
i 
 

DEFECTS PREDICTION IN APPS USING USER REVIEWS AND 

RATINGS  

 

A Dissertation 

Submitted in fulfilment of the 

requirements for the award of the degree 

Of 

MASTER OF TECHNOLOGY 

in 

COMPUTER SCIENCE AND ENGINEERING 

 

 

 

Submitted  By 

ANKUR TAGRA 

(14535005) 

 

Under the guidance of 



ii 
 

DR. DURGA TOSHNIWAL 

 

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE 

ROORKEE – 247667 (INDIA) 

MAY,2016 

CANDIDATE’S DECLARATION 

 

I hereby declare that the work, which is presented in this dissertation report entitled “ Defects 

prediction in apps using user reviews and ratings” towards the fulfilment of the requirements for the 

award of the degree of Master of Technology with specialisation in Computer Science And Engineering 

submitted in the department of Computer Science and Engineering, Indian Institute of Technology, 

Roorkee (India) , is an authentic record of my own work carried out during the period of July 2015 to 

May 2016 under the guidance of  Dr. Durga Toshniwal, Associate Professor, Department of Computer 

Science and Engineering, Indian Institute of Technology Roorkee. 

I have not submitted the matter embodied in this dissertation for the award of any other degree or 

Diploma. 

 

Date : 

Place :                                                                                                                   ANKUR TAGRA 

 

 

 

CERTIFICATE 



iii 
 

This is to certify that the above statements made by the candidate is correct to the best of my 

knowledge and belief.  

Date :                             

Place :                                                                              

 

                                                                                                Dr. Durga Toshniwal, 

                                                                                                 Associate Professor, 

                                                                         Department of  Computer Science and Engineering, 

                                                                                                       IIT Roorkee 

 

ACKNOWLEDGEMENT 

 

It gives me immense pleasure to thank all those people who have, at various stages and in various ways 

have played a key role in successful completion of this work.  I would take this opportunity to extend my 

heartfelt gratitude to my guide and mentor Dr. Durga Toshniwal, Associate Professor, Indian Institute of 

Technology, Roorkee for her invaluable advice, guidance, encouragement and for sharing her 

knowledge. Her wisdom and commitment to the highest standards motivated me throughout. She has 

been very generous in providing the necessary resources to carry out the research. She is an inspiring 

professor, a great advisor and most importantly a person. 

I would also like to thanks Karthikeyan Dakshinamurthy, Ashish Mathur, Vijay Ekambaram, sarath 

chandar from IBM for their valueable suggestions. I am also highly indebted to my colleague Maj. Sumit 

Prakash Gupta, Bharat Goel, and my family who gave me the moral support and valuable suggestions. 

On a personal note, I owe everything to the almighty. 

 

 



iv 
 

 

 

                                                                                  

                          

                                                                                                                                       Ankur Tagra 

 

 

 

 

 

 

 

 

ABSTRACT 

 

In the current digital era approximately 2 million applications (a.k.a. apps) are present on app store 

which allow users to give ratings and reviews. App developers face serious challenges in getting user 

feedback. Every app developer is in constant dilemma of DIPMAP: Did I program a poor mobile app? The 

app developer constantly strives for eliminating the defects to increase the user base and app rating. 

The app developer wants to exploit the expressive power of raw user reviews regarding issues faced by 

app users while using the app. But with the sheer volume of these raw reviews a lot of knowledge goes 

untapped which is useful for app developers. We propose an unsupervised novel model for defect 
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prediction using app reviews by (i) review preprocessing (ii) Making Vector Representations of reviews 

(iii) classifying review into broad classes (iv) Making prioritized defect phrases. 
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CHAPTER 1           INTRODUCTION 

