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Abstract 

 

The technique for the power flow solution of the distribution system with renewable generation is 

presented in this paper work. The load flow problem is solved by the methods one is direct 

approach for distribution system and the second is the fortescue equivalent admittance matrix 

approach for distribution load flow. The first load flow approach is based on building two matrices 

in taking into account the different characteristics of the distribution system. The two developed 

matrices are BIBC and BCBV matrix. The matrix giving the relation between bus current 

injections to the branch currents is known as BIBC matrix and the matrix giving the relation 

between branch current to the bus voltage is known as BCBV matrix. The above two matrices 

provides the direct approach solution for load flow when combined together. 

In the second method the phase admittance matrix is converted into fortescue coordinate. Then 

injected current is calculated from the given power. From this current the voltages are calculated. 

The power is calculated from this voltage and current. Error in the power is checked if it is in 

within the limit then the load flow is completed. The two different renewable generation models 

discussed briefly. The renewable generation is accommodated in the load flow with simply by 

considering PQ model. 
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Chapter 1 

Introduction 

 

As the techniques of the electricity generation are becoming more and more advance the 

renewable power sources becoming the major shareholder in the power generation. The 

renewable energy sources have all most negligible effect on the environment. Many more 

advantages can be achieved by this renewable energy sources such as reliability of the system 

will improve, voltage of the system will improve etc. The electrical power system has two major 

parts one is transmission and the other is distribution. The first one is a balanced system where as 

the second one is unbalanced.    

The steady state behavior of any system is determined by the fundamental calculation of the 

system. This calculation is known as “steady state power flow” also “load flow”. This gives the 

voltage and angle at each node with the information of generation and loading at some nodes. 

The load flow techniques are widely used in industry. The ‘Newton Raphson’ 

method is widely used in the transmission system. The transmission system has the mesh type 

structure. It has parallel paths and many paths from the generating nodes to the loading nodes. 

From the computation point the Newton Raphson method is very complex in case of large 

networks due to the size of the Jacobian matrix. In case of transmission system the 

approximation can be made to decouple the real and reactive power the magnitude of the voltage 

and the angle. By the approximations the Jacobian can be made to a constant matrix which 

results in the method named fast decoupled Newton Raphson method. It is considered as a great 

improvement in comparison to Newton Raphson method in lot of the cases. This report focuses 

on distribution power flow solution. The origin of a distribution system is as substation at which 

the conversion of electric power takes place from transmission voltage level to the costumer 

usable voltage level. The structure of the distribution system is typically radial one. The fast 

decoupled Newton Raphson method is not suitable for most of the distribution systems because 

of its radial nature and higher (R/X) ratios. As the power flow solution is a very fundamental 

calculation it finds application in many areas like power system planning and operation, power 

system optimization, distribution automation. The distribution automation needs hundreds of 

power flow solution to meet the requirement of capacitor placement at desired nodes, service 
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restoration and the reconfiguration of network. Modeling of the system should be done in such a 

manner such that it reflects the actual behavior of the component and the algorithm should be 

efficient and robust.  

We further can say that the power flow solution of the power system is the best and elementary 

tool to analyse the power system. All the important actions of the power system such as 

switching, state estimation, Var planning and Network optimization depends upon the load flow 

analysis to meet the future demand. Due to rising new technologies and advantages of digital 

devices great revolution in this field is going on. Nowadays lot of techniques are there to study 

the power flow solution such as Gauss Siedel method, Fast decoupled method and Newton 

Raphson method but these methods are suitable for transmission system. These methods are not 

suitable for distribution system because the distribution system has some characteristics different 

from the transmission system. Some of them are given as:- 

 

 The structure is weakly meshed and radial; 



 R/X ratio is high ; 



 The operation is unbalanced with multiphase; 



 Distributed and unbalanced load; 



 The nodes and branches are very large; 



 The values of reactance and resistance are high. 

 

To take care of the above problem we need a robust and efficient load flow technique. The 

power flow solution methods which are used in the transmission system are not able to meet the 

criteria of robustness and performance in case of distribution system because of the previously 

described characteristics of the distribution system. The considered assumptions to simplify in 

fast decoupled load flow [1] are not useful in the distribution system. So the unique power flow 

solution is needed. Any good distribution load flow must take care of above described 
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characteristics. The literature [2] suggests number of load flow algorithms designed especially 

for distribution system. These derived methods from transmission systems are based on mesh 

type structure. When we talk about the distribution system even Gauss implicit Z matrix method 

is not able to fully utilize the weakly meshed and radial nature of distribution system. Hence a 

solution is required whose size is proportional to the number of buses. Other load flow 

algorithms are also anticipated like Newton Raphson, fast decoupled load flow and phase 

decoupled method [3]. 

The work presented in this paper uses the previously mentioned characteristics of the distribution 

system and forms the two matrices and the approach is known as ‘Direct approach’. 

Some new ideas are presented in the recent research. Some data manipulation or special data 

format are needed to calculate the special characteristics of the distribution system. A 

compensation based technique is mentioned in [6] is used to solve distribution power flow 

problem. In the advanced version the use of branch power flow rather than branch currents 

presented 

The two methods are discussed in this report one is “Direct Approach for the Distribution Load 

Flow” and the other is “Fortescue Pi Equivalent Admittance Matrix Approach to Power Flow 

solution.” The first one is based on two matrices BIBC and BCBV. These two matrices provide 

the direct approach solution for load flow when combined together. In the presented method the 

time taking procedures as Jacobian matrix, admittance matrix, forward/ backward substitution 

and LU factorization are avoided. In the second method is based on the fortescue equivalent 

matrix development from the phase admittance matrix. 
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Chapter 2 

Unbalanced Three-Phase Line 

The power flow solution/Load flow study of any radial unbalanced distribution power system is 

very important because of unbalanced 3phase, 2 phase and 1 phase distributed lines. The effect 

of mutual impedances also considered in the calculation of the voltage magnitude and angle of 

the voltage at each node. These systems are also affected by the nearby objects such as 

telephonic line which creates interference with these lines and result in unwanted noise problem 

in the both of the system which needs extra care to deal with it. To analyze mathematically a 

three phase unbalanced distribution system model is considered. In the below shown fig 2.1 a 

section of three phase line is displayed and the parameters can be derived by the Carson and 

Lewis [2] technique. The self and mutual impedances of a four wire line section having three 

phase and one neutral can be given by a 4x4 matrix. 

 

Fig.2.1. Typical three phase feeder 

Above descried matrix of order 4, 4 is given below. It considers the self-impedance term and 

mutual impedance term and the effect of ground wire of the distribution system.  

