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 CHAPTER 1 

INTRODUCTION 

1.1 GENERAL BACKGROUND 

Albitite is a coarse grained, deep pink to brick red colour porphyritic rock which has 

randomly oriented subhedral laths of feldspar as the principal mineral. Albitite 

occurrences are very rare even on global scale and only a few reported occurrences have 

been documented so far from India. The generation of albitite is attributed to the 

replacement of alkali feldspar and plagioclase of the original granite by pure albite. 

Almost all descriptions associate the deposits with zones of extensive tectonic activity. 

Belevtsev (1980) and Grechishnicov (1980) described albitites in the Kirovograd-Krivoi 

Rog district. They reported that in this area the albitites are located adjacent to deep-

penetrating fault extending over 100 km at surface and are associated with a combination 

of pegmatite intrusion, cataclasis and mylonitisation. Belevtsev (1980) studied albitites in 

The Beaverlodge district. Here the albitites are hosted within a major fault zone, the St 

Louis Fault. Albitites at Lagoa Real are developed along shear zones (Lobato and Fyfe, 

1990). Occurrence of albitite in Guyana is reported from two sub-parallel, east-west 

trending fault zones (Alexandre, 2009).  

Potential sources of uranium are known to be hosted in albitites, albitised granitoids, and 

albitised metasedimentary rocks. Several such economically viable uranium deposits 

have been reported from Krivoy Rog and Zheltye Vody in Ukraine, Espinharas and 

Lagoa Real in Brazil, Pleutajokk and Arjeplog in Sweden, Kitongo in North Cameroon 

(Barthel, 1987).  

A few occurrences of albitite have been reported from a narrow linear zone in Khetri 

Copper Belt (KCB) in eastern Rajasthan, India. The detailed field survey in KCB has 

located albitite bodies distributed in a narrow zone of 170 km length. This zone is 

designated as ‘albitite zone’ of northern Rajasthan. The different albitite bodies occur in 

three linear sectors viz., the Sakhun Ladera, Khandela-Guhala and Maonda-Sior sectors. 
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The KCB forms the northern boundary of the Aravalli mountain range in Rajasthan, 

northwest India. It extends from Singhana in the NE to Raghunathgarh in the SW and is 

about 80 km long. The Kantli fault which strikes NW-SE divides the belt into two parts - 

viz., North KCB (NKCB) and South KCB (SKCB) (Das Gupta, 1968; Gupta et al., 

1998). The geological interest in the area is mainly because of the copper mineralization. 

KCB is a well studied, thoroughly documented, regionally metamorphosed mineralized 

belt, and is among the main indigenous sources of base metals (Cu, Co, Pb, Zn and 

related metals) in the country. The geological investigation in the area were mainly 

focused on description of the regional geology and the nature of mineralization in the 

area. Hacket (1877, 1880, and 1881) and Heron (1923, 1925) carried out detailed survey 

and documented the regional geology. The studies were also focused on exploring the 

potential of copper (Cu) mineralization and also to locate other economically viable Cu 

deposits in the area. Varma and Krishnanni (1963) analysed the mineralization in 

selected pockets of the study area. Further studies on ore mineralization were also carried 

out by Roy Chowdhury and Venkatesh (1971). The geological history of the area has 

been researched and discussed by various geoscientists. Researches indicate that the 

geological evolution of the area has been inferred by multistage development and sinking 

of intracratonic basin, deposition of different sedimentary facies and associated Cu 

mineralization. This was followed by events related to various deformational activities 

and multiphase metamorphism of the strata (Roy et al., 1998). KCB is characterized by 

an unconformable basement-cover relationship between the high grade paragneiss-

quartzite-calc-silicate rock sequence and copper hosted metasedimentary sequence. The 

metasedimentary rocks of the KCB display a NNE—SSW to NE—SW trend and are 

folded into a number of regional anticlines and synclines with culminations and 

depressions (Das Gupta, 1968).  

The compressional tectonic activity resulted in structural deformation and multilevel 

folding, faulting and fracturing. Two main deformation stages affected the Proterozoic 

sequence probably at the end of Proterozoic-I (as indicated by 1700 Ma syn-second 

deformation Gothro Granite). The earlier deformation produced folds with axes plunging 

towards NW-SE to NNW-SSE direction. The associated gently dipping tangential shear 

zones indicate an overall shear in the NW to NNW direction, which, however, did not 
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induce appreciable tectonic stacking of lithologic successions. The later stage of 

deformation produced folds (macroscopic sinistral fold near Khetri-Rajota) and 

crenulation cleavage generally striking NNE-SSW. The axis of later folds plunges gently 

towards South (as towards North of Kalota) with occasional plunge reversal (Roy 

Chowdhury and Das Gupta, 1965). Large dextral shear zones, such as the NE- SW 

Singhana-Jaspura shear zone and the Babai-Taonda shear zone (running diagonally 

across the study area) are responsible for the arcuate shape of the Proterozoic sequence. 

Prograde metamorphism associated with earlier deformation is characterized by a 

pressure decrease and is followed by a temperature increase, linked to granitic 

emplacement during later deformation. Late tectonic stages are characterized by brittle 

deformation and the development of regional NE-SW striking fault zones as well as 

localized NW-SE trending transverse faults. Within the Proterozoic sequence, 

stratabound copper deposits with a cumulative strike length of 16 km, show broad 

stratigraphic control by Fe-Mg rich and carbonate bearing metasedirnents, which 

correspond to the transition zone between near shore detrital facies and deeper 

argillaceous marine sediments (Das Gupta, 1968). 

Apart from copper mineralization, there is another geologic feature of great interest. This 

feature is a long narrow zone following a major crustal fracture. Along this zone presence 

of some pegmatite and adventurine (Fe rich) albitite has been reported by Ray (1987). 

Geomorphological evidences in the area suggest that this zone is younger than Kantli 

fault. The circumstantial evidences indicate that the compressional tectonic activity was 

followed by an extensional regime which resulted in a narrow linear zone which 

facilitated movement of fluids and subsequent hydrothermal activity resulting in 

mineralization differing from the previous Cu mineralization in the area.  

Hydrothermal alteration of the country rock has led to intense lithological and 

geochemical heterogeneity in the area. Some of the hydrothermal alteration assemblages 

are characteristic of certain types of mineral deposits. In KCB area albitites are associated 

with uranium mineralization. In 1994, Atomic Mineral Department, Government of 

India, started ground based reconnaissance surveys to locate albitite-hosted uranium 

mineralization in Khetri, Rajasthan. They have demarcated various patches of uranium 

mineralization at different locations in the albitite line.  
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Presence of several uranium and other atomic mineral occurrences have been reported in 

ore samples from various parts of Rajasthan and Haryana in studies carried out in the 

albitite zone of western India (Singh et al., 1998). Atomic Minerals Directorate (AMD) 

for Exploration and Research has located about 200 radioactivity anomalies within and 

near the albitite zone in western India. The field surveyed data indicates that uranium, 

multiple oxide (containing Nb, Ta, and Ti),  thorium, yttrium in this area are hosted in 

varied rock types, including basement rocks, albitised-metasedimentary, and associated 

sedimentary rocks of the Mesoproterozoic Delhi Supergroup.  

The albitites in KCB are thought to be emplaced because of deep crustal fracture and 

associated cogenetic ultramafic bodies. A close genetic relationship between alkali 

metasomatism and uranium mineralization has been revealed through petrographic and 

lithogeochemical studies. The metasomatising fluid mobilized uranium and other large 

ion lithophile elements (LILE) and resulted in their mineralization along shear zones at a 

later stage.  

Remote Sensing has proved its credibility in mapping geological and geomporphological 

features based on their regional morphology, pattern and relief. Geoscientists have been 

equipped with better techniques for discriminating and mapping surface mineralogy with 

the use of advanced optical remote sensing (Rowan et al., 2005). In addition remotely 

sensed stereo images are capable of providing high resolution digital elevation model 

(DEM). The structural and geomorphologic features are not easily identifiable in field 

investigations due to their scale or limitations due to inaccessible terrain. Three 

dimensional models of the terrain would enhance interpretational capabilities of 

geologists in extracting geomorphological and structural features. Three-dimensional 

visualization of the earth’s surface and its investigation from varying view points and 

different orientations has proven to be particularly helpful in geological and 

geomorphological studies.  

Wavelength range and the spectral resolution of the sensor dictates the discrimination 

potential of remotely sensed image data. Though remote sensors may have restricted 

capacity to capture data from the diagnostic subsurface horizon, they definitely provide 

extremely useful information from the surface to optimize fieldwork and mapping for 

geological applications. Since many of the minerals have diagnostic absorption features 
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in short wave infrared region (SWIR) because of the presence of OH and other hydroxyl 

bonds, thus this region of the electromagnetic spectrum is widely utilized for 

identification of mineralization. Thermal infrared (TIR) emissivity completes the spectral 

information about the minerals because of its greater sensitivity to quartz content than the 

VNIR (Visible and Near Infrared)-SWIR reflectance. Albite, the principle mineral of 

albitite displays small absorption features at wavelengths of 1.42 µm, 2.2 µm in the 

VNIR-SWIR region of the EMS. These absorption dips are feeble and are not 

characterstic dips for the identification of the mineral. In thermal region the mineral 

exhibits a characterstic absorption dip at 8.5 µm, thus it seems logical to utilize the entire 

spectrum starting from VNIR-SWIR to TIR for enhanced albitite mapping. Since thermal 

information is available with Landsat and ASTER data, hence theses two datasets were 

utilized for the study. For deriving high resolution topographic information, cartosat-1 

stereo data is utilized. The research is carried out with a hypothesis that an integrated 

approach utilizing these sensor data could be helpful in identifying albitite in the study 

area. 

Conventional multispectral scanning systems, such as Landsat TM and SPOT XS have 

the capability of recording up to 10 spectral bands with broad bandwidths of the order of 

0.10 µm (Gens, 2010). Hyperspectral scanners are a special type of multispectral scanner 

that records a large number of bands with bandwidths in the order of 0.01 µm (Sabins, 

1999). Hyperspectral imagers typically collect data in numerous (sometimes several 

hundred) contiguous narrow bands spanning a vast region of the electromagnetic 

spectrum. One of the first operational applications of hyperspectral remotely sensed earth 

observation was done in the 1980’s in the field of mineral exploration.  Experiments in 

the last 30 years indicate that hyperspectral remote sensing can significantly contribute to 

geological investigations, mainly in the identification and mapping of minerals. The 

identification is most suited for arid (non-vegetated) and semi arid areas since these 

instruments, owing to their narrow spectral bands are able to better resolve absorption 

features unique to specific mineral species, in contrast to broad-band multi-spectral 

scanners.  

Hyperspectral data analysis involves comparing the reflectance spectra of every pixel 

with the reference spectra of known materials using some suitable logic (Thangavelu et 
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al., 2011). The Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) is designed largely to cater the needs of geologic mapping (Vani and Sanjeevi, 

2002). ASTER was the first satellite with multiple bands covering the wavelength 

regions ranging from VNIR to SWIR and TIR. The four VNIR bands provided suitable 

information about iron ores and rare earth minerals (Rowan and Mars, 2003). The six 

SWIR bands helped in identification of molecular vibration absorption features which are 

diagnostic of carbonates and clays (Hook, 1990; Kruse and Broadman, 2000; Rowan and 

Mars, 2003). The TIR bands help in detecting changes in the position of SiO2 restrahlen 

bands thereby are useful for distinguishing various silicates and also for determining 

feldspars as their characteristic absorption dips are located in TIR region.  

The Landsat  data  has  been  used  in  a  number  of  mineralogical studies and  is  

therefore, believed to be  one of the available resources for mineral mapping (Limpitlaw 

and Gens, 2006). ASTER  can  be  useful  in  predicting  mineral  suites  although  its  

bandwidth  might not be  capable  of  differentiating  subtle  spectral  features. Processing 

of ASTER and Landsat ETM+ data has shown very good correlation in the previous 

studies. Thus, in this study it is proposed to utilize the capabilities of both Landsat ETM+ 

and ASTER data along with field verification for identification of specific mineral, i.e. 

albite in the study area. The use of digitally enhanced Landsat and ASTER data has 

proven to provide profound results when interactively used along with the field 

information. The Cartosat -1 stereo images provide one of the finest resolution DEM’s 

which have proven useful in interpreting topographical and geomorphological features.  

The present research has been carried out with an aim to demarcate the albitite zone 

which can be an input for locating potential areas of uranium mineralization in and 

around Khetri. The study utilizes the spectral and spatial capabilities of remote sensing 

technology to achieve the objective. The coarse resolution Landsat data is used primarily 

for the regional understanding of the geological and geomorphological set up of the area, 

and the ASTER data with medium spatial resolution and higher spectral resolution for 

identifying albitite in the area. The Cartosat -1 derived DEM is utilized for demarcation 

of linear features and to analyze the structural control on the mineralization. The present 

thesis has two major components- the remote sensing technology and the geological 

problem of the area which have been dealt in detail in the following sections.  
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1.2 MOTIVATION   

KCB is a geologically dynamic and important area and detailed geologic database exists 

for the region. The interest in the area is mainly because of viable copper mineralization. 

Mining activity in the area has started in late 1960’s and since then Geological Survey of 

India has published geological maps of the area on various scales. Though geological 

surveys were carried out many times in the area, still albitite zone has been noticed in 

much later days. Ray (1987) was among one of the first authors to report several 

distributed occurrences of albitite in NNE-SSW trending 20 km long zone. Later on 

several other albitite bodies were found from a 170 km long narrow zone. This zone was 

termed as the “albitite zone” or “albitite line”. These studies were mainly based on a field 

intensive mode for locating and identifying albitite in the study area, thus the albitite 

zone was not looked at and demarcated in totality. The albitite zone also known as 

‘Albitite line’ was initially known to extend over 170 km length (Ray, 1987, 1990). 

However the zone has now been traced over 320 km length in a NNE-SSW trending 

linear zone (Singh et al., 1998). The albitite zone follows major lineaments and extends 

from Tal in the SW (Rajasthan) to Dancholi-Mewara in the NE (Haryana). In the 

southern part, the zone is microcline-rich thus termed as microclinite, whereas, towards 

the north, owing to its albite rich nature it is called as albitite. 

The demarcation of albitite zone is of great geologic interest as association of albitite has 

been reported with mineralization, especially uranium mineralization. Since such an 

exercise cannot be adequately and reliably conducted purely through field surveys, the 

capabilities of high spectral resolution remote sensing data can be utilized to fill the gap 

which allows a synoptic view of the area for large spatial extent. To fulfill this objective 

and to establish a framework within which similar studies can be conducted for other 

parts of the country, an exhaustive analysis of ASTER data for a mineralized region in 

KCB has been conducted and reported in this thesis. 

The research presents a detailed account of the analysis of multisensor satellite dataset 

for albitite mapping in the north KCB. This research is to contribute to delineation and 

demarcation of albitite zone which will assist in determining the potential for the 

mineralization in the area. A remote sensing approach of utilizing ASTER and Landsat 
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data integrated with Cartosat -1 stereo data derived elevation information offers the 

capability to resolve the key geological features of this area.  

 

1.3 OBJECTIVES 

The overall objective of the research is to analyze the capabilities of multisensor remote 

sensing datasets for mapping albitite zone in a part of the KCB in northwest India. 

The study is based in the VNIR-SWIR and TIR region of the spectrum. Laboratory 

spectra acquired from field and image along with the petrographic analysis of hand 

specimens serve as guide in selecting image endmembers used as input for 

classification for mineral mapping. In addition to this, Car t o s a t  - 1  stereo image 

derived elevation data is used to map structures (lineaments) in the area which is later 

integrated with ASTER data to understand the impact of structure on spatial 

distribution of the albitite zone. 

The approach adopted here has allowed for an evaluation of the potential of multisensor 

remote sensing data as a supporting and indirect evidential tool for known mineral 

anomalies in a well studied mineralized region. Results of remote sensing based mapping 

for the study area can, therefore, be directly compared with the field observations and 

geologic maps, and thus the study can serve as a test case to explore the potential of the 

technology for other areas. Briefly, the study has been designed to fulfill the following 

research objectives: 

The main objective of the research is to identify and map albitite rich zones in the Khetri 

KCB. Further sub-objectives of the study are: 

1. To analyse the capabilities of multispectral and hyperspectral satellite datasets for 

mapping albitite zones. 

2. To investigate correlation between structural pattern and mapped albitite zone.  

3. To evaluate various techniques of classification for mineral mapping. 

 

1.4 SCIENTIFIC IMPACT 

An understanding of spatial extent of albitite zone is of great value because it provides 

insight into potential mineralized areas. The goal of this research is to show the extent to 

which Landsat ASTER and Cartosat -1 remotely sensed data can be used to identify 
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albitite. For the present study, the investigations have provided a better understanding of 

the distribution of specific mineral, i.e. albite which can be linked to existing and 

potential uranium mineralized areas, and can thus serve as an exploration aid. In nutshell, 

the main scientific contributions of this research are outlined as follows: 

 Detailed report of multisensor data analysis for albitite identification. 

 Integration of Crosta technique for alteration mapping. 

 Creation of a spectral library based on representative samples. 

 Evaluation of various classification techniques for albitite mapping. 

 Establishing remotely sensed data as a potential tool for albitite mapping. 

 Delineation of albitite zone. 

1.5 ORGANIZATION OF THE THESIS 

This research has investigated the potential and capability of multisensory remote sensing 

data in albitite mapping with a case study in the KCB, in northwest India. Exhaustive 

analysis of ASTER data has involved investigation of data preprocessing and processing 

methods currently in vogue. The Landsat ETM+ and ASTER VNIR-SWIR and TIR data 

have been treated separately owing to the basic nature of the data. Photogrammetric 

processing of Cartosat -1 stereo data is done to generate DEM of the area. A ground truth 

database has been created to validate and interpret the findings of ASTER data analysis.  

The thesis has been organized in 7 chapters on the basis of the treatment of the following 

components: 

 Background literature review pertaining to the geology of the study area and 

remote sensing applications in lithologic and alteration mapping with focus on the 

use of ASTER data (Chapter 2). 

 Discussion of the brief methodology and data employed (Chapter 3). 

 Ground truth database development, in terms of field visits and laboratory 

investigations (petrographic and spectral) of selected field samples (Chapter 4). 

 Preprocessing of ASTER VNIR-SWIR and TIR data for removal of radiometric, 

atmospheric and topographic effects and retrieval of the basic surface physical data 

(reflectance) using existing approaches (Chapter 5). 
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 Croasta processing of the Landsat and ASTER data for mineral mapping. 

Photogrammetric processing of Cartosat -1 stereo data. Analysis of ASTER VNIR-

SWIR and TIR reflectance data for albitite mapping (Chapter 6). 

 Synthesis of ASTER data analysis results with ground truth and validation of the 

results (Chapter 7). 

 

The chapter interdependencies have been shown in Fig 1.1 

 

Fig 1.1: Interdependency of the chapters in the thesis  
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CHAPTER 2 

 LITERATURE REVIEW AND STUDY AREA  

This research can be broadly said to have two major components. The area being of 

significant geologic interest because of evidences of significant zone of tectonic activity 

in form of dispersed albitite bodies and pegmatite veins in the host rock, the 

identification of a regional extent affected by albitite emplacement becomes quite 

significant. The area in which albitite emplacement has taken place can be used as an 

input for locating potential area of uranium mineralization. Thus the basic geological 

problem in the area is to locate the extent of the albitite zone. To cater to the present 

geological problem, the spectral and synoptic capabilities of remote sensing technology 

have been utilized. Hence keeping in view, the basic nature of the study, the literature 

review has also been grouped into different sections. This chapter gives a detailed review 

of the research related to geology of KCB in general and albitite zone in particular. It also 

reviews the use of spaceborne data emphasizes its utility for geological applications 

especially mineral identification.    

 
2.1 LITERATURE REVIEW OF THE STUDY AREA 
The KCB has attracted attention of many geologists since early days. This is mainly 

because of the area being rich in different ore minerals. Geology of the area, its 

stratigraphic sequence, nature of deformation, magmatism, metamorphism and ore 

mineralization in Delhi supergroup of rocks exposed in KCB have been studied by many 

researchers.  

Hacket (1877, 1880, and 1881) was the first geologist who studied the regional geology 

of the area. His work in this area was subsequently modified by Heron (1923, 1925) to 

who goes the credit of most extensive study of the regional geology. He stressed the 

potentiality of the Khetri copper deposits. Deb (1948), Varma and Patni (1962) and 

Varma and Krishnanunni (1963) were among the first authors to carry out studies on 

geology and mineralization of different pockets in the Khetri area. Das Gupta (1962) did 

a detailed pertographic study on paragenesis of scapolite bearing amphibolites in KCB. 

Das Gupta (1968) studied the structural history of the KCB in Jhunjunu and Sikar 

districts, Rajasthan. Chandra Chowdhury et al. (1971) described the geology and ore 
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mineralization in Akwali section of KCB. Roy Chowdhury and Venkatesh (1971) have 

discussed the regional controls of ore localization in the belt. Wall-rock alterations in the 

Khetri have been discussed by Das Gupta (1962, 1964a), Das Gupta et al. (1963, 1965) 

and Sikka et al. (1966). Genetic aspects of the ores of Madhan-Kudan and Kolihan in 

particular and KCB in general have been discussed by Varma and Krishnanunn (1963), 

Das Gupta (1964a, 1964b) and Mukharjee (1969). Basu and Narsaya (1982) described 

widespread alkali metamorphism of Delhi supergroup of rocks in north eastern 

Rajasthan. Basu and Narsaya (1983) introduced an interesting petrological event 

represented by probable zone of carbonatite and fenitic rock association in the eastern 

part of KCB. They also reported alkali metasomatism in this area. Gupta et al. (1998) 

studied the basement cover relationship in the Khetri copper belt. They also gave a model 

for the emplacement mechanism of granite massifs in the study area. The geology, 

stratigraphy and structure of North Delhi basin was discussed by Chakrabarti and Gupta 

(1992).  

One of the most interesting geological feature of this area, the albitite zone was not 

discussed till recent past. Ray (1987) reported the albitite occurrences and associated ore 

minerals in KCB. He discussed the regional extent and also the age of albitite 

emplacement. He studied albitite occurrences and ore mineral association in KCB and 

concluded that the uraninite and the Fe, molybdenum (Mo), and Cu-sulphide 

mineralization in the area is connected with a magmatic event and the associated 

cogenetic ultramafic rocks. The zone of this soda rich magmatic and metasomatic activity 

occurs as a NE-SW trending linear zone. Moreover the nature extent and tectonic 

significance of this magmatic/metasomatic event in a regional scale was discussed by 

him.  

Ray and Ghosh (1989) also reported albitite dike in Dudu sector, Jaipur and discussed its 

tectonic significance. The total extent of albitite line divided into three sectors: Sakhun, 

Khandela-Guhala and Maonda, Babai, Sior was discussed by Ray (1990). Petrography 

and geochemistry of albitites in Banjaron Ki Dhani was discussed in detail by Jain et al. 

(1999). He observed that strong albitisation has taken place only along NE-SW, NW-SE 

and EW trending weak structural planes. The albitite line coincides with Kaliguman 

lineament in South Delhi fold belt.  They also reported surface exposures of albitite in 
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Pachlangi, Karoth Dhanian, Maonda and Sagdu Ki Dhani. They concluded that the 

albitites of this area were not of magmatic origin. Albitised quartzites, albitised quartz 

biotite schists and albitised pegmatoids have been formed by the partial Na 

metasomatism of quartzites, quartz biotite schists and pegmatoids respectively. They also 

concluded that U-Th mineralization was not synchronous with Na metasomatism and 

occurred in a subsequent phase. Singh et al. (1998) analyzed the uranium and rare earth 

elements (REE) potential of the albitite-pyroxenite-microclinite belt of Rajasthan. Yadav 

et al. (2000) studied the geology and geochemistry of uraniferous albitites in Khetri area. 

Yadav et al. (2004) analyzed the tectono magmatic activation and its implication on 

metallogeny in Khetri sub basin. Yadav et al. (2008) proposed a descriptive model for 

albitite related uranium mineralisation of KCB. They observed evidences of 

hydrothermal alteration such as silification, chloritisation, haematisation and 

tourmalization. They also found evidences of two stages of cataclasis and albitization. It 

was summarized in their study that the albitization process was responsible for reducing 

the mechanical strength of the host rock. The ore bearing solution was alkali rich and 

acted as scavenger for uranium and other associated elements from metasediments. 

