
Online Devanagari Handwriting Word
Recognition

A DISSERTATION

submitted towards the fulfillment of the
requirement for the award of the degree of

MASTER OF TECHNOLOGY

in
Computer Science and Engineering

By

PUNEET S POOJARY

Department of Computer Science and Engineering
INDIAN INSTITUTE OF TECHNOLOGY, ROORKEE

Roorkee - 247667, India

JUNE 2016

AUTHOR’S DECLARATION

I declare that the work presented in this dissertation with title " Lexicon
Free Online Devnagari Word Recognition Using Classifier Com-
bination " towards the fulfillment of the requirement for the award of

the degree of Master of Technology in Computer Science & Engineer-
ing submitted in the Department of Computer Science & Engineering,
Indian Institute of Technology Roorkee, India is an authentic record
of my own work carried out during the period from June 2015 to May
2016 under the supervision of Dr. Partha Pratim Roy, Assistant Professor,
Department of Computer Science and Engineering, Indian Institutes of Tech-
nology, Roorkee. The content of this dissertation has not been submitted by
me for the award of any other degree of this or any other institute.

DATE: ... SIGNED:

PLACE: .. (PUNEET S POOJARY)

i

CERTIFICATE

This is to certify that the statement made by the candidate is correct to the best
of my knowledge and belief.

DATE: ... SIGNED: ...

(DR. PARTHA PRATIM ROY)
Assistant Professor

Indian Institutes of Technology, Roorkee

ii

ABSTRACT

C lassifier combination is a way to combine the outputs of multiple distinct recogni-
tion systems so as to improve the accuracy of the combined system. The training
data is used to train multiple instances of neural network based recognition

systems (BLSTM). Next the test data is transcribed using each of the trained models.
A post processing technique (ROVER) is used to combine the multiple transcriptions
obtained for each test sequence into a best transcription. This approach yields a higher
transcription accuracy when compared to those obtained with the individual recognition
systems used.

iii

DEDICATION AND ACKNOWLEDGEMENTS

Dedicated to my family and friends, for standing by me through thick and thin,
without whom I would not have gotten this far.

I would like to express my sincere gratitude to my advisor Dr. Partha Pratim Roy
for the continuous support of my study and research, for his patience, motivation,
enthusiasm, and immense knowledge. His guidance helped me in all the time of research
and writing of this thesis. I could not have imagined having a better advisor and mentor
for my study.

I am also grateful to the Dept. of Computer Science, IIT Roorkee for providing
valuable resources to aid my research.

iv

TABLE OF CONTENTS

Page

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 BLSTM . 3

1.2 HMM . 5

1.3 ROVER . 5

2 Related Works 8

3 Proposed Model 9
3.1 Preprocessing . 10

3.2 Feature Extraction . 10

3.2.1 Vertical position . 12

3.2.2 Curvature . 13

3.2.3 Aspect . 13

3.2.4 Curliness . 14

4 Experimental Result 15
4.1 Dataset . 15

4.2 Result . 15

Bibliography 22

v

LIST OF TABLES

TABLE Page

4.1 Results for individual models and with rover combination 18

4.2 Transcription results for Test sequence usr81_022t02 19

4.3 Transcription results for Test sequence usr81_025t01 20

4.4 Transcription results for Test sequence usr82_005t01 21

vi

LIST OF FIGURES

FIGURE Page

1.1 The Devanagari alphabet . 2

1.2 Possible positions for placing matras on a base consonant in the Devanagari

script [1]. 3

1.3 (a) Online handwriting data. (b) Offline handwriting data 4

1.4 A Recurrent Neural Network. 4

1.5 Long Short Term Memory . 6

1.6 Bidirectional Recurrent Neural Network . 6

1.7 Rover system architecture . 7

3.1 Training multiple sequence recognizers using the train data set. 10

3.2 Combining the outputs of multiple models to obtain best transcription. 11

3.3 NPen++ writing direction . 12

3.4 NPen++ curvature . 13

4.1 Variation in writing styles for data sequence 001t01 16

4.2 Variation in writing styles for data sequence 007t01 17

4.3 Test sequence usr81-022. 19

4.4 Test sequence usr81-025. 20

4.5 Test sequence usr82-005. 21

vii

C
H

A
P

T
E

R

1
INTRODUCTION

Methods for recognizing handwritten text have been an active area of interest

for several years. This enduring interest in handwriting recognition is proof of

the diverse applications for such systems. An accurate handwriting recognition

system can provide a natural interface to computing systems that otherwise require users

to master input devices for their operation. This can help a majority of the technically

illiterate population gain access to computers which can benefit them immensely.

