

A

 Dissertation

On

Boolean Functions Suitable for Strong Cipher Systems

Submitted in partial fulfillment of the

Requirements for the award of the degree

Of

MASTER OF TECHNOLOGY

In

COMPUTER SCIENCE & ENGINEERING

Submitted by

Sonia Malik

M.TECH (CS)-2nd year

Enrollment No. 14535046

Under the guidance of

Dr. Sugata Gangopadhyay

Associate Professor

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

INDIAN INSTITUTE OF TECHNOLOGY

ROORKEE – 247667

ii

Candidate’s Declaration
I declare that the work presented in this dissertation with the title “Boolean Functions Suitable for Strong

Cipher Systems” towards the fulfilment of the requirements for the award of Masters in Technology in

Computer Science and Engineering submitted in the Department of Computer Science and Engineering, Indian

Institute of Technology Roorkee, India, is an authentic record of my own work carried out during the period

from July 2015-May 2016 under the supervision of Dr. Sugata Gangopadhyay, Associate Professor, Department

of Computer Science and Engineering, IIT Roorkee. The content of this dissertation has not been submitted by

me for the award of any other degree of this or any other institute.

DATE:…………….. SIGNED…………………………..

PLACE: ROORKEE (SONIA MALIK)

Certificate
This is to certify that the statement made by the candidate is correct to the best of my knowledge and belief.

DATE:…………….. SIGNED…………………………..

 (DR. SUGATA GANGOPADHYAY)

 Associate Professor

 Dept. of CSE, IIT Roorkee

iii

Acknowledgements

 I would like to take this opportunity to extend my heartfelt gratitude to my guide and mentor

Dr. Sugata Gangopadhyay, Associate Professor, Department of Computer Science and Engineering,

Indian Institute of Technology Roorkee, for his trust in my work and his able guidance. He was a regular

source of encouragement and assistance throughout this dissertation work. His wisdom, knowledge and

commitment to the highest standards have always inspired and motivated me. He has been very

generous in providing the necessary resources and guidance for me to carry out my research. He is an

inspiring teacher, a great advisor and most importantly a nice person. On a personal note, I would like to

say that I am forever indebted to my parents for everything they have done for me and everything they

have given to me. I thank them for the sacrifices they made for me, so that I could grow up in a learning

environment. They have stood by me in everything I have done, providing constant support,

encouragement and love. I also owe a lot to my friends for their company and the time they spent

helping me out whenever I needed them.

iv

Abstract

 Cryptography is one of the important areas in computer science. For strong cipher systems Boolean

functions and s-boxes with required cryptographic properties need to be developed. Many attacks on

cipher systems consist of approximating the component Boolean functions and the component s-boxes.

Many unitary transforms are useful in analyzing the strength of these Boolean functions and the S-boxes

against the approximation. A fast and efficient system was implemented to calculate Walsh Hadamard

Transform and Nega Hadamard Transform which was further used to calculate non-linearity and PAR

values. This system was further extended to calculate the HN transform set and related PAR values. A fast

method to calculate the HN transform set is incorporated in the PAR calculation system and results are

analyzed. An s-box is chosen and its PAR values are compared with standard s-boxes and results are

analyzed. A new method incorporating the Hill Climbing heuristic is also implemented to analyze the use

of Nega Hadamard Transform in finding Boolean functions with better non-linearity and results were

found to be improved.

v

List of Contents

Candidate’s Declaration and Certificate…………………………………………………………….. II

Acknowledgements …………………………………………………………………………………. III

Abstract ……………………………………………………………………………………………....IV

List of Contents…………………………………………………………………………………........ V

List of Tables ………………………………………………………………………………………...VII

List of Figures …………………………………………………………………………………….... VII

CHAPTER 1……………………………………………………………………………………………1

 INTRODUCTION .. 1

1.1 Background and Motivation……………………………………………………………………..3

1.2 Objectives and Outcomes: .. 4

1.3 Structure of the report: ... 5

CHAPTER 2…………………………………………………………………………………………...6

 Basic Terminology .. 6

2.1 Boolean function and S-boxes…………………………………………………………………..6

2.2 Walsh Hadamard Transform .. 6

 2.3 Kronecker Product………………………………………………………………………………7

 2.4 Hadamard Matrix……………………………………………………………………………….8

 2.5 Fast Walsh Hadamard Transfrom………………………………………………………………8

2.6 Nega Hadamrd Transform .. 9

2.7 Tensor Linear Sequence ... 10

 2.8 HN Transform Set…………………………..………………………………………………….10

 2.9 Homogeneous symmetric Boolean function…………………………………………………….12

 2.10 Calculation of HN Transform set………………………………………………………………13

 2.11 Linear cryptanalysis using PAR………………………………………………………………..15

 2.12 Peak to Average power Ratio(PAR)…………………………………………………………. 16

 2.13 Heuristic methods………………………………………………………………………………17

vi

CHAPTER 3………………………………………………………………………………………….19

METHODOLOGY AND RESULTS .. 19

3.1 WHT, Nega Hadamard Transform and HN Transform calculation ... 19

3.2 Selection of an example S-box ... 22

3.3 PAR value analysis of various S-boxes.. 23

 3.4 Heuristic Method using PAR.…………………………………………………………………..27

CHAPTER 4…………………………………………………………………………………………..31

CONCLUSION .. 31

 4.1 Future Work……………………………………………………………………………………32

REFERENCES .. 33

APPENDIX A………..35

vii

List of Tables:

Table 3.1: Time taken to calculate HN Transform matrices….. ……………………………………….21

Table 3.2: the selected 16×16 S-box ….. ……………………………………………..………………..22

Table 3.3: the non-linearity analysis of S-boxes ..23

Table 3.4: Smallest and largest PAR for WHT for DES and Serpent 8 s-boxes……………………….24

Table 3.5: Smallest and largest PAR for WHT for AES and chosen S-box……………………………25

Table 3.6: Smallest and largest PAR for HN Transform for DES and Serpent 8 s-boxes…………….26

Table 3.7: Smallest and largest PAR for HN Transform for AES and chosen s-box….……………….26

Table 3.8 Homogeneous symmetric Boolean function of 2 algebraic degree…………………………..28

Table 3.9: PAR value for 2 variable Boolean function…………………………………………………30

Table 3.10: PAR values for 3 variable Boolean function……………………………………………….30

Table A.1: S1 S-box of DES…………………………………………………………………………….35

Table A.2: S2 S-box of DES…………………………………………………………………………….35

Table A.3: S3 S-box of DES…………………………………………………………………………….35

Table A.4: S4 S-box of DES…………………………………………………………………………….35

Table A.5: S5 S-box of DES…………………………………………………………………………….36

Table A.6: S6 S-box of DES…………………………………………………………………………….36

Table A.7: S7 S-box of DES…………………………………………………………………………….36

Table A.8: S8 S-box of DES…………………………………………………………………………….36

Table A.9: Serpent S-box in decimal form…………………………………..…………………………37

Table A.10: AES S-box in Hexadecimal form………………………………………………………….37

List of Figures:

Figure 3.1 Flow chart of proposed algorithm…………………………………………………………..29

1

CHAPTER 1

INTRODUCTION

Cryptography is one of the most significant areas of computer science used in today’s world to

secure data. Many cryptographic algorithms are used for providing security of information and

communication system. The ability of any cipher system to resist cryptanalytic attacks depends on

the individual components of which it is comprised. For e.g. Boolean functions and S-boxes or the

substitution boxes are the most important and effective components of many cipher systems. A lot

of research is ongoing on developing strong Boolean functions and the S-boxes having required

cryptographic properties which are strong enough to resist cryptanalytic attacks.

 Many heuristic methods have also been proposed to find Boolean functions with

better cryptographic properties [1]. Differential cryptanalysis and the linear cryptanalysis are two

main types of cryptanalytic attacks on block ciphers. Linear Cryptanalysis is one of the known

plaintext attack. It is based on exploiting the characteristics of S-boxes. Each s-box is a

combination of Boolean functions which have the property of non-linearity. So, if the non-linearity

of these functions is very low then we can approximate these functions using linear expressions

[6]. And in this way we can approximate the key used. So, to prevent linear cryptanalysis the s-

boxes and Boolean functions in turn must be highly non-linear.

