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ABSTRACT 

Sample Preparation is the most necessary step in biochemical applications. Various 

biochemical reactants are mixed together to produce mixture with target concentration. 

Many algorithms have been proposed for reactant minimization and to reduce 

tranportation time during sample preparation on DMFBs in the recent years. In recent 

years, it have been seen that there is a fault in mixture hardware on DMFBs. Due to fault 

on mixture, droplets are not mixed homogeneously during sample preparation on 

DMFBs. Due to non-homogeneous mixing different part of mixed droplet may contain 

different concentration of reactants. There are various algorithm developed for sample 

preparation of biochemical assay but none of them are aiming reliability purpose due to 

hardware fault. We implemented new technique Monte Carlo Simulation aiming 

reliability during sample preparation by using different existing algorithm on DMFBs . 

We are using Monte Carlo Simulation in Min-Mix[1], RMA[8] and MTCS[2] algorithm 

for sample preparation if there is an inhomogeneous mixing on hardware mixture. It uses 

mixing tree constructed by different algorithm and propagate error on each mixing node 

then calculate actual concentration due to error. We observed that MTCS gives better 

performance than Min-Mix and RMA because it uses common sub-tree, which creates a 

re-convergent fan out in the tree, due to which it reduces error. Furthermore, Monte Carlo 

Simulation technique can be implemented to other single target sample preparation as 

well as multi target sample preparation. So this technique is very useful to know which 

particular algorithm is more reliable for a specific ratio if there is an inhomogeneous 

mixing in the hardware mixture on DMFBs. 
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1. INTRODUCTION  

1.1.  Background 

DIGITAL microfluidic biochip (DMFB) is the technology used to assemble droplet based 

operations on biochips [1]. It makes use of a two dimensional array, which is microfluidic, apart 

from that, it uses reservoirs, dispensing ports and detectors. Figure 1(a) explains a microfluidic 

array, which is a made of group of cells. Which are made of two parallel plates and electrodes. In 

this method according to the electro-wetting principle on dielectric, an electrode is activated to 

move a droplet to the neighboring electrode. The process is described in figure 1(b) and 1(c). In 

some recent experiments DMFB has been used. Some such experiments are immunoassay, 

protein crystallization and DNA sequencing. Sample preparation, which is a front end operation 

of this method plays a crucial role in biochemical engineering and laboratories [4,5]. As 

compared to the conventional laboratories, which needs manual intervention, DMFBs use 

droplets in nanoliter and picoliter of volume, which provides higher sensitivity and less errors. In 

biochemical assays and experiments, the automation and efficiency of sample preparation causes 

impact on efficiency and accuracy of the experiment. For example hundreds of solutions need to 

be prepared for experiments like DNA sequencing and protein crystallization [6]. 

 

 

1.2.  Sample preparation 

Sample preparation also plays a crucial role in diagnostics. Various biochemical reagent are 

mixed together to produce mixture with target concentration. Since cost of reagent play major 

role in biological assay, their wastage should be reduced whenever possible. In recent years, lab-

on-a-chip (LOC) becomes most interesting research topic in biochemical application. An LOC 

perform various applications in a small chip with many advantage like reactant minimization, 

portability, fast analysis, accuracy. Various algorithms developed for sample preparation with 

following advantage. Various mixing algorithm like Min-Mix, RMA, MTCS, CODOS are 

implemented to minimize the wastage of reactants as well as to minimize transportation and 

scheduling time. 
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Figure 1 (a) Schematic of a DMFB. (b) Top view of the 2-D microfluidic array. (c) Cross-sectional view of the 2-D 

microfluidic array [7]. 

