
i

DEFECTS PREDICTION IN APPS USING USER REVIEWS AND

RATINGS

A Dissertation

Submitted in fulfilment of the

requirements for the award of the degree

Of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted By

ANKUR TAGRA

(14535005)

Under the guidance of

ii

DR. DURGA TOSHNIWAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE – 247667 (INDIA)

MAY,2016

CANDIDATE’S DECLARATION

I hereby declare that the work, which is presented in this dissertation report entitled “ Defects

prediction in apps using user reviews and ratings” towards the fulfilment of the requirements for the

award of the degree of Master of Technology with specialisation in Computer Science And Engineering

submitted in the department of Computer Science and Engineering, Indian Institute of Technology,

Roorkee (India) , is an authentic record of my own work carried out during the period of July 2015 to

May 2016 under the guidance of Dr. Durga Toshniwal, Associate Professor, Department of Computer

Science and Engineering, Indian Institute of Technology Roorkee.

I have not submitted the matter embodied in this dissertation for the award of any other degree or

Diploma.

Date :

Place : ANKUR TAGRA

CERTIFICATE

iii

This is to certify that the above statements made by the candidate is correct to the best of my

knowledge and belief.

Date :

Place :

 Dr. Durga Toshniwal,

 Associate Professor,

 Department of Computer Science and Engineering,

 IIT Roorkee

ACKNOWLEDGEMENT

It gives me immense pleasure to thank all those people who have, at various stages and in various ways

have played a key role in successful completion of this work. I would take this opportunity to extend my

heartfelt gratitude to my guide and mentor Dr. Durga Toshniwal, Associate Professor, Indian Institute of

Technology, Roorkee for her invaluable advice, guidance, encouragement and for sharing her

knowledge. Her wisdom and commitment to the highest standards motivated me throughout. She has

been very generous in providing the necessary resources to carry out the research. She is an inspiring

professor, a great advisor and most importantly a person.

I would also like to thanks Karthikeyan Dakshinamurthy, Ashish Mathur, Vijay Ekambaram, sarath

chandar from IBM for their valueable suggestions. I am also highly indebted to my colleague Maj. Sumit

Prakash Gupta, Bharat Goel, and my family who gave me the moral support and valuable suggestions.

On a personal note, I owe everything to the almighty.

iv

 Ankur Tagra

ABSTRACT

In the current digital era approximately 2 million applications (a.k.a. apps) are present on app store

which allow users to give ratings and reviews. App developers face serious challenges in getting user

feedback. Every app developer is in constant dilemma of DIPMAP: Did I program a poor mobile app? The

app developer constantly strives for eliminating the defects to increase the user base and app rating.

The app developer wants to exploit the expressive power of raw user reviews regarding issues faced by

app users while using the app. But with the sheer volume of these raw reviews a lot of knowledge goes

untapped which is useful for app developers. We propose an unsupervised novel model for defect

v

prediction using app reviews by (i) review preprocessing (ii) Making Vector Representations of reviews

(iii) classifying review into broad classes (iv) Making prioritized defect phrases.

