number (103 ≤ Ra ≤ 105), Hartmann number (0 ≤ Ha ≤ 50).

Their study indicated a decrease in the bulk average fluid temperature with Rayleigh

and Hartmann number, whereas, the rotation caused reduction in the average fluid tem-

perature when there is no magnetic field. Similarly, Luo et al. (2014) delineated the

thermal radiation effects on MHD natural convection in a square enclosure by utilizing

the Chebyshev-Collocation spectral method for Grashof number Gr = 2×105 and 2×106;

and Prandtl number (Pr = 0.733), for the fixed value of emmisivity (i.e., 0.6). They ob-

served the magnetic force can suppress both fluid flow and heat transfer. The numerical

study of mixed convection in lid driven cavity containing nanofluid is studied by Muth-

tamilselvan and Doh (2014) by using by the SIMPLE approach. They reported linear

increase in average Nusselt number with the solid volume fraction at constant Reynolds

number. Other studies encompassing the MHD convection effect in cavity are summarized

in Table 2.3.
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Table 2.3: A summary of related literature on MHD natural convection in heated cavity.

S.N. Source Physical parameters Numerical method Remarks

1. Kahveci and Oztuna (2009) Ha = 0 − 100; 103 ≤ Ra ≤ 107 PDQ Cavity with partition,

Pr = 1 Nudecreases up to 80%
if partition is placed at the mid-point

2. Pirmohammadi and Ghassemi (2009) Ha = 0 − 70; 103 ≤ Ra ≤ 105 FVM-SIMPLER Tilted enclosure,

Pr = 0.02; 0o ≤ θM ≤ 135o Nu ∝ θM ; for θM ≤ 45o

3. Grosan et al. (2009) 0 ≤ Ha ≤ 50; 10 ≤ Ra ≤ 105 FDM Internal heat generation,

0.01 ≤ AR ≤ 1 Nu 1

∝
θM

0 ≤ θM ≤ π
2

4. Rahman et al. (2011a) 0 ≤ Ha ≤ 20; 103 ≤ Ra ≤ 105 Galerkin-FEM Mixed convection,

100 ≤ Re ≤ 500 Nu ∝ Re, Ra, 1

Ha
5. Rahman et al. (2011b) 10 ≤ Ha ≤ 50; 103 ≤ Ra ≤ 105 Galerkin-FEM Mixed convection,

100 ≤ Re ≤ 500; 0 ≤ J ≤ 3 effect of joule heating and MHD

0.5 ≤ Br ≤ 5; 2 ≤ Le ≤ 10 Nu 1

∝
Ha, J, Br

Nu ∝ Le

6. Kefayati et al. (2012a) 10 ≤ Ha ≤ 150; 103 ≤ Ra ≤ 105 LBM Nu ∝ 1/Ha, Pr
0.025 ≤ Pr ≤ 6.2

Nu 1

∝
θM for θM > 45o

6. Hossain and Alim (2013) Ha = 50; 103 ≤ Ra ≤ 105 Galerkin-FEM Trapezoidal cavity, heatline concept,
0.026 ≤ Pr ≤ 1000 uniformly and non-uniformly heated bottom wall

0o ≤ θM ≤ 45o Nu 1

∝
θM

7. Kefayati (2013c) Ha = 0 − 90; 103 ≤ Ra ≤ 106 LBM WaterAl2O3 nanofluid

0 ≤ φ ≤ 0.06 Nu ∝ 1

Ha
8. Kefayati (2013c) Ha = 0 − 90; 103 ≤ Ra ≤ 106 LBM WaterAl2O3 nanofluid

0 ≤ φ ≤ 0.06 Nu ∝ 1

Ha
9. Kefayati (2013b) Ha = 0 − 90; 103 ≤ Ra ≤ 105 LBM Open ended cavity,

0 ≤ φ ≤ 6%; 0.5 ≤ AR ≤ 2 Nu ∝ 1

Ha
, Ra, AR

10. Sheikholeslami and Ganji (2014) Ha = 0 − 40; 103 ≤ Ra ≤ 106 LBM Enhancement ratio ∝ ( 1

Ra
, Ha)

0 ≤ φ ≤ 0.06; 1.5 ≤ AR ≤ 4.5
11. Mahmoudi et al. (2014) Ha = 0 − 60; 103 ≤ Ra ≤ 106 LBM WaterAl2O3 nanofluid

0 ≤ φ ≤ 6%; 0o ≤ θM ≤ 180o Nu ∝ Ra, 1

Ha
PDQ: polynomial differential quadrature, FEM: Finite element method, SUR: Successive Under Relaxation, J: Joule heating, Le: Lewis number, Br: buoyancy ratio
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2.1.4 Open Ended Enclosure

Open ended enclosures are also widely incountered in applications of industrial importance

(Spall, 1996; Bilgen and Muftuoglu, 2008; Hsu and Wang, 2000; Du et al., 1998; Hsiao,

2007; Hobbi and Siddiqui, 2009). A limited amount of information of the open ended

cavity flow with non-linearly heated wall is documented in the literature. For instance,

Shin and Economou (1990) explored the characteristics of natural and forced convection

mass transfer in an open ended enclosure by using finite element method (FEM) for

Rayleigh numbers of Ra ≤ 105. They observed enhancement in the mass transfer in

cavity with aspect ratio (depth:width) of 2:1 by order of one due to both forced and

natural convections. Vafai and Ettefagh (1990a) investigated the fluid flow and thermal

instabilities for Rayleigh numbers of 103 ≤ Ra ≤ 6 × 105 at a constant Prandtl numbers

(Pr = 0.71). They observed one to one relationship between the frequency of the periodic

oscillations in the Nusselt number and the central vortex oscillations and location inside

the cavity for at higher Rayleigh numbers. Similarly, Vafai and Ettefagh (1990b) studied

the influence of sharp corners and the far field boundary conditions on vorticity generation

and flow instabilities. They reported the significance of the far field boundary treatments

and interaction between physical flow governing parameters.

Yucel and Turkoglu (1994) numerically analyzed the natural convection heat transfer in

an enclosure with partial heating/cooling by using the finite volume method (FVM) for

the three values of Rayleigh numbers (Ra = 2 × 104, 105 and 5 × 105) corresponding

to laminar flow condition and for the varying heater and cooler sizes (i.e., 0.25, 0.5,

0.75 and 1.0) placed at west-bottom and east-top positions, respectively. They observed

that, for a particular cooler size, average Nusselt number decreased with an increase

in heater size. On the other hand, for the given heater size, average Nusselt number

increased proportionally with the cooler size. Subsequently, Mohamad (1995) investigated

the natural convection heat transfer in air (Pr = 0.71) from an open ended cavity for the

various flow governing parameters such as inclination angle (10o ≤ φ ≤ 90o), aspect ratio

(AR = 0.5, 1.0 and 2.0) and the Rayleigh number (103 ≤ Ra ≤ 107) by using the control
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volume-finite difference method. They observed slight change in the heat transfer rate

with the change in inclination angle, however, flow instability is noted at high Rayleigh

numbers and low inclination angles. The unsteady flow for the moderate to high Grashof

numbers is also observed by Angirasa et al. (1995) in their analysis of natural convection

in air (103 ≤ Ra ≤ 107 and Pr = 0.71) from an isothermal open ended cavity by using

the stream function-vorticity method. Similarly, Khanafer and Vafai (2000, 2002) have

presented an accurate representation of flow and thermal boundary conditions of two- and

three-dimensional enclosures at an open end based on their numerically investigation of

the thermal and hydrodynamic features of an open ended cavity.

The numerical investigation of laminar natural convection in shallow cavity (Polat and

Bilgen, 2002) reported that the rate of heat transfer is significantly influenced by the

inclination angle of heated plate in the following ranges of Rayleigh number (103 ≤ Ra ≤

106) and aspect ratio (1 ≤ AR ≤ 0.125). Subsequently, Manca et al. (2003) numerically

explored the mixed convective heat transfer characteristic in channel with an open ended

cavity for three heating locations (the heated wall is on the inflow side and the heated wall

is on the outflow side;the heated wall is the horizontal surface of the cavity). The physical

flow governing parameters used for numerical experimentation were Richardson number

(Ri = 0.1, 100) and Reynolds number (Re = 100, 1000). They observed better thermal

performance in terms of both maximum temperature and average Nusselt number for an

opposing forced flow configurations. The effects of the Rayleigh number (104 ≤ Ra ≤ 107)

and inclination angle (0o ≤ φ ≤ 180o) on the natural convection heat transfer and surface

thermal radiation in a tilted square cavity with an open end were elucidated numerically

by Hinojosa et al. (2005). The convective and radiative Nusselt numbers were reported

to have substantial and negligible dependencies, respectively, on the inclination angle

(φ). The natural convection in partially open square cavity (adiabatic walls and a partial

opening) is numerically investigated by Bilgen and Oztop (2005) for the broad range of

the Rayleigh number (103 ≤ Ra ≤ 106), aperture opening size (0.25−0.75) and inclination

angle (0o ≤ φ ≤ 120o). Their study reported the variation of the volumetric flow rate and

Nusselt number in the direct proportion with the Rayleigh number, inclination angle and
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the aperture size. Subsequently, Nasr et al. (2006) explored the natural convection heat

transfer mechanism in an enclosure exposed to heating from the lower corner and cooling

from the ceiling for the wide range of Rayleigh numbers (103 ≤ Ra ≤ 106) and for the

constant heater and cooler sizes. The optimum positions of discrete heaters by maximizing

the conductance in open ended cavity under the natural convection is determined by

Muftuoglu and Bilgen (2008) for the varying heater size (0.05 ≤ Lh ≤ 0.2), number of

heaters (1 ≤ nh ≤ 3) and the Rayleigh number (103 ≤ Ra ≤ 107). They (Muftuoglu

and Bilgen, 2008) further studied the heat transfer and volume flow rate with discrete

heaters at their optimum positions. They found that the global conductance and Nusselt

number to be an increasing function of the Rayleigh number, the heater size and the

number of heaters. Best thermal performance is obtained (Muftuoglu and Bilgen, 2008)

by positioning the discrete heaters closer to the bottom and closer to each other at the

beginning of fluid flow. Mohamad et al. (2009) explored the natural convection (104 ≤

Ra ≤ 106) in an open ended rectangular (0.5 ≤ AR ≤ 10) cavity by using passive scalar

thermal lattice Boltzmann method (TLBM). The rate of heat transfer was found to vary

inversely with aspect ratio (AR) by using the D2Q9 (two-dimensional and nine velocity

link) and D2Q4 (two-dimensional and four velocity link) lattice models to solve for the

flow and thermal fields, respectively. Varol et al. (2009a) studied the natural convection in

an inclined enclosure having heater placed at corner using the stream function-vorticity

approximation approach and finite difference method for the wide ranges of the flow

governing parameters (103 ≤ Ra ≤ 106, 0o ≤ φ ≤ 270o and 0.07 ≤ Pr ≤ 70) and

length of heater (0.25 ≤ Lh ≤ 0.75) in both x− and y− directions. They noted the

stronger dependence of the rate of the heat transfer on the inclination angle (φ) and

the length of corner heater/cooler. Subsequently, Haghshenas et al. (2010a) used least

square based Lattice Boltzmann method (LBM) to investigate the natural convection in

an open ended cavity filled with porous medium (Darcy number, Da = 0.01) for the wide

range of the Rayleigh number (103 ≤ Ra ≤ 106) and fixed value of the Prandtl number

(Pr = 1.0). The rate of heat transfer was found to increase with both Rayleigh number

and porosity (0.4 ≤ ǫ ≤ 0.9) of the medium. Later, Kaluri and Basak (2010) studied the

heat-line analysis of thermal mixing due to natural convection in discretely heated porous
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enclosures containing different fluids. They have used Galerkin finite element method for

solving governing equations of the problem. They investigated the heat and fluid flow

characteristics of system for physical parameters such as Darcy number (10−6 ≤ Da ≤

10−3), Prandtl number (0.015 ≤ Pr ≤ 1000) and Rayleigh number (103 ≤ Ra ≤ 106).

They noticed weak buoyancy driven flow at low Darcy number (10−6) and also higher

convection effect at Da = 10−3 due to weak hydraulic resistance of porous medium.

Similarly, Andreozzi and Manca (2010) delineated the natural convection heat transfer

characteristics in a horizontal open-ended cavity with a heated upper wall for Rayleigh

number of Ra = 103 and 106 and aspect ratio of 1 and 10. They observed the streamline

patterns showed a convective loop outside of the cavity at Ra = 103.

Sajjadi et al. (2010) investigated the effects of the inclination angle (−45o ≤ φ ≤ 45o)

and Rayleigh number (103 ≤ Ra ≤ 106) on the thermal hydrodynamic nature of natural

convection in cavity by using LBM. Later, the entropy generation Marangoni convection

flow of heated fluid in an open ended cavity have been explored by Saleem et al. (2011)

by using alternate direct implicit (ADI) method with successive over relaxation (SOR)

approach. They observed active spot of maximum entropy generation strongly depends

on the magnitudes of Grashof and Prandtl numbers. Recently, Prakash et al. (2012) stud-

ied the natural convection losses from the three-dimensional open ended cavity of three

different geometrical shapes (i.e., spherical, cubical and hemispherical). The hemispher-

ical open cavity yielded the highest natural convection loss over the wide ranges of the

conditions as follow: inclination angle (0o ≤ φ ≤ 90o), opening ratio (1, 0.5, 0.25) and

Rayleigh number (4 × 104 ≤ Ra ≤ 2.5 × 109). The influence of Prandtl number on mag-

neto hydrodynamics (MHD) on natural convective heat transfer in an open ended cavity

is delineated by Kefayati et al. (2012a) by using lattice Boltzmann method (LBM). The

elucidated the influence of Prandtl number (Pr = 0.025, 0.71 and 6.2), Hartmann number

(0 ≤ Ha ≤ 150) and Rayleigh number (Ra = 103, 104, 105) on flow and thermal fields.

The effect of magnetic field was found to be minimum on heat transfer rate for Pr=0.025.

Sheikholeslami et al. (2013b) used lattice Boltzmann method (LBM) for investigating the

natural convection phenomenon in a enclosure having curved boundaries and filled with
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Cu-water nanofluid. They observed that the inclination angle has significant effect on

thermal and hydrodynamic characteristics of cavity. Recently, the influence of magnetic

field on the natural convection in an open ended cavity filled with nanofluid using lattice

Boltzmann method (LBM) is investigated by Kefayati (2013a) encompassing the broad

range of the flow governing parameters such as Rayleigh number (104 ≤ Ra ≤ 106),

Hartmann number (0 ≤ Ha ≤ 90) and the volume fraction of nanoparticles (0 to 0.06).

The rate of heat transfer decreased with the increase in Hartmann number for a partic-

ular value of the Rayleigh number. More Recently, (Hussein et al., 2014) presented the

lattice Boltzmann computation of natural convection in an open cavity filled with Cu-

water nanofluid under magnetic field effect. The influence of pertinent parameters such

as Hartmann number, nanoparticle volume fraction, Rayleigh number and the inclination

of magnetic field. The results indicated that the solid volume fraction has a significant

effect on stream-line patterns and heat transfer, depending on the value of Hartmann

and Rayleigh numbers. Moreover, the three dimensional analysis of cubical open cavity is

explored by Zamora and Kaiser (2014) for laminar, transitional and turbulent characteris-

tics of fluid. For simulation of transitional and turbulent flow, they utilized low Raynolds,

k − ω model.

Recently, few studies have experimentally delineated the physical insight of open ended

cavity (Park et al., 2013; Tuhkala et al., 2014; Montiel-Gonzaleza et al., 2014; Lee et al.,

2014). Moreover, Table 2.4 and Table 2.5 classifies the convection in open, differentially

heated as well as lid driven cavity with completely and partially heated wall, respectively,

along with the physical flow governing parameters.
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Table 2.4: A summary of related literature on natural convection in open ended/differentially cavity with fully heated vertical walls.

S.N. Source Cavity type Range of parameters Numerical method Remarks

Ra/Gr Pr

1. Chan and Tien (1985) Shallow open 103 ≤ Ra ≤ 106 1,7 FVM-SIMPLER AR=0.143,1
2. Khanafer and Vafai (2002) Open 103 ≤ Ra ≤ 105 0.71 ≤ Pr ≤ 4.92 FEM-GWS AR=1,0.25,0.5

3. Mohamad et al. (2009) Rectangular, open 103 ≤ Ra ≤ 106 0.71 LBM AR=1,2,4
4. Varol et al. (2010) Differentially heated 103 ≤ Gr ≤ 105 0.71, 7 FDM-SUR Inclination angle

partition 0o ≤ φ ≤ 360o

5. Mohamad et al. (2010) Square open 104 ≤ Ra ≤ 106 0.71 LBM Double diffusive,
Lewis number = 2, 4, 8

6. Haghshenas et al. (2010b) Square, porous 103 ≤ Ra ≤ 106 1 LBM
open

7. Kefayati et al. (2012b) Rectangular 104 ≤ Ra ≤ 106 - LBM AR=0.5-2,Volumn fraction of
nanoparticles (0-0.05)

8. Kefayati et al. (2012a) Square open 104 ≤ Ra ≤ 106 0.025, 0.71, 6.2 LBM MHD
0 ≤ Ha ≤ 150

9. Sheikholeslami et al. (2013b) Square cavity 104 ≤ Ra ≤ 106 − LBM Cavity with
with curved nanofluids
boundary

GWS: Galerkin weighted residuals, FEM: Finite element method, SUR: Successive Under Relaxation, QUICK: Quadratic Upstream Interpolation for Convective Kinematics, MHD:

Magneto-hydrodynamics

Table 2.5: A summary of literature on natural convection in open ended/differentially cavity with partially heated walls.
S.N Source Cavity type Range of parameters Numerical method Remarks

Ra/Gr Pr

1. Varol et al. (2008) Triangular 104 ≤ Ra ≤ 106 0.71 FDM-SUR ANFIS
2. Kaluri and Basak (2010) Square, porous 103 ≤ Ra ≤ 106 0.015 ≤ Pr ≤ 1000 Galerkin FEM Discrete heating

3. Sivakumar et al. (2010) Square, lid driven 102 ≤ Gr ≤ 106 0.71 FVM-QUICK Discrete heating
100 ≤ Re ≤ 1000

4. Aghajani Delavar et al. (2011) Square, differentially 103 ≤ Ra ≤ 106 0.71 LBM Effect of
heated discrete heater

5. Sankar et al. (2011) Square, porous, differentially 103 ≤ Gr ≤ 106 0.71 LBM Partially heated hot
heated, and cold walls

ǫ = 0.3 − 0.7
6. Bhuvaneswari et al. (2011) Rectangular, differentially 103 ≤ Gr ≤ 106 0.71 FVM Partially heated hot

heated, porous and cold walls,
ǫ = 0.3, 0.7,
0.5 ≤ AR ≤ 10,
10−5 ≤ Da ≤ 10−2

7. Nikbakhti and B. (2012)∗ Rectangular, differentially 104 ≤ Ra ≤ 106 FDM-SUR Double diffusive
heated convection

8. Jmai et al. (2013) Square, differentially 104 ≤ Ra ≤ 107 FVM Nanoparticles with
heated Volumn fraction (0-0.2)

∗: Mixed convection, ANFIS: Adaptive-network-based Fuzzy Inference System, Da: Darcy number, ǫ: porosity parameter
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2.2 Natural convection in square cavity with built-in

obstacle

In many engineering applications, the enclosures are often more complex than simple

heated enclosures. For instance, the enclosures containing heated/cooled/adiabatic/square/-

circular blocks can be considered as the ideal form of partitions and baffles. Thus study

of such structures are very important to understand the heat transfer behaviors. Natural

convective flow and heat transfer between a cylinder and its surrounding medium has

been a problem of theoretical as well as pragmatic significance due to its wide ranges of

applications such as, energy storage devices, crop dryers, crude oil storage tanks, heat

exchangers, spent fuel storage of nuclear power plants, etc (De and Dalal, 2006). Among

others, Adlam (1986) studied the two-dimensional time dependent natural convection in

a cavity containing internal bodies by using explicit finite-difference equations in terms

of temperature, vorticity and stream function. They investigated three cases, namely, 2D

thermosyphon in a region bounded by two concentric squares, two internal blocks heated

to a constant temperature with the walls of the containing cavity exposed to ambient. The

physical flow governing parameters used in there work are Prandtl number (Pr = 5.39)

and Rayleigh number (1 × 106, 2 × 107). They reported formation of the asymmetric

convective cells, which move outwards from the center. House et al. (1990) investigated

the influence of the centered, square, heat conducting object on natural convection in a

vertical enclosure. They reported the enhancement or reduction of heat transfer across

the cavity by a body with a thermal conductivity ratio smaller or greater than unity.

Subsequently, fluid flow and natural convection heat transfer characteristics in an en-

closure containing heat generating conducting body is reported by Oh et al. (1997) for

range of Rayleigh number (103 ≤ Ra ≤ 104), temperature difference (∆ = 0oC − 50C),

Prandtl number (Pr = 0.71), area ratio (Ar = 0.25) and conductivity ratio (Kr = 1).

They observed the ratio of hot to cold wall average Nusselt number in between 1 to -1.

Similarly, the numerical study of transient natural convection heat transfer in an enclo-

sure containing heat generating conducting body is studied by Ha et al. (1999) for three
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different fluids (sodium, air, and water). They investigated the physical insights of the

system for wide range of Rayleigh numbers (Ra = 103, 104), temperature-difference ratios

(2.5 ≤ ∆T ≤ 50), Prandtl numbers (Pr = 0.0112, 0.707, 5.83), and thermal conductiv-

ity ratios (k = 1.71, 5630, 240). They observed fluid flow circulation in the enclosure

increases with increasing Ra, increasing the convective heat transfer rate between active

walls. The study of interaction between multiple discrete heat sources in horizontal nat-

ural convection cavities is elucidated by Qi-Hong Deng et al. (2002) for range of Rayleigh

number (102 ≤ Ra ≤ 105) and constant Prandtl number (Pr = 0.71), relative conductiv-

ity (k∗ = 1) and aspect ratio (Ar = H/L = 0.5). Their study concluded that according

to the contribution ratios of discrete heat source, the flow structures can be divided into

two regimes, i.e. the conduction and the convection regimes. Similar study is reported

by Bhoite et al. (2005). Subsequently, the numerical study of natural convection heat

transfer in an enclosure containing conducting bodies with thermal conductivity of 0.1,

1 and 50 and range of Rayleigh number (103 ≤ Ra ≤ 107) by using Chebyshev spec-

tral methodology with multi-domain technique. They observed the patterns of flow and

isotherm and the corresponding surface and time averaged Nusselt number are similar

to those of neutral isothermal body for dimensionless thermal conductivity is 50. The

influence of combined effect of natural convection and radiation heat transfer in an enclo-

sure containing square block at its center is reported by Mezrhab et al. (2006) by using

finite volume method with SIMPLER algorithm. They carried out parametric study of

surface emissivity (0 ≤ ǫ ≤ 1), the Rayleigh number (103 ≤ Ra ≤ 108), and the thermal

conductivity ratio (0 ≤ kr ≤ 1). They reported that the radiation exchange homogenizes

the temperature inside the cavity and raises heat transfer rate, particularly when kr and

Ra are high, also, the average Nusselt number varies linearly with surface emissivity, es-

pecially at high Rayleigh numbers. The natural convection in a enclosure with built-in

tilted heated square block is investigated by De and Dalal (2006) by using finite difference

method with stream-function-vorticity formulation for laminar range of Rayleigh number

(103 ≤ Ra ≤ 106). They investigated the effects of the enclosure geometry by using three

different aspect ratio (AR) placing the square cylinder at different heights from the bottom

wall. They also introduced a concept of heat-function to trace the heat transport. Later,



Chapter 2. 37

the lattice Boltzmann simulation of laminar natural convection in an enclosure with a

heat-generating cylinder conducting body is delineated by Jami et al. (2007b) for laminar

range of Rayleigh number (103 ≤ Ra ≤ 106) and temperature difference of 0 ≤ ∆T ≤ 50

for air as a working fluid. For given Rayleigh number, the heat transfer rate show lin-

ear variation with ∆T . Thereafter, Kim et al. (2008) presented the natural convection

heat transfer in an enclosure with cold wall temperature containing hot square block for

laminar range of Rayleigh number (103 ≤ Ra ≤ 106) by using immersed boundary-finite

volume method (IB-FVM). They reported remarkable influence of Rayleigh number and

the position of the inner circular cylinder on the size and location of convection cell.

Numerical investigation of rectangular built-in block in a square cavity on natural con-

vection flow and heat transfer characteristics was carried out by Lu et al. (2009) by using

thermal lattice Boltzmann method (TLBM) for heat intensity parameter, i.e., Rayleigh

number of 103 ≤ Ra ≤ 107 and air as a working fluid. The results indicated the width of

rectangular block and Rayleigh number has remarkable influence on flow structure which

can be viewed from different zones appeared in cavity, i.e., steady, periodical, and chaos.

Similarly, the influence of location of circular cylinder placed in a square cavity on natural

convection heat transfer behavior is studied by Lee et al. (2010). In particular, the loca-

tion of cylinder at horizontal and diagonal position is investigated for Rayleigh number

range of 103 − 106. They observed the occurrence of local peaks of the Nusselt number

along the surfaces of the cylinder and the enclosure is determined by the gap and the

thermal plume governed by the conduction and the convection, respectively. The study

of 2D mixed convection from a heated built-in square solid block located at the center

of a vented cavity filled with air (Pr = 0.71) is carried out by Chamkha et al. (2011).

They explored the influence of the outlet positions, Richardson numbers (0 ≤ Ri ≤ 10),

Reynolds numbers (50 ≤ Re ≤ 200), locations (0.25 ≤ Lx ≤ 0.75 and 0.5 ≤ Ly ≤ 0.75),

and aspect ratio (0.1 ≤ AR ≤ 0.4) of inner square cylinder on the natural convection

flow and heat transfer by using finite difference method (FDM). The results indicated

the rise in average Nusselt number values with Reynolds and Richardson numbers. Sub-

sequently, the combined effects of magnetic field and Joule heating on mixed convection

heat transfer characteristics in a lid driven cavity containing a heat-conducting square
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block is delineated by Rahman et al. (2011c). The walls of square cavity is maintained by

different temperatures. They solved field equations by using a Galerkin weighted residual

finite element method with a Newton-Raphson iterative algorithm. They reported that

flow and thermal fields strongly depend on magnetic parameter, joule heating parameter,

and the size of the inner block at the pure mixed convection zone.

Recently, numerical simulation of natural convection between a circular enclosure and

a sinusoidal cylinder is delineated by Sheikholeslami et al. (2013a). They used control

volume based finite element method for solving field equation for the broad range of flow

governing parameters, such as, Rayleigh number (103 ≤ Ra ≤ 106), and the number of

undulations of the inner cylinder (N = 2, 3, 5, 6) and amplitude values (A = 0.1, 0.3, 0.5).

They reported strong influence of physical parameters on size and formation of the cells

inside the enclosure.

2.3 Flow across a heated square obstacle

A considerable amount of research work has been conducted well over the past decades

to investigate the flow past heated obstacles of varying shapes (viz., circular, square,

triangular) owing to its wide range of applications in industrial and domestic fields. Ad-

ditionally, this problem is considered as classical flow problem in the the field of transport

phenomenon, as it exhibit variety of fluid flow characteristics. The bulk of literature re-

ferring to cylinder of circular cross section followed by square, elliptical and rectangular is

available. Some pioneering work delineating the role of built-in square cylinder in a chan-

nel flow on the hydrodynamic features is reported by (Hasimoto, 1959; Lee, 1975; Matida

et al., 1975; Rockwell, 1977; Robertson et al., 1978; Gerrard, 1978; Obasaju, 1979; Petty,

1979; Kareem and Cermak, 1984; Roshko, 1993). An extensive review on the flow past

a circular cylinder is now available, (Zdravkovich, 1997a,b; Chhabra, 1996, 1999). Huge

amount of literature now available for flow past a square cylinder for laminar as well as

turbulent condition and blockage ratios. However, very few studies have been illustrated

the heat transfer characteristics of steady cross flow past a square cylinder for combined
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effect of Reynolds number and blockage ratio. Further, flow past a square cylinder in

unconfined condition have been studied much extensively than confined one (Minewitsch

et al., 1994; Paliwal et al., 2003; Bin et al., 2003; Sharma and Eswaran, 2004; Dhiman

et al., 2006a,b; Sahu et al., 2009; Agrawal et al., 2006; Dhiman et al., 2007; Dhiman,

2009a; Sharma and Eswaran, 2010; Chatterjee and Biswas, 2011; Chatterjee and Mondal,

2011; Etminan-Farooji et al., 2012). In contrast, there is very limited information avail-

able exploring the effect of wall confinement (higher blockage ratio) on forced convection

heat transfer characteristics. For instance, Biswas et al. (1990) have explored the mixed

convection heat transfer characteristics from heated built-in square cylinder for range of

flow governing parameters such as, Reynolds number (80 ≤ Re ≤ 500), Grashof number

(0 ≤ Gr ≤ 25600) and constant Prandtl number (Pr = 0.7). They reported the enhance-

ment of fluid temperature in channel for particular Reynolds number in mixed convection

for range of Grashof number. In their study, at lower Reynolds number, periodicity and

asymmetry were initiated for mixed convection. Subsequently, Turki et al. (2003b,a) elu-

cidated the influence of blockage ratio (β = 1/4, 1/8) on fluid flow and heat transfer

characteristics by using the control volume finite element method (CVFEM) for the range

of flow governing parameters such as Reynolds number (60 ≤ Re ≤ 200), Richardson

number (0 ≤ Ri ≤ 0.1) at Pr = 0.71. They observed flow instability at Ri = 0.13. Af-

terwards, Gupta et al. (2003) studied the forced convection heat transfer characteristics

in a steady, laminar flow past confined square cylinder for physical parameters such as,

Reynolds number (5 ≤ Re ≤ 40), Peclet number (5 ≤ Pe ≤ 400), non Newtonian power

law index (0.2 ≤ n ≤ 1.5) and at constant blockage (β = 1/8). They observed small

size as well as delay in wake formation for shear shining fluids. For shear thickening, a

opposite behavior is observed. Similarly, Dhiman et al. (2005) investigated the combined

effect of blockage ratio (β = 1/2, 1/4, 1/8), Reynolds number (5 ≤ Re ≤ 40), Prandtl

number (0.71 ≤ Pr ≤ 4000) on the heat transfer and fluid flow characteristics of channel

flow built in square cylinder. They observed linear increase in average Nusselt number

with Reynolds and Prandtl numbers. Consequently, Sharma and Eswaran (2005) eluci-

dated the influence of wall confinement on thermal and hydrodynamic nature of channel
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built-in square cylinder for range of flow governing physical parameters such as block-

age ratio (0.1 ≤ β ≤ 0.5), Reynolds number (Re = 50, 100, 150) and Prandtl number

of Pr = 0.71. In their study, different engineering parameters (Strouhal number, Drag

coefficient, Nusselt number) shown proportional increase with blockage ratio. The vortex

structures of flow past a square cylinder placed in the vicinity of channel wall is studied

by Bhattacharyya and Maiti (2006) for higher Reynolds number (Re ≥ 500) and the gap

between the plane wall to the cylinder to be Lg = 0.25b by using SIMPLER. approach.

The shear layer emerging from the bottom face of the cylinder reattaches to the cylinder

itself at Lg > 0.2.

Dhiman et al. (2008a) elucidated combined influence of power law index (0.5 ≤ n ≤ 2.0)

and blockage ratio (β = 1/4, 1/6, 1/8) on the steady flow hydrodynamics in channel flow

with built-in square cylinder for range of Reynolds number (1 ≤ Re ≤ 45). In their study,

size of wake region and drag coefficient values are more influenced by blockage ratio

and Reynolds number than power law index. Subsequently, the numerical investigation

of laminar, steady, mixed convection is carried out by Dhiman et al. (2008b) by using

finite volume method. They presented numerical results for wide range of parameters

such as, Reynolds number (1 ≤ Re ≤ 30), Richardson number (0 ≤ Ri ≤ 1), Prandtl

number (0.71 ≤ Pr ≤ 100) at constant blockage of β = 0.125. It is observed that lift

coefficient have more predominant effect of Richardson number (Ri) than drag coefficient.

The effect of wall confinement on wake transition in channel with built-in square cylinder

is examined by Patil and Tiwari (2008). In their study, the influence of the critical

Reynolds number (Recr) and blockage ratio (0.125 ≤ β ≤ 0.7) on the onset of planer

vortex shedding have been investigated. They observed the delay in onset of planer vortex

shedding for 0.125 ≤ β ≤ 0.38 and decrease in Recr for β > 0.38. Similarly, Sahu et al.

(2010) investigated the influence of blockage ratio (β = 1/2, 1/4, 1/6), Reynolds number

(60 ≤ Re ≤ 160) and power law index (0.5 ≤ n ≤ 1.8) on hydrodynamics of channel

built-in square cylinder. The increase in blockage ratio caused delay in onset of vortex

shedding to higher Reynolds number for range of power law index. Rao et al. (2010)

numerically analyzed the fluid flow and forced convection heat transfer characteristics
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by using commercial CFD package FLUENT . They explored the effects of Reynolds

number effect (0.1 ≤ Re ≤ 40) on the onset of flow separation and the limits of the

steady flow regime for non-Newtonian power law fluids (0.2 ≤ n ≤ 1.4) and Prandtl

numbers (0.71 ≤ Pr ≤ 100). They observed linear dependence of average Nusselt number

(Nu) on the Reynolds and Prandtl numbers. Three dimensional analysis of aerodynamic

coefficients and wake region past a inclined square cylinder is reported by Yoon et al.

(2012). They delineated the influence on the wake structure for range of Reynolds number

(Re=150, 200, 250 and 300) and angle of inclination (0o ≤ θ25o). They concluded that

wake region and aerodynamic coefficients are sensitive to inclination of the square cylinder,

and the Reynolds number effects are insignificant except for mean lift coefficient.

Recently, Reyes et al. (2013) experimentally investigated the three dimensional analysis of

flow past a square cylinder at high blockage ratio (β = 1/2.5) for range of Reynolds number

(100 ≤ Re ≤ 256) and channel aspect ratio (1/1). They reported the delay in onset of

vortex shedding at Re ≈ 170 which for unconfined case is in the range of 50 ≤ Re ≤ 60

and slow transition of steady closed circulation bubble region to vortex shedding region.

Furthermore, the influence of inserted square obstacle on wall heat transfer rate in channel

flows under laminar and unsteady flow condition is reported by Park (2013). The physical

parameters used in their study are Reynolds number (Re = 50, 150), gap distance ratio

(0.1 − 1) and blockage ratio (β = 0.1, 0.125, 0.2) on rate of heat transfer. The results of

their study shown linear increase in average Nusselt number (Nu) with disappearance in

the re-circulation length.

More recently, Rashidi et al. (2014) reported the numerical analysis of forced convective

heat transfer from a heated square-diamond shaped porous cylinder for range of governing

parameters, such as Reynolds number (1 ≤ Re ≤ 45), Darcy number (10−6 ≤ Da ≤ 10−2)

and porosity (ǫ = 0.5). They reported the decrease in drag coefficient and delay in flow

separation with Darcy number for range of Reynolds number. They also observed the

shrink in thermal plume with decrease in Darcy number.
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2.3.1 LBM studies on flow past square/rectangular cylinder

The lattice Boltzmann method (LBM) have also been used for investigating heat transfer

and fluid flow characteristics of channel built-in square cylinder. For instance, Breuer et al.

