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Abstract 

 Cryptography is one of the important areas in computer science. For strong cipher systems Boolean 

functions and s-boxes with required cryptographic properties need to be developed. Many attacks on 

cipher systems consist of approximating the component Boolean functions and the component s-boxes. 

Many unitary transforms are useful in analyzing the strength of these Boolean functions and the S-boxes 

against the approximation. A fast and efficient system was implemented to calculate Walsh Hadamard 

Transform and Nega Hadamard Transform which was further used to calculate non-linearity and PAR 

values. This system was further extended to calculate the HN transform set and related PAR values. A fast 

method to calculate the HN transform set is incorporated in the PAR calculation system and results are 

analyzed. An s-box is chosen and its PAR values are compared with standard s-boxes and results are 

analyzed. A new method incorporating the Hill Climbing heuristic is also implemented to analyze the use 

of Nega Hadamard Transform in finding Boolean functions with better non-linearity and results were 

found to be improved. 
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CHAPTER 1 

INTRODUCTION 

Cryptography is one of the most significant areas of computer science used in today’s world to 

secure data. Many cryptographic algorithms are used for providing security of information and 

communication system. The ability of any cipher system to resist cryptanalytic attacks depends on 

the individual components of which it is comprised. For e.g. Boolean functions and S-boxes or the 

substitution boxes are the most important and effective components of many cipher systems. A lot 

of research is ongoing on developing strong Boolean functions and the S-boxes having required 

cryptographic properties which are strong enough to resist cryptanalytic attacks. 

                     Many heuristic methods have also been proposed to find Boolean functions with 

better cryptographic properties [1].  Differential cryptanalysis and the linear cryptanalysis are two 

main types of cryptanalytic attacks on block ciphers. Linear Cryptanalysis is one of the known 

plaintext attack. It is based on exploiting the characteristics of S-boxes. Each s-box is a 

combination of Boolean functions which have the property of non-linearity. So, if the non-linearity 

of these functions is very low then we can approximate these functions using linear expressions 

[6]. And in this way we can approximate the key used. So, to prevent linear cryptanalysis the s-

boxes and Boolean functions in turn must be highly non-linear. 

                     Linear cryptanalysis attack is used to find the key bits of a block cipher by making 

an approximation of each block cipher round by Z2 linear expressions [6]. More generally the 

approximations can be done using linear expressions over any weighted alphabet. The Z2 linear 

expressions approximating the block cipher rounds can be guessed by doing an analysis with 

respect to the Walsh Hadamard Transform of the constituent Boolean functions of S-boxes. 

Similarly Nega Hadamard Transform can also be used in the study of these generalized 

approximations. Some other linear unitary transforms like HN Transform are also useful in spectral 

analysis of Boolean functions and S-boxes in the study of these generalized approximations.  These 

transforms also help us to evaluate the non-linearity of the constituent Boolean functions of an s-

box along with analysis of approximation. So, a generalized study of these transforms is made in 

order to further assist the cryptanalysis and making these Boolean functions strong. 

                     A faster way to calculate the Walsh Hadamard Transform was implemented for this 

purpose. Corresponding to this the fast Nega Hadamard Transform was also implemented for s-

boxes. Similarly the HN transform set is difficult to be generated by brute force method. A method 
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to calculate the corresponding entries of HN transform matrix is studied and implemented. So, a 

generalized system is implemented for calculating various transforms in an efficient way possible 

which can assist in evaluating the non-linearity aspect of s-boxes and approximating its constituent 

functions. This system is further used to calculate the non-linearity of a newly proposed s-box. The 

results helped us to choose the s-box as a reference for further study because its non-linearity was 

comparable to AES s-box. 

                     S-boxes are an important part of any block cipher. So, a study of s-boxes of various 

modern block ciphers is also made along with a newly proposed s-box example. The non-linearity 

aspect of s-boxes can be quantified in terms of Peak to Average Ratio (PAR) [6] which can be 

calculated using various transforms. PAR can be further used to guess whether the generalized 

linear approximations of constituent Boolean functions can be done or not.  

                       A system was implemented for calculating the PAR values of s-boxes. This system 

is further extended to calculate the PAR value for HN Transform set by incorporating the fast 

method for calculating the HN Transform set. The entries of any HN Transform matrix can be 

calculated using a formulae and this makes the PAR value calculation faster. From the analysis of 

results of PAR for s-boxes of various modern ciphers and the example s-box it can be shown that 

the Z2 linear approximations for modern ciphers are difficult but generalized linear approximations 

can be done. Calculation of PAR values for HN Transform [7] set helped in showing that 

generalized linear approximations are more helpful. Also the example s-box has high PAR value 

which suggest that Z2 linear approximations as well as generalized linear approximations for this 

S-box can be done more easily. 

                    As it has been established that highly non-linear Boolean functions and S-boxes are 

suitable for strong cipher systems, many methods have been proposed for developing these. Many 

heuristic methods like Hill climbing are used to develop the Boolean functions gradually with 

better cryptographic properties. Walsh Hadamard Transform can be taken as one of the parameters 

to judge the non-linearity of Boolean functions in these methods. A new method is proposed 

incorporating the hill climbing method which takes in the Walsh Hadamard Transform to find the 

Boolean functions with better non-linearity. Nega Hadamard Transform can also be used to judge 

the non-linearity of Boolean functions along with some additional properties. So, the Nega 

Hadamard Transform is also included in the method to find the Boolean functions in a better way 
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by avoiding the conditions of local maxima and jumping to a Boolean functions with better non-

linearity. Improved results were obtained using the Nega Hadamard Transform in the method. 

 

1.1 Background and Motivation 

 

Cryptanalysis is generally used to find the key bits of a block cipher so that the cipher system can 

be cracked. Since Boolean functions and the S-boxes are the constituent parts of a cipher system, 

the cryptanalysis is used to approximate these Boolean functions and the S-boxes. Generally the 

approximation of these Boolean functions and S-boxes is Z2 –linear. But this can also be 

generalized and can be taken over any Z like Z2 as long as the approximation is linear in a way 

that it can be formed from tensor product of length 2 vectors. The approximations can be easily 

found using the spectral analysis of Boolean function with respect to various transforms. 

                 A system of various linear unitary transforms have been developed including Walsh 

Hadamard Transform, Nega Hadamard Transform and HN Transform. A fast method for 

calculating all of these transforms need to be developed for such an analysis. A fast method for 

calculating Walsh Hadamard Transform is already available but there is a need to develop fast 

method for other transforms as well because the brute force method for calculating the other 

transforms is exponential. For example the brute force method to calculate the Walsh Hadamard 

Transform takes O(22n) which is only after leaving the time to calculate the Walsh Hadamard 

Transform Matrix which is also a recursive method. Similarly, the HN Transform is a set of 2n    

matrices each of which takes an exponential time to be calculated by the tensor products of length 

2 vectors [7]. A method is needed to be developed to easily calculate these 2n matrices. 

              For the analysis of Boolean functions and the s-boxes a lot parameters are already 

available like non-linearity etc. But other parameters like Peak to Average Power Ratio are also 

helpful in analysis against approximations. A system is need to be developed to calculate PAR 

values for various transforms and this can be used to test whether new s-boxes are suitable for any 

cipher system. This system also need to be fast so that large s-boxes can also be analyzed. 

