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ABSTRACT 
 

An increasing amount of data is being stored in cloud-based storage services and this trend 

is expected to grow in the coming years. This creates a huge demand for systems and 

algorithms that are more efficient in the use of storage resources while being able to meet 

necessary cloud requirements of availability and scalability. A major source of inefficiency 

on cloud storage systems is data duplication, since bandwidth and storage resources are 

wasted to transfer and store data that is already present in the system. 

 

Data deduplication is the technique to detect duplicate and store only one instance of the 

data. Different users of the system can put a reference to the data in case data belongs to 

multiple users. Duplicates can be detected at two levels i.e. File level and Block level. File 

level means the file is duplicated and Block level means file is broken up into pieces called 

blocks and then duplicates can be detected at block level.  The way to detect duplicates is 

to hash the file or blocks and then detect duplicates based on hash value.  

 

Much of the work is already being done in the area of data deduplication but none of them 

addresses the security aspect i.e. will the same data deduplication solution work when 

considering the data in the encrypted form. The problem with encrypted data is the same 

data after encryption through multiple users keys can produce different cipher texts and 

hence hash value solution to detect duplicates doesn’t work. The idea is to take the key (to 

encrypt) data from the data itself and then use that key to encrypt the data. The key is 

referred to as the convergent key and the encryption is referred to as the convergent 

encryption [10]. The drawback of this encryption scheme is that it is prone to brute force 

attacks and then can easily be compromised. 

 

The proposed architecture addresses the problems of convergent encryption [10] and 

provides efficient key management such that system is fault tolerant in cases when user 

have limited access to storage servers. The solution segregates the key and data on multiple 

storage servers so that attackers cannot easily attack and hence security is not 

compromised. 
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1 INTRODUCTION 
 

An increasing amount of data is being stored in cloud-based storage services and this trend 

is expected to grow in the coming years. According to the analysis report of IDC, the 

volume of data in the wild is expected to reach 40 trillion gigabytes in 2020[1]. This creates 

a huge demand for systems and algorithms that are more efficient in the use of storage 

resources while being able to meet necessary cloud requirements of availability and 

scalability. A major source of inefficiency on cloud storage systems is data duplication, 

since bandwidth and storage resources are wasted to transfer and store data that is already 

present in the system. Studies claims that up to 75% of all produced data is duplicated[2]. 

Today’s cloud storage providers such as Dropbox[3], [4] Google drive[5] and Mozy[6] 

have been applying deduplication to save maintenance cost.  

1.1 Motivation 
 

Data deduplication is the technique to detect duplicate and store only one instance of the 

data. Different users of the system can put a reference to the data in case data belongs to 

multiple users. Duplicates can be detected at two levels i.e. File level and Block level. File 

level means the file is duplicated and Block level means file is broken up into pieces called 

blocks and then duplicates can be detected at block level.  The way to detect duplicates is 

to hash the file or blocks and then detect duplicates based on hash value.  

 

The technique has been successfully used in backup and archival storage systems ([7], [8], 

[9]), and its use is becoming popular for primary storage. Much of the work is already 

being done in the area of Data deduplication but none of them addresses the security aspect 

i.e. will the same data deduplication solution work when considering the data in the 

encrypted form. The problem with encrypted data is the same data after encryption through 

multiple users keys can produce different cipher texts and hence hash value solution to 

detect duplicates doesn’t work. The idea is to take the key (to encrypt) data from the data 

itself and then use that key to encrypt the data. The key is referred to as the convergent key 

and the encryption is referred to as the convergent encryption [10]. The drawback of this 
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encryption scheme is that it is prone to brute force attacks and then can easily be 

compromised. 

 

The thesis concludes by presenting the fault tolerant and efficient key management 

architecture to store the encrypted data on top of cloud storage provider such that the entire 

system is not easily compromised. 

 

1.2 Problem Statement 
 

The Problem Statement representing this thesis is "Fault Tolerant Convergent Key 

management in Object-Based storage". The thesis proposes an architecture which 

tries to add fault tolerance and resilient features to the existing architecture. It also 

tries to manage the key storage servers such that key storage becomes independent 

with the number of users sharing the file/block. 

 

1.3 Organization of Thesis 
 

The entire report is comprises of five chapters including this chapter which states the 

introduction, motivations and problem statement. The rest of the thesis report is 

organized as follows: 

 

Chapter 2 describes the background details of the components used in our proposed 

architecture such as Storage, Object Deduplication along with its types (on the basis 

of various parameters), Distributed Hash Table and Erasure Encoding. 

 

Chapter 3 describes the related work done in the area of Encryption along with Object 

Deduplication. It describes the details about the encryption and the need for it. The 

Chapter also discusses about the System Requirements along with the current 

existing models. At last, a comparison is made between different existing 

approaches. 
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Chapter 4 discusses about the limitations of the current existing architectures. It then 

describes the approach to mitigate those issues along with the implementation details. 

At last, it shows the results achieved through experiments 

 

Chapter 5 finally concludes and discuss about the future work of our framework. 
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2 Background 
 

First section introduces and discusses the basic concepts of the types of storage services 

available by cloud providers and describe the use case for the type of storage service. It 

also emphasizes on the Object storage as deduplication uses Object storage to identify the 

duplicates by storing the extra metadata along with the Object itself.  

 

Second section discusses the basic concept of Data deduplication. What is the motivation 

behind it and what are the components where it could be applied along with the pros and 

cons of each type of data deduplication? It also discusses the chunking algorithms, which 

basically divide the file into multiple blocks of fixed/variable size along with the discussion 

of the advantages and disadvantages of each type of chunking techniques. At the end of 

this section, it also discusses the type of hashing techniques available in order to detect 

duplicates along with the prerequisites for choosing the hash function. 

 

Third section discusses the technique to implement dictionary in the distributed 

environment. Dictionary requires constant look up time and requires minimum keys to be 

rehashed due to failure of some of the nodes in the distributed environment. As it is very 

clear that Failure are the norms rather than the exceptions in the distributed environment. 

At the end of this section, it introduces consistent hashing algorithm which works very 

efficiently and rehashes a very few keys due to node failures in the distributed environment. 

 

Fourth section discusses the erasure coding technique to segregate the data into multiple 

fragments. Erasure coding technique is used in our proposed architecture in order to bring 

the fault tolerant feature to the entire system so that clients are still able to access the data 

even if he/she has access to some limited servers. 

2.1 Storage 
 

A primary service offered by IaaS cloud providers is persistent storage, which can be of 

several types according to applications' needs and storage requirements. The most 

important categories of cloud storage offerings are summarized below. 
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1. Block Storage: Provides block storage capabilities through a low-level computer 

bus interface, such as SCSI or ATA, over the network. An operating system using 

cloud-based block storage will operate on the block volume just like it would in a 

normal disk. This type of storage is indicated for persisting volumes on virtual 

machines hosted on IaaS clouds. Example: Amazon Elastic Block Store (EBS). 

2. Object Storage: Provides object storage capabilities through a simple get/put 

interface generally through a HTTP/REST protocol. This enables applications to 

store and retrieve objects from within the user-space, without the need to install and 

configure a file system. This type of storage is especially suitable for storing 

static/unstructured data, such as media files or virtual machines images. Example: 

Amazon Simple Storage Service (S3), Google Cloud Storage, Rackspace Cloud 

Files. 