1.1 Introduction 

With the advent of android operating system for the mobile technology, the mobile based 

applications (apps) approach has come as an alternative to traditional web based developmental 

approach. Thousands of apps are published on the Google Play Store daily. As of Feb 2016, 

there are about 2 million apps on the Play Store [1]. Official data released by Google in 2016, 

says that there are more than 1 billion active android users on a monthly basis [2]. These users 

install and use these applications in their day to day life .A lot of these android applications 

contain some defects or errors or bugs which occur because of either the hurry of the app 

developer to launch their app in the Play store or because of the limited knowledge the developer 

possesses. After using these applications the users provide their feedback for that application in 

two ways. First is in the form of giving reviews and ratings for that app in the Play store and 

second is via reporting an error [1]. Developing team goes through mostly reported errors 

provided by users and manually test for each defect in the application and come up with the 

revised edition of the application (new version) this takes a lot of time and effort. The developers 

do not tap the information provided by user reviews and ratings on the Play Store for that 

application because of the sheer volume of these user reviews. It is very difficult for developer to 

go for each and every review manually and read these reviews to identify the defects that the 

user is talking about [1]. As per the Google Play Store data there are applications that have huge 

number of user reviews and ratings, such as JUST DIAL has 0.13 million reviews and ratings, 

True Caller has around 2.2 million reviews and ratings. So to manually go for each review and 

finding defect is a difficult task. So they generally tend to ignore it. We need to come up with a 

solution that automatically predicts top “k” defects that users are facing after using the app. That 

will give the developer an easy task to remove these defects in a later release version so that it 

improves its user experience and then users will give an improved rating to it in the subsequent 

version. So the overall rating of app will improve on the Play Store, which means that the users 

are quite happy with the latest version.  
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1.2 Motivation 

As of now, the usual way of finding defects in an application is by testing it rigorously. It takes a 

lot of time and human effort to manually test all the app features and processes for errors. An 

easy way is to use the user reviews as a base to find errors because users are assumed to 

download the app use it, analyze it and report some errors by giving their comments for these 

apps. But with such huge volume of these reviews it is difficult to manually read these reviews 

and find out the defects in the app. Here our project comes in, it automatically detects all the 

defects in the app by analyzing all the user reviews and ratings for the app. 

 

1.3 Problem Statement 

The above problem is stated as To automatically generate set of defects in Google Play Store app 

using reviews and ratings provided by users for that application. 

An app developer publishes his app on Play Store. He is in the dilemma Did I program a poor 

mobile app (DIPMAP). Users use these apps and they generally give reviews and ratings for that 

app which they have used. These reviews contain a vast amount of information about the app 

which they have used extensively. Actually this is typically a crowd sourced testing for the app. 

These reviews contain information about defects in a particular app. But due to the vast amount 

of user reviews it is difficult to manually read each and every review and come up with various 

defects in that app. So, this user review data is usually left untapped. This review data can 

generate valuable information which is helpful in automatic detection of app defects by App 

developer, so that he can come up with the improved version of the app in the subsequent 

release. 

We don’t have a list of defects for comparison of our work with the actual defects as the app 

developers don’t publish the defects in the app for commercial reasons. So we have taken the 

help of domain experts for manual tagging of reviews with associated defects. Thus we have 

generated the ground truth of apps. We have assumed that this ground truth represents the actual 

list of defects. 
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1.4 Research Contribution 

In the present world of ‘Android’ boom, all app developers want to make their apps user friendly 

and defect free. For that developer wants to predict the defects in the apps, which is not an easy 

task. This problem has been referred to as DIPMAP(Did I program a poor mobile app). 

No other research work right now is predicting the defects in the apps. They are just extracting 

features for the app. Our approach is a novel approach for predicting the prioritized list of defects 

in the apps. It finds the semantic relation between words in an unsupervised way. 

We have proposed a unique model TF-mIDF for conversion of word vectors into review vectors. 

It is better than the original TF-IDF in our work as it generates unique representations for words. 

We have proposed an algorithm for tuning the value of k in K-Means clustering algorithm which 

is helpful in making of clusters that define popular defects. 

We have also proposed criteria for measuring accuracy of our DIPMAP problem as there is no 

previous work to compare our results with we have termed it as DIPMAP Analyzer (DA). 

 

1.5 Organization of Report 

The Report consists of 4 chapters. First chapter is of Introduction to the project. Second chapter 

discuss about Literature survey. Third chapter discusses about the proposed framework that 

includes various techniques while developing the project such as word representations, TF-midf, 

Classification, Clustering and. Fourth chapter is of Experiments and results. The fifth chapter is 

of conclusion. 
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CHAPTER 2       LITERATURE REVIEW 

2.1 Background and Related Work  

Thus far there has been very little work for DIPMAP (i.e. “Did I Program a Poor Mobile App?”) 

using raw user reviews. The work done [6, 7, 8, 9, 10] so far concentrates only on feature 

extraction using, sentiment analysis skipping the main motive of defect prediction. 

