
i

QoS aware Web Service Selection using Modified Gray Wolf

Optimizer

A DISSERTATION

Submitted in fulfillment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

By

Ashutosh Agrawal

(14535007)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

ROORKEE -247 667 (INDIA)

MAY, 2016

ii

CANDIDATE'S DECLARATION

__

I hereby declare that the work, which is being presented in the dissertation entitled ‘‘QoS aware

Web Service Selection using Modified Gray Wolf Optimizer’’ towards the partial fulfillment

of the requirement for the award of the degree of Master of Technology in Computer Science

and Engineering submitted in the Department of Computer Science and Engineering, Indian

Institute of Technology Roorkee, Roorkee, Uttarakhand (India) is an authentic record of my own

work carried out during the period from July 2015 to May 2016, under the guidance of Dr.

Rajdeep Niyogi, Associate Professor, Department of Computer Science and Engineering, IIT

Roorkee.

The matter presented in this dissertation has not been submitted by me for the award of any other

degree of this or any other institute.

Date:

Place: Roorkee (Ashutosh Agrawal)

CERTIFICATE

__

This is to certify that the above statement made by the candidate is correct to the best of my knowledge and

belief.

Date:

Place: Roorkee (Dr. Rajdeep Niyogi)

 Associate Professor

Department of Computer Science and Engineering

IIT Roorkee

iii

ACKNOWLEDGEMENT

__

I feel honored in presenting this dissertation report in such an authenticable form of sheer endurance and

continual efforts of inspiring excellence from various coordinating factor of cooperation and sincere efforts

drawn from all sources of knowledge.

I express deep gratitude for enthusiastic and valuable suggestions that I got from my guide

Dr. Rajdeep Niyogi (Associate Professor), Department of Computer Science & Engineering, Indian

Institute of Technology Roorkee, for successful completion of this project. His integrity and commitment

has inspire me.

I heartily thank professors and technical staff of Computer Science & Engineering, IIT Roorkee, for helping

me in exploring the possibility of carrying out the experiments in their laboratory.

Finally, I would like to acknowledge with gratitude, the support and love of my family and friends. They

all kept me going.

iv

ABSTRACT

Web service composition has become an important tool to implement complex business processes

demanding multiple functionalities to be served. Selecting best set of services for composition

becomes crucial when, there are large number of services available serving the same functionality

but differing in various QoS attributes. When global constraints on non-functional characteristics

like total cost or availability of the composite service, are given the problem converts itself into an

optimization problem.

Some solutions using meta-heuristic techniques has been developed for this problem in the past

years. We propose applicability of Modified Gray Wolf Optimizer for this problem. Furthermore

we compare the results of Genetic Algorithm, GWO and MGWO algorithms and we found that

the result obtained from MGWO algorithm is better than GA and GWO, in terms of solution

efficiency.

