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ABSTRACT

Since the development in digital technology, music has a lead role in the leading tech-

nological evolution. Music can be thought as basic human need. As huge amount of

data is required to store and transfer audio signal, challenges arise as how efficiently

one can store audio signal without almost no changes in its quality. With the use of

cloud backup one can have own music collection, but this leads to wastage of band-

width as the same music content can repeat for persons. So, to index and search these

vast amounts of data becomes a challenging task. In melody extraction, the melody

( pre-dominant fundamental frequency of a music signal) is extracted from the music

which then gives salient applications like indexing and searching music content, query

by humming (QBH), voicing detection, voice separation, genre classification (like Rock,

Pop, Indian etc...), music teaching (by extracting different beat frequencies), games, se-

curity systems, karaoke system and more. So many melody extraction algorithms have

been developed, but most of the algorithms depend on a type of music where for specific

music it can work effectively. Melody extraction can be vocal or instrumental. Vocal

melody extraction algorithms extract the human voice (Voicing detection) whilst instru-

mental includes detection of particular instrument sound like tabla, guitar, flute etc.

As synchrosqueezed wave packet transform gives very accurate time-frequency represen-

tation, the need for extra steps to calculate melody is eliminated and directly giving

final melody. Proposed melody algorithm shows an improved accuracy compared some

existing methods.
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Chapter 1

Introduction

Music is everywhere around us. “Music expresses which cannot be put into words and

which can not remain silent (Victor Hugo)”. Music information retrieval is related to

music technology, cognitive science, signal processing and computer engineering. A huge

demand in music signal processing has arisen due to technological advancements in music

and so music information retrieval (MIR) has become a separate field of study. Most

MIR systems work in two steps : 1. Extract intelligent music information 2. Use this

information in broad area applications like searching, storage, security, compression and

analysis. Music features can be extracted in three levels based on their mathematical

complexity. Low level (spectrum coefficient), medium level (melody and rhythm) and

high level (genre, album and mood etc.). The most fundamental frequency of any signal

is called as pitch of that signal. The sine wave of frequency 50 Hz can be heard with the

proper beeps tune. So this 50 Hz is pitch frequency for sine wave. For a non-stationary

signal like music its pitch varies at every time fraction. Pitch also represents a quality

of sound perceived by humans. Arranging each fractional pitch in a timely order gives

a smooth melody. Melody plays big role in human life, starting with an infants first

cry to daily human social communications [1]. We often reproduce a melody of a song

in our daily life. Most people remember singers voice to identify particular song and

they try to replicate the same voice in own humming style [14]. As melody directly

resembles the voice of any person, melody extraction is the first step for many music

information retrieval applications. Most algorithms developed so far depend on the type

1
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of music. Building a robust melody extraction algorithm independent of any music type

is a challenging task.

Most algorithms developed so far are based on a single resolution transforms like Short

Time Fourier Transform (STFT). In the proposed scheme synchrosqueezed wave packet

transform (SSWPT) is implemented which is multi resolution transform. Multi resolu-

tion transforms give a more detailed analysis for time-frequency representation of music

signals which results in improved accuracy for melody extraction algorithms.

Generalized
Melody
Extraction
System

Piece of Music Time (S)

P
itc

h

Extracted Melody

Figure 1.1: Generalized melody extraction system

Figure 1.1 shows a generalized melody extraction system. Given a music signal as an

input, melody extraction system will give the melody as an output. We want such

a system that can extract automatic melody from music signals. Melody extraction

can be done from monophonic audio signal or it can be from polyphonic music signal.

As monophonic music signal itself represents one indirect form of melody, the main

challenge remains only in extracting melody from polyphonic music content. There can

be on line and off line melody extraction system. On line melody extraction system can

deal with large amount of data by using the cloud computing. Using cloud computing

and cloud storage, indexing and storage of millions of songs become very easy. Melody

extraction plays key role in applications like query by humming (QBH), karaoke systems,

voice based security systems, music transcription, audio fingerprinting, detection of cover

songs, genre classification, pattern analysis etc.

1.1 Scope of melody extraction

Text based searching and indexing of data is very easy compared to the database which

is a feature based but it can not give detailed analysis. One can design feature based

indexing and storage where data is managed based on its features. For example music

files all over the internet can be indexed and stored based on music type, genre etc.

Music and video signals acquire huge amounts of storage space. For a cloud computing

system efficient use of storage is an essential need. Text based indexing of data creates
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redundancy in storage and so wastage of large amounts of data. So the solution is to

index this data based on their features. Melody is one of those features of music signal.

As there are more features for any music signal melody is the key feature that helps

in deriving other features. In query by humming systems relevant music to the queried

one is searched based on music features. In QBH systems, user hums particular part

of music and that respective music will be the searched output. In music teaching ex-

tracted melody is used to derive features like pitch, rhythm, score and beats to train new

musicians. In music plagiarism melodies of songs are compared to check their originality.

Source separation is used to separate singing voice and music. Source separation is also

used to extract particular source from the different sources played at the same time.

When a user demands an exact match for the music, then audio fingerprinting is used.

Pattern analysis is also exploiting the use of melody to extract patterns.

There is a major difference between melody extraction and source separation. As melody

extraction does not separate vocal tract from the music signal, but it simply extracts

main melody line which is the fundamental frequency of the singer. Melody extraction

helps in the source separation algorithm. The goal of source separation is to separate

any particular voice among multiple voices in any music signal.

1.2 Melody extraction algorithms

Melody extraction algorithms can be mainly classified into two types, 1. time domain

algorithms and 2. Frequency domain algorithms. Time-domain algorithms detect fun-

damental frequency from the periodicity of the music signal. A simple method is to

use zero crossing rate of music signal and by calculating number of time the signal has

crossed zero we can have period of the signal and inverse of that period gives fundamen-

tal frequency. ZCR based methods are more sensitive to noise so not used in practice.

Some methods use autocorrelation function to extract the melody. For a music piece

its autocorrelation is calculated and maximum of autocorrelation gives the fundamental

frequency f0. ACF based methods mostly give errors where frequency is detected as half

of the fundamental frequency. YIN algorithm [13] uses modified ACF to detect pitch of

the music signal. Some methods employ human auditory system [3] model and then use

this model in development of algorithm.