vi

TABLE OF CONTENTS

Candidate’s Declaration ii

Acknowledgement iii

Abstract iv

List of Figures vii

List of Tables viii

Chapter 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Motivation 2

1.3 Problem Statement 2

1.4 Research Contribution 3

1.5 Organisation of Thesis 3

Chapter 2 LITERATURE REVIEW 4

2.1 Background and related work 4

2.2 Research Gaps 6

Chapter 3 PROPOSED WORK 7

3.1 Proposed Approach 7

3.1.1 Phase I: Data collection and pre-processing 7

3.1.2 Phase II: Training word to vector conversion model 10

3.1.3 Phase III: Review vectorization and classification 15

3.1.4 Phase IV: Prediction of Defects 19

vii

Chapter 4 EXPERIMENTS AND RESULTS 23

4.1 Data set 23

4.2 Results 24

4.3 Discussions 31

4.4 DIPMAP Analyzer 33

4.4.1 Performance based defects 34

4.4.2 Usability based defects 35

4.4.3 Functionality based defects 36

Chapter 5 CONCLUSION AND FUTURE WORK 38

References

List of Publications

8

LIST OF FIGURES

Fig. 3.1: Phase I: Data Collection and Pre-processing 8

Fig. 3.2: Phase II: Training word to vector conversion Model 11

Fig. 3.3: Closest Words 14

Fig. 3.4: CBOW Model 15

Fig. 3.5: DIPMAP Model 16

Fig. 3.6: Tuning Value of K 22

Fig 4.1: Performance Reviews 25

Fig. 4.2: Usability Reviews 25

Fig. 4.3: Functionality Reviews 26

Fig. 4.4: Junk Reviews 26

Fig. 4.5: Review Classification for Ninja Jump 27

Fig. 4.6: Review Classification for Stick Cricket 27

Fig. 4.7: Performance Defect Clusters 28

Fig. 4.8: Usability Defect Clusters 28

Fig. 4.9: Functionality Defect Clusters 29

Fig. 4.10: Ground Truth For Performance Based Defects 34

Fig. 4.11: Ground Truth For Usability Based Defects 36

Fig. 4.12 Ground Truth For Functionality Based Defects 37

9

10

LIST OF TABLES

Table 3.1: Data Collection 8

Table 3.2: Related Word and Cosine Distances 13

Table 3.3: Sample User Reviews 19

Table 4.1: Dataset Collection 23

Table 4.2: Closest Words 24

Table 4.3: Clusters Formed Using Approach 1 29

Table 4.4: Clusters Formed Using Approach 2 30

Table 4.5: Top-5 Performance Defects 32

Table 4.6: Top-5 Usability Defects 32

Table 4.7: Top-5 Functionality Defects 33

Table 4.8 Performance Accuracy 35

Table 4.9 Usability Accuracy 36

Table 4.10 Functionality Accuracy 37

11

CHAPTER 1 INTRODUCTION

1.1 Introduction

With the advent of android operating system for the mobile technology, the mobile based

applications (apps) approach has come as an alternative to traditional web based developmental

approach. Thousands of apps are published on the Google Play Store daily. As of Feb 2016,

there are about 2 million apps on the Play Store [1]. Official data released by Google in 2016,

says that there are more than 1 billion active android users on a monthly basis [2]. These users

install and use these applications in their day to day life .A lot of these android applications

contain some defects or errors or bugs which occur because of either the hurry of the app

developer to launch their app in the Play store or because of the limited knowledge the developer

possesses. After using these applications the users provide their feedback for that application in

two ways. First is in the form of giving reviews and ratings for that app in the Play store and

second is via reporting an error [1]. Developing team goes through mostly reported errors

provided by users and manually test for each defect in the application and come up with the

revised edition of the application (new version) this takes a lot of time and effort. The developers

do not tap the information provided by user reviews and ratings on the Play Store for that

application because of the sheer volume of these user reviews. It is very difficult for developer to

go for each and every review manually and read these reviews to identify the defects that the

user is talking about [1]. As per the Google Play Store data there are applications that have huge

number of user reviews and ratings, such as JUST DIAL has 0.13 million reviews and ratings,

True Caller has around 2.2 million reviews and ratings. So to manually go for each review and

finding defect is a difficult task. So they generally tend to ignore it. We need to come up with a

solution that automatically predicts top “k” defects that users are facing after using the app. That

will give the developer an easy task to remove these defects in a later release version so that it

improves its user experience and then users will give an improved rating to it in the subsequent

version. So the overall rating of app will improve on the Play Store, which means that the users

are quite happy with the latest version.

12

1.2 Motivation

As of now, the usual way of finding defects in an application is by testing it rigorously. It takes a

lot of time and human effort to manually test all the app features and processes for errors. An

easy way is to use the user reviews as a base to find errors because users are assumed to

download the app use it, analyze it and report some errors by giving their comments for these

apps. But with such huge volume of these reviews it is difficult to manually read these reviews

and find out the defects in the app. Here our project comes in, it automatically detects all the

defects in the app by analyzing all the user reviews and ratings for the app.

1.3 Problem Statement

The above problem is stated as To automatically generate set of defects in Google Play Store app

using reviews and ratings provided by users for that application.