v

Table of Contents

Abstract……………………………………………………………………………………………….iv

Table of contents…………………………………………….……………………………..…..……...v

List of figures……………………………………………………………………………………........vi

List of tables……………………………………………………………………………………..vii

 1. INTRODUCTION……………………………………………………………………..….. 1

1.1. Local vs Global Selection…………………………………………………..….. 3

1.2. Challenges in Web Service Selection……………………..………………..….. 3

2. Literature Survey………………………………………………………………………..……5

3. System Model………………………..…………………………………………………….... 8

3.1. Problem Example and General Notations……………………………………….…8

3.2. Composition Model……………………………………………………………..… 9

3.3. QoS Model………………………………………………………………………. .10

3.4. Utility Function……………...…………………………………………………… 11

3.5. Constraint Model………………………………………………………………… 12

4. Research Gaps………………………………………………………………………………13

5. Proposed Approach………...………..…………………………………………………….. 14

5.1. Modified Gray Wolf Optimizer.……….…………………………………………14

5.2. MGWO for Web Service Selection...…………………………………………… 16

5.2.1 Solution Representation ………………………………………………. .16

5.2.2 Parameter and Methods ………………………………………………. .17

5.2.3 Fitness Function ………………………………………………………. .18

5.2.4 Algorithm Explanation ….……………………………………………. .19

6. Experimental Results and Discussion ……,,,,…………………………………………….. 21

6.1. Parameter Settings …………….……….…………………………………………21

6.2. Data Set……………………………..…………………………………………… 21

6.3. Discussion on the Result ……….…..…………………………………………… 21

7. CONCLUSION……………………………………………………………………………..29

REFERENCES………………………………………………………………………………...30

vi

LIST OF FIGURES

Figure 1: Conceptual Overview…………………………..………………………………….…….. 2

Figure 2: Comparison of different research works …………………………..…….……….…….. 7

Figure 3: Composite Service Abstract Example ……………………….……………….…………. 8

Figure 4: General Problem Parameters and Notations ………...………………………….….…… 8

Figure 5: Real Life Composition Example………………… ….……………………………….. 9

Figure 6: Composition Structures ………..…………………………………………………………10

Figure 7: Aggregation Functions……...………….…………………………………………………10

Figure 8: MGWO Algorithm pseudo code ……………………………………………………...… 16

Figure 9: Solution Representation...…………………………………………………………………17

Figure 10: Comparison of Avg. fitness values from GA, GWO and MGWO…………………...23

Figure 11: Evolution of QoS attributes over the course of generations…………..…………..24-28

vii

LIST OF TABLES

Table I: Average attributes and fitness value for 20 runs ...……………………………………… 22

1

1. INTRODUCTION

Service-Oriented Architecture is being adapted by most of the organizations to serve user

requirements which are composed of multiple functionalities. Composition of web services is done

to find the workflow which satisfies the complete user requirement. Continuous development of

web services leaves us with multiple web services for same functionality. These web services differ

in various nonfunctional characteristics like cost, availability, reliability etc., also referred as QoS

parameters of the web service.

Web services selected for the composition are developed independently and are executed in

distributed manner. Service interface publication, service discovery and service invocations are

performed using XML based standard protocols WSDL, UDDI, SOAP respectively [17]. Complex

business processes or user requests which needs composition of web services, are modeled using

web service orchestration languages like BPEL4WS, WSCI, BPML. Here each functionality

required by the user is represented by an abstract web service for which multiple concrete web

services may be available. These abstract services are also referred as service classes and the

services available for abstract services are called candidate services.

User of the composite web service can put some constraints on the overall values of the QoS

parameters of web services. For example, the overall cost of the composition should not be greater

than some specific value or the overall availability of the composition should be at least some

given value. These constraints on the composite web services are called global constraints. The

problem of selecting an efficient set of services at each service class level, with multiple global

constraints so that all the global constraints are satisfied (if possible) and the overall cost of the

composition remains minimum, is known as QoS aware web service selection with global

constraints. This problem has analogy with the combinatorial problem, the multi-dimensional

multiple choice knapsack problem (MMKP), which is a well-known NP-hard problem. Finding

solution to such a problem takes exponential time, which can be out of the runtime requirements.

Fig 1 shows the process of web service composition by taking example of an abstract web

service, which can be expressed by the languages like BPEL. Web services for any functionality

are searched in a common repository i.e. UDDI, where most of the services are registered. Multiple

services, serving the same functionality can be present in this repository, which are listed as the

result of searching. One service is to be selected from this list for the composition. The combination

of the selected services should be such that the QoS requirement of the composition is fulfilled.

2

The decision of the selection of web service is taken at run time, hence the complexity of the

selection algorithm play a crucial role, in areas where quick composition is required. QoS

requirement or the global constraints on the composition can be available at run time only for some

cases, hence the algorithm should be able to cope with these kind of situations.

 Fig 1. Conceptual Overview

Recently, population based meta-heuristic algorithms, due to their wide-spread applicability in the

real-world problems, e.g., economics, biology, engineering design, and information science [1]–

[3], have attracted the attention of researchers. Some of the most popular algorithms are: Genetic

Algorithm (GA)[4], Differential Evolution (DE) [5], Particle Swarm Optimization (PSO) [6], and

Artificial Bee Colony (ABC) algorithm [7]. The Grey Wolf Optimizer (GWO) [8] is latterly put

forward population based optimization algorithm, which imitate the hunting and democratic

behavior of grey wolves. In this thesis, optimal web services for each service class is selected using

modified gray wolf optimizer (MGWO) [9]. Further, to judge the efficacy of MGWO, it is

compared against two state-of-the-art algorithms: GA and GWO on the well known

3

web service selection problem from the QWS data set1. The statistical results obtained from

experimental study clearly demonstrate that the MGWO outperforms GA and GWO.