Frequency domain algorithms are based on single resolution and multi resolution spectral

transform. Some uses only FFT to detect the pitch. Some algorithms also use cepstrum
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based techniques which uses inverse Fourier transform of log power spectrum. Some

algorithms use harmonic summation based techniques where first peak of the spectrum

is calculated and then harmonics are calculated based on this detected peak. Harmonic

summation is calculated based on exponential rule to give less weightage to harmonics.

Some source separation methods also employ frequency domain approach where the

entire spectrum is divided into pieces and based on some statistical rules each piece is

determined as voiced piece or unvoiced piece. Unvoiced pieces are made zero and finally

inverse transform is calculated to get back separated source.

1.3 Basic terminologies related to melody extraction

1.3.1 Pitch

Pitch is the most fundamental frequency of the signal. So basically pitch is measured

as inverse of the time period of the signal which is f0 = 1/T0. More generally pitch

is defined as the number of oscillations per second. Most time domain algorithms use

the correlation function to determine the fundamental frequency of the signal. For most

applications, fundamental frequency is estimated by fast Fourier transform (FFT).

1.3.2 Melody

Primary purpose of this thesis is to extract melody from given music. So we must know

what a melody is. After listening to a particular music if listener is asked to reproduce

the same music in humming form then it is melody. Melody is closely related to pitch.

Melody can be defined as pitch values arranged in timely sequence. Melody can be

extracted for human voice or instruments like piano, violin, guitar etc. For every spoken

word the pitch is different and it varies from person to person. For most humans the

vocal pitch frequency range is 150 Hz to 1750 Hz [1]. Lower values of pitch are created

by instruments like bass and higher pitches are created by instruments like guitar[1].

1.3.3 Octave

In music theory one octave is double the change in frequency when the base in logarithm

is 2. Any music is created base on standard pitch notes. The difference between two

pitch is one octave. For example if frequency of one note is 440 Hz then the next note
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will have frequency of 880 Hz that is one octave ahead of previous note. The lowest

octave frequency range is from 16 Hz to 32 Hz.

1.3.4 Semitone

Semitone is half the value of tone or called the smallest music interval. After simulating

any melody extraction algorithm the detected pitch should be half semitone away from

the original pitch else it is considered as false pitch value.

1.3.5 Monophonic music

When any individual instrument is played without any human voice it creates mono-

phonic music. Music played only by guitar can be considered as monophonic music.

A single person singing a song without any external instrument is a monophonic type

singing. Most of people in daily life used to hum for their favorite song and this hum is

also type of monophonic music. An opera singer sings monophonic music.

1.3.6 Polyphonic music

Music created by playing simultaneously multiple instruments makes polyphonic mu-

sic. polyphonic music signal contains multiple melodies. Melody extraction is totally

selective process.

1.4 Literature survey

So many melody extraction algorithms have been proposed till date. Most algorithms use

the pre-processing part in which the audio signal is first filtered with some techniques

like band pass filtering and Equal loudness filtering. After pre-processing part pitch

detection part is carried out where either time domain or frequency domain operations

are employed to detect pitch candidates. Finally post-processing part smooths these

pitch values to remove sharp transitions. Methods that use filtering of audio signals at

beginning of algorithm mostly employ pre-processing part. General overview of some

melody extraction algorithms is given here.

Equal loudness filter (ELF) employed in [1] is a type of band pass filter (BPF) that

enhances frequencies more perceptual to human ear. After Equal loudness filter, STFT is
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computed followed by IF peak correction based on instantaneous frequency calculations.

Finally harmonic summation calculates strong melody candidates. From all melody

candidates single pitch is detected by determining statistical parameters. Comparison of

most melody extraction techniques are presented in [2]. Harmonic cluster based methods

[3] used STFT and log spectrum followed by IFT. Each salient feature is determined

and stored as a comb which finally used to decide the pitch values. Comparison of

time and frequency based algorithms is presented in[4]. Tandem algorithm used in [5]

roughly estimates melody lines using spectral transform and then accurates these lines

by harmonicity and temporal continuity.

DFT based salience peaks calculation is carried out in [6]. TWM errors are calculated

to decide main melody and finally voicing detection is used to remove unvoiced part.

REPET (Repeating Pattern Extraction Technique) discussed in [7] finds a small re-

peating frame in entire music and then removes similar frames from the music file to

remove unvoiced part. Beat pattern is used to estimate the repeating pattern. Wavelet

transform based pitch detection is available in [8]. Cepstrum based pitch detection is pre-

sented in [9] where voicing/unvoicing is based on statistical parameters like zero crossing

rate (ZCR), median, mean and short time energy measurement. In [9] melody extrac-

tion is performed in two levels. First pass is for voicing detection and second pass for

pitch calculations. Klapuri [10] used harmonicity and spectral smoothness techniques to

estimate melody lines. Several frequency regions are separated using MFCC filter bank.

PREFEST algorithm[11] calculated bass line and vocal melody line separately using

probabilistic methods. In [12] melody extraction is first determined by STFT and then

using spectral peak and sub-harmonic summation pitch values are extracted. Method

in [12] is similar to [14]. Tian cheng [14] used onset and offset detection of music signals

to detect unvoiced part which is then removed making this unvoiced frames to zero.

Sinusoidal extraction and salience function design methods are explained in [15] where

melody is selected by determining multiple parameters. Application of singing voice

separation is presented in [16] where a large database is tested for voicing detection[23].

Modified pitch detection method [17] calculates pitch based temporal correlation and

spectral similarity measure. Application of synchrosqueezed wave packet transform is

to decompose various signals [18].
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1.5 Goal of dissertation work

The objectives of this dissertation work include:

1. Melody extraction using existing algorithms

2. To propose a synchrosqueezed wave packet transform based melody extraction

system.

3. Testing proposed algorithm for test database (mir-1k)

4. Creation of GUI for the proposed algorithm.

5. Comparison of proposed algorithm with existing methods.

1.6 Thesis structure

This thesis is structured as:

Chapter 1: Introduction : gives basic idea of melody and melody extraction system.

