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ABSTRACT 

In this thesis, images of 2 D velocity models are reconstructed using Full Waveform 

Inversion which is based on the acoustic wave equation in both time and frequency domain. I 

have written MATLAB codes for Full Waveform Inversion (FWI) and then tested on few 

synthetic models. The main objective was to evaluate the capabilities of FWI to estimate 

velocities from the acquired synthetic data.  

Standard seismic imaging tool such as Travel Time Tomography usually fail when 

applied to a complex geological structure. Indeed, the velocity contrast between the area of 

interest and the surroundings usually complicates the propagation of the seismic wave, thus 

making the imaging of the target body quite difficult. Full waveform Inversion (FWI) has shown 

the capabilities to image even in complicated subsurface in past years and emerged as a valuable 

seismic imaging tool which is now widely used in exploration industries. 

In this thesis, firstly, the FWI code is tested on velocity models such as high velocity 

layer and low velocity layer models. These models represent a very familiar velocity structure 

found on near surface hence, dealing with these models is pretty reasonable. After successful 

testing, the FWI code was also tested on complicated Marmousi model in both time and 

frequency domain. One of the biggest contributions of the Marmousi model is that it 

demonstrated the limitations of first-arrival travel times in imaging complex media. 

Specifically, Geoltrain and Brac (1993) showed that multi-arrival travel times are needed in 

order to properly image the Marmousi model. In portions of the Marmousi model, or any other 

complex model, the first arrival is not necessarily the most energetic. Therefore, reflected energy 

from key horizons, such as the top of the reservoir, are not properly imaged by using only first 

arrival travel times (Alkhalifah, 1998).  

http://sepwww.stanford.edu/public/docs/sep97/tariq4/paper_html/node9.html#GEO58-04-05640575
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The final results were then compared with the real velocity model to analyze the amount 

of recovered velocities. However, in order to initiate FWI an initial model is required which was 

derived from smoothing the true velocity model by using Gaussian smoother. This is an easy 

way to ensure an adequate starting model, as the FWI method is known to be sensitive on 

starting model.  

The results in this master thesis demonstrate that image reconstruction done by FWI both 

in time and frequency domain matches very well with the true model used in this thesis. For the 

future, applying FWI to real data from more complex geological medium and developing a 

migration tool and test the effect of FWI on a migrated image, are interesting challenges. 
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CHAPTER 1 

 

INTRODUCTION 
 

 

Seismic imaging is a tool that bounces acoustic waves off subsurface rock structures to 

reveal possible crude oil and natural gas bearing formations. An ultrasensitive device called 

geophones is used to record those acoustic waves as they echo within the earth (Fig. 1.1). By 

studying the echoes, petroleum geologists seek to calculate the depth and structures of buried 

geologic formations. This analysis may help them identify hydrocarbon reservoirs hidden 

beneath the earth's surface. 

 

 

Figure 1.1: A Vibroseis source is used to image the subsurface using reflected events recorded 

by geophone. These records are called as seismogram. (Source: 

http://www.eni.com/en_IT/innovation-technology/technological-focus/seismic-imaging/seismic-

imaging.shtml)  

 

Recently, seismic depth imaging has become the preferred tool for seismic imaging of 

complex geological structures. This method starts with a smooth background velocity model 

before determining the short wavelength components of the structure by pre-stack depth 
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migration. The pre-stack depth migration method aims to locate the reflectors to their correct 

position in space. To be successful, this technique requires precise knowledge of the velocities of 

the ground. The estimation of a velocity model is a difficult process, especially when velocities 

changes rapidly in both lateral and vertical directions. Full-waveform inversion (FWI) is a 

seismic imaging tool for building such velocity models (Thomassen, 2008).  

In this thesis, I wrote FWI‟s MATLAB code to investigate the capabilities and the limits 

of this method from synthetic data. In addition, the theory and a general introduction about full-

waveform inversion are also presented in this thesis. 

 

1.1 Presentation of the synthetic 2D velocity models 

Although, a few velocity models such as low velocity layer and high velocity layer 

models are used to test code, however, the main aim was to recover the velocities from the 

complicated Marmousi model.   

The original Marmousi model was built to resemble an overall continental drift 

geological setting. Numerous large normal faults were created as a result of this drift. The 

geometry of the Marmousi is based somewhat on a profile of the North Quenguela through the 

Cuanza basin (Versteeg, 1993).  

The original model (Fig. 1.2) is nearly 9 Km long and 3 Km in depth. The target zone of 

reservoir located at a depth of about 2500 m.  The model contains many reflectors, steep dips, 

and strong velocity variations in both the lateral and the vertical direction (with a minimum 

velocity of 1500 m/s and a maximum of 5500 m/s). The test model, shown in Figure 1.3, is 

however defined by 722 m long and 200 m in depth, re-sampled on 1 x 1m regular grid space 

(with a minimum velocity of 1.5 m/s and a maximum of 4.7 m/s). This modified model will be 

http://sepwww.stanford.edu/public/docs/sep97/tariq4/paper_html/node9.html#versteeg93
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referred as True Model. This necessary modification was done in order to have a reasonable size 

of model to handle. Both the Time Domain and Frequency domain FWI schemes used in this 

study will use Fig. 1.3 to estimate the capabilities of their algorithms. 

 

 

Figure 1.2: Original Marmousi Model (Source: Institut Français du Pétrole 

http://www.ifp.fr/IFP/en/aa.htm) 

 

 

Figure 1.3: Mordified Marmousi Model  

 

In Fig. 1.3 contains a low velocity water layer on top of the model from 1-25-m. 

Marmosui model is known as a benchmark model to test migration algorithm.  
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1.2 Contents of the Thesis 

In Chapter 2 of this thesis the theory and general introduction to the inverse problems are 

discussed. The seismic inverse problem is presented, and why this problem is of any interest is 

discussed. Forward and Inverse modelling process of the seismic inverse problem are also 

discusses which includes some technique on how to solve it.   

Chapter 3 presents the theory and methodology on how to perform Full Waveform 

Inversion in time domain. First, the reliability of the method was tasted by performing the 

algorithm on two simple models. Then numerical computation of this method was performed on 

Marmousi model, i.e benchmark model to test migration algorithm. The smoothed version of 

Marmousi model was taken as initial model. Inversion results are analyzed and discussed. 

Chapter 4 discusses the frequency domain version of the Chapter 3. The benchmark 

model and initial model were kept same in this method as were in Chapter 3. Some key elements 

of the MATLAB code are also presented. Importance of frequencies and its sensitivity are 

included in this chapter. Inversion results are analyses and discussed.  

Conclusions are presented in Chapter 6.    
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CHAPTER 2 

 

GEOPHYSICAL INVERSE THEORY AND PROBLEMS 

 
 

An inverse problem in Geophysics is the process of calculating from the set of 

observations the parameters or factors that produced them: for example, calculating the Earth‟s 

density from acquired data of its gravity field. This is the inverse of a forward problem, which 

starts with the causes and then calculates the results.  

 

2.1 INTRODUCTION 

Seismic inversion, in Geophysics, is the process of transforming seismic reflection data 

into a quantitative rock-property such as velocity, density etc. of a reservoir. The seismic inverse 

problem can be conceptually formulated as shown in Figure 2.1:  

 

 

Figure 2.1: A simple sketch representing the relationship between forward and inverse 

problems. 

 

The transformation from the observed data to subsurface parameters (or vice versa) is a 

result of the interaction of source wave-field with the medium that we wish to infer parameters 
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about. In other words, the transformation is the physics that relates the subsurface parameters to 

the observed data. In case of Seismic, our physical system is seismic waves (from active or 

passive source), the governing equation is wave equation, parameter is velocity (or density), and 

the observed data is pressure wave-field. The relationship between data and model can either be 

linear or non-linear as described by the following Equations (Chadan et al., 1977)  

𝒅 = 𝐺𝒎                         (2.1) 

𝒅 = 𝑔(𝒎)                         (2.2) 

Where 𝐺  (linear) and 𝑔  (non-linear) are operators describing the explicit relationship 

between the observed data, 𝒅, and model parameters 𝒎, which is known. 

Equation (2.1) and (2.2) represents the forward modeling process i.e. computing the data 

from a known model, while Equation (2.3) represents the backward or inverse modeling process 

if 𝑔 is invertible.  

𝒎 = 𝑔−1(𝒅                        (2.3)  

Inverse problems are typically ill posed in-contrast to the well posed problems which are 

more typical where the model parameters are known when modeling physical situation. Of the 

three conditions given by Hadamard (1902) (stability of the solutions, uniqueness, existence) the 

condition of stability is most usually violated.  

Non uniqueness of inverse problems is caused by the non-linear relation between data 

and the model parameters of the inverse problem and Geophysical problems are almost always 

non-linear (Chabert, 2007). The solution of an inverse problem is therefore not necessarily the 

true solution, but a solution that explains the data.  

In Equation (2.3), if 𝑔 is weekly non-linear, the problem can be linearised and a solution 

can be obtained by local methods (discussed in section 2.3.1). However, in case of strong non-
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linear relationship between data and model parameters, global methods (discussed in section 

2.3.2) are used to find a solution for inverse problem.   

 

2.2 THE FORWARD MODELING 

Assuming a model and then mathematically simulate seismic energy spreading through 

that model at a given time and position is forward modeling. In this thesis, I used acoustic wave 

equation for solving forward modeling. Equation (2.4) represents the non-homogeneous acoustic 

wave equation. 𝑢 represents the pressure field, 𝑓 represent the source term and 𝑚 is the velocity 

model.  

1

𝒎(𝑥, 𝑧)2

𝜕2𝒖(𝑥, 𝑧, 𝑡)

𝜕𝑡2
− ∇2𝒖(𝑥, 𝑧, 𝑡 = 𝒇(𝑥, 𝑧, 𝑡              (2.4) 

Many methods are known to solve this equation. In my thesis, the forward modeling is 

done in both time and frequency domain using Equation (2.4).  