1.1 Local Selection vs. Global Optimization

Web service composition can be done with 2 different strategies: first is Local Selection and

second is Global Selection. In local selection strategies given a set of services for any functionality,

a web service is selected independently from the other set of services for other functionalities. One

utility function is defined prior to the selection which maps the QoS values of different parameters

to a single value, which can be used to compare its cost with other web services. And the service

which maximizes this utility value is finally selected for the web service composition. The main

advantage of this method is that it take O(n), time complexity for each web service selection, where

n is the number of different services available for one functionality. But this strategy can’t be used

for the composition where global (end to end) constraints are applied by the user, because at the

time of the selection the end to end criteria of the composite service is not considered and the total

value of the composite service for that parameter may exceed the maximum limit declared by the

user.

On the other hand in Global Selection strategy used in [10], all possible combination of selections

are traversed to reach to the solution which satisfies maximum possible global constraints. The

problem of web service selection with global constraints can be modeled as Multi-Choice

Multidimensional Knapsack Problem (MMKP), which is an NP hard problem. This solution

strategy is practical for the compositions where small set of services are there for web service

selection but for the large set of services for each functionality the overall complexity of the

solution becomes unreasonable. Hence we need some algorithm which can give us near optimal

solution in polynomial time.

1.2 Challenges in Web Service Selection

Below are the main challenges that we may face while composing web services.

1. For any particular operation of the required composition of web services there may be

multiple and large number of web services available over internet hence web service

selector must be able to search from this huge web service repository.

4

2. Web services are being developed and updated continuously hence the composition should

be able to adopt the changes at run time.

3. Different web service providers use different specification languages and communication

protocols hence the composition should be able to deal with this heterogeneity.

4. Handling Compositional structure like loop and parallel etc.

5. QoS value of a service may be different from what is claimed by the provider.(SOA ensures

this doesn’t happen).

The rest of the report is organized as follows. Section 2 outlines the related work. Section 3

describes the problem and its modeling. Section 4 introduces the proposed methodology.

Experimental settings and the simulation results are described in Section 5. Finally, Section 6

concludes and presents a future scope of the work.

5

2. LITERATURE SURVEY

A very simple brute force solution to the problem of QoS aware web service selection with global

constraints, searches for each possible combination of web services for different service class,

which takes exponential time. As available services for each functionality are growing day by day,

this solution becomes impractical for the situations where quick response is needed. Many

researchers tried finding a fast solution to the problem. In [10] linear programming (LP) solution is

proposed, which provides efficient solution of the problem. This solution takes less time than brute

force solution. In this solution Qbroker architecture is used. In this system a broker is assigned to

each service class which is responsible for selection and invocation of the services. Mainly this

solution models the problem of web service selection to a linear programming problem, for which

objective, constraints and variable needs to be defined. Objective and constraints in a linear

programming problem should be a linear equation. In this solution linear objective and constraints

are defined for 5 QoS parameters.

Sometimes finding a fast and near optimal solution is better than a slow and optimal solution.

[11] gives near optimal solution to the problem in polynomial time. It encodes this problem in two

different ways: first, the combinatorial model, in which the problem is defined as MMKP problem.

And second is the graph model, which defines the problem as multiconstrained optimal path

problem (MCOP).Furthermore two different heuristic algorithms are given for these models.

Polynomial time complexity is achieved for combinatorial model in WS_HEU heuristic algorithm.

Whereas for graph model (MCSP-K), the complexity achieved in heuristic algorithm is exponential.

WS_HEU algorithm starts with finding a feasible solution to the problem, followed by 2 more steps.

In the first step it searches for any feasible upgrade. In the last step of the algorithm alternatives are

searched for any non-feasible downgrade followed by feasible upgrade. Though this algorithm finds

the solution in polynomial time, it incurs a very high communication cost as the algorithm works

in multiple iterations. [12] uses mixed integer programming to find the solution. The solution here

works in two phases: In first phase mixed integer programming is used to decompose the global

constraints into local constraints and in second phase local selection strategies are applied to find

the solution. Here continuous quality values are divided into discrete quality levels. The number of

quality levels are found by iterative method. This solution has exponential time complexity but it

takes lesser time than [10] as the number of binary decision variables are less. This solution also

provides near to optimal solution but it is better than [11]. Here the workflow of the composite web

6

service is assumed to be sequential. Qbroker is used for service selection and service invocation in

this solution also. In [13], the work in [12] is extended for non-sequential workflows also. Non

sequential workflow is converted into sequential workflow by a step by step process in which at

each step a non-sequential construct is replaced by a virtual service class and the process is repeated

until the workflow becomes sequential and then constraints on virtual service classes are

decomposed until each service class of original composition is assigned with a set of local

constraints.

