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Abstract

The identification of the small scale geological heterogeneities like pinchouts,faults ,frac-

tures etc is a primary problem in seismics.They hold a significant importance in under-

standing the geology of a particular area as they can act as structural traps for accu-

mulation of hydrocarbons or can behave as migration pathways aiding the escape of the

hydrocarbons.

Standard approaches to obtain this high-resolution information, such as coherency anal-

ysis and structure-oriented filters, derive attributes from stacked, migrated images are

image-driven.These techniques are sensitive to artifacts due to an inadequate migration

velocity; in fact the attribute derivation is even not based on the physics of wave propa-

gation.

These small scale features are usually encoded in the form of diffractions in our seismic

data.Thus a seismic section containing only diffractions could be of great value to the

interpreter .Diffractions are the other coherent events present along with the reflections

in our seismic data.

There are some fundamental differences between reflections and diffractions like different

moveout, amplitude etc which can facilitate there separation and here we discuss two

methods to focus and separate diffractions. The first part of the thesis is devoted to

exploiting the difference between diffractions and reflections on the basis of Snell’s law

. We try to utilise this to design a weighting function which account this difference in

behaviour to directly clean the gradient in Full waveform Inversion.
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The second part of the thesis proposes separating the diffractions using a dip-steering

filter in the model domain in the Born framework which could be directly inverted using

Full waveform inversion.

The algorithms developed in this thesis are coded using GPU’s ( CUDA C ) in a parallel

environment except the dip-steering filter algorithm.
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Chapter 1

Introduction

Resolving small scale features using diffractions is now gaining interest in both academic

and industrial applications.Traditional Seismic imaging methods use only reflections to

create images of subsurface.Diffractions were treated as noise or abandoned stepchildren

as referred by Khaidukov [9] and used to suppress in processing and migration steps.But

now people have realised the potential of ’the abandoned stepchildren’ and they have

started adopting it to create high resolution images.

Reflections can only provide you information about the strong reflectors that curve smoothly

, it only provides the information at scales larger than the wavelength. We have to resort

to diffractions for small scale details or for super resolution. By super resolution we mean

higher resolution than the traditional definition of resolution. Typically , the vertical

resolution is defined as a quarter of dominant wavelength

λ =
v

f
(1.1)

where v is the velocity and f is the dominant frequency which varies with both medium

and the source properties.

Since our resolution is dependent on wavelength one would question why don’t we simply

decrease our wavelength to have better resolution images. The reason is decreasing the

wavelength of our seismic wave after certain extent is not practical. It is nearly impossible
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because of the dissipative nature of overburden which attenuates the high frequences and

moreover they are further lost during our standard processing. Diffractions occur when

seismic waves interact with objects smaller than their wavelength.Then they must contain

the information about those small scale objects like faults , fractures , pinchouts etc. The

idea of imaging these signals is to reveal this important information which they carry

along to the surface of earth.

Inverting for Diffractions could be a breakthrough as they have huge importance especially

for the salt-bodies. Diffractions could help in estimating more accurate velocities at the

top of the salt , particulary in rough salt bodies ( Sava and Biondi,2004) [10]. Moreover

diffractions are the most sensitive velocity information that we have from under the salt.

Most of the reflection energy that we record at surface has narrow angles of incidence at

the reflector, rendering the analysis of moveout ambiguous.

In this thesis we will discuss two approaches to image or invert the diffractions . The

first part of the work is to utilise the difference in behaviour of specular reflection and

non-specular diffraction when rays or waves impinges a material discontinuity and the

second part of the work is to separate diffractions using a model domain based filter to

separate into smooth ( reflection part )and rough ( diffraction part) model and generate

diffractions in Born framework.
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Chapter 2

Seismic Diffractions and Imaging

2.0.1 Wave Propagation

Elastic perturbations spatially propagate as waves. The behavior of these waves is de-

termined by the media through which they travel. Seismic imaging studies are primarily

concerned with seismic waves traveling through the Earth. The behavior of these waves is

unsurprisingly determined by elastic modulii and density of the rocks through which they

propagate. These attributes determine the velocity with which the wave propagates. The

two types of seismic waves are primary (P) and secondary (S) waves. P-waves transport

changes in compression through a medium, and are able to propagate through solids and

fluids alike. S-waves transport shear deformation through solid media, and do not propa-

gate through fluids ( Chapman, 2004 [11]; Fowler, 2004 [12]). Media properties determine

the velocities at which these waves propagate via the following equations:

Vp =

√
κ+ 4

3
µ

ρ
(2.1)

and

Vs =

√
µ

ρ
(2.2)

where κ is the bulk modulus of the media, a measure of incompressibility, µ is the shear

modulus, a measure of rigidity, and ρ is the material density (Chapman, 2004 [11]; Fowler,
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2004 [12]). The P-wave velocity is always greater than the S-wave velocity. Velocity and

density combine to form a quantity known as acoustic impedance, a measure of how much

pressure is generated within a medium by vibrations, which is defined in an unperturbed

medium by where V0 and ρ0 are the velocity and density of an unperturbed medium.

Reflectivitycan be defined as the spatial derivative of acoustic impedance (Chapman,

2004 [11]; Fowler, 2004 [12]). Acoustic waves may be reflected or transmitted when they

encounter a change in acoustic impedance. The strength of the reflected and transmitted

portions of the wave is proportional to the reflectivity of the interface; how large a density

and velocity contrast exists there, as well as the incident angle. Fermat’s principle states

that a wave will take the path through a medium corresponding to a stationary travel

time and governs the change in direction that a wave experiences as it passes through an

interface (Chapman,2004 [11]; Fowler, 2004 [12]).

2.0.2 Reflections and Diffractions

The interaction of propagating acoustic waves with the media is easier to understand and

explain if we examine the context in high frequency approximation or rays. The media

is usually characterized as separate regions each with their own material properties (

velocities, densities etc ) , and with a surface in between where the properties changes in-

stantaneously. The rays describes the waves as particles traveling through space through

well defined curves ( Cerveny 2005)[13]. The surface with large change in the impedance

contrast will give rise to strong reflectivity. A reflected ray will have the same inclination

angle with the normal as the incident ray. If the surface has complex geometry the normal

vector may change rapidly over short distances, which implies that a small perturbation

in reflecting point location will result in a much different reflected vector direction. This

can hold true for regions where the reflecting surface has large curvature, or where a

vertical discontinuity exists. The incoming parallel rays ,can be described by a ray tube,

or a geometric bundle of rays that only have energy flux at the ends, will be scattered
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and no longer be parallel to each other after reflection from this irregular surface. This

scattering phenomena correspond to diffractions, and diffracted rays may no longer be

described by ray tubes containing bundles of parallel rays. The rays now have different

directional vectors and any ray tube of diffracted rays will have flux outside describing

it’s end. Reflection occurs if the radius of curvature of a reflecting surface is greater than

that of inbound ray wavelength. For reflecting surfaces with smaller radius of curvature

than wavelength, diffraction occurs (Klem-Musatov, 1994 [14]; Khaidukov et al., 2004

[9]). If we consider diffractors as regions which will change rays from neat bundles of ray

tubes to scattered non-parallel rays, we find that in addition to reflective regions with

irregular surface geometry, caustics which focus inbound rays to single point also create

diffractions. Diffractions occur when rays which are initially parallel lose their parallel

travel paths (Klem-Musatov, 1994)[14]. Diffractions and reflections are therefore the ends

of a continuum of reflective backscattering behavior; no firm boundary between the two

exists, and an interaction with a reflecting surface may have both diffractive and reflective

components (Khaidukov et al., 2004)[9].

However there are some practical measures and properties based on their interaction with

the media which could lead to their separation.The three important properties in which

they differ are as follows

1) Diffractions have weaker amplitudes as compared to the reflection events . There mag-

nitudes are one order lower as compared to the reflections for a surface acquistion.In the

Figure 2.1 low amplitude hyperbola correspond to diffraction
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Figure 2.1: Velocity model

Figure 2.2: Finite difference modeling

2) In zero-offset modeling Diffractions always appear as hyperbolas .Figure 2.3 shows

two plane reflectors and one diffractor. In zero-offset kirchhoff modeling the reflectors

appears as plane and diffrator appear as hyperbola

18



Figure 2.3: Reflectivity Model

Figure 2.4: Zero Offset Modeling

3) Diffractions doesn’t follow snell’s law ( except edge diffractions).
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Figure 2.5: Reflections

Figure 2.6: Diffractions

2.0.3 Diffraction Imaging and Specularity

The idea of imaging diffractions is not a new concept.The properties that we discussed

in the previous section are the most basic one which are exploited by the researchers

in different domains to separate and image diffractions. There exist several methods of
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diffraction discrimination which uitilizes different criteria in different domains.

An early effort by Harlan et al. (1984) [15] focused on properties of diffractions in the

local slant-stack domain. Landa et al. (1987) [16] used differences in travel time prop-

erties between diffracted and reflected waves when viewed in common-offset sections to

automate diffraction detection. Kanasewich and Phadke (1988) [16]proposed a new form

of moveout and amplitude correction to enhance diffraction signal, creating common-

fault-point stacked sections. Landa and Keydar (1998)[17]proposed a method of imaging

diffractions by focusing energy around common-diffraction points. Fomel (2002) [18] and

Fomel et al. (2007) [19] expanded and applied plane-wave destruction filters, first devel-

oped by Claerbout (1992) [20], to isolate diffraction from reflection signal in un-migrated

common-offset or stacked data. Taner et al. (2006) [21] applied this method in the

common-plane-wavedomain. Khaidukov et al. (2004) [9] used the difference between re-

flection and diffraction moveouts to focus reflections and diffractions at different depths,

remove reflections and then de-focus. Landa et al. (2008) [22] and Klokov and Fomel

(2012) [23] developed methods for isolating diffractions in migrated dip-angle gathers.

