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ABSTRACT

B iomedical images are often complex, and contain several regions that are anno-
tated using arrows. Annotated arrow detection is a critical precursor to region-of-
interest (ROI) labelling, which is useful in content-based image retrieval (CBIR).

Different image layers are first segmented via fuzzy binarization. Candidate regions
are then checked whether they are arrows by using BLSTM classifier, where Npen++
features are used. In case of low confidence score (i.e., BLSTM classifier score), we take
convexity defect-based arrowhead detection technique into account. The detected arrow
are then used to segment the region-of-interest (ROI). Our test results on biomedical
images from imageCLEF 2010 collection outperforms the existing state-of-the-art arrow
detection techniques. Our region segmentation techniques is preliminary approach to
segment regions from detected arrows.
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1
INTRODUCTION

In today’s age, volume of images with diverse content are generated every day. It

is important to store them and retrieve them efficiently for different application.

Visual Contents and Images are very often used for searching images from large

image databases. Content Based Image Retrieval (CBIR) can be used in various pro-

fessional area like architecture, geography, artwork etc. However, it has got a strong

application in biomedical imaging. Medical concepts and special medical cases are of-

ten illustrated by images. Medical images can play very important role in diagnosis

of medical conditions and clinical decision support system (CDS). It will also help in

implementing best practices and acquiring technical skill in area of medicines.

Many general purpose image retrieval system have developed for this purpose. They

are primarily classified as:

1. Text based Image Retrieval - Keywords are used in order to search for inter-

esting images in case of text based image retrieval system. Text information is

extracted from the journal article using language processing tool. Journal’s title

and abstract can provide some details about the figure present in the journal.

More detail information can be extracted from the figure’s caption and discussion

where the figure is mentioned in the journal text. Text based retrieval can provide

good result but the relevance of the retrieved images and article are often not

satisfactory. Hence, there was a need for retrieval based on query image content.

2. Content Based Image Retrieval - With new technologies, the focus have move to

1



CHAPTER 1. INTRODUCTION

the use of low-level features instead of keywords. In content based image retrieval

(CBIR), we analyse content of the image to check for the similar image in database.

The focus is to find the images which are most similar to the query image instead

of trying to finding the image through keywords. This is due to the fact that the

keywords in caption and discussion may not be summing the medical concept

associated with the image. Besides, the processing of the article to find the relevant

keyword for image do not always provide us with optimal result.

Biomedical journal article retrieval is primarily based on text based retrieval with no

significant importance given to the use images in the articles until recently due to the

drawback of text based retrieval. There have been quite a progress in this area in past

year. Still, there are unsolved problem in this area which continue to attract researcher

from various domain.

Authors frequently use annotation and pointers (like arrows, special symbols etc.)

superimposed on figures and images to highlight the Region of Interest (ROI). In this

case, the ROI is more important than whole of the image and provide us with more

relevant information. These pointers are then referenced in the article text and figure

caption to portray the medical concept which it describes. Thus, in CBIR, a lot of research

are being focused on finding out these pointers and annotation in the images, followed

by segmenting of the ROI to which these annotation points and then mapping these ROI

to certain medical concepts. During retrieval, these ROIs can be matched with the ROIs

in the query image and the retrieval can be thus performed based on the percentage of

match.

1.1 Annotation and Pointers

Medical images are generally complex by nature and mostly comprises of several region.

Among these region, only few region are relevant to the condition discussed in article

text or caption. As said earlier, authors frequently use annotation and pointers (like

arrows, special symbols etc.) superimposed on figures and images to highlight the Region

of Interest (ROI). These pointers are then referenced in the article text and figure caption

highlighting some medical concepts. Research are being done to develop methods for

recognizing such pointers on medical images and illustrations. Identifying these pointer

can aid in extracting the relevant region in the image that are likely to be more relevant

to the article text than the whole image. Once, the relevant region is identified, these

region can be annotated with biomedical concept which they signifies and can be mapped

2



CHAPTER 1. INTRODUCTION

Figure 1.1: NLM’s open-i image retrieval search engine (url: https://openi.nlm.nih.gov),
the illustration highlights the importance of using arrow in biomedical images (i.e. its
location pointing ROI and relationship between the texts and ROI).

(a) (b) (c)

Figure 1.2: Examples showing different types of arrows pointing specific image regions.
These are taken from published biomedical articles.

into the image database. Therefore, detecting these pointers and annotation (which

primarily consist of arrows) can help us to identify the meaningful region and improve

CBIR performance [4, 5].

3
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2
RELATED WORKS

In CBIR, few techniques are reported in literature for detection of arrows overlaid in

biomedical images. These techniques depend upon segmenting text like ad symbol

like objects, sparse pixel vectorization and local or global thresholding.

In [6], Dori et al, proposed a technique to detect arrows based on sparse pixel vec-

torization [7]. It relies on the cross sectional runs concept (or width runs concept) of

black image regions (assuming that the arrows are in black). An interesting application

is utilizes by the technique but, it is restricted to machine printed line images. Other

techniques used features such as eccentricity, convex area and solidity [8]. These features

can define regular arrows (i.e., straight arrows showing left, right, top and bottom).

Cheng et al used text-like and arrow-like objects separation, assuming that arrows are

overlaid in either white or black color with respect to the background [9]. From the

binary image, arrow-like object separation employs a fixed sized mask (after removing

the small objects and noise as in [8]), which are then used for feature computation

such as axis ratio, minor and major axis lengths, Euler number, area, and solidity. A

recent study uses a boundary detection and pointer region to handle arrows which are

distorted [10], which is followed by edge detection techniques and fixed thresholds as

reported in [1, 11]. Overlapping region are computed using these candidates and are

then binarized to extract the expected pointers’s boundary. Fundamentally, edge-based

arrow detection techniques are limited by the weak-edge problem [8–10]. Besides, the

techniques rely on hard thresholding (either global or local) cannot be applied in general.