                A lot of methods for generating various Boolean functions and s-boxes are already 

available like brute force search and heuristic methods like hill climbing etc. In Hill Climbing any 

cryptographic property can be used to modify a Boolean function truth table to reach to a Boolean 

functions with better cryptographic properties [12]. This method is proved to be a very good 
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method for generating the better Boolean function. Since Nega Hadamard Transform is a recent 

development in the field of Linear unitary transforms and PAR is a new parameter to judge the 

various transforms we can propose a new method incorporating the Hill climbing to generate better 

Boolean functions. There are some problems in the methods of Hill climbing like the local maxima 

where the Boolean function has the best possible value of the desired cryptography as compared 

to nearby Boolean functions but not overall. A property of the Nega Hadamard Transform can be 

useful to solve this problem. So a method can be proposed incorporating the Hill climbing method 

and the PAR values of Walsh Hadamard Transform spectrum and the Nega Hadamard Transform. 

 

1.2 Objectives and Outcomes  

 

The following are the objectives and outcomes of the work presented in this report 

a. To implement a system for calculating the various transforms in a faster and efficient way. 

This system can be further used to calculate the non-linearity aspect of s-boxes and also in the 

linear cryptanalysis of block ciphers. Walsh Hadamard Spectrum and Nega Hadamard 

Spectrum has been calculated in this system. This system is further extended to calculate the 

HN Transform matrices and corresponding spectrum.  

b. To select an example s-box and calculate its non-linearity by using the above system. Its non-

linearity should be comparable to the AES s-box’s non-linearity so that this s-box can be 

further analyzed with respect to AES s-box. 

c. To understand the importance of various transforms and Peak to Average Ratio (PAR) value 

in linear cryptanalysis of a block cipher and to implement a system for calculating the PAR for 

various transforms and analyze the results for various s-boxes and the newly selected s-box. 

This system is extended to calculate the PAR values for the HN Transform set and results are 

analyzed for various s-boxes. 

d. To develop and implement a new method incorporating the hill climbing heuristic and PAR 

values analyzing the use of Nega Hadamard Transform in finding Boolean functions with 

better non-linearity. 
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1.3   Structure of the report 

                    

                    The report has been divided into 4 sections including this introduction section. Section 

1 describes the introduction which consist of the basic overview of the entire work done in the 

thesis. The background of the thesis work and the motivation for the new work done in the thesis 

is also described in this section. The objectives and outcomes of the thesis are also described in 

this section which describes the problem statement and the proposed solution of the thesis in brief. 

Section 2 will describe the basic terminology related to further work in following sections. This 

section also describes the previous work done and background knowledge required to understand 

the further work. This includes definitions of various transforms like Walsh Hadamard Transform, 

Nega Hadamard Transform, HN Transform, linear cryptanalysis, Peak to average Power Ratio i.e. 

PAR values, Heuristic methods like Hill climbing etc. Section 3 will consist of the Methodology 

followed for achieving all the objectives mentioned above and will also consist of the results 

obtained and their analysis. Section 4 will describe conclusion and future work. 
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CHAPTER 2 : BASIC TERMINOLOGY 

2.1  Boolean function and S-boxes 

                      An n-variable Boolean function f(x) is an association from vector space of n-

dimensions over F2 to F2, where F2 is a field corresponding to {0, 1}. For example a 3-variable 

Boolean function f(x) can be a function which maps 3-digit binary numbers to 1-digit binary 

number {0, 1}. The truth table of a Boolean function is a vector corresponding to the outputs of 

the Boolean function for all the inputs taken in lexicographical order. The polarity truth table of a 

Boolean function denoted by 𝑓(𝑥) is a truth table corresponding to the values (-1)f(x) where the 

input values of x are taken in lexicographical order [1]. The hamming weight of a Boolean function 

f(x) is the number of ones in the output vector i.e. truth table. 

                 S-boxes are nothing but multiple output Boolean functions. Various cipher systems like 

block ciphers make use of S-boxes. To study the S-boxes the constituent Boolean functions are 

analyzed. Suppose a given S-box has n inputs and m outputs. This means that our S-box consist of 

m Boolean functions each of n inputs. While analyzing the S-box, we not only consider the 

constituent Boolean functions but also consider all the functions of the form [10] 

 

                                       𝑓(𝑥) = ∑ 𝑐𝑖𝑓𝑖(𝑥)𝑚−1
𝑖=0                                                                            (2.1) 

 

        Where f are the constituent Boolean functions and ci belongs to Z2 

 

2.2  Walsh Hadamard Transform 

 

Walsh Hadamard Transform is a kind of a function which can be calculated for any Boolean 

function. It is a useful transformation which can be used in evaluating various cryptographic 

properties of a Boolean function like non-linearity. It can also be used in linear cryptanalysis of 

Boolean functions and S-boxes. Walsh Hadamard Transform of a Boolean function f on  𝑉𝑛 (the 

values of f are real numbers 0 and 1) is the mapping W (f): 𝑉𝑛 -> R, defined by [1] 

 

                                              W (f) (w) = ∑ (−1)𝑓(𝑥)(−1)𝑤.𝑥
𝑥∈ 𝑉𝑛

                                            (2.2) 
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Here w.x is the scalar or dot product of the Boolean variables w and x and it is defined as follows: 

 

                                          𝑤. 𝑥 = 𝑤𝑛𝑥𝑛  ⊕ 𝑤𝑛−1𝑥𝑛−1 ⊕ … . .⊕ 𝑤1𝑥1                                      (2.3) 

 

Here ⊕ denotes the addition over Z2
n or simple the XOR. 

                        Walsh spectrum of a Boolean function f is the list of the 2𝑛 Walsh coefficients 

corresponding to the 2n values of w. Walsh Hadamard Spectrum can also be calculated using 

Hadamard matrix [2] instead of the formulae used above. Using this method first of all the 

Hadamard matrix of size 2n ×2n is calculated recursively for a Boolean function of n variable size. 

Then the hadamard matrix is multiplied with the Boolean function taken as a column matrix and 

the hadamard spectrum is obtained. 

 

2.3 Kronecker product 

               Kronecker product can be defined as one of the binary operation between two matrices. 

It is denoted by the symbol ⊗ i.e. A ⊗ B [2][6]. Basically in this operation the second matrix 

overlays or occupy each of the positions of the first matrix multiplied by each element of the first 

matrix. It can be easily shown with the help of an example. For e.g. 

                                            A=  [
1 4
2 3

]         and      B = [
5 8
6 7

]                                               (2.4) 

 

Then                                                    A ⊗ B = [
1. 𝐵 4. 𝐵
2. 𝐵 3. 𝐵

]                                                     (2.5) 

 

i.e.                                               A ⊗ B = [

1.5 1.8
1.6 1.7

4.5 4.8
4.6 4.7

2.5 2.8
2.6 2.7

3.5 3.8
3.6 3.7

]                                               (2.6) 

Here ‘.’ Is simply the multiplication. 

Kronecker product is associative in nature. i.e. 

                                            A⊗ B ⊗ C = (A ⊗ B ) ⊗ C = A ⊗ ( B ⊗ C )                             (2.7) 
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2.4  Hadamard matrix 

              H of order n is an n×n matrix of 1−
+  s such that 𝐻0 = 1    𝑎𝑛𝑑    𝐻1 = (

1 1
1 −1

). 

 

                                                            𝐻𝑛 =  (
𝐻𝑛−1 𝐻𝑛−1

𝐻𝑛−1 −𝐻𝑛−1
)                                               (2.8) 

 

                                                                      𝐻𝑛 =  𝐻1  ⊗  𝐻𝑛−1                                                               (2.9) 

 

where ⊗ is the Kronecker product which is an operation between 2 matrices such that the second 

matrix is multiplied with the values of first matrix and overlaid onto the first matrix. For e.g. in 

eqn. (2.8) Hn-1 values are multiplied with H1 values[2][6].  