(2000) used lattice Boltzmann method as well as finite volume method for investigating

flow hydrodynamics of channel flow with built-in square cylinder for range of Reynolds

number (1 ≤ Re ≤ 300) at a constant blockage ratio (β = 1/8). Both numerical methods

provide the local maximum of Strouhal number at Re = 150. Subsequently, Agrawal et al.

(2006) presented the LBM investigation of low Reynolds number fluid flow characteristics

around two square cylinders placed side-by-side. They elucidated the influence of the gap

ratio (s/d is the separation between the cylinders and d is the characteristic dimension)

on momentum characteristics at Re=73. The major finding of their study was the vortex-

shedding from the cylinder occurs either in phase or anti-phase in the synchronized zone.

Cheng et al. (2007) determined flow characteristics in linear shear flow past a square

cylinder. Numerical experimentation were carried out for wide ranges of flow governing

conditions such as Reynolds number (50 ≤ Re ≤ 200) and shear rate (0 − 0.5). They

found strong influence of Reynolds number and shear rate on vortex shedding and wake

formation behind the square cylinder. On the other hand, Han et al. (2007) presented the

interpolation-supplemented and Taylor-series expansion-based lattice Boltzmann method

and its application to flow past a square cylinder. The physical insights and re-circulation

length is obtained at Reynolds number of Re=1 and 15. The aim of their study was to

propose the non-uniform mesh structure for the lattice Boltzmann models. Subsequently,

Rowghani et al. (2010) carried out lattice Boltzmann simulation of flow past a square

cylinder to investigate the influence of wide range of Reynolds number (0.5 ≤ Re ≤ 300)

for constant blockage ratio of (β = 1/8) on fluid flow characteristics (stream lines and

vorticity) and engineering parameters (drag coefficient, Strouhal number). For computed

drag results, local minima was observed at Re = 150 in their study. Later, Moussaoui et al.

(2011) presented the lattice Boltzmann computation of flow and heat transfer past three

heated square cylinders in a V shape arrangement by using double multiple relaxation

time (MRT) approach. The physical parameters used for numerical experimentation are
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Reynolds number (10 ≤ Re ≤ 100), gap to diameter ratio (S=1,2) and air (Pr = 0.71)

as working fluid. They observed by varying S, the nusselt number get insignificantly

affected. Perumal et al. (2012) elucidated the effect of Reynolds number (10 ≤ Re ≤ 40)

at constant blockage ratio of β = 1/8 on laminar fluid flow characteristics (stream lines,

vorticity, drag and lift coefficients, etc.) of a square cylinder. The critical Reynolds

number was found to be Re = 52 at β = 1/8. At this Reynolds number, they studied

the influence of cylinder location. At low blockage ratio and Re = 52, vortex shedding

was found to be strongly dependent. Recently, Premnath et al. (2013) used a multi-block

LBM with dynamic sub-grid scale for investigation of transitional flow past a circular

cylinder at Reynolds number (Re = 3900). They used multiple relaxation time and

five different blocks encompassing different grids structure by for numerical computation.

In their study, Smagorinsky eddy-viscosity model is used for representing the sub-grid

scales effect. The LBM simulation of flow past a side by side placed square cylinders

is reported by Burattini and Agrawal (2013). They investigated the wake interaction

between square cylinders at constant Reynolds number of Re=73. by varying the lateral

separation between cylinders in the range of 0.5-6. They reported nearly constant value

of Strouhal number (≈ 0.16). The results of their study indicated the amplitude of the

modulation follows a systematic pattern in time that can be obtained by a system of

coupled Landau equations. More recently, the lattice Boltzmann simulation of power-

law fluid flow and heat transfer characteristics in a channel with a built-in porous square

cylinder is reported by Nazari et al. (2014). They investigated the influence of the different

arrangements of obstacles, Reynolds number (Re = 100, 200, 300), power index (n =

0.8, 1, 1.2), blockage ratio (β = 1/2, 1/4, 1/8) and porosity (0.75 ≤ ǫ ≤ 1) on the heat

transfer characteristics. They observed increase in heat transfer rate with blockage ratio.

Table 2.6 represents the summery of literature encompassing the convection heat transfer

from built in square cylinder by numerical methods other than the lattice Boltzmann

method (LBM). The literature based on use of LBM for study of flow past a square

cylinder is expressed in Table 2.7.
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Table 2.6: A summary of literature on convection heat transfer from confined square cylinder by numerical methods other than LBM.

Source Physical Parameters Numerical method Study Remarks

Mixed convection

Biswas et al. (1990) 80 ≤ Re ≤ 500; 0 ≤ Gr ≤ 25600; Pr = 1 FDM At lower Reynolds number, periodicity and
asymmetry were initiated for mixed convection

Turki et al. (2003b,a) β = 1/4, 1/8; 0 ≤ Ri ≤ 0.1; Pr = 0.71 CVFEM Flow instability at Ri = 0.13

Dhiman et al. (2008b) 1 ≤ Re ≤ 30; 0 ≤ Ri ≤ 1; 0.71 ≤ Pr ≤ 100; β = 0.125 FVM Lift coefficient have more predominant
effect of Richardson number (Ri)
than drag coefficient

Forced convection

Gupta et al. (2003) 5 ≤ Re ≤ 40; 5 ≤ Pe ≤ 400; 0.2 ≤ n ≤ 1.5; β = 1/8 SMAC implicit Small size as well as delay in wake formation
for shear shining fluids.
For shear thickening, a opposite behavior is observed

Dhiman et al. (2005) β = 1/2, 1/4, 1/8; 0.71 ≤ Pr ≤ 4000; 5 ≤ Re ≤ 40 FVM Linear increase in average Nusselt
number with Reynolds number and Prandtl number

Sharma and Eswaran (2005) 0.1 ≤ β ≤ 0.5; Re = 50, 100, 150; Pr = 0.71 FVM Different engineering parameters shown
proportional increase with blockage ratio

Dhiman et al. (2008a) 0.5 ≤ n ≤ 2.0; β = 1/4, 1/6, 1/8; 1 ≤ Re ≤ 45 FVM Size of wake region and drag coefficient
values are more influenced by blockage ratio and
Reynolds number than power law index

Patil and Tiwari (2008) 0.125 ≤ β ≤ 0.7 FDM delay in onset of planer vortex shedding
in (0.125 ≤ β ≤ 0.38) and decrease in Recr for β > 0.38

Sahu et al. (2010) β = 1/2, 1/4, 1/6; 60 ≤ Re ≤ 160; 0.5 ≤ n ≤ 1.8 FVM The increase in blockage ratio causes
delay in onset of vortex shedding
to higher Reynolds number
for range of power law index was observed

Reyes et al. (2013) 100 ≤ Re ≤ 256; β = 1/2.5; FDM Delay in onset of vortex shedding
is observed at ≈ 170
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2.4 Flow past a rectangular obstacle

The momentum and thermal characteristics of flow past a rectangular cylinder is studied

less extensively than circular and square cylinders. Few studies have illustrated the fluid

flow and heat transfer characteristics of steady cross flow past a rectangular cylinder for

combined effect of aspect ratio of cylinder and blockage ratio.

For instance, Okajima (1982) experimentally investigated the vortex-shedding frequencies

of various rectangular cylinders in a wind tunnel and in a water tank. The aspect ratio

of rectangular cylinder in their study was a=2 and 3 for range of Reynolds number (70 ≤

Re ≤ 2 × 104). The critical Reynolds number shown strong dependence upon the aspect

ratio of the cylinder in their study. Similarly, Davis and Moore (1982) and Davis et al.

(1983) numerically analyzed the vortex shedding from rectangular cylinder in unconfined

and confined channel domain, respectively. The flow governing parameters used in their

study was Reynolds number (100 ≤ Re ≤ 280), blockage ratio (1/4, 1/6), aspect ratio

(1 ≤ ar ≤ 4) and (0.6 ≤ ar ≤ 1.7) and upstream velocity profile. They observed increase

in drag and Strouhal number with increase in channel confinement (decrease in blockage

ratio). Subsequently, Norberg (1993) presented the experimental study of flow around

rectangular cylinders to investigate the pressure forces and wake frequencies for range of

flow governing parameters (aspect ratio:1 ≤ ar ≤ 3, Reynolds number: 4 ≤ Re ≤ 3× 104,

angle of attack of cylinder: 0o − 90o). They observed multiple wake frequencies at small

angles of attack for certain range of Reynolds number and with aspect ratio (ar = 2− 3).

Later, the numerical investigation of unsteady flow-Reynolds number (≤ 200) flow around

rectangular cylinder with aspect ratio (1 ≤ ar ≤ 4) at angle of incidence (0o − 90o) is

reported by Sohankar et al. (1997). The flow separation at downstream corners is observed

for cases with one side opposing flow at Re=100. Yang and Fu (2001) reported the fluid

flow and heat transfer characteristics from a oscillating rectangular cylinder for wide

range physical parameters such as, Reynolds number (Re = 250, 500), oscillating speed

(0.333,0.5 and 1), oscillating amplitude (0.125,0.333,0.5 and 0.75), aspect ratio (ar = 1, 2)
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Table 2.7: A summary of literature on convection heat transfer from confined square cylinder by LBM.

Source Physical Parameters Study Remarks

Breuer et al. (2000) 1 ≤ Re ≤ 300 Local maximum of Strouhal number at Re = 150

Cheng et al. (2007) 50 ≤ Re ≤ 200; Shear rate=0-0.5 Strong dependence of shear rate
on vortex shedding and wake formation
behind the square cylinder

Rowghani et al. (2010) 0.5 ≤ Re ≤ 300;β = 1/8 For computed drag results, local
minima was observed at Re = 150

Perumal et al. (2012) 10 ≤ Re ≤ 40;β = 1/8 The critical Reynolds number was found
to be Re = 52 at β = 1/8.

Premnath et al. (2013) Re = 3900;β = 1/8 Multiple relaxation time and five different
blocks encompassing different grids
structure by for numerical computation

Nazari et al. (2014) Re = 100, 200, 300;n = 0.8, 1, 1.2;β = 1/8 Increase in heat transfer rate
β = 1/2, 1/4, 1/8; 0.75 ≤ ǫ ≤ 1 with blockage ratio
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and blockage ratio (β = 0.1, 0.2). They observed heat transfer enhancement with aspect

ratio of rectangular cylinder.

Nitin and Chhabra (2005) elucidated the combined effect of non-Newtonian power law

index (0.5 ≤ n ≤ 1.4), Reynolds number (5 ≤ Re ≤ 40), Peclet number (5 ≤ Pe ≤ 400)

and blockage ratio (β = 1/8) on momentum and heat transfer characteristics from heated

built-in rectangular cylinder of aspect ratio (width/height) of 2. They observed that

increasing power law index caused decrease in both drag and Nusselt number values.

Furthermore, Zhi-Qiang and Jie (2005) presented the numerical simulation of flow past

a confined rectangular cylinder, which is oscillating. They considered the momentum

characteristics as a dynamic and moving boundary problem. They used Galerkin finite

element formulation with moving meshes as a numerical tool. They reported significant

variation of vortex structures of square cylinder than circular one.

A Three dimensional numerical study of turbulent, separated and reattached flow around

rectangular cylinder is reported by Bruno et al. (2010). Subsequently, the lattice Boltz-

mann simulation of flow past a rectangular cylinder with different aspect ratio have been

reported by Islam et al. (2012). The aspect ratio of rectangular cylinder used in their

study are 0.15 ≤ ar ≤ 4 for Reynolds number of Re = 100, 150, 200, 250 and a constant

blockage ratio of β = 1/12. They observed discontinuity in the range of 1.25 ≤ ar ≤ 1.6,

obtained from multiple peaks by Fourier spectrum analysis of the lift force.

2.5 Summary of literature reviews

Based on the aforementioned discussion of the available literature, following remarks can

be drawn:

1. Among other CFD methods, Lattice Boltzmann method (LBM) have been success-

fully utilized over the decades to investigate the convective heat transfer character-

istics.
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2. Most of studies have reported the flow and thermal characterstics of a single fluid

(i.e., fixed value of Prandtl number) in differentially heated square cavity and/or

range of Prandtl number for non-differential heated square cavity. To the best of

our knowledge, none of the studies, have explored the combined effect of Prandtl

number (0.71 ≤ Pr ≤ 100) and Rayleigh number (104 ≤ Ra ≤ 106) on the natural

convection heat transfer in differentially heated square cavity by using LBM.

3. Very limited information is available about the heat transfer characteristics of par-

tially heated enclosures. In particular, the scant results is available exploring com-

bined influence of cooler size and magneto-hydrodynamics (MHD) natural convec-

tion in differentially heated cavity.

4. Natural convection in open ended cavity has been well explored over the last few

decades, but most of the studies have delineated the heat transfer characteristics of

completely heated wall of cavity. Much less is known about combined influence of

Prandtl number and partial heating (effect of heating location and size) on heat and

fluid flow behavior of open ended cavity.

5. For problem of natural convection in square cavity containing built-in square block,

most of the studies have explored the physical insights for constant working fluid

(mostly, air). Thus, study of such systems at range of Prandtl numbers is desirable.

6. Forced convection from built-in square cylinder has been studied much extensively.

Most of the studies have delineated the influence of Reynolds number at low blockage

ratios (β ≤ 1/8). None of the studies, as much known to author, have explored

combined effect of aspect ratio of rectangular cylinder, blockage ratio (high) and

Reynolds number.



Chapter 2. 49

2.6 Objectives

Based on the review of available literature, the following objectives are set up for the

present research.

1. Development of the thermal lattice Boltzmann method (TLBM) solver (in C++

programming language) and its utilization for the analysis of following problems.

2. Natural convection heat transfer in differentially heated square cavity: Effect of

Prandtl and Rayleigh number.

3. Natural convection in partially-differentially-simultaneously heated/cooled square

cavity: Effect of Rayleigh number.

4. Magneto-hydrodynamic natural convection in partially heated square cavity: Effect

of cooler size and Hartmann number.

5. Natural convection in partially heated square open ended enclosures: Effect of size

and location of partial heater.

6. Natural convection in cavity containing heated square body: Effect of Prandtl num-

ber.

7. Steady forced convection heat transfer from heated built-in rectangular cylinder:

Effect of wall confinement, aspect ratio of cylinder and Reynolds number.

The next chapter discusses the general assumptions and the governing equations to fulfill

the objectives setup in this work.
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GOVERNING EQUATIONS AND

DIMENSIONLESS PARAMETERS

This chapter presents the general assumptions, governing field equations along with the

dimensionless physical flow governing parameters used in this study. Additionally, the

engineering parameters (stream-function, nusselt number, drag force, etc.) are also have

been defined and discussed. The problems considered in present work are listed below:

1. Natural convection in differentially heated square cavity.

2. Natural convection in partially-differentially-simultaneously heated/cooled square

cavity.

3. Magneto-hydrodynamic natural convection in partially heated square cavity.

4. Natural convection in partially heated square open ended enclosures.

5. Natural convection in cavity containing heated square body.

6. Steady forced convection heat transfer from heated built-in rectangular cylinder.

Thus, the field equations of natural, magneto hydrodynamic (MHD) natural and forced

convection heat transfer are presented herein with the general assumptions.

50
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3.1 General assumptions

The following general assumptions are considered herein this work.

1. Two dimensional flow

2. Incompressible fluid

3. Steady state flow

4. Laminar flow

5. Temperature difference (∆T = Th − Tc) is small.

6. In case of forced convection, the thermo-physical (namely, density, viscosity, thermal

conductivity and heat capacity) are considered to be independent of temperature.

7. In case of natural convection, the thermo-physical properties of the fluid are consid-

ered to be a independent of the temperature except the density of the fluid appearing

in the body force term in momentum equation.

8. Boussinesq approximation (for natural convection problems): For small to moder-

ate variation in the density with the temperature, it is sufficient as well as common

to use the well-known Boussinesq approximation to express its dependence on the

temperature as ρ = ρ[1 − βt(T − T )], where βt is coefficient of volumetric expan-

sion at constant pressure and average fluid density (ρ) at a reference temperature

T =
(

TH+TC

2

)
(Kuznik et al., 2007; Peng et al., 2003a). This approximation is cus-

tomarily invoked to maintain the level of complexity at a traceable level in most of

the studies related to natural/mixed convection (Srinivas et al., 2009). The Boussi-

nesq approximation evidently couples the Navier-Stokes equations with the thermal

energy equation, therefore simultaneous solution of these governing equation is re-

quired.
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9. Further, in this work, viscous heat dissipation, radiation heat transfer and compres-

sion work done by pressure are neglected. This approximation restrict the applica-

bility of the present results to the situations where the temperature difference (∆T )

is not too large and/or for moderate viscosity so that the viscous dissipation effects

are negligible. Keeping in mind the limitations of the Boussinesq approximation,

the temperature difference (∆T ) is maintained to be small such that it justifies the

unaccountably of the variation of the fluid viscosity with temperature.

3.2 Governing equations

The convective flow and heat transfer is governed by the equations of continuity, mo-

mentum and thermal energy. Under the general assumption, these field equations can be

written as follows:

• Continuity equation (mass):

∂ux

∂x
+
∂uy

∂y
= 0 (3.1)

• x-component of momentum equation:

ρ

(
ux
∂ux

∂x
+ uy

∂ux

∂y

)
= −∂p

∂x
+ µ

(
∂2ux

∂x2
+
∂2ux

∂y2

)
+ Fx (3.2)

• y-component of momentum equation:

ρ

(
ux
∂uy

∂x
+ uy

∂uy

∂y

)
= −∂p

∂y
+ µ

(
∂2uy

∂x2
+
∂2uy

∂y2

)
+ Fy (3.3)

• Thermal energy equation:

(
ux
∂T

∂x
+ uy

∂T

∂y

)
= α

(
∂2T

∂x2
+
∂2T

∂y2

)
(where α =

k

ρcp
) (3.4)
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where, (x, y), (ux, uy), p, ρ, α, µ, T and (Fx, Fy) are coordinates along horizontal and

vertical directions respectively, velocity components, pressure, density of fluid, fluid ther-

mal diffusivity, kinematic viscosity, temperature, force terms, respectively. The above

field equations can be classified into natural, magneto-hydrodynamic (MHD) natural and

forced convection field equations by suitably defining the force terms (Fx and Fy) as

follows:

• For natural convection,

Fx = 0 and Fy = gyρβ(T − T ) (3.5)

• For MHD natural convection,

Fx = σB2
[
uysinθMcosθM − uxsin

2θM

]

Fy = ρgyβ(T − T ) + σB2
[
uxsinθMcosθM − uycos

2θM

] (3.6)

• For forced convection,

Fx = 0 and Fy = 0 (3.7)

The dimensionless form of the above noted field equations can be expressed as follows:

∂Ux

∂X
+
∂Uy

∂Y
= 0 (3.8)

(
Ux
∂Ux

∂X
+ Uy

∂Ux

∂Y

)
= − ∂P

∂X
+

1

Γm

(
∂2Ux

∂X2
+
∂2Ux

∂Y 2

)
+ Fx (3.9)

(
Ux
∂Uy

∂X
+ Uy

∂Uy

∂Y

)
= −∂P

∂Y
+

1

Γm

(
∂2Uy

∂X2
+
∂2Uy

∂Y 2

)
+ Fy (3.10)

(
Ux

∂θ

∂X
+ Ux

∂θ

∂Y

)
=

1

Γe

(
∂2θ

∂X2
+
∂2θ

∂Y 2

)
(3.11)
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In Eqs. (3.8) to (3.11), reference length (H), reference velocity (V ) and reference pressure

(ρV 2) are used to scale the length, velocities and pressure, respectively. The dimensionless

temperature is defined as θ = (T − Tc)/(Th − Tc). The dimensional force terms (Fx and

Fy) are written as:

• Natural convection,

Fx = 0 and Fy = (Ra× Pr) θ (3.12)

• MHD Natural convection,

Fx = PrHa2
[
UysinθMcosθM − Uxsin

2θM

]

Fy = (Ra× Pr) θ + PrHa2
[
UxsinθMcosθM − Uycos

2θM

] (3.13)

• Forced convection,

Fx = 0 and Fy = 0 (3.14)

(3.15)

The momentum and energy diffusion coefficients (Γm and Γe) are given as follows:

• For natural convection,

Γm = Pr and Γe =
√
Ra× Pr (3.16)

• For forced convection,

Γm = Re and Γe = Pr = Re× Pr (3.17)
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The above governing equations may be subjected to the following boundary conditions,

depending on the nature of problem.

• No-slip condition,

ux = uy = 0 orUx = Uy = 0

• Open end condition,

∂ux

∂x
=
∂uy

∂x
= 0 or

∂Ux

∂X
=
∂Uy

∂X
= 0

• In-flow fully developed condition,

ux = umax

[
1 −

(
1 − 2y

H

)2
]

orUx = Umax

[
1 − (1 − 2Y )2]

• Outflow condition,

∂ux

∂x
=
∂uy

∂x
= 0 or

∂Ux

∂X
=
∂Uy

∂X
= 0

• Isothermal condition,

T = TH/TC orθ = θH/θC

• Adiabatic condition

∂T

∂x(/y)
= 0 or

∂θ

∂X(/Y )
= 0

3.2.1 Dimensionless parameters

The various flow governing physical, dimensionless parameters along with its physical

meaning used in present work are presented in tabular form as follows (Table 3.1).

Moreover some physical parameters used in this study are expressed below.
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Table 3.1: A list of the physical parameters considered in present work.

Sr. No. Parameter Significance

1. Grashof number, Gr = gβ∆TH3

α2

Buoyancy force
viscous force

2. Peclet number, Pe = LV
κ

Heat convection
Heat conduction

3. Prandtl number, Pr = Cpµ
κ

Momentum diffusion
Heat diffusion

4. Reynolds number, Re = DV ρ
µ

Inertial force
Viscous force

5. Rayleigh number, Ra = gβ∆TH3

νµ
Inertial force

Diffusion force

6. Hartmann number, Ha = BH
√

σ
µ

Electromagnetic force
Viscous force

κ: Thermal conductivity, B: Magnetic field, σ: Electrical conductivity

• Characteristic velocity (V ): Since the characteristic velocity used in the scaling of

natural convection problem is not known, thus it’s estimation is an important step.

In case of natural convection, the reference velocity (V ) is approximated (Mohamad

et al., 2009; Kuznik et al., 2007; Fattahi et al., 2010, 2012) and also expressed as a

function of dimensional groups as follow.

V =
√
gβ∆TH or V =

ν

H

√
Gr or V =

ν

H

√
Ra

Pr
(3.18)

• Estimation of pressure: The one of the advantage of LBM lies in the fact that unlike

conventional CFD tools, estimation of the pressure field is very easy. For uniform

lattice size it is given as below (Chen and Doolen, 1998),

P = c2sρ =
1

3
ρ; where

(
cs =

1√
3

)
(3.19)

• Surface pressure coefficient (CP ) is defined as ratio of static pressure on the surface

of square cylinder to that of free stream pressure (Sivakumar et al., 2007). It is
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expressed as follows:

CP = 2

(
Ps − P∞

ρU2
avg

)
(3.20)

where, Ps is pressure at the surface of square cylinder and P∞ corresponds to free

stream pressure.

• Similarly, the skin friction coefficient (CF ) along horizontal wall of cylinder can be

expressed as,

Cf =
2

Re

(
∂Ux

∂Y

)
(3.21)

and for vertical surface of cylinder,

Cf =
2

Re

(
∂Uy

∂X

)
(3.22)

• The drag coefficient in non-dimensional form (Paliwal et al., 2003; Dhiman et al.,

2006a) is represented as below:

CD =
FD

0.5ρU2
avgb

= CDP + CDF (3.23)

where, FD is drag force exerted on square cylinder per unit length. CD is normal

force component (in z direction). While, x and y components are friction drag

(CDF ) and pressure drag (CDP ), respectively. The pressure or form drag component

is estimated by integrating pressure on two vertical faces of square cylinder. It is

expressed as,

• Pressure drag coefficient

CDP =

∫

s

CPds (3.24)
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• In similar manner, the friction drag coefficient along top and bottom walls of square

cylinder can be evaluated as,

CDF =

∫

s

CFds (3.25)

• Re-circulation or wake length (Lr) is estimated from the rear face of square cylinder

to the point of reattachment for closed streamlines (Ux = Uy = 0) on the symmetry

line in downstream flow direction (Sivakumar et al., 2007).

Lr =
L∗

r

b
(3.26)

• Stream-function is calculated from the converged velocity field. It is expressed as,

ψ =

∫
UxdY (3.27)

• Similarly, vorticity is calculated as,

ξ =
∂Uy

∂X
− ∂Ux

∂Y
(3.28)

• Nusselt number: For elucidating the effect of convective heat transfer, Nusselt num-

ber (Nu) is considered as one of the important dimensionless parameter. The local

and average Nusselt numbers (Chan and Tien, 1985) can be obtained as,

Nu = −∂T
∂n

(3.29)

Nu =

∫

s

Nuds (3.30)
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For problem of flow past a rectangular cylinder, the local and average Nusselt num-

ber are estimated (Chen and Tian, 2010) along face of cylinder as follow,

Nufront =

∫ B

A

NudX; Nurear =

∫ D

C

NudX (3.31)

Nubottom =

∫ C

B

NudY ; Nutop =

∫ A

D

NudY (3.32)

The mean average Nusselt number along the square cylinder is estimated as follows:

Numean =
Nufront +Nurear +Nutop +Nubottom

4
(3.33)

The governing equations of the problems considered herein are solved by using the lat-

tice Boltzmann method to obtain the local and global characteristics. The next chapter

discusses the basics of LBM along with numerical/computational algorithm.
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LATTICE BOLTZMANN METHOD

The chapter starts with the basics of lattice Boltzmann method (LBM), followed by

governing equations of LBM, the recovery of mass, momentum and energy equations, the

implementation of boundary condition and the computational algorithm.

4.1 Lattice Boltzmann Method

Mc Namara and Zanetti (1988) presented a lattice Boltzmann method by solving Boltz-

mann equation and eliminated the statistical noise present in the lattice gas automata

(LGA). Further efforts of Higuera et al. (1989) simplified the complex nature of colli-

sion term present in Boltzmann equation. They used lattice Boltzmann equation along

with the Bhatnagar-Gross-Krook (BGK) model called as lattice Bhatnagar-Gross-Krook

(LBGK). Since then the lattice Boltzmann method (LBM) has been established as an

alternative powerful computational method for solving fluid dynamics and heat transfer

problems (Miller, 1995; Mohamad, 2011; Chen and Doolen, 1998). Though, lattice Boltz-

mann method has found its roots in lattice gas cellular automata, it can be derived from

kinetic Boltzmann equation (He and Luo, 1997).

60
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Conventional computational fluid dynamics (CFD) methods such as finite difference method

(FDM), finite element method (FEM) and finite volume method (FVM) are based on

dicretizations of macroscopic continuum equations whereas lattice Boltzmann method

(LBM) is based on microscopic models and mesoscopic kinetic equation (Boltzmann equa-

tion). The fundamental idea of LBM is to construct simplified kinetic models. These

simplified models include the essential physics of microscopic or mesoscopic processes in

such a way that the microscopic averaged properties are suitable representation of the de-

sired macroscopic equations. These models are simply the discrete distribution functions

or population f(x, t) = f(x, e, t) which represents the probability of finding a particle

moving with lattice speed ‘e’ at position ‘x’ and at time ‘t’. Advantages of kinetic na-

ture of LBM over conventional CFD methods are simplicity in algorithm, implementation

of boundary conditions at leisure, ease of parallel computing and handling of complex

geometries. In conventional CFD methods, estimation of pressure field is normally time

consuming as one has to solve Poisson like equation derived from incompressible Navier-

Stokes equation, whereas pressure field calculation is extremely simple in LBM as it is

done by simply using equation of state. Furthermore, the convection operator is linear,

and microscopic distribution functions can be transferred to macroscopic physical quanti-

ties by simple arithmetic calculations (Succi and Higuera, 1991; Chen and Doolen, 1998;

Mohamad, 2011).

4.1.1 Boltzmann Equation

An Austrian physicist named Ludwig Edward Boltzmann (1844-1906) made astonishing

contribution towards the understanding of statistical mechanics. His work elucidated the

properties of matter such as the viscosity, thermal conductivity, and diffusion coefficient

by predicting the microscopic properties (atom and molecules)(Chen and Doolen, 1998;

Sukop and Throne, 2005; Mohamad, 2011). In statistical mechanics, a system is rep-

resented by particle distribution function, f(x, e, t). The term f(x, e, t) constitutes the

number of particles may be present at a position ‘x′ at time ‘t′. A general Boltzmann
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equation without the external force term can be represented as follows (He and Luo, 1997;

Mohamad, 2011):

∂f

∂t
+ e · ∇f = Γ (4.1)

where, f represents the probability distribution function, e and ∇f are vectors. Γ rep-

resents the collision term and is equal to the rate of change between final and initial

state of the particle distribution function (PDF). The solution of Boltzmann equation is

quite difficult and, hence, it was needed to approximate the collision operator with simple

operator without significantly affecting the outcome of the solution. A simplified model

for collision operator was introduced by Bhatnagar-Groos-Krook (BGK). The Boltzmann

equation along with the BGK collision parameter is described (He and Luo, 1997; Chen

and Doolen, 1998; Mohamad, 2011) as follows:

∂f

∂t
+ e · ∇f =

1

τ
[f − f eq] (4.2)

The time and space discretizations of Boltzmann equation (Eq. 4.2) yields the basic lattice

Boltzmann equation. It is represented as follows:

fk (x + ek∆t, t+ ∆t) − fk (x, t) = −1

τ
[fk (x, t) − f eq

k (x, t)] (4.3)

where, x, k, ∆x, ∆t, fk, f
eq
k , ek and τ are coordinates, lattice link direction, lattice

step size, time step, particle distribution function, equilibrium distribution function and

relaxation time, respectively. The parameters which differentiates the type of problem

to be solved are, the relaxation parameter, local equilibrium distribution function and

external force term.

In lattice Boltzmann method, the physical domain of chosen system need to be divided

into lattices. At each lattice node, the factitious particles (i.e., distribution function)

reside. Some of these particles colloids at a lattice node to relax to the equilibrium and

some particles stream along respective lattice link directions to the neighboring nodes.
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Thus, the evolution of the lattice Boltzmann method takes via two steps.

• Collision

f (x, t+ ∆t) = fk (x, t) − 1

τν
[fk (x, t) − f eq

k (x, t)] (4.4)

• Streaming

fk (x + ek∆t, t+ ∆t) = f (x, t+ ∆t) (4.5)

Figure 4.1 illustrate the collision and streaming processes. These features of collision and

streaming has been borrowed from the kinetic theory of gases (Chen and Doolen, 1998).

The particles move in random direction, during which they colloid with each other and

relax to the equilibrium and alter the velocity direction in accordance with scattering

rules. The lattice Boltzmann method uses different lattice structures/arrangements for

simulation. These are illustrated in subsequent section.

Figure 4.1: Evolution of lattice Boltzmann equation via (a) collision and (b) streaming.

4.1.2 Equilibrium distribution function

In lattice Boltzmann method, the concept of equilibrium distribution function is borrowed

from kinetic theory of gases. It is very important parameter in LBM simulation as it

decides the physics of problem, needed to be solved. The Maxwell-Boltzmann equilibrium
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function (f eq) in general form can be expressed as (Mc Namara and Zanetti, 1988; Qian,

1990; Qian et al., 1992, 1993; Chen and Doolen, 1998; Mohamad, 2011),

f eq =
ρ

(2π/3)D/2
ex1 where x1 = −3

2
(e − u)2 (4.6)

where, D is spatial dimension. It can be simplified as,

f eq =
ρ

(2π/3)D/2
ex2 where x2 = −3

2
(c2)e

(e · u− u2)

2
(4.7)

The Maxwell-Boltzmann equilibrium function (f eq) after Taylor series expansion, takes

the following general form (Chen et al., 1992),

f eq = Υwk

[
a+ b(ek · u) + c(ek · u)2 + du2

]
(4.8)

where, ‘a’, ‘b’, ‘c’ and ‘d’ are the constants that need to be estimated depending on

the conservation of mass and momentum law. u is the velocity vector. The term Υ

represents the scalar macroscopic parameter, such as density (ρ), temperature, etc (Chen

and Doolen, 1998; Mohamad, 2011). These macroscopic quantities can be calculated by

the summation of local equilibrium distribution functions, such as,

Υ =
∑

f eq
k (4.9)

The equilibrium distribution function varies from process to process (diffusion, fluid flow,

etc.). For a instance, in diffusion process as there is no macroscopic velocity required, the

equilibrium distribution function can be approximated as,

f eq = Υwk (4.10)
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In fluid flow problems, as higher order terms are involved, the equilibrium distribution

function (f eq) takes the following form.

f eq
k = Υwk

[
1 +

ek · u
c2s

+
(ek · u)2

c2s
− 0.5

u2

c2s

]
(4.11)

where, cs is speed of light and it is expressed as,

cs =
ek√
3

(4.12)

4.1.3 Lattice patterns

In lattice Boltzmann method the lattice terminology developed by (Qian, 1990; Qian et al.,

1992, 1993) is widely adopted. It is expressed by ‘DxQy′, where ’x’ and ’y’ represents the

dimension of considered physical domain (1D, 2D, 3D) and link directions, respectively.

Figure 4.2 represents the different one and two dimensional lattice models generally used.

For a instance, D1Q2 (Fig. 4.2, a) model represents the one dimensional problem and two

velocity links. In D1Q3 lattice model, One stagnant particle or with zero velocity resides

on the central node with other two particles stream to the neighboring lattice nodes. The

Figure 4.2: Different lattice models (for 1D and 2D).

weighting factors of equilibrium distribution function for few chosen lattice arrangements

are represented as follows;
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• D1Q2

wk =
{

1
2

k = 1, 2 (4.13)

• D1Q3

wk =





4
9

k = 0

1
9

k = 1, 2
(4.14)

• D2Q4

wk =
{

1
4

k = 1, 2, 3, 4 (4.15)

• D2Q5

wk =





2
6

k = 0

1
6

k = 1, 2, 3, 4
(4.16)

• D2Q9

wk =





4
9

k = 0

1
9

k = 1, 2, 3, 4

1
36

k = 5, 6, 7, 8

(4.17)

The two dimensional and nine velocity link lattice model is widely used for solving fluid

flow and heat transfer problems, as it has optimum velocity vectors which is sufficient

enough to resolve the hydrodynamics.
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4.2 Lattice Boltzmann method for flow field

The fluid flow problem are governed by the Navier-Stokes equation (conservation of mass

and momentum equations) in continuum approach. The Navier-Stokes equations for an

incompressible, two dimensional without external force term can be expressed as,

• Continuity equation:

∂ux

∂x
+
∂uy

∂y
= 0 (4.18)

• x-component of momentum equation:

ρ

(
∂ux

∂t

)
+ ρ

(
ux
∂ux

∂x
+ uy

∂ux

∂y

)
= −∂p

∂x
+ µ

(
∂2ux

∂x2
+
∂2ux

∂y2

)
(4.19)

• y-component of momentum equation:

ρ

(
∂uy

∂t

)
+ ρ

(
ux
∂uy

∂x
+ uy

∂uy

∂y

)
= −∂p

∂y
+ µ

(
∂2uy

∂x2
+
∂2uy

∂y2

)
(4.20)

The LHS of momentum equations represents the advection term. The RHS side of

Eqs.(4.19 and 4.20) are the pressure gradient term and the shear force due to viscous

effect (Srinivas et al., 2009; Bharti et al., 2006; Sivakumar et al., 2006; Mohamad, 2011).

