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Abstract 
The present work aims at the introduction and application of Markov and semi-Markov 
models in estimating the waiting times and magnitudes of the great earthquakes in future. 
These model assumes that the successive earthquakes in same structural discontinuity are 
not independent events, which means that time and place of future earthquake events are 
related to previously occurred earthquake in the region considered, as demonstrated by 
elastic rebound theory. While other most commonly used models such as Poisson model 
assumes spatial and temporal independence of all earthquakes including great earthquakes 
i.e., occurrence of one earthquake does not affect the likelihood of a similar earthquake at 
the same location in the next unit of time. Such models may apply to regions characterized 
by moderate frequent earthquakes in larger areas. While Markov and semi-Markov models 
describes the sequences of events more adequately at small regions with great infrequent 
earthquakes. In this report, these probabilistic models are applied in the central Himalayan 
region, by considering the sequence of earthquakes to form a stationary Markov chain. The 
occurrences of earthquakes in these models is described by discrete time and discrete states 
for the earthquake magnitudes and locations. In Markov and semi-Markov models, the 
successive states are governed by the transition probabilities depending on the just previous 
state and not on the history of reaching to that state. The use of probability distributions for 
earthquake magnitude and inter arrival time as continuous random variables is unable to 
account for such a dependence. It has been discussed that how this dependence can be 
utilized to carry out a time dependent seismic hazard analyses. On the basis of 
seismotectonic characteristics, the study area is divided into four sub regions and the 
application of these models has been illustrated to predict the probability of the next 
earthquake in different sub regions as a function of time from the previous earthquake, 
conditioned on the magnitude and the sub region of the previous earthquake. The results 
obtained indicate that the next major earthquake can occur in any of the sub regions with 
almost equally high probability. Thus, the so called central Himalayan seismic gap is 
expected to be closed in near future. 
Keywords  Markov Process . Semi-Markov Process . Great Earthquakes . Central 
Himalayan seismic gap . Transition Probability . State Occupancies . Seismic hazard 
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Chapter 1 
 

INTRODUCTION 
 

 1.1  General Background 
In view of the fact that specific prediction of earthquakes is not a reality at present, 
stochastic modeling of great earthquakes as a function of magnitude, space and time 
provides a useful tool in seismic hazard analysis and risk studies. A reliable hazard 
assessment goes a long way in mitigation of seismic risks by earthquake resistant design of 
structures and keeping necessary preparedness in place. The main motive in seismic hazard 
analysis includes identifying the earthquake sources, modeling the occurrences of 
earthquakes on these sources, determining the bedrock motion at the site due to an 
earthquake's occurrence, evaluating the soil's amplification of the motion at the site and 
determining the structural response. So, this report mainly concerned with the second step 
in seismic hazard analysis, modeling of earthquake occurrences. Because of the 
uncertainties in estimating parameters associated with the underlying physical processes 
causing occurrence of earthquakes, characterization of process is probabilistic in nature. 
Recurrence characterization includes estimation of sizes of and holding times between 
successive great earthquakes at a given location. 

From a physical standpoint, occurrences of great earthquakes is governed by a 
continuous gradual process of accumulation and release of strain energy over a large 
region. Because of intermittently release of energy, the probability of next great 
earthquake is expected to be low in the same region. This requires estimating the 
probability of occurrence of great earthquakes based on magnitude and region of 
previous earthquake, which clearly shows the dependency of next great earthquake on 
the previously occurred earthquake in the same region. Also, laboratory representation 
of elastic rebound theory suggests that the time of occurrence and magnitude of a 
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sequence of earthquakes on given source may not be stochastically independent. 
Temporal dependencies is demonstration of the latent geophysical mechanism which 
causes earthquakes. Thus, to describe a unique type of temporal and spatial 
dependencies in a sequence of earthquake occurrences, Markov and semi-Markov 
models are used in this report. Earthquake occurrence is examined in three dimensions 
of time, magnitude and space by determining the joint probability of earthquake 
occurrence between magnitude and region states. In this report, magnitude and location 
dependent occurrence probabilities are estimated for the next large earthquake as a 
function of lapse time since the previous earthquake in central Himalayan region using 
semi-Markov model. 