Scope for melody extraction is also explained with generalized block diagram of melody

extraction system and its various application area. Scope of melody extraction system

and literature survey.

Chapter 2: Proposed Scheme: gives detailed idea of SSWPT based melody extraction

algorithm.

Chapter 3: Results and Discussions: Simulation of mir-1k dataset and various results

considered out using proposed algorithm.

Chapter 4: Conclusion and Scope for Future Work: Explains future scope for proposed

technique.



Chapter 2

Proposed scheme

Some melody extraction algorithms use time domain approaches whilst others use fre-

quency domain approaches. Time domain algorithms mainly uses statistical parameters

like energy, standard deviation (std), zero-crossing rate (ZCR). Frequency domain algo-

rithms exploit the properties of time-frequency representations using spectral transforms.

Proposed method is based on frequency domain properties. In proposed method syn-

chrosqueezed wave packet transform is used for time-frequency representation. As being

multi resolution transform SSWPT gives accurate representation compared to single

resolution transforms like STFT. We have divided algorithm in three stages. starting

with pre-processing followed by time-frequency representation and finally post process-

ing part. Each stage is explained in details in subsequent sections of this chapter. Figure

2.1 shows block diagram of synchrosqueezed wave packet transform based melody ex-

traction system.

2.1 Pre-processing

Most of the time pre-processing part does filtering and voicing/un-voicing detection of

audio signal. Pre-processing stage is combination of equal loudness filter followed by

voicing/un-voicing detection. As human voice melody range is between 100 Hz to 1250

Hz[1] ,some techniques employ band pass filter with frequency range 150 Hz to 1250

8
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Equal Loudness Filter

Audio Signal

Unvoiced
Frame = 0Voiced

Voicing
detection

Combine Frames

SS Wave Packet 
Transform

Melody Candidates 
Selection

Extracted Melody

Melody Smoothing

Pre-
Processing

Time-Frequency 
Representaion

Post-
Processing

Figure 2.1: Block diagram of SSWPT based melody extraction system

Hzinstead of equal loudness filter. Overall accuracy of any melody extraction system

mainly depends on how accurate voicing/un-voicing detection is determined. We have

combined vocal (only singer voice) and background music (music accompaniment) with

different SNR values. Music accompaniment is considered as noise signal.

2.1.1 Equal loudness filter

Audio signal is first filtered through equal loudness filter which enhances the frequencies

of the music signal where the probability of human voice is maximum. Enhancing the

vocal regions help in better detection of melody lines. Equal loudness filter is created

by taking inverse of averaged equal loudness curves [22]. We designed equal loudness

filter by using 10th order IIR filter cascaded with 2nd order butter worth high pass filter

with the cut-off frequency of 150 Hz. The filter co-efficient data is available at [22]. The

filter structure for 10th order IIR filter is given by equation 2.1 and for 2nd order HPF

is given by equation 2.2.

Y (z)

X(z)
=
b0 + b1 z

−1 + b2 z
−2 + b3 z

−3 + ...+ b9 z
−9 + b10 z

−10

1 + a1 z−1 + a2 z−2 + a3 z−3 + ...a9 z−9 + a10 z−10
(2.1)
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Y (z)

X(z)
=
b0 + b1 z

−1 + b2 z
−2

1 + a1 z−1 + a2 z−2
(2.2)

Audio
Signal

10th Order
IIR Filter

2nd Order 
Butterworth HPF

Filtered 
Signal

Figure 2.2: Block diagram of equal loudness filter
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Figure 2.3: Equal loudness filter frequency response

Figure 2.3 represents frequency response obtained by the equal loudness filter with using

filter co-efficients given by[22]. Lower frequency regions are mostly covered by instru-

ments like bass and high frequency region with instruments like guitar. As shown in

figure 2.3 it clearly shows higher and lower frequency regions are attenuated. Music

signal is combination of singer voice and background music. Equal loudness filter will

enhance the voice part mainly.

2.1.2 Voicing detection

Some algorithms use voicing detection after spectral transform while others use before

it. We have used voicing detection before spectral transform. After filtering process

music signal is divided into equal length frames. Smaller frame lengths of 30 ms with

overlapping of 5 ms are used while framing. Smaller size of frame length and overlap

size is considered to reduce data lose during thresholding. We have tested our algorithm

on mir-1k dataset. Given the sampling frequency for mir-1k dataset to be 16 kHz,

frame length is calculated as N = fs ∗W . N is frame length in samples and W is frame

length in time. Calculating parameters using this formula we get N=480 samples and

hop (overlapping window) size H=80 samples.
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N Samples

Window Frame
480 samples

Hop size
80 samples

Figure 2.4: Framing of music signal with overlapping

We used voicing detection based on statistical parameters. Squared energy measure of

a frame is employed to decide voicing detection. The energy of voiced frame is generally

larger than the unvoiced frame. The squared energy of a frame with N samples is defined

by

Es =
N∑
n=1

|x(n)|2 (2.3)

After dividing the signal into frames. Energy in each frame is calculated. Energy is

calculated for each frame by using equation 2.3. The reference threshold is considered

as 20% of average of all frames energy. Smaller value of threshold (20%) is considered

as to remove loss of smaller energy voiced frames in music signal.

0.5 1 1.5 2 2.5 3

Time(S)
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m
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a b c

Figure 2.5: Piece of music showing voiced and unvoiced frame

Figure 2.5 shows piece of music signal with 3.5 second duration. The frame between a and

b is voiced frame where the energy is higher and the frame between b and c is unvoiced

frame. Unvoiced frame is mainly due to music accompaniment. Some algorithms have

used voicing detection based on onset and offset detection as used in [14].

Figure 2.6 shows music signal of 12 second duration and its spreaded energy over time.

Threshold is considered as 20% of average energy so frames having energy less than

threshold are made equal to zero and frames having energy higher than threshold are
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Figure 2.6: Voicing detection based on energy of signal

retained. As unvoiced frame does not contain any melody information, after voicing

detection these frames are made equal to zero.