                           Using this method we can calculate the Walsh Hadamard Transform by first 

calculating Hadamard Matrix and then multiplying the function with that matrix. The Hadamard 

matrix can be calculated using a recursive method by using the above formulae step by step. i.e. 

by first calculating H2 then H3  then  Hn-1 and soon then Hn. Then the function is taken as a column 

matrix and the Hadamard matrix is multiplied with the function to get the Walsh Hadamard 

transform.  It will take O (22𝑛) where n is the number of input variables of f(x) to calculate the 

Walsh Hadamard Spectrum using this method. This can be considered as a slow method of 

calculating Walsh Hadamard spectrum as the time taken is exponential. So a fast method need to 

be developed for calculating Walsh Hadamard Spectrum. 

 

 

2.5 Fast Walsh Hadamard Transform 

                  The Sylvester Hadamard Matrix 𝐻𝑛 can be decomposed as [3]  

                                                       𝐻𝑛 =  𝑀𝑛
(1)𝑀𝑛

(2) … . . 𝑀𝑛
(𝑛)                                          (2.10)   

   

            Where                                      𝑀𝑛
(𝑖) = 𝐼2𝑛−𝑖⨂𝐻1⨂𝐼2𝑖−1                                             (2.11) 

 

                               𝐼𝑚 is the m×m Identity matrix. In this way we will find that we can broke down 

the process of multiplication of the function directly with the Hadamard matrix into n steps. In 
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each of these n steps we will take into consideration Mn and can find a fast method to calculate the 

Walsh Hadamard spectrum with lesser time complexity. The details of this method will be 

described in the methodology section. We can calculate the walsh hadamard transform using this 

method in  O(n 2𝑛 ) which is way faster than the matrix multiplication method.   

 

2.6 Nega Hadamard Transform 

                     Nega Hadamard Transform is another useful transform similar to WHT which was 

first defined by M.G.Parker. Here the Nega Hadamard Transform of a function f on Vn is a 

mapping from Vn ->C. where C is the complex set of numbers.i.e.[2] 

 

                                              N (f) (w) = ∑ (−1)𝑓(𝑥)(−1)𝑤.𝑥𝑖𝑤𝑡(𝑥)
𝑥∈ 𝑉𝑛

                                      (2.12) 

 

Where wt(x) is the weight of x which can be calculated by number of 1’s in x. and w.x is the scalar 

product of w and x Boolean variables as defined in eqn. (2.3). The Nega Hadamard Spectrum is 

the list of all 2n values corresponding to all 2n values of w. it can also be calculated using the Nega 

Hadamard matrix which can be calculated using the Kronecker product. The Nega Hadamard 

matrix used here is  

                                                         𝑁1 = (
1 𝑖
1 −𝑖

)                                                               (2.13) 

 

                                                  𝑁𝑛 = (
𝑁𝑛−1 𝑖 ∗ 𝑁𝑛−1

𝑁𝑛−1 −𝑖 ∗ 𝑁𝑛−1
)                                                     (2.14) 

 

                         The Nega Hadamard matrix can be calculated recursively by the Kronecker 

product. Then the Nega Hadamard matrix can be multiplied with the Boolean function taken as a 

column matrix to get the Nega Hadamard Spectrum similar to the Walsh Hadamard Transform 

matrix. Using this method it will take O(22n) which is exponential.  We can also calculate using 

fast method similar to WHT. So, a fast method need to be developed and an algorithm similar to 

Walsh Hadamard Transform can be generated to see if that will work. Since the calculation of 

various spectrums is useful in the analysis of Boolean functions 

               We have implemented both the fast method and slower method of WHT to compare them 

and also for further use in linear cryptanalysis. We have also implemented fast Nega Hadamard 
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Spectrum calculation similar to WHT and showed that it will also work for Nega Hadamard 

Spectrum and has a lower time complexity than the Nega Hadamard matrix method. 

 

2.7 Tensor Linear Sequence 

A sequence of length N which can be tensor decomposed according to the factors of N completely 

is called a tensor linear sequence[7]. For e.g. if N=2n then the tensor linear sequence can be written 

 

                                   (𝑎0, 𝑏0)⨂(𝑎1, 𝑏1)⨂ … . . ⨂(𝑎𝑛−1, 𝑏𝑛−1)                                    (2.15) 

 

This definition is useful in terms of calculating transforms. For e.g. WHT can be written as a tensor 

linear sequence. Similarly other transforms can also be defined. For e.g. Walsh Hadamard 

Transform consist of all Tensor Linear Sequence which can be described in a form as follows: 

 

                                             ( 1−
+ , 1−

+ )⨂( 1−
+ , 1−

+ )⨂ … . . ⨂( 1−
+ , 1−

+ )                                          (2.16) 

For example 4×4 Walsh Hadamard Transform matrix can be written as 

 

                                            [
1 1
1 −1

] ⨂ [
1 1
1 −1

] =  [

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

]                               (2.17) 

                                                = [

(1,1)       ⨂
(1, −1)   ⨂

(1,1)
(1,1)

(1,1)       ⨂
(1, −1)   ⨂

(1, −1)
(1, −1)

]                                                      (2.18) 

 

2.8 HN transform set 

 

The HN transform set is also another linear unitary Transform which is denoted by {H, N}n.[7] It 

is also useful in the linear cryptanalysis and approximation analysis of S-boxes and Boolean 

functions of various cipher systems like the Walsh Hadamard Transform and the Nega Hadamard 

Transform. Unlike other transforms like WHT and Nega Hadamard Transform, this transform 

doesn’t consist of a single Hadamard matrix. Instead it is a set of 2n matrices for calculating the 

transform for any n variable Boolean function. These matrices are obtained by taking the tensor 
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products of the Hadamard kernel and the Nega Hadamard kernel[7]. The Hadamard kernel is 

denoted by H and the Nega Hadamard kernel is denoted by N and the identity transform is denoted 

by I.  

                                                    H = 
1

√2
 (

1 1
1 −1

)                                                                (2.19) 

                                                   𝑁 =  
1

√2
 (

1 𝑖
1 −𝑖

)                                                                (2.20) 

                                                   𝐼 = (
1 0
0 1

)                                                                         (2.21) 

By taking the tensor product of H and N, n times in any sequence gives us 2n different transform 

matrices which are linear unitary in sense. These are all denoted by {H, N}n .  

                     Let the n positions be denoted by numbers from 1 to n and let PH and PN denote the 

partition of {1….n} positions such that PH denote the positions where Hadamard kernel is placed 

in the tensor product sequence and PN denote the positions where Nega Hadamard kernel is placed. 

Then the Unitary transform matrix corresponding to this position distribution is given by[7] 

 

                                          𝑈 =  ∏ 𝐻𝑗𝑗∈𝑃𝐻
∏ 𝑁𝑗𝑗∈𝑃𝑁

                                                                (2.22) 

 

Here Xj = I ⨂ I ⨂ I …… I ⨂ X ⨂ I ⨂ I 

Where X is in the jth position in {1…n} positions. The spectrum of any function f can be calculated 

from multiplication of the matrix U with the column matrix of function taken in the polar form.          