  

            

            
[ ]

            

            

aa ab ac an

ba bb bc bn

abcn

ca cb cc cn

na nb nc nn

Z Z Z Z

Z Z Z Z
Z

Z Z Z Z

Z Z Z Z

 
 
 
 
 
 

                                                    (2.1) 

The above equation can be made of order 3, 3 matrix on application of Kron’s reduction 

technique by considering the effect of ground wire. It is expressed as: 
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[ ]         

        

aa n ab n ac n

abcn ba n bb n bc n

ca n cb n cc n

Z Z Z

Z Z Z Z

Z Z Z

  

  

  

 
 


 
  

                                                      (2.2) 

From the above figure the voltages at sending end of the feeder can be related to the receiving 

end voltages of the feeder by the given below relationship. The phases which are absent will be 

treated by placing zero for their respective entries in the matrix equation.  

        

        

        

a aa n ab n ac n AaA

b B ba n bb n bc n Bb

Cc ca n cb n cc n Cc

V Z Z Z IV

V V Z Z Z I

VV Z Z Z I

  

  

  

      
      

 
      
            

                                       (2.3) 

For example let say there are two phases only. These may ab,bc and ca. In this situation the raw 

and column for that phase will carry zero entries at their respective places. The relationship 

equation for two phases is represented as given below. 

        

        

a aa n ab n ac n AaA

b B ba n bb n bc n Bb

V Z Z Z IV

V V Z Z Z I

  

  

      
       
      

                                     (2.4a) 

        

        

b ba n bb n bc n BbB

Cc ca n cb n cc n Cc

V Z Z Z IV

VV Z Z Z I

  

  

      
       
      

                                     (2.4b) 

        

        

a aa n ab n ac n AaA

Cc ca n cb n cc n Cc

V Z Z Z IV

VV Z Z Z I

  

  

      
       
      

                                     (2.4c)                                         

For consideration let say there is single phases only. These may a,b and c. In this situation the 

raw and column for that phase which are absent will carry zero entries at their respective places. 

The relationship equation for single phase is represented as given below. 

                             ia ja aa n ij aV V Z I                                                  (2.5a)
 

 ib jb bb n ij bV V Z I                                                  (2.5b) 

ic jc cc n ij cV V Z I                                                  (2.5c)        
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Chapter 3 

Direct Approach for Distribution Load Flow 

The two matrices BIBC and BCBV are the backbone of this method. BIBC is the abbreviation of 

bus injection to branch current and the BCBV is the abbreviation of branch current to bus 

voltage. This method operates on these two matrices and current injection. In this section, the 

development procedure will be described in detail. When we deal with distribution network the 

current injection methods are widely used and these are more practical. The power taken by any 

load at bus i in the complex form can be expressed as. 

 
( )     i 1......i iS P jQi N                                                      (3.1) 

The solution for the injected current at bus i for k-th iteration is expressed as follow:

*

( ) ( )k r k i k i i
i i i i i k

i

P jQ
I I V jI V

V

 
    

 
                                         (3.2) 

In the above equation Vi 
k represents the voltage at bus i for k-th itteration and Ii 

k stands for the 

injected current  at bus i at k-th itteration. The real part of the injected current at bus i at k-th 

iteration is given by Ii 
rand the imaginary part of the injected current at bus i at k-th iteration is 

given by Ii 
i. 

 

Fig.3.1. Simple distribution system                                                                
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 3.1   Relationship Matrix Development 

The figure 3.1 is taken into consideration for the purpose of the developments of the various 

relationship matrices. By using the equation (3.2) the conversion from complex power injected at 

a particular bus to the current injected at particular bus can be completed. The relationship matrix 

can be developed from the above procedure. The matrices relating the bus current to the branch 

current is derived on application of Kirchhoff’s Current Law (KCL) in the distribution system.   

The relation between current in the branch and currents injected into the bus can be expressed as 

given below. Let’s consider the currents in the branches B1,B3 and B5. These are expressed in 

terms of currents in the branches as follows. 

1 2 3 4 5 6

3 4 5

5 6

B I I I I I

B I I

B I

    

 



                                                   (3.1.1) 

The above equations can be represented in the matrix form which is the purpose. The 

calculations will take place in the matrix form. 

21

32

3 4

54

5 6

1 1 1 1 1

0 1 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

IB

IB

B I

IB

B I

    
    
    
    
    
    
        

                                                (3.1.2) 

The generalization of the above equation (3.1.2) is as follows 

    B BIBC I                                                         (3.1.3) 

‘BIBC’ is the current injected into bus to current in the branch matrix. This BIBC matrix is a 

upper triangular matrix with all the rows and column 0 and +1 entries. In the similar manner the 

branch current and bus voltage can be developed. From figure 3.1 the equations for node 2, 3 and 

4 can be written as 

2 1 1 12

3 2 2 23

4 3 3 34

V V B Z

V V B Z

V V B Z

 

 

 

                                                          (3.1.4) 

Where 

        Vi - voltage of bus i 

        Zij -impedance of the branch connecting node i and j 
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From the equation (3.1.4) all the voltages can be expressed in terms of V1 

4 1 1 12 2 23 3 34V V B Z B Z B Z                                                    (3.1.5) 

From the equation (3.1.5) we can observe that voltage of each node can be represented in terms 

of the branch impedance and voltage of the node 1. The other node voltage can be obtained by 

above discussed equation. The above equation can be represented in the matrix form by 

considering all the nodes.                

21 112

31 212 23

1 4 12 23 34 3

12 23 34 451 5 4

12 23 361 6 5

0 0 0 0

0 0 0

0 0

0

0 0

VV BZ

VV BZ Z

V V Z Z Z B

Z Z Z ZV V B

Z Z ZV V B

      
      
      
       
      
      
            

                                  (3.1.6a) 

The generalisation of the equation (3.1.6) is as follows: 

    V BCBV B                                                    (3.1.6b) 

The ‘BCBV’ represents its usual meaning. 

3.2 Development of Algorithm 

From equation (3.1.6) the algorithm for BIBC matrix is formed as given below: 

a) The distribution system having m branches and n nodes the BIBC matrix has mx(n-1) 

dimensions 

 b) If a line section Bk  is located between bus i and bus j, copy the column of  the i -th bus of the 

BIBC matrix to the column of the j -th bus and fill a +1to the position of the  k-th row and the j -

th bus column. 

c) Repeat procedure (b) until all line sections are included in the BIBC matrix. 

From (3.1.5) a building algorithm for BCBV matrix can be developed as follows. 

d) For a distribution system with m -branch section and n-bus, the dimension of the BCBV 

matrix is (n-1) x m. 

e) If a line section Bk is located between bus I and bus j copy the row of the i-th bus of the 

BCBV matrix to the row of the j-th bus and fill the line impedance Zij to the position of the j-th 

bus row and the k-th column. 
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f) Repeat procedure (e) until all line sections are included in the BCBV matrix. 