An app developer publishes his app on Play Store. He is in the dilemma Did I program a poor

mobile app (DIPMAP). Users use these apps and they generally give reviews and ratings for that

app which they have used. These reviews contain a vast amount of information about the app

which they have used extensively. Actually this is typically a crowd sourced testing for the app.

These reviews contain information about defects in a particular app. But due to the vast amount

of user reviews it is difficult to manually read each and every review and come up with various

defects in that app. So, this user review data is usually left untapped. This review data can

generate valuable information which is helpful in automatic detection of app defects by App

developer, so that he can come up with the improved version of the app in the subsequent

release.

We don’t have a list of defects for comparison of our work with the actual defects as the app

developers don’t publish the defects in the app for commercial reasons. So we have taken the

help of domain experts for manual tagging of reviews with associated defects. Thus we have

generated the ground truth of apps. We have assumed that this ground truth represents the actual

list of defects.

13

1.4 Research Contribution

In the present world of ‘Android’ boom, all app developers want to make their apps user friendly

and defect free. For that developer wants to predict the defects in the apps, which is not an easy

task. This problem has been referred to as DIPMAP(Did I program a poor mobile app).

No other research work right now is predicting the defects in the apps. They are just extracting

features for the app. Our approach is a novel approach for predicting the prioritized list of defects

in the apps. It finds the semantic relation between words in an unsupervised way.

We have proposed a unique model TF-mIDF for conversion of word vectors into review vectors.

It is better than the original TF-IDF in our work as it generates unique representations for words.

We have proposed an algorithm for tuning the value of k in K-Means clustering algorithm which

is helpful in making of clusters that define popular defects.

We have also proposed criteria for measuring accuracy of our DIPMAP problem as there is no

previous work to compare our results with we have termed it as DIPMAP Analyzer (DA).

1.5 Organization of Report

The Report consists of 4 chapters. First chapter is of Introduction to the project. Second chapter

discuss about Literature survey. Third chapter discusses about the proposed framework that

includes various techniques while developing the project such as word representations, TF-midf,

Classification, Clustering and. Fourth chapter is of Experiments and results. The fifth chapter is

of conclusion.

14

CHAPTER 2 LITERATURE REVIEW

2.1 Background and Related Work

Thus far there has been very little work for DIPMAP (i.e. “Did I Program a Poor Mobile App?”)

using raw user reviews. The work done [6, 7, 8, 9, 10] so far concentrates only on feature

extraction using, sentiment analysis skipping the main motive of defect prediction.

Guzmen [6] proposed a framework for feature extraction and thereby producing features of the

app with their sentiment scores without predicting the defects. Features extracted here have no

relation with the defects e.g., great, good, bad ,like... are also coming as features but they do not

represent any defect.

Chen [7] proposed a framework for statistical analysis of user reviews and gives most popular

user reviews in a supervised way thus will not have generalisation capability.

Bin [8] addressed whether the app is popular among users or not but failing to unveil why they

do not like the app. It does statistical analysis of user reviews disregard of semantic analysis.

Cuiyun [9] did the high level feature extraction but feature may not represent the defects. It

requires knowledge of developers for prioritizing the issues in the app. Manual intervention of

the app developer is the bottleneck in this approach.

Gao [10] predefined the features and used statistical analysis of these reviews to predict the

severity of these features. Hence it fails to detect new features.

We have studied various techniques used in the paper “Guzman, Emitza, and Wiem Maalej.

"How do users like this feature? a fine grained sentiment analysis of app reviews." Requirements

Engineering Conference (RE), 2014 IEEE 22nd International. IEEE, 2014” [6]. In this paper

they have taken the user reviews and applied collocation finding algorithm provided in NLTK

toolkit to extract the features from the reviews. The collocation finding algorithm is discussed in

the next section. The features extracted are then assigned a negative score based on the negative

sentiment of the review containing them [5]. They have done this by using a lexical sentiment

extraction tool called “sentiStrength”. After assigning the negative score to all the features, they

extract high level features from these features using topic modeling techniques. These high level

features are the list of defects that are evaluated on the basis of user reviews.