3. Database Storage: Provides database storage capability, generally to a non-

relational database (NoSQL), through a simple query interface. This enables 

applications to use a database without the need for configuring a local database and 

dealing with database administration. This type of storage is useful for storing 

structured content or application's metadata, which is typically small in size. 

Example: Amazon DynamoDB, Google App Engine Datastore. 

2.1.1 Object Storage 

 

Object-based storage provides a simple and scalable model for cloud computing storage. 

While block and file-based storage are important for a wide-range of applications, a simpler 

object-based storage model is sufficient for storing many types of unstructured data, 

including media assets, application data and user-generated content. Moreover, the object-

based storage interface is completely decoupled from the actual underlying storage 

technology, allowing data to be transparently stored by the cloud provider. This 

independence allows the provider to migrate data, to account for server failures, or even 

replace the storage infrastructure without needing to reconfigure clients. The basic 

advantages of Object storage are: 

1. It is most suitable for unstructured data such as photos, videos, audios etc.  

2. Users have the ability to store extra metadata along with the object. 
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3. In Object Storage, user can directly access the object using its object id.  

 

Object Storage manages access to the files by storing the metadata per file basis. The 

advantage of storing the metadata could be files could be self descriptive and even by 

integrating access rights in metadata file, an authorized user can decipher an encrypted file 

only with his private key[11]. Several cloud providers currently offer an object-based 

storage service: Amazon Simple Storage Service(S3), Google Cloud Storage, Windows 

Azure Blob Storage, Rackspace Cloud Files, etc.  

2.2 Data deduplication 
 

Data deduplication comprises a set of compression techniques that improves space 

utilization in a storage system by reducing the amount of unnecessary redundant data. 

These techniques can also be used to avoid transfer of duplicated data between different 

hosts, thus improving bandwidth utilization. The thesis uses deduplication as a key 

technique to achieve storage and bandwidth savings in an object-based storage system. 

 

Deduplication is generally done by identifying duplicate chunks of data and keeping just 

one copy of these repeated chunks. New occurrences of chunks that were previously stored 

are replaced by a reference to the already stored data piece. These references are typically 

of negligible size when compared to the size of the redundant data. The technique can be 

applied within a file or object (intra-deduplication) or between different files (inter-

deduplication) [12]. 
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Figure 1: Showing how deduplication can save storage space[13] 

Above Fig. 1 indicates the advantage of deduplication. The left hand side shows 20 objects, 

which are deduplicated, and hence instead of storing all the 20 objects, 5 objects can be 

stored and hence storage space can be saved. All the objects of the same color have same 

hash value and hence can be detected as duplicates by the cloud storage provider. 

 

Duplicates in the storage servers are detected using hash. In hash-based deduplication, each 

data chunk is identified by a hash of its contents (chunk fingerprint). The deduplication is 

performed by comparing fingerprints of fresh data with fingerprints of previously stored 

data. When a match is found, it means the data is already stored and must not be stored 

again. In this case, the data piece is replaced by a metadata reference that indicates the 

fingerprint of the chunk that was previously stored. In order to ensure that any chunk will 

have a unique fingerprint, a secure cryptographic function, such as SHA-1 or SHA-2 must 

be used to hash chunks. This is due to the collision-resistance property of secure 

cryptographic functions that make it unfeasible for two data pieces to have exactly the same 

digests. 
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Since in this type of deduplication a data chunk is shared by many distinct files/objects, the 

server must track the files that reference a particular data chunk (back-references). This 

will enable the server to garbage collect chunks that are no longer referenced by any file. 

Reference tracking can be done by reference counting, where each data chunk has a counter 

indicating the number of files that currently reference that chunk. 

2.2.1 Choice of Hash Function 

 

A secure cryptographic hash function must be used to fingerprint data before it is inserted 

in the storage system. In order to increase deduplication efficiency, a single function must 

be used system-wide, in all clients and storage servers. Since the storage system will handle 

at least tens of terabytes and possibly petabytes of data, it is important that the chosen 

function is: 

 Collision-resistant: It should be very difficult for two different data chunks to have 

the same fingerprint; otherwise this could cause data-loss since the system is based 

on the assumption that each piece of data has a unique fingerprint. 

 Preimage-resistant: It should be very difficult to discover the fingerprint of a data 

chunk without having the actual chunk. Since the system doesn't authenticate data 

operations, a malicious user could fetch unauthorized pieces of data by guessing its 

fingerprint. 

 Second-preimage-resistant: It should be very difficult to discover two data chunks 

with the same fingerprint. Since the system is based in the assumption that each 

data chunk has a unique fingerprint, a malicious user could store bogus data with a 

valid fingerprint that is the same as popular data chunk (such as a song or VM 

image), preventing users to store or retrieve the valid data piece. 

2.2.2 Chunking 

 

An important aspect in hash-based deduplication systems is the technique used to break 

data containers (such as file or object) into chunks. This will directly influence the 

deduplication efficiency of a system, since the more chunks in common, the less data needs 

to be stored. A simple approach is to use an entire data container as the unit to perform the 
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digest calculation: whole-file hashing. Sub-file hashing or chunk-level deduplication splits 

a file into multiple chunks and performs a more fine-grained deduplication. The latter 

approach can use static or variable chunk sizes. Each of these file-splitting techniques are 

presented and discussed in the following subsections. 

 

1. Whole File Hashing (or File-level deduplication): This method of hash-based 

deduplication calculates the fingerprint of the entire file to identify duplicated 

content. The major benefit of this approach is increased throughput, since only a 

single hash calculation needs to be done per file. This technique is particularly 

efficient when there are many repeated files in a dataset. For instance, a music 

hosting service could use whole-file hashing to identify repeated MP3 files, which 

would be very common for popular songs. The downside of this approach is that it 

may yield little benefits in datasets with low file redundancy. Additionally, a single 

bit change in the file will generate a different file hash, requiring the whole file to 

be re-stored or re-transmitted. For this reason, this method of hash-based 

deduplication may not be efficient for files that change often.  

2. Fixed Chunk Hashing (or Static chunking): In this approach, the chunking 

algorithm splits the file into fixed-size chunks starting from the beginning of the 

file. A cryptographic hash function calculates the secure digest of each chunk, and 

the fingerprint is used to verify if the chunk is already present in the system. The 

benefits of this approach include ease of implementation and fast chunking 

performance. Moreover, the chunk size can be aligned with the disk block size to 

improve I/O performance. In comparison to whole file hashing, this approach has 

lower throughput since a hash-table must be consulted on each chunk to verify if it 

is already present in the system. Examples of storage systems that use static 

chunking are Venti[14] and Solaris ZFS. Another downside of this method is what 

is known as the boundary-shifting problem: if a single bit is appended to or removed 

from a file, the fingerprint of all chunks following the update will change. Thus, it 

is not resistant to changes in the deduplicated file.  
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Figure 2: Fixed Chunking showing how one character insertion can be a problem[15] 

 Above Fig. 2 shows the Fixed or Static chunking. In the above part it is clearly 

 visible that out of seven chunks, five of them are detected as duplicate and 

 hence on the cloud storage provider, a total of 9 (7 +2) chunks are stored. In the 

 below portion of the Fig. 2, it is shown that how fixed chunking can be a problem 

 in case of scenarios where one byte of data is added to a random position. Due 

 to such changes, all data preceding that change is shifted by one position and 

 hence duplicates are not been detected by the cloud storage provider. 