 Linear cryptanalysis attack is used to find the key bits of a block cipher by making

an approximation of each block cipher round by Z2 linear expressions [6]. More generally the

approximations can be done using linear expressions over any weighted alphabet. The Z2 linear

expressions approximating the block cipher rounds can be guessed by doing an analysis with

respect to the Walsh Hadamard Transform of the constituent Boolean functions of S-boxes.

Similarly Nega Hadamard Transform can also be used in the study of these generalized

approximations. Some other linear unitary transforms like HN Transform are also useful in spectral

analysis of Boolean functions and S-boxes in the study of these generalized approximations. These

transforms also help us to evaluate the non-linearity of the constituent Boolean functions of an s-

box along with analysis of approximation. So, a generalized study of these transforms is made in

order to further assist the cryptanalysis and making these Boolean functions strong.

 A faster way to calculate the Walsh Hadamard Transform was implemented for this

purpose. Corresponding to this the fast Nega Hadamard Transform was also implemented for s-

boxes. Similarly the HN transform set is difficult to be generated by brute force method. A method

2

to calculate the corresponding entries of HN transform matrix is studied and implemented. So, a

generalized system is implemented for calculating various transforms in an efficient way possible

which can assist in evaluating the non-linearity aspect of s-boxes and approximating its constituent

functions. This system is further used to calculate the non-linearity of a newly proposed s-box. The

results helped us to choose the s-box as a reference for further study because its non-linearity was

comparable to AES s-box.

 S-boxes are an important part of any block cipher. So, a study of s-boxes of various

modern block ciphers is also made along with a newly proposed s-box example. The non-linearity

aspect of s-boxes can be quantified in terms of Peak to Average Ratio (PAR) [6] which can be

calculated using various transforms. PAR can be further used to guess whether the generalized

linear approximations of constituent Boolean functions can be done or not.

 A system was implemented for calculating the PAR values of s-boxes. This system

is further extended to calculate the PAR value for HN Transform set by incorporating the fast

method for calculating the HN Transform set. The entries of any HN Transform matrix can be

calculated using a formulae and this makes the PAR value calculation faster. From the analysis of

results of PAR for s-boxes of various modern ciphers and the example s-box it can be shown that

the Z2 linear approximations for modern ciphers are difficult but generalized linear approximations

can be done. Calculation of PAR values for HN Transform [7] set helped in showing that

generalized linear approximations are more helpful. Also the example s-box has high PAR value

which suggest that Z2 linear approximations as well as generalized linear approximations for this

S-box can be done more easily.

 As it has been established that highly non-linear Boolean functions and S-boxes are

suitable for strong cipher systems, many methods have been proposed for developing these. Many

heuristic methods like Hill climbing are used to develop the Boolean functions gradually with

better cryptographic properties. Walsh Hadamard Transform can be taken as one of the parameters

to judge the non-linearity of Boolean functions in these methods. A new method is proposed

incorporating the hill climbing method which takes in the Walsh Hadamard Transform to find the

Boolean functions with better non-linearity. Nega Hadamard Transform can also be used to judge

the non-linearity of Boolean functions along with some additional properties. So, the Nega

Hadamard Transform is also included in the method to find the Boolean functions in a better way

3

by avoiding the conditions of local maxima and jumping to a Boolean functions with better non-

linearity. Improved results were obtained using the Nega Hadamard Transform in the method.

1.1 Background and Motivation

Cryptanalysis is generally used to find the key bits of a block cipher so that the cipher system can

be cracked. Since Boolean functions and the S-boxes are the constituent parts of a cipher system,

the cryptanalysis is used to approximate these Boolean functions and the S-boxes. Generally the

approximation of these Boolean functions and S-boxes is Z2 –linear. But this can also be

generalized and can be taken over any Z like Z2 as long as the approximation is linear in a way

that it can be formed from tensor product of length 2 vectors. The approximations can be easily

found using the spectral analysis of Boolean function with respect to various transforms.

 A system of various linear unitary transforms have been developed including Walsh

Hadamard Transform, Nega Hadamard Transform and HN Transform. A fast method for

calculating all of these transforms need to be developed for such an analysis. A fast method for

calculating Walsh Hadamard Transform is already available but there is a need to develop fast

method for other transforms as well because the brute force method for calculating the other

transforms is exponential. For example the brute force method to calculate the Walsh Hadamard

Transform takes O(22n) which is only after leaving the time to calculate the Walsh Hadamard

Transform Matrix which is also a recursive method. Similarly, the HN Transform is a set of 2n

matrices each of which takes an exponential time to be calculated by the tensor products of length

2 vectors [7]. A method is needed to be developed to easily calculate these 2n matrices.

 For the analysis of Boolean functions and the s-boxes a lot parameters are already

available like non-linearity etc. But other parameters like Peak to Average Power Ratio are also

helpful in analysis against approximations. A system is need to be developed to calculate PAR

values for various transforms and this can be used to test whether new s-boxes are suitable for any

cipher system. This system also need to be fast so that large s-boxes can also be analyzed.

 A lot of methods for generating various Boolean functions and s-boxes are already

available like brute force search and heuristic methods like hill climbing etc. In Hill Climbing any

cryptographic property can be used to modify a Boolean function truth table to reach to a Boolean

functions with better cryptographic properties [12]. This method is proved to be a very good

4

method for generating the better Boolean function. Since Nega Hadamard Transform is a recent

development in the field of Linear unitary transforms and PAR is a new parameter to judge the

various transforms we can propose a new method incorporating the Hill climbing to generate better

Boolean functions. There are some problems in the methods of Hill climbing like the local maxima

where the Boolean function has the best possible value of the desired cryptography as compared

to nearby Boolean functions but not overall. A property of the Nega Hadamard Transform can be

useful to solve this problem. So a method can be proposed incorporating the Hill climbing method

and the PAR values of Walsh Hadamard Transform spectrum and the Nega Hadamard Transform.

1.2 Objectives and Outcomes

The following are the objectives and outcomes of the work presented in this report

a. To implement a system for calculating the various transforms in a faster and efficient way.

This system can be further used to calculate the non-linearity aspect of s-boxes and also in the

linear cryptanalysis of block ciphers. Walsh Hadamard Spectrum and Nega Hadamard

Spectrum has been calculated in this system. This system is further extended to calculate the

HN Transform matrices and corresponding spectrum.

b. To select an example s-box and calculate its non-linearity by using the above system. Its non-

linearity should be comparable to the AES s-box’s non-linearity so that this s-box can be

further analyzed with respect to AES s-box.

c. To understand the importance of various transforms and Peak to Average Ratio (PAR) value

in linear cryptanalysis of a block cipher and to implement a system for calculating the PAR for

various transforms and analyze the results for various s-boxes and the newly selected s-box.

This system is extended to calculate the PAR values for the HN Transform set and results are

analyzed for various s-boxes.

d. To develop and implement a new method incorporating the hill climbing heuristic and PAR

values analyzing the use of Nega Hadamard Transform in finding Boolean functions with

better non-linearity.

5

1.3 Structure of the report

 The report has been divided into 4 sections including this introduction section. Section

1 describes the introduction which consist of the basic overview of the entire work done in the

thesis. The background of the thesis work and the motivation for the new work done in the thesis

is also described in this section. The objectives and outcomes of the thesis are also described in

this section which describes the problem statement and the proposed solution of the thesis in brief.

Section 2 will describe the basic terminology related to further work in following sections. This

section also describes the previous work done and background knowledge required to understand

the further work. This includes definitions of various transforms like Walsh Hadamard Transform,

Nega Hadamard Transform, HN Transform, linear cryptanalysis, Peak to average Power Ratio i.e.

PAR values, Heuristic methods like Hill climbing etc. Section 3 will consist of the Methodology

followed for achieving all the objectives mentioned above and will also consist of the results

obtained and their analysis. Section 4 will describe conclusion and future work.