In time domain, the above equation can be solved by numerical methods. I used finite 

difference approximation method for discretization of Equation (2.4) where each node values 

contributed to the complete wave-field. Although, it is just simple calculations and suits for 

complex medium, however calculations can be time consuming. Computation for time domain 

forward modelling will be discussed in Chapter 3.  

In frequency domain, Equation (2.4) must be transformed into frequency domain 

Helmholtz equation (Equation 2.5).  

𝜔2

𝒎(𝑥, 𝑧 2
𝒖(𝑥, 𝑧, 𝜔 + ∇2𝒖(𝑥, 𝑧, 𝜔 = 𝒇(𝑥, 𝑧, 𝜔               (2.5) 

where 𝜔 is the angular frequency. This system can also be represented as shown below 

𝑨𝒖 = 𝒇      where 𝑨 =  
𝜔2

𝒎(𝑥,𝑧 2 + ∇2                        (2.6) 
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Now A can be inverted and wave-field 𝑢  can be computed directly. Computation for 

frequency domain forward modelling will be discussed in Chapter 4.  

 

2.3 INVERSE MODELLING 

Inverse modelling consists of finding a set of model parameters (𝒎) that predicts the 

observed data (𝒅𝑜𝑏𝑠 ) (Pratt et. al., 1998). Based on the current model parameters estimations, a 

forward modelling routine compute a data set (𝒅𝑐𝑎𝑙 ). Our aim is to make the data residual 

(𝒓 = 𝒅𝑜𝑏𝑠 − 𝒅𝑐𝑎𝑙 ) small as possible and model parameters can be updated to reduce 𝒓. Figure 

2.2 illustrates the updation of model parameter as in an optimization process.  

 

 

Figure 2.2: An illustration of the inverse modelling in an optimization process. Optimization 

process starts with an initial guess of the model parameters and calculated data is generated by 

forward modelling. If residual is small enough then the process will be terminated else the 

residual will undergo the specified optimization scheme to update the model parameters.  
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The residual, that we are trying to minimize is generally described by the 𝑙2 (least square) 

norm of the error between is the observed and calculated data (Equation (2.7)).  

𝑶(𝒎 =
1

2
 𝒅𝑜𝑏𝑠 − 𝒅𝑐𝑎𝑙  

2 =
1

2
(𝒓′𝒓)               (2.7) 

Where 𝒓′  is the transpose conjugate of 𝒓. 𝑶(𝒎  is known as objective function.  

The model space consists of many numbers of possible models. If the number of distinct 

values of a parameter is 𝑘 and total number of parameter is 𝑛 then number of possible models in 

a model space is given by 𝑘𝑛 . In case of the Earth, the model space consists of infinite number of 

models. Hence, we look for the model which can explain most parameters of the model. The 

inverse modelling process can solve by either linearising the problem and then solve the problem 

or using global optimization methods.   

 

2.3.1 Linearised Methods 

As discussed in section 2.1, if the relationship between the data and the model parameters 

is weekly non-linear then inverse problem might be solved by linearising the equation. The 

common way to linearise the problem is by using Born approximation.   

In the framework of the Born approximation, we assume that updated model 𝒎 can be 

written as the sum of the starting model 𝒎0  plus a perturbation model ∆𝒎: 𝒎 = 𝒎0 + ∆𝒎 

(Virieux and Operto, 2009). A second order Taylor-Lagrange expression of objective function in 

the vicinity of  𝒎0 gives  

𝑭(𝒎 = 𝑭(𝒎0 + ∆𝒎 

= 𝑭(𝒎𝟎 +  
𝜕𝑭(𝒎0)

𝜕𝒎𝒋
∆𝒎𝒋 +

1

2
  

𝜕2𝑭(𝒎0)

𝜕𝒎𝑗𝜕𝒎𝑘
∆𝒎𝑗∆𝒎𝑘

𝑀

𝑘=1

+ 𝑂(𝒎3)

𝑀

𝑗=1

𝑀

𝑗=1

    (2.8) 

                

The higher order can be neglected, and equation (2.8) can be represented as 
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𝑭(𝒎0 + ∆𝒎 − 𝑭(𝒎𝟎 =  
𝜕𝑭(𝒎0)

𝜕𝒎𝒋
∆𝒎𝒋

𝑀

𝑗=1

               (2.9) 

The above means that the relationship between the residual ( 𝒓 = 𝑭(𝒎0 + ∆𝒎 −

𝑭(𝒎𝟎 ) and the model perturbation as be written as 

𝒓 = 𝑱∆𝒎                (2.10).                   

where 𝑱  is the partial derivative of the objective function with respect to the model 

parameters. Equation (2.10) is now a linear equation, with 𝑱 as the linear operator.  

If it is somehow difficult to solve the linearised problem directly (as in Equation (2.10)) 

then it can be solved iteratively. The most common iterative local optimization methods are 

Gradient method, Newton method and Guess Newton method.  

 

Gradient Method 

Gradient method is simple iterative minimization technique. There are a variety of 

gradient methods available such as steepest decent, conjugate gradient and non-linear conjugate 

gradient. However, they all starts with a direction (negative of gradient) and cost function can 

always be reduced by going in that direction (Stekl, 1997). If k is the current iteration, the 

gradient is described as  

∇𝑭𝑘 =
𝜕𝑭𝑘

𝜕𝒎𝑘
= 𝑅𝑒𝑎𝑙(𝑱𝑡𝒓′                (2.11) 

where 𝑱𝑡  is transposed Jacobian matrix (or sensitivity matrix), which is partial derivate of 

the objective function with respect to model parameters, as described in Equation (2.9).   

In the gradient method, the model is updated according to the following equation 

(Equation 2.12) 
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𝒎𝑘 = 𝒎𝑘−1 − 𝛼𝑘−1∇𝑭𝑘−1              (2.12) 

where k is the current iteration number and 𝛼 is the step length. Since, gradient provides 

no notion of scale, it need to be scaled by multiplying it with a proper step length (𝛼), best found 

via line search algorithm (Pratt et. al. 1998). 

The gradient method is known to converse slowly and that it can be unstable (Ravaut et 

al., 2004). To improve that, regularization, preconditioning can be used (Virieux and Operto, 

2009).  

 

Newton’s Optimization Method  

Taking the derivative of Equation (2.8) with respect to the model parameter 𝒎𝑙  results in 

𝜕𝐹(𝒎)

𝜕𝒎𝑙
=

𝜕𝐹(𝒎0)

𝜕𝒎𝑙
+  

𝜕2𝐹(𝒎0)

𝒎𝑗𝒎𝑙
∆𝒎𝑗     

𝑀

𝑗=1

             (2.13) 

The minimum of the objective function in the vicinity of 𝒎0 is reached when the first 

derivative of the objective function vanishes. This gives:  

∆𝒎 = 𝑯−1
𝜕𝐹(𝒎0)

𝜕𝒎
                (2.14) 

where 𝑯 =  
𝜕2𝑭(𝒎0)

𝜕𝒎2
  is called the Hessian matrix. In terms of Jacobian matrix Hessian 

can be represented as Equation (2.15). 

𝑯 = 𝑅𝑒𝑎𝑙(𝑱𝑡𝑱′ + 𝑅𝑒𝑎𝑙    
𝜕𝑱𝑡

𝜕𝒎1
 𝒓′  

𝜕𝑱𝑡

𝜕𝒎2
 𝒓′ …… .  

𝜕𝑱𝑡

𝜕𝒎𝑛
 𝒓′  = 𝑯𝑎 + 𝑹           (2.15) 

Here, 𝑯𝑎  is the approximated Hessian matrix. Since, 𝑹  predicts the presence of first 

order multiple energy in the gradient, it works as a de-multiple operator (Pratt et al., 1998).  

Computation of the complete Hessian matrix is a difficult process. This process is 

simplified in Gauss-Newton Method.  
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Gauss-Newton Method  

The computation for full Hessian involves time consuming inversions of very large 

matrices and a very difficult process. However, Gauss-Newton simplifies the process and uses 

only approximated Hessian matrix (Equation (2.16)) when updating to next model parameters 

(2.17). If the objective function is close to global minimum then 𝑹 term contributes less to the 

overall solution (Pratt et al., 1998).     

𝑯𝑎 = 𝑅𝑒𝑎𝑙(𝑱𝑡𝑱′                  (2.16  

𝒎𝑘 = 𝒎𝑘−1 − 𝑯𝑎
−1∇𝑭𝑘−1                (2.17) 

In almost all cases, 𝑯𝑎  is not invertible and a regularization term is added (Equation 

(2.18)).  

𝒎𝑘 = 𝒎𝑘−1 − (𝑯𝑎 +  𝛽𝑰)−1∇𝑭𝑘−1            (2.18) 

Here, 𝛽 is the weighing factor. For larger values of 𝛽, the above method approaches to 

gradient method and hence, can also include a step length, 𝛼, as for the gradient method (Sirgue, 

2003). 

Apart from the above methods, Broyden-Fletcher-Goldfarb-Shanno (BFGS), Limited 

memory BFGS, Symmetric Rank 1 (SR1) have gained much attention and proved beneficial for 

faster convergence in limited time.   

 

2.3.2 Global Methods 

If the relationship between the data and the model parameters is strongly non-linear then 

global methods can serve the purpose to find a solution which can explain the model parameters.  

Few popular global optimization techniques are discussed below.  
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Monte Carlo Method 

Monte Carlo method has different structures but they all tend to follow the similar 

pattern: it specify the model space, chooses a pool of models from the model space, runs forward 

modelling, and chooses the model that has the lowest objective function as the representative 

model of a system.  

  

Simulated Annealing 

In simulated annealing global optimization method, the model parameters are randomly 

perturbed. The change in the objective function caused by the perturbation is then computed to 

see if the perturbation is acceptable or not. If the objective function increases, the possibility for 

accepting the perturbation decreases. If this method converges, iteratively the model will become 

better (Collins and Kuperman, 1992).   

 

Genetic Algorithm 

In genetic algorithm, a small number of models are chosen from the model space. The 

best models (parents) from the chosen model then form new models (children) by mutation, 

cross-over of the bit-string describing the model parameters. In turn, children replace the weakest 

models from the chosen model. Following this iterative strategy, the chosen models will gather 

towards a minimum of the objective function (Gerstoft, 1993).  