Biju-Shekar et al. (2003) derived evidences from chemical ages of zircon and discussed 

the implications of the late paleoproterozoic magmatism in Delhi fold belt. Kaur et al. 

(2006) did an electron probe microanalyser study on Khetri granitoids. They calculated 

the chemical ages of zircon in the Khetri granitoids. They reported widespread late 

paleoproterozoic extension related magmatism in the study area. Kaur et al. (2012) 

reported two stage extreme albitisation of A type granites from Khetri, Rajasthan. They 

reported that ‘A’ type metaluminous ferroan granites in the Khetri complex of Rajasthan, 

NW India, have been albitised to a large extent by two metasomatic fronts, an initial 

transformation of oligoclase to nearly pure albite and a subsequent replacement of 

microcline by albite, with sharp contacts between the microcline-bearing and microcline-

free zones. They also suggested that the albitisation took place at ∼350°–400°C. It was 

caused by the infiltration of an ascending hydrothermal fluid that had acquired high Na/K 

and Na/Ca ratios during migration through metamorphic rocks at even lower 

temperatures in the periphery of the plutons.       
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2.2 LITERATURE REVIEW OF GEOLOGIC REMOTE SENSING FOR 

MINERAL MAPPING  

A wealth of scientific literature is available on the applications of remote sensing 

technology in geology, with special focus on mineral exploration activities. Most mineral 

deposit models include some common elements that are relevant for remote sensing: 

tectonic setting, lithological association, alteration and structural control (Sabine, 1999). 

Most of the studies using remote sensing as a tool for mineral identification have utilized 

the unique spectral signatures of specific minerals. The utility of a remote sensor in 

mineral identification activity relies largely on its coverage of the spectral regions where 

these spectral features lie. 

In order to see how geologic remote sensing for mineral exploration has developed and 

improved since the successful launch of the first Landsat satellite in 1972, a 

comprehensive review of the relevant literature has been made. It may be mentioned that 

while active remote sensing has proven its merit in geologic applications in general and 

mineral exploration, it has been kept out of the preview of this review, since the focus of 

the present study is albitite mapping. The available scientific literature on remote sensing 

applications in mineral exploration and geology can be grouped into the following four 

categories: 

1. Multispectral remote sensing in mineral identification 

2. ASTER data for mineral mapping 

 

2.2.1 Multispectral Remote Sensing for Mineral identification  

Initial success in operational use of remote sensing for lithologic mapping was achieved 

using data from the Landsat MSS and TM (and ETM+) sensors (Abrams et al., l983; 

Podwysocki et al., 1983), and these sensors continue to be the most widely used 

multispectral remote sensors for geologic applications. Goetz et al. (1983) and Sabins 

(1999) have provided a general overview of the use and potential of multispectral passive 

remote sensing in mineral exploration activity, with emphasis on the application of 

Landsat TM data. Most studies that have utilized the Landsat data, have focused 

primarily in discriminating lithologies (Crósta and Moore, 1989; Qari, 1989; Kenea, 

1997; Van der Meer et al., 1997; Mickus and Johnson, 2001). The early studies on 
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Landsat data for mineral identification started with simple image processing functions. 

Band rationing, contrast stretching and color compositing for visual discrimination were 

applied on Landsat MSS data for south-central Nevada, USA by Rowan et al. (1977). 

This was done to discriminate hydrothermally altered rocks. Results showed good 

discrimination between hydrothermally altered and unaltered rocks except for shale and 

siltstone.  

Abrams et al. (1983) used Landsat MSS and aircraft scanner data simulating Landsat 4 

TM data for separation of lithologies, discrimination of hydrothermal alteration and 

structural mapping. Band rationing, principal component and canonical transformations 

techniques were performed to distinguish iron-oxide-rich areas. It was found that TM 

simulator data was more useful for alteration mapping. 

In the area of Central East Greenland with an objective to identify iron oxide staining for 

exploration of Stockwork molybdenum and other base metals, spectral ratioing and factor 

analysis were performed on Landsat MSS image to generate color composites for digital 

classification of limonitic rust zones. By using this technique about 88 significant rust 

zones were identified in Tertiary igneous province and Precambrian metamorphic 

province (Conradsen and Harpoth, 1984). Rationing, principal component analysis and 

IHS decorrelation techniques were performed on Landsat TM image for Aquaba-Levant 

structure in Wadi Araba in Jordan for the Graben, hydrothermal mapping. Enhanced 

spectral discrimination of phyllosilicates and iron oxides through decorelation processing 

was resulted by using this technique (Kaufmann, 1988). 

In Hamerslay province in Western Australia, Landsat TM data was used to discriminate 

and identify ferric oxides. Principal component analysis of band ratios was performed on 

the dataset and thus discrimination between hematites and goethite-rich areas was 

achieved (Fraser, 1991).  

Object oriented principal component analysis (OOPCA), also called feature oriented 

principal component selection, or FPCS or Crosta technique, spectral decorrelation, and 

IHS transformation technique were performed on Landsat TM of Central Mexico. The 

techniques for spectral enhancement of hydrothermally altered rocks in a vegetated area 

were compared in the study. The results showed that the discrimination of 
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hydrothermally altered volcanic from the unaltered can be achieved through statistical 

decorrelation techniques (Rutz-Armenta and Prol-Ledesma, 1988).  

In Guanajuato district of Mexico, hydrothermally altered rocks were identified by 

spectral enhancement of selected pixels. Band subtraction and principal component 

analysis technique were applied on Landsat TM image resulting in discrimination of 

hydrothermally altered rocks in heavily vegetated terrain and identification of new zones 

of argillic alteration (Torres-Vera and Prol-Ledesma, 2003). 

Crosta technique was applied on Landsat ETM+ image for porphyry copper alteration 

mapping in Southern Iranian volcanic sedimentary belt. Iron-oxide and hydroxyl-bearing 

minerals were mapped by applying this technique (Ranjbar et al., 2004). 

 

2.2.2 ASTER data for Mineral mapping  

It is evident that the best results of remote sensing for mineral identification can be 

obtained from spectral data that covers spectral regions of geologic interest, in large 

number of closely spaced bands. This typically corresponds to the hyperspectral remote 

sensing. Existing airborne hyperspectral remote sensing has limitations of geographic 

coverage, cost and data processing expertise which hinder the popular use of 

hyperspectral remote sensing for geologic mapping. A major development in bridging 

this gap was achieved with the launch of ASTER in December 1999 as it provided high 

quality, global data with unique spectral coverage in Visible and Near Infra Red-Short 

Wave Infra Red (VNIR-SWIR) atmospheric windows (Yamaguchi et al., 1998). 

Although multispectral by all definitions, ASTER data has provided a first superior 

alternative to the Landsat Thermal Infra Red (TM) data widely used and understood by 

most geologic remote sensing specialists. In addition to the finer spectral coverage (5 

bands) of the range covered by the single TM band 7 (2.08-2.35 µm) where absorption 

features of key alteration minerals lie, ASTER also provides best spectral coverage (5 

bands) of the TIR atmospheric window relevant to lithologic mapping applications from 

a spaceborne platform. Hence, ASTER offers a unique advantage of complementary 

geologic information. ASTER multispectral data not only offer global coverage at 

affordable cost, but also flexibility in data processing as it can he processed using 

existing image processing technology designed to handle multispectral as well as 
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standard hyperspectral data. Therefore, in more than one sense, ASTER data bridges the 

gaps between existing multispectral and hyperspectral sensors, and can be called a hybrid 

system. Since launch, numerous studies have amply demonstrated the utility of ASTER 

data in geology, particularly in lithologic mapping and hydrothermal alteration mineral 

detection and mapping. 

Previous  research  has  shown  that  the  SWIR spectral  range  covered  by  ASTER  

allows  distinguishing  pure  components  from  mineral  mixtures (Kruse et  al., 1990; 

Crosta et al., 1998) although the width of  the SWIR  ASTER bands have their  limitations 

with respect to differentiating subtle spectral features. The configuration of bands 5 and 7 

of TM/ETM in the SWIR portion allows the recognition of hydrothermal alteration sites, 

but the coarse spectral resolution does not allow the discrimination of individual minerals 

(Gabr et al., 2010). The six spectral bands of the ASTER SWIR subsystem were 

designed to record and distinguish absorption features for Al-OH, Fe, Mg-OH, Si-OH 

and CO3 (Abram and Hook, 1995; Fujisada, 1995). Thus, the ASTER SWIR reflective 

bands are capable to identify mineral assemblages that include: (1) mineralogy generated 

by the passage of low ph fluids (alunite and pyrophylite); (2) Al-Si-(OH) and Mg-Si-

(OH)-bearing minerals including kaolinite, mica and chlorite groups; (3) Ca-Al-Si-(OH) 

bearing minerals including epidote group and also carbonate (calcite and dolomite) as a 

group (Huntington, 1996). 

ASTER has been used extensively for lithologic mapping (Rowan and Mars, 2003; 

Gomez et al., 2005; Qiu et al., 2006; Khan et al., 2007; Li et al., 2007) There are many 

papers describing discrimination of granite (Watts and Harris, 2005; Massironi et al., 

2008), ophiolite (Qiu et al., 2006; Khan et al., 2007) and basement rocks (Vaughan et al., 

2005; Gad and Kusky, 2007; Qari et al., 2008).   

In Mountain Pass, California, USA, ASTER data was used for discriminating calcitic 

rocks from dolomitic rocks. L1B VNIR-SWIR bands were calibrated to surface 

reflectance.  These calibrated VNIR-SWIR bands and L2 AST_05 TIR surface emissivity 

data was utilized for the study. The results showed that apart from discrimination of 

calcitic rocke from dolomitic rocks, Fe-muscovite can also be distinguished from Al-

muscovite.  Quartzose and carbonate rocks were also mapped using TIR data (Rowan and 

Mars, 2003). 
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Rowan et al. (2006) mapped alteration minerals such as opal, alunite, kaolinite, 

muscovite and calcite using ASTER L1B VNIR –SWIR surface reflectance in Cuprite, 

Nevada, USA. Crosta et al. (2003) mapped alunite, illite, kaolinite and smectite in 

Patagonia, Argentina using ASTER L1B VNIR-SWIR data. 

Hubbard et al. (2003) mapped Ferric-iron mineral suites using ASTER VNIR data in 

Central Andes. They also discriminated clay-sulphate mineral using ASTER SWIR data. 

Ninimiya et al. (2005) found mafic-rich, quartz-rich and carbonate-rich rocks in Beishan 

Mountains, China and Mt. Fitton, Australia using ASTER L1B TIR image. ASTER L2 

TIR surface emissivity data was used in Hiller Mts., Nevada, USA and Tres Virgenes-La 

Reforma, Baja California Sur, Mexico resulting in quantitative estimation of SiO2 weight 

percent (Hook et al., 2005). Rowan et al. (2005) mapped four felsic and mafic lithologic 

classes using ASTER VNIR-SWIR data and two classes of mafic-ultramafic rocks and 

four classes of quartzose-intermediate rocks using ASTER TIR surface emissivity data in 

Mordor, NT, Australia. 

Hydrothermal hydroxyl-bearing alteration minerals in a densely vegetated terrain were 

mapped by Galvao et al. (2005) in Central Brazil using ASTER L1B SWIR calibrated to 

surface reflectance data. Mars and Rowan, 2006 discriminated phyllically and argillacally 

altered rocks using ASTER VNIR-SWIR calibrated to surface reflectance data in Zagros 

magmatic arc in Iran. Carranza and Hale (2002) mapped minerals characterizing silicic, 

potassic and phyllic zones in Infiernillo porphyry deposit in Argentina using ASTER 

L1B normalized to relative reflectance data. In Reko Diq, Pakistan L1B VNIR-SWIR 

calibrated to surface reflectance and L2 AST_05 TIR surface emmisivity data was used 

to map silicic quartz-bearing, phyllic muscovite, argillic alunite and propylitic chlorite by 

hydrothermal alteration mapping (Rowan et al., 2006). Identification and mapping of 

advanced argillic, argillic and silicic zones of Cerro La Mina, Patagonia, Argentina using 

ASTER SWIR calibrated to surface reflectance was carried out by Ducart et al. (2006). 

Sodic, potassic and silicic-phyllic alteration minerals were distinguished using ASTER 

L1B VNIR-SWIR-TIR of Chadormalu paleocrator, Bafq region of Central Iran 

(Moghtaderi et al., 2007). 

Zhang et al. (2007) distinguished and mapped alteration minerals such as alunite, 

kaolinite, muscovite and montmorillonite by using ASTER L1B VNIR-SWIR-TIR of 
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Chocolate Mts., California, USA. Pena and Abdelsalam (2006) demonstrated the 

potential of ASTER data to map sedimentary terrains. They utilized the ASTER data and 

several other satellite sensor datasets to map sedimentary terrain in Southern Tunisia. 

Many authors have explored the utility of ASTER data for mineral exploration.  Vaughan 

et al. (2005) mapped geothermal minerals using ASTER data. Hydrothermal minerals 

were identified by Zhang et al. (2007); Hubbard et al. (2003); Yamaguchi and Natio 

(2003); Carranza et al. (2008); Mars and Rowan (2006 and 2010).  Madani and Emam 

(2011) utilized ASTER dataset for distinguishing barite mineralization areas while 

evaporate systems were studied by Kavak (2005) and Oztan and Suzen (2011). Some 

work on ASTER data also focuses on generic lithologic mapping (Hasselwimmer et al., 

2011). ASTER data was also utilized for granitoids mapping in western Nepal (Bertoldi 

et al., 2011) to establish a relationship between lichens and granitoids bodies. This 

relationship was used to map granitoids in this area.   

 

2.3 LITERATURE REVIEW OF CARTOSAT-1 STEREO PROCESSING AND 
DEM APPLICATIONS FOR GEOMORPHOLOGICAL MAPPING 

Digital elevation model (DEM) was described by Bretar and Chehata (2010) as digital 

representation of the earth surface topography. Stereo images derived from satellite help 

in fast derivation of elevation information for the area. Cartosat-1 is a state-of-the-art 

remote sensing satellite built by ISRO which is mainly intended for cartographic 

applications and provides along track stereo images with a spatial resolution of 2.5m. 

Surface models derived from Cartosat-1 data have been analyzed for planimetric and 

vertical accuracy. James Lutes, 2006 analyzed multiple scenes across varying terrain 

conditions and reported planimetric accuracy of 2-4 m and vertical accuracy of 5-10 m. 

Kumar, A. 2006 observed that the error was significant (100 to 200m) when only RPC 

information for Cartosat –1 stereo data was used, whereas the error in height was reduced 

to 2 to 13 m after utilizing the GCP information. Agarwal et al. (2008) utilized elevation 

data for morphometric analysis of Pein river basin. They derived lineaments from the 

satellite derived surface model. Similar studies using satellite stereo data was carried out 

by Bali et al., 2011 and 2009 in Himalayan region. Tripathi, 1988 exploited the 

directional nature of geological lineaments and used semiautomatic methods for 
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lineament extraction from the surface model. He applied directional filtering for 

lineament extraction. Sanjeevi and Bhaskar, 2008 exploited the morphological image 

processing for lineament extraction. Lineaments can be extracted and enhanced using this 

technique.  

2.4. STUDY AREA 

The study area lies in the eastern part of the north Khetri copper belt. It falls within the 

Survey of India toposheets 45M/9 and 45M/13, in the Jhunjhunu district of Rajasthan 

state. The geographic extents of the study area lies between 75° 43’ E to 75° 50’ E  

longitudes and 27° 53’  N to 27° 59’ N latitudes. Khetri, the most important and populous 

town in the area, is situated to the northwest of the study area. The location map of the 

study area is shown in Fig. 2.1. 

 

  

Fig. 2.1: Location map of the study area 
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The area is well connected to the major cities, like Delhi and Jaipur by metalled roads 

and railways. Large villages in the study area, like Babai, Mewara Gurjawas and 

Mavanda Tarla are well connected with the road network. Nearest railway station is at 

Chirawa, which is about 30 km from Khetri. 

2.4.1 Physiography  

Regionally, the area consists of slightly undulating terrain in the east and moderately high 

hilly ranges to the west of the main study area. The high ranges of the west belong to 

north and south Khetri copper belt. Beyond the hills of the west is the great Indian Thar 

Desert. Nearly NS trending hills of Madhogarh lie to the south-west of the area. 

Quartzite ridges form the most prominent topographic features of the study area. The 

most prominent landforms in the area is the ridge about 3.5 km north of Papurna, with 

nearly uniform relief for a length of about 3 km. The ridge top with a relief of 800 m 

above mean sea level is made up of pure quartzites. In general the hills exhibit moderate 

dip to the west and steep dips to the east side. These hills represent the limbs of a 

regional fold called the Babai anticline. The lithology of the area is quite diverse, and 

exhibit different level of weathering in different areas.  The quartzites which are the most 

resistant rocks cap major ridges in the area. Amphibolites and the calc-silicates and 

calcareous rocks are the other resistant rocks found in the area. The meta-pelites, 

feldspathic quartzites and felsic intrusives (granites, granodiorites and pegmatites) have 

yielded to the agents of weathering in most part. The main reason for this differential 

weathering is that the feldspar of the rocks is more susceptible to weathering in the hot 

and dry climate of the region than the carbonates. 

There is no perennial drainage in the study area, though rivulets and nalas of varying 

magnitude dissect the hill flanks. The rivulets exhibit a dendritic pattern and are fairly 

dense. The major drainage follows the structural trends in the area. The Kantli river and 

the underlying fault lie to the southwest of the study area. Most of the westerly flowing 

drains disappear in the desert of the Thar, while some form feeders to the Kantli river 

flowing westwards. The agriculture is seasonal and highly monsoon dependent. 

Climatologically the area represents a typical tropical semi-arid to arid climate. The 

temperature fluctuates between the far ends of the thermometer for summer and winter 

seasons, with mercury crossing the 45° Celsius mark in peak summers, and going below 
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04° Celsius in the winters. Rainfall is moderate to scanty, with an average precipitation 

of 25 to 30 cm annually. 

The vegetation in the area is quite sparse and scanty. Xerophytes dominate the natural 

vegetation, which is also controlled by the bedrock regolith. The quartzites, carbonates 

and the intrusives (both felsic and mafic) in most part are barren and devoid of 

vegetation, while the schists and phyllites along with alluvium provide the best ground 

for vegetation in the area.  

2.4.2 Geology 

 Major rock types in the area are the quartzite of Alwar group followed by Ajabgarh 

group. The Ajabgarh group mainly comprises of calc-silicate rock, quartz-biotite schist, 

impure marble, muscovite-quartz schist, calcareous quartz-biotite schist. Calc-silicate 

rocks with impure marble bands and amphibole-quartzite is one of the most dominant 

rock type in the study area (Roy et al., 1998). The rock units generally exhibit NNE-SSW 

trend with moderate to steep dips. Concordant and discordant pegmatite, quartz veins, 

calcite veins and albitites of various dimensions are also found. Granite is exposed along 

NE-SW trend at Dhancholi-Dhanota, Dabla, Bamanwas and Besrara. The country rocks 

at Sior-Mewara Gujarwas sector have been subjected to various igneous and metasomatic 

changes, thereby reconstituting the host-rock mineralogy. Here, multiple episodes of later 

feldspathic and granitic activities mostly along the regional trend have converted the host 

rock into granite-gneiss associated with granite bands (Fig. 2.2 a and b).  

Albitisation of the country rocks is associated with varying degrees of other changes such 

as silicification, chloritisation and calcitisation. Rocks in Mukhauta-Jamalpur-Sior sector 

are invariably albitised in concordant and discordant directions (Roy et al., 1998). While 

the earlier generation follows the regional trend (NNE-SSW), later generation follows 

WNW-ESE to E-W trend. Associated development of amphibole, coarse euhedral 

magnetite and ilmenite are also seen. Epidotisation is another common feature. 

Albitisation is so intense at certain pockets such that the rock turns from albitised calc-

silicate rock into albitite. Intense deformation and associated cataclasis has resulted in the 

formation of brecciated albite-hornblende-quartz rock comprising of angular pieces of 

albite, quartzite and calc-silicate rock intercepted by later hornblende-albite veins. 

Disseminated chalcopyrite, pyrite and magnetite are commonly associated. 
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Petrographically, at least two generations of albites are discernible, of which the first 

generation comprises of coarse crystalline albite, whereas the later is fine-grained and 

aventurine in nature. In most cases, the second generation albitite is associated with 

calcitisation. Sphene, minor amounts of wollastonite, apatite, zircon, xenotime and 

monazite are found to be associated with albitisation. The stratigraphical sequence of 

various lithounits of the KCB by different workers has been summarized below (Table 

2.1): 

 

Table 2.1: Stratigraphic sequence of Aravalli Supergroup 
Heron (1953) Gupta et. al. (1997) Sinha- Roy et. al.(1998) Roy and Jakhar (2002) 
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 Fig. 2.2 a) Geological map of northern part of main Delhi basin  
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Fig. 2.2 b): Geological Map of the study area 

 

Structurally the area is quite complex, and the region reveals a history of tectonic 

deformation with at least three generations of folding and faulting on micro, meso and 

macro levels. A large number of faults (longitudinal and transverse) and thrusts following 

the contacts or cutting across the various litho-units are present in the area (Fig. 2.3). 

They are marked by shear zones and often by alterations and mineralization. 
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Fig. 2.3: Lineaments marked on ASTER image 

 
2.4.3 Albitite zone 
Albitite is a rare rock even at global standards and only a few occurances have so far 

been reported in India. Albitite is a porphyritic dike rock that is coarse-grained and 

composed almost entirely of albite. Randomly oriented subhedral laths of fine grained 

red coloured feldspar are the principal mineral of the albitites and the rock has a 

characterstic deep pink to brick red colour. Albitite is considered a valuable raw material 

for the ceramic industry. It is used as flux materials for ceramic tiles, white tiles and 

unglazed stoneware.  

Albitite is not a common rock in nature which implies that the processes leading to 

albitization of host rock are also not very common. A few occurrences of albitite 

distributed in NNE-SSW trending zone has been described by Ray (1987) from south 

part of the KCB in western India. The northern extent of the zone was traced out by 

further detailed field investigations in the area. Ray and Ghosh (1989) designated this 

narrow 170 km long zone as Albitite Line or Albitite Zone. This 170 km long zone has 

been further traced out to be 320 km extending from Tal in the SW (Rajasthan) to 

Dancholi-Mewara in the NE (Haryana). The surficial albitite occurrences in Rajathan 

have been grouped into three sectors: Northern (Maonda-Sior sectors), Central 

(Khandela-Guhala) and Southern (Sakhun- Ladera).    

The albitite occurrences within the Delhi metasediments extend from Mewara Gujarwas 

in the NE to Rohil in the SW. This belt is about 50 km long with a width of 8-10 km 
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(Yadav et al., 2000). Number of uranium occurrences within the albitite zone have been 

discovered during last two decades (Yadav et al., 2002). Genetic hypothesis regarding 

origin of albitites has fallen into two categories: magmatic origin along deep seated 

crustal fracture as envisaged by Ray (1990) and alkaline metasomatism, as given by 

Yadav et al. (2000). 

The albitite zone lying towards the eastern fringe of Khetri sub-basin occurs in almost 

peneplained area. Albitisation has mostly affected metasediments of Ajabgarh group of 

rocks which is the upper stratigraphical sequence of Delhi supergroup (Dasgupta, 1968). 

There are granitic plutons Saladipura, Udaipurwati and Chapoli which are intrusive 

within the Delhi metasedimentaries, which fall into the age bracket of 1400-1500 million 

years. Mineral (biotite) of these granites have been dated around 700 million years, 

which has been interpreted to represent thermal resetting in response to granitic activity 

of 700 million years (Ray, 1987). Albitite zone is characterized by higher grade of 

metamorphism (sillimanite zone). The alkali metasomatic process has albititised 

metasedimentaries such as quartzite, calc silicate, phyllites etc. Entire albitised rock 

assemblage has been grouped under the term metasomatites (Yadav et al., 2000). Dating 

of uraninite in albitites of the area by Rb/Sr method has indicated the age of quartz 

albitite to be in the range of 477-550 million years (Srinivasan, 2000). Two varieties of 

albitites are found, one is fine grained massive brick red coloured albitite occurring as 

isolated lenses of varying dimensions ranging in size from few meters to hundreds meter, 

whereas, the other variety consists of quartz albitites probably derived from coarse 

grained pegmatite as seen in the north eastern part of this zone. 
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CHAPTER 3 

 MATERIALS AND METHODS 

The data used in this research has been categorized into two groups - remote sensing 

image data and ancillary data, consisting of geologic and topographic maps of the study 

area. In addition to these, a separate database comprising of field observations (field 

photographs and GPS-controlled field location data) and data generated in laboratory 

(petrographic and spectroradiometric data) have also been created (discussed in Chapter 

4). In the following sections, the salient features of various kinds of data used in this 

study have been described. 