 

1.3. Problem Statement 

Sample preparation is a basic step for all biochemical reactions. Many algorithms have been 

proposed for reactant minimization and to reduce transportation time during sample preparation 

on DMFBs in the recent years. In recent years, it have been seen that there is a fault in mixture 

hardware on DMFBs. Due to fault on mixture, droplets are not mixed homogeneously during 

sample preparation on DMFBs. Due to non-homogeneous mixing different part of mixed droplet 

may contain different concentration of reactants. So after splitting both part of mixed droplets 

may contain different concentration of reactants. There are various algorithm developed for 

sample preparation of biochemical assay but none of them are aiming reliability purpose. Now 

main objective is that which algorithm is more reliable whenever fault on the hardware mixture. 

There are two types fault may occur in the mixture: a) Due to non-homogeneous mixing i.e. 

different part of mixed droplet may contain different concentration of reactants but equal 

volume. b) Due to unbalanced splitting i.e. different parts of mixed droplet having same 

concentration of reactants but unequal volume. In the ideal condition, two unit volume reactants 

R1 and R2 are mixed together, if there is a homogeneous mixing and balanced splitting then the 
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concentration of R1 and R2 in the both part of mixture droplet will be (1:1)/2. But if there is non-

homogeneous mixing on the mixture with error e=0.1, then the concentration of R1 and R2 in 

different part of mixed droplet will be (1.1: 0.9)/2 and (0.9: 1.1)/2 . Here both part of droplet 

having same volume but different concentration of reagents. But if there is a homogeneous 

mixing and unbalanced splitting then the concentration of R1 and R2 will be (1.1: 1.1)/2 and 

(0.9: 0.9)/2. Here both part having same concentration but different volume. We implemented 

new technique Monte Carlo Simulation aiming reliability during sample preparation by using 

different existing algorithm on DMFBs . We are using Monte Carlo Simulation in Min-Mix, 

RMA and MTCS algorithm for sample preparation if there is an inhomogeneous mixing on 

hardware mixture. It uses mixing tree constructed by different algorithm and propagate error on 

each mixing node then calculate actual concentration due to error. This technique used for 

reliability analysis of different sample preparation algorithm for any specific ratio if there is an 

inhomogeneous mixing in the hardware mixture on DMFBs. 
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2.  LITERATURE SURVEY 

2.1. Related Work and Prior Paper Contributions 

 A number of methods have been published recently for sample preparation on DMFBs [1]–[3]. 

Every algorithm is developed for reagent saving but none of these algorithm is developed for 

error analysis. Since accuracy and reliability in the sample preparation also plays a major role in 

various fields. 

2.2.  Dilution and Mixing Using DMFBs 

Interpolation dilution and exponential dilution are the two commonly used dilution methods in 

laboratory protocols. Interpolation dilution is the key mixing step of sample preparation. One 

unit volume droplets from each of the concentrations (C1 and C2) is taken to mix and form a 

mixture of two unit volume. This is done in each interpolation dilution step and then this mixture 

is spitted again to form two droplets of one unit volume each of concentration (C1+C2)/2. The 

process is explained in figure 2(a). One unit volume neutral buffer solution is mixed with one 

unit volume of pure reagent R1of 100% concentration, in each exponential dilution step. In this 

way after each step we get two unit volumes of half the concentration that we had in previous 

step. After n steps the concentration of the mixture will remain 1/(2)
n
, if the initial concentration 

is 100 %. This process is explained in figure 2(b). 
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Figure 2 Illustration of two types of dilution methods. (a) Interpolation dilution. (b) Exponential dilution[7] 

 

If two reagents are mixed together then it called dilution but mixing is the procedure if two or 

more reagents are mixed together. Dilution is the special case of mixing process of sample 

preparation. We included four mixing algorithms Min-Mix [1], RMA[8], MTCS [2] and 

CoDOS[3] here . Min-Mix [1] uses d-bit binary fractions for a concentration factors to construct 

mixing tree of height d after level- wise pairing of nodes. Suppose, we have N reagents to mixed 

with target concentration a1:a2:a3:.....:aN where L(Ratio Sum)=2
d
 and d is the precision level. In 

this method, It creates d-bits binary fraction for all N ratios due to this it uses N d bit matrix. It 
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uses bit scaning method from right to left column wise and any column represents the node of 

same level. Suppose, two pair nodes of level K are mixed together and the resultant mixture node 

will be the level of (K+1). For example target ratio 2:3:5:7:11:13:87 of seven reactants are R1, 

R2, R3, R4, R5, R6, and R7. The seven bit binary fractions are 0.00000102, 0.00000112, 

0.00001012, 0.00001112, 0.00010112, 0.00011012, and 0.10101112 respectively. Figure 3 shows 

mixing tree determined by Min-Mix[1]. 

