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ABSTRACT 

 

Reinforced layered soil system is generally used under the foundations, to make the weak soil 

like soft clay safe and stable and to avoid shear failure and excessive settlements due to static 

and dynamic loads. Reinforced layered soil system is also used for working platforms which are 

required for installing heavy construction machines and vehicles on weak soils like soft clay 

which are not suitable for taking so much loads, and show excessive settlements. Provided fill 

creates a suitable load bearing surface on which concentrated load may be applied, without the 

shear failure and excessive deformations.  

 
In this work static and dynamic analysis have been carried out using Finite Element Software 

PLAXIS 2D on the two layer unreinforced and reinforced soil systems to see the effect of 

providing geogrid as reinforcement in the two layer soil system and other parameters, on the 

bearing capacity and settlement behavior of two layer system. Two layer soil systems consisted 

of soft clay soil overlain by compacted granular fill. Loading is applied on a circular plate. 

Axisymmetric analysis is performed to simulate the circular plate in 2D. For static analysis 

results obtained from numerical analysis are in good agreement with the existing experimental 

results. For dynamic analysis, it is required to provide viscous boundaries in PLAXIS to reduce 

the boundary effects and to prevent the reflection of waves from boundaries. So a study have 

been carried out to compare the various methods of providing silent boundaries and to see the 

effectiveness of viscous boundaries used in PLAXIS. Inclusion of geogrid layer as reinforcement 

in soil caused a significant improvement in the load bearing and settlement behavior of soil. This 

improvement also depends on the position, number and stiffness of geogrid layers. 
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Chapter 1

Introduction

1.1 Motivation

Two layer reinforced soil system is generally used for working platforms and under the
shallow foundations. Under the shallow foundation reinforced layered soil system is
used to make soft clay soil safe and stable for construction when subjected to static and
dynamic loading. Provided fill creates a suitable load bearing surface on which static
and dynamic loads may be applied, without the shear failure and excessive deforma-
tions. In this thesis, main focus is on the use of geogrid reinforcement in the layer of
granular fill, placed on a soft clay subgrade.

The scarcity of suitable land for construction has forced civil engineers to improve sites
containing weak soil, to make it fit for safe and stable construction and to avoid high cost
involved in deep foundations. In recent decades, soil replacement has gained acceptance
among other ground improvement techniques as they are applicable to a broad range
of ground conditions and different soil strengths. The replacement of these problematic
soils with strong soil like dense sand layer on top is a soil improvement technique, which
is widely used. Results of reinforcement inclusion in the top soil bed are improvement
in the bearing capacity and reduction in settlement, it also helps in reducing the depth
of replaced top soil layer. Now-a-days, geosynthetics are being used extensively as rein-
forcement in soils.

Many researchers have investigated the behavior of two layer reinforced soil system
under static loads and found significant improvement in the bearing capacity and set-
tlement behavior. While there are very few studies which are conducted under dynamic
loads. So there is a strong need to do dynamic bearing capacity analysis of two layer soil
system, which is additionaly reinforced with geogrid reinforcement, as we know due to
cyclic loads bearing capacity of soil may reduce drastically and may result in the collapse
of structures.

The finite element method (FEM) is a numerical method which is widely used in research
and design of real civil engineering problems. In FEM continuous media is divided in to
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finite number of elements with different geometries. With this material behavior of the
soil can be idealized, which is non-linear with plastic deformations, in a more rational
manner. This method can be used to determine the behavior of footings on soil under
static and dynamic loading.

1.2 Objective

Objective of this thesis is to study the response of a foundation resting over two layer
unreinforced and reinforced soil systems under static and dynamic loading and to de-
termine the effect of various parameters on the performance of foundations. These ob-
jectives have been achieved through the following task:

� Literature review on existing design approaches and guidelines of two layered sys-
tems and working platforms.

� Description of the soil behavior under dynamic loading.

� Formulation of the requirements regarding to the numerical simulation of dynamic
actions.

� Numerical simulation of two layered systems (with and without geosynthetic re-
inforcement) under static and dynamic loads.

� Comparison of the calculation results of the different systems with regard to the
determination of the influence of various parameters on the load-bearing and de-
formation behavior.

� Evaluation of the achievements and identification of further research needs.

1.3 Outline of the Thesis

� Chapter 1 deals with the motivation, objectives of the study and outline of thesis.

� Chapter 2 includes the various concepts of bearing capacity, different bearing ca-
pacity failure critrea and various methods for the determination of bearing capac-
ity of single and two layer systems analytically. This chapter also include the effect
of introduction of geotextile reinforcement in the two layer system. A wide labo-
ratory and numerical investigations available in literature are also described here
briefly.
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� Chapter 3 includes the numerical basics used in numerical simulations of two layer
system, various soil models used in simulation, dynamic simulation and calcula-
tions, and numerical modelling of geogrids.

� Chapter 4 represents the various methods developed by many researchers which
are adopted for providing Silent Boundaries. This chapter also include the analysis
of existing methods of proving silent boundary with a vertical bar problem.

� Chapter 5 includes the back analysis of a field test under static load available in
the literature for single layer, two layer unreinforced and two layer reinforced soil
systems.

� Chapter 6 includes the dynamic analysis of two layer unreinforced and reinforced
soil systems. Parametric studies have been carried out to determine the effect of
some parameters on the bearing capacity and settlement behavior of the two layer
unreinforced and reinforced soil systems under vertical dynamic loads.
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Literature Review

Bearing capacity of soil is its capacity to bear the loads applied on it without showing
shear failure or excessive settlement. Footing and superstructure always impose an ad-
ditional stresses on foundation soil.

Terminologies related to bearing capacity of soil:

Ultimate Bearing Capacity (qu): It is the maximum intensity of loading (pressure) that a
foundation soil can support before it fails in shear.

Net ultimate Bearing Capacity (qn): In addition to overburden pressure, the maximum
extra pressure that a foundation soil can support before it fails in shear.

qn = qu − qo (2.1)

where,
qo = Overburden pressure at foundation level = γD
γ = Unit weight of soil
D = Depth to foundation

Safe Bearing Capacity (qs): It is the safe additional pressure acting on the foundation
soil in addition to initial overburden pressure.

qs = qn/F + qo (2.2)

Here F represents the factor of safety.

Allowable Bearing Pressure (qa): It is the maximum loading intensity that a founda-
tion soil can support considering both shear failure and settlement.

Bearing capacity failure mechanism

Modes of shear failure:

1. General shear failure: This type of failure is observed in dense soil. In this type of
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failure a well defined failure pattern develops and bulging of soil mass adjacent to
footing is visible.

2. Local shear failure: This type of failure is observed in relatively loose and soft
soil. In this type of failure, failure surface remains only beneath the foundation
and slight bulging of soil mass adjacent to footing is visible.

3. Punching shear failure: This type of failure is observed in loose and soft soil and
at deeper elevations. In this no failure pattern is found and no bulging of soil mass
is observed adjacent to the footing.

Figure 2.1: Bearing capacity failure mechanism (Vesic,1963)

2.1 One layer soil system

There are various theories given by different authors to determine the bearing capacity
of a foundation on a single layer soil system. Every theory has their assumption which
was made at the time of deriving a formula for the determination of bearing capacity.
Some most widely used theories are-

� Terzaghi’s bearing capacity theory

� Meyerhof’s bearing capacity theory

� Hansen’s bearing capacity theory
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2.1.1 Terzaghi’s bearing capacity theory

Terzaghi (1943) proposed a theory for the evaluation of the safe bearing capacity of shal-
low foundation with rough base.

Figure 2.2: Terzaghi’s bearing capacity failure surface (Terzaghi, 1943)

Figure 2.2 shows a strip footing with width B, due to the weight of superstructure foot-
ing compresses the foundation soil gradually. Let qu be the ultimate load. The failure
surface divided in to three zones, Zone I is elastic, Zone II is the zone of radial shear and
Zone III is the zone of linear shear.

Ultimate bearing capacity for strip footing,

qu = cNc + γDfNq + 0.5γBNγ (2.3)

where,
B = Width of foundation,
c = Cohesion,
Df = Depth of foundation,
γ = Unit weight of soil,
Nc, Nq, Nγ = Bearing Capacity factors which depends on φ.

Ultimate bearing capacity for circular footing,

qu = 1.3cNc + γDfNq + 0.3γBNγ (2.4)

Ultimate bearing capacity for square footing,

qu = 1.3cNc + γDfNq + 0.4γBNγ (2.5)
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Ultimate bearing capacity for rectangular footing,

qu = (1 + 0.3B/L)cNc + γDfNq + (1− 0.2B/L)0.5γBNγ (2.6)

Where, L= length of footing (L > B)

2.1.2 Meyerhof’s bearing capacity theory

Meyerhof (1951, 1963) proposed a similar equation to determine the bearing capacity of
soil as proposed by Terzaghi but included a shape factor sq with the depth term Nq.
He also included depth factors and inclination factors. Among all the bearing capacity
theories Meyerhof’s bearing capacity theory is most widely used because this can be
applied on rough shallow and deep foundations.

2.2 Two layer soil system

There are various cases in which foundations rest on a two layer soil system. It may be
natural or may be done with the replacement of weak and loose soil with strong and
dense soil. For determination of bearing capacity of two layer soil system there are some
approaches available in literature. It is assumed that the upper layer serves principally
to spread the load thus reducing its intensity on the lower layer. Predicted ultimate bear-
ing capacity obtained by this method depends mainly on the assumed load distribution
through the upper layer thus results seems to be on conservative side because the shear-
ing resistance of upper layer is ignored.

Hanna et al. presented a rational approach to solve cases of footings on layered soils. In
this approach an assumption was made that is at ultimate load a soil mass in the upper
sand layer was assumed as a truncated pyramid in shape, which is pushed in to a lower
layer. A vertical punching failure surface was assumed in the upper layer (of thickness
H below the footing base). Forces in this surface can be taken as the passive earth pres-
sure (Pp), inclined at an average angle δ, acting upwards, thus for a strip footing of width
B and depth D, the ultimate bearing capacity is give by

qu = qb + 2(Ppsinδ)/B − γ1H ≤ qt (2.7)

In which qb and qt are ultimate bearing capacities of the strip footing on a very thick bed
of the lower and upper layers, respectively.

When lower layer is of weak sand

qb = 0.5γ2BNγ2 + γ1(H +D)Nq2 (2.8)
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Figure 2.3: Strip footing on two layer soil system (Hanna et al.,1981)

When lower layer is of soft clay
qb = cNc (2.9)

qb = 0.5γ1BNγ1 + γ1DNq1 (2.10)

Pb = 0.5γ1H
2(1 + 2D/H)(Kp/cosδ) (2.11)

In which
Nγ1, Nq1 and Nγ2, Nq2 = the bearing capacity factors corresponding to the plane-strain
angles of shearing resistance, φ1 and φ2 of the upper and lower sand layers respectively,
c = cohesion of lower clay layer,
Nc= bearing capacity factor of the lower clay layer,
γ1 and γ2 = unit weights of upper and lower layer of soil respectively,
Kp = coefficient of passive earth pressure.

Michalowski and Shi (1995) used the kinematic approach of limit analysis to determine the
bearing capacity of footings resting on two-layer soil. When collapse mechanisms were
considered, the theory provided the failure load which is similar to the true collapse
loads of elastic-perfectly plastic bodies. According to upper-bound theorem with the
help of material properties and geometry of a collapse mechanism, an upper bound of
the true limit load can be found by equating the rate of work of external forces to the rate
of internal energy dissipation. From this method limit pressures are obtained as results
in place of bearing capacity factors. These results are dependent on the internal friction
angle and thickness of the sand, cohesion and strength of the clay and the surcharge
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pressure.
Above method can be used for any combination two different soil layers, but the results
are limited to the case when top layer is of granular soil is placed on clay.