Kozlov et al. (2004)[24] apply a weighting function , based on the Fresnel zone around the

specular reflected ray to the Kirchhoff integral to suppress reflections during isotropic mi-

gration.Moser and Howard(2008) [25] defined a new weighting function called ” Specular-

ity” which measures deviation from Snell’s law at reflection point.They defined specualrity

as

S(s, x, r) =

∣∣nT .Tx∣∣
‖Tx‖

(2.3)

where Tx denotes the gradient of T (s, x, r) with respect to x and n the reflector unit

normal , depending on x. We will try to utilise this measure directly in Full Waveform

Inversion
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Chapter 3

Full Waveform Inversion

Seismic Imaging is a parameter estimation problem where the purpose is to reconstruct

the parameters ( include media properties like density , velocity , attenuation , anisotropy

etc) which govern wave propagation . It is often posed as an optimization problem where

the purpose is to find the set of model parameters that minimizes a misfit function that

quantifies the distance between the observed data and the data predicted by the estimated

model. However different misfit function can be designed which will lead to different re-

construction methods based on different imaging conditions. Data domain methods define

misfit function based on the characteristics of data . Among them most popular are travel-

time tomography , least square migration and full waveform inversion . Alternatively ,

image domain methods define a misfit function based on the quality of reconstructed

images. Full Waveform inversion is a non-linear data fitting procedure which uses entire

waveform , unlike in travel time tomgraphy which uses only one seismic arrival , to re-

construct the model parameters. A typical inversion problem consists of two main parts:

direct problem ( or forward modeling ) and inverse problem . In FWI , forward prob-

lem consists of solving the wave equation on some domain and inverse problem includes

finding optimal parameters which minimizes the misfit function .
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3.0.4 Forward Problem

Forward modeling is the heart of seismic imaging. It is a numerical simulation process

of actual field surveys which translates the changes in the medium properties in the form

of recorded data . Seismologists rely on this data to decipher the important subsurface

information. The propagation of seismic waves in the Earth can be modelled using elastic

wave equation ( or anisotropic wave equation in the most general form )

ρ(x)
∂2u(x, t)

∂t2
−∇ · σ = f(x, t) (3.1)

that relates the displacement field in the Earth to its mass density ρ , the stress tensor

σ and an external force density f . The astounding fact is that it is a linearised version

of Newton’s second law of motion which balances the momentum of particle ρ(x)∂
2u(x,t)
∂t2

with internal ∇ · σ and external forces f(x, t).

However we will limit ourselves to acoustic media approximation and will not discuss the

theory of elasticity which is out of the scope of this thesis. In a constant density media ,

wave equation for the acoustic case can be written as

1

v(x)2

∂2u(x, t)

∂t2
−∇2u(x, t) = f(x, t) (3.2)

where u(x, t) is the pressure wavefield , f(x, t) is the source function and v(x) = 1/
√
ρ(x)κ(x)

where ρ is the density , κ is the compressibility , v(x) is the wave velocity.

Analytical solutions to the wave equation exist only for the simple models which donot

reflect the structural complexities of the Earth so this deficiency motivatives the devel-

opment of numerical methods . The numerical methods rely on the discretisation of the

continuous seismic wavefields using discrete set of points which can be represented in a

form of vector or matrix ui(t). The differential equations arising from the discretisation

of wave equation can be solved in either time domain or frequency domain. Each domain

has its own advantages and disadvantages which we will not discuss here and limit our

discussions to time domain modeling.However there are ensemble of numerical methods
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which can be used to solve wave equation in both domain .Finite difference methods ,

Pseudospectral methods , Spectral-Element methods , Finite-element methods , Discon-

tinuous Galerkin methods , Direct solutions are the most popular methods but here we

tend to discuss only Finite difference method.

3.0.4.1 Finite difference method

Finite difference is the most classy method , frequently applied for numerical solution of

wave propagation. It is based on the approximation of exact derivative using neighbouring

points. We will demonstrate the finite difference using 1-D wave equation which will helps

us to establish basic concepts of numerical stability and grid dispersion which can be easily

extended to 2-D and 3-D cases respectively.

The generic way of obtaining the finite-difference approximation of a function is based on

truncated Taylor series expansion. Let’s say u(x) is the function whose derivative we want

to find ∂xu(x) which is correct upto second order in spacing. We write our derivative as

∂u(x)

∂x
≈ a[u(x+ ∆x)− u(x+ ∆x)] (3.3)

a is a scalar coefficient that we seek such that right hand side converges to left hand side

as ∆x → 0 . Using Taylor series expansion and cancelling out the even power terms we

get

∂u(x)

∂x
≈ a[2

∂u(x)

∂x
∆x+

2

3!

∂3u(x)

∂x3
+ ...] (3.4)

If we neglect the higher order terms and choose a = 1
2∆x

∂u(x)

∂x
≈ 1

2∆x
[u(x+ ∆x)− u(x+ ∆x)] +O(∆x2) (3.5)

which is a well known approximation ( central difference ). This scheme can be extended

to derive any order ∆x approximation such that it involves 2N grid points , x±n∆x with

n=1.....N

∂u(x)

∂x
≈

N∑
n=1

an[u(x+ n∆x)− u(x− n∆x)] (3.6)
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If expand the terms on the right hand side of the equation using Taylor series , we notice

that terms with even powers of ∆x will cancel out

∂u(x)

∂x
≈

N∑
n=1

an

[ ∞∑
k=1

2

(2k + 1)!

∂2k+1u(x)

∂x2k+1
(n∆x)2k+1

]
(3.7)

Isolating the terms corresponding to k=0 from the integral

N∑
n=1

an[u(x+ n∆x)− u(x− n∆x)] = 2∆x∆xf(x)
N∑
k=1

nan+

[ ∞∑
k=1

2

(2k + 1)!

∂2k+1u(x)

∂x2k+1
an(n∆x)2k+1

] (3.8)

As ∆x→ 0 , equating both sides gave , corresponding to k=0 term

1 = 2∆x
N∑
n=1

nan (3.9)

other terms

0 =
N∑
n=1

an(n∆)2k+1 , k = 1, ..., N − 1. (3.10)

The resulting finite-difference approximation is then of order 2N in ∆x

Figure 3.1: Central Difference coefficients for Derivative (source:wikipedia)

In the similar way coefficients for higher order derivatives can be obtained for different

order of accuracy. Now let us consider the 1-D wave equation defined on the domain

x = [−L,L]

1

v(x)2

∂2u(x, t)

∂t2
− ∂2u(x, t)

∂x2
= f(x, t) (3.11)

For the sake of simplicity we disregard any external forces , f(x, t) = 0 and impose non-

zero boundary conditions u(x, t)|t=0 = u0(x, t) and u̇(x, t) = 0 . The displacements at
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boundary x = L and x = −L is zero , u(x, t)|x=L = u(x, t)|x=−L = 0. we discretise our

domain into equal steps with 2N + 1 grid points

x = i∆x i = −N, ...0..., N (3.12)

We use second order approximation of the second derivative obtained from the procedure

discussed before

∂2u(x, t)

∂t2
=

1

∆t2

[
u(x, t+ ∆t)− 2u(x, t) + u(x, t−∆t)

]
(3.13)

similarly we can write for the w.r.t x . we formulate our wave equation into an explicit

time marching scheme .

u(x, t+∆t) = 2u(x, t)−u(x, t−∆t)+
v2∆t2

∆x2
[u(x+∆x, t)−2u(x, t)+u(x−∆x, t)] (3.14)

The solution at next time step can be calculated from previous two values at t = 0 and

t = −∆t . This process is repeated till we require . The above strategy is very general

and can be repeated using higher order derivatives.

The numerical accuracy of the solution not only depend on the time increment but on

grid spacing , finite-difference approximation and even on material properties. The per-

formance of the above solution can be tested if we consider a homogenous media where

the analytical solution exist

u(x, t) =
1

2

[
u0(x− vt) + u0(x+ vt)

]
(3.15)

This solution is valid as long it doesn’t reach the boundaries . We set the parameters

as v = 5km/s ∆x = 1km and ∆t = 0.2s . The initial wavefield is the derivative of

Gaussian field with variance σ = 15km result in a dominant wavelength of 30 km.

u0(x, t) =
∂

∂x
e
−x2
σ2 (3.16)
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Figure 3.2: Numerical vs Analytical solution 1-D wave equation (source:Fichtner [1])

In the Figure 3.2As you can see that after 450 s the numerical solution tends to be

dispersive , meaning high frequencies seems to propagate slower, even if the analytical solu-

tion is non-dispersive. This undesirable phenomena is referred as numerical or grid dispersion

. In the next section we will discuss it in detail and provide measures to diminish it.

3.0.4.2 Stability Analysis

Von Neumann analysis is a powerful tool to study the stability anlysis that we observed

in previous section. We will assume a homogenous medium defined on the interval [−π, π]

where we can represent our solution in the form of Fourier series.

u(x, t) =
k=∞∑
k=1

φk(t)e
ikx (3.17)

In discrete form our wavefield solution can be written as

u(x, t) =

k=N/2∑
k=−N/2

φk(t)e
ikp∆x (3.18)

Please note that the above discretisation ∆x = 2π/N limits the range to nyquist wave

number π/∆x , k ∈ [−π/∆x, π/∆x] . Since we assume no force function in our example

, we insert the above expression into semi-discrete wave equation.
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∂2u

∂t2
=

v2

4∆x2

[
e2ik∆x − 2 + e−2ik∆x

]
φk(t)e

ikp∆x (3.19)

=
−v2

∆x2
sin2(k∆x)φk(t)e

ikp∆x (3.20)

Using second order finite difference in time and substituting the Fourier series

φk(t+ ∆t)− 2φk(t) + φk(t−∆t) =
−v2∆t2

∆x2
sin2(k∆x)φk(t) (3.21)

We introduce a new variable ψk to remove explicit dependence of φk at time t−∆t

ψk(t+ ∆t) = φk(t+ ∆t)− φk(t) (3.22)

After substitution we get

ψk(t+ ∆t)− ψk(t) =
−v2∆t2

∆x2
sin2(k∆x)φk(t) (3.23)

Using the above two equations we can form a linear system independent of time t−∆t .ψk(t+ ∆t)

φk(t+ ∆t)

 =

1 −−v2∆t2

∆x2
sin2(k∆x)

1 1− −v2∆t2

∆x2
sin2(k∆x)


ψk(t)
φk(t)

 (3.24)

We can advance Fourier coefficients in time by the application of this matrix ,ψk(j∆t)
φk(j∆t)

 = M j
k

ψk(0)

φk(0)

 (3.25)

where

Mk =

1 −−v2∆t2

∆x2
sin2(k∆x)

1 1− −v2∆t2

∆x2
sin2(k∆x)

 (3.26)

Now all the relevant properties of the algorithm especially stability and dispersion is

encapsulated in the form eigen values and vectors of the above linear system. For this

algorithm to be stable the absolute of eigen values λk must be less than 1 , otherwise

it will grow indefinitely . In order to faciliate eigen value analysis , we define certain

parameters for neatness of the solution .

γk = sin2(k∆x) (3.27)
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and Courant Number

c =
v∆t

∆x
(3.28)

In terms of above parameters , the eigen values can be written as

λk = 1− 1

2
c2γ2 ±

√
1

4
c4γ4 − c2γ2 (3.29)

If term under square root is real then we can have λk > 1 . To ensure stablity the term

inside the square root should be negative (c2γ2 < 4) such that λk is imaginary , then

|λk| =
√
λkλ∗k = 1 (3.30)

Since γ ranges between 0 and 1 so ,

c =
v∆t

∆x
< 2 (3.31)

The above condition ensures the stability to the solution of 1-D wave equation using

second-order finite difference equation . This condition is known as CFL condition named

after R. Courant, K. Friedrichs and H. Lewy (Courant et al.1928) . With ∆x = 1km and

v = 5km/s, the CFL condition imposes a maximum time increment of 0.4 s. Smaller

time increments are predicted to yield stable solutions, whereas larger time increments

are expected to lead to solutions that grow indefinitely as the iteration proceeds. The

prediction of the CFL condition is remarkably accurate. As you can see in the Figure ??

the solution is stable for ∆t = 0.39s , but it ‘explodes’ for ∆t = 0.41s.