Various models are available in the literature for characterizing the earthquake 
recurrence. Conventional extreme value probability distributions, like Poisson's model, 
normally apply to large geographical areas and are unable to consider the dependency 
between earthquakes as implied by elastic rebound model. Poisson model is used in the 
large areas identified with frequent moderate size earthquake occurrence, which 
consider the earthquake events as independent. Though, probability distributions like 
Lognormal, Gamma, Weibull and Inverse Gaussian can be used to model the probability 
of earthquake recurrence times as a function of magnitude, they do not really consider 
the dependence on the magnitude and location of the previous earthquake. Slip and 
time-predictable models can predict either the magnitude or the time of the next 
earthquake for a small source zone from the magnitude of the previous earthquake in the 
same source. But, it cannot account for the dependence on the magnitude and location of 
the previous earthquake in a different source zone. The models of earthquake occurrence 
based on stochastic processes that are characterized by a Markov property can account 
for temporal and spatial dependences. 

A Markov chain is characterized by discrete states of magnitude and location 
with the time intervals of successive state occupancies governed by the transition 
probabilities from the previous to the next state. A stochastic process has Markov 
property such that the conditional property distribution of future states of the earthquake 
occurrence events for known present state and all past states depend only upon the 
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present state and not any past states, which is called property of memorylessness. The 
transition to future state is conditional only on the just previous state ( regarded as 
present state) and not on the history of reaching to that state. Thus, Markov model can 
be used for the characterization of recurrence of great earthquakes based on uniform and 
exponential distribution for the recurrence times (holding times) between the 
earthquakes. Semi-Markov process is generalization of the Markov process which allow 
sojourn time between transitions to happen randomly based on any kind of distribution 
functions which rely on present and next visited state. Thus, semi-Markov model 
provides for distribution of holding time between successive earthquakes by using 
appropriate probability distributions like Weibull distribution, Lognormal distribution, 
which in case of Markov model is limited to uniform and exponential distribution. 
Semi-Markov model defines a stationary discrete-time, discrete-state processes in which 
occupancy of future successive states are governed by the transition probabilities of a 
Markov process. The stay in any state(holding time) is described by an integer valued 
random variable that depends on the present state and on the state to which the process 
will make next transition. 

To develop a Markov model for predicting conditional probabilities of 
earthquake magnitudes and locations in the study area, a comprehensive earthquake 
catalog was prepared from different sources, for the period since 1255 to 2015. To 
quantify the magnitude and location of earthquakes, annual maximum magnitudes of the 
available data are classified into four magnitude states and the locations are divided into 
four different sub regions on the basis of seismotectonic characteristics. The transition 
probabilities among different magnitude and location states are then estimated from the 
observed data, which are in turn used to estimate the probability of transition from a 
given initial pair of magnitude and location states to any other target pair as a function 
of time. For semi-Markov model, earthquake data with moment magnitude Mw≥6 from 
year 1803 up to 2015 is considered. The results obtained indicate very high probabilities 
of occurrence of great earthquakes in all the four sub regions after about 50 years period. 
Thus, one of the sub regions considered as seismic gap is in fact no different than  the 
other sub regions, as regards the probability of occurrence of large earthquakes in future. 
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1.2  Objective of the Study 
Objective of the present study is to apply the Markov and semi-Markov models for 
assessing the probability of occurrence of great earthquakes ( MW≥7.5) in the central 
Himalayan seismic gap. For this purpose, a study area is taken comprising a west to north-
west striking segment of the Himalayan tectonic belt and the southern part of the Tibetan 
plateau. This area is characterized by very high level of seismicity associated with various 
tectonic features in the region. Thus, objective of present work is 
1.  To study the various tectonics features of the Central Himalayan region and its 
seismicity. 
2. To divide the study region into sub-regions which are identified on the basis of 
distribution of epicenters of earthquakes in the region and thus to identify the seismic gap 
in the Central Himalayan region. 
3.  To develop the Markov and Semi-Markov for assessing probability of occurrence of 
great earthquake in Central Himalayan seismic gap. 
4.  To conclude from both model about the variation of future seismic activities with time 
in Central Himalayan seismic gap. 
  