Okamurai and Kimura (1998) proposed a new limit equilibrium method to determine the
bearing capacity of two layer system in which soft clay in overlain by sandy soil. In this
limit equilibrium of forces acting on an imaginary sand block between the base of the
footing and the sand/clay interface was considered. Failure mechanism adopted in this
method was same as was given in previous methods. In this method vertical effective

Figure 2.4: Failure pattern and Mohr’s circle (Okamurai and Kimura, 1998)

stresses acting on the base of the sand block, q′c1ay, are assumed to be the ultimate bear-
ing stresses of a rigid footing with rough base on clay subject to the effective surcharge
pressure, which is given by following equation.

q′clay = p′0 + γ′H + cuNcsc (2.12)

In this method, Rankine’s passive coefficient Kp, was adopted. The normal stress of Kp

times the vertical stress is assumed to act on the side of the sand block. Consideration of
equilibrium of the forces acting on the block, including self weight of the block, yields
bearing capacity formulae as follows:

for a strip footing;

qf =

(
1+2

H

B
tanα

)
(cuNc+p

′
0+γ

′H)+

(
Kp sin(φ

′ − αc)
cosφ′ cosα′

)
H

B
(p′0+γH)−γ′H

(
1+

H

B
tanαc

)
(2.13)
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for a circular footing;

qf =

(
1 + 2

H

B
tanα

)2

(cuNcsc + p′0 + γ′H) +

(
4Kp sin(φ

′ − αc)
cosφ′ cosαc

){(
p′0 +

γ′H

2

)
H

B

+p′0 tanαc

(
H

B

)2

+
2

3
γ′H tanαc

(
H

B

)2}
− γ′H

3

{
4(
H

B
)2 tan2 αc + 6

H

B
tanαc + 3

}
(2.14)

It should be noted that the Mohr’s circle for the clay element B in the figure is repre-
sented in terms of total stress excluding static water pressure, whereas for the circle for
sand element A in terms of effective stress. The direction of the slip surface in sand rep-
resented by a straight line P-C in Figure 2.4 is assumed to be that of the side of sand
block. αc can be obtained as:

αc = tan− 1

(
σmc/cu − σms/cu(1 + sin2 φ′)

cosφ′ sinφ′σms/cu + 1

)
(2.15)

σmc/cu = Ncsc

(
1 +

1

λc

H

B
+
λp
λc

)
(2.16)

σms/cu =
σmc/cu −

√
(σmc/cu)2 − cos2 φ′((σmc/cu)2 + 1)

cos2 φ′
(2.17)

where,
λc = Normalized bearing capacity of underlying clay = cuNc/γ

′B,
λp = Normalized overburden pressure = p′0/γ′B.

In this proposed limit equilibrium method in which the variation of the side angle of
the sand block with the parameters including H/B, λc and λp was taken into account.
Bearing capacities calculated from the proposed method compared well with the obser-
vations, irrespective of shape, depth of footing and strength of underlying clay.

Shenawy and Karni (2005) derived the ultimate bearing capacity equation for a weak clay
layer overlaid by a top dense sand layer, as a function of the properties of soils, the
footing width, and the topsoil thickness, assuming that the failure surface is a punching
shear failure through the upper sand layer, as shown in Figure 2.5.

Equation of ultimate bearing capacity in dimensionless form:

qu
γsB

= 5.14
cu
γsB

+
D

B
+Kp tan δ

(
H

B

)2

+ 2Kp tan δ

(
D

B

)(
H

B

)
(2.18)

The new design charts were obtained, was found to be useful in overcoming the problern
of the design charts that were developed by Michalowski and Shi (1995), which provide
large value of bearing capacity because of the use of the upper bound theorem.
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Figure 2.5: Punching shear model of strip footing over a two-layer soil (Shenawy and
Karni, 2005)

Joshi and Shrivastava (2015) presented a theoretical equation for the bearing capacity of a
circular footing placed on layered soil using punching shear failure mechanism follow-
ing projected area approach. For the analysis frustum was considered to be a linearize
curve for the actual shape of failure and a bearing capacity equation is deduced adopt-
ing certain assumptions. The equation of bearing capacity was obtained as a function of
upper and lower layer properties.

The footing was assumed to be of radius r’embedded at depth D in a dense layer of
sand resting on top of soft and saturated clay. The distance below the base of the footing
up to the interface of dense sand and saturated soft clay is taken as H. The various soil
properties for the dense sand and saturated soft clay are taken as γ1, φ1 and γ2, c2 re-
spectively. The external load is assumed to spread linearly at an angle α with respect to
the vertical from the base area of circular footing and hence the load intensity decreases
with depth. From the above procedure following equation for determining the ultimate
bearing capacity of circular footing resting on two layer soil is determined:

qult = qb +Kpγ1 secα sin δ

(
2H(H + 2D)

D′ + 2H tanα

)
− γ1H (2.19)

Where, Kp is the coefficient of passive earth pressure whose value is taken from Rankine
passive earth pressure theory. Kp also varies with the angle of shearing resistance φ1 on
the assumed failure surface. Kp value can be determined from the following equation.

Kp =
1

cos δ

(
1 + sinφ

1− sinφ

)
(2.20)
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Figure 2.6: Assumed failure pattern for circular footing resting on layered soil (Joshi and
Shrivastava, 2015)

qb is the ultimate bearing capacity of circular footing on a very thick bed of lower soft
saturated clay layer, which can be determine by following equation

qb = cNcsc + γ2D (2.21)

where sc = 1.3 for fircular footing.
Parametric study was carried out and the results were compared and validated with
other theoretical equation/experimental results available in the literature. The proposed
equation appears to be effective as the results obtained are in good agreement with the
plate load tests conducted by Ibrahim (2014) whereas the equation proposed by Meyerhof
(1974) overestimate the ultimate bearing capacity for high values of load spread angle .

2.3 Two layer reinforced soil system

Poor soil can be reinforced by inclusion of reinforcing elements in soil to improve its
engineering characteristics. Combination of soil and its reinforcing element causes an
increase in the shear strength of the soil mass and reduction in settlement under the
load. It also improves its resistance to liquefaction. The reinforcing element can be ei-
ther inserted in the situ soil or placed in the soil mass as it constructed.

One of the methods of reinforcement is using a group of materials known as geosyn-
thetics. Geosynthetics are manmade flexible and planar. They are manufactured from
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synthetic polymeric materials and sometimes from natural materials. These geosynthet-
ics are usually classified into:

� Geotextiles: They are porous geosynthetics that resemble a strong cloth or blan-
ket with its strands and fibers visible. They can be woven, non-woven or knit-
ted. These are usually made from polypropylene and sometimes from polyester,
polyethylene or natural fibers such as jute.

� Geomembranes: They are impervious geosynthetics that resemble thick, flexible
plastic sheets and are usually smooth surfaced. They are manufactured using high
density polyethylene (HDPE), very flexible polyethylene (VFPE) and sometimes
polyvinyl chloride (PVC) and other materials.

� Geogrids: They are mesh-like or grid-like geosynthetics with square or rectangular
apertures that resemble plastic meshes. They are usually made from HDPE or
polypropylene and sometimes from polyester. These have mass per unit area of
200 to 1500 gsm.

� Geonets: These are similar to geogrids but have thinner members and angular
apertures, not square or rectangular, but resembling parallelograms.

� Geocomposites: They are multi-layered geosynthetics attached or bonded to each
other, comprising of geotextiles, geomembranes, geogrids and geonets with them-
selves or along with other materials.

Functions geosynthetics are separation, filtration, reinforcement, drainage, hydraulic
barriers, erosion control and slope protection.

2.3.1 Reinforcement-soil interaction

Following factors governed the effectiveness of a reinforcing element inserted in soil:

� Tensile strength of the element.

� The amount of elongation gained by the reinforcing element under tensile stress.

� The shearing resistance between the reinforcement and surrounding soil.

The mechanism by which grids and geogrids develop their shear resistance is different
from that of strips, bars and sheets. The transverse element of grid develop passive re-
sistance or bearing resistance offered by the soil which fills the aperture . The pullout
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resistance is thus be a sum of the friction adhesion resistance along the longitudinal ele-
ments that are parallel to the direction of pull and the bearing capacity type of resistance
along the transverse elements that are perpendicular to the direction of pull.

In case of low tensile strength, breakage or yielding of reinforcing element occur which
make it ineffective. When the tensile strength is sufficient but its elongation due to ten-
sile stress is high, then the inadequate stiffness of the soil-reinforcement system causes
a large movement of soil (lateral movement or settlement). Lastly if the reinforcement
is adequately rigid and strong but bond strength between the soil and the reinforcement
is inadequate, this causes a relative movement, which make the reinforcement ineffec-
tive.

2.3.2 Reinforcement of soil beneath the foundation

Soils having low bearing capacity can be reinforced beneath shallow footings with the
replacement of top weak soil with strong and dense soil, to increase the bearing capacity.
These reinforcements have to be designed to withstand rupture and slippage.

Placement of reinforcement beneath footings requires excavation of the soil and back-
filling in layers with careful placement of reinforcement and proper compaction of the
soil. Placement of reinforcement at the interface of the footing and soil beneath can be
an alternative in which excavation can be avoided. However such reinforcements are
required to possess high strength, high stiffness and high shear resistance to soil, a com-
bination of which is not feasible at present.
Placement of reinforcement in top soil below the footing produce the following effect
due to which its bearing capacity and settlement behavior improve :

1. Shear stress reduction effect: Because of inclusion of geosynthetic layer the trans-
mitted shear stresses, from the top soil to the the bottom soil reduces. This effect
of geosynthetics inclusion called shear stress reduction effect. This effect causes

Figure 2.7: Shear stress reduction effect due to reinforcement (Shukla and Yin, 2006)

general-shear failure in place of local-shear failure, thus resulting in an increase in
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the load-bearing capacity of the foundation.

2. Confinement effect: Inclusion of geosynthetic layer causes redistribution of the
surface load acted on it, due to this applied normal stress on the bottom foundation
soil reduced. This is called slab effect or confinement effect of geosynthetics. The
friction mobilized between the soil and the geosynthetic layer plays an important
role in confining the soil.

Figure 2.8: Confinement effect due to reinforcement (Shukla and Yin, 2006)

3. Membrane effect: The deformed geosynthetic, has a membrane force which has a
vertical component that resists applied loads, thus the membrane effect of geosyn-
thetics is that in which a vertical support is provided by deformed geosynthetic,
to the top soil mass subjected to loading. The membrane effect of geosynthetics

Figure 2.9: Membrane effect due to reinforcement (Shukla and Yin, 2006)

results in the reduction in heave potential of foundation soil.

4. Interlocking effect Interlocking of the soil mass through the apertures of geogrids
is known as interlocking effect. In this effect stress transfer from soil to the ge-
ogrid is occured by end bearing (passive resistance). However interlocking effect
is negligible, when soil particles are too small.
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Figure 2.10: Interlocking effect of geogrid

2.4 Model and field tests in literature

Hanna (1981) conducted tests on model strip and circular footing resting on dense sand
layer overlying loose as well as compacted sand in order to verify his theory. It was
found that observed bearing capacity increased rapidly with increasing thickness of the
dense sand below the footing base from a minimum value equal to the ultimate bear-
ing capacity of the footing on homogenous lower weak sand layer to a maximum value
equal to the ultimate bearing capacity of footing on homogenous upper strong sand
layer.

Kumar and Walia (2006) proposed a method to determine the ultimate bearing capac-
ity of a square footing placed on reinforced soil. The validation of results was done by
comparing them with the model tests. These tests were conducted on two layered soil,
where both layers were compacted at different densities and overlying layer was rein-
forced with geogrid reinforcement. Obtained values of ultimate bearing capacity were
found in very good agreement with experimental results.

Mustafa Laman and Demir (2012) investigated the bearing capacity of a circular shal-
low rigid footing on unreinforced and geogrid-reinforced granular fill layer constructed
above natural clay deposits using physical field modeling. A significant improvement in
the bearing capacity of footing was found when fill layer of limited thickness was placed
on soft clay subsoil and bearing capacity was further increased by the inclusion of ge-
ogrid layer within compacted fill. Geogrid reinforcement in the granular fill increases
the stability of footing by mobilized tensile force in the reinforcement and providing a
confining effect against lateral shear stress.

Tafreshi and Dawson (2010) performed a large number of laboratory model tests on strip
footings resting on sand which is reinforced with the 3D and planar geotextiles, sub-
jected to a combination of static and repeated loads. It was found that for the same mass
of geotextile material used in the tests, behavior of 3D geotextiles reinforcement system
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was much better than planar reinforcement under dynamic loading.