The generalized lattice Boltzmann equation (LBE) for flow field with external force term

is written as follows:

fk (x + ek∆t, t+ ∆t) − fk (x, t) = − 1

τν
[fk (x, t) − f eq

k (x, t)] + ∆tF (4.21)

where, F is force term. The equilibrium distribution function (f eq
k ) for two dimensional

model (D2Q9 lattice arrangement) is expressed as,

f eq
k (x, t) = ρwk

[
1 +

3(u · ek)

c2
+

9(u · ek)
2

2c4
+

3 (u · u)

2c2

]
(4.22)
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and the discrete velocity vectors (ek) for D2Q9 lattice model are represented as (Qian,

1990; Qian et al., 1992),

e6 = (−1, 1), e2 = (0, 1), e5 = (1, 1)

e3 = (−1, 0), e0 = (0, 0), e1 = (1, 0)

e7 = (−1,−1), e4 = (0,−1), e8 = (1,−1)





(4.23)

The macroscopic variables such as density and velocity can be obtained by simple sum-

mation of the equilibrium distribution functions, such as,

ρ(x, t) =
∑

k

fk (4.24)

u(x, t) =

∑
k ekfk

ρ(x, t)
(4.25)

The application of lattice Boltzmann method for thermal field is presented in subsequent

section.

4.3 Thermal lattice Boltzmann method (TLBM)

After the successful application of the lattice Boltzmann method for solution of various

fluid flow phenomenon, Alexander et al. (1993) illustrated the suitability of the lattice

Boltzmann method to obtain the thermal field. In their approach, the solution of thermal

field is obtained by simply extending the local equilibrium distribution function to the

third order. This thermal approach is called as multi-speed approach. This approach

retained the simplicity of LBM, but failed to receive much impetus from researchers as it

has some serious drawbacks such as, Galilean invariance, numerical instability (as higher

order terms are involved), fixed values of Prandtl, etc.

He et al. (1998) proposed double distribution function (DDF) or internal energy distribu-

tion function approach, which utilize the two different distribution functions, one each, for



Chapter 4. 69

the estimation of flow and thermal fields, due to this, it is also called as double distribution

function model (DDF). This approach is proven to be much better in terms of numerical

stability and efficiency for the wider range of temperature and Prandtl numbers (Guo

et al., 2007; Kuznik et al., 2007; Chen and Tian, 2010). It is, however, disadvantageous as

the simplicity of LBM is lost due to the involvement of compression work done by pres-

sure and viscous heat dissipation (Kuznik et al., 2007). The details of the mathematical

expressions for the estimation of flow and thermal field are expressed as follows:

• The lattice Boltzmann equation for flow and thermal fields (He et al., 1998),

fk (x + ek∆t, t+ ∆t)−fk (x, t) = − ∆t

τν + 0.5∆t
[fk (x, t) − f eq

k (x, t)]+
∆tτν

τν + 0.5∆t
Fk

(4.26)

gk (x + ek∆t, t+ ∆t) − gk (x, t) = −∆t

τg
[gk (x, t) − geq

k (x, t)] (4.27)

where, τν and τg are the relaxation parameters for flow and thermal field, respec-

tively.

• The equilibrium internal energy function can be expressed as (Kuznik et al., 2007),

geq
k = −2

3
ρe

[
u2

c2

]
k = 0

geq
k =

ρe

9
ρe

[
1.5 + 1.5

ek · u
c2

+ 4.5
(ek · u)2

c4
− 1.5

u2

c2

]
k = 1, 2, 3, 4

geq
k =

ρe

36
ρe

[
3 + 6

ek · u
c2

+ 4.5
(ek · u)2

c4
− 1.5

u2

c2

]
k = 5, 6, 7, 8 (4.28)

Guo et al. (2002) proposed a lattice -BGK model for simulation of Boussinesq flow prob-

lem. In their study, the thermal field equilibrium distribution function was simplified.

The temperature yield is passively advected by the fluid flow and obeys a simpler passive-

scalar equation, if the viscous heat dissipation and compression work done are negligible.
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The passive scalar equation is expressed as follows:

∂θ

∂t
+ ∇ · (uθ) = φ∇2θ (4.29)

where, θ and φ are the temperature and diffusivity, respectively. The equilibrium distri-

bution function for the thermal field (geq
k ) and D2Q9 lattice model is expressed as follows:

geq
k = wkT

[
1 + 3

ek · u
c

]
(4.30)

Further, Peng et al. (2003b) presented a passive scalar approach which is simplified version

of the double distribution function (DDF) model (He et al., 1998). In this approach,

temperature is assumed to be passive scalar and is advected by the flow field. They

considered the fact that he viscous heat dissipation term in the energy equation can be

neglected for the incompressible flow. The macroscopic temperature equation is similar

to a passive scalar evolution equation, if the viscous heat dissipation and compression

work done by pressure are negligible. The simplified thermal lattice Boltzmann method

of Peng et al. (2003b) has following mathematical form,

fk (x + ek∆t, t+ ∆t) − fk (x, t) = − 1

τν
[fk (x, t) − f eq

k (x, t)] + ∆tFk (4.31)

gk (x + ek∆t, t+ ∆t) − gk (x, t) = − 1

τg
[gk (x, t) − geq

k (x, t)] (4.32)

The equilibrium distribution functions for both flow and thermal fields will remain same

as given in Eqs. 4.22 and 4.28 for flow and thermal field, respectively. This approach

possesses better numerical stability, over other two approaches, in yielding the efficient

solution over the broad range of Prandtl number and the simplicity of LBM is also retained

(Guo et al., 2007; Chen and Tian, 2010; Kuznik et al., 2007). Further, several studies

of thermal lattice Boltzmann method (TLBM) have been carried out in last couple of

decades (He et al., 1998; Vahala et al., 1998; Peng et al., 2003a; Zhang and Chen, 2003;

Lallemand and Luo, 2003; Watari and Tsutahara, 2004; Tang et al., 2005; Peng, 2005;
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Prasianakis and Karlin, 2007; Kuznik et al., 2007; Li et al., 2004; Chen and Tian, 2010;

Shim and Gatignol, 2011).

4.3.1 Champman-Enskog multiscale expansion

The objective of the Chapman-Enskog multiscale expansion is to solve Boltzmann equa-

tion by successive approximations (Chen and Doolen, 1998; Mohamad, 2011). The de-

tailed procedure of Champman-Enskog multi-scale expansion can be found elsewhere (Hou

et al., 1995; Chen and Doolen, 1998; He et al., 1998; Peng et al., 2003b; Mohamad, 2011).

The probability distribution function is expanded in the parameter called Knudsen num-

ber (ǫ) as follows:

fk(x, t) = f 0
k + ǫf 1

k + ǫ2f 2
k + ..... =

∞∑

k=0

ǫnfn
k (4.33)

In Champman-Enskog expansion method, the Knudsen number (ǫ) parameter is used to

the track the order of the terms in the series expansion. From generalized Boltzmann

equation (Eqs. 4.2), we get following equation in equilibrium form,

∂f eq
k

∂t1
+ ek · ∇1f

eq
k =

−1

τ
f

(1)
k upto order ǫ0 (4.34)

∂f
(1)
k

∂t2
+
∂f eq

k

∂t2
+ek ·∇f (1)

k +
1

2
: ∇∇f eq

k +ek∇·∂f
eq
k

∂t1
+

1

2

∂2f eq
k

∂t21
= τ−1f 2

k upto order ǫ1

(4.35)

By using Eqs. (4.34) and mathematical rearrangements, the first order equation can be

written as follows:

∂f
(1)
k

∂t2
+

(
1 − 2

τ

) [
∂f

(1)
k

∂t1
+ ek · ∇1f

(1)
k

]
= −f

(2)
k

τ
(4.36)
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From equations 4.34 and 4.36, the mass and momentum equations can be obtained as

(Chen and Doolen, 1998),

∂ρ

∂t
+ ∇ · ρu = 0 (4.37)

∂ρu

∂t
+ ∇ · Π = 0 (4.38)

where, Π is momentum flux tensor. It can be expressed as follows:

Παβ =
∑

k

(ek)α(ek)β

(
f eq

k +

(
1 − 1

2τ

)
f

(1)
k

)
(4.39)

where, f
(1)
k and α, β are non equilibrium part of particle distribution function and coor-

dinate directions, respectively. Thus it can be seen that, the lattice Boltzmann equation

(Eq. 4.3) is second order accurate in ǫ (Qian et al., 1992; Chen et al., 1992; Chen and

Doolen, 1998; Dong et al., 2010; Mohamad, 2011). For flow field and D2Q9 lattice model,

Eq. (4.39) reduces to the following form.

Π
(0)
αβ =

∑

k

(ek)α(ek)βf
eq
k = pδαβ + ρuαuβ (4.40)

Π
(1)
αβ = (1 − (2τ)−1)

∑

k

(ek)α(ek)βf
1
k = ν(∆α(ρuβ) + ∆βuα)) (4.41)

where ‘p’ is pressure and it is expressed as,

p = c2sρ (4.42)

p =
ρ

3
as cs =

1√
3

(4.43)
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Also, ‘ν ′ is kinematic viscosity and it is related to the relaxation parameter (τ) as follows:

ν = c2s

(
1 − 1

2τ

)
or ν =

(
2τ − 1

6

)
(4.44)

It gives the momentum equation similar to traditional Navier-Stokes equations in low

density variation or low Mach number (Ma) limit as follows (Qian, 1990; Qian et al.,

1993; Chen and Doolen, 1998):

ρ

(
∂uα

∂t
+ ∆β · uαuβ

)
= −∆αp+ ν∆β · (∆αρuβ + ∆βρuα) (4.45)

Further, the application of the lattice Boltzmann method to flow field and recovery of the

mass and momentum equations have been explored. in the subsequent section.

4.3.1.1 Recovery of the Energy equation

The energy equation can be recovered from the evolution equation of thermal energy

particle distribution function (g) by using Champman-Enskog multiscale expansion. The

details of energy equation from thermal lattice Boltzmann method can be found elsewhere

(He et al., 1998; Peng et al., 2003a; Guo et al., 2002). The thermal lattice Boltzmann

equation can be expressed as follows:

gk (x + ek∆t, t+ ∆t) − gk (x, t) = −∆t

τg
[gk (x, t) − geq

k (x, t)] (4.46)

The Taylor series expansion of above equation upto second order O(δ2) yields,

δ(∂t + ek · ∆)gk +
δ2

2
[∂t + ek ·∆]2gk +O(δ2) = −gk − g0

k

τg
(4.47)

where, g0
k = geq

k . Expansion of gk about g0
k, we get the following equation similar to

Eq.4.33.

gk(x, t) = g
(0)
k + ǫg

(1)
k + ǫ2g

(2)
k + ..... =

∞∑

k=0

ǫng
(n)
k (4.48)
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The expansion of gk upto second order gives,

gk(x, t) = g
(0)
k + ǫg

(1)
k + ǫ2g

(2)
k +O(ǫ2) (4.49)

The first order expansion of Eq. (4.47) gives,

(∂t + ek · ∆)g
(0)
k = −g

(1)
k

τg
(4.50)

The second order expansion of Eq. (4.47),

δt1g
(0)
k +

(
1 − 1

2τg

)
(∂t0 + ek · ∆)g

(1)
k = −g

(2)
k

τg
(4.51)

After summation of Eqs. (4.50) and (4.51), we get,

δt0(ρε) + ∆ · (ρuε) = 0 (4.52)

δt1(ρε) +

(
1 − 1

2τg

)
ς(1) = 0 (4.53)

where, ς is thermal flux tensor. It is expressed as follows:

ς(1) =
∑

k

(∂t0 + e · ∆)g
(1)
k (4.54)

After neglecting the O(u2δT ), ς(1) = −2τg
3

∆2(ρε) (4.55)

The combination of the Eqs. (4.55) gives,

δt1(ρε) + ∆ · (ρuε) = α∆2(ρε) (4.56)
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where, α is thermal diffusivity and it is represented as,

α =
2(τg − 0.5)

3

The simplified thermal lattice Boltzmann approach of Peng et al. (2003b) is adopted

herein.

4.4 Force term in LBM

In order to incorporate force (buoyancy, magnetic, etc) term in the LBM model, a gener-

alized force term can be expressed as follows (Fattahi et al., 2012; Kefayati et al., 2012a):

Fk = wkF
ck
c2k

(4.57)

ck =
∆x+ ∆y√

3
(4.58)

Fk = 3wkF (4.59)

Fk is then added to the collision term of lattice Boltzmann equation.

4.5 LBM for MHD natural convection problem

The lattice Boltzmann method (LBM) can also be applied to magneto-hydrodynamic

(MHD) natural convection problem by just adding following a force term in collision term

of lattice Boltzmann equation (LBE).

fCollision = f(x, t) − 1

τ
[f(x, t) − f eq(x, t)] + ∆tF (4.60)
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The combined effect of magnetic field and natural convection problem can be incorporated

in LBM algorithm by adding F = Fx + Fy into above equation.

Fx = 3wkρ

[
(
Ha2ν

N2
x

)(vsin(φ)cos(φ) − usin2(φ))

]
where Ha = BH

√
σ

µ
(4.61)

Fy = 3wkρ(gβ(T − T )) + 3wkρ

[
(
Ha2ν

N2
x

)(usin(φ)cos(φ) − vcos2(φ))

]
(4.62)

where, Ha,B,H, σ, µ, β,Nx, ν and φ are Hartmann number, magnetic field, characteristic

length, electrical conductivity, dynamic viscosity, coefficient of thermal expansion, number

of lattice nodes on characteristic length, kinematic viscosity and angle of magnetic field,

respectively. It should be noted that Ha = 0 corresponds to the pure natural convection.

4.6 Boundary Conditions for Lattice Boltzmann Method

An accurate representation and suitable implementation of boundary conditions is one of

crucial as well as important step in the development of the numerical solvers. The bound-

ary conditions implementation for Navier-Stokes equations solvers is somehow straight-

forward. The conventional CFD tools use macroscopic variables on boundaries. In LBM,

however, boundary conditions are specified by unknown distribution functions directing

towards the flow field. Therefore, it is very important to choose and solve appropriate

equations for estimating the particle distribution functions at the boundaries for a par-

ticular boundary condition. A huge amount of literature is now available for exploring

the lattice Boltzmann boundary conditions (Ziegler, 1993; Skordos, 1993; Noble et al.,

1995; Ginzbourg and d’Humieres, 2003; Zou and He, 1997; Sofone and Sekerka, 2005;

Chopard and Dupuis, 2003; Like et al., 2013; Kefayati, 2013a; Yang, 2013; Heubes et al.,

2014). The different kind of boundary conditions used in lattice Boltzmann method are,

bounce back scheme, periodic, outlet, symmetry and Neumann boundary conditions re-

spectively. These boundary conditions along with its application for flow and thermal

fields are illustrated below.
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4.6.1 Boundary Conditions for Flow Field

Flow field boundary conditions comprises the popular bounce back scheme, periodic, Von

Neumann, open boundary conditions.

4.6.1.1 Bounce Back Boundary Scheme

The lattice Boltzmann method uses the same concept of the lattice gas automata (LGA)

particle distribution function bounce back boundary scheme (Wolfram, 1986; Chen and

Doolen, 1998; Sukop and Throne, 2005; Mohamad, 2011). The bounce back scheme is very

popular because of its simplicity or ease in coding making the lattice Boltzmann method

suitable for simulating the complex geometries. As reported by Ziegler (1993) reported

that the bounce back scheme is second order accurate if the solid boundary is shifted to half

of distance between solid and fluid node. Figure 4.3 illustrates the bounce back boundary

Figure 4.3: Halfway bounce back treatment.

condition for solid (no slip) wall. It is assumed that the particle distribution function

directing towards the flow field (i.e., f4, f7, f8) are known from streaming step. These

distribution function after striking the solid wall, return to the flow domain. Therefore,

the bounce back scheme for no slip wall is expressed as below:

f2 = f4; f5 = f7; f6 = f8 (4.63)

It should be noted that distribution function f5 at a particular node (i,j) is equal to the

f5 at (i-1,j-1) due to streaming process. Therefore, boundary conditions must be applied

after streaming process (Mohamad, 2011; Sukop and Throne, 2005).
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4.6.1.2 Periodic Boundaries

These are simplest boundary treatment as physical domain of consideration becomes

closed by the edges/boundaries being treated as if these are attached to the opposite

edges (Sukop and Throne, 2005). These boundary treatments are necessary and useful

in systems to isolate a repeating flow conditions (Mohamad, 2011). Figure 4.4 illustrates

Figure 4.4: Periodic boundary treatment (Sukop and Throne, 2005; Mohamad, 2011).

the use of periodic boundary treatments for the flow over square tubes. It can be seen

that the fluid flow order above the line I and below the line II are the exactly similar.

Therefore, it is adequate to model the area between two lines, i.e., I and II. The particle

distribution function leaving the line I are same as that of infiltrating line II (Chen and

Doolen, 1998; Mohamad, 2011). Therefore, the boundary treatment for such situations

are expressed by using periodic boundary conditions as follows:

Along line I f4,I = f4,II ; f7,I = f7,II ; f8,I = f8,II ;

Along line II f2,II = f2,I ; f5,II = f5,I ; f6,II = f6,I ;
(4.64)

4.6.1.3 Von Neumann Condition

The Von Neumann boundary conditions are used for modeling known velocity at specified

wall/boundary. It is very common condition to use known component of velocity at the
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boundary, viz., inlet velocity for a channel flow. It is used to calculate the unknown particle

distribution functions and thereby to calculate macroscopic density/velocity (Sukop and

Throne, 2005; Chen and Doolen, 1998; Mohamad, 2011). The estimation of unknown

particle distribution function at wall is given by Zou and He (1997). For a instance,

consider a channel flow with uniform velocity along inlet U∞ as shown in Figure 4.5.

Along west wall (x=0), the unknown particle distribution function are f1, f5 and f8. we

Figure 4.5: Channel flow with inlet velocity U∞.

have three basic equations expressed as follows:

ρ0 = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8

ρ0u0 = (f1 + f5 + f8) − (f3 − f6 − f7)

ρ0v0 = (f2 + f5 + f6) − (f4 − f7 − f8)

(4.65)

The equilibrium condition is applied along the normal direction to the boundary, as fol-

lows:

f1 − f eq
1 = f3 − f eq

3 (4.66)

where f eq
1 and f eq

3 are flow field equilibrium distribution functions. These are expressed

as,

f eq
1 = f eq

3 =
ρ0

9

[
1 + 3u0 +

9

2
u2

0 −
3

2
(u2

0 + v2
0)

]
(4.67)

The velocity components along the west are u0 = U∞, v0 = 0 with ρ0 is density along

west wall. Therefore, after the mathematical rearrangements of equations (4.65-4.67), the
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unknown distribution functions are represented as follows (Zou and He, 1997; Sukop and

Throne, 2005; Mohamad, 2011):

ρ0 =
f0 + f2 + f4 + 2(f3 + f6 + f7)

1 − u0

f1 = f3 +
2(ρ0u0)

3

f5 = f7 −
(f2 − f4)

2
+
ρ0u0

6
+
ρ0v0

2

f8 = f6 +
(f2 − f4)

2
+
ρ0u0

6
− ρ0v0

2

(4.68)

The unknown distribution functions are specified at the west boundary of Figure 4.5,

similar method can be applied for other boundaries.

4.6.1.4 Outlet wall conditions

These boundary treatments are usually applicable when the macroscopic physical param-

eters (velocity, pressure, temperature, etc.) are unknown. Let us consider the east/outlet

wall of Figure 4.5. The unknown particle distribution functions along outlet wall are f3, f6

and f7. These can be calculated by using second order polynomial as follows (Mohamad,

2011):

f3,nx = 2f3,nx−1 − f3,nx−2 (4.69)

f6,nx = 2f6,nx−1 − f6,nx−2 (4.70)

f7,nx = 2f7,nx−1 − f7,nx−2 (4.71)

where, nx represents the lattice nodes along outlet/east wall.
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4.6.2 Boundary Conditions for Thermal Field

Excellent review on the boundary conditions of thermal lattice Boltzmann equation are

available (DOrazio and Succi, 2003; Like et al., 2013). In order to model the boundary

conditions for the thermal field, the fundamental idea of bounce back scheme is used for

both Dirichlet and Neumann boundary conditions (Like et al., 2013). The different ther-

mal boundary conditions covered herein are constant wall temperature (CWT), adiabatic,

outlet and open boundaries.

4.6.2.1 Constant Wall Temperature (CWT) conditions

Consider a parallel walls through which fluid flows (as shown in Figure 4.6). The upper

wall is maintained at some temperature (TW ), which is higher than ambient temperature

(> T∞), while the lower plate is at ambient. In order to estimate the unknown distribution

Figure 4.6: Flow through parallel plates with top is subjected to heating at TW and
lower wall is at ambient (> T∞).

function along considered wall/boundary, a flux boundary condition is used. A flux at a

particular boundary is represented as follows (Mohamad, 2011):

geq
k (xw, t) − gk(xw, t) + geq

k
(xw, t) − gk(xw, t) = 0 (4.72)

where, xw, is boundary wall. k and k are opposite link directions as shown in Figure 4.7.

The thermal equilibrium distribution function can be obtained from Eqs. (4.28). In order

to retain the second order accuracy of the lattice Boltzmann method, a half-way bounce

back scheme is utilized (Gallivan et al., 1997). In general form, CWT condition can be
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Figure 4.7: Lattice link directions towards a no slip wall.

expressed as,

gk = Tw(wk + wk) − gk (4.73)

where, Tw represents the wall temperature.

4.6.2.2 Adiabatic Boundaries

In adiabatic boundaries, the temperature gradient is zero, which means, same temper-

ature along consecutive lattice nodes in respective direction. The unknown distribution

functions can be obtained as (Chen and Doolen, 1998; Mohamad, 2011),

∂T

∂X
= 0 (4.74)

It implies T (nx) = T (nx− 1) (4.75)

in terms of distribution functions, we get fk(nx) = fk(nx− 1) (4.76)

where, nx represents the boundary lattice nodes.

4.6.2.3 Outflow conditions

The outflow boundary condition can be represented in similar fashion as flow field (as given

in previous section (4.6.1.4)). These can be calculated by using second order polynomial
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as follows (Mohamad, 2011):

g3,nx = 2g3,nx−1 − g3,nx−2 (4.77)

g6,nx = 2g6,nx−1 − g6,nx−2 (4.78)

g7,nx = 2g7,nx−1 − g7,nx−2 (4.79)

where, nx represents the lattice nodes along outlet/east wall.

4.7 Lattice Boltzmann algorithm

Figure 4.8 represents the general lattice Boltzmann method algorithm for fluid flow prob-

lems (Mc Namara and Zanetti, 1988; Chen and Doolen, 1998; Sukop and Throne, 2005;

Mohamad, 2011). The LBM algorithm is composed of collision, streaming, implementa-

tion of boundary conditions and estimation of macroscopic.

1. The initialization of flow variables is done by using zero velocity u = 0 and non-zero

density ρ > 0, followed by estimation of equilibrium distribution function f eq
k . For

initial time step (t = 0), the particle distribution function (fk) will be similar as

that of equilibrium distribution function. Hence, fk = f eq
k , which completes the

first/initialization step.

2. The second of the LBM algorithm is collision step, which begins the iteration loop.

The right hand side of the lattice Boltzmann equation represents the collision equa-

tion (Eq. 4.4).

3. Particles are streamed along neighboring lattice in respective lattice link direction,

which is called as streaming step (Eq. 4.5).
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Figure 4.8: Lattice Boltzmann algorithm for fluid flow problems

4. The estimation of unknown particle distribution function along the boundary of

system/wall is carried out by using various LBM boundary treatments (as discussed

in section 4.6).

5. The macroscopic variables such as density (ρ), velocity (u), etc are determined.

6. Check for the convergence criterion (Eq. 4.80). If its not satisfied then repeat steps

(2) to (5 ). Otherwise, proceed to next steps.

7. Estimation of engineering parameters, such as, drag coefficient, Nusselt number,

stream-function, vorticity
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8. Output of desired fields (velocity, pressure, etc) is obtained.

The absolute error (ǫ, Eq. 4.80) criterion for checking the convergence of numerical solution

is expressed as follows:

ǫmax = max |φnew
i − φold

i |Ni=1 ≤ 10−9 (4.80)

where, φ represents physical flow variables (i.e., velocity components ux, uy, and tempera-

ture T ) checked for convergence and N is the number of lattice nodes in the computational

domain. The superscripts ‘new’ and ‘old’ represent for the flow variables calculated at the

present and previous time/iterative calculation steps.

4.7.1 Thermal Lattice Boltzmann Algorithm

The algorithm of thermal lattice Boltzmann method depends on the approach which are

utilizing for solution of thermal field. In widely used double distribution function (DDF)

thermal model, the determination of thermal field is carried out separately after flow field.

A generalized thermal lattice Boltzmann method algorithm is shown in Figure 4.9. The

algorithm consists of following steps.

1. Initialization of the density (ρ > 0), velocity (ux = 0, uy = 0), and temperature

(T = Tc).

2. Determination of equilibrium distribution functions (f eq
k and geq

k ) by using the values

initialized in step (1).

3. To start with, distribution functions and equilibrium distribution functions are set

equal to their part, i.e., fk = f eq
k and gk = geq

k .

4. Sequential determination of flow field followed by the thermal field

(a) Collision step.
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Figure 4.9: Lattice Boltzmann algorithm for non-isothermal problems

(b) Streaming step.

(c) Updating of boundary conditions.

(d) Estimation of macroscopic quantities.

5. Check for the convergence criterion (Eq. 4.80)

(a) If satisfied, go to step (6).

(b) Else, repeat steps (4) to (5).

6. Process the flow and thermal fields to estimate the local and global characteristic.



Chapter 4. 87

4.8 Advantages of LBM

1. LBM is easy to understand, implement and simple for programming.

2. The lattice Boltzmann equation is a linear partial differential equation (Mohamad,

2011)

3. It requires nearly ten times low memory than the finite element method simulation,

by using coarse grid/lattice size for achieving same level of accuracy (Kandhai et al.,

1998).

4. It has the inherent spatial locality of the updating rules, i.e., the collision and

streaming steps are completely local, which makes it ideal for parallel computing. .

5. Easy implementation of boundary conditions, which are kinetic in nature and thus

making it suitable for handling complex structures/geometries.

6. Lattice Boltzmann method is explicit.

7. Conventional CFD methods for solving incompressible flows, such as finite-difference,

finite-element and finite-volume require solution of a Poisson/Poisson like equation

for the pressure field estimation, which is induced by the mass-continuity equation

and the momentum-conservation equation. In LBM, this time consuming step is re-

moved due to the incompressibility requirement has been relaxed and the effects of

pressure changes are controlled by an equation of state rather than a Poisson/Pois-

son like equation.

8. LBM has very efficient explicit time stepping scheme, for example, high cell Reynolds-

number.

4.9 Disadvantages of LBM

1. Difficulty in extending the uniform lattice structure to non-uniform one (He and

Luo, 1996).
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2. LBM is weakly compressible scheme (no Poisson equation is solved for the pres-

sure). Thus, low Mach number (Ma < 0.3) restriction must be followed to avoid

compressibility in lattice Boltzmann method.

3. Computational time required by the LBM for fine grid simulation shows a momen-

tous rise compared to the coarse grid simulation (Kandhai et al., 1998).

4. LBM has inherently transient scheme.

5. It can be observed from the Champman-Enskog expansion, the whole procedure is

dependent on the relaxation parameter (τ). All errors are dependent on τ .

4.10 Applications of LBM

The lattice Boltzmann method can be applied for simulation of wide range of problems

as given follows (Chen and Doolen, 1998; Sukop and Throne, 2005):

1. Incompressible flows

2. Multicomponent and multiphase flows

3. Fully compressible and thermal flows

4. Particulate Suspensions

5. Non Newtonian rheology

6. Microfluidics

7. Turbulent Flows

8. Anisotropic Dispersion

The computational algorithm of LBM discussed in this chapter has been used to developed

an in-house solver based on passive scalar (or modified double distribution function) ther-

mal lattice Boltzmann method (TLBM) in C++ programming language. The solver has
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been validated on the standard benchmark problems before utilizing for the investigation

of convective flow characteristics to fulfill the objectives of this thesis.



Chapter 5

VALIDATION OF LBM CODE

This chapter presents the validation of the in-house solver based on thermal lattice

Boltzmann method with standard benchmark problems.

5.1 Lid Driven Enclosure

The classical problem of lid driven cavity is considered as a benchmark problem for study-

ing and understanding various fluid dynamics fundamentals such as vortex structures,

stability, etc (Ghia et al., 1982a; Shankar and Deshpande, 2000). The problem represents

a classical topic of internal or bounded flows. It is used for testing/verifying the numerical

algorithm accuracy and stability. The physical domain of lid driven cavity is shown in

Figure 5.1. The top wall of square cavity is subjected to a uniform velocity of U in hor-

izontal direction. The other three walls of cavity are solida no-slip walls. The numerical

simulation is carried out for Reynolds number of Re = 100, 400 and 1000. The valida-

tion of present in-house LBM solver is ascertained by comparison velocity variation along

the geometric center of cavity with benchmark results of Ghia et al. (1982a). Figure 5.2

shows comparison between the velocity components profiles plotted along geometric cen-

ter of cavity with that of the benchmark results of (Ghia et al., 1982a). It can be observed

90
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Figure 5.1: The physical domain of lid driven cavity along with boundary conditions.

Figure 5.2: The variation of velocity components along geometric center of cavity at
different Reynolds number.
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that the comparison shows excellent agreement and thus confirms the accuracy of present

LBM code (developed in C++ programming language).

Further, in order to check the robustness of LBM scheme, a comparison of CPU time as

well as number of iterations required for getting converged solution has been conducted

between conventional CFD solver (Fluent 6.2.36) and in-house developed LBM solver

with same initial guess for Reynolds number of Re=100, 400 and convergence criterion

of 10−4, 10−5. It is observed that LBM gets solution at much faster rate than FLuent.

Following table shows CPU time as well as number of iterations required for getting

converged solution.

Re Convergence CPU Time (Second) Number of Iterations
criterion CFD solver (Fluent) LBM solver CFD solver (Fluent) LBM solver

100 10−4 45 5 1296 384
10−5 100 11 2160 3024

400 10−4 50 8 1479 1110
10−5 120 32 2039 7725

5.2 Flow between parallel walls

Consider a two dimensional, laminar, steady and developing flow of fluid (incompressible,

Newtonian) with uniform velocity U∞ in a plane confined channel of height H and length

L (as shown in Figure 5.3). The flow conditions for above physical domain is given as,

ux = U∞, uy = 0; x = 0, 0 ≤ y ≤ H

∂ux

∂x
= 0,

∂uy

∂x
= 0; x = L, 0 ≤ y ≤ H

ux = 0, uy = 0; 0 ≤ x ≤ L, y = 0 and H

(5.1)

For Newtonian fluids, it is know that velocity profile becomes fully developed at non-

dimensional distance of ≈ 0.05Re (Bharti, 2006). The length of channel is taken to be
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Figure 5.3: The schematic representation of developing flow in channel.

sufficient so that velocity profile becomes fully developed, which can be accomplished from

the velocities at the exit of channel.

The lattice Boltzmann computations are carried out for flow field at Reynolds number

of Re=10 with L=25H. A uniform lattice size of (Nx × Ny)1000 × 40, where Nx and Ny

are the lattice nodes along length and height, respectively. The fully developed velocity

profile can be estimated analytically by following equation (Chhabra, 1996; Bharti, 2006;

Dhiman, 2006; Bharti et al., 2007),

Ux(y) = Umax

[
1 −

(∣∣∣∣1 − 2y

H

∣∣∣∣
)2

]
(5.2)

where, Umax is maximum velocity of fully developed flow in the channel and it is related

to average velocity Uavg as,

Umax =
3Uavg

2
(5.3)

The Ux is estimated at X=2 and 4 at 0 ≤ y ≤ H and Re=10. It can be seen from

Figure 5.4, the simulation results shows excellent likeness with analytical results (Eq.

5.2). Keeping in mind the above mentioned inadvertent factors influencing the numerical
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Figure 5.4: The variation of Ux along geometric center of channel at Re=10 at X=2,
4.

results, the above comparison ascertains the confidence in the accuracy and reliability of

the present in-house thermal lattice Boltzmann method (TLBM) solver.

Having gained the confidence in the present computational solution algorithm of TLBM

solver, the ensuing chapters presents the influence of flow governing parameters on the

detailed natural convection flow phenomenon of heated cavities of varying configurations

as well as forced convection flow and heat transfer from channel built-in rectangular

cylinder.



Chapter 6

NATURAL CONVECTION IN

DIFFERENTIALLY HEATED

CAVITY

6.1 Introduction

A thermal lattice Boltzmann method is utilized for the numerical simulation of the natural

convection heat transfer phenomena inside a differentially heated square cavity. Numerical

simulations are performed to elucidate the combined effects of Prandtl number (0.71 ≤

Pr ≤ 100) and Rayleigh number (104 ≤ Ra ≤ 106) on heat transfer and fluid flow

characteristics inside the cavity. The detailed insights are gained by the evaluation of

isotherms, stream functions and vorticity profiles.

95
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6.2 Problem Description

Consider the steady, laminar, natural convection heat transfer in an incompressible fluid

from an infinitely long square cavity (AR = L/H = 1.0, where L and H are cross-

sectional length and height of the cavity), as shown in Figure 6.1. The west wall of

cavity is maintained at temperature (Th) whereas east wall temperature is maintained

at temperature of Tc(< Th). The governing equations (in dimensional and dimensionless

Figure 6.1: Schematic representation of the computational domain (i.e., cavity) and
boundary conditions.

forms) along with general simplifications are expressed in Chapter 3. The boundary

conditions for the cavity with differentially heated walls are expressed as below,

• West (hot) wall (x = 0) is considered as no-slip and maintained isothermally i.e.,

ux = 0, uy = 0, T = TH ; (6.1)

• East (cold) wall (x = L) is considered as no-slip wall and maintained isothermally,

i.e.,

ux = 0, uy = 0, T = TC ; (6.2)
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• Top (y = H) and bottom (y = 0) walls considered as no-slip wall and maintained

at adibatic condition, i.e.,

ux = 0, uy = 0,
∂T

∂y
= 0; (6.3)

In non-dimensional form, the boundary conditions are expressed as,

• West (hot) wall (X = 0)

Ux = 0, Uy = 0, θ = 1; (6.4)

• East (cold) wall (X = 1)

Ux = 0, Uy = 0, θ = 0; (6.5)

• Bottom (Y = 0)and top (Y = 1) walls,

Ux = 0, Uy = 0,
∂θ

∂Y
= 0 (6.6)

6.3 Results and discussions

Extensive results have been obtained and presented herein this section for the following

ranges of conditions.

1. The Prandtl number (0.71 ≤ Pr ≤ 100) is varied as 0.71, 1, 5, 10, 15, 20, 30, 50, 60,

70, 80, 90 and 100.

2. The Rayleigh number (104 ≤ Ra ≤ 106) varied in the logarithmic manner.

For the above mentioned broad ranges of flow governing parameters, the local and global

convective flow characteristics such as the evolution of stream functions, isotherms and
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vorticity; variation of velocity components and temperature on horizontal and vertical

center lines; and the Nusselt number are obtained and discussed herein.