2.2 Time-frequency representations

Time-frequency representations are obtained using spectral transforms. Some melody

extraction algorithms use single resolution spectral transforms and other uses multi

resolution spectral transforms. Time-frequency representation is backbone to select

salient melodic candidates from the entire music signal.

2.2.1 Single resolution transform: short time fourier transform

For comparison of proposed algorithm the simulation of existing methods which use

STFT as spectral transform are considered. Melody extraction algorithms used by

[1],[14],[12] and [3] are using short time fourier transform as spectral transform. STFT
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of a given signal x(n) is defined by the equation

Xl(k) =
N−1∑
n=0

w(n)x(n+ lH)e−j
2π
N
kn,

l = 0, 1..., and k = 0, 1, ..., N − 1.

(2.4)

where x(n) is music signal in time domain. w(n) is window used for STFT and hanning

window with window size of 2048 samples are implemented while simulation. Hop size

used in STFT is 160 samples. Selection of hop size is based on the dataset given. In

mir-1k dataset the pitch values are calculated using hop size of 10ms. Smaller hop

size gives more accurate pitch detection as it involves more number of samples to be

overlapped. Given all these parameters the STFT of a given signal is X(k) where l is

the frame number.

Figure 2.7: Time frequency representation using STFT

Figure 2.7 is a time-frequency representation of a 7 second music file abjones 1 02.wav

using STFT. Blue color represents lower intensity values whereas yellow color represents

higher intensity values.

2.2.2 Multi resolution transform: SSWPT

For a signal f(t) its wave packet transform[18] is defined as

Wf (a, b) = 〈wab, f〉 =

∫
wab(t)f(t)dt (2.5)
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where wab(t) is family of wave packets. The {wab(t) : |a| ≥ 1, b ∈ R} is defined by the

equation

wab(t) = |a|s/2w(|a|s (t− b))e2πi(t−b)a (2.6)

where parameter s ∈ (1/2, 1). The fourier equivalent of wab(t) is

ŵab(ζ) = |a|−s/2 e2πibζŵ(|a|−s (ζ − a)) (2.7)

The instantaneous frequency information is derived from the Wf (a, b) as

vf (a, b) =


∂bWf (a,b)
2πiWf (a,b)

, for |Wf (a, b)| > 0;

∞, otherwise
(2.8)

By squeezing Wab(t) based upon the instantaneous frequency information vf (a, b) the

accurate time-frequency representation of signal f(t) is obtained by

Tf (a, b) =

∫
R

|Wf (a, b)|2 δ(<vf (a, b)− v)da, for v, b ∈ R (2.9)

f(t)

AA2 DA2

ADA3 DDA3AAA3 DAA3

A1 D1

AD2 DD2

ADA3 DDA3 ADA3 DDA3

Figure 2.8: Decomposition of a function using wave packet transform

The synchrosqueezed Wave Packet Transform decomposes a signal into its higher and

lower frequency components. A three level decomposition of such a signal f(t) is as

shown in Figure 2.8. Most melody extraction algorithm uses fast fourier transform

(FFT) or Short Time Fourier Transform (STFT) for time-frequency representation.

SSWPT mainly depends on the threshold value of its wavelet packet. We have checked

different threshold values and found that the optimum threshold value for audio signals
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is 1e−2. Some important parameters used in SSWPT and its optimum values are given

in table 3.1.

Table 2.1: Parameters for SSWPT

Parameter (dB) Default
Value

Significance

epsl 1e−2 Threshold for SST

res 1 Visualization resolution parameter in frequency

N Signal
length

Signal length

NG round(N/32) Number of subsampling points for each frame

is real 1 type of real or complex signals

R high N/2Hz Higher frequency bound for analysis

R low 0Hz Lower frequency bound for analysis

fs 16000 Sampling rate of the music file

Figure 2.9: Time-frequency representation using SSWPT

Figure 2.9 shows a SSWPT for a 7 second music file. For each 32 samples in time do-

main, SSWPT gives one frame in time-frequency representation. Smaller value of frame

gives more accurate time information in spectral representation which improves melody

detection in later stages. Frequency information from the given SSWPT distribution is

given by

fp = l ∗ fs/2
N/2

(2.10)
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where fp is the frequency value of the corresponding location of spectrum, fs is the

sampling frequency and N is the length of the signal in samples.

2.3 Post-processing

Post-processing stage is further divided into median filtering and salience function cre-

ation.

2.3.1 Median filtering

The result after SSWPT for a music signal is M ∗ N matrix. The unwanted music

part is lower intensity pixels in this matrix. Applying median filter will smooth out

this noise pixels and so main melody which is higher intensity edges is not affected.

By default 2D median filter kernel size is 3x3. Melody detection is considered as edge

detection problem. The high intensity edges are extracted as an edges which becomes the

fundamental candidates for melody detection. After simulation of proposed algorithm

it is found that median filer improves the raw pitch accuracy (RPA) and overall pitch

accuracy also to a great extent.

2.3.2 Salience function creation

After applying median filtering the mean of every single column of time-frequency matrix

is computed. Mean of this columns is a row vector of length equal to number of columns

of this matrix. This row vector is used later for thresholding purpose.

Melody candidates are those which are having higher intensity values in the entire spec-

trum. As shown in figure 2.10 the maximum intensity value of the SSWPT spectrum is

the first strong candidate for final melody which is 171.9 Hz. Lower intensity harmonics

are considered in calculation for final melody in harmonic summation part.

From a given time-frequency representation global maximum at every frame is computed

to decide the strong candidate for melody. From this candidate harmonic candidates

are selected as 2nd, 3rd, 4th, 5th harmonics. FFT of the given frame shown in figure 2.10

shows fundamental and its harmonics which are considered as candidates for harmonic
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Figure 2.10: Strong melody candidate and its harmonics shown with FFT

function. Harmonic function is decided by the equation

S(F ) =

n∑
n=1

hnA(nF ) (2.11)

where hn is weight provided to each harmonic candidates. hn is defined as hn = hn−1
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where h < 1 and A(nF ) is the amplitude of nth harmonic. Lower values of h gives more

weightage to fundamental and less weightage to its harmonics.

At last final melody candidates are selected by maximum of the function S(F ).