Apart from these, there are many global algorithms such as Artificial Neural Network, 

tunneling algorithm etc which are known to provide a solution efficiently that explains the model 

parameters. However, global methods are very dependent on fast forward modelling algorithm 
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and simple model parameterization because most time is spent on huge amount of forward 

modelling computation (Causse, 1998). Now, computers are getting faster and then necessity of 

keeping simple model parameterization might decline with time. Therefore, global methods are 

probably the future in search for suitable solution for seismic inverse problem (Thomassen, 

2008). 
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CHAPTER 3 

 

IMAGE RECONSTRUCTION IN TIME DOMAIN 
 

In this chapter, the process of reconstructing the image using Full Waveform Inversion in 

time domain is discussed. The algorithms are written in MATLAB and are initially tested for few 

simple synthetic models i.e. low velocity layer model and high velocity layer model. After 

successful recovery of velocities from both models, the code was then run on complicated 

Marmousi model and results are discussed later in this chapter.  

 

3.1 Introduction to Full Waveform Inversion 

Full waveform inversion (FWI) is a non-linear data fitting process based on the seismic 

waveform data to estimate the model parameters, which usually appear as coefficients in a wave 

equation (Liao and Cao, 2013). FWI requires computation at three steps: solving the wave 

equation (also known as forward modelling) with the initial model, gradient computation of the 

objective function which is the half of the squared norm of the difference between the calculated 

and observed data, and lastly updating the model parameters with a valid optimization technique 

(Tarantola, 1984; Lailly, 1983; Virieux, 2009; Fichtner, 2011). The numerical method (finite 

difference approximation) for the forward problem is discussed in section 3.2. Gradient based 

optimization techniques are utilized in most of the seismic FWI techniques to update the model 

parameters so for each iteration the gradient is needed. The efficiency and accuracy of the 

gradient computation determines the efficiency of the FWI method (Liao and Cao, 2013). 

Chavent (1974), introduced the adjoint state method in the theory of inverse problems, which 

soon became popular for providing an efficient and effective method for computing the gradient 

of the objective function in FWI (Plessix, 2006; Fichtner, 2011). 
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As discussed in section 2.3, in the FWI workflow, there are several optimization 

techniques that can be used for updating the model parameters in order to minimize the objective 

function. In the Gauss-Newton method, where the approximated-Hessian matrix is needed to 

form is generally considered computationally costly. In fact, the full Newton method based on 

forming complete Hessian matrix (Eq. 2.15) is currently not being used in realistic FWI due to 

high computational cost (Virieux, 2009). In practice, the simple alternative is to replace the 

inverse of the Hessian matrix with a carefully chosen step length. Such modification results in 

the so called gradient method, which are widely used in solving the gradient-based optimization 

problem (Liao and Cao, 2013).  

 

3.1.1 Forward Modelling in Time Domain 

Forward modelling is a necessary step for solving any inverse problem. The governing 

equation for FWI in this thesis is 2D acoustic wave equation (see Equation (2.4)), where 

Laplacian operator is given by Equation (3.1).   

∇2𝒖(𝑥, 𝑧, 𝑡 =
𝜕2𝒖(𝑥, 𝑧, 𝑡 

𝜕𝑥2
+

𝜕2𝒖(𝑥, 𝑧, 𝑡)

𝜕𝑧2
                    (3.1) 

The Laplacian operator can be approximated with the central difference operator. The 

approximation can either be five point or nine point approximation.  

∇2𝒖𝑗
𝑛 ≈

𝒖𝑗
𝑛+1 − 2𝒖𝑗

𝑛 + 𝒖𝑗
𝑛−1

∆𝑥2
+

𝒖𝑗+1
𝑛 − 2𝒖𝑗

𝑛 + 𝒖𝑗−1
𝑛

∆𝑧2
         𝑓𝑖𝑣𝑒 𝑝𝑜𝑖𝑛𝑡 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛       (3.2) 

 

∇2𝒖𝑗
𝑛 ≈

 −
1

12 𝒖𝑗
𝑛+2 +

4
3 𝒖𝑗

𝑛+1 −
30
12 𝒖𝑗

𝑛−
1

12 𝒖𝑗
𝑛−2 +

4
3 𝒖𝑗

𝑛−1 

∆𝑥2
 + 

−
1

12 𝒖𝑗+2
𝑛 +

4
3 𝒖𝑗+1

𝑛 −
30
12 𝒖𝑗

𝑛−
1

12 𝒖𝑗−2
𝑛 +

4
3 𝒖𝑗−1

𝑛

∆𝑧
            𝑛𝑖𝑛𝑒 𝑝𝑜𝑖𝑛𝑡 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛       (3.3) 
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where 𝑛 and 𝑗 are x and y coordinate respectively as shown in Fig. 3.1. 

In my code, in order to reduce computing time, the grid spacing was kept equal (∆𝑥 =

∆𝑧). As one would expect, the nine point approximation is more accurate, but is slower. Its main 

advantage is that it covers broader bandwidth.  However, in my code I used five-point 

approximation which is much faster to compute.  

 

 

Figure 3.1: The computational grid of the approximations to the Laplacian oprator. (after: 

Youzwishen and Margrave, 1999) 

 

Finally, each approximation scheme has a stability condition (Lines et al., 1998). The 

stability condition for five and nine point approximations are respectively:  

∆𝑡 ≤  
1

2

∆𝑥

𝒎𝑚𝑎𝑥
                (3.4  

∆𝑡 ≤  
3

8

∆𝑥

𝒎𝑚𝑎𝑥
                (3.5  

Here ∆𝑡 is the temporal sampling rate, ∆𝑥 is the grid spacing and 𝒎𝑚𝑎𝑥  is maxing value 

of the model parameter (i.e. velocity in case of acoustic wave equation).  
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The time derivative is also calculated by a five point central difference approximation 

scheme.  

𝜕2𝒖(𝑥, 𝑧, 𝑡)

𝜕𝑡2
≈

𝒖(𝑡 + ∆𝑡) − 2𝒖(𝑡) + 𝒖(𝑡 − ∆𝑡)

∆𝑡2
               (3.6)   

By substituting Equations (3.6) and (3.2) in Equation (2.4), one can solve for wave-field 

at time 𝑡 + 1.    

𝒖(𝑡 + ∆𝑡 = 2𝒖(𝑡 − 𝒖(𝑡 − ∆𝑡 +
∆𝑡2

∆𝒎𝑛,𝑚
2
 
𝒖𝑗

𝑛+1 − 2𝒖𝑗
𝑛 + 𝒖𝑗

𝑛−1

∆𝑥2
+

𝒖𝑗+1
𝑛 − 2𝒖𝑗

𝑛 + 𝒖𝑗−1
𝑛

∆𝑥2
   

+ 𝒇       (3.7)        

Equation (3.7) shows that the wave-field at time 𝑡 + ∆𝑡 can be estimated by knowing the 

wave-field at time  𝑡 and 𝑡 − ∆𝑡. This process is known as time stepping.  

In Equation (3.7) 𝒇 is point source term (Equation (3.8)) and can be estimated by Ricker 

wavelet which is negative second derivative of a Gaussian (see Equation 3.9). 

𝒇(𝑥, 𝑧, 𝑡 = 𝒘(𝑡 𝛿(𝑥 − 𝑥𝑠 𝛿(𝑧 − 𝑧𝑠              (3.8) 

𝒘(𝑡 = (1 − 2𝜋2𝑣0
2(𝑡 − 𝑡0 

2 𝑒𝑥𝑝(−𝜋2𝑣0
2(𝑡 − 𝑡𝑜 

2               (3.9) 

Here, 𝒘 is the time profile and 𝛿  indicates point source, 𝑣0  is the peak frequency of 

Ricker wavelet. It is important that this function is causal (𝒘(𝑡  =0 for 𝑡<=0), so I introduced a 

time shift 𝑡0. We can guarantee causality by setting  𝑡0 = 6/(𝜋𝑣0 2). Fig. 3.2 represents the 

Ricker wavelet at 𝑣0 = 20𝐻𝑧. 

 

 

 

 

 



19 
 

 

 

 

Figure 3.2: Ricker wavelet 

 

Absorbing boundary conditions (ABC) are included in order to reduce reflection from the 

edges of the grid. The absorbing boundary conditions are constructed from paraxial 

approximations of the wave equation (Clayton and Enquist, 1977). Figure 3.3 demonstrates the 

effect of ABC from grid edges.  

Finally, the wave-fields are recorded at each time at each receiver positions for each 

source. These records are called as Synthetic Seismograms (for synthetic models) (Fig. 3.4). 

Multiple seismograms will be recorded from multiple source wave-fields. 
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Figure 3.3: Effect of boundary conditions. (a) Wave-field at time 0.17 sec., (b) wave-field at 

time 𝑡 = 0.42 sec. No boundary condition is used, hence intense reflections off the edges can be 

seen., (c) wave-field at time 𝑡 = 0.42 sec. Absorbing boundary conditions is used, hence nearly 

no reflection off the edges. 
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Figure 3.4: An example of synthetic seismogram. Receivers are places throughout the surface at 

1 m spacing. Source is placed at 10 m depth in the middle of the medium. Here, reflection events 

indicating the presence of two reflectors.    

 

3.1.2 Gradient Computation: Adjoint State Method 

In section 3.2, I discussed how to implement forward modelling for model parameters 𝒎. 

Simply, it can be represented as 

Ƒ(𝒎 = 𝒖                    (3.10) 

𝑺Ƒ(𝒎 = 𝑑                       (3.11 .    

Here, Ƒ is the forward modelling map operator, 𝒖 is the source wave-field,  𝑺 is sampling 

operator of the forward map and 𝑑 is our synthetic data.  

In this section, I will implement 𝐹∗ (adjoint operator) in order to compute the gradient of 

the Full Waveform Inversion non-linear least square objective function using imaging condition 

(Reverse Time Migration).  