 

3.1 REMOTE SENSING DATA 

Remote sensing data of the study area comprises of: 

a) ASTER Level-1B, 14-band at-sensor radiance data  

b) Landsat ETM+ data 

c) Cartosat –1 data 

The remote sensing data have been selected for dates with minimum vegetation cover, 

since vegetation greatly affects the quality of radiation reflected/emitted by materials of 

geologic interest (rocks and soils) and obscures their spectral signatures.  

 

3.1.1 ASTER 

 The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

obtain high spatial and spectral resolution images of the earth’s surface. The spatial 

resolution ranges from 15 to 90 m per pixel. There are 14 bands in the data covering from 

visible to thermal infrared wavelengths of the electromagnetic spectrum. ASTER was 

launched on the TERRA platform in December 1999. ASTER data specifications are 

given in Table 3.1 
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Table 3.1: ASTER Specifications 

Launch date 18 December, 1999 

Orbit 705 km, sun synchronous 

Repeat cycle 16 days 

Spatial Resolution 15-90 m 

Swath width 60 km 

ASTER provides extremely cost effective coverage and can be used for geological and 

environmental interpretation apart from various other applications (Prakash et al., 2011). 

ASTER data simultaneously covers the earth surface and provides images from the 

visible to the thermal infrared region of the EMS. It provides high radiometric and 

geometric resolution compared to its predecessors. It is equipped with exquisite optics 

that allow the instrument axis to move upto ± 24º for SWIR and TIR cross-talk direction 

from the nadir. The ASTER consists of three separate instrument subsystems: 

VNIR (Visible Near Infrared, SWIR (Short Wave Infrared) and TIR (Thermal Infrared). 

The band wise specifications are listed in Table 3.2 

Table 3.2: ASTER Band Specifications (www.infoterra-global.com) 

  Band Width Spatial Resolution (m) 

Band 1 0.52-0.60 µm (Green) 15 

Band 2 0.63-0.69 µm (Red) 15 

  Band 3 0.76-0.86 µm (Near IR) 15 

Band 4 1.60-1.70 µm (SWIR) 30 

Band 5 2.145-2.185 µm (SWIR) 30 

Band 6 2.185-2.225 µm (SWIR) 30 

Band 7 2.235-2.285 µm (SWIR) 30 

Band 8 2.295-2.365 µm (SWIR) 30 

Band 9 2.36-2.43 µm (SWIR) 30 

Band 10 8.125-8.475 µm (TIR) 90 

Band 11 8.475-8.825 µm (TIR) 90 

Band 12 8.925-9.275 µm (TIR) 90 

Band 13 10.25-10.95 µm (TIR) 90 

Band 14 10.95-11.65 µm (TIR) 90 
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3.1.2 Landsat 

 The Landsat series of satellites started way back in 1972 and have provided high quality 

multi-spectral data since then. Entire earth has been covered using these satellites and are 

stored in a worldwide archive of Earth observation data. Landsat 7 launched on 15th April 

1999 has a better spatial resolution of 15 m in panchromatic band compared to its 

previous siblings. It is an ideal, multi-purpose, cost-effective tool for a huge range of 

applications (Woodlock et al., 2008). ETM+ data is enhanced version of TM with band 8 

having a spatial resolution of 15 m (Plantonov et al., 2008). A summary of the band 

information for Landsat ETM+ is contained in the Table 3.3  

Table 3.3: Landsat ETM Data Specifications 

 Band Width Spatial Resolution (m) 

Band 1 0.45 - 0.515µm (blue) 30  

Band 2 0.52 - 0.60µm (green) 30  

Band 3 0.63 - 0.69µm (red) 30  

Band 4 0.75 - 0.90µm (near infra-red) 30  

Band 5 1.55 - 1.75µm (infra-red) 30  

Band 6 10.4 - 12.50µm (thermal infra-red) 60  

Band 7 2.09 - 2.35µm (near infra-red) 30  

Band 8 0.52 – 0.9 µm 15  

 

3.1.3 Cartosat-1 

 Cartosat-1 launched on May 5, 2005 is a state-of-the-art remote sensing satellite of ISRO 

(Vijayan et al., 2012).  Cartosat-1 has a 618 km high polar sun synchronous orbit. 

Cartosat-1 carries two panchromatic cameras that capture panchromatic stereoscopic 

images. The satellite images have a spatial resolution of 2.5 m and cover a swath of 30 

km (Table 3.4). The cameras are mounted on the satellite in such a way that near 

simultaneous imaging of the same area from two different angles is possible. This 

facilitates the generation of accurate three-dimensional maps.  
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Table 3.4: Cartosat Data Specifications 

Spatial resolution 2.5 m 

Spectral Resolution 
a) No. of Bands 
b) Bandwidth 

 
1 Panchromatic 
0.5 to 0.85µm 

Radiometric Resolution 
a) Saturation Radiance 
b) Quantisation 
c) SNR 

 
55mW/cm2/str/µm 
10 bits 
345 at Saturation Radiance 

Swath (km) (Stereo) 30  
Nominal Altitude 617.99 km 
Orbital Repeat Cycle 116 days 
Max. Wait Time for Revisit 5 days 
Node for P/L Operations Descending Node 
MTF 
a) Across track 
b) Along track 

 
20 
23 

Nominal B/H Ratio for Stereo 0.62 
Orbital Parameters: 
a) Semi-major axis 
b)Eccentricity 
c) Inclination 

 
6996.128 km 
0.001 
97.87° 

Data Rate 105 Mb/s 
Integration Time (ms) 0.336 
Data Compression: 
a) Algorithm 
b) Compression Ratio 

 
JPEG 
Max. 3.2 

 

3.2 ANCILLARY DATA AND CREATION OF A GIS DATABASE 

Ancillary data in the form of topographic maps and geologic maps of the study area in 

analog (hardcopy or paper) format have been processed to create a geocoded coregistered 

digital database using standard GIS tools. In addition to this, a DEM has been generated 

from Cartosat-1 stereo image pair of the study area using standard stereo processing 

methodology.  

The standard GIS processing involves conversion of analog data into digital format either 

as raster images or vector shapes, followed by georeferencing the data layers based upon 

a user-defined geographic reference system (Behera et al., 2011). In this study, the 

topographic maps have been scanned, then georeferenced using geographic 

Latitude/Longitude coordinate system with WGS84 datum. The topographic maps are 

then used to create a topographic base map of the study area.  
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One of the basic requirements of this research is the availability of a geologic map to be 

used for ground-truth and to validate the results of remote sensing spectral analyses. 

Geologic map published by GSI on 1:50,000 scale in 1997 is taken for basic lithlogical 

units. The data given in Table 3.5 is used to create ancillary data required for the 

research. 

 

Table 3.5: Ancillary Data used in the Study 

Data Scale Year of production 

Survey of India (SOI) Toposheet No. 

45M/9, 45M/13,  

1:50,000 1985-87 

Geological Survey of India (GSI) 

Geological Map 

1:50,000 1997 

 

Using the data mentioned in table 3.5, following ancillary data is created: 

3.2.1 Base map: A base map is a map on which primary data and interpretations can be 

plotted. A base map incorporates roads, railways, major drainage, administrative 

boundaries, major settlements and forest boundaries. The base map of the study area was 

prepared using the Survey of India toposheets.  Fig. 3.1 shows the base map of the area. 

The map depicts various metalled roads, unmetalled roads and footpaths in the study 

area. A railway track with railway station at Dabla is also shown. Major settlements such 

as Khetri, Babai, Mavanda Tarla, Mewara Gurjawas, Mewara Jatuwas, Tibba Basai, 

Dabla etc. also shown. Some part of the study area is under resesrved forest. 
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Fig. 3.1: Base Map of the Study Area 

 

3.2.2 Drainage map: Drainage responds rapidly to tectonic changes and thus it can be 

used for tectonogeomorphological analysis (Agarwal et al., 2008). The orientation of 

drainage is also helpful in identification of lineaments (Bali et al., 2009 and 2011).  The 

drainage pattern in an area is dependent on the lithology of the area. The drainage map is 

prepared using SOI toposheets. The major river of the area is Kantli river which flows 

from NW to SE of the study area separating north KCB and south KCB. The boundary of 
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Kantli river is taken from the satellite image and the smaller streams are taken from 

toposheet. In general, the drainages are radial to dendritic in pattern. The maximum 

drainage order is seven. Fig. 3.2 shows the drainage map of the study area. 

 

Fig. 3.2: Drainage Map of the study area 

 

3.2.3 Contour Map: Contour lines are the lines drawn on the map connecting points of 

equal elevation. Contours at a contour interval of 20 m are digitized from the SOI 

toposheet. The study area includes both dense contours and sparse contour area. Dense 

contours are seen in north and south KCB areas and remaining part shows sparse 

contours. The minimum elevation in the area is 380 m and the maximum elevation is 762 

m. Fig. 3.3 shows the contour map of the study area. 
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Fig. 3.3: Contour Map of the study area 

 

3.2.4 Geology map: The area represents a regionally metamorphosed terrain with low to 

medium grade metasedimentary rocks, such as various kinds of quartzites (banded 

feldspathic quartzites. micaceous quartzites, amphibole bearing banded quartzites, 

arkosic and banded arkosic quartzites, and pure quartzites) and metapelites (schists and 

phyllites), and has witnessed a history of polyphase intrusions of intracratonic felsics and 

mafics  (granites, granodiorites and pegmatites, and amphiholites, respectively). Geologic 

map published by GSI in 1997 was taken for basic lithlogical units. A detailed geologic 

map of the area is shown in Fig. 2.2 b. 

3.2.5 Lineament Map: Lineament map is interpreted from ASTER data and digital 

surface model (DSM) of Cartosat-1 data (Fig. 6.2). 
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3.3 FIELD AND LABORATORY DATA 

Field visit during December, 2010 has been carried out to collect field data and samples 

for subsequent laboratory investigations. The details of the sampling and analysis 

techniques and results obtained have been provided in Chapter 4. The albitite zone 

already reported in literature is used as a reference for collecting rock samples. The 

samples are collected throughout the width of the albitite zone so as to cover different 

stages of albitisation. A few adjoining locations were also visited to identify the host rock 

and understand the process of albitite emplacement. The rock samples collected during 

the fieldwork have been subsequently analyzed through petrographic microscopy and 

spectoradiometry. 

 

3.4 SOFTWARE TOOLS 

A variety of GIS and image processing software tools have been used to process the 

remote sensing and ancillary geodata. Image analysis for Landsat and ASTER data is 

carried out using ENVI, ERDAS Imagine (version 9.1) software. Customized application 

for Directed Principle Component Analysis (DPCA) was developed using IDL. Data 

classification and comparison was done in ENVI (version 3.3).  Ancillary data is 

generated using vector module of Erdas Imagine. Standard digital image processing and 

vector graphics software have been used for creation and editing of the manuscript and 

figures shown in this thesis. 

 

3.5 METHODOLOGY OVERVIEW 

The broad conceptual framework and methodology adopted in this research has been 

shown in Fig. 3.4. 
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Fig. 3.4: Procedural flowchart of the methodology 

 

 

3.5.1 Sample Collection and Preparation 

The primary objective of field and laboratory studies is to locate the different rock types 

and to generate the spectral response curves since the combined response of surface 

materials within a pixel controls the spectral response recorded by the remote sensor. The 

sample sites are carefully selected based on existing geology map, results of DPCA 

analysis of Landsat and ASTER data and other ancillary information generated from 

toposheet. A total of 20 field samples are collected from the study area. These samples 

represented various stages of albitisation and also various rock types exposed in the study 

area. The field samples are subjected to detailed petrographic study. The samples are 

examined in the hand specimen and also thin sections are studied under the microscope. 

The exercise is carried out to determine the mineral constitution of the rocks. Emphasis 

has been laid upon identification of the primary and alteration mineralogy. Further 

spectral response curves pertaining to VNIR-SWIR region of the electromagnetic 
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spectrum are generated using ASD spectroradiometer. Reflectance curves pertaining to 

TIR region of electromagnetic spectrum are taken from the ASTER image at the sample 

sites. The image spectra from the spatial location of the sampled sites are used as 

reference spectra in TIR region of electromagnetic spectrum. Sample data collection and 

reflectance spectra generation is explained in detail in Chapter 4. 

 

3.5.2 Preprocessing of the data 

Mineral identification from remote sensing data is a challenging task. A number of 

preprocessing steps have to be applied before the data can be used for classification. 

When the emitted or reflected energy signal of an object is recorded at a short distance, it 

generally does not coincide with the measurements of the same object by a satellite 

sensor. This is because of atmospheric conditions, sun's azimuth and elevation. Apart 

from these atmospheric conditions, the response of the sensor also influences the 

observed energy. Thus, to obtain the actual reflectance which can be compared to ground 

measurements, these radiometric errors creeping in, because of atmosphere and sensor 

itself must be corrected. The raw ASTER image consisted of 14 bands. The first nine 

bands correspond to VNIR and SWIR wavelengths and the last five bands are for TIR 

wavelengths. Atmospheric correction of VNIR-SWIR bands has been carried out using  

Fast Line-of-sight Atmospheric analysis of Spectral Hypercubes (FLAASH) and 

Atmospheric and Topographic Correction (ATCOR) algorithms. The five thermal bands 

are atmospherically corrected using ‘Thermal Atmospheric Correction’ program in 

ENVI. The radiometrically corrected image is subjected to geometric correction using 

GCP from Landsat image. Preprocessing of the satellite data is explained in Chapter 5. 

 

3.5.3 Data Processing 

Data processing is carried out in various steps.  

A) DPCA Processing of Landsat and ASTER data 

Crosta technique, also known as feature oriented principal components (PC’s) 

selection aims at calculation of principal component images from the raw image. 

These PC’s are analyzed so as to identify principal components which contain the 

spectra information about the specific mineral. The contribution of each of original 
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bands to the components is also calculated as the loading factor. This is done in 

relation with spectral response of the specific mineral of interest. The magnitude and 

sign of the eigenvectors loadings is analyzed to indicate whether the materials will be 

represented as bright or dark pixels in the principal components (Crosta and Moore, 

1989; Rutz-Armenta and Prol-Ledesma, 1998). ETM+ data of Khetri area 

(acquisition date 23/6/2001) is used for this study. The image is cloud free. The 

image is geometrically and radiometrically corrected. The spectral reflectance curve 

of the individual minerals are analyzed and the dips and peaks are correlated with the 

dataset bands. These selected bands are then utilized for principal component 

analysis. To calculate the loading of individual bands onto the principle components, 

formula used is: 

R KP  =  ( a kp * √λ p ) / √ Var k------------------3.1 

 Where: 

R KP  = loading of band k on component p 

a k,p = eigenvector for band k and component p 

λp  = pth eigenvalue  

Var k = variance of band k in the covariance matrix 

DPCA processing of Landsat and ASTER data is dealt in detail in section 6.1. 

 

B) Cartosat - 1 Data Processing 

In order to analyse the correlation between the tectonic activity and albitite 

emplacement in the study area, through investigation of the albitite zone should be 

carried out along with the lineaments. Thus a 3D model is generated using Cartosat-1 

data to demarcate the lineaments in the area. Cartosat -1 stereo data for the area is 

acquired. Even though Cartosat -1 data contains rational polynomial coefficients 

which are capable of establishing a relationship between image and ground 

coordinates, still some ground control points are required for proper orientation of the 

stereo model. The ground control points are collected using single frequency geodetic 

Global Positioning System (GPS). Since the study area is not covered in one scene 

thus adjoining stereopairs in latitudinal direction are processed and surface models 

are merged to obtain a seamless elevation information over the area. The derived 
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surface model was examined visually and digitally to enhance the lineaments in the 

area. Stereo processing of Cartosat -1 data is explained in section 6.2.  

 

C)  Spectral Processing of ASTER VNIR SWIR and TIR data 

Various classification techniques are applied on atmospherically and geometrically 

corrected ASTER image. Spectral Angle Mapper (SAM), Mixture Tuned Matched 

Filtering (MTMF) and Spectral Feature Fitting (SFF) are used for classifying albitite 

rich areas. For VNIR-SWIR bands the reference spectra collected from the ground 

samples is used as end member. For thermal bands the end members are collected 

from the ASTER image at the ground surveyed locations. The SAM algorithm 

calculates the spectral angle between the reference and unknown spectra and uses it 

as a measure of similarity and discrimination. SAM algorithm is utilized for albitite 

end member in the study area. The output from SAM is a classified image and a set of 

rule images. The rule images indicate the spectral angle in radian between the 

reference and the unknown spectra. Lower values represent better match with the 

endmember spectra, thus higher probability of target of interest.  MTMF algorithm 

was carried out on all the 14 components derived from Minimum Noise Fraction  

(MNF)transformation. MTMF algorithm finds out abundances of user defined end 

members and thereby carries out a partial unmixing of the endmembers. Output of 

MTMF algorithm is a score and infeasibility image. Both the score and infeasibility 

images are integrated to generate a final classified output. Score and infeasibility 

images for albitite are generated and analyzed. SFF algorithm works on continuum 

removed reference and image spectra. SFF matches the reference endmember with 

the unknown spectra based on absorption features. A least square fit is calculated 

band by band between the image spectra and reference endmember. An RMS image 

is created for each endmember from the total root mean square error in matching. A 

scale image can also be calculated which is a measure of similarity between the 

reference and the image spectra on pixel by pixel basis. Spectral processing of 

ASTER data for albitite mapping is dealt in detail in section 6.3. 
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    CHAPTER 4 

 FIELD AND LABORATORY STUDIES 

The main objective of the field and laboratory exercises has been to generate reference 

data to be used for further classification. The field work is carried out to identify 

locations with prominent albitite emplacement. In order to collect the rock samples from 

the location, a detailed field survey is required. Thus after proper planning a field visit 

has been carried out in December, 2010.  

The field work is aimed at collecting samples representing various stages of albitisation. 

These samples are analyzed petrographically and to understand the extent and 

characteristics of albitite emplacement in the area. The rock samples are collected from 

the reported albitite zone. The adjoining areas are also sampled to identify the host rock 

for the process. The analyses have involved field data collection (field photographs, GPS 

locations of type-rock areas and albitised areas, and their field sampling); petrography of 

rock thin-sections to understand the bulk mineral constitution, especially albitite in the 

rock samples. The rock samples are studied with spectroradiometer to generate the 

reference spectra and to establish interrelationship between the nature of geologic 

information recorded by remote sensing (ASTER images) and its real-world occurrence.  

 

4.1 AREA SELECTION AND DEFINITION OF ANALYTICAL OBJECTIVES 

FOR FIELD AND LABORATORY STUDIES 

The literature review indicated a narrow zone of albitisation in the KCB area. Ray (1987) 

studied the ore mineralization and albitite occurrences in KCB area. He is among the first 

author to trace the regional extent and age of the albitite present in the study area. The 

total longitudinal extent of the reported albitite zone is divided into three parts: Sakhun, 

Khandela-Guhala and Maonda Babai Sior (Ray, 1990). The study area selected in the 

present work covers two of these three sectors namely: Khandela-Guhala and Maonda 

Babai Sior.  

Preliminary study based on Landsat ETM data of the study area have indicated the 

existence of some clay minerals and chlorite in the amphibolites, banded amphibole 

quartzite and pegmetites constituting the anomalous zone. Few sites are identified based 
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on the reported albitite occurrences and accessibility. A total of 20 field samples were 

collected from different locations representing the various rock types exposed in the 

study area. The details of the results obtained from the studies have been explained in 

subsequent sections. 

 

4.2 FIELD STUDIES AND SAMPLE COLLECTION 

Small treks are carried out near Kushwali ki Dhani, Mewara Gujarwas Jaturwas junction 

towards Jaturwas and Dabla areas. Several locations were studied on the way and the 

samples were collected (Fig. 4.1, 4.2 and 4.3). Table 4.1 comprises of geographical 

location of all the sites visited along with the rock type.  

 

Table 4.1: Description of Field Measurement Locations 

Location Lat/Long Rock Type Sample/Photo 

1 27° 49.329′N, 
75° 46.902′E 

Phyllite (country rock ) with 
pegmatite veins 

 

2 27° 49.186′N, 
75° 46.800′E 

High angle dipping country rock. 
Striking north south. Dip 75-80° 
west 

Sample 1 

3 27° 49.213′N, 
75° 46.772′E 

Country rock exposure striking 
north south. High angle dip. 
Dipping west 70° 

Photo 2 

4 27° 49.202′N, 
75° 46.747′E 

Country rock striking NS  

5 27° 49.181′N, 
75° 46.740′E 

Country rock  

6 27° 49.293′N, 
75° 46.673′E 

Country rock  

7 27° 49.293′N, 
75° 46.673′E 

Country rock strike EW  

8 27° 49.275′N, 
75° 46.636′E 

Pegmatite veins in country rock Photo 1 

9 27° 49.254′N, 
75° 46.609′E 

Pegmatite veins in country rock. 
Partially albitized typical 
bonding nature 

 

10 27° 49.301′N, 
75° 46.324′E 

Partially and some places totally 
albitized. Striking SW-NE high 
clip 75°-80° 
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11 27° 49.308′N, 
75° 46.621′E 

Large no. of veins. Typical 
bonding calc silicate rock        

Sample 2 & 3 

12 27° 49.487′N, 
75° 46.710′E 

Albitite /Country rock weathered 
scattered patches small mounds 
of albitite red coloured.  

Sample 4 & 6 
Photo 3 

13 27° 49.556′N, 
75° 46.764′E 

Pegmatite vein  

14 27° 49.582′N, 
75° 46.714′E 

Pegmatite vein striking EW   

15 27° 49.600′N, 
75° 46.658′E 

Albitite might be continuation of 
pegmatite white coloured 

 

16 27° 49.621′N, 
75° 46.683′E 

Phyllite (country rock) intruded 
with pegmatite 

 

17 27° 49.685′N, 
75° 46.800′E 

Pegmatite vein in country rock Photo 4 

18 27° 49.709′N, 
75° 46.836′E 

Pegmatite vein in country rock  

19 27° 49.556′N, 
75° 46.897′E 

Loose material Photo 5 

20 27° 49.556′N, 
75° 46.897′E 

Calcium silicate rock with vein Photo 6 

21 27° 49.399′N, 
75° 46.957′E 

Small outcrops (5-6). Mica 
schist quartzite/amphibole 
quartzite with pegmatite veins  

Sample 7 

22 27° 49.438′N, 
75° 46.984′E 

Pegmatite veins  Sample 8 

23 27° 55.358′N, 
75° 48.799′E 

Calcium silicate rocks. 
Amphibolite rock cutting 
country rock 

 

24 28° 2.252′N, 
75° 56.872′E 

Sand stone + iron ore, quartz 
vein with felspar  

Sample 11 & 12 
Photo 7 

25 28° 1.768′N, 
75° 57.069′E 

Felspathic quartzite but appear 
like granite  

Sample 13, Photo 8 

26 28° 1.130′N, 
75° 56.915′E 

Felspatic rich sandstone  Sample 14, Photo 9 

27 28° 1.084′N, 
75° 56.893′E 

May be partially albitised , flesh 
red coloured minerals  (plagio 
clase) visible  

Sample15, Photo 10 
& 11 

28 28° 0.704′N, 
75° 55.801′E 

Banded calcium silicate 
carbonate rich part remains 
inside and SiO2 rich in outside, 
so rock very hard. 

Sample 16, Photo 11 
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29 28° 0.529′N, 
75° 55.423′E 

Thick calcite vein altered into 
red soil. Vein activity is soft , 
top is banded and hard, 
carbonate vein + altered product 
of country rock  

Sample 17, Photo 12 

30 28° 0.358′N, 
75° 55.634′E 

Brecciated appearance , 
limonitic, calcite, Fe ore , mica , 
etc in brecciated appearance. 