The  2n matrices consist of two special cases. i.e when PH consist of all positions {1…n} then the 

U matrix is called the Hadamard matrix and the spectrum obtained by the multiplication with the 

function is called Walsh Hadamard Spectrum. Similarly when PN consist of all the positions from 

{1…n} then the U matrix obtained is called the Nega Hadamard matrix and the spectrum obtained 

by the multiplication with the function is called Nega Hadamard Spectrum. If the absolute value 

of each output in the spectrum obtained by the multiplication of unitary matrix U and the polar 

values of function is 1 then the spectrum is called as flat spectrum. If any of the spectrum in the 2n 

HN Transform set is flat then the function is called as Bent4 function. 
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2.9 Homogeneous symmetric Boolean function   

 

A homogeneous symmetric Boolean function can defined with respect to any algebraic degree. It 

can be described in the Algebraic Normal Form which is a polynomial representation of a Boolean 

function. A Boolean function f(x) can be represented in the form[2] 

                                                       𝑓(𝑥) = ∑ 𝑐𝑎𝑥1
𝑎1 … 𝑥𝑛

𝑎𝑛
𝑎𝜖𝑉𝑛

                                                         (2.23) 

  where  𝑐𝑎𝜖𝐹2  and  𝑎 = (𝑎1, … . . , 𝑎𝑛). Also, 𝑐𝑎 = ∑ 𝑓(𝑥)𝑥≤𝑎  where x≤ a means that 𝑥𝑖 ≤ 𝑎𝑖, for 

all 1 ≤ i ≤ n. The algebraic degree of a Boolean function is the number of variables (𝑥𝑖) in the 

highest product term having non-zero coefficient. 

              Let Sr (x) be any homogeneous symmetric Boolean function and its algebraic degree is r. 

Then it can be described in its ANF form as [7] 

 

                                        𝑆𝑟(𝑥) =  
⨂

1 ≤ 𝑖1 < ⋯ < 𝑖𝑟 ≤ 𝑛
   𝑥𝑖1

… … 𝑥𝑖𝑟
                                      (2.24) 

 

For example let S2(x) is a homogeneous symmetric Boolean function of algebraic degree 2 and 

has 3 variables then the S2(x) can be written as 

 

                                   𝑆2(𝑥) = 𝑥1𝑥2 ⊕  𝑥2𝑥3 ⊕ 𝑥1𝑥3                                                               (2.25) 

Similarly if S3 (x) is a homogeneous symmetric Boolean function of algebraic degree 3 and 4 

varibles then S3 (x) can be written as 

 

                                  𝑆3(𝑥) = 𝑥1𝑥2𝑥3 ⊕ 𝑥1𝑥3𝑥4 ⊕ 𝑥1𝑥2𝑥4 ⊕ 𝑥2𝑥3𝑥4                                (2.26) 

 

A system is also implemented in the thesis to calculate symmetric homogeneous Boolean function 

to be used in the proposed method incorporating the hill climbing method. 

              Another important calculation to be needed in the thesis work related to this is the 

intersection of two Boolean vectors. Let a = ( an……a1) and b = ( bn……..b1) be two Boolean 

vectors belonging to 𝑍2
𝑛. Then intersection of these two vectors is defined as a*b which is 
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                                          𝑎 ∗ 𝑏 = (𝑎𝑛𝑏𝑛, … … … , 𝑎1𝑏1)                                                           (2.27) 

 

Then the symmetric function Sr(a*b) is 

 

                        𝑆𝑟(𝑎 ∗ 𝑏) =
⨂

1 ≤ 𝑖1 < ⋯ < 𝑖𝑟 ≤ 𝑛
     (𝑎𝑖1

𝑏𝑖1
) … … … (𝑎𝑖𝑟

𝑏𝑖𝑟
)                         (2.28) 

 

2.10 Calculation of HN Transform set 

 

                   As we have seen in the previous section that there are 2n transform matrices in the set 

of HN Transform set for a Boolean function of n variables. And to calculate this we will have to 

perform the tensor products n times for each of the 2n matrices which is a lot of computation. The 

time taken to calculate the HN transform spectrum will be exponential and includes 2n times the 

calculation of each transform matrix which again takes exponential time because each matrix is 

calculated recursively. We can decrease the time complexity if instead of calculating the 2n 

matrices recursively we get to know a way to calculate each entry of each matrix in a constant 

time. Then the time taken will be really O(22n) to calculate each matrix since the matrix is 2n×2n 

and to calculate each entry it takes only constant time. 

                          Let the n positions be denoted by numbers from 1 to n and let PH and PN denote 

the partition of {1….n} positions such that PH denote the positions where Hadamard kernel is 

placed in the tensor product sequence and PN denote the positions where Nega Hadamard kernel 

is placed. Then the Unitary transform matrix corresponding to this position distribution is given 

by U and for any , 𝑏 ∈ 𝑍2
𝑛 , the entry in the position ath row and bth column of 2𝑛/2𝑈 is[7] 

 

                                                    (−1)𝑎.𝑏⊕𝑠2(𝑐∗𝑏)𝑖𝑐.𝑏                                                                   (2.29) 

 

Here 𝑐 = (𝑐𝑛, … … … 𝑐1) ∈ 𝑍2
𝑛 is assigned such that ci = 0 if i∈ 𝑃𝐻 and 𝑐𝑖 = 1 𝑖𝑓 𝑖 ∈ 𝑃𝑁. 

For example let a function be of 2 variables. Then n = 2. Then according to the above definition if 

c = (0,0 ) then U = H ⨂ H. similarly if c = (0,1) then U = H ⨂ N . if c = (1,0) then U= N ⨂ H and 

last if c = (1,1) then U = N ⨂ N. if we calculate all the entries using the above equ. (2.29) then we 

will get the correct unitary transform matrices[7]. For example below is the U 
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When c=(0,1) 

                                  𝐻 ⨂ 𝑁 =
1

2
 [

1 𝑖
1 −𝑖

1 𝑖
1 −𝑖

1 𝑖
1 −𝑖

−1 −𝑖
−1 𝑖

]                                                           (2.30) 

 

When c=(1,0) 

                                   𝑁 ⨂ 𝐻 =
1

2
  [

1 1
1 −1

𝑖 𝑖
𝑖 −𝑖

1 1
1 −1

−𝑖 −𝑖
−𝑖 𝑖

]                                                            (2.31) 

 

When c=(0,0) 

                                    𝐻 ⨂ 𝐻 =
1

2
 [

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

]                                                           (2.32) 

 

When c=(1,1) 

                                     𝑁 ⨂ 𝑁 =
1

2
 [

1 𝑖
1 −𝑖

𝑖 −1
𝑖 1

1 𝑖
1 −𝑖

−𝑖 1
−𝑖 −1

]                                                           (2.33) 

 

 In this case if we check the entries according the formulae then it proves to be right. For e.g. here 

c = (0,1) and let ath row is 3 then a = ( 1, 0) and bth column is 3 then b = (1,0) 

Then the entry will be 

 

                                    (−1)(1,0).(1,0)⊕(0.1).(1.0)𝑖(0,1).(1,0) = −1                                                (2.34) 

 

Which is the same as the entry in the matrix shown in eqn. (2.30). 
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2.11 Linear Cryptanalysis using PAR 

 

                    Block cipher uses a secret key and an algorithm consisting of many rounds to convert 

plaintext into cipher text. So, linear cryptanalysis is used to get the secret key by trying to 

approximate the core rounds of the block cipher which can further be combined to approximate 

the key bits. This approximation is usually made using Z2 linear expressions for each round which 

can relate some input and output bits of each round with some probability. Then by using a lot of 

plaintext and cipher text pairs the probability of approximation to be correct is determined and the 

key bits are guessed accordingly [6] [8]. 