 

3. Variable Chunk Hashing (or Content-defined chunking): In variable chunking, 

a stream of bytes (such as a file or object) is subdivided by a rolling hash function 

that calculates chunk boundaries based on the file contents, rather than static 

locations across the file. For this reason, this method is also called content-defined 

chunking. After a variable-sized chunk boundary is defined, the chunk digest is 

calculated and used to verify if the chunk is already present in the system. One 

important property of content-defined chunking is that it has a high probability of 

generating the same chunks even if they are placed in different offsets within a file. 

This makes it resistant to the chunk boundary-shifting problem, because the 
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modification of a chunk does not change the fingerprint of remaining chunks. A 

popular method for variable chunking is Rabin fingerprinting which computes a 

modulo function across a rolling hash sliding window to define chunk boundaries. 

When the modulo is equal to a predetermined irreducible polynomial, a chunk 

boundary is determined. Variable chunk hashing is particularly efficient for 

deduplicating correlated data. Due to its resistance to the chunk boundary-shifting 

problem, it is also a good choice for dealing with dynamic data since changing a 

few bytes from the file does not change hash digests of other chunks. The major 

downside of this approach in comparison with the previous hash-based techniques 

is that it adds significant latency overhead to the deduplication process, due to the 

added step of calculating chunk boundaries. Variable chunk hashing is particularly 

efficient for deduplicating correlated data[29]. 

 

Figure 3: Variable Chunking showing how character insertion does not affect duplicate detection[15] 

  

 The above Fig. 3 shows the Variable size chunking. In the above part, it is shown 

 that while uploading 14 blocks (of variable size) of data on the storage device, 

 five of them are detected as duplicated and hence a total of 9 objects are stored 

 on the storage disk. In the below part of the Fig. 3, it is shown that how variable 
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 size chunking is adaptive to the changes to the file and still 4 of the blocks are 

 detected as duplicates. 

 

2.2.3 Deduplication placement 

 

The next dimension in the deduplication design space is related to where the deduplication 

process occurs: at the client (source) or at the deduplication appliance (target). 

1. Source Deduplication (Client-based): In source deduplication, the client 

performs the deduplication procedure and exchanges metadata with the server to 

verify data duplication. For instance, when hash-based deduplication is used, the 

client calculates the fingerprint of each file chunk and sends this information to the 

server, to verify if that data piece exists on the appliance. Only unique data chunks 

– chunks that weren't previously stored - need to be transferred to the server. When 

the chunk already exists, the server updates the reference tracking data structures 

and the operation is completed. The major benefit of client-based deduplication is 

the potential network bandwidth savings when data is duplicated, since only small 

metadata and unique data needs to be transferred over the network. One drawback 

of client-based deduplication is that clients must spend computing and I/O cycles 

to perform deduplication, what may be a problem in devices with limited 

computation capacity or battery-constrained. 
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Figure 4: Source Side Deduplication[16] 

 

 Fig. 4 shows how Deduplication agents when trying to upload the deduplicated 

 data are able to identify the duplicates. Backup server is only responsible for 

 storing the object. Dedup Agents sends the hash to the backup server before 

 sending the file and backup server replies to the Dedup agent about whether it 

 has the same file/block on the storage disks or not. If it is found, then Dedup 

 agents do not send that file/block to the backup server and hence end up saving 

 a lot of bandwidth. 

 

2. Target Deduplication (Deduplication Appliance-based): In target deduplication, 

the appliance performs the deduplication procedure. In this case, the appliance 

exposes a default storage interface and the client transfers the entire data that needs 

to be stored. In some cases, the client may even be unaware deduplication is being 

performed. When the deduplication appliance is located in another host and the 

communication is done over a network, this type of deduplication may be called 

server-based deduplication. Server-based deduplication is particularly beneficial 

for resource-constrained devices, since it consumes less computational resources 

from the client. Additionally, it is also a good choice to enable transparent 

deduplication on legacy applications or clients that cannot be upgraded, since 
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existing client code need not be modified to support target deduplication. A major 

drawback of server-side deduplication is that all data needs to be transferred over 

the network, so this approach provides no bandwidth savings. Examples of storage 

systems that use target deduplication is Venti[14]. 

 

Figure 5: Target Side Deduplication[16] 

 Fig. 5 shows the Target Side Deduplication process. Dedup agents/ Backup 

 agents upload the file to the Deduplication Appliance and then Appliance runs 

 the process of deduplication. Target Side Deduplication is beneficial when clients 

 do not have enough processing capability to run the deduplication process and 

 hence the process can be made to run on the storage servers.  

2.2.4 Deduplication Timing 

 

With respect to timing, a deduplication system may perform the deduplication when the 

data is being inserted (synchronous), or post-process the data after it is already stored in 

the system (asynchronous). 

1. Synchronous (Inline deduplication): When the deduplication procedure is 

performed during data insertion, before data is written to disk, it is called 

synchronous deduplication (also called inline, or in-band deduplication). This 

includes chunking the file or object, verifying if each data chunk is duplicated and 

generating metadata to represent the deduplicated file. The insert operation is 
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completed after the object metadata is generated and the unique chunks are written 

to disk. This approach matches well client-based deduplication, since the server is 

able to tell immediately if given data pieces are present in the system, avoiding 

transfer of duplicated data between the client and the server. One of the benefits of 

synchronous deduplication is that no additional storage space is required on 

deduplication appliances to stage objects for post-processing deduplication. 

Moreover, the system needs to maintain only one protocol for retrieving data, 

because it only deals with objects that were already deduplicated. However, these 

benefits come at the cost of increased latency during insertion operations, due to 

the overhead added by the deduplication process. However, part of this overhead 

can be mitigated by leveraging parallelism, for instance, by calculating fingerprints 

and transferring chunks in parallel. 

 

Figure 6: In-Line Deduplication[17] 

Fig. 6 shows the process of In-Line Deduplication. All data when uploaded to the 

storage servers is first passed through the deduplication process before getting 

stored on the storage disks. Hence some part of the data is detected as duplicate and 

only the data, which is unique, is stored on the storage disks. This has the advantage 

that storage always have unique data at any point of time. The disadvantage to this 

deduplication strategy is client has to wait for the deduplication process to complete 

before getting its data uploaded on the storage servers.  

 

2. Asynchronous (Offline deduplication): In order to avoid the extra step of 

deduplication in the write path, and its associated overheads, it is possible to 

perform deduplication in an asynchronous fashion. This method is also called 

offline or out-of-band deduplication. In this approach, the file/object is written to 
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the deduplication appliance as a whole to a special staging area. A background 

process deduplicates files that were recently inserted in the system, removing them 

from the staging area after the deduplication process is complete. The post-

processing step is generally triggered during periods of low system load, as not to 

affect latency of other incoming requests. Since this deduplication method does not 

add latency overhead to the data insertion operation, it is a good choice for latency-

critical applications, where the ingestion speed of data is a primary concern. The 

need to keep a staging area to store unprocessed data until it is deduplicated by a 

background process is one of the disadvantages of asynchronous deduplication. 

Another related disadvantage is to keep two protocols for reading data in the storage 

system: one for unprocessed data and another for deduplicated data. 

 

Figure 7: Offline Deduplication[17] 

 Fig. 7 shows the Offline Deduplication process. From the Fig. 7, it is clear that 

 data is first uploaded on the storage servers and then some daemon running on 

 the storage servers runs the deduplication algorithm to find the duplicates and 

 then optimize the storage.  