The above presented algorithm can be easily to the line section or nodes having more than single 

phases. Let’s consider an example of line section between bus ‘i’ and bus ‘j’ having three phases. 

The 3x1 vector will be formed corresponding the Bi branch current and +1 in the BIBC matrix. A 

3x3 matrix (identity) will be formed. In the same manner the three phase line between bus i and 

bus j of the distribution feeder, the BCBV will have an impedance matrix of order 3x3 of Zij 

matrix.  

We can observe that algorithm for ‘BIBC’ and ‘BCBV’ matrices are same. The above two 

matrices can be in accommodated in the same program because these two matrices are very 

similar. The space occupied for computation purpose is reduced. The time taken to the data 

preparation is saved because the algorithm is developed on the basis of classical ‘bus branch 

oriented’ data base. The above presented method can easily be incorporated in the previously 

existent distribution automation system. 

3.3 Solution Technique Development 

During the development of the ‘BIBC’ and ‘BCBV’ matrices the different characteristics of 

distribution system structure is taken care. The load flow problem is solved by building two 

matrices in taking into account the different characteristics of the distribution system. The two 

developed matrices are BIBC and BCBV matrix. The matrix giving the relation between bus 

current injections to the branch currents is known as BIBC matrix and the matrix giving the 

relation between branch current to the bus voltage is known as BCBV matrix. The above two 

matrices provides the direct approach solution for load flow when combined together. 

Combining (3.1.5) and (3.1.6), the relationship between bus current injections and bus voltages 

can be expressed as          

     

    

V BCBV BIBC I

V DLF I

 

 
                                            (3.3.1) 

And the solution for distribution load flow can be obtained by solving (3.3.2) iteratively            

*

( ) ( )k r k i k i i
i i i i i k

i

P jQ
I I V jI V

V

 
    

 
                                     (3.3.2a)    
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 1k kV DLF I                                                      (3.3.2b)      

1 0 1k kV V V                                                         (3.3.2c)     

Number of arithmetic operation is almost proportional to N3 in the factorization of LU. It will 

take major portion of computational time for factorization of  LU for large value of N number of 

nodes. If we can avoid the LU factorization the major portion of computational time can be 

saved. The above two matrices provides the direct approach solution for load flow when 

combined together. In the presented method the time taking procedures as Jacobian matrix, 

admittance matrix, forward/ backward substitution and LU factorization are avoided. From the 

solution techniques described before, the LU decomposition and forward/backward substitution 

of the Jacobian matrix or the Y admittance matrix are no longer necessary for the proposed 

method.  

3.4. Considering Loops in the Network 

This method can deal with weakly messed network means little number of loops in the system. 

The distribution network with one loop is shown in the given below figure. These loops may be 

because of tie switches or some other means. The modification in the various matrices is 

discussed in the preceding sub sections. 

 

Fig 3.2 Simple distribution system with one loop. 
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3.4.1 Modification for BIBC Matrix 

The branch forming loop is connected between the nodes 5 and 6. The current injected into the 

bus will not be influenced by the presence of the loop. So for the BIBC matrix we have to take 

care of the new branch. On the consideration of the new line the equation for the modified 

current will be given by: 

 

5 5 6

6 6 6

I I B

I I B

  

  
                                                     (3.4.1.1) 

The BIBC matrix will be given as:  

1 2

2 3

3 4

5 64

6 65

1 1 1 1 1

0 1 1 1 1

0 0 1 1 0

0 0 0 1 0

0 0 0 0 1

B I

B I

B I

I BB

I BB

    
    
    
    
    

    
         

                                   (3.4.1.2) 

Equation (3.4.1.2) can be rearranged as 

1 2

2 3

6

3 4

6

54

65

1 1 1 1 1 1 1

0 1 1 1 1 1 1

0 0 1 1 0 1 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

B I

B I
B

B I
B

IB

IB

      
      
        
         

        
      
           

                        (3.4.1.3)  

And the modified BIBC matrix can be obtained as 

1 2

2 3

3 4

4 5

5 6

6 6

1 1 1 1 1 0

0 1 1 1 1 0

0 0 1 1 0 1

0 0 0 1 0 1

0 0 0 0 1 1

0 0 0 0 0 1

B I

B I

B I

B I

B I

B B

     
     
     
     

     
     
     
     
     

                                    (3.4.1.4) 

Generalization of the above matrix results in the given below matrix 

 
new new

B I
BIBC

B B

   
   

   
                                           (3.4.1.5)                      

The modification in the steps to build up the algorithm is given below:  

The step b is modified to B as follows  
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B)—Let the connection between bode i and node j is provided by the line Bk then the 

modification is to copy the bits of the i th node column to the k-th node column and multiply 

with minus one to the bits of j-th column and fill the +1in place of j-th row and k-th column. 

 

3.4.2 Modification for BCBV Matrix 

 Apply KVL in the newly formed loop shown in the figure 3.4. The KVL equation can be written 

in terms of branch current and branch impedance. 

34 3 45 4 56 6 36 5 0Z B Z B Z B Z B                                               (4.2.1)  

From the equation (4.2.1) and (3.1.6a), the new BCBV matrix is 

12 11 2

12 23 21 3

12 23 34 31 4

12 23 34 45 41 5

12 23 36 51 6

34 45 36 56 6

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0 0 0

0 0 0 0

V V Z B

V V Z Z B

V V Z Z Z B

V V Z Z Z Z B

V V Z Z Z B

Z Z Z Z B

       
       
       
       

        
       
       
       

       

                          (4.2.2) 

Generalized modified equation in the matrix form can be written as 

   
0 new

V B
BIBC

B

   
   

   
                                                 (4.2.3)

               

                                   

The modification in the development of the algorithm step e for the buildup of BCBV matrix is 

given as follows: 

E1. Let Bk is the line connecting the two buses results in the formation of the messed network. 

The BCBV matrix can be modified to the desired matrix by adding a new row in the BCBV 

matrix without loop connection. The generalized equation by applying KVL can be written as: 

1

m

t t
t

Z B


                                                            (4.2.4) 

In the above equation nl represents the lines in the loop, Zl is the impedance of the line and Bl is 

the current flowing through that line. 