Devanagari is an alphabet widely used in many parts of India and Nepal.Characters

are written left to right along with the distinctive horizontal line known as shirorekha.

The Devanagari alphabet has 14 vowels and 33 consonants. Hindi which uses the

Devanagari script is the worlds third most commonly used language after English and

Chinese. Approximately 500 million people read and write hindi. The typical Devanagari

alphabet is shown in Figure 1.1.

The Devanagari script has some unique complications when compared to other scripts

like latin. This makes the process of adapting recognition systems built for other scripts

into Devanagari quite difficult. For example even though consonants are written linearly

in a left to right order, matras which modify the base consonant can be placed non-

linearly above, below or on either side of the consonants. An example of this is shown in

Figure1.2

Recognition systems that fail to account for this disparity in spatial and temporal

sequencing often perform poorly while processing Devanagari text.

Handwriting recognition systems can be broadly classified into offline and online,

1

CHAPTER 1. INTRODUCTION

Figure 1.1: The Devanagari alphabet .

2

CHAPTER 1. INTRODUCTION

Figure 1.2: Possible positions for placing matras on a base consonant in the Devanagari
script [1].

depending on the nature of the data they can process. Offline handwriting is used to

recognize text in static images. This is mainly used to transcribe scanned documents.

Online handwriting recognition systems work with a recording of the pen tip as the

characters are written. This is typically represented as a sequence of pen tip positions,

ordered in time. This temporal information that is provided in online data can be used to

give additional information about the written text, which is absent in offline data. Online

handwriting recognition systems seek to exploit this temporal information to increase

the accuracy of recognition. Online recognition systems can be used to provide natural

interfaces to computers which can help the large number of digitally challenged people

obtain access to computers.

1.1 BLSTM

The basic architecture of recurrent neural networks consists of a network of units called

neurons or nodes, each of which can have directed connections to the other nodes in the

network. The nodes can be divided into input, output and hidden nodes. The incoming

connections to each node have distinct modifiable weights. The node outputs a real value

using an activation function on the input values. Figure 1.4 shows how the cells in

RNN‚Äôs can have backward and self connections.

Recurrent Neural networks (RNN) have shown good results in sequence learning

3

CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.3: (a) Online handwriting data. (b) Offline handwriting data .

Figure 1.4: A Recurrent Neural Network.

4

CHAPTER 1. INTRODUCTION

and recognition tasks. This can be attributed to the ability of RNN’s to consider previous

state information also known as memory. This can provide a useful context for processing

the current inputs. However RNN’s suffer from limitations to the range of context that

can be accessed. This is because under some conditions, the influence of a particular

input on the hidden layer as well as the network layer is prone to blow up or decay

exponentially, as it is cycled through recurrent connections. This is often referred to as

the vanishing gradient problem.

In order to overcome this problem Long Short Term Memory (LSTM) was introduced

[2]. LSTM relies on gate units to control the input, output and memory in each cell. This

gives the net control over how the error is propagated through the recurrent connections.

As a result LSTM can store and access information over a much longer period of time

when compared to normal RNN’s, by overcoming the vanishing gradient problem. The

architecture of a single LSTM cell is shown in Figure 1.5.

Another problem with RNN’s while processing sequences is that they have access to

past information, but do not have any idea of the future context. Bidirectional Long Short

Term Memory (BLSTM) is an architecture designed to overcome this problem Here the

input is provided to two separate layers, which process the input in different directions,

as shown in Figure 1.6. Both of these layers are eventually connected to the output unit,

which enables the network to have information about the input in both directions [3].

1.2 HMM

A Hidden Markov Model (HMM) is a doubly stochastic process with an underlying

stochastic process that is not observable (it is hidden), but can only be observed through

another set of stochastic processes that produce the sequence of observed symbols [4].

Hidden Markov Models have been used for a long time as part of audio and sequence

recognition problems due to their performance in temporal pattern recognition problems.