Some Optimization methods are also used to solve this problem. [14] used simple genetic

algorithm, in which a genome is represented as an integer array where each index represents a

service class and its value represents index of the services available for that service class. For

genome in which global constraints are violated, additional penalty is added to the fitness value so

that the evolution can be directed towards the solution which satisfies most of the constraints. This

solution is faster than integer programming techniques for large scale problems. In [18] algorithm

CoDiGA is given, which is an improvement in simple genetic algorithm used in [14]. In this

algorithm a relation matrix coding scheme is used so that all paths of composite web service can be

expressed at the same time. Initial population and evolution policies are enhanced to quickly

converge the algorithm. [15] used simulated annealing meta-heuristic technique in combination

with genetic algorithm and developed the algorithm named QQDSGS. Result shown in this paper

shows that this algorithm is better than simple GA and CoDiGA. Some other meta-heuristic

techniques and its hybridizations are also used to solve this problem e.g. [16] used hybridization of

GRASP and PR meta-heuristic techniques to solve the problem etc. Figure2 shows the comparison

of some research works in this field.

7

Figure 2: Comparison of different research works

8

3. SYSTEM MODEL

3.1 Problem Example and General Notations

Fig 3 is an abstract example of web service composition, which describes the composite service as

the set of abstract services. Fig 4 gives the general parameters and the notations generally used in

research papers.

Fig 3. Composite Service abstract Example

 Fig 4. General Problem Parameters and Notations

Service class is a functionality for which multiple concrete services can be available

Utility Function denotes one single value (or cost) for a web service across all QoS parameters.

This function is used to compare two web services.

Atomic Services are the set of services which can be used for any service class. A jth web service

for ith service class is represented by sij .

Qc is a m size vector, where m is the number of QoS parameters, which stores the global

constraints for all the QoS attributes.

9

3.2 Composition Model

The structure of composition for composite web services can be different for different user

requirements. For example consider a personalized multimedia news delivery scenario [12].

Figure5 shows the composition structure for this scenario. In this example multimedia news is

delivered to smartphone users. The news contains multimedia content (news videos in MPEG 2

only) and news tickers. A transcoding service is needed to convert the news videos in user required

format. Also one translation service is required for translating the news ticker. A merging web

service is required to merge the results of transcoding and translation services. Finally a

compression web service is required to send the data through wireless medium.

 Figure 5: Real Life Composition Example

Figure 6 shows few composition structures by which different web service can be connected in

a composite web service. Figure 6(a) shows a sequential construct where web service S2 will always

execute after web service S1. Figure 6(b) shows split composition construct in which web services

S2 and S3 can be executed in parallel but they are dependent on service S1. Figure 6(c) shows join

construct where services S1 and S2 can be executed in parallel but S3 is dependent on S1 and S2

both. Moreover split structure can be of 2 types: first is AND split and second is OR split. For OR

split a probability is assigned to each outgoing path by the workflow designer so that the overall

cost of the composition can be calculated for different QoS attributes.

10

 Figure 6: Composition Structures

3.3 QoS Model

QoS of web services is given by some non-functional characteristics like cost, efficiency,

reliability, availability etc. These attributes are used to compute the QoS value of the composite

web service. A quality vector Qs ={q1(s),q2(s),…qn(s)}, is used to represent the QoS of a web

service s. Here qi is ith quality attribute and qi(s) is value of ith quality attribute for web service s.

The quality attributes can be of 2 types: positive attributes and negative attributes. The value of

the positive QoS attribute should be high for a web service e.g. availability, whereas the value of

the negative attributes should be low e.g. cost.

Different aggregate functions are used to find the aggregated QoS value of the composite web

service. Aggregate functions for different QoS attributes are shown in Figure 7.

 Figure 7: Aggregation Functions

11

3.4 Utility Function

To evaluate the single quality value of a web service across all quality parameters, a utility

function is used. This single quality value is called the utility value of the web service. It is used

to compare quality of two web services. Different attribute values can be present in different units

like cost in rupees, response time in sec or msec. To bring all the values in uniform platform,

scaling is done. In scaling process all the attribute values are scaled between 0 and 1. Different

normalization schemes can be used for this purpose. We are using MinMax normalization in this

work. The formula for MinMax normalization is given by the following formula.

xnorm=(x-min)/(max-min)

Where min is the minimum value and max is the maximum value of the attribute in which

normalization is being applied. x is the original value and xnorm is the normalized value.

Aggregated QoS value for the composite web service is then calculated using aggregate

functions shown in Table I. For the sake of simplicity we have used summation as the aggregate

function for all the attributes. As user can give more importance to one attribute than other,

weighting process is followed by scaling process. In weighting process all the aggregated values

of different attributes are multiplied by the user assigned weights for that attributes.