  

3.4.3 Modification for Solution Techniques 

From the equation (3.4.1.4), (4.2.2) and (3.3.1), equation (3.3.1) can be rearranged as given 

below as  
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  
0

0

new

T

new

V I
BCBV BIBC

B

V IA M

M N B

   
   

   

     
     

    

                                       (4.2.5) 

The final developed algorithm for the distribution network system having little number of loops 

by applying Kron’s reduction to equation (4.2.5) can be written as:                   

1[ ][ ]

[ ][ ]

TV A M N M I

V DLF I

  

 
                                            (4.2.6)                                                                         

From the above discussion it is clear that the this method can be used for the distribution network 

systems which are weakly messed structure because the changes in the different matrices such as 

BIBC,BCBV and DLF are required , other procedure is the same.  
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Chapter 4 

Fortescue Equivalent Admittance Matrix Approach 

4.1 Theory of Fortescue Transformation 

The equation presented below is proved by C.L. Fortescue in1918 in a seminal paper. According 

to this equation any number of unbalanced phases can be represented or transformed into n-1 

balanced phase of different sequences and one zero sequence system by the given equation. This       

is called Fortescue transformation. 

         

0

1 2 1

2 4 2( 1)2

1 2( 1) ( 1)( 1)

1 1 1 1

11

1

1

a a

n
a b

n
ca

n n n nn
na

VV

VaV a a

Vn a a aV

Va a aV





   

    
    
    
    
    
      

                                      (4.1)     

                                                            

 

               
0 1....... n

a aV V                                                                   Voltages in fortescue domain;

                
,.......a nV V                                                                     Voltages in phase domain; 

Because the transformation is non-singular it is proved that by using inverse n x n transformation 

the phase domain quantities can be recovered from the Fortescue domain quantities. We deal 

with up to three phases so the transformation for n=3,n=2,n=1 will be discussed briefly. 

Three phase system to Fortescue coordinate transformation is done by 3

3

F

phT  using 3a = 

2

3
j
П

e The 

quantities voltage and current can be recovered from fortescue domain to phase domain by using 

inverse transformation  
3

3

ph

FT  

3

3

ph

FT and 
3

3

F

phT
  
are given as follows 

                3 3 3

3 3 3

1
2 2

3 3 3 3

2 2

3 3 3 3

1 1 1 1 1 1
1 1

1 , 1
3 3

1 1

F ph F

ph F pha a a aT T T

a a a a



   
   

  
   
      

                                (4.2) 
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Three phase electric current through an element is expressed as 

   
3 3 3ph ph phVI Y                                                         (4.3) 

 
 

Transformation of voltage and current into fortescue coordinate system can be written as 

                          

3 3

3 3 33 3

3 3

3 3 333

1)(

ph ph
F ph FF F

ph ph
F ph FFF

VT I Y T

T VI Y T





                                              (4.4) 

From the above equation the three phase admittance matrix in the fortescue domain is given by 

                           3 3

3 33 3 3
, { }F ph

F phph F abcphY T Y T                                                   (4.5)  

The above when applied to the three phase symmetrical element results in 3x3diagonal matrix 

The fortescue coordinate will have only 0and 1 sequences in case of two phase system because 

of n=2 

Hence the fortescue transformation matrices are given by 

 2 2

2 2

2

1 1 1 1 1 11 1
,

1 1 1 1 12 2

F ph

ph FT T
a

     
       

     
                                           (4.6) 

The admittance matrix for two phases is transformed into fortescue coordinates as follows. 

2 2

2 22 2 2
, { }F ph

F phph F abcphY T Y T                                               (4.7) 

In case of two phases the admittance matrix is given by. 

     
3 3 2

2 3 2 2

F F F
ii ij

ph F F F
ji jj

Y Y
Y

Y Y





 
  
 

                                                         (4.8) 

Applying fortescue transformation, the admittance matrix in fortescue coordinate for two phases 

is given by 
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2

0

0

s m
F

s m

y y
Y

y y

 
  

 
                                                       (4.9) 

On application of fortescue to the one phase nothing will change in comparison to the phase 

coordinate system because for the single phase system the fortescue transformation matrix is a 

1x1 matrix. 

 4.2 Application of Fortescue Coordinate System to an Unbalanced and 

Unsymmetrical Network 

 

 

Fig 4.1 IEEE 13 bus distribution system 

The unbalanced and unsymmetrical nature of distribution network is typically because of the 

asymmetrical equipment such as single phase and two phase laterals from the three phase bus 

and the unbalanced load connected to the bus. The asymmetry also arises because of the 

nontransposed lines. 

In the above figure the IEEE 13 bus distribution system is shown. It is a good example of 

unbalanced distribution system. The information regarding the phase type of the lines is provided 

for each line. The nodes which are connected to the different number of branches are called the 

phase transition node (PTN). All phase transition nodes are identified and marked by a square 

surrounding it. There are three PTNs in the figure. These are bus 2,7and 10. The bus number 2 of 
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phase type abc is connected to the bus 5 by a line of phase type bc. The bus number 7 of phase 

type abc is connected to the bus number 10by line phase type ac. The bus number 10 is 

connected to the line of phase type a and c. 

The branches which are connected to the similar type of phases at both the ends the phase to 

fortescue coordinate transformation is done by simply using standard fortescue transformation 

matrices. The selection of proper transformation matrix depends on the branch phase type. The 

matrices of equation number (4.1) are used for the three phase branches. The branches which are 

connected to at least one phase transition nodes must be treated carefully for the formation of 

error free bus admittance matrix so that the power flow is good. 

4.3 Fortescue Pi Equivalents 

4.3.1 Three Phase to Two Phase Branch 

 

Fig 4.2 Three phase to two phase line 

Table 4.1    2

3

ph

FT and 3

2

F

phT sub-matrices for various branches 

        2
ph                       2

3

ph

FT                                 3

2

F

phT  

ab                   
2
3 3

1 1 1

1 a a

 
 
 

                 
2

3 3

1 1 11

13

T

a a

 
 
 

 

bc                   
2
3 3

2
3 3

1

1

a a

a a

 
 
 

                 
2

3 3

2
3 3

11

3 1

T

a a

a a

 
 
 

 

ca                   
2

3 31

1 1 1

a a 
 
 

                  
2
3 311

3 1 1 1

T

a a 
 
 

 

 



18 | P a g e  
 

Three phases to two phase lateral is shown in the above figure. Bus i is connected to three phase 

and two phase type branches. Bus j is connected to two phase type branch. The voltage at bue i 

and j is expressed in fortescue coordinate. The lines are expressed in phase coordinates as well as 

in fortescue coordinates. The line Lij is connected at bus i where the line phase type and bus 

phase type is not same.  Remaining the entire element in the above figure bus and branch type 

are same. At bus i the third order fortescue domain is required because it is a three phase bus. At 

bus j the second order fortescue domain is required because it is a two phase bus. For the 

application of Kirchhoff’s current law, same order of fotescue formulation is must for all the 

current at bus i. the current contribution of line Lij at bus i must be calculated in F3 domain 

although the line is two phase line. The derivation for the fortescue equivalent is given below. 