 

Guzmen [6] proposed a framework for feature extraction and thereby producing features of the 

app with their sentiment scores without predicting the defects. Features extracted here have no 

relation with the defects e.g., great, good, bad ,like... are also coming as features but they do not 

represent any defect.  

Chen [7] proposed a framework for statistical analysis of user reviews and gives most popular 

user reviews in a supervised way thus will not have generalisation capability. 

Bin [8] addressed whether the app is popular among users or not but failing to unveil why they 

do not like the app. It does statistical analysis of user reviews disregard of semantic analysis.  

Cuiyun [9] did the high level feature extraction but feature may not represent the defects. It 

requires knowledge of developers for prioritizing the issues in the app. Manual intervention of 

the app developer is the bottleneck in this approach.  

Gao [10] predefined the features and used statistical analysis of these reviews to predict the 

severity of these features. Hence it fails to detect new features. 

 

We have studied various techniques used in the paper “Guzman, Emitza, and Wiem Maalej. 

"How do users like this feature? a fine grained sentiment analysis of app reviews." Requirements 

Engineering Conference (RE), 2014 IEEE 22nd International. IEEE, 2014” [6]. In this paper 

they have taken the user reviews and applied collocation finding algorithm provided in NLTK 

toolkit to extract the features from the reviews. The collocation finding algorithm is discussed in 

the next section. The features extracted are then assigned a negative score based on the negative 

sentiment of the review containing them [5]. They have done this by using a lexical sentiment 

extraction tool called “sentiStrength”. After assigning the negative score to all the features, they 

extract high level features from these features using topic modeling techniques. These high level 

features are the list of defects that are evaluated on the basis of user reviews. 
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Collocation Finding Algorithm 

This algorithm is used for extracting features from the user reviews. It is a collection of words 

that co-occur unusually [6]. Taking an example <strong tea> is a collocation while < powerful 

tea> is not a collocation because it does not occur usually in English dictionary. So, by applying 

collocations we find words which are uniquely identifiable, they may contain defects. Further 

they will process these words to get refined reviews. 

 

Sentiment Analysis  

The analysis is done for these reviews containing these features that are found by collocation 

finding algorithm. These reviews are assigned so scores based on their negativity in range [-1, 3] 

“using sentiStrength” [6]. This score is assigned to features that are present in these reviews. 

 

Topic Modeling  

This approach gives high level Features form the previously found features [6]. It does sampling 

to assign reviews to topics. Each review may be assigned to several topics. Then the features are 

grouped in more refined based on these topics [6]. This gives highly summarized features.  

 

So Guzman only  extracts the features from the apps but unable to give the prioritized list of 

defects. 

Whereas Gao is just doing the statistical analysis of reviews and not concentrating on defects. 

  

Cuiyan also didn’t find the defects in the apps. He also didn’t do the semantic analysis of reviews 

, his work is not generalized for all apps. It is also taking developer input as a base for his 

research which is a bottleneck to its scalability. He only did the high level feature extraction.  
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2.2 Research Gaps 

In the existing research the main motive is to only extract features from user reviews. It does not 

concentrates on predicting defects. It does not take into consideration the semantic relationship 

between the words. So it may predict two reviews which are different in selection of words but 

are talking similarly i.e., semantically almost equal as different. Take a scenario, there are two 

reviews “My phone has become very slow after installing this app. Every time I open this app it 

crashes!!” and a review “This app is crap, it hangs a lot on my Samsung galaxy Note” so, both 

are discussing about similar problem i.e. App hangs. But it considers these as different defects. 