2.3 Distributed Hash Tables 
 

Distributed hash tables (DHTs) provide an abstraction that maps keys onto nodes in a 

distributed environment. The most popular DHT protocols7 were conceived in the context 

of peer-to-peer (P2P) systems, which is a distributed architecture for resource sharing over 

a network where nodes (peers) act as servers and clients simultaneously. A fundamental 

operation in these systems is locating a peer responsible for keeping a particular resource. 

Previous solutions either involved maintaining a centralized lookup server (Napster 1999) 
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or broadcasting a resource lookup message to all participants in the system (Gnutella 2000). 

While the former approach suffers from the single point of failure problem, both 

approaches present significant problems for scaling to a large number of nodes. DHTs were 

proposed in order to fill the gap of providing a scalable, decentralized solution for efficient 

resource lookup in a large distributed system. Several works have published solutions that 

leverage caching, bloom filters and chunk locality to mitigate the disk bottleneck 

problem[18], [19]. Some of these solutions can be integrated to further increase chunk 

lookup efficiency. Several distributed storage systems employ some form of distributed 

hash tables to efficiently distribute data across many nodes. The following hashing 

technique is used in order to implement distributed hash table in a distributed environment. 

2.3.1 Consistent Hashing:  

 

A straightforward method to map a set of keys into a set of nodes is a hash function. 

However, a change in the number of nodes causes nearly all keys to be remapped when a 

traditional hash function is used (such as: x -> (ax + b) mod p, where x is the key and p is 

the number of nodes in the system). When used in a distributed system this means that all 

resources that mapped to any node N, will now be mapped to node M, and possibly become 

inaccessible. Even though resources can be moved across nodes, this is an expensive 

operation which should be done as little as possible. In a dynamic distributed environment, 

where nodes come and go, it is essential that the hash function cause minimal disruption 

when the number of nodes changes. Consistent hashing is a hashing technique that remaps 

only O(K/N) keys (where K is the number of keys, and N the number of nodes) when the 

number of slots (nodes) changes. Moreover, the technique ensures that each node will be 

responsible for at most (1+∈)K/N keys with high probability, providing a degree of natural 

load balancing. Most distributed hash tables use some variant of consistent hashing to 

efficiently map keys to nodes. CEPH distributed file system[20] uses CRUSH[21] 

algorithm to identify the server storing the particular file. CRUSH[21], a variant of 

consistent hashing to dynamically map directory hierarchy to metadata servers based on 

current load. 

 

Consistent hashing treats the output of a hashing function as a circular ring with cardinality 
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m, where the largest hash value (2m - 1) wraps around the smallest value (0). Each node is 

assigned a random m-bit identifier, where m should be large enough to make the probability 

of two entities having the same identifier negligible. This identifier defines the “position” 

of the node in the ring. The node responsible for storing a given key k is found by hashing 

k to yield its position in the ring and then walking the ring clockwise to find the node with 

identifier equal or larger to the item's position (successor). Thus, each node is responsible 

for the region in the ring between itself and its predecessor. 

 

Fig. 8 shows an example consistent hashing ring for 3 nodes. Supposing that  m = 3, id(A) 

= 2, id(B) = 4, id(C) = 6 and the task is to locate the node responsible for key k. Initially 

the value of k is hashed to find its location in the ring (indicated by the arrow), for instance, 

hash(k) = 1. The next node in the ring following 1 has  identifier 2, so node A is 

responsible for storing k. 

 

 

Figure 8: Consistent hashing ring for 3 nodes. A, B and C. 

 

A major benefit of consistent hashing is that only the region a node is responsible for needs 

to be reassigned in case it leaves the system. Similarly, if a new node joins the system, it 



19 | P a g e  
 

will gain responsibility over a fraction of its successor's previous region. So, there is no 

disruption in other regions of the ring. 

 

In the example ring in Fig. 8, in case node A leaves the system, node B's region will grow 

and occupy the region that previously belonged to A. In this new configuration, the key k 

which previously mapped to node A will now map to node B.  

Keys which previously mapped to node C will remain unchanged. In case a new node D is 

placed in the region between C and A, it will now become responsible for the region 

between C and D, which previously belonged to A. The remaining regions remain 

unchanged. 

 

The basic algorithm can be enhanced by allowing each physical node to host multiple 

“virtual” nodes. In this approach, each virtual node has its own random identifier in the 

ring. This enhancement provides a more uniform coverage of the  identifier space, thus 

improving load balance across system nodes. The downside of this optimization is that 

each physical node needs to store information (routing tables, etc.) for each of its virtual 

nodes. 

2.4 Erasure Coding 
 

Erasure coding is a forward error correction (FEC) technique, which transforms a message 

consisting of k parts into a bigger message with n parts such that the original message can 

be constructed from a subset of n parts. The use cases where erasure coding plays an 

important role is storage systems where Availability of users data is a primary concern and 

hence storage servers has to be available at all the time. As the data has to be available at 

all the time, failures will be there and hence there has to be some fault tolerant mechanism 

in order to ensure the 24 * 7 availability of the data. Fragmentation of data (composed of 

k parts) into n segments is referred to as Encoding. 

The process to combine k parts together to form the original data is referred to as Decoding. 

Fig. 9 shows the basic flow diagram of Erasure Encoding. It has basically two components. 

Encoder & Decoder.  

Encoder: 
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Encoder takes the original data and divides it into multiple fragments. This encoding 

process requires Encoder to add some redundant data to the original data in order to divide 

the data into n fragments.  

 

Decoder: 

Decoder takes at least k fragments (k <= n) and can get the original data back by decoding 

it. 

 
Figure 9: Erasure Coding Flow Diagram 

Example 
 

Lets say you have the data and you want to divide your data into 5 segments. Erasure 

coding first adds some redundant information to the data in order to divide it into 5 

segments and the original data could be constructed if user is having access to at least 3 

segments. Erasure Coding encoder takes the original data and adds the redundant data and 
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divides the updated data into 5 fragments and gives it to the user. User can store these 5 

segments on to multiple servers. User can get the original data after accessing at least 3 

servers and get the fragments from them and hand it over to the Erasure encoding decoder. 

So by this mechanism, even if at any point of time, two of the servers are down due to 

power failure or network issues or any other issues, then user is still able to get back the 

original data. Below Fig. 10 shows the combined process. 

 

 
Figure 10: Erasure Coding example showing how original data is divided into 5 fragments and then can be 

constructed back from at least 3 fragments 

2.4.1 Limitation 

 

The basic limitation of Erasure Encoding is the overhead of adding redundant data to the 

original data. Although the additional storage added to the original data is max up to 40 

percent of the size of the original data, it is an extra space the user has to bear in order to 

build fault tolerant system. 
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3 RELATED WORK 
First section introduces and discusses what encryption is and what is the need of encryption 

and how it can be used to protect the confidentiality of the data? 

 

Second section discusses about what are the system requirements that are to be kept in 

mind while designing the architecture for the cloud storage. What requirements could be 

compromised and what are the effects of those compromises to the cloud storage provider. 

 

Third section discusses about the current approaches which are already available and are 

being used by some the cloud storage providers. This section also describes about what are 

the system requirements met from the current approaches along with their limitation.  

 

Fourth section makes a comparison of all the current approaches and combine them into a 

table so that all the current approaches benefits along with the limitations are available at 

a single page. 