15

Collocation Finding Algorithm

This algorithm is used for extracting features from the user reviews. It is a collection of words

that co-occur unusually [6]. Taking an example <strong tea> is a collocation while < powerful

tea> is not a collocation because it does not occur usually in English dictionary. So, by applying

collocations we find words which are uniquely identifiable, they may contain defects. Further

they will process these words to get refined reviews.

Sentiment Analysis

The analysis is done for these reviews containing these features that are found by collocation

finding algorithm. These reviews are assigned so scores based on their negativity in range [-1, 3]

“using sentiStrength” [6]. This score is assigned to features that are present in these reviews.

Topic Modeling

This approach gives high level Features form the previously found features [6]. It does sampling

to assign reviews to topics. Each review may be assigned to several topics. Then the features are

grouped in more refined based on these topics [6]. This gives highly summarized features.

So Guzman only extracts the features from the apps but unable to give the prioritized list of

defects.

Whereas Gao is just doing the statistical analysis of reviews and not concentrating on defects.

Cuiyan also didn’t find the defects in the apps. He also didn’t do the semantic analysis of reviews

, his work is not generalized for all apps. It is also taking developer input as a base for his

research which is a bottleneck to its scalability. He only did the high level feature extraction.

16

2.2 Research Gaps

In the existing research the main motive is to only extract features from user reviews. It does not

concentrates on predicting defects. It does not take into consideration the semantic relationship

between the words. So it may predict two reviews which are different in selection of words but

are talking similarly i.e., semantically almost equal as different. Take a scenario, there are two

reviews “My phone has become very slow after installing this app. Every time I open this app it

crashes!!” and a review “This app is crap, it hangs a lot on my Samsung galaxy Note” so, both

are discussing about similar problem i.e. App hangs. But it considers these as different defects.

Our approach takes into consideration the semantic relationship between words. It does so using

an unsupervised approach. And it predicts the defects in the app.

17

CHAPTER 3 PROPOSED WORK

3.1 Proposed Approach

The main goal of our approach is to predict the defects in apps by automatically analyzing the

Phase I: Data collection and pre-processing

Phase II: word to vector conversion model

Phase III: Review Vectorization and Classification

Phase IV: Prediction of Defects

3.1.1 Phase I: Data Collection and Pre-processing

Data set is collected for various apps from Google Play. It contains App name, also user reviews

and corresponding user ratings.

S.No App Name Category Platform No. of

Reviews

No. of Neg

Reviews

1 Bfs Ninja jump Gaming Google Play 15245 2176

2 Espn fantasy football Gaming Google Play 11436 1908

3 Fruit ninja Gaming Google Play 9166 3217

4 Dead trigger Gaming Google Play 2987 883

5 Shoot bubble Deluxe Gaming Google Play 3055 2685

6 Stick Cricket Gaming Google Play 21524 3449

7 Three d Bowling Gaming Google Play 6589 1378

 Table 3.1: Data collection

Table 3.1 shows data set collection for various apps, category, platform and no. of reviews

collected and no. of negative reviews.

18

CHAPTER-4 EXPERIMENTS AND RESULTS

4.1 Data Set Description

Data set was collected for 7 apps. It consists of app name, user reviews, user ratings

S.No App Name Category Platform No. of

Reviews

No. of Neg

Reviews

1 Bfs Ninja jump Gaming Google Play 15245 2176

2 Espn fantasy football Gaming Google Play 11436 1908

3 Fruit ninja Gaming Google Play 9166 3217

4 Dead trigger Gaming Google Play 2987 883

5 Shoot bubble Deluxe Gaming Google Play 3055 2685

6 Stick Cricket Gaming Google Play 21524 3449

7 Three d Bowling Gaming Google Play 6589 1378

Table 4.1: Data set collection

Table 4.1 shows the apps with no. of collected reviews. The reviews were collected using

Google. It shows no. of negative reviews, which were pre-processed from all set of reviews using

rating criteria as explained in section 3.1.1.

Data set for various apps had been collected figure shows total reviews, No. of negative

reviews, platform and app name.

19

4.2 Results

Phase 2: Word Vector Representations

We performed some sample words on our tool and found out words which are closely related to

a particular word. Let us take an example of word “screen”.