6.3.1 Grid independence study

Prior to the presenting the new results obtained in this work, a systematic analysis of

grid (lattice size) independence has been carried out for extreme values of Prandtl num-

ber (Pr=0.71 and 100) and Rayleigh number (Ra=104 and 106) by using the four grid

structures having the uniform lattice spacing. Table 6.1 presents the grid (or lattice size)

Table 6.1: The influence of the grid size on average Nusselt number (Nu) at hot wall
(X=0).

Ra = 104 Ra = 106

Grid size Pr = 0.71 Pr = 100 Pr = 0.71 Pr = 100
G1(81 × 81) 2.267 28.87 8.785 46.27
G2(101 × 101) 2.235 30.49 8.801 47.85
G3(121 × 121) 2.218 30.70 8.821 48.12
G4(141 × 141) 2.218 31.45 8.812 48.44

effects on average Nusselt number (Nu) estimated at hot wall (X = 0). It is seen that the

refinement in grid from G1 to G2, G2 to G3, and G3 to G4 results in reduction in average

variation in the mean Nusselt number (Nu) which are 2.4%, 0.5% and 0.9%, respectively.

The small changes in the results are accredited with the 2-3 folds of the computational

time. Therefore, keeping in mind the greater accuracy (or less truncation errors) in the

numerical solution procedure, grid G3 (101 × 101) is, however, found to be sufficiently

refined to resolve the hydrodynamics of natural convection flows considered in this work.

6.3.2 Validation of results

Further, the reliability and accuracy of new results is established by comparing the present

results with available results in the literature. It is evident from the literature that none of

the existing studies have explored the influences of Prandtl number (Pr) for the physical
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Table 6.2: Comparison of present numerical values of average Nusselt number (Nu)
at hot wall (X = 0) with those available in literature at Prandtl number of Pr=0.71.

Mesh sizes
Ra Source 41 × 41 81 × 81 101 × 101
104 Present study 2.267 2.235 2.218

de Vahl Davis (1983) - 2.243 -
Kao et al. (2006) 2.207 2.231 -
Kao and Yang (2007) 2.251 2.491 -

106 Present study 8.808 8.785 8.801
de Vahl Davis (1983) 8.798 8.928 -
Kao et al. (2006) 8.406 8.696 -
Kao and Yang (2007) 8.519 8.734 8.776
Fattahi et al. (2012) 8.623 8.883 8.891

problem considered in this work. The limited results are available for a fixed value of

Prandtl number (Pr = 0.71) and extreme values of Rayleigh number (Ra = 104 and 106),

which are used for the validation of present results as given in Table 6.2. An analysis

of Table 6.2 suggests that the present results are confined within 2 − 3% of the previous

results. These inherent uncertainties seen in Table 6.2 are very common in such studies due

to modeling error, dicretization (or linearization) error, numerical errors (due to iteration,

round up and programming) as well as accuracy of numerical scheme, etc (Bharti et al.,

2007). Keeping in mind all these factors, the present results reported herein are believed

to be reliable and accurate to within ±2−3% . This ascertains and inspires the confidence

in accuracy and reliability of present in-house developed LBM solver.

6.3.3 Characteristic Velocity (V)

In case of natural convection problems, the determination of characteristic velocity (Eq.

3.18) is crucial and important step (Kao et al., 2006; Kao and Yang, 2007; Fattahi et al.,

2012). The characteristic velocity (V ) is being used to quantify the limits of incom-

pressibility for the LBM solver (Dellar, 2003). It is done on the basis of Mach number

(Ma = V/cs; cs = c/
√

3) calculations (Qian et al., 1992; Dellar, 2003). To ensure the

working of LBM solver in near incompressible regime, the mach number should be limited
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Table 6.3: Variation of characteristic velocity (Eq. 3.18) and Mach number with
Prandtl and Rayleigh numbers

.

Prandtl number, Pr
Ra 0.71 1 10 50 100

Characteristic velocity, V
104 0.158 0.133 0.040 0.018 0.013
105 0.125 0.100 0.030 0.014 0.010
106 0.160 0.140 0.0843 0.020 0.014

Mach number, Ma
104 0.274 0.231 0.069 0.031 0.023
105 0.217 0.173 0.051 0.024 0.017
106 0.277 0.242 0.045 0.034 0.024

to less than 0.3, (Ma < 0.3). Table 6.3 shows estimated values of characteristic velocity

for the ranges of the Prandtl (Pr) and Rayleigh numbers (Ra). All values of characteristic

velocities are found to be in near incompressible limit as the Mach number (Ma) values

reported in Table 6.3 are well within the specified range (i.e., Ma < 0.3). Therefore, the

present LBM solver is working well within the limits of incompressibility regime for the

ranges of parameters considered in this work, and, hence, can be further used to obtain

new results.

6.3.4 Flow field

The physical insights of the natural convection in differentially heated cavity are obtained

by detailed analysis of flow field. In particular, the stream-function, isotherms and vor-

ticity patterns and local variation of Nusselt number at hot and cold walls are examined

in this section. It is evident that the kinematic viscosity (ν) and thermal diffusivity

(α) are two significant governing parameters which are responsible for the development

of hydrodynamics and thermal boundary layers, respectively. The development of the

boundary layers, in turn, influence the hydrodynamics and heat transfer characteristics.

These influence are examined by systematic variation of Prandtl number (Pr), which is

directly related to the development of thickness of boundary layers. In order to inves-

tigate the effect of Prandtl number, normalized stream-function and voriticty are used.
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The normalized stream-function (ψ∗) and vorticity (ξ∗) are defined as follows:

ψ∗ =
ψ − ψmin

ψmax − ψmin

and ξ∗ =
ξ − ξmin

ξmax − ξmin

(6.7)

Figure 6.2-6.4 depict the representative variation of streamline, vorticity and center line

velocity for the range of conditions covered herein. All the contours are equi-spaced at a

value of 0.05. The streamline profiles (Figure 6.2) shows that the natural convection heat

transfer mechanism starts dominating at lowest value of Rayleigh number (Ra = 104)

and for all values of Prandtl numbers (0.71 ≤ Pr ≤ 100). The predominance of the

natural convection enhances with the increasing values of both the Rayleigh and Prandtl

numbers. The degree of predominance is very clearly seen in Figure 6.2 over the ranges

of conditions considered herein. For example, the circular and symmetric flow patterns

seen at Pr=0.71 remains symmetric (but not circular) about heated and cooled walls at

Ra = 104. It clearly explains the establishment of natural convection phenomenon. At

increasing Rayleigh number and/or Prandtl number (Pr) disturbs the flow symmetry and

flow patterns are more confined to the hot wall because of the stronger movement of fluid

between the hot and cold walls (Guo et al., 2007; Kuznik et al., 2007; Mezrhab et al.,

2010; Kao and Yang, 2007; Ghazanfarian and Abbassi, 2010; Lee et al., 2010). Over the

range of Rayleigh number (Ra), the flow pattern (Figures 6.2 and 6.3) also shows stronger

dependence on the Prandtl number.

At low Prandtl numbers, convective heat transport is reinforced by inertia force rather

than viscous force. For Pr ≤ 1.0, it can be observed that fluid from heated wall of

cavity moves upwards, encounters top adiabatic wall then displaces towards cold wall and

moving down to cold adiabatic wall and, hence, completing clockwise circulation (Jami

et al., 2007a). This circulation in clockwise direction creates a quasi motionless zone

in the center of cavity. After Pr=10, streamlines circulation breaks in center of cavity,

and symmetric streamlines along vertical walls are observed. Due to dominant viscous

effect than inertial after Prandtl numbers of 1, the bifurcation of stream-functions near

active walls is observed. As Prandtl number (Pr) increases, streamlines become more
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Figure 6.2: Influence of Prandtl number (Pr) and Rayleigh number (Ra) on streamline
patterns in a square cavity for three values of Rayleigh number (i) Ra = 104, (ii)
Ra = 105 and (iii) Ra = 106 for range of Prandtl number (a) Pr=0.71, (b) Pr=1, (c)

Pr=10, (d) Pr=50 and (e) Pr=100.

concentrated towards heated isothermal walls. The formation of quasi-motionless zone

along vertical axis in center of cavity takes place. This zone increases with the increase in

Prandtl number from Pr = 10 to 100. With the increase in Prandtl number (Pr), fluid

viscosity increases, it causes lower diffusion of heat as compared to velocity. With the

increase in Rayleigh number to Ra = 105 and 106, fluid velocity inside cavity increases due

to increased thermal expansion, it causes stronger circulation between active isothermal

walls or simply convective heat transfer mechanism increases. At lower Prandtl numbers

(Pr ≤ 1), clockwise circulation of streamlines of lowest considered Rayleigh number with

central single vortex separates and become two vortices in elongated streamline in the

center of cavity at Ra = 105 (Mezrhab et al., 2010). With the increase in Prandtl number,
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Figure 6.3: Influence of Prandtl number (Pr) and Rayleigh number (Ra) on vorticity
patterns in a square cavity for three values of Rayleigh number (i) Ra = 104, (ii)
Ra = 105 and (iii) Ra = 106 for range of Prandtl number (a) Pr=0.71, (b) Pr=1, (c)

Pr=10, (d) Pr=50 and (e) Pr=100.

the circulation along active walls decreases. At Pr = 10, streamlines are similar to that

of Pr = 0.71 and Ra = 104, except the change in position of single vortex which is

observed to be shifted slightly towards hot wall than center of cavity. This is due to the

fact that from this Prandtl number earlier conduction dominant heat transfer mechanism

gets converted into convection dominant. As Prandtl number increases further, single

vortex starts shifting more towards hot wall and its size increases indicating increase in

momentum boundary layer thickness. At Ra = 106, for low Prandtl numbers (Pr ≤ 1)

two vortices, formed in the center of cavity, starts shifting towards isothermal active

walls, making third vortex to be formd at the center of cavity. Figure 6.3 elucidates

vorticity distribution in cavity. At small Rayleigh number (Ra = 104), inclined vortices
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Figure 6.4: Representative variations of velocity components along (i) horizontal and
(ii) vertical centerlines for whole range of Prandtl number (Pr) and Rayleigh number

(Ra), (a) Ra = 104, (b) Ra = 105 and (c) Ra = 106.
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Figure 6.5: Influences of Prandtl (Pr) and Rayleigh (Ra) numbers on the isotherms
patterns in a square cavity for three values of Rayleigh number (i) Ra = 104, (ii)
Ra = 105 and (iii) Ra = 106 for range of Prandtl number (a) Pr=0.71, (b) Pr=1, (c)

Pr=10, (d) Pr=50 and (e) Pr=100.

in the center of cavity are observed indicating the beginning of convection effect for small

Prandtl numbers, but for higher Prandtl numbers (Pr ≥ 10) due to increased viscous

effect, vorticity values are smaller, it results in less vortex formation. The impact of

increased Rayleigh number, i.e., convection effect on strength of vorticity is observed by

larger vortex formation in the center of cavity and concentrated vorticity lines near active

walls for smaller Prandtl numbers. For better understanding of the stream-function

and vorticity behavior with the increasing values of the Rayleigh and Prandtl numbers,

the minimum and maximum values of the stream-function (ψmin, ψmax) and vorticity

(ξmin, ξmax) with their location of occurrence (x, y) within the cavity are presented in

Table 6.4 for the ranges of flow governing parameters. An analysis of Table 6.4 suggests
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Table 6.4: Variation of maximum and minimum values of the streamfunction (ψmax and ψmin) and vorticity (ξmax and ξmin) with
Rayleigh and Prandtl numbers. The bracketed numbers show their location (x,y) of occurance within the cavity.

Prandtl number, Pr
V ariable Ra 0.71 1.0 10 50.0 100.0
ψmax 104 0.0019 0.002 4.65 × 10−5 0.0014 2.2 × 10−4

(0.72,1.0) (0.72,1.0) (0.33,1.0) (0.14,1.0) (0.17,1.0)
105 7.7 × 10−4 3.8 × 10−4 7.1 × 10−5 2.53 × 10−5 3.54 × 10−5

(0.75, 1) (0.75,1) (0.96, 0.08) (0.91,0.19) (0.86,0.32 to 0.33)
106 0.0016 8.4 × 10−4 2.8 × 10−4 7.1 × 10−5 4.8 × 10−5

(0.85,1.0) (0.85,1.0) (0.95,0.11) (0.92,0.16) (0.90,0.25)
ψmin 104 -0.947 -0.676 -0.078 -0.070 -0.056

(0.5,0.51) (0.5,0.51) (0.4,0.53) (0.14,0.42) (0.18,0.49)
105 -0.448 -0.332 -0.0567 −1.38 × 10−3 −2.2 × 10−4

(0.61,0.29) (0.58,0.28) (0.55,0.25) (0.51,0.18) (0.51,0.16)
106 -0.468 -0.355 -0.078 -0.0065 -0.0011

(0.15,0.55) (0.15,0.54) (0.16,0.55) (0.17,0.51) (0.16,0.5)
ξmax 104 0.0072 0.0051 7.1 × 10−4 0.0043 0.0027

(0.0,0.39) (0.0,0.39) (0.0,0.43) (0.0,0.37) (0.0,0.54)
105 0.0102 0.0074 0.0012 9.6 × 10−5 1.6 × 10−6

(0.0,0.37) (0.0,0.36) (0.0,0.5) (0.0,0.52) (0.0,0.86)
106 0.017 8.4 × 10−4 0.0022 2.8 × 10−4 4.8 × 10−5

(0.0,0.33) (0.0,0.32) (0.0,0.53) (0.0,0.48) (0.0,0.95)
ξmin 104 -0.0024 -0.0017 −2.4 × 10−4 -0.0012 −7.6 × 10−5

(0.73,0.47) (0.1,0.26) (0.12,0.44) (0.07,0.42) (0.09,0.67)
105 -0.0028 -0.0021 −3.5 × 10−4 −2.2 × 10−5 −6.0 × 10−6

(0.11,0.39) (0.1,0.26) (0.12,0.44) (0.05, 0.9) (0.03, 0.94)
106 -0.0047 -0.0034 −6.0 × 10−4 −6.4 × 10−5 −2.0 × 10−5

(0.06,0.37) (0.06,0.43 to0.45) (0.08,0.7) (0.04, 0.92) (0.01,0.99)
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Figure 6.6: Temperature distribution along (i) horizontal and (ii) vertical centerlines
for range of Prandtl and Rayleigh numbers.

that the magnitude of both the minima and maxima of the stream-function (ψmin, ψmax)

increases with increasing values of Rayleigh number for all values of Prandtl number.

However, the influence of Rayleigh number (Ra, or natural convection) on the ψmax is

seen to be of similar order for all values of Pr. Whereas φmin seems to have stronger effect

at larger values of Pr. In case of φmin, the stronger effect at lower Pr further enhances with

increasing values of Pr, thereby suggesting that the natural convection and conduction

plays stronger role on the flow characteristics. The qualitatively similar patterns are also

observed (Table 6.4) for the minimum and maximum values of the vorticity (ξmin, ξmax).

Further insights of the flow characteristics are explored by analyzing the behavior of the
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Figure 6.7: Local Nusselt number distribution plotted along (I) hot wall (X = 0) and
(II) cold wall (X = 1) at (a)Ra = 104, (b)Ra = 105 and (c)Ra = 106.
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Figure 6.8: Comparison between simulated and predicted values (Eq. 6.8) of the
average Nusselt number on the hot wall.

velocity components on the center lines of the cavity.

Figure 6.4 shows representative variations in the velocity components along the horizontal

and vertical center lines of the cavity. The x-component of velocity (i.e., u) is plotted at

vertical center line (X = 0.5) and y-component of velocity (v) is plotted along horizontal

center line (Y = 0.5) of cavity. The scaling of velocity is done by using characteristic

velocity as given in Table 6.3. It can be observed that due to symmetric Boussinesq

effect and lower viscous force, for smaller Prandtl numbers (Pr ≤ 1) velocity profiles are

symmetric along geometric center of cavity. As viscous force increases, due to lesser effect

of Boussinesq effect, symmetry of velocity is lost, for highest value of Pr = 100, velocity

profiles are parallel to wall. The smooth and symmetric patterns seen at smaller values of

Rayleigh number (Ra = 104) becomes of narrow amptitude on increasing the value of the

Rayleigh number. It also shows the stronger as well as complex effect of Prandtl number

at large values of Ra. The stronger and complex dependence of flow characteristics on the

dimensionless flow governing parameters shall also influence the heat transfer phenomena.

These are presented and discussed in the ensuing sections.
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6.3.5 Heat transfer

The natural convection heat transfer in a differentially heated square cavity is explored

and discussed in terms of the isotherm patterns, center-line temperature behavior, local

and average Nusselt numbers in this section.

6.3.5.1 Isotherm patterns

Figure 6.5 represents temperature distribution in a square cavity for the ranges of con-

ditions covered herein. The temperature distribution (or isotherms patterns) represents

the various zones of heat transfer. Figure 6.5 shows the shifting of isotherms in geomet-

rically symmetric manner from hot wall to the cold wall, which suggests that both walls

are equally participative in the heat transfer, and, thereby indicating the convective heat

transfer mechanism for lower Prandtl numbers (Pr ≤ 1) over the ranges of Rayleigh num-

ber (Ra). For Pr ≥ 10 and (Ra = 104) the isotherm patterns are parallel to the vertical

walls. The isotherms patterns are also seen to be concentrated towards the hot wall. The

clustering of isotherm lines near the hot wall suggests that the major convection occurs

in the close vicinity of hot wall. The size of clustering zone (i.e., width of clustering)

reduces with the increasing values of Pr. It also suggests that heat transfer mode is still

dominated by the conduction for higher values of the Prandtl number (Pr ≥ 10). The

clustering of the isotherms represents the larger temperature gradients, thereby, resulting

in the larger heat transfer rates. An increase in the value of Rayleigh number to 105 and

for small values of the Prandtl numbers (Pr ≤ 1) results in isotherms to be more inclined

towards cold wall as well as becomes parallel to horizontal axis with formation of thin

boundary layer near both active walls. For Pr = 10, due to combined effect of buoyancy

force and higher viscosity, convective heat transfer mechanism is found to be predominant

in upper half of domain and temperature in lower half of cavity is found to be very low.

For large Prandtl numbers (Pr > 10), effects of Ra is found to be negligible and heat

transfer is again governed by convection mode having very high heat transfer rates. For

Ra = 106, isotherms become parallel to horizontal wall in most of area of cavity for lower
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Prandtl numbers (Pr ≤ 1). For Pr=10, fluid circulation between active walls covers most

of the part of cavity, only area close to bottom wall is excluded with the formation of

boundary layer near hot wall. It can be observed that effect of Pr on natural convection

at Ra ≥ 105, is found to be negligible.

The heat transfer behavior is further explored by analyzing the center-line variation of

the temperature. Figure 6.6 represents the variations of temperature along the horizontal

(Y=0.5, right column) and vertical (X=0.5, left column) center-lines over ranges of Ra and

Pr. The temperature at vertical center-line of cavity (X = 0.5) is seen to be increasing

along the length for all considered Rayleigh numbers (Ra) and Pr ≤ 10. For higher

Prandtl numbers (Pr > 10), the temperature variation is observed to be in the close

vicinity of the hot wall. It is also visible through the isotherms patterns which are confined

towards hot wall and almost negligible variation of temperature away from the hot wall

towards the cold wall. On the other hand, the temperature distribution plotted along

horizontal center-line of cavity (Y = 0.5) shows the decrease in temperature along with

the length, which is almost parallel to horizontal axis in the middle portion of cavity. For

higher Prandtl numbers (Pr ≥ 50), shows a sudden drop in the temperature from higher

value (θ = 1) to low value (θ = 0) in upper portion of cavity. The temperature profiles

in the middle portion of cavity becomes parallel to horizontal axis which is in accordance

with previous discussion on isotherm patterns.

6.3.5.2 Local Nusselt number

The Nusselt number (Nu, Eqs. 3.29 and 3.30) is used to represent the dimensionless

heat transfer coefficient in the heat transfer studies. Therefore, it is the parameter which

signifies the heat transfer rates. The local Nusselt number (Nu, Eq. 3.29) variations along

hot and cold walls of the cavity are shown in Figure 6.7 to elucidate the effect of flow

governing parameters (Ra and Pr). Over the range of Rayleigh numbers as expected, the

higher values of Nusselt number (Nu) are obtained for the larger values of the Prandtl

number (Pr). For fixed Prandtl number (Pr), the local Nusselt (Nu) number on both hot
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and cold walls increases with the increasing value of Rayleigh number (Ra). Irrespective

of the values of Ra and Pr, the large value of Local Nu at the bottom of hot wall decreases

along the wall untill top of wall. The decrease in local Nusselt number value is, however,

depends on both Rayleigh and Prandtl number in a complex manner. The stronger

influence is seen at smaller values of Prandtl number, which diminishes with its increasing

value for all values of Ra.

6.3.5.3 Average Nusselt number

The local Nusselt number (Nu, Figure 6.7) is integrated over the hot and cold wall to

determine the overall heat transfer rate, i.e., average Nusselt number (Nu, Eq. 3.30). Ta-

ble 6.5 represents the variation of average Nusselt number with the Prandtl and Rayleigh

numbers. As discussed in detailed flow field phenomenon, the increasing values of Rayleigh

number narrow down the range of Prandtl number where the natural convection is dom-

inating mode of heat transfer. It is clearly seen in Table 6.5 where the average Nusselt

number values suddenly change to very high value with the marginal increase in the values

of Prandtl number (Pr).

Table 6.5: The dependence of average Nusselt number (Nu) of hot wall on Prandtl
and Rayleigh numbers.

(Nux=0)
Pr Ra = 104 Ra = 105 Ra = 106

0.71 2.257 4.570 8.816
1 2.288 4.724 9.267
5 2.970 7.402 14.837
10 3.890 8.471 16.260
15 4.316 8.917 16.920
20 4.771 9.355 17.452
30 6.862 15.587 18.417
50 16.899 27.029 30.262
60 20.196 31.074 34.577
70 22.886 34.330 38.362
80 25.807 37.583 41.849
90 27.270 40.882 44.342
100 30.491 43.503 48.430
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6.3.6 Empirical correlation

For the scientific and engineering applications, it is worth to develop a simple closure

relationship presenting the functional dependence of the heat transfer rates (in case of heat

transfer studies) on the dimensionless flow governing parameters. Such equations can be

used for interpolating the present results for the intermediate values of Rayleigh numbers

for their utilization in design and engineering analysis. A huge amount of literature is

available for empirical correlations of heat transfer rate with physical parameters such

as, Rayleigh number, Grashof number, Prandtl number, etc in natural convection in

differentially heated cavity (Howard, 1963; Heslot et al., 1987; Grossmann and Lohse,

2000; Stevens et al., 2013). Table 6.6 summerizes the empirical correlation developed in

previous studies of natural convection in cavity. In this work, an empirical correlation

Table 6.6: Empirical correlations reported in literature.

Source Empirical correlation Range

Basak et al. (2006) Nu = 1.622Ra0.145 Ra ≥ 5000, P r = 0.71
Nu = 1.224Ra0.177 Ra ≥ 5000, P r = 10

Kao and Yang (2007)# Nu ∝ Rar, 0.2 ≤ r ≤ 0.286 106 ≤ Ra ≤ 1011

Grossmann and Lohse (2000) Nu = 0.22Ra0.289 106 ≤ Ra ≤ 1011

Howard (1963) Nu ∝ Ra1/3 106 ≤ Ra ≤ 1011

Markatos and Pericleous (1984) Nu = 0.1436Ra0.299 103 ≤ Ra ≤ 106

Nu = 0.06Ra1/3 107 ≤ Ra ≤ 1016

Niemela et al. (2000) Nu = 0.124Ra0.309±0.0043 106 ≤ Ra ≤ 1017

Nu ∝ Pr0.14 Pr = 0.1, Ra = 5 × 105

Yu et al. (2011) Nu = 0.1659Ra0.2823 104 ≤ Ra ≤ 106

(# Rayleigh-Benard convection)

encompassing the functionality of average Nusselt number (Nu) at hot (or isothermal)

wall with Prandtl number (Pr) and Rayleigh number (Ra) is developed. An standard

closure relationship for present simulation results for heat transfer is given in the following

form:

Nu = APrBRaC +D (6.8)

Three different correlations along with R2 values and minimum (δmin) and maximum
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Table 6.7: The empirical correlations for entire range of data with R2, minimum
(%δmin), maximum (%δmax) relative deviations and %δN values for Rayleigh number of

104 ≤ Ra ≤ 106.

Sr. No. Prandtl number A B C D R2 δmin δmax δN
1. 0.71 ≤ Pr ≤ 10 0.1198 0.3183 0.2326 0.0 0.98 0.25 6.6 4.550

10 ≤ Pr ≤ 100 0.1081 0.1628 0.8829 0.0 0.923 5.6 30.9 15.20
2. 0.71 ≤ Pr ≤ 30 0.1499 0.2977 0.2528 0.0 0.97 0.2 15.0 5.596

30 ≤ Pr ≤ 100 0.3940 0.1110 0.7255 0.0 0.95 0.1 21.1 8.850
3. 0.71 ≤ Pr ≤ 100 0.1965 0.1203 0.8339 3.3205 0.94 1.1 31.0 13.92

(δmax) deviations are obtained by dividing data sets as shown in Table 6.7. It can be

observed that the empirical correlations (2) for data range of 0.71 ≤ Pr ≤ 30; 30 ≤ Pr ≤

100 give best fit among three developed correlations.

It can be observed that the R2 values of correlations given in Table 6.7 are close to

each other. For deciding about the best possible correlation, the normalized percentage

standard deviation (%δN ) between simulation and correlation values has been obtained

for all three cases by using following equation as given by Singh et al. (2008) as given

below:

%δN = 100

√√√√
∑ [

Nusimu−Nupred

Nusimu

]2

N
(6.9)

where, Nusimu and Nupred represents the average Nusselt number values obtained from

simulation and predicted by empirical correlations (Table 6.7). N represents the number

of data points (in present study, total number of data points N=39). It can be observed

that the normalized percentage standard deviation is minimum for second correlation

%δN = 5.596 and 8.850, and R2 values are also relatively high. So correlations (2a) and

(2b) represent the present data with better accuracy. Figure 6.8 represents the comparison

between numerical values of average Nusselt number (Nu) with that of predicted values

by correlations (2a) and (2b) given in Table 6.7 for Pr ≤ 30 and Pr ≥ 30, respectively.

The average error between simulated results and one obtained from empirical correlation

is about 1.1% and 3.7% for correlations of range Pr ≤ 30 and Pr ≥ 30, respectively.
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Therefore, the closure relationship presented herein can be used to predict the values of

the average Nusselt number with the bound of ±4 − 5%.

6.4 Concluding Remarks

The applicability of thermal lattice Boltzmann method (TLBM) is utilized for the in-

vestigation of the natural convection heat transfer in an square cavity. In particular,

the numerical simulations are performed to investigate the effects of Prandtl numbers

(0.71 ≤ Pr ≤ 100) on natural convective heat transfer mechanism for three different

Rayleigh numbers viz., Ra = 104, 105 and 106. The numerical results are obtained and

presented in terms of the streamline and vorticity patterns, the center-line variations of

the velocity and temperature, and local and average Nusselt numbers. The following

conclusions can be drawn from the results:

1. Natural convection effect increases with the increase in Prandtl number (Pr) for

all values of the Rayleigh number (Ra) due to the increased viscous force effect

in comparison to inertial force. As thermal diffusion is inversely proportional to

Prandtl number, velocity is more diffused than thermal energy. For Ra = 104,

dominant heat transfer mechanism is conductive for Pr ≥ 10.

2. For higher Prandtl numbers, temperature distribution weakens and isotherms are

more stratified towards the hot wall indicating predominant momentum boundary

layer.

3. The average Nusselt number (dimensionless heat transfer coefficient) of isothermal

wall (x = 0) is seen to increase with the Prandtl and Rayleigh numbers.

4. The numerical data are presented as a empirical correlation relating the average

Nusselt number (Nu) with Prandtl number (Pr) and Rayleigh number (Ra).
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NATURAL CONVECTION IN

PARTIALLY-SIMULTANEOUSLY

HEATED-COOLED SQUARE

CAVITY

7.1 Problem description

Consider the steady, laminar, natural convection heat transfer in an incompressible fluid

from an infinitely long square cavity (AR = L/H = 1.0, where L andH are cross-sectional

length and height of the cavity), as shown in Figure 7.1. The west wall (x = 0) of cavity

is subjected to equal length of hot and cold conditions, i.e., lower half (0 ≤ y ≤ H/2)

of cavity is at ambient (TC < TH), whereas the upper half (H/2 ≤ y ≤ H) is exposed

to hot condition (TH). The east wall (x = L) is kept at ambient (TC < TH). The top

(y = 0) and bottom (y = H) walls are thermally insulated. The aim of the study is to

explore physical insights of cavity exposed to contrast thermal conditions for different heat
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intensity (i.e., Rayleigh number). The study is carried out for Rayleigh number (104 ≤

Ra ≤ 106) and Prandtl number (Pr = 0.71). The governing equations (in dimensional

Figure 7.1: Schematic representation of the partially-differentially heated square cav-
ity and boundary conditions.

and dimensionless forms) along with general simplifications are expressed in Chapter 3.

The physical realistic boundary conditions (in non-dimensional form) for problem under

consideration are expressed as below,

• West wall (X = 0)

Ux = 0, Uy = 0, θ = 0 for 0 ≤ Y ≤ 1/2; (7.1)

Ux = 0, Uy = 0, θ = 1 for 1/2 ≤ Y ≤ 1; (7.2)

• East (cold) wall (X = 1)

Ux = 0, Uy = 0, θ = 0; (7.3)
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• Bottom (Y = 0)and top (Y = 1) walls,

Ux = 0, Uy = 0,
∂θ

∂Y
= 0 (7.4)

Extensive results have been obtained and presented herein for the following ranges of

conditions. The Rayleigh number (103 ≤ Ra ≤ 106) varied in the logarithmic manner

at a constant Prandtl number (Pr = 0.71). For these broad ranges of flow governing

parameters, the local and global convective flow characteristics such as the evolution of

stream functions and isotherms; variation of velocity components and temperature on

horizontal and vertical center lines; and the Nusselt number are obtained and discussed

herein the preceding sections. Before presenting new results obtained from this numerical

simulation, the ensuing section studies the grid independence and validaity of the solver

for the present problem.

7.1.1 Grid independence study and validation of results

In order to ensure the accuracy and reliability of present solver, grid independence study

has been carried out based on average Nusselt number (Nu) estimated at wall exposed

to both hot and cold conditions (x = 0). The adequacy of five uniform lattice (grid) sizes

G1(41 × 41), G2(61 × 61), G3(81 × 81), G4(101 × 101) and G5(121 × 121) have been

examined in Figure 7.2. It can be observed that change in Nu value after lattice size of

81×81 is negligible with enormous increase in computational time. Therefore, for present

work, a lattice size of 81 × 81 is chosen which is found to be optimum with respect to

computational time and also restrict LBM in low Mach number limit. This lattice size

(81×81) is believed to be sufficiently refine enough to resolve thermal and hydrodynamic

features within interested range of conditions.

Further, the reliability and accuracy of new results is established by comparing the present

results with available results in the literature. It is, however, evident from the literature

that none of the existing studies have explored the study of cavity with one wall subjected
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Figure 7.2: Grid independence study.

to both hot and cold conditions. The detailed validation of present solver for the differ-

entially heated cavity has already been presented elsewhere (Chapter 6), and, thus, not

repeated herein.

7.2 Results and Discussions

Extensive results have been obtained and presented herein this section for the following

ranges of conditions. The Rayleigh number (103 ≤ Ra ≤ 106) varied in the logarithmic

manner at a constant Prandtl number (Pr = 0.71). For these broad ranges of flow govern-

ing parameters, the local and global convective flow characteristics such as the evolution

of stream functions and isotherms; variation of velocity components and temperature on

horizontal and vertical center lines; and the Nusselt number are obtained and discussed

herein the preceding sections.
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7.2.1 Fluid flow results

Figure 7.3 represents the dependence of streamline and isotherm patterns on the dimen-

sionless flow governing parameters. Fluid near the vicinity of cold portion of west wall

(x = 0) of cavity approaches the heated upper part of cavity. As fluid come in the

vicinity of hot part of cavity, rise in fluid temperature is observed and move towards

the top adiabatic wall. Then fluid flows in right direction towards east (cold, X = 1)

wall with the gradual decrease in fluid temperature and strikes the cold east wall and

then approaches the bottom wall and thus completing a clockwise circulation. At lowest

considered Rayleigh number (i.e., Ra = 103) the streamline patterns are circular with for-

mation of quasi-motionless portion at upper middle part of cavity. At Ra = 103, the mode

of heat transfer is conduction dominant due to weak buoyancy driven flow. Increase in

Rayleigh number causes rise in the fluid circulation between thermally active walls which

make formation of very low temperature region called convection cell near lower left corner

of cavity. The size of the convection cell is found to vary proportionally with Rayleigh

number (Ra). The isotherm behavior illustrated in figure (7.3,II) is in accordance with

the streamline patterns. Due to conduction dominant heat transfer isotherm distribution

towards hot surface are weak. For higher Rayleigh number (Ra ≥ 104), isotherm pattern

become more and more stratified towards the hot surface and become parallel to horizon-

tal axis. Further insights of flow behavior in cavity are explored by analyzing the center

line variations of temperature and velocity components in cavity. Figure 7.4 illustrates

the temperature variation along horizontal and vertical center lines of the cavity. The

temperature distribution at along vertical center line (Figure 7.4, I) of cavity (X = 0.5)

represents the linear increase in temperature. This is because low temperature fluid from

lower cold part of cavity moves towards the heated surface with the gradual increase in

the temperature. (Figure 7.4, II) illustrates the temperature variation along horizontal

center line of cavity. The temperature distribution becomes more and more parallel to

the horizontal axis with the increase in Rayleigh numbers due to clockwise circulation of

fluid in the cavity.
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Figure 7.3: Influence of Rayleigh number on the streamline and isotherm pattern.

Figure 7.5 represents the velocity components variation along vertical and horizontal cen-

ter line of cavity. The x-component of velocity (Ux) is plotted at vertical center line

(X = 0.5) and y-component of velocity (Uy) is plotted along horizontal center line

(Y = 0.5) of cavity, respectively. The velocity profiles clearly insights the clockwise

circulation of fluid. At low Rayleigh number (Ra = 103), circulation is weak and increase

in Rayleigh number increases the circulation strength in the cavity. This behavior is in

accordance with previous discussion.

7.2.2 Heat transfer rate

The rate of heat transfer in cavity is illustrated by analyzing the local and average Nusselt

number (Nu) as represented in Figures 7.6 and 7.7 respectively. The effect of contrast
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Figure 7.4: Temperature distribution along (i) horizontal and (ii) vertical centerlines
for the range of Rayleigh numbers.

thermal heating along west wall (X = 0) can be clearly seen from Nusselt number behav-

ior. The first half shows very low temperature with sudden rise in Nu value from Y=0.5

and then gradual decrease in Nu values. This is due to flow of fluid from heated region

towards cold region with gradual decrease in temperature (Figure 7.6, I). The variation of

local Nusselt number along cold wall (Figure 7.6, II) shows linear increase in the Nusselt

number values implies higher fluid temperature as compared to the lower half of cold

wall. This is due to heated fluid from hot surface approaches cold wall with the decrease

in temperature but still higher temperature than fluid in the vicinity of lower region of

cold wall. Average Nusselt number (Nu) is obtained by integrating local Nusselt number

values along considered wall. Figure 7.7 represents the average Nusselt number values

estimated for both vertical walls for range of Rayleigh numbers. For both considered

walls, as expected, average Nusselt number (Nu) shows increase with Rayleigh number.
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Figure 7.5: Velocity profiles along (i) horizontal and (ii) vertical center-lines for the
range of Rayleigh numbers.