6

CHAPTER 2 : BASIC TERMINOLOGY

2.1 Boolean function and S-boxes

 An n-variable Boolean function f(x) is an association from vector space of n-

dimensions over F2 to F2, where F2 is a field corresponding to {0, 1}. For example a 3-variable

Boolean function f(x) can be a function which maps 3-digit binary numbers to 1-digit binary

number {0, 1}. The truth table of a Boolean function is a vector corresponding to the outputs of

the Boolean function for all the inputs taken in lexicographical order. The polarity truth table of a

Boolean function denoted by 𝑓(𝑥) is a truth table corresponding to the values (-1)f(x) where the

input values of x are taken in lexicographical order [1]. The hamming weight of a Boolean function

f(x) is the number of ones in the output vector i.e. truth table.

 S-boxes are nothing but multiple output Boolean functions. Various cipher systems like

block ciphers make use of S-boxes. To study the S-boxes the constituent Boolean functions are

analyzed. Suppose a given S-box has n inputs and m outputs. This means that our S-box consist of

m Boolean functions each of n inputs. While analyzing the S-box, we not only consider the

constituent Boolean functions but also consider all the functions of the form [10]

 𝑓(𝑥) = ∑ 𝑐𝑖𝑓𝑖(𝑥)𝑚−1
𝑖=0 (2.1)

 Where f are the constituent Boolean functions and ci belongs to Z2

2.2 Walsh Hadamard Transform

Walsh Hadamard Transform is a kind of a function which can be calculated for any Boolean

function. It is a useful transformation which can be used in evaluating various cryptographic

properties of a Boolean function like non-linearity. It can also be used in linear cryptanalysis of

Boolean functions and S-boxes. Walsh Hadamard Transform of a Boolean function f on 𝑉𝑛 (the

values of f are real numbers 0 and 1) is the mapping W (f): 𝑉𝑛 -> R, defined by [1]

 W (f) (w) = ∑ (−1)𝑓(𝑥)(−1)𝑤.𝑥
𝑥∈ 𝑉𝑛

 (2.2)

7

Here w.x is the scalar or dot product of the Boolean variables w and x and it is defined as follows:

 𝑤. 𝑥 = 𝑤𝑛𝑥𝑛 ⊕ 𝑤𝑛−1𝑥𝑛−1 ⊕ … . .⊕ 𝑤1𝑥1 (2.3)

Here ⊕ denotes the addition over Z2
n or simple the XOR.

 Walsh spectrum of a Boolean function f is the list of the 2𝑛 Walsh coefficients

corresponding to the 2n values of w. Walsh Hadamard Spectrum can also be calculated using

Hadamard matrix [2] instead of the formulae used above. Using this method first of all the

Hadamard matrix of size 2n ×2n is calculated recursively for a Boolean function of n variable size.

Then the hadamard matrix is multiplied with the Boolean function taken as a column matrix and

the hadamard spectrum is obtained.

2.3 Kronecker product

 Kronecker product can be defined as one of the binary operation between two matrices.

It is denoted by the symbol ⊗ i.e. A ⊗ B [2][6]. Basically in this operation the second matrix

overlays or occupy each of the positions of the first matrix multiplied by each element of the first

matrix. It can be easily shown with the help of an example. For e.g.

 A= [
1 4
2 3

] and B = [
5 8
6 7

] (2.4)

Then A ⊗ B = [
1. 𝐵 4. 𝐵
2. 𝐵 3. 𝐵

] (2.5)

i.e. A ⊗ B = [

1.5 1.8
1.6 1.7

4.5 4.8
4.6 4.7

2.5 2.8
2.6 2.7

3.5 3.8
3.6 3.7

] (2.6)

Here ‘.’ Is simply the multiplication.

Kronecker product is associative in nature. i.e.

 A⊗ B ⊗ C = (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) (2.7)

8

2.4 Hadamard matrix

 H of order n is an n×n matrix of 1−
+ s such that 𝐻0 = 1 𝑎𝑛𝑑 𝐻1 = (

1 1
1 −1

).

 𝐻𝑛 = (
𝐻𝑛−1 𝐻𝑛−1

𝐻𝑛−1 −𝐻𝑛−1
) (2.8)

 𝐻𝑛 = 𝐻1 ⊗ 𝐻𝑛−1 (2.9)

where ⊗ is the Kronecker product which is an operation between 2 matrices such that the second

matrix is multiplied with the values of first matrix and overlaid onto the first matrix. For e.g. in

eqn. (2.8) Hn-1 values are multiplied with H1 values[2][6].

 Using this method we can calculate the Walsh Hadamard Transform by first

calculating Hadamard Matrix and then multiplying the function with that matrix. The Hadamard

matrix can be calculated using a recursive method by using the above formulae step by step. i.e.

by first calculating H2 then H3 then Hn-1 and soon then Hn. Then the function is taken as a column

matrix and the Hadamard matrix is multiplied with the function to get the Walsh Hadamard

transform. It will take O (22𝑛) where n is the number of input variables of f(x) to calculate the

Walsh Hadamard Spectrum using this method. This can be considered as a slow method of

calculating Walsh Hadamard spectrum as the time taken is exponential. So a fast method need to

be developed for calculating Walsh Hadamard Spectrum.

2.5 Fast Walsh Hadamard Transform

 The Sylvester Hadamard Matrix 𝐻𝑛 can be decomposed as [3]

 𝐻𝑛 = 𝑀𝑛
(1)𝑀𝑛

(2) … . . 𝑀𝑛
(𝑛) (2.10)

 Where 𝑀𝑛
(𝑖) = 𝐼2𝑛−𝑖⨂𝐻1⨂𝐼2𝑖−1 (2.11)

 𝐼𝑚 is the m×m Identity matrix. In this way we will find that we can broke down

the process of multiplication of the function directly with the Hadamard matrix into n steps. In

9

each of these n steps we will take into consideration Mn and can find a fast method to calculate the

Walsh Hadamard spectrum with lesser time complexity. The details of this method will be

described in the methodology section. We can calculate the walsh hadamard transform using this

method in O(n 2𝑛) which is way faster than the matrix multiplication method.

2.6 Nega Hadamard Transform

 Nega Hadamard Transform is another useful transform similar to WHT which was

first defined by M.G.Parker. Here the Nega Hadamard Transform of a function f on Vn is a

mapping from Vn ->C. where C is the complex set of numbers.i.e.[2]

 N (f) (w) = ∑ (−1)𝑓(𝑥)(−1)𝑤.𝑥𝑖𝑤𝑡(𝑥)
𝑥∈ 𝑉𝑛

 (2.12)

Where wt(x) is the weight of x which can be calculated by number of 1’s in x. and w.x is the scalar

product of w and x Boolean variables as defined in eqn. (2.3). The Nega Hadamard Spectrum is

the list of all 2n values corresponding to all 2n values of w. it can also be calculated using the Nega

Hadamard matrix which can be calculated using the Kronecker product. The Nega Hadamard

matrix used here is

 𝑁1 = (
1 𝑖
1 −𝑖

) (2.13)

 𝑁𝑛 = (
𝑁𝑛−1 𝑖 ∗ 𝑁𝑛−1

𝑁𝑛−1 −𝑖 ∗ 𝑁𝑛−1
) (2.14)

 The Nega Hadamard matrix can be calculated recursively by the Kronecker

product. Then the Nega Hadamard matrix can be multiplied with the Boolean function taken as a

column matrix to get the Nega Hadamard Spectrum similar to the Walsh Hadamard Transform

matrix. Using this method it will take O(22n) which is exponential. We can also calculate using

fast method similar to WHT. So, a fast method need to be developed and an algorithm similar to

Walsh Hadamard Transform can be generated to see if that will work. Since the calculation of

various spectrums is useful in the analysis of Boolean functions

 We have implemented both the fast method and slower method of WHT to compare them

and also for further use in linear cryptanalysis. We have also implemented fast Nega Hadamard

10

Spectrum calculation similar to WHT and showed that it will also work for Nega Hadamard

Spectrum and has a lower time complexity than the Nega Hadamard matrix method.