This means that a hard threshold cue often weakens the decision. For edge detection in

4



CHAPTER 2. RELATED WORKS

binary or grayscale images, most state-of-the-art methods use classical algorithms like

Roberts, Sobel and Canny edge detection. Template-based methods are limited since they

require new templates to train new images. Also, it may be necessary to re-evaluate the

threshold values when new images are used. Edge-based techniques are still considered

since sampling points can be remarkably compact compared to solid regions, especially

when broken boundaries are recoverable [12]. In biomedical images, one of the major

issues for a broken boundary is non-homogeneous intensity distribution, where pointers

overlap with content.

Detection of arrow based on the arrow edge are limited by the weak edges. This is

discussed in [13], [14] and [10]. Good binarization techniques also tend to miss weak

edges. The primary reason being local or global hard thresholding. Most of the method

rely upon famous algorithm like Sobel, Robert and Canny edge detection. Template

based method also do not perform well as they require a new templates for each of the

new arrow images. Also, the threshold value needs to be re-evaluated whenever a new

template is added to the system.

Few of the State-of-art method to detect arrows are explained in this chapter.

2.1 MRF-HMM based pointer recognition

In [1], author proposed a Markov Random field followed by hidden Markov model based

arrow detection method.

2.1.1 Pointer Model

Pointer boundary was modeled as a random field consisting of a number of line segment.

Also, there exist some contextual dependency among line segment present in the arrow.

Instead of defining the pointer model based on all the line segment present in the pointer,

several boundary part found in the pointers and made up of three consecutive line

segments were identified and a unique labeled was created for each of them. Contextual

dependency between each boundary part were also established. Labeled boundary parts

and their contextual dependency was used to train the MRF model. Each boundary

part (segment) was denoted by 2-tuple feature vector formed by the angle measurement

between three lines.

Since, line segment were labeled based on it neighborhood, an unknown boundary

(labeling configuration) can never be identified directly by MRF model. Thus, it was

5



CHAPTER 2. RELATED WORKS

Figure 2.1: Angle Measurement used to create 2-tuple feature vector. [1]

needed to classify a labeling configuration into proper pointer class. A hidden Markov

model based classifier is used to classify these labeling configuration into proper classes.

2.1.2 Pointer Recognition Method

Edge detection algorithm was applied on the query image followed by polygon approxima-

tion to extract the line segment. Line segment in the segmented query image is labeled

by identifying the boundary parts present in the query images and the relationship of

the boundary parts with it neighboring segment through MRF model developed before.

For finding the boundary part in query image, a neighboring system was used. An or-

dered sequence of line segments from a boundary were obtained. Initially, two neighbor

segment i.e. segment of indices i-1 and i+1 were used. However, considering two direct

neighbor can cause some error in labeling as a noise segment can be present. This was

solved by considering two immediate neighbors i.e. for each of the segment, four pairs of

neighbor were possible, viz., (i-1, i+1), (i-1, i+2), (i-2, i+1), and (i-2, i+2). The Algorithm

uses a belief propagation function to determine the best set of label for pointer boundary

from the all combination of four possible boundary parts. Dynamic programming is used

to find the best labeling configuration which maximizes the Belief Propagation function

value.

Once the best labeling configuration for the query image is available, hidden Markov

model based classifier is used to classify a pointer boundary into three classes viz, Curved

Arrow, Straight Arrows and Arrowheads.

2.1.3 Evaluation

ImageCLEF08 data Set was used for evaluation. 82% of boundaries were correctly

labeled and classified. 18% failure were due to i) Incorrect labeling by MRF, ii) Unknown

boundary part, iii) Improper line segment due to weak edges.

6



CHAPTER 2. RELATED WORKS

Figure 2.2: 43 label set defined for pointers. A label is assigned to the solid line segment.
The dashed segment are the neighboring segment. [1]

2.2 Active Shape Model Based Pointer Recognizer

This was proposed in [2] as an improvement over MRF-HMM based pointer recognizer. It

proposed a new pointer segmentation algorithm and an ASM model overlaid on previous

MRF-HMM recognizer.

2.2.1 Pointer Segmentation

MRF-HMM based pointer recognizer was using the edge based segmentation. Edge

based segmentation has a major drawback. Due to smoothing effect of the edge detection

algorithm, small pointers tends to lose their tail information. Thus, correct label were

not identified by MRF model for this pointer leading to miss. A Canny edge detection

and region growing based segmentation algorithm was proposed. The algorithm has two

phases. In first phase known as histogram analysis phase, interior region of the pointer

is analyzed to get min and max of the intensity values. Also, a seed point is detected

inside the pointer boundary. In the second phase, region growing is used to segment out

the entire region of the target pointer.

In [10], an updated method for pointer segmentation has been proposed by the same

author in order to overcome the weak-edge problem. Figure 4.4 depict the proposed

7
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Figure 2.3: (a) Boundary Extraction by Canny Edge Detection, (b) Pointer boundary after
applying Region Growing. [2]

Figure 2.4: Proposed pointer segmentation method as in [2]

methods. It follows two different path, one to detect pointer boundary and other to detect

pointer body region. A concrete candidate is found out by merging the two results. From

this region, final threshold value for pointer segmentation is calculated.

2.2.2 Pointer Recognition

MRF based recognizer are not able to recognize pointers with some level of distortion even

though the pointers is well separated from the background. Thus, an ASM based recog-

nizer was developed to recognize pointers with some distortion. Unlike other approaches,

we need to consider the pointer recognition explicitly in case of ASM. A segmented

pointer is thus therefore rotated and mirrored several time and each of these rotated

pointers are matched with the model pointers. Similarity is measured by finding the

count of pixels with same intensity level from overlapped pointer regions, and dividing it

by area (width x height) of the segmented pointer image. Pointer are first recognized by

8
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Figure 2.5: Type of Pointers recognized by ASM. [2]

Figure 2.6: Example of ASM Recognition (Left: Input to ASM, Right: final fitting result
with overlaid fitted model). [2]

the MRF model and ASM recognizer is only used when MRF model doesn’t detect it as

pointer.