S.No Word Related Word Cosine Distance

1 Screen Screens 0.701141

Monochrome 0.576821

Pixels 0.516020

Display 0.496503

Logon 0.480673

2 Ads Adds 0.861832

Advertisement 0.711657

Commercial 0.524137

Promotions 0.435819

3 Hangs hang 0.891287

paragliding 0.721327

crashes 0.612837

lean 0.412234

 Table 4.2 : Closest words

Table 4.2 shows the closest words to word “screen”, “Ads”, “Hangs”.

This signifies that word “Screen” is related to word “Monochrome”, “Pixels”, “Display”,

“Logon” and this whole thing is being done in an unsupervised way. So the semantic relation

between words is maintained.

20

Phase 3: Review vectorization and classification

The sample results for Linear SVM classification of user reviews into various classes such as

performance based, Usability based, functionality based and junk based are shown below.

Fig 4.1: Performance reviews

Fig 4.2: Usability reviews

21

 Fig 4.3: Functionality reviews

Fig 4.4: Junk reviews

The above figures i.e. Fig. 4.1, Fig. 4.2, Fig. 4.3 and Fig. 4.4 shows classification outputs of

performance based reviews, Usability based reviews, Functionality Based and Junk Based

Reviews respectively.

We classified reviews into Performance, usability and functionality based reviews.

For apps “Ninja Jump” and “Stick Cricket” results of classification are as follows:

22

Fig 4.5 : Review classification for “Ninja Jump”

Fig 4.6 classification for “Stick Cricket”

Phase 4: Prediction of Defects

After Classifying these user reviews into Performance based, usability based, functionality based

and junk based. Then we did clustering on each of these class reviews. Fig shows various

clusters formed.

13069

446 330

269

1131

2176

Ninja Jump

Positive Reviews

Performance Reviews

Usability Reviews

Functionality Reviews

Junk Reviews

18075

654 478

556

1761

3449

Stick Cricket

Positive Reviews

Performance Reviews

Usability Reviews

Functionality Reviews

Junk Reviews

23

Fig 4.7: Performance Defect clusters

Fig 4.8: Usability Defect clusters

24

Fig 4.9: Functionality Defect clusters

Silhouette Score

Comparison between approach 1 and approach 2:

We randomly took 120 reviews from different classes such as Performance based reviews,

Usability based reviews and Functionality based reviews.

The output of clustering is:

using approach 1:

S. No Cluster Number Reviews

1 Cluster 1 Very slow . remove this game

Very slow . remove this game

2 Cluster 2 Error 502

Error 491

Kept saying Error 502. Pls fix

25

3 Cluster 3 Crashes on android 5.0.1

Crashes on android 5.0.1

Crashed at first use do not installll

 Table 4.3: clusters formed using approach 1

Using approach 2:

S. No Cluster Number Reviews

1 Cluster 1 Unable to download very slow!

Takes for ever to download

Rubbish game! Don’t download

Downloading sucks!

2 Cluster 2 Boring game, such a time pass

Nice game, but it is boring

Please increase its difficulty.. childish boring game

3 Cluster 3 Error 502

Error 491

Every time I open it, a lot of erros are there. Pls fix it.

Boring game. Always kept saying a lot of errors.

Developers go to hell!

Errors errors errors…. What the hell

Remove error. I m gonna delete your game.

Table 4.4 : clusters formed using approach 2

26

Table 4.3 and table 4.4 shows clustering of reviews some random sample of reviews from

performance based, usability based and functionality based reviews using approach 1 and

approach 2 respectively.

Results

The approach 2 is better than the approach 1 as in approach 2 the average silhouette score values

for clusters are not extreme so it minimizes the possibility that some cluster has average

silhouette score value as 1 which means repeating review. And also minimizes the possibility of

average silhouette score value as -1 which means all points in cluster are misplaced.

4.3 Discussions

Here we are showing top k defects for the app “Ninja Jump”. For this thesis we are showing top

5 defects.