Sawwaf and Nazir (2012) performed an experimental study on eccentrically loaded ring
footing resting on layered sandy soils. It was found that by placing a layer of compacted
sand on the top of loose deposits the bearing capacity and settlement behavior of model
ring footing was improved. It was also found that reinforcement of soil causes a sig-
nificant reduction in the replaced sand layer depth for the same footing settlement and
more improvement was achieved with more relative density of replaced sand.

Khing et al.(1994) performed laboratory model tests for determination of ultimate bear-
ing capacity of a strip footing resting on a two layer soil system. Top layer system con-
tained strong sand layer of limited thickness overlying weak clay. A layer of geogrid
was placed at the interface of sand and clay as reinforcement. Two types of geogrids
were used in these tests and it was found that optimum height of the strong sand layer
should be about two-third of foundation width in order to determine maximum benefit
of reinforcement.

Palmeira et al.(2010) performed a study to determine the effect of geosynthetic reinforce-
ment in the unpaved roads on poor subgrade under cyclic loading. Nonwoven geotextile
and geogrid were used as reinforcing layers placed at the interface of fill and subgrade.
It was found that inclusion of reinforcement caused an significant increase in the number
of load cycles for a given rut depth to be reached and reduction of stresses and strains
in the subgrade. It was also found that geogrid reinforcement was more effective than
geotextile.

Dutta and Mandal (2016) conducted plate load tests on unreinforced and geocell-reinforced
fly ash beds placed at the top of soft Marine clay. As a separator, jute geotextile was kept
on the top of clay. Geocell mattress was prepared by plastic bottles. Height and width of
geocell was varied and and effects of these parameters were analyzed with the help of
model test results. It was found that reinforcing the fly ash bed caused an enhancement
in the bearing capacity of footing around seven times when compared with the bearing
capacity of unreinforced fly ash bed. It was also found that increment in the height of fly
ash caused improvement in the bearing capacity of footing.

Zhou and Wen (2008) studied the soft soil foundation problem of the Qin-Shen railway in
China. The large scale laboratory model tests were carried out to analyze the effects of
using geogrid and geocell-reinforced sand cushion placed at the top of soft soil on the
bearing capacity of soil. In this model test a flexible lateral boundary conditions were
used. Air bag were used for applying pressure. It was found that geocell-reinforced
sand caused a reduction in settlement of the bottom soft soil and surface earth pressure.
The deformation was reduced up to 44%.

Floss and Braeu (1990) carried out laboratory model test to simulate the behavior of
geosynthetics used in roads under dynamic loading. Two layer soil system with soft
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cohesive bottom soil and coarse grain top soil was tested with and without different
types of geotextiles as reinforcement.It was found that intensity of loading determines
the behavior of geotextile.

Dash and Sitharam (2003) performed small scale model tests to determine the effective-
ness of geocell and geogrid reinforcement placed in the granular fill overlying soft clay
beds. It was found that with inclusion of geocell reinforcement in the top sand layer, an
improvement was observed in the load carrying capacity. It was also found that surface
heaving of the foundation bed also reduced due to reinforcement. This load bearing ca-
pacity behavior further improved when an additional layer of geogrid was placed at the
base of the geocell mattress.

Yadu and Tripathi (2013) conducted small scale laboratory model tests to determine ef-
fectiveness of geogrid-reinforced granular fill placed on soft subgrade soil. Substan-
tial improvement in the bearing capacity and settlement behavior was found because
of placement of geogrid in the granular fill. A significant increase in the BCR was ob-
served upto width of geogrid to width of footing ratio of 4, but there was no significant
improvement in bearing capacity ratio observed beyond this value and not significant
chagnes in the settlement reduction factor (SRR) was observed beyond this ratio of 2.

Subaida and Sankar (2009) performed a experimental study to determine the effect of wo-
ven coir geotextiles placement in a two-layer pavement. It was found that ultimate bear-
ing capacity and bearing capacity at any settlement was increased when coir geotextile
was placed at mid depth of the base course. It was also found that due to reinforcement
permanent vertical deformations due to repeated loading was also decreased.

Oda and Win (1990) performed model tests to determine the effect of interstratified clay
layer between two sand layers on the ultimate bearing capacity of strip footing lies on
the top soil. It was found that inclusion of a clay layer between two sand layers reduces
the ultimate bearing capacity even at a depth five times grater than the width of the
footing. This reduction depends on the thickness and depth of clay layer. It was also
found that the appreciable amount of plastic strain occurs in a clay layer which causes a
decrease in the stability of the upper sand bed.

Batali and Klompmaker (2014) performed an insitu experimental test to verify the real
behavior of geosynthetic reinforcement. Authors monitored a geosynthetic reinforced
working platform in terms of stresses and starins, to prepare a finite element model to
varify the experimental results. It was observed that the real level of stress and strain in
geosynthetic, compared to overall stress-strain curve of the material was very low and
outcome of numerical analysis, which used a non-linear Mohr-Coulomb model matched
the results obtained by insitu experiments.
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Table 2.1: Model and field tests

Author Test Shape of
footing

Type of
Load Top soil Bottom soil Reinforcement

Hanna et al.
(1981) Model Strip,

circular Static Dense sand
Loose and
compacted
sand

None

Ibrahim et al.
(2014) Field Circular Static Granular

sandy
Saturated
soft clay None

Kumar and
Walia (2006) Model Square Static Well graded

sand
Poorly
graded sand Geogrid

Tafreshi and
Dawson (2010) Model Strip Cyclic Silica sand Silica sand

Planer and
3D
geotextiles

Sawwaf and
Nazir (2012) Model Ring Eccentric Compacted

sand Loose sand Geogrid

Ornek and
Laman (2012) Field Circular Static Compacted

granular fill Natural clay Geogrid

Khing et al.
(1994) Model Strip Static strong sand Weak clay Geogrid

Dutta and
Mandal (2016) Model Square Static Fly ash Soft clay

Geocell
mattress with
Jute geotextile

Palmeira et al.
(2010) Model Circular Static and

Cyclic
Well graded
gravel

Highly
plastic clay

Geogrid and
woven
Geotextile

Zhou and
Wen (2008) Model Air bags Static Sand cushion Soft soil Geogrid and

Geocell
Floss and
Braeu (1990) Model Circular Dynamic Coarse grain Soft cohesive Geotextiles

Dash and
Sitharam (2003) Model Circular Static Dry sand Silty clay

Geocell
mattress and
geogrid

Yadu and
Tripathi (2013) Model Strip Static

Granulated
blast furnace
slag

Soft clay Geogrid

Subaida and
Sankar (2009) Model Circular

Monotonic
and
repeated

Well graded
crushed stone

Highly
plastic clay

Woven coir
geotextiles

2.5 Numerical investigations in literature

Cicek and Guler (2015) proposed a limit equilibrium method to determine the bearing
capacity of strip footings on geosynthetic reinforced sand soils and compared with the
bearing capacities obtained from Finite Element. A two-layered granular soil was con-
sisting of the loose in situ soil and the compacted fill above the reinforcement. The
bearing capacities were also calculated for different reinforcement geometries and soil
properties. The bearing capacities obtained from Finite Element and Limit Equilibrium
analyses were seen in a good agreement. The ultimate bearing capacities of reinforced
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soils for two extreme geosynthetic lengths were considered. One extreme is the case
where the reinforcement length is equal to the footing width (L = B). The second extreme
is that a very long reinforcement is used. When results are evaluated it was determined
that for L≥ 4B, the case of long reinforcement is valid. It was also found that the bearing
capacities determined for the long reinforcement is 1.23 times higher than the bearing
capacity obtained for the short reinforcement length (L = B). However, an improvement
is also obtained for a reinforcement that is only as wide as the footing itself.

Ibrahim et al. (2014) performed numerical analysis using Mohr Column model and re-
sults was ensured by the field plate loading observations. It was found that ultimate
bearing capacity is directly proportional to the angle of internal friction of granular soil,
the granular layer thickness, extension of granular soil and the foundation depth while at
the same time it is inversely proportional to the footing diameter. The ultimate bearing
capacity of surface footing was increased about 67% when granular soil changes from
medium to very dense sand.

Demir and Ornek (2014) investigated the bearing capacity of a circular rigid footing on
geogrid-reinforced granular fill layer constructed above natural clay deposits using 3D
finite element program Plaxis and compared its results with results of physical field
modeling. It was found that results from the numerical analysis were closely matched
with those from physical model tests for short term stability. Reduction in the horizontal
and vertical displacements for reinforced case was also found from numerical analysis.

Mosadegh and Nikraz (2015) investigated two cases to determine bearing capacity of foun-
dation and to determine the influence of various parameters on ultimate bearing capac-
ity, using finite element software ABAQUS. In first case foundation was placed on one
layer soil and in second case foundation was resting on two layer soil systems. In two
layer system it was found that bearing capacity decreases by adding the clay layer on
the top of sand layer.

Burd and Frydman (1997) carried out a study of bearing capacity of sand layers over-
lying clay soils. A parametric study was also carried out using both finite element and
finite difference methods. It was found that load spread angle increased with increasing
sand friction angle.

Zhu and Michalowski (2005) performed a finite element analysis of square and rectan-
gular footings over two layer clay foundation soil. Variation of bearing capacity was
determined with different variables. It was found that bearing capacity of clay was re-
duced if a weaker layer of clay is present below a stronger one and bearing capacity was
affected by by both the depth of the weaker layer and the ratio of the strengths of the
two layers. Shape factors were found to vary distinctly with the change in the strength
ratio of two layer and depend weakly on the depth.

Ghazavi and Eghbali (2008) developed a analytical limit equilibrium method for calcu-
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lating bearing capacity factors of shallow footing placed on a two layered granular soil
system. Then the ultimate bearing capacity computed from the equivalent bearing ca-
pacity factors Nq and Nγ was compared with ultimate bearing capacity obtained from
finite element method. It was found that results obtained from the proposed method
were acceptably comparable with those obtained by FEM.

Table 2.2: Numerical investigations

Author Program Shape of
Footing

Soil
Model Top Soil Bottom Soil Reinforcement

Ibrahim
et al. (2014) PLAXIS Circular Mohr-

Coulomb Granular Saturated
soft clay None

Guler and
Cicek (2015) PLAXIS Strip Mohr-

Coulomb Strong sand Weak sand Geosynthetics

Mosadegh
and Nikraz
(2015)

ABAQUS Strip Drucker-
Prager Soft clay Dense sand None

Burd and
Frydman
(1997)

OXFEM
FLAC Strip Mohr-

Coulomb Sand Clay None

Demir and
Ornek (2014) PLAXIS Circular Mohr-

Coulomb
Compacted
granular fill Natural clay Geogrid

Zhu and
Michalowski
(2005)

ABAQUS
Rectangular
square
and strip

Drucker-
Prager

Compacted
Strong clay Weak clay None

Merifield
and Nguyen
(2006)

ABAQUS
Circular
square
and strip

Mohr-
Coulomb

Strong and
weak clay

Weak and
strong clay None

Zhu (2006) ABAQUS strip Mohr-
Coulomb

Weak and
strong clay

Strong and
weak clay None

Merifield and Nguyen (2006) performed a finite element analysis to determine the undrain
bearing capacity of footings placed on layered clays. The soil profile was assumed to con-
sist two clay layers. The results were compared with previous solutions. It was found
that when soft clay is placed on strong clay layer with ratio of depth of top soil to width
of footing is more than 0.375, the contribution of stronger bottom layer was very less in
the ultimate bearing capacity, irrespective of the ratio of undrain shear strengths of soils
but for this ratio less than 0.375 bearing capacity factor increases with the decrease in
ratio of undrain shear strength of clays. It was also found that bearing capacity reduces
when strong clay placed on soft clay, up to a depth of top layer to width of footing ratio
less than 1, for this ratio more than 1 failure was likely to be occur within top layer only.

Zhu (2004) carried out a parametric study to determine the ultimate bearing capacity
of a rough strip footing resting on two-layer clay soil. It was found that when soft clay is
placed on strong clay, the bearing capacity factor decreases as thickness of the top layer
increases. Where as, when strong clay is placed on soft clay, a critical depth was found
where the shear strength of the bottom layer does not affect the bearing capacity and
failure mechanism was contained in the top layer only.
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Numerical Modelling

There are four major approaches to determine the bearing capacity of footing: limit equi-
librium, limit analysis approach, semi empirical approach and finite element method.
Finite Element Method (FEM) is widely used in geotechnical studies to investigate soil
behavior. Finite element method based computer programs are develop, which are used
as the powerful tool for solving complex problems.