2.3 Arrow Detection through Discreet Arrow
Signature Matching

In [3], the author used geometric property of the arrow and introduced an arrow signature

from certain key points associated with arrow. Images are binarized using the fuzzy

binarization and segmented into different region. Signature is generated for each of

these region and is compared with the theoretical signature to a match. The method is

explained in detail below.

9
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Figure 2.7: Four different binarized images from fuzzy binarization. It is to be noted,
that in Sample 2, arrow 2 is not clearly visible at first two level but is clearly visible in
third level. [3]

2.3.1 Binarization

Arrow can be present at either low intensity or high intensity. Also, it can overlapped

or surrounded by texture area. Hence, fixed threshold based binarization tool will not

be able to extract this arrow perfectly. An adaptive binarization tool known as fuzzy

binarization is proposed. The fuzzy binarization is based on the fuzzy partitioning of

the 2D histogram considering local variations and gray level intensities. Through this

fuzzy binarization, four different threshold level are used and connected component are

extracted from each of this four binarized images.

2.3.2 Signature Computation

For each of the CC, we need to find the arrowhead point. Potential candidate can be

found out by four orthogonal scan. In each scan, we need to capture the first pixel in the

arrow. Four orthogonal scan will return four arrowhead candidate. One of them will be

the actual arrowhead. Once, we have the arrowhead point, set of lines passing through

this point is projected in all direction and the segment of this line which lies inside the

region is found out. The length of this line at different directions gives us the arrow

signature. This signature is then matched with the theoretical signature for similarities.

10
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Figure 2.8: (a) An arrow, (b) Signature of arrow as computed from point C (Arrowhead
point). [3]

2.3.3 Evaluation

Using signature matching, a precision value of 93% was achieved with a recall value of

86%. This method doesn’t work very well for curved arrows as the signature would be

different for different curved tails.

11
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3
ARROW DETECTION USING CONVEXITY DEFECT

APPROACH

As discussed in previous chapter, arrowhead detection is a critical precursor to

region-of-interest (ROI) labeling and image content analysis. In this chapter,

we proposed an arrowhead cropping technique for arrow detection. To detect

arrowheads, images are first binarized using fuzzy binarization technique to segment a

set of candidates based on connected component principle. To select arrow candidates,

we use convexity defect-based cropping, which is followed by template matching via

dynamic programming. The similarity score via dynamic time warping (DTW) confirms

the presence of arrows in the image. Our test on biomedical images from imageCLEF

2010 collection shows the interest of the technique.

3.1 Contribution outline

Our method can be summarized as shown in Fig. 4.1. It relies on a grayscale fuzzy

binarization process at different levels. Similar to previously reported work [3], candi-

dates are segmented based on connected component (CC) principle. These candidates

are filtered using hull convexity defect-based technique. This step helps prune artefacts

(or unwanted noisy connected components) and store arrowhead-like candidates. Next

we perform template matching using dynamic programming to confirm whether the

candidate is an arrowhead. In our assessment, An arrow is said to be detected if their

12
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Input image
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(convexity defect)
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(+ location)

Not Arrow
(reject)

(template matching via DTW)

Figure 3.1: Overall system workflow in block format. Block-wise explanation can be
found in Section 3.2

matching score exceeds an empirically set threshold.

Unlike the common state-of-the-art methods, our method uses four different levels of

fuzzy binarization. This ensures that overlaid arrow candidates are not missed. however,

it may result in repetitions. We note that the primary variation in an arrow appearance

is due to its tail (shape and size). Therefore, our method limits itself to just detecting

arrowheads.

Rest of the chapter is organized as follows. In Section 3.2, we explain our method

in detail, where it mainly includes binarization process (Section 3.2.1) and candidate

selection (Section 3.2.2). Results are reported in Section 4.3.

3.2 Method

3.2.1 Multilayer image segmentation

In medical images (see Fig. 1.2), arrow can appear ta both low intensity or high intensity

with respect to the background to increase their visibility. Additionally, arrow can be

blurred, overlapped or surrounded by artefact similar in intensity with the arrow. In

such situation, fixed threshold based typical binarization tools failed to segment the

arrow candidate. Hence, we proposed an adaptive binarization tool. It rely on the concept

of fuzzy partition of 2D histogram of image by considering the local variation and gray

level intensities [15]. Threshold is then automatically set through the computation of

2D Z-function criteria. It is based on the optimization of fuzzy entropy and employs two

13
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(a) Sample (b) Level 1 (c) Level 2

(d) Level 3 (e) Level 4

Figure 3.2: Fuzzy binarization (of Fig. 1.2 (c)): four different levels (level 1 to level 4),
where the arrows are circled in red. Arrows can appear both in white and black with
respect to the background color.

kernels: high level cuts and low level cuts. We also consider their inversion and thus

work on four different binarized levels as shown in fig. 3.2. Arrow candidate are circled in

red with respect to the background color in fig. 3.2. The main idea of using four different

levels of binarization is not to miss the overlaid arrows. Furthermore, since the arrows

are repeated in other levels of binarization, deformed and/or distorted arrows can be

discarded . Connected components (CCs) are then segmented as candidate regions. From

a pool of several candidates, we are required to select arrow-like candidates.

14
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Figure 3.3: Examples showing the changes in tail structure. Further, an absence of the
tail is also possible.