Sample 18 & 19, 
Photo 13 

31 28° 0.007′N, 
75° 55.244′E 

Fe ore rock  Sample 20, Photo 14 

32 27° 58.842′N, 
75° 55.626′E 

Amphibole quartzite with 
pegmatite vein. 

Sample21 

33 27° 58.874′N, 
75° 55.546′E 

Partially albitised, banding 
visible. 

Sample 22, Photo 15 

34 27° 58.872′N, 
75° 55.525′E 

Fully albitised, typical felspar 
flakes  

Sample23, Photo 16 

35 27° 53.902′N, 
75° 56.151′E 

Granite-typical weathering 
pattern of granite 

Photo 17 & 18 

 
 

 
 

Fig. 4.1: Field Locations at Kushwali ki Dhani near Mavanda Tarla 
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Fig. 4.2: Field Locations near Mevara Jatuwas 

 

 
Fig 4.3: Field Locations near Mevara Gurjawas and Mevara Jatuwas 
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Photo1: Pegmatite Vein in Country Rock    Photo2: Country Rock striking N-S 

 

Photo3: Small Mounds of albitite         Photo4: Pegmatite vein in country         
rock 

 

 
Photo5: Loose material               Photo6: Calc silicate banded rock 
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Photo 7: Sandstone and Iron Ore          Photo 8: Felspathic quartzite 
 

  Photo 9: Felspathic rich sandstone              Photo 10: Banding in partially albitized 
                country rock 

   

Photo11: Pegmatite vein in partially                 Photo 12: Thick calcite vein  
                               albitized rock 
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        Photo13: Iron Ore Copper Gold              Photo14: Iron Ore Rock     
 
 

Photo 15: Partially albitized banded rock              Photo 16: Fully albitized rock 
 
 

   
         
 
 
 
 
 
 
 
 
 
 

           Photo17: Dabla Granite    Photo 18: Dabla Granite 
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4.3 PETROGRAPHIC STUDY OF THE COLLECTED ROCK SAMPLES 

The rock samples are collected from the albitite zone, various rock types exposed in the 

study area and also from the areas depicting altered mineralogy. Macro and Micro 

petrographic analysis of the samples is carried out. These rock samples are examined 

under the microscope to ascertain the mineral composition of the rocks and also to find 

out about their alteration. Primary and alteration mineralogy are identified in the rock 

samples. Effects of secondary weathering and the role of rock texture has been studied in 

greater detail as they have direct impact on the reflected electromagnetic radiation 

reaching the remote sensor. The characteristics of individual samples are described in 

following sub sections. 

Sample 1 

 Sample collected from the banks of lake at Kushwali ki Dhani near Mavanda Tarla at 

latitude  longitude 27° 49.186′N, 75° 46.800′E.  Fine grained rock exhibits banding. 

Amphibole bearing felspathic quartzite. Insepient banding visible. Feldspar include K 

feldspar mainly microcline and minor plagioclase. Some grains showing yellow 

pleochroism might be epidote or staurolite (Fig. 4.4).   

 

                                                 a       
Fig. 4.4: Sample 1 a) Hand specimen b) Thin section 40x ppl  c) Thin section 40x c 

 

 

 

b 

c 
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Sample 2 

Sample is collected from the banks of lake at Kushwali ki Dhani near Mavanda Tarla at 

latitude longitude 27° 49.308′N, 75° 46.621′E.  Fine to medium grained rock exhibits a 

clear banding between ferro magnesium and quartz. Within thick quartz vein some black 

ferro magnesium minerals are present. More feldspar and opaques with some micaceous 

minerals present. Some weathering also seen. Bands with large mica content mainly 

biotite. Feldspar include plagioclase and more K feldspar. Interlocking texture is visible. 

Grain boundaries are irregular (Fig. 4.5). 

 

Fig. 4.5: Sample 2 a) Hand specimen b) Thin section 40x ppl  c) Thin section 40x c 

 

Sample 3 

Sample collected from the banks of lake at Kushwali ki Dhani near Mavanda Tarla at 

latitude longitude 27° 49.308′N, 75° 46.621′E.  Overall massive, fine grained, quartz 

vein. Colour – dark grey. Feldspar, ferro magnesium, disseminated mica present. Some 

banding visible, partially weathered. Mineralogy similar to sample 2. It is more mafic 

rich. Some grains of amphibole visible (Fig. 4.6). 

 

 

 

b 

c 
a 
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Fig. 4.6: Sample 3 a) Hand secimen b) Thin section 40x ppl  c) Thin section 40x c 

 

Sample 4 

Sample collected from the banks of lake at Kushwali ki Dhani near Mavanda Tarla at 

latitude longitude 27° 49.487′N, 75° 46.710′E. Medium to Coarse grained massive 

igneous rock, pink in colour. Dominant plagioclase with ferro magnesium mineral and 

some dark red spots. Mineralogy includes feldspars, amphibole, Fe ore, epidote and many 

opaques. Amphibole has altered into chlorite. Albitite injection clearly seen in thin crack 

veins (Fig. 4.7).  

  

 

 

 

 

 

 

 

 

 

 

Fig. 4.7: Sample 4 a) Hand specimen b) Thin section 40x ppl  c) Thin section 40x c 

b 

c 

a 

a 

b 

c 
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Sample 7 

Sample collected from the banks of lake at Kushwali ki Dhani near Mavanda Tarla at 

latitude longitude 27° 49.399′E, 75° 46.957′N. Fine to medium grained massive rock. 

Dark grey in colour.  Pure quartzite. Pegmatite veins present. Quartz vein with eye shape 

structure (Fig. 4.8).  

 

 

 

 

 

 

 

 

 

 

Fig. 4.8: Sample 7 a) Hand specimen b) Thin section 40x ppl  c) Thin section 40x c 

 

Sample 8 

Sample collected from the banks of lake at Kushwali ki Dhani near Mavanda Tarla at 

latitude longitude 27° 49.438′N, 75° 46.984′E. Fine to medium grained rock, dark grey in 

colour. Granite with large content of mica, especially biotite. Typical granitic texture and 

some gneissic structure seen. Dominent minerals include anhedral quartz, albitic 

plagioclase and microcline (Fig. 4.9).  

 

 

b 

c a 
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Fig. 4.9: Sample 8 a) Hand specimen b) Thin section 40x ppl  c) Thin section 40x c 

 

Sample 9 

Sample collected from the banks of lake at Kushwali ki Dhani near Mavanda Tarla at 

latitude longitude 27° 49.487′N, 75° 46.710′E. Medium to coarse grained Massive 

igneous rock, pink in colour . Felspathic Quartzite. Dominant plagio clase with ferro 

magnesium mineral and yellow colour clayey materials, some dark red spots. Well 

developed crystals of ferro magnesium, narrow veins filled with pink material (Fig. 4.10).  

 

 

    

 

 

 

 

 

 

Fig. 4.10: Sample 9 a) Hand specimen b) Thin section 40x ppl  c) Thin section 40x c 

Sample11 

b 

b 

a c 

a c 
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Sample collected at 5 km from Mewara Gujarwas at latitude longitude 28° 2.252′N, 75° 

56.872′E. Massive igneous rock, dark grey in colour, fine grained, weathered (Fig. 4.11). 

Ferromagnesian with large quantity of epidote, opaques, quartz and feldspar (mainly 

plagioclase and orthoclase). 

 

 

 

 

 

 

 
 

 
Fig. 4.11: Sample 11 a) Hand specimen b) Thin section 40x ppl  c) Thin section 40x c 
 

Sample12 

Sample collected at location 5 km from Mewara Gujarwas at latitude longitude 28° 

2.252′N, 75° 56.872′E. Fe ore, Massive sample, high opacity, gravity, fine to medium 

grained, Brownish black colour (Fig. 4.12).  

   
   a      b 

Fig. 4.12: Sample 12 a) Hand specimen b) Thin section 40x ppl 
Sample13 

c 

b 

a 
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Sample collected at location 4.2 km from Mewara Gujarwas at latitude longitude 28° 

1.768′N, 75° 57.069′E. Fine to medium grained, pink colored massive igneous rock. 

Quartzite with feldspar grains. Grains are crushed. Might be because of the proximity to 

shear zone. Undulose extinction of quartz seen. Evidences of some water action also 

found (Fig. 4.13).  

 

Fig. 4.13: Sample 13 a) Hand specimen b) Thin section 40x ppl  c) Thin section 40x c 

 

Sample14 

Sample collected at location 4.0 km from Mewara Gujarwas at latitude longitude 28° 

1.130′N, 75° 56.915′E. Very fine grained, light pink colored massive rock. Fine grained 

quartzite. Chlorite rich. Arenaceous grains mixed. Feldspar detretial grains. Might be 

from the late stage of albitization (Fig. 4.14).  

  

 

 

 

b 

c 
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Fig. 4.14: Sample 14 a) Hand specimen b) Thin section 40x ppl  c) Thin section 40x c 

 

Sample 15 

Collected near Jatuwas at latitude longitude 28° 1.084′N, 75° 56.893′E. Partially albitized 

quartzo feldspathic rock. Main minerals include plagioclase, quartz, mica and opaques. It 

has two parts: fine grained and coarse grained. Grain boundary cemented with material 

(Fig. 4.15).  

 

 

 

 

 

 

 

Fig. 4.15: Sample 15 a) Hand specimen b) Thin section 40x ppl  c) Thin section 40x c 

 

 

 

b 

c 

b 

C a 

a 
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Sample 16 

Sample collected near Mewara Gujarwas at latitude longitude 28° 0.529′N, 75° 55.423′E. 

Medium to coarse grained massive igneous rock. Calcium silicate with carbonate vein. 

Some amphibole and scapolite also visible. Some feldspar (orthoclase) also seen (Fig. 

4.16).  

 

Fig. 4.16: Sample 16 a) Hand specimen b) Thin section 40x ppl 
 

Sample 17 

Sample collected near Mewara Gujarwas at latitude longitude 28° 0.529′N, 75° 55.423′E. 
Calcite, amphibole and some epidote seen (Fig. 4.17).  

   

Fig. 4.17: Sample 17 a) Hand specimen b) Thin section 40x ppl 
 

Sample 18 and 19  

Sample collected near Mewara Gujarwas at latitude longitude 28° 0.358′N, 75° 55.634′E. 

Coarse Grained massive igneous rock, colour – pink and white, black. Minerology-

quartz, albite, K feldspar, mica, amphibole, opaques. Partially weathered, weathering has 

affected felspar. Narrow quartz vein present (Fig. 4.18). 

b a 

b a 
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Fig. 4.18: Sample 18 & 19 a) Hand specimen b) Thin section 40x ppl  c) Thin section 
40x c 

 

Sample 20 

Sample collected near Mewara Gurjawas at latitude longitude 28° 0.007′N, 75° 55.244′E. 

Fine to medium grained massive igneous rock. Colour – brownish black. Minerals – Fe 

ore, with some quartz.  Banding between Fe ore and quartz. May be banded magnetite 

quartzite. Quartz and Fe ore content varying in bands. Some pores are also seen (Fig. 

4.19).  

 

 

 

 

 
  

Fig. 4.19: Sample 20 a) Hand specimen b) Thin section 40x ppl 
 

 

 

c 

b 

a 

b a 
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Sample 21 

Sample collected near Mewara Gurjawas at latitude longitude 27° 58.842′N, 75° 

55.626′E. Coarse grained massive igneous rock, colour – pink and white. Minerology- 

felspar and quartz, some mica. Purely albitite. Original rock was granitic and after 

alteration changed into albitite. Partially weathered, after weathering felspar changed to 

clay (Fig. 4.20). 

 
Fig. 4.20: Sample 21 a) Hand specimen b) Thin section 40x ppl  c) Thin section 40x c 
 

Sample 22 

Sample collected near Mewara Gurjawas at latitude longitude 27° 58.874′N, 75° 

55.546′E. Coarse grained massive igneous rock, colour – pinkish white. Minerology- 

alkali felspar and quartz with some red patches. Albitite is prominent. Appears cloudy 

but fresh after crossing (Fig. 4.21).  

 

 

 

 

b 

c a 
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Fig. 4.21: Sample 22 a) Hand specimen b) Thin section 40x ppl  c) Thin section 40x 

 

 Sample 23 

Sample collected near Mewara Gurjawas at latitude longitude 27° 58.872′N, 75° 

55.525′E. Coarse grained massive igneous rock, colour – yellowish white. Minerology- 

alkali felspar and quartz. Some K feldspar also seen. Borderline between granite and 

pegmatite (Fig. 4.22).  

 
Fig. 4.22: Sample 23 a) Hand specimen b) Thin section 40x ppl  c) Thin section 40x c 
 

 

 

 

b 

c 

b 

c 

a 

a 
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4.4 FIELD SPECTRA COLLECTION 

The validation of the reflectance spectra plays a very important role in this study. The 

laboratory spectra of the collected field samples are generated using spectro radiometer 

FieldSpec Pro. Proper care is taken while spectra collection to ensure similar illumination 

conditions between the satellite data collection and field spectra collection. To ensure 

this, the field spectra was collected between 10:00 hrs and 14:00 hrs. The instrument and 

procedure for collection of field spectra is discussed in succeeding sections. 

4.4.1 Instrument 

In order to make measurements of surface reflectance of geological samples, FieldSpec-

Pro spectroradiometer, is used. It is a handy and portable array-based device consisting of 

three main parts, viz, spectrometer unit, fiber optic cable and a computer interface.  The 

instrument consists of two radiometers which are integrated together and cover the 

spectral range from 350 to 2500 nm. It collects the spectra in 2151 bands. The reflectance 

spectra of the rock samples are collected with 5° full field- of-view (FFOV) so as to 

ensure the readings from sample only and avoiding the background effect. A laptop 

connected with the instrument helps in real time viewing of the recorded rock spectra. 

The spectral range and spectral resolution of the instrument used meet the requirements 

of the present study on ASTER and Landsat datasets. Table 4.2 shows the characteristics 

of the instrument used. 

Table 4.2 Analytical Spectral Device FieldSpec-FR specifications (source: FieldSpec 
Pro User Guide) 

Spectral Range 350 - 2500 nm 

Spectral Resolution Full Width at Half Maximum(FWHM) 3 nm 
for 350-1000 nm 

FWHM 10 nm for 1400 -2100 nm 
Sampling Interval 1.4 nm for 350 - 1050 nm 

2 nm for 1000 - 2500 nm 
Scanning Time 100 milliseconds 
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4.4.2 Instrument calibration 

During collection of reflectance spectra using spectroradiometer, thermal electrons within 

the instrument generate some amount of electrical current, which gets added to the 

incoming reflected energy.  This anomaly needs to be quantified and corrected for proper 

spectra collection. The process of correction of the error is known as ‘Dark Current 

Correction’. Prior to spectral data collection the instrument should be calibrated using a 

reference panel. This reference panel is also called as ‘White reference or Spectralon’. 

This white reference provided with the instrument allows the user to check the 

performance of the instrument. White reference collection also includes dark current 

correction and is carried out every 15 minutes during the collection of rock sample 

spectra. This ensures minimizing the effect of the changing lighting conditions on the 

recorded spectra.  

 

4.4.3 Creation of ASD spectral library 

To have a proper correlation between the ground measured spectra collected from 

spectroradiometer and image spectra from the atmospherically corrected ASTER image, 

the ground collected spectra ae re-sampled to match the approximate spectral bandwidth 

and signal-to-noise ratio of ASTER. Several measurements are taken per sample in order 

to have full information about minerals present. A spectral library of resampled ASD 

spectra is created. These spectra are used as reference spectra for further classification. 

Fig. 4.23 (a & b) shows the spectra collected using FeildSpec Pro. The spectra is 

resampled to ASTER wavelengths for further processing. Fig. 4.24 (a & b) represents the 

resampled spectral library. 
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      a 

       

               Fig. 4.23 a & b:  Lab Spectra from ASD FieldSpec-Pro spectroradiometer 

b 
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Fig. 4.24 a & b: Resample Lab Spectra according to ASTER data 
b 

a 
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CHAPTER 5 

PREPROCESSING OF DATA 

For remote sensing observations the electromagnetic radiation (EMR) has to pass twice 

through the atmosphere prior to being collected and recorded by the instrument. Hence, 

data observed at the sensor is the combined effect of atmosphere as well as the surface 

features. Thus removal of effects created by the atmosphere and the topography on the 

reflected or emitted energy being recorded by the remote sensor becomes one of the main 

challenges in the use of satellite remote sensing so that the surface physical parameters 

can be retrieved accurately. On its two-way journey through the atmosphere, the energy 

received at the sensor is affected by atmosphere, which severely affects the physical 

interpretability of the remote sensing image. The atmosphere affects mainly by scattering 

and absorption. Also variation in topography leads to directional effects on the reflected 

and emitted radiation and also introduces terrain adjacency effects (diffuse irradiance) on 

the signal reaching the remote sensor, thus changing the true nature of the target radiance. 

It is crucial to remove these atmospheric and topographic effects from the image data 

before subjecting the image to further processing, so that meaningful interpretation about 

the targets of interest can be made from remotely sensed data (Kumar et al., 2006).  

To compensate for atmospheric effects, the atmospheric parameters of the area should be 

known. These atmospheric parameters include the amount of water vapor in the area, 

aerosol optical depth and few other parameters. Since it is very difficult to measure these 

atmospheric parameters directly, one can have an estimate of these parameters from the 

radiance image. Then these estimated atmospheric parameters can be used in accurate 

atmospheric models to model actual surface reflectance. Since for such methods there is 

an independent measurement of atmospheric properties for each pixel, thus such type of 

atmospheric corrections can be applied on a pixel-by-pixel basis.  

This chapter deals with the atmospheric correction of the ASTER dataset used in this 

study. Existing techniques of atmospheric correction have been explored and applied to 

these data and a comparative evaluation has been made to produce the final surface 
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reflectance and surface emissivity image data, to be used in further detailed image 

analysis. 

5.1 ATMOSPHERIC CORRECTION 

Atmospheric correction is an important preprocessing step required before the remote 

sensing image can be utilized for further application. Most of the remote sensing analyses 

require that the digital number (DN) values in remote sensing data be converted into 

percentage reflectance so as to make them comparable to the on-ground or in-laboratory 

reflectance values collected (Teillet and Fedosejevs, 1995). In cases where surface 

material has sufficiently different reflectance and the atmospheric effects do not hamper 

their spectral discrimination, the further analysis can be carried out on uncorrected data. 

However, for utilizing remotely sensed data in mineral identification, atmospheric effects 

need to be compensated.  

5.1.1 Background and Methods   

Radiation from the Earth’s surface interacts with the atmosphere before it is recorded by 

the satellite sensor. For analyzing the remotely sensed data, the effects of the atmosphere 

on the radiances should be understood in detail. Composition of atmospheric constituents 

is not constant spatially and temporally, thus effect of atmosphere also varies 

accordingly. The atmosphere alters the incoming radiation either by scattering or 

absorption. The effect of scattering and absorption is dependent on the wavelength used. 

Absorption occurs when a part of the EMR passing through the atmosphere is absorbed 

by the atmospheric constituents. This energy can be later on reemitted at different 

wavelengths (Kumar et al., 2006). Scattering occurs when the direction of the energy 

passing through the atmosphere gets changed because of the diffusion of radiation by 

small particles present in the atmosphere. Scattering could be of various types depending 

on the relative size of the scattering particle and the wavelength of the incoming energy. 

At the shorter wavelengths, scattering due to clouds and other atmospheric constituents is 

the main source of attenuation while the longer wavelengths are mainly absorbed by 

ozone and water vapour particles of the atmosphere. Thus for shorter wavelengths 

absorption can be ignored and for longer wavelengths scattering effects would be 
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negligible (Liang et al., 1997). The main effects of the atmospheric scattering on 

remotely sensed data are upwelling atmospheric radiance or path radiance (Slater, 1980). 

Infrared bands are mainly affected by scattering from air molecules and aerosol particles. 

This has an additive effect on the measured radiance and result in image haze. Usually 

the amount of atmospheric gases like carbon dioxide, methane etc. does not vary much 

over time, however the amount of water vapour varies consistently both spatially and 

temporally. The air molecules remain consistent in their properties and follow Rayleigh's 

scattering rule, while the aerosols are quite variable and rather unpredictable. An 

effective atmospheric correction algorithm is expected to model the influences caused by 

scattering and absorption due to atmospheric constituents. 

The atmospheric correction of remote sensing data is quite complicated and difficult 

because of non availability of precise inputs required for simulation by atmospheric 

models. The atmosphere alters the incoming reflected or emitted radiation by reducing 

the original energy and also by contributing its own energy. For remotely sensed images 

covering large water bodies, the atmospheric radiation make up over 90% of the satellite 

recorded energy. Though our study area does not include large water body, still proper 

atmospheric correction needs to be carried out since even smaller effects of the 

atmosphere would degrade the quantitative use of remotely sensed data. Thus accurate 

correction of atmospheric effects is essential for further analysis (Schott et al., 1988). 

Atmospheric calibration methods can be grouped into two different groups, namely, the 

absolute radiometric correction and relative correction method. Relative atmospheric 

correction methods normalize the radiation variations within an image and   between 

images of same area collected on different dates. There are many methods for relative 

correction such as dark-pixel subtraction, Log Residual, Internal average relative 

reflectance etc.    

The absolute correction method removes the effect of atmospheric attenuation, 

topography and solar conditions and thus converts the    digital number of the remotely 

sensed data into surface reflectance (Song et al., 2001). These methods are essential if 

one needs to establish relationship between image based measurements and ground based 

measurements and also if one wants to focus on the extraction of subtle differences in 
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reflectance to estimate spectral properties of the material.  Common atmospheric 

correction programs are 6S (Second Simulation of the Satellite Signal in the Solar 

Spectrum), MODTRAN (Moderate Resolution Atmospheric Radiance and Transmittance 

Model), LOWTRAN etc.  

5. 2 ATMOSPHERIC CORRECTION OF ASTER L1B DATA 

ASTER L1B data was procured for the study area. The atmospheric correction aims at 

finding out a relationship between the top-of-atmosphere (TOA) radiance and surface 

radiance/reflectance based on the scattering and absorption characteristics of the 

atmosphere. Once this relationship is established, it can be used to convert the at-sensor 

radiance values to on-ground reflectance values.  

“Crosstalk” or energy “overspill” is a phenomenon encountered in ASTER data which 

affects the DN values recorded at the sensor. Energy from ASTER band 4 “leaks” and 

affects the energy being recorded in other bands, most commonly bands 5 and 9 (Fig. 

5.1). According to ASTER mineral index processing manual, the problem occurs because 

the solar output of the band 4 is considerably higher than any other SWIR bands. Thus if 

there is a small leakage of photons of band 4, they can affect largely on the other bands. 

Bands 5 and 9 suffer most and the effect is largest since physically the detectors of these 

bands are close to band 4 detector (Tonooka and Palluconi, 2002). Though there are 

software packages that provide corrections for this phenomenon, these packages operate 

on a scene or sub scene average whereas the problem is proportional to albedo contrast 

across pixels in adjacent lines and needs to be addressed on a line-by-line, pixel-by-pixel 

basis.  
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Fig. 5.1: Schematic representation of crosstalk in ASTER SWIR bands (Tonooka 
and Palluconi, 2002) 

 

If uncorrected, the cross-talk problem can create artificial absorption in bands 6 and 8 

that may lead to the false mapping of AlOH hydroxyl minerals such as kaolinite and illite 

(band 6) and chlorite, epidote or calcite. In some cases this can create an artificial low in 

bands 5 and 9, creating false argillic (alunite, pyrophyllite) and probably might lose 

identification of propylitic and carbonate mineral. On the contrary, if the problem is 

overcorrected it would result in creating artificial absorptions in bands 5 and 8, 

generating false argillic and carbonate/propylitic mineral zones respectively. For this 

reason, the data is left uncorrected and the mineral zones as mapped are interpreted with 

the crosstalk in mind. 