3.1 Finite element method

The finite element method (FEM) is a numerical technique for finding approximate so-
lutions to boundary value problems for partial differential equations. The basic concept
in the FEM is that in this method numerical model is devided into non-overlapping el-
ements of simple geometry called finite elements. Elements are connected to each other
at nodes. Each node contains a finite number of degrees of freedom.

Figure 3.1: Finite element method

3.1.1 Element nodes

In one-dimension, elements are usually straight lines or curved segments. In two di-
mensions they are of triangular or quadrilateral shape. In three dimensions the most
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common shapes are tetrahedra, pentahedra (also called wedges or prisms), and hexahe-
dra. Each element possesses a set of distinguishing points called nodal points or nodes.
Nodes are usually located at the corners or end points of elements. In refined or higher-
order elements nodes are also placed on sides or faces, as well as possibly at the interior
of the element.

Figure 3.2: Finite element idealization examples

3.1.2 Shape Functions

The shape of the any finite element model between nodes of model, is approximated by
functions. These functions called shape functions which allow to relate the coordinates
of every point of a finite element with the positions of its nodes. Thus The shape func-
tion is the function which interpolates the solution between the discrete values obtained
at the mesh nodes.
With in an element the displacement field {u} is obtained from the discrete nodal dis-
placement values {v} using interpolation function or shape function assembled in matrix
form [N]:

{u} = [N ]{v} (3.1)

3.1.3 Stiffness matrix

For a structural finite element, the stiffness matrix contains the geometric and material
behavior information. Nodal displacement function can be detrmined from the follow-
ing equation. Where {F} is the applied force vector for each degree of freedom on nodes
and [k] is the stiffness matrix. The stiffness matrix for whole system can be obtained by
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simply superposition of the individual element stiffness matrices.

{v} = [k]−1{F} (3.2)

3.2 Soil models used in the simulation

A material model gives a relationship between stress and strain in the form of mathemat-
ical equations. Behavior of soil is complicated, it behaves non-linearly and often shows
anisotropic and time dependent behavior when subjected to stresses. Under working
loading condition Hooke’s law of linear elasticity is used to describe soil behavior and
under collapse state Coulomb’s law of perfect plasticity is used to describe soil behavior.
The combination of Hooke and Coulomb’s law is formulated in a plasticity framework
and is known as Mohr-Coulomb model. Soil behavior is not linearly elastic and per-
fectly plastic for the entire range of loading, but it is different in primary loading, un-
loading and reloading. Several researchers have proposed various constitutive models
to describe complicated soil behavior in details and to apply such models in finite ele-
ment modelling for geotechnical engineering applications. However no soil constitutive
model is available that can completely describe the complex behavior of real soils under
all conditions.

3.2.1 Linear elastic model

The linear elastic model will well represent the engineering materials up to their elastic
limit. This model is based on Hook’s law of isotropic elasticity. It involves two basic
elastic parameters, i.e. Young’s modulus E and Poisson’s ratio ν. It will also represent
the complete stress-strain response up to the point of fracture of many very brittle ma-
terials.The response of a linear elastic material, where the stress is proportional to the
strain, is shown in Fig. 3.3

Figure 3.3: Linear elastic model
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{σ} = [D]{ε} (3.3)

where
{σ} = stress vector,
[D] = stiffness matrix,
{ε} = Strain vector.

{σ} =

 tx
ty
tz

 =

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (3.4)

For moment equilibrium of the element, the following shear stress relationships are re-
quired:

σxy = σyx σyz = σzy σzx = σxz (3.5)

Which implies that only six components are required to define the whole stress state of
an element or elastic soils.
Where, σxx indicates the normal stress component in direction of x-axis and acting on
plane which is perpendicular to x-axis. σxy and σxz denote the shear stress components
acting on plane which is perpendicular to x-axis, in direction of y-axis and z-axis respec-
tively, similarly for others. This implies that subscripts describe the working direction
of stress components. The strain components can be expressed as strain tensor as given
below:

{ε} =

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 (3.6)

εxy = εyx εyz = εzy εzx = εxz (3.7)

Where, εxx indicates the normal strain component in direction of x-axis and acting on
plane which is perpendicular to x-axis. εxy and εxz denote the shear strain components
acting on plane which is perpendicular to x-axis, in direction of y-axis and z-axis respec-
tively, similarly for others.

[D] =
E

(1 + ν)(1 + 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0

0 0 0 (1−2ν)
2

0 0

0 0 0 0 (1−2ν)
2

0

0 0 0 0 0 (1−2ν)
2


(3.8)

For geotechnical purposes, it is more convenient to characterize soil behavior in terms of
shear modulus G and bulk modulus K.
Since,

G =
E

2(1 + ν)
K =

E

3(1− 2ν)
(3.9)
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So,

[D] =


K + 4G

3
K − 2G

3
K − 2G

3
0 0 0

K − 2G
3

K + 4G
3

K − 2G
3

0 0 0
K − 2G

3
K − 2G

3
K + 4G

3
0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

 (3.10)

As we know that soil behavior is highly nonlinear and irreversible thus linear elastic
model is not suitable to model soil.

3.2.2 Mohr-Coulomb model

Mohr-Coulomb model is an elastic-perfectly plastic model which is often used to model
soil behaviour in general. Stress-strain curve behaves linearly in the elastic range, this
behavior can be defined by two parameters, from Hooke’s law these parameters are
Young’s modulus (E) and Poisson’s ratio (ν). Parameters which defines the failure crite-
ria are the friction angle (φ), cohesion (c) and dilatancy angle (ψ).

Figure 3.4: Elastic-perfectly plastic assumption for Mohr-Coulomb model (Kok Sien Ti
and Sew, 2009)

Stress-strain relationship for linear elastic perfectly plastic behavior :

Figure shows linear elastic perfectly plastic stress-strain response. The stress-strain rela-
tion can be expressed as following:

dσ′ = Dep × dε (3.11)
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Figure 3.5: Elastic-perfectly plastic model (Brinkgreve and Vermeer, 2013)

where,

dσ′ = Total incremental effective stress vector

Dep = Elasto-plastic stiffness matrix

ε = Total incremental strain vector

The total incremental strain can be decomposed into elastic part and plastic part:

dε = dεe + dεp (3.12)

Since, the total incremental effective stress is related to the incremental elastic strain by
Hooke’s law. Then,

dσ′ = De × dεe = De × (dε− dεp) (3.13)

Now, incremental plastic strain can be expressed as following:

dεp = λ
∂q

∂σ′
(3.14)

where λ is plastic scalar multiplier and q is a plastic potential function.

For f < 0, λ = 0 (Elasticity) (3.15a)
For f = 0, λ > 0 (Plasticity) (3.15b)
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From above written equations, the following relation can be expressed:

dσ′ =

(
De − α

d
De ∂q

∂σ′
∂fT

∂σ′
De

)
︸ ︷︷ ︸

Dep

×dε (3.16a)

where,

d =
∂fT

∂σ′
De ∂q

∂σ′
(3.16b)

Where α is used as switch parameter: for elastic and plastic behavior α = 0 and 1 respec-
tively.

Formulation of Mohr-Coulomb model:

From equations 3.16a and 3.16b, it can be seen that in stress-strain relationship, elasto-
plastic stiffness matrix is a function of elastic stiffness matrix which is already defined
in equation 3.8 and derivatives of yield function and plastic potential function with re-
spect to effective stresses. For evaluation of elasto-plastic stiffness matrix, yield function
and plastic potential function are required to express. Therefore, different models have
different expression of stiffness matrix. Mohr-Coulomb failure criterion is illustrated in
Figure 3.6 and expressed in equation 3.17.

Figure 3.6: Graphical representation of Mohr-Coulomb failue surface

τf = c+ σ′n tanφ (3.17)

From figure 3.6, equation 3.17 can be exprssed in terms of principle stresses.

σ′1 − σ′3
2

=
σ′1 + σ′3

2
sinφ+ c cosφ (3.18)
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Since six yield functions exist in this model. Therefore one of the yield function can be
expressed like this:

f =
σ′1 − σ′3

2
− σ′1 + σ′3

2
sinφ− c cosφ ≤ 0 (3.19)

where,
τf = Failure Shear stress,
c = Cohesion of soil,
φ = Friction angle,
σ′n = Effective normal stress,
σ′1 = Effective major principal stress,
σ′3 = Effective minor principal stress.

When plastic behavior occurs, all yield functions have zero value. And these functions
create a fixed hexagonal cone in principal stress space as illustrated in Figure 3.7.

Figure 3.7: Mohr-Coulomb yield surface in principal stress space

3.2.3 Hardening soil model

The hardening soil model does not have a fixed yield surface, but can expand due to
plastic straining. There are shear and compression two type of hardening. Shear hard-
ening is used to model irreversible strains due to primary deviatoric loading whereas
compression hardening is used to model irreversible plastic strains due to primary com-
pression in oedometer loading and isotropic loading. Some features of the model are:

� Stress dependent stiffness according to power law through a parameter- m

29



Chapter 3 Numerical Modelling

� Plastic straining due to primary deviatoric loading- Eref
50

� Plastic straining due to primary compression- Eref
oed

� Elastic unloading/reloading- Eref
ur , νur

� Failure according to Mohr-Coulomb criterion- c, ϕ and ν

For stress dependency on stiffness and oedometer conditions of stress and strain, the
value of m is considered 1 for soft soils. In such cases, a relationship between the modi-
fied compression index λ∗ as:

Eref
oed = pref/λ

∗ (3.20)

λ∗ = λ/(1 + e0) (3.21)

where pref is the reference pressure. In a similar way, the unloading-reloading modulus
relates to the modified swelling index κ∗ or to standard swelling index κ as:

Eref
ur ' 2pref/κ κ∗ = κ/(1 + e0) (3.22)

The various other parameters used in the hardening soil model are related to each other
in various forms. The parameter E50 is the confining stress dependent stiffness modulus
for primary loading given by:

E50 = Eref
50 (

c cosϕ− σ′
3 sinϕ

c cosϕ+ pref sinϕ
)m (3.23)

where Eref
50 is the reference stiffness modulus corresponding to the reference confining

pressure pref= 100 stress units. The value of m is within 0.5-1 as per different reports.
The ultimate deviatoric stress, qf and the quantity qa are given as:

qf = (c cotϕ− σ′

3)
2 sinϕ

1− sinϕ
qa =

qf
Rf

(3.24)

where Rf refers to the failure ratio, obviously less than 1.

Eur = Eref
ur (

c cosϕ− σ′
3 sinϕ

c cosϕ+ pref sinϕ
)m (3.25)

whereEur is the reference Young’s modulus for unloading and reloading, corresponding
to the reference pressure pref .
The hardening soil models is specially useful in dynamic calculations. There is a strong
need to correctly specify elastic stiffness parameter Eref

ur to calculate the wave velocities
correctly. Plastic strains will be generated when subjected to cyclic or dynamic loading.
Rayleigh damping may be defined to account for the damping characteristics in the soil.
Figure 3.9 shows the failure contour for the Hardening soil model in the principal stress
plane.
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Figure 3.8: Hyperbolic stress-strain relation in primary loading for a standard drained
triaxial test (Plaxis 3D 2013.01 material models manual)

Figure 3.9: Representation of the total yield contour of the Hardening soil model in
principal stress space for cohesionless soil (Schanz and Bonnier, 1999)

3.2.4 Hardening soil model with small strain stiffness (HSS)

The Hardening soil model assumes elastic behavior of material during unloading and
loading. However the starin range in which soils can be considered truly elastic, is very
small. With increasing starin amplitude, soil stiffness decays nonlinearly. Curve plotted
between soil stiffness and log of strain is a S shape curve and called stiffness reduction
curve shown in figure 3.10. According to figure 3.10. the soil stiffness related to the
strain at the end of any construction should not be used in the analysis of geotechnical
structures. But non-linear dependency of very small soil stiffness on strain amplitude
should be properly taken into account.
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Figure 3.10: Characterstic stiffness-strain behavior of soil with typical strain ranges
(Atkinson and Sallfors, 1991)

The HS Small model used in PLAXIS is based on the Hardening soil model and uses
two addtional parameters required to describe the variation of stiffness with strain:

� The initial or very small-strain shear modulus G0.