3.1 Encryption 
 

Encryption is the process of encoding messages or information in such a way that only 

authorized parties can read it. Encryption does not of itself prevent interception, but denies 

the message content to the interceptor. In an encryption scheme, the intended 

communication information or message, referred to as plaintext, is encrypted using an 

encryption algorithm, generating cipher text that can only be read if decrypted. For 

technical reasons, an encryption scheme usually uses a pseudo-random encryption key 

generated by an algorithm. It is in principle possible to decrypt the message without 

possessing the key, but, for a well-designed encryption scheme, large computational 

resources and skill are required. An authorized recipient can easily decrypt the message 

with the key provided by the originator to recipients, but not to unauthorized interceptors 

[22]. 
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3.1.1 Need of Encryption 

 

While encryption doesn’t magically convey security, it can still be used to protect a user's 

identity and privacy [23]. If we are ever being watched, inadvertently or not, we can hide 

our data by using properly implemented crypto systems. According to cryptographer and 

security and privacy specialist Bruce Schneier, “Encryption works best if it is ubiquitous 

and automatic. It should be enabled for everything by default, not a feature you only turn 

on when you’re doing something you consider worth protecting.” 

3.2 System Requirements 
 

The storage providers seeks minimum of these requirements in order to serve the clients. 

Hence the following requirements must be met in order to save the storage space along 

with providing necessary features such as Fault tolerance etc. While designing the system, 

it should be viewed from the attackers perspective as well such that there are no loopholes 

in the system and attacker cannot easily get into the system and decipher the data. Even if 

the attacker has access to some components of the system, it should be very difficult to get 

the deciphered data and system should be able to detect the attackers attempt. Our analysis 

considers two types of attacks. One is that the attacker has the encrypted data and tries to 

break the system. Another is attacker has access to the storage server somehow and then 

tries to get some extra information in order to get the deciphered data. In order to design 

storage systems, the system must have the following features: 

1. Deduplication: Storage Providers should be able to detect the duplicates on the 

storage disks and store only one instance so that storage space can be utilized 

efficiently. 

2. Compromise resilience: It should be very difficult for the attacker to get the 

deciphered data even he/she gets access to a few components of the system. 

3. Brute-force attack resilience: Once attacker has the encrypted data, he/she can try 

to break the encryption or get the key by brute force attacks. The system should be 

designed in such a way such that such online brute force attacks are not possible 

and are detected by the system if someone tries to go for it. Such features could be 

added to the system by having some rate adaptive features so that client can access 

the storage server only after some epoch once client has already accessed it.  
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4. Fault tolerance: Clients should be able to access the contents that they uploaded on the 

storage servers at any point of time. Hence the storage servers should have 24 * 7 

availability. As it is very clear from the fact that in case of distributed storage systems, 

Failures are the norms rather than the exceptions and hence there is a probability that the 

file requested by client is stored on the server, which is currently down. The file should be 

served to the client in any case and hence there should be some form of replication on the 

servers so that client has always access to the data even in case of node failures or network 

failures. Sometimes this may also be a case when client has access to the encrypted data, 

but does not have access to the key and hence client is not able to decipher the encrypted 

data. Our architecture mainly focusses on how to get efficient replication of the key such 

that system is fault tolerant. 

 

3.3 Current Approaches 

3.3.1 Client Specific Keys: 

 

This scheme allows each of the clients to have the separate keys to encrypt their data. Each 

of the users will encrypt the file before getting it stored on the storage system using their 

own key. This scheme provides Compromise resilience against the untrusted users and 

brute force attack resilience against the attackers but the problem with this approach is 

duplicates are not detected and hence multiple instances of the same file are stored on the 

storage server.  
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Figure 11: Client Specific keys 

For example, lets have two users Alice and Bob. Both wants to store file f on the storage 

system S. Alice encrypts the file F using his own key KA and gets the Cipher text CA. 

Similarly Bob encrypts the file F using his own key KB and gets the  cipher text CB. 

Now when at the time of applying Object deduplication on CA and CB, it identifies both of 

them as different and stores both of them. Fig. 11 illustrates this example. 

3.3.2 Network Wide Key: 

 

This scheme allows each of the clients to share the key to encrypt their data. Each of the users 

will encrypt the file before getting it stored on the storage system using the shared key. 

This scheme allows brute force attack resilience against the attackers and Object 

deduplication also works but the scheme is  highly prune to Compromise resilience 

against the untrusted users. 
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Figure 12: Network Wide Key 

 

For example, lets have two users Alice and Bob. Both wants to store file f on the storage 

system S. Alice encrypts the file F using shared key K and gets the Cipher text C. Similarly 

Bob encrypts the file F using shared key K and gets the cipher text C. So when multiple 

users store C, it is detected as duplicate and hence only one instance is stored on the storage 

server. The bottleneck of this approach is if the key is compromised somehow to an 

untrusted user, then he/she can access the entire files and hence the system is prune to 

Compromise resilience. Fig. 12 illustrates this example. 

3.3.3 Convergent Encryption 

 

This scheme allows the users to have their own key. This encryption works in two phases 

and hence for each file, there are two objects stored on the storage server. 

1. The encrypted file 

2. Encrypted Convergent key 

 

Explanation of convergent key is as follows. The idea is to get the key from the data itself 

and use that key to encrypt the file. The key, which is fetched from the file, is referred to 
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as the convergent key. Convergent key can be obtained by computing the cryptographic 

hash value of the content of the data copy itself. Convergent key obtained for the same file 

from different users will be same and hence will produce the same encrypted file. 

Convergent key itself can be encrypted using users own secret key and hence encrypted 

convergent key for two users sharing the same file will be different and hence will not be 

able to detect as duplicates by the storage providers. As the keys are 48 bytes, this much 

storage overhead could be considered if the system is dealing with petabytes of data. Now 

let’s consider how the encryption and decryption flow works through a block diagram. Fig. 

13 & Fig. 14 illustrates the Encryption and Decryption process respectively. 

Encryption:  

 

 

Figure 13: Convergent Encryption Flow Diagram 
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Decryption:  

 

 

 

 

 

The advantage of this scheme is Object deduplication works and provides Compromise 

resilience against untrusted users. The disadvantage of this scheme is it is highly prune to 

brute force attacks, as messages are often predictable [24]. 

 

For example, lets have two users Alice and Bob. Both wants to store file f on the storage 

system S. Below are the steps done by Alice and Bob in order to encrypt and store file on 

storage server. Fig. 15 illustrates the computation done by Alice and Bob in case of 

Convergent Encryption. The number in green denotes the sequence of operations done by 

users i.e. Alice & Bob. 

Figure 14: Convergent Decryption Flow Diagram 
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Figure 15: Convergent Encryption Example 

Alice 

 Computes the cryptographic hash of the file H(f) 

 Use the cryptographic hash H(f) as the convergent key to encrypt the file itself and 

gets the cipher text C1. (C1 <- E(H(f),f)) 

 Alice also encrypts the convergent key using his own key KA and gets C2
A.         (C2

A 

<- E(KA,H(f)))  

 Stores C1 and C2
A on the storage server. 

 

Bob 

 Computes the cryptographic hash of the file H(f) 

 Use the cryptographic hash H(f) as the convergent key to encrypt the file itself and 

gets the cipher text C1. (C1 <- E(H(f),f)) 

 Alice also encrypts the convergent key using his own key KB and gets C2
B.         (C2

B 

<- E(KB,H(f)))  

 Stores C1 and C2
B on the storage server. 

 

Hence C1 is detected as duplicate on the storage server and hence stored only once. 

