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ABSTRACT

A vibration frequency estimator based on moving-window discrete Fourier trans-

form (MWDFT) integrated with frequency locked loop (FLL) is proposed for the

vibration mode estimation of single-link flexible manipulator (SLFM). A MWDFT

exhibits tuned filter frequency response characteristics and this filter is considered

as a digital system with negative feedback loop to track the tip deflection sig-

nal. The bandwidth of the MWDFT increases by the introduction of negative

feedback. To estimate the frequency of the tip deflection signal, a FLL is de-

signed with MWDFT-feedback loop. The frequency error was exploited to achieve

synchronization between in-phase component of MWDFT and input signal. The

existing frequency estimators and the FLL based on MWDFT are implemented

on SLFM for the estimation of tip deflection signal amplitude and frequency.

An LQR controller is designed to control the tip deflection of SLFM which effi-

ciently suppresses the tip deflection vibration.
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Chapter 1

Introduction

The flexible manipulators span a wide range of applications such as space robotics,

collision control, nuclear maintenance and others. The problems related to flexible

manipulators and their several applications can be found in the literature survey in

[1]. The interest in the vibration frequency estimation of flexible manipulators is

mainly due to the higher operating speeds, light weight, low energy consumption,

safer operation due to reduced inertia, low mounting strength requirement, smaller

actuator requirement, low rigidity, transportability and less bulky design. How-

ever, in realizing the advantages of flexible manipulator, vibration arising due to

structural flexibility is a major constraint. There is an increased demand for high-

speed robotics in industries resulting in the significant increase in the necessity of

research on the control of flexible manipulators which includes vibration frequency

estimations of the flexible link. Frequency estimation is the identification or ex-

traction of nonstationary sinusoidal signals and the estimation of their parameters

such as amplitude, frequency and phase. Examples of its general applications are

frequency estimation of time-varying biomedical signals, active noise and vibra-

tion control, and sinusoidal disturbance rejection. The various methods proposed

in the past for frequency estimation have been implemented on the flexible link

manipulator and a technique for vibration frequency estimator is proposed.

1



Chapter 1. Introduction 2

1.1 Literature survey

Flexible-link manipulator control is achieved through Lyapunov control, fractional

order controller, generalized proportional controller (GPI), intelligent control, in-

tegral resonant control (IRC), and adaptive control. In [2], dynamic deflection is

measured using an optical sensing system comprising a laser diode and a position

sensitive detector. A Lyapunov controller based on deflection feedback regulates

the endpoint of the flexible manipulator and dampens it’s oscillations. The tip

position control in [3] is achieved with an output feedback control strategy based

on the principle of transmission zero assignment; this ensures the stability of the

closed-loop system. Further, the tip-position control is implemented with frac-

tional order controller [4], where the overshoot of the system is independent of the

tip mass. A motion controller using GPI is proposed in [5] to control the torque of

SLFM for free and constrained motion. An intelligent-based control scheme in [6]

motivated by inverse dynamics control strategy for rigid-link manipulators is pro-

posed for the tip-position tracking control of flexible manipulator. The end-point

vibration is dampened by the active vibration controller based on fuzzy logic and

neural networks [7] [8]. Furthermore, an IRC scheme based technique consisting

of two nested loops could be found in [9]. The output redefinition strategy and

feedback linearization techniques are employed in [10]to adaptively control [11]

[12] the manipulator.

The aforementioned control methods demand the output should be measured or

estimated and fedback to the controller to take appropriate control action. A

sensing strategy integrated with the filter design estimates the end point vibra-

tion rate of the single link flexible manipulator [13]. A control scheme based on

strain guage is proposed for very lightweight single-link flexible manipulator in

[14]. A vibration mode estimation method based on sliding discrete fourier trans-

form integrated with phase-locked loop is proposed in [15]. An algebraic estimator

is integrated with an adaptive controller to control the tip deflection of flexible

manipulator [16]. Therefore, the capability of existing frequency estimators and

their suitability to estimate the tip deflection frequency have been explored for

integration of these methods with adaptive controllers.
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The existing frequency estimators are (i) non-linear adaptive estimation (NLAE)

[17], (ii) globally convergent (GC) [18], [19] (iii) algebraic identification (AI)

[20],[21], (iv) second order generalized integrator (SOGI) based frequency locked

loop [22], [23], [24], (v) third order generalized integrator (TOGI) based adaptive

frequency locked loop (AFLL) [25].

The NLAE method for extraction of non-stationary sinusoids involves gradient

descent method to minimize the error between input and desired signals. The con-

vergence and stability of the system are guaranteed only if the error is quadratic.

In addition, this method demands a nominal value of frequency ω0 to be set close

to the estimating frequency of the signal and when this nominal value deviates

there exists a trade-off between the speed and steady-state error that results in an

increased computation time. Another constraint is the choice of the parameters,

which determines the convergence speed versus error compromise.

The GC method guarantees convergence and it reconstructs the values of fre-

quency, amplitude, and offset of the signal simultaneously. The higher order es-

timator has smoother estimates than the lower order one due to the filtering of

the transformed input signal. However, this method is not suitable for the signal,

which is the addition of multiple sinusoidal signal of different amplitudes and fre-

quencies. The AI estimator employs the time varying linear unstable filters along

with classical low-pass filters. The estimator convergence is independent of the

initial conditions and design parameter. However, the signal-to-noise ratio affects

the performance exponentially.