(a) Numerical solution for ∆t = 0.39s (b) Numerical solution for ∆t = 0.41s

In general CFL condition have the form

∆t < const ∗ min(∆h)

max(v)
(3.32)
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It is possible to circumvent the CFL condition using implicit schemes but there compu-

tational cost compensates the advantages.

In order to quantify numerical dispersion , we assume the initial state (ψk(0), φk(0)) is

the eigen vector of the matrix Mk.The iteration that advances the Fourier coefficients in

time then simplifies to ψk(j∆t)
φk(j∆t)

 = λjk

ψk(0)

φk(0)

 (3.33)

As λk is a complex number it can written in Euler form

λk = |λk|eiαk (3.34)

we write αk as ,

αk = ∆tkv̄ (3.35)

Introducing the above expression to Fourier representation we get

u(j∆t) =

k=N/2∑
k=−N/2

φk(0)|λk|eik(j∆tv̄+p∆x) (3.36)

equation reveals that v̄ plays role of numerical wavespeed. If the numerical solution was

exact it would have been equal to exact wavespeed and independent of wave number k.

As a result of the discretisation,v̄ depends upon wavenumber thus our numerical solution

is dispersive in contrast to exact solution

Figure 3.4: Numerical Dispersion for exact wavespeed v = 5km/s (source:Fichtner [1])
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The components with wave number close to zero propagate at the correct speed, v =

5 km/s. As the wave numbers approach the Nyquist wave number,the propagation speed

tends to zero. Numerical dispersion is, of course, not a special property of our particular

example. All numerical solutions are dispersive to some degree, regardless of the method

used.

3.0.4.3 Point source implementation

In seismic surveys , we use explosives or air-gun as our sources.These physical sources are

best described as point sources . Point sources has the form

f(x, t) = δ(x− x0)δ(t− t0) (3.37)

It is not feasible to implement delta function in time domain and we usually implement

its band limited definition in time domain

In the frequency domain , the delta function can be written as

δ(ω) =
1√
2π
e−iωt (3.38)

As the result of the discretisation , ω is limited to the Nyquist frequency ωmax which we

can resolve.The optimal band limited version of δ is

δ̄(ω) =
1√
2π

[H(ω + ωmax)−H(ω − ωmax)] (3.39)

or

δ̄(t) =
ωmax
π

sinc(ωmax(t− t0)) (3.40)

A discrete band limited δ function can be found by sampling at discrete time sampling

points tn = i∆t .
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Figure 3.5: sinc[t− 4.0]

However our source is usually impulsive which means it remains active only for a

small amount of time so to restrict our source function to small period of time we can

employ windowing functions . Possible windows are Gaussian window or Kaiser windows.

The most popular source used in Seismic function is Ricker wavelet source which like a

windowed version of sinc function.

w(t) = (1− 2π2ν2
0(t− t0)2)e−π

2ν20 (t−t0)2 (3.41)

Figure 3.6: Ricker, ν0 = 10Hz
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3.0.4.4 Boundary Conditions

It is not possible to solve for the whole physical domain on the computer machines so usu-

ally we have to limit our computational domain to some part of the physical domain. The

biggest problem while restricting is it introduces reflections from these artificial bound-

aries which don’t exist in the Earth. If we do not treat them adequately , they will

pollute our numerical solution and error will be dominated so we have to introduce some

artificial boundaries which will absorb these unwanted reflection and prevent decading

our solution. This introduction of artificial boundaries are known as Absorbing Boundary

conditions in literature. There are numerous ABC’s based on the paraxial approximation

of wave equation (e.g. Engquist and Majda, 1977 [26]). Their efficiency depends strongly

on the angle of incidence. The absorption is perfect only for waves propagating normal to

the boundary. We will discuss only Paraxial approximation of wave equation boundary

conditions and sponge boundary conditions . We will also brief about the more exten-

sive boundary conditions known as Perfectly Matched Layer but we will not derive the

regarding equations here.

3.0.4.4.1 Paraxial approximation ABC’s : The idea of these boundary condi-

tions is when an incident wave hits the boundary the reflected wave direction will be

approximately opposite so this idea lead to paraxial approximation of wave equation.

The acoustic wave equation in a full space is

∂u2

∂t2
−
[∂u2

∂x2
+
∂u2

∂y2
+
∂u2

∂z2

]
= 0 (3.42)

The plane wave solution is written as

u = ei(k.x−ωt) (3.43)

The wavenumber vector k = [kx, ky, kz] is related to wavespeed v and angular frequency

ω via dispersion relation.

ω2

v2
= k2

x + k2
y + k2

z (3.44)
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or

k2
z = ±

√
ω2

v2
− (k2

x + k2
y) (3.45)

Taking only positive sign into consideration as it will denote increasing in z direction.

The resulting wave equation is

[∂u
∂z
− i
√
ω2

v2
− (k2

x + k2
y)
]
u(kx, ky, z, ω) = 0 (3.46)

It is a wave equation in mixed space-frequency-wavenumber domain obtained impractical

from computational point of view . We expand the term in square using truncated Taylor

series expansion upto second order however higher order approximations can also be

derived.

vkz
ω

= 1 +O
[∣∣∣ v2

ω2
(k2
x + k2

y)
∣∣∣] (3.47)

vkz
ω

= 1− 1

2

v2

ω2
(k2
x + k2

y) +O
[∣∣∣ v2

ω2
(k2
x + k2

y)
∣∣∣2] (3.48)

Following Clayton and Engquist [26](1977), the approximations (51) and (52) are com-

monly referred to as the A1 and A2 paraxial approximations.The corresponding one-way

wave equations are :

∂u

∂t
+ v

∂u

∂z
= 0 (3.49)

∂u

∂t
+ v

∂u

∂z
− 1

2

(∂u2

∂x2
+
∂u2

∂y2

)
u = 0 (3.50)

The second equation is well known as 150 approximation of wave equation however we can

assess the absorption efficiency by computing the reflection coefficient R that determines

the amplitude of the reflected waves from these artificial boundaries. We write our solution

as

u = uz+ +Ruz− (3.51)
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where as uz+ = ei(kxx+kyy+kzz−ωt) and uz− = ei(kxx+kyy−kzz−ωt)

k =
ω

v


cosφ sin θ

sinφ sin θ

cos θ

 (3.52)

where φ ∈ [0, 2π] is the angle between k and positive x-axis and θ ∈ [0, π/2] is the

incidence angle between k and positive z-axis.

For A1 condition

∂u

∂t
+ v

∂u

∂z
= 0 (3.53)

we get

R = −1− cos θ

1 + cos θ
(3.54)

For A-2 condition

∂u

∂t
+ v

∂u

∂z
− 1

2

(∂u2

∂x2
+
∂u2

∂y2

)
u = 0 (3.55)

we get

R = −(1− cos θ)2

(1 + cos θ)2
(3.56)

Figure 3.7: Reflection coefficients vs Incidence angle (source:Fichtner [1])

From the plot between (Figure 3.7)reflection coefficients and angle of incidence , one

can see that both boundary conditions are perfectly absorbing for plane waves parallel to

35



z-axis . The reflection coefficient for A1-condition grows more rapidly but for incidence

angle more than π/4 both results in unacceptedly large reflections therefore higher order

boundary conditions could be built using the same procedure ( including more terms from

truncated Taylor expansion )

3.0.4.4.2 Sponge Absorbing Boundary conditions : Sponge ABC’s were pro-

posed by Cerjan et al ( 1985)[27] . The idea of sponge is to introduce sponge like layers

around the computational domain where reflections attenuates exponentially . We extend

the model domain with layers of certain thickness , usually thickness varies from 20-60 .We

solve the wave equation in this extended domain and in this artificial layers we multiply

the wavefield with an exponentially decaying term. We commonly use the factor d(u)

d(u) = exp(−[0.015 ∗ (nb− i)]2) (3.57)

where nb is the layer thickness . These boundary conditions are the simplest one and

found to be more effective than 150 ABC.

3.0.4.4.3 Perfectly Matched Layer :Sponge Boundary conditions proves to be ef-

fective with finite difference method but it requires unacceptably large sponge layers with

higher order methods such as spectral method and even in higher order approximations

in FD , nb goes beyond 60 .A more efficient boundary layer technique was introduced by

Bérenger (1994) [28], who proposed to modify the electrodynamic wave equation inside a

perfectly matched layer (PML) such that the solutions decay exponentially without pro-

ducing reflections from the boundary between the regular medium and the PML. Since

Bérenger’s original invention, the PML method has been extended to a large variety of

wave propagation phenomena . There are various version of PML available ( Split PML

, Convolutional PML etc )and they form a vast body of literature. The idea is to modify

the wave equation inherently such that the incident waves decay rapidly .It is modified

such that it still matches the wave equation and no reflections are produced inside the
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PML region while transmission. However for further details , the reader is referred to

(Carcione et al., 2002) [29] for Split PML , ( Roden and Gedney, 2000) [30]for Non-Split

Convolutional PML , (Festa et al., 2005) [31] for Convolutional PML .

3.0.5 Inverse Problem

The objective in full waveform inversion is to find an optimal model m̄ representing Earth

that minimize the misfit functional χ, to quantify the difference between the observed

data and predicted data.A model comprises the spatial distribution of media properties

like P-wavespeeds vp(x) , S-wavespeeds vs(x) , density ρ(x) etc.

Since χ is a non-linear functional of m , we approximate the optimal model m̄ with

iterative schemes starting with an initial model m0 .The iterative scheme updates model

to a new model that better expalins the data than its predecessor:

mi+1 = mi + αidi with χ(mi+1) < χ(mi) (3.58)

The choice of descent direction di , and the step length αi > 0 depends upon the choice

of minimization scheme used to approximate m̄. The iterative procedure is repeated

till our model satisifies our data sufficiently well. We will brief about the conditions

that barm needs to satisfy to consider to be minimum of χ and then we will review the

optimization methods and regularization schemes that ensures the covergence towards

physically meaningful models.

3.0.5.1 Mimima , Convexity and Non-Uniqueness

Full Waveform Inversion involves the computationally expensive forward modeling and

a high-dimensional model space that render the application of probabilistic schemes im-

practical. Thus we are limited to the deterministic solution of the inverse problem which

means to find the model m̄ that minimizes the misfit functional χ

We consider a neibhourhood Nr(m̄) of radius r around the optimal model m̄ and define
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our model space as Ω which include all the permissible Earth models.