In case of mixed heated wall (X = 0), relatively small increase (16.3%) in Nu value is

observed for Rayleigh number of Ra ≤ 104 indicating conduction dominant heat transfer.

A steep rise in the average Nusselt number (Nu) value is observed for Ra ≥ 105. For

cold wall (X = 1), a linear rise in Nu with Rayleigh number is observed. The average

Nusselt number values at Rayleigh number of Ra = 105 are nearly equal for both vertical

walls indicating equal rate of heat transfer. Further, for better analysis of heat transfer

in system, overall Nusselt number (N̂u) is estimated by using following relations:

N̂u =
NuX=0 +NuX=1

2
(7.5)

Simmilar trend as that of mixed heated and cold wall is observed for overall Nusselt

number (N̂u) with Rayleigh numbers.
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Figure 7.6: Local Nusselt number variation along (i) west wall (X = 0) and (ii) east
wall (X = 1) for range of Rayleigh number.

7.2.3 Empirical correlation

For the scientific and engineering applications, it is worth to develop a simple closure

relationship presenting the functional dependence of the heat transfer rates (in case of heat

transfer studies) on the dimensionless flow governing parameters. Such correlations can be

used for the interpolating present results for the intermediate values of Rayleigh numbers

(Koteswara Rao et al., 2011) for their utilization in design and engineering analysis. In this
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work, an empirical correlation encompassing the functionality of overall Nusselt number

(N̂u) with Rayleigh number (Ra) is obtained. The following correlation fit the present

data excellently:

N̂u = 0.07Ra0.31 (R2 = 0.99) (7.6)

Figure 7.8 represents the comparison between present numerical simulation values of

overall Nusselt number (N̂u) and predicted values from Eqn. ??. It can be seen that

predicted values are in excellent agreement with the simulation values as indicated by The

coefficient of determination (R2) value, which is R2 = 0.99. The average error between

simulated and predicted values is observed to be 2.4%.



Chapter 7. 126

0 1 2 3 4 5
0

1

2

3

4

5

O
ve

ra
ll 

N
u 

(P
re

di
ct

ed
)

Overall Nu (Simulation)
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7.3 Concluding Remarks

In present numerical investigation, the influence of Rayleigh number (103 ≤ Ra ≤ 106)

on natural convective heat transfer mechanism in a square cavity with one wall subjected

to equally both hot and cold thermal conditions, have been elucidated. The upper part

(0.5 ≤ Y ≤ 1) of west wall of cavity is subjected to higher temperature (TH) and lower

part (0 ≤ Y ≤ 0.5) is exposed to ambient (TC < TH). A thermal lattice Boltzmann

method with passive scalar and D2Q9 lattice model is used as a numerical tool. The

numerical results are obtained and presented in terms of the streamline and isotherm

patterns, the center line variations of the velocity and temperature, and local and average

Nusselt numbers. Further, the numerical data is presented as a empirical correlation

relating the average Nusselt number (Nu) with Rayleigh number (Ra). The following

conclusions can be drawn from the results:

1. Formation of convection cell near lower part of mixed heated wall (X = 0) of cavity

is observed after Ra ≤ 104, as low temperature fluid retained in that region.

2. The size of convection cell increases with the increase in Rayleigh number (Ra).
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3. The average Nusselt number (Nu) and overall Nusselt number (N̂u) value show

linear increase with Rayleigh number.

4. At Ra = 105, the rate of heat transfer of both vertical walls is almost same, which

is indicated by nearly same values of average Nusselt number (Nu).

5. The present numerical results have been correlated by using a simple empirical

correlation thereby enabling the interpolation of the present simulation results for

the intermediate values of physical parameters, i.e., Rayleigh number (Ra).



Chapter 8

MAGNETO-HYDRODYNAMIC

NATURAL CONVECTION IN

DIFFERENTIALLY HEATED

CAVITY

8.1 Introduction

This chapter explores the influence of cooler size on magneto-hydrodynamic (MHD) nat-

ural convective heat transfer characteristics of partially-differentially heated square en-

closure. The combined influence of cooler size (Lc), Hartmann number (Ha), angle of

magnetic field direction (θM ) and Rayleigh number (Ra) on heat transfer characteristics

have been studied and presented herein.
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8.2 Problem Description

The physical model used in the present work is shown in Figure 8.1. A square partially-

differentially heated cavity (AR = 1) with one vertical wall (x = 0) exposed to partial

heating (Th) in the middle location with other vertical wall exposed to the cooling (Tc)

is considered. The partial heater is placed at the middle location (H/4 ≤ y ≤ 3H/4),

while other wall is subjected to cooling with variable cooler size (Lc). The cooler is also

Figure 8.1: Schematic representation of the square partially differentially heated/-
cooled cavity.

placed at the middle location of one of the vertical wall of cavity. In particular , the

influence of four cooler lengths, Lc = 1, 1/2, 1/4, 1/6 have been investigated. The top and

bottom walls are maintained at adiabatic condition. The working fluid is considered as

air (Pr = 0.71). The uniform magnetic field (B = Bxex + Byey) (of constant magnitude

B =
√
Bx +By) is applied at angle of θM with horizontal axis, where ex and ey are

the unit vectors in the Cartesian coordinates. The magnetic field has been applied in

three directions θM = 0o, 45o, 90o. The governing equations of MHD-natural convection
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heat transfer with general assumptions are detailed in Chapter 3. The physical realistic

boundary conditions for problem under consideration are expressed as follows:

• West wall (x = 0) is considered as no-slip and exposed to partial heating,

ux = 0, uy = 0,
∂T

∂x
= 0 for 0 ≤ y ≤ H/4; (8.1)

ux = 0, uy = 0, T = TH for H/4 ≤ y ≤ 3H/4; (8.2)

ux = 0, uy = 0,
∂T

∂x
= 0 for 3H/4 ≤ y ≤ H ; (8.3)

• East wall (x = L) is considered as no-slip wall and exposed to the partial cooling

with different cooler sizes, i.e.,

ux = 0, uy = 0,
∂T

∂x
= 0 for 0 ≤ y ≤ h1; (8.4)

ux = 0, uy = 0, T = Tc for h1 ≤ y ≤ h2; (8.5)

ux = 0, uy = 0,
∂T

∂x
= 0 for h2 ≤ y ≤ H ; (8.6)

where, h1 and h2 = (h1 + lc) are lengths for the different cases of cooler sizes and

middle heating locations are given below. In case of middle heating, h1 = (1− lc)/2

and h2 = (1 + lc)/2

• Top and bottom walls are maintained adiabatically, i.e.,

ux = 0, uy = 0,
∂T

∂y
= 0; (8.7)

In non-dimensional form, the boundary treatments can be expressed as below:
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• West wall (X = 0),

Ux = 0, Uy = 0,
∂θ

∂X
= 0 for 0 ≤ Y ≤ 1/4; (8.8)

Ux = 0, Uy = 0, θ = 1 for 1/4 ≤ Y ≤ 3/4; (8.9)

Ux = 0, Uy = 0,
∂θ

∂X
= 0 for 3/4 ≤ Y ≤ 1; (8.10)

• East wall (X = 1),

Ux = 0, Uy = 0,
∂θ

∂X
= 0 for 0 ≤ Y ≤ H1; (8.11)

Ux = 0, Uy = 0, θ = 0 for H1 ≤ y ≤ H2; (8.12)

Ux = 0, Uy = 0,
∂θ

∂X
= 0 for H2 ≤ Y ≤ 1; (8.13)

where, H1(h1/H) and H2(h2/H) = (H1 + Lc) are lengths for the different cases of

cooler sizes is expressed as below: In case of middle heating, H1 = (1 − Lc)/2 and

H2 = (1 + Lc)/2

• Top and bottom walls are maintained adiabatically, i.e.,

Ux = 0, Uy = 0,
∂θ

∂Y
= 0; (8.14)

The objective of present work is to explore fluid flow and heat transfer characteristics of

square partially-differentially heated cavity exposed to the magnetic field at three different

directions (θM = 0o, 45o, 90o), Hartmann number (Ha = 0, 60, 120), different cooler sizes

(Lc = 1, 1/2, 1/4, 1/6) at laminar range of Rayleigh number (103 ≤ Ra ≤ 105) with air

(Pr = 0.71) as a working fluid by using in-house developed thermal lattice Boltzmann

code. Before presenting new results obtained in this work, the grid independence test and

validation of results is presented in next section.
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8.3 Grid independence test and validation of results

In this work, the size of the computational domain, i.e., square, is itself fixed by the prob-

lem definition. In order to ensure the accuracy and reliability of present code and to deter-

mine the optimum lattice size, the grid independence study is carried out by using the five

uniform grid lattice size (Nx×Ny) : G1(41×41), G2(61×61), G3(81×81), G4(101×101) and

G5(121×121). Here, Nx andNy represents the number of lattice nodes in x− and y− direc-

tions, respectively. The adequacy of five uniform grid/lattice sizes have been examined for
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Figure 8.2: Influence of grid sizes on average Nusselt number (Nu) at Ha=0,120,
θM = 0 and Ra = 103, 105

extreme values of Hartmann number (Ha = 0, 120) and Rayleigh number of Ra = 103, 105

at angle of magnetic field direction (θM = 0) . The influence of the grids on average Nus-

selt number of partially heated wall is studied. Figure 8.2 presents the effect of grid size

on average Nusselt number values. The relative percentage deviations between G1 to G2,

G2 to G3, G3 to G4, G4 to G5 are (2.3%, 1.4%, 0.5%, 0.1%); (2.6%, 2.0%, 0.2%, 0.5%);

(0.6%, 0.2%, 1.2%, 1.3%) and (3.5%, 0.5%, 0.2%, 0.9%) for (Ha=0, Ra = 103), (Ha=120,

(Ra = 103,) (Ha=0, Ra = 105) and (Ha=120, Ra = 105), respectively. The small changes

in the results are accredited with the 2-3 folds of the computational time. Therefore,
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keeping in mind the greater accuracy (or less truncation errors) in the numerical solution

procedure, grid G3 (101× 101) is, however, found to be sufficiently refined to resolve the

hydrodynamics of natural convection flows considered in this work. For chosen grid size

of 1012, the mach values have been estimated for range of physical parameters of problem.

It is observed that Ma values are well within the permissible value of 0.3, required for

incompressibility.

The analysis of the available literature suggests that none of the results are documented

for the problem considered herein. However, considerable results are reported in the

literature for the limiting case of the present problem, i.e., natural convection in square

cavity with differentially heated vertical walls and thermally isolated top and bottom

walls. The simulation for above physical domain is carried out at Hartmann number of

Ha=0, which represents pure convection. To ascertain the reliability and accuracy of

the present solution approach, therefore, the results obtained herein for the limiting case

(Hartmann number, Ha=0) have been compared with the previous studies (de Vahl Davis,

1983; Kao et al., 2006; Kao and Yang, 2007). It can be seen from Table 8.1, the present

Table 8.1: Comparison of present numerical values of average Nusselt number (Nu)
at partially heated wall (X = 0) with those available in literature at Hartmann number

of Ha=0, Rayleigh number of Ra = 104, and Pr=0.71.

Source Nu
Present study 2.228
de Vahl Davis (1983) 2.243
Kao et al. (2006) 2.231
Kao and Yang (2007) 2.251

simulation results show excellent agreement with previous studies (de Vahl Davis, 1983;

Kao et al., 2006; Kao and Yang, 2007). The average deviation of the two (present and

literature) values is seen to be about 0.7%. Such minor inherent errors tend to arise due

to the enormous factors such as numerical methodologies, grid size, convergence criterion,

approximations errors (round up and programming), etc .
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Keeping in mind the above mentioned inadvertent factors influencing the numerical re-

sults, the above comparison ascertains the confidence in the accuracy and reliability of

the present in-house TLBM solver. The results presented herein this work are, therefore,

believed to be accurate and reliable within ±1 − 2%.

Having gained the confidence in the present computational solution algorithm of TLBM

solver, the ensuing section presents the new results emphasizing the influence of flow gov-

erning parameters (i.e., cooling size, Hartmann number, angle of magnetic field direction

and Rayleigh number) on the detailed magneto-hydrodynamic natural convection flow

phenomenon of partially-differentially heated cavity in terms of the streamline, isotherms

and average Nusselt numbers.

8.4 Results and Discussions

Lattice Boltzmann simulations have been carried out over the broad ranges of conditions:

(Hartmann number (Ha = 0, 60, 120), angle of magnetic field direction (θM = 0o, 45o, 90o),

length of cooler (Lc = 1, 1/2, 1/4, 1/6) and Rayleigh number (Ra = 103, 104, 105) for

partially heated west wall (X = 0). The partial heater as well as cooler is placed at

middle of vertical wall. Extensive results have been obtained and presented herein for the

local and global flow characteristics such as the evolution of stream functions, isotherms

and average Nusselt numbers.

8.4.1 Streamline patterns

Figures 8.3 to 8.11 elucidate the effect of different cooler sizes on streamline variations

for different magnetic field direction, Hartmann number and Rayleigh number. It can be

observed that the streamline patterns is nearly same for all cooler sizes at Ha=0, i.e., the

cooler size has insignificant effect on streamline variation at Ha=0 (pure convection case).

The increase in Hartmann number causes remarkable change in flow pattern, which is



Chapter 8. 135

evident from streamline patterns for all considered θM and Ra. At Ra=103 and Ha=0 for

all θM (Figure 8.3), the streamlines are pure circular with quasi-motionless region (formed

due to circulation of fluid between hot and cold region of cavity) at center of cavity. The

streamline structure remain nearly same for all Lc. The physical parameters considered

herein have remarkable influence on the fluid flow structure, which is indicated by the size

of location of the convection cell (formed due to circulation of fluid between active walls

of cavity). The strength of convection increases with Rayleigh number and decreases with

augmentation of Hartmann number.

Magnetic field applied in horizontal direction (θM = 0), as shown in Figures 8.3-8.11 has

capacity to slow down the fluid circulation in cavity. The increase in Ha restricts the

fluid circulation in cavity, resulting in the shifting of the convection cell in the vicinity of

partially heated wall. The size of the convection cell becomes elongated vertically. The

decrease in the cooler size, only affects the strength of fluid circulation. It can be seen

from streamlines contours, for horizontal magnetic field (θM = 0), the cooler size (Lc) size

insignificant effect on the fluid structure in the cavity.

The increase in Rayleigh number (Ra ≥ 104), the fluid circulation between hot and cold

parts of cavity increases, or simply convection effect increases (Figures 8.6, 8.7 and 8.8).

It results in the increase in the size of convection cell. For Ra=104 and 105, the increase in

Hartmann number, slightly affects the fluid flow circulation in cavity. Due to similar effect

induced by both Ra and Ha, small change is observed in the convection cell of cavity. The

size nearly remains same for all higher Ha (=60 and 90), only its location is slightly shifts

with change in cooler size. It can be observed from Figures 8.9-8.11, i.e., at Ra = 105

and Ha=0, due to much higher fluid circulation between active walls, the fluid confines

towards the hot and cold wall of cavity, with bifurcated central convection cell with the

formation of eddies at the corner part of cell. The size of eddies decreases with decrease

in cooler size Lc.

The change in magnetic field direction at θM = 45o (Figures 8.3, 8.7 and 8.10), causes

remarkable change in the fluid flow pattern and thermal characteristics of cavity due to
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change in Lorentz force (Mahmoudi et al., 2014). At θM = 45o, the influence of magnetic

field (Ha > 0), causes the fluid flow pattern to be circulated in diagonal shape. The

applied magnetic field direction has remarkable influence on the fluid flow pattern at

Ha=60 and 120. The deformation of streamlines and isotherms are found to be maximum

for θM = 45o, which is indicated by the inclined flow pattern. The flow behavior is

stretched from top left corner towards bottom right corner (diagonal shape). At lower

Ha, the flow circulation is smooth and circular. The increase in Ha, ceases the flow

circulation and streamline patterns become desorted. The increase in Ra (Ra ≥ 104), as

discussed earlier, increases flow circulation, and at θM = 45o, the flow circulation occupies

full cavity and it is inclined for Ha > 0. Moreover, the cooler length has insignificant

effect on streamline patterns.

Now, the application of magnetic field in vertical direction (θM = 90o), the flow pattern

is found to be similar to θM = 45o, only the direction of fluid flow is opposite, i.e., from

bottom left corner to the top right corner. The effect of Ha, is similar to earlier discussions.

Thus, the streamline (fluid flow pattern) has complex dependence on the physical pa-

rameters considered herein (Hartmann number, Rayleigh number, angle of magnetic field

and cooler size). Such complex dependences are the result of complex thermal patterns,

discussed in ensuing section.

8.4.2 Isotherm patterns

The effect of various flow governing parameters of MHD natural convection on temperature

field in cavity is depicted herein in terms of isotherm patterns (Figures 8.12-8.20). At

Ra = 103, the heat transfer mode is conduction dominated and the isotherm patterns

are slightly parallel to vertical axis. For horizontal magnetic field direction (θM = 0o),

the strength of isotherms enhances with increase in Rayleigh number (due to increase in

buoyancy effect) for all Hartmann number values studied herein. As discussed before,

increase in Ha, reduces the flow circulation in the cavity, which is also evident from

isotherms patterns. Increase in Ha, the isotherms become more crowded towards the
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Figure 8.3: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on streamline patterns at Ra = 103 and magnetic field direction of θM = 0o.
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Figure 8.4: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on streamline patterns at Ra = 103 and magnetic field direction of θM = 45o.
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Figure 8.5: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on streamline patterns at Ra = 103 and magnetic field direction of θM = 90o.
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Figure 8.6: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on streamline patterns at Ra = 104 and magnetic field direction of θM = 0o.
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Figure 8.7: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on streamline patterns at Ra = 104 and magnetic field direction of θM = 45o.
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Figure 8.8: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on streamline patterns at Ra = 104 and magnetic field direction of θM = 90o.
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Figure 8.9: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on streamline patterns at Ra = 105 and magnetic field direction of θM = 0o.
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Figure 8.10: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on streamline patterns at Ra = 105 and magnetic field direction of θM = 45o.
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Figure 8.11: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on streamline patterns at Ra = 105 and magnetic field direction of θM = 90o.

heated part of cavity with almost half region of cavity is filled with low (zero temperature

fluid).

For Ha > 0 (Figures 8.12-8.20), the size of cooler length, causes influence on buoyancy

force. Decreasing cooler length from Lc = 1 to 1/2 and 1/4, helps to clear the dense

crowding and isotherms pattern spread horizontally. The dense crowding means higher

temperature gradient, thus yielding higher heat transfer. Thus, decrease in cooler length,

decreases rate of heat transfer (decrease in Nu). For a constant Rayleigh number (Ra), the

change of magnetic field direction, from horizontally to vertically, increases the isotherm

spreading in the cavity. It causes, the flow pattern in diagonal shape (as discussed in

previous section). Similar effect is observed of cooler length (Lc) on isotherm pattern as

for θM = 0o.

The increase in Rayleigh number (heat intensity), as known increases the buoyancy force

and flow circulation in the cavity. As expected, the isotherms becomes crowded all over

cavity region with augmentation in Ra, signifying higher heat transfer rates. Moreover,
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the presented isotherm patterns are in accordance with the streamline structure for given

range of parameters. The heat transfer characteristics of cavity is depicted in terms of

average Nusselt number (Nu) estimated at the isothermal wall (X = 0) at cavity. This is

presented in next section.
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Figure 8.12: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on isotherm patterns at Ra = 103 and magnetic field direction of θM = 0o.

8.4.3 Heat transfer characteristics

In this section, the heat transfer characteristics of cavity is elucidated in terms of the aver-

age Nusselt number (Nu). Figure 8.21 presents the (Nu) variation for different Rayleigh

number (103 ≤ Ra ≤ 105), Hartmann number (Ha = 0, 60, 120), angle of magnetic field

direction (θM = 0o, 45o, 90o) and cooler size (Lc = 1, 1/2, 1/4).

The average Nusselt number is plotted as a function of cooler size (Lc) for Hartmann and

Rayleigh number for different θM as shown in Figure 8.21. It can be seen that, Nu value

increases with Rayleigh number and decreases with augmentation of Hartmann number,

which is clear from previous discussions. The influence of cooler size is maximum for Ra=
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Figure 8.13: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on isotherm patterns at Ra = 103 and magnetic field direction of θM = 45o.
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Figure 8.14: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on isotherm patterns at Ra = 103 and magnetic field direction of θM = 90o.
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Figure 8.15: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on isotherm patterns at Ra = 104 and magnetic field direction of θM = 0o.
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Figure 8.16: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on isotherm patterns at Ra = 104 and magnetic field direction of θM = 45o.
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Figure 8.17: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on isotherm patterns at Ra = 104 and magnetic field direction of θM = 90o.
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Figure 8.18: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on isotherm patterns at Ra = 105 and magnetic field direction of θM = 0o.
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Figure 8.19: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on isotherm patterns at Ra = 105 and magnetic field direction of θM = 45o.
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Figure 8.20: Influence of Hartmann number (Ha = 0, 60, 120) and cooler size (Lc =
1, 1/2, 1/4) on isotherm patterns at Ra = 105 and magnetic field direction of θM = 90o.
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105. For all cases considered herein, at Ha=0, Nu values are highest followed by Ha=60

and Ha=120.The magnetic field direction slightly affects Nu only for Ha > 0 (except

pure convection). Thus, the average Nusselt number is strongly influenced by Rayleigh

number, Hartmann number and cooler size. The θM has insignificant influence on average

Nusselt number value. In general, average Nusselt number has complex dependence on

physical flow governing parameters covered in this study.
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Figure 8.21: The average Nusselt number (Nu) estimated for different Hartmann
number (Ha = 0, 60, 120), angle of magnetic field direction (θM = 0o, 45o, 90o), cooler

length (Lc = 1, 1/2, 1/4, 1/6) and Rayleigh number Ra = 103, 104, 105.

8.4.4 Empirical Correlation

Present simulation results have been summarized by functional dependence of average

Nusselt number (Nu) on lenght of cooler (Lc) and Hartmann number for given Rayleigh

number (Ra) and angle of magnetic field direction (θM ) within range considered herein
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(103 ≤ Ra ≤ 105; 0 ≤ Ha ≤ 120; 1/6 ≤ Lc ≤ 1; 0o ≤ θM ≤ 90o), i.e.,

Nu = f(Lc, Ra.Ha, θM) (8.15)

Table 8.2 presents the Nusselt number correlations developed for range of Rayleigh number

and angle of magnetic field direction with corresponding coefficient of determination R2

values. Then the correlation coefficients (a,b,C,...,etc) of Nusselt number correlation listed

in Table 8.2 are presented in Table 8.3. Figure 8.22 show the comparison between the

Table 8.2: Nussult number correlations developed (Nu = f(Lc,Ha)) for given
Rayleigh number (Ra) and angle of magnetic field (θM ).

Ra θM Nu R2

103 0o aLb
cc

Ha 0.97
45o a+ b

Lc

+ C
L2

c

+ d
L3

c

+ eHa + fHa2 0.91

90o a+ b
Lc

+ CHa + d
L2

c

+ eHa2 + f Lc

Ha + g
L3

c

+ hHa3 + iHa2

Lc

+ jHa
L3

c

0.95

104 0o a+ b lnLc + cHa + d lnL2
c + eHa2 + f lnLcHa 0.99

45o a+ b lnLc + cHa + d lnL2

c + eHa2 + f lnLcHa 0.99
90o a+ b

Lc

+ CHa + d
L2

c

+ eHa2 + f Lc

Ha 0.98

105 0o a+ b
Lc

+ CHa + d
L2

c

+ eHa2 + f Lc

Ha 0.99

45o a+ b
Lc

+ CHa + d
L2

c

+ eHa2 + f Lc

Ha 0.99

90o a+ b
Lc

+ CHa + d
L2

c

+ eHa2 + f Lc

Ha 0.96

numerical and predicted (Table 8.2) values of the average Nusselt number. It is observed

that the proposed predictive closure correlations (Table 8.2) predicts the average Nusselt

number (Nu) values within acceptable level of deviations from the computed values.

8.5 Concluding Remarks

In this study, lattice Boltzmann simulations have been carried out to investigate the influ-

ence of cooler size (Lc = 1, 1/2, 1/4) on magneto-hydrodynamic (MHD) natural convective

heat transfer characteristics in partially-differentially heated square cavity. The west wall

(X=0) is partially heated with heater size (Lh = 1/2) and east wall is partially cooled

with four cooler lengths of Lc = 1, 1/2, 1/4. Other parts of cavity are maintained at
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Table 8.3: Correlation coefficients of Nusselt number correlation presented in Ta-
ble 8.2.

θM a b C d e f
Ra = 103

0o 2.14 4.66 0.997 - - -
45o 2.03 0.30 -0.233 2.8 × 10−2 −1.8 × 10−4 −4.2 × 10−5

90o 1.63 0.644 3.1 × 109 -0.278 7.7 × 108 −6.5 × 10−3

Ra = 104

0o 2.2 0.29 −7.8 × 10−3 −0.7 × 10−2 −1.1 × 10−5 −2.4 × 10−3

45o 2.2 0.29 −7.8 × 10−3 -0.21 −3.5 × 10−7 −2.4 × 10−3

90o 2.5 -0.28 −2.7 × 10−3 −7.9 × 10−3 −4.3 × 10−5 −1.2 × 10−3

Ra = 105

0o 4.7 -0.74 −2.5 × 10−2 4.4 × 10−2 4.4 × 10−5 −2.4 × 10−3

45o 4.9 -0.90 −2.3 × 10−2 6.5 × 10−2 3.5 × 10−5 2.4 × 10−3

90o 5.3 -1.3 −3.3 × 10−2 0.11 8.9 × 105 −3.4 × 10−3

For θ = 900 and Ra = 103: g = 2.6 × 10−2, h = 4.2 × 106 i = −4.6 × 10−6 and
j = 1.0 × 10−3

adiabatic condition. In particular, the effects of Rayleigh number (Ra = 103, 104, 105),

Hartmann number (Ha = 0, 60, 120), angle of magnetic field (θM = 0o, 45o, 90o) on stream-

lines, isotherms and average Nusselt number have been studied and reported in this work.

From this study, following conclusions can be drawn:

1. Fluid circulation in cavity creates formation of convection cell in central region of

cavity. The size of convection cell varies proportionally with Rayleigh number, while

it decreases with augmentation of Hartmann number. At Ra = 105, convection cell

elongates and bifurcates with the formation of two eddies at the corner of cell. The

size of these eddies reduces with decrease in cooler length.

2. Increase in Ha controls the flow circulation in cavity.

3. The decrease in cooler size, reduce buoyancy effect, thereby, fluid circulation.

4. The change in the magnetic field direction from horizontal to vertical, slightly in-

creases the flow circulation in cavity for Ha=60, 120.
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Figure 8.22: Comparison between present numerical and predicted (Table 8.2, Ta-
ble 8.3).

5. The decrease in cooler lenght from Lc = 1 to 1/2 and 1/4, helps to clear the dense

crowding and isotherms pattern spread horizontally in cavity.

6. The average Nusselt number increases with Rayleigh number and decreases with

Hartmann number.

7. Nusselt number correlations for different Rayleigh number (Ra) and angle of mag-

netic field direction have been proposed showing functional dependence of average

Nusselt number with length of cooler size (Lc) and Hartmann number Ha.



Chapter 9

NATURAL CONVECTION IN

PARTIALLY HEATED OPEN

ENDED CAVITY

In this chapter, the natural convection heat transfer in an open ended (east wall) en-

closure subjected to the partial heating (of the west wall) is investigated numerically by

using the passive scalar thermal lattice Boltzmann method (PS-TLBM) with D2Q9 lattice

model. In particular, the following objectives have been explored herein:

1. The influences of heater size (Lh), heating location (bottom, middle and top) and

heat intensity, i.e., Rayleigh number (Ra) in the laminar range, on the thermal

and hydrodynamic features are elucidated for a fixed value of the Prandtl number

(Pr = 0.71).

2. The influence of Prandtl number (0.71 ≤ Pr ≤ 7) and Rayleigh number (104 ≤

Ra ≤ 106) on heat transfer rate of partially heated open ended cavity with fixed

heater size (Lh = H/2) and heating location (middle) on rate of heat transfer.

151
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9.1 Problem description

Consider the two-dimensional, steady, laminar, natural convection in an incompressible

Newtonian fluid in the open ended cavity of length L and height H (AR = L/H = 1

for square cavity), as shown in Figure 9.1. The open ended cavity is, however, physically

represented by the east wall (x = L) open to the ambient (temperature Tc). The bottom

(y = 0) and top (y = H) walls of cavity are thermally insulated. The west wall (x = 0)

is partially heated (heater size, lh < H) isothermally (temperature Th) at either of the

three different locations, viz., (i) top heating, (ii) middle heating and (iii) bottom heating,

respectively. The length of partial heated section (lh) of the west wall (x = 0) is varied

in the range as 0.25H ≤ lh ≤ 0.75H . The governing equations (in dimensional and

dimensionless forms) along with general simplifications are expressed in Chapter 3. The

Figure 9.1: Schematic representation of the computational domain (i.e., open ended
cavity) and boundary conditions.

boundary conditions in non-dimensional form are expressed as follow:

• At the west (X = 0) wall,

Ux = 0, Uy = 0 for 0 ≤ Y ≤ 1

θ = θh = 1 for h1 ≤ Y ≤ h2

∂θ

∂X
= 0 for h∗1( 6= 0) ≥ Y ≥ 0 and h2( 6= 1) ≤ Y ≤ 1

(9.1)
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where, h1 and h2 = (h1 + Lh) are dimensionless lengths given as follow for the

different cases of heating arrangements. The Lh (= lh/H) being the dimensionless

length of the heating section.

1. In the case of top heating (case -I), h1 = (1 − Lh) and h2 = 1

2. In case of middle heating (case -II), h1 = (1 − Lh)/2 and h2 = (1 + Lh)/2

3. In the case of bottom heating (case -III), h1 = 0 and h2 = Lh

• At the east (X = 1) wall,

∂Ux

∂X
= 0,

∂Uy

∂X
= 0 and

θ = θc = 0 for Ux < 0

∂θ

∂X
= 0 for Ux > 0

(9.2)

• At the bottom (Y = 0) and top (Y = 1) walls,

Ux = 0, Uy = 0 and
∂θ

∂Y
= 0 (9.3)

9.2 Results and discussions

Computational simulations have been carried out over the broad ranges of conditions

(0.25 ≤ Lh ≤ 0.75, 103 ≤ Ra ≤ 106, Pr = 0.71) for three different heating locations.

In particular, extensive results have been obtained and presented herein for the local

and global flow characteristics such as the evolution of stream functions and isotherms,

variation of velocity and temperature along the horizontal and vertical center lines, and

local and average Nusselt numbers. Prior to the presentation of the new results obtained

herein this work, however, a systematic analysis of grid independence test, quantification

of incompressibility limits and validation of results have been presented in the ensuing

section to ascertain the accuracy and efficacy of the in-house PS-TLBM numerical solution

procedure. The problem has been divided into two parts.
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1. Influence of heater size and location on natural convective heat transfer rate in

partially heated open ended cavity.

2. Influence of Prandtl number on on natural convective heat transfer rate in partially

heated (middle heating) open ended cavity.

9.2.1 Grid independence test

The reliability and accuracy of the numerical solution procedure is naturally dependent

upon a judicious choice of optimal parameters such as sizes of the computational domain

and computational grid. In this work, the size of computational domain is itself defined

by the problem, therefore, a thorough grid independence study has been carried out

using four uniform lattices/grids, i.e., G1 (61 × 61); G2 (81 × 81); G3 (101 × 101) and

G4 (121 × 121), for three different values of the heater size (Lh = 0.25, 0.5 and 0.75) at

the Rayleigh number of Ra = 104. Each heater is individually placed at the mid-section

(i.e., middle heating) of the west wall (x = 0). The adequacy of grid size is examined by

comparing the values of the average Nusselt number (Nu) at the partially heated west

wall (x = 0) in Table 9.1.

Table 9.1: Grid independence test for three values of heater size (0.25 ≤ Lh ≤ 0.75)
by using four different grids (G1 to G4) of uniform square lattice size (Nx × Ny) at
Rayleigh number (Ra = 104) and middle heating case. The Nx and Ny represents the

number of lattice nodes in x− and y− directions, respectively.

average Nusselt number (Nu) at the west wall
Grid details Lh = 0.25 Lh = 0.50 Lh = 0.75

G1 (61 × 61) 3.319 3.942 4.280
G2 (81 × 81) 3.282 3.934 4.226
G3 (101 × 101) 3.299 3.947 4.236
G4 (121 × 121) 3.283 3.959 4.258

It is observed that the relative changes in the average Nusselt number (Nu) values with

the change in lattice size from coarsest (G1) to the finest (G4) are 1.39%, 0.44% and 0.53%

for the heater size (Lh) of 0.25, 0.5 and 0.75, respectively. Also, the relative changes in
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the average Nusselt number (Nu) values with the changes in the lattice size (G1 → G2,

G2 → G3 and G3 → G4) are seen to be (1.13%, 0.19%, and 1.28%), (0.50%, 0.33%, and

0.25%) and (0.76%, 0.30%, and 0.52%) for the heater size (Lh) of 0.25, 0.5 and 0.75,

respectively. The above analysis of Table 9.1 shows insignificant change in the average

Nusselt number (Nu) values on the further refinement of lattice grid size G3, however,

with the immense increase in CPU time to obtain the converged solution. Thus, the

lattice grid size G3 (101× 101) is believed to be sufficiently refined enough to resolve the

thermal and hydrodynamic features with an acceptable level of accuracy over the range

of conditions considered herein. The results presented hereafter are based on the lattice

grid size G3 (101 × 101).

9.2.1.1 Quantification and validation of incompressibility limits

The quantification of incompressibility limits is one of the necessity of the lattice Boltz-

mann method (LBM) solver a-prior to its utilization in the flow and thermal computa-

tions. Generally, the limits of compressibility/incompressibility are quantified in terms of

the Mach number (Ma), defined (He et al., 2011) as

Ma =
V

cs
where cs =

c√
3

In order to keep the flow in the incompressible region, LBM solvers must have the restric-

tion of lower Mach number (Ma). The available literature (Dellar, 2003) suggests that the

Mach number value should be within permissible limit (i.e., Ma ≤ 0.3) to maintain the

condition of incompressible flow in the LBM solvers. Table 9.2 shows the values of charac-

teristic velocity (V , Eq. 3.18) and corresponding Mach number (Ma). Over the range of

Rayleigh number (Ra) considered herein, it can be observed that estimated values of the

Mach number (Ma) are much less than the permissible limit (i.e., Ma < 0.3 as incom-

pressible limit). Therefore, present PS-TLBM numerical methodology and computational
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algorithm is working well within the incompressible range. Hence, the present method-

ology is further confidently used to obtain the new results over the ranges of conditions

considered herein.

Table 9.2: The numerical values of characteristic velocity (V ) and Mach number (Ma)
over the considered range of the Rayleigh number (Ra).