The generalized integrator convolves the sinusoidal signal by itself in time-domain

and yields the sinusoidal signal multiplied by time variable. The dynamic response

of the SOGI based FLL depends on the amplitude and frequency of the input sig-

nal and control parameters. However, the SOGI based FLL should be modified

for the estimation of multiple sinusoidal frequencies that are integer multiple of

fundamental frequency. Moreover, structural modification is required for estimat-

ing the frequency of input sinusoidal signal with dc input. In TOGI based FLL,

the dependence of dynamical response on the amplitude and frequency of input

is reduced. This estimator is capable of estimating the unknown parameters in
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the presence of harmonic components in the input signal with order four. How-

ever, the small values of frequency result in slow-down of the dynamic response.

Therefore, the previously proposed techniques aforementioned have one or more

disadvantages as (i) convergence and stability is not guaranteed, (ii) there exists a

compromise between the convergence speed and steady-state error, (iii) constraint

in setting of parameters, (iv) not appropriate for multiple amplitude and multiple

frequency estimation, (v) performance depends on SNR, (vi) dependency of sta-

bility and dynamic response on amplitude and frequency of the input signal and

control parameters, and (vii) slow-down of the dynamic response at small values

of frequency.

1.2 Objectives of dissertation work

The objectives of this dissertation work include:

1. Develop a dynamic model for the SLFM system.

2. Propose a frequency estimation scheme based on Moving-Window DFT.

3. Simulate the frequency estimator with different test inputs.

4. Implement the proposed scheme on SLFM system.

5. Evaluate the performance of the proposed scheme and compare it with the

previously proposed estimation techniques.

6. Design an adaptive controller to suppress the oscillation of the link.

1.3 Organisation of report

This report is organized as follows: Chapter 2 describes the modeling of the SLFM.

Overview of the frequency estimation techniques previously proposed is discussed

in Chapter 3. The proposed technique alongwith the adaptive controller is pre-

sented in Chapter 4. Chapter 5 discusses the simulation and experimental results

and performance comparison is done for all the techniques. Conclusions and scope

for future work are stated in Chapter 6.



Chapter 2

Modeling of Single-Link Flexible

Manipulator

2.1 Experimental set-up

The block diagram of the experimental set-up is shown in Fig. 3.4. The exper-

imental setup under consideration is a single-link flexible manipulator which is

coupled to a D.C. motor controlled rotary base. Quanser Flexible link system

consists of (i) a rotary base (SRV02) and flexible link (ii) amplifier unit (iii) data

acquisition (DAQ) system.

2.1.1 SRV02 servomotor

The SRV02 consists of a DC motor that is encased in a solid aluminium frame

and provided with a gearbox. The motor drives external gears with the help of

its own gearbox. SRV02 is equipped with potentiometer, encoder and tachometer.

Optical encoder and potentiometer are used for measurement of angular position

of motor shaft, tachometer is used to measure angular velocity of motor shaft.

5
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Figure 2.1: Block diagram representation of experimental set-up

2.1.2 Flexgage (Flexible link)

Flexgage is a single link exible manipulator whose base is mounted on the load

gear of the SRV02 system. It has one degree of freedom and rotates in horizontal

direction only. The main objective here is to suppress the vibrations at the tip of

the link. The deflection of the tip is measured by the strain guage affixed at the

motor end of exible link.

2.1.3 Voltage amplifier

The Quanser VoltPAQ-X1 is a single channel linear voltage based power ampli-

fier. The main functions of voltage amplifier are to supply the required voltage

and current to drive DC motor, provide power supply to all sensors of SRV02

and FLEXGAGE, receive outputs of all analog sensors and convert them to the

required voltage levels to communicate with data acquisition device.

2.1.4 Data acquisition device

Quanser Q8-USB is a high performance data acquisition control board. DAQ

device acquires data from sensors through voltage amplifier (for analog sensors

only), converts it into digital format to communicate with PC as well as accept
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data in digital format from PC, and convert it to analog to give motor command.

PC commands are communicated via USB port to DAQ device and fed to SLFM.

QUARC control software integrated with MATLAB/simulink environment con-

trols the input to SLFM.

2.2 Modeling of single link flexible manipulator

A dynamic model of system is required to be developed in order to know about

the dynamics and the response of system with respect to different inputs. The

equations that describe the motions of the servo and the link are obtained using

the Euler-Lagrange equation.

∂2L

(∂t∂q̇i)
− ∂L

(∂qi)
= Qi (2.1)

where qi are generalised coordinates, the two generalised coordinates are motor

angular position θ(t) and tip deflection of link xα(t).

q(t)T = [θ(t)xα(t)] (2.2)

With the generalised coordinates defined, the Euler-Lagrange equation for the

rotary flexible link system are

∂2L

∂t∂θ̇
− ∂L

∂θ
= Q1 (2.3)

∂2L

∂t∂ẋα
− ∂L

∂xα
= Q2 (2.4)

The generalised force acting on rotary arm is

Q1 = τl −Beqθ̇ (2.5)

and the generalised force acting on flexible link is given as

Q2 = −Blẋα (2.6)

Back emf voltage of motor is given by

eb(t) = kmωm(t) (2.7)

Differential equation obtained from DC motor armature circuit is
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Vm − ImRm − Lm
dIm(t)

dt
− kmωm(t) = 0 (2.8)

where

Vm(t) is input applied to SRV02

ωm(t) is angular velocity of shaft measurement

Im(t) is armature current of motor.

Armature inductance Lm is very small, hence neglected in deriving the model.

Armature current Im(t) is given by following equation

Im(t) =
Vm(t)− kmωm(t)

Rm

(2.9)

The motor torque τm(t) and the torque applied at load shaft τl(t) are

τm(t) = ηmktIm(t) (2.10)

τl(t) = ηgKgτm(t) (2.11)

Using equation (2.9) (2.10) and (2.11), τl(t) is given as

τl(t) =
ηgKgηmkt(Vm −Kgkmθ̇)

Rm

(2.12)

The Lagrangian operator is

L = K − P

where K is kinetic energy and P is potential energy.