� The shear strain level γ0.7 at which the secant shear modulusGs is reduced to about
70% of G0.

3.3 Dynamic calculations and simulations

3.3.1 Equation for dynamic behavior

The basic equation of time dependent movement of a volume under the influence of
dynamic load is

[M ]{ü}+ [C]{u̇}+ [K]{u} = [F ] (3.26)

where,

[M ] = mass matrix,
{u} = displacement vector,
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[C] = damping matrix,
[F ] = load vector.

The displacement u, velocity u̇ and acceleration ü can vary with time. [K]{u} = [F ]
term denotes the static deformation.

Damping matrix

The matrix [C] represents the material damping of the materials. With more viscosity
and plasticity more energy can be dissipated. In finite element calculations [C] is formu-
lated as a function of mass and stiffness matrices.

[C] = αR[M ] + βR[K] (3.27)

where αR and βR Rayleigh coefficients.

3.3.2 Model boundaries

Precribed boundary displacements are used at the boundaries of finite element model
to make them completely free or fix, when static analysis is performed. For dynamic
analysis the boundaries should be placed further away than those of static analysis, oth-
erwise reflection of stress waves from the boundaries will takes place and causing the
distortions in computed results. But it is not possible to place the boundaries too far be-
cause it requires a lot of extra memory and large calculation time. Thus to prevent these
reflections, special measures are adopted, which are called ’viscous or silent boundaries’.

Viscous boundaries

In viscous boundaries a damper is used instead of applying prescribed displacements
at the boundaries in a certain direction. The damper absorbs the increase in stress on the
boundary and prevent reflection.

In PLAXIS viscous boundary are used according to the method described by Lysmer
and Kuhlemeyer (1969). The normal and shear stress components absorbed by a damper
in x direction are:

σn = −C1ρVpu̇x (3.28a)

τ = −C2ρVsu̇y (3.28b)

where,
ρ = density of material,
Vp = pressure wave velocity,
Vs = shear wave velocity,
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C1 and C2 are relaxation coefficients. It was found till now that use of C1 = 1 and
C2 = 0.25 results in a reasonable absorption of waves at boundary.

3.4 Numerical modelling of geogrids and geosynthetics

When a foundation soil is reinforced using geosynthetic reinforcement, the reinforce-
ment is always covered with a soil layer. Therefore, in general there are two soil layers
below the foundation. It is also knowm from literature that the effect of reinforcement
changes with increasing the distance of reinforcement from the base of the footing. Ge-
ogrid can only sustain tensile forces and no compression. These objects are generally
used to model soil reinforcement.

3.4.1 2D Geogrids

In 2D geogrids are composed of line elements with two translational degrees of freedom
in each node (ux,uy). Figure 3.11 represent the positions of nodes and stress points in
geogrid element.

Figure 3.11: Position of nodes and stress points in geogrid elements(Brinkgreve and Ver-
meer, 2013)

The relationship between the force and the strain in axysymmetric model is defined as:[
N
H

]
=

[
EA1 0
0 EA2

] [
ε
εH

]
(3.29)

where H is the hoop force, N is the tension force and εH is the hoop strain.
For plane strain model H = 0.
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Silent Boundary Scheme

In many problems of engineering and physics semi-infinite domains exist, for exam-
ple modeling of the soil underneath a footing. However, every numerical model must
be terminated at some finite boundary. In numerical simulations of problems involv-
ing wave propagation, the use of finite boundaries leads to reflection of waves upon
reaching the boundaries of the mesh. These reflected waves get superimposed with pro-
gressing waves and distort the computed results. This problem can be slove by placing
boundary at a larger distance. But this requires introduction of a large number of ele-
ments to model regions and take more memory and time for computation. In addition
for computational efficiency it is desirable to place the boundary as close as possible
to the finite structure. Thus there is a need to create a boundary which is perfectly ra-
diating to outgoing waves and transparent to incoming waves, this boundary is called
Silent Boundary. Silent boundaries are also called absorbing boundaries or transmitting
boundaries or non-reflecting boundaries.

There are various method developed by many researchers which are adopted for pro-
viding Silent Boundaries:

� Where the infinite boundary condition is specified at a finite boundary placed at a
large distance from object.

� Using infinite element.

� Use of standard viscous boundaries.

� Use of Unified viscous boundaries.

� Use of Viscous-spring transmitting boundary.

� Use of Paraxial boundary conditions.

� Use of Perfectly Matched Layer method.

� Use of Extended boundary.
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Above methods of providing silent boundaries are investigated by many researchers,
and introduction and application of each of above method of proving silent boundary is
given in the wide literature review.

4.1 Investigations on silent boundary scheme in literature

Lysmer and Kuhlemeyer (1969) proposed a general method through which an infinite sys-
tem is approximated by a finite system with a special viscous boundary condition by
absorbing the striking waves towards the boundary. Different possibilities of expressing
this boundary condition were investigated by the writers and they have found that the
most promising way is to express it by the conditions given below:

σ = −aρVpẇ (4.1a)

τ = −bρVsu̇ (4.1b)

where,
σ and τ are the normal and shear stresses. respectively. ẇ and u̇ are the normal and
tangential velocities of boundary points respectively.

Vp = velocities of P-waves =
√

E
ρ

Vs = velocities of S-waves =
√

G
ρ

where, E and G are young’s modulus of elasticity and shear modulus of material re-
spectively in which wave propagates and a and b are dimensionless parameters.

It was found that the viscous boundary corresponding to a = b = 1 gives maximum
absorption and is 98.5% effective in absorbing P-waves and 95% effective in absorbing
S-waves and nearly perfect absorption is obtained when angle of incident from horizon-
tal is greater than 30◦. Viscous boundary corresponding to a = b = 1 is called standard
viscous boundary.

According to Miller and Pursey 67% of the energy radiating from a vertically vibrating
footing is transmitted in the form of a Rayleigh wave and this type of wave cannot be
completely absorbed by standard viscous boundary. Therefore a viscous boundary was
also designed to absorb Rayleigh waves. It is similar to the standard viscous boundary
except that the parameters a and b vary with the distance from free surface.

The above method was applied to the foundation vibration problem. Then displace-
ment functions were found by using both standard viscous boundary and Rayleigh wave
boundary and results were compared with the existing solution for infinite system. A
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significant gain in accuracy was found by using Rayleigh wave boundary over standard
viscous boundary. Then the effect of embedment of a vibrating and rough footing in to
soil was also analyzed here which was unsolvable before.

Kim (2014) investigated the validity of the silent boundary conditions proposed by two
researchers. Lysmer-Kuhlemeyer proposed a=b=1 and White et al. suggested the differ-
ent values of a and b for different poison’s ratio. In analytical study it was found that
the Lysmer-Kuhlemeyer absorbing boundary is perfectly satisfied, when wave attacks
the boundary perpendicularly and performance of boundaries of White et al. was not
perfect for absorbing S waves.
In numerical study boundaries were modeled as semicircles and as rectangles, to exam-
ine the absorbing boundaries for waves attacking perpendicularly and having inclined
angles of incidence. Dashpots were installed on the boundaries to simulate infinite do-
mains. It was found that absorption ratio was smaller when wave attacking the bound-
ary with an inclination than for the wave perpendicular to the boundary.

Kim (2012) performed a study to improve the capacity of viscous boundary conditions
using dashpots. It was found that using the concept of energy ratio between the trans-
mitted energy of reflected and incident wave the efficiency of viscous boundary condi-
tion can be improved for an arbitrary angle of incidence and materials.

Shen and Chen (2005) developed a simple silent boundary method for dynamic analysis.
By using this method dynamic deformation could be simulated in a small computational
domain without discretizing the whole problem domain. It was found that this method
could effectively reduce the reflection of incident longitudinal, shear and lateral stress
waves with good convergence in terms of mesh size and number of material points per
cell in MPM. A better understanding on the failure mechanisms of film delamination
was obtained with the use of proposed silent boundary method as compared with the
fixed boundary and it was found that convergence is more closely tied to the number of
particles in each cell then cell size.

Ross (2004) presented four typical methods for applying a silent boundary for an infi-
nite domain. These are plane wave approximation (PWA), viscous damping boundary
method, perfectly matched layers (PML) and infinite elements. The PWA is a bound-
ary element method for creating a silent boundary and ideally suited for fluid media.
Viscous damping boundary method is similar to PWA and is used for elastic media. In
PML the boundary layer is made of the same elements as computational domain how-
ever boundary layer has slightly different properties. In this method a new wave equa-
tion is constructed which creates plane waves that decay exponentially in the PML and
will have the same form at the interface of the computational domain and the PML, thus
any propagating waves get pass through the interface without generating any reflected
wave. In the infinite elements the basic idea is to place element with special shape func-
tion to represent the infinite boundary.
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Kellezi (2000) proposed a cone boundary for transient analysis. This boundary condi-
tion includes both a dashpot and a spring to simulate infinite boundary condition. In
this paper, method of analyzing problems in dynamic soil-structure-interaction (SSI) was
investigated. To analyze only a finite region of the foundation medium transmitting or
silent boundaries were provided to prevent the reflection of outgoing waves at boundary
region. Plane strain analysis and axisymmetric analysis were performed using finite el-
ement models and transmitted boundaries. It was found that performance of proposed
silent boundaries were better than viscous boundaries. Thus an improvement was re-
ported when unified dashpot is combined with the stiffness of the cones.

Liu and Jerry (2003) proposed a gradually damped artificial boundary to simulate a non-
reflecting boundary condition. The damping was applied by an exponentially increasing
function. This boundary was employed to analyze a plate subjected to harmonic load
and it was found that the results obtained were in good agreement with strip element
method. While method proposed by Lysmer-Khulemeyer, which is applicable in Abaqus
as ’infinite elements’ was employed for the same problem and it was found that results
were not satisfactory.

Li and xiang Song (2015) proposed a general viscous-spring transmitting boundary for
numerical analysis of wave propagation in unbounded saturated porous media. Pro-
posed boundary and traditional boundaries were implemented in a finite element code
and their performance was compared. It was found that proposed boundary is more
efficient and this boundary is capable of solving dynamic problems in saturated porous
media due to its wide suitability and high accuracy.

Zienkiewicz (1967) introduced use of infinite elements. Infinite elements are defined as
radiating strips in the exterior regions. The shape functions of such elements include,
for instance, an exponential decay term so that they mimic the asymptotic behavior at
infinity. However infinite elements involve more computations than the finite elements
as they use more parameters. Furthermore, the choice of the decay length is somewhat
arbitrary.
From above investigations it is known that infinite elements and viscous boundaries are
most efficient methods to prevent the reflection of waves. A viscous boundary is the
most adopted method for providing silent boundary as it is effective and simple in ap-
plication.

4.2 Analysis of existing methods of providing silent
boundary

In this report three methods of providing silent boundaries will be analyzed using a 2D
finite element program.
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4.2.1 Viscous Boundaries

While adopting viscous boundaries, a dashpot is used in place of applying fixities on
the boundaries. The dashpot absorbs the increase in stress on the boundary without
rebounded. In this thesis the use of viscous boundaries will be based on the method
proposed by Lysmer and Khulmeyer (1969). The normal and shear stress components
absorbed by a damper are represented in Eq. 4.1. Negative sign shows that these stresses
act in the direction opposite to the normal and tangential velocities.

4.2.2 Local damping

In local damping a damping factor is introduced to damp out the energy of incident
wave and damping force is proportional to the out of balance force. For any degree-
of-freedom in the considered system, the local damping can be described as follows by
AL-Kafaji (2013):

fdamp = −α | f | sign(v) (4.2)

where,

f = f ext − f int (4.3)

and
sign(v) =

v

| v |
(4.4)

In the above equation fdamp acts opposite to the direction of the velocity at the considered
degree-of-freedom. The parameter α is a dimensionless damping factor and sign(v) is
defined for nonzero values of v.

4.2.3 Extended boundary

The concept behind this boundary is to introduce a section of elements before the finite
element boundary of the finite element model to prevent the reflections of waves. Damp-
ing force will be calculated and applied as given in Eq. 4.2. In this report, this type of
extended region is provided by two ways:

� Provide a constant damping factor throughout the extended region.