Our approach takes into consideration the semantic relationship between words. It does so using 

an unsupervised approach. And it predicts the defects in the app.  
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CHAPTER 3        PROPOSED WORK 

3.1 Proposed Approach 

The main goal of our approach is to predict the defects in apps by automatically analyzing the 

Phase I: Data collection and pre-processing 

Phase II: word to vector conversion model 

Phase III: Review Vectorization and Classification  

Phase IV: Prediction of Defects 

 

3.1.1 Phase I: Data Collection and Pre-processing  

Data set is collected for various apps from Google Play. It contains App name, also user reviews 

and corresponding user ratings. 

 

S.No App Name Category Platform No. of 

Reviews 

No. of Neg 

Reviews 

1 Bfs Ninja jump Gaming Google Play 15245 2176 

2 Espn fantasy football Gaming Google Play 11436 1908 

3 Fruit ninja Gaming Google Play 9166 3217 

4 Dead trigger Gaming Google Play 2987 883 

5 Shoot bubble Deluxe Gaming Google Play 3055 2685 

6 Stick Cricket Gaming Google Play 21524 3449 

7 Three d Bowling Gaming Google Play 6589 1378 

    Table 3.1: Data collection 

Table 3.1 shows data set collection for various apps, category, platform and no. of reviews 

collected and no. of negative reviews. 
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CHAPTER-4 EXPERIMENTS AND RESULTS 

 

4.1 Data Set Description 

Data set was collected for 7 apps. It consists of app name, user reviews, user ratings 

S.No App Name Category Platform No. of 

Reviews 

No. of Neg 

Reviews 

1 Bfs Ninja jump Gaming Google Play 15245 2176 

2 Espn fantasy football Gaming Google Play 11436 1908 

3 Fruit ninja Gaming Google Play 9166 3217 

4 Dead trigger Gaming Google Play 2987 883 

5 Shoot bubble Deluxe Gaming Google Play 3055 2685 

6 Stick Cricket Gaming Google Play 21524 3449 

7 Three d Bowling Gaming Google Play 6589 1378 

Table 4.1: Data set collection 

Table 4.1 shows the apps with no. of collected reviews. The reviews were collected using 

Google. It shows no. of negative reviews, which were pre-processed from all set of reviews using 

rating criteria as explained in section 3.1.1. 

Data set for various apps had been collected figure shows total reviews, No. of negative 

reviews, platform and app name. 
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4.2 Results 

Phase 2: Word Vector Representations 

We performed some sample words on our tool and found out words which are closely related to 

a particular word. Let us take an example of word “screen”. 

S.No Word Related Word Cosine Distance 

1 Screen Screens 0.701141 

Monochrome 0.576821 

Pixels 0.516020 

Display 0.496503 

Logon 0.480673 

2 Ads Adds 0.861832 

Advertisement 0.711657 

Commercial 0.524137 

Promotions 0.435819 

3 Hangs hang 0.891287 

paragliding 0.721327 

crashes 0.612837 

lean 0.412234 

    Table 4.2 : Closest words 

Table 4.2 shows the closest words to word “screen”, “Ads”, “Hangs”. 

This signifies that word “Screen” is related to word “Monochrome”, “Pixels”, “Display”, 

“Logon” and this whole thing is being done in an unsupervised way. So the semantic relation 

between words is maintained. 
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Phase 3: Review vectorization and classification 

The sample results for Linear SVM classification of user reviews into various classes such as 

performance based, Usability based, functionality based and junk based are shown below. 

 

Fig 4.1: Performance reviews  

 

Fig 4.2: Usability reviews 
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    Fig 4.3: Functionality reviews 

 

Fig 4.4: Junk reviews 

The above figures i.e. Fig. 4.1, Fig. 4.2, Fig.  4.3 and Fig. 4.4 shows classification outputs of 

performance based reviews, Usability based reviews, Functionality Based and Junk Based 

Reviews respectively.  

We classified reviews into Performance, usability and functionality based reviews.  

For apps “Ninja Jump” and “Stick Cricket” results of classification are as follows: 
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Fig 4.5 : Review classification for “Ninja Jump” 

 

Fig 4.6 classification for “Stick Cricket” 

 

Phase 4: Prediction of Defects 

After Classifying these user reviews into Performance based, usability based, functionality based 

and junk based. Then we did clustering on each of these class reviews. Fig shows various 

clusters formed. 