    

3 3 2

33

22 2 3 2

3 3 3 2

2 22 3

F F F
ii ij

FF
i i

FF F F F
j jji jj

Y Y
VI

VI Y Y



 





 
    

     
    
  

                                               (4.3.1.1) 

a) Submatrix 3F
iiY : The self-admittance sub-matrix is derived in the fortescue domain by 

transforming phase current into fortescue domain current and the phase voltage into fortescue 

domain voltage by considering the current contribution. 

       

3

3

3 3 3

3

3 3 3

3

,

2 2 2 22 1 3 12 1 2 3

,

2 2 3 13 2 3 22 1 2 3

,

2 2 3 13 23 1 2 3

Fabab ab ab ab
i i ii ii Fi i

F F Fab ab ab
i i ii F iab ab

F F Fab ab
i i ii F iab

V VI Y Y T

VT I T Y T

VI T Y T

   

   

  

 





                                  (4.3.1.2) 

Hence the equivalent sub matrix in fotescue coordinate is given by 

     3 3

3

3 3 2 23 2 2 3

F F ab ab
ii ii FabY T Y T
  

                                                    (4.3.1.4)                                                               

The general form of the given equation can be expressed as  

   3 3 2 2

2 3 2

3 3 2 23 2 2 3

, { , , }F F ph ph
ii iiph F ab bc caphY T Y T
  

                                  (4.3.1.5) 
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For the line connected between three node phase bus to two phase bus the all possible phase 

combinations are given in the table 4.1. 

b) Submatrix 3 2F F
ijY


: The mutual admittance submatrix is derived in the fortescue domain by 

transforming phase current into fortescue domain current and the phase voltage into fortescue 

domain voltage by considering the current contribution.   

         

2

2

3 3 2

2

3 3 2

2

,

2 1 2 2 2 22 1 2 12 2

,

3 2 3 22 1 2 2 2 12 2

,

3 23 1 2 2 2 12 2

Fabab ab ab ab
i j ij ij Fj j

F F Fab ab ab
i j ij F jab ab

F F Fab ab
i j ij F jab

V VI Y Y T

VT I T Y T

VI T Y T

   

   

  

 





                                        (4.3.1.6) 

Hence the equivalent sub matrix in fotescue coordinate is given by 

        3 2 3

2

3 2 2 2 2 23 2

F F F ab ab
ij ij FabY T Y T


  

                                                       (4.3.1.7) 

The general form of the given equation can be expressed as 

    3 2 3 2 2

2 2 2

2 23 2 2 23 2

, { , , }F F F ph ph
ij ijph F ab bc caphY T Y T


 

                                    (4.3.1.8) 

c) Submatrix 2 3F F
jiY


: The mutual admittance submatrix is derived in the fortescue domain by 

transforming phase current into fortescue domain current and the phase voltage into fortescue 

domain voltage by considering the current contribution. 

                               

3

3

32 2

3

32 2

3

,

2 1 3 12 1 2 2 2 2 2 3

,

3 12 2 2 22 1 2 2 2 3

,

3 12 22 1 2 2 2 3

Fabab ab ab ab
j i ji ji Fi i

FF Fab ab ab
j i ji F iab ab

FF F ab ab
j i ji F iab

V VI Y Y T

VT I T Y T

VI T Y T

    

   

  

 





                                           (4.3.1.9) 

Hence the equivalent sub matrix in fotescue coordinate is given by 

  2 3 2

3

2 2 2 2 2 32 3

F F F ab ab
ji ji FabY T Y T


  

                                                          (4.3.1.10) 
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The general form of the given equation can be expressed as 

  2 3 2 2 2

2 3 2

2 22 2 2 32 3

, { , , }F F F ph ph
ij jiph F ab bc caphY T Y T


 

                                         (4.3.1.11) 

d) Submatrix 2F
jjY : This self sub-matrix will not be influenced by the phase mapping at bus i so it 

can be obtained from the equation number (6) because this node has the same number of 

branches coming to it and going out of it. 

4.3.2 Three Phase to Single Phase Branch 

 

Fig 4.3Three phase to single phase line 

In the figure 6 the bus i is a three phase bus and bus j is a single phase bus so we need to deal it 

carefully. At bus i the third order fortescue domain is required because it is a three phase bus. At 

bus j the first order fortescue domain is required because it is a single phase bus. For the 

application of Kirchhoff’s current law, same order of fotescue formulation is must for all the 

current at bus i. the current contribution of line Lij at bus i must be calculated in F3 domain 

although the line is single phase line. The derivation for the fortescue equivalent is given below. 

     

3 3 1

33

11 1 3 1

3 3 3 1

1 3 1 1

F F F
ii ij

FF
i i

FF F F F
j jji jj

Y Y
VI

VI Y Y



 



 

 
    

     
    

  

                                            (4.3.2.1) 

The derivation of these submatrices is given in the following sections. 

 

 

 

Table 4.2 1

3

ph

FT and 3

1

F

phT sub-matrices for various branches 
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          1ph                             1

3

ph

FT                             3

1

F

phT  

           a                            1 1 1                        
3

1

3

T
a
FT  

          b                           2
3 31 a a                      

3

1

3

T
c
FT  

          c                           2
3 31 a a                      

3

1

3

T
b
FT  

                       

a) Submatrix 3F
iiY : The self-admittance sub-matrix is derived in the fortescue domain by 

transforming phase current into fortescue domain current and the phase voltage into fortescue 

domain voltage by considering the current contribution. 

        

3

3

33 3

3

3 33

3

,

1 1 1 11 1 3 11 1 1 3

,

3 1 3 1 1 1 3 11 1 1 3

,

3 1 1 1 3 13 1 1 3

Faa a a ab
i i ii ii Fi i

FF a F a a
a i i a ii F i

F FF a a
i i a ii F i

V VI Y Y T

VT I T Y T

VI T Y T

   

    

   

 





                                             (4.3.2.2) 

Hence the equivalent sub matrix in fotescue coordinate is given by 

   3 3

3

3 3 3 1 1 1 1 3

F F a a
ii a ii FY T Y T
   

                                                   (4.3.2.3) 

The general form of the given equation can be expressed as 

   3 3 1 1

1 3 1

3 3 1 13 1 1 3

, { , , }F F ph ph
ii iiph F a b cphY T Y T
  

                                    (4.3.2.4) 

For the line connected between three node phase bus to two phase bus the all possible phase 

combinations are given in the table 4.2. 
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b) Submatrix 3 1F F
ijY


: The mutual admittance submatrix is derived in the fortescue domain by 

transforming phase current into fortescue domain current and the phase voltage into fortescue 

domain voltage by considering the current contribution. 