Let the incident wave-field 𝒖0(𝑥, 𝑧, 𝑡) is generated from the initial model 𝒎0(𝑥, 𝑧). The 

difference between the observed data 𝒅𝑜𝑏𝑠  and the calculated data 𝑑𝑐𝑎𝑙  (due to 𝒖0(𝑥, 𝑧, 𝑡)) is 

called the residual 𝒓.  

𝒓(𝑥, 𝑡 = 𝒅𝑜𝑏𝑠 (𝑥, 𝑡 − 𝒅𝑐𝑎𝑙 (𝑥, 𝑡 = 𝒅(𝑥, 𝑡 − 𝑺Ƒ 𝒎0 (𝑥, 𝑡                  (3.12) 
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From Equation (2.7), the objective function can also be represented as 𝑶(𝒎 =

1

2
 𝒅𝑜𝑏𝑠 − 𝑺Ƒ(𝒎)  then its gradient is given as 

𝜕𝑶

𝜕𝒎
[𝒎]. 

From waves and imaging notes (Demanet, 2015), if 𝐹 =
𝜕𝑺Ƒ

𝜕𝒎
[𝒎] the we have that the 

gradient of the objective function at a point 𝒎 is     

𝜕𝑶

𝜕𝒎
 𝒎 = 𝛻𝑶(𝒎 = −𝐹∗(𝒅 − 𝑺Ƒ 𝒎  = −𝐹∗𝒓                   (3.13) 

Computation for full matrix 𝐹 =
𝜕𝑺Ƒ

𝜕𝒎
[𝒎] and then transposing it is not considered as an 

empirical way to form 𝐹∗. More sophisticated way is to apply adjoint state method.    

From Appendix (1): 

𝐹∗𝒓 = − 𝒒(𝑥, 𝑧, 𝑡 𝜕𝑡𝑡𝒖0(𝑥, 𝑧, 𝑡 𝑑𝑡

𝑇

0

            (3.14) 

where 𝑞(𝑥, 𝑧, 𝑡) (back-propagated wave-field) is the solution of (including ABC) 

 
1

𝒎𝟎(𝑥, 𝑧 2

𝜕2

𝜕𝑡2
− ∇2 𝒒(𝑥, 𝑧, 𝑡 = 𝒓(𝑥, 𝑡)                 (3.15) 

 and 𝜕𝑡𝑡𝒖0(𝑥, 𝑧, 𝑡  is the double time derivative of the incident wave-field.   

A systematic, painless way for solving back-propagated wave-field (Equation (3.15)) is to 

follow the following steps in sequence (Demanet, 2015):  

1. Revert the residual 𝒓(𝑥, 𝑡) at each receiver position in time.  

2. Solve the Equation (3.15) in normal way with this new right hand side. 

3. Revert the result at each receiver position in time.  

Now, Equation (3.14) can be solved by taking the integral of the product of forward field 

( 𝒖0 ) (differentiated twice in time), and the back-propagated field 𝒒 , for each 𝑥  and 𝑧  

independently in time.  
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Following the above process will produce an image which in seismology called as reverse 

time migration (Demanet, 2015). 

For multiple sources, the gradient can be computed as, 

𝛻𝑶(𝒎0 = −  𝒒𝑠(𝑥, 𝑧, 𝑡 𝜕𝑡𝑡𝒖0,𝑠(𝑥, 𝑧, 𝑡 𝑑𝑡

𝑇

0

 

𝑠

             (3.16) 

where the back-propagated field 𝒒𝑠 is relative to the source 𝑠 is: 

 
1

𝒎𝟎(𝑥, 𝑧 2

𝜕2

𝜕𝑡2
− ∇2 𝒒𝑠(𝑥, 𝑧, 𝑡 = 𝒓𝑠(𝑥, 𝑡              (3.17) 

The sum over 𝑠 in Equation (3.16) is sometimes called a stack (Fig. 3.5). Stack makes use 

of the redundancy in the data to reveal more information about the data.  

 

3.1.3 Gradient Based Optimization 

The gradient based optimization method updates the velocity model according to the 

descent direction 𝑷𝑘 .  

𝒎𝑘+1 = 𝒎𝑘 + 𝛼𝑘𝑷𝑘                (3.18) 

Here, 𝑘 denotes the iteration number and 𝛼 as step length.  

By neglecting the terms higher than the 2
nd

 order, the objective function can be expanded 

as  

𝑶(𝒎𝑘+1 = 𝑶(𝒎𝑘 + 𝛼𝑘𝑷𝑘 = 𝑶(𝒎𝑘 + 𝛼𝑘 ∇𝑶(𝒎𝑘 , 𝑷𝑘 +
1

2
𝛼𝑘

2𝑷𝑘
′ 𝑯𝑘𝑷𝑘            (3.19) 

Here, 𝐻𝑘  stands for Hessian matrix;  . , .   denotes inner product. Differentiation of the 

Equation (3.19) with respect to 𝛼𝑘  gives  

𝛼𝑘 = −
 𝑷𝑘 , ∇𝑶(𝒎𝑘) 

𝑷𝑘
′ 𝑯𝑘𝑷𝑘

= −
 𝑷𝑘 , ∇𝑶(𝒎𝑘) 

 𝑱𝑘𝑷𝑘 , 𝑱𝑘𝑷𝑘 
=

 𝑱𝑘𝑷𝑘 , 𝒅𝑜𝑏𝑠 − 𝒅𝑐𝑎𝑙  

 𝑱𝑘𝑷𝑘 , 𝑱𝑘𝑷𝑘 
           (3.20) 
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Figure 3.5: An illustration of adjoint state method using multiple source. (a) True velocity 

model, (b) initial velocity model, (c) stack image using (b) as initial model showing the reflectors 

at its exact location. 

 

 

in which I used the approximated Hessian 𝑯𝑘 ≈ 𝑯𝑎 .   

To obtain a reasonable step size 𝛼𝑘  in Equation (3.20), I estimated a small step length 𝜖 

proposed by Pica et al. (1990).  

max(𝜖 𝑷𝑘   ≤
max( 𝒎𝑘   

100
                  (3.21) 

and the Taylor approximation 

𝑱𝑘𝑷𝑘 ≈
𝑺Ƒ(𝒎𝑘 + 𝜀𝑷𝑘 − 𝑺Ƒ(𝒎𝑘)

𝜀
                     (3.22) 



25 
 

For computing direction 𝑃𝑘  I used Non-linear Conjugate Gradient method, which 

decreases the objective function along the conjugate gradient direction.  

𝑷𝑘 =  
−∇𝑶(𝒎0 ,          𝑘 = 1

−∇𝑶(𝒎𝑘 + 𝛾𝑘𝑷𝑘−1           𝑘 > 1
            (3.23)  

There are number of ways to compute 𝛾𝑘 . I used a hybrid scheme combing Hestenes-

Stiefel method and Dai-Yuan method (Hagar and Zhang, 2006) for better convergence.  

𝛾𝑘 = max(0, 𝑚𝑖𝑛(𝛾𝑘
𝐻𝑆 , 𝛾𝑘

𝐷𝑌               (3.24) 

In which 

 
 
 

 
 𝛾𝑘

𝐻𝑆 =
 ∇𝑶(𝒎𝑘 , ∇𝑶(𝒎𝑘 − ∇𝑶(𝒎𝑘−1  

 𝑷𝑘−1, ∇𝑶(𝒎𝑘 − ∇𝑶(𝒎𝑘−1  

𝛾𝑘
𝐷𝑌 =

 ∇𝑶(𝒎𝑘 , ∇𝑶(𝒎𝑘  

 𝑷𝑘−1, ∇𝑶(𝒎𝑘 − ∇𝑶(𝒎𝑘−1  

          (3.25)  

This provide an automatic direction reset while over-correction of 𝛾𝑘 in conjugate 

gradient iterations. It reduces to steepest descent method when the subsequent search directions 

lose conjugacy. Figure 3.6 summarize the time domain image reconstruction algorithm of FWI.  

 

3.1.4 Testing Time Domain Algorithm on simple Models 

In order to test the codes, FWI algorithm was performed on two different velocity models 

separately. Velocity models chosen for testing were (1) low velocity step layer (2) high velocity 

step layer models.  
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Figure 3.6: Full waveform Inversion flowchart 

   

3.1.4.1 Low velocity layer model (LVL) 

In this synthetic model (real model) (Fig. 3.7(a)) the field area is considered 150-m long 

and 150-m deep. The step like low velocity layer has a velocity of 3 m/s and a background 

velocity of 4 m/s. For Initial model (Fig. 3.7 (b)), I smoothen the true model using a Gaussian 

smoother function with a factor of 10. In order to avoid grid dispersion, ∆𝑥 (= ∆𝑧) must be 

chosen as 

∆𝑥 <
max⁡(𝒎)

4𝑓
        (3.26 . 

Here, 𝑓 is the peak frequency. Sources were kept at a depth of 10-m from (10, 10) to 

(140, 10) with 10-m spacing between each source. Receiver were kept at a depth of 2-m from (1, 

2) to (150, 2) with a spacing of 1-m between each receiver. ABCs were applied over all four 

boundaries. Number of iterations was kept 150. Final model is a result of FWI after such 

iterations and is shown in Fig. 3.7(c). The objection function‟s value (Fig. 3.7 (d)) is rapidly 

decreasing up to 25 iterations indicating that the objective function is decreasing in the negative 

conjugate direction, and then after in the steepest descent direction up to 200 iterations.       
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Figure 3.7: (a) Real synthetic model, (b) initial model, (c) final FWI result and (d) objective 

function  

 

3.1.4.2. High velocity layer model (HVL) 

The synthetic model (true model) (Fig. 3.8(a)) is same as in Fig. 3.7(a) except the step 

like high velocity layer has a velocity of 4 m/s and a background velocity of 3 m/s. For Initial 

model (Fig. 3.8 (b)), the same concept is used as I did in LVL case.  