    To prevent such attacks form being successful many block ciphers try to make the constituent 

Boolean functions highly non-linear so that they can’t be approximated using Z2 linear 

expressions. Let S be an n×n s-box of a block cipher and let f and g are the linear combinations of 

n input variables (x) and n output variables(y) respectively[6]. And let A be a subset of s-box i.e.all 

(x,y) pairs of the s-box. Then the cipher is said to be resistant to linear cryptanalysis over Z2 if 

 

                                                      f(x)=g(y)  for all (x,y)𝜖 𝐴                                                   (2.35) 

 

                   ||𝐴| − 2𝑛−1| ≤ 2
𝑛

2   𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 ||𝐴| − 2𝑛−1| ≤ 2
𝑛−1

2  𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑              (2.36) 

 

Most of the modern block ciphers make the Z2 linear approximations difficult. The Z2 linear 

approximations can be found with the help of spectral analysis of WHT. But we can also do the 

linear approximations of the constituent Boolean functions of an S-box[5] with respect to any 

weighted alphabet. Then we can combine these generalized linear approximations to retrieve the 

key bits. The way to combine these generalized linear approximations is for future research. We 

can then see that even these modern block ciphers are a little weaker with respect to these 

generalized linear approximations.  
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2.12 Peak-to-Average Power Ratio(PAR)  

 

               Peak to average power ratio (PAR) can be defined as one of the measures or criteria 

which can help us in analyzing the non-linearity and linear approximation capability of various 

Boolean functions and s-boxes. It is actually helpful in quantifying the non-linearity of various S-

boxes and constituent Boolean functions in various cipher systems. It is calculated with respect to 

various Transforms like Walsh Hadamard Transform, Nega Hadamard Transform and the HN 

Transform set. 

The WHT can also be defined as  

                                           W (f) (w) = 2−𝑛 ∑ (−1)𝑓(𝑥)(−1)𝑤.𝑥
𝑥∈ 𝑉𝑛

                                     (2.37) 

 

Then we can define PAR with respect to WHT as 

 

                                    PAR(𝑓) = 2𝑛𝑚𝑎𝑥∀𝑤(|𝑊(𝑓)(𝑤)|)2                                                 (2.38) 

 

If the value of PAR is 1 this means that no linear approximation is possible whereas 2n   means that 

the function is a linear function completely and can be easily approximated by a linear function. 

This means that higher the value of PAR the higher the chances of linear approximations. This is 

all w.r.t. WHT. PAR can also be defined for any normalized Transforms set T[6]. i.e. 

 

                                       𝑃𝐴𝑅(𝑓) = 2𝑛𝑚𝑎𝑥∀𝑘∀𝑈∈𝑇(|𝐹𝑘|)2                                                    (2.39) 

 

                  Here also it helps in finding the approximation possibility as the higher the value of 

PAR, more are the chances of better approximations. Using PAR the non-linearity of S-boxes of 

Block ciphers can be easily judged. By calculating the PAR of various S-boxes we can see and 

compare them to know which can be easily approximated or not. We can also know whether linear 

approximations over Z2 are easier to do or over some other generalized set are easier to do. For 

this the highest and lowest PARs are calculated for different sets of transform and compared 

accordingly for different S-boxes.  

                 S-boxes are multiple output Boolean functions and the transforms are calculated for 

Boolean functions basically. So to calculate the different transforms of S-boxes the various 
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constituent Boolean functions of S-boxes are combined in the following way and then the 

transforms are calculated for each of them and accordingly the PAR is calculated. i.e. 

   Let the S-box has n inputs and m outputs. Then the constituent Booleans functions are 

 

                                𝑦𝑗 = 𝑓𝑗(𝑥)    ,    0 ≤ 𝑗 < 𝑚  , 𝑓𝑗: 𝑍2
𝑛  →  𝑍2                                             (2.40) 

 

And we can calculate the transform and PAR over all f:𝑍2
𝑛 → 𝑍2 of the following form, 

 

                                       𝑓(𝑥) = ∑ 𝑐𝑖𝑓𝑖(𝑥)𝑚−1
𝑖=0  ,                           𝑐𝑖 ∈ 𝑍2                           (2.41) 

 

Here the f(x) will consist of 2m Boolean functions of the form described in the eqn. (2.40). The 

largest PAR and smallest PAR both can then be calculated for the s-box. The largest PAR is 

calculated by first calculating the spectrum for each of these function f(x), finding the maximum 

value of transform from the spectrum for each of these functions , then taking the maximum out 

of these maximum values and then squaring and normalizing it. Whereas the smallest PAR is 

calculated by first calculating the spectrum for each of these functions f(x) , finding the maximum 

value of the transform from the spectrum for each of these functions and then taking the minimum 

out of these maximum values and then squaring and normalizing it. Although while calculating 

these values we will ignore the function f(x) which is formed by all ci’s taken as 0. 

 

2.13 Heuristic methods 

                         

          A lot of cipher systems make use of the Boolean functions and the S-boxes. To be suitable 

for a strong cipher system Boolean functions need to be having strong cryptographic properties. A 

lot of methods have been developed to create strong Boolean functions which have suitable 

cryptographic properties like non-linearity and auto correlation. Brute force method checks all the 

Boolean functions one by one and compares the cryptographic properties in consideration. But this 

method will not work accurately and fast in Boolean functions with large number of variables. One 

of the other best method to develop Boolean functions with strong cryptographic properties is the 

heuristic method. This type of methods are generalized by the search of the suitable Boolean 
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function in a localized area directed by certain conditions and starting from specified points in the 

space. 

                      Many heuristic method have been discovered till now. For e.g. Hill Climbing, 

genetic algorithms, simulated annealing etc. The basic logic in the process of hill climbing is to 

start from a specified point, modify the Boolean function one variable at a time only if there is an 

improvement in the original cryptographic value. That is why it is called hill climbing method i.e. 

climbing towards a better cryptographic function through search. The Boolean function obtained 

in the last is expected to be having the best cryptographic property.  

                     Since PAR values can be used to quantify the non-linearity of Boolean functions and 

the s-boxes, we can use PAR values in the heuristic methods like Hill Climbing method[12] to test 

whether we will get better Boolean functions. Also it can be proposed that the PAR values with 

respect to the Walsh Hadamard Transform and the Nega Hadamard Transform can be helpful in 

the conditions of local maxima where the cryptographic property has the best value nearby but it 

may not be the best in the whole search space. A method is proposed incorporating the Hill 

Climbing method and PAR values to improve the heuristic method and test whether the PAR value 

give additional advantage over the usual non-linearity measure.   

                       There are various conditions also which are taken into consideration whether to 

change a parameter of a Boolean function or not in a heuristic method like Hill Climbing[12]. This 

condition can be weak or strong. A strong condition always require that the cryptographic property 

value always increase while moving to next step in the search method whereas the weak property 

requires that the cryptographic property value may increase or remain same while moving to the 

next step in the search method. So Hill climbing method is chosen and modified to propose a 

method taking the PAR values of WHT and Nega Hadamard transform to see if better Boolean 

functions can be searched with better PAR values and local maxima problem can be resolved or 

not. 
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CHAPTER 3 

METHODOLOGY AND RESULTS 

 

This section consist of the methodology used to achieve all the four objectives mentioned above 

and the results obtained. With respect to the four objectives described above this section is also 

divided into 4 subsections. 

 

3.1 WHT, Nega Hadamard Transform and HN transform calculation 

 

                    A system was implemented to calculate the WHT and the Nega Hadamard transform 

which can be further used for calculation of non-linearity or the PAR values. The WHT calculation 

system is implemented by two methods: one by using Hadamard matrix and the other by using the 

fast method and the time taken by both the methods is compared for variable lengths Boolean 

functions[9][10].  

             The Nega Hadamard transform calculation is implemented only by the fast method which 

is designed using the same concept as is used for WHT. 