Therefore,

L =
1

2
Jeqθ̇2 +

1

2
Jl(θ̇ + ẋα)2 − 1

2
Ksxα2 (2.13)

where Jeq is moment of inertia and Beq is viscous friction.

This friction opposes the torque being applied at the servo load gear. The friction

acting on the link is represented by viscous damping coefficient Bl. Flexible link

can be modeled as a linear spring with stiffness Ks. The state variables chosen for

the model are θ, xα, θ̇ and ẋα.

(Jeq + Jl)θ̈ + Jlẍα +Beqθ̇ = τl (2.14)

Jlθ̈ + Jlẍα +Blθ̇ +Ksxα = 0 (2.15)
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Table 2.1: Parameter values of experimental set-up

Parameters Symbol Unit Value

Motor armature resistance Rm ω 2.6

Motor armature inductance Lm H 0.18x10−3

Motor back emf constant km V/(rad/s) 7.68x10−3

Motor torque constant kt N.m/A 7.68x10−3

Viscous friction acting on
motor shaft

Bm N.m/(rad/s)0.015

Motor shaft moment of in-
ertia

Jm kg.m2 9.76x10−5

Motor efficiency ηm 0.69

Gearbox efficiency ηg 0.9

Gear ratio Kg 70

Length of link L m 0.419

Mass of link M kg 0.065

Viscous friction acting on
link

Bl N.m/(rad/s)0

Link moment of inertia Jl kg.m2 0.0038

Link stiffness coefficient Ks N.m/rad 1.3

Using equations (2.14) and (2.15), Euler-Lagrange equations are

θ̈ = −(
Beq

Jeq
+
ηgK

2
gkmktηm

JeqRm

)θ̇ +
Ks

Jeq
xα +

ηgKgηmkt
JeqRm

Vm (2.16)

ẍα = (
Beq

Jeq
+
ηgK

2
gkmktηm

JeqRm

)θ̇ −Ks(
Jl + Jeq
JlJeq

)xα −
ηgKgηmkt
JeqRm

Vm (2.17)

where

Jeq = ηgK
2
gJm + Jl

Beq = ηgK
2
gBm +Bl

State space representation of single link flexible manipulator is

ẋ = Ax+Bu (2.18)

y = Cx+Du (2.19)
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where,

A =


0 0 1 0

0 0 0 1

0 Ks

Jeq
−(Beq

Jeq
+

ηgK2
gkmktηm

JeqRm
) 0

0 −Ks(
1
Jeq

+ 1
Jl

) (Beq

Jeq
+

ηgK2
gkmktηm

JeqRm
) 0



B =


0

0

ηgKgηmkt
JeqRm

−ηgKgηmkt
JeqRm

 ;C =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ;D =


0

0

0

0





Chapter 3

Frequency Estimators overview

3.0.1 Non-linear adaptive method

The dynamics of the algorithm for the extraction of nonstationary exponentially

decaying sinusoidal signal and estimation of their parameters is governed by a set

of non linear differential equations as given below [17].

y(t) = A sinφ(t); φ(t) = ωt+ θ

dÂ(t)

dt
= 2µ1e(t) sin φ̂(t)

dω̂(t)

dt
= 2µ2e(t)Â(t) cos φ̂(t)

dφ̂(t)

dt
= ω̂(t) + µ3

dω̂(t)

dt

e(t) = u(t)− Â(t) sin φ̂(t)

(3.1)

where, µ1, µ2, µ3 are the algorithm regulating constants. This method requires a

nominal value of frequency ω0 to be set close to the frequency of the signal. As

this nominal value deviates, there exists a trade-off between the speed and steady-

state error. Another constraint is the setting of the parameters µ1, µ2, µ3 which

determine the convergence speed versus error compromise.

11
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Figure 3.1: Block diagram for Nonlinear adaptive estimator

3.0.2 Globally convergent method

A method of estimation with the global convergence property to reconstruct the

unknown values of the amplitude, frequency and offset of a sinusoidal signal si-

multaneously. A globally convergent estimator can be derived by defining a state

variable as the time derivative of a quadratic function of the sinusoidal signal and

using a technique in reduced-observer designs. Only frequency estimation possible

in second order estimator, the reconstruction of other unknown values leads to the

higher order estimators with smoother estimates [18].

y(t) = A0 + A sin(ωt+ φ)

The derived seventh order estimator is as

ξ̇1 = −λξ1 + 3λy(t)

ξ̇2 = −λξ2 − 2λy2(t)

˙̂z1 = ẑ2 + ξ′θ̂ + (1 + αλ)(λy2(t)/2− ẑ1)

˙̂z2 = λξ′θ̂ + α(λy2(t)/2− ẑ1)
˙̂
θ = Γξ(λy2(t)/2− ẑ1)

θ = [θ0 θ1 θ2]

θ0 = (A2 − A2
0)ω

2

θ1 = A0ω
2

θ2 = ω2

(3.2)
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This estimator cannot be extended to the case of multiple amplitudes and fre-

quencies. The convergence time is high for this estimator as revealed by the

simulations.

3.0.3 Algebraic identification method

The problem of on line identification of unknown parameters, namely, amplitude,

frequency and phase in unknown noisy sinusoidal signals is explored by an alge-

braic approach. An algebraic derivative method is employed in frequency domain

which yields exact formulae for the unknown parameters when placed in time do-

main. The Butterworth type low-pass filters are applied to the time-varying linear

unstable filters which result from the algeabraic manipulations performed on the

Laplace transform expression of the biased signal to synthesize these formulae.