1.3  Organization of the Thesis 
This dissertation consists of a total of six chapters. Chapter 2 is laying emphasis on 
literature review, in which works of the other researchers on the same topic is mentioned. 
This chapter also includes discussion of other models available in the literature for 
assessing probability of occurrence of earthquakes, explained in brief . In chapter 3, 
tectonics and seismicity of study region is discussed along with the Zonation of study 
region into other sub regions by considering the present seismic gap, also information 
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about various sources of earthquake catalog along with its duration is given. In chapter 4, 
Markov model is explained, which includes about the methodology and  results obtained by  
application of Markov model for assessing probability of occurrence of great earthquakes 
in central Himalayan seismic gap. In chapter 5, semi-Markov model is explained along 
with its methodology and results obtained by application of model in the study region. 
Finally, chapter 6 includes the summary of the Markov and semi-Markov model and 
conclusions made for the present work, obtained using these two models. 
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Chapter 2 
 

LITERATURE REVIEW 
 

In literature, a large number of probabilistic methods for modeling of occurrences of 
earthquakes are available which are used in probabilistic seismic hazard assessment. 
Various models are used as per the pertaining physical conditions at the region considered 
and its seismicity. As the Poisson model ( Cornell 1968; Gardner and Knopoff 1974) is 
used when the earthquakes occur frequently in a large region, so that the occurrence of next 
earthquake in the a region can be considered independent of the previously occurred 
earthquake in the same region. Whereas, Markov and semi-Markov models (Cluff et al. 
1980; Herrera et al.2006; Altinok and Kolcak 1999; Nava et al. 2005) are used to 
characterize the earthquake occurrence processes to include the temporal and spatial 
dependencies among the successive earthquake events, thus these models are used in the 
small regions having high seismicity. 
Many researchers in the past have used various models present in the literature, to model 
the earthquake occurrence events according to the underlying physical process and 
seismicity of region. Some important amongst of them are elastic rebound model (Reid 
1910; Richter 1958), Markov models (Vere-Jones and Davies 1966; Knopoff 1971; 
Vageliente 1973; Veneziano and Cornell 1974; Lomnitz-Adler 1983; Patwardhan et al. 
1980), Poisson's models (Brillinger 1982; Lomnitz and Nava 1983) and Slip-predictable 
models and Time-predictable models ( Shimazaki and Nakata 1980). Recent research as 
explained by elastic rebound theory suggests that most accurate prediction about future 
seismic activities requires the prediction of size and location of future earthquake and the 
time since the previously occurred earthquake in a given region. According to it, the 
occurrence of a future earthquake of particular size and location depends upon the size, 
location and time of occurrence of previously occurred earthquake, which shows the spatial 
and temporal dependencies among the occurrences of seismic activities. Time predictable 



7 
 

models correlates the size of an earthquake with the time elapsed since the previously 
occurred event (Shimazaki and Nakata, 1980), which incorporates the temporal 
dependencies among the earthquake events (Anagnos and Kiremidjian, 1984). However, it 
allows for the prediction of time but not the size of the next earthquake. Slip-predictable 
models correlates the holding time between the earthquakes with the size of an earthquake 
at the end of time interval. Thus, by knowing the holding time distribution between the 
earthquakes, amount of strain energy released thus size can be determined. 
Vere-Jones (1966) uses continuous time, continuous state Markov process to model 
aftershocks as sequence of events of decreasing frequency and magnitude. Knopoff (1971) 
uses stationary Markov process to model stored elastic energy of deformation, main events 
and aftershocks. Veneziano and Cornell (1974) uses Markov model to show temporal and 
spatial dependence among earthquake occurrences when shear stress equals static friction 
stress. Lomnitz-Adler (1983) apply Markov model using simulation to give a simplified 
representation of the spatial distribution of earthquakes on adjacent faults. Patwardhan et al 
(1980) describes discrete-state semi-Markov process to show holding time dependence on 
magnitude of previous and next events. Anagnos and Kiremidjian (1984) uses semi-
Markov model for time predictable earthquake sequences applied to Parkfield region and 
also applied a discrete state time predictable stochastic model with spatial dependency 
among earthquake events with holding time distribution assuming Weibull probabilistic 
distribution. Cornell and Winterstein (1986) uses semi-Markov model for combined time 
and slip predictable model. Cornell and Winterstein (1986) uses semi-Markov model for 
combined time and slip predictable model.  
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Chapter 3 
 