The first method for calculating WHT is based on the following steps: 

a. The Hadamard matrix is calculated recursively by using the H1 matrix and kronecker product 

according to the size of the Boolean function taken as input. 

b. The Hadamard matrix is then multiplied with the Boolean function taken as a column vector 

and the resultant column matrix is the Walsh Hadamard spectrum. The time taken by this 

method is noted. It has a complexity of O (N2) where N is the size of input Boolean function. 

  

The fast method for calculating WHT is a kind of a divide and conquer method based on the 

following steps: 

a. The input Boolean function (output of Boolean function ordered lexicographically) is divided 

into 2 halves. The output result is also divided into 2 halves and these are calculated  as follows: 

first output half is calculated by adding corresponding 2 input half elements(for e.g. a[0] added 

with a[n/2],a[1] is added with a[n/2+1] and so on.) and second half is calculated by subtracting 

2 corresponding 2 half elements. 
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b. The output result is divided into 2 halves and the above step is repeated for each of them. 

c. This process continues logN times until each half contain 1 element. 

This method has a time complexity of O(NlogN). The fast method approximately take 0 seconds 

and is much faster than Hadamard matrix method. So, we implemented the Nega Hadamard 

Transform using only fast method. 

                  Nega Hadamard Transform calculation is implemented using the the fast method 

similar to the fast Walsh Hadamard Transform method with a few modifications. The input 

Boolean function (in the form of truth table ordered lexicographically) is now represented as a 

complex number or we can say as a pair i.e. one with real part and one with the imaginary part. 

The input Boolean function’s  values are multiplied with the term iwt(x) where wt(x) is the number 

of ones in the input x of the Boolean function f(x). Then this term is represented as a complex 

number i.e. the iwt(x) will finally result in either 1, -1, i or –i and after multiplication with 1 or -1 

this will result in a complex number. Then the same fast method is applied as was used for WHT 

but now the addition and subtraction is in terms of complex numbers. This method will calculate 

the Nega Hadamard Transform with a time complexity of O(NlogN). 

                     The HN Transform calculation method consist of first calculating the 2n transform 

matrices in the HN Transform set and then calculating the HN Transform spectrum by multiplying 

the matrices with the function in the polar form. 

                   The brute force method for calculating the HN Transform set will consist of 

recursively calculating the 2n matrices each by taking the tensor products of the Hadamard kernel 

and the Nega Hadamard kernel. This process will take exponential time for calculating each of the 

2n transform matrices. So this method is not implemented to calculate the HN Transform matrices 

and spectrum. 

               The faster method of calculating the HN Transform matrices consist of the use of the 

eqn. (2.27) to calculate each of the entry of 2n matrices in a constant time[7]. The method to 

calculate HN Transform matrices in a faster way consist of the following steps: 

a. Take the number of variables in the Boolean function whose HN Transform spectrum is to be 

calculated. 

b. For each of the matrices from 0 to 2n-1, c value is calculated. 

c. Then for each of the c value or for each of the matrices, each position is calculated by using 

the formulae in the eqn. (2.29). 
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d. The output of all the 2n matrices are stored in an output file. 

            The time complexity of this method to calculate HN Transform matrices as analyzed is 

found to be O(2n.2n) which is O(22n). 

 For example for the calculation of PAR value of HN transform spectrum for the DES S-box, we 

need to calculate the HN Transform matrices for n=6 number of variables which will produce 64 

large matrices of size 64×64. The time taken by the above method to calculate the HN Transform 

matrices for different number of variables is shown in the Table 3.1 below. 

 

                                Table 3.1: Time taken to calculate HN Transform matrices  

 

No. of variables Size of HN 

Transform matrix 

Number of HN 

Transform matrices 

Time taken by fast 

method to calculate 

all matrices(in sec) 

4 16×16 16 0.002 

6 64×64 64 0.104 

8 256×256 256 8.496 

9 512×512 512 73.937 

 

 

It can be seen from the Table 3.1 that the fast method for calculating the HN Transform matrices 

takes exponential time as analyzed theoretically i.e. O(22n). The slow method to calculate the HN 

Transform matrices is exponential times slower than this method and can be seen as hard to 

implement. So we have proposed a faster method to calculate the HN Transform matrices. 

           The HN Transform spectrum can be calculated using the matrices one by one and 

multiplying it with the column vector of polar form of Boolean function. The following steps 

show the algorithm: 

a. The input Boolean function is taken in polar form and converted into a complex number with 

the imaginary part as 0. It is done since the HN Transform matrices consist of complex entries 

too. 
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b. Then the matrix multiplication is done taking into consideration the complex entries of the 

HN Transform which can be 1,-1,i,-i only. The resulting spectrum is also in the form of 

complex numbers. 

 

3.2  Selection of an example S-box 

 

             An S-box is selected which was constructed using a particular type of fractional linear 

transformation. It is analyzed with respect to AES S-box by comparing its non-linearity with the 

non-linearity of AES s-box[1]. the selected S-box is a 16×16 S-box similar to the AES s-box[4]. 

The selected S-box is given in Table 3.2. 

 

                                                 Table 3.2: the selected 16×16 S-box  

 

221 69 158 6 34 81 146 193 241 242 240 0 182 217 10 45 

206 153 74 21 154 54 173 73 251 110 117 231 63 84 143 164 

151 236 246 76 70 98 129 157 28 204 23 199 49 220 7 178 

160 96 131 67 75 127 100 152 82 254 228 145 65 196 31 162 

194 126 101 33 106 130 97 121 78 189 38 149 137 68 159 90 

92 50 177 135 174 255 227 53 138 181 46 89 32 55 172 195 

218 223 4 9 52 39 188 175 119 102 125 108 156 40 187 71 

80 3 224 147 213 165 62 14 198 47 180 29 19 86 141 208 

120 134 93 107 216 43 184 11 226 66 161 1 114 212 15 113 

186 64 163 41 252 91 136 230 133 229 253 94 72 237 245 155 

20 2 225 207 118 179 48 109 22 132 95 205 42 5 222 185 

192 238 244 35 77 197 30 150 170 111 116 57 124 37 190 103 

26 36 191 201 105 85 142 122 171 8 219 56 176 27 200 51 

167 24 203 60 144 99 128 83 215 139 88 12 115 169 58 112 

210 18 209 17 79 168 59 148 214 247 235 13 166 232 250 61 

104 16 211 123 248 249 233 234 140 25 202 87 243 183 44 239 

 

 

Non-linearity: The non-linearity NL of a function g can be defined as  

 

                                       N(g) = ½( 2N- WHTmax )                                                                    (3.1) 
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                             Where WHTmax is the maximum of all the absolute values in the Walsh 

Hadamard Transform spectrum. The non-linearity of a Boolean function f shows how much the 

function is different from an affine function having least hamming distance from f. For calculating 

the non-linearity of the S-box, we can calculate the non-linearity of each of the constituent Boolean 

functions and take the average of all of them. The fast method of calculating the WHT is used for 

non-linearity calculation of the chosen S-box and the AES s-box. Since both the s-boxes consist 

of 8 constituent Boolean functions the non-linearity for all of these is calculated. The results are 

shown in the following Table 3.2.  As we can see the Non-linearity of the chosen s-box is 

comparable to AES s-box as it is only a little lesser than AES s-box. So, we can say that we can 

use this chosen s-box for further analysis and can compare it with other s-boxes. 

 

                                  Table 3.3: the non-linearity analysis of S-boxes 

 

S-box      0       1       2      3     4      5     6     7 average 

Selected 

S-box 

  102   104    98   108   104   102   108   106   104 

AES    

S-box 

  112    112   112   112   112   112    112   112    112 

  

                      The time complexity of this implementation is same as fast WHT i.e. O(NlogN) 

where N is size of input constituent Boolean function. 