The algeabraic manipulations above involve elimination of the unknown constants

through derivation with respect to the complex frequency variable s [20].

y(t) = A0 + A sin(ωt+ φ)

γ = [γ1 γ2 γ3]; γ1 = ω2; γ2 = A sinφ; γ3 = Aω cosφ;

The numerator and denominator signals are filtered using same low-pass filter.

This does not affect the quotient. The low-pass filter is a second order filter with

cut-off frequency ωn and enhanced damping features.

γ̂1 =
n1F (s)

d1F (s)

F (s) =
ω2
n

s2 + 2ζωns+ ω2
n

The numerator and denominator are obtained by differentiating the y(t) three

times with respect to complex frequency s and are given as

n1(t) = z1 + t3y(t), d1(t) = z4,

ż1 = z2 − 9t2y(t), ż2 = z3 + 18ty(t),

ż3 = −6y(t), ż4 = z5,

ż5 = z6 − t3y(t), ż6 = 3t2y(t)

(3.3)
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The parameter γ2 is obtained as follows and second order low-pass filter is applied

to both numerator and denominator.

γ̂2 =
n2F (s)

d2F (s)

n2(t) = γ21 + 2γ̂1γ22 + γ̂1
2γ23 − γ̂1γ̂3

t4

24
+ γ̂3

t2

2
,

(3.4)

d2(t) = −t
3γ̂1
3
, γ21 = z1 − ty(t),

ż1 = y(t), γ22 = z2,

ż2 = z3, ż3 = z4 − ty(t),

ż4 = y(t), γ23 = z5,

ż5 = z6, ż6 = z7,

ż7 = z8, ż8 = z9 − ty(t),

ż9 = y(t)

(3.5)

For the estimation of parameter γ3, multiply the Laplace transform of y(t) by s

and differentiate with respect to s and then multiplying the obtained expression by

(s2 + p21)
2 and simplifying results into an expression which is further differentiated

twice with respect to s, the equations obtained are as follows

γ̂3 =
n3F (s)

d3F (s)

n3(t) = γ31 + γ̂1γ32 + γ̂1
2γ33,

d3(t) =
−t4

12
, γ31 = z1 − t3y(t),
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ż1 = z2 + 11t2y(t), ż2 = z3 − 28ty(t),

ż3 = 12y(t), γ32 = z4,

ż4 = z5, ż5 = z6 − 2t3y(t),

ż6 = z7 + 14t2y(t), ż7 = z8 − 20ty(t),

ż8 = 4y(t), γ33 = z9,

ż9 = z10, ż10 = z11,

ż11 = z12, ż12 = z13 − t3y(t),

ż13 = 3t2y(t)

(3.6)

The estimation of the frequency by this method is not smooth, it involves irregu-

larities.

3.0.4 Second order generalized integrator based frequency

locked loop

A second order generalised integrator (SOGI) together with the frequency locked

loop (FLL) makes an adaptive system for the estimation of frequency and am-

plitude. The concept of the integrator comes from the principle that the original

function multiplied by the time variable is obtained from the time-domain con-

volution product of a sinusoidal function by itself. A resonator is a processing

block whose transfer function matches with the Laplace transform of a sinusoidal

signal acts as an amplitude integrator for the signal applied at its input. An ideal

integrator independent of the phase angle of the sinusoidal input signal can be ob-

tained by the in-quadrature combination of the sine and cosine transfer functions.

The frequency locked loop (FLL) here is an effective mechanism for adapting the

center frequency of the SOGI based FLL. FLL detects the input frequncy directly

and phase angle and amplitude are calculated indirectly. The dynamical response

and stability of this nonlinear system depends on various parameters: the values

of K and γ which are the control parameters of SOGI and FLL respectively and

the frequency and amplitude of the signal [23] .
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Figure 3.2: Adaptive filter based on SOGI

y(t) = A sin(ωt+ φ)

 ẋ1

ẋ2

 =

 −kω′ −ω′2
1 0

 x1

x2

 +

 kω′

0

 y (3.7)

 v′

qv′

 =

 1 0

0 ω′

 x1

x2

 (3.8)

ω̇′ = −γx2ω′(y − x1) (3.9)

3.0.5 Third order generalized integrator

A continuous-time on-line adapted frequency locked-loop (AFLL) filter based on

a third order generalised integrator estimates the unknown parameters of a single

baised sinusoidal signal with a dynamic of order four. The AFLL system is a third

order filter described by the following differential system [25]

y(t) = A0 + A sin θ(t), θ(t) = ωt+ φ

ẏ1(t) = −ω′y2(t) +Kω′(Ky(t)− y1(t))

ẏ2(t) = ω′y1(t)

ẏ3(t) = −Kω′y3(t) +Kω′(Ky(t)− y1(t))

(3.10)
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Figure 3.3: AFLL block diagram

Figure 3.4: AFLL frequency adaptation scheme

where ω′ and K represent the AFLL resonant frequency and the filter gain re-

spectively. These two parameters define the dynamic and filtering characteristics

completely. K affects the bandwidth of the system and Kω′ adjusts the transient

period. The adaptation law for ω′ to tune the resonant frequency to the unknown

is

ω̇′(t) = γω′(t)(Ky(t)− y1(t)− y3(t))(Ky3(t)− y(2(t)); γ > 0 (3.11)

The dynamic response is slower for small values of frequency.



Chapter 4

Proposed Scheme

4.1 MWDFT algorithm integrated with FLL

A moving window discrete Fourier transform (MWDFT) algorithm integrated with

frequency locked loop (FLL) shown in 4.1 is proposed for vibration frequency

estimation of single link flexible manipulator. This estimation scheme consists of

(i) MWDFT with feedback and (ii) sampling pulse generator (SPG) for MWDFT.