Sources were kept at a depth of 10-m from (10, 10) to (140, 10) with 10-m spacing 

between each source. Receiver were kept at a depth of 2-m from (1, 2) to (150, 2) with a spacing 

of 1-m between each receiver. ABCs were applied over all four boundaries. Number of iterations 

was kept 228. Final model is a result of FWI after such iterations and is shown in Fig. 3.8(c). The 

objection function‟s value (Fig. 3.8 (d)) is rapidly decreasing up to 20 iterations indicating that 

the objective function is decreasing in the negative conjugate direction, and then after in the 

steepest descent direction up to 200 iterations.       
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(d) 

Figure 3.8: (a) Real synthetic model, (b) initial model, (c) final FWI result and (d) objective 

function. 

 

3.2 Image Reconstruction for Marmousi Model 

The main objective of this thesis is to evaluate Full Waveform Inversion applied to a very 

complex geological structure i.e. Marmousi model, and see if the method can be useful to 

recover velocity from it. The Marmousi dataset was used for the workshop on practical aspect of 

seismic data inversion at the 52
nd

 EAGE meeting in 1990. This is a very challenging medium for 

seismic imaging.  

The original Marmousi dataset is huge (Fig. 3.9). In order to handle the dataset, the 

original model was resampled into a much shorter dataset as shown in Fig. 3.10. This 

modification was done in order to have a reasonable size dataset which is easy to handle. Now, 

this modified model will be called as „real model‟.  

In true model, field area is 722-m long and 200-m deep. The maximum velocity is 4.7 

m/s. A low velocity water layer of thickness 25-m is places over the model and carries a constant 

velocity of 1.5 m/s.  
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Figure 3.9: Complete Marmosui model 

 

 

Figure 3.10: Resampled Marmousi model (True model for this thesis) 

 

 

Figure 3.11: Initial model used to initiate FWI 
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Again, a Gaussian smoother of factor 10 is used to smooth the real model, which will be 

my initial model (Fig. 3.11) for FWI. The configuration of sources and receivers are shown in 

Fig. 3.11. There are 21 sources totally (from (10, 25) to (210, 25)) and 722 receiver for each 

source (at a depth of 6-m). The sources step is 10-m and the receiver step is 1-m. The sources 

line and receiver line is 10-m and 2-m below the surface respectively. The grid spacing was kept 

∆𝑥 (= ∆𝑧) =0.01-m.         

 

 

Figure 3.12: The configuration of sources and receiver for Full Waveform Inversion  

 

In above configuration ABCs are applied on all four edges. The number of iterations set 

was 200. Figure 3.13 shows the Full Waveform Inversion result after 200
th

 iteration with its 

continuously decreasing objective function (Fig. 3.14).   
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Figure 3.13: FWI‟s final model after 200
th

 iteration 

 

 

Figure 3.14: Objective function value at each iteration.  

 

3.2.1 Discussion  

A more qualified analysis of the velocities is easier when looking at the velocity profiles 

on Figure 3.15. Velocity logs at three different horizontal locations are extracted (at 200 m, 400 

m and 600 m) from the true model, initial model and final model. In all three profiles (3.15(a), 

3.15(b), 3.15(c)) the recovered velocities from FWI result matches the real velocities very well. 

The largest deviation from the real velocity is about 29% in a small portion of the 600 m profile 

(see Table. 3.1). Some portions of FWI are either slightly underestimated or overestimated due to 
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high to low (or low to high) velocity transition. If the average velocity for profile at x= 200m, 

400m and 600m are 2.45 m/s, 2.48 m/s and 2.62 m/s, then average deviations from three 

different profiles will be -2.66%, -0.31%, -2.84 %. Hence, the Full-Waveform Inversion has 

managed to obtain precise results from the complex Marmousi model in time domain.  

 

 

 

 

Figure 3.15: Velocity logs extracted at the horizontal distance x (a) 200 m (b) 400 m (c) 600 m. 
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Table 3.1: Table representing the true velocity, final recovered velocity and the % deviation 

along with the depth for each profile. 

 

                                   Profile at x=200-m                       Profile at x=400-m                        Profile at x=600-m 
Depth 
(m) 

 

TRUE  
(m/s) 

Final 
(m/s) 

% 
Deviation 

 

TRUE  
(m/s) 

Final 
(m/s) 

% 
Deviation 

 

TRUE  
(m/s) 

Final 
(m/s) % Deviation 

1 
 

1.5 1.52 1.57 
 

1.5 1.50 0.01 
 

1.5 1.50 0.13 

11 
 

1.5 1.50 0.09 
 

1.5 1.49 -0.08 
 

1.5 1.50 0.00 

21 
 

1.5 1.49 -0.08 
 

1.5 1.50 0.01 
 

1.5 1.49 -0.07 

31 
 

1.77 1.77 0.28 
 

1.67 1.67 -0.10 
 

1.58 1.58 0.13 

41 
 

1.76 1.75 -0.57 
 

1.65 1.65 -0.01 
 

1.66 1.65 -0.18 

51 
 

1.74 1.74 -0.21 
 

1.69 1.70 0.07 
 

1.63 1.63 -0.02 

61 
 

1.81 1.81 -0.30 
 

1.72 1.72 -0.03 
 

2.20 2.22 0.81 

71 
 

1.70 1.70 -0.01 
 

2.29 2.29 0.21 
 

2.53 2.51 -0.84 

81 
 

1.93 1.93 0.02 
 

2.40 2.40 -0.28 
 

2.47 2.45 -0.84 

91 
 

1.84 1.84 -0.02 
 

2.39 2.35 -1.63 
 

2.30 2.35 2.30 

101 
 

2.00 1.98 -0.84 
 

3.16 3.39 7.01 
 

2.39 2.40 0.45 

111 
 

2.51 2.54 1.06 
 

2.75 2.60 -5.55 
 

2.4 2.39 -0.01 

121 
 

2.63 2.51 -4.27 
 

2.58 2.58 0.09 
 

3.35 3.17 -5.33 

131 
 

2.61 2.46 -5.94 
 

2.70 2.63 -2.83 
 

2.89 2.82 -2.44 

141 
 

4.14 4.00 -3.49 
 

2.89 3.17 9.81 
 

4.45 3.76 -15.43 

151 
 

2.83 2.82 -0.48 
 

3.28 3.23 -1.63 
 

4 2.83 -29.16 

161 
 

2.97 3.03 1.92 
 

3.2 2.89 -9.63 
 

2.65 3.01 13.72 

171 
 

3.47 3.62 4.33 
 

3.8 3.39 -10.72 
 

2.5 3.12 24.93 

181 
 

2.44 2.46 0.84 
 

3.3 3.21 -2.70 
 

4.23 3.41 -19.20 

191 
 

4.5 4.00 -10.96 
 

3.9 3.60 -7.54 
 

4 3.94 -1.46 
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CHAPTER 4 

 

IMAGE RECONSTRUCTION IN FREQUENCY DOMAIN 
 

In this chapter, the process of reconstructing the image using Full Waveform Inversion in 

frequency domain will be discussed. Frequency domain Waveform Inversion, which includes 

solving the wave equation forward modelling and inversion, is similar to time domain Waveform 

Inversion. The solution of the wave equation (acoustic wave) in forward modelling is realized by 

numerical simulation (Wencai, 2002) of seismic wave propagation, and the inversion process can 

considered as solving a non-linear optimization problem. However, the efficiency of frequency 

domain Full Waveform Inversion depends on the number of frequencies used for inversion and is 

independent of the number of sources used (unlike time domain Full Waveform Inversion).  

 

4.1 Introduction Domain  

Since Pratt (1990) extended time domain waveform inversion into the frequency domain 

one, frequency domain Full Waveform Inversion has begun to develop rapidly (Meng et al., 

2012). Many theoretical studies have been made in the frequency domain waveform inversion 

field in recent years. Sourbier et al (2009) presented a preconditioned gradient method in 

frequency domain waveform inversion. Zhang and Yuan (2009) introduced two instances of 

frequency domain seismic waveform inversion for velocity imaging. Long et al (2009) provided 

the inversion of preconditioned gradient method to find the viscoelastic acoustic velocity 

structure. In this chapter, both the forward modelling and the inversion are performed in the 

frequency domain.   
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4.2 Forward Modelling in Frequency Domain  

In general, forward modelling is the basis of the inversion process. The precision and 

efficiency of forward modelling have a substantial influence on the results of inversion. The 

advantage of frequency domain modelling compared with time domain modelling is that multi-

experiment seismic data can be simulated economically by direct multiplication once the factors 

of the impedance matrix are calculated (Meng et al., 2012). In addition, the forward wave 

equation in the frequency domain is more flexible as we can directly input the attenuation 

coefficient in the equation. Now, as described in section 2.2, the acoustic 2D wave equation is  

1

𝒎(𝑥, 𝑧)2

𝜕2𝒖(𝑥, 𝑧, 𝑡)

𝜕𝑡2
− ∇2𝒖(𝑥, 𝑧, 𝑡 = 𝒇(𝑥, 𝑧, 𝑡  

Taking Fourier transform on both sides of the two-dimensional time domain acoustic 

wave equation, the acoustic wave equation in frequency domain is as follows  

𝜔2

𝒎(𝑥, 𝑧 2
𝒖(𝑥, 𝑧, 𝜔 + ∇2𝒖(𝑥, 𝑧, 𝜔 = 𝒇(𝑥, 𝑧, 𝜔              (4.1) 

where 𝜔 is the frequency, 𝒎(𝑥, 𝑧) is the acoustic propagation velocity in the medium, 

𝒖(𝑥, 𝑧, 𝜔  is the pressure field,  𝒇(𝑥, 𝑧, 𝜔  is the source and ∇2 is the Laplacian operator. From 

Equation (4.1) Helmholtz equation can be extracted and represented as  

𝜔2

𝒎(𝑥, 𝑧 2
𝒖(𝑥, 𝑧, 𝜔 + ∇2𝒖(𝑥, 𝑧, 𝜔 = 0          (4.2) 

At present, there are three common categories of frequency domain forward modelling 

methods: the finite difference, the finite element, and the finite volume method. The above 

Helmholtz equation (4.2) was discretised using finite difference scheme mentioned in Erlangga 

(2008).The finite difference method is a numerical method based on the calculating difference 

principal. The boundary condition in the frequency domain is  
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𝜕𝒖

𝜕𝒏
− 𝑖𝑘(𝑥, 𝑦 𝒖 = 0                 (4.3) 

where 𝒏 is the outward normal of the boundary and 𝑖 is the imaginary unit. Equation (4.3) 

is applied on all four edges of the field medium. By means of finite difference technology along 

with boundary condition, the wave equation (Equation (4.1)) can be recast in a matrix form as 

𝑨𝒖 = 𝒇                  (4.4) 

In the above equation, 𝐴  is a complex-valued, 𝑛𝑥  x 𝑛𝑧  (discritization along 𝑥  and 𝑧 

direction) order impedance matrix. It depends on frequency, medium properties, finite difference 

format, and boundary conditions. 𝒇 represents a vector consisting all point sources. The wave-

field 𝒖 (or pressure field) can be solved by   

𝒖 = 𝑨−1𝒇                 (4.5) 

Figure (4.1), (4.2) and (4.3) represents the wave-field 𝒖 acquired at different frequencies 

for Marmousi model (Fig. 1.4) keeping source in the middle.   