TECTONICS AND SEISMICITY OF STUDY REGION 
 

3.1 Study Region 
The region chosen for study comprises the central Himalayas covering Nepal and 
contiguous areas of India and southern Tibet, bound by longitudes 77˚ N and 89˚ N and 
latitudes 25.5˚E and 32.75˚E. This is among the most active seismic regions of Himalayas, 
visited regularly (~100 years) by major to great earthquakes. The most recent one after the 
Bihar-Nepal earthquake of 15.01.1934 with MW 8.1 is the Gorkha earthquake of 
25.04.2015 with MW 7.8, followed by a very strong aftershock of MW 7.2 on 12.05.2015. 
Seismic activity in this area is related to the collision and under thrusting of the Indian 
plateau beneath the Eurasian plateau.  
3.1.1 Tectonics of  Region 
Major tectonic features in the region are the Main Central Thrust(MCT), the Main 
Boundary Thrust(MBT) and Main Frontal Thrust(MFT). MCT is a major geological fault 
where the Indian Plate is pushed under The Eurasian Plate along the Himalayas. Indus-
Tsangpo suture zone marks the collision between the Indian subcontinent and Eurasia. The 
fault slopes down to the north and is exposed on the surface in NW-SE direction. The 
Greater Himalayas is fringed below by MCT and South Tibetan detachment. The lesser 
Himalayan sequence is fringed by MBT and MCT. The Tethyan Himalayan sequence is 
fringed below by South Tibetan detachment. The Himalayan Frontal Fault system (MFT) 
marks the principle present day tectonic displacement zone between the Indian plate and 
the Himalaya; i.e., at the northern boundary of Indian plate. The Himalaya rides over the 
Indian plate on a decollement fault that does not cut through the basement. The surface 
expression of this fault is the discontinuous zone of reverse faulting called MFT between 
sub-Himalaya and Indian plains and a set of anticlinal ridges and synclinal valleys that 
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accommodates slip on the buried decollement fault by folding. Most structures of Himalaya 
north of MFT are inactive today, although some part of them  particularly MBT have been 
reactivated by younger deformation accompanying the MFT of India and Nepal and the 
Salt Range Thrust of Pakistan. The tectonic map of the study area with epicenters of 
available past earthquakes superimposed is shown in the Fig.1. 

 
Fig.1  Major tectonic features in the region of study along with the epicenters of available 
data on past earthquake (Sources for preparing this seismotectonic map are taken from 
GSI: Seismotectonic Atlas of India and its environs) 
3.1.2  Seismicity of Central Himalayan Region 
Himalayan region is highly seismically active region, whose seismicity is reflected by the 
frequency of large, medium and small earthquakes. Seismicity of Himalaya is mainly due 
to the relative high stress buildup because of the continual convergence of the Indian plate 
beneath the Eurasian plate along a shallow plane, thus causing internal deformation in the 
earth's crust. Like other parts of Himalaya, central Himalayan region is also concerned with 
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the high seismic activities. Nepal, located in central Himalayan region has experienced 
great earthquakes in past including Bihar-Nepal earthquake (1934, MW 8.4) and Gorkha 
earthquake (2015, MW 7.8). Central Himalaya lies in the seismic zone IV with PGA value 
0.24g. Spatial variation of seismicity in Central Himalayan region is highly non-uniform, 
with highly concentrated in Western Nepal and fairly scattered in Central Nepal and 
concentrated in  south-east Nepal from where it offsets towards North through major faults. 
Distribution of epicenters of earthquakes with different magnitude class intervals is shown 
in Fig 1. 