F0 = max(S(F )) (2.12)

The mean of the raw vector calculated previously is used to obtain threshold. Thresh-

old is considered as mean of the raw vector. If the selected final pitch lies below the

calculated threshold value then it is made zero else retained.

2.3.3 Frequency smoothing

After final melody candidates selection frequency smoothing is done to remove peaks

at certain points in time-frequency representation. These peaks occurs at the window

edges of the SSWPT. If the pitch values before and after the current pitch are zero then

we make present pitch as zero. If the pitch value of before and after the current pitch

value are lower then we make current pitch as minimum of previous and next pitch value.

Frequency smoothing helps in removing octave errors which in turn gives final smooth

melody curve.



Chapter 3

Results and discussions

The proposed algorithm is implemented in MATLAB R© software.

In our evaluation we have used mir-1k [23] dataset with 4 different SNRs. Melodies

of only few songs are computed instead of whole dataset. This dataset consists of 1000

different songs having separate music track and accompaniment track. The duration of

all the songs is 2 hours with total size of 488 MB. To test the dataset music accompa-

niment and singing voice are mixed with SNR value of +5 dB, 0 dB and -5 dB. SNR

is computed using the equation Y (n) = aX(n) + bN(n) where Y is mixed signal, X

is singing voice and N is music accompaniment which is considered as noise. Different

values of a and b are calculated by the equation

SNR =
a2 ∗

∑
|X(n)|2

b2 ∗
∑
|N(n)|2

(3.1)

Table 3.1: SNR calculation

SNR (dB) a Value b Value

+5 1.7783 1

0 1 1

-5 0.577 1

3.1 Performance parameters

The quality of extracted melody is defined by performance parameters. Overall pitch

accuracy, raw pitch accuracy, standard deviation and time complexity are performance

19
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parameters.

• Overall Pitch Accuracy (OPA)

Overall pitch accuracy is the ratio of correct pitch frames to the all pitch frames.

Large amount of overall pitch accuracy gives better performance. If the percentage

error between evaluated pitch frame and given original pitch frame is 3% then it

is considered as correct pitch frame.

OPA =
Number of correct pitch frames

Total number all frames
(3.2)

• Raw Pitch Accuracy (RPA)

The raw pitch accuracy is the ratio of correct pitch values in voiced frames to that

total number of voice frames. A larger number of raw pitch accuracy shows that

voicing detection scheme used in algorithm is accurate. Raw pitch accuracy (RPA)

mainly depends on voicing/unvoicing detection.

RPA =
Number of correct pitch frames in voiced frames

Total number voice frames
(3.3)

• Raw Chroma Accuracy (RCA)

If a extracted pitch value lies in the given octave then it is detected as correct

pitch for chroma accuracy. Raw chroma accuracy is defined as number of extracted

pitches that are in the given octave range to the total number of true pitch values.

• Standard Deviation

The standard deviation (σe) is defined as

σe =

√
1

N

∑
(ps − p′s)2 − e2 (3.4)

where ps is standard pitch value, p′s is detected pitch value and N is the total

number of correct pitch frames. e is the mean where e is defined as

e =
1

N

∑
(ps − p′s) (3.5)

• Time Complexity

Time complexity can be considered as major parameter for melody extraction

systems as melody extraction system can be thought as on line system rather than

off line. Most music information retrieval application are well suited for on line
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applications. Time complexity is measured as how much time melody extraction

algorithm takes to extract melody for one single music file. In proposed method

the time considered is 33 minutes for 52 music files which is on an average 38

seconds for a single music file.

3.2 Evaluation results

The proposed algorithm is evaluated for 3 different SNR values of -5 dB, 0 dB and +5

dB. The dataset used for evaluation are as per table below.

Table 3.2: Raw pitch accuracy and overall pitch accuracy for abjones

Sr.No Singer Name Total
Songs

Total
Duration
(s)

Vocal
length
(s)

1 Abjones 43 327 229

2 Kenshin 52 430 335

3 Annar 42 290 186

4 Heycat 40 313 235

5 Geniusturtle 69 583 475

6 Fdps 48 397 280

For comparison TWMDP [6] method is used.

Raw pitch accuracy and overall pitch accuracy for all the songs in mir-1k dataset are

computed. The results show that proposed algorithm is more accurate than the com-

pared method. For sake of simplicity only 10 songs from each singer are shown in results.

The overall accuracy calculation data is shown in appendix section.

3.2.1 Accuracy calculation for +5 dB
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Table 3.3: Raw pitch accuracy and overall pitch accuracy for +5 dB

Sr.No Song Name RPA (%) OPA (%)

1 abjones 1 02 69.02 71.65
2 abjones 1 03 67.92 66.23
3 abjones 2 01 81.51 82.62
4 abjones 2 02 76.92 81.16
5 abjones 2 04 72.43 76.66
6 abjones 2 05 79.11 82.53
7 abjones 2 06 70.65 69.31
8 abjones 2 07 74.55 70.45
9 abjones 2 08 69.3 72.78
10 abjones 5 01 80.31 74.64
11 kenshin 1 01 83.91 79.86
12 kenshin 1 02 74.3 68.19
13 kenshin 1 03 82.26 75.98
14 kenshin 1 06 85.56 77.52
15 kenshin 1 09 73.58 72.68
16 kenshin 1 11 85.84 76.3
17 kenshin 2 01 76.8 73.04
18 kenshin 2 02 79.75 76.12
19 kenshin 2 04 82.74 76.43
20 kenshin 3 01 79.2 74.84
21 annar 1 01 77.44 67.59
22 annar 1 03 76.08 64.23
23 annar 1 04 81.2 86.01
24 annar 1 06 77.00 62.2
25 annar 1 08 75.95 73.63
26 annar 2 04 77.38 79.43
27 annar 2 07 90.66 81.39
28 annar 2 08 75.24 71.26
29 annar 3 01 82.01 79.45
30 annar 4 01 87.56 84.83
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Table 3.4: Raw pitch accuracy and Overall pitch accuracy for +5 dB

Sr.No Song Name RPA (%) OPA (%)