� Provide a linearly varying damping factor which is zero at the junction of extended
region and finite element model and maximum on the other side of extended re-
gion.
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4.3 Analysis with vertical bar problem

The above three methods of providing silent boundary are analyzed using a 2D finite
element program in Fortran. To analyze these methods a simple problem of a two di-
mensional vertical bar is considered. The vertical bar of 1m length consisting 50 elements
of square size and 102 nodes is taken in to account. Bar is restricted against horizontal
movement. Hence velocities and displacements at nodes in horizontal direction are zero.

Stresses and displacements at the bottom and top of the bar are determined in verti-
cal direction, for different boundary conditions (fixed, free, viscous boundary, extended
region using local damping) and different types of loads. Results are compared using
graphs. Properties of bar are given in table 4.1.

Table 4.1: Properties of bar

Parameter Value
Young’s modulus, E

(kPa) 1000

Density of material, ρ
(1 t/m3) 1

Cross sectional area, A
(m2) 0.02

4.3.1 Under the influence of gravitational acceleration only

In this case bar is subjected to only a gravitational acceleration (gy = -10 m/s2) in ver-
tically downward direction and bottom of the bar is fixed (Figure 4.1). Firstly normal
stress at the fixed bottom, vertical displacement at the top, potential energy, kinetic en-
ergy, strain energy and total energy of bar are determined without any damping. Then
a local damping as described above is applied and again normal stress at the fixed bot-
tom, vertical displacement at the top and all the energies are determined. Results are
compared using graphs.

It can be seen from the Figure 4.2, that with local damping stress wave amplitude at the
fixed bottom reduces and damped out and reached to a constant value. Figure 4.3 shows
that with local damping displacement at the top of the bar reduces and damped out and
reached to a constant static value. Figure 4.4 shows that total energy of the system is zero
because no external force is applied here. Variation of different types of energies can also
be seen from above curve. It can be seen from Figure 4.5, that due the application of local
damping variations in the energies damped out and total energy of the system become
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Figure 4.1: Vertical bar subjected to gravitational acceleration

Figure 4.2: Stress at fixed bottom of bar with gravitational acceleration only
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Figure 4.3: Displacement at top of bar with gravitational acceleration only

Figure 4.4: Energy of the bar with gravitational acceleration only, without damping
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Figure 4.5: Energy of the bar with gravitational acceleration only, with local damping

less than zero. Thus due to the application of local damping total energy of the system
decreases.

4.3.2 Under the influence of half sinusoidal stress wave only

In this case bar is subjected to only a half sinusoidal stress wave ( σ) in vertically down-
ward direction (Figure 4.6). Firstly with fixed boundary (Figure 4.6(a)) normal stress at
the fixed bottom, potential energy, kinetic energy, strain energy and total energy of bar
are determined without any damping. Then Viscous boundary condition is applied at
the bottom (Figure 4.6(b)), as described above and again normal stress at the fixed bot-
tom and all the energies are determined. Then local damping (α=0.3) with fixed bottom
is applied and all the parameters are determined. Results are compared using graphs.

σ = −100 sin(125t)kPa (4.5)

From the equation 4.5 it can be seen that frequency of this stress wave is 50 Hz. This
force is applied as a pulse for 0.025sec in this case.

Figure 4.8 shows that due to fixed boundary reflection of stress wave occur with double
amplitude, which can be effectively reduced with the application of viscous boundary in
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Figure 4.6: Vertical bar with application of normal vertical stress

Figure 4.7: Half sinusoidal stress pulse

place of fixed boundary. It can also be noticed that application of local damping also re-
duced the reflection of wave but some reflection may occur which depends on the value
of damping factor. Figure 4.9 shows that with fixed boundary total energy of system
increase during the application of load and become constant but with viscous bound-
ary and local damping the total energy of system reduces and becomes zero. Viscous
boundary absorbs the total energy without reflection, while some reflection occur in
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Figure 4.8: Stress at the bottom of bar with half sinusoidal stress wave pulse

Figure 4.9: Total energy of the vertical bar with half sinusoidal stress wave pulse

case of local damping.
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4.3.3 Under the influence of full sinusoidal stress wave only

In this case bar is subjected to only a full sinusoidal stress wave ( σ) in vertically down-
ward direction. Firstly with fixed boundary normal stress at the fixed bottom, potential
energy, kinetic energy, strain energy and total energy of bar are determined without any
damping. Then viscous boundary condition is applied at the bottom, as described above
and again normal stress at the fixed bottom and all the energies are determined. Then
local damping with fixed bottom is applied and all the parameters are determined. Re-
sults are compared using graphs.

From the equation 4.5, it can be seen that frequency of this stress wave is 50 Hz. This
force is applied as a pulse for 0.05sec in this case.

Figure 4.10: Full sinusoidal stress pulse

Figure 4.11. shows similar result as was with half sine wave. Due to fixed boundary
reflection of stress wave occur with double amplitude, which can be effectively reduced
with the application of viscous boundary in place of fixed boundary. It can also be no-
ticed that application of local damping also reduced the reflection of wave but some
reflection may occur which depends on the value of damping factor. Figure 4.12. of to-
tal energy also show similar results as was in case of half wave. With fixed boundary
total energy of system increases during the application of load and become constant. It
can also be noticed that viscous boundary and local damping both reduces the total en-
ergy of system and make it zero but viscous boundary absorbs the total energy without
reflection, while some reflection occur in case of local damping.
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Figure 4.11: Stress at the bottom of bar with full sinusoidal stress wave pulse

Figure 4.12: Total energy of the vertical bar with full sinusoidal stress wave pulse
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Figure 4.13: Displacement at the bottom of bar with viscous boundary

4.3.4 Comparison of bottom displacement between half wave pulse and
full wave pulse with viscous boundary

It can be noticed from figure 4.13 that in case of half wave displacement at the bottom
increases and become constant after some time, but with the application of full wave,
displacement at bottom first increases during 1st half cycle and then decreases during
2nd half cycle and finally becomes zero.

4.3.5 Use of extended region as boundary

In this an extended region of 1 m consisting 50 square elements is added at the bottom of
bar. In this region a damping factor is provided. This damping factor is provided by two
ways. Firstly damping factor is provided as constant value through the whole extended
region. Secondly a linearly varying damping factor is provided. Then a full stress wave
as given in equation 4.5 is applied on the bar and normal stress at junction of extended
region and vertical bar is determined.
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Figure 4.14: Vertical bar with extended region

4.3.5.1 When a constant damping factor is provided through the whole extended
region

Figure 4.15: Stress at the junction of extended region and bar with application of full
stress wave
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In this a constant damping factor of 0.3 is provided in the extended region and damping
forced is applied as given in the equation 4.2. Figure 4.15. shows that extended region is
effective in the prevention of reflection of stress wave but some reflection occurs at the
junction because of change in the properties of material from bar to extended region.

4.3.5.2 When a linearly varying damping factor is provided

In this case a linearly varying damping factor is provided in the extended region. This
factor is zero at the junction of extended region and bar, and maximum at the end of
extended region.

Figure 4.16: Stress at the junction with maximum value of damping coefficient 0.5

In this two cases are taken into account. In first case maximum value of damping coeffi-
cient is taken 0.5 and in second case maximum value of damping coefficient is taken 0.9.
Figure 4.16 shows that assumed value of damping factor (0.5) is not sufficient in pre-
venting the reflection so now maximum value of damping factor increased up to 0.9
and stress at the junction of extended region and bar is determined.Figure 4.17. shows
increase in the maximum value of damping coefficient reduced reflections but some re-
flection is still present. Thus effective absorption of reflected waves may be occur with
selection of correct value of damping factor.
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Figure 4.17: Stress at the junction with maximum value of damping coefficient 0.9

4.4 Discussions and concluding remarks

� From the graphs represented above it can be concluded that when only gravita-
tional acceleration is considered stress varies like a wave with same maximum and
minimum amplitude, but when local damping is considered stress waves magni-
tude decreases with time and damped gradually then reaches to a constant value
and this decrease in magnitude increases as local damping coefficient increases.
Displacement magnitude at the top of the bar is also decreased with time when
and gradually attain a constant value when local damping is provided.

� It was also found that when a stress wave strike the fixed boundary it get reversed
with double magnitude but when standard viscous boundary is considered stress
wave does not reversed and damped out gradually.

� In case when half wave is applied, means when only compressive stress is applied
displacement of bottom point of bar get increased with time and never return to
its original position. But when full sine wave is applied, means a dynamic force
is applied then bottom point of bar moved to a certain distance in first half cycle
and then back to its original position in next half cycle. Thus it can be noticed that
standard viscous boundaries are not effective for static analysis.

� Application of extended boundary reduced the amplitude of stress wave. This
prevention of reflection depends on the provided value of damping factor. It was
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noticed that in spite of high damping factor some reflections are present thus it can
be concluded that performance of extended boundary is not satisfactory.
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Chapter 5

Back Analysis of a Model Test and Validation

Ornek et al. (2012) conducted a series of field tests to determine the effect of granular fill
layers on the behavior of large-scale footings on natural clay deposits. Two test-pit (TP1
and TP2) and four boreholes (BH1, BH2, BH3 and BH4) were formed in the test area. Soil
contains three layers as shown in figure 5.1, top layer was of depth 0.80m was removed
before tests. A standard penetration test (SPT) was performed and the soil profile with
SPT values are shown in figure 5.1.

Figure 5.1: SPT values from the boreholes and soil profile (Ornek et al., 2012)

Footings used in the analysis were rigid, steel-made and have a thickness of 2cm for
footing diameter less than 12cm and 3cm for footing diameter more than 12cm.

Ornek et al. (2014) conducted experimental and numerical investigations to determine
the bearing capacity of circular footing on geogrid-reinforced compacted granular fill
layer overlying on natural clay deposits. Experimental set up and soil parameters were
nearly same as in the Ornek et al.(2012).
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5.1 Soil parameters

The upper homogeneous layer on which all the tests were performed was classified as
a highly plasticity clay (CH) according to the USCS. The values of the undrained shear
strengths of clay (cu) were in the range of 60 to 80 kN/m2 obtained by unconfined com-
pression tests and in the range of 70 to 80 kN/m2 obtained from the unconsolidated
undrained, triaxial test. The granular soil was classified as well-graded, gravel-silty
gravel, GW-GM according to USCS.

5.2 Experimental set up

Reaction piles were constructed on the test field and then connected to each other with
a steel beam. The granular fill was placed and compacted in layers. The load and the
corresponding footing settlement were measured with a calibrated pressure guage and
two LVDTs, connected to a data logger unit which is connected to computer. The general
layout of the test setup is given in Figure 5.2.

Figure 5.2: Experimental setup and layout of instrumentation (Ornek et al., 2012)
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5.3 Numerical model and simulation process

Numerical analysis is conducted using PLAXIS 2D AE.02. Axisymmetric analysis is
done to simulate the circular footing in 2D. The model boundary conditions are assumed
such that the vertical boundaries are free vertically and fixed horizontally, while the
bottom horizontal boundary is fixed in both the horizontal and vertical directions. Soil
medium is modeled using 15-node triangular elements.

5.3.1 Numerical model for one-layer, two-layer unreinforced and
reinforced system

In the numerical analysis of one layer, two-layer unreinforced and reinforced system the
dimensions of the model are created in the 2D area. To eleminate boundary effects, the
horizontal and vertical dimensions are taken as ten times to the diameter of footing. In
two layer unreinforced system depth of granular layer is taken equal to the diameter
of footing (H=D). In two layer reinforced system depth of granular layer is taken 0.67
times of the diameter of footing (H=0.67D). Depth of geogrid layer (u) were varied from
0.17D to 0.67D. A typical finite-element mesh configuration along with the boundary
conditions and the geometry of the soil system used is shown in Figure 5.3.

Figure 5.3: Typical mesh configurations in the numerical analyses for one layer two-
layer unreinforced and reinforced soil system
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An elastic-plastic Mohr Coulomb (MC) model was used for the clay and granular fill
material behavior. A circular footing was modeled as a weightless steel plate of 0.3m in
diameter (D) and 3cm in thickness. Properties of footing are given below in table. 5.2

Geogrid layers are represented by the use of horizontal plate elements in the program.
The stress-strain behavior of geogrid layer was modeled as a linear elastic material. It
was assumed as to be isotropic and of thickness 0.015m. Other properties of geogrid are
given Table. 5.3.