Utility function can also be of two types: One that should be minimized and the other that

should be maximized. In first case all the positive attributes should decrease the utility value and

all the negative attributes should increase the utility value. And in second case all the positive

attributes should increase the utility value and all the negative attributes should decrease the utility

value. One utility function for first case can be as follows:

𝑈(𝐶𝑆) =
w1 ∗ q1(CS) + w2 ∗ q2(CS)

w3 ∗ q3(CS) + w4 ∗ q4(CS)

Here wi is the weight for ith QoS attribute, q1 and q2 are negative attributes, whereas q3 and

q4 are positive attributes. The above function represents the utility function for 4 QoS attributes.

The utility function for more QoS attribute can be defined similarly by adding the negative

attributes in numerator and adding the negative attributes in denominator.

12

3.5 Constraint Model

The user of the composite web service can put some constraints on some attributes of the

composed service i.e. the overall value of some QoS parameter can be restricted by the user. For

example the total cost of the composition cannot be greater than some given value or the overall

availability should be less than some specific value. Constraint for a positive attributes is given by

the minimum threshold value for that attribute, and constraint for a negative attribute is given by

the maximum threshold value for that attribute. These constraints are given by a vector of integers

representing a threshold value for each attribute. A constraint vector C in our approach is

represented as follows:

C=(c1,c2,…cn)

 Where ci is threshold value for ith QoS parameter. The above constraint vector C represents

constraints for n QoS attributes.

13

4. RESEARCH GAPS

 As mentioned in the previous section [7] solves the problem of local selection and gives

the best computation cost, but does not consider the global constraints, hence it does not

address this problem.

 [2] provides the solution for dynamic as well as quality driven web service selection and

considers the global constraints also. This solution uses Linear Programming methods

which gives the optimal selection of services which satisfies the global constraints also,

but this solution works when the set of services for each service class is small. This solution

has poor scalability because of the exponential time complexity of the solution and as the

number of services increase the solution becomes unreasonable to use practically.

 [5] and [6] extends the solution given by [2] to include the local constraints also but it still

uses Linear Programming which takes exponential time complexity.

 [4] also provides algorithm for QoS aware web service composition and but this paper

considers only reliability as the QoS criteria. It gives a polynomial time algorithm to find

the best reliable composition, but as it considers only one QoS criteria the solution doesn’t

address our problem.

 [1] gives heuristic algorithm for web service selection with global constraints and provides

the near optimal solution to the problem. The complexity of the algorithm is O(N2(l-1)2m)

, which is polynomial, but the results and complexity of this algorithm can still be improved

as it solves the problem in many iterations.

14

 5. PROPOSED APPROACH

5.1 Modified Gray Wolf Optimizer

The Gray Wolf Optimizer (GWO) is a population based meta-heuristic algorithm that is

proposed by Mirjalili et al. in 2005 [8] for optimizing numerical problems. The algorithm is

specifically based on the hunting and democratic behavior of gray wolves. Generally, the grey

wolves live in the pack of 5-12 members on average and all the group members are compelled to

follow a strict dominant hierarchy in the group. In the group, the highest position is assigned to

alpha wolf (α), followed by beta (β) wolf which holds the second position and works as aide to

alpha wolf. The beta wolf deliver the instructions of alpha wolf to all group members and

acknowledges their response to alpha. The delta wolf (𝛿) holding third position in the hierarchy,

act like a subordinate to alpha and beta. Finally, omega wolves (Ω) hold the last position in the

hierarchy. Another fascinating characteristic of wolves is group hunting which is accomplished in

three stages; Chasing, encircling, and attacking.

The algorithm starts with predetermined number of wolves where their initial positions are

randomly decided. The best, the second best, and the third best positions are assigned to alpha,

beta, and delta, respectively. And the remaining positions are allotted to omega wolves. In order

to find the position of the prey, wolves adopt an intelligent strategy. After knowing the position of

the pray, they cleverly make an effort to encircle it. Suppose in any generation t of the algorithm,

the position of the prey and the wolf is denoted by X(t) and Xp(t), respectively. The mathematical

modeling for the encircling process is as follows: [8]

Where C = 2r2 and A = 2a*r1-a, r1 and r2 are random numbers selected from interval (0,1),

and a = 2-2*t/t_Max [8], which decreases linearly from 2 to 0. Here t_Max denotes the maximum

number of generations in the algorithm. In hunting process, alpha act as leader, while beta and

delta play the role of subordinate. The location of the prey (optimal solution) is not known

previously in most of the cases. However, it is presumed that alpha, beta and delta are superior and

have some clue about location of prey and the rest wolves are entailed to reposition themselves

according to alpha, beta, and delta using equations (1)-(2).