Top 5 Performance Defects for “Ninja Jump”

S.No App Name Defects

1 Ninja Jump Hey, it keeps crashing on my LG G3

2 Ninja Jump Force closes constantly.

3 Ninja Jump Poor download speed.

4 Ninja Jump very slow

5 Ninja Jump Crashes a lot, Force closes

 Table 4.5 : Top 5 Performance Defects

27

Table 4.3 shows performance defects in the app “Ninja Jump”. The defects are Force closing of

app, Frequent crashing, App is slow, downloading issues.

Top 5 Usability Defects for “Ninja Jump”

S.No App Name Defects

1 Ninja Jump Too many ads.

2 Ninja Jump gud game...bt should hve better graphics

3 Ninja Jump Black screen not able to play.. pls remove this bug.

4 Ninja Jump Good but where is exit button

5 Ninja Jump Ads, Black Screen

Table 4.6: Top 5 Usability Defects

Table 4.4 shows usability top 5 usability defects in the app. These are too many ads, bad

graphics, black screen and misplacement of exit button.

Top 5 Functionality Defects for “Ninja Jump”

S.No App Name Defects

1 Ninja Jump Game is boring

2 Ninja Jump Updates version sucks

3 Ninja Jump This game is a copy of city jump. City jump is better than

this!!!!

4 Ninja Jump It is so hard because I fall every one minute then I get good at

it and then my big sisters get geles

28

5 Ninja Jump It is so boring after the first few runs.

 Table 4.7: Top 5 Functionality defects

Table 4.5 shows functionality top 5 usability defects in the app. These are game is boring,

updated version is not good, game is copy of city jump, and game is difficult.

4.4.1 Performance based defects

Some of the critical and most talked about performance based defects were Frequent Crashes in

the app followed by Force closing of the app. Many users were also complain- ing about

downloading problem, slow processing. Memory requirement was also a defect in ground truth

with a weak support count but our approach didn’t find it. Figure 6 shows the ground truth for

performance reviews. Table 3 shows the predicted defects and acheived Accuracies. Overall

Accuracy obtained was 71.57 %

Fig 4.10: Ground truth for performance based defects

S. No Defect Description Wi Matching

Reviews

Total

Reviews

Accuracy

29

1 Crashing 0.37 8 10 0.80

2 Force close 0.27 9 11 0.81

3 Download 0.22 6 8 0.75

4 Slow 0.09 4 10 0.40

5 Memory 0.05 0 9 0

Accuracy 71.57%

 Table 4.8: Performance Accuracy

A=0.37*0.80+0.27*0.81+0.22*0.75+0.09*0.40+0.05*0=0.7157

4.4.2 Usability based Defects

Frequent usability based defects found were a lot of advertisements followed by black screen

problem in the app. Many users were also expressing their concern about bad graphics, non-

availability of exit button. Figure 7 shows the ground truth for usability reviews. Table 4 shows

the predicted defects and achieved Accuracies. Overall Accuracy obtained was 74.67 %

30

Fig 4.11: Ground truth for usability based defects

S. No Defect Description Wi Matching

Reviews

Total

Reviews

Accuracy

1 Ads 0.53 8 9 0.88

2 Black screen 0.29 7 10 0.70

3 Bad Graphics 0.08 8 13 0.61

4 Exit Button 0.05 4 7 0.57

5 Bar 0.05 0 10 0

Accuracy 74.67%

Table 4.9: Usability Accuracy

A=0.53*0.88+0.29*0.70+0.08*0.61+0.05*0.57+0.05*0=0.7467

4.4.3 Functionality based Defects

Many users found the app boring while some users found it very difficult to play. A lot of users

were not happy with the updated version. While some user found it similar to another game

”City Jump” by quoting yet another city jump. Figure 8 shows the ground truth for usability

reviews. Table 5 shows the predicted defects and achieved Accuracies. Overall Accuracy

obtained was 77.04 %.

31

Fig 4.12: Ground truth for functionality based defects

S. No Defect Description Wi Matching

Reviews

Total

Reviews

Accuracy

1 Boring 0.48 10 13 0.76

2 Updated Version 0.23 9 11 0.82

3 Difficulty 0.15 12 14 0.86

4 City Jump 0.10 7 8 0.88

5 Pause 0.04 0 6 0

Accuracy 77.04%

 Table 4.10: Functionality Accuracy

A=0.48*0.76+0.23*0.82+0.15*0.86+0.10*0.88+0.04*0=0.7704.