3.2.2 Candidate selection

Our candidate selection process is based on the characteristics of the arrowhead, which

can typically be represented by a triangle. Unlike the previously reported work [3], we

do not take tail information into account. One of the primary reasons is that it may vary

geometric signatures computed from extreme points of a triangle (i.e., triplet) because tail

structures tend to vary from time to time. Such a change will affect overall appearance

of the arrow (Fig. 3.3). After we detect arrowhead, we will take the corresponding tail

into account since both came from the same CC.

To detect an arrowhead, the following steps are carried out: 1) convexity defect-based

arrowhead candidate cropping; and 2) arrowhead candidate matching with the templates.

3.2.2.1 Convexity defect-based arrowhead candidate cropping

To select arrow-like candidates, we apply hull convexity defect concept (see Fig. 3.4). A

set of points along the contour of the binary CC are said to be convex if the line segments

joining each pair of its points is contained within within the CC. In convex combination,

a weight or coefficient wi is accredited to every point xi in the set S. The coefficients

assigned are all positive and the sum of all coefficients is one. A weighted average of the

points is then computed through these coefficients. For each combination of coefficients,

the convex combination thus formed is a convex hull point. Choosing coefficients in all

possible ways would give us the whole convex hull. In single formula, convex hull can

be written as following set:
{∑|S|

i=1 wixi|(∀i : wi ≥ 0)∧∑|S|
i=1 wi = 1

}
. This indicate that the

convex hull of a finite point set S ∈ Rn is a convex polygon when n = 2. In Fig. 3.4 (b),

an example is shown. Using such a convex hull, we attempt to remove tail since their

exists convex shaped silhouettes in both sides (see Fig. 3.4 (c)), which is computed by

subtracting an original candidate from the convex hull. In Fig. 3.4 (d), the convexity

defect region is shown, which is just a convex hull of both convex shaped silhouettes. At

the end, in Fig. 3.4 (e), arrowhead candidate(s) is(are) selected by subtracting an original
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(a) (b) (c) (d) (e)

Figure 3.4: Arrowhead candidate cropping: (a) an arrow, (b) convex hull, (c) convexity
defect, (d) a complete convexity defect region, and (e) arrowhead candidates.

image with the convexity defect region.

3.2.2.2 Arrowhead candidate matching with template

To confirm arrowhead candidates (see Fig. 3.4), we apply a template matching technique.

We extract a feature along the contour and match with the predefined templates using

dynamic time warping (DTW) technique. The arrowhead candidate is confirmed when

the similarity score crosses the empirically designed threshold.

Feature extraction. Along the contour, we have a set of coordinate points, P = {pi}i=1,...,n.

To extract feature vector ( f ), we compute the change in angle with respect to x-axis

from any consecutive pair, f = {αi}i=1,...,n, where αi = arctan
(

yl−yl−1
xl−xl−1

)
. This goes in a cyclic

order either clock wise or anti-clock wise. In our feature vector, continuous redundancy

of αi can be possible, αi = αi+ j, j = 1, . . . ,m, where m ≤ n. Therefore, few representa-

tive pixels (called the dominant pixel) are desired to express the shape of the contours.

Through polygonal approximation [16–18], the contour is represented using fewer points

such that properties of contours are retained. Next the geometrical characteristics like

concavities or inflexion points can be evaluated. In our implementation, to make it

simple and effective, we compute the difference between the angles and check whether

it crosses the threshold, ε. The choice of ε is usually user-defined. This means we take

αi if |αi −αi+1| ≤ ε. Like most line fitting/polygonal approximation (or dominant point

detection) methods, it can be made non-parametric by using the error bound due to digi-

tization as a termination condition. Fig. 3.5 shows three examples, where the changes in

angles are shown at all dominant points. To make the feature vector rotation invariant,

one needs to follow either clock-wise or anticlock-wise to compute changes in angles.

Dynamic time warping (DTW). DTW help to find the differences between two different

length non-linear sequences [19, 20]. In Fig. 3.5, one can notice the variations in feature

vector from one arrowhead to another. Let us consider two feature sequences: f1 =
{αi}1=1,...,n and f2 = {β j} j=1,...,m of size n and m, respectively. It is desired to get the
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(a)
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289.65

267.27
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(b)

313.26

340.91

99.21

227.73
199.98

165.07

313.26

(c)

318.95

92.86

204.15

318.95

Figure 3.5: Three examples showing a complete process (from left to right) starting
from an original candidate (resulting from fuzzy binarization - see Fig. 3.2), arrowhead
cropping (see Fig. 3.4) to feature extraction after polygonal approximation.

optimal alignment between two sequences through this algorithm. At first, an n×m
matrix is constructed. Next for each events, local distance δ(i, j) between the elements,

e i and e j is calculated i.e., δ(i, j)= (e i − e j)2. Let D(i, j) be the global distance up to (i, j),

D(k, l) = min


D(k−1, l−1),

D(k−1, l),
D(k, l−1)

+δ(k, l)

with an initial condition D(1,1)= δ(1,1). Tis is to allow warping path going diagonally

from starting node (1,1) to end (n,m). The objective is to find the least cost path. The

warping path therefore represent the difference in the cost of the compared signatures.

Mathematically, the warping path is, W = {wk}k=1...l , where max(i, j) ≤ l < i+ j−1 and

kth element of W is w(i, j)k ∈ [1 : n]× [1 : m] for k ∈ [1 : l]. The optimised warping path W
satisfies the following three conditions: boundary condition, monotonocity condition and

continuity condition. We then define the global distance between f1 and f2 as,

∆ ( f1, f2)= D(n,m)
l

.

The last element of the n×m matrix gives the DTW-distance between f1 and f2, which is

normalised by l i.e., the number of discrete warping steps along the diagonal DTW-matrix.
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Overall, DTW measures the similarity between two sequences, and can be summarized

as follows.