 

3.3  PAR value analysis of various s-boxes 

 

               PAR is a parameter of quantifying the non-linearity of S-boxes. The PAR value is helpful 

in linear cryptanalysis of a block cipher. i.e. by calculating the value of PAR we can analyze the 

non-linearity of an s-box. i.e. the higher the PAR value the easier the approximation. PAR value 

can be calculated in 2 forms i.e. either as largest PAR value or as a smallest PAR value. The PAR 

value can be calculated with respect to many transform and it is implemented using WHT, Nega 

Hadamard Transform and HN Transform set[6].  A system is implemented that takes an s-box as 
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input and calculate its largest and smallest PAR. By comparing the value of PAR we can find out 

whether it is possible to linearly approximate the function or not. The method of calculating largest 

and smallest PAR for an S-box is given in the Section 2.12. Here we will analyze the results for 

DES s-boxes, Serpent s-boxes, AES s-box and the chosen s-box. The results are given in Table 

3.4, Table 3.5, Table 3.6 and Table 3.7.  

        The only difference in calculating the PAR values for the HN Transform set is that in case of 

largest PAR, the largest value is taken for each matrix and then the largest out of these is taken. 

But in case of smallest PAR, maximum is taken per matrix and then the smallest of all these is 

taken as the smallest PAR. 

                     Serpent and DES uses different sizes of S-boxes. So we can’t compare their PAR 

values directly but we can compare them. The largest PAR values of DES S-boxes are quite high 

as compared to Serpent.                                    

 

                  Table 3.4: Smallest and largest PAR for WHT for DES and Serpent 8 s-boxes 

 

S-boxes    Largest 

PAR(DES) 

  Largest 

PAR(Serpent) 

   Smallest 

PAR(DES) 

   Smallest 

PAR(Serpent) 

S-box 0   20.25    4.0      4.0     4.0 

S-box 1    16.0    4.0      4.0     4.0 

S-box 2    16.0     4.0       6.25     4.0 

S-box 3     16.0     4.0       6.25     4.0 

S-box 4     25.0     4.0       4.0      4.0 

S-box 5     12.25     4.0       4.0      4.0 

S-box 6      20.25     4.0        4.0       4.0 

S-box 7       16.0     4.0        6.25       4.0 
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              Table 3.5: Smallest and largest PAR for WHT for AES and chosen S-box 

 

  Largest 

PAR(AES) 

    Largest PAR 

(chosen s-box) 

 Smallest 

PAR(AES) 

Smallest PAR 

(chosen s-box) 

  S-box       4.0     18.0625     4.0     5.0625 

 

                 So, we can say that DES can be more easily approximated using linear expressions as 

compared to Serpent[7]. Since, higher value of PAR means better linear approximation. By 

analyzing Table 3.4 we can see that the PAR values of AES S-box are very small meaning that it 

is highly resistant to linear cryptanalysis. But the PAR values of chosen S-box range from 5 to 18. 

It means that although it can be used for cryptography but it will vulnerable to linear cryptanalysis 

as higher the PAR better the Linear Approximation.   

       As already mentioned a system is also implemented to calculate the largest and smallest PAR 

of  HN Transform also. The system consist of the following steps to calculate the largest PAR: 

a. Take input S-box in the form of decimal 

b. Covert the s-box into constituent Boolean function and then covert this into a set of Boolean 

functions consisting of all the linear combinations of the constituent Boolean functions. 

c. Convert the input set of Boolean functions into a set of Boolean functions with complex value 

entries. 

d. Use the method previously described to generate HN Transform set and calculate the spectrum 

for each of the Boolean functions with each of the HN Transform matrix. 

e. Now take the maximum absolute value for each of the Boolean function spectrum calculated 

and take square of this maximum value and multiply it with the input Boolean function size to 

get the largest PAR. The absolute value is taken by taking the square root of the squares of the 

real part and the imaginary part of the complex values of the spectrum. 

Similarly the smallest PAR can also be calculated by taking the smallest out of the maximum 

values taken for each spectrum for each HN Transform matrix. 
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                 Table 3.6: Largest and smallest PAR for HN Transform for DES and Serpent 

 

S-boxes    Largest 

PAR(DES) 

  Largest 

PAR(Serpent) 

   Smallest 

PAR(DES) 

   Smallest 

PAR(Serpent) 

S-box 0   20.25    8.0      6.25     4.0 

S-box 1    16.0    8.0      6.25     4.0 

S-box 2    16.0     8.0       6.625     4.0 

S-box 3     18.0     5.0       8.5     4.0 

S-box 4     25.0     8.0       5.125      4.0 

S-box 5     13.625     8.0       6.25      4.0 

S-box 6      20.25     8.0        5.625       4.0 

S-box 7       16.0     5.0        6.25       4.0 

 

               

                     Table 3.7: Largest PAR for HN Transform for AES and chosen S-box 

  Largest 

PAR(AES) 

    Largest PAR 

(chosen s-box) 

 Smallest 

PAR(AES) 

Smallest PAR 

(chosen s-box) 

  S-box       4.0     18.0625     4.0     5.0625 

 

 

          As we can see that PAR values for the HN Transform spectrum are higher than the PAR 

values of the Walsh Hadamard Transform spectrum for both DES and Serpent, we can say that the 

approximation is better in case of the HN Transform spectrum than the Walsh Hadamard 

Transform. This signifies that it may be difficult to approximate the Boolean functions and S-

boxes of any cipher system with Z2 linear expressions but more generalized linear approximations 

can be easily obtained. Also the new S-box is weaker in case of approximation and can be easily 

approximated. 
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3.4 Heuristic Method using PAR  

 

       The heuristic method like Hill Climbing[12] are the search methods which start at a specified 

point and search in the direction of better properties. This method is better than the brute force 

method which takes in all the points into consideration and doesn’t work efficiently for large search 

spaces. PAR values are another parameter quantifying the non-linearity of s-boxes and Boolean 

functions. So the heuristic method Hill climbing[12] can make use of it to search better Boolean 

functions and S-boxes. A new method is proposed which takes concepts of Hill climbing and PAR 

values of Walsh Hadamard transform and Nega Hadamard Transform to check whether the PAR 

value inclusion is a better option and also if Nega Hadamard Transform can help in avoiding local 

maxima conditions. This method is mainly proposed to prove and show the following condition: 

                    “Suppose f has good Nega Hadamard Transform then f ⊕ s2 should have good 

Walsh Hadamard Transform” 

   Here s2 is a homogeneous symmetric Boolean function with 2 variables. 

       This condition can help us move to better PAR values in the search space and also to avoid 

local maxima in some cases. 

  The algorithm proposed can be described as follows: 

a. A random function is taken and its PAR values for the Walsh Hadamard Transform and Nega 

Hadamard Transform is calculated. Two methods PARh and PARn are implemented to 

calculate these two values. 

b. The PAR values calculated are compared and the actions taken are as follows: 

If  PAR of WHT is smaller, then hill climbing is used to move to another Boolean function 

with better PAR value for WHT. i.e. one value in the truth table is changed and the PAR value 

of the resulting Boolean function is compared. 

If PAR of Nega Hadamard Transform is smaller then 2 variable homogeneous symmetric 

Boolean function is  xored to the Boolean function and the resulting Boolean function is used 

in step a and the steps are repeated until no better Boolean function is get in the recursion. 

 

The method for calculating symmetric Boolean function of 2 algebraic degree is also 

implemented to be used in the above system. The symmetric Boolean function as implemented 

can also be describe in the following steps: 
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a. Take the number of variables ‘a’ in the Boolean function. 

b. For each of the values from 0 to 2a, convert the values in binary form and put it in an array. 

c. Now take the XOR of all the values obtained by taking and of a value and the value next 

to it in the Boolean array. This will give the output symmetric Boolean function value. 