Ra V Ma
104 0.03 0.05
105 0.10 0.17
106 0.17 0.29

9.2.1.2 Validation of results

The review of the available literature suggests that none of the results are documented in

the literature for the problem considered herein. Therefore, the reliability and accuracy of

the present numerical solution procedure is ascertained by obtaining and comparing the

results for the limiting case of the present problem, i.e., natural convection in open ended

square cavity of which west wall (x = 0) is completely (Lh = 1) heated isothermally

while the east wall is open to ambient. Table 9.3 compares the present values of the

average Nusselt number (Nu) at the west wall (x = 0) with the available literature

results (Mohamad, 1995; Mohamad et al., 2009; Bilgen and Oztop, 2005; Sajjadi et al.,

2010; Kefayati, 2013a; Chan and Tien, 1985) over the wide range of Rayleigh number

(103 ≤ Ra ≤ 106). It can be observed from Table 9.3 that the maximum error in between

the present and literature values of the average Nusselt number (Nu) is 3.4% whereas

all others values are confined within the range of ±1 − 3%. Such minor inherent errors

tend to arise due to the enormous factors such as numerical methodologies, grid size,

convergence criterion, approximations errors (round up and programming), etc (Srinivas

et al., 2009; Bharti et al., 2006; Sivakumar et al., 2006; Tian et al., 2014). Keeping in

mind the above mentioned inadvertent factors influencing the numerical results, the above

comparison ascertains the confidence in the accuracy and reliability of the present in-house
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Table 9.3: Comparison of the present results (average Nusselt number, Nu at west
wall) of completely heated (Lh = 1) open ended square cavity with the literature values

for a range of conditions.

average Nusselt number (Nu) at the west wall
Source Ra = 103 Ra = 104 Ra = 105 Ra = 106

Present 1.387 3.386 7.295 14.358
Mohamad (1995) - 3.264 7.261 14.076
Bilgen and Oztop (2005) 1.310 3.530 7.850 15.200
Mohamad et al. (2009) - 3.373 7.323 14.380
Kefayati (2013a) - 3.319 7.391 14.404
Chan and Tien (1985) 1.070 3.410 7.690 15.000

PS-TLBM solver. The results presented herein this work are, therefore, believed to be

accurate and reliable within ±1 − 3%.

Having gained the confidence in the present computational solution algorithm of PS-

TLBM solver, the ensuing section presents the influence of flow governing parameters

(i.e., heater size, heating location and Rayleigh number) on the detailed natural convection

flow phenomenon of partially heated open cavity in terms of the streamline and isotherm

patterns, center line variations of the velocity components and temperature, and local and

average Nusselt numbers.

9.2.2 Part I: Effect of heater size and heating location

In this section, the combined influence of heater size (0.25,0.5,0.75), heating locations

(bottom, middle and top), Rayleigh number (Ra = 103, 104, 105, 106) is investigated for

constant Prandtl number (Pr = 0.71). The variation of streamline, vorticity, isotherms,

center-line variation of velocity components as well as temperature and Nusselt number

variation have been presented and discussed in preceeding sections.

9.2.2.1 Detailed flow patterns

The detailed physical insights of the natural convection in an partially heated open ended

cavity are illustrated by presenting the evaluation of streamline patterns and variations of



Chapter 9. 158

velocity components along the center-lines of cavity and their dependencies on the ranges

of the conditions considered herein.
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Figure 9.2: The dependence of the streamline patterns in the open ended partially
heated cavity on the heater size (Lh) and Rayleigh number (Ra) for the bottom heating

location.
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Figure 9.3: The dependence of the streamline patterns in the open ended partially
heated cavity on the heater size (Lh) and Rayleigh number (Ra) for the middle heating

location.
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Figure 9.4: The dependence of the streamline patterns in the open ended partially
heated cavity on the heater size (Lh) and Rayleigh number (Ra) for the top heating

location.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

U
x

U
x

 Ra=103

 Ra=104

 Ra=105

 Ra=106

Y

(iii)  Lh=0.75(ii)  Lh=0.5(i) Lh=0.25

U
x

Y Y

(c) Top
heating

(b) Middle
heating

(a) Bottom
heating

Figure 9.5: The variation of the horizontal component of dimensionless velocity (Ux)
along the vertical center-line (0.5, Y ) of cavity with the heater size (Lh), heating loca-

tions (Bottom, middle, top) and the Rayleigh number (Ra).
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Figure 9.6: The variation of the vertical component of dimensionless velocity (Uy)
along the horizontal center-line (X, 0.5) of cavity with the heater size (Lh), heating

locations (Bottom, middle, top) and the Rayleigh number (Ra).

(A) Streamline patterns: It is evident that kinematic viscosity (ν) and thermal diffu-

sivity (α) are two significant fluid properties which are responsible for the development of

hydrodynamic and thermal boundary layers, respectively. The development of the bound-

ary layers, in turn, influences the flow and heat transfer characteristics. Such influences

are examined by systematic variation of Rayleigh number (Ra), which is directly related

to development of thickness of boundary layers. In order to delineate the influences of the

flow governing parameters on the flow field, the stream-function is normalized as follow:

ψ∗ =
ψ − ψmin

ψmax − ψmin

(9.4)

The representative dependence of the flow influencing parameters on the normalized
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Figure 9.7: Representative variations of the isotherm patterns with the heater size
(Lh) and Rayleigh number (Ra) for the bottom heating location of the open ended

cavity.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Y

0
0.05000
0.1000
0.1500
0.2000
0.2500
0.3000
0.3500
0.4000
0.4500
0.5000
0.5500
0.6000
0.6500
0.7000
0.7500
0.8000
0.8500
0.9000
0.9500
1.000

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(d) Ra=106

(c) Ra=105

(b) Ra=104

Y

(a) Ra=103

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Y

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Y

X
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(iii) Lh=0.75(ii) Lh=0.5

Y

X

(i) Lh=0.25

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Y

X

Figure 9.8: Representative variations of the isotherm patterns with the heater size
(Lh) and Rayleigh number (Ra) for the middle heating location of the open ended

cavity.
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Figure 9.9: Representative variations of the isotherm patterns with the heater size
(Lh) and Rayleigh number (Ra) for the top heating location of the open ended cavity..

streamline (ψ∗) patterns are shown in Figure 9.2 - 9.4 for three different heating loca-

tions (bottom, middle and top) on the west wall, respectively, at four values of Rayleigh

numbers (Ra = 103, 104, 105 and 106) for the three different heating sizes (Lh = 0.25, 0.5

and 0.75). Equidistant contours (∆ψ∗ = 0.05) of streamline consisting of ψ∗
min = 0 and

ψ∗
max = 1 are plotted in each of these figures. An examination of Figure 9.2 - 9.4 shows

that the streamline patterns are bifurcated into two parts for the smallest heater size

(Lh = 0.25) at the lowest value of the Rayleigh number (Ra = 103). It implies that the

conduction dominated heat transfer is possibly due to the weak convection and buoyancy

driven flow under the above mentioned conditions (Lh = 0.25 and Ra = 103). The in-

creasing value of the heating size (Lh ≥ 0.5) reciprocates the buoyancy induced flow in

an open ended cavity. Due to the induced buoyancy, the flow originates from the lower

end of open part of cavity, and approaches the heated part of wall. It causes the rise in

temperature of fluid with the formation of plume. After striking the top adiabatic part of

cavity, fluid flows towards open side of cavity with gradual decrease in the temperature.

As a result of the varying thermal gradient within the cavity, this fluid re-circulation
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Figure 9.10: The influences of heating length (Lh), heater location (bottom, middle,
top) and Rayleigh number (Ra) on the distribution of the dimensionless temperature

(θ) along the vertical center-line (0.5, Y = Y ) of the open ended cavity.

causes formation of elliptical quasi-motionless portion in the cavity. Such convection flow

behavior is in accordance with the literature (Mohamad, 1995; Mohamad et al., 2009;

Haghshenas et al., 2010a).

For a fixed value of the heater size (Lh), an increasing value of the Rayleigh number (Ra)

enhances the intensity of the fluid re-circulation between the hot and cold parts of cavity,

which in turn causes an increase in the size of quasi-motionless region in the cavity. For

the intermediate value of the Rayleigh number (Ra ≥ 105), a formation of convection cell

on the lower right (near open end) is observed due to the acceleration of fluid towards

hot wall. Similar patterns are also noted in Bilgen and Oztop (2005). For a fixed value of

the Rayleigh number (Ra), the increasing value of the heater size (Lh) attributes to the

strengthening of the buoyancy induced flow. It, in turn, causes the stretching of elliptical
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Figure 9.11: The influences of heating length (Lh), heater location (bottom, middle,
top) and Rayleigh number (Ra) on the distribution of the dimensionless temperature

(θ) along the horizontal center-line (X = X, 0.5) of the open ended cavity.

quasi-motionless region towards the open end of the cavity. All other flow features are seen

to be nearly unchanged with the change in the heater size. For the better understanding

of the effects of heater size (0.25 ≤ Lh ≤ 0.75), heating locations (bottom, middle and

top) and Rayleigh number (103 ≤ Ra ≤ 106) on the evolution of streamline patterns, the

minimum and maximum values of stream-functions (ψmin and ψmax) with their location of

occurrence (x, y) within the cavity are summarized in Table 9.4. It can be observed from

the examination of Table 9.4 that the increasing value of the heater size (Lh) causes an

increase in the both the minima and maxima of the stream-function (ψmin, ψmax), which

in turn suggests an enhancement of the convective flow strength, irrespective of the all

other flow governing parameters (heating location and Rayleigh number). On the other

hand, for the fixed length of heater (Lh), the middle heating location yields higher values
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Table 9.4: Influences of the heating size (Lh), heating locations (bottom, middle and top) and Rayleigh number (Ra) on the maximum
and minimum values of the stream-functions (ψmax, ψmin) and their location of occurrence (x, y) in the cavity.

Ra = 103 Ra = 104 Ra = 105 Ra = 106

Heater ψmin ψmax ψmin ψmax ψmin ψmax ψmin ψmax

location (x, y) (x, y) (x, y) (x, y) (x, y) (x, y) (x, y) (x, y)
Lh = 0.25

Top -0.015 0.0079 -0.2285 0.0022 -0.607 0.360 -1.983 3.184
(0.3,0.71) (0.53,0.62) (0.68,0.58) (0.99,0.06) (0.75,0.62) (0.99,0.24) (0.81,0.73) (0.99,0.46)

Middle -0.066 7.13e-07 -0.413 6.37e-05 -1.069 0.347 -8.694 15.3946
(0.43,0.51) (0.99,0.0) (0.56,0.56) (0.99,0.01) (0.67,0.55) (0.99,0.19) (0.58,0.26) (0.99,0.27)

Bottom -0.164 0.077 -0.4654 6.95e-06 -1.434 0.2000 -9.309 5.728
(0.29,0.29) (0.99,0.55) (0.52,0.52) (0.99,0.0) (0.45,0.56) (0.99,0.15) (0.32,0.68) (0.99,0.13)

Lh = 0.50
Top -0.077 2.01e-06 -0.3689 2.23e-04 -1.128 0.5775 -21.84 49.833

(0.48,0.56) (0.01,0.69) (0.75,0.57) (0.99,0.02) (0.74,0.62) (0.99,0.23) (0.51,0.28) (0.99,0.3)
Middle -0.1112 6.02e-07 -0.516 8.02e-06 -1.4783 0.4409 -32.49 45.26

(0.5,0.52) (0.99,0.0) (0.59,0.56) (0.99,0.0) (0.67,0.56) (0.99,0.19) (0.5,0.28) (0.99,0.24)
Bottom -0.099 7.25e-05 -0.592 7.94e-06 -1.695 0.278 -19.8124 16.87

(0.5,0.48) (0.29,0.29) (0.52,0.54) (0.99,0.0) (0.49,0.57) (0.99,0.16) (0.56,0.26) (0.99,0.18)
Lh = 0.75

Top -0.123 1.91e-06 -0.521 8.02e-06 -1.602 0.519 -47.18 68.60
(0.53,0.53) (0.01,0.98) (0.68,0.55) (0.99,0.0) (0.69,0.57) (0.99,0.2) (0.46,0.3) (0.99,0.26)

Middle -0.135 1.9e-06 -0.584 7.99e-06 -1.722 0.422 -50.00 59.55
(0.53,0.52) (0.01,0.02) (0.59,0.55) (0.99,0.0) (0.65,0.54) (0.99,0.18) (0.44,0.3) (0.99,0.24)

Bottom -0.134 2.63e-06 -0.616 7.96e-06 -1.770 0.348 -39.65 38.57
(0.51,0.52) (0.01,0.02) (0.55,0.55) (0.99,0.0) (0.61,0.53) (0.99,0.17) (0.45,0.28) (0.99,0.21)
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Figure 9.12: Variation of the local Nusselt number (Nu) on the partially heated wall
with the heating locations (bottom, middle and top), heater size (Lh) and Rayleigh

numbers (Ra).

of both the minima and maxima of the stream-function (ψmin, ψmax). It indicates an

stronger convection effects in the middle heating followed by the bottom and top heating

positions, respectively.

(B) Centerline velocity profiles: Further insights of the flow characteristics are ana-

lyzed with the help of center-line velocity profiles. Figures 9.5 and 9.6 depict the variations

of the velocity components along the vertical and horizontal center-lines of cavity, respec-

tively, for a range of conditions covered herein. Figure 9.5 illustrates the variation of

horizontal component of velocity, Ux(y), plotted along the vertical center-line (X = 0.5,

Y ) of the cavity. The effect of flow circulation can be clearly seen in Figure 9.5, as the

velocity profiles Ux(y) have both the negative and positive values in the intermediate zone

and the similar values (i.e., zero) at the end points due to the no-slip walls of the cavity. In
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Figure 9.13: Dependence of the average Nusselt number (Nu) of partially heated wall
on the Rayleigh numbers (Ra), heating locations (bottom, middle and top) and the

heater size (Lh).

general, the horizontal velocity Ux(y) originates from zero and attains its minimum value.

It is followed by the gradual increase until it reaches to a maximum value and which

further drops down to the zero values, and therefore, representing the flow circulation,

irrespective of the flow governing parameters. However, due to the conduction dominating

heat transfer at the smallest heater size (Lh = 0.25) and Rayleigh number (Ra = 103),

the horizontal velocity Ux(y) values are nearly close to zero. It suggests that the flow

circulation is not observed at these conditions, which is also evident from the streamline

patterns (Figures 9.2 - 9.4). The bottom heating shows that both the maximum as well

as minimum values of the horizontal velocity Ux(y) increase with the increasing value of

heater size (Lh) due to the enhancement of the buoyancy induced flow. The center-line

horizontal velocity Ux(y) patterns remain nearly similar to that of bottom heating case.
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Figure 9.14: Variation of normalized Nusselt number (NuN ) estimated along partially
heated wall for a range of Rayleigh numbers (103 ≤ Ra ≤ 106), and heater size (0.35 ≤

Lh ≤ 0.75) for (a) top, (b) middle and (c) bottom heating locations.

The top heating location, however, shows remarkable difference in the velocity variation

in comparison to the other two heating locations. It is presumably due to the presence of

cold fluid (lower temperature) in vertically lower part of the cavity.

The variations of the vertical component of velocity (Uy) along the horizontal center-line

(X, Y = 0.5) of cavity are depicted in Figure 9.6. Similar to the horizontal velocity

profiles (Ux), the vertical velocity (Uy) patterns also show a complex dependence on the

flow governing parameters. It shows that the zero velocity at the west wall (due to no-slip

boundary) increases sharply to its maximum value and then a gradual decrease in the

values is observed near the west wall of the cavity. The velocity profiles are seen to be

nearly unchanged in the middle portion of the center-line. However, the sharp decrease
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Figure 9.15: Comparison between numerical and predicted values (Eq. 9.6) of the
average Nusselt number of the partially heated wall.

to the minimum value followed by an increase to zero or positive value is seen in the close

vicinity of the east open end wall. The zero velocity at the west (no-slip) wall and non-zero

velocity at the east open end wall are also seen in Figure 9.6. The sharp increase followed

by a decrease (or vice versa) are the clear representation of quasi-motionless zone formed

in that portion of the cavity. For a fixed heater size, the effects of heating locations on the

horizontal velocity profiles Ux(y) are observed near the open end of cavity. For the bottom

heating case, horizontal velocity Ux(y) value remains nearly zero, but the formation of

minima is observed in the increasing order for the middle and top heating, respectively.

The detailed flow patterns, presented and discussed in the preceding section, are the

physical consequences of the influences of the natural convection flow governing parame-

ters on the thermal field. Therefore, the dependencies of thermal field on the governing

parameters are explored in the ensuing sections.
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9.2.2.2 Heat transfer results

The dependence of the isotherm patterns, the local Nusselt number on the heated surface

and the average Nusselt number on the heating length (LH), heating locations (bottom,

middle and top) and the Rayleigh number (Ra) is presented and discussed in the ensuing

sections. Further, the present numerical results and their dependence on the various flow

governing parameters is also presented as a predictive closure relationship.

(A) Isotherm patterns: Figures 9.7-9.9 depict the dependencies of the isotherm (i.e.,

constant dimensionless temperature θ) contour patterns on the heater size (0.25 ≤ Lh ≤

0.75), and laminar range of the Rayleigh numbers (103 ≤ Ra ≤ 106) at a fixed value

of the Prandtl number (Pr = 0.71) for the three different heating locations (bottom,

middle and top), respectively. Equidistant isotherm contours (∆θ = 0.05) consisting of

θmin = 0 and θmax = 1 are plotted in each of these figures. In general, the compactness

(or dense clustering) of the temperature lines indicates the larger temperature gradients

(and thus, highest heat transfer rate). For bottom heating location (Figure 9.7), it can

be observed that for lowest values of the Rayleigh number (Ra = 103), the isotherm

patterns remain almost parallel to the vertical axis and heat transfer becomes conduction

dominated. For the smallest heater (Lh = 0.25), isotherms remain clustered in close

vicinity of the bottom heated part due to the weak buoyancy induced flow and it develops

very low temperature region in the upper part of the cavity. An increasing length of

heater (Lh > 0.25) though causes an enhancement in the strength of buoyancy induced

flow, however, the heat transfer is still mainly governed by the conduction mode. An

increase in Rayleigh number (Ra) causes an increased circulation in between the active

walls of the cavity due to the increased buoyancy induced flow. The isotherm patterns are

also seen to start shifting towards the heated part of cavity. For the cavity of larger heater

sizes, isotherms become more dense towards the heating part due to increased convective

effect. The boundary layer formation also takes place for Rayleigh number of Ra = 105

and onward. It can also be observed that with the increase the Rayleigh number, thickness

of boundary layer decreases.
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The isotherms patterns for the middle and top heating locations are illustrated in Fig-

ures 9.8 and 9.9, respectively. The physical insights for these configurations are similar to

that observed in the case of bottom heating location. At the lower value of the Rayleigh

number (Ra = 103), the isotherms patterns remain nearly same for all three heating loca-

tions. It implies and ascertains that the heat transfer mode is conduction. A convective

regime is established for higher values of the Rayleigh number (Ra ≥ 104) due to the

higher circulation between hot wall and ambient. For the middle heating location and

Rayleigh number of Ra = 106, due to higher acceleration of fluid towards heater from cold

wall, formation of a convection cell takes place, which can be observed from Figure (9.8d).

For top heating position (Figure 9.9) and smallest heater (Lh = 0.25), the isotherm

contours remain stratified towards heater with the formation of low temperature region

at lower part of the cavity for larger values of the Rayleigh number (Ra ≥ 104). For

larger heater (Lh > 0.25), due to increased circulation between active walls of enclosure,

isotherms occupy almost entire cavity region. As the Rayleigh number (Ra) increased to

105, isotherms become confined to upper part of the cavity due to the heater location and

low temperature fluid contained in lower part of cavity. Similar convection cell effects can

be observed at the lower-right end of the enclosure.

Further insights of the thermal behavior inside the cavity are presented in the ensuing

section by examining the variation of the dimensionless temperature along the horizontal

and vertical center-lines of the cavity.

(B) Center-line temperature profiles: Figures 9.10 and 9.11 depict the distribution

of dimensionless temperature (θ) along the horizontal (X, 0.5) and vertical (0.5, Y ) center-

lines of the cavity, respectively, for the ranges of conditions covered herein. Irrespective

of the heating size and heating locations, center-line temperature (θ) along the horizontal

center-line (X, 0.5) is seen to vary in a linear manner (Figure 9.10) for all values of the

Rayleigh number (Ra), expect for the lowest value of the Rayleigh number (Ra = 103).

The temperature pattern seen at Ra = 103 is clearly due to conduction dominated heat

transfer, as discussed in previous sections. For a fixed heating location, the increase
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in heater size shows an increase in the maximum value of temperature (θ) along the

horizontal center-line, which is an indication of increasing convection effects, irrespective

of the value of the Rayleigh number (Ra). The temperature distribution, however, remains

nearly same for all the heating locations.

Similarly, Figure 9.11 illustrates the distribution of temperature (θ) along vertical (0.5, Y )

center-line of the cavity. For the bottom heating location and the smallest heating length

(Lh = 0.25), the temperature is seen to be very low and nearly parallel to horizontal axis.

It is clearly due to entrapment of the high temperature fluid in the lower region of cavity.

The increasing values of the heater size shows a linear decrease in fluid temperature (θ)

along vertical center-line. The temperature distribution is observed to be nearly same

for all values of the heating lengths (Lh), except that for bottom heating at the smallest

heater (Lh = 0.25) and top heating at the largest heater (Lh = 0.75). The above seen

local variations in the heat transfer characteristic (center-line temperature and isotherms)

with the flow governing parameters, in turn, are expected to reflect the influences in the

heat transfer rates (i.e., local and average Nusselt numbers). The ensuing subsection

presents and examines the local and averaged heat transfer rate and their dependence on

the various parameters.

(C) Local and averaged Nusselt numbers: The representative variations of local

Nusselt number (Nu, Eq. 3.29) at the heated wall with the heater size (Lh), heating

locations and Rayleigh number (Ra) are illustrated in Figure 9.12. The local Nusselt

number (Nu) is seen to have a complex dependence over the ranges of the flow governing

parameters accounted herein. For instance, for the lower values of the Rayleigh number

(Ra ≤ 104), local Nusselt number is seen to be almost independent on the flow governing

parameters due to the conduction dominating mode of the heat transfer. Over the range

of heater size (Lh), as expected, the local Nusselt number (Nu) seen to increase with

increasing value of the Rayleigh number (Ra), irrespective of the placement of the heater.

The highest local Nusselt number (Nu) values are, thus, observed for the largest value

of the Rayleigh number (Ra). A sharp peak can also be seen in Figure 9.12 at the

starting (of the middle and top heating locations) and at the end (of bottom and middle



Chapter 9. 173

heating locations), respectively. Such peaks are clear representation of the sharp changes

in thermal gradients at those spatial locations due to the sudden change in the temperature

from a heating mode to ambient mode and vice-versa. The sharp gradients ultimately

leads to the higher heat transfer at such locations. The peaks, if observed, are always

higher at the starting point, compared to that at the end point, of the heating location

because of the larger (and sudden) temperature variations at this location. The heating

length (Lh) has very marginal influence on the local value of the Nusselt numbers, over

the ranges of the Rayleigh number (Ra) and heating locations. It can also be seen from

Figure 9.12 that the middle heating location shows the highest peak in the curves in

comparison to the other heating locations, under otherwise identical conditions. It is very

clear indication of the largest value of the local Nusselt number which, in turn, suggests

the maximum heat transfer under middle heating location compared to that for some

value of the Rayleigh number and heating length in other heating locations.

Furthermore, the average Nusselt number (Nu, Eq. 3.30) is obtained by integrating the

local values of the Nusselt number (Nu, Eq. 3.29 and Figure 9.12) on the active wall.

Table 9.5 depicts the influences of the Rayleigh number (103 ≤ Ra ≤ 106) and heating

length (0.25 ≤ Lh ≤ 0.75) on the average Nusselt number (Nu) of open ended cavity

heated partially at either of the three (bottom, middle and top) heating location on

the west wall. Also included in Table 9.5 are the values of the average Nusselt number

(Nu) for a completely heated (Lh = 1) open ended cavity over the range of Rayleigh

number (103 ≤ Ra ≤ 106). For the better understanding of the influences of the heater

size and heating locations on the average heat transfer rate, the average Nusselt number

(Nu) is plotted (Figure 9.13) as a function of the dependent variables (Rayleigh number,

heating length and heating location). Figure 9.13(i) shows the variations of the average

Nusselt number (Nu) of an active wall with the Rayleigh number (103 ≤ Ra ≤ 105) and

heating length (0.25 ≤ Lh ≤ 0.75) for a fixed heating location. Similarly, Figure 9.13(ii)

depicts the dependence of the average Nusselt number (Nu) on the Rayleigh number

(103 ≤ Ra ≤ 105) and heating locations (bottom, middle and top) for a length of heating

(Lh). In general, the average Nusselt number (Nu) shows a linear dependence on the
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dimensionless parameters (Ra and Lh) and heating locations. As expected, irrespective

of the heating location and heating length (Lh), an enhancement in the average Nusselt

number (Nu) is seen with the increasing value of the Rayleigh number (Ra). For the

top heating location and all values of the Rayleigh number (Ra), the average Nusselt

number decreased with an increasing value of the heating length (Lh). On the other

hand, the bottom and middle heating locations show an inverse influence of the heating

length (L) on the average Nusselt number (Nu) in comparison to that for the top heating

location. For all the heater sizes (Lh), the middle heating location yielded the highest

rate of heat transfer compared to that of other two locations. Further, to elucidate

Table 9.5: Dependence of the average Nusselt number (Nu) of the partially heated
cavity on the heating location, heating size (Lh) and Rayleigh number (Ra).

Heater average Nusselt number (Nu) at the west wall
location Ra = 103 Ra = 104 Ra = 105 Ra = 106

(a) Lh = 0.25
(i) Top 1.773 2.984 6.029 10.79
(ii) Middle 1.207 2.110 3.473 5.399
(iii) Bottom 0.842 1.442 2.671 5.124

(b) Lh = 0.50
(i) Top 1.485 2.053 4.019 7.161
(ii) Middle 2.031 2.921 5.385 9.308
(iii) Bottom 1.655 2.494 4.786 8.895

(c) Lh = 0.75
(i) Top 1.287 1.418 1.811 3.322
(ii) Middle 2.056 3.385 6.701 11.98
(iii) Bottom 1.925 3.196 6.397 12.20

(d) Lh = 1 (Completely heated west wall)
– 1.387 3.386 7.295 14.358

the influence of heating size on the heat transfer, the average Nusselt number (Nu) has

further been normalized with the corresponding value for the fully heated open ended

cavity under otherwise identical conditions. The normalized average Nusselt number

(NuN) is expressed as follow:

NuN =
Nupartial heating

Nucomplete heating
=

Nu(Ra, Lh, heating location)

Nu(Ra, Lh = 1, heating location)
(9.5)

Figure 9.14 represents the variation of normalized average Nusselt number (NuN) with

Rayleigh number (Ra) for the different heater sizes and locations. The normalized values
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above and lower than unity (i.e., NuN > 1 and NuN < 1) suggest the enhancement and

deterioration in the heat transfer in comparison to the completely heated open ended cav-

ity. Irrespective of the heating location and heater size, qualitatively similar dependence

of NuN on Ra is observed over the ranges of conditions considered herein. For instance,

for a fixed value of the heating length (Lh), the highest normalized value (at the smallest

value of Ra) is seen to decrease with increasing value of the Rayleigh number (Ra) for all

the heating locations. A sharp decrease in the normalized average Nusselt number (NuN)

values with the increase in the Rayleigh number (Ra) from 103 to 104 can also be seen in

the Figure 9.14 over the ranges of parameters considered herein. It clearly indicates the

shifting of dominant mode of the heat transfer from a conduction to convection. Similarly,

the dependence of the normalized values on the heating length is also seen to qualitatively

similar for all the heating locations and Rayleigh numbers. The significance of the natural

convection losses is also depicted in Figure 9.14 with the change of the heating location

from top to bottom and middle locations. Consequently, for the bottom and middle heat-

ing locations, the normalized Nusselt number (NuN) is found to be directly proportional

to the heater size (Lh); whereas it is seen to have inversely proportional dependence on

the heater size (Lh) for the top heating location, under otherwise identical conditions.

The above predictions suggest a complex nature of dependence of the average Nusselt

number (Nu) on the dimensionless flow governing parameters (Ra and Lh) and heating

locations (top,middle and bottom), respectively. Such dependencies are presented as an

empirical correlation in the ensuing section.

(D) Empirical correlation: The empirical predictive correlations expressing the func-

tional dependence of the numerical/experimental results is highly appreciated by the

scientific and engineering communities due to their easy use in the process engineering

design and developments. In the present study, the functional dependence of the present

numerical values of the average Nusselt number (Nu) of a partially heated open ended

cavity on the flow governing parameters, namely, Rayleigh number (Ra), heater size (Lh)
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and heating locations is expressed as follow:

Nu = aRabLc
h (9.6)

Based on the statistical analysis of the present numerical values to obtain the best possible

fit, Table 9.6 presents the correlations coefficients (a. b and c) with their maximum

(δmax) and minimum (δmin) relative deviations in between the numerical and predicted

(Eq. 9.6) values over the ranges of the parameters considered herein. Figure 9.15 show the

comparison between the numerical and predicted (Eq. 9.6) values of the average Nusselt

number. It is observed that the proposed predictive closure correlation (Eq. 9.6) predicts

the average Nusselt number (Nu) values within acceptable level of deviations from the

computed values.

Table 9.6: The empirical correlations for three different heating locations with the
minimum (δmin) and maximum (δmax) relative deviation from the present numerical

data.

Location Nu δmin(%) δmax(%)

(i) Top 0.1781Ra0.2114Lc
h
−0.753 0.95 25.67∗

(ii) Middle 0.5237Ra0.2336Lc
h
0.5704 0.68 12.80

(iii) Bottom 0.4282Ra0.2545Lc
h
0.7857 0.80 11.49

∗Excluding the value at Lh = 0.75 and Ra = 105. This point deviates by about 35%.

9.2.2.3 Concluding remarks

In this work, numerical experimentation of steady laminar natural convective heat transfer

in an open ended square enclosure with partially heated wall is carried out by using in-

house developed CFD solver based on the passive scalar thermal lattice Boltzmann method

(PS-TLBM). In particular, the effects of heating location (bottom, middle and top) on

the partially heated wall and heater size (Lh=0.25, 0.5 and 0.75) on the heat and fluid

flow characteristics of an incompressible fluid have been investigated for the wide range of

Rayleigh number (103 ≤ Ra ≤ 106) at a fixed value of the Prandtl number (Pr = 0.71).

The following conclusions can be drawn from the present study:
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1. At lowest value of the Rayleigh number (Ra = 103), streamlines bifurcate for the

bottom and top heating locations due to weak buoyancy driven flow. For middle

heating location, such bifurcation is not observed due to comparatively higher buoy-

ancy driven flow. Irrespective of the heating locations and heater sizes, the size of

elliptical quasi-motionless region increase with increasing value of the the Rayleigh

number (Ra).

2. At highest value of the Rayleigh number (Ra = 106), the streamlines elongate and

bifurcate for all heating location and heater sizes. It shows the clockwise circulation

with formation of vortex near lower part of open end of cavity. The maximum size

of the vortex is seen for the top heating location case.

3. Linear dependence of the average Nusselt number (Nu) on the Rayleigh number is

observed, irrespective of the heating locations and heater size. However, average

Nusselt number (Nu) shows a proportional dependence for the bottom and middle

locations and inversely proportional dependence for the top heating location on the

heater size, i.e., an increasing value of Lh enhanced Nu for the bottom and middle

locations and deteriorated Nu for the top heating location.

4. Over the range of Rayleigh number, middle partial heating location shows higher

heat transfer rate followed by bottom and top heating locations. The significant

convection losses are indicated in the top heating location as Nu decreased with

increase in the heater size.

5. The normalized average Nusselt number (NuN ) have shown the enhancement as

well deterioration in the heat transfer from a partially heated open cavity compared

to that of the fully heated open ended cavity.

6. Finally, the present numerical results are presented in the form of a simple predictive

empirical correlation encapsulating the functional dependence of the the average

Nusselt number (Nu) on the heater size (Lh) and Rayleigh number (Ra) for the

different heating locations. It thereby enables the interpolation of the present results

for the intermediate values of governing parameters.
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9.2.3 Part II: Effect of Prandtl number

In this part, as shown in Figure 9.16, the is west wall of cavity (x = 0) is subjected

to partial heating (TH) with middle heating and the size of the heater is kept constant

at half of the characteristic length (Lh = H/2). The east wall (x = L) is open to

the ambient, i.e., maintained at temperature of TC(< TH). Numerical simulations are

Figure 9.16: Physical domain considered for open ended cavity with partially heated
wall (middle location).

performed for three different fluids, air (Pr = 0.71), R-12 refrigerant (Pr = 4.5) and

water (Pr = 7) for Rayleigh numbers of Ra = 104, 105, and 106. For these broad ranges

of flow governing parameters, the local and global convective flow characteristics such

as the evolution of stream functions, isotherms; variation of velocity components and

temperature on horizontal and vertical center-lines; and the Nusselt number are obtained

and discussed herein the preceding sections.

9.2.3.1 Isotherms and flow structure

The physical insights of the natural convection in partially heated open ended cavity are

obtained by detailed analysis of flow and thermal fields. In particular, the stream-function,

isotherms, center-line variation of velocity components and temperature are examined in

this section. It is clearly evident that the kinematic viscosity (ν) and thermal diffusiv-

ity (α) are two significant fluid parameters which are responsible for the development of

hydrodynamic and thermal boundary layers, respectively. The development of the bound-

ary layers, in turn, influences the flow and heat transfer behavior. Such influences are
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examined by systematic variation of Rayleigh number (Ra), which is directly related to

development of thickness of boundary layers.
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Figure 9.17: Streamline patterns obtained for different Rayleigh numbers and fluids.

In an open ended cavity with fully heated wall, the flow enters from the lower half of

an open end of cavity, approaches heated wall resulting in rise in temperature which

causes fluid to move in upward direction due to buoyancy effect. During this motion of

fluid, a gradual rise in temperature is observed till fluid reaches top (adiabatic) part of

cavity. Then fluid starts approaching towards open end of cavity with gradual decrease

in temperature. This clockwise movement of fluid causes formation of elliptical quasi-

motionless portion in center of cavity with face opening towards open end. This zone is

created because of density difference between inflow and outflow fluid (Mohamad et al.,

2009; Haghshenas et al., 2010a). Isotherms are slightly shifted towards heated part of

cavity. For open ended cavity with partial heater, flow and thermal patterns remains

nearly same, except the isotherms are observed to be more confined towards partially
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Figure 9.18: Isotherm patterns for different Rayleigh numbers and fluids.

heated part due to buoyancy effect.

The influence of Rayleigh number on natural convection in open ended cavity is illustrated

in the form of isotherms (temperature contours). Figure 9.17 illustrates the isotherm

patterns for range of physical parameters considered herein. It can be observed that

with the increase in Prandtl number, isotherms become more confined (dense clustering

of isotherm lines) towards heated part of west wall (X = 0). This is due to increase in

viscosity causes low penetration of heat. The increase in Rayleigh number causes increase

in circulation of fluid in the cavity and reduces the thickness of boundary layer. A constant

temperature zone is created in the center of cavity, due to quasi-motionless elliptical region

for all considered fluids herein. It is suggested by parallel isotherm lines to horizontal axis.