1) If the cropped candidate is not actually an arrowhead, DTW results in high cost. The

results are opposite to those arrowhead candidates.

2) Thanks to DTW, noise in arrowhead (along the contour) does not let the cost to go

beyond the threshold. This means that some of the arrowheads with noisy artefacts

connected to them are still detected.

3) Feature extraction and DTW matching techniques provide robustness to rotation and

scale changes. As an example, ∆( , )= 0.00 and ∆( , )= 0.00

3.3 Experiments

3.3.1 Datasets, ground-truth and evaluation protocol

Testing is done on the well-known dataset of imageCLEF[21]. It contain 298 CT scan of

the chest. At least, one arrow is present in each of these images. There are altogether

1049 arrows in the dataset. Groundtruths were created for all the pointers in all of the

images in dataset. Information like arrow type, location, color and pointing direction

were the information included in the groundtruth. For validation of our results, we used

presicion, recall and F1-score as our evaluation criteria.

precision= m1

M
, recall= m1

N
and F1 score= 2

(
(m1/M)× (m1/N)
(m1/M)+ (m1/N)

)
,

where m1 is the total number of arrow correctly detected by our approach, M is the

total number of candidate (including false postive) detected as arrow and N is the total

number of arrows present in dataset.

3.3.2 Result and analysis

3.3.2.1 Our results

Table 4.5 shows the performance evaluation scores in terms of precision, recall and

F1-score. In the reported results, we prioritize the recall measure since we do not like to

miss arrow candidates. The method achieved F1 score of 91.09%.
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Table 3.1: Our Result and Performance comparison (in %) with previously reported
techniques.

Previously reported methods
Metric Our method M1 [9] M2 [11] M3 [10] M4 [3]
Precision 88.50 81.10 22.80 84.20 93.14
Recall 93.80 74.10 77.80 81.60 86.92
F1-score 91.09 77.00 35.00 83.00 89.94

(a) (b)

Figure 3.6: Examples of when the proposed method succeeds and fails: (a) noisy artefacts
connected along the tail does not affect the method, and (b) they do largely affect when
connected with arrowhead.

Our method is able to detect arrowheads regardless their tail structure. But, if

the shape of the arrowhead is affected by noisy artefacts, the proposed method fails.

Fig. 4.7 shows both examples: noisy artefacts that are connected along the tail, and noisy

artefacts that are connected with arrowhead. Also, the method does not detect highly

curved arrows since convexity defect-based arrowhead cropping does not yield expected

arrowhead candidates.

19



C
H

A
P

T
E

R

4
ARROW DETECTION USING SEQUENTIAL CLASSIFIER

In this chapter, we explore a machine learning approach for detections of arrows

in Biomedical images. This approach too uses fuzzy binarization technique for

segmentation as described in previous chapter. Candidate regions are then checked

whether they are arrows by using BLSTM classifier, where Npen++ features are used. In

case of high error value (i.e., BLSTM classifier score) in classification, we take convexity

defect-based arrowhead detection technique into account. Our test on medical images

from 2010 imageCLEF lung database surpass the existing state-of-the-art techniques for

arrow detection .

4.1 Contribution outline

Our method can be summarized as shown in Fig. 4.1. It rely on a grayscale fuzzy

binarization technique at different levels [3], where candidates are segmented based on

connected component (CC) principle. Unlike the common state-of-the-art technique, we

adopted four levels of fuzzy binarization. This ensures that overlaid arrow candidates

are not missed. Npen++ and the Radon features are computed for these candidates and

are tested through BLSTM-trained arrow model. BLSTM tries to classify the candidate

into arrow or non-arrow class. If the cross entropy error value of the BLSTM classifier is

below the threshold, the candidate is classified as an arrow. Otherwise, the candidate

is passed through convexity defect-based technique, discussed in previous chapter. The

latter step prunes artefacts (i.e., unwanted noisy object and/or image regions) and stores
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Figure 4.1: Overall system workflow in block format. Block-wise explanation can be
found in Section 3.2.

arrowhead-like candidates, since it deals with just the arrowhead.

4.2 Method

Our arrow detection technique comprises of two classifiers analyzing the candidates in

sequence to determine whether the candidate is an arrow. It consists of a neural network

based BLSTM classifier followed by convexity-defect based arrowhead detection. In other

words, BLSTM classifies each candidate as arrow (and non-arrow) candidates with some

cross-entropy error score. This cross-entropy error defines how confident BLSTM is for

classification. If cross entropy error value score is below the threshold, BLSTM classifies

the arrow candidate. If not, candidates are then tested through convexity-defect based

arrowhead detector.
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4.2.1 Features

The performance of any neural network classifier depends on the features that are used

to represent the candidates. In our approach, we have tested the performance with two

different feature descriptors: Npen++ [22] and the Radon feature. Npen++ features are

expected to be worked for well defined geometric patterns (such as arrows), including

curvature, curliness and orientation. Similarly, the Radon feature suits well suited for

the patterns since projection in the Radon space changes 2D arrow image into 1D signal

that can considered as strokes. BLSTM classifier used below have been known very well

for strokes and gesture recognition [23]. Therefore, their integration is relevant.

4.2.1.1 Npen++ feature descriptor

Npen++ features were originally introduced for handwriting recognition. It actually

comprises a number of features computed along the handwriting trajectory. The normal-

ized sequence of the captured coordinates (x(i), y(i)) forms the input to the system. A

sequence of features is computed along this trajectory. But, not all of these features are

relevant for our arrow detection approach. Most of the features of Npen++ depend on the

baseline. In original Npen++ recognizer, the baseline b(x(i)) coincide with the original

writing line on which a text or word was written. However, in our approach, we consider

the lowest line parallel to x-axis passing through the contour of arrow as baseline.