 

Figure 3 Min-Mix Mixing Tree for target concentration 2:3:5:7:11:13:87 

 

Another mixing algorithm Ratioed Mixing Algorithm RMA[8], this algorithm is implemented 

for the purpose to minimize transportation cost. The reservoirs are used for supplying different 

reactants and wash fluids or waste collector are located at the boundary of a biochip.  As shown 

in Fig. 5, seven reservoirs R1,......,R7 are located at the peripheral of the electrodes array for the 

purpose of loading the reagents and two waste collector reservoirs for collecting mixed waste 

fluids from the chip during sample preparation. The arrow indicates some possible fluid 

transportation ways from and to the reservoirs. Suppose there are a reservoir for each type of 

fluid in the chip. Then, for the purpose of mapping mixing tree into a biochip, there are two tasks 

to be performed: (i) one to one mapping of different type of components to the reservoirs. (ii) 

Many to one mapping of nonleaf nodes to the chip mixers. If the number of existing mixture 

modules is less than the number of intermediate mixing droplets then storage units are required 
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on chip for storing intermediate droplets. In Fig. 5, there are cross-contaminated marked by small 

dots. Three electrodes are cross-contaminated during execution of the five mixing steps in the 

subtree of the given tree. For this mixing tree, the mixer assignment shown in Fig. 4 and the 

reservoir allocation shown in Fig. 5(b) can be obtained using a greedy method. By using greedy 

method, the number of cross-contaminated electrodes decreases due to this washing time also 

reduces. Mixture assignment and reservoir allocation depends upon the characteristics of mixing 

tree. If two set having less number of intersection of reagents then it will be favorable for a 

specific reactants to be mixed. This algorithm provides a mixing tree having most suited 

placement and reservoir allocation on the biochip. Hence in this algorithm, the expression of a 

target concentration can be decomposed in terms of subtree having same set of reagents and two 

subtrees having less number of intersection of reactants. Each fractional decomposition of the 

expression for a target ratio can be represented by a mixing tree. 

Another mixing algorithm, MTCS [2] determines a common sub-tree as the same sub-tree with 

same labels at the leaf-nodes having two occurrences in a mixing tree. Figure 6 shows mixing 

tree produced by MTCS. It may be noted that, if there is a common sub-tree in the mixing tree, 

then the extra intermediate droplet (denoted by the root of that sub-tree) produced at a lower 

level can be used at a higher level instead of producing the same intermediate droplet again by 

performing the same set of mix-split steps. It explains the reuse of a waste droplet corresponding 

to the root of a common sub-tree at a lower level as the leaf node at a higher level. To achieve 

this concentration MTCS [2] is more efficient than Min-Mix [1] because Min-Mix waste 17 

droplets but MTCS waste only 11 droplets. All intermediate nodes indicate waste droplet in Min-

Mix but all unshared intermediate node in MTCS indicate waste droplet. 

Another mixing algorithm, CoDOS [3] is also similar to MTCS [2]. It also determines a common 

sub-tree to detect a rectangle in from a recipe matrix. An N d recipe matrix M specifies a target 

concentration T where N is a number of reactants type and d is the precision level. For example 

the mixing tree for target ratio 2: 3: 5: 7: 11: 13: 87 using this method is shown in Figure 7.  
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Figure 4 Mixing tree for the example ratio 2 : 3 : 5 : 7 : 11 : 13 : 87 obtained by algorithm RMA[8]. 
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Figure 5 Droplets routes for the mixing steps of the subtree rooted at t13 and t14 in RMA[8]. 
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Figure 6 Mixing tree for the example ratio 2 : 3 : 5 : 7 : 11 : 13 : 87 obtained by algorithm MTCS[2]. 