Nr(m̄) = m ∈ Ω |||m− m̄||2 < r (3.59)

The model m̄ ∈ Ω is a local minima of χ if there exists a small neibhourhood where χ(m̄)

is smalller than χ(m)

If it is smaller for all the models m in the neighbourhood then it is a strict local minima

. For a global minima the χ(m̄) is smaller than or equal to χ(m) for all the models that

belongs to our domain not for a particular neighbourhood. For a strict global minima

there is a unique model for whom χ(m̄) < χ(m) for all m ∈ Ω . The distinction between

minima and strict minima is important which relates to uniqueness of the solution. If the

minima is strict it means there is unique solution otherwise the solution is non-unique.

Figure 3.8: Left:m1 is global minima and m2 is local minima Right: m3 is strict global

minima and m4 is strict local minima (source : Fichtner [1])

The existence of global minima invloves the approximation in physics of the problem

that were used to model . The locality and uniqueness depends upon the convexity

properties of the model space Ω . We define a model space convex if the line joining two

models also fall in the model space.

αm1 + (1− α)m2 ∈ Ω (3.60)

for all α = [0, 1] and for all m1 and m2 in Ω

We can define convex misfit functionals provided that our model space is covex . We
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will evaluate the conditions in form of convexity with which one can ensure that a global

minima exist . The convex misfit functionals are defined as

χ(αm1 + (1− α)m2) ≤ αχ(m1) + (1− α)χ(m2) (3.61)

The convexity of the misfit functional ensures that the local minima is actually a global

minima but it doesn’t ensures the uniqueness .

Proof 1: Global minima ensureness Let’s assume that m′ is local minima of χ .

There exists a neighbourhood Nr(m
′) around m′ such that

χ(m′) ≤ χ(m) (3.62)

for all m ∈ Nr(m
′) . The convexity implies that any line m(α) connecting m′ to any other

model m′′ in the model space Ω is still in Ω.

m(α) = αm′′ + (1− α)m′ = m′ + α(m′′ −m′) ∈ Ω (3.63)

for all α ∈ [0, 1]

By choosing α ≤ r||m′′ −m′||2−1 = αr we ensure y(αr) is also in Nr(m
′). Therefore

χ(m′) ≤ χ(m(αr)) = χ(αm′′ + (1− α)m′) ≤ αχ(m′′) + (1− α)χ(m′) (3.64)

Rearranging equations on both sides we get

χ(m′) ≤ χ(m′′) (3.65)

Since the choice of m′′ is arbitary so the relation implies that convexity is sufficient to

guarantee that a local minima is infact global minima.

Proof 2: Uniqueness The strict convexity χ(m′) < χ(m) ensures the global minima

m′ is unique. Let us consider there exists another minima m′′ of χ such that m′ 6= m′′ so

χ(m′) = χ(m′′) . The mid-point of the models (m′ + m′′)/2 should also lie in the model

space Ω as per the convexity.

χ(m′) < χ((m′ +m′′)/2) < χ(m′/2) + χ(m′′/2) (3.66)
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Rearranging it follows that χ(m′) < χ(m′′) which contradicts the assumption that m′′ is

also a minima of χ

It shows that strict convex misfit functional ensures the uniqueness of global minima so

we would like our misfit functional to be convex . However it is not handy to work on

this strict definition of convex functional as we can’t evaluate the misfit along the line

between two models in our model space.

The more handy is to develop the criteria in terms of derivatives .If χ is convex , for any

two models m1 and m2

χ[m1 + α(m2 −m1)] ≤ χ[m1] + α[χ(m2)− χ(m1)] (3.67)

Rearranging we get

1

α
(χ[m1 + α(m2 −m1)]− χ[m1]) ≤ χ(m2)− χ(m1) (3.68)

In the limit α→ 0

χ[m2] ≥ χ[m1] + (m2 −m1)∇mχ(m1) (3.69)

Exapnding χ(m2) using Taylor series expansion, we get

χ(m2) = χ(m1) + (m2−m1)∇mχ(m1) +
1

2
(m2−m1).Hχ(m1).(m2−m1) +O(|m2−m1|)3

(3.70)

Since equation 74 holds for any arbitary m2 , we get

(m2 −m1).Hχ(m1).(m2 −m1) ≥ 0 (3.71)

It means that Hessian of a strictly convex function should be positive definite. It could

be established without proof that for a misfit functional to be convex , it’s Hessian should

be positive definite. This condition still could be verified as compared to the original

definition of convex functionals. But however computing Hessian for a problem at large

scale is still not considered practical .
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3.0.5.2 Optimization methods

Descent methods are the most popular methods used for solving the optimization problem

iteratively.The general idea of descent methods is to start with an initial model m0 ,

which is usually our best guess before inversion , and updating the model iteratively in a

particular descent direction d0 over the step length α0.

m1 = m0 + α0d0, χ(m1) < χ(m0) (3.72)

The necessary condition for the construction of descent direction is

χ(m1) = χ(m0 + α0d0) < χ(m0) (3.73)

If we consider the step length α0 to be very small , then using the limits or truncated

Taylor series upto first order, we get

d0.∇mχ(m0) < 0 (3.74)

The descent direction has to satisfy the above condition . We choose d0 = −∇mχ which

will ensures the above condition.

− [∇mχ(m0)]2 < 0 (3.75)

However other descent directions are also possible which lead to different descent methods.

Another possible descent direction is

d0 = −A.∇mχ(m0) (3.76)

only if A is a positive definite matrix , because then

h0.∇mχ(m0) = −∇mχ(m0).A.∇mχ(m0) < 0 (3.77)

The optimal step length should be such that our misfit functional should be minimum .

χ(mi+1)=χ(mi + αidi) is minimum.

∂χ(mi + αidi)

∂αi
= 0 (3.78)
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Evaluating the above condition and using the linear approximation , we get

αi = − di.∇mχ(mi)

di.Hχ(mi).di
(3.79)

The other alternative to avoid the computation of Hessian to use a line search method

like back tracking , parabolic line search method etc.

3.0.5.2.1 Steepest Descent Method In steepest descent method we find descent

direction di such that ||di||2 = 1. The choice of descent direction for steepest descent is

di = − ∇mχ(mi)

||∇mχ(mi)||2
(3.80)

The step length could be calculated using either line search or the analytical method .

However being conceptually simple , it is rarely used because of its slow convergence.

3.0.5.2.2 Conjugate Gradient Method The conjugate gradient involves finding

the descent directions that are conjugate to each other.To illustrate we start with quadratic

misfit functionals.

χ(m) = χ(m′) +
1

2
(m−m′).Hχ(m).(m−m′) (3.81)

The Hessian is assumed to be positive definite , so the m′ is a unique global minima of

misfit functional. The conditions for the directions to conjugate is as follows .

di.∇mχ(mj) = 0 (3.82)

di.Hχ(m).dj = 0 (3.83)

By ensuring the conjugacy of descent directions , it will ensure the solution in limited

number of iterations.

dk =


−∇χ(m0) k = 0

−∇χ(mk) + βkdk−1, k ≥ 1

(3.84)
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There numerous ways to compute βk , we use a hybrid scheme combining Hestness-Stiefel

and Dai-Yuan schemes:

βk = max(0,min(βHSk , βDYk )) (3.85)

where

βHSk =
< ∇χ(mk),∇χ(mk)−∇χ(mk−1) >

< dk−1,∇χ(mk)−∇χ(mk−1) >
(3.86)

βDYk =
< ∇χ(mk),∇χ(mk) >

< dk−1,∇χ(mk)−∇χ(mk−1) >
(3.87)

3.0.6 Elements of practical FWI

In previous sections we discussed the various elements involved in Full waveform inversion

in detail . In this section we will put the information at the right place to get the real

picture. As described previously , FWI consists of solving both forward problem and

inverse problem in an iterative manner. In time domain , acoustic wave equation for

isotropic and constant density media can be written as

(
∇2 − 1

v2

∂2

∂t2

)
u(x, t) = s(x, t) (3.88)

where v is the wavespeed , u(x, t) is the pressure wavefield and s(x, t) is the source

function. In compact form it can be written as

Au = s (3.89)

where

A(x, t, v) =
(
∇2 − 1

v2

∂2

∂t2

)
(3.90)

The inverse problem consists in finding optimal model that minimizes the misfit functional

χ. The misfit functional is a function of observed data dobs and predicted data dpre at

receiver positions. The common choices for objective functional invloves cross-correlations

, norms and deconvolutional type objective functions or combination of them. We employ

L2 norm type objective function however it is not the best type of objective function but
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it is relatively simple to use.

min(χ) = min
1

2

∫ t=T

t=0

s=Ns∑
s=1

s=Nr∑
r=1

||dobs(x, t)− dpre(x, t)||22 (3.91)

where Ns is the number of sources , Nr is the number of receivers , dobs is the observed

data and dpre is predicted data using forward simulation.

The inverse problem is solved as an optimization problem , the updated model at nth

iteration mn+1 is

mn+1 = mn + α∆m (3.92)

∆m = β∇mχn (3.93)

For Newton methods the β is the inverse of Hessian

3.0.6.1 The Gradient: Computaion and Interpretation

For any optimization problem , finding the optimal model requires the derivative of misfit

functional χ . dobs is the wavefield recorded at the receiver position . We write dobs = Pu

, where P is the projection operator from model space to receiver space and u is the

complete wavefield

∂χ

∂v
= g =

∫ t=T

t=0

s=Ns∑
s=1

s=Nr∑
r=1

(
P
∂u(x, t)

∂v

)†
(Pu(x, t)− dobs(x, t)) (3.94)

We need to compute ∂u
∂v

. It can’t be done analytically as we don’t have an analytical

solution of wave equation for complex media . In the most general case it can done

numerically using finite difference method or taking the derivative of the forward problem

(Au = s) .

∂u

∂v
=


∂u
∂v

= u(x,t,v+∆v)−u(x,t,v)
∆v

A∂u
∂v

= −∂A
∂v
u(x, t, v)

(3.95)

The second one is more numerically accurate as it involves solution of N × Ns where N

is the total number of discrete points nx × nz. Physically ∂u
∂v

it represents a diffracted

wavefield by a heterogeneity at model position i .
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Alternatively the gradient can be computed using adjoint state method which requires

only two forward problems per source 2×Ns.

The exact derivation of the gradient can be found in appendix and the final relation comes

out to be.