13069 

446 330 

269 

1131 

2176 

Ninja Jump 

Positive Reviews 

Performance Reviews 

Usability Reviews 

Functionality Reviews 

Junk Reviews 

18075 

654 478 

556 

1761 

3449 

Stick Cricket 

Positive Reviews 

Performance Reviews 

Usability Reviews 

Functionality Reviews 

Junk Reviews 
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Fig 4.7: Performance Defect clusters 

 

 

Fig 4.8: Usability Defect clusters 



24 
 

 

Fig 4.9: Functionality Defect clusters 

Silhouette Score 

Comparison between approach 1 and approach 2: 

We randomly took 120 reviews from different classes such as Performance based reviews, 

Usability based reviews and Functionality based reviews. 

The output of clustering is: 

using approach 1: 

S. No Cluster Number Reviews 

1 Cluster 1 Very slow . remove this game 

Very slow . remove this game 

2 Cluster 2 Error 502 

Error 491 

Kept saying Error 502. Pls fix 
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3 Cluster 3 Crashes on android 5.0.1 

Crashes on android 5.0.1 

Crashed at first use do not installll 

   Table 4.3: clusters formed using approach 1 

 

 

Using approach 2: 

S. No Cluster Number Reviews 

1 Cluster 1 Unable to download very slow! 

Takes for ever to download 

Rubbish game! Don’t download 

Downloading sucks! 

2 Cluster 2 Boring game, such a time pass 

Nice game, but it is boring 

Please increase its difficulty.. childish boring game 

3 Cluster 3 Error 502 

Error 491 

Every time I open it, a lot of erros are there. Pls fix it. 

Boring game. Always kept saying a lot of errors. 

Developers go to hell! 

Errors errors errors…. What the hell 

Remove error. I m gonna delete your game. 

Table 4.4 : clusters formed using approach 2 
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Table 4.3 and table 4.4 shows clustering of reviews some random sample of reviews from 

performance based, usability based and functionality based reviews using approach 1 and 

approach 2 respectively.  

Results 

The approach 2 is better than the approach 1 as in approach 2 the average silhouette score values 

for clusters are not extreme so it minimizes the possibility that some cluster has average 

silhouette score value as 1 which means repeating review. And also minimizes the possibility of 

average silhouette score value as -1 which means all points in cluster are misplaced. 

 

 

4.3 Discussions 

Here we are showing top k defects for the app “Ninja Jump”. For this thesis we are showing top 

5 defects. 

 

 

 

Top 5 Performance Defects for “Ninja Jump” 

S.No App Name Defects 

1 Ninja Jump Hey, it keeps crashing on my LG G3 

2 Ninja Jump Force closes constantly. 

3 Ninja Jump Poor download speed. 

4 Ninja Jump very slow 

5 Ninja Jump Crashes a lot, Force closes 

    Table 4.5 : Top 5 Performance Defects 
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Table 4.3 shows performance defects in the app “Ninja Jump”. The defects are Force closing of 

app, Frequent crashing, App is slow, downloading issues. 

Top 5 Usability Defects for “Ninja Jump” 

S.No App Name Defects 

1 Ninja Jump Too many ads. 

2 Ninja Jump gud game...bt should hve better graphics 

3 Ninja Jump Black screen not able to play.. pls remove this bug. 

4 Ninja Jump Good but where is exit button 

5 Ninja Jump Ads, Black Screen 

Table 4.6: Top 5 Usability Defects 

Table 4.4 shows usability top 5 usability defects in the app. These are too many ads, bad 

graphics, black screen and misplacement of exit button. 

 

 

Top 5 Functionality Defects for “Ninja Jump” 

S.No App Name Defects 

1 Ninja Jump Game is boring 

2 Ninja Jump Updates version sucks 

3 Ninja Jump This game is a copy of city jump. City jump is better than 

this!!!! 

4 Ninja Jump It is so hard because I fall every one minute   then I get good at 

it and then my big sisters get geles 



28 
 

5 Ninja Jump It is so boring after the first few runs. 

   Table 4.7: Top 5 Functionality defects 

Table 4.5 shows functionality top 5 usability defects in the app. These are game is boring, 

updated version is not good, game is copy of city jump, and game is difficult. 