2.7 Tensor Linear Sequence

A sequence of length N which can be tensor decomposed according to the factors of N completely

is called a tensor linear sequence[7]. For e.g. if N=2n then the tensor linear sequence can be written

 (𝑎0, 𝑏0)⨂(𝑎1, 𝑏1)⨂ … . . ⨂(𝑎𝑛−1, 𝑏𝑛−1) (2.15)

This definition is useful in terms of calculating transforms. For e.g. WHT can be written as a tensor

linear sequence. Similarly other transforms can also be defined. For e.g. Walsh Hadamard

Transform consist of all Tensor Linear Sequence which can be described in a form as follows:

 (1−
+ , 1−

+)⨂(1−
+ , 1−

+)⨂ … . . ⨂(1−
+ , 1−

+) (2.16)

For example 4×4 Walsh Hadamard Transform matrix can be written as

 [
1 1
1 −1

] ⨂ [
1 1
1 −1

] = [

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

] (2.17)

 = [

(1,1) ⨂
(1, −1) ⨂

(1,1)
(1,1)

(1,1) ⨂
(1, −1) ⨂

(1, −1)
(1, −1)

] (2.18)

2.8 HN transform set

The HN transform set is also another linear unitary Transform which is denoted by {H, N}n.[7] It

is also useful in the linear cryptanalysis and approximation analysis of S-boxes and Boolean

functions of various cipher systems like the Walsh Hadamard Transform and the Nega Hadamard

Transform. Unlike other transforms like WHT and Nega Hadamard Transform, this transform

doesn’t consist of a single Hadamard matrix. Instead it is a set of 2n matrices for calculating the

transform for any n variable Boolean function. These matrices are obtained by taking the tensor

11

products of the Hadamard kernel and the Nega Hadamard kernel[7]. The Hadamard kernel is

denoted by H and the Nega Hadamard kernel is denoted by N and the identity transform is denoted

by I.

 H =
1

√2
 (

1 1
1 −1

) (2.19)

 𝑁 =
1

√2
 (

1 𝑖
1 −𝑖

) (2.20)

 𝐼 = (
1 0
0 1

) (2.21)

By taking the tensor product of H and N, n times in any sequence gives us 2n different transform

matrices which are linear unitary in sense. These are all denoted by {H, N}n .

 Let the n positions be denoted by numbers from 1 to n and let PH and PN denote the

partition of {1….n} positions such that PH denote the positions where Hadamard kernel is placed

in the tensor product sequence and PN denote the positions where Nega Hadamard kernel is placed.

Then the Unitary transform matrix corresponding to this position distribution is given by[7]

 𝑈 = ∏ 𝐻𝑗𝑗∈𝑃𝐻
∏ 𝑁𝑗𝑗∈𝑃𝑁

 (2.22)

Here Xj = I ⨂ I ⨂ I …… I ⨂ X ⨂ I ⨂ I

Where X is in the jth position in {1…n} positions. The spectrum of any function f can be calculated

from multiplication of the matrix U with the column matrix of function taken in the polar form.

The 2n matrices consist of two special cases. i.e when PH consist of all positions {1…n} then the

U matrix is called the Hadamard matrix and the spectrum obtained by the multiplication with the

function is called Walsh Hadamard Spectrum. Similarly when PN consist of all the positions from

{1…n} then the U matrix obtained is called the Nega Hadamard matrix and the spectrum obtained

by the multiplication with the function is called Nega Hadamard Spectrum. If the absolute value

of each output in the spectrum obtained by the multiplication of unitary matrix U and the polar

values of function is 1 then the spectrum is called as flat spectrum. If any of the spectrum in the 2n

HN Transform set is flat then the function is called as Bent4 function.

12

2.9 Homogeneous symmetric Boolean function

A homogeneous symmetric Boolean function can defined with respect to any algebraic degree. It

can be described in the Algebraic Normal Form which is a polynomial representation of a Boolean

function. A Boolean function f(x) can be represented in the form[2]

 𝑓(𝑥) = ∑ 𝑐𝑎𝑥1
𝑎1 … 𝑥𝑛

𝑎𝑛
𝑎𝜖𝑉𝑛

 (2.23)

 where 𝑐𝑎𝜖𝐹2 and 𝑎 = (𝑎1, … . . , 𝑎𝑛). Also, 𝑐𝑎 = ∑ 𝑓(𝑥)𝑥≤𝑎 where x≤ a means that 𝑥𝑖 ≤ 𝑎𝑖, for

all 1 ≤ i ≤ n. The algebraic degree of a Boolean function is the number of variables (𝑥𝑖) in the

highest product term having non-zero coefficient.

 Let Sr (x) be any homogeneous symmetric Boolean function and its algebraic degree is r.

Then it can be described in its ANF form as [7]

 𝑆𝑟(𝑥) =
⨂

1 ≤ 𝑖1 < ⋯ < 𝑖𝑟 ≤ 𝑛
 𝑥𝑖1

… … 𝑥𝑖𝑟
 (2.24)

For example let S2(x) is a homogeneous symmetric Boolean function of algebraic degree 2 and

has 3 variables then the S2(x) can be written as

 𝑆2(𝑥) = 𝑥1𝑥2 ⊕ 𝑥2𝑥3 ⊕ 𝑥1𝑥3 (2.25)

Similarly if S3 (x) is a homogeneous symmetric Boolean function of algebraic degree 3 and 4

varibles then S3 (x) can be written as

 𝑆3(𝑥) = 𝑥1𝑥2𝑥3 ⊕ 𝑥1𝑥3𝑥4 ⊕ 𝑥1𝑥2𝑥4 ⊕ 𝑥2𝑥3𝑥4 (2.26)

A system is also implemented in the thesis to calculate symmetric homogeneous Boolean function

to be used in the proposed method incorporating the hill climbing method.

 Another important calculation to be needed in the thesis work related to this is the

intersection of two Boolean vectors. Let a = (an……a1) and b = (bn……..b1) be two Boolean

vectors belonging to 𝑍2
𝑛. Then intersection of these two vectors is defined as a*b which is

13

 𝑎 ∗ 𝑏 = (𝑎𝑛𝑏𝑛, … … … , 𝑎1𝑏1) (2.27)

Then the symmetric function Sr(a*b) is

 𝑆𝑟(𝑎 ∗ 𝑏) =
⨂

1 ≤ 𝑖1 < ⋯ < 𝑖𝑟 ≤ 𝑛
 (𝑎𝑖1

𝑏𝑖1
) … … … (𝑎𝑖𝑟

𝑏𝑖𝑟
) (2.28)

2.10 Calculation of HN Transform set

 As we have seen in the previous section that there are 2n transform matrices in the set

of HN Transform set for a Boolean function of n variables. And to calculate this we will have to

perform the tensor products n times for each of the 2n matrices which is a lot of computation. The

time taken to calculate the HN transform spectrum will be exponential and includes 2n times the

calculation of each transform matrix which again takes exponential time because each matrix is

calculated recursively. We can decrease the time complexity if instead of calculating the 2n

matrices recursively we get to know a way to calculate each entry of each matrix in a constant

time. Then the time taken will be really O(22n) to calculate each matrix since the matrix is 2n×2n

and to calculate each entry it takes only constant time.

 Let the n positions be denoted by numbers from 1 to n and let PH and PN denote

the partition of {1….n} positions such that PH denote the positions where Hadamard kernel is

placed in the tensor product sequence and PN denote the positions where Nega Hadamard kernel

is placed. Then the Unitary transform matrix corresponding to this position distribution is given

by U and for any , 𝑏 ∈ 𝑍2
𝑛 , the entry in the position ath row and bth column of 2𝑛/2𝑈 is[7]

 (−1)𝑎.𝑏⊕𝑠2(𝑐∗𝑏)𝑖𝑐.𝑏 (2.29)

Here 𝑐 = (𝑐𝑛, … … … 𝑐1) ∈ 𝑍2
𝑛 is assigned such that ci = 0 if i∈ 𝑃𝐻 and 𝑐𝑖 = 1 𝑖𝑓 𝑖 ∈ 𝑃𝑁.