∂χ

∂v
=

∫ t=T

t=0

R
{ 2

v3
∗ ∂

2u

∂t2
∗ λ(x, t)

}
(3.96)

The gradient expression is proportional to cross-correlation of forward wavefield u(x, t)

and back-propagated wavefield λ(x, t). The real part ensures the model parameters have

physical meaning. The above relation from adjoint state method comes out be simple

because our wave propagation operator is self adjoint (A = A†)

3.0.6.1.1 Preconditioner : The descent direction can be improved by using a pre-

conditioner. There is no general method to compute the preconditioner however it should

not be much expensive.For gradient based methods the left preconditioner has the form

∆m = P∇mχ (3.97)

where P is the preconditioner . For Newton and its variant methods the preconditioner is

the inverse of the Hessian however it is to much expensive to compute the exact Hessian

as it require the computation of diffracted wavefields (∂u
∂v

or Frechet derivative.

A good choice of preconditioner to use is to compute inverse of pseudo Hessian which was

introduced by Shin . He approximated the diffracted wavefields as

∂u

∂v
= −∂A

∂v
u (3.98)

as if the modeling operator A is behaving as identity .It can be calculated just cross-

correlating the adjoint sources.The resulting pseudo Hessian is

Hps =
(∂A
∂v

)†(∂A
∂v

)
(3.99)

Since the approximation of inverse of Hessian is desired , only diagonal terms are taken

into account

P = diag
( 1

Hps + β

)
(3.100)
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3.0.6.1.2 Physical Interpretation :We refer to the imaging condition as the oper-

ator that goes from the data space to the model space, and determines which parameters

in the model space must be modified in order to explain the measured data. The gradient

gives the imaging condition for FWI.The gradient expression illustrates that the correla-

tion of the direct and back-propagated wavefield will be non-zero on all the points along

an ellipse (Figure 3.9).

Figure 3.9: Example of the points satisfying the imaging condition tS,x + tx,R = T , for a

reflection residual at time T = 5s, in a model with v = 2m/s, with a source at xS = 0

and a receiver at xR = 8 m, resulting in an offset of D = 8m. The points form an ellipse

with focal points at the source and receiver positions.

If we look carefully at the gradient expression.

g =

∫ t=T

t=0

s=Ns∑
s=1

s=Nr∑
r=1

(
P
∂u(x, t)

∂v

)†
r
(Pu(x, t)− dobs(x, t)) (3.101)

The u is the wavefield propagating in the medium, generated by source s. The diffracted

wavefield has as a virtual source the term −( ∂A
∂m

)u. The term
(
P ∂u(x,t)

∂v

)†
r

is diffracted

at one receiver position r.The gradient g is the multiplication of the diffracted wavefield

with the residual data (Pu− d). (Figure 3.10).
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Figure 3.10: a) Au = s , source s generates a wavefield that is propagated by operator A

b) A∂u
∂v

= −∂A
∂v
u, source −∂A

∂v
u generates diffracted wavefield ∂u

∂v
propagated by operator

A

The ith component of the gradient will be non-zero if the diffracted wavefield by

hetereogenity vi arrives at the receiver position at the same time at as the recorded

time for the residual. Consider a true velocity model that consists of an homogeneous

background v0 and three scattering points. There is one source denoted by a star, and a

line of receivers at the surface at the positions of the dashed line. The source s generates

a wavefield that travels through the model v and that will be diffracted by each of the

heterogeneities. In figure the partial derivative wavefield ∂u
∂v

(diffracted by the green

scatterer) at the receiver positions is plotted. In , the data residuals recorded at the

receiver positions are shown. Three arrivals are seen due to the three diffraction points.

Recall that the gradient of equation is the correlation ∂u
∂v

and the residuals. The sum over

time of the correlation the partial derivative wavefields and the data residuals is going to

generate a non-zero gradient value at point vi , because we can see that the two arrivals

coincide perfectly.( Figure 3.11)
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Figure 3.11: Figure taken from (Operto et al., 2013) [2]. The true velocity model consists

of an homogeneous background m0 and three scattering points. There is one source

denoted by a star, and receivers at the positions of the dashed line. b) The source s

generates a wavefield that travels through the model m and is going to be diffracted by

each of the heterogeneities. a) The partial derivative wavefield ∂u
∂m

( diffracted by the

green scatterer) at the receiver positions. c) The data residuals recorded at the receiver

positions. Three arrivals are seen due to the three diffraction points. The sum over time

of the correlation the partial derivative wavefields (figure a) and the data residuals (figure

c) is going to generate a non-zero gradient value at point vi .d) The role of the acquisition

can be analyzed, considering the angle between the source and the receiver.

3.0.6.2 The Hessian: Computaion and Interpretation

The Newton descent direction methods require the computation of Hessian , second deriva-

tive of the misfit function χ

H = ∇2
mχ =

(
P
∂u

∂m

)†(
P
∂u

∂m

)
+
( ∂u
∂m

)†
P †(Pu− d) (3.102)
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It involves the computation of double diffracted wavefiedls and it is quite expensive to

calculate . It can be calculated either differentiating forward problem twice

A
∂2u

∂mi∂mj

= − ∂A

∂mi

∂u

∂mj

− ∂2A

∂mi∂mj

u− ∂A

∂mj

∂u

∂mi

(3.103)

or using adjoint state method . However we will not discuss here as we didn’t employ

Newton methods but for the completion we will discuss the physical meaning of the

Hessian term.

3.0.6.2.1 Physical Interpretation :The Hessian allows to correct artefacts in the

imaging condition. The artefacts in the gradient will come mainly from the limited band-

width of the source, the smearing artefacts of the imaging condition along an ellipse and

double scattered energy that is mapped as single scattered energy. The first term in

the Hessian represents the zero lag cross correlations of the partial derivative wavefields

(diffracted at different points in the model) at the receiver positions. Let N be a neigh-

borhood containing all the model parameters around mij . The size of this neighborhood

will depend on the source spectrum. For all the points in this neighborhood, all the partial

derivative wavefields ∂u
∂m

will arrive at similar times to the receiver positions and thus all

will correlate perfectly with the residuals . This will cause a defocusing, because all the

points around m i will be imaged, giving rise to rather smooth models. As explained by

Pratt et al. (1998)[3], the structure of the GN approximation of the Hessian is similar to

a convolutional or smoothing operator. The application of the inverse Hessian sharp- ens

and refocuses the gradient, just as a spiking deconvolution in seismic data processing.

Even in the case of a perfect source with δ as a spectrum, there would still be artefacts in

the gradient due to incomplete illumination. For one source-receiver pair, all the points

along the ellipse that have the source and receiver as a foci, will be imaged. If there are

enough sources and receivers in an adequate acquisition geometry, destructive interfer-

ence will cancel all points except the target we wish to image. However, with a limited

acquisition these artefacts may persist. The Figure 3.12 shows an example done by Pratt
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et al. (1998)[3] , where the gradient has the smile artefacts present. When the inverse

GN approximation of the Hessian is applied, these artefacts disappear.

Figure 3.12: Figure from Pratt et al. (1998)[3]. With one source and receivers on the

surface. On the left, gradient in the first iteration shows the smile artefacts. On the right,

the Gauss-Newton descent direction has removed the smile artefacts.

The second term in the Hessian in equation is less important if either the residuals are

small, or the double diffracted wavefields are small (meaning we are in the linear regime).

That is, the second order partial derivative wavefields are important when a change in a

model parameter can affect the partial derivative wavefields.

3.0.6.3 Discussion on Image Resolution

The resolution analyses is directly related to the imaging condition and the Fresnel zone

concepts.However it could be better understood in frequency - wavenumber domain.

In the frequency domain, the imaging kernel will show the ellipses that satisfy the imaging

condition for all the arrivals in time. An example of an imaging kernel for one frequency

(sometimes known as sensi-tivity kernel) is represented in Figure . The dark and light
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fringes denote the sensitivity of the model parameters to one frequency. The central ellipse

defines the first Fresnel zone. The first Fresnel zone is the region around the direct path

such that the travel time for points in this region differs in no more than T/2. All arrivals

of scattered paths within half a period of one arrival will generate constructive interference

in the seismograms. In terms of wavelength, the Fresnel zone is the region around the

reflector path such that the ray path differs by no more than λ/2. The first Fresnel zone

defined for each offset Dis important for two reasons. If the background model is not

sufficiently accurate such that the difference in between the arrival of scattered modeled

data and the recorded data does not exceeds more than half a period, the resulting data

residual will be back-propagated on the wrong Fresnel zone leading to erroneous update

of the subsurface model. This is referred to as cycle-skipping. The width of the first

Fresnel zone is
√
λD (Williamson, 1990)[32].

The second reason why the Fresnel zone is important is because it limits the resolution of

the final image. Two point scatterers that generate reflected waves whose arrival times is

less than half a period, will not be distinguishable. For a surface acquisition, the smallest

distance dx and dz between two point scatters for them to have an arrival time difference

of at least T/2 is approximately ( Schuster , 2007) [33].

dx ≈ λ
√
D2 + z2/(4D) (3.104)

dz ≈ λ/4 (3.105)

where z is the depth of the scatterer and D is the offset. From these equations we can

see that the vertical resolution dz of the image does not depend on the offset, but only

on the smallest wavelength. The horizontal resolution dx is different for shallow or deep

scatterers. For example, for deep scatterers (z >> D), long offsets D are needed to

improve the horizontal resolution.

51



Figure 3.13: a) Imaging kernel in the frequency domain for one source receive pair. The

first central ellipse denotes the first Fresnel zone. The black and white fringes describe

the iso-phase surfaces of all the scattered arrivals. (Each isochrone represents all the

parameters in the model space that can explain a seismic phase arrival at time t). The

width of the isochrones decreases in depth as the scattering angle decreases (Figure from

: Woodward, 1992)[4]

3.0.6.3.1 Wavenumber Reconstruction Another aspect of the quality of the image

concerns the capability to reconstruct small and large details of the model. By applying

a Fourier transform to the depth and horizontal distance variables (z, x), and working in

the wavenumber domain (kz, kx) it is possible to analyze the resolution of the model in

terms of coverage of the wavenumber spectrum.To describe the transmission components

over a wide range of offsets the low-wavenumber components of the velocity model must

be accurate. To account for reflection amplitudes, the high wavenumber components of

the velocity model must be correct (Mora, 1989)[7].

Considering an inversion in the frequency domain (under far field assumptions and using

the Born approximation), and using a delta a source function, the direct u(x, ω) and
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back-propagated wavefields λ(x, ω) in terms of the Green’s functions are

u(x, ω) = G(x, s) (3.106)

λ(x, ω) = G†(x, r)(Pu− d) (3.107)

plugging back into the gradient expression we get

∇mχ = ω2

n=Ns∑
n=1

n=Nr∑
n=1

(G(x, s)G†(x, r)(Pu− d)) (3.108)

Under plane wave approximation

∇mχ = ω2

n=Ns∑
n=1

n=Nr∑
n=1

(exp(−i~k(ŝ+ r̂))(Pu− d) (3.109)

the unit vector ŝ points from the source to the diffracting point x and r̂ is a unit vector

from the receiver to the diffracting point.The gradient can be interpreted as an inverse

Fourier where the coefficients are given by the residuals. Let us denote ~kS,x = ~k.ŝ as the

vector from the source to point x, and ~kR,x = ~k.r̂ as the vector from the receiver to the

point x. In Figure 3.14, the wave vectors are plotted, in the wave vector space. The

angle between ~kS,x and ~kR,x at the diffracting point x is θ. The resulting wave vector at

x is

~k =
ω

|v|
cos(θ/2)n̂ (3.110)

n̂ =
~kS,x + ~kR,x

(

√
|| ~kS,x + ~kR,x||2

(3.111)
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Figure 3.14: Figure adapted from Sirgue and Pratt (2004)[5]. kS,x and kR,x are vectors

from the source to the diffracting point and from the receiver to the diffracting point.