Whereas C2
A and C2

B are different because they are encrypted using clients specific keys. 
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Storage server stores C1, C2
A and C2

B. C2
A and C2

B are overheads but they are very tiny 

and hence could be considered. 

3.3.3.1 Brute force attack 

 

The dirty secret of convergent encryption is brute force attacks. The idea behind brute force 

attacks is that data that is being uploaded by the clients on the storage server is often 

predictable. Hence if the attacker has access to the encrypted data, then using the message 

predictability, he can apply the brute force attacks and get the deciphered data. Brute force 

attack algorithm could be written as follows: 

 

 
Figure 16: Brute force Attacks in Convergent Encryption 

 

It could be seen from the above algorithm (Fig. 16) that the above algorithm runs in time 

proportional to |S| where |S| is the set of predicted deciphered data. Hence, Convergent 

encryption strategy works only when |S| is too large to exhaust. But the bottleneck is Real 

files are often predictable. 

3.4 DUPLESS[25] 

A secure deduplicated storage architecture resisting brute-force attacks and realizes it in a 

system referred to as the DUPLESS (Duplicateless Encryption for Simple Storage) 

[25],[26]. The architecture uses the basic idea of convergent encryption, but instead of 
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fetching the key from the data itself, fetches the key from a key server via an oblivious 

Pseudo random function (PRF) protocol. 

In the DUPLESS architecture, client first interacts with the key server (KS) in order to get 

the key. It then encrypts the data using this key and gets the ciphered data. Client also 

encrypts the key using the client’s own secret key and hence uploads both the parts on the 

storage servers. Client transfers the hash of the file to the key server in order to get the key. 

Key server obliviously transforms the hash into some other hash using a PRF function. The 

main purpose of Key server is as follows: 

1. On receiving the request (Request to get the key) from the client for the first time, 

it authenticates the client and associates a session id to it. The idea behind 

associating session id is that it can resist brute-force attacks. That is between two 

requests, it associates that there should be a minimum epoch duration in order for 

the request to be fulfilled.  

2. Key server then calculates the key from the hash obtained from the client using 

Pseudo random function and returns the key to the client. 

 

Below is the diagram (Fig. 17) illustrating the DUPLESS architecture and showing the files 

uploaded by two users Alice and Bob. 

 

 

Figure 17: DUPLESS Architecture 
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Alice 

 Computes the cryptographic hash of the file H(f) 

 Sends the H(f) to the Key server and waits for the response from the Keyserver to 

get the key (K). 

 Use the K as the convergent key to encrypt the file itself and gets the cipher text 

C1. (C1 <- E(K,f)) 

 Alice also encrypts the convergent key using his own key KA and gets C2
A.           

(C2
A <- E(KA,H(f)))  

 Stores C1 and C2
A on the storage server. 

 

Bob 

 Computes the cryptographic hash of the file H(f) 

 Sends the H(f) to the Key server and waits for the response from the Keyserver to 

get the key (K). 

 Use the cryptographic hash H(f) as the convergent key to encrypt the file itself and 

gets the cipher text C1. (C1 <- E(H(f),f)) 

 Alice also encrypts the convergent key using his own key KB and gets C2
B.           

(C2
B <- E(KB,H(f)))  

 Stores C1 and C2
B on the storage server. 

 

Key Server (KS) 

 Gets the request from the client containing H(f). 

 If it is the first request, then it authenticates the client and then associates a session 

identifier to it. Sessions are maintained in order to restrict the brute-force attacks.  

 Key server obliviously applies PRF to the hash value and calculates the key. 

 Key is returned to the client. 

 

Hence C1 is detected as duplicate on the storage server and hence stored only once. 

Whereas C2
A and C2

B are different because they are encrypted using clients specific keys. 

Storage server stores C1, C2
A and C2

B.  
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3.4.1 Limitations of DUPLESS: 

 Lets say there are 100 users trying to upload the same file. Although the encrypted file 

generated by 100 users is same and detected as duplicate on the storage servers. But the 

problem is encrypted convergent key for all the 100 users is different and hence 100 keys 

are stored on the storage servers. The problem becomes much more worse when there are 

million of users sharing the same file. Lets say user tries to store 1TB of data with all unique 

blocks of size 4KB each, and that each convergent key is the hash value of SHA-256 which 

is used by dropbox for deduplication. Then the total size of keys will be 8GB. The number 

of keys is further multiplied by the number of users and hence key management becomes 

an issue as this approach does not appears to be scalable [27]. 

 If the attacker has somehow got an access to the storage server along with the client 

credentials, then he/she has both the key and the content stored on the storage server and 

hence could get the deciphered text. 
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3.5 Comparison 

 

Below is the table mentioning all the features of all the above-mentioned architectures. 

Table 1: Table showing comparison of different encryption techniques 

 SYSTEMS 

Property 
Client Specific 

Keys 

Network Wide 

Key 

Convergent 

Encryption 
DupLESS 

Deduplication N Y Y Y 

Compromise 

Resilience 
Y N Y Y 

Brute-force 

attack 

resilience 

Y Y N Y 

Fault tolerance N N N N 

Keys efficient 

& Reliable 

storage 

N Y N N 
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4 Proposed Architecture 
 

None of the Architecture that have been discussed in the previous section provides 

Deduplication along with Compromise resilience, Brute-force attack resilience and ability 

to store the key and content separately and efficiently such that storage does not scale 

linearly with the number of users uploading the duplicated data. Client specific keys 

architecture provides Compromise resilience, Brute-force attack resilience but does not 

provide deduplication facility on the encrypted data. Network wide key architecture 

provides deduplication facility and Brute-force attack resilience but does not provide 

Compromise resilience. Convergent Encryption provides deduplication facility and 

Compromise resilience but does not provide Brute-force attack resilience. Dupless 

architecture addressed all the three basic issues i.e. Deduplication along with Compromise 

resilience, Brute-force attack resilience but has the limitation that the key storage scales 

linearly with the number of users sharing the duplicated file or block. 

 

Limitations of Dupless: 

1. Key storage requirements were linearly dependent on the number of users sharing 

the duplicated data. 

2. Key and content are stored on the single storage server system and hence if there is 

a high probability that if attacker is able to compromise the storage servers 

somehow then he/she has both the key along with the encrypted file and hence 

security is compromised. 

3. If the storage server is down, user has no access to any file. 

 

Our proposed architecture addresses all the limitations of the Dupless architecture. Our 

architecture considers two types of storage servers. One for storing the encrypted data and 

the other for storing the fragments of the key. By separating the key and content, attacker 

has to gain access to both types of servers in order to get the decrypted file. Moreover, key 

is segregated into multiple fragments so that it becomes difficult for the attacker to get 

some fragments from which key could be constructed. Key is divided into multiple 
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fragments through Erasure Encoding mechanism that has been discussed in previous 

section.  

 

Dividing the key into multiple fragments and storing each fragment on different server has 

the following advantages: 

1. Attacker has to gain access to a minimum of few key servers (configurable) in order 

to get the key and also gain access to encrypted file in order to get the decrypted 

file (decrypting it from the key). 

2. Storing different fragments on different servers provides fault tolerant feature to the 

system. So user is able to access the files even if he/she is able to access k out of n 

key servers. 

4.1 Architectural Diagram 
 

 
Figure 18: Proposed Architecture Diagram 
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Fig. 18 shows the architectural diagram of the proposed architecture. The user is trying to 

upload a file on the storage server and number in the green shows how the file is uploaded 

on the storage server.  