For example let a function be of 2 variables. Then n = 2. Then according to the above definition if

c = (0,0) then U = H ⨂ H. similarly if c = (0,1) then U = H ⨂ N . if c = (1,0) then U= N ⨂ H and

last if c = (1,1) then U = N ⨂ N. if we calculate all the entries using the above equ. (2.29) then we

will get the correct unitary transform matrices[7]. For example below is the U

14

When c=(0,1)

 𝐻 ⨂ 𝑁 =
1

2
 [

1 𝑖
1 −𝑖

1 𝑖
1 −𝑖

1 𝑖
1 −𝑖

−1 −𝑖
−1 𝑖

] (2.30)

When c=(1,0)

 𝑁 ⨂ 𝐻 =
1

2
 [

1 1
1 −1

𝑖 𝑖
𝑖 −𝑖

1 1
1 −1

−𝑖 −𝑖
−𝑖 𝑖

] (2.31)

When c=(0,0)

 𝐻 ⨂ 𝐻 =
1

2
 [

1 1
1 −1

1 1
1 −1

1 1
1 −1

−1 −1
−1 1

] (2.32)

When c=(1,1)

 𝑁 ⨂ 𝑁 =
1

2
 [

1 𝑖
1 −𝑖

𝑖 −1
𝑖 1

1 𝑖
1 −𝑖

−𝑖 1
−𝑖 −1

] (2.33)

 In this case if we check the entries according the formulae then it proves to be right. For e.g. here

c = (0,1) and let ath row is 3 then a = (1, 0) and bth column is 3 then b = (1,0)

Then the entry will be

 (−1)(1,0).(1,0)⊕(0.1).(1.0)𝑖(0,1).(1,0) = −1 (2.34)

Which is the same as the entry in the matrix shown in eqn. (2.30).

15

2.11 Linear Cryptanalysis using PAR

 Block cipher uses a secret key and an algorithm consisting of many rounds to convert

plaintext into cipher text. So, linear cryptanalysis is used to get the secret key by trying to

approximate the core rounds of the block cipher which can further be combined to approximate

the key bits. This approximation is usually made using Z2 linear expressions for each round which

can relate some input and output bits of each round with some probability. Then by using a lot of

plaintext and cipher text pairs the probability of approximation to be correct is determined and the

key bits are guessed accordingly [6] [8].

 To prevent such attacks form being successful many block ciphers try to make the constituent

Boolean functions highly non-linear so that they can’t be approximated using Z2 linear

expressions. Let S be an n×n s-box of a block cipher and let f and g are the linear combinations of

n input variables (x) and n output variables(y) respectively[6]. And let A be a subset of s-box i.e.all

(x,y) pairs of the s-box. Then the cipher is said to be resistant to linear cryptanalysis over Z2 if

 f(x)=g(y) for all (x,y)𝜖 𝐴 (2.35)

 ||𝐴| − 2𝑛−1| ≤ 2
𝑛

2 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 𝑎𝑛𝑑 ||𝐴| − 2𝑛−1| ≤ 2
𝑛−1

2 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑 (2.36)

Most of the modern block ciphers make the Z2 linear approximations difficult. The Z2 linear

approximations can be found with the help of spectral analysis of WHT. But we can also do the

linear approximations of the constituent Boolean functions of an S-box[5] with respect to any

weighted alphabet. Then we can combine these generalized linear approximations to retrieve the

key bits. The way to combine these generalized linear approximations is for future research. We

can then see that even these modern block ciphers are a little weaker with respect to these

generalized linear approximations.

16

2.12 Peak-to-Average Power Ratio(PAR)

 Peak to average power ratio (PAR) can be defined as one of the measures or criteria

which can help us in analyzing the non-linearity and linear approximation capability of various

Boolean functions and s-boxes. It is actually helpful in quantifying the non-linearity of various S-

boxes and constituent Boolean functions in various cipher systems. It is calculated with respect to

various Transforms like Walsh Hadamard Transform, Nega Hadamard Transform and the HN

Transform set.

The WHT can also be defined as

 W (f) (w) = 2−𝑛 ∑ (−1)𝑓(𝑥)(−1)𝑤.𝑥
𝑥∈ 𝑉𝑛

 (2.37)

Then we can define PAR with respect to WHT as

 PAR(𝑓) = 2𝑛𝑚𝑎𝑥∀𝑤(|𝑊(𝑓)(𝑤)|)2 (2.38)

If the value of PAR is 1 this means that no linear approximation is possible whereas 2n means that

the function is a linear function completely and can be easily approximated by a linear function.

This means that higher the value of PAR the higher the chances of linear approximations. This is

all w.r.t. WHT. PAR can also be defined for any normalized Transforms set T[6]. i.e.

 𝑃𝐴𝑅(𝑓) = 2𝑛𝑚𝑎𝑥∀𝑘∀𝑈∈𝑇(|𝐹𝑘|)2 (2.39)

 Here also it helps in finding the approximation possibility as the higher the value of

PAR, more are the chances of better approximations. Using PAR the non-linearity of S-boxes of

Block ciphers can be easily judged. By calculating the PAR of various S-boxes we can see and

compare them to know which can be easily approximated or not. We can also know whether linear

approximations over Z2 are easier to do or over some other generalized set are easier to do. For

this the highest and lowest PARs are calculated for different sets of transform and compared

accordingly for different S-boxes.

 S-boxes are multiple output Boolean functions and the transforms are calculated for

Boolean functions basically. So to calculate the different transforms of S-boxes the various

17

constituent Boolean functions of S-boxes are combined in the following way and then the

transforms are calculated for each of them and accordingly the PAR is calculated. i.e.

 Let the S-box has n inputs and m outputs. Then the constituent Booleans functions are

 𝑦𝑗 = 𝑓𝑗(𝑥) , 0 ≤ 𝑗 < 𝑚 , 𝑓𝑗: 𝑍2
𝑛 → 𝑍2 (2.40)

And we can calculate the transform and PAR over all f:𝑍2
𝑛 → 𝑍2 of the following form,

 𝑓(𝑥) = ∑ 𝑐𝑖𝑓𝑖(𝑥)𝑚−1
𝑖=0 , 𝑐𝑖 ∈ 𝑍2 (2.41)

Here the f(x) will consist of 2m Boolean functions of the form described in the eqn. (2.40). The

largest PAR and smallest PAR both can then be calculated for the s-box. The largest PAR is

calculated by first calculating the spectrum for each of these function f(x), finding the maximum

value of transform from the spectrum for each of these functions , then taking the maximum out

of these maximum values and then squaring and normalizing it. Whereas the smallest PAR is

calculated by first calculating the spectrum for each of these functions f(x) , finding the maximum

value of the transform from the spectrum for each of these functions and then taking the minimum

out of these maximum values and then squaring and normalizing it. Although while calculating

these values we will ignore the function f(x) which is formed by all ci’s taken as 0.

2.13 Heuristic methods

 A lot of cipher systems make use of the Boolean functions and the S-boxes. To be suitable

for a strong cipher system Boolean functions need to be having strong cryptographic properties. A

lot of methods have been developed to create strong Boolean functions which have suitable

cryptographic properties like non-linearity and auto correlation. Brute force method checks all the

Boolean functions one by one and compares the cryptographic properties in consideration. But this

method will not work accurately and fast in Boolean functions with large number of variables. One

of the other best method to develop Boolean functions with strong cryptographic properties is the

heuristic method. This type of methods are generalized by the search of the suitable Boolean

18

function in a localized area directed by certain conditions and starting from specified points in the

space.

 Many heuristic method have been discovered till now. For e.g. Hill Climbing,

genetic algorithms, simulated annealing etc. The basic logic in the process of hill climbing is to

start from a specified point, modify the Boolean function one variable at a time only if there is an

improvement in the original cryptographic value. That is why it is called hill climbing method i.e.

climbing towards a better cryptographic function through search. The Boolean function obtained

in the last is expected to be having the best cryptographic property.

 Since PAR values can be used to quantify the non-linearity of Boolean functions and

the s-boxes, we can use PAR values in the heuristic methods like Hill Climbing method[12] to test

whether we will get better Boolean functions. Also it can be proposed that the PAR values with

respect to the Walsh Hadamard Transform and the Nega Hadamard Transform can be helpful in

the conditions of local maxima where the cryptographic property has the best value nearby but it

may not be the best in the whole search space. A method is proposed incorporating the Hill

Climbing method and PAR values to improve the heuristic method and test whether the PAR value

give additional advantage over the usual non-linearity measure.