1 heycat 1 04 88.69 84.87
2 heycat 1 06 85.29 84.44
3 heycat 1 07 84.25 85.29
4 heycat 2 02 74.59 66.28
5 heycat 2 04 72.09 64.93
6 heycat 3 02 85.6 82.69
7 heycat 3 03 70.11 69.73
8 heycat 3 05 82.68 81.69
9 heycat 3 08 89.84 87.76
10 heycat 4 01 95.92 77.38
11 fdps 1 02 46.63 49.06
12 fdps 1 03 53.66 53.43
13 fdps 1 04 37.61 46.73
14 fdps 1 12 32.14 42.07
15 fdps 2 01 55.32 60.36
16 fdps 2 02 47.53 55.13
17 fdps 3 04 60.86 54.93
18 fdps 3 05 50.44 53.38
19 fdps 3 06 51.61 45.98
20 fdps 3 07 57.3 54.96
21 geniusturtle 1 04 44.58 52.68
22 geniusturtle 1 06 40.72 48.33
23 geniusturtle 1 08 36.27 39.33
24 geniusturtle 1 09 40.57 47.8
25 geniusturtle 2 07 42.75 42.44
26 geniusturtle 3 02 63.5 63.09
27 geniusturtle 3 04 59.67 54.1
28 geniusturtle 4 01 53.12 53.19
29 geniusturtle 4 02 56.56 58.93
30 geniusturtle 4 04 69.93 69.51
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3.2.2 Accuracy calculation for 0 dB

Table 3.5: Raw pitch accuracy and overall pitch accuracy for 0 dB

Sr.No Song Name RPA (%) OPA (%)

1 abjones 1 02 63.65 52.76

2 abjones 1 03 58.16 50.56

3 abjones 2 01 67.57 41.00

4 abjones 2 02 68.42 48.51

5 abjones 2 04 59.93 34.15

6 abjones 2 05 71.83 43.42

7 abjones 2 06 55.79 41.97

8 abjones 2 07 57.14 41.88

9 abjones 2 08 55.69 38.16

10 abjones 5 01 69.321 56.32

11 kenshin 1 01 67.82 65.41

12 kenshin 1 02 53.14 47.56

13 kenshin 1 03 61.52 53.24

14 kenshin 1 06 64.78 53.70

15 kenshin 1 09 50.20 50.54

16 kenshin 1 11 63.97 50.43

17 kenshin 2 01 57.36 47.68

18 kenshin 2 02 64.17 57.16

19 kenshin 2 04 67.25 58.63

20 kenshin 3 01 55.69 52.50

21 annar 1 01 44.89 41.12

22 annar 1 03 53.47 44.76

23 annar 1 04 61.34 51.14

24 annar 1 06 71.53 42.40

25 annar 1 07 50.57 44.09

26 annar 1 08 56.03 43.46

27 annar 2 04 71.19 45.52

28 annar 2 07 79.42 68.23

29 annar 2 08 65.62 49.12

30 annar 3 01 65.60 60.03
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Table 3.6: Raw pitch accuracy and Overall pitch accuracy for 0 dB

Sr.No Song Name RPA (%) OPA (%)

1 heycat 1 04 74.56 54.20

2 heycat 1 06 75 62.50

3 heycat 1 07 80.42 70.75

4 heycat 2 02 56.40 47.20

5 heycat 2 04 55.57 41.15

6 heycat 3 02 67.12 61.24

7 heycat 3 03 41.18 33.61

8 heycat 3 05 70.62 60.86

9 heycat 3 08 76.09 65.37

10 heycat 4 01 79.63 55.38

11 fdps 1 02 31.60 35.31

12 fdps 1 03 27.29 29.84

13 fdps 1 04 26.57 31.86

14 fdps 1 12 21.05 28.20

15 fdps 2 01 20.32 19.76

16 fdps 2 02 33.40 37.22

17 fdps 3 04 40.86 33.38

18 fdps 3 05 31.69 27.60

19 fdps 3 06 33.15 26.50

20 fdps 3 07 40.96 30.20

21 geniusturtle 1 04 43.95 44.81

22 geniusturtle 1 06 37.45 45.18

23 geniusturtle 1 08 34.11 33.21

24 geniusturtle 1 09 35.71 36.65

25 geniusturtle 2 07 31.54 28.57

26 geniusturtle 3 02 54.91 51.30

27 geniusturtle 3 04 41.60 33.87

28 geniusturtle 4 01 37.32 33.88

29 geniusturtle 4 02 47.81 46.66

30 geniusturtle 4 04 54.89 52.40
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3.2.3 Accuracy Calculation for -5 dB

Table 3.7: Raw pitch accuracy and overall pitch accuracy for -5 dB

Sr.No Song Name RPA (%) OPA (%)

1 abjones 1 02 49.02 30.30

2 abjones 1 03 35.45 29.69

3 abjones 2 01 43.93 24.69

4 abjones 2 02 52.22 31.94

5 abjones 2 04 38.46 18.54

6 abjones 2 05 43.67 22.59

7 abjones 2 06 32.78 24.13

8 abjones 2 07 40.17 29.54

9 abjones 2 08 39.10 25.44

10 abjones 5 01 51.24 42.09

11 kenshin 1 01 41.27 41.38

12 kenshin 1 02 37.02 34.00

13 kenshin 1 03 30.14 24.57

14 kenshin 1 06 30.63 24.76

15 kenshin 1 09 28.42 31.86

16 kenshin 1 11 34.37 27.02

17 kenshin 2 01 35.26 27.43

18 kenshin 2 02 35.51 31.10

19 kenshin 2 04 35.14 30.54

20 kenshin 3 01 27.72 31.71

21 annar 1 01 15.10 19.08

22 annar 1 03 29.34 26.16

23 annar 1 04 31.56 27.20

24 annar 1 06 58.75 33.00

25 annar 1 07 21.56 19.00

26 annar 1 08 37.50 25.84

27 annar 2 04 56.90 31.59

28 annar 2 07 55.02 45.11

29 annar 2 08 52.16 35.04

30 annar 3 01 30.68 30.89
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Table 3.8: Raw pitch accuracy and Overall pitch accuracy for -5 dB