Forced Viterbi Alignment is a method of matching a given label to a part of an input

sequence. The algorithm returns the most probable alignment of a sequence of labels in

the test sequence.

1.3 ROVER

Recognition Output Voting Error Reduction (ROVER) is originally an algorithm intended

to improve the recognition accuracy for automated speech recognition systems [5]. It

5

CHAPTER 1. INTRODUCTION

Figure 1.5: Long Short Term Memory

Figure 1.6: Bidirectional Recurrent Neural Network

6

CHAPTER 1. INTRODUCTION

works by exploiting differences present in the type of errors made by different recognition

systems.

The rover system works in two modules. In the first module we take the input

of multiple hypotheses from different recognition systems. The hypotheses for each

sequence are then aligned for the next step. Figure 1.7 shows the basic rover system

architecture.

Once the aligned sequences are obtained the voting module processes it to obtain the

best transcription sequence.

Since the rover module is independent of the recognition system, it can be used to

combine a wide variety of individual recognizers, with minor changes to the output

formats. This can be useful for processing recognition systems for multiple languages

using the same module.

Figure 1.7: Rover system architecture

7

C
H

A
P

T
E

R

2
RELATED WORKS

Prior work on lexicon free Devanagari online text recognition is very limited.

Swethalakshmi [6] proposed a recognition system based on explicit grouping of

strokes based on "proximity analysis" into characters, and recognizing each stroke

within. Any problems involving oversegmentation or undersegmentation is resolved by

postprocessing methods which use the stroke labels to classify the characters. The

best word is evaluated by interpreting individual characters and using a lexicon based

approach or similar language based models. Manual analysis of the training data is

required to determine unique strokes and the different writing styles of a character.

Identifying words by recognizing the individual stroke segments in a similar way

has also been proposed for other Indian languages such as Bangla [7] and Gurmukhi

[8]. One of the major issues with these approaches is that they are not easy to scale for

recognizing other Indic scripts since they rely on script dependent features and require

manual modifications for training.

Hidden Markov Models are a popular choice for online handwriting recognition

systems such as Latin and CJK scripts [9], [10] because of their capacity to recognize

sequential data. For recognizing Latin script, we need to segment the cursive writing into

its component characters, HMM’s are used to identify at the character level and are then

combined to form word HMM’s. Word HMM’s are then used to segment the input data

into letters alongwith recognition. CJK recognition follows a different approach, with

HMM’s being build for the stroke level recognition and then the models are connected to

form a large network that is used to represent different stroke orders.

8

C
H

A
P

T
E

R

3
PROPOSED MODEL

We attempt to improve the accuracy of online devanagari word recognition by

combining the outputs of multiple classifiers so as to obtain the best output

sequence. Neural Networks are initialized with random values, so as a result

after training each model is inherently different from any other instance of a trained

model using the same training data. This difference can be seen by comparing the results

obtained by different models using the same training sequence. The variation in trained

neural network models manifests as discrepancies in the ability to identify some se-

quences correctly. If we can correctly recognize the sequences that are correctly identified

by a particular neural network, and incorrectly identified by another network, we should

be able to improve the transcription result accuracy with the help of multiple models.

Before we can do this we need to have several good transcription models, a method to

align different transcription results and finally a way to merge results optimally. Here

we use BLSTM for transcription, HMM for alignment and ROVER for combining results.

In the first step shown in Figure 3.1 the training data is used to train multiple

neural networks based on BLSTM. This gives us multiple models for the next step.

Simultaneously we use the training data to extract features and train an HMM for

character level recognition using the training data.

Next using the n models from the first step we recognize the test data, to get n output

sequences. These n outputs are aligned using the HMM models trained previously, which

adds alignment information to the output data. The n sequences are then processed

using the rover algorithm to get best output sequences for each test data. This process is

9

CHAPTER 3. PROPOSED MODEL

Figure 3.1: Training multiple sequence recognizers using the train data set.

shown in Figure 3.2.

For training with BLSTM, the data was split 70:30 into training and testing sets.

The network configuration used was three hidden layers with 20, 60 and 180 nodes each.

Five different networks were trained with the available training data. These five models

were then used to transcribe the test data sequences. Consequently each test sequence

would have five different transcriptions provided by the five models.

3.1 Preprocessing

The data which is provided in the unipen format is first resampled using interpolation to

ensure uniform distance between consecutive points. Next the data is scaled to the 0 to 1

range, and invalid coordinates are discarded.