    

1

1

13 3

1

3 13

1

,

1 1 1 1 1 11 1 1 11 1

,

3 1 3 11 1 1 1 1 11 1

,

3 13 1 1 1 1 11 1

Faa a a a
i j ij ij Fj j

FF a F a a
a i j a ij F j

F FF a a
i j a ij F j

V VI Y Y T

VT I T Y T

VI T Y T

   

   

  

 





                                          (4.3.2.5) 

Hence the equivalent sub matrix in fotescue coordinate is given by 

    3 1 3

1

3 13 1 1 1 1 1

F F F a a
ij a ij FY T Y T


  

                                                         (4.3.2.6) 

The general form of the given equation can be expressed as 

    3 1 3 1 1

1 1 1

3 1 1 13 1 1 1

, { , , }F F F ph ph
ij ijph F a b cphY T Y T


  

                                                (4.3.2.7) 

c) Submatrix 3 1F F
ijY
 : The mutual admittance submatrix is derived in the fortescue domain by 

transforming phase current into fortescue domain current and the phase voltage into fortescue 

domain voltage by considering the current contribution. 

3

3

31 1

3

31 1

3

,

1 1 3 11 1 1 1 1 1 1 3

,

1 1 1 1 3 11 1 1 1 1 3

,

1 1 3 11 1 1 1 1 3

Faa a a a
j i ji ji Fi i

FF a F a a
a j i a ji F i

FF F a a
i j a ij F i

V VI Y Y T

VT I T Y T

VI T Y T

    

    

   

 





                                         (4.3.2.8) 

Hence the equivalent sub matrix in fotescue coordinate is given by 

    1 3 1

3

1 11 3 1 1 1 3

F F F a a
ij a ji FY T Y T


  

                                                      (4.3.2.9) 

The general form of the given equation can be expressed as 

   1 3 1 1 1

1 3 1

3 1 1 11 1 1 3

, { , , }F F F ph ph
ji jiph F a b cphY T Y T


  

                                           (4.3.2.10) 
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d) Submatrix 1F
jjY : This self sub-matrix will not be influenced by the phase mapping at bus i so it 

can be obtained from the equation number (4.2) because this node has the same number of 

branches coming to it and going out of it. 

4.3.3 Two Phase to Single Phase Branch 

 

Fig.4.4 line model for two phase to single phase 

The above fig (4.4) represents the line section for i as two phase and bus j as single phase the line 

in between these nodes is a single phase line. For the transformation of the phase domain 

admittance matrix to the fotescue domain admittance matrix the fortescue transformation 

matrices is given in the table. 

   

2 2 1

22

11 1 2 1

2 2 2 1

1 2 1 1

F F F
ii ij

FF
i i

FF F F F
j jji jj

Y Y
VI

VI Y Y



 



 

 
    

     
    

 

                                             (4.3.3.1) 

a) Submatrix 2F
iiY : The self admittance submatrix is derived in the fortescue domain by 

transforming phase current into fortescue domain current and the phase voltage into fortescue 

domain voltage by considering the current contribution. 

  2 2

2

2 2 2 1 1 1 1 2

F F a a
ii a ii FY T Y T
   

                                                     (4.3.3.2) 

The general form of the given equation can be expressed as 

2 2 1 1

1 2 1

2 2 1 12 1 1 2

, { , , }F F ph ph
ii iiph F a b cphY T Y T
  

                                                (4.3.3.3) 

 

Table 4.3 shows all possible combinations for a two-phase branch connected between two and 

single phase nodes.
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Table 4.3 1

2

ph

FT and 2

1

F

phT sub-matrices for various branches 

2F                    1ph                              1

2

ph

FT                                 2

1

F

phT  

01(ab)                  a                              1 1                                 
2

1

2

T
a
FT  

01(ab)                  b                              1 1                               
2

1

2

T
b
FT  

01(bc)                  b                              1 1                                  
2

1

2

T
b
FT  

01(bc)                  c                              1 1                                
2

1

2

T
c
FT  

01(ca)                   a                              1 1                                   
2

1

2

T
a
FT                       

01(ca)                  c                              1 1                                
2

1

2

T
c
FT  

 

b) Submatrix 2 1F F
ijY


: The mutual admittance submatrix is derived in the fortescue domain by 

transforming phase current into fortescue domain current and the phase voltage into fortescue 

domain voltage by considering the current contribution. 

  2 1 2

1

2 12 1 1 1 1 1

F F F a a
ij a ij FY T Y T


  

                                                  (4.3.3.4) 

The general form of the given equation can be expressed as 

    2 1 2 1 1

1 1 1

2 1 1 12 1 1 1

, { , , }F F F ph ph
ij ijph F a b cphY T Y T


  

                                        (4.3.3.5) 

c) Submatrix 1 2F F
jiY
 : The mutual admittance submatrix is derived in the fortescue domain by 

transforming phase current into fortescue domain current and the phase voltage into fortescue 

domain voltage by considering the current contribution. 
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   1 2 1

2

1 11 2 1 1 1 2

F F F a a
ji a ji FY T Y T


  

                                                    (4.3.3.6) 

Generalized expression for the above equation is given by 

1 2 1 1 1

1 2 1

1 2 1 11 1 1 2

, { , , }F F F ph ph
ji jiph F a b cphY T Y T


  

                                     (4.3.3.7)

                                                                                              

 

d) Submatrix 1F
jjY : This self sub-matrix will not be influenced by the phase mapping at bus i so it 

can be obtained from the equation number (4.2) because this node has the same number of 

branches coming to it and going out of it. 

4.3.4 Treatment for Special Type of Transformer 

The simple type of transformer connection will not create problem. The can be dealt in the same 

manner as the other nodes or buses. The problem will occur when we will come across the 

special type of transformer connection such as open delta and open wye. This type of transformer 

connection present in the distribution system network will require a careful treatment. In the 

distribution network system this special type of transformer connection is used to supply the load 

of three phase connected to the branch of two phase. The relation in current and voltage in phase 

domain is given by the below equation with admittance matrix. 

     
22

33

2 2 2 3

3 2 3 3

ph ph
ii ij

phph
i i

phph ph ph
j jji jj

Y Y
VI

VI Y Y

 

 

 
    

     
    

 

                                            (4.3.4.1)    

The self admittance submatrces F
iiY and F

jjY can be obtained from the section first equations 

directly. The mutual admittance matrices F
ijY and F

jiY will be obtained from the three phase to two 

phase fortescue transformation explained in the previous sections. 