 

 

Figure 7 Mixing tree for the example ratio 2 : 3 : 5 : 7 : 11 : 13 : 87 obtained by algorithm CoDOS[3] 
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3. ANALYTICAL MODEL FOR ERROR ANALYSIS  

Analytical model is a mathematical modeling technique. We are doing error analysis on sample 

preparation due to fault in the hardware mixture and we know that error in the real scenario 

comes in normally distributed manner. First of all we have to construct a mixing tree using given 

algorithm then we are taking error in terms of Ei=N(0, σi
2
), where „i‟ iterates number of mixture 

nodes. Mean of error in the node is 0 and standard deviation is σi for i
th

 node. Suppose, four 

reagents are mixed together with target concentration 3: 3: 4: 6 shown in Figure 8. Two reagent 

R1 (r1, 0) and R2(r2, 0)  mixed together at mixture node M(1,2) with error E1= N(0,σ1
2
) then, mean 

and standard deviation of node  M(1,2)  will be as follows. 

M(1,2)=r1+r2+E1=N(r1+r2, σ1
2
) 

Now after splitting it becomes two node M1, M2. 

M1= M2 = M(1,2)/2=N((r1+r2)/2, σ1
2
/4

  
) 

M((1,2),4)  =R4+M1+E2= N(r4+M2, σ1
2
/4

  
+σ2

2
) 

M3= M((1,2),4) /2= N(r1+r2+2r4/4, σ1
2
/16

  
+ σ2

2
/4

    
) 

Similarly T= N(3r1+3r2+4r3 +6r4/16, σ1
2
/256

  
+ σ2

2
/64+ σ3

2
/16+ σ4

2
/4

  
) 

Suppose, there are n reagent mixed together with target concentration a1: a2: a3:......: an having n 

bit precision and construct mixing tree with m mixture nodes using given algorithm. Now we are 

taking error in terms of Ei=N(0, σi
2
) for all mixture nodes from 1 -m. Then standard deviation of 

error will be in the function of F( σ1
2
, σ2

2
,σ3

2 
,..., σm

2
 ). 

F( σ1
2
, σ2

2
,σ3

2 
,..., σm

2
 )=k1* σ1

2
 +k2*σ2

2
+k3*σ3

2 
+.....+km*σm

2
 . 

Where k1, k2, k3,...., km are constant and it is calculated by the above probabilistic method.  
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Figure 8  Mixing Tree of sample preparation for the ratio 3:3:4:6 
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4.  MONTE CARLO SIMULATION  

Monte Carlo simulation is a mathematical model which allows us to register for risk in 

mathematical analysis and decision making. Risk analysis is a decision making with ambiguity, 

uncertainty and variability. In this technique we see all the possible outcomes and determine the 

impact of risk. This technique is used in various professional field like research and 

development, engineering, insurance, energy, transportation, project management and the 

environment.  It makes the decision with the range of possible consequences. It uses risk analysis 

by building model of possible outcomes. It calculates result each time using a different set of 

random variable from random probability distribution function. Probability distribution is a more 

realistic way for explaining uncertainties in variables. It is a practical model error analysis so that 

can  also be used in mixing tree for sample preparation. We are using monte carlo simulation 

here to analyzing error in the target concentration and to determine which algorithm is more  

reliable if there is fault in mixture hardware. In the sample preparation, different algorithm used 

to determine target concentration of reagents. Algorithms use different step to get target 

concentration and different algorithms may use different steps. These stepwise flow constitute 

mixing tree for target concentration. In the mixing tree, all leaf node represent pure reagents, 

nonleaf nodes represent mixture node and root node represents target mixture node. So we know 

that error may occur in the mixture node during mixing of two droplets. It may be possible that 