 There are various conditions also which are taken into consideration whether to

change a parameter of a Boolean function or not in a heuristic method like Hill Climbing[12]. This

condition can be weak or strong. A strong condition always require that the cryptographic property

value always increase while moving to next step in the search method whereas the weak property

requires that the cryptographic property value may increase or remain same while moving to the

next step in the search method. So Hill climbing method is chosen and modified to propose a

method taking the PAR values of WHT and Nega Hadamard transform to see if better Boolean

functions can be searched with better PAR values and local maxima problem can be resolved or

not.

19

CHAPTER 3

METHODOLOGY AND RESULTS

This section consist of the methodology used to achieve all the four objectives mentioned above

and the results obtained. With respect to the four objectives described above this section is also

divided into 4 subsections.

3.1 WHT, Nega Hadamard Transform and HN transform calculation

 A system was implemented to calculate the WHT and the Nega Hadamard transform

which can be further used for calculation of non-linearity or the PAR values. The WHT calculation

system is implemented by two methods: one by using Hadamard matrix and the other by using the

fast method and the time taken by both the methods is compared for variable lengths Boolean

functions[9][10].

 The Nega Hadamard transform calculation is implemented only by the fast method which

is designed using the same concept as is used for WHT.

The first method for calculating WHT is based on the following steps:

a. The Hadamard matrix is calculated recursively by using the H1 matrix and kronecker product

according to the size of the Boolean function taken as input.

b. The Hadamard matrix is then multiplied with the Boolean function taken as a column vector

and the resultant column matrix is the Walsh Hadamard spectrum. The time taken by this

method is noted. It has a complexity of O (N2) where N is the size of input Boolean function.

The fast method for calculating WHT is a kind of a divide and conquer method based on the

following steps:

a. The input Boolean function (output of Boolean function ordered lexicographically) is divided

into 2 halves. The output result is also divided into 2 halves and these are calculated as follows:

first output half is calculated by adding corresponding 2 input half elements(for e.g. a[0] added

with a[n/2],a[1] is added with a[n/2+1] and so on.) and second half is calculated by subtracting

2 corresponding 2 half elements.

20

b. The output result is divided into 2 halves and the above step is repeated for each of them.

c. This process continues logN times until each half contain 1 element.

This method has a time complexity of O(NlogN). The fast method approximately take 0 seconds

and is much faster than Hadamard matrix method. So, we implemented the Nega Hadamard

Transform using only fast method.

 Nega Hadamard Transform calculation is implemented using the the fast method

similar to the fast Walsh Hadamard Transform method with a few modifications. The input

Boolean function (in the form of truth table ordered lexicographically) is now represented as a

complex number or we can say as a pair i.e. one with real part and one with the imaginary part.

The input Boolean function’s values are multiplied with the term iwt(x) where wt(x) is the number

of ones in the input x of the Boolean function f(x). Then this term is represented as a complex

number i.e. the iwt(x) will finally result in either 1, -1, i or –i and after multiplication with 1 or -1

this will result in a complex number. Then the same fast method is applied as was used for WHT

but now the addition and subtraction is in terms of complex numbers. This method will calculate

the Nega Hadamard Transform with a time complexity of O(NlogN).

 The HN Transform calculation method consist of first calculating the 2n transform

matrices in the HN Transform set and then calculating the HN Transform spectrum by multiplying

the matrices with the function in the polar form.

 The brute force method for calculating the HN Transform set will consist of

recursively calculating the 2n matrices each by taking the tensor products of the Hadamard kernel

and the Nega Hadamard kernel. This process will take exponential time for calculating each of the

2n transform matrices. So this method is not implemented to calculate the HN Transform matrices

and spectrum.

 The faster method of calculating the HN Transform matrices consist of the use of the

eqn. (2.27) to calculate each of the entry of 2n matrices in a constant time[7]. The method to

calculate HN Transform matrices in a faster way consist of the following steps:

a. Take the number of variables in the Boolean function whose HN Transform spectrum is to be

calculated.

b. For each of the matrices from 0 to 2n-1, c value is calculated.

c. Then for each of the c value or for each of the matrices, each position is calculated by using

the formulae in the eqn. (2.29).

21

d. The output of all the 2n matrices are stored in an output file.

 The time complexity of this method to calculate HN Transform matrices as analyzed is

found to be O(2n.2n) which is O(22n).

 For example for the calculation of PAR value of HN transform spectrum for the DES S-box, we

need to calculate the HN Transform matrices for n=6 number of variables which will produce 64

large matrices of size 64×64. The time taken by the above method to calculate the HN Transform

matrices for different number of variables is shown in the Table 3.1 below.

 Table 3.1: Time taken to calculate HN Transform matrices

No. of variables Size of HN

Transform matrix

Number of HN

Transform matrices

Time taken by fast

method to calculate

all matrices(in sec)

4 16×16 16 0.002

6 64×64 64 0.104

8 256×256 256 8.496

9 512×512 512 73.937

It can be seen from the Table 3.1 that the fast method for calculating the HN Transform matrices

takes exponential time as analyzed theoretically i.e. O(22n). The slow method to calculate the HN

Transform matrices is exponential times slower than this method and can be seen as hard to

implement. So we have proposed a faster method to calculate the HN Transform matrices.

 The HN Transform spectrum can be calculated using the matrices one by one and

multiplying it with the column vector of polar form of Boolean function. The following steps

show the algorithm:

a. The input Boolean function is taken in polar form and converted into a complex number with

the imaginary part as 0. It is done since the HN Transform matrices consist of complex entries

too.

22

b. Then the matrix multiplication is done taking into consideration the complex entries of the

HN Transform which can be 1,-1,i,-i only. The resulting spectrum is also in the form of

complex numbers.

3.2 Selection of an example S-box

 An S-box is selected which was constructed using a particular type of fractional linear

transformation. It is analyzed with respect to AES S-box by comparing its non-linearity with the

non-linearity of AES s-box[1]. the selected S-box is a 16×16 S-box similar to the AES s-box[4].

The selected S-box is given in Table 3.2.

 Table 3.2: the selected 16×16 S-box

221 69 158 6 34 81 146 193 241 242 240 0 182 217 10 45

206 153 74 21 154 54 173 73 251 110 117 231 63 84 143 164

151 236 246 76 70 98 129 157 28 204 23 199 49 220 7 178

160 96 131 67 75 127 100 152 82 254 228 145 65 196 31 162

194 126 101 33 106 130 97 121 78 189 38 149 137 68 159 90

92 50 177 135 174 255 227 53 138 181 46 89 32 55 172 195

218 223 4 9 52 39 188 175 119 102 125 108 156 40 187 71

80 3 224 147 213 165 62 14 198 47 180 29 19 86 141 208

120 134 93 107 216 43 184 11 226 66 161 1 114 212 15 113

186 64 163 41 252 91 136 230 133 229 253 94 72 237 245 155

20 2 225 207 118 179 48 109 22 132 95 205 42 5 222 185

192 238 244 35 77 197 30 150 170 111 116 57 124 37 190 103

26 36 191 201 105 85 142 122 171 8 219 56 176 27 200 51

167 24 203 60 144 99 128 83 215 139 88 12 115 169 58 112

210 18 209 17 79 168 59 148 214 247 235 13 166 232 250 61

104 16 211 123 248 249 233 234 140 25 202 87 243 183 44 239

Non-linearity: The non-linearity NL of a function g can be defined as

 N(g) = ½(2N- WHTmax) (3.1)

23

 Where WHTmax is the maximum of all the absolute values in the Walsh

Hadamard Transform spectrum. The non-linearity of a Boolean function f shows how much the

function is different from an affine function having least hamming distance from f. For calculating

the non-linearity of the S-box, we can calculate the non-linearity of each of the constituent Boolean

functions and take the average of all of them. The fast method of calculating the WHT is used for

non-linearity calculation of the chosen S-box and the AES s-box. Since both the s-boxes consist

of 8 constituent Boolean functions the non-linearity for all of these is calculated. The results are

shown in the following Table 3.2. As we can see the Non-linearity of the chosen s-box is

comparable to AES s-box as it is only a little lesser than AES s-box. So, we can say that we can

use this chosen s-box for further analysis and can compare it with other s-boxes.

 Table 3.3: the non-linearity analysis of S-boxes

S-box 0 1 2 3 4 5 6 7 average

Selected

S-box

 102 104 98 108 104 102 108 106 104

AES

S-box

 112 112 112 112 112 112 112 112 112

 The time complexity of this implementation is same as fast WHT i.e. O(NlogN)

where N is size of input constituent Boolean function.