4.4 Steps for the Power Flow Calculation

 

The generalized fotescue equivalent admittance method can be used in any matrix based power 

flow solution. When we go for the phase mapping, the self admittance sub matrices will not be 

affected. The steps for the power flow solution are discussed as follows: 
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a) From the given data of the distribution network system find out the phase transition nodes for 

the careful treatment of these. 

b) Build up fortescue equivalent admittance YF 

c) Factories this fortescue equivalent admittance YF into lower and upper matrices F
lY and F

uY

respectively. 

d) For the first iteration take the values of all the voltages at 1.0pu and angle 0 for phase a,-120 

for phase b and 120 for phase c. 

e) Calculate the injected current at the buses where the power injected is given by the relation  

*
abc
injabc

inj

abc

S
I

V

 
  
 

. By using fotescue transformation transform this phase domain current into 

fortescue domain current.          

f) Calculate the voltage in the fotescue domain by using relation FF F F
inj L UVI Y Y  convert this 

fotescue domain voltage F
V into phase domain and calculate power *( )abc abc abc

calS V I and 

calculate power error by err cal initS S S  . 

g) If the error is below a specified value the stop the solution otherwise go to the step e and 

repeat the above procedure. 
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4.5 Block Diagram for Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

No 

 

 

 

  

 No  

                                                                                                                     

 

 

Start 

               Input data: 

Line data, Load data, PTN 

Build system admittance matrix YF 

Factorise YF=YL
F YU

F 

Sinit=Input loads, Vinit=[10, 1 -120, 1120 0, 

Vabc=Vinit 

Set iter counter n=0, itermax=nmax 

Set n=n+1 

Calculate Iinj=[diag-1(Vabc)Sinit]* 

Transform Iinj into IF 

Solve for VF from IF= YL
F YU

F VF 

Obtain Vabc from VF 

Calculate Scal=[diag(Vabc)Iabc
*] 

Serror=Scal-Sinit 

 

        n nmax Max|Serror|<  

 

     Not converged    Show results 

End 

Yes Yes 
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Chapter 5 

Load Flow with Renewable Generation 

There are many types of non-conventional or renewable energy sources. There are wind turbine 

generation system, fuel cell, photovoltaic generating system etc. The brief description of the 

renewable generation sources is given in the preceding section.  

5.1 Wind Turbine Generating System 

In the below given figure (5.1a) and (5.1b) the connection of the wind generation system to the 

distribution system is shown. Figure (5.1a) shows the connection of the wind turbine generation 

system connected to the distribution system network with the interface transformer included in 

the distribution network system. Figure (5.1b) shows the connection of the wind turbine 

generation system connected to the distribution system network with the interface transformer 

included in the wind turbine generation system. 

 

Fig 5.1a the interfacing transformer is considered in distribution system 

 

Fig 5.1bThe interfacing transformer is considered in WTG system 
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The modelling of the wind turbine system is of two types one is ‘PV’ model and the second one 

is ‘PQ’ model. The voltage controlled is less preferred as compared PQ model. The power 

developed by the wind turbine is given by the equation given below. The equation represents the 

relation of speed of the blade tip and the speed of the wind.  

31
( )

2
T pAv CP  

                                                (5.1.1) 

Where     PT - Power developed by turbine 

                 -  Density of the air in kg/m3 

                A - Swept area in m2 

                v - Wind speed in m/s 

                Cp - Power coefficient 

The manufacturer provides the power speed characteristic graph from where the power output 

for a particular wind speed can be obtained. The reactive power (Q) whether specified or can be 

calculated from the given power factor by the equation given below: 

                        
1tan(cos )Q P  

                                                (5.1.2)                         

5.2 Photovoltaic model 

The function of the photovoltaic system is to convert sun light energy into electrical energy. The 

photovoltaic system is made by connecting the PV cells in the form of groups. The regulation of 

voltage and tracking of MPP (maximum power point) is done by the electronic converters.    

 

Fig 5.2 Photovoltaic model 



30 | P a g e  
 

Figure (5.2) is the representation of a practical equivalent photovoltaic panel. A current source is 

connected in parallel with the diode with series connected resistor. The magnitude of the current 

depends on the intensity of the radiation and the temperature. 

The relation in voltage and current is given by below equation: 

  
 ( )

0

.
1

s

s

q V IR s
aN kTph

p

V I R
I eI I

R

 
 
 

 
    

 
                                     (5.2.1) 

Where  

I0- Reverse saturation current of the diode 

q- Charge of the electron (1.6021764610-19) 

 T- Temperature of the diode pn junction 

k- Boltzmann constant (1.3806503 10-23 J/K)    

Ns-Number of cells connected in series in the panel 

a- Ideality constant for the diode 

Iph-Current produced by the light 

Rs- series resistance 

Rp- parallel resistance 

The equation for the power of the photovoltaic cell is given by: 

 ( )

0

.
1

s

s

q V IR s
aN kTph

p

V I R
P V eI I

R

 
 
 

  
     

  
                                           (5.2.2)                                                                                   

The power obtained from the above equation can be used in the load flow of the distribution 

system network. The bus will be treated as PQ bus with Q set to zero. 

In the presented work the PQ model of wind turbine is used directly and the positive P with 

appropriate Q is included in the distribution load flow.  
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Chapter 6 

Results and Discussion 

The load flow for unbalanced distribution system is presented with two different approaches with 

renewable generations. The effect of mutual impedances is considered in the unbalanced 

distribution system and the voltage drop due to mutual impedances. Here the solution for the 

different number of bus system is presented in unbalanced phase basis with and without 

renewable generation. The result for each bus voltage magnitude and angle obtained from 

MATLAB is presented in the tabular form.  

6.1Result with direct approach         

Table 6.1 Result of 8 bus radial distribution system 

               Bus No.           Phase              Voltage(pu)              Angle(rad) 

1. A 1.0 0.000 

1. B 1.0 -2.0944 

1. C 1.0 2.0944 

2. A 0.9825 0.0033 

2. B 0.9703 -2.0901 

2. C 0.9667 2.0931 

3. B 0.9646 -2.0896 

3. C 0.9638 2.0934 

4. C 0.9616 2.0895 

5. C 0.9685 2.0931 

6. C 0.9642 2.0932 

7. A 0.9687 .0030 

8. B 0.9609 2.0930 
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Table 6.2 Result of 13 bus radial distribution system 

        

BUS 

NO. 