Vertical Position. The vertical position of the point (x(i), y(i)) is the vertical distance

between b(x(i)) and y(i) where b(x(i)) is the baseline’s y-value for ith point on the contour.

Orientation. At point (x(i), (i)y), the local writing direction is described as:

cosα(i)= ∆x(i)
∆s(i)

(4.1)

sinα(i)= ∆y(i)
∆s(i)

(4.2)

where ∆x,∆y and ∆s are computed as follows:

∆s(i)=
√
∆x2 +∆y2 (4.3)

∆x(i)= x(i−1)− x(i+1) (4.4)

∆y(i)= y(i−1)− y(i+1) (4.5)
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Curvature. The computation of curvature at a point (x(i), y(i)) consider the previous

and next point to that point and is describe as follows:

cosβ(i)= cosα(i−1)∗ cosα(i+1)+ sinα(i−1)∗ sinα(i+1) (4.6)

sinβ(i)= cosα(i−1)∗ sinα(i+1)+ sinα(i−1)∗ cosα(i+1) (4.7)

Note that this sequence does not actually compute curvature but compute angular

difference which suffice in our case.

Aspect. The ratio of the height to the width of the bounding box accommodating the

succeeding and preceding points of (x(i), y(i)) is the aspect A(i) of the contour at point i.
It is computed as:

A(i)= ∆y(i)−∆x(i)
∆y(i)+∆x(i)

(4.8)

Curliness. The deviation from a straight line in the neighborhood of (x(i), y(i)) describe

Curliness C(i) feature. It is computed as the ratio of length of the contour and larger

side of the bounding box.

C(i)= L(i)
max(∆x,∆y)

−2 (4.9)

where L(i) is the length of contour in the neighborhood of the point computed as the

sum of all line segments in the neighborhood of the point. ∆x and ∆y are width and

height of the bounding box.

We have applied Npenn++ feature for selection of arrow-like candidates. Since the

features of Npenn++ are rotation dependent, the orientation of the arrow is calculated

using minor axis and major axis calculation. Each of the arrow is rotated along it

orientation such that it lay flat along the x-axis.

For training, each of the arrow is rotated along it orientation using the above method

and is then rotated perpendicularly and mirrored several time so as to consider all of it

flat orientation into consideration.

4.2.1.2 Radon Transform

The radon transform computes projections of an image matrix along specified directions.

A projection of a two-dimensional function f (x, y) is a set of line integrals. It is computed
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by calculating the length of line integrals from multiple sources along parallel paths,

or beams, in a certain direction. In general, the Radon transform of f (x, y) is the line

integral of f parallel to the y-axis is

Rθ(x′)=
∫ −∞

∞
f (x′cosθ− y′sinθ, x′sinθ− y′cosθ)d y′ (4.10)

where

[
x’

y’

]
=

[
cos θ sin θ

-sin θ cos θ

][
x

y

]
.

The consecutive beams are projected at a distance of 1 pixel. The image is rotated several

time around it center. The beams are projected multiple times for each rotation of the

image. The set of projections for all the rotation of the image is used to represent the

image after the transformation. Since arrow is a regular geometric shape, the radon

transform of arrow tend to have regularities.

4.2.2 BLSTM Classifier

Again, we are motivated by the use of the recently introduced bidirectional long short-

term memory(BLSTM) [23]. In simple words, the BLSTM is a form of recurrent neural

network having connections between the nodes forming a directed cycle. It, thus, provide

a ‘memory’ of earlier states of network.

Long short-term memory (LSTM) layer. The LSTM network node follow a distinct

architecture known as memory block. A memory cell forms the most important component

of memory block and it interact with network with the help of three gates, viz., an input

gate, an output gate and a forgot gate. This helps memory cells retain it state for a long

time which help in modeling the context at feature level. The input signal is processed

in both directions: forward and backward by two different layers, and improve the

ID sequence recognition. Next layer is combined the output of both the layer to form

(a) (b) (c) (d) (e)

Figure 4.2: Arrows are rotated and mirrored.
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the feature map. Like convolutional neural network, LSTM layer can have multiple

forward and backward layer and output layer can have multiple feature maps. Stacking

of different LSTM layers is also possible using max-pooling subsampling.

Candidate selection. Using the above feature, a BLSTM model for the arrow is created.

A candidate is passed tested through the trained BLSTM model. BLSTM classifier

provides yields fairly significant amount of false positives. It is primarily because of

the presence of artefacts. Like the state-of-the-art works, the candidate classified by

BLSTM with high confidence score (low cross entropy error) is accepted. If not, remaining

candidates are passed though second phase of screening (i.e., convexity defect-based

arrowhead detection). The latter phase aims to eliminate the false positives that are

coming from BLSTM).

4.3 Experiments

4.3.1 Datasets, ground-truth and evaluation protocol

Testing is done on the well-known dataset of imageCLEF[21]. It contain 298 CT scan of

the chest. At least, one arrow is present in each of these images. There are altogether

1049 arrows in the dataset. Groundtruths were created for all the pointers in all of the

images in dataset. Information like arrow type, location, color and pointing direction

were the information included in the groundtruth. For validation of our results, we used

presicion, recall and F1-score as our evaluation criteria.

precision= m1

M
, recall= m1

N
and F1 score= 2

(
(m1/M)× (m1/N)
(m1/M)+ (m1/N)

)
,

where m1 is the total number of arrow correctly detected by our approach, M is the

total number of candidate (including false postive) detected as arrow and N is the total

number of arrows present in dataset.

4.3.2 Our results and analysis

Table 4.1 shows the performance evaluation scores in terms of precision, recall and

F1 score, where BLSTM alone has a very good recall value but, with large large false

positives. This way, F1 score is still satisfactory. It holds true for both features: Npen++
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Table 4.1: Performance of the proposed system (in %).