Table 5.1: Mohr-Coulomb model parameters used in numerical analysis

Parameter Clay Granular-fill material
Unit weight, γn

(kN/m3) 18 21

Young’s modulus, Eu
(kN/m2) 8500 42500

Cohesion,c (kN/m2) 80 0.5
Poisson’s ratio, ν 0.35 0.2
Friction angle, φ

(degrees) 0 43

Dilatancy angle, ψ
(degrees) 0 13

Permeability, kx = ky
(m/day) 8.64*10−5 432

Drainage condition Undrained(B) Drained

Table 5.2: Properties of footing used in numerical analyses

Young’s modulus, Es (kN/m2) 200*106

Poisson’s ratio, ν 0.3

Table 5.3: Properties of geogrid used in numerical analyses

Young’s modulus, E (kN/m2) 7.33*105

Poisson’s ratio, ν 0.10
Unit weight, γ 0.02 kN/m3

5.4 Results and comparison with experimental results

Numerical analysis on one layer (only clay), two layer (clay overlain by granular fill)
and two layer reinforced (clay overlain by geogrid reinforced layer) are performed and
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results are presented in the form of bearing capacity curves. Horizontal axis are repre-
senting the load (kPa) and vertical axis are representing the corresponding settlements
(mm).

Results obtained by numerical analysis are compared with the experimental results pre-
sented by Ornek et al. Numerical analysis with time interval equal to zero (in which load
is applied immediately) and time interval equal to half day (in which load is applied in
0.5 days) were performed and results are compared.

5.4.1 One-layer and two-layer unreinforced system

Figure 5.4 and Figure 5.5 represents the load settlement curves for one layer system in
which only clay soil exists and two layer system in which clay soil is overlain by gran-
ular fill and footing load is applied on it. It can be seen from these figures that bearing
capacity curves obtain from numerical analysis are comparable with the experimental
results presented bs Ornek et al. (2012). Figure 5.6 shows that inclusion of granular layer
over clay soil caused a significant increase in the bearing capacity as compared to the
one layer system.

Figure 5.4: Load vs settlement curves for one layer system

It was obtained from numerical analysis that in case of one layer system for time interval
zero days maximum value of pore water pressure was 630 kPa, which is unrealistic and
for time interval 0.5 days maximum value of pore water pressure was 153.9 kPa. In case
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of two layer system for time interval zero days maximum value of pore water pressure
was 410.6 kPa, which is unrealistic and for time interval 0.5 days maximum value of
pore water pressure was 144.6 kPa. Figure 5.7 and Figure 5.8 show these reduction in
the values of pore water pressure.

Figure 5.5: Load vs settlement curves for two layer system

Figure 5.6: Comparison of bearing capacity curves for one and two layer system
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Figure 5.7: Pore water pressure distribution below the footing for two layer system
(time = 0 days)

Figure 5.8: Pore water pressure distribution below the footing for two layer system
(time = 0.5 days)
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5.4.2 Two-layer reinforced system

Figure 5.9 and Figure 5.10 represents the load settlement curves for two layer geogrid
reinforced system in which clay soil is overlain by granular fill and footing load is ap-
plied on it and for position of geogrid at 0.5D and 0.17D from the base of the footing
respectively . It can be seen from these figures that bearing capacity curves obtain from
numerical analysis are in good agreement with the experimental results presented bs
Ornek et al. (2014).

Figure 5.9: Load vs settlement curves for two layer geogrid reinforced system (u=0.5D)

Figure 5.11 reprents the deform mesh for two layer geogrid reinforced system in which
geogrid is provided at a distance of 0.5D from the base of footing. Figure 5.12 represents
the vertical displacement field below the footing for two layer geogrid reinforced system
in which geogrid is provided at a distance of 0.5D from the base of footing.

It was obtained from numerical analysis that in case of two layer reinforced system
(u=0.5D) for time interval zero days maximum value of pore water pressure was 348.2
kPa and for time interval 0.5 days maximum value of pore water pressure was 86.66 kPa.
In case of two layer reinforced system (u=0.17D) for time interval zero days maximum
value of pore water pressure was 296.4 kPa and for time interval 0.5 days maximum
value of pore water pressure was 44.7 kPa.

Figure 5.13 shows that inclusion of geogrid layer in granular layer over clay soil caused
a further increase in the bearing capacity as compared to the one layer system and two
layer unreinforced system. It can also be observed from Figure 5.13 that bearing capacity
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increases as the distance of geogrid layer from the base of footing decreases.

Figure 5.10: Load vs settlement curves for two layer geogrid reinforced system
(u=0.17D)

Figure 5.11: Deformed mesh for two layer geogrid reinforced system (u=0.5D)
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Figure 5.12: Vertical displacement below the footing for two layer geogrid reinforced
system (u=0.5D)

Figure 5.13: Comparison of bearing capacity curves for one and two layer unreinforced
and geogrid reinforced system
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5.5 Conclusions of the back analysis

� It can be concluded from back analysis that results of numerical analysis using
PLAXIS 2D program and Mohr Coulomb model are in very good agreement with
the experimental results.

� It is observed that if load is applied immediately (time interval = 0), it gives very
high value of pore pressure which is unrealistic but if load is applied with a certain
time interval pore pressure values decreases this is because of availability of time
for dissipation of pore water pressure.

� It can be observed that bearing capacity of two layer system is more as compare to
single layer system depending upon the strength of top and bottom layer.

� It can be observed that inclusion of reinforcement causes an increase in bearing
capacity as compare to two layer unreinforced soil system, and with decrease in the
depth of this geogrid layer from the base of footing also causes a further increase
in bearing capacity.
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Dynamic Analysis of Two Layer Reinforced Soil
Systems

Numerical model of two layer reinforced and unreinforced soil system validated in the
previous chapter is used for dynamic analysis. A vertical dynamic load of magnitude
100 kPa and frequency 10 Hz is applied for 1.5 sec with a static load of 100 kPa on
these models. For dynamic analysis viscous boundaries are used for vertical (Xmax)
and horizontal (Ymin) boundaries to prevent the boundary effects as reflection of waves.
Parametric study is performed and results are compared.

Figure 6.1: Vertical dynamic load applied on the footing

6.1 Parametric study

Different parameters which affects the load bearing and deformation behavior of two
layer soil system :
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� Depth of reinforcement layer below the base of footing.

� Distance between layers of geogrids in case of two layers of reinforcement.

� Number of layers of reinforcement.

� Stiffness of geogrid.

6.1.1 Depth of reinforcement layer below the base of footing

Two layer reinforced soil system shown in figure 5.3 is analysed for 0.67D depth of
granular soil (H=0.67D) and different depth of layer of reinforcement (u=0.67D, u=0.5D,
u=0.33D, u=0.17D). Three different soil models are used in the dynamic analysis which
are Mohr Coulomb model (MC), Hardening soil model (HS) and Hardening soil model
with small strain stiffness (HS small).

6.1.2 Distance between layers of geogrids in case of two layers of
reinforcement

In case of two layer soil system reinforced with two layers of reinforcement, first geogrid
layer is always kept at the interface of clay and granular soil, and second layer of geogrid
is placed above the first one as shown in figure 6.2. Distance between two layers of
geogrid is d. Effect of variation of distance of second layer of geogrid from the first
one (d=0.17D, d=0.34D, d=0.5D) is studied. Three different soil models are used in the
dynamic analysis which are Mohr Coulomb model (MC), Hardening soil model (HS)
and Hardening soil model with small strain stiffness (HS small).

6.1.3 Number of layers of reinforcement

Two layer soil system with different number of layers of reinforcement is analysed (num-
ber of reinforcement layers(N)=1,2,3). Three different soil models are used in the dy-
namic analysis which are Mohr Coulomb model (MC), Hardening soil model (HS) and
Hardening soil model with small strain stiffness (HS small). In all cases first layer of
reinforcement is always kept at the interface of clay and granular fill and other layers are
placed above the first layer as shown in figure 6.3. In case of three layer system distance
between the layers of reinforcement (d) is 0.17D.
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Figure 6.2: Two layer soil system reinforced with two layers of geogrid

Figure 6.3: Two layer soil system reinforced with three layers of geogrid

6.1.4 Stiffness of geogrid

Two layer reinforced soil system with three layers of reinforcement is analysed for differ-
ent stiffnesses of geogrid layers (E=533000 kN/m2, E=633000 kN/m2, E=733000 kN/m2,
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E=833000 kN/m2, E=933000 kN/m2, E=1033000 kN/m2) to see the effect of stiffness of
geogrid on the settlement and load bearing behavior of soil. Effect of geogrid stiffness
on the axial forces in geogrids is also studied. HS small model is used for this analysis.

6.2 Soil parameters used in dynamic analysis

For dynamic analysis using Mohr Coulomb model, soil parameters given in table 5.1
with 20% soil damping in both clay and granular fill are used. For dynamic analysis
using Hardening soil model, soil parameters given in table 6.1 with 20% soil damping
in both clay and granular fill are used. For dynamic analysis using HS small model, soil
parameters given in table 6.2 with 20% soil damping in both clay and granular fill are
used. Properties of footing and geogrid are used as per given in table 5.2 and table 5.3
respectively.

Table 6.1: Hardening soil model parameters used in numerical analysis

Parameter Clay Granular-fill material
Unit weight, γ

(kN/m3) 18 21

Eref
50 (kN/m2) 8500 42500

Eref
oed (kN/m2) 8500 30000

Eref
ur (kN/m2) 25500 1275000
power (m) 0.5 0.5

Cohesion (kN/m2) 80 0.5
Poisson’s ratio, ν 0.35 0.2
Friction angle, φ

(degrees) 0 43

Dilatancy angle, ψ
(degrees) 0 13

Permeability, kx = ky
(m/day) 8.64*10−5 432

Drainage condition Undrained(B) Drained
Rayleigh α 2.285 2.285
Rayleigh β 5.787 ∗ 10−3 5.787 ∗ 10−3
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Table 6.2: HS small model parameters used in numerical analysis

Parameter Clay Granular-fill material
Unit weight, γ

(kN/m3) 18 21

Eref
50 (kN/m2) 8500 42500

Eref
oed (kN/m2) 8500 30000

Eref
ur (kN/m2) 25500 1275000
power (m) 0.5 0.5

Cohesion (kN/m2) 80 0.5
Poisson’s ratio, ν 0.35 0.2
Friction angle, φ

(degrees) 0 43

Dilatancy angle, ψ
(degrees) 0 13

γ0.7 0.12*10−3 0.15*10−3
Gref

0 11000 60000
Permeability, kx = ky

(m/day) 8.64*10−5 432

Drainage condition Undrained(B) Drained
Rayleigh α 2.285 2.285
Rayleigh β 5.787 ∗ 10−3 5.787 ∗ 10−3

6.3 Results

All results are presented in the form of graphs. These curves are plotted as dynamic time
vs settlement to see the variation of settlement with time, number of cycles vs settlement
to see the permanent settlement after 14 cycles and length of geogrid vs axial forces to
see the variation of geogrid forces along the length of geogrid.

6.3.1 Effect of depth of reinforcement layer below the base of footing

In case of two layer soil system reinforced with single layer of reinforcement for all three
soil models used in dynamic analysis, it can be observed from Figures 6.4, 6.7 and 6.10
that with decrease in depth of geogrid below the base of the footing (u) initially maxi-
mum settlement at peak loads increases but later as time increase this settlement decreses
with decrease in depth of reinforcement upto a value of u=0.33D. With further decrease
in value of u (upto u=0.17d) maximum settlement at peak load increases.

It can be observed from Figures 6.5, 6.8 and 6.11 that with decrease in depth of geogrid
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below the base of the footing (u), after 14 cycles permanent settlement decreases upto a
value of u=0.33D. With further decrease in value of u (upto u=0.17d) permanent settle-
ment after 14 cycles increases.