Figure 4.1: Wave-field at frequency 20 Hz. 
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Figure 4.1: Wave-field at frequency 10Hz 

 

Figure 4.3: Wave-field at frequency 5Hz 

If 𝑷 is a vector consisting of point receivers then synthetic data 𝑑 is be generated by  

𝒅 = 𝑷′ ∗ 𝒖             (4.6) 
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4.2 Gradient Computation: Adjoint state method  

A little modification in the description will suffice to express the time domain adjoint 

state equation into frequency domain. The idea in this section is that time reversal corresponds to 

complex conjugation in 𝜔. For simplicity, I will assume single source.  

The aim of adjoint state method is to find 𝐹∗  such that  𝒅, 𝐹𝒎 =  𝐹∗𝒅, 𝒎  for all 

general 𝒅  and 𝒎 . If 𝒅𝑟(𝑡  is a function of receiver index 𝑟  and time 𝑡  then using Parseval 

formula, the data inner product  𝒅, 𝐹𝒎  can be represented in the frequency domain (Eq. 4.7) as 

 𝒅, 𝐹𝒎 = 2𝜋   𝒅𝑟
 (𝜔)(𝐹𝒎  (𝑥𝑟 , 𝑧𝑟 , 𝜔)                    𝑑𝜔

𝑅𝑟

=   𝒅𝑟(𝑡 (𝐹𝒎 (𝑥𝑟 , 𝑧𝑟 , 𝑡)𝑑𝑡

𝑟

         (4.7) 

Since, the net quantity in the Equation (4.7) is real, it does not matter which of the two 

integrand‟s factors complex conjugate is placed on. From Appendix (2) the expression for the 

gradient is given by  

𝐹∗𝒅(𝑥, 𝑧 = −2𝜋  𝒒 (𝑥, 𝑧, 𝜔 𝜔2𝒖0 (𝑥, 𝑧, 𝜔               𝑑𝜔

𝑅

          (4.8) 

If V (= 𝒒𝑠 (𝑥, 𝑧, 𝜔 )  is the back-propagated wave-field then in MATLAB 𝒒𝑠 (𝑥, 𝑧, 𝜔 is 

computed as 

V = A'\(r*(Dobs-r'*(A\s))); 

In synthetic modelling case, Dobs can be obtained from Equation (4.7) when applied on true 

model (𝒎), however in real subsurface modelling case, the available seismic data must be 

converted into frequency domain data set (Appendix (3)). The integral in 𝜔 in Equation (4.8) is 

over 𝑅 and should be truncated to the number of frequencies used in the process.      
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4.2 Optimization: Limited Memory BFGS 

Limited memory BFGS is an optimization algorithm in the family of quasi-Newton 

methods that approximates the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using a 

limited amount of computer memory. According to Wensheng Zhang (2013), the BFGS based 

method has higher inversion accuracy than the conjugate gradient based algorithm because the 

former uses the second order derivative information in computation.  

Like the original BFGS, Limited memory-BFGS (L-BFGS) uses estimation to the inverse 

Hessian matrix to guide its search through variable space, but where BFGS stores a full 

approximation to the inverse Hessian, LBFGS stores only a few vectors that represent the 

approximation implicitly.  

 

4.3.1 Computation for direction  

LBFGS shares many attributes with other quasi-Newton algorithm, however it is different 

in the way the matrix multiplies for finding the search direction i.e., 𝑷𝑘 = −𝑯𝑘∇𝑶𝑘 .  

Here, I will take as given 𝑥𝑘  (the model at iteration 𝑘), the position at the 𝑘𝑡𝑕 iteration, 

and 𝑔𝑘 = ∇𝑶(𝒎𝑘) where 𝑂 is the objective function, and all vectors are column vectors. The 

last 𝑚 (this is not model 𝒎) updates are stored in form 𝒔𝑘 = 𝒙𝑘+1 − 𝒙𝑘  and 𝒚𝑘 = 𝒈𝑘+1 − 𝒈𝑘 . I 

will define 𝜌𝑘 =
1

𝒚𝑘
𝑇𝒔𝑘

, and 𝐻𝑘
0 will be the initial approximation of the inverse Hessian that the 

estimation at iteration 𝑘 will begin with. Then the direction can be computed as follows: 

𝒒 = 𝒈𝑘    



42 
 

 

𝐹𝑜𝑟 𝑖 = 𝑘 − 1: −1: 𝑘 − 𝑚
 

  𝛼(𝑖 = 𝜌(𝑖 ∗ 𝑠(𝑖 ′ ∗ 𝑞
  

 𝑞 = 𝑞 − 𝛼(𝑖 ∗ 𝑦(𝑖 

𝑒𝑛𝑑                                          

            𝑀𝐴𝑇𝐿𝐴𝐵 𝑓𝑜𝑟𝑚𝑎𝑡 

𝑯𝑘
0 =

𝒚𝑘−1
𝑇 𝒔𝑘−1

𝒚𝑘−1
𝑇 𝒚𝑘−1

    𝒛 = 𝑯𝑘
0𝒒 

 

𝐹𝑜𝑟 𝑖 = 𝑘 − 𝑚: 1: 𝑘 − 1
  

 𝛽(𝑖 = 𝜌(𝑖 ∗ 𝑦(𝑖 𝑇 ∗ 𝑧 
   

 𝑧 = 𝑧 + 𝑠(𝑖 ∗  𝛼(𝑖 − 𝛽(𝑖  

𝑒𝑛𝑑                                   

               𝑀𝐴𝑇𝐿𝐴𝐵 𝑓𝑜𝑟𝑚𝑎𝑡 

  𝐸𝑛𝑑 𝑤𝑖𝑡𝑕 𝑯𝑘𝒈𝑘 = 𝒛 

The above algorithm is valid either we are minimizing or maximizing. In case of 

minimizing, the search direction 𝒛 (= 𝑷𝑘) would be the negative of 𝑧. The model update is now 

will be represented as  

𝒎𝑘+1 = 𝒎𝑘 + 𝛼𝑘𝑷𝑘                 

Here 𝑷𝑘 = 𝑧 and 𝛼𝑘  is the step length. 𝛼𝑘  can be found by exact line search (see section 

3.1.3) or by approximated line search methods. LBFGS does not require exact line search in 

order to converge. In my thesis, I used Wolfe‟s algorithm for computing 𝛼.   
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4.3.1 Computation for step length: Wolfe’s Conditions (1969, corrected in 1971)  

A popular inexact line search condition stipulates that 𝛼𝑘  should first of all give sufficient 

decrease in the objective function (𝑶(𝒎𝑘)), as measured by the following inequality  

𝑶(𝒎𝑘 + 𝛼𝑘𝑷𝑘 ≤ 𝑶(𝒎𝑘 + 𝑐1𝛼𝑘∇𝑶(𝒎𝑘)′𝑷𝑘         𝑤𝑕𝑒𝑟𝑒 𝑐1 ∈ (0,1)         (4.9) 

Equation (4.9) requires that for the picked value of 𝛼𝑘  the graph of 𝑶(𝒎𝑘 + 𝛼𝑘𝑷𝑘  lies 

below the line 𝑶(𝒎𝑘 + 𝑐1𝛼𝑘∇𝑶(𝒎𝑘)′𝑷𝑘  (Fig. 4.4). By Taylor‟s theorem 

𝑶(𝒎𝑘 + 𝛼𝑘𝑷𝑘 ≤ 𝑶(𝒎𝑘 + 𝛼𝑘∇𝑶(𝒎𝑘)𝑇𝑷𝑘 +  𝑹(𝛼2            (4.10) 

Since, 𝑷𝑘  is a descent direction, i.e., ∇𝑶(𝒎𝑘)′𝑷𝑘 < 0, such 𝛼𝑘  exists.  

 

Figure 4.4: Graph illustrating the Equation (4.9). Here 𝑔𝑘  represents the gradient (∇𝑂(𝒎𝑘)).  

(after: Hauser, 2007) 
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The sufficient decrease condition (in Equation (4.9)) is not enough to ensure convergence 

since this equation is satisfied for all small enough 𝛼. To rule out unacceptably small steps, the 

second requirement called a curvature condition is introduced.   

∇𝑶(𝒎𝑘 + 𝛼𝑘𝑷𝑘)𝑇𝑷𝑘 ≥ 𝑐2∇𝑶(𝒎𝑘)𝑇𝑷𝑘 ,        𝑐2 ∈ (𝑐1, 1                    (4.11) 

The curvature condition enforces to choose 𝛼 large enough so that the slope of 𝑶(𝒎𝑘 +

𝛼𝑘𝑷𝑘 is larger than 𝑐2 times the slope of 𝑶𝒎𝑘.  

Equation (4.10) and (4.11) are Wolfe conditions. Sometimes the curvature condition can 

be amplified to out rule 𝛼‟s for which 𝑶(𝒎𝑘 + 𝛼𝑘𝑷𝑘  increases faster than𝑐2∇𝑶(𝒎𝑘)𝑇𝑷𝑘 . The 

resulting conditions are called strong Wolfe‟s conditions.  