there is an fault in hardware mixture. Due to that fault it may occur non-homogeneous mixing 

during mixing of two droplets in mixture. In the non-homogeneous mixing two different part of 

mixture droplet contains different concentration of reagents. In the mixing node, all nonleaf node 

represent mixture node so we have to propagate error all nonleaf nodes for analysing error in the 

target ratio. We know that monte carlo simulation is a realistic model so we have to propagate 

error in the realistic manner. We are using random probability distribution to distribute error in 

the mixing node. Error distribution in the mixing node is taken by random number generator 

using normal distribution where mean of the error is 0 and standard deviation 0.055. We are 

taking input as N,T and M where N =Numbers of reagent, T=Target concentration and M= 

Method(Algorithm) type. Hardware fault indicates, there is a non-homogeneous mixing in the 

mixture hence due to nonhomogeneous mixing different part of droplet may contain different 

concentration of reagents. After splitting it becomes two droplet with different concentration of 

reagents then we keep one part of droplet for next step of mixing and second part of droplet may 
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be waste or use in future as algorithms requirements. In the Min-Mix algorithm second part of 

mixed droplet is always waste but in the MTCS or CoDOS second part of mixed droplet may be 

used as algorithms requirement.  

 we are using a random number generator using normal distribution for distributing error on the 

mixing nodes. We are taking input as a mixing tree produced by different algorithm (Min-Mix, 

MTCS and RMA) and applying Monte Carlo Simulation at each mixing tree. Error indicates that 

there is a non-homogeneous mixing at the hardware mixture and after splitting different part of 

mixture droplet contains different concentration of reagents. Random error using random 

probability distribution generates maximum 13% error at any mixture node. Suppose, there are 

two reagents RA and RB mixed together with error 0.1 at mixture node. In homogeneous mixing 

and balanced splitting, the concentration of RA and RB should be (1: 1)/2 in both mixture 

droplets. But due to non-homogeneous mixing and balanced splitting, the concentration of RA 

and RB will be (1.1: 0.9)/2 and (0.9: 1.1)/2 respectively. In the Monte Carlo Simulation, we 

taking error E with mean μ=0 and standard deviation σi =0.055 for ith node of the mixing tree. 

Suppose, there is sample preparation having n reagent with target concentration a1:a2:a3…..:an 

with n-bit precision but due to errors on the hardware mixture ,we got mixture ratio with 

concentration a1+e1, a2+e2,a3+e3,…., an+en , where 0.13>=ei>=-0.13 and Σ ai=2
n
 for i=1,2,3…,n. 

After getting mixture with error we calculate Root Mean Square(RMS) value of errors and stored 

it in the file. RMS of error value is described as arms=√
 

 
∑    where xi=(ei)/2

n
  and RMS mean 

value is described as armsmean=√
 

 
∑    where xi=(ai)/2

n
 . It is repeated 100,000 times and stored 

in a file, then we plot graph between all RMS value of errors and graphs have been ploted in 

normal distribution that also shows our experiment is more realistic. Now we calculate mean and 

standard deviation of arms. . After caWe applied this techniques on all ratio of ratio sum 16 and 32 

respectively. Ratio sum 16, 32 contains 198, 6058 ratios. Better algorithm gives less standard 

deviation. Some algorithm uses sharing intermediate node that makes re-convergent fan-out. Due 

to re-convergent fan-out, the error is minimized because both complement ratios are mixed 

together at some point.  That algorithm will be more reliable which is having less standard 

deviation of errors.  We are implementing monte carlo simulation in MinMix, RMA, MTCS. 

There can be occur different types of other hardware fault like homogeneous mixing of droplets 
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on the mixture but unbalanced splitting. In this problem, the concentration of reagents must be 

same in the both part of mixed droplets but volume of both part may be differnt. We are also 

implemented Monte Carlo Simulation during sample preparation on DMFBs due to that problem. 