BLSTM classifier Convexity BLSTM classifier followed
with features: defect-based by Convexity defect-based

Metric Npen++ Radon approach Npen++ Radon
Precision 13.96 6.14 88.50 95.39 92.69
Recall 98.43 97.31 93.80 99.21 99.10
F1-score 24.45 11.55 90.09 97.26 95.79

and the Radon that are applied separately. False positives are produced when we receive

low confidence score (high cross entropy error). The candidates having low confidence

scores (via BLSTM) are then correctly be detected/classified at the latter phase, thanks to

convexity defect-based arrowhead cropping (see Chapter 3). On the whole, the sequential

classifier that combines BLSTM and convexity defect-based arrowhead cropping provides

better results.

As reminder, our BLSTM classifier uses a threshold on the cross entropy error value

to decide whether we should further test the candidate with convexity defect-based

approach. If not, we accept as it is classified by BLSTM classifier. Graph in Fig. 4.3

shows the change in the accuracy of the BLSTM with change in this threshold value. We

observe that we get better results for the threshold values that are in the range: [0.2 –

0.7].

Processing times, on average, for both Npen++ and the Radon features are almost

identical. For each candidate image, Npen++ feature took approximatively 12.7 ms and

14.4 ms, respectively without and with convexity defect-based approaches. On the other

hand, with radon feature, each candidate image took 15.5 ms and 16.2 ms , respectively

without and with convexity defect-based approaches.

4.3.2.1 Combining Npen++ and Radon feature

We also tried combining both the classifier trained with Npen++ and Radon feature. We

used two different setup for combining these two classifier 1) Weighted average of score

of Npen++ and Radon feature; and 2) Classification using the feature which gives high

confidence among the two.

Weighted average. In this setup, One of the classifier is given some weight, α. The

weight of other classifier is calculeted as (1−α). The output of both the classifier are
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(a)

(b)

Figure 4.3: Graph showing the change in accuracies with change in the threshold value
of Cross Entropy Error for (a) Npen++ feature and (b) Radon feature.
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Figure 4.4: Graph showing the change in accuracies with different value of α.

multiplied with this weight and are then added to get the final classification score. This

score is then used for classifying the candidate.

xavg =α× xN pen+++ (1−α)× xRadon (4.11)

Graph 4.4 show the change in accuracies with change in the value of α. Accuracies is

maximum for Npen++ feature alone and tend to decrease with increase in the weight of

Radon’s score. This show that combining Radon trained classifier with Npen++ feature

trained classifier does not add to the accuracies.

Parallel Combination. In this setup, each of the candidate image is passed through

both Npen++ trained clasifier as well as Radon trained classifier in parallel. The result

of the classifier classifying the candidate with high confidence score (low cross entropy

error) is accepted as final. If both the classifier fails to classify the candidate with good

confidence score, the candidate is passed through convexity defect based algorithm for

final classification. This setup gave a boost of 1% in previously obtained accuracy.

The results of both the combination is shown in the table 4.2.
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(a)

(b)

Figure 4.5: Examples showing different binarization levels are used to detect arrows.
This demonstrates the idea of image inversion used in binarization since arrows are not
just black-filled.

4.3.3 State-of-the-art comparison

Further, the comparative study with state-of-the-art methods has been made. In this

comparison, our benchmarking methods are categorized into two groups: 1) state-of-the-

art methods that are specially designed for arrow detection; and 2) common template-

based method by using well-known state-of-the-art shape descriptors.

4.3.3.1 Recent arrow detection methods

Four well-known methods from the state-of-the-art that are specially designed for arrow

detection are used: 1) global thresholding-based method (M1) [9], 2) two edge-based

methods (M2:M3) [10, 11], and 3) a template-free geometric signature-based method [3].

The results are provided in Table 4.5, where method 5 (M5) performs the best with

Table 4.2: Accuracies obtained by combining Npen++ trained classifier and Radon trained
classifier.

Metric Parallel Combination Weighted Average
Precision 96.75 95.39
Recall 99.88 99.21
F1-score 98.29 97.26
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Continued on next page

Table 4.3: Performance comparison (in %) of previously reported methods.

Previously reported methods
Metric M1 [9] M2 [11] M3 [10] M4 [3] M5 [24]
Precision 81.10 22.80 84.20 93.14 88.50
Recall 74.10 77.80 81.60 86.92 93.80
F1-score 77.00 35.00 83.00 89.94 91.09

Table 4.4: Performance comparison (in %) of template based method.

Template-based methods
Metric GFD [25] SC [26] ZM [27] RT [28] D-Radon [29]
Precision 75.10 68.30 55.20 59.50 62.10
Recall 78.33 71.40 57.70 63.60 65.30
F1-score 76.68 69.82 56.40 61.48 63.65

precision, recall and F1 score values 95.39%, 99.21% and 97.26%, respectively.
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Figure 4.6: Examples illustrating arrow detection. Detected arrows (in white with black
background) on the right, are the combined results of four different binarization levels.

(a)

Figure 4.7: Examples of when the proposed method succeeds. Noisy artefacts connected
along the tail does not affect.

Table 4.5: Performance comparison (in %) of our method with best of template best
techniques and previously reported work.

Metric Our method GFD [25] M5 [24]
Precision 96.75 75.10 88.50
Recall 99.88 78.33 93.80
F1-score 98.29 76.68 91.09
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4.3.3.2 Template-based methods

In case of template-based method, we created 11 templates (arrows) having different

shapes (including sizes). The template size can further be extended in accordance with the

dataset. To extract shape features, we took the most frequently used shape descriptors

(in computer vision) from the state-of-the-art. They are 1) generic Fourier descriptor

(GFD) [25], 2) shape context (SC) [26], 3) Zernike moment (ZM) [27], 4) R-transform

(RT) [28] and 5) DTW-Radon [29]. As before, results (precision, recall and F1-score) are

provided in Table 4.5. Among all shape descriptors, GFD provides the best performance.