The primary LIB data has been put to rigorous radiometric, atmospheric and topographic 

corrections by applying existing methods and used. 
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5.2.1 Atmospheric correction of ASTER VNIR-SWIR data and reflectance retrieval 

In the following sections, the atmospheric correction and calibration of ASTER VNIR-

SWIR data using available atmospheric correction techniques are explained. The 

corrections are carried out to obtain the final surface reflectance image data. Both relative 

and absolute atmospheric correction methods have been applied on the dataset and 

analyzed. The results of different methods of atmospheric correction have been evaluated 

based on reflectance spectrum of a common pixel in all the outputs, referred to as the test 

pixel spectrum. The reference spectrum pixel represents a homogeneous area, 

representing urban settlement. Spectral reflectance curve from Johns Hopkins University 

(JHU) spectral library available in ENVI has been taken as reference spectrum. The 

reference spectrum has been resampled to ASTER wavelength for comparison. ENVI and 

ERDAS software packages have been used conjunctively for atmospheric correction of 

the image data. 

5.2.2 Methods of relative atmospheric correction 

i. Relative reflectance using Log Residuals 

Log Residuals calibration is applied on the radiance data to correct for atmospheric 

transmittance, instrument gain, solar irradiance, topographic effect, and albedo effects 

(Green and Craig, 1985). This transform results in a pseudo reflectance image which 

can further be used for detecting absorption features for specific minerals. The 

logarithmic residual of the dataset is calculated by dividing the input spectrum by the 

spectral and spatial geometric mean. The spectral mean is the mean value for each 

pixel in all the bands. It is used to remove topographic effects. The spatial mean is the 

mean of all pixels for each band and helps in removing solar irradiance and 

atmospheric transmittance. Fig. 5.2a shows the Log Residuals-corrected image and 

5.2 b shows spectrum of the test pixel with reference spectrum. 
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   a      b 

Fig. 5.2: Log Residual Correction a) Corrected image b) Image spectra Vs 
Reference spectra 

 

ii. Relative reflectance using IARR method 

In areas where there are no ground measurements and scene details are also not 

known, the radiance values can be reduced to relative reflectance by normalizing to a 

scene average spectrum. This happens in Internal Average Relative Reflectance 

(IARR) calibration method (Green and Craig, 1985). This method is particularly 

effective for arid areas with no vegetation, and hence is suitable for the data used in 

this study. The entire scene is used to calculate an average spectrum which can be 

used as the reference spectrum. This is now divided into the spectrum for individual 

image pixel. Fig. 5.3 shows the IARR-corrected relative reflectance spectrum of the 

test pixel. 
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  a       b 

Fig. 5.3: IARR Correction a) Corrected image b) Image spectra Vs Reference 

spectra 

 

iii. Relative reflectance using the Flat Field and the Modified Flat Field 

techniques  

The Flat Field (FF) calibration method is used to normalize the input data to the 

spectrum of a known spectrally neutral flat field in the scene. The FF selected is 

usually a spectrally uniform and bland site within the scene (Clark et al., 2002). The 

Modified Flat Field (MFF) method (Green, 1990), implemented in ERDAS Imagine 

software, requires that the analyst knows the material of the flat field and has a 

laboratory spectrum of that material. In MFF, each input pixel spectrum is divided by 

the flat field and then multiplied by the spectrum. For the study area, 13 pixels 

representing spectrally and spatially homogeneous area are used as a flat field. JHU 

library spectrum of this material available in the ASTER spectral library was used 

with the MFF procedure to calibrate the data to relative reflectance. The results of 

MFF calibration for the test pixel have been shown in Fig. 5.4 a and b. 
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   a      b 

Fig. 5.4: Modified Flat Field Correction a) Corrected image b) Image spectra Vs 
Reference spectra 

 

5.2.3 Methods of absolute atmospheric correction 

i) Surface reflectance retrieval using FLAASH 

FLAASH is an atmospheric calibration method based on radiative transfer model and 

is developed by Spectral Sciences, Inc. It uses an updated MODTRAN-based 

radiation transfer model and also includes corrections for adjacency effect.  

FLAASH differs from other radiative transfer models in using a better version of 

MODTRAN which has an updated recent spectral database. To retrieve visibility, the 

algorithm uses a ratio based reflectance method. It supports off-nadir geometries and 

all MODTRAN aerosol types and does all the MODTRAN calculations on-the-fly. It 

also compensates for the adjacency effect and does the wavelength calibration 

automatically. The results from FLAASH and other radiative transfer model tend to 

be similar in dry, clear atmospheres but significantly differ under moist and hazy 

conditions. 

Description of FLAASH parameters used 

 Sensor type: The option of selecting sensor type is provided to the user for wide 

range of sensors. Sensor type, for the present study is selected as ASTER. 
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Pixel size: In the Pixel Size (m) field 15.0 is entered as the VNIR bands used in the 

study has 15 m spatial resolution. 

Ground elevation: Ground elevation input required by FLAASH is an average 

elevation of the imaged terrain. For Khetri, the average elevation of the imaged 

terrain is taken as 0.6 km above MSL.  

Solar zenith angle/ Flight date and time: Solar zenith angle at the time of the 

satellite pass is provided in the product description. For Khetri the solar zenith angle 

is 37.214824 degrees. Flight date and time are selected as per the data description of 

ASTER. The data is captured on October 5, 2002. 

Scene centre latitude and longitude: The scene centre latitude and longitude is 

provided in the header file of the dataset. These have been provided as input in the 

software. 

Visibility: The visibility selected for Khetri is inferred as “clear” in the range of 40 

km. 

Atmospheric model: The user has to make a choice, based on the geographic location 

of the scene to atmospherically correct the image. FLAASH supports six atmosphere 

types based on a seasonal-latitude surface temperature MODTRAN modelled 

atmospheres as given in Table 5.1. 

 

Table 5.1 Column water vapor amounts and surface temperatures for the 
MODTRAN model atmospheres (source: FLAASH user guide) 

Model Atmosphere Water 

vapour (std 

atm-cm) 

Water vapour 

(g/cm2) 

Surface air 

temperature 

Sub Arctic Winter (SAW) 518 0.42 -16° C or 3° F 

Mid latitude Winter (MLW) 1060 0.85 -1° C or 30° F 
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U.S. Standard (U.S.) 1762 1.42 15° C or 59° F 

Sub Arctic Summer (SAS) 2589 2.08 14° C or 57° F 

Mid Latitude 

Summer(MLS) 

3636 2.92 21° C or 70° F 

Tropical (T) 5119 4.11 27° C or 80° F 

 

Modtran model atmosphere is selected based on the latitude of the area and also 

season of the image acquisition. Based on the location of Khetri 27º 55’ N latitude for 

an October scene “Tropical” model is selected. 

 

Aerosol model/ atmospheric file: The user has to make a choice, based on the 

geographic location. Rural is recommended for areas with visibility greater than 40 

km. Thus rural model is selected for the area. 

Water vapor retrieval: FLAASH includes a method for retrieving the amount of 

water vapour for each pixel. The wavelength at which water retrieval is to be carried 

out is selected based on the input band wavelengths. As ASTER VNIR-SWIR has 

bands in 0.52 – 2.43 μm range, the recommended wavelength of 1.13 µm is used for 

water retrieval for Khetri dataset. 

Adjacency range and zone: In order to accommodate for the adjacency effect, the 

‘adjacency correction’ is toggled to ‘yes’ in advanced setting parameters of 

FLAASH. Three multiscatter models are available in FLAASH: Isaacs, Scaled 

DISORT and DISORT. The recommended Scaled DISORT with 8 streams 

(signifying 8 directional adjacency) is selected for the present study. 

Reflectance scale factor: The output reflectance image needs to be scaled from 

floating-point into 2-byte integer data space. Thus the recommended scale factor of 

10,000 is used as input to FLAASH. 
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Wavelength calibration: The wavelength calibration is applied as available in 

FLAASH. 

The FLAASH input parameters for the ASTER VNIR-SWIR image data of the study 

area have been summarized in Table 5.2, 5.3, 5.4 and 5.5. The FLAASH corrected 

image is shown in Fig. 5.5a and the spectra of reference pixel in Fig. 5.5 b 

Table-5.2: ENVI FLAASH input parameters for the ASTER scene used 

Parameter Value 

 

 

General 

 

 

 

Scene Center, deg 27.833723 

75.750792 

Sensor and Sensor Type ASTER; 
Multispectral 

Sensor Altitude (km) 705 

Ground Elevation (km) 0.5 (default 0.0) 

Pixel size (m) 15 

Flight date and time Oct. 5, 2002;  

05:43:51 UTC(Z) 

Atmospheric model Tropical 

Aerosol Model Rural 

Water Retrieval No 

Water Column Multiplier 1.000 

Aerosol Retrieval 2 Band (K-T) 

Initial Visibility (km) 25 

 

Kaufman-Tanre (K-T) 

Aerosol Retrieval 

K-T Upper Channel Band5 (2.167 µm) 

K-T lower Channel Band2 (0.661 µm) 

Max. Upper Channel 0.10 
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 Reflectance  

Reflectance Ratio 0.45 

 

 

 

Advanced settings 

 

 

 

Aerosol scale Height (km) 2.00 

CO2 Mixing Ratio (ppm) 390.00 

Adjacency Correction 
(Yes/No) 

Yes 

MODTRAN Resolution 
(cm⁻¹) 

15 

MODTRAN Multiscatter 
Model 

Scaled Disort 

Number of DISORT Streams 8 

Scale Factor for Radiance 
Image 

10.0 

Output Reflectance scale 
Factor 

10000 

 

Table 5.3: Acquisition parameters for the ASTER LIB dataset used 

Parameter Value 

Solar direction (azimuth and elevation), 
deg 

153.210649, 54.309521 

Solar zenith angle (90° - solar elevation 
angle), deg 

35.690479 

Date and time of scene acquisition Oct. 5, 2002; 05:43;51 UTC(Z) 

Julian day for the acquisition date and 
time  

2452552.738785 

Earth-sun distance (d), AU 1.0000594926008028 
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Table 5.4: Solar exo-atmospheric irradiance values for the nine reflective bands of 
ASTER (VNIR+SWIR) (Thome et at., 2001): 

ASTER band (band 
center in µm) 

ESUNλ (W/m²/sr/ μm) 

AST_1 (0.556) 1847.00 

AST_2 (0.661) 1553.00 

AST_3 (0.807) 1118.00 

AST_4 (1.656) 232.50 

AST_5 (2.167) 80.32 

AST_6 (2.209) 74.92 

AST_7 (2.262) 69.20 

AST_8 (2.336) 59.82 

AST_9 (2.400) 57.32 

 

Table 5.5: Haze value computation for ASTER VNIR+SWIR bands using the 
image-based DOS technique COST method (Chavez, 1996)  

ASTER 
Band 
Number 

Minimum 
scaled 
Digital 
Number 
(DNmin) 

Minimum 
Band-
specific 
Radiance-
at-sensor 
(Lmin) 

Band-
specific 
Solar 
Irradiance 
(ESUNλ) 

Radiance for a 
1% reflecting 
surface 

(Lp=1%) 

=(ρESUNλ 
cosθzτdτu)/πd² 

Haze value for 
each band (Lhaze)  

= Lmin - Lp =1% 

AST_1 53 35.152 1847 3.878358569 31.27364 

AST_2 36 24.78 1553 3.261012917 21.51899 

AST_3 31 25.86 1118 2.34759333 23.51241 

AST_4 36 7.609 232.5 0.488207021 7.120793 

AST_5 37 2.5056 80.32 0.168657152 2.336943 
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AST_6 35 2.125 74.92 0.157318151 1.967682 

AST_7 35 2.0298 69.2 0.145307208 1.884493 

AST_8 30 1.2093 59.82 0.125610942 1.083689 

AST_9 35 1.0812 57.32 0.120361404 0.960839 

 

  

    a      b 

Fig.  5.5: FLAASH Correction a) Corrected image b) Image spectra Vs Reference 
spectra 

 

ii. Surface reflectance retrieval using ATCOR 

ATCOR software developed by DLR (German Aerospace Center) is useful for 

processing bands in the EMR region from 0.4 – 2.5 µm. The satellite sensors having a 

small field-of-view (FOV) have approximately constant solar and view geometry, thus in 

such cases the atmospheric transmittance and radiance functions can be treated as 

independent of scan angle. The algorithm houses a large database of atmospheric 

correction functions valid for a wide range of image acquisition and area conditions. The 

algorithm has separate codes for flat and rugged terrain. ATCOR-2 mostly used for flat 

terrain, considers two geometric degrees of freedom (DOF) of the flat plane, where as 
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ATCOR-3 has three degree of freedom. It takes into consideration terrain height and is 

useful for mountainous terrain. ATCOR can be used to estimate the atmospheric 

conditions (water vapor content, aerosol type, visibility) for an image scene. The total 

signal at the sensor is made up of four parts: radiance reflected from the ground pixel, 

radiation added from the neighboring area, terrain radiation which gets reflected to the 

pixel and path radiance. The surface reflectance spectrum of an object in the scene is a 

function of the object and the atmospheric parameters. Once the atmospheric effects are 

removed, it can be compared to typical library spectra. The following parameters 

required by the program (ATCOR-2) are keyed in according to the sensor and study area: 

Aerosol type:  Aerosol type is selected as rural.  

Visibility: The visibility selected for Khetri is inferred as “clear” in the range of 40 km. 

Ground elevation: Ground elevation is taken as 0.5 km based on the topomap of the                    

area.   

 Solar zenith angles: Solar zenith angle is keyed in as 35.69° as given in the header file. 

Tilt geometry:  Tilt angle is taken as zero.   

The corrected image and reflectance spectra is shown in Fig. 5.6. 

  
 
 
 
 
  

           
 
 
 

 
 

                  a    b 
Fig. 5.6: ATCOR Correction a) Corrected image b) Image spectra Vs Reference 

spectra 
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5.3 ATMOSPHERIC CORRECTION OF ASTER TIR DATA  

Like VNIR-SWIR wavelengths, the data in TIR spectral range is also affected by the 

atmospheric interference. The influence of atmosphere for thermal infrared bands is 

mainly due to multiplicative absorption, and the effect of atmospheric scattering is quite 

negligible. Atmospheric water is the main constituent attenuating the radiances in the 

TIR region. To approximate and remove the atmospheric contributions to the thermal 

infrared data and to retrieve the reflectance values, ENVI’s Thermal Atmospheric 

Correction tool is applied.    

The thermal atmospheric correction algorithm used in ENVI is similar to the In-Scene 

Atmospheric Compensation (ISAC) algorithm. The algorithm assumes a uniform 

atmosphere over the entire scene and also assumes that there is a surface with 

characteristics of perfectly black body within the scene, though the spatial location of 

blackbody is not required in the algorithm. Also the reflected down welling radiance is 

not assumed. To start with, the algorithm searches for maximum brightness temperature 

and determines the wavelength band exhibiting the same. This wavelength which exhibits 

the maximum brightness temperature is then taken as the reference wavelength. The 

feature spectra with brightest temperature at this atmospheric component in the radiance 

is calculated using the spectra that the brightest temperature at this wavelength. For this 

location, a graph between the reference blackbody radiance and the measured radiance is 

plotted according to wavelength and a line is fitted for the plotted dataset. The slope and 

the offset are calculated for this linear regression data and the atmospheric component for 

the band is calculated. The compensation calculated is then applied to the other bands 

also. The five thermal bands of ASTER data are subjected to the thermal atmospheric 

tool in ENVI. Fig. 5.7 shows the corrected image with the corrected spectra. 
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 Fig. 5.7: Thermal Atmospheric Correction a) Corrected image b) Corrected 
Spectra for albitite 

5.4: DISCUSSION ON ATMOSPHERIC CORRECTION RESULTS  

Atmospheric corrections can be applied by using relative and absolute physical methods. 

The relative methods are computationally fast since they avoid the evaluation of 

atmospheric components. These methods derive the input information from the image 

itself. But these methods only result in a statistical normalization of the image. The 

atmospheric correction methods based on atmospheric physics use the sun-sensor 

geometry, atmospheric parameters and elevation information to remove the contribution 

of atmospheric constituents for the image. The technique converts the DN to at sensor 

radiance using sensor gain and offset values. The sensor radiance values are then 

converted to top-of-atmosphere reflectance and ultimately to reflectance at surface of 

earth utilizing parameters like solar elevation, sun azimuth, Julian day. Physics based 

ATCOR and FLAASH both use MODTRAN4 radiative transfer code. The radiative 

transfer algoritms simulate the reflectance image by taking into account sun-sensor 

geometry at the time of imaging, temperature, water vapour and gases concentration 

profiles, aerosol type and concentration, spectral variation of ground reflectance and 

availability of bands in absorption regions. The reflectance extracted for the atmospheric 

correction models can directly be compared to spectra extracted from image and field 

measured spectra. For the study reflectance images are derived from the ATCOR-2 and 

FLAASH atmospheric correction models. The reflectance spectra extracted from the two 
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atmospheric correction models are compared visually for known absorption features of 

atmospheric gases and other known materials. 

The output of the ATCOR-2 and FLAASH corrected sample pixel spectrum matches 

closely with the reference spectra taken from library throughout the spectral range 

expecting for band 1, 2 and 4. In these bands, ATCOR-2 corrected image exhibits low 

reflectance values while the values are slightly higher in other bands.  

FLAASH extracted spectra follow the same trend as ATCOR-2 spectra. It also matches 

closely with the library spectra, since the difference between the library values and 

FLAASH values is less. The outputs of both the correction models display high 

reflectance values in SWIR region.  

The thermal atmospheric correction tool of ENVI corrects the atmospheric errors of 

thermal bands of EMR. The output VNIR-SWIR data from FLAASH algorithm and 

corrected thermal bands are used for further classification of albitite areas.  
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CHAPTER 6 

DATA PROCESSING 

Detailed studies of igneous activity and associated alteration across the globe have shown 

beyond doubts that the majority of such activity are closely related to their structural 

setting, host and source rocks, and the types of alteration (hydrothermal or supergene). 

Most of these factors can be evaluated with remote sensing owing to its synoptic view. 

The discussion of structural and lithological characteristics of the study area in Chapter 2 

and ground-truth based on field and laboratory data in Chapter 4, suggest a close genetic 

relationship between the stratigraphy, structure and tectonic events in KCB and 

accompanying alteration. The study area is structurally complex and climatically semi 

arid, which gives a great opportunity for remote investigation of the area. 

One of the main goals of this research is to investigate the utility and capability of 

spaceborne remote sensing data (Landsat and ASTER) to characterize the spectral 

features of albitite zones and host rocks. The main emphasis of this chapter is on 

investigating satellite dataset’s unique spectral coverage in the VNIR-SWIR region in 

conjunction with TIR channels, for mapping of albitite. The work presented here is an 

outcome of exhaustive evaluation of the processing techniques — both simple and 

advanced, to differentiate, identify and map the albitite zone in the study area. 

The  reliability  of  ASTER  scene  processing for albitite mapping  is  largely  unknown  

due  to  the  non-unique  spectral  response  of the range of  mineral mixtures that can be 

expected within a  particular  lithologic  background  setting.  Although  widely  applied  

in  the  remote  sensing  literature using  routine  mineral  mapping  techniques,  it  is  not  

possible  to  assess  the  validity  and quality  of  the results.  

The test area is composed of metamorphic rocks ranging from pure silicates (quartzites), 

impure carbonates (actinolite-diopside marbles and other calc-silicates) and mafic rocks 

(amphibolites). The intrusives in the area range from granites and granodiorites, to 

melanocratic amphibolites. The rocks are variously weathered. Scant to nil vegetation 

cover for most rocky surfaces and a semi-arid climate makes the study area favorable for 

remote lithologic mapping. 
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The complexity of the problem demanded that the processing be attempted in several 

independent series of steps. The broad methodology of the entire workflow is shown in      

Fig. 3.4  

The data processing is majorly divided into three broad categories: 

1. DPCA processing of ASTER and Landsat data 

2. Stereo processing of Cartosat -1 data 

3. Spectral processing of ASTER data 

 

6.1 DPCA PROCESSING OF LANDSAT AND ASTER DATA: 

Landsat data has been utilized for locating hydrothermal alteration zones by identifying 

iron oxides and hydrous minerals (Abrams et al., 1983; Kaufman, 1988; Tangestani and 

Moore, 2001). The result of the hydrothermal fluid which alters the chemical and 

mineralogical composition of the rock is evident in the country rock consisting of ore 

deposits associated with hydrothermal activity (Rutz-Armenta and Prol-Ledesma, 1998).  

The principal component analysis is a multivariate statistical transformation. The 

technique calculates the uncorrelated linear combinations (eigenvector loadings) of 

variables in a manner so that each successive linear combination (principal component) 

has a smaller variance than its predecessor. The principal component analysis is widely 

used to map alteration areas (Abrams et al., 1983; Kaufman, 1988; Loughlin, 1991; 

Bennett et al., 1993; Tangestani and Moore, 2001). 

Crosta technique is also called as feature oriented principal components selection (Tiwari 

et al., 2011). The technique focuses on determining the principal components containing 

spectral diagnostic features of specific minerals. It also focuses on calculating the 

contribution of each of the original bands to the principal components by analyzing the 

eigenvector and value. This technique also indicates whether the corresponding mineral 

will be represented in bright or dark tones in the principal components based on the 

magnitude and sign of the eigenvectors loadings. This technique can be applied on four 
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and six selected bands of TM data (Crosta   and Moore, 1989; Rutz-Armenta and Prol-

Ledesma, 1998). 

 Loughlin (1991) tested FPCS on TM image subscene of Roberts Mountains area, 

Nevada. He used Landsat TM band sets to derive spectral information about hydroxides, 

iron oxides+hydroxides and iron oxides. He termed this technique as Crosta Technique. 

Ruiz-Armenta and Prol-Ledesma (1998) detected rocks altered because of hydrothermal 

fluids in the western section of the Transmexican volcanic belt. They compared various 

methods for spectral enhancement of the and applied selective principle component 

analysis, crosta technique on six and four bands of Landsat data, DPCA, decorrelation 

stretch and HSI transformation on Landsat TM image of the area. The method that 

proved to be the most efficient is found to be crosta technique using four TM bands 

combined with the HSI transformation.  

Carranza and Hale (2002) processed Landsat TM image and integrated it with ground 

information in the Baguio district of the Philippines to map hydrothermally altered areas 

in terrain with dense vegetation. They applied crosta technique and software defoliant 

technique on the Landsat TM image for identification of limonitic and clay alteration 

areas. However, they found that these two techniques are not adequate to map 

hydrothermally altered areas using remotely sensed images. They developed new 

methodology for mineral imaging using Landsat TM data. Tangestani and Moore (2001) 

mapped the porphyry copper alteration in the Meiduk area, Iran by using crosta technique 

and stretched-unstretched principal component transformations on Landsat TM bands.  

Crosta et al. (2003) applied the crosta technique to map the occurrence of mineral end 

members related to epithermal gold deposits. The study was carried out on ASTER 

(Advanced Spaceborne Thermal Emission and Reflection Radiometer) SWIR bands of 

Patagonia, Argentina.  

For the study Landsat ETM+ and ASTER images are used. Preprocessing of the used 

data was explained in Chapter 5. The detailed steps of the crosta processing are given in 

Fig. 6.1. 
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Fig. 6.1: Methodology for Crosta Processing 

The study area mainly consists of felspathic quartzite. Among feldspar, K-feldspar is 

dominant in the study area. Few samples show presence of amphibole and biotite also. 

The main altered minerals in the study area include albite, epidote, chlorite, calcite and 

kaolinite.   

The analysis has been carried out for five minerals. These are albite, calcite, chlorite, 

epidote and kaolinite. The reason for the selection of these minerals is that these minerals 

are alteration products in the study area. They can be utilized in this technique because 

the crosta Technique is widely used for mineral mapping. This technique is very 

successful to enhance some target minerals which has a smaller variance. The spectral 

reflectance curves for the minerals are analysed for selecting bands with maximum 

information about the minerals. Corresponding bands of both the satellites (Fig. 6.2) are 

selected for crosta processing. The reflectance curve of these minerals resampled to 

ASTER wavelengths is shown in Fig. 6.3 
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Fig. 6.2: ASTER and Landsat 7 spectral bands in electromagnetic spectrum 
(modified after Abrahams and Hook, 2002) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.3: Laboratory spectra of muscovite, kaolinite, alunite,epidote, calcite and 
chlorite resampled to ASTER band passes. Spectra include muscovite, typical in 
phyllic alteration zone, with a 2.20µm absorption feature; kaolinite and alunite, 
which are common in argillic iteration zone, have 2.17µm secondary absorption 

features and epidote, calcite and chlorite which are typically associated with 
propylitic alteration zone and display 2.35µm absorption features (modified after 

Mars and Rowan, 2006) 
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6.1.1 Albite 

The USGS  and JHU spectral library reflectance curve for albite (Fig. 6.4 a & b) shows a 

small dip at 1.4 µm and another at 2.18 µm. There is a characteristicdip at 8.5 µm. Thus 

the corresponding bands of ASTER and ETM+ data are chosen. For recognition of albite 

which is the index mineral of albitite, bands 4, 5, 7 and 10 of ASTER data have been 

chosen to take part in principal component analysis. For Landsat ETM+ data bands 2, 4, 

5 and 7 are utilized for principal component analysis.  

 a      b 

Fig. 6.4: Spectral Reflectance Curve for Albite (Source: USGS and JHU Spectral 
Library) 

Table 6.1a shows loadings of various bands on the principal components of ASTER data 

set.  