𝑶(𝒎𝑘 + 𝛼𝑘𝑷𝑘 ≤ 𝑶(𝒎𝑘 + 𝑐1𝛼𝑘∇𝑶(𝒎𝑘)′𝑷𝑘            (4.12) 

 ∇𝑶(𝒎𝑘 + 𝛼𝑘𝑷𝑘 
𝑇𝑷𝑘  ≤  𝑐2∇𝑶(𝒎𝑘 

𝑇𝑷𝑘                 (4.13)  

0 < 𝑐1 < 𝑐2 < 1                   (4.14)  

 

4.4 Importance of frequencies in Frequency domain FWI  

When in the frequency domain, monochromatic wave-fields can be added separately in 

the inversion process. The low frequencies are more linearly related to the model perturbations 

than the higher frequencies (Sirgue, 2003). Therefore the inversion process should start with low 

frequency components and progressively add higher frequencies. This helps in mitigating some 

of the non-linearity of the problem, hence increases the chance of getting global minimum.  
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4.4 Sensitivity to the starting model 

The seismic inverse problem is a non linear problem, and the objective function generally 

contains several minima. Since the method used in this thesis is a local gradient approach, and 

not a global search in the model space, the gradient will descend to the nearest minimum on the 

objective function. It is therefore important that the initial model is near to the global minimum, 

so this will be the nearest minimum. An effort for constructing initial velocity model and its 

effect on final image reconstruction was made by Kanlı (2009). A sufficient initial model should 

be able to produce synthetic data with a misfit to the corresponding arrivals in the observed data 

of less than half a period of the starting frequency (Sun and McMechan, 1992). Gaussian 

Smoother function can be used to generate initial model in synthetic case to ensure an adequate 

initial model. However, in case of real seismic data, first arrival travel time tomography can 

serve the purpose for initial model. 

 

4.5 Resolution 

Resolution is one of the most importance criteria for evaluating the reconstructed image 

in seismic imaging and acquisition geometries play a vital role in the resolution of the final 

reconstructed image (Kanlı et al., 2008; Kanlı, 2008).  

One of the characteristics of the FWI is the high resolution of the results. The method can 

recover details with an accuracy of λ/2  (Pratt et al., 1996) (where λ is the wavelength). 

Compared to travel-time tomography, which can express resolution of approximately  𝛌𝐋 

(where 𝛌 is the wavelength and 𝐋 is the offset) (Pratt et al., 1996), this is a large improvement. 

In seismic Imaging, it is desired to recover as much of the wave-number spectrum as 

possible. The classical approach in seismic imaging have been to first determine the low wave-
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numbers of the velocity field by velocity analysis, followed by a separate reconstruction of the 

high wave-numbers. The low wave-numbers provides most of the large scale velocity values 

(tomography like contribution), while the higher wave-numbers improves the location and 

velocities form (migration-like contribution) (Mora, 1987). Full Waveform Inversion has the 

possibility to recover the whole wave-number spectrum during the inversion process (Mora, 

1987), hence provide a velocity model where both the velocity values and shapes are accurately 

estimated. 

 

4.6 Image Reconstruction for Marmousi Model 

True model and the initial model (Fig. 4.6 and Fig. 4.7) were kept same as time domain-

true and initial model for numerical computation of frequency domain Full Waveform Inversion. 

The configuration of the sources and receivers are represented in Fig. 4.5. There are 30 sources 

and 90 receivers equally spaced in the medium at a depth of 20-m. The absorbing boundary 

conditions were applied on all four edges of the medium. The inversion result after 25 iterations 

is shown in Figure 4.8.  
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Figure 4.5: The configuration of sources and receiver for Full Waveform Inversion 

 

 

Figure 4.6: True Model for frequency domain FWI 
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Figure 4.7: Initial Velocity Model 

 

 

Figure 4.8: Inversion results after 25 iterations. 

The objective function value received in frequency domain FWI was monotonically 

decreasing (Fig. 4.9).  
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Figure 4.9: Objective function value at each iteration. 

 

4.5.1 Discussion  

In order to analysis the amount of velocities recovered in Figure 4.8, velocity logs at 

three different locations are extracted (at 200 m, 400 m and 600 m) from the true model, initial 

model and final model. In all three profile (Fig. 4.10(a), 4.10(b) and 4.10(c)) the recovered 

velocities from FWI result matches the true velocities very well. The largest deviation from the 

real velocity is about 21% in a small portion of the 600 m profile (see Table 4.1). Some portions 

of final recovered velocities are either slightly underestimated or overestimated due to transition 

between high to low (or low to high) velocities. If the average velocity for profile at x= 200m, 

400m and 600m are 2.45 m/s, 2.48 m/s and 2.62 m/s, then average deviations from three 

different profiles will be -0.1%, -0.33%, 0.21 %. Hence, the Full-Waveform Inversion has 

managed to obtain precise results from the complex Marmousi model in frequency domain.  
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Figure 4.10: Velocity logs extracted at the horizontal distance x (a) 200 m (b) 400 m (c) 600 m. 
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Table 4.1: Table representing the true velocity, final recovered velocity and the % deviation 

along with the depth for each profile. 

 

 
Depth 
(m) 

1 

11 

21 

31 

41 

51 

61 

71 

81 

91 

101 

111 

121 

131 

141 

151 

161 

171 

181 

191 
 

        Profile x=200 m 
True V 
(m/s) 

 Final V 
(m/s) 

   (% 
Deviation) 

1.5 1.49 -0.07 

1.5 1.47 -1.41 

1.5 1.52 1.38 

1.77 1.77 0 

1.76 1.76 0 

1.74 1.74 -0.02 

1.81 1.78 -1.85 

1.70 1.73 1.75 

1.93 1.95 1.37 

1.84 1.91 3.56 

2.00 1.98 -0.89 

2.51 2.57 2.42 

2.63 2.63 0.06 

2.61 2.55 -2.23 

4.14 4.52 9.06 

2.83 2.82 -0.27 

2.97 3.04 2.32 

3.47 3.55 2.27 

2.44 2.63 8.08 

4.5 4.52 0.52 
 

       Profile x=400 m 
True V 
(m/s) 

 Final V 
(m/s) 

   (% 
Deviation) 

1.5 1.50 0.08 

1.5 1.48 -1.11 

1.5 1.48 -1.07 

1.67 1.67 0 

1.65 1.65 0 

1.69 1.67 -1.38 

1.72 1.72 -0.14 

2.29 2.35 2.63 

2.40 2.33 -3.07 

2.39 2.35 -1.70 

3.16 3.45 9.19 

2.75 2.60 -5.66 

2.58 2.58 0.18 

2.70 2.56 -5.07 

2.89 2.92 0.98 

3.28 3.11 -5.12 

3.2 3.15 -1.54 

3.8 3.69 -2.76 

3.3 3.31 0.39 

3.9 3.74 -4.06 
 

           Profile x=600 m 
True V 
(m/s) 

 Final V 
(m/s) 

   (% 
Deviation) 

1.5 1.50 0.02 

1.5 1.46 -2.29 

1.5 1.52 1.72 

1.58 1.58 0 

1.66 1.66 0 

1.63 1.65 1.23 

2.20 2.18 -0.69 

2.53 2.51 -0.64 

2.47 2.52 1.91 

2.30 2.26 -1.80 

2.39 2.35 -1.47 

2.4 2.31 -3.55 

3.35 3.17 -5.35 

2.89 2.95 1.95 

4.45 4.03 -9.25 

4 3.14 -21.43 

2.65 2.79 5.57 

2.5 2.99 19.97 

4.23 4.35 2.85 

4 4.00 0.03 
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CHAPTER 5 

 

CONCLUSIONS 
 

The Full Waveform Inversion method and its capabilities when applied to a complex 

geological model have been presented in this thesis. The FWI algorithm used in the study, 

performs an iterative search for a velocity model that minimises the residuals between the data 

computed in the velocity model and the observed data, i.e. the final result is a “best fit” model. 

The whole wave-field, including both waveform and phase, is being used as data. FWI 

computations are implemented in the time domain as well as frequency domain. However, time 

domain and frequency domain FWI have some disadvantages along with their advantages. 

Comparing with the frequency domain inversion methods, the time domain methods have the 

advantage of high efficiency in forward modelling as the wave modelling in frequency domain 

requires solving a large-scale system at each iteration which is time consuming for large scale 

problems. Time domain modelling provides the most flexible framework to apply time 

windowing of arbitrary geometry. In the frequency domain, the computational cost is only 

proportional to the number of frequencies used in the inversion, and not the number of sources. If 

the seismic data contains wide angle components, there will be a redundancy in the wave number 

spectrum present in the data, such a redundancy can be exploited in the frequency domain FWI 

by inverting fewer frequencies and hence save computational costs because it is possible to 

invert for single, discrete frequencies one at the time. Another great advantage with the 

frequency domain implementation is the ease and efficiency when adding multiple sources which 

is important in seismic methods. 
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The method is very sensitive to the non-linearity of the problem, and good input 

parameters, such as an accurate starting model and an initial frequency as low as possible, is 

important for obtaining good results. In this work it is shown that Full Waveform inversion has a 

great potential for estimating complex velocity models such as Marmousi Velocity Model when 

the acquisition parameters are as optimal as possible.   