In order to have a gradient that can reconstruct all wave numbers both in amplitudes

and directions, different angles and different frequencies must be considered. The term ω

and the magnitude of v play a role in the magnitude of the reconstructed wave number,

and the angle θ plays a role in the direction and magnitude.
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Figure 3.15: Figure from Sirgue (2003)[6]. Under the plane wave approximation, an

illustration of the variation of the wave number contribution in the gradient, for different

incidence-scattering angles. The first column represents the wave paths from the source

to the scattering point exp(i~k.ŝ). The second column represents the wave paths from the

receiver to the scattering point exp(i~k.r̂). The last column is the multiplication of both

paths exp(i~k.(ŝ+ r̂), which is proportional to the gradient. a) The source are receiver are

at the same position. The incidence and scattering angle is 00. The total wave number

is high, which can be seen in the high resolution of the gradient. b) The incidence and

scattering angle is 900 . c) The incidence and scattering angle is 1600 . The lowest wave

number contribution is given the high incidence and scattering angles. The high wave

number contribution is given by small incidence and scattering angles

In Figure 3.15 we can see the effect of changing the angle θ on the wave number

reconstruction, for a fixed frequency. The angle is increased from Figure to Figure 3.15c,

and as a consequence the reconstructed wave number decreases.
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The wavenumber resolution capacity kx, kz for a given source receiver-pair therefore de-

pends on the imaging condition, the acquisition and position of the reflector (that deter-

mine θ), the magnitude of the propagation velocity of the waves v and the frequency f .

A representation of the usual wave number illumination is shown in 3.16 , using infinite

offset data. There is a gap in low horizontal and vertical number spectrum. For example,

note that for kz = 0, there is no resolution in kx . On the other hand, if kx = 0, the whole

kz can be recovered. This is a consequence of the fact that we are using a surface acqui-

sition and so, the resultant sum of the wavevector usually has kz as its most important

component.

Figure 3.16: Figure from Mora (1989)[7]. a) Shows the part of the usual part of wave

number spectrum in the image space that can be resolved with the infinite offset data. As

it is clear, there is a gap in low number spectrum. b) Shows the part of the wave number

spectrum in the image that can be recovered by introducing reflectivity information in

the model, and expanding the imaging condition , in forward and back-scattered direct

and back-propagated wavefields.

To try to recover the low wavenumber (tomographic information), Mora (1989)[7]

suggested to introduce reflectivity information in the model (Mora, 1989)[7]. The idea is

that the reflector will create back-scattered energy. Therefore, the waves will not only

coincide in a point x, as shown in Figure , but the reflected direct wave will meet the
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back propagated wavefield from the receiver at other points, as illustrated in Figure . This

configuration resembles a tomographic configuration where the reflector would correspond

to the source and the receivers are on the opposite side. The resultant wavenumber has a

low magnitude |~k|. By doing this, it is possible to recover the low wavenumber spectrum

and fill the gap as shown in (Mora, 1989)[7]. In general, in the presence of strong reflectors,

the direct and back-propagated wavefields can be separated in those travelling downward

and upward, u = u+u− and λ = λ+λ− , where + indicates downward and − indicates

upward travelling. The correlation of u and λ will therefore provide four terms. The

correlation of wavefields travelling in opposite directions will cover the low part of the

wavenumber spectrum.

Figure 3.17: Imaging condition with and without a reflector in the background model.

a) correlation of u and λ. Reconstructs high magnitude wavenumbers. b) Correlation of

back-scattered u and λ. Reconstructs low magnitude wavenumbers.

3.0.7 CUDA and Parallelisation strategies in FWI

3.0.7.1 Introduction

There is a need for parallelization in the domain of scientific computing. Microprocessors

based on a single central processing unit (CPU), such as those in the Intel Pentium fam-

ily brought GFLOPS, or giga 1012 floating-point operations per second, to the desktop
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and TFLOPS, or tera (1015) floating-point operations per second, to cluster servers. The

users, in turn, demand even more improvements once they become accustomed to these

improvements, creating a positive (virtuous) cycle for the computer industry. This drive,

however, has slowed since 2003 due to energy consumption and heat dissipation issues

that limited the increase of the clock frequency and the level of productive activities that

can be performed in each clock period within a single CPU. Since then, virtually all mi-

croprocessor vendors have switched to models where multiple processing units, referred

to as processor cores, are used in each chip to increase the processing power. This switch

has exerted a tremendous impact on the software developer community.

Many-threads processors, especially the GPUs, have led the race of floating-point per-

formance since 2003. As of now the ratio of peak floating-point calculation throughput

between many-thread GPUs and multicore CPUs is more than 10. These are not nec-

essarily application speeds, but are merely the raw speed that the execution resources

can potentially support in these chips: 1.5 teraflops versus 150 gigaflops double precision

in 2012. To date, this large performance gap has already motivated many applica- tion

developers to move the computationally intensive parts of their software to GPUs for ex-

ecution. Not surprisingly, these computationally intensive parts are also the prime target

of parallel programming—when there is more work to do, there is more opportunity to

divide the work among cooperating parallel workers.

GPU’s have different design philosophy than CPU design. CPU is optimized for sequen-

tial code performance . It makes use of sophisticated control logic to allow instructions

from a single thread to execute in parallel or even out of their sequential order while main-

taining the appearance of sequential execution. More importantly, large cache memories

are provided to reduce the instruction and data access latencies of large complex applica-

tions. Neither control logic nor cache memories contribute to the peak calculation speed.

As of 2012, the high-end general-purpose multicore microprocessors typically have six to

eight large processor cores and multiple megabytes of on-chip cache memories designed

58



to deliver strong sequential code performance.

Memory bandwidth is another important issue. The speed of many applications is limited

by the rate at which data can be delivered from the memory system into the processors.

Graphics chips have been operating at approximately six times the memory bandwidth

of contemporaneously available CPU chips.

The design philosophy of GPUs is shaped by the fast-growing video game industry that

exerts tremendous economic pressure for the ability to perform a massive number of

floating-point calculations per video frame in advanced games.The prevailing solution is

to optimize for the execution throughput of massive numbers of threads. The design saves

chip area and power by allowing pipelined memory channels and arithmetic operations

to have long latency. The reduced area and power of the memory access hardware and

arithmetic units allows the designers to have more of them on a chip and thus increase

the total execution throughput.

Figure 3.18: CPU vs GPU design (source:[8])

3.0.7.1.1 Programming Model CUDA is a high level language almost like C but

with a few straight forward extensions. The extensions to the C programming language

are four-fold:

a) Function type qualifiers to specify whether a function executes on the host or on the de-
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vice and whether it is callable from the host or from the device global , device , host .

b) Variable type qualifiers to specify the memory location of a variable device , shared .

c) A new directive to specify how a kernel is executed on the device from the host. Four

built-in variables that specify the grid and block dimensions and the block and thread

indices - gridDim, blockIdx, blockDim, threadIdx.

CUDA encapsulates hardware model, so we don’t have to worry about hardware model

changes, all the conveniences of C vs assembly. Learning the hardware and developing par-

allel algorithms is still difficult. But the infrastructure for writing, developing,debugging

and maintaining source code is straight forward and similar to conventional serial pro-

gramming. Steps in a CUDA code :

1) Initialize/acquire device (GPU)

2) Allocate memory on GPU

3) Copy data from host to GPU

4) Execute kernel on GPU

5) Copy data from GPU to host

6) Deallocate memory on GPU

7) Release device

A kernel is a function callable from the host and executed on the CUDA device – simul-

taneously by many threads in parallel. How to call a kernel involves specifying the name

of the kernel plus an execution configuration. An execution configuration just means

defining the number of parallel threads in a group and the number of groups to use when

running the kernel for the CUDA device

3.0.7.1.2 Memory Model Each CUDA device has several memories that can be

used by programmers to achieve high Computation to Global Memory Access (CGMA)

ratio and thus high execution speed in their kernels. Variables that reside in registers and

shared memories can be accessed at very high speed in a highly parallel manner.
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Figure 3.19: CUDA Memory model (source:[8])

Registers are allocated to individual threads; each thread can only access its own

registers. A kernel function typically uses registers to hold frequently accessed variables

that are private to each thread. Shared memories are allocated to thread blocks; all

threads in a block can access variables in the shared memory locations allocated to the

block. Shared memories are efficient means for threads to cooperate by sharing the results

of their work. At the middle of the table, we see global memory constant memory. These

are the memories that the host code can write (W) and read (R) by calling API functions.

The global memory can be accessed by all the threads at anytime of program executtion.

The constant memory allows read-only access by the device and provides faster and more

parallel data access paths for CUDA kernel execution than the global memory.
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Figure 3.20: CUDA Memory types (source:[8])

3.0.7.2 Parallel Strategies in FWI

In Full waveform inversion , the storage of forward wavefields is huge problem . The

traditional way is to record the forward wavefields to the disk so that it could be read

again while applying the imaging condition. It requires frequent IØ in our algorithm

.Despite of high memory band width in CUDA it is still costly , so we will utilise wavefield

reconstruction method . The wavefield reconstruction method is a way to recover the

wavefield via backward reconstructing or forward remodeling, using the saved wavefield

shots and boundaries. It is of special value for GPU computing because saving the data

in device variables eliminates data transfer between CPU and GPU. The other strategies

we will discuss is the use of shared memory for forward modeling and an efficient parallell

reduction for calculating objective function and step size in the optimization problem

3.0.7.2.1 Forward Modeling in CUDA I employed a tiling approach in which each

thread block loads a tile of data from the multidimensional grid into shared memory, so

that each thread in the block can access all elements of the shared memory tile as needed.

The size of the tiles must be chosen taking into account ,the warp size and the amount of

shared memory available on the device ( should be a multiple of 16, half-warp size). The

finite-difference coefficients for higher order approximation can be declared in constant

memory if necessary since as they are constants and they will be broadcasted to each

warps.
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Figure 3.21: Red block size shows the shared memory

In the forward modeling kernel ,the pressure wavefields corresponding to the two time

steps are loaded into share memory in the form of tiles . The boundary conditions used

are Clayton and Enquist A2 boundary conditions.The Tile Size in both x and z direction

is 16 .