Table 6.1: Loading of bands on principal components for albite a) ASTER b) 

ETM+ 

Band4 Band6 Band7 Band10 

pc1 0.77 -0.63 -0.001 0.011 

pc2 0.63 0.76 -0.08 0.02 

pc3 0.05 0.03 0.4 -0.89 

pc4 0.04 0.04 0.89 0.44 

          a 

 



105 
 

 

 

 

 

 

 

b 

The reflectance curve of albite shows absorption dips at 2.2 µm and 8.5 µm, which 

corresponds to band 7 and 10 of ASTER and Landsat. Analyzing the loading matrix it 

was concluded that for ASTER data band 7 has highest loading in PC4 with a positive 

sign and band 10 has highest loading in PC3 and is negative, thus the corresponding 

feature would be seen in dark color in PC3. For Landsat data band 7 has highest loading 

in PC 1 which is also negative. So the feature should be dark in colour. Fig. 6.5 shows 

PC3 and PC 1 for ASTER and Landsat data with albite rich areas in red colour. 

    

   a      b 

Fig. 6.5 Albite rich areas a) PC 3 of ASTER data b) PC 1 of Landsat data 

 

 

Band5 Band6 band 7 

pc1 -0.12687 -0.87631 -0.50695 

pc2 0.090245 -0.15642 0.100472 

pc3 -0.00135 0.130606 0.050333 

pc4 -0.13827 -0.07193 0.01743 
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6.1.2 Epidote 

The USGS and JHU spectral library reflectance curve for epidote (Fig. 6.6 a & b) 

shows a small dip at 0.5 µm and 1 µm and another strong absorption dip at 2.3 µm. A 

small high reflectance is seen at 0.6 µm and another one at 2.2 µm.  Thus the 

corresponding bands of ASTER and ETM+ data are chosen. For recognition of 

epidote, bands 2, 7, 8 and 10 of ASTER data have been chosen as input for principal 

component analysis. For Landsat ETM+ data bands 2, 3 and 6 are utilized for 

principal component analysis. 

    a      b 

Fig. 6.6: Spectral Reflectance Curve for Epidote (Source: USGS and JHU Spectral Library) 

 

Table 6.2: Loading of bands on principal components for epidote a) ASTER b) ETM+ 

     

    
   

 

 

a 

 

       

 

  band 2 band 3 band 6 

pc1 0.973749 0.289943 0.432453 

pc2 0.383762 0.216428 -0.09497 

pc3 -0.09883 0.137828 0.007166 
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The reflectance curve of epidote shows a dip at 2.3 µm, which corresponds to band 8 of 

ASTER and band 6 of Landsat. Analyzing the loading matrix it is concluded that for 

ASTER data band 7 has highest loading (4.44) in PC1 and the corresponding feature 

would be seen in bright color. For Landsat data band 6 has highest loading in PC 1 (0.43) 

and the feature should be bright in colour. Fig. 6.7 shows PC1 for ASTER and Landsat 

data with epidote rich areas in red colour. 

   

a      b 

Fig. 6.7 Epidote rich areas a) PC 1 of ASTER data b) PC 1 of Landsat data 

 

 

  band 2 Band7 band 8 band 10 

 pc1 6.299285 4.44733 0.791852 0.412086 

pc2 0.262459 0.219972 -0.35947 -0.04989 

pc3 0.005535 0.005322 1.349244 -1.12345 

pc4 0.000601 0.019127 0.175725 0.406438 

b 
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6.1.3 Calcite 

The USGS and JHU spectral library reflectance curve for calcite (Fig. 6.8 a & b) 

shows two small dips before 2.0 µm and another strong absorption dip at 2.28 µm. A 

strong absorption dip is also observed at 6 µm.  Thus the corresponding bands of 

ASTER and ETM+ data are chosen. For recognition of calcite, bands 6, 7, 8 and 10 

of ASTER data have been chosen as input for principal component analysis. For 

Landsat ETM+ data bands 3, 5 and 6 are utilized for principal component analysis. 

 

   a  
     b 

Fig. 6.8: Spectral Reflectance Curve for Calcite (Source: USGS and JHU 
Spectral Library) 

 

Table 6.3: Loading of bands on principal components for calcite a) ASTER b) 
ETM+ 

 

 

 

 

 

 

      

  band 3 band 5 band 6 

pc1 0.954897 -0.66082 0.42839 

pc2 0.325478 -0.04301 0.111541 

pc3 -0.12821 -0.21325 0.032246 

a 
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The reflectance curve of calcite shows a strong absorption at 2.28 µm, which corresponds 

to band 8 of ASTER and band 6 of Landsat. Analyzing the loading matrix it is concluded 

that for ASTER data band 8 has highest loading (0.58) in PC1 and the corresponding 

feature would be seen in bright color. For Landsat data band 6 has highest loading in PC 

1 (0.42) and the feature should be bright in colour. Fig. 6.9 shows PC 4 for ASTER and 

PC 1 for Landsat data with calcite rich areas in red colour. 

  

a      b 

Fig 6.9 Calcite rich areas a) PC 4 of ASTER data b) PC 1 of Landsat data 

 

  band 6 band 7 band 8 band 10 

 pc1 5.268868 -5.63476 0.181117 1.864443 

pc2 0.076435 1.144406 -1.01595 0.540948 

pc3 0.006031 0.054429 0.056859 -0.95601 

pc4 0.003357 0.057446 0.584723 0.069696 

b 
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6.1.4 Chlorite 

The USGS and JHU spectral library reflectance curve for calcite (Fig. 6.10 a & b) 

shows a small dip at 0.64 µm and a high reflectance at 1.64 µm. A strong high 

reflectance is seen at 2.1 µm and a corresponding low at 2.3 µm.  Thus the 

corresponding bands of ASTER and ETM+ data are chosen. For recognition of 

chlorite, bands 2, 5, 6 and 9 of ASTER data have been chosen as input for principal 

component analysis. For Landsat ETM+ data bands 3, 5 and 7 are utilized for 

principal component analysis. 

   a       b 

 

Fig. 6.10: Spectral Reflectance Curve for Chlorite (Source: USGS and JHU 
Spectral Library) 

 

Table 6.4: Loading of bands on principal components for chlorite a) ASTER b) 
ETM+ 

 

  band 2 band 5 band 6 band 9 

pc1 4.463786 -5.87828 -1.28789 -0.17585 

pc2 0.005132 0.860254 -0.37695 -1.22952 

pc3 0.001877 0.208404 0.388604 0.158568 

pc4 0.000481 0.114952 -0.10646 0.825297 

a 
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The reflectance curve of chlorite shows a high at 2.1µm, which corresponds to band 6 of 

ASTER and 5 of Landsat. Analyzing the loading matrix it is concluded that for ASTER 

data band 6 has highest loading (-1.2) in PC1 and the corresponding feature would be 

seen in dark color. For Landsat data band 5 has highest loading in PC 1 (-0.66) and the 

feature should be dark in colour. Fig. 6.11 shows PC 1 for ASTER and Landsat data with 

chlorite rich areas in red colour. 

   

a      b 

Fig. 6.11 Chlorite rich areas a) PC 1 of ASTER data b) PC 1 of Landsat data 

 

 

 

  band 3 band 5 band 7 

pc1 0.954897 -0.66082 -0.42839 

pc2 0.325478 -0.04301 0.111541 

pc3 -0.12821 -0.21325 0.032246 

b 
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6.1.5 Kaolinite 

The USGS and JHU spectral library reflectance curve for kaolinite (Fig. 6.12 a & b) 

shows a dip at 1.4 µm and a high reflectance at 1.5 µm. A strong high reflectance is seen 

at 2.0 µm and a corresponding low at 2.1 µm.  Thus the corresponding bands of ASTER 

and ETM+ data are selected. For recognition of kaolinite, bands 4, 5 and 7 of ASTER 

data have been chosen to take part in principal component analysis. For Landsat ETM+ 

data bands 3, 5 and 7 are utilized for principal component analysis. 

 

   a  
    b 

 

Fig. 6.12: Spectral Reflectance Curve for Kaolinite (Source: USGS and JHU 
Spectral Library) 

 

Table 6.5: Loading of bands on principal components for kaolinite a) ASTER b) ETM+ 

 

 

 

 

           

       

  Band4 band5 band7 

pc1 5.266916 -5.26692 2.4097 

pc2 0.010651 0.644368 -1.34172 

pc3 0.003744 0.61084 0.31087 

a 
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The reflectance curve of kaolinite shows a high at 1.5µm, which corresponds to band 4 of 

ASTER and 5 of Landsat. Analyzing the loading matrix it is concluded that for ASTER 

data band 4 has highest loading (5.2) in PC1 and the corresponding feature would be seen 

in bright color. For Landsat data band 5 has highest loading in PC 1 (-0.66) and the 

feature should be dark in colour. Fig. 6.13 shows PC 1 for ASTER and Landsat data with 

kaolinite rich areas in red colour. 

   

a      b 

Fig 6.13 Kaolinite rich areas a) PC 1 of ASTER data b) PC 1 of Landsat data 

 

 

 

  band 3 band 5 band 7 

pc1 0.954897 -0.66082 -0.42839 

pc2 0.325478 -0.04301 0.111541 

pc3 -0.12821 -0.21325 0.032246 

b 
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6.2 STEREO PROCESSING FOR DEM GENERATION 

 In order to have more insights into the characteristics of albitite emplacement in the 

study area and also to investigate the control of structure on the process, a 3D model 

was generated using Cartosat -1 Data.  Digital surface models (DSMs) are elevation 

models of the surface of the earth which provides a geometrically correct reference 

frame for measurements and visualization.  

The elevation models used for final analysis are generated using stereo images 

procured from space based sensor. The capabilities of ERDAS IMAGINE v 9.1 are 

utilized for processing and final analysis of the data. Photogrammetric module (Leica 

Photogrammetric Suite) of the software is exploited to automatically extract elevation 

information from Cartosat -1 stereo data product. The overall methodology adopted 

in the study can be presented as given below and in Fig. 6.14:  

 Image data looking in fore and aft direction along with metadata information 

is procured. This information can be used for obtaining interior orientation 

parameters required for further processing. 

 Combine data collected from topomap, GPS measured control points for 

exterior orientation of image pair. 

 Automatic extraction of DEM after 3-D modeling process, interpolation, 

proper modification and accuracy assessment. 

 

Fig 6.14: Methodology adopted for DSM generation 

Catosat I stereo data 

Refined EO parameters 

Stereo restitution GCP 

Image Matching 

DSM 

Triangulation 

Adjusted Block 

Structural Mapping 

Field Work 
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6.2.1 Ground Control Point Collection 

Ground Control Points (GCP’s) are collected in Khetri area using instrument Leica GPS 

500 (Geodetic Single Frequency Receiver). To achieve suitable accuracy, the single 

frequency geodetic GPS receiver (Fig. 6.15) was used in differential mode. The following 

criteria are followed in acquiring GCPs (Gupta, 2005): 

1.) GCP as a point, which are clearly identified and positioned on the image data as 

well as corresponding map. 

2.) The point should be preferably permanent in nature.  

3.) The surroundings regions of GCPs should have good contrast helping to precisely 

position the point. 

 

 

 

 

Fig. 6.15: Leica GPS 500 system 

 

 

A total of 11 GCPS are collected in differential mode (Fig. 6.16) 
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Fig. 6.16: GCP Collection in the field 

6.2.2 Stereo restitution 

The stereo pair is oriented using rational polynomials supplied along with the dataset. A 

rational function is a function that can be represented as the quotient of two polynomials. 

The rational function formulates the relationship between a ground point and the 

corresponding image point as ratios of polynomials (Kumar and Gupta, 2005): 

 

ri = p1(Xi,Yi,Zi)/p2(Xi,Yi,Zi) 

 

ci = p3(Xi,Yi,Zi)/p4(Xi,Yi,Zi) 

 

Where ri and ci are the normalized row and column index of pixels in image respectively, 

p1, p2, p3 and p4 are the polynomial coefficients. Xn, Yn and Zn are normalized 

coordinate values of a point in ground coordinate system. To avoid the complexity in the 

To Mavanda Tarla 

 

 

Cement Road 

Mud Road 

X: 75 53 05.63 E; Y: 27 56 10.50 N; Z: 385.107 
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calculation, the maximum power of each ground coordinate and also the total power of 

all ground coordinates is also limited to 3.   

The stereopair is oriented and DSM is extracted. The rational polynomial coefficients are 

refined using ground control points (8 in number for one scene and 7 for the other scene). 

Ground control information for this area is collected from the field using single 

frequency GPS in differential mode (Fig. 6.17).  

  

Fig. 6.17: GCP distributions in area 

 

The tie points are generated automatically using point matching technique. The stereopair 

was again oriented using GCP’s and tie points. The adjusted block (GCP’s + tie points) 

exhibited an orientation error of 0.23 pixels. The average planimetric error was 3.7 m 

whereas vertical error ranged between 0.1 to 6 m. Some points exhibited large residuals 

which might be attributed to placement uncertainty in fore image as the image was 

radiometrically smoother and geometrically distorted.  The topography of the area, even 

small residual hills and minor streams are clearly seen in the refined elevation model 

(Fig. 6.18).  
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Fig. 6.18: DSM of the study area 

6.2.3 DEM Data: Structural Analysis  

Since the geological lineaments are directional in nature, thus directional filtering is 

needed in geological remote sensing (Tripathi, 1988). Though many directional edge 

filters are available, whether or not they can be used effectively for natural surface 

features has not been well studied (Tripathi et al., 1997). Morphological image 

processing has been used extensively for lineament extraction (Sanjeevi and Bhaskar, 

2008). The morphological processing can be used efficiently for digital enhancement of 

lineaments. A proper choice of structuring elements without the involvement complex 

mathematical and statistical operations results in preservation of the basic morphology 

and homotopy of the image (Tripathi et al., 2000).  

DSM data was analyzed in order to map out the structure in the study area. Digital 

elevation model (DEM) reveals the surface expression of the earth geomorphology and is 

useful in delineating structural information of the earth surface. Bretar and Chehata 
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(2010) described digital elevation model as representation of the earth topography. 

Cartosat -1 surface model was used in conjunction with ASTER and Landsat data to 

identify lineaments (faults and fractures) and other interesting features in the study area 

in order to understand the interrelationship between the structure in area and albitite zone 

(Fig. 6.19 a & b). The Cartosat -1 DSM is high resolution data and does not require much 

processing. However, some enhancement was carried out for better interpretation. The 

dataset was stretched with different elevation values to highlight differences in the 

topography and structural features in the study area. Combination of the hill-shaded 

image and the DEM data assisted in identifying the structural features in the area. 

 

Fig. 6.19 a: Lineaments in part of the study area interpreted from Cartosat -1 DSM 
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Fig. 6.19 b: Lineaments extracted from Cartosat -1 DSM overlayed on ASTER 
image 

 

The major lineaments in the study area are trending in NE-SW direction coinciding with 

the reported trend of albitite line. Some cross cutting lineaments are also seen indicating 

multiple episode of faulting. The reported occurrence of albitite is mainly falling in the 

line of the interpreted lineaments. Previous studies have also shown that structures such 

as faults, shear zones or fracture have some form of control on formation of many types 

of igneous activity and mineralization associated with hydrothermal system (Forde and 

Bell, 1994). 
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6.3 SPECTRAL PROCESSING OF ASTER DATA 

The atmospherically and topographically corrected ASTER surface reflectance data have 

been digitally processed to highlight the zones of alteration, and to identify albite rich 

areas in the study area. The workflow of spectral processing of ASTER data was 

designed in a manner that the level of complexity increases gradually. It starts with color 

display of 3-band composites, to band ratioing and spectral indices, and finally to spectral 

processing and image classification methods. These techniques and the results derived 

hence have been described in the following sections. Band composites, band ratios and 

spectral indices are carried out for nine bands pertaining to VNIR-SWIR part of the 

EMR. Since TIR bands have low spatial resolution, thus this data was subjected to only 

digital image classification.  

6.3.1 Band composites 

Multispectral remote sensing image analysis begin with displaying images in color by 

assigning individual bands to the red, green and blue color in creating 3-band color 

composite images. This allows rapid preliminary image interpretation before having to 

analyze the complete spectral dimensionality of the dataset. 

There can be 84 number of possible distinct 3-band RGB combinations which can be 

made out of the 9 VNIR-SWIR band. Though the bands best suited for indentifying a 

particular mineral can be found using the spectral reflectance curve, for an area without 

any ancillary information the wide range of spectral diversity makes this approach 

unrealistic. To overcome this difficulty, a statistical band selection technique called the 

Optimum Index Factor (OIF; Chavez et al., 1982) method has been used. The OIF ranks 

all possible RGB color combinations that can be generated using a multispectral remote 

sensing data based on the total variance within the bands and the band to band 

correlations (Chavez et al., 1982; Chavez et al., 1984).  Higher OIF values indicate 

greater spectral contrast in the band-composite and thus greater amount of information.  

Mathematically, the OIF is expressed as follows: 
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OIF = σK + σL + σM / rKL + rKM+ rLM                               --------6.1 

 

Where: σK,L,M are the standard deviations for the three bands K,L,M; and rKL, rKM, rLM are 

the absolute values of the correlation coefficients between bands K&L, K&M and L&M 

respectively. 

The optimum index factor was calculated for the 20 distinct combinations of the SWIR 

bands, and also on 84 distinct combinations of the VNIR-SWIR dataset. It was observed 

that the best OIF values are found for 4-6-8 (for SWIR bands) and 6-3-1 (for VNIR-

SWIR bands). Fig. 6.20 shows these two band composites. The images have been 

linearly stretched to bring about the full color contrast. The results are in line with the 

reviewed literature which suggests that band 1 highlights Fe-O bearing areas as these 

surfaces absorb strongly in this region. Healthy vegetation has strong reflectance in band 

3. The hydroxyl bearing rocks absorb heavily in band 6 and carbonates and chlorite has a 

strong absorption feature in band 8. The above said factors and the overall high rock 

reflectance in band 4 form the spectral bases behind the distinct litho/mineralogic 

information content of these band composites. 

     a       b 

Fig. 6.20: False Color Composites with maximum variance. a) 4-6-8 (for SWIR data 
alone) b) 6-3-1 (for VNIR-SW1R combined data) 
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In the SWIR band-composite (4-6-8), light red and pink hues indicate clay and micaceous 

areas which have strong OH absorption, the green hues indicate presence of carbonates 

and chlorite. The overall dark tones represent phyllite and schist bearing regions since 

they have low albedo and absorption for both OH and chlorite. The quartzites and 

alluvium appear in bright shades because of high albedo and absence of OH and chlorite. 

Vegetation appears in dark shades. 

In band combination 6-3-1 many smaller bodies of rocks are shown more clearly than on 

the 4-6-8 composite, because of the higher spatial resolution (15m) of VNIR bands. 

Because of the high spatial resolution the structural complexity of the area is also 

highlighted. In this band composite the iron-bearing area have been shown in deep shades 

of red, OH-bearing surfaces have been displayed in shades of blue and the healthy 

vegetation in bright green colors. Bright mustard colors represent sandy soils, desert 

sands and quartzites. The main shear zone on this image appears in light blue-cyan colors 

whereas the amphibolites chloritic surfaces and carbonates appear in bright magenta 

shades. The intermediate colors represent mixtures of these categories. 

 

6.3.2 Decorrelation stretch images 

In SWIR data the bands are highly correlated to each other which result in similar 

spectral information in the bands. Decorrelation stretch (DCS) procedure was applied on 

the dataset to select RGB combinations of the 6 SWIR bands to highlight zones of 

specific spectral absorption features corresponding to various mineral assemblages. In the 

DCS colour composite image the subtle color contrasts appear prominently and more 

features can be identified. Two DCS band composites, viz: 4-6-8 and 5-7-9, have been 

found to display the most useful and explicit spectral information. 
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a       b 

Fig. 6.21: Decorrelation Stretch Image. a) 4-6-8 b) 5-7-9  

Fig. 6.21 a shows the DCS composite 4-6-8 and fig 6.22 b shows composite 5-7-9. To 

emphasize on the utility of DCS, we can compare the normal FCC 4-6-8 in Fig. 6.20a 

with DCS 4-6-8 in Fig. 6.21 a. From the above images it is clear that on DCS 4-6-8 

further distinction between surfaces with similar spectral signatures can be made. In a 

DCS image carbonate rocks appear in light green to yellow colour because of the lack of 

Fe-O absorption in band 4, whereas amphibolites with chlorite-rich surfaces appear in 

dark green shade. The main shear zone comes out prominently in magenta color in 4-6-8 

composite.  

6.3.3 Band ratios, RBD images, and Ratio Composites  

Band ratio stands for division of pixel values in one band by those in another, pixel by 

pixel. It is one of the oldest and the most widely used method of discriminating surface 

cover types in a multispectral image. Band ratios suppress proportionally constant 

radiance values in the band and enhances the differences. Rowan et al. (1974) used the 

band ratios for the very first time. They demonstrated with Landsat- I MSS data of Silver 

Bell porphyry copper deposit area that a composite of ratios MSS1/MSS2, MSS2/MSS3 

and MSS3/MSS4 in BGR provides a powerful means for discriminating hydrothermally 
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altered areas from regional rock and soil units. The above approach has been adapted for 

various subsequent types of passive remote sensing data in solar reflective region, 

including ASTER. 

Relative absorption Band Depth (RBD) images are a modification of the normal band 

ratios, as they have a three-point ratio formulation. These images are calculated for 

individual absorption features. In these calculations the central band is taken at the 

absorption feature and its neighboring bands are added together to determine the 

numerator for the ratio. The central band is taken as the denominator. The underlying 

concept for RBD is the removal of the continuum to improve the intensity of the 

absorption feature (Crowley et al., 1989). However, spectrally uncalibrated data can lead 

to results that are difficult to interpret (Crippen, 1988). Also, the terrain illumination 

differences due to topography can produce color variations in unadjusted ratio images for 

spectrally identical surface materials (Crippen, 1988). 