Sr.No Song Name RPA (%) OPA (%)

1 heycat 1 04 49.78 32.66

2 heycat 1 06 49.08 37.63

3 heycat 1 07 63.19 51.96

4 heycat 2 02 27.80 22.86

5 heycat 2 04 30.16 22.40

6 heycat 3 02 34.63 32.39

7 heycat 3 03 18.77 14.78

8 heycat 3 05 49.22 38.24

9 heycat 3 08 46.21 35.97

10 heycat 4 01 48.66 33.38

11 fdps 1 02 9.58 18.43

12 fdps 1 03 11.00 14.53

13 fdps 1 04 13.06 18.30

14 fdps 1 12 8.64 16.92

15 fdps 2 01 8.33 9.74

16 fdps 2 02 19.28 20.97

17 fdps 3 04 16.73 13.98

18 fdps 3 05 14.73 13.55

19 fdps 3 06 11.29 9.02

20 fdps 3 07 17.69 12.86

21 geniusturtle 1 04 41.87 37.23

22 geniusturtle 1 06 26.64 32.22

23 geniusturtle 1 08 28.43 25.87

24 geniusturtle 1 09 29.34 24.34

25 geniusturtle 2 07 14.95 13.25

26 geniusturtle 3 02 32.10 30.32

27 geniusturtle 3 04 19.16 15.54

28 geniusturtle 4 01 24.13 20.27

29 geniusturtle 4 02 32.29 31.06

30 geniusturtle 4 04 36.82 35.13
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3.2.4 Comparison of proposed method with TWMDP method

Table 3.9: RPA and OPA for TWMDP method

Sr.No Song Name RPA(5 dB) RPA(0 dB) RPA(-5 dB)

1 abjones 61.90 51.10 35.00

2 kenshin 73.10 63.70 49.70

3 annar 73.20 67.60 56.10

4 heycat 78.90 74.30 61.50

5 fdps 70.20 59.50 44.00

5 geniusturtle 67.50 54.50 38.80

Table 3.10: RPA and OPA for Proposed Method

Sr.No Song Name RPA(5 dB) RPA(0 dB) RPA(-5 dB)

1 abjones 63.98 54.32 39.60

2 kenshin 83.96 68.65 33.50

3 annar 82.42 71.63 57.13

4 heycat 79.70 65.80 63.22

5 fdps 44.11 30.00 46.43

5 geniusturtle 55.65 54.50 42.16

Comparing accuracy data for TWMDP and proposed method, the proposed method

is showing higher accuracy even for SNR values of 0 dB and -5 dB. Figure 3.1 shows

comparison chart for accuracy calculated when SNR value is +5 dB.
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Figure 3.1: Comparison of TWMDP and proposed method
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3.2.5 Extracted melody of some selected songs
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Figure 3.2: Melody for song abjones 1 01

Figure 3.2 is an extracted melody for song abjones 1 01.wav. Trace one of figure 3.2

shows time domain plot for music file. Trace two is music file after voicing detection

where unvoiced part is almost cleared. Trace three is extracted melody lines using

proposed algorithm and trace four is original pitch which is given with the database.

Visual comparison shows that extracted melody is nearly equal to the original melody

lines.
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Figure 3.3: Melody for song ani 1 01
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Figure 3.4: Melody for song heycat 1 03
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3.3 Developed GUI

Figure 3.5: Developed GUI front end

Figure 3.6: Extracted melody for the song abjones.wav using the developed GUI
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Conclusion and scope for future

work

4.1 Conclusion

4.2 Scope for future work

As synchrosqueezing wave packet transform is giving nearly very accurate time-frequency

distribution, it can be future of many signal processing algorithms. Till now only statis-

tical methods and basics of signal processing are used to extract main melody from the

music signal. To use synchrosqueezing transform to its full potential one needs higher

processing power.

Proposed method can be extended via implementing adaptive algorithms that can im-

prove maximum possible accuracy. Techniques like machine learning and neural nwtwork

can be implemented combined with proposed method. By using machine learning we

can train algorithm to first detect the type of music signal first and then based on this

type we can select proper voicing/unvocing detection techniques. As threshold for voic-

ing detection technique can vary based on music type, use of machine learning can be

highly useful for voicing detection stage used in melody extraction algorithms. As U/V

detection is the backbone behind any melody extraction system, we believe that use of

machine learning will improve algorithm accuracy to its fullest.

32
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Figure 4.1 show a basic block diagram of melody extraction algorithm using higher level

computational techniques.

Machine Learning to detect 
Type of Music Signal

Audio Signal

Voicing/Unvoicing 
Detection

Synchrosqueezed Wave 
Packet Transform

Melody Detection Steps

Final Extracted Melody

Figure 4.1: Melody extraction algorithm employing machine learning techniques
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Appendix A: Codes

.1 Equal loudness filter and voicing detection

1 clc;

2 clear all;

3 close all;

4

5 % Equal Loudness Filter Parameters design

6 b1 =[0.0542 -0.0291 -0.0085 -0.0085 -0.0083 0.0225 -0.0260 0.0162

-0.0024 0.0067 -0.0019];

7 a1=[ 1.0000 -3.4785 6.3632 -8.5475 9.4769 -8.8150 6.8540 -4.3947

2.1961 -0.7510 0.1315];

8 b2 =[ 0.9850 -1.9700 0.9850];

9 a2 =[ 1.0000 -1.9698 0.9702];

10 [x,fs] = audioread(’abjones_1_01.wav’); % read the audio file with sampling

frequency

11 x=filter(b1,a1,x); % filtered by 10th order IIR filter

12 x=filter(b2,a2,x); % filtered by 2nd order butterworth HPF with cutoff 150 Hz

13 x = 1.77*x(:,2)+x(:,1);

14 l=length(x);dt=1/fs;t=0:dt:(l/fs)-dt;

15 subplot (4,1,1);plot(t,x);grid on;xlabel(’Time(S)’);ylabel(’Amplitude ’);

16

17 % Voicing Detection starts from here

18 fsize =0.04* fs;fram =[];

19 end1=fix(length(x)/fsize);i=1;