After simulation result, we observe that volume of target ratio droplet may not be V unit droplet 

volume, it may be more or less volume. But in the previous hardware probem volume of target 

droplet is always V unit volume because there is a balanced splitting. Following  flowchart 

explained all stepwise process of Monte Carlo Simulation. 
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Figure 9 Flow Chart for Monte Carlo Simulation 
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5.  EXPERIMENTS AND RESULTS 

We are implemented Monte Carlo Simulation in Min-Mix, RMA and MTCS algorithm for Ratio 

Sum (L=8, 16, 32, 64, 128).  

 

Method: Min-Mix, RMA,MTCS (Nonhomogeneous mixing for L=8) 

Method R1(μ, σ) R2(μ, σ) R3(μ, σ)     RMS(μ, σ) 

Min-Mix 2.000310, 

0.155917 

2.999700, 

0.145232 

2.999989, 

0.145640 

0.016498, 

0.008609 

MTCS 2.000318, 

0.154978 

2.999924, 

0.095126 

2.999758, 

0.095299 

0.012666, 

0.007735 

RMA 2.000298, 

0.150438 

2.999612, 

0.189434 

2.999452, 

0.180056 

0.017611, 

0.010070 

Table 1 Mean and standard deviation calculated for each reactant as well as RMS of error after simulation in Min-

Mix ,RMA, MTCS Algorithm (L=8, ratio 2:3:3). 

 

Method: Min-Mix, RMA, MTCS (Nonhomogeneous mixing for L=16) 

Method R1(μ, σ) R2(μ, σ) R3(μ, σ) R4(μ, σ) R5(μ, σ) RMS(μ, σ) 

Min-Mix 2.999845, 

0.190788 

3.000131, 

0.190328 

2.999657, 

0.190297 

5.000248, 

0.330593 

2.000119, 

0.190685 

0.012959, 

0.005417 

MTCS 3.000943, 

0.219331 

2.999071, 

0.155767 

2.999376, 

0.155568 

5.001135, 

0.290879 

1.999474, 

0.190555 

0.011936, 

0.005225 

RMA 2.999943, 

0.211674 

2.999874, 

0.198374 

3.000468, 

0.223892 

4.999463, 

0.339053 

2.000437, 

0.171176 

0.014404, 

0.006159 

Table 2 Mean and standard deviation calculated for each reactant as well as RMS after simulation in Min-Mix , RMA, MTCS 

Algorithm (L=16, ratio 3:3:3:5:2). 
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Method: Min-Mix, MTCS, RMA (Nonhomogeneous mixing for L=32) 

Method R1(μ,σ) R2(μ,σ) R3(μ,σ) R4(μ,σ) R5(μ,σ) R6(μ,σ) R7(μ,σ) RMS(μ,σ) 

Min-Mix 6.99888 

0.40122 

7.00154 

0.36842 

5.00042 

0.39625 

4.99839 

0.36901 

2.99974 

0.25269 

3.00090 

0.25208 

2.00014 

0.22060 

0.009681 

0.003247 

MTCS 6.99724 

0.38433 

7.00212 

0.38523 

5.00073 

0.33501 

5.00034 

0.33321 

2.99970 

0.22705 

3.00063 

0.22622 

1.99914 

0.21998 

0.009132 

0.003210 

RMA 7.00013 

0.447593 

6.99695 

0.431486 

4.99983 

0.453219 

5.00015 

0.383743 

3.00067 

0.270935 

2.99970 

0.264679 

1.99987 

0.248977 

0.012081 

0.004547 

Table 3 Mean and standard deviation calculated for each reactant as well as RMS after simulation in Min-Mix , MTCS, RMA 

Algorithm (L=32, ratio 7:7:5:5:3:3:2). 