4.1.1 MWDFT with feedback-loop

The basic idea behind the existence of moving window discrete fourier transform

is derived from the fact that there are more number of identical elements at two

consecutive time instants. Consider the two time instances as (n1) and n with

corresponding sequences as y(n1) and y(n). For window length of N = 32, and

for time instant n = 31 sequence is as follows [26]

y(31) = y(0), y(1), ....y(31)

and y(32) is given as at time instant n=32

y(32) = y(1), y(2), ....y(32)

18
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Figure 4.1: Block diagram of proposed frequency-locked loop

The moving window DFT algorithm performs an N -point DFT on time samples

within a sliding window. For the above example, the MWDFT initially computes

the DFT of the N=32 samples and then the time window is advanced one sample

and a new N -point DFT is calculated. The incremental advance of time window

leads to the name moving window DFT. DFT of current time instant is calculated

using DFT of previous instant with minimum number of computations.

From properties of DFT,

If Y [k] be N -DFT corresponding to y[n], then

y[(n−m)N ] = W km
N Y [k] (4.1)

where
WN = e−j2π/N (4.2)

where N is the window length.

The property in (4.1) is circular shift property of DFT. First sequence element is

replaced by the last sequence element, for e.g. y(0) is replaced by y(32) in y(31)

and circularly shift the sequence obtained to the left by one sample.

Therefore, the result of the above is

Yk(n) = [Yk(n− 1)− y(n−N) + y(n)]ej2πk/N (4.3)

Using this formula, transfer function of MWDFT in z-domain is as follows

H(z) =
(1− zN)ej2πk/N

1− ej2πk/Nz−1
(4.4)

MWDFT is more efficient compared to the convention DFT and FFT algorithms.

It requires fixed number computations, that is, two real additions and one complex

multiplication irrespective of the length of DFT. However, for this algorithmic

computation, it is essential that DFT for previous time instant is available. A



Chapter 4. Proposed Scheme 20

Figure 4.2: MWDFT feedback-loop

simple idea to initialize this algorithm is to obtain DFT of first time instant either

using DFT or FFT [27].

The block diagram of MWDFT in feedback-loop is shown in Fig. 4.2.

The MWDFT computes the N -point DFT of the tip deflection signal x[n] by

advancing the window of width N with one sample [26], [27], [28]. The difference

equation of MWDFT is

Xk(n) = [Xk(n− 1)− x(n−N)rN + x(n)]rejθk (4.5)

where, k is the bin index; θk = 2πk/N ; r is the damping factor; Xk(n) is the DFT

at present instant; and Xk(n− 1) is the DFT at previous instant. For k = 1, the

transfer function obtained in z-domain with multiplying factor (2/N) is

HMWDFT (z) =
2

N

(1− rNzN)rejθ1

1− rejθ1z−1
(4.6)

The input to MWDFT is xKe[n], the difference between x[n] and in-phase compo-

nent xip[n] obtained at the output. Let the tip deflection be

x[n] = Ae−ζn sin(ωn) (4.7)

where A and ω are the amplitude and angular frequency of tip deflection to be

estimated; ζ is decaying ratio. For fixed sampling frequency fs, the tip deflection
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Figure 4.3: Schematic of sampling pulse adjustment mechanism

frequency (ω) variation can be modeled in the MWDFT output xip and xqp as

xip = A1e
−ζnsin(ωn± φ)

xqp = A2e
−ζncos(ωn± φ) (4.8)

where A1 and A2 are the amplitudes of xip and xqp. The φ is phase shift observed

at xip and xqp due to the change in ω. The change in center frequency of ω

introduces changes in amplitude (increase or decrease) and phase shift (lead or lag),

i.e. windowing effect of DFT in xip and xqp. The bandwidth of MWDFT tuned

digital filter is increased through negative feedback and the frequency response is

made almost flat characteristics. However, the sampling frequency mechanism is

integrated with the FLL to eliminate the small magnitude and phase error observed

at xip and xqp. Therefore, the error

xe[n] = x[n]−Kfxip[n] (4.9)

4.1.2 SPG for MWDFT

The block diagram representation of adaptive sampling pulse adjustment scheme

is shown in Fig.4.3. It consists of moving average filter (MAF), discrete-time

integrator (DTI) [29] and sampling pulse generator (SPG).



Chapter 4. Proposed Scheme 22

For Kf = 1,

xe[n] = e−ζn[Asin(ωn)− A1sin(ωn± φ)]

xe[n] = e−ζnRsin(ωn− θ) (4.10)

where R =
√
a2 + b2; a = [A − A1cos(φ)]; b = A1sin(φ); θ = arctan(b/a). The

input to the sampling pulse adjustment mechanism is the xe[n] multiplied with

xqp of MWDFT as shown in Fig.4.3. The frequency error is

fe[n] =
A2e

−2ζnR

2
[sin(2ωn+ θ ± φ)− sin(θ ± φ)] (4.11)

The fe[n] is fed to MAF.

4.1.2.1 Moving average filter

Moving average lter acts as low pass lter and passes on average value and blocks

fundamental and harmonics. In Z-domain the transfer function is given as

HMA(z) =
1

N

1− z−N

1− z−1
(4.12)

Number of computations required for above mentioned filter are 1 addition, 1

subtraction along with constant multiplication for each output sample irrespective

of window length that is N .