15

However, to investigate the advantages and weakness of the GWO, Kishor et al. [9] tested

it on numerical bench mark functions. The empirical study divulge that there is problem of

premature convergence in the GWO due to lack of diversity in the search space. Further, they have

pointed out that only three best solutions share their information with each other and convey their

opinion to all members. In other words, the GWO loses diversity as it reliance on three solutions

only. Thereby, in case of multimodal problems (where many local optima are present), it can be

trapped into a sub optimal point, deteriorates it diversity, and premature convergence occurred. On

knowing the drawbacks of the GWO, Kishor et al. [9] proposed a modified GWO (MGWO) to

alleviate the local optimal stagnation and resolve the diversity problem. In this modification, the

crossover operator of GA is integrated with the GWO. The incorporation of crossover into GWO,

ameliorates the search capability as every member can share its information with other pack mates.

In this way, MGWO makes proper balance between exploration and exploitation. The pseudo code

for MGWO is depicted in Figure 8.

16

 Figure 8: MGWO Algorithm pseudo code

5.2 MGWO for web service selection

5.2.1 Solution Representation

To apply MGWO algorithm, a suitable genome needs to be defined. For this problem a genome can

be an array of integers, which represents indices of the concrete web services available for each

service class. The size of this integer array is equal to the number of service classes in composite

web service. Figure 9(b) shows a genome for an abstract sequential composite web service shown

in Figure 9(a). The value 2 at first index of this genome represents second concrete web service S12

for first service class S1. As a whole this genome represents the composition of S12, S21, S34 and

S43 concrete web services.

17

 Figure 9: Solution Representation

5.2.2 Parameters and Methods

To apply Gray Wolf Optimizer to the problem of web service selection with global

constraints. We have used population size of 100. And for crossover, standard 2 point crossover is

used with crossover probability of 1. As the values in a chromosome represents the indices of the

concrete web services available for any particular service class, the values from the algorithm are

brought into the range by using the method of clipping. In clipping the value goes beyond the

upper bound the value is set to the maximum value and if the value comes out to be lesser than the

lower bound, it is set to be the minimum value. And to normalize the values of the penalty values,

the difference from the constraint satisfaction i.e. difference of the total value and the threshold

value (explained in more detail in the following sub section), is divided by the maximum of

threshold and the total value of the attribute. This is done is order to bring the penalty values in the

range, which is same as the utility value. The weights for the different QoS attributes are taken to

be 1.

18

5.2.3 Fitness Function

 A fitness function is defined for the problem, which signifies the overall value (or cost) of

the composition. The solution approaches to minimize (or maximize) the fitness value. In our case

utility function can be used as the fitness function, but some penalty parameter needs to be added

in utility value to include the constraints satisfaction. Adding this penalty directs the algorithm to

reach the solution, which satisfies most of the global constraints. Penalty to be added, can be

calculated by finding the distance from constraint satisfaction for each QoS attribute.

Suppose the global constraints for the composition are represented by the vector

C=(c1,c2….cn), where ci is the threshold value for ith QoS attribute. The distance from constraint

satisfaction for ith attribute can be calculated by finding the difference between ci and the

aggregated value of ith attribute. Distance from constraint satisfaction for any attribute, is added to

the total penalty only if the constraint is violated. The total penalty P can be given by the following

equation.

In above equation di(CS) is the distance from constraint satisfaction for ith attribute. And xi

ensures that the distance is added to the total penalty only if the constraint is getting violated. The

value of xi is decided differently for positive and negative attributes. If the aggregated value of

some ith QoS attribute which is a positive attribute, is less than ci (threshold value for ith attribute),

then the constraint is considered to be violated and the value for xi becomes 1. On the other hand

if the aggregated value of that attribute counts to be more than ci then, the constraint is not violated

and the value of xi becomes 0. Similarly for negative attributes if the aggregated value of some ith

QoS attribute which is a negative attribute, is more than ci (threshold value for ith attribute), then

the constraint is considered to be violated and the value for xi becomes 1. On the other hand if the

aggregated value of that attribute counts to be less than ci then, the constraint is not violated and

the value of xi becomes 0.

19

Now the total fitness function for the composite service can be given by the following

equation.