For three considered fluids, isotherm patterns are nearly same for Ra = 105, only change

is observed at lower half of cavity. For water, the isotherms distribution is observed to

be concentrated along upper half of domain, while lower half of cavity is filled with low

temperature fluid. For Ra = 105, the region of low temperature fluid is found to be
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Figure 9.19: Temperature distribution plotted at vertical and horizontal center-line
of cavity for Rayleigh numbers of 104 ≤ Ra ≤ 106 and different fluids.

minimum for air, followed by R-12 refrigerant. Further the increase in heat intensity

(i.e., Rayleigh number), fluid leaving through part of open end i.e., (X = 1) of cavity

decreases. This behavior can be illustrated from streamline patterns (Figure 9.18). In

order to delineate the influences of the flow governing parameters on the flow field, the

stream-function is normalized as follow:

ψ∗ =
ψ − ψmin

ψmax − ψmin
(9.7)

At lowest considered Rayleigh number (Ra = 104), elliptical quasi-motionless region is

created in the center of cavity, due to clockwise movement of fluid for air as working fluid.

For R-12 refrigerant, which has higher momentum diffusivity than thermal diffusivity,
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component of velocity (Uy) plotted at Y = 0.5 for Rayleigh numbers of 104 ≤ Ra ≤ 106

and different fluids.

isotherms become more stratified towards partially heated part of active wall. It cre-

ates a low temperature fluid zone at lower and upper part of open end of cavity. Further

increasing Prandtl number to 7 (water), due to relatively higher momentum diffusivity, bi-

furcation of streamlines occurs, due to splitting into low (near open end) and high (heated

wall end) temperature fluid region. The increase in Rayleigh number (i.e., heat intensity)

causes higher circulation of fluid along active walls, the area of quasi-motionless region

elongates towards the open end of cavity for all considered fluids. As fluid accelerates

along heated wall of wall, formation of convection cell take place near lower open end of

cavity. A larger convection cell is observed for air as a working fluid followed by R-12

refrigerant and water. Further physical insights of the flow characteristics are analyzed

with the help of center-line temperature and velocity profiles.
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Figure 9.21: Local Nusselt number variation along partially heated wall (X = 0) for
different fluids and Rayleigh numbers.

In order to get clear idea of flow and thermal behavior in the center of cavity, center-line

profiles of velocity components and temperature are plotted. Figure ?? represents the

temperature profile plotted along vertical (Fig. 9.19, I) and horizontal (Fig. 9.19, II)

center-line of cavity. At low Rayleigh number (Ra = 104), for air as working fluid, linear

increase in temperature is observed. For vertical center-line (X = 0.5) of temperature

For other two fluids, temperature is observed to very less because of higher momentum

diffusivity and weak convection. The increase in convection effect causes rise of fluid

temperature as discussed before. Thus for higher Rayleigh number (R ≥ 105), all fluids

show rise in temperature along vertical center-line. The temperature variation along hor-

izontal center-line of cavity is illustrated in Figure (9.19, II). From isotherm patterns, it

can be seen that, at Y=0.5, temperature profile shows linear decrease and then become

parallel to horizontal axis. Temperature becomes parallel to horizontal axis because of
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elliptical quasi-motionless region. For higher Rayleigh number (Ra = 106), temperature

distribution is nearly same along horizontal center-line, which is explained from isotherm

distribution. Isotherm distribution for Ra = 106, is nearly same for all three fluids.

Figure 9.20 represents Ux plotted along horizontal (X = 0.5) axis (Fig. 9.20, I) and Uy

plotted along vertical (Y = 0.5) axis (Fig. 9.20, II). In general, the horizontal velocity Ux

plotted at X = 0.5 originates from zero and attains its minimum value. It is followed by

the gradual increase until it reaches to a maximum value and which further drops down

to the zero values, and therefore, representing the flow circulation, irrespective of the flow

governing parameters. Out of three fluids chosen for study, air shows maximum circu-

lation, followed by R-12 refrigerant and water. The increase in Rayleigh number causes

shifting of maxima and minima peaks near west and east walls. This is due to increase

in the size of quasi-motionless region. Uy profile along vertical center-line is shown in

Figure (9.20,II). The Uy velocity profile shows maxima first then minima, which is reverse

pattern of Ux at X = 0.5. It also shows the stronger as well as complex effect of different

fluids (Prandtl number) at large values of Ra. The stronger and complex dependence of

flow characteristics on the dimensionless flow governing and parameters shall also influ-

ence on the heat transfer rate. These are presented and discussed in the ensuing sections.

9.2.3.2 Heat transfer rate

The rate of heat transfer is delineated by analyzing the variation of local (Eqn. 3.29) and

average Nusselt number (Eqn. 3.30) calculated at the heated wall. The Nusselt number

(Nu) or local heat flux is considered as an important physical parameter signifying the

heat transfer rate. Local as well as average Nusselt are plotted for open ended cavity with

different fluids for Rayleigh number of 104 ≤ Ra ≤ 106. Figure 9.21 represents the local

Nusselt number variation along partially heated wall for range of conditions covered herein.

At low Rayleigh number, as discussed in previous section isotherm distribution is thin with

thick thermal boundary layer indicating low rate of heat transfer. The increase in Rayleigh

number, thermal boundary layer becomes thin with dense and stratified isotherms along
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hot wall, indicating higher temperature gradient, implying higher rate of heat transfer.

For lowest considered Rayleigh number, Nusselt number values remain in the range of

0.2 − 0.4 for three fluids implying weak convection and hence low rate of heat transfer.

Nusselt number values shown proportional increase with Rayleigh number due to increased

convection effect. The local Nusselt number (Nu) is seen to have a complex dependence

over the ranges of the flow governing parameters accounted herein. A sharp peak can also

be seen in Figure 9.21, which are clear representation of the sharp changes in thermal

gradients at those spatial locations due to the sudden change in the temperature from

a heating mode to ambient mode and vice versa. The sharp gradients ultimately leads

to the higher heat transfer at such locations. The higher Nusselt number values are

obtained for water followed by R-12 refrigerant and air. Further, average Nusselt

10000 100000 1000000
3

4

5

6

7

8

9

10

11

12

13

A
ve

ra
ge

 N
us

se
lt 

nu
m

be
r

Rayleigh number

 Air
 R-12

Refrigerant
 Water

Figure 9.22: Average Nusselt number values estimated for different fluids and different
Rayleigh numbers.

number values ( Eq.(3.30)) can be obtained by integrating local Nusselt number values

along active wall. Figure 9.24 shows average Nusselt number (Nu) values estimated at

partially heated wall (X = 0) for different Rayleigh number (104 ≤ Ra ≤ 106). It can

be seen that the enclosure filled with water shows higher average Nusselt number values

implying higher heat transfer rate than other two fluids. The cavity containing air shows

lowest heat transfer rate. Further, average Nusselt number values of open ended cavity
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Table 9.7: Estimated average Nusselt number (Nu) values for different Prandtl and
Rayleigh numbers.

Prandtl number Ra = 104 Ra = 105 Ra = 106

0.71 2.921 5.385 9.308
1 3.018 5.446 9.505
2 3.124 5.504 10.01
3 3.201 5.746 10.17
4 3.251 5.788 10.27
4.5 3.743 6.149 10.32
5 3.899 6.309 10.34
6 4.371 6.555 10.38
7 5.170 6.744 10.45

with complete heated wall are also provided for comparing heat transfer rate. Thus, open

ended cavity containing water facilitates the heat transfer. Besides this, simulations have

been carried out to analyze the influence of Prandtl number variation (0.71 ≤ Pr ≤ 7)

for range of Rayleigh number considered herein. Table 9.7 represents the average Nusselt

number values for range of physical considered herein. It can be observed that Nu shows

linear increase with both Prandtl and Rayleigh number.

9.2.3.3 Empirical correlation

For the scientific and engineering applications, it is worth to develop a simple closure

empirical relationship presenting the functional dependence of the heat transfer rates (in

case of heat transfer studies) on the dimensionless flow governing parameters.

Before presenting the empirical correlation for present work, a comparison of numerical

results of the limiting case of present problem, i.e., the natural convection in open ended

cavity with completely heated wall have analyzed. Table 9.8 represents the some empirical

relationship of heat transfer rate with flow governing parameters from previous studies

(Balaji and Venkateshan, 1994; Lal and Reji, 2009; Juarez et al., 2011; Prakash et al.,

2012; Prakash, 2013). An analysis of Table 9.8 suggests that, for most of the studies of

natural convection in open end cavity, the exponent of Rayleigh number is found to be

close to ≈ 0.2.
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Table 9.8: Empirical correlations developed in few previous studies of natural convection in open end cavity.

Average Nusselt number (Nu)
Source Correlation given Correlation reduced to present domain Range of parameters

Balaji and Venkateshan (1994) 0.426Gr0.254 0.426(Ra/Pr)0.254 104
≤ Ra ≤ 108

Pr = 0.71
Lal and Reji (2009) 0.95Ra0.19(cosδ) 0.95Ra0.19 104

≤ Ra ≤ 108

Pr = 0.7
0 ≤ δ ≤ 60

Juarez et al. (2011) −2.0926 + 0.5011Ra0.2584
− 0.1045ǫ0.5916

−2.0926 + 0.5011Ra0.2584
− 0.1045 104

≤ Ra ≤ 107

−0.0698Ra0.2584ǫ−0.1045
−0.0698Ra0.2584 0.03 ≤ ǫ ≤ 1.6

Pr = 0.7

Prakash et al. (2012) 0.0136Ra1/3(1 + cosθ)2.72
`

d
D

´0.72
0.0136Ra1/3 108

≤ Ra ≤ 109

Pr = 0.7
0o

≤ θ ≤ 90o

0.25 ≤ (d/D)a ≤ 1
Prakash (2013) 0.513Ra0.252 0.513Ra0.252 4.5 × 105

≤ Ra ≤ 1.5 × 109

Pr = 0.7

( ǫ: Non-dimensional temperature difference, δ: Tilt of cavity)
( θ: cavity inclination, d/D: opening ratio of cavity)



Chapter 9. 188

Figure 9.23: Comparison between simulated and predicted average Nusselt number
values from previous studies correlations (as shown in Table 9.8).

Figure 9.23 shows the comparison between the present simulation data with previous

studies. It can be observed that all correlations shown remarkable agreement with present

simulation data of open ended cavity with complete heating. It gives us confidence to

develop a empirical relationship encompassing heat transfer rate (Nu) with Rayleigh (Ra)

and Prandtl number (Pr). A standard closure relationship for present simulation results

for heat transfer is given in the following form.

Nu = 0.9276Ra0.1733Pr0.2157 (9.8)

Figure 9.24 presents a parity plot between the average Nusselt number Nu obtained from

simulation and predicted by Eq. (9.8). The results obtained from Eq. (9.8) is of an

average error of 10.5%. Maximum deviation between predicted and simulated results is

observed for highest considered Rayleigh number (Ra = 106), which is 17.8%. Further,

the normalized percentage standard deviation (%δN ) between simulation and correlation
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Figure 9.24: Comparison between simulated and predicted average Nusselt number
values by Eq. 9.8.

values can be obtained by using following equation as given by Singh et al. (2008) as given

below:

%δN = 100

√√√√
∑ [

Nusimu−Nupred

Nusimu

]2

N
(9.9)

where, Nusimu and Nupred represents the average Nusselt number values obtained from

simulation (as given in Table 9.7) and predicted by empirical correlation (Eq. 9.9). N

represents the number of simulations performed (in present study, N=27). The normalized

percentage standard deviation for present study is found to be %δN = 7.427, which is well

within the permissible value of ±10%.
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9.3 Concluding remarks

The numerical investigation of laminar natural convection in an open ended square enclo-

sure with partially heated wall by thermal lattice Boltzmann method (TLBM) is carried

out. Natural convection effect on three different fluids viz., air (Pr = 0.71), R-12 re-

frigerant (Pr = 4.5) and water (Pr = 7.0) contained in partially heated enclosure have

been investigated for range of Rayleigh number (104 ≤ Ra ≤ 106). The length of heater

is kept constant at half of characteristic length (Lh/2) in mid of cavity. The validation

of present numerical method with literature has shown excellent agreement. From this

study, following conclusions can be drawn:

1. For a particular Rayleigh number (Ra), with the increase in Prandtl number, isotherm

become confined to heated part of wall. The effect of different fluids (i.e., Prandtl

number) on isotherms at higher Rayleigh numbers (Ra ≥ 105) is nearly same. The

visible difference is observed at lower horizontal half of the cavity.

2. At Ra = 104, streamline patterns remarkably vary for three chosen fluids. In par-

ticular, the quasi-motionless region formed due to clockwise circulation differs for

fluids considered in this study. Air has elliptical quasi-motionless region. whereas,

R-12 refrigerant and water has circular one, shifted towards the heated part of wall.

This effect is observed due to higher momentum diffusivity for these two fluids than

air.

3. For all considered fluids, at higher Rayleigh number (Ra ≥ 105), the central quasi-

motionless region elongates and formation of low temperature convection cell is

formed at bottom of open end of cavity.

4. Linear increase in average Nusselt number (Nu) is found with Rayleigh number for

all three working fluids.

5. For all considered range of Rayleigh number, cavity filled with water shown higher

heat transfer rate followed by R-12 refrigerant and air.



Chapter 9. 191

6. The functional dependence of average Nusselt number (Nu) with Rayleigh number

(Ra) and Prandtl number (Pr) is obtained by developing simple closure relationship.

7. The normalized percentage standard deviation for Nusselt number values for the

range of Rayleigh and Prandtl number considered herein, is %δN = 7.427.



Chapter 10

NATURAL CONVECTION IN

SQUARE CAVITY WITH

BUILT-IN HEATED SQUARE

BLOCK

In this chapter, the physical insights of the square cavity containing heated square body at

its center is delineated for natural convection heat transfer. Numerical results are obtained

for range of the Rayleigh (104 ≤ Ra ≤ 106) and Prandtl numbers (Pr = 0.71, 5, 10). The

rate of heat transfer is expressed by calculating the average Nusselt number values.

10.1 Problem description

Consider natural convection heat transfer in a square cavity (AR = 1) with vertical walls

(X = 0, 1) exposed to ambient (TC) containing heated square block (TH > TC) at its

center (as shown in Figure 10.1). The top and bottom walls are maintained adiabatically.

192
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A heated square block is placed at the center of cavity with side length of Ls = βH . For

solution of natural convective heat transfer phenomenon, the Boussinesq approximation

is considered. The study is carried out for three cases, i.e., cavity containing different

fluids with Prandtl numbers of Pr = 0.71, 5 and 10. The influence of Prandtl number

on natural convection heat transfer have been explored for laminar range of Rayleigh

number (104 ≤ Pr ≤ 106) and for β = 4
25

. The governing equations (in dimensional and

Figure 10.1: Schematic representation of the square cavity containing heated square
block and boundary conditions.

dimensionless forms) along with general simplifications are expressed in Chapter 3. The

physical realistic boundary conditions in non-dimensional form are expressed as below:

• At the west (X = 0) wall,

Ux = Uy = 0; θ = 0; (10.1)

• At the east (X = 1) wall,

Ux = Uy = 0; θ = 0; (10.2)

• At the bottom (Y = 0) and top (Y = 1) walls,

Ux = 0, Uy = 0;
∂θ

∂Y
= 0 (10.3)
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• Centrally placed heated square block,

Ux = Uy = 0; θ = 1; (10.4)

10.2 Results and discussions

In this chapter, the influence of three Prandtl number (i.e., different fluids) Pr = 0.71, 5, 10

on natural convection heat transfer and fluid flow characteristics have been explored by

using thermal lattice Boltzmann method for laminar range of Rayleigh numbers (104 ≤

Ra ≤ 105). For these broad ranges of flow governing parameters, the local and global

convective flow characteristics such as the evolution of stream-lines, isotherms and average

Nusselt number are obtained and discussed in the following sections.

10.2.1 Effect on flow field

In this section, the effect of Rayleigh number and Prandtl number (which are related to

the development of boundary layer thickness) on streamline (Figure 10.2) and isotherms

(Figure 10.3) is studied. It can be seen from Figure 10.2, the flow bifurcation take place

from heated square block towards the opposite vertical cold wall. The fluid from half

of heated block, approaches the top adiabatic wall, then it moves towards cold surface

of wall due to buoyancy effect with continuous decrease in temperature of fluid. Again

this cold fluid then approaches towards lower part of heated block, thus completing a

circulation. Due to presence of two vertical cold walls, the fluid circulation looks like a

mirror image on either side of heated block. Moreover, the circulation causes formation

a single vortex. The position and size of this vortex structure differs for different Prandtl

number. For instance, At lower Prandtl number (Pr = 0.71) and Ra=104, the convection

effect starts dominating the conduction mode of heat transfer. The flow circulation is in

elongated elliptical shape on the either side of square block (due to buoyancy effect). The

further rise in Rayleigh number (Figure 10.2) increases the fluid circulation in enclosure
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(rise in buoyancy effect). This causes the size of quasi-motionless region (vortex) to be

reduced, due to larger circulation between hot and cold walls. From, Ra≥ 105, due to

larger buoyancy effect, the streamline contours loses its symmetry about vertical center-

line. The increase in Rayleigh number causes the shift of this vortex structure towards the

top part of cavity. The increase in the Ra (heat intensity) significantly affects the size and

position of vortex structure. At Ra=104, the vortex structure, formed on the either size

of heated block, is vertical-elliptical shape and it is located slightly above the horizontal

mid-plane of cavity. The increase in Prandtl number slightly affects the structure of the

vortex structure. The increase in Prandtl number, fluid is more viscous, thus the thermal

penetration is comparatively less as compared with low Pr fluids.

For, Pr ≥ 5, due to increase in momentum thickness, the size of this vortex structure

decreases, due to less thermal diffusion than viscous one. Similar effect (as of Pr=0.71) of

Rayleigh numbers Ra ≥ 105 on fluid pattern is observed at Pr ≥ 5. The temperature con-

(I)

(a) Ra=104

(I)

(b) Ra=105 (c) Ra=106

(II)

(III)

1.0162
0.9485
0.8807
0.8130
0.7452
0.6775
0.6097
0.5420
0.4742
0.4065
0.3387
0.2710
0.2032
0.1355
0.0677

Figure 10.2: Influence of Prandtl numbers, (I) Pr=0.71, (II) Pr=5 and (III) Pr=10
on isotherm patterns for range of Rayleigh numbers.

tours (or isotherms) evaluated at different Prandtl and Rayleigh numbers are represented



Chapter 10. 196

(I)

(a) Ra=104
(b) Ra=105 (c) Ra=106

(II)

(III)

0.1621
0.1387
0.1154
0.0921
0.0688
0.0454
0.0221

-0.0012
-0.0245
-0.0479
-0.0712
-0.0945
-0.1178
-0.1412
-0.1645

Figure 10.3: Influence of Prandtl numbers, (I) Pr=0.71, (II) Pr=5 and (III) Pr=10
on streamline patterns for range of Rayleigh numbers.

in Figure 10.2. At Ra= 104, convection effects just start dominating with symmetric fluid

pattern along vertical center-line of cavity. For Prandtl number of Pr=0.71, the isotherm

lines are in oval shape along the square block. It gets parallel to vertical walls from square

body to vertical wall. For higher viscous fluids (Pr ≥ 5), due higher momentum diffusiv-

ity, the isotherms become crowded along square body with dense clustering of isotherm

lines, indicating higher temperature gradient (i.e., higher Nusselt number values).

The heated square body influences the shape of the isotherms and it is transferred to the

fluid that carries it to the colder wall. It can be observed that isotherm lines change its

value smoothly form hot square obstacle to cold vertical walls. Thus, the isotherms and

streamlines are almost symmetric about the horizontal center-line As Rayleigh number

increases, convection and hence buoyancy effect starts dominating. At Ra = 105 temper-

ature distribution starts bifurcating with heated square block as center towards cold side

walls. As buoyancy effect increase, it looks like temperature distribution in downwards

direction from square object to side cold walls. As Ra increases, formation of a peak is
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observed and is also found to be proportional to Ra. With increase in Ra, height of peak

increases towards upper wall and width decreases. This phenomenon is result of increase

in buoyancy effect.

With increase (Figure 10.2) in Prandtl number to 5 and 10, temperature distribution is

uniform in circular shape surrounding the heated square block. This is because, higher

the Prandtl number, more dominant is viscous diffusion rate than thermal diffusion rate

or simply higher the Prandtl number, more is ratio of boundary layer thickness to that of

thermal boundary layer. Buoyancy effect will be less, and hence the thermal distribution

is along heat source in uniform pattern. At Ra = 105 , isotherms are nearly same for

Prandtl numbers of 5 and 10, except formation of corner eddies take place at Pr=10.

At higher Ra = 105 and 106 , flow velocity increases, it causes stronger circulation near

heated and cold walls. It can be observed that isotherms are more predominantly moving

towards top walls. As discussed before, formation of peak near block in upward direction

is not observed at Ra = 104 for Pr=5 and 10. As Ra increases the dominant heat transfer

mechanism changes from conduction to convection and isotherms try to become horizontal

near the center of cavity.

10.2.2 Average Nusselt number

The average Nusselt number (Nu) estimated along each wall of built-in square block.

Table 10.1 presents Nu for range of Rayleigh and Prandtl numbers. As expected the

overall average Nusselt number (mean of Nu) shows linear relationship with Rayleigh

and Prandtl number. It can be observed that the walls of square blocks facing cold walls

(left and right walls) show nearly same value of Nusselt numbers. The Nu of top and

bottom walls are shows significant deviations with each other, which is due to buoyancy

effect. The fluid movement takes place from heated square block in upward direction, after

approaching cold wall with decrease in temperature. The drop in temperature continue

till fluid comes in the vicinity of adiabatic wall, futher moves in downwards direction with



Chapter 10. 198

increase in temperature. Thus, higher heat transfer rate is observed at top wall of square

block than bottom one.

Table 10.1: Average Nusselt number (Nu) estimated at each wall of square body for
range of Rayleigh and Prandtl numbers.

Ra Pr Nuwest Nueast Nutop Nubottom Nuoverall

104 0.71 1.019 1.019 1.201 0.719 0.989
5 1.312 1.312 1.439 1.166 1.307
10 1.087 1.087 1.914 1.540 1.407

105 0.71 1.677 1.676 1.914 0.701 1.492
5 1.823 1.312 1.971 0.913 1.633
10 1.590 1.602 2.509 1.728 1.858

106 0.71 2.764 2.764 2.770 1.033 2.334
5 2.821 2.821 2.716 1.369 2.433
10 2.853 2.873 2.749 1.936 2.603

10.2.3 Empirical correlation

For present problem, the functional dependence of average Nusselt number with Prandtl

and Rayleigh number is expressed in terms of an empirical correlation as given below.

The mean of Nu of all four walls of heated square block is used for empirical correlation.

Nuoverall = 0.3279Pr0.1057Ra0.1346 (104 ≤ Ra ≤ 106; 0.71 ≤ Pr ≤ 10) (10.5)

Figure 10.4 shows parity plot between average nusselt number values obtained by nu-

merical simulations with that of developed empirical correlation (Eq. 10.5) from present

results. It can be observed that match is excellent between two values. The average,

maximum and minimum deviation between simulated and predicted values are found to

be 0.47%, 23% and 0.20%. The empirical correlation can be useful for engineering ap-

plications for estimation of Nusselt number values at intermediate physical parameters

(Prandtl and Rayleigh number).
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Figure 10.4: Comparison between simulated and predicted values (Eq. 10.5) of the
average Nusselt number of heated square block.

10.3 Concluding remarks

Numerical simulations of natural convection in an enclosure containing heated square

body are conducted. Passive scalar thermal lattice Boltzmann method (PS-TLBM) has

been used as numerical tool for solving field equations. The numerical results are obtained

for Rayleigh number Ra = 104, 105, 106 and Prandtl number of Pr=0.71,5 and 10. The

results obtained can be summarized as follows:

1. For lower Prandtl numbers (Pr=0.71), temperature distribution is found to be uni-

form across an enclosure and is in oval shape around the heated square for Ra = 104.

2. As Prandtl number increases, isotherms becomes densely crowded along heated

square block.

3. As Rayleigh number increases, isotherms become parallel to horizontal wall of en-

closure with formation of a peak (a thermal plume) from top walls.

4. At higher Prandtl, isotherms pattern remains nearly same for given Rayleigh num-

bers, only change is observed in central peak of isotherms towards top wall.
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5. Average Nusselt number shows linear variation with Rayleigh and Prandtl numbers.

6. An empirical correlation is developed and presented herein.



Chapter 11

WALL EFFECTS ON FORCE

CONVECTIVE HEAT TRANSFER

FROM HEATED BUILT-IN

RECTANGULAR CYLINDER

In this chapter, the influences of wall confinement (1/8 ≤ β ≤ 1/20), Reynolds number

(5 ≤ Re ≤ 40), aspect ratio of rectangular cylinder (1 ≤ ar ≤ 6) on forced convection

heat transfer characteristics of channel built-in rectangular cylinder are investigated.

11.1 Problem description and boundary conditions

Consider a two dimensional, steady, laminar flow of incompressible Newtonian fluid across

a built-in rectangular cylinder with uniform velocity and temperature (U∞, T∞). The sur-

face of square cylinder with side b is maintained at constant temperature of TW (> T∞) as

shown in Figure 11.1. The blockage ratio is defined by the ratio of size of square cylinder

(b) to the height of channel (H), i.e., β = b
H

. The square cylinder is placed at a sufficient

201
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distance from inlet (Lu = 10), such that it remains free from The thermo-physical proper-

ties of the fluid (thermal conductivity (k), density (ρ), heat capacity (cp)) are considered

to be a independent of the temperature and viscous heat dissipation effects are neglected

(Bharti et al., 2008). The assumption of constant thermo-physical properties and neg-

Figure 11.1: Schematic representation of confined flow past a square cylinder (physical
as well as computational domain).

ligible viscous heat dissipation lead to decoupling of momentum and energy equations.

These approximations restrict the applicability of the present numerical simulation to the

situations where the temperature difference (∆T = TW − T∞) is not too large and/or

for moderate viscosity and/or shearing levels so that the viscous dissipation effects are

negligible (Srinivas et al., 2009). The temperature difference is maintained small to justify

the accountability of the variation of the fluid viscosity with temperature. The governing

equations (in dimensional and dimensionless forms) along with general simplifications are

expressed in Chapter 3. The boundary conditions are mentioned in Figure 11.1.

11.2 Choice of numerical parameters

It is very well known that numerical/computational parameters (such as mesh and domain

sizes) have significant effects on the reliability and accuracy of the numerical results.

Therefore, an accurate choice of the numerical parameters, namely, the upstream and

downstream lengths and grid size is foremost before presenting the new results. In present

work, the height of square cylinder (b) is used for characterizing the domain size. The

choice of grid size and effect of upstream length are addressed in this section.
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11.2.1 Grid independence study

In order to ensure the accuracy and reliability of present code, grid independence study

is carried out based on drag coefficient as well as average Nusselt number (Nu) of heated

square cylinder. In this study, the adequacy of five uniform lattice sizes (grids) on side

of square cylinder, (G1 : 16,G2 : 18,G3 : 20,G4 : 30,G5 : 40) have been examined (as

shown in Figure 11.2). It is observed that relative error between coarsest grid (G1 : 16)

with respect to finest grid (G5 : 40) is around 0.90%, 0.76% and 4.5%, 2.62% for drag

coefficient (CD) and mean Nusselt number values Numean, respectively for β = 1/8, 1/20.

The relative error between grid sizes G1 to G2, G2 to G3, G3 to G4 and G4 to G5 in drag

coefficient (CD) values for blockage ratio of 1/8 and 1/20 are (0.6%0.06%0.08%0.09%)

and (0.5%0.02%0.02%0.03%), respectively. Similarly, relative change in mean Nusselt

number values for blockage ratio of 1/8 and 1/12 are (3.3%1.2%0.3%0.2%) and (0.6%,

0.9%, 0.45%, 0.5%), respectively. The results shown insignificant changes from grid size

G4 onward with the enormous increase in computational time to get converged solution.

Therefore, 30 lattice nodes on each side of cylinder is chosen in this study,which is found

to be optimum with respect to computational time and mesh size, is chosen in this study,

which is believed to be sufficiently refine enough to resolve thermal and hydrodynamic

features within interested range of conditions.

11.2.2 Domain independence study

The proper choice of upstream and downstream length is very important in order to the

keep numerical results free from entrance and end effects. In this section, the effects of

upstream and downstream length on flow field have been investigated.

A detailed examination of choice of upstream length on pressure and viscous drag coef-

ficients have been done. The adequacy of four upstream lengths (Lu = 8, 10, 12, 15) at

Reynolds number of Re = 5 and β = 1/8 have been investigated as shown in Figure ??.

It can be observed that a very minor effect on CDP and CDF is observed for considered

upstream lengths. The percent changes in CDP and CDF in upstream lengths of 8 to
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Figure 11.2: Grid independence results at Re = 5 and β = 1/8, 1/20 (a) total drag
CD and (b) overall Nusselt number for the cylinder

that of 15 is observed to be 1.2% and 2.6%. Hence, in present work, upstream length of

Lu = 10 is used, which can be considered as sufficient enough to keep results free from

entrance effects. An additional numerical experiments have been conducted to investigate

the effect of uniform velocity profile at inlet. It is observed that at Lu = 10, insignificant

changes are observed in the estimated values of CD and Nu. The total length of channel

is assumed sufficiently large enough (L = 50) so that it does not affect flow characteristics

near square cylinder. Hence, the downstream length, Ld = 39, which is much higher than

previous studies (Dhiman et al., 2005, 2008a) is used for all considered range of condi-

tions. The numerical parameters used in present study are: Upstream length, Lu = 10,

downstream length Ld = 39, channel length, L = Lu + b + Ld = 50, the lattice size for

domain, 50b × b(1 β). For present numerical simulation a uniform lattice size is chosen,

which is believed to be refine enough to resolve the thermal and flow phenomenon within

interested range of conditions.
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Figure 11.3: Estimated re-circulation length (Lr) as a function of blockage ratio (β)
for different Reynolds number (Re)

.

11.2.3 Validation of results

The reliability and accuracy of present numerical simulation is examined by comparing

the results obtained from present numerical procedure with previous reported studies.

The validation is based on drag coefficient (CD) and average Nusselt number (Nu) values

estimated along built-in square cylinder for all considered values of Reynolds numbers and

blockage ratio (β = 1/8). For comparison purpose, Nu values are estimated at Re = 5, 40

and Pr = 0.7. Table 11.1 presents comparison between results obtained from present

simulation with previous studies (Gupta et al., 2003; Dhiman et al., 2008b; Bouaziz et al.,

2010).As can be seen from Table 11.1, present results show excellent agreement with

literature. The minimum, maximum and average error of CD and Nu, between present

Table 11.1: Comparison of drag coefficient (CD) values at different values of Re and
β = 1/8 at Prandtl number Pr = 0.71.

Source Re = 5 Re = 10 Re = 20 Re = 40
CD

Present 5.601 3.642 2.395 1.699
Gupta et al. (2003) 5.549 3.511 2.448 1.871
Dhiman et al. (2008b) 5.849 3.633 2.442 1.752
Bouaziz et al. (2010) - - 2.372 1.752
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results with that of literature are (0.2%, 8.1%, 2.1%) and (2.1% and 1.6%), respectively.

Moreover, the accuracy of flow past rectangular cylinder is ascertained by comparing the

drag and Nusselt number values obtained by present numerical procedure at aspect ratio

of ar = 2, β = 1/8, Pr=1 and Re=5, 10, 20, 40 with results of Nitin and Chhabra (2005).

Figure 11.4 presents the comparison between simulated and literature values of CD and

Nu. It is evident that the present numerical results show excellent match with results of

(Nitin and Chhabra, 2005). The present numerical simulation results are reliable in the

Figure 11.4: Comparison of present numerical results of total drag (CD) and Nusselt
numbe Nu at aspect ratio of rectangular cylinder ar = 2, β = 1/8 for range of Reynolds

numbers.

range of ±4− 5%. Such a minor errors tend to arise due to the factors such as numerical
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method, grid size, convergence criterion, numerical errors (round up and programming)

etc. Results presenting in this study are accurate and reliable in the range of 4 − 5%.

With the above comparison between our developed code for channel flow with heated

square cylinder in cross flow with the literature data, it is suffice to say that our results

are quantified. This ascertains and inspires the confidence in accuracy and reliability

of present in-house LBM solver. The effect of blockage ratio on forced convection heat

transfer and fluid flow are discussed in next section.

11.3 Results and discussions

In the present work, the numerical computations have been carried out to investigate

the steady forced convection flow and heat transfer characteristics of a channel confined

rectangular cylinder by using in-house computational solver based on TLBM with D2Q9

lattice model (developed by the authors in C++ programming language) for the following

ranges of the conditions: four values of Reynolds number (5 ≤ Re ≤ 40) varied as 5,

10, 20 and 40; four values of wall blockage ratio (1/8 ≥ ≥ 1/20, i.e.,12.5% ≥ ≥ 5%)

varied as 1/8, 1/12, 1/16 and 1/20; four values of aspect ratio of rectangular cylinder

(AR = 1, 2, 4, 6) and fixed Prandtl number (Pr = 1). Subsequently, the detailed analysis

to elucidate the influences of dimensionless flow governing parameters on the the local and

global convective flow and heat transfer characteristics such as the evolution of stream-

function, isotherms and vorticity fields; pressure and friction coefficients; and the local

and average Nusselt number has been presented and discussed herein the proceeding

sections. The results and discussion section has been divided into two sections, viz., (a)

forced convection from square cylinder (AR=1) and (b) forced convection from rectangular

cylinder (2 ≤ AR ≤ 6).
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11.3.1 Forced convection from square cylinder (ar=1)

In this section, the flow and forced convection heat transfer characteristics of channel

confined square cylinder is explored in details for wall effects and Reynolds numbers.

11.3.1.1 Effect on flow field

The local flow characteristics such as streamlines, vorticity profiles in the vicinity of the

square cylinder, re-circulation length analyzed herein to gain the physical insights into

the nature of the hydrodynamics features of heated built-in square cylinder in a plane

channel. The influence of blockage ratio (β) on flow field in channel flow with heated

β=1/8 (a) Re=5(i) (b) Re=10 (c) Re=20

19.4835
19.4835

(d) Re=40

β=1/12(ii)

β=1/16(iii)

β=1/20(iv)

Figure 11.5: Streamline patterns for different Reynolds number (Re) and blockage
ratio (β).

built-in square cylinder is delineated by evolution of isotherms, streamlines, vorticity,
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drag coefficient, re-circulation length and pressure component variation along surface of

square cylinder for interested range of conditions. Figure 11.5 represents the stream-line

patterns in the vicinity of square cylinder for interested range of blockage ratio (β) and

Reynolds number (Re). The blockage ratio variation slimy affects stream-line patterns for

a constant Reynolds number. The increase in Reynolds number, as anticipated, increases

the size of re-circulation length for a constant blockage ratio is observed. Reynolds number

(Re) is parameter, implying the relative strength of inertial forces to the viscous forces. At

low Reynolds number, i.e., Re = 5, the very little separation takes place behind the tailing

edge of square cylinder due to dominant viscous forces. With the increase in Re, the flow

become dominated by inertial forces. It results in the formation of a closed re-circulation

zone, which compromises two symmetric vortices behind the rear face of square cylinder

(Dhiman et al., 2005, 2008a; Dhiman, 2009b). For fixed values of Reynolds number (Re),

the stream lines show slight change with blockage ratio. A little rise in re-circulation

length is observed with the increase in blockage ratio (β) as shown in Figure 11.3. Thus,

stream lines pattern show complex dependence with blockage ratio (β) and Reynolds

number (Re). The stream lines pattern is more influenced by Reynolds number than

blockage ratio.