3.3 PAR value analysis of various s-boxes

 PAR is a parameter of quantifying the non-linearity of S-boxes. The PAR value is helpful

in linear cryptanalysis of a block cipher. i.e. by calculating the value of PAR we can analyze the

non-linearity of an s-box. i.e. the higher the PAR value the easier the approximation. PAR value

can be calculated in 2 forms i.e. either as largest PAR value or as a smallest PAR value. The PAR

value can be calculated with respect to many transform and it is implemented using WHT, Nega

Hadamard Transform and HN Transform set[6]. A system is implemented that takes an s-box as

24

input and calculate its largest and smallest PAR. By comparing the value of PAR we can find out

whether it is possible to linearly approximate the function or not. The method of calculating largest

and smallest PAR for an S-box is given in the Section 2.12. Here we will analyze the results for

DES s-boxes, Serpent s-boxes, AES s-box and the chosen s-box. The results are given in Table

3.4, Table 3.5, Table 3.6 and Table 3.7.

 The only difference in calculating the PAR values for the HN Transform set is that in case of

largest PAR, the largest value is taken for each matrix and then the largest out of these is taken.

But in case of smallest PAR, maximum is taken per matrix and then the smallest of all these is

taken as the smallest PAR.

 Serpent and DES uses different sizes of S-boxes. So we can’t compare their PAR

values directly but we can compare them. The largest PAR values of DES S-boxes are quite high

as compared to Serpent.

 Table 3.4: Smallest and largest PAR for WHT for DES and Serpent 8 s-boxes

S-boxes Largest

PAR(DES)

 Largest

PAR(Serpent)

 Smallest

PAR(DES)

 Smallest

PAR(Serpent)

S-box 0 20.25 4.0 4.0 4.0

S-box 1 16.0 4.0 4.0 4.0

S-box 2 16.0 4.0 6.25 4.0

S-box 3 16.0 4.0 6.25 4.0

S-box 4 25.0 4.0 4.0 4.0

S-box 5 12.25 4.0 4.0 4.0

S-box 6 20.25 4.0 4.0 4.0

S-box 7 16.0 4.0 6.25 4.0

25

 Table 3.5: Smallest and largest PAR for WHT for AES and chosen S-box

 Largest

PAR(AES)

 Largest PAR

(chosen s-box)

 Smallest

PAR(AES)

Smallest PAR

(chosen s-box)

 S-box 4.0 18.0625 4.0 5.0625

 So, we can say that DES can be more easily approximated using linear expressions as

compared to Serpent[7]. Since, higher value of PAR means better linear approximation. By

analyzing Table 3.4 we can see that the PAR values of AES S-box are very small meaning that it

is highly resistant to linear cryptanalysis. But the PAR values of chosen S-box range from 5 to 18.

It means that although it can be used for cryptography but it will vulnerable to linear cryptanalysis

as higher the PAR better the Linear Approximation.

 As already mentioned a system is also implemented to calculate the largest and smallest PAR

of HN Transform also. The system consist of the following steps to calculate the largest PAR:

a. Take input S-box in the form of decimal

b. Covert the s-box into constituent Boolean function and then covert this into a set of Boolean

functions consisting of all the linear combinations of the constituent Boolean functions.

c. Convert the input set of Boolean functions into a set of Boolean functions with complex value

entries.

d. Use the method previously described to generate HN Transform set and calculate the spectrum

for each of the Boolean functions with each of the HN Transform matrix.

e. Now take the maximum absolute value for each of the Boolean function spectrum calculated

and take square of this maximum value and multiply it with the input Boolean function size to

get the largest PAR. The absolute value is taken by taking the square root of the squares of the

real part and the imaginary part of the complex values of the spectrum.

Similarly the smallest PAR can also be calculated by taking the smallest out of the maximum

values taken for each spectrum for each HN Transform matrix.

26

 Table 3.6: Largest and smallest PAR for HN Transform for DES and Serpent

S-boxes Largest

PAR(DES)

 Largest

PAR(Serpent)

 Smallest

PAR(DES)

 Smallest

PAR(Serpent)

S-box 0 20.25 8.0 6.25 4.0

S-box 1 16.0 8.0 6.25 4.0

S-box 2 16.0 8.0 6.625 4.0

S-box 3 18.0 5.0 8.5 4.0

S-box 4 25.0 8.0 5.125 4.0

S-box 5 13.625 8.0 6.25 4.0

S-box 6 20.25 8.0 5.625 4.0

S-box 7 16.0 5.0 6.25 4.0

 Table 3.7: Largest PAR for HN Transform for AES and chosen S-box

 Largest

PAR(AES)

 Largest PAR

(chosen s-box)

 Smallest

PAR(AES)

Smallest PAR

(chosen s-box)

 S-box 4.0 18.0625 4.0 5.0625

 As we can see that PAR values for the HN Transform spectrum are higher than the PAR

values of the Walsh Hadamard Transform spectrum for both DES and Serpent, we can say that the

approximation is better in case of the HN Transform spectrum than the Walsh Hadamard

Transform. This signifies that it may be difficult to approximate the Boolean functions and S-

boxes of any cipher system with Z2 linear expressions but more generalized linear approximations

can be easily obtained. Also the new S-box is weaker in case of approximation and can be easily

approximated.

27

3.4 Heuristic Method using PAR

 The heuristic method like Hill Climbing[12] are the search methods which start at a specified

point and search in the direction of better properties. This method is better than the brute force

method which takes in all the points into consideration and doesn’t work efficiently for large search

spaces. PAR values are another parameter quantifying the non-linearity of s-boxes and Boolean

functions. So the heuristic method Hill climbing[12] can make use of it to search better Boolean

functions and S-boxes. A new method is proposed which takes concepts of Hill climbing and PAR

values of Walsh Hadamard transform and Nega Hadamard Transform to check whether the PAR

value inclusion is a better option and also if Nega Hadamard Transform can help in avoiding local

maxima conditions. This method is mainly proposed to prove and show the following condition:

 “Suppose f has good Nega Hadamard Transform then f ⊕ s2 should have good

Walsh Hadamard Transform”

 Here s2 is a homogeneous symmetric Boolean function with 2 variables.

 This condition can help us move to better PAR values in the search space and also to avoid

local maxima in some cases.

 The algorithm proposed can be described as follows:

a. A random function is taken and its PAR values for the Walsh Hadamard Transform and Nega

Hadamard Transform is calculated. Two methods PARh and PARn are implemented to

calculate these two values.

b. The PAR values calculated are compared and the actions taken are as follows:

If PAR of WHT is smaller, then hill climbing is used to move to another Boolean function

with better PAR value for WHT. i.e. one value in the truth table is changed and the PAR value

of the resulting Boolean function is compared.

If PAR of Nega Hadamard Transform is smaller then 2 variable homogeneous symmetric

Boolean function is xored to the Boolean function and the resulting Boolean function is used

in step a and the steps are repeated until no better Boolean function is get in the recursion.

The method for calculating symmetric Boolean function of 2 algebraic degree is also

implemented to be used in the above system. The symmetric Boolean function as implemented

can also be describe in the following steps:

28

a. Take the number of variables ‘a’ in the Boolean function.

b. For each of the values from 0 to 2a, convert the values in binary form and put it in an array.

c. Now take the XOR of all the values obtained by taking and of a value and the value next

to it in the Boolean array. This will give the output symmetric Boolean function value.

For example the following Table 3.8 shows the symmetric Boolean functions in the form

of truth table listed horizontally generated from the algorithm.

 Table 3.8: Homogeneous symmetric Boolean function of 2 algebraic degree

Number of

variables

 Homogeneous symmetric Boolean function of degree 2

 4 {0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0}

 6 {0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0,

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 1}

 8 {0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1,0, 1,

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0,1, 1, 1, 0, 1, 0, 0,

0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0,

0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1,

1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0,

0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 1, 0, 1, 1, 1,0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0}

 Fig 3.1 shows the flow chart of the above proposed algorithm.