20 for j=1: end1

21 fram(:,j)=x(i:i+fsize -1);

22 i=i+fsize;

23 end

24 [r,c]=size(fram);energy =[];

25 for i=1:c

26 energy(i)=sumsqr(fram(:,i));

27 end

28 th =0.98* mean(energy);

29 for i=1:c

30 if energy(i)<th

31 fram(:,i)=0;

32 end

37
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33 end

34 % Combine all the frames after voicing detection

35 fram=fram (:);fram=[fram;x(( length(fram)+1):length(x))];

36 % clear x;

37 fram = fram (:).’;

38 subplot (4,1,2);plot(t,fram);grid on;xlabel(’Time(S)’);ylabel(’Amplitude ’);

39 % fram = fram/max(fram);

.2 Time-frequency representation and post-processing

1 % parameters for Synchro -Squezed wave packet transform

2 N = 40000;

3 x1 = [0:N-1]/N;

4 epsl = 1e-2; % threshold for SST

5 res =1; % visualization resolution parameter in frequency

6 NG = round(N/32); % number of subsampling points in space

7 is_real = 1; % 1: real signals , 0: complex signals

8 rad = 1.5; % rad in [0,2] to contral the size of supports of wave

packets in the frequency domain

9 t_sc = 1/2 + 1/8;

10 R_high = N/2 % range of interest is [R_low , R_high]

11 R_low = 0;

12 is_cos = 1;

13 is_unif = 1;

14 typeNUFFT = 1;

15 red = 32;

16 sampleRate = fs;

17 timeEnd = N/sampleRate;

18 upBound = round(sampleRate /2);

19 lowBound = 0;%max(1,round(R_low/res));

20 end1=floor(length(fram)/40000);

21 k=1;i=1;out =[]; std1 =[];m=1;v(1,:) =250:500;v(2,:) =500:750;v(3,:) =750:1000;v(4,:)

=1000:1250;v(5,:) =1250:1500;v(6,:) =1500:1750;v(7,:) =1750:2000;

22 for p=1: end1

23 sig=fram(i:i+39999);

24 [ss_energy coefTensor InsFreq] = ss_wp1_fwd(sig ,is_real ,is_unif ,typeNUFFT ,x1 ,

NG,R_high ,R_low ,rad ,is_cos ,t_sc ,red ,epsl ,res ,0);

25 [r,c]=size(ss_energy);

26 ss_energy (1:250 ,:) =0; ss_energy (2000:r,:) =0;

27 out1=zeros(r,c);

28 for j=1:c

29 std1(1,m)=std(ss_energy (250:500 ,j));

30 std1(2,m)=std(ss_energy (500:750 ,j));

31 std1(3,m)=std(ss_energy (750:1000 ,j));

32 std1(4,m)=std(ss_energy (1000:1250 ,j));

33 std1(5,m)=std(ss_energy (1250:1500 ,j));

34 std1(6,m)=std(ss_energy (1500:1750 ,j));

35 std1(7,m)=std(ss_energy (1750:2000 ,j));
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36 [ma ,la]=max(std1(:,m));

37 va(m,:)=v(la ,:);

38

39 [mm ,ll]=max(ss_energy(:,j));

40 out1(ll ,j)=mm;

41 freq1(k)=ll;

42 freq(k)=ll*((fs/2)/r);

43 k=k+1;

44 if ismember(ll ,va(m,:))

45 else

46 [ma ,la]=max(ss_energy(va(m,:),j));

47 freq(k)=la*((fs/2)/r);

48 end

49 m=m+1;

50 end

51 out=[out out1];

52 clear ss_energy;

53 p=p+1;

54 i=i+40000;

55 end

56 l=length(fram);

57 sig=fram(i:l);

58 [ss_energy coefTensor InsFreq] = ss_wp1_fwd(sig ,is_real ,is_unif ,typeNUFFT ,x,NG,

R_high ,R_low ,rad ,is_cos ,t_sc ,red ,epsl ,res ,0);

59 [r,c]=size(ss_energy);

60 out1=zeros(r,c);

61 ss_energy (1:250 ,:) =0; ss_energy (2000:r,:) =0;

62 for j=1:c

63 std1(1,m)=std(ss_energy (250:500 ,j));

64 std1(2,m)=std(ss_energy (500:750 ,j));

65 std1(3,m)=std(ss_energy (750:1000 ,j));

66 std1(4,m)=std(ss_energy (1000:1250 ,j));

67 std1(5,m)=std(ss_energy (1250:1500 ,j));

68 std1(6,m)=std(ss_energy (1500:1750 ,j));

69 std1(7,m)=std(ss_energy (1750:2000 ,j));

70 [ma ,la]=max(std1(:,m));

71 va(m,:)=v(la ,:);

72

73 [mm ,ll]=max(ss_energy(:,j));

74 out1(ll ,j)=mm;

75 freq1(k)=ll;

76 freq(k)=ll*((fs/2)/r);

77 k=k+1;

78 if ismember(ll ,va(m,:))

79 else

80 [ma ,la]=max(ss_energy(va(m,:),j));

81 freq(k)=la*((fs/2)/r);

82 end

83

84 m=m+1;
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85 end

86 out=[out out1];

87 l=length(freq);

88 for i=2:l-1

89 if freq(i-1) ==0

90 elseif freq(i-1)>freq(i) && freq(i+1)>freq(i)

91 freq(i)=min(freq(i-1),freq(i+1));

92 end

93 end

94 load(’abjones_1_01.pv’);

95 ans=abjones_1_01 (:,2);

96 l=length(ans);

97 freq=freq (1:5: length(freq));

98 freq=freq (1:l);

99 subplot (4,1,3);plot(freq ,’.’);grid on;ylim ([0 400]);xlabel(’Samples ’);ylabel(

’Frequency (Hz)’);

100

101 subplot (4,1,4);plot(ans ,’.’,’LineWidth ’ ,2,...

102 ’MarkerEdgeColor ’,’k’);grid on;xlabel(’Samples ’);ylabel(’

Frequency (Hz)’);

103 figure ();imagesc(std1);set(gca ,’YDir’,’normal ’);
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