The vorticity profile, as reported by (Dhiman et al., 2005, 2008a; Bharti et al., 2007)

are used for locating the separation points and fluid behavior near the surface of square

cylinder. Figure 11.6 shows the vorticity patterns for range of conditions considered herein.

It can be observed that the increase in Reynolds number for fixed blockage ratio loss of

symmetry is observed, which is consistent with previous study (Dhiman et al., 2005). For

constant Reynolds number, increasing in blockage ratio results in increase in vorticity

magnitude with vorticity pattern remain nearly same. At high Reynolds number, the

blockage ratio variation has marginal effect on vorticity pattern. Thus, with the increase

Reynolds number, blockage ratio influence becomes less pronounced.
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β=1/8 (a) Re=5(i)

β=1/12(ii)

β=1/16(iii)

β=1/20(iv)

(b) Re=10 (c) Re=20 (d) Re=40

Figure 11.6: Vorticity patterns for different Reynolds number (Re) and blockage ratio
(β).

11.3.1.2 Effect on isotherm patterns

Figure 11.7 depicts the variation of temperature distribution along the square cylinder sur-

face. The isotherms pattern show complex dependence of the blockage ratio and Reynolds

number. The nature of isotherm pattern along the heated square cylinder surface is depen-

dent on the thickness of boundary layer. The development of boundary layer is inversely

proportional to Reynolds number. At low Reynolds number, the isotherm pattern become

uniformly crowded along the cylinder surface. With the increase in Reynolds number,

isotherms become more confined to horizontal walls of square cylinder. Thus, due to low

thickness of boundary layer, the isotherms crowding along the cylinder increases with the

increase in blockage ratio, which is consistent with (Sharma and Eswaran, 2005). For

the fixed value of Reynolds number, the increase in blockage ratio facilitates higher heat
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β=1/8 (a) Re=5(i) (b) Re=10 (c) Re=20 (d) Re=40

β=1/12(ii)

β=1/16(iii)

β=1/20(iv)

Figure 11.7: Isotherm patterns for different Reynolds number (Re) and blockage ratio
(β).

transfer area as area between confining walls and square cylinder increases. It causes

increase in the strength of isotherms. Thus, with the increase in blockage ratio causes in-

crease in the strength of isotherm, which is also conformed by Nusselt number calculation

(discussed in ensuing section).

11.3.1.3 Drag phenomenon

The drag force experienced by square cylinder in a cross flow is consist of two components,

viz. pressure or form drag coefficient (CDP ) and viscous drag coefficient (CDF ). The

summation of both coefficients comprise the total drag coefficient. The effect of blockage

ratio (β) for different Reynolds number (Re) is represented in Table 11.2. The drag

coefficient show complex dependence on blockage ratio and Reynolds number. As expected
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the drag coefficient value for confined cylinder should be more than that of unconfined

cylinder. Intuitively, with the increase in blockage ratio, flow behavior show more and

more characteristics of unconfined cylinder flow. It can be seen that for fixed value of

Reynolds number, the increase in blockage ratio (decrease in wall confinement) causes

linear decrease in drag coefficient values. This is due to the fact that the increase in

blockage ratio, the flow behavior become equivalent to unconfined flow causing decrease in

pressure exerted on cylinder wall as well as viscous dissipation. For a constant blockage

Table 11.2: Drag coefficient results for square cylinder (ar = 1), Re = 5, 10, 20, 40 at
different values of blockage ratio (β) .

Re = 5 Re = 10 Re = 20 Re = 40
1/β CDP CDF CD CDP CDF CD CDP CDF CD CDP CDF CD

8 3.145 2.601 5.746 3.001 0.724 3.725 1.999 0.347 2.346 1.583 0.186 1.769
12 3.017 2.480 5.498 2.879 0.650 3.529 1.718 0.322 2.041 1.503 0.173 1.677
16 2.922 1.996 4.919 2.418 0.536 2.954 1.696 0.316 2.013 1.415 0.164 1.579
20 2.720 1.259 3.978 2.277 0.270 2.548 1.607 0.271 1.878 1.350 0.143 1.493

ratio, similar effect is observed in drag values with increase in Reynolds number. The

increase in Reynolds number reduces the boundary layer thickness along square cylinder

wall. So, it can be concluded that the Reynolds number (Re) and blockage ratio (β) have

similar effect on drag values ,i.e. drag values varies in inverse manner with these two

parameters. The values of pressure drag coefficient are always higher than that of viscous

drag coefficient. This suggest dominant role of pressure force on square cylinder walls,

which is similar with previous studies (Dhiman et al., 2006a; Dhiman, 2009b; Dhiman

et al., 2005, 2008a). In order to elucidate the influence of the relative contributions

of the individual components of the total drag coefficients is examined by through the

drag ratio (CDR) profiles.The effect of blockage ratio and Reynolds number on drag ratio

(CDR = CDP/CDF ), is illustrated in Figure 11.8. For the fixed value of blockage ratio,

the CDR varies proportional with Reynolds number. In case of higher blockage ratio

(β ≥ 1/12), the influence of (CDR) is nearly same for all Reynolds number. Hence, it

can be observed that the low blockage ratio (β) has remarkable effect of normalized drag

values.
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Figure 11.8: The variation of ratio of drag components with Reynolds number and
blockage ratio.

11.3.2 Heat transfer rate

In this section variation of local as well as average Nusselt number along the surface

of square cylinder is discussed. It is clear from dimensional analysis that the average

Nusselt number is a function of Reynolds number (Re) and Prandtl number (Pr) and

blockage ratio (β). The relationship between these parameters is explored in this section.

The functional dependence between Reynolds numbering (Re), Prandtl number (Pr) and

average Nusselt number (Nu) is established by using the Colburn heat transfer factor

(jH).

11.3.2.1 Average Nusselt number

This is due to the fact that cold fluid first comes across front face initially than other faces,

thus facilitating higher heat transfer. Low Nusselt number values are obtained at rear face

of cylinder for interested range of conditions, as formation of wake impedes the rate of
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heat transfer. For fixed values of Reynolds number, the Nu values decreases with the

increase in blockage ratio. A monotonous trend in Nu values is observed for all Reynolds

number and blockage ratio at the rear face of cylinder, which show nearly same value at

rear face. As interaction of cold fluid with top and bottom surfaces of square cylinder is

nearly of same magnitude, Nusselt number values along these faces of cylinder are nearly

same.

8 10 12 14 16 18 20
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

8 10 12 14 16 18 20
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

8 10 12 14 16 18 20
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

8 10 12 14 16 18 20
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

A
ve

ra
ge

 N
us

se
lt 

nu
m

be
r  Nufront

 Nurear
 NuTop
 NuBottom
 NuOverall

Re=5 Re=10

A
ve

ra
ge

 N
us

se
lt 

nu
m

be
r

Re=20

A
ve

ra
ge

 N
us

se
lt 

nu
m

be
r

1/

Re=40

A
ve

ra
ge

 N
us

se
lt 

nu
m

be
r

1/

Figure 11.9: Average Nusselt number values estimated along each face of cylinder as
well as overall Nusselt number as a function of blockage ratio (β) for different Reynolds

number.

The average Nusselt number (Nu) dependence on blockage ratio (β) and Reynolds number

(Re) is shown in Figure 11.9. (Nu) of all four sides of square cylinder along with average

of all faces (overall (Nu)) are represented in Figure 11.9. At constant blockage ratio, the

average Nusselt number values were found to be increasing with Reynolds number. This

is due to the fact that the increasing Reynolds number, contribution of convection to heat
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transfer increases, which causes increase in average Nusselt number values (Bharti et al.,

2007). For a fixed values of Reynolds number (Re), the average Nusselt number values

marginal decline with increasing blockage ratio (decrease in wall confinement). This is

due to the more heat is transferred from square cylinder to fluid for higher blockage ratio

case than smaller one. But the difference in Nu values are so small, that effect of higher

blockage ratios onNu can be considered as insignificant. On the other hand, for fixed value

of blockage ratio (β). (Nu) is found to be vary proportionally with Reynolds number.

At low Reynolds number, the heat transfer is dominated by conduction phenomenon.

As expected, the increase in Reynolds number reduces the boundary layer thickness and

increases convection heat transfer phenomenon.

11.3.2.2 The Colburn heat transfer factor (jH)

In engineering practices, it is utile as well as common to use so-called the Colburn j-factor.

It is expressed as given below:

j =
Nu

RePr1/3
(11.1)

The advantage of using Colburn factor (jH) is that it can bring the range of values of

Reynolds and Prandtl numbers in a single curve. The variation of (jH) with the blockage

ratio (β) and Reynolds number (Re) is shown in Figure 11.10. For better understanding,

jH is plotted as (a) function of Reynolds number and (b) as a function of blockage ratio.

The Prandtl number chosen for present study is Pr = 1, due to this the Pr1/3 vanishes and

Colburn heat transfer factor becomes function of Nusselt number and Reynolds number

only. As it is evident from Figure 11.10, jH varies inverse proportion with Reynolds

number and blockage ratio. It can be evident from Figure 11.10, at higher blockage ratio,

i.e., lower wall confinement, jH factor is nearly same for all interested range of Reynolds

numbers. A strong dependence of Reynolds number on jH is observed for lower blockage

ratio of β = 1/8 for low Reynolds number range (Re ≤ 10). For Re > 10, marginal change

is observed in the value of jH for all blockage ratio. In short, it can be concluded that the
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Figure 11.10: Variation of the Colburn factor for heat transfer (jH) with blockage
1/β for different Reynolds number.

Colburn jH heat transfer factor has strong dependence on blockage ratio than Reynolds

number.

11.3.3 Forced convection from rectangular cylinder (ar > 1)

In this section, combined influence of blockage ratio, aspect ratio of cylinder and Reynolds

number on flow and thermal fields have been studied and presented herein.

11.3.3.1 Flow and temperature field: Effect of ar

The effect of aspect ratio of rectangular cylinder (ar) on local flow and thermal fields

is examined through the contour profiles of the streamline, vorticity and temperature

isotherms. The kinematic viscosity (ν) and thermal diffusivity (α) are the two significant
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fluid properties which are evidently responsible for the development of hydrodynamic and

thermal boundary layers, respectively.

β=1/8

β=1/12

β=1/16

ar=2 ar=4 ar=6

Figure 11.11: Streamline patterns for different aspect ratio of rectangular cylinder
(ar) and blockage ratio (β) at Reynolds number of Re=5.

In this section, the effect of aspect ratio (ar) of rectangular cylinder on flow and thermal

fields have been elucidated by means of streamline, vortices and isotherm contours (Figures

11.11 to 11.16). As expected and discussed in section 11.3.1, the inertial forces becomes

dominant than viscous forces with the increase in Reynolds number. It is well represented

by streamline (Figure 11.11) and vorticity patterns (Figure 11.12). The increase in Re

causes increase in re-circulation length. The contours profiles are shown for only extreme

values of Reynolds number (Re=5 and 40) for range of aspect ratio (ar = 2, 4, 6) and

blockage ratio (β = 1/8, 1/12, 1/16).

The increase in ar causes insignificant change in the re-circulation length. Further, the

blockage ratio also have very marginal influence on the size of wake. It slightly decreases
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β=1/8
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β=1/16

ar=2 ar=4 ar=6

Figure 11.12: Streamline patterns for different aspect ratio of rectangular cylinder
(ar) and blockage ratio (β) at Reynolds number of Re=40.

with blockage ratio. Thus, Reynolds number has dominant influence on the flow charac-

teristics than aspect ratio ar of cylinder and blockage ratio (β).

Further, Figure 11.15 and Figure 11.16 decipt isotherm profiles. The increase in ar causes

increase in available surface area, thus increasing isotherm crowding and increasing heat

transfer rate. The increase in the β causes marginal decrease in the wake region, which

in turn increases isotherms crowding and hence facilitating higher heat transfer rate. At

Re=5, isotherms are uniformly crowded along the cylinder surface due to dominating

viscous force and having lower boundary layer thickness. The increase in Re causes

isotherms to be more stratified around the cylinder surface with the increase in boundary

layer. It causes increase in the temperature gradient along the cylinder surface, thus

facilitating higher heat transfer rate.
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β=1/8

β=1/12

β=1/16

ar=2 ar=4 ar=6

Figure 11.13: Vorticity patterns for different aspect ratio of rectangular cylinder (ar)
and blockage ratio (β) at Reynolds number of Re=5.

11.3.3.2 Drag values

The combined influence of aspect ratio of cylinder (ar), blockage ratio (β) and Reynolds

number is shown in Table 11.3. In this section, the influence of ar on drag values have been

explored. The increase in ar causes increase in cylinder length in horizontal direction. The

friction drag component is strong effect on horizontal walls of cylinder, which increases

CDF values for top and bottom walls of rectangular cylinder. The increase in ar causes

gradual rise in the value of pressure drag coefficient (CDP ). Thus ar has linear dependence

on drag values. The influence of Reynolds number and blockage ratio β, as discussed

earlier, decreases the drag values. Table 11.3 presents values of drag coefficients (pressure

(CDP ), viscous (CDF ) and total (CD)) estimated for range of aspect ratio of rectangular

cylinder (ar = 2, 4, 6), blockage ratio (β = 1/8, 1/12, 1/16) and Reynolds number (Re =

5, 10, 20, 40). A similar trend of drag values as discussed in square cylinder section is
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β=1/8

β=1/12

β=1/16

ar=2 ar=4 ar=6

Figure 11.14: Vorticity patterns for different aspect ratio of rectangular cylinder (ar)
and blockage ratio (β) at Reynolds number of Re=40.

Table 11.3: Drag coefficient results for Re = 5, 10, 20, 40 at different values of aspect
ratio of rectangular cylinder (ar) and blockage ratio (β).

β Re CDP CDF CD CDP CDF CD CDP CDF CD

ar = 2 ar = 4 ar = 6
1/8 5 4.98 1.72 6.70 7.05 7.05 11.6 7.61 7.09 16.5

10 3.49 0.37 3.86 4.69 1.02 5.71 4.86 1.39 6.26
20 2.36 0.30 2.66 2.61 2.96 2.954 2.96 0.48 3.44
40 1.68 0.27 1.94 1.31 1.52 2.548 1.35 0.21 1.57

ar = 2 ar = 4 ar = 6
1/12 5 3.46 0.37 3.86 4.26 3.04 7.3 4.68 4.6 9.28

10 2.62 0.31 2.93 2.95 0.34 3.29 2.9 0.86 3.77
20 2.21 0.37 2.48 2.23 0.23 2.56 2.4 0.43 2.82
40 1.45 0.24 1.69 1.10 0.18 1.28 0.91 0.41 1.32

ar = 2 ar = 4 ar = 6
1/16 5 3.60 1.31 4.91 3.69 2.63 6.32 3.98 3.82 7.80

10 2.37 0.28 2.65 3.31 0.36 3.67 3.35 1.01 4.36
20 2.16 0.23 2.39 2.12 0.31 2.44 2.10 0.39 2.49
40 1.37 0.23 1.60 0.88 0.16 1.05 1.19 0.17 1.36
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β=1/8

β=1/12

β=1/16

ar=2 ar=4 ar=6

Figure 11.15: Isotherm patterns for different aspect ratio of rectangular cylinder (ar)
and blockage ratio (β) at Reynolds number of Re=5.

visible from analysis of Table 11.3. The increase in Reynolds number (inertial force)

causes reduction in shear forces as well as normal stresses between rectangular cylinder

and fluid. For constant blockage value, the increase in ar values, the total as well as

pressure and viscous components of drag increases. This is due to increase in ar causes

more available surface area. With the increase in ar, amount of shearing increases as

comparison to normal stress. Moreover, it can be seen that increase in CDF is more

predominant than CDP , as with increase in ar the length of horizontal wall increases.

The increase in blockage ratio, as expected, causes reduction in the drag values. This is

due to reduction in pressure drop due to increase in the distance between channel and

cylinder wall. Thus, drag values seen to have complex dependence on aspect ratio (ar),

blockage ratio (β) and Reynolds number (Re). Moreover, the influence of ar and Re is

much stronger than β.
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β=1/8

β=1/12
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ar=2 ar=4 ar=6

Figure 11.16: Isotherm patterns for different aspect ratio of rectangular cylinder (ar)
and blockage ratio (β) at Reynolds number of Re=40.

11.3.3.3 Average Nusselt number

The average Nusselt number for each surface of the rectangular cylinder is estimated by

averaging the local Nu values over the each face of the cylinder. Finally, the overall mean

value of the cylinder Nusselt number (Nu) is obtained by averaging the averaged Nusselt

number for each face of the rectangular cylinder. Table 11.4 presents the average Nusselt

number values estimated at all faces of rectangular cylinder, along with overall Nu values

for range of aspect ratio (ar), blockage ratio β and Reynolds number (Re). It can be

seen from Table 11.4, the increase in ar, as expected, causes more area available for heat

transfer. Thus average Nusselt number Nu increases with ar. The highest heat transfer

rate (Nu values) are obtained for top and bottom (horizontal walls), followed by front and

rear surface of cylinder. The lowest Nusselt number values are obtained for rear surface,

due to presence of wake. Similar effect is observed on Nu values with blockage ratio (β)
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Table 11.4: Average nusselt number results for Re = 5, 10, 20, 40 at different values of
aspect ratio of rectangular cylinder (ar) and blockage ratio (β).

β Re Nufront Nurear Nutop Nubottom Nuoverall

ar = 2
1/8 5 1.30 0.50 1.51 1.51 1.23

10 1.75 0.75 1.88 1.88 1.56
20 2.01 0.83 2.36 2.36 1.89
40 2.41 0.98 3.27 3.27 2.48

ar = 4
5 1.61 0.49 1.77 1.77 1.41
10 1.93 0.64 2.17 2.18 1.73
20 2.10 0.72 2.56 2.55 1.98
40 2.34 1.00 3.42 3.43 2.54

ar = 6
5 1.64 0.42 1.85 1.84 1.44
10 2.03 0.57 2.29 2.29 1.80
20 2.15 0.66 2.71 2.71 2.05
40 2.43 0.63 3.77 3.78 2.65

ar = 2
1/12 5 1.27 0.45 1.44 1.45 1.15

10 1.68 0.62 2.11 2.12 1.63
20 1.96 0.78 2.42 2.42 1.89
40 2.35 0.87 3.21 3.22 2.41

ar = 4
5 1.57 0.44 1.74 1.75 1.37
10 1.87 0.62 2.09 2.08 1.67
20 2.05 0.68 2.44 2.45 1.90
40 2.29 0.97 3.38 3.39 2.50

ar = 6
5 1.61 0.39 1.80 1.81 1.40
10 1.99 0.52 2.25 2.26 1.76
20 2.11 0.58 2.68 2.67 2.01
40 2.39 0.61 3.74 3.75 2.62

ar = 2
1/16 5 1.25 0.43 1.42 1.43 1.13

10 1.66 0.58 2.08 2.09 1.60
20 1.93 0.75 2.38 2.38 1.86
40 2.32 0.84 3.18 3.18 2.38

ar = 4
5 1.53 0.41 1.71 1.72 1.34
10 1.84 0.59 2.06 2.06 1.64
20 2.01 0.64 2.40 2.40 1.86
40 2.27 0.94 3.35 3.36 2.48

ar = 6
5 1.58 0.36 1.78 1.78 1.38
10 1.95 0.48 2.22 2.22 1.72
20 2.09 0.55 2.64 2.65 1.98
40 2.35 0.58 3.71 3.72 2.59



Chapter 11. 224

and Reynolds number (Re) as that for square cylinder (ar = 1). The rise in the Reynolds

number increases Nu values, while reverse effect is observed of blockage ratio on Nu.

Thus ar, β and Re has complex dependence on Nu values.

11.3.3.4 The Colburn heat transfer factor (jH)

The influence of Reynolds number (as Prandtl number values is Pr=1, it vanishes) on

The Colburn heat transfer factor (jH) is presented in Figure 11.17. Figure 11.17 shows

jH values as a function of Reynolds number estimated at various blockage ratio β and

aspect ratio (ar). It can be observed that the increases in Re causes decrease in jH values

for range of β and ar considered herein. Aspect ratio of cylinder has remarkable effect on

jH values. The jH values increases with ar for all blockage ratios. Further, blockage ratio

has negligible influence on the jH values, which is evident from previous discussion. Thus,

Reynolds number and aspect ratio has more dominant effect on jH values than blockage

ratio. Figure 11.17 shows representative variation of the Colburn factor ′j′H at various

blockage ratio β = 1/8, 1/12, 1/16 for different aspect ratio of cylinder (ar = 2, 4, 6) as a

function of Reynolds number (Re = 5, 10, 20, 40).

11.3.4 Empirical correlation

The present numerical calculations can be summarized by using an empirical correlations

of drag coefficient (CD) and average Nusselt number (Nu). The dependence of drag, heat

transfer rate i.e., average Nusselt number (Nu) on the range of Reynolds number (Re),

blockage ratio (β) and aspect ratio of rectangular cylinder (ar) are expressed by using

following correlations, which were found to fit the present simulation data satisfactorily:

CD = exp−9.24 × 10−2Re+ 10.02β + 0.161ar + 0.909 R2 = 0.925 (11.2)

Nu = 3.21 × 10−2Re+ 1.05β + 4.56 × 10−2 + 0.982 R2 = 0.97 (11.3)
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Figure 11.17: The Colburn j factor as a function of Reynolds number at various
blockage ratio (β) and aspect ratio of rectangular cylinder (ar) for Prandtl number of

Pr=1.

Figure 11.18 presents comparison between drag coefficient CD and average Nusselt num-

ber Nu obtained from simulation and predicted by Eq. (11.2) and Eq. (11.3), respectively.

11.4 Concluding Remarks

The numerical study of the laminar forced convection from heated square cylinder in

channel flow by passive scalar based lattice Boltzmann method (LBM) is done. The

combined effects of aspect ratio of cylinder (ar), blockage ratio (1/8 ≤ β ≤ 1/20) on

heat and fluid flow characteristics have been elucidated for the range of Reynolds number

(5 ≤ Re ≤ 40) and a constant Prandtl number of Pr = 1. The accuracy of present

in-house LBM solver (developed in C++ language) is ascertained by grid and domain
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Figure 11.18: Comparison of the present drag CD, average Nusselt number (Nu)
results with the prediction of proposed correlations (Eqs. 11.2, 11.3)

independence test and validation with literature. The validation of present numerical

method with literature shown excellent agreement. The functional dependence of drag

coefficient CD and average Nusselt number (Nu) with Reynolds number (Re) and blockage

ratio (β) is obtained by developing simple closure relationship. From this work, following

conclusions can be drawn:

1. The applicability of thermal lattice Boltzmann method for investigating the forced

convection heat transfer from heated square cylinder is validated by this study.

2. The increase in blockage ratio causes marginal increase in re-circulation length for

considered range of Reynolds number.
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3. The drag values are found to be in inverse proportion with blockage ratio and

Reynolds number.

4. At a constant Reynolds number, increase in blockage ratio causes crowding isotherms

along cylinder.

5. Linear increase in average Nusselt number (Nu) is observed with Reynolds number

and lower blockage ratio. increase in blockage ratio impedes rate of heat transfer.

6. The Colburn heat transfer factor jH is dominated more by blockage ratio than

Reynolds number.

7. Empirical correlations relating total drag coefficient (CD) and average Nusselt num-

ber (Nu) with aspect ratio of cylinder (ar), blockage ratio (β) and Reynolds number

(Re) have been developed for its possible use in engineering design purpose.



Chapter 12

CONCLUSIONS AND

RECOMMENDATIONS

The key findings of the problems studied in this thesis have been summarized in this

chapter. In particular, the influence of range of pertinent dimensionless flow governing

parameters on two-dimensional, steady, laminar, incompressible flow and heat transfer

from enclosures (differentially, partially, open ended enclosures) and channel confined

rectangular cylinder have been studied numerically by using in house developed thermal

lattice Boltzmann method (TLBM) in C++ programming language. The broad ranges

of physical parameters considered here, in brief, are as follows: Rayleigh number (103 ≤

Ra ≤ 106), Prandtl number (0.71 ≤ Pr ≤ 100), heating location (bottom, middle, top),

heater size (Lh = 1, 1/2, 1/4, 1/6), cooler size (Lc = 1, 1/2, 1/4, 1/6), Hartmann number

(0 ≤ Ha ≤ 120), angle of magnetic field direction (θM = 0o, 45o, 120o), Reynolds number

(5 ≤ Re ≤ 40), blockage ratio (1/8 ≤ β1/20) and aspect ratio of rectangular cylinder

(ar = 1, 2, 4, 6). The concluding summary of each of the problems considered in this work

are as follows:

228
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12.1 Natural convection in differentially heated cav-

ity: Effect of Rayleigh and Prandtl number

The numerical simulations are performed to investigate the effects of Prandtl numbers

(0.71 ≤ Pr ≤ 100) on natural convective heat transfer mechanism for three different

Rayleigh numbers viz., Ra = 104, 105 and 106. Extensive results are obtained and pre-

sented in terms of the streamline and vorticity patterns, the center-line variations of the

velocity and temperature, and local and average Nusselt numbers. The following conclu-

sions are drawn from the results: Natural convection effect increases with the increase

in Prandtl number (Pr) for all values of the Rayleigh number (Ra) due to the increased

viscous force effect in comparison to inertial force. As thermal diffusion is inversely pro-

portional to Prandtl number, velocity is more diffused than thermal energy. For Ra = 104,

dominant heat transfer mechanism is conductive for Pr ≥ 10. The average Nusselt num-

ber (dimensionless heat transfer coefficient) of isothermal wall (x = 0) is seen to increase

with the Prandtl and Rayleigh numbers. Further, the functional dependence of average

Nusselt number on dimensionless flow governing parameters is presented.

12.2 Natural convection in partially-simultaneously

heated/ cooled square cavity

In this part, the influence of Rayleigh number (103 ≤ Ra ≤ 106) on natural convective

heat transfer mechanism in a square cavity with one wall subjected to equally both hot

and cold thermal conditions, have been elucidated. The upper part (0.5 ≤ H ≤ 1) of west

wall of cavity is subjected to higher temperature (TH) and lower part (0 ≤ H ≤ 0.5) is

exposed to ambient (TC < TH). A thermal lattice Boltzmann method with passive scalar

and D2Q9 lattice model is used as a numerical tool. The numerical results are obtained

and presented in terms of the streamline and isotherm patterns, the center line variations

of the velocity and temperature, and local and average Nusselt numbers. Formation of
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convection cell near lower part of mixed heated wall (X = 0) of cavity is observed after

Ra ≤ 104, as low temperature fluid retained in that region. The size of convection cell

increases with the increase in Rayleigh number (Ra). The average Nusselt number (Nu)

and overall Nusselt number (N̂u) value show linear increase with Rayleigh number. At

Ra = 105, the rate of heat transfer of both vertical walls is almost same, which is indicated

by nearly same values of average Nusselt number (Nu). Predictive correlation of Nusselt

number is also presented.

12.3 Magneto-hydrodynamic natural convection in par-

tially differentially heated cavity

In this part, lattice Boltzman simulations have been carried out to investigate the influence

of cooler size (Lc = 1, 1/2, 1/4) on magneto-hydrodynamic (MHD) natural convective

heat transfer characteristics in partially-differentially heated square cavity. The west wall

(X=0) is partially heated with heater size (Lh = 1/2) and east wall is partially cooled with

four cooler lengths of Lc = 1, 1/2, 1/4. Other parts of cavity are maintained at adiabatic

condition. In particular, the effects of Rayleigh number (Ra = 103, 104, 105), Hartmann

number (Ha = 0, 60, 120), angle of magnetic field (θM = 0o, 45o, 90o) on streamlines,

isotherms and average Nusselt number have been studied and reported in this work.

Fluid circulation in cavity creates formation of convection cell in central region of cavity.

The size of convection cell varies proportionally with Rayleigh number, while it decreases

with augmentation of Hartmann number. At Ra = 105, convection cell elongates and

bifurcates with the formation of two eddies at the corner of cell. The size of these eddies

reduces with decrease in cooler length. Increase in Ha controls the flow circulation in

cavity. The decrease in cooler size, reduce buoyancy effect, thereby, fluid circulation. The

change in the magnetic field direction from horizontal to vertical, slightly increases the

flow circulation in cavity for Ha=60, 120. The decrease in cooler length from Lc = 1 to

1/2 and 1/4, helps to clear the dense crowding and isotherms pattern spread horizontally
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in cavity. The average Nusselt number increases with Rayleigh number and decreases

with Hartmann number. Empirical correlation has been developed for average Nusselt

number.

12.4 Natural convection in partially heated open ended

cavity

In this part, numerical experimentation of steady laminar natural convective heat transfer

in an open ended square enclosure with partially heated wall is carried out by using

in-house developed CFD solver based on the passive scalar thermal lattice Boltzmann

method (PS-TLBM). In particular, the effects of heating location (bottom, middle and

top) on the partially heated wall and heater size (Lh=0.25, 0.5 and 0.75) on the heat

and fluid flow characteristics of an incompressible fluid have been investigated for the

wide range of Rayleigh number (103 ≤ Ra ≤ 106) and Prandtl number (0.71 ≤ Pr ≤

100). At lowest value of the Rayleigh number (Ra = 103), streamlines bifurcate for the

bottom and top heating locations due to weak buoyancy driven flow. For middle heating

location, such bifurcation is not observed due to comparatively higher buoyancy driven

flow. Irrespective of the heating locations and heater sizes, the size of elliptical quasi-

motionless region increase with increasing value of the the Rayleigh number (Ra). At

highest value of the Rayleigh number (Ra = 106), the streamlines elongate and bifurcate

for all heating location and heater sizes. It shows the clockwise circulation with formation

of vortex near lower part of open end of cavity. The maximum size of the vortex is

seen for the top heating location case. Linear dependence of the average Nusselt number

(Nu) on the Rayleigh number is observed, irrespective of the heating locations and heater

size. However, average Nusselt number (Nu) shows a proportional dependence for the

bottom and middle locations and inversely proportional dependence for the top heating

location on the heater size, i.e., an increasing value of Lh enhanced Nu for the bottom

and middle locations and deteriorated Nu for the top heating location. Over the range of
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Rayleigh number, middle partial heating location shows higher heat transfer rate followed

by bottom and top heating locations. The significant convection losses are indicated in

the top heating location as Nu decreased with increase in the heater size. Finally results

of study are summarized in terms of Nusselt number correlation.

12.5 Natural convection in square cavity with built-

in heated square block

Numerical simulations of natural convection in an enclosure containing heated square

body are conducted. Passive scalar thermal lattice Boltzmann method (PS-TLBM) has

been used as numerical tool for solving field equations. The numerical results are obtained

for Rayleigh number Ra = 104, 105, 106 and Prandtl number of Pr=0.71,5 and 10. For

lower Prandtl numbers (Pr=0.71), temperature distribution is found to be uniform across

an enclosure and is in oval shape around the heated square for Ra = 104. As Prandtl

number increases, isotherms becomes densely crowded along heated square block. As

Rayleigh number increases, isotherms become parallel to horizontal wall of enclosure with

formation of a peak (a thermal plume) from top walls. At higher Prandtl, isotherms

pattern remains nearly same for given Rayleigh numbers, only change is observed in central

peak of isotherms towards top wall. Average Nusselt number shows linear variation with

Rayleigh and Prandtl numbers.

12.6 Wall effects on force convective heat transfer

from heated built-in rectangular cylinder

The numerical study of the laminar forced convection from heated square cylinder in

channel flow by passive scalar based lattice Boltzmann method (LBM) is done. The ef-

fect of blockage ratio (1/8 ≤ β ≤ 1/20) on heat and fluid flow characteristics have been
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elucidated for the range of Reynolds number (5 ≤ Re ≤ 40) and a constant Prandtl

number of Pr = 1. The accuracy of present in-house LBM solver (developed in C++ lan-

guage) is ascertained by grid and domain independence test and validation with literature.

The validation of present numerical method with literature shown excellent agreement.

The functional dependence of drag coefficient CD and average Nusselt number (Nu) with

Reynolds number (Re) and blockage ratio (β) is obtained by developing simple closure

relationship. The applicability of thermal lattice Boltzmann method for investigating the

forced convection heat transfer from heated square cylinder is validated by this study. The

increase in blockage ratio causes marginal increase in re-circulation length for considered

range of Reynolds number. The drag values are found to be in inverse proportion with

blockage ratio and Reynolds number. At a constant Reynolds number, increase in block-

age ratio causes crowding isotherms along cylinder. Linear increase in average Nusselt

number (Nu) is observed with Reynolds number and lower blockage ratio. Thus, increase

in blockage ratio impedes rate of heat transfer. The Colburn heat transfer factor jH is

dominated more by blockage ratio than Reynolds number.

12.7 Summary of empirical correlations

The empirical correlations developed in different problems for global characteristics vari-

ables such as (Nusselt number and drag coefficient) with pertinent flow governing param-

eters are listed in Table 12.1.
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Table 12.1: The empirical correlations developed for different problems studied herein for with the range of physical parameters.

Sr. No. Problem Correlation Range

1 1 (Chapter 6) (a) Nu = 0.1499Ra0.2977Pr0.2528 0.71 ≤ Pr ≤ 30
(b) Nu = 0.394Ra0.111Pr0.7255 30 ≤ Pr ≤ 100

Nu = 0.1965Ra0.1203Pr0.8339 + 3.3205 0.71 ≤ Pr ≤ 100
104 ≤ Ra ≤ 106

2 2 (Chapter 7) N̂u = 0.07Ra0.31 104 ≤ Ra ≤ 106;Pr = 0.71

3 3 (Chapter 8) At constant Ra and θM Nu = f(Lc,Ha) 103 ≤ Ra ≤ 106;Pr = 0.71
As given in Table 8.2 andTable 8.3 0 ≤ Ha ≤ 120; 0o ≤ θM ≤ 90o

4 4 (Chapter 9, I) (a) Top heating:0.1781Ra0.2114Lc
h
−0.753 103 ≤ Ra ≤ 106;Pr = 0.71

(b) Middle heating: 0.5237Ra0.2336Lc
h
0.5704 Lh = 0.25, 0.5, 0.75

(c) Bottom heating: 0.4282Ra0.2545Lc
h
0.7857

5 (Chapter 9, II) (d): Nu = 0.9276Ra0.1733Pr0.2157 103 ≤ Ra ≤ 106; 0.71 ≤ Pr ≤ 7

5 6 (Chapter 10) Nuoverall = 0.3279Pr0.1057Ra0.1346 104 ≤ Ra ≤ 106

0.71 ≤ Pr ≤ 10
6 7 (Chapter 11) CD = exp−9.24 × 10−2Re+ 10.02β + 0.161ar + 0.909

Nu = 3.21 × 10−2Re+ 1.05β + 4.56 × 10−2 + 0.982 β = 1/8 − 1/20, ar = 1 − 6, Re = 5 − 40, P r = 1
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12.8 Recommendations for future work

The present work is focused on the natural convective heat transfer characteristics from

enclosure containing Newtonian fluid of varying shapes (differentially heated, partially-

differentially, partially heated open and enclosure with built-in heated block) and forced

connection heat transfer from channel confined heated rectangular cylinder, by using

thermal lattice Boltzmann method. The thermo-physical properties is assumed to be in-

dependent and viscous heat dissipation, compression work done by pressure are neglected.

The following suggestions can be made for future work.

1. All considered problems can be studied for three-dimensional (3D) analysis by using

TLBM.

2. Mixed convection heat transfer analysis in partially heated lid-driven cavity.

3. Mixed convection heat transfer from heated rectangular cylinder.

4. Lattice Boltzmann method can be extended to study non-Newtonian fluids.
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