4.1.2.2 PI controller

The purpose behind the PI controller is to produce constant DC input to NCO at

steady state that is when output of phase detector i.e. e(n) approaches zero. In

Z-domain PI controller is designed using following equation

HPI(z) = Kp +
Ki

1− z−1
(4.13)
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4.1.2.3 Limiter

Limiter is used to limit the saturation level of integral action of PI controller,

which indirectly bounds the value of control input supplied to NCO. Therefore

control input to NCO is limited in between -1 and 1.

4.1.2.4 Numerically controlled oscillator

Numerically controlled oscillator receives the control input in range of -1 to 1 to

generate the pulses of required frequency which are further fed to the MWDFT

and moving average filter [29].

Let α is the control input to NCO

where,

α = cosωt (4.14)

α = cos(
2πfs
fenable

) (4.15)

for α = 0, fenable = 4fs, where, fenable is the enabling frequency and this technique

works at 4 times the sampling frequency.

NCO is implemented using the following equation y1(k + 1)

y2(k + 1)

 =

 α α− 1

α + 1 α′

 y1(k)

y2(k)

 (4.16)

initial conditions are y1(0) = 1 and y2(0) = 0.

4.1.3 Proposed method

The signal form the deflection of the tip xα is measured by the strain guage which

is fed to the input of the MWDFT. The in-phase xip and quadrature-phase xqp

components are obtained in z-domain at the output of MWDFT from (4.6) as

Re[HMWDFT (z)]=
2

N

(1− rNz−N)(r cos θ1 − r2z−1)
1− 2r cos θ1z−1 + r2z−2

Im[HMWDFT (z)]=
2

N

(1− rNz−N)(r sin θ1)

1− 2r cos θ1z−1 + r2z−2
(4.17)
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where, N is the window length and r is the damping factor.

The comb filter cascaded with resonator structure of (4.17) is shown in Fig. 4.2.

This filter is marginally stable because of the pole lying on the unit circle in z-

domain. The damping factor ensures the stability of the MWDFT as it forces the

pole to be at a radius of r < 1 (inside the unit circle). MWDFT extracts the

fundamental of tip deflection signal x[n] to estimate it’s amplitude and frequency.

This method is designed to extract the fundamental signal of tip deflection from

ideally 0 Hz to 6 Hz with center frequency of 3 Hz. The product of error and

output of the MWDFT algorithm is fed to the moving averager which smoothens

the error by eliminating the high frequencies. This avarage error is further pro-

cessed by the proportional integral controller and the resultant signal is limited

by the saturation block. This signal is then supplied to the numerically controlled

oscillator (NCO) whose output adjusts the sampling frequency of MWDFT when-

ever the tip deflection varies around the input frequency. The NCO supplies the

correct sampling frequency required for the MWDFT and moving averager.

4.2 Controller

The control for SLFM is obtained using Linear Quadratic Regulator (LQR). If the

matrices A and B are controllable, then the Linear Quadratic Regulator optimiza-

tion method is used to find a feedback control gain. The model is given in (2.18),

the control input u is found that minimizes the cost function

J =

∫ ∞
0

x(t)′Qx(t) + u(t)′Ru(t)dt (4.18)

where Q and R are the weighting matrices. These matrices are essentially the

tuning variables which affect how LQR minimizes the cost function.

The control law is given as u = −Kx, the state-space equation in (2.18) becomes

ẋ = Ax+B(−Kx)

ẋ = (A−BK)x
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The feedback control loop is designed which stabilizes the servo to a desired posi-

tion θd, while minimizing the deflection of the flexible link.

The reference state is defined as

xd = [ θd 0 0 0 ]

and the controller as

u = K(xs − x)

If xd is 0, then u = −Kx, which is same as the control used in the LQR algorithm.

The Q and R matrices are tuned, and the gain K is generated using LQR which

minimizes the function.

Figure 4.4: State-feedback Control Loop

In full state feedback, both the servo position and the flexible link position along

with their velocity states are fedback. In partial state feedback (PSF), the strain

guage is ignored and only the servo position control is achieved.

Q =


q1 0 0 0

0 q2 0 0

0 0 q3 0

0 0 0 q4

 ; R = 1

The matrix Q sets the weight on the states which determines u to minimize J .

Also, increasing or decreasing the diagonal elements of Q, effects the generated

gain K = [k1 k2 k3 k4].

The increase in q1 increases the servo proportional gain k1 which makes the system

response faster by decreasing peak and settling time. q2 does not affect the system

response. An increase in q3 increases the servo derivative gain k3 and makes
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k4 more positive thereby minimizing the overshoot of servo response. This has a

disadvantage of slowing down the response. On increasing q4, the link proportional

gain k2 and derivative gain k4 decreases. This significantly minimizes the deflection

of flexible link without affecting the servo related gains, k1 and k3.



Chapter 5

Results and Discussions

The performance of the proposed algorithm is presented in this section. The

proposed scheme is implemented for the frequency estimation of single-link flexible

manipulator. The simulation and experimental results are discussed. Performance

of proposed algorithm is compared with following frequency estimation techniques.

1. Non-linear adaptive method

2. Globally convergent method

3. Algebraic identification method

4. Second order generalised integrator based frequency-locked loop

5. Third order generalised integrator

5.1 Simulation results

The aforementioned frequency estimation methods are simulated with the syn-

thetic vibration signal generated in the MATLAB/Simulink environment.

27
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5.1.1 Frequency and amplitude estimation

In non-linear adaptive estimator, the parameters are chosen as µ1 = 50 µ2 = 0.25

and µ3 = 2000.