A number of band ratios and RBD indices have been proposed for ASTER (Rowan and 

Mars, 2003). Ratio images can be generated from ASTER VNIR-SWIR and used 

together in a large number of combinations to suit a particular application and highlight 

particular feature (Fig. 6.22, 6.23, 6.24 and 6.25). To map altered mineral assemblages 

some of the most useful band ratios have been compiled along with their references and 

shown in Table-6.6.  
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Table 6.6 a: ASTER Band Ratios for Mineral Identification  

Feature Band or Ratio Comments 

Iron 

Ferric iron, Fe³ 2/1  

Ferrous iron, Fe² 5/3 + 1/2  

Laterite 4/5  

Gossan 4/2  

Ferrous silicates (biot, chl, amph) 5/4 Fe oxide Cu-Au alteration 

Ferric oxides 4/3 Can be ambiguous* 

Carbonates / Mafic Minerals 

Carbonate / Chlorite / epidote (7+9)/8  

Epidote / Chlorite / amphibole (6+9)/(7+8) Endoskarn 

Amphibole / MgOH (6+9)/8 Can be either MgOH or carbonate* 

Amphibole 6/8  

Dolomite (6+8)/7  

Carbonate 13/14 Exoskarn (cal/dolom) 

Silicates 

Sericite / muscovite / illite / smectite (5+7)/6 Phyllic alteration 

Alunite / kaolinite/ pyrophyllite (4+6)/5  

Phengitic 5/6  

Muscovite 7/6  

Kaolinite 7/5 Approximate only* 

Clay (5×7)/6²  

Alteration 4/5  

Host rock 5/6  

Silica 

Quartz rich rocks 14/12  

Silica (11×11)/10/12  

Basic degree index (gnt, cpx, epi, chl) 12/13 Exoskrn (gnt, px) 
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SiO2 13/12, 12/13 Same as 14/12 

Siliceous rocks (11×11)/(10/12)  

silica 11/10, 11/12, 13/10  
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Table 6.6 b Common ratio & band combinations for ASTER 

 

 

 

 

 

 

 

   

  

 

 
  

 

 

 

 

 

 

Fig 6.22: ASTER Spectral Indices a) Ferric, b) Ferrous, c) amphibole, d) 
epidote/chlorite, e) Mg-OH, f) alunite/kaolinite/pyrophyllite 

Features Red Green Blue 

ALOH minerals/advanced 
argillic alteration 

5/6 (phen) 7/6 (musc) 7/5 (kaol) 

Clay, amphibole, laterite (5×7)/6² (clay) 6/8 (amph) 4/5 (lat) 

Gossan, alteration, host rock 4/2 (goss) 4/5 (alt) 5/6 (host) 

Silica, carbonate (11×11)/(10×12) 13/14 12/13 

Discrimination for mapping 4/1 3/1 12/14 

General Discrimination 4/7 4/1 (2/3) × (4/3) 
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Fig. 6.23: Colour Ratio Composite of band ratios (red: 5/6, green: 7/6 and blue: 7/5) 
for phengitic, sericitic and kaolinitic alteration in the study area. The minerals 
typical of phyllic and argillic alteration are concentrated along the NE-SW trending  

shear zone, on both sides of the albitite zone 
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Fig 6.24: Color Ratio Composite of band ratios (red: 5*7/62, green: 6/8 and blue: 
4/5) for clay, amphibole and laterite alteration in the study area. Clay is mapped in 
red colour, amphibole in green and laterite in blue colour. Clay minerals and 
amphibole are concentrated along the reported shear zone. Laterite is seen 
adjoining  the clay minerals. A laterite patch is also seen in the SE part of the image. 
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   a       b 

Fig 6.25: Color Ratio Composite of band ratios a) General Lithological Mapping 
red: 4/1, green: 3/1, blue: 12/14 b) Gossan Alteration  red: 4/2, green: 4/5, blue: 5/6. 

   

6.3.4 Spectral Similarity Analysis for VNIR-SWIR ASTER data  

To map a particular mineral, it is imperative to have a thorough understanding of its 

spectral signature. The nature of the spectral signature is governed by the chemical 

composition of the material and also on the proportion of the constituent materials 

(Tripathi and Rampal, 1990). The spectral signature is largely dependent on specific 

wavelengths, thus neglecting the contribution from remaining part of the spectrum. 

Feature mapping is particularly problematic for some minerals like albite which does not 

contained well defined absorptions. Instead of diagnostic absorptions these minerals are 

characterized by their continuous shapes and broad absorptions. Minerals with similar 

diagnostic spectral features or the ones without well defined spectral features are 

susceptible to mixed mapping which may lead into inaccuracies in the final mapping.  

The data recorded by satellite sensor measures reflectance at surface and has no 

information of mineralogy at depth.  Thus, even in arid areas like Khetri, the remotely 

sensed data will not provide much information about the mineral prospectively of the 

ground beneath the cover. For utilizing imaging spectrometry (hyperspectral remote 
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sensing) for geological applications, the information of the mineralogical composition is 

obtained by finding out similarity between the rock spectra and image spectra. The 

comparisons can be done using spectral similarity algorithms readily available in 

commercial off the shelf software. The spectra matching techniques allow the user to 

perform quantitative analysis of surface reflectance in remotely sensed data set with 

known diagnostic reflectance spectra of minerals (Kruse and Lefkoff, 1993).  

The basic work flow for mineral identification and mapping includes various steps. The 

radiance data collected by the sensor is first corrected to apparent reflectance. To 

improve the information to noise ratio of the dataset, linear transformation is applied to 

minimize noise. The spectral signature of the relevant classes (reference spectra) is 

derived either from the library spectra or through a field work. The reference spectra are 

then matched with image spectra and thus the spatial mapping of the material is carried 

out.  For the research work the main aim was to map albite rich areas in the image. For 

accomplishing the task, reference spectra are collected from the ground. A total number 

of 20 samples are collected from various locations of the ground. Out of 20 samples, 2 

samples are fully albitized and 4 samples are partially albitized. The analytical spectral 

device Fieldspec. has been used to generate the laboratory spectra of the rock samples 

that have been collected from the field. The field spectra collections was undertaken 

within 2 hours before and after solar noon to simulate the similar illumination conditions 

as during the satellite pass. The spectra are resampled to ASTER wavelengths. A detailed 

description of the samples and reflectance spectra is provided in Chapter 5.  These 6 

reference spectra pertaining to samples of different degree of albitization are utilized for 

classification. The image was then subjected to various classification techniques. The 

classification methods applied are: Spectral Angle Mapper (SAM), Mixture Tuned 

matched Filtering (MTMF) and Spectral Feature Fitting (SFF).  

6.3.4.1 Spectral Angle Mapper 

The SAM algorithm is one of the most important and used algorithm for spectral 

similarity analysis. The algorithm calculates spectral similarity between the reference and 

image spectra. For this study the reflectance spectra has been collected using ASD 

spectroradiometer and then resampled to ASTER wavelengths. The spectral angle is 
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calculated between the reference spectra and the image derived spectra and used as a 

measure of similarity. The DN value of the pixel is plotted in N dimensional feature 

space. In this N dimensional multi (or hyper) spectral space, a pixel vector “x” has both 

magnitude (length) and an angle measured with respect to the axis that defines the 

coordinate of system of the space.  

SAM algorithm works on the logic that an observed reflectance can be considered as a 

vector in a multidimensional space. Here the number of dimensions is equal to the 

number of spectral bands. Any change in the sunlight conditions result in increase or 

decrease of overall illumination. This in turn results in the change in length of the vector 

while preserving its angular orientation. Fig. 6.26 (a) shows that for any object, the vector 

corresponding to its spectrum lies along the line passing through the origin. The 

magnitude of the vector depends on the illumination, the magnitude of the vector being 

smaller (A) or larger (B) under low or high illumination, respectively. Fig. 6.26 (b) shows 

the vector for an unknown feature type (C) to a known material with laboratory measured 

spectral vector (D). The two features are similar if the angle between the two vectors is 

less than a specified tolerance value. 

       

Fig. 6.26 Spectral Angle Mapping concept. (a) For a given feature type, the vector 
corresponding to its spectrum will lie along a line passing through the origin, with 
the magnitude of the vector being smaller (A) or larger (B) under lower or higher 
illumination, respectively. (b) When comparing the vector for an unknown feature 
type (C) to a known material with laboratory measured spectral vector (D), the two 

features match if the angle ‘a’ is smaller than a specified tolerance value. (After 
Kruse and Lefkoff, 1993) 

a b 
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Pixels having larger spectral angle than the specified threshold are not classified into the 

particular feature. The reference endmember spectra to be used for SAM classification 

can be taken either from ASCII files, from already existing spectral libraries, or can also 

be extracted directly from the image as end members.  

SAM classification is applied on the ASTER reflectance image using the reference 

spectra collected for the field samples. The average of fully and partially albitized spectra 

(6 in number) are taken as the reference spectra. A maximum threshold angle of 0.08 

radians was selected based on the literature review and trial and error method. A 

threshold angle smaller than the said value results in very less classified areas whereas a 

larger angle included many other areas also. Fig. 6.27 shows SAM classified image for 

albitite rich areas. The names of major locations in the area are given below in the Table 

6.7. 

Table 6.7: Major Locations in the classified image 

Map 
symbol 

Location Name Map 
symbol 

Location Name 

1 Khetri 17 Pachlagi 

2 Tonda 18 Guhala 

3 Mewara Jatuwas 19 Chala 

4 Mewara Gurjawas 20 Salwari 

5 Basai 21 Chawki 

6 Bhurwali Dhani 22 Kanwat 

7 Biharipur 23 Rampura 

8 Dabla 24 Khandela 

9 Babai 25 Silkibara 

10 Kanal ki Dhani 26 Gura 
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11 Lakha 27 Mahogarh 

12 Chunara 28 Jhilo 

13 Kushwali ki Dhani 29 Kurl ki Dhani 

14 Mavanda Tarla 30 Tatia ki Dhani 

15 Neem ka Thana 31 Patan 

16 Sirohi   

  

 

Fig. 6.27: Albitite classified area (VNIR-SWIR ASTER) - SAM classification 
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6.3.4.2 Mixture Tuned matched Filtering 

The classification algorithm for MTMF suppresses background noise and gives an 

estimate of single target abundance by using a partial unmixing method. The MTMF 

method works in three stages: first a minimum noise fraction (MNF) transformation of 

apparent reflection dataset is calculated (Green et al., 1988). The MNF output image is 

then subjected to matched filtering for estimating abundance of material. Finally mixture 

tuning is carried out to identify infeasible or false-positive areas (Boardman, 1998). 

MTMF technique finds out the abundance of reference spectra in the image. The 

technique focuses on maximizing the response of known endmember and also 

suppressing the response of the unknown background. The result of mixture tuned 

matched filtering is a set of grey scale images. The value of these grey scale images 

range from zero to one. These images provide a degree of matching between the 

reference and the image spectra. The score zero indicate a complete mismatch between 

the reference and the image spectra while score one indicate total match between the two. 

Intermediate values in the score image represent varying degree of matching. The false 

positives may sometimes occur when using matched filtering (Fig. 6.28). MTMF also 

generates an infeasibility image as output. The number of false positives reduces 

significantly if infeasibility image is used. Pixels with a high infeasibility are likely to be 

matched filter false positives. A low value of infeasibility and matched filter score higher 

than background distribution around zero will indicate correctly mapped pixels. The 

infeasibility values calculated is in noise sigma units which vary according to matched 

filter score. MTMF algorithm is a reliable and fast method of individual mineral 

identification based on the match score between the reference and image spectra. The 

technique can also work for single material and does not require the knowledge of all the 

materials within the image scene. 
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Fig. 6.28: Diagram Showing Mixture Tuned Matched Filtering Technique 

 

 

MTMF classification is applied on ASTER image. To start with a MNF transformation is 

carried out on the original image. The lab spectra of the albitized samples is selected and 

score and infeasibility images are generated for albitite. The score and infeasibility are 

generated. Pixels having high match score and low infeasibility value are selected as 

albitite pixels. Fig. 6.29 shows the results of MTMF classification on ASTER band 1 

image. The names of major locations in the area are given in the Table 6.7. 
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Fig. 6.29: Albitite classified area (VNIR-SWIR ASTER) - MTMF classification 

 

6.3.4.3 Spectral Feature Fitting 

Most classification methods used for material identification do not directly identify 

specific materials. They only have a tendency to indicate the similarity and uniqueness of 

a material with respect to another known material. For identifying the materials directly 

from a remotely sensed image, specific spectral features are to be extracted from field 

and laboratory reflectance spectra. This is in practice since last many years (Green and 

Craig, 1985; Kruse et al., 1985; Yamaguchi and Lyon, 1986; Clark et al., 1990). Now 

days such information is applied to hyperspectral data for geologic applications (Kruse, 

1988; Clark et al., 1992, 1993, Clark, 1999). For such spectral analysis of the data, the 
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data needs to be reduced to reflectance and continuum should be removed. A continuum 

is a mathematical function which can be utilized to enhance and take out isolate a 

particular absorption feature (Kruse et al., 1985; Green and Craig, 1985). A background 

signal without having a relation with the specific absorption feature of interest is used for 

continuum removal. A continuum is created using local maxima of the spectrum and then 

by fitting straight line segments between these points. The spectra are normalized to this 

continuum. The continuum is now removed by dividing it into the original spectrum 

(Clark et al., 2002). Spectral Feature Fitting available in ENVI is based on this algorithm. 

Spectral feature fitting starts with the specification of range of wavelengths which 

contain the unique absorption feature for the specific target. The depth of the absorption 

feature for target and reference spectra as well as shape of the absorption feature are 

measured to check the similarity between the two spectra. For SFF algorithm the 

reference spectra could be selected either from the spectral library or directly from the 

image. The continuum is removed both from the reference and unknown spectra. The 

reference end member is scaled to match the unknown spectra. For each end member the 

continuum removed spectra is subtracted from unit value resulting in inverting them and 

continuum made to zero. This results in a scale image. Then a single multiplicative 

scaling factor is calculated to match the reference spectra to the unknown spectra. 

Assuming that a considerable spectral range was selected, a large scaling factor 

represents a deep feature, while a small scaling factor indicates a weak spectral feature. A 

least square fit is calculated band by band between the reference end member and the 

unknown spectra. An RMS image is created for each end member by summing up the 

total root-mean-square (RMS) error. A ratio between the Scale and RMS is a measure of 

matching between the unknown and the reference spectrum on a pixel-by-pixel basis and 

can be visualized a "Fit" image.  

The reference spectrum for albitite collected from the field samples are used for 

classification. The continuum was removed from the reference spectrum and the image. 

Since the albitite has weak spectral feature, thus a small scaling factor was selected. On 

the scatterplot scale values 0.2, and RMS values less than 0.04 are selected for albitite. 

Fig. 6.30 shows the RMS and scale image Fig. 6.31 shows the albitite classified areas 

using SFF algorithm. The names of major locations in the area are given in the Table 6.7. 
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Fig. 6.30: RMS and Scale images for Albitite 

 

 
Fig. 6.31: Albitite classified area (VNIR-SWIR ASTER) - SFF classification 
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6.3.5 Spectral Similarity Analysis for TIR ASTER data        

Most of the important rock-forming silicate minerals have their diagnostic spectral 

features in the TIR region (7.0-14.0 µm) (Lyon, 1965; Hunt and Salisbury, 1970a, 

1970b). Feldspar minerals have a very strong absorption at around 8.6 µm (ASTER band 

11), and as a result, exhibits lower emissivity in band 11 than in bands 10 and 12. 

(Ninomiya et al., 2005). Analysis of the spectral properties of albite minerals obtained 

from the ASTER spectral library (Baldridge et al., 2009) showed that, albite reflectance 

curve is nearly flat in VNIR and SWIR regions of electromagnetic spectrum. In TIR 

range albite spectrum shows higher values in bands 12, 13 and 14 than in bands 10 and 

11 (Fig. 6.4). 

The 5-band atmospherically corrected ASTER TIR data, has been processed using a 

hierarchical method as provided within the ENVI software. There are two major steps 

involved in the spectral processing selection of the spectral end-members, and applying 

the suitable classification algorithm for spectral mapping. 

Since the spectral data for the collected rock samples was generated with Field Spec Pro. 

which collects the spectral reflectance curve in the range from 0.4 – 2.5 µm. Thus the 

spectral library collected was not valid for TIR bands. For classification of albitite using 

TIR bands, the field locations of the collected samples are utilized. The end members are 

collected at the specific locations of field samples. These end members are subsequently 

used for the classification. 

Three classification algorithms are applied for identification of albitite zone in the study 

area viz. SAM, MTMF and SFF. The salient features of the classification algorithms have 

been explained in section 6.3.4. Fig. 6.33, 6.34 and 6.35 depicts the results of the 

classification of TIR bands using various classification algorithms. The names of major 

locations in the area are given in the Table 6.7. The results are discussed in detail in 

chapter 7. 
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Fig. 6.33: Albitite classified area (TIR ASTER) - SAM classification 
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Fig. 6.34: Albitite classified area (TIR ASTER) - MTMF classification 
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Fig. 6.35: Albitite classified area (TIR ASTER) - SFF classification 
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CHAPTER 7 

 

SYNTHESIS OF RESULTS AND INTERPRETATION 

 

In order to assess the usefulness and credibility of the research work carried out, it is 

necessary to analyze them in light of existing field and laboratory evidences as well as 

the documented literature about the study area (Gupta et al., 2000). Remote sensing 

based analysis for mineral mapping is governed by several factors at every stage of the 

image analysis. These include proper selection of the problem in the study area, thorough 

understanding of the geological processes that led to the present lithology, proper 

selection of the remote sensing and ancillary data, effective preprocessing which provides 

good comparison between the image spectra and field spectra and a proper processing 

which generates results that match with the collateral information available.  

 This chapter, therefore, attempts to synthesize the results of image analysis contained in 

previous chapters and interprets them in a geologically meaningful way. In nutshell, the 

main focus of this chapter is to describe the results of satellite-based spectral analysis for 

mineral mapping and specifically albitite mapping through a comparative analysis of 

well-described geology, field locations and laboratory data and their representation on the 

respective spectral maps. The main aim of the research was to explore the utility of 

multispectral and hyperspectral remote sensing datasets for discriminating albitite zone in 

KCB area and to demarcate the albitite zone in the study area. A number of image 

analysis operations have been carried out on the Landsat and ASTER data. This chapter 

summarizes the results obtained for every step of methodology.  Limitations arising due 

to spatial and spectral resolution inadequacies, atmospheric and topographic correction 

inaccuracies, and spectral mixing have been discussed at appropriate places.  
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7.1 DATA PREPROCESSING: CORRECTION OF ATMOSPHERIC EFFECTS 

Before the data can be used for detailed spectral analysis, it is vital to compensate for the 

radiometric, atmospheric and topographic influences on the target radiance reaching the 

remote sensor. Atmosphere selectively absorbs and scatters the solar radiation in different 

wavelength regions. The main topographic effects are in the form of differential terrain 

illumination and terrain adjacency effects. 

Sensor calibration is necessary to convert the digital number (DN) values of the image to 

the units of at-sensor radiances. In the shorter wavelength VNIR region, the atmospheric 

scattering is the dominant mode of atmospheric influence on the radiances recorded by 

the remote sensors; this effect is primarily additive in nature. On the other hand, in the 

SWIR region, the main atmospheric effects are in the form of atmospheric absorption, 

which are characteristically multiplicative in nature. Data preprocessing involves removal 

of these atmospheric influences such that an estimate of the true target radiance and 

reflectance (in the solar reflective VNIR-SWIR region), can be made.  

A number of methodologies have been developed in previous years to address this 

objective. These have been grouped under relative and absolute atmospheric correction 

methods. Relative methods are generally scene based, with no external inputs and include 

such methods as Log Residuals (LR). Flat Field (FF, and Modified Flat Field, MFF), 

Internal Average Relative Reflectance (IARR), etc.; whereas, the absolute methods are 

based on the physical laws of radiative transfer and commonly require external inputs in 

the form of local atmospheric data, and include various radiative transfer codes (RTCs) 

such as MODTRAN (Moderate Resolution Atmospheric Radiance and Transmittance) 

and 6S (Second Simulation of the Satellite Signal in the Solar Spectrum), and the image-

based Dark Object Subtraction (DOS) technique. 

Preprocessing the ASTER VNIR-SWIR has involved application of the known methods 

of atmospheric correction to select the best correction. The methods of relative 

atmospheric correction applied include Log Residual, Flat Field, Modified Flat Field and 

Internal Average Relative Reflectance. The absolute atmospheric correction has been 

attempted using the FLAASH, and ATCOR program. Comparison of the corrections has 

been done by plotting the pixel spectra of a flat homogeneous surface within the image 

after application of various atmospheric correction procedures, and examining the plots 
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with reference to the JHU library spectrum of urban settlement. It was observed that the 

relative atmospheric correction methods are unable to  

The ATCOR and FLAASH corrected spectra for the sample pixel has a close match with 

lab spectrum, except for band 1, 2 and 4. For bands 1, 2 and 4 the reflectance is low in 

ATCOR corrected image while reflectances are higher for other bands. FLAASH 

extracted spectra also exhibit similar trend but the difference from reference spectra is 

less. Both ATCOR and FLAASH display high reflectance values in SWIR bands of 

ASTER. Because ASTER Level 1A bands are not co registered, one cannot directly input 

the VNIR or SWIR data sets into FLAASH. Thus ‘Layer Stacking’ tool was used to 

combine the visible near-infrared (VNIR) and shortwave infrared (SWIR) bands into a 

single data set to input into FLAASH. 

Best correction has been observed in case of FLAASH-corrected image spectrum. 

FLAASH Calibrated ASTER (converted from DN value to reflectance) are used and 

processed spectrally for albitite mapping.  The thermal atmospheric correction tool was 

utilized for atmospheric correction of thermal bands. 

 

 7.2 SATELLITE DATA PROCESSING FOR ALBITITE MAPPING  

One of the primary advantages of ASTER over ETM+ data is the improved resolution of 

the important SWIR region (2.0-2.5 µm) where the diagnostic signatures of the main 

minerals are present. In place of single broad bands in SWIR (2.08-2.35 µm) and TIR 

(10.4 - 12.5 µm), ASTER records data in 5 strategic bands in the SWIR (2.0-2.5 µm) and 

5 bands in TIR (8.125 – 11.65 µm) wavelength region.   This makes the ASTER data of 

special utility in mapping of minerals related with most kinds of mineralizing 

environments. 

The primary objective of this study has been mapping of minerals using satellite data. 

Towards this end, the composite 14-band ASTER VNIR-SWIR-TIR reflectance data 

obtained after the atmospheric correction has been processed using various image 

processing techniques to uniquely identify and map the surface/alteration minerals 

present in the study area. The processing has been designed to exhaustively evaluate the 

potential of methods from simple to advanced, in extracting usable mineral information 

from the remote sensing data. The processing flow has been designed such that it 
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hierarchically grows from a simple level of processing involving image enhancement and 

color display of 3-band composites, to image transformation (DCS, PCA and DPCS), 

band ratioing and spectral indices 

Based on the optimum index factor (OIF) approach, two band combinations have been 

selected - ASTER bands 6-3-1, for the 9-band VNIR-SWIR combined dataset, having 

enhanced discrimination of Fe-O and OH altered areas; and ASTER bands 4-6-8, for the 

SWIR dataset, displaying the distribution of Al-OH and Mg-OH bearing surfaces, 

respectively showing clay/muscovite and chlorite/carbonate alterations. Improved color 

discrimination for the above band composites and the respective mineralogical and 

alteration information has been obtained using the decorrelation stretch processing. 

Spectral indices based on the ASTER bands have been prepared to map the distribution 

of clay,  amphibole,  laterite, phengitic, sericitic, kaolinitic and gossan alteration. It has 

been observed that most of these minerals are concentrated within the main shear zone 

passing through the study area, as well as in the feldspathic quartzites.  

Crosta processing has been used to distinguish and map the distribution of minerals with 

spectral features in the SWIR and TIR region. Surficial maps for albite, epidote, calcite, 

chlorite and kaolinite have been prepared through the crosta procedure.  

 

7.3 SPECTRAL PROCESSING OF ASTER DATA 

Full spectral processing of the VNIR-SWIR reflectance dataset has been carried out to 

uniquely identify and map the albitite rich areas based on their spectral shape and 

absorption features.  

The reference spectra were collected from the samples collected from the ground. In 

order to expand the size of end-member spectral classes so that the diverse spectral 

categories present within the area are brought out more representatively, a total of 6 

samples pertaining to various stages of albitization were utilized for the classification 

purpose. Spectral Angle Mapper (SAM), Mixture Tuned Matched Filtering (MTMF), 

Spectral Feature Fitting (SFF) was used to identify and map albitite in the study area.  

Spectral processing of the atmospherically corrected ASTER TIR data has been carried 

out to identify the albitite rich areas based on their unique spectral features. The end 

members to be used for classification were collected from the image itself. The spectral 
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curve of the pixels at the sample site collection location was utilized as end members. All 

the six sample sites representing various stages of albitization were used for end member 

generation. The image was classified using Spectral Angle Mapper (SAM), Mixture 

Tuned Matched Filtering (MTMF), Spectral Feature Fitting (SFF) algorithms. The results 

of the three classification methods have been described in chapter 6.  

From the classified results of VNIR –SWIR data and TIR data it is evident that though 

the albitite identification is more accurate with TIR data, however albitite is identified in 

few areas with VNIR-SWIR bands. Hence a combined use of ASTER VNIR-SWIR and 

TIR data enable optimized discrimination of specific minerals because of the 

complementary nature of information from the thermal and shorter wavelengths. Thus to 

identify and demarcate albitite zone, both the classified results were merged. The overall 

area classified as albitite is given in table 7.1. 