 

Method: Min-Mix, MTCS, RMA (Nonhomogeneous mixing for L=64) 

Method R1(μ, σ) R2(μ, σ) R3(μ, σ) R4(μ, σ) R5(μ, σ) R6(μ, σ) RMS(μ,σ) 

Min-Mix 

 

5.000790, 

0.433958 

7.001002, 

0.485518 

8.999648, 

0.742487 

11.001299, 

0.776947 

12.998122, 

0.758489 

18.999138, 

1.196428 

0.011189, 

0.004412 

MTCS 4.999975, 

0.487374 

6.999335, 

0.460596 

9.001448, 

0.742621 

11.002478, 

0.718102 

12.995661, 

0.943680 

19.001103, 

1.179852 

0.011681, 

0.004377 

RMA 4.999893, 

0.511142 

7.000154, 

0.499877 

9.005233, 

0.760013 

10.998462, 

0.769822 

13.002448, 

0.961182 

18.998361, 

1.200085 

0.013162, 

0.005268 

Table 4 Mean and standard deviation calculated for each reactant as well as RMS after simulation in Min-Mix , MTCS, RMA  

Algorithm (L=64, ratio 5:7:9:11:13:19). 
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Method: Min-Mix, MTCS, RMA (Nonhomogeneous mixing for L=128) 

Method R1(μ, σ) R2(μ, σ) R3(μ, σ) R4(μ, σ) R5(μ, σ) R6(μ, σ) R7(μ, σ) RMS(μ,σ) 

Min-Mix 1.999086, 

0.268791 

2.998827, 

0.344249 

5.000918, 

0.514278 

6.998618, 

0.601059 

10.996159, 

1.018521 

12.996135, 

1.045418 

87.010256, 

2.565068 

0.007884, 

0.004550 

MTCS 1.999987, 

0.268479 

2.999141, 

0.305800 

5.002882, 

0.488082 

7.002781, 

0.617986 

10.997412, 

0.982954 

12.999752, 

1.099092 

86.998046, 

2.478078 

0.007800, 

0.004520 

RMA 2.000188, 

0.270097 

3.000683, 

0.355290 

4.998832, 

0.500097 

7.003947, 

0.622191 

10.979866, 

1.022776 

13.004892, 

1.110983 

86.998001, 

2.572249 

0.008623, 

0.004708 

Table 5 Mean and standard deviation calculated for each reactant as well as RMS after simulation in Min-Mix, MTCS, RMA 

Algorithm (L=128,ratio 2:3:5:7:11:13:87). 

 

 

Figure 10 Standard deviation plotted for all 198 ratio of ratio sum 16 with these 3 method MinMix[1], MTCS[2], RMA[8]. 



Page | 20  

 

 

Figure 11 Standard deviation plotted for all 6058 ratio of ratio sum 32 with these 3   method MinMix[1], MTCS[2], RMA[8]. 

 

Figure 12 RMS value plotted for Min-Mix (green) and MTCS (red) after Monte Carlo Simulation 
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6.   CONCLUSION 

Sample preparation is a basic step for all biochemical reactions. Many algorithms have been 

proposed for reactant minimization during sample preparation on DMFBs in the recent years. 

Nevertheless, some of them can control the cost and reactant minimization problem but none of 

them thinking about reliability problem due to hardware fault. We implemented new technique 

Monte Carlo Simulation aiming reliability during sample preparation by using different existing 

algorithm on DMFBs. We are using Monte Carlo Simulation in Min-Mix[1], RMA[8] and 

MTCS[2] algorithm for sample preparation if there is an inhomogeneous mixing on hardware 

mixture. It uses mixing tree constructed by different algorithm and propagate error on each 

mixing node then calculate actual concentration due to error. We observed that MTCS gives 

better performance than Min-Mix and RMA because it uses common sub-tree, which creates a 

re-convergent fan out in the tree, due to which it reduces error. So we can say that MTCS is more 

reliable than Min-Mix and RMA. Furthermore, Monte Carlo Simulation technique can be 

implemented to other single target sample preparation as well as multi target sample preparation. 

So this technique is very useful to know which particular algorithm is more reliable for a specific 

ratio if there is an inhomogeneous mixing in the hardware mixture on DMFBs. 
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