Figure 5.1: Frequency and amplitude estimation using NLAE (Simulation)

Figure 5.2: Frequency and amplitude estimation using AI (Simulation)

The simulation result for the algebraic identification shows the presence of noise of

large magnitude and the estimated frequency remains constant with time whereas

experimentally, the estimated frequency decays to zero with increasing time. The

magnitude of spikes present is very large upto 300 and and amplitude cannot be

estimated with this method for the decaying exponential signal. The computation

time for the frequency with this method is very small i.e. 0.4 sec. It can work for

a wide range of frequency and decaying ratio as can be seen from the table 5.2.

The second order generalised integrator computes the frequency in about 1 s for

the simulation. For SOGI, the value of k is 2 which controls the convergence time

and γ is -250.
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Figure 5.3: Frequency and amplitude estimation using SOGI-FLL (Simula-
tion)

Figure 5.4: Frequency and amplitude estimation using TOGI-AFLL (Simula-
tion)

The third order generalised integrator based on adaptive frequency locked loop

computes the frequency in about 1 s for both simulation and single-link flexible

manipulator. The range of frequency for this method is more compared to SOGI

varying from 0.2 to 5.8 but the deacying ratio varies from 0.05 to 0.1 which is

less in comparison to other methods. The value of ks affects the bandwidth of the

system and has been set to 2 and γs is set to 125.

Fig.5.5 shows the frequency and amplitude estimation with the proposed MWDFT-

FLL where the convergence time is 3.5 sec.
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Figure 5.5: Frequency and amplitude estimation using MWDFT-FLL (Simu-
lation)

5.1.2 Frequency and amplitude estimation for noisy input

signal

The tip deflection signal is corrupted by white Gaussian noise of power of 10W/MHz.

The noisy tip deflection signal, estimated frequencies in presence of noise with

other methods, and proposed method are shown in Fig. 5.6 to 5.9

Figure 5.6: Frequency and amplitude estimation using NLAE for noisy signal
(Simulation)
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Figure 5.7: Frequency and amplitude estimation using SOGI-FLL for noisy
signal (Simulation)

Figure 5.8: Frequency and amplitude estimation using TOGI-AFLL for noisy
signal (Simulation)
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Figure 5.9: Frequency and amplitude estimation using MWDFT-FLL for
noisy signal (Simulation)

5.1.3 Frequency and amplitude estimation for step changes

in amplitude and frequency

Figure 5.10: Frequency and amplitude estimation using NLAE for step
changes in frequency and amplitude (Simulation)

The frequency estimations and reconstructed signals with amplitude estimations

for the noisy input signal are shown in figures 5.6, 5.7, 5.8 and 5.9. The effect of

noise is more in SOGI-FLL and TOGI-AFLL as compared to other methods.
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Figure 5.11: Frequency and amplitude estimation using SOGI-FLL for step
changes in frequency and amplitude (Simulation)

Figure 5.12: Frequency and amplitude estimation using TOGI-AFLL for step
changes in frequency and amplitude (Simulation)
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Figure 5.13: Frequency and amplitude estimation using MWDFT-FLL for
step changes in frequency and amplitude (Simulation)

At 10 s, the step change in frequency of 3 to 3.5 Hz is applied and at 21 s the

amplitude of the tip deflection signal is doubled. The estimations of the frequency

for the noisy input signal and amplitude estimations with reconstructed signals

are shown in figures Fig. 5.10, 5.11, 5.12 and 5.13.

5.1.4 LQR controller

Fig. 5.14 shows the output of LQR controller with full state feedback.

Figure 5.14: Output of adaptive controller using LQR - Full state feedback



Chapter 5. Results and Discussions 35

5.2 Experimental Results

The various methods for frequency estimation as mentioned above have been sim-

ulated for a decaying exponential signal and implemented on the experimental

set-up. In the experimental setup, the signal from the tip deflection measured

by the strain guage is the input to the various techniques. This section discusses

the results obtained through experimental validation. The aforementioned meth-

ods are tested for determining their operating range for estimating frequency and

decaying ratio.

5.2.1 Frequency and amplitude estimation

In GC method, the tuning parameters should be adjusted for estimation of fre-

quency and amplitude every time as frequency or amplitude changes, it was ob-

served that no common set of parameters for particular operating range.

Figure 5.15: Frequency and amplitude estimation using NLAE (Experiment)

The measured tip deflection signal with f = 3 Hz, ζ = 0.1, and the estimated

frequencies with other methods and MWDFT FLL are shown in Fig. 5.11 to 5.15

respectively. The NLAE provides accurate estimated frequency at steady state,

good operating range but the convergence time is 25 s.
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Figure 5.16: Frequency and amplitude estimation using AI (Experiment)

Figure 5.17: Frequency and amplitude estimation using SOGI-FLL (Experi-
ment)

In AI method, 5.16 shows that the estimated frequency decays to zero with in-

creasing time and estimated frequency is noisy. However, AI converges very quickly

with 0.4 s. The SOGI FLL exhibits moderate performance for operating range,

accuracy and error. However the convergence time is 15 s.

TOGI AFLL also converges at 11 s. The proposed method is tuned to perform

for a frequency range of 2.7− 4.5 Hz with the decaying ratio range of 0.01− 1 for

a convergence time of 4 s. The NLAE estimates the amplitude with error whereas

the AI method is not suitable for the estimation of amplitude of exponentially

decaying sinusoidal signal. The SOGI FLL and TOGI AFLL track the amplitude

with oscillations. The proposed method tracks the amplitude accurately. The tip

deflection signal and estimated amplitudes with the reconstructed tip deflection

signal are shown in Fig. 5.16 to Fig. 5.19.
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Figure 5.18: Frequency and amplitude estimation using TOGI-FLL (Experi-
ment)

Figure 5.19: Frequency and amplitude estimation using MWDFT-FLL (Ex-
periment)