 

4.4.1 Performance based defects 

Some of the critical and most talked about performance based defects were Frequent Crashes in 

the app followed by Force closing of the app. Many users were also complain- ing about 

downloading problem, slow processing. Memory requirement was also a defect in ground truth 

with a weak support count but our approach didn’t find it. Figure 6 shows the ground truth for 

performance reviews. Table 3 shows the predicted defects and acheived Accuracies. Overall 

Accuracy obtained was 71.57 % 

 

Fig 4.10: Ground truth for performance based defects 

S. No Defect Description Wi Matching 

Reviews 

Total 

Reviews 

Accuracy 
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1 Crashing 0.37 8 10 0.80 

2 Force close 0.27 9 11 0.81 

3 Download 0.22 6 8 0.75 

4 Slow 0.09 4 10 0.40 

5 Memory 0.05 0 9 0 

Accuracy 71.57% 

    Table 4.8: Performance Accuracy 

A=0.37*0.80+0.27*0.81+0.22*0.75+0.09*0.40+0.05*0=0.7157 

 

4.4.2  Usability based Defects 

Frequent usability based defects found were a lot of advertisements followed by black screen  

problem in the app. Many users were also expressing their concern about bad graphics, non-

availability of exit button. Figure 7 shows the ground truth for usability reviews. Table 4 shows 

the predicted defects and achieved Accuracies. Overall Accuracy obtained was 74.67 % 
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Fig 4.11: Ground truth for usability based defects    

S. No Defect Description Wi Matching 

Reviews 

Total 

Reviews 

Accuracy 

1 Ads  0.53 8 9 0.88 

2 Black screen  0.29 7 10 0.70 

3 Bad Graphics 0.08 8 13 0.61 

4 Exit Button  0.05 4 7 0.57 

5 Bar 0.05 0 10 0 

Accuracy 74.67% 

Table 4.9: Usability Accuracy 

A=0.53*0.88+0.29*0.70+0.08*0.61+0.05*0.57+0.05*0=0.7467 

4.4.3  Functionality based Defects 

Many users found the app boring while some users found it very difficult to play. A lot of users 

were not happy with the updated version. While some user found it similar to another game 

”City Jump” by quoting yet another city jump. Figure 8 shows the ground truth for usability 

reviews. Table 5 shows the predicted defects and achieved Accuracies. Overall Accuracy 

obtained was 77.04 %. 
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Fig 4.12: Ground truth for functionality based defects 

S. No Defect Description Wi Matching 

Reviews 

Total 

Reviews 

Accuracy 

1 Boring 0.48 10 13 0.76 

2 Updated  Version 0.23 9 11 0.82 

3 Difficulty 0.15 12 14 0.86 

4 City Jump 0.10 7 8 0.88 

5 Pause 0.04 0 6 0 

Accuracy 77.04% 

   Table 4.10: Functionality Accuracy 

A=0.48*0.76+0.23*0.82+0.15*0.86+0.10*0.88+0.04*0=0.7704. 
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CHAPTER 5       CONCLUSION AND FUTURE WORK 

User-generated reviews are indispensable repository for app developers. Since the user reviews 

are huge and messy, manual analysis is inapplicable. In this paper we propose a framework for 

the DIPMAP problem i.e. ”Did I Program A Poor Mobile App?”. We extracted user reviews and 

ratings of various apps then we converted every word in the reviews into n-dimensional vector 

representation using our word to vector conversion model . Then these word vectors were 

converted into review vectors using our proposed TF- mIDF technique. The reviews were 

classified into four broad categories i.e. performance based, usability based, functionality based 

and junk reviews. We removed junk reviews. Then we applied clustering on each of the above 

review class and we obtained various clusters which represent a defect. It gives the prioritized 

list of defects. We tested our model on various app from heterogeneous categories and found 

good accuracies. For ”Ninja Jump” app we obtained 71.57 % ac- curacy for performance based 

defects and 74.67 % accuracy for usability based defects and 77.04 % accuracy for functionality 

based defects. Two major advantages of our approach are 1) it captures the linguistic regularities 

and semantic relation between words 2) it is unsupervised and completely automated approach. 

In future a model for predicting the future ratings of the apps after these defects get removed in 

the subsequent version. 
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