3.2  Earthquake Data        
In most statistical studies, earthquake are represented by point events in a five dimensional 
space-time-size continuum. In ordinary earthquake catalogs, the five coordinates are given 
as longitude and latitude of epicenter, focal depth, origin time and magnitude. There are 
many other quantities which characterize an earthquake such as fault-plane parameter(or 
more generally moment tensor components), stress drop, fault rupture length, rupture 
velocity etc. Statistical studies involving these quantities are few because complete dataset 
on these is unavailable especially for small or old earthquakes. Usually, earthquake catalog 
consists of earthquake data classified on the basis of foreshocks, mainshocks, aftershocks 
and earthquake swarms. For the application of models in this report, earthquake catalog 
was homogenized to moment magnitude (MW) and declustered to include only mainshocks, 
obtained by removing the foreshocks and aftershocks. Size of earthquake is taken as 
moment magnitude of earthquakes (MW). 
A catalog of 5719 earthquakes with magnitude MW≥4 is compiled ( by Dr.I.D.Gupta) for 
the study region for the period 1255 to 2015 from various sources, important among which 
are the Indian Meteorological Department(IMD), International Seismological Center(ISC), 
United States Geological Survey(USGS), etc. for the instrumental data, and National 
Oceanic and Atmospheric Administration(NOAA), Disaster Preparedness Network 
Nepal(DPNET), Oldham(1883), Milne(1911), etc. for the historical earthquakes. For 
application of Markov model, resulting catalog of 3760 main shocks with magnitude MW≥4 
is used. For application of semi-Markov model, only main earthquakes with magnitude 
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MW≥6 are chosen from the catalog for the period 1803 to 2015. Available historical records 
for about past 800 years indicate that large to great earthquake have been occurring 
regularly in this area. On average, an earthquake of magnitude 7.5 or greater has occurred 
in the area every 40 years on average. The recent Gorkha earthquake of 25 April 2015 with 
magnitude 7.8 is the major earthquake after the 1934 Bihar-Nepal earthquake of magnitude 
8.1.  

To develop the Markov model for occurrence of earthquakes in the region of 
Fig.1, only the annual maximum magnitudes are considered in the present study. These 
maximum magnitudes are grouped into four intervals as 4.0≤MW<5.5(small), 
5.5≤MW<6.5(moderate), 6.5≤MW<7.5(large) and 7.5≤MW≤8.5(major) to define the 
magnitude states. For semi-Markov model corresponding magnitude states are defined 
as 6.0≤MW<6.5, 6.5≤MW<7.0, 7.0≤MW<7.5 and MW≥7.5 respectively. 

Also, to define the location states for both Markov and semi-Markov model, the 
study region is divided into four sub-regions designated R1 to R4, as shown in Fig.2. 
First three sub-regions correspond to the highly seismic Himalayan belt, whereas sub-
region 4 to the north is considered to have somewhat lower frequency and maximum 
magnitude of earthquakes. However, in view of the orogenic history of the region and 
the ongoing tectonic processes, major earthquakes in the four sub-regions are expected 
to have strong spatial dependence. The annual maximum magnitudes in the four 
magnitude states are also plotted in Fig.2. It is seen that sub-region R2 of the Himalayan 
belt encompassing area of central Nepal has not experienced any major earthquake with 
magnitude 7.5 or more, and it is thus considered as a seismic gap. On the basis of elastic 
rebound hypothesis, the gap area is expected to be more prone to a major earthquake in 
future, if the strain energy has not been released a seismically. Thus, application of the 
Markov and semi-Markov model is illustrated in the present study to estimate the 
probabilities of a major earthquake in this gap area as a function of time. 
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Fig.2  Four sub-regions to define the location states of the annual maximum magnitudes in 
the region of study (Sources for preparing this seismotectonic map are taken from GSI: 
Seismotectonic Atlas of India and its environs) 
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Chapter 4 
 

MARKOV MODEL 
 

4.1  Introduction 
The occurrence of earthquakes is represented by a process of strain accumulation 
interrupted by sudden release intermittently, when strain exceeds a threshold limit specified 
by shear strength of rocks in Earth's crust. Laboratory representation of elastic rebound 
theory suggests that the time of occurrence and magnitude of a sequence of earthquakes on 
given source may not be stochastically independent. Thus to describe a unique type of 
temporal and spatial dependencies in a sequence of earthquake occurrences, Markov and 
semi-Markov models are used. Temporal dependency is demonstration of the latent 
geophysical mechanism which causes earthquake. Markov and semi-Markov models used 
for earthquake forecasting incorporates two important fundamental postulates: 
1. The sequence of occurrences of earthquakes in a particular area is a stochastic process in 
time. 
2. A stochastic process has Markov property such that the conditional probability 
distribution of future states to which the process will make transition for a given present 
state and all past states depends only upon the present state and not on any past states. The 
processes possesses property of memorylessness. 