 Where, X is the genome for which the fitness value is being calculated. P(X) is the total

penalty, calculated by equation 6. wi the weight for ith QoS attributed defined by the user. qi(X), is

the aggregated attribute value for ith QoS attributed. By adding the penalty value in the utility

function the function becomes balanced to move towards the constraint satisfaction over the course

of evolution.

5.2.4 Algorithm Explanation

 First of all initial population of size 100 is generated by selecting random values in the range

1 to no of concrete web services available for each service class. Each solution in this population

represents a genome as shown in Figure 9. After that cost for all the solutions is calculated and top

3 solutions are assigned to α (alpha), β (beta) and 𝛿 (delta) respectively. Now in each iteration of

the 100 iterations following happens:

 The value of a is calculated by the formula a = 2-2*t/t_Max [8], which reduces from 2 to

0. In our approach we have taken t_Max=100.

 Now the values of A and C are calculated by the formula C = 2*r2 and A = 2a*r1-a, where

r1 and r2 are random numbers in the range 0 to 1.

 Now equation 1 and 2 is applied on each solution of the initial population to calculate the

values of D and X for all 3 solutions to calculate the value of X1, X2 and X3 as shown in

equation 3 and 4.

 Initial population is updated by equation 5 which takes average of X1, X2 and X3 , calculated

in previous step.

 The crossover is performed on the updated population on each two successive solutions,

with crossover probability equal to 1.

 After crossover, the cost of the new obtained population is calculated.

20

 Top 3 solutions are found out to replace the values of alpha (α), beta (β) and delta (𝛿).

The process repeats for all 100 iterations. The above algorithm except the crossover function

represents the GWO algorithm. Adding crossover to the GWO algorithm, adds diversity of the

solutions, by creating a good mix of the solutions. In this way the MGWO algorithm picks the

positive sides of GWO and GA algorithm and given better performance.

21

6. EXPERIMENTAL RESULTS AND DISCUSSION

In order to perform optimal web service selection with global constraints, we use MGWO

algorithm. Further, to judge the relative performance of the MGWO, it is compared against two

well-known state-of-the-art meta-heuristic techniques: GA and GWO. It is noteworthy that GA is

already applied for web service selection [14].

6.1 Parameter Setting

We used MATLAB 2015(b) to implement all the experiments in the window environment

on a 64 bit 1.70 GHz Intel(R) Core(TM) i3-4005U PC with 4 GB RAM. In order to make a fair

comparison, following parameter setting is adopted for the algorithms: We select maximum

number of generations as a stopping criterion, which is set to 100 for all three algorithms. And

total 20 runs are carried for each experiment. However, the parameter for GA is kept as in [14].

6.2 Data set

We used the data set from repository2 in this work. A brief description of the data set is

given as follows: The dataset provides values of 9 QoS attributes for 2507 concrete web services.

We have used data for 2500 web services, in order to make the problem symmetric. We have taken

10 service classes in our composite web service example and assigned 250 web services from this

dataset to each service class. All 9 QoS attributes are considered in our experimental study. Two

out of the 9 QoS attributes are negative QoS attributes, whereas rest of the 7 QoS attributes are

positive QoS attributes. The values given in this dataset are in different units, for example

availability and reliability is given in percentage, and response time and reliability is given in

seconds.

6.3 Discussion on the result

Table I shows the average value of the results obtained in 20 runs of GA, GWO and

MGWO algorithm. The results obtained clearly express that the MGWO give comparatively better

than other two algorithms. Figure 10 demonstrates the convergence rate of the MGWO, the GWO,

22

and the GA. The successive generations are represented in x-axes and the average of best fitness

values obtained in 20 different runs is represented in y-axes. It is clear from Figure 10 that

convergence speed of the MGWO is far better than GA and comparable to the GWO. Further, the

average values of all nine service attributes achieved by three algorithms in successive generation

are depicted in Figure 11. It is interesting to see that the MGWO gives better performance in almost

all the cases. For some attributes GWO is better, because it is not necessary for values of all the

attributes to be best in the best combination. The ultimate result of the MGWO algorithm is best,

with best results for most of the attributes, if we want some specific attribute to get minimum

value, we can increase it’s weight.