3.2 Feature Extraction

There exist very few feature sets which are compatible with online data formats as

compared to offline data, where a large number of feature descriptors are easily available.

For extracting features from the online dataset, we chose the npen++ feature set. The

10

CHAPTER 3. PROPOSED MODEL

Figure 3.2: Combining the outputs of multiple models to obtain best transcription.

11

CHAPTER 3. PROPOSED MODEL

NPen++ features require a normalized sequence of points (x(t),y(t)), which are then used

to calculate the feature sequence. The features used are as follows.

3.2.1 Vertical position

The vertical position for a point(x(t),y(t)) is the vertical distance of the point from the x

axis, or the baseline for the sequence. It can be considered negative if the point is below

the baseline.

V (t)= y(t)−b(y(t)) (3.1)

3.2.1.1 Writing direction

This feature describes the writing direction in a local context. It gives the cosine and

sine components for the writing direction.

cosα(i)= ∆x(i)
∆s(i)

(3.2)

sinα(i)= ∆y(i)
∆s(i)

(3.3)

Figure 3.3: NPen++ writing direction

12

CHAPTER 3. PROPOSED MODEL

where ∆x,∆y and ∆s are computed as follows:

∆s(i)=
√
∆x2 +∆y2 (3.4)

∆x(i)= x(i−1)− x(i+1) (3.5)

∆y(i)= y(i−1)− y(i+1) (3.6)

3.2.2 Curvature

The computation of curvature at a point (x(i), y(i)) consider the previous and next point

to that point and is describe as follows:

cosβ(i)= cosα(i−1)∗ cosα(i+1)+ sinα(i−1)∗ sinα(i+1) (3.7)

sinβ(i)= cosα(i−1)∗ sinα(i+1)+ sinα(i−1)∗ cosα(i+1) (3.8)

Note that this sequence does not actually compute curvature but compute angular

Figure 3.4: NPen++ curvature

difference which suffice in our case.

3.2.3 Aspect

The ratio of the height to the width of the bounding box accommodating the succeeding

and preceding points of (x(i), y(i)) is the aspect A(i) of the contour at point i. It is

computed as:

A(i)= ∆y(i)−∆x(i)
∆y(i)+∆x(i)

(3.9)

13

CHAPTER 3. PROPOSED MODEL

3.2.4 Curliness

The deviation from a straight line in the neighborhood of (x(i), y(i)) describe Curliness

C(i) feature. It is computed as the ratio of length of the contour and larger side of the

bounding box.

C(i)= L(i)
max(∆x,∆y)

−2 (3.10)

where L(i) is the length of contour in the neighborhood of the point computed as the

sum of all line segments in the neighborhood of the point. ∆x and ∆y are width and

height of the bounding box.

14

C
H

A
P

T
E

R

4
EXPERIMENTAL RESULT

4.1 Dataset

The dataset used is the Isolated Handwritten Devanagari Word Dataset provided by

HP Labs India. The dataset has 220 word samples of 70 hindi words recorded by 110

native writers. The 70 words were selected to represent commonly used hindi words, and

to cover all symbols in the Devanagri script. The data was recorded by using Acecad

Digimemo A402 graphic tablet, and stored in standard unipen format.

4.2 Result

For testing the proposed model, the data was split 70:30 into training and testing sets.

The training set was used to train 5 different BLSTM instances, each of which provided

two different models for best label error and best ctc error. Simultaneously a HMM model

was trained using the training set. The test set was processed using each of these 10

models to get 10 different transcriptions. The transcriptions were aligned using Viterbi

forced-alignment with the trained HMM model. Next the aligned transcriptions for

each sequence were combined using ROVER to obtain a best transcription for each test

sequence. Table 4.1 shows the results obtained using individual classifiers to recognize

the test set along with the result obtained after using ROVER.

The benifit obtained by using ROVER can be seen in the analysis of results for individ-

ual test sequences shown in Tables 4.2 , 4.3 and 4.4. For test sequence usr81_022t02 the

15

CHAPTER 4. EXPERIMENTAL RESULT

Figure 4.1: Variation in writing styles for data sequence 001t01

incorrect predictions by classifiers C4 and C1 are correct in the final output by ROVER.