3.0.7.2.2 Wavefield Reconstructed Method We used wavefield reconstruction method

to reconstruct the source wavefields in the backpropagation step while applying the imag-

ing condition. It is based on the intution that if forward modeling can be written as

pk+1 = 2pk − pk−1 + v2∆t2∇2pk (3.112)

then wavefields could be reconstructed by just swapping the terms pk+1 and pk−1

pk−1 = 2pk − pk+1 + v2∆t2∇2pk (3.113)

The wavefield can be extrapolated by just swapping the pointers .
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Figure 3.22: Wavefield Reconstruction

In figure , we tested the results for model size 200 by 200 with dx=5 and dz=5 . A

ricker source with peak frequency is placed at the center of the model. We used free

surface conditions for this test case and we record wavefields at t=0.28 s and t=0.4 s. As

you can see that the wavefields are exaclty reconstructed.

3.0.7.2.3 Parallel Reduction : The parallel reduction could be used in calculating

objective function , finding the step size and descent direction in FWI algorithm . How-

ever there are certain things which should be taken into conideration while implementing

the reduction on CUDA. The programmer should be familiar with CUDA performance

characteristics which are :

1) Memory Coalescing

2) Divergent Branching

3) Memory Bank Conflicts
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4) Latency hiding

Figure 3.23: Parallel Reduction

A sequential addressing scheme is utilized because it is free of conflict (Harris et al.,

2007). The parallel reduction approach builds a summation tree to do stepwise partial

sums. In each level half of the threads will perform reading from global memory and

writing to shared memory. The required number of threads will decrease to be half of

previous level. We unrolled the last warps to further increase the efficiency.
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Chapter 4

Numerical results : FWI

The code developed for Full waveform Inversion is tested on Marmousi model . The source

used is Rikcer source with peak frequency 10 Hz . The algorithm used for inversion is

conjugate gradient method.

Figure 4.1: Marmousi Velocity Model, ( IFP)
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Figure 4.2: Initial Velocity Model

Figure 4.3: Frequencies involved in inversion
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Figure 4.4: Velocity Model recovered after 100th iteration

Figure 4.5: Velocity Model recovered after 250th iteration
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Figure 4.6: Normalised Objective function value

Modeling Parameters :

Model size: 251× 767

No of receivers : 767

No of sources : 60

No of iterations: 250

Time per iteration : 60 sec
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Chapter 5

Specularity + FWI

Specularity is defined as a measure of deviation from Snell’s law at the image point. Moser

and Howard ( 2008 ) defined specularity S as the dot product of the angle bisector of

incident and reflected ray with the normal vector to the surface.

S(s, r, x) =
(Ps + Pr).n

|Ps + Pr|
(5.1)

where Ps and Pr are the sourece side and receiver side slowness vectors , obtained from the

travel time derivatives , n is the normal unit vector to the reflector which can be calculated

from conventional depth migrated image. It was defined as a weighting function ,in terms

of single source-receiver pair ,to suppress the contribution from inside the Fresnel zone , in

Kirchhoff based integrals such that it only images the nonspecular events corresponding

to diffractions thus removing the contribution from reflections. For specular reflection S

should be equal to 1 and for non-specular events S < 1 which is part of our interest. We

will extend the definition to the full acquistion system and also attempt extracting source

and receiver side slowness vectors using poynting vectors for the wavefield definition.

Let’s say we have a layered velocity model with single reflector and single source-receiver

pair at the surface.
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(a) layered velocity model (b) specularity image

For a single reflector case as one can see that specularity decreases away from the

points along the mid-point of the source-receiver pair which one would expect because

snell’s law only holds perfectly for the points that falls along the vertical straight line

passing through the mid-point . Since the fresnel zone will fall over a certain area rather

than a single point so the points in the vicinity of this middle point ( at the true event

location ) will be treated as part of specular reflections or the criteria for specularity will

be a bit relaxed. The points that fall’s outside this region will behave as potential diffrac-

tors for a single-receiver case , even if they fall’s on the reflector as there no receiver’s to

record their specular behaviour. The specularity in the above example is computed using

true velocity model dip field just for the illustration purposes however it can be calculated

using the conventional depth image.
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(a) specular reflection (b) non-specular diffraction

5.0.8 Ray based Specularity

In this section we will try to extend the definiton for full acquistion system to design a

specularity based filter which can be applied for cleaning the gradient in Full waveform

inversion or in Reverse Time migrated image to clean the specular part. Here we will

demonstrate using Reverse time migrated images .

Let us review the example of single reflector which we used in the previous section . In

this case we will backpropagate rays simultaneously from receivers and use single source

ray field.

ST (s, r, x) =
(Ps + Pr).n

T

|Ps + Pr|
(5.2)

where Ps and Pr are the source side ray field and receiver side ray field respectively.

Ps and Pr can be calculated by taking derivative of traveltimes from source side or receiver

side to each poin in the domain . Travel times can computed by solving the eikonal

equation.

(∇xT )2 + (∇zT )2 =
1

v2
(5.3)

The dip field can be calculated using plane wave destruction filters or local slant stack

method and using the simple trignometric identites , normal vector components could be
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computed.

(a) specularity image (b) RTM contribution due to same source

(a) specularity image (b) RTM contribution due to same source

Specularity is basically an anti-stationary filter which suppress the contributions from

stationary specular part.It works in the same way as it did in Kirchhoff sense and is also

limited by finite frequencies and finite-aperture acquisition.For dip calculation and travel-

times programs from Madagascar were utilised which are freely available on the Internet.

The tapering value for specularity cleaning was decided using the specularity image and

ranges from 0.6 to 0.8 in our test examples.
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Example-1 : Step Layer Model

Figure 5.5: Velocity model

Figure 5.6: RTM image
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Figure 5.7: Specularity image

Figure 5.8: Specularity image

Figure 3 an 4 is specularity calculated over whole model domain due to a single source

( position denoted by star ) and backpropagated ray field. The low specularity values in

certain areas is due to finite acquistion
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Figure 5.9: Gradient

Figure 5.10: Cleaned Gradient after 1st iteration
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Example-2 :Diffraction Ramp Model

Figure 5.11: Velocity model

Figure 5.12: RTM image
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Figure 5.13: Specularity image

Figure 5.14: Specularity image
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Figure 5.15: Gradient

Figure 5.16: Cleaned Gradient after 1st iteration
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5.0.9 Wave based Specularity

In this section we will try to extend the definition of specularity measure to wavefields .

We define specularity as

S(s, x, r) =

∣∣nP .(PS + PR)
∣∣

‖PS + PR‖
(5.4)

where P is direction of poynting vector. Poynting vector is a measure of energy flow and

is defined as

P = −∇u∂u
∂t

(5.5)

where PS is the direction of source wavefield gradient and PR is the direction of receiver

wavefield gradient. The sum of these vectors should be nearly aligned with normal vec-

tor for specular reflection. We attempt to utilise this definition in directly cleaning the

gradient of Full Waveform Inversion. I used time averaged poynting vectors to stabilise

the direction and thus for cleaning Poynting vectors could be easily calculated in the

back-propagation step so the cost involved in calculating the poynting vectors is very low.
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Example-1 : Step Layer Model

Figure 5.17: Velocity model

Figure 5.18: RTM image
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Figure 5.19: Specularity image

Figure 5.20: Specularity image
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Figure 5.21: Gradient

Figure 5.22: Cleaned Gradient after 1st iteration
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Example-2 :Diffraction Ramp Model

Figure 5.23: Velocity model

Figure 5.24: RTM image
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Figure 5.25: Specularity image

Figure 5.26: Specularity image
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Figure 5.27: Gradient

Figure 5.28: Cleaned Gradient after 1st iteration
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Example-3 :Marmousi Model with Diffractors

Figure 5.29: Velocity model

Figure 5.30: RTM image
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Figure 5.31: Specularity image

Figure 5.32: Specularity image
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Figure 5.33: Gradient

Figure 5.34: Cleaned Gradient after 1st iteration
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Figure 5.35: Velocity Model after 60th iteration

5.1 Discussion

For the specularity computation a good velocity model is required since our aim is to

obtain the high resolution information corresponding to diffractors . We only go for

diffraction imaging if our reflection events are imaged properly . Thus we showed that it

is possible to pin-point the diffractors which could be geologically related to small scale

features like pinchouts , faults etc. However specularity cleaning also worked if our velocity

model is far from slighlty smooth model but the criteria is to maintain the kinematics of

the model otherwise the diffraction updates will be defocussed over a larger region . The

updates still get impressions of diffraction but they doesn’t correspond to high resolution

information what we are aiming for . For a step layer case instead of slightly smoothing

we started with a constant velocity background with velocity equal to the top layer of

the velocity to honor the kinematics . The velocities only jumped by 200m/s after 20

iterations as it can’t jump directly to the true velocity however the updates were confined
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to our original diffractor location.
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Chapter 6

Diffraction Inversion

In previous section we try to clean inherently the specular part to obtain the contibution

from the diffractors . In this section we will attempt to separate or predict diffractions

using the Born framework and then we will try to invert solely the diffractions using Full

Waveform Inversion

6.0.1 Scattering series and Born approximation

Scattering series and linearization are the basis of most inversion methods , both direct

and iterative. In seismic it is feasible to separate our medium into smooth background part

and rough perturbed part.We explain the scattered waves as reflections and diffractions

due to rough perturbed part to the background. We write

m(x) =
1

v(x)2
, and m0(x) =

1

v0(x)2
(6.1)

for a small number α

m(x) = m0(x) + αm1(x) (6.2)

Note that when perturbing velocity additional Taylor series expansion is necessary.

v(x) = v0(x) + αv1(x) → 1

v(x)2
=

1

v0(x)2
− 2αv1(x)

v0(x)3
(6.3)
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The wave equation for the acoustic media can be written as

m(x)
∂2u(x, t)

∂t2
−∇2u(x, t) = f(x, t) (6.4)

The corresponding wavefield will split into

u(x, t) = u0(x, t) + usc(x, t) (6.5)

where u0(x, t) will solve the wave equation for undisturbed medium m0(x)

m0(x)
∂2u0(x, t)

∂t2
−∇2u0(x, t) = f(x, t) (6.6)

u(x, t) is the total wavefield , u0(x, t) is the incident wavefield and usc(x, t) is the scattered

wavefield ( anything but the incident wavefield ) we get the equation for usc(x, t) by

subtracting 128 by 127 .

m0(x)
∂2usc(x, t)

∂t2
−∇2usc(x, t) = −αm1(x)

∂2u(x, t)

∂t2
(6.7)

The equation is implicit in sense that the right hand still depends on the usc(x, t) through

u(x, t). We can reformulate this implicit integral by the means of Green’s function

usc(x, t) = −α
∫ t

0

∫
R

G(x, y, t− s)m1(y)
∂2u(y, s)

∂t2
dyds (6.8)

we write

usc = −αGm1
∂2u

∂t2
(6.9)

where G is the operator for space-time integration . In terms of u we have an implicit

relation

u = u0 − αGm1
∂2u

∂t2
(6.10)

called a Lipman− Schwinger equation. u can be witten as

u =
[
I + αGm1

∂2

∂t2

]−1

u0 (6.11)

Writing the above [I+A]−1 for some operator invites the solution in the form of Neumann

series I −A+A2−A3 + ... provided ||A|| < 1 in some norm . We rewrite the equation as

u = u0 − α
(
Gm1

∂2

∂t2

)
+ α2

(
Gm1

∂2

∂t2

)(
Gm1

∂2

∂t2

)
+ .. (6.12)
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The above series is called Born series based on the weak scattering condition α||Gm1
∂2

∂t2
|| <

1. It carries the physics of multiple scattering.

u0 − α
∫ t

0

∫
R

G(x, y, t− s)m1(y)
∂2u0(y, s)

∂t2
dyds+ ... (6.13)

(incidentwavefield) (singlescattering) (6.14)

(6.15)

summarizing the expansion as

u = u0 + αu1 + α2u2 + .. (6.16)

where αu1 represent single scattering,α2u2 double scattering, etc. For instance, the ex-

pression of u1 can be physically read as “the incident wave initiates from the source at

time t = 0, propagates to y where it scatters due to m(y) at time t = s, then further

propagates to reach x at time t.