 GA GWO MGWO

Response Time 1935.21 1435.55 1438.46

Availability 856.421 865.4 886.35

Throughput 123.895 129.505 135.965

Successability 885.316 899 919.4

Reliability 722.684 718.3 725.9

Compliance 905.053 912 907.6

Best Practices 813.211 809.3 818.8

Latency 176.768 110.95 112.485

Documentation 390.421 399 394.85

Total Fitness 0.0077 0.00515 0.00507

 Table I: Average attributes and fitness value for 20 runs

23

 Figure 10 : Comparison of Avg. fitness values from GA,GWO and MGWO

24

 (a)

(b)

25

(c)

(d)

26

(e)

(f)

27

 (g)

(h)

28

(i)

Figure 11 : Evolution of QoS attributes over the course of generations

29

7. CONCLUSION

In this work, we applied Modified Gray Wolf Optimizer algorithm for the problem of web service

selection with global constraints. The MGWO is able to balance exploration and exploitation in

the search space. Our proposed approach determines a set of services that satisfy the constraints

and optimize the QoS attributes. To validate the performance of the MGWO, in terms of optimality

and convergence rate, it is compared against two state-of-the-art algorithms: GA and GWO on

benchmark test data set from public repository. Finally, the results reveal that the MGWO performs

better than its two contestants, achieving lower fitness value and showing faster convergence rate.

 Furthermore, in this work we assumed the sequential workflow of composition. In future

this work can be extended for web service selection in non-sequential workflows.

30

REFERENCES

[1] Dervis Karaboga and Celal Ozturk. A novel clustering approach: Artificial bee colony (abc)

algorithm. Applied soft computing, 11(1):652–657, 2011.

[2] Mohd Herwan Sulaiman, Zuriani Mustaffa, Mohd Rusllim Mohamed, and Omar Aliman.

Using the gray wolf optimizer for solving optimal reactive power dispatch problem. Applied Soft

Computing, 32:286–292, 2015.

[3] Kusum Kumari Bharti and Pramod Kumar Singh. Opposition chaotic fitness mutation based

adaptive inertia based bpso for feature selection in text clustering. Applied Soft Computing, 43:20–

34, 2016.

[4] David E Goldberg et al. Genetic algorithms in search optimization and machine learning,

volume 412. Addison-wesley Reading Menlo Park, 1989.

[5] Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic for

global optimization over continuous spaces. Journal of global optimization, 11(4):341–359, 1997.

[6] Russ C Eberhart, James Kennedy, et al. A new optimizer using particle swarm theory. In

Proceedings of the sixth international symposium on micro machine and human science, volume

1, pages 39–43. New York, NY, 1995.

[7] Dervis Karaboga. An idea based on honey bee swarm for numerical optimization. Technical

report, Technical report-tr06, Erciyes university, engineering faculty, computer engineering

department, 2005.

[8] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey wolf optimizer.

Advances in Engineering Software, 69:46–61, 2014.

[9] Avadh Kishor and Pramod Kumar Singh. Empirical study of grey wolf optimizer. In

Proceedings of Fifth International Conference on Soft Computing for Problem Solving, pages

1037–1049. Springer, 2016.

[10] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and Quan Z

Sheng. Quality driven web services composition. In Proceedings of the 12th international

conference on World Wide Web, pages 411–421. ACM, 2003.

[11] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services selection

with end-to-end qos constraints. ACM Transactions on the Web (TWEB), 1(1):6, 2007.

31

[12] Mohammad Alrifai and Thomas Risse. Combining global optimization with local selection

for efficient qos-aware service composition. In Proceedings of the 18th international conference

on World wide web, pages 881–890. ACM, 2009.

[13] Mohammad Alrifai, Thomas Risse, and Wolfgang Nejdl. A hybrid approach for efficient

web service composition with end-to-end qos constraints. ACM Transactions on the Web

(TWEB), 6(2):7, 2012.

[14] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani. An

approach for qos-aware service composition based on genetic algorithms. In Proceedings of the

7th annual conference on Genetic and evolutionary computation, pages 1069–1075. ACM, 2005.

[15] Zhi-peng Gao, Chen Jian, Xue-song Qiu, and Luo-ming Meng. Qoe/qos driven simulated

annealing-based genetic algorithm for web services selection. The Journal of China Universities

of Posts and Telecommunications, 16:102–107, 2009.

[16] Jos´e Antonio Parejo, Sergio Segura, Pablo Fernandez, and Antonio Ruiz- Cort´es. Qos-

aware web services composition using grasp with path relinking. Expert Systems with

Applications, 41(9):4211–4223, 2014.

[17] W3C Working Group. Web services architecture. http://www.w3.org/.

[18] Ma, Yue, and Chengwen Zhang. "Quick convergence of genetic algorithm for QoS-driven

web service selection." Computer Networks 52.5 (2008): 1093-1104.

http://www.w3.org/