For example the following Table 3.8 shows the symmetric Boolean functions in the form 

of truth table listed horizontally generated from the algorithm.   

 

            Table 3.8: Homogeneous symmetric Boolean function of 2 algebraic degree 

 

Number of 

variables 

 Homogeneous symmetric Boolean function of degree 2 

        4 {0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0} 

        6 {0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 

0, 0, 0, 0, 0, 0, 1} 

       8 {0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,0, 1, 

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 

0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0,1, 1, 1, 0, 1, 0, 0, 

0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 

0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 

1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 

0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 

0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 

0, 0, 0, 1, 0, 1, 1, 1,0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0} 

                        

 Fig 3.1 shows the flow chart of the above proposed algorithm. 
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                                 Figure 3.1 Flow chart of proposed algorithm 

 

The  algorithm shows the expected results. i.e. if the Nega Hadamard transform is better then the 

new function obtained after XORing homogeneous symmetric Boolean function always gives a 

Boolean function with better or equal PAR values. This can be shown with the snaps of the 

algorithm at some points in the search with the help of the following Table 3.9. 
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                      Table 3.9: PAR values for 2 variable Boolean function 

 

f 3 f 2 f 1 f 0 PARH PARN 

1 1 1 1 4 1 

1 1 1 -1 1 2 

   

Here for 2 variable Boolean function the homogeneous symmetric Boolean function is 1,1,1,-1. 

As it can be seen in the Table 3.8 since PARH>PARN, so symmetric Boolean function is added 

and the PAR values improved. 

 

                           Table 3.10: PAR values for 3 variable Boolean function 

F7 F6 F5 F4 F3 F2 F1 F0 PARH PARN 

-1 -1 1 -1 1 1 1 -1 2 1 

-1 -1 1 1 1 -1 -1 1 2 1 

 

Here for 3 variable Boolean function the homogeneous symmetric Boolean function is 1 1 1 -1 1 

-1 -1 -1. As it can be seen in the Table 3.9 since PARH>PARN, so symmetric Boolean function is 

added and the PAR values remain same but doesn’t decrease. 

           The results show that the above algorithm works and the statement is proved to be correct. 

So a new method is proposed and showed to be working efficiently to find new Boolean functions 

with better cryptographic properties. 
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CHAPTER 4: CONCLUSION   

             

               Various transforms are useful in analyzing the suitability of Boolean functions and s-

boxes for cryptography. An efficient and fast system is implemented for calculating the Walsh 

Hadamard Transform and Nega Hadamard Transform and the HN transform. The efficient and fast 

system for Walsh Hadamard Transform was already implemented. But in case of Nega Hadamard 

Transform a new fast method similar to the Walsh Hadamard Transform was proposed. This 

system was further extended to calculate the HN Transform too. Since the HN Transfrom set 

consist of  2n transform matrices, it takes exponential time to calculate the transform by recursive 

methods. So, a fast method was developed in which the entry of any of the 2n matrices can be 

calculated in constant time. So a useful system for calculating all the Transforms efficiently is 

developed. 

         A sample S-box whose non-linearity was comparable to the AES S-box was chosen and the 

various Transforms and related PAR values are calculated to see if the chosen s-box is suitable for 

strong cipher systems or not. And the chosen s-box is found to be weaker than the AES S-box.              

                   PAR values are also useful in the sense that they can be used to analyze various s-

boxes with respect to linear cryptanalysis.i.e. a system to calculate the PAR values for various 

transforms including the Walsh Hadamard Transform, the Nega Hadamard Transform and the HN 

Transform is implemented. Also, higher the PAR value better the linear approximation and more 

vulnerable to linear cryptanalysis. A system is implemented for calculating the largest and smallest 

PAR values for all the transforms like WHT, Nega Hadamard Transform and the HN Transform. 

By using this system various s-boxes are analyzed and compared to each other. A new s-box is 

also tested against the above implemented system and is found to be weak. By analyzing the results 

it can be shown that the chosen s-box is weaker than AES s-box against linear cryptanalysis. 

                     Also a new heuristic method is proposed incorporating the hill climbing method 

which take into consideration the PAR values and it is found to be a good method to find new 

Boolean functions with better cryptographic properties. Also the fact that “Suppose f has good 

Nega Hadamard Transform then f ⊕ s2 should have good Walsh Hadamard Transform” is also 

proved to be right. This heuristic method consist of the calculation related to the PAR values with 

respect to the Walsh Hadamard Transform, the Nega Hadamard Transform and the calculation of 

symmetric homogeneous Boolean function. 
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4.1 Future Work 

  

     We can further extend this work by constructing a more generalized and fast system for 

Transform calculation which can efficiently calculate various transforms for e.g. WHT, Nega 

Hadamard Transform, HN transform, HIN transform etc. this system can further be used for 

calculating non-linearity aspect with respect to these transforms so that linear approximation over 

generalized set of integers can be done. This will help in looking at the linear cryptanalysis from 

a different perspective as we will be able to approximate the S-boxes with generalized linear 

approximations. Other aspects of creating Strong Boolean functions and s-boxes can also be 

analyzed in future. Also the heuristic method proposed can be further improved to find better 

Boolean functions with better cryptographic properties. The fact that “Suppose f has good Nega 

Hadamard Transform then f ⊕ s2 should have good Walsh Hadamard Transform” can also be used 

in a number of ideas since it proved to be correct. 
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APPENDIX A. THE S-BOXES USED IN THE THESIS WORK: 

1. DES S-BOXES IN DECIMAL FORM 

 

                                       Table A.1: S1 S-Box of DES 

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7 

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8 

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13 

 

                                        Table A.2: S2 S-Box of DES 

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10 

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5 

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15 

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9 

 

                                         Table A.3: S3 S-Box of DES 

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8 

13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1 

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7 

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12 

 

                                                Table A.4: S4 S-Box of DES 

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15 

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9 

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4 

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14 
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                                                  Table A.5: S5 S-Box of DES 

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9 

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6 

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14 

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3 

 

                                                  

                                                  Table A.6: S6 S-Box of DES 

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11 

10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8 

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6 

4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13       

 

                                                   

                                                   Table A.7: S7 S-box of DES 

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1 

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6 

1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2 

6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12 

 

                                                    

                                                   Table A.8: S8 S-Box of DES 

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7 

1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2 

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8 

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11 
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2. SERPENT S-BOXES IN DECIMAL FORM 

                          

                             Table A.9: Serpent S-boxes in decimal form 

S0 3 8 15 1 10 6 5 11 14 13 4 2 7 0 9 12 

S1 15 12 2 7 9 0 5 10 1 11 14 8 6 13 3 4 

S2 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2 

S3 0 15 11 8 12 9 6 3 13 1 2 4 10 7 5 14 

S4 1 15 8 3 12 0 11 6 2 5 4 10 9 14 7 13 

S5 15 5 2 11 4 10 9 12 0 3 14 8 13 6 7 1 

S6 7 2 12 5 8 4 6 11 14 9 1 15 13 3 10 0 

S7 1 13 15 0 14 8 2 11 7 4 12 10 9 3 5 6 

  

 
3. AES S-BOX IN HEXADECIMAL FORM 

                                 

                                  Table A.10: AES S-box in Hexadecimal form 

63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76 

CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0 

B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15 

04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75 

09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84 

53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF 

D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8 

51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2 

CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73 

60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB 
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E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79 

E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08 

BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A 

70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E 

E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF 

8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16 

 