On the whole, considering such a dataset, the proposed method outperforms the best

state-of-the-start arrow detection method by more than 6% F1 score, and the template-

based (shape descriptor) method by more than 20% F1 score.
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5
REGION OF INTEREST EXTRACTION

As discussed earlier, arrow detection is precursor to region-of-interest (ROI) extrac-

tion and labeling. Our research interest lie in successful extraction and labeling

of region-of-interest that is being pointed by the arrow. In this chapter, we pro-

pose a region growing based region-of-interest (RoI) extraction algorithm from arrows

detected using algorithm from previous chapter. The detected arrow is first processed

for arrowhead point detection. Seed point are generated using detected arrowhead point

and region growing is used to finally segment out the ROI.

5.1 Method

5.1.1 Arrowhead Detection

To detect arrowhead point, we calculated the centroid of the actual arrow and the centroid

of the cropped arrow. The centroid of an two dimentional object is the center of mass

point on which the object would balance when placed on a needle. Mathematically, the

centroid (x̄, ȳ) of a set of n-point (xi, yi) is given by,

x̄ =
∑n

i=1 xi

n
, (5.1)

ȳ=
∑n

i=1 yi

n
(5.2)

A vector originating from the centroid of the original arrow and passing through the

centroid of the cropped arrowhead gives the direction of the location of the arrowhead.
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(a) (b) (c) (d)

Figure 5.1: Arrowhead Detection: (a) Centroid of the original arrow (red asterisk), (b)
Centroid of the cropped arrow (blue), (c) A reference line joining the two centroid, (d)
Last positive pixel (green asterisk) in the direction of the line is the detected arrowhead.

The last pixel located on the arrow in the direction of vector give us the arrowhead point.

Examples are shown in Figure 5.1.

5.1.2 Seed Point Generation and Region growing

In order to use region growing to segment out the ROI, we need to have seed point in the

region itself. One of the approach is to take the seed point at a particular distance from

the arrow in the direction where arrow is pointing. However, this didn’t work as the ROI

can be located very close to the arrow or at quite a distance from the arrow. Figure 5.2

shows an example of the two different case. A point with fixed distance from the ROI

would not work for all the case.

To overcome this problem, we took several seed points in the direction of arrow (shown

in figure 5.3(b)). Few of these seed points would be lying on the ROI and would give us

the ROI on region growing. While some other seed points would lie on the background.

Applying region growing through these seed point would result in large region which we
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(a) (b)

Figure 5.2: Example showing distance of ROI from Arrowhead. In first image, ROI is
very close to the arrowhead while in second image, ROI is located at some distance.

(a) (b)

Figure 5.3: Roi Segmentation: (a) An arrow, (b) Seed points, (c) Different region detected
near arrowhead, (d) Selected region

can filter out using the region area. In our algorithm, out of all the grown region through

various seed point (see figure 5.3(c)), we consider the region with lowest area (see figure

5.3(d)) as the segmented ROI.

5.2 Experiments

5.2.1 Datasets and ground-truth

Testing is done on the well-known dataset of imageCLEF[21]. It contain 298 CT scan of

the chest. At least, one arrow is present in each of these images. There are altogether

1049 arrows in the dataset. However, it us very difficult to point out the region exactly

pointed by the arrow in some of these images (See figure 5.4). It is not possible to create

ground-truth for such images without any medical expert. We have not consider such

images in our experimentation. Out of 298 images, we have consider 133 images for

testing. These 133 images have altogether 427 region pointed by arrows.
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(a) (b)

Figure 5.4: Example showing images where exact roi cannot be clearly demarcated

Table 5.1: Performance of the proposed approach

Number of region Number of region Number of region Number of region
present properly segmented segmented with some artifacts missed
427 358 28 41

5.2.2 Our result and analysis

Table 5.1 shows the performance evaluation of our approach. Out of 427 regions, our

algorithm was able to segment out 358 region without any errors. It was also able to

detect another 28 region but with some extra artifacts. Figure 5.5 show some example

where our approach was able to perform very well.

The two primary reason for missing out on segmenting some of the region properly

were, 1) The region having very little intesity difference from its background, and 2) The

region is attached to some other region and there is no clear demarcation between the

two. An example of both is shown in 5.6.

36



Figure 5.5: Examples illustrating region segmentation.

(a) (b)

Figure 5.6: Examples illustrating the case where our method failed: 1) The pixel intensity
at ROI is not very different from the background, 2) ROI is attached to the wall and
hence region growing technique failed to segment it.
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6
CONCLUSION AND FUTURE WORK

A new method to detect overlaid arrows in biomedical images is presented in this paper.

Fuzzy binarization is used on image first to segment a set of candidates. To select arrow

candidates, we first extract Npen++ features from arrow and test it through BLSTM clas-

sifier. The candidate are then conditionally passed through hull convexity defect-based

arrowhead cropping, which is followed by template matching via dynamic programming.

In our assessment, (using imageCLEF 2010 database), our results surpasses the state-

of-the-art methods. These detected arrow are then search for the arrowhead points. Seed

points are generated and are used for segmenting the region-of-interest using region

growing technique.

To the best of our knowledge, this is first time arrow detection has been done without

the use of tail information. Variation is the shape and size of the tail tend to change the

overall shape of the arrow. Thus, cropping off the tail helped us to identify arrows.

Our aim was to identify the meaningful ROI and annotate them using concept

appearing in the biomedical text. As next step, the segmented region can be labeled with

keywords extracted from the journal article and image caption. These tagged ROI can

be stored in the CDSS (clinical decision support system) database forming an efficient

retrieval system.
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