Figure 6.4: Effect of depth of reinforcement from the base of footing(N=1) (Dynamic
time vs. Settlement curve, using Mohr Coulomb model)

Figure 6.5: Effect of depth of reinforcement from the base of footing(N=1) (No. of cycles
vs. Settlement curve, using Mohr Coulomb model)
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Figure 6.6: Effect of depth of reinforcement below the base of the footing on geogrid
forces (using Mohr Coulomb model)

Figure 6.7: Effect of depth of reinforcement from the base of footing(N=1) (Dynamic
time vs. Settlement curve, using Hardening soil model)
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Figure 6.8: Effect of depth of reinforcement from the base of footing(N=1) (No. of cycles
vs. Settlement curve, using Hardening soil model)

Figure 6.9: Effect of depth of reinforcement below the base of the footing on geogrid
forces (using Hardening soil model)
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Figure 6.10: Effect of depth of reinforcement from the base of footing(N=1) (Dynamic
time vs. Settlement curve, using HS small model)

Figure 6.11: Effect of depth of reinforcement from the base of footing(N=1) (No. of cy-
cles vs. Settlement curve, using HS small model)
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Figure 6.12: Effect of depth of reinforcement below the base of the footing on geogrid
forces (using HS small model)

From Figure 6.6 it can be observed that when Mohr coulomb soil model is used, decrease
in depth of geogrid layer below the base of footing causes a decrease in the axial force
in geogrid upto a value of u=0.33D. With further decrease in value of u (upto u=0.17d)
axial force in geogrid increases. It can also be observed that maximum axial force in ge-
ogrid is at the center of footing (below the load) and decrease as the distance from center
increases, and become very small after a georid length of 1.33D.

From Figures 6.9 and 6.12 it can be observed that when Hardening soil model and HS
small model is used respectively, decrease in depth of geogrid layer below the base of
footing causes a decrease in the axial force in geogrid. It can also be observed that maxi-
mum axial force in geogrid is at the center of footing (below the load) and decrease as the
distance from center increases, and become very small after a georid length of 1.33D.

6.3.2 Effect of distance between layers of geogrids in case of two layers
of reinforcement

In case of two layer soil system reinforced with two layers of geogrid as reinforcement,
from Figure 6.13 it can be observed that when Mohr Coulomb model is used initially the
maximum settlement at peak load remains same as in single layer of reinforcement case
but as time increases maximum settlement at peak loads decreases with increase in the
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distance between the two layers of geogrids upto a value d=0.34D, after it shows very
less decrease in maximum settlement at peak loads.

From Figures 6.16 and 6.19 it is observed that when Hardening soil model and HS small
is used initially the maximum settlement at peak load increases when two layers of re-
inforcement are used as compare to single layer of reinforcement but as time increases
maximum settlement at peak loads decreases with increase in the distance between the
two layers of geogrids upto a value d=0.34D, after it shows very less decrease in maxi-
mum settlement at peak loads.

From Figures 6.14, 6.17 and 6.20 it is observed that with the used of all three soil mod-
els permanent settlement after 14 cycles decreases as distance between the two layers
of geogrids increases upto a value d=0.34D, after that when value of d increase further
(d=0.5D) permanent settlement after 14 cycles increases.

Figure 6.13: Effect of distance between layers of geogrids(N=2) (Dynamic time vs. Set-
tlement curve, using Mohr Coulomb model)

From Figure 6.15 it is observed that when Mohr Coulomb model is used, in case of
two layers of reinforcement, axial forces in first layer of geogrid (which is at the inter-
face of clay and granular soil) increases as the distance between two layers of geogrid
increases. Axial forces in the second layer also increases as the distance between two
layers increases and peak of axial forces shifts to left as the distance between two lay-
ers of geogrid increases. It can also be observed that in first layer maximum axial force
in geogrid is at the center of footing (below the load), while in second layer maximum
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Figure 6.14: Effect of distance between layers of geogrids(N=2) (No. of cycles vs. Settle-
ment curveusing Mohr Coulomb model)

Figure 6.15: Effect of distance between layers of geogrids(N=2) on geogrid forces (using
Mohr Coulomb model)
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Figure 6.16: Effect of distance between layers of geogrids(N=2) (Dynamic time vs. Set-
tlement curve, using Hardening soil model)

Figure 6.17: Effect of distance between layers of geogrids(N=2) (No. of cycles vs. Settle-
ment curve, using Hardening soil model)
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Figure 6.18: Effect of distance between layers of geogrids(N=2) on geogrid forces (using
Hardening soil model)

Figure 6.19: Effect of distance between two layers of geogrids(N=2) (Dynamic time vs.
Settlement curve, using HS small model)
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Figure 6.20: Effect of distance between two layers of geogrids(N=2) (No. of cycles vs.
Settlement curve, using HS small model)

Figure 6.21: Effect of distance between layers of geogrids(N=2) on geogrid forces (using
HS small model)
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axial force occur at some distance from the center of footing, while in both the layers
axial forces decrease as the distance from center increases, and become very small after
a georid length of 1.33D.

From Figures 6.18 and 6.21 it is observed that when Hardening soil model and HS small
model is used, in case of two layers of reinforcement, axial forces in first layer of geogrid
(which is at the interface of clay and granular soil) does not change greatly as the distance
between two layers of geogrid increases. In the second layer peak of axial forces shifts
to left as the distance between two layers of geogrid increases. It can also be observed
that in first layer maximum axial force in geogrid is at the center of footing (below the
load), while in second layer maximum axial force occur at some distance from the cen-
ter of footing, while in both the layers axial forces decrease as the distance from center
increases, and become very small after a georid length of 1.33D.

6.3.3 Effect of number of layers of reinforcement

From Figures 6.22, 6.25 and 6.28 it is observed that for all three soil models maximum
settlement at peak loads decreases as the number of geogrid layers increases from N=0
to N=3, when the lowest settlement cases for N=1 and N=2 are considered for compari-
son.

Figure 6.22: Effect of number of layers of reinforcement (Dynamic time vs. Settlement
curve, using Mohr Coulomb model)
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Figure 6.23: Effect of number of layers of reinforcement (No. of cycles vs. Settlement
curve, using Mohr Coulomb model)

Figure 6.24: Geogrid forces in case of three layers of reinforcement (using Mohr
Coulomb model)
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Figure 6.25: Effect of number of layers of reinforcement (Dynamic time vs. Settlement
curve, using Hardening soil model)

Figure 6.26: Effect of number of layers of reinforcement (No. of cycles vs. Settlement
curve, using Hardening soil model)
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Figure 6.27: Geogrid forces in case of three layers of reinforcement (using Hardening
soil model)

Figure 6.28: Effect of number of layers of reinforcement (Dynamic time vs. Settlement
curve, using HS small model)
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Figure 6.29: Effect of number of layers of reinforcement (No. of cycles vs. Settlement
curve, using HS small model)

Figure 6.30: Geogrid forces in case of three layers of reinforcement (using HS small
model)

From Figures 6.23, 6.26 and 6.29 it is observed that for all three soil models permanent
settlement after 14 number of cycles decreases as the number of geogrid layers increases
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from N=0 to N=3, when the lowest settlement cases for N=1 and N=2 are considered for
comparison.

From Figures 6.24, 6.27 and 6.30 it is observed that in case of three layers of reinforce-
ment, in first layer maximum axial force in geogrid is at the center of footing (below the
load), while in second and third layer maximum axial force occur at some distance from
the center of footing, while in both the layers axial forces decrease as the distance from
center increases, and become very small after a georid length of 1.33D.

6.3.4 Effect of stiffness of geogrid

From Figure 6.31 it can be observed that with increase in the stiffness of geogrid lay-
ers placed in top granular fill maximum settlements at peak loads decrease. Figure 6.32
shows that permanent settlement after 14 cycles also decreases with increase in the ge-
ogrid stiffness.

Figure 6.33 shows that with increase in the stiffness of geogrid layers axial forces in the
first layer of geogrid, which is at the interface of clay and granular fill, increase. Maxi-
mum axial force in geogrid is at the center of footing (below the load) and become very
small after a georid length of 1.33D.

Figure 6.31: Effect of stiffness of geogrid on the settlement behavior of two layer rein-
forced soil system with three layers of geogrids (Dynamic time vs. Settle-
ment curve, using HS small model)
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Figure 6.32: Effect of stiffness of geogrid on the settlement behavior of two layer rein-
forced soil system with three layers of geogrids (No. of cycles vs. Settle-
ment curve, using HS small model)

Figure 6.33: Effect of stiffness of geogrid on axial forces in first geogrid layer (using HS
small model)
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Figure 6.34: Effect of stiffness of geogrid on axial forces in second geogrid layer (using
HS small model)

Figure 6.35: Effect of stiffness of geogrid on axial forces in third geogrid layer (using HS
small model)
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From Figures 6.34 and 6.35 it can be observed that near the center of footing, axial forces
in second and third layers of geogrid decrease as stffness of geogrids increase, but away
from center axial forces in second and third layers of geogrid increase stffness of geogrids
increase.

6.4 Conclusions of Dynamic Analysis

� It can be observed from dynamic analysis that when Mohr Coulomb model is used
for analysis in all cases maximum settlement at peak load are much higher than,
when Hardening soil model and HS small model are used. But permanent set-
tlements after 14 cycles are less than, when Hardening soil model and HS small
model are used.

� It can also be observed that from dynamic analysis that in case of Hardening soil
model maximum settlement at peak load and permanent settlement after 14 cycles
are slightly more than, when HS small model is used.

� It can also be observed that with increase in number of geogrid layers (from N=0
to N=3), settlement decreases and at N=3, it is lowest and with increase in the
distance between two layers of reinforcement settlement decreases upto a limited
value after that it increases.

� It can also be observed that as number of geogrid layers increases above the first
layer, which is at the interface of clay and granular fill, axial forces in the first
geogrid layer decreases.

� It can be observed from dynamic analysis that results using Hardening soil model
and HS small model are relatively same and realistic, but form Mohr Coulomb
model are unsatisfactory.

� It is observed that increase in the stiffness of geogrid causes an improvement in the
load bearing and settlement behavior of two layer reinforced soil system.
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Summary and Conclusions

7.1 Summary

In this thesis static and dynamic analysis are carried out using PLAXIS 2D on the two
layer unreinforced and reinforced soil systems to see the effect of providing reinforce-
ment in the two layer soil sytem and other parameters, on the bearing capacity and
settlemet behavior of two layer system. For dynamic analysis, it is required to provide
viscous boundaries in PLAXIS to reduce the boundary effects and to prevent the reflec-
tion of waves from boundaries. A study has also been carried out to compare the various
methods of providing silent boundaries and to see the effectiveness of viscous boundary.
Static analysis is carried out to simulate a field test numerically and results from the nu-
merical analysis are compared with the results of field test. Dynamic analysis is carried
out on the previously validated model and parametric study is performed.

7.2 Conclusions

� It is found that for dynamic analysis in PLAXIS 2D, providing viscous boundaries
is very effective method to reduce boundary effects.

� Results of static analysis, obtained from finite element analysis using PLAXIS 2D
are in good agreement with the results obtained from experimental analysis.

� Bearing capacity and settlement behavior of two layer soil system improves when
reinforcement is provided in the top layer. Bearing capacity of two layer reinforced
system further improves with decrease in the depth of reinforcement below the
base of footing but up to a limit.

� In dynamic analysis, with increase in number of geogrid layers bearing capacity
and settlement behavior of two layer soil system improves.
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� When there is only two layers of geogrid are present in two layer soil system with
first layer at the interface of two soils and second above this, then with increase in
the distance of second layer from first layer (up to a limit) causes an improvement
in the settlement behavior of two layer reinforced soil system.

� Geogrid stiffness also affect the bearing capacity and settlement behavior of two
layer soil system. Increment in geogrid stiffness causes an improvement in bearing
capacity and settlement behavior of two layer soil system.

� Results from Hardening soil model and HS small model are in good agreement and
realistic while results from Mohr Coulomb model are not much satisfactory. This is
because, for dynamic analysis Hardening soil model and HS small model are more
suitable as they include hardening effects of soil due to cyclic loads, which Mohr
Coulomb model does not include.

7.3 Further scope of research

� Here width of the granular fill is kept as 2.5D, as used in field test. This width
can be varied to see the effect of width of granular fill on the load bearing and
settlement behavior of two layer soil system.

� Width of geogrid layer can be varied to determine its effect on the load bearing and
settlement behavior of two layer soil systems.

� A study can be carry out with different frequencies and magnitudes of dynamic
load to determine the effect of these parameters on the load bearing and settlement
behavior.

� Geogrid layers can be simulated with positive and negative interfaces using PLAXIS
2D.

� Value of soil damping can be varied to see the effect of soil damping on the behav-
ior of two layer reinforced soil systems.
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