The expression of u2 can be read as “the incident wave initiates from the source at t = 0,

propagates to y1 where it first scatters at time t = s1 , them propagates to y2 where it

scatters a second time at time t = s2 , then propagates to x at time t, where it is observed.

The approximation usc = αu1 is called Born approximtion. From this we can return to

our PDE.

m0(x)
∂2usc(x, t)

∂t2
−∇2usc(x, t) = −αm1(x)

∂2u0(x, t)

∂t2
(6.17)

The only difference is the presence of u0 in place of u in the right hand side (and α is

gone, by choice of normalization of u1 ) .The weak scattering condition α||u1||′ < ||u0||′

encodes the idea that the primary reflected field αu1is small compared to the incident

field u0 . It is satisfied when α is small, and when u1 is not so large that it would undo

the smallness of α.

The Born approximation is often satisfied in the low-frequency regime, by virtue of the

fact that cycle skipping is not as much of an issue. In the high-frequency regime, the

heuristics for validity of the Born approximation are that
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1) v0 or m0 should be smooth.

2) v1 or m1 should be localized, or better yet, localized and oscillatory (zero mean).

6.0.2 Diffraction Free model

The idea of diffraction free model is to somehow isolate the diffractions in the model

domain. There are numerous ideas through which this feat can be performed , some of

them include utilising Structurally oriented tensors , wavelet transforms , Dip steering

filters etc . We will utilise a dip steering filter to separate the diffractions . The dip

steering filter is a data-driven tool ( in model domain our data is model parameters

values ) that enhances the coherent part which will corresponds to reflection and suppress

the abrupt values which generates the diffractions.Th filter collects all amplitudes inside

a disc with user-specified search radius and replaces the value at the center by an avergae

value of the amplitudes. The search disk then follows the local dips and azimuth along

with steering cube.

Figure 6.1: Dip steering radius or width (source:www.opendtect.com)
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6.0.3 Numerical Results: Diffraction Inversion

The workflow is to separate diffractivity model from the original model using dip steer-

ing filter and model diffractions using Born modeling . Then we will invert using Full

Waveform Inversion using Diffractions as our observed data.

6.0.3.0.4 Point Scatterer test :Born modeling

Figure 6.2: Point Scatterer model
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Figure 6.3: Background Model

Figure 6.4: Perturbed Model
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Figure 6.5: Diffractions

6.0.3.0.5 Marmousi DFM test Marmousi Model with Induced Scatterers :

Figure 6.6: Mamrousi model with scatterers
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Figure 6.7: Diffractivity Model

Figure 6.8: Reflectivity Model
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Figure 6.9: Diffractions

Figure 6.10: Inverted Model using Diffractions
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6.1 Conclusion and Future Work

We here showed that Diffractions could be inverted separately using Full Waveform In-

version . However the idea is to further develop Migration Velocity Analysis approaches

for Diffraction where we believe that Full Waveform Inversion could updating the long-

wavelength velocity variations and focusing the diffractions which requires further more

work . The plan is to further look into conjecture of Prof Tariq looking into Reflection

Full Waveform Inversion.
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Appendix A

The Adjoint State Method

I employed adjoint state method for the computation of gradient term in Full Waveform

Inversion . Here I will introduce the general theory of adjoint state method which is not

limited to wave propagation problems and I also the address the situations where it is in

general applicable.

Let’s say if you have a functional

J(m) = h(u(m),m) (A.1)

and you want to get ∂J
∂m

. If we take derivative w.r.t m we get

∂J

∂m
=
∂h

∂u

∂u

∂m
+
∂h

∂m
(A.2)

If the term ∂u
∂m

is quite expensive to compute and you want to somehow avoid computing

it there the adjoint state methods comes in. Let’s relate this to our situation

Here functional J(m) is equivalent to our L2 norm objective function in Full Waveform

Inversion and ∂u
∂m

is equivalent to explicitly computing the Frechet derivative or Jacobian

which is quite expensive. The adjoint state method states (Plessix [?]) building a new

augmented ( Lagrangian) functional and using this to define adjoint state equations which

lead to the computation of ∂J
∂m

. We will use our original functional J(m) to build a

Lagrangian functional and usually the u(m) is constrained by some relation F (u(m),m) =
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0 ( equivalent to forward modeling operator Am = u )

We define our augmented functional as

L(ũ, λ̃,m) = h(ũ(m),m)− < λ̃, F (ũ(m),m) > (A.3)

where ũ is the generalized state variable and λ̃ is the adjoint state variable that both

independent of m .Now we replace the generalized state variable ũ with our physical

realized variable u and as we know that u follows the relation F (u,m) = 0 so the equation

reduces to

L(ũ, λ̃,m) = h(ũ,m) (A.4)

From equation 140 , we get

J(m) = L(u, λ̃,m) (A.5)

Now we take derivative w.r.t m

∂J

∂m
=
∂L(u, λ̃,m)

∂m
+
∂L(u, λ̃,m)

∂u

∂u

∂m
(A.6)

We note we still have the term ∂u
∂m

but this time the difference is our functional depends

upon λ ( independent of m) we can choose it such that the term ∂L(u,λ̃,m)
∂u

is zero .

∂L(u, λ̃,m)

∂u
=
∂h(u,m)

∂u
−
(∂F (u,m)

∂u

)
λ̃ = 0 (A.7)

we solve for the above equation for λ̃ to get the adjoint state equations and then put back

into equation 145.

∂J

∂m
=
∂L(u, λ̃,m)

∂m
(A.8)

Now using our original definition of L(u, λ̃,m) , we get

∂J

∂m
=
∂h(u,m)

∂m
−
(∂F (u,m)

∂m

)∗
λ̃ (A.9)

A.0.0.0.6 Time Domain Gradient computation : In time domain our wave op-

erator L =
(

1
v(x)2

∂2

∂t2
−∇2

)
satisfies following equation

Lu = f (A.10)

104



with initial boundary conditions u(0) = 0, ∂u
∂t
|t=0 = 0. The objective function in time

domain is

1

2

∫ t=T

t=0

s=Ns∑
s=1

s=Nr∑
r=1

||Pruobs(t)− dpre(t)||22 (A.11)

where P is a projection operator which model space to receiver space. The augmented

functional is defined by

L(u, λ̃,m) =
1

2

∫ t=T

t=0

∑
s,r

||Pruobs(t)−dpre(t)||22−
∑
s

∫ T

0

〈
λ̃,m

∂2u

∂t2
−∇2u−fs

〉
dt (A.12)

with < λ̃, u >=
∫
x
λ̃udx scalar product in real coordinate space.Now using integration by

parts twice∫ T

0

〈
λ̃,m

∂2u

∂t2

〉
dt =

∫ T

0

〈
m
∂2λ̃

∂t2
, u
〉
dt−

〈
m
∂ ˜λ(T )

∂t
, u(T )

〉
+
〈
m
∂ ˜λ(0)

∂t
, u(0)

〉
+ (A.13)〈

˜λ(T ),m
∂u(T )

∂t

〉
−
〈

˜λ(0),m
∂u(0)

∂t

〉
(A.14)

Now computing the

∂L(u, λ̃,m)

∂u
= 0 (A.15)

we get the following set of adjoint equations

λ̃(T ) = 0

∂λ̃
∂t

(T ) = 0

m∂2λ̃
∂t2
−∇2λ̃ = P †(Pu− d)

(A.16)

The λ̃ is called as adjoint wavefield where the source term is the residual of the data

recorded at receiver . The another thing to note is that the system has final boundary

conditions at t = T . To give a physical meaning we introduce a change in variables

t = T − t′ 

λ̃(0) = 0

∂λ̃
∂t′

(0) = 0

m ∂2λ̃
∂t′2
−∇2λ̃ = P †(Pu(T − t′)− d(T − t′)

(A.17)
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Now the residuals are reverse in time and are back-propagated. The gradient now finally

is

∂J

∂m
= −

∫ t=T

t=0

λ̃(T − t)∂
2u

∂t2
(A.18)

In terms of velocity since m = 1
v2

∂J

∂v
=

2

v3

∫ t=T

t=0

λ̃(T − t)∂
2u

∂t2
(A.19)
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Appendix B

Reverse Time Migration

The imaging condition of Reverse time migration is same as Full Waveform Inversion .

The only difference is the data is backpropagated instead of residuals.

I(x) =
s=Ns∑
s=1

∫ t=T

t=0

s=Nr∑
r=1

us(x, t)ur(x, t)dt (B.1)

where us(x, t) is the source wavefield and ur(x, t) is the backpropagated receiver wave-

field. Reverse Time migration seeks an image with high wavenumber content, and low

wavenumbers represent artefacts in the image. Low fequency artefacts are created in the

presence of strong reflectors by the correlation of wavefields with back-scattered energy.

We also included the source illumination term in the imaging condition . The imaging

condition with source illumination is as

I(x) =
s=Ns∑
s=1

∫ t=T
t=0

∑s=Nr
r=1 us(x, t)ur(x, t)dt∫ t=T

t=0
us(x, t)us(x, t)dt+ ε2

(B.2)

ε2 is a small number introduced to prevent singularity.

We get rid of direct waves by introducing a water layer above in our model. The paral-

lelisation strategies that we discussed for Full waveform inversion are equally applicable

for Reverse Time Migration as well.
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