For the future, applying FWI to real data from more complex geological medium and 

developing a migration tool and test the effect of FWI on a migrated image, are interesting 

challenges. 
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APPENDICES 

 

 

APPENDIX 1: Derivation for Gradient Expression in Time Domain 

 

 
Considering one dimensional system, if 𝒎  and 𝒅  are two arbitrary functions (not 

necessarily relate to one another by the forward modelling) then by the definition of the adjoint 

of a linear operator for any 𝒅𝑟(𝑡)   

 𝒅, 𝐹𝒎 =  𝐹∗𝒅, 𝒎                    (𝐴1.1) 

  

Here 𝐹  is the linear operator. Left side is in data space and its inner product is given as 

 

 𝒅, 𝐹(𝒎) =   𝒅𝑟(𝑡 𝐹𝒎(𝑥𝑟 , 𝑡)𝑑𝑡
𝑇

0𝑟

                   here   𝒖 = 𝐹𝒎            (𝐴1.2) 

 

and the right side is in model space and its inner product is given as 

 

 𝐹∗𝒅, 𝒎 =  (𝐹∗𝒅)(𝑥)𝒎(𝑥)𝑑𝑥
𝑅𝑛

                  (𝐴1.3) 

 

The relation 𝑢 = 𝐹𝑚 is implicitly encoded by the two equation (for single source) 

 

 𝒎0

𝜕2

𝜕𝑡2
 −  ∆ 𝒖 =  −𝒎 

𝑑2𝒖0

𝜕𝑡2
                (𝐴1.4) 

 

 𝒎0

𝜕2

𝜕𝑡2
 −  ∆  𝒖0  = 𝒇                 (𝐴1.5) 

 
If 𝑑𝑒𝑥𝑡  is the projection of data onto the full wave-field then  

 

 

𝒅𝑒𝑥𝑡 (𝑥, 𝑡 =   𝒅𝑟(𝑡 𝛿(𝑥 − 𝑥𝑟 

𝑟

.                  (𝐴1.6) 

 

Now,  𝑑, 𝐹(𝑚)  is represented as  
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 𝒅, 𝐹𝒎 =    𝒅𝑒𝑥𝑡 (𝑥, 𝑡 
𝑇

0

𝒖 (𝑥, 𝑡 𝑑𝑥𝑑𝑡

𝑅𝑛

                  (𝐴1.7) 

In order to use the wave equation for 𝒖, the differential operator  𝒎0
𝜕2

𝜕𝑡2 − ∆  need to be 

materialized which can be done by considering an auxiliary wave-field 𝑞(𝑥, 𝑡 that solves the 

same wave equation with  extended data set 𝒅𝑒𝑥𝑡  on the right hand side (Demanet, 2015). 

 𝒎0

𝜕2

𝜕𝑡2
− ∆ 𝒒(𝑥, 𝑡 =  𝒅𝑒𝑥𝑡 (𝑥, 𝑡                    (𝐴1.8) 

 

Substituting the Equation 8 in Equation 7 for and integrating by parts both in time and in 

space will give  

 𝒅, 𝐹𝒎 =    𝒒(𝑥, 𝑡  𝒎0

𝜕2

𝜕𝑡2
− ∆ 

𝑇

0

𝒖(𝑥, 𝑡 𝑑𝑥𝑑𝑡 

𝑉

+   𝒎0

𝜕𝒒

𝜕𝑡
𝒖|0

𝑇𝑑𝑥 −  
𝑉

 𝒎0𝒒
𝜕𝒖

𝜕𝑡
|0
𝑇𝑑𝑥 

𝑉

+     
𝜕𝒒

𝜕𝑛
𝒖𝑑𝑆𝑥𝑑𝑡 −    𝒒

𝜕𝒖

𝜕𝑛
𝑑𝑆𝑥𝑑𝑡

𝑇

0
𝜕𝑉

𝑇

0
𝜕𝑉

                     (𝐴1.9) 

 

 

In the above equation, 𝑉 is a volume that covers the whole of 𝑅𝑛 , and 𝜕𝑉 is the boundary of 𝑉-

then in the limit 𝑉 = 𝑅𝑛  the equality holds. In the limit of large 𝑉 the boundary terms over 𝜕𝑉 

disappears as they involve 𝒖, a wave-field created by localized functions 𝒇, 𝒎, 𝒖0  and which 

does not have time to travel arbitrarily far within a time [0, 𝑇]  (Demanet, 2015). Because 

𝒖(𝑥, 𝑧, 𝑡 = 0 = 0 and 
𝜕𝒖(𝑥,𝑡=0)

𝜕𝑡
= 0 the boundary terms vanishes at 𝑡 = 0. In order to vanish the 

boundary terms at 𝑡 = 𝑇, I need to apply 

𝒒(𝑥, 𝑡 = 𝑇) =  
𝜕𝒒(𝑥, 𝑡 = 𝑇)

𝜕𝑡
= 0 

 

Since I am only interested in the values of 𝒒(𝑥, 𝑡)  for 𝑡 ∈ [0, 𝑇], the above are final 

conditions rather than initial conditions, and the above equation is run backward in time 
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(Demanet, 2015). The boundary conditions need to be time reversed properly. A systematic way 

to compute 𝒒(𝑥, 𝑡 = 𝑇) was discussed in section 3.1.2.   

Now, simplifying the left hand side will give 

 

 𝒅, 𝐹𝒎 =    𝒒(𝑥, 𝑡  𝒎0

𝜕2

𝜕𝑡2
− ∆ 

𝑇

0

𝒖(𝑥, 𝑡 𝑑𝑥𝑑𝑡 

𝑅𝑛

=    𝒒(𝑥, 𝑡 𝒎(𝑥 
𝑇

0

𝜕2𝒖0

𝜕𝑡2
𝑑𝑥𝑑𝑡  

𝑅𝑛

          (𝐴1.10) 

 

As we discussed  𝒅, 𝐹𝒎  =  𝐹∗𝒅, 𝒎  Hence, the gradient expression is given as 

 

(𝐹∗𝒅 (𝑥 =  −  𝒒(𝑥, 𝑡 
𝜕2𝒖0

𝜕𝑡2
𝑑𝑡

𝑇

0

                   (𝐴1.11) 

 

Equation 11 can be represented in two dimensional system as 

 

(𝐹∗𝒅 (𝑥, 𝑧 =  −  𝒒(𝑥, 𝑧, 𝑡 
𝜕2𝒖0(𝑥, 𝑧, 𝑡)

𝜕𝑡2
𝑑𝑡

𝑇

0

                   (𝐴1.12) 

 

The above equation is known also as imaging condition.  
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APPENDIX 2: Derivation for Gradient Expression in Frequency Domain 

 
 Again considering one dimensional system, the extended data set in frequency domain is 

given as  

 

𝑑𝑒𝑥𝑡 (𝑥, 𝜔 =  𝑑𝑟(𝜔  𝛿(𝑥 − 𝑥𝑟)𝛿(𝑧 − 𝑧𝑟)

𝑟

            (𝐴2.1) 

 

From Equation (4.7), turning the sum over 𝑟 into an integral over 𝑥 then linearised scattered 

field is given as (Demanet, 2015) 

 

(𝐹𝑚) (𝑥𝑟 , 𝜔) =  𝐺 (𝑥, 𝑦; 𝜔 𝑚(𝑦)𝜔2𝑢0 (𝑦, 𝜔)𝑑𝑦               (𝐴2.2) 

 

In order to simplify Equation (4.7), I assume  

 

𝑞 (𝑥, 𝜔 =  𝐺 (𝑦, 𝑥; 𝜔              𝑚(𝑦 𝜔2𝑢0 (𝑦, 𝜔)𝑑𝑦                 (𝐴2.3) 

 

where 𝐺 is the Green‟s function. Using Equation (4.7) and Equation (A2.3), I will have 

 

 𝑑, 𝐹𝑚 =  𝑚(𝑦 [2𝜋 𝑞 (𝑦, 𝜔 𝜔2𝑢0 (𝑥, 𝑧, 𝜔              
𝑅

 𝑑𝜔] 𝑑𝑦            (𝐴2.4) 

 

Therefore,  

𝐹∗𝒅(𝑦 = −2𝜋  𝒒 (𝑦, 𝜔 𝜔2𝒖0 (𝑦, 𝜔            𝑑𝜔

𝑅

               (𝐴2.5) 

In two dimensional system Equation (A2.5) can be transformed to 

𝐹∗𝒅(𝑥, 𝑧 = −2𝜋  𝒒 (𝑥, 𝑧, 𝜔 𝜔2𝒖0 (𝑥, 𝑧, 𝜔               𝑑𝜔

𝑅

          (𝐴2.6) 

Equation (A2.6) is same as Equation (3.16) by Parseval‟s identity. Equation (A2.6) is the 

integral version of Equation (3.17) in the frequency domain. Since, in Fourier domain, the time 
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reversal of any real values function becomes the conjugation, the complex conjugate of 𝐺  in 

Equation (A2.3) presents the fact that the equation is solved backward in time. 𝒒 = 𝑮  𝒅𝑟
  can be 

interpret alternatively by applying an extra conjugate (Eq. A2.7), 

𝒒  = 𝑮 𝒅𝑟
            (𝐴2.7) 

 The above equation be read as the sequence of operations given below: 

1. Time reversal of 𝒅𝑟 , 

2. Propagate it forward in time, and 

3. Time reversal the results. 

Following above sequence of operation provides an added advantage of not having to rethink 

the boundary condition for the backward equation (Demanet, 2015). 
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APPENDIX 3: Converting field seismic data into frequency domain data set.   

 
 Pre-processing of seismic data is necessary to convert it into frequency domain data set. 

In order to convert the time domain seismic data (Fig. 1) into frequency domain data set, each 

seismic trace must be Fourier transformed. One complex number can then be used to describe the 

frequency spectrum of a seismic trace at a given frequency component (Thomassen, 2008).   

 

 
Figure A3.1: Seismic Data or Seismogram 

 

 

Conversion from time domain data set to frequency domain data set is a simple process. For 

example, I extracted three traces (Fig. 2) from the seismogram. Each trace is converted into 

frequency domain using Fourier Transform. Single sided amplitude spectrum after Fourier 

Transform for each trace is shown in Figure 3. In order to make a data set of 9.8 Hz frequency 

component (any frequency component can be chosen), the corresponding amplitudes from their 

amplitude spectrum must be extracted.  Figure 4 shows the frequency component data (for 9.8 

Hz) where the red dot represents trace number 50, 100 and 150.  
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Figure A3.2: Traces extracted from the seismogram. 

 

 

 

 

 

 
 

Figure A3.3: Single sided amplitude spectrum with trace no. (a) 50 (b) 100 and (c) 150 
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Figure A3.4: Frequency domain data set at 9.8 Hz; (a) real component (b) imaginary component 
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