 

Other than the storage servers, our proposed architecture have a key splitting server (KSS), 

which serves the purpose of generating the key from the hash value of the file and splitting 

it into multiple fragments. So a client would send Hash value H to the KSS and receives 

back multiple fragments of the key. Key is generated at KSS as K' -> F(K,H). After client 

receives those fragments, it would simply encrypt file with the key(got after combining 

those fragments) and store the encrypted file on the storage server and stores each fragment 

on different key storage server. The above approach might prove unsatisfying from a 

security perspective. The KSS could be figured out as a single point of failure, violating 

our goal of compromise resilience. So an attacker may obtain hashes of files after gaining 

access to the KSS, and can recover files with brute force attacks.  

 

To eliminate such attacks, architecture employes an oblivious PRF (OPRF) protocol 

between the KSS and the client, which ensures that KSS learns nothing about client inputs 

or fragments that are output from the KSS and the client learns nothing about the key. Other 

than this, KSS also performs client integrity check by verifying its identity and checking it 

against some database in order to identify whether client is a legitimate user or not. KSS 

also performs rate-limiting strategies that limit client queries to slow down online brute-

force attacks. Communication between client and KSS is implemented with low latency 

protocols for the sake of better performance, which is important because the critical path 

during encryption includes interaction with a KSS. In order for the KSS to handle a 

reasonably a high request volume, the protocol should be light weight. 

 

Our implementation assumption is that each client has a unique certificate and the KSS 

verifies this certificate before proceeding for key generation. All communication to the 

KSS happens over HTTPS. KSS exposes an interface with two procedures. KSInit and 

KSReq. When the client makes the request to the KSS for the first time, it makes the KSInit 

request and KSS responds to the client and exchanges the following information such as 
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oblivious PRF public key, hash function identifier (SHA-256), random session identifier, 

and a random session key. KSS also initiates a sequence number for the client initialized 

to zero. KSS maintains two mappings, one for mapping session identifier with keys and 

the other for mapping session identifier with sequence numbers. Each session lasts for a 

fixed time period (20 mins in our implementation) and mappings are removed after the 

session expires. Server implementation have three threads running on KSS out of which 

one thread is doing the task of cleaning the mappings.  

 

To get the key fragments, client first updates the sequence number (N <- N + 1) and then 

computes a MAC tag using its session key as follows. T <- HMAC[H](Ks ,S || N || X) where 

X is blinded hash value of the file and sends the concatenation (S || N || X || T) to the KSS 

in a single UDP packet. The KSS fetches S, N, X and T and looks up KS and NS. It 

performs some checks such as N > NS and verifies correctness of the MAC T. If the packet 

is malformed or if some of the check fails, then the KSS drops the packet without any 

further action. If all the checks pass, the KSS sends the OPRF protocol response in a single 

UDP packet. 

 

The client waits for time tR after sending a KSReq packet before triggering timeout 

behavior. In our implementation, this involves retrying the same request twice more with 

time tR between the tries, incrementing the sequence number each time. After three 

attempts, the client will try to initiate a new session, again timing out after tR units. If this 

step fails, the client believes the KS to be offline. 

 

Thus a client to upload a file M on to the storage server will engage in the OPRF protocol 

to the KSS to compute fragments of the keys (K1,K2,K3,K4......Kn). Client constructs the 

key from the fragments (K <- Erasure_Encoding (K1,K2,K3...Kk)) and then encrypts the file 

using the key. C <- E(K,M) and stores C on the storage server. Should there have been the 

other client uploading the same file, same cipher text is generated and hence storage server 

is able to detect it as the duplicate and hence store it only once. Moreover same key 

fragments are generated for the client trying to upload the same file and hence fragments 

are also detected as duplicates and hence are stored only once. Hence key fragments have 
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no dependency on the number of users sharing the same file and have a single instance 

unlike dupless where keys storage scales linearly with the number of users sharing that 

file/block. 

4.2 Implementation Details 
 

I have created this architecture on top of dropbox, which uses deduplication to save storage 

space. It could be customized to use Google drive as well but the implementation till now 

is being done on top of dropbox. Any Distributed file system storage can be used as storage 

structure as long as it is adhering to the following requirements: 

It should expose API for: 

1. Getting the file contents and its metadata of the directory specified. 

2. It should expose API to delete the file from the storage. 

3. It should expose API to upload the file on the storage media. 

4. It should expose API to download the file from the storage media. 

Implementation has been done in python. There are 6 dropbox accounts used in order to 

store the contents and the keys. One of the dropbox accounts is used to store the contents 

of the files and the other 5 five dropbox accounts are used to store the fragments of the 

keys. Key Splitting server is also implemented in python. 

 

Uploading flow:  

1. User creates the hash of the file and sends the hash to the Key splitting server. 

2. Key splitting server first authenticates the client and then obliviously creates the 

key by applying Pseudo random function (PRF) to the hash of the file sent by the 

client. 

3. Key splitting server then uses this key and pass this to the Erasure Encoding 

module, which creates the 5 fragments of the key. 

4. All the five fragments are sent to the client. 

5. Client constructs the key back using any 3 fragments and encrypts the file using 

that key. The key is referred to as the convergent key. 

6. Client sends the encrypted file to one of the designated dropbox account and sends 

each fragment to each one of the dropbox accounts. 
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7. User gets a confirmation that file has been uploaded to the server. 

 

Downloading flow: 

1. User requests for a file. File name is searched on the 3 key servers (dropbox 

accounts) that are randomly selected. If any of the dropbox account is inaccessible 

due to some issues, other two are tried in order to get 3 fragments from the key 

servers. 

2. Client also fetches the encrypted file from the storage server via other thread. 

3. Client then invokes the decoder of the Erasure encoding module to get the key from 

the fragments. 

4. Client then decrypts the file from the key obtained. 

4.3 Client Implementation 
 

A command line tool has been designed in order to deal with the files to be uploaded on 

the dropbox storage server. A number of operations are available to the client to deal with 

the files such as  

1. EOF command : to exit the command prompt. Fig. 19 shows the screenshot. 

 

Figure 19: EOF command screenshot 

2. mdkir command : to create the directory on the dropbox into the current working 

directory. Fig. 20, Fig. 21, Fig. 22 shows the screenshot. 

 

Figure 20: mkdir command screenshot 

 User can check into their dropbox account that this creates the folder into  current 

working directory. I have attached the screenshot of the dropbox  account before (Fig. 

21) the command was run and after (Fig. 22) the command  was run. Note  that the folder 

name will be encoded and hence will not be shown  as ronak into the dropbox account. 
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Figure 21: Dropbox screenshot before mkdir 

 

Figure 22: Dropbox screenshot after mkdir 

3. cd <relative directory> command: to change the current working directory. cd 

command fails when you wish to change the current working directory to a 

directory, which actually do not exist. cd command only accepts the relative folder 

paths. Fig. 23 & Fig. 24 shows the screenshot. 

 

Figure 23: cd command success when directory exists 

 

Figure 24: cd command failed when directory does not exist on the Storage servers(dropbox) 

4. upload <source file name> <remote file name> command : to upload the file on the 

storage servers. After the successful completion run of this command, you can 

check the dropbox accounts to contain the content file in the current working 

directory. You can also check the key server dropbox accounts to contain the 

fragments of the key file. I have attached the screenshots of main dropbox account 

(Fig. 26) along with screenshot of one of the key storage server dropbox account 

(Fig. 27). Fig. 25 shows the command prompt screenshot. 