29

 Figure 3.1 Flow chart of proposed algorithm

The algorithm shows the expected results. i.e. if the Nega Hadamard transform is better then the

new function obtained after XORing homogeneous symmetric Boolean function always gives a

Boolean function with better or equal PAR values. This can be shown with the snaps of the

algorithm at some points in the search with the help of the following Table 3.9.

30

 Table 3.9: PAR values for 2 variable Boolean function

f 3 f 2 f 1 f 0 PARH PARN

1 1 1 1 4 1

1 1 1 -1 1 2

Here for 2 variable Boolean function the homogeneous symmetric Boolean function is 1,1,1,-1.

As it can be seen in the Table 3.8 since PARH>PARN, so symmetric Boolean function is added

and the PAR values improved.

 Table 3.10: PAR values for 3 variable Boolean function

F7 F6 F5 F4 F3 F2 F1 F0 PARH PARN

-1 -1 1 -1 1 1 1 -1 2 1

-1 -1 1 1 1 -1 -1 1 2 1

Here for 3 variable Boolean function the homogeneous symmetric Boolean function is 1 1 1 -1 1

-1 -1 -1. As it can be seen in the Table 3.9 since PARH>PARN, so symmetric Boolean function is

added and the PAR values remain same but doesn’t decrease.

 The results show that the above algorithm works and the statement is proved to be correct.

So a new method is proposed and showed to be working efficiently to find new Boolean functions

with better cryptographic properties.

31

CHAPTER 4: CONCLUSION

 Various transforms are useful in analyzing the suitability of Boolean functions and s-

boxes for cryptography. An efficient and fast system is implemented for calculating the Walsh

Hadamard Transform and Nega Hadamard Transform and the HN transform. The efficient and fast

system for Walsh Hadamard Transform was already implemented. But in case of Nega Hadamard

Transform a new fast method similar to the Walsh Hadamard Transform was proposed. This

system was further extended to calculate the HN Transform too. Since the HN Transfrom set

consist of 2n transform matrices, it takes exponential time to calculate the transform by recursive

methods. So, a fast method was developed in which the entry of any of the 2n matrices can be

calculated in constant time. So a useful system for calculating all the Transforms efficiently is

developed.

 A sample S-box whose non-linearity was comparable to the AES S-box was chosen and the

various Transforms and related PAR values are calculated to see if the chosen s-box is suitable for

strong cipher systems or not. And the chosen s-box is found to be weaker than the AES S-box.

 PAR values are also useful in the sense that they can be used to analyze various s-

boxes with respect to linear cryptanalysis.i.e. a system to calculate the PAR values for various

transforms including the Walsh Hadamard Transform, the Nega Hadamard Transform and the HN

Transform is implemented. Also, higher the PAR value better the linear approximation and more

vulnerable to linear cryptanalysis. A system is implemented for calculating the largest and smallest

PAR values for all the transforms like WHT, Nega Hadamard Transform and the HN Transform.

By using this system various s-boxes are analyzed and compared to each other. A new s-box is

also tested against the above implemented system and is found to be weak. By analyzing the results

it can be shown that the chosen s-box is weaker than AES s-box against linear cryptanalysis.

 Also a new heuristic method is proposed incorporating the hill climbing method

which take into consideration the PAR values and it is found to be a good method to find new

Boolean functions with better cryptographic properties. Also the fact that “Suppose f has good

Nega Hadamard Transform then f ⊕ s2 should have good Walsh Hadamard Transform” is also

proved to be right. This heuristic method consist of the calculation related to the PAR values with

respect to the Walsh Hadamard Transform, the Nega Hadamard Transform and the calculation of

symmetric homogeneous Boolean function.

32

4.1 Future Work

 We can further extend this work by constructing a more generalized and fast system for

Transform calculation which can efficiently calculate various transforms for e.g. WHT, Nega

Hadamard Transform, HN transform, HIN transform etc. this system can further be used for

calculating non-linearity aspect with respect to these transforms so that linear approximation over

generalized set of integers can be done. This will help in looking at the linear cryptanalysis from

a different perspective as we will be able to approximate the S-boxes with generalized linear

approximations. Other aspects of creating Strong Boolean functions and s-boxes can also be

analyzed in future. Also the heuristic method proposed can be further improved to find better

Boolean functions with better cryptographic properties. The fact that “Suppose f has good Nega

Hadamard Transform then f ⊕ s2 should have good Walsh Hadamard Transform” can also be used

in a number of ideas since it proved to be correct.

33

REFERENCES

[1] Burnett, L. D.: Heuristic Optimization of Boolean Functions and Substitution Boxes for

Cryptography. PhD thesis, Queensland University of Technology (2005).

[2] Yngve Ådlandsvik : Generalized Bent and/or Negabent Constructions. thesis (2012).

[3] B. J. Fino and V. R. Algazi, "Unified matrix treatment of the fast Walsh Hadamard transform,"

IEEE Trans. Compute., vol. C-25, pp. 1142-1146, Nov. 1976.

[4] Hussain, I., Shah, T., Gondal, M.A., Khan, M., Khan, W.A.: Construction of new S-box using

a linear fractional transformation. World Appl. Sci. J. 14(12), 1779–1785 (2011).

[5] S. Mister and C. Adams, "Practical S-box design", Workshop Record Selected Areas

Cryptography (SAC',96), pp.61 -76 1996.

[6] M. G. Parker: Generalized S-Box Nonlinearity NESSIE Public Document, 2003.

[7] S. Gangopadhyay, E. Pasalic, and P. Stˇanicˇa, “A note on generalized bent criteria for Boolean

functions,” IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 3233–3236, May 2013.

 [8] M.Matsui, “Linear cryptanalysis method for DES Cipher,” Advances in Cryptology-

EUROCRYPT ’93, LNCS 765, pp.386-397 , 1994.

[9] F.J. Macwilliams and N.J. Sloane, Theory of Error-Correcting Codes,North Holland,

Amsterdam, 1978.

[10] T. W. Cusick and P. Stǎnicǎ, Cryptographic Boolean Functions and Applications, Academic

Press, San Diego, CA, 2009.

[11] W. Millan, A. Clark, and E. Dawson. Smart Hill Climbing Finds Better Boolean Functions.

In Workshop on Selected Areas in Cryptology 1997, Workshop Record, pages 50-63, 1997.

34

[12] Millan,W., Clark, A. and Dawson, E., "Boolean Function Design Using Hill Climbing

Methods," in 4th Australian Conference on Information Security and Privacy (Schneier, B. ed),

LNCS, 1587, pp. 1-11, Springer-Verlag, April 1999.

[13] Ross Anderson, Eli Biham and Lars Knudsen: Serpent: A Proposal for the Advanced

Encryption Standard.

35

APPENDIX A. THE S-BOXES USED IN THE THESIS WORK:

1. DES S-BOXES IN DECIMAL FORM

 Table A.1: S1 S-Box of DES

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

 Table A.2: S2 S-Box of DES

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

 Table A.3: S3 S-Box of DES

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

 Table A.4: S4 S-Box of DES

7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

36

 Table A.5: S5 S-Box of DES

2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

 Table A.6: S6 S-Box of DES

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

 Table A.7: S7 S-box of DES

4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

 Table A.8: S8 S-Box of DES

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

37

2. SERPENT S-BOXES IN DECIMAL FORM

 Table A.9: Serpent S-boxes in decimal form

S0 3 8 15 1 10 6 5 11 14 13 4 2 7 0 9 12

S1 15 12 2 7 9 0 5 10 1 11 14 8 6 13 3 4

S2 8 6 7 9 3 12 10 15 13 1 14 4 0 11 5 2

S3 0 15 11 8 12 9 6 3 13 1 2 4 10 7 5 14

S4 1 15 8 3 12 0 11 6 2 5 4 10 9 14 7 13

S5 15 5 2 11 4 10 9 12 0 3 14 8 13 6 7 1

S6 7 2 12 5 8 4 6 11 14 9 1 15 13 3 10 0

S7 1 13 15 0 14 8 2 11 7 4 12 10 9 3 5 6

3. AES S-BOX IN HEXADECIMAL FORM

 Table A.10: AES S-box in Hexadecimal form

63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76

CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0

B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15

04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75

09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84

53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF

D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8

51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73

60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB

38

E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79

E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08

BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A

70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E

E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF

8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