Table 7.1: Area Statistics for Albitite with ASTER data 

Algorithm Albitite Area (hectares) 

Spectral Angle Mapper 672.13 

Mixture Tuned Matched Filtering 1015.98 

Spectral Feature Fitting 1097.57 

 

Surficial albitite map was generated, which depicts the spatial distribution of the albitite 

in the study area. The visual inspection of the three classified images indicate that major 

patches of pixels corresponding to class albitite are occurring follow a linear pattern 

trending NE-SW. However there are also few random pixels classified as albitite. A 

concentrated occurrence of albitite to east of Khetri in Mewra Gurjawas area is 

observed. Another massive occurrence of albitite is identified to the south west of 

Mewra Gurjawas near Guhala. The classified image exhibits most patches of albitite 

falling in a narrow band and exhibiting a linear trend. Though some scattered patches are 

also classified. Here it is observed that SAM classified image exhibit lesser random 

pixels than both MTMF and SFF classified image. Though the results look excellent 

visually, still a through statistical accuracy assessment needs to be performed. 
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7.3.1 Accuracy Assessment for ASTER Classification 

In order to assess the usefulness and credibility of the results of albitite mapping, it is 

necessary to analyze the results in light of existing field and laboratory evidences. The 

results of ASTER-based albitite mapping have been synthesized and interpreted in a 

geologically meaningful way through a comparative analysis of well-described geology, 

field locations, and laboratory petrographic constituting the ground-truth, and their 

corresponding representation on the respective spectral maps. For performance analysis 

of classification, the classified images were analyzed using reference data from the 

reported albitite occurances referred in various scientific publications. Apart from the six 

locations of sample collection for albitite, eleven occurances of albitite is reported in 

various  scientific publications, viz Khandela, Guhala, Maonda, Sior, Salwari, Lakha, 

Pachlangi, Karoth Dhanian, Banjaron Ki Dhani, Sagdu Ki Dhani and Saladipura (Jain et 

al., 1999; Ray, 1987; Ray and Ghosh, 1989; Ray, 1990). Fig. 7.1 shows the reported 

occurances of albitite in red color and sample sites in yellow color.  
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Fig. 7.1: Reported Albitite Occurances and Sample Sites 

 

It was observed that for Khandela, Guhala, Maonda, Salwari and Banjaron Ki Dhani all 

the three algorithms are able to identify albitite. SAM failed to classify albitite at 

Pachlangi and Sagdu Ki Dhani. MTMF is unable to distinguish albitite from host rocks at 

Lakha, Pachlangi and Saladipura while with SFF surface outcrops of albitite at Karoth 

Dhanian and Sior, are not identified. Table 7.2 summarizes the accuracy of various 

classified results. 
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Table 7.2: Accuracy Assessment of ASTER classified products  

 S.No. Area of 
Occurrence 

Classified Output 

SAM MTMF SFF 

1 Khandela Y Y Y 

2 Guhala Y Y Y 

3 Maonda Y Y Y 

4 Sior Y Y N 

5 Salwari  Y Y Y 

6 Lakha Y N Y 

7 Pachlangi N N Y 

8 Karoth Dhanian Y Y N 

9 Banjaron Ki Dhani Y Y Y 

10 Sagdu Ki Dhani N Y Y 

11 Saladipura Y N Y 

 % Accuracy 81.81% 72.72% 81.81% 

 

The above table indicates that SAM and SFF algorithm are giving maximum accuracy of 

81.81% and are able to distinguish albitite form other classes in the study area. MTMF is 

able to achieve an accuracy of 72.72% by using ASTER data for classification. But visual 

inspection of the classified results indicate that there are many random pixels classified 

as albitite in MTMF and SFF algorithm whereas SAM results have less random patches. 

Ambiguities and differences in albitite identification for different algorithms investigated 

have arisen primarily because of limitations of ASTER’s spectral resolution resulting in 

multiple (and sometimes erroneous) matches of the pixel spectrum with reference 

spectra. Also, residual effects of vegetation within an average pixel area of 30x30 m2 also 

adds to the difficulty in exaction and identification. The results show that the ASTER 

data can provide fast and dependable support in identifying and mapping albitite which 
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can be linked with the presence of economic mineralization especially uranium 

mineralization. 

 

7.3.2 Identification of Albitite Zone 

The final aim of the study was to identify and mark the spatial extent of the albitite zone 

in the study area and to match it with available collateral information.  

To achieve the objective an albitite abundance map was generated from the classified 

image. The abundance map represented the spatial concentration of albitite. A 3x3 spatial 

convolution filter was applied pixel by pixel on the entire image. The filter counted the 

occurrences of albitite in the central pixel and adjoining eight pixels. In the classified 

image random pixels which are not useful, they can be filtered out according to their 

sizes. This is sometimes referred to as eliminating the salt and pepper effects, or sieving.  

The abundance map filters out the random pixels classified as albitite and only big 

chunks of pixels are left out. The abundance range was generated for filtering out random 

pixels. Table 7.3 shows the range selected for mapping albitite abundance in the study 

area. 

Table 7.3: Albitite Abundance Range 

S.NO Albitite Pixel count Albitite Abundance Range 

1 9 Very High Abundance 
2 7-8 High Abundance 
3 5-6 Medium Abundance 
4 3-4 Low Abundance 
5 1-2 Very Low Abundance 
6 0 Zero Abundance 

  

 The abundance map for all the three classified outputs were generated. Fig. 7.2 shows 

the abundance map of SAM classified data with an enlarged area. 
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Fig. 7.2 a: Abundance Map of SAM Classified Data 

 

 

 

 

 

 

 

      

         

 

Fig. 7.2 b: Zoomed view of abundance map with abundance range 
 

To demarcate the albitite zone, the abundance values were plotted against the 

longitudinal axes. Since the image contained extremely large number of points (more 

than 1 lakh), the abundance image was first degraded to lower resolution. The degraded 
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image of the three classification methods was plotted against respective longitudinal 

coordinates. The coordinates were reprojected into Universal Transfer Mercator, so as to 

get albitite zone extent in meters. A grid based analysis to demarcate the albitite zone 

boundary was carried out. A latitudinal slicing at regular interval of 500 m was done. 

Each 500 m grid was then subjected to statistical analysis. For every rectangular image 

slice, the longitudinal coordinate of the image was plotted against abundance values 

ranging from 0-1. Fig. 7.3 depicts the abundance values plotted versus longitudinal 

coordinates for SAM classified image. 
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g (3070001 N – 3075000 N)                              h (3075001 N – 3080000 N) 

   
i (3080001 N – 3085000 N)           j (3085001 N – 3090000 N) 

   
k (3090001 N – 3095000 N)                    l (3095001 N – 3100000 N) 

   
              m (3100001N – 3105000N)                n (3105001N – 3110000N) 

Fig. 7.3: Abundance values wrt  longitudinal Coordinate for SAM classified image 
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The analysis of the statistical data plots and classified output indicate that the albitite 

pixels falling in the latitudinal range of 3040000 N – 3050000 N (Fig. 7.3 a & b) may be 

ruled out for further consideration since their location is at a significant distance from the 

reported albitite zone. These may be attributed to classification error. Fig. 7.3 c & d 

correspond to Salwari area which falls in the middle section of the reported albitite zone. 

The figure indicates that the pixels of interest abound mostly 555000 E to 5630000 E 

thus indicating the width of the albitite zone. A few outliers are observed at 550000 E 

and 604000 E. Fig. 7.3 e corresponds to Guhala area which also lies in the middle section 

of the albitite zone. In this area the albitite abundance is indicated in the longitudinal 

range 560000 E to 563000 E. A significant outlier is observed at 550000 E. On 

examination of the image and abundance map, it was analyzed that even though pixel 

density is considerable, however the abundance value is less. Fig 7.3 f corresponds to 

Pachlagi area. The albitite abundance is witnessed in the longitudinal range from 565000 

E to 572000E.  A few outliers are observed at 548000 E and 585000 E. The latitudinal 

section ranging from 3070001 N to 3075000 N in Fig. 7.3 g indicates the albitite 

abundance in the region 5710000E to 5760000 E with a few misclassified pixels at 

563000 E and 5920000 E. Fig. 7.3 h corresponds to Mavanda Tarla and Kushwali Dhani 

area. Field data collection was carried out in this area at selected locations. Rock samples 

of different stages of albitization were collected for laboratory analysis. In this area the 

albitite zone stretches from 572000 E to 582000 E. Fig. 7.3 i correspond to Lakha area 

where albitite zone ranges from 580000 E to 591000 E. A few outliers are observed at 

551000 E and 610000 E. Fig. 7.3 j corresponds to latitudes ranging from 3085001 N to 

3090000 N. This area lies in the north section of the reported albitite zone. In this area 

the albitite abundance is seen from 581000 E to 592000 E. A few misclassified pixels are 

also observed at 550000 E and 605000 E. Fig. 7.3 k corresponds to Mewara Gurjawas 

area in the field. This also forms the main area in the north zone of albitite zone. Here 

albitite occurs between 582000 E to 590000 E. Fig. 7.3 l corresponds to Mewara Jatuwas 

area. The albitite zone extends from 584000 E to 593000 E. A few outliers are observed 

at 555000E and 570000 E. Fig. 7.3 m & n further north of the Mewara Jatuwas area show 

major occurrence of albitite from 589000 E to 595000 E. with a concentrated outlier at 
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610000 E. These outlier pixels are located at significant distance from the albitite zone 

and exhibit low abundance.  

Analysis of Fig. 7.3 indicates a maximum extent of 11 km for the albitite zone. Fig. 7.4 

depicts the albitite zone demarcated in totality from SAM algorithm. This result is in 

concurrence with the available literature, which states that the extent of the zone is 8 -10 

km (Yadav et al., 2000). It is observed that the majority of pixels classified as albitite fall 

within the designated albitite zone, however a small patch of albitite is also observed near 

Gura, around 9.5 km from the western fringe of the albitite zone. A few pixels near Kurl 

ki Dhani and Bansiyal are also classified as albitite and forming a linear pattern with the 

Gura patch. In the eastern part of the study area small scattered patches are found from 

Tatia ki Dhani to Jhilo. Further field investigation may be carried out to confirm the 

presence of albitite in these areas. Details related to location name in the map have been 

given in Table 6.7. 
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Fig. 7.4: Albitite Zone classified using SAM Algorithm 

 

The albitite abundance image from SFF algorithm was also statistically analyzed in a 

manner similar to the above mentioned procedure. The spatial extent of albitite for SFF 

classified image ranges from 3045000 N to 3110000 N. Accordingly the area is divided 

into 13 zones of 500 m each. Fig. 7.5 depicts the graphs for albitite abundance with 

respect to longitude range for SFF algorithm. 
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a (3045001 N – 3050000 N)                b (3050001 N – 3055000 N) 

   

c (3055001 N – 3060000 N)           d (3060001 N – 3065000 N) 

   

e (3065001 N – 3070000 N)                 f (3070001 N – 3075000 N) 

   

g ( 3075001 N – 3080000 N)                  h(3080001 N – 3085000 N) 
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i ( 3085001N – 3090000 N)                  j (3090001 N – 3095000 N) 

   

k (3095001 N – 3100000 N)   l (3100001 N – 3105000 N) 

 

                  m (3105001 N – 3110000 N) 

Fig. 7.5: Abundance values wrt X Coordinate for SFF classified image 
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abundance is witnessed in the longitudinal range from 560000 E to 571000E.  A few low 

abundance classified pixel are observed at 550000 E and 585000 E, which may be 

attributed to errors in classification. The latitudinal section ranging from 3070001 N to 

3075000 N in Fig. 7.5 f indicates the albitite abundance in the region 5630000E to 

5720000 E with scattered outliers of low abundance in neighbouring areas. Fig. 7.5 g 

corresponds to Mavanda Tarla and Kushwali Dhani area. In this area the albitite zone 

stretches from 571000 E to 580000 E, outliers occurring at 558000 E, 585000 E and 

600000 E. Fig. 7.5 h corresponds to Lakha area where albitite zone ranges from 576000 

E to 585000 E. A few scattered outliers are observed at 560000 E. Fig. 7.5 i 

corresponding to latitude range 3085001 N to 3090000 N lies in the north section of the 

reported albitite zone. In this area the albitite abundance is seen from 578000 E to 

585000 E with a few scattered outliers to the west of the albitite zone. Fig. 7.5 j 

corresponds to Mewara Gurjawas area in the field. This forms the main area in the north 

part of albitite zone. Here concentrated albitite occurrences are observed from 579000 E 

to 590000. Fig. 7.5 k corresponds to Mewara Jatuwas area. The albitite zone extends 

from 574000 E to 586000 E. Fig. 7.5 l corresponding to latitude 3100000 N to 3105000 

N also indicate major occurrence of albitite from 575000 E to 581000 E. In Fig. 7.5 m 

few albitite pixels are observed at 585000 N.  

Analysis of Fig. 7.5 indicates that the maximum extent of albitite zone classified with 

SFF algorithm is 12 km. Fig. 7.6 depicts the albitite zone demarcated in totality from SFF 

algorithm. Even though the majority of albitite patches are falling within the demarcated 

albitite zone, however a small patch of albitite is also observed near Gura, though the size 

is smaller than the SAM classified image. A few scattered patches are also observed in a 

linear extension from Chanth to Chawra about 10 km from the western boundary of the 

albitite zone. Towards the eastern edge a small patch is observed at Balwar and a few 

scattered pixels are seen extending from Bhawa Singh ki Dhani to Patan. Extensive field 

and laboratory investigation might be required to ascertain the nature of these classified 

patches. Details related to location name in the map have been given in Table 6.7. 
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Fig. 7.6 Albitite Zone classified using SFF Algorithm 

 

For MTMF classified image the albitite extent ranges between 3040000 N to 31100000 

N. The graph plots show concentrated occurrences of albitite at few longitudes. The 

complete latitudinal range was again sliced into sections of 500 m each thus yielding 14 

image sections. The statistical plots of albitite abundance versus longitude is shown in 

Fig. 7.7. 
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a (3040000 N– 3045000 N)                        b ( 3045001 N – 3050000 N) 

   

c (3050001 N– 3055000 N)                       d (3055001 N – 3060000 N) 

   

e (3060001 N – 3065000 N)     f (3065001 N – 3070000 N) 

   

g (3070001 N– 3075000 N)      h (3075001 N – 3080000 N) 
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i (3080001 N – 3085000 N)   j (3085001 N – 3090000 N) 

   

k (3090001 N– 3095000 N)      l (3095001 N – 3100000 N) 

   

m (310001 N – 3105000 N )                     n  (3105001 N – 3110000 N) 

Fig. 7.7: Abundance values wrt X Coordinate for MTMF classified image 
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in the range 558000 E to 5620000 E thus indicating the width of the albitite zone. A few 

outliers are observed at 549000 E and 589000E. Fig. 7.7 e corresponds to Guhala area 

also in the middle part of the albitite zone. In this area the albitite abundance is indicated 

in the longitudinal range 562000 E to 568000E. A significant outlier is observed at 

550000 E. Observation of the image and abundance map indicates that this outlier shows 

low pixel density and abundance values. Fig. 7.7 f corresponds to Pachlagi area. The 

albitite abundance is witnessed in the longitudinal range from 566000 E to 572000E.  A 

few outliers are observed at 590000 E. The latitudinal section ranging from  3070001 N 

to 3075000 N in Fig. 7.7 g indicates the albitite abundance in the region 5660000E to 

5750000 E with scattered  misclassified pixels at 563000 E, 5880000 E and 610000 E. 

Fig. 7.7 h corresponds to Mavanda Tarla and Kushwali Dhani area. Field data of different 

stages of albitization were collected for laboratory analysis. In this area the albitite zone 

stretches from 571000 E to 578000 E with scatted low abundance outliers on both sides 

of the zone. Fig. 7.7 i corresponds to Lakha area. In this area albitite zone ranges from 

579000 E to 585000 E, outliers occurring at 551000 E, 568000 E and 591000 E. Fig. 7.7 j 

corresponds to latitudes ranging from 3085001 N to 3090000 N. This area lies in the 

north section of the reported albitite zone. In this area the albitite abundance is seen from 

581000 E to 592000 E. A few misclassified pixels are also observed at 551000 E, 571000 

E and 608000 E. Fig. 7.7 k corresponds to Mewara Gurjawas area in the field. This forms 

the main area in the north part of albitite zone. Here albitite occurs between 582000 E to 

590000E. Fig. 7.7 l corresponds to Mewara Jatuwas area. The albitite zone extends from 

582000 E to 592000 E. A few outliers are observed at 609000E and 570000 E. Fig. 7.7 m 

further north of the Mewara Jatuwas area show a few scattered occurrences of albitite in 

the reported zone. An outlier is also observed at 610000 E. Fig. 7.7 n exhibit scattered 

pixel occurrences at 610000 E. These outlier pixels are located at significant distance 

from the albitite zone.  

Analysis of Fig. 7.7 indicate a maximum extent of 10 km for the albitite zone. Fig. 7.8 

depicts the albitite zone demarcated in totality from MTMF algorithm). Outside the 

designated albitite zone, towards the western part a considerable patch is observed near 

Gura. Few pixels are also classified as albitite on the western fringe of Madhogarh block 

protected forest. Towards the eastern edge of the albitite zone, a small patch is observed 
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at Tatia ki Dhani. A few scattered patches are also observed from Bhawa Singh ki Dhani 

to Patan. These areas need to be thoroughly surveyed to check whether these pixels are 

misclassified pixels or albitite is exposed in the area. Details related to location name in 

the map have been given in Table 6.7. 

 
Fig. 7.8: Albitite Zone classified using MTMF Algorithm 

 

7.4 SYNTHESIS OF RESULTS AND INTERPRETATION 

The results of a research study need to be compared systematically with an authentic 

reference before arriving at scientifically logical conclusions. Thus in order to assess the 

credibility of the results it is necessary to analyze them in light of existing evidences. The 

next sections will cover the findings for each category and draw a brief conclusion.  
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 For analyzing the atmospheric correction, the reflectance spectra of corrected image 

were analyzed with the lab spectra from JHU Library.  Except band 1, 2 and 4, where the 

corrected reflectances were lower than the reference, the remaining bands exhibited a 

close correlation with reference spectra which indicates that FLAASH and ATCOR are 

suitable algorithms for atmospheric correction of ASTER data. 

Synthesis and interpretation of the results of albitite mapping using the ASTER data have 

been done by simultaneously examining the compiled reference lithologic map, 

mineralogical and textural data obtained from microscopic study of the thin-sections of 

field samples with their GPS-locations, and spectral classification results for the three 

classification algorithms. Six field samples were utilized for generation of reference 

spectra of albitite and then classifying ASTER data using Spectral Angle Mapper, 

Mixture Tuned Matched Filtering and Spectral Feature Fitting algorithm. Since site-

specific field samples from these areas have been analyzed petrographically and 

spectrally, other eleven locations have been used to validate the results of albitite 

mapping based on the available literature. The accuracy of classifications was found to be 

72.72%, 63.63% and 63.63% respectively. For demarcation of albitite zone in the study 

area, the abundance of albitite was plotted with respect to longitude. It was observed that 

using all the three algorithms we are able to demarcate the albitite zone and the width of 

the zone is 10 - 12 km. This result is in concurrence with the available literature, which 

states that the extent of the zone is 8 – 10 km (Yadav et al., 2000).  

An important observation after synthesis of results highlights few locations outside the 

designated albitite zone exhibiting similar spectral characteristics as albitite. A few 

noteworthy ones being a linear extension of scattered pixels extending from Madhogarh 

to Gura upto Kurl ki Dhani running parallel at a distance of approximately 10 km to the 

western boundary of the confirmed zone. Towards the eastern fringe a short linear 

extension is observed from Tatia ki Dhani to Jhilo about 6 km and running parallel to the 

zone boundary. An isolated patch is also observed further southeast of Jhilo at Patan 

approximately 7 km from Jhilo (Fig 7.9). The names of major locations in the area are 

given in the Table 6.7. These probable patches of albitite as brought out by multisensor 

investigation and digital image classification techniques will provide crucial 

understanding for further geological exploration in the area. Once confirmed after field 



169 
 

verification these yet undiscovered patches are expected to throw new light on geological 

setting of the albitite zone. 

 
Fig. 7.9: Locations outside the albitite zone exhibiting high spectral similarity to 

albitite  
 

From comparative examination of albitite in the classification results for three 

classification algorithms used in spectral analysis, it has been observed that ASTER data 

has been successful in spectrally identifying surface occurrences of albitite. Ambiguities 

and differences in albitite identification for different algorithms investigated have arisen 

primarily because of limitations of ASTER’s spectral resolution resulting in multiple 

(and sometimes erroneous) matches of the pixel spectrum with reference spectral library. 



170 
 

Also, residual effects of vegetation within an average pixel area of 30x30 m2 also add to 

the difficulty in exact identification. The results show that the ASTER data can provide 

fast and dependable support in identifying and mapping specific minerals which can be 

linked with the presence of economic mineralization. 

 

7.5 SUMMARY OF CONCLUSIONS 

The success of remote identification and mapping of surface materials is governed by 

the unique retrieval of their spectral signatures. Credible radiometric, atmospheric and 

topographic corrections are vital in the reliable application of remote sensing in 

geology. This study has demonstrated that methods of atmospheric correction utilizing 

principles of radiative transfer can effectively achieve this objective, but availability of 

local atmospheric data for the image (constrained by date, time and area) are necessary. 

Useful improvements can be made by combining image-based approaches with these 

methods.  

Digital image processing techniques such as band ratios and DPCA were implemented 

on both Landsat and ASTER dataset. These techniques offer geo scientists a cost and 

time efficient solution for regional mineral and lithological mapping. Subtle changes in 

spectral reflectance recorded across various wavelength regions (specifically VNIR-

SWIR and TIR) form an important basis for identification of individual minerals. 

The investigation and analysis of visible, near infrared (VNIR), short wave infrared 

(SWIR) and thermal infrared (TIR) wavelength regions highlighted the impact of 

combining VNIR/SWIR and TIR data for surficial albitite mapping. It was found that all 

the classification algorithms applied to the combined data resulted in improvement in 

overall accuracy of classification. The synergistic use of VNIR, SWIR, and TIR data 

complement one another and hence improve the ability of remote detection, 

identification and mapping of albitite.  

Mineral mapping based on ASTER data processing has revealed the specific advantages 

of ASTER over the existing spaceborne remote sensors.  ASTER provides data in a wide 

spectral region spanning from the visible to the thermal infrared with improved spatial, 

spectral and radiometric resolution. The TIR data enables identification of quartz, mafic 

minerals and carbonate rocks, the SWIR bands diagnose the characteristic spectral 
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features of hydrothermal alteration associated with hydroxyl, sulfate and carbonate 

minerals and the three VNIR bands are provide important information pertaining to 

absorption in transition metals especially iron and some rare-earth elements (REE). These 

properties highlight the significant advantages of using ASTER since this data enables 

the analysis of the complete range of the electromagnetic spectrum most useful for 

geoscientists in terms of mineral identification.   

In the present study identification and mapping of albitite has been successfully achieved 

using ASTER data. The results were acceptable because of field spectral data collected 

from the ground, since it gave a truly representative end-member spectrum for albitite, 

used in spectral classification. Mapping albitite using satellite images facilitates in 

detecting uranium occurrences which are expected to have a significance impact in 

locating economically viable albitite hosted uranium deposits. The study is based on 

qualitative analysis of spectral similarity measures for identification of albitite as 

spectroscopic principles have not been utilized due to limitations in availability of higher 

spectral resolution image data.  

To summarize, the most significant contribution of this research is the creation of spectral 

signature for adventuring albitite in Indian scenario. This is also a first attempt of 

delineating albitite zone of eastern Rajasthan using multisensory remotely sensed images. 

The analysis of data from multiple sources has resulted in spatial demarcation of albitite 

zone over the region. Apart from reported zone other probable albitite occurrences, which 

need to be validated through ground observation have been brought out based on digital 

image classification.  

The credibility of target mineral mapping results is largely influenced by the spatial and 

spectral resolution. The factors of spectral mixing in relatively large areas represented in 

a single 30x30 m2 pixel of the ASTER data lead to spectral flattening and loss of 

absorption features. This is an area with a scope of further improvement. The end 

members in TIR range for identification of albitite were generated using sample location 

in the image. Significant improvement in classification is expected if the ground 

instrument enabled spectra collection in thermal range is included.  

 