PHASE  A         PHASE B         PHASE C 

VOLTAGE 

(pu) 

ANGLE 

(Rad) 

VOLTAGE 

(pu) 

ANGLE 

(rad) 

VOLTAGE 

(pu) 

ANGLE 

(rad) 

1. 1.0 0.000 1.0 -2.0944 1.0 2.0944 

2. .9886 -0.016 .9864 -2.0934 .9875 2.0931 

3. .9861 -0.020 .9859 -2.0965 .9845 2.0839 

4. .9812 -0.033 .9812 -2.1020 .9821 2.0801 

5. - - .9791 -2.1501 .9802 2.0711 

6. - - .9758 - .9786 2.0687 

7. .9782 -0.049 .9723 -2.1701 .9764 2.0515 

8. .9710 -0.063 .9681 -2.1832 .9699 2.0394 

9. .9654 -0.091 - - .9645 2.0321 

10. - - - - .9627 2.0271 

11. .9691 -0.121 .9568 -2.1902 .9582 2.0125 

12. .9584 -0.162 - - - - 
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6.2 Results with fortescue equivalent admittance approach 

Table 6.3 Result of 8 bus radial distribution system 

               Bus No.           Phase              Voltage(pu)              Angle(rad) 

1. A 1.0000 0.0000 

1. B 1.0000 -2.0944 

1. C 1.0000 2.0944 

2. A 0.9852 0.0243 

2. B 0.9733 -2.0911 

2. C 0.9677 2.0941 

3. B 0.9666 -2.0856 

3. C 0.9658 2.0944 

4. C 0.9644 2.0845 

5. C 0.9625 2.0931 

6. C 0.9602 2.0932 

7. A 0.9787 0.0550 

8. B 0.9579             -2.0934 
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Table 6.4 Result of 13 bus radial distribution system 

        

BUS 

NO. 

PHASE  A         PHASE B         PHASE C 

VOLTAGE 

(pu) 

ANGLE 

(Rad) 

VOLTAGE 

(pu) 

ANGLE 

(rad) 

VOLTAGE 

(pu) 

ANGLE 

(rad) 

1. 1.000 0.000 1.000 -2.0944 1.000 2.0944 

2. .9887 -0.017 .9854 -2.0944 .9852 2.0941 

3. .9865 -0.022 .9847 -2.0955 .9845 2.0839 

4. .9823 -0.035 .9824 -2.1131 .9832 2.0810 

5. - - .9774 -2.1521 .9785 2.0732 

6. - - .9746 - .9743 2.0657 

7. .9774 -0.048 .9731 -2.1621 .9747 2.0605 

8. .9745 -0.064 .9662 -2.1802 .9678 2.0354 

9. .9664 -0.094 - - .9645 2.0312 

10. - - - - .9581 2.0284 

11. .9592 -0.134 .9564 -2.1912 .9557 2.0113 

12. .9484 -0.151 - - - - 
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6.3 Results with fortescue equivalent admittance approach with renewable 

generation 

Table 6.5 Result of 8 bus radial distribution system 

               Bus No.           Phase              Voltage(pu)              Angle(rad) 

1. A 1.0000 0.000 

1. B 1.0000 -2.0944 

1. C 1.0000 2.0944 

2. A 0.9825 0.0033 

2. B 0.9703 -2.0901 

2. C 0.9657 2.0920 

3. B 0.9646 -2.0878 

3. C 0.9645 2.0944 

4. C 0.9626 2.0885 

5. C 0.9674 2.0931 

6. C 0.9652 2.0932 

7. A 0.9897 0.0023 

8. B 0.9511 2.0930 
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Chapter 7 

Conclusion and Future Work 

The technique for the power flow solution of the distribution system with renewable generation 

is presented in this paper work. The load flow problem is solved by the methods one is direct 

approach for distribution system and the second is the fortescue equivalent admittance matrix 

approach for distribution load flow. The first load flow approach is based on building two 

matrices in taking into account the different characteristics of the distribution system. The two 

developed matrices are BIBC and BCBV matrix. The matrix giving the relation between bus 

current injections to the branch currents is known as BIBC matrix and the matrix giving the 

relation between branch current to the bus voltage is known as BCBV matrix. The above two 

matrices provides the direct approach solution for load flow when combined together. In the 

second method the phase admittance matrix is converted into fortescue coordinate. Then injected 

current is calculated from the given power. From this current the voltages are calculated. The 

power is calculated from this voltage and current. Error in the power is checked if it is in within 

the limit then the load flow is completed. The renewable generation is accommodated in the load 

flow with simply by considering PQ model. 

Hence we can say that this is an efficient and robust method presented in this dissertation report. 

It can be seen from the results that large distribution systems can be handled suitably. 
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Appendix 

(A)Data sheet of 8 bus unbalanced radial distribution system 

Table1. Load data: 

S.NO. BUS NO. PHASE(A) PHASE(B) PHASE(C) 

1 2 0.519+0.250i  
 

0.259+0.126i  
 

0.515+0.250i  
 

2 3 0 0.259+0.126i  
 

0.486+0.235i  
 

3 4 0 0 0.324+0.157i  
 

4 5 0 0 0.226+0.109i  
 

5 6 0 0 0.145+0.070i  
 

6 7 0.486+0.235i  
 

0 0 

7 8 0 0.267+0.129i  
 

0 
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Table2. Line data (self-impedance): 

S.NO. FROM TO PHASE(A)(x10-4) PHASE(B) (x10-4) PHASE(C)(x10-4) 

1 1 2 7.74+3.33i 7.74+3.33i 7.74+3.33i  

2 2 3 0 12.9+5.55i 12.9+5.55i 

3 2 5 0 0 3.87+1.665i 

4 2 7 3.87+1.665i 0 0 

5 3 4 0 0 2.58+1.11i 

6 3 8 0 5.16+2.22i 0 

7 5 6 0 0 6.45+2.775i 

 

Table3. Line data (mutual impedance): 

NBR AB (x10-4) BC (x10-4) CA (x10-4) 

1 2.58+1.11i 2.58+1.11i 2.58+1.11i 

2 0 4.3+1.85i 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

6 0 0 0 

7 0 0 0 
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(B)Data sheet of 13 bus unbalanced radial distribution system 

Table4. Line data for 13 bus distribution systems: 

S.No. From Bus To Bus R X 

1. 1 2 0.00148 0.00287 

2. 2 3 0.00044 0.00124 

3 3 4 0.00028 0.00078 

4 4 8 0.00160 0.00310 

5 8 9 0.00029 0.00083 

6 9 10 0.00053 0.00151 

7 10 11 0.00059 0.00166 

8 9 12 0.00038 0.00107 

9 12 13 0.00037 0.00104 

10 4 5 0.00060 0.00167 

11 5 6 0.00034 0.00097 

12 6 7 0.00032 0.00092 
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Table5. Bus data for 13 bus distribution system: 

Bus No. P Q V 

1 0.0000 0.0000 1.053 

2 4.730 1.550 1.00 

3 1.270 0.410 1.00 

4 0.350 0.110 1.00 

5 4.380 1.440 1.00 

6 2.110 0.690 1.00 

7 0.420 0.130 1.00 

8 4.730 1.550 1.00 

9 1.270 0.410 1.00 

10 0.350 0.110 1.00 

11 4.380 1.440 1.00 

12 2.110 0.690 1.00 

13 0.420 0.130 1.00 

 

 