In the application of Markov model two states are considered corresponding to 
the magnitude of earthquake and region associated with occurrence of earthquake. States 
corresponding to the earthquake occurrence are considered to be recurrent which means 
that starting in that state the chain must eventually return to the state at least once. A 
Markov process is characterized by stationary discrete-state and discrete-time intervals 
in which the successive state occupancy is governed by a transition probability. 
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Transition probability completely determines the Markov process. Transition probability 
represents the probability of going from ith state to jth state in some steps. For a 
stochastic process, {X(t),t>0} probability of going from ith state to jth state in s steps is 
given as 
 ps(i,j)= P{X(t+s)=j| X(t)=i} 

 
(1) 

where i represents the present state at time t and j represents the future state after s steps 
from the present state i. Moreover, for a process {X(t),t>0} corresponding to a state space 
E={1,2,3,...,N} 
 P{X(t+s)=j| X(h)=i, 0<h≤t}=P{X(t+s)=j| X(t)=i} for t, s>0 and i, jϵ E 

 
(2) 

Mathematically, above equation represents the memoryless property i.e., future 
states of a stochastic process only depends upon the present state, not on the past states 
before time t. 

In Markovian estimation, the transition matrix represents the distribution of a 
Markov chain at the next step if its current state is given. Matrix element corresponding 
to ith row and jth column is denoted by pij, which gives the transition probability from 
state i to state j 

 pij = ௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௧௥௔௡௦௜௧௜௢௡௦ ௙௥௢௠ ௦௧௔௧௘ ௜ ௧௢ ௦௧௔௧௘ ௝
௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௧௥௔௡௦௜௧௜௢௡௦ ௙௥௢௠ ௦௧௔௧௘ ௜  

 
(3) 

Transition matrix is used to follow the evolution of system through successive 
intervals of time. It is non-negative and square matrix and having sum of element within 
each row equal to one. 

 ෍  p(i, j) = 1
ே

௝ୀଵ
 

(4) 

Also, the transition probability is assumed to be stationary, which allow the 
transition to future earthquake events in one-step and not changing as the elapsed time 
increases since the previous state. Thus, the only information needed to describe the 
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process is the initial conditions(a probability mass function for X0) and the transition 
probabilities, which are used to follow the evolution of system through successive 
intervals of time. For a stochastic process X={Xn, n=0,1,...} with discrete state space E, 
transition probability is said to be stationary if 

 P{X1 = j| X0 = i} = P{Xn+1 = j| Xn = i} 
 

(5) 

for any set of states i0,...,in in the state space and jϵ E. 

4.2 Mathematical Formulation 
For the application of the Markov model, magnitude states are defined into four classes as 
given below.  
Table 1 States for magnitude of  earthquakes in Markov model 
Earthquake magnitude (MW) class interval Magnitude States 
4≤MW< 5.5  M1 
5.5≤MW< 6.5 M2 
6.5≤MW< 7.5 M3 
MW≥7.5 M4 

 
For calculation of the transition probability matrix, the total time length for which the 
data is available is divided into time intervals of equal size of ∆t, such that every interval 
has at least one event. If there is more than one earthquake in a particular time intervals, 
the highest magnitude earthquake in that intervals is used. In each time interval, a 
magnitude state is then assigned to the earthquake event as per the class intervals 
defined. In this, ∆t is chosen as 1 year, so that available earthquake catalog is divided 
into time intervals of one year, ranging from 1803 to 2015. Now, the maximum 
magnitude in each class interval is used to assign the magnitude and location states to 
each earthquake event. However, this results in many empty time intervals of one year. 
If an empty interval is followed by an interval occupied by M3 or M4 state, an M1 state 
(lowest) is temporarily assigned to it so that the transition to the following higher state is 
taken into account. This is done to include the effect of all important earthquakes in the 
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region, even for incomplete part of the catalog. However, for region to region transition, 
only the complete part of the catalog with continuous data for all the years is used. In 
this case four region states are considered corresponding to each sub region viz. R1, R2, 
R3 and R4 as shown in Fig 3. Continuing in this way for all time intervals, a Markov 
chain is developed for calculation of the transition probability matrix for both the 
magnitude states and region states. The transition matrix thus obtained for a particular 
state variable can be used to find the probability of occurrence of a given state during 
specified future time interval, if the present state is known. If the prediction is made 
over n time intervals (total duration n∆t) and if the initial state is i(0), the probability P 
that the system will evolve through the sequences of n states as {i(1), i(2),..., i(n)} can 
be written as  