5.2.2 Frequency and amplitude estimation for noisy input

signal

The noisy tip deflection signal, estimated frequencies in presence of noise with

other methods, and proposed method are shown in Fig. 5.20 to Fig. 5.23 respec-

tively. The tip deflection signal is corrupted by white Gaussian noise of power of

10 W/MHz. The proposed method could track the frequency of the tip deflection

signal accurately and it could be observed from the figures. Similarly, the noisy
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Figure 5.20: Frequency and amplitude estimation using NLAE for noisy signal
(Experiment)

Figure 5.21: Frequency and amplitude estimation using SOGI-FLL for noisy
signal (Experiment)

tip deflection signal and the estimated amplitudes with reconstructed signals are

shown in Fig. 5.20 to Fig. 5.23 respectively. The proposed method could estimate

the amplitude in the presence of noise.
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Figure 5.22: Frequency and amplitude estimation using TOGI-AFLL for noisy
signal (Experiment)

Figure 5.23: Frequency and amplitude estimation using MWDFT-FLL for
noisy signal (Experiment)

5.2.3 Frequency and amplitude estimation for step changes

in amplitude and frequency

The proposed method along with other methods are tested for sudden changes in

frequency and amplitude of the tip deflection signal.

At 10 s, the step change in frequency of 3 to 3.5 Hz is applied and at 21 s the

amplitude of the tip deflection signal is doubled. The performance of MWDFT
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Figure 5.24: Frequency and amplitude estimation using NLAE for step
changes in frequency and amplitude (Experiment)

Figure 5.25: Frequency and amplitude estimation using SOGI-FLL for step
changes in frequency and amplitude (Experiment)

FLL along with other methods are provided in Fig. from 5.24 to 5.27 for frequency

estimation. The proposed method converges at 4 s and estimates the frequency

accurately. Simultaneously, the amplitude changes are recorded and plotted in

Fig. from 5.24 to 5.27 with reconstructed signals.
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Figure 5.26: Frequency and amplitude estimation using TOGI-AFLL for step
changes in frequency and amplitude (Experiment)

Figure 5.27: Frequency and amplitude estimation using MWDFT-FLL for
step changes in frequency and amplitude (Experiment)
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5.2.4 Performance comparison

It could be observed from 5.29 that the MWDFT FLL performs well in tracking

the changes in amplitude.

Figure 5.28: The tip deflection signal and estimated frequencies (Experiment)

Figure 5.29: The tip deflection signal and estimated amplitudes with recon-
structed tip deflection signals (Experiment)
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Figure 5.30: The noisy tip deflection signal and estimated frequencies (Ex-
periment)

Figure 5.31: The noisy tip deflection signal and estimated amplitudes with
reconstructed tip deflection signals (Experiment)
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Figure 5.32: The tip deflection signal and estimated frequencies for a step
change in frequency and amplitude (Experiment)

Figure 5.33: The tip deflection signal and estimated amplitudes with recon-
structed tip deflection signals for a step change in frequency and amplitude

(Experiment)
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Table 5.1: Performance comparison

Parameters NLAE GC AI SOGI
FLL

TOGI
AFLL

MWDFT
FLL

Range of estimated
f (Hz)

1.5 - 6 NA 0.1 - 6 1 - 4.4 0.2 - 5.8 2.7 - 4.5

Range of ζ 0.03 -
1.3

NA 0.01 - 2 0.01 -
0.17

0.01 -
0.8

0.01 - 1

Estimated parame-
ters

(f = 3 Hz; ζ =
0.1)

NLAE GC AI SOGI
FLL

TOGI
AFLL

MWDFT
FLL

f (Hz) 3.002 NA NA 2.9 2.975 3.009

Error in f 0.002 NA NA 0.065 0.025 0.009

Error in amplitude 0.003 NA NA 0.03 0.013 0.012

Convergence time
(s)

25 NA 0.4 15 11 4

Table 5.2: Tuning parameters

NLAE SOGI FLL TOGI AFLL MWDFT FLL

µ1 = 1; µ2 = 0.125;
µ3 = 4000

K = 1.3;
γ = −3000

K = 2; γ = 125 K = 12; KI = 1.5;
Kf = 0.9202

The performance comparison is provided in Table 5.1 and tuning parameters used

in the estimation procedure are provided in Table 5.2.

5.2.5 LQR controller

Fig. 5.34 and 5.35 show the output of LQR controller with full state feedback and

partial state feedback.

The link deflection α is dampened i.e. oscillations are reduced and the settling

time is achieved to be within range. With the partial state feedback controller,

only servo angle is controlled and the oscillations are not much dampened. The

tuning parameters and attained specifications for the controller are

q1 = 125, q2 = 1, q3 = 1, q4 = 5

R = 1
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K = [11.2 − 30.5 1.46 − 0.68]

ts = 0.48s ; PO = 1.9% ; |α|max = 9.2 deg

Figure 5.34: Output of LQR controller using LQR - full state feedback (Ex-
periment)

Figure 5.35: Output of LQR controller using LQR - partial state feedback
(Experiment)



Chapter 6

Conclusion and Future Work

The proposed MWDFT based FLL is experimentally validated as vibration fre-

quency estimator for SLFM. The proposed estimator performs well in estimating

the amplitude and frequency of tip deflection signal with good accuracy. In ad-

dition, it offers good range for frequency and amplitude estimations with faster

decaying ratio. Further, the convergence time for parameter estimation is better

compared with SOGI FLL and TOGI AFLL. The proposed method could estimate

frequency and amplitude in the presence of noise as well.

It is found that the LQR controller can partially and fully control the servo angle

and the flexible link angle thereby effectively suppressing the oscillations.

Adaptive controller can be designed using the proposed technique for frequency

estimation.
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