 

Figure 25: upload command screenshot 
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Figure 26: Storage server showing the uploaded content file 

 
Figure 27: Key storage server showing the fragment of the key file 

5. download <source file name> <remote file name> command : to download the file 

from the current working directory. After the download you will find the decrypted 

file downloaded on you machine with the name given in the <source file name> 

attribute of the command. Fig. 28 shows the command prompt screenshot. Fig. 29 

shows the folder screenshot with the downloaded file being highlighted. 

 

Figure 28: download command screenshot 

 
Figure 29: File downloaded in the directory after download command successfully executed 

 

Note: You can press the tab key in order to see the list of available commands. 

 

A client must have two types of credentials. One for the dropbox accounts and the other 

for the authentication to the Key Splitting server. KSS credentials can be put into SQL 

database uploaded on the KSS. A client must generate an APP on the dropbox and replace 
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the APP_KEY and APP_SECRET in the const.py file. All the configuration details are 

mentioned in the const.py file.  

 

Client must also generate self-signed certificate in order to be authenticated to the key 

splitting server. The client can generate the self-signed certificate using the openssl [28] 

module.  Our implementation uses AES as the encryption scheme. Any Symmetric key 

based algorithm can be used to encrypt the files. 

4.4 Results 

 

The Key Splitting Server runs on the same machine as the client and the machine has the 

configuration : 2.3 GHz Intel Core i7 with 16GB RAM. The entire architecture has been 

tested on Ubuntu 14.04 and the code is uploaded on the gitlab. README contains all the 

steps in order to set up the environment. 

 

We have taken three type of sample file size of 1KB, 2KB, 7KB. We have copied these 

files into separate folders and replicated it one more time. Hence each folder has 2 same 

files. We have taken out the results using the python timeit module to see the time taken 

by the scripts to upload the file on the server. We have compared the results with the 

convergent encryption and Dupless architecture. The script basically tries to upload all the 

same files on to the dropbox. The first file is basically uploaded and the next file is detected 

as duplicate. Although detection of duplicates is completely transparent to the client, but 

the dropbox documentation says that it performs the deduplication. Hence we have 

assumed that dropbox saved only one instance of the file.  
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Figure 30: Graph showing upload time of files using various architecture 

 

Fig. 30 shows the upload time of various sizes of files on the storage server in the encrypted 

form using different architectures. From the table in the Fig. 30, it is clear that proposed 

architecture takes a bit long as it has to perform the erasure encoding to divide the key into 

fragments and upload these fragments on the key storage server. We have performed the 

experiments around 100 times and see that the proposed architecture takes 20% – 35% 

more time in comparison to Convergent Encryption to upload the file. But with this 

overhead involved, the system is fault tolerant enough to service the clients even if some 

of the key storage servers are down. Moreover, the system is resilient enough against the 

insider attacks where unauthorized users can gain access to the key and the data as now the 

data and key are separately stored. 
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Table 2: Table showing the number of bytes taken on the storage against the number of clients sharing the 

file/block for the file upload of 390 bytes 

Size of Upload = 390 Bytes 

Number of 

Shares 

Convergent Encryption 

(Bytes) 

Proposed_Architecture 

(Bytes) 

1 438 480 

2 486 480 

3 534 480 

4 582 480 

100 5190 480 

1000 48390 480 

 

Table 3: Table showing the number of bytes taken on the storage against the number of clients sharing the 

file/block for the file upload of 6482 bytes 

Size of Upload = 6482 Bytes 

Number of 
Shares 

Convergent Encryption 
(Bytes) 

Proposed_Architecture 
(Bytes) 

1 6529.92 6572 

2 6577.92 6572 

3 6625.92 6572 

4 6673.92 6572 

100 11281.92 6572 

1000 54481.92 6572 
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Figure 31: Graph representing the relationship between amount of space used vs the number of clients using the 

file/block for different architecture 

 

Fig. 31 shows that in the proposed architecture, the storage size is not dependent on the 

number of clients sharing that storage whereas in the convergent encryption, it is linearly 

dependent on the number of clients sharing that file. 

 

The current implementation of proposed architecture considers dividing the key into five 

fragments. Fault tolerance of the system with respect to the key servers is measured by 

calculating the probability of availability of at least three servers in order to construct the 
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original key given the probability of failing of a given server. The current implementation 

considers each server to be same and have the same probability of failing. 

 

Table 4: Table showing the Availability of the convergent key with respect to the probability of failing 
of a key server 

Probability of server 
being up 

Probability of server being 
down 

Availability 

0.1 0.9 0.00856 

0.2 0.8 0.05792 

0.3 0.7 0.16308 

0.4 0.6 0.31744 

0.5 0.5 0.5 

0.6 0.4 0.68256 

0.7 0.3 0.83692 

0.8 0.2 0.94208 

0.9 0.1 0.99144 

 

 

The Availability of the convergent key is calculated as: 

∑ (
5

𝑘
)

𝑘=3 𝑡𝑜 5

 𝑝𝑘(1 − 𝑝)5−𝑘 …………………....... (1) 

 

Fig. 32 shows the graph between the Availability and the the probability of failing of 

each server. 
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Figure 32: Graph representing Fault Tolerance behavior of the proposed architecture 
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5 CONCLUSION & FUTURE-WORK 

5.1 CONCLUSION 
The proposed architecture provides efficient fault tolerant system to the end user by 

segregating the key and the content stored on the storage servers. Moreover, the proposed 

architecture also provides key storage in such a way such that it is independent of the 

number of shares from different users. Hence a lot of space is saved in case when number 

of users sharing a file are very large. The architecture also provides resilience against the 

attacks in which attackers can access any one server to get the cipher text. As the key and 

content are stored separately, attacker needs to access four servers in order to get the try 

the possibility of deciphering the ciphered content. 

5.2 FUTURE WORK 
Our implementation relies on the fact that dropbox does the process of deduplication. Even 

the results that we mentioned in the results section are in accordance with the deduplication. 

Storage results could not be retrieved, as dropbox deduplication is transparent to the clients. 

Hence clients are actually not aware of the fact whether the data that they uploaded on the 

storage server is actually deduplicated or not.  

 

Setting up own storage distributed file system and enabling deduplication on it could give 

better results. Even multiple types of data in various formats could be tried and see what 

block sizes fits best for which type of data. Currently we have used dropbox accounts to 

separate key and content but ideally our requirement was to segregate both of them on 

different storage file system. CEPH[20], an open source distributed file system can really 

be a good point to consider as it supports all types of storage. Moreover a variety of support 

is available in case of any issues in deployment.  

 

Different erasure coding techniques can be tried in order to reduce the time taken by the 

key splitting server to split the key into multiple fragments. Some of the erasure encoding 

available are:  

 Vandermonde Reed-Solomon encoding 

 Cauchy Reed-Solomon encoding 
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 Flat-XOR based HD combination codes 

 Intel Storage Acceleration Library (ISA-L) - SIMD accelerated Erasure Coding 

 NTT Lab Japan’s Erasure Coding 
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6 Publications 
 

“Fault tolerant optimized convergent key management system in Object Storage Based 

Cloud Environment” abstract has been accepted in the IEEE Cloud Computing for 

Emerging Markets (CCEM) 2016 conference to be held on 19 – 21 October 2016 in 

Bangalore, India. 
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