 )()1()3()2()2()1()1()0( niniiiiiii ppppP    (6) 
This can be used to calculate the probability Pij of occurrence of a particular state 

j out of M states and given initial state i during time period n∆t in future, by first 
estimating the complementary probability, CijP , of non-occurrence of state j, as follows 

    
   

 N

jii

N

jii

N

jii

N

jni ni
Cij PP

)1( 1)1( )2( 1)2( )3( 1)3( )( 1)(


 

(7) 

The required interval transition probability Pij can then be obtained as  
 Cijij PP 1  (8) 

Probability Pij  is obtained for both magnitude to magnitude transitions and 
region to region transitions. Thus overall probability for occurrence of next earthquake 
of a particular magnitude  in a particular region is obtained by calculating the joint 
probability between magnitude transition probability and region interval transition 
probability. In doing so, it is assumed that interval transition probability for magnitude 
is independent from interval transition probability for region. 



17 
 

 
Fig. 3  Four sub-regions to define the location states of the annual maximum magnitudes in 
the region of study for the application of Markov model (Sources for preparing this 
seismotectonic map are taken from GSI: Seismotectonic Atlas of India and its environs) 

 4.3  Results and Discussion 
To obtain the numerical results for the region of central Himalaya, four magnitude and four 
location states are considered as mentioned before. Thus a Markov chain is developed for 
magnitude and location states to calculate the transition probability matrix for both 
magnitude and region states as explained in section 6. The magnitude and region transition 
matrices thus obtained are as follows: 
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Interval transition probabilities for occurrence of various magnitude and location states for 
different initial states are computed from eqns.(4) and (5) using these transitions matrices 
for future time up to 100 years.       
 The results for the probability of occurrence of all possible combinations of initial 
and final magnitude states are given Fig. 4 (a) to (d). As expected from physical 
considerations, irrespective of the magnitude of the initial state, there is a monotonic 
increase in the probability with decrease in the magnitude of the final state. Also, the 
probability of transition from a lower magnitude state to a higher state is in general lower 
than the corresponding probability from the higher to the lower state (e.g., P13 is lower than 
P31). These observations can be explained from the fact that getting a smaller event after a 
big event is more likely than getting a bigger event after a smaller one. Also, the 
probability of having the same initial and final states decreases with increase in the 
magnitude state (e.g., P11 is much higher than P44). This is because the repetition of smaller 
magnitudes is more frequent than the larger ones. Thus, the results in Fig.5 can be 
considered to provide physically realistic probabilities of occurrence of different 
magnitudes of future earthquakes conditioned on the magnitude of the previous earthquake. 

  
(a) (b) 
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 Fig. 4  Example numerical results on interval transition probabilities from different initial 
magnitude states to the other states. Panels (a), (b), (c) and (d) in the figure corresponds to 
initial states as M1, M2, M3 and M4, respectively 
  Fig. 5 (a) to (d) gives the probabilities of transition for earthquakes from a given 
region to other regions. The four regions considered are such that, the central region R2 
along the Himalaya represents a seismic gap lacking occurrence of major earthquakes (state 
M4) and characterized by relatively much lower frequency of even smaller earthquakes. 
The regions R1 and R3 on its left and right sides (Fig.2) are seen to have much higher 
occurrence rate of smaller earthquakes, with two great earthquakes in region R1 and three 
great earthquakes in region R3 since 1803. The seismicity in region R4 to the north of main 
Himalaya also forms a part of the Indian plate boundary, but it accommodates relatively 
smaller plate motion. This sub-region is also devoid of major earthquakes, but the 
frequency of smaller magnitude events is comparable to the main Himalayan belt. As the 