32

CHAPTER 5 CONCLUSION AND FUTURE WORK

User-generated reviews are indispensable repository for app developers. Since the user reviews

are huge and messy, manual analysis is inapplicable. In this paper we propose a framework for

the DIPMAP problem i.e. ”Did I Program A Poor Mobile App?”. We extracted user reviews and

ratings of various apps then we converted every word in the reviews into n-dimensional vector

representation using our word to vector conversion model . Then these word vectors were

converted into review vectors using our proposed TF- mIDF technique. The reviews were

classified into four broad categories i.e. performance based, usability based, functionality based

and junk reviews. We removed junk reviews. Then we applied clustering on each of the above

review class and we obtained various clusters which represent a defect. It gives the prioritized

list of defects. We tested our model on various app from heterogeneous categories and found

good accuracies. For ”Ninja Jump” app we obtained 71.57 % ac- curacy for performance based

defects and 74.67 % accuracy for usability based defects and 77.04 % accuracy for functionality

based defects. Two major advantages of our approach are 1) it captures the linguistic regularities

and semantic relation between words 2) it is unsupervised and completely automated approach.

In future a model for predicting the future ratings of the apps after these defects get removed in

the subsequent version.

33

REFERENCES

[1] http://www.statista.com/statistics/266210/number-of- available-applications-in-the-google-

play-store/

 [2] http://www.androidcentral.com/gmail-now-has-over-1- billion-monthly-active-users

 [3] https://play.google.com/store/apps/details?id=com. facebook.katanahl=endetails-reviews

 [4] https://play.google.com/store/apps/details?id=com. truecallerdetails-reviews

 [5] BIFET,A. AND FRANK, E. Sentiment knowledge discovery in twitter streaming data. In

Discovery Science, Springer, 1-15,2010

 [6] Guzman, Emitza, and Wiem Maalej. How do users like this feature? a fine grained sentiment

analysis of app reviews. Requirements Engineering Conference (RE), 2014 IEEE 22nd

International. IEEE, 2014.

[7] Chen, Ning, et al. AR-Miner: mining informative reviews for developers from mobile app

marketplace. Proceedings of the 36th International Conference on Software Engineering. ACM,

2014.

[8] Fu, Bin, et al. Why people hate your app: Making sense of user feedback in a mobile app

store. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery

and data mining. ACM, 2013.

[9] Gao Cuiyun, et al. PAID: Prioritizing app issues for developers by tracking user reviews over

versions. Software Reliability Engineering (ISSRE), 2015 IEEE 26th International Symposium

on. IEEE, 2015.

[10] Gao, Cuiyun, et al. AR-Tracker: Track the Dynamics of Mobile Apps via User Review

Mining. Service-Oriented System Engineering (SOSE), 2015 IEEE Symposium on. IEEE, 2015.

[11] Mikolov, Tomas, et al. Efficient estimation of word representations in vector space. arXiv

preprint arXiv:1301.3781 (2013).

[12] Chelba, Ciprian, et al. One billion word benchmark for measuring progress in statistical

language modeling. arXiv preprint arXiv:1312.3005 (2013).

34

[13] Rong, Xin. word2vec parameter learning explained. arXiv preprint arXiv:1411.2738 (2014).

[14] Roelleke, Thomas, and Jun Wang. TF-IDF uncovered: a study of theories and probabilities.

Proceedings of the 31st annual international ACM SIGIR conference on Research and

development in information retrieval. ACM, 2008.

[15] Wilbur, W. John, and Karl Sirotkin. The automatic identification of stop words. Journal of

information science 18.1 (1992): 45-55.

[16] http://scikit-learn.org/stable/modules/generated/ sklearn.metrics.silhouettescore.html

35

LIST OF PUBLICATION

[1] Ankur Tagra , Durga Toshniwal, “DIPMAP: Did I Program a Poor Mobile App?” in the

IEEE International Conference on Data Mining ‘2016.

36