16

Figure 4.2: Variation in writing styles for data sequence 007t01

CHAPTER 4. EXPERIMENTAL RESULT

Table 4.1: Results for individual models and with rover combination

Classifier Accuracy

C 1 82.40

C 2 82.40

C 3 82.45

C 4 82.45

C 5 81.70

C 6 81.70

C 7 82.35

C 8 82.51

C 9 83.22

C 10 83.22

Rover 88.83

18

CHAPTER 4. EXPERIMENTAL RESULT

Table 4.2: Transcription results for Test sequence usr81_022t02

Classifier Transcription

Ground Truth 34 51 24 62 25 48 0

Rover 34 51 24 62 25 48 0

C1 34 63 40 62 25 34 0

C2 34 51 24 62 25 48 0

C3 34 51 24 62 25 48 0

C4 66 – 24 40 25 34 0

C5 34 51 24 62 25 48 0

Figure 4.3: Test sequence usr81-022.

19

CHAPTER 4. EXPERIMENTAL RESULT

Table 4.3: Transcription results for Test sequence usr81_025t01

Classifier Transcription

Ground Truth 104 50 36 27 50 0

Rover 104_50 50 36 43 50 0

C1 104_50 54 58 43 50 0

C2 104_50 50 36 27 50 0

C3 104 50 36 43 50 0

C4 104 50 36 27 50 0

C5 104_50 – 36 0_27 – –

Figure 4.4: Test sequence usr81-025.

20

CHAPTER 4. EXPERIMENTAL RESULT

Table 4.4: Transcription results for Test sequence usr82_005t01

Classifier Transcription

Ground Truth 38 109 32 37 54 0

Rover 38 109 32 37 54 0

C1 77 – – 37 31 0

C2 38 109 32 37 54 0

C3 77 109 32 37 54 0

C4 38 109 32 37 54 0

C5 38 109 32 37 – 0

Figure 4.5: Test sequence usr82-005.

21

BIBLIOGRAPHY

[1] V. Govindaraju and S. Setlur, Guide to OCR for Indic Scripts, Springer, 2009.

[2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion 9(8), pp. 1735–1780, 1997.

[3] A. Graves, Supervised sequence labelling, Springer, 2012.

[4] L. R. Rabiner and B.-H. Juang, “An introduction to hidden markov models,” ASSP
Magazine, IEEE 3(1), pp. 4–16, 1986.

[5] J. G. Fiscus, “A post-processing system to yield reduced word error rates: Recognizer

output voting error reduction (rover),” in Automatic Speech Recognition and
Understanding, 1997. Proceedings., 1997 IEEE Workshop on, pp. 347–354, IEEE,

1997.

[6] H. Swethalakshmi, A. Jayaraman, V. S. Chakravarthy, and C. C. Sekhar, “Online

handwritten character recognition of devanagari and telugu characters using

support vector machines,” in Tenth International workshop on Frontiers in
handwriting recognition, Suvisoft, 2006.

[7] U. Bhattacharya, A. Nigam, Y. Rawat, and S. Parui, “An analytic scheme for online

handwritten bangla cursive word recognition,” Proc. of the 11th ICFHR , pp. 320–

325, 2008.

[8] A. Sharma, R. Kumar, and R. Sharma, “Rearrangement of recognized strokes in

online handwritten gurmukhi words recognition,” in Document Analysis and
Recognition, 2009. ICDAR’09. 10th International Conference on, pp. 1241–1245,

IEEE, 2009.

[9] J. Hu, S. G. Lim, and M. K. Brown, “Writer independent on-line handwriting

recognition using an hmm approach,” Pattern Recognition 33(1), pp. 133–147,

2000.

22

BIBLIOGRAPHY

[10] M. Nakai, N. Akira, H. Shimodaira, and S. Sagayama, “Substroke approach to

hmm-based on-line kanji handwriting recognition,” in Document Analysis and
Recognition, 2001. Proceedings. Sixth International Conference on, pp. 491–495,

IEEE, 2001.

23

	List of Tables
	List of Figures
	Introduction
	BLSTM
	HMM
	ROVER

	Related Works
	Proposed Model
	Preprocessing
	Feature Extraction
	Vertical position
	Curvature
	Aspect
	Curliness

	Experimental Result
	Dataset
	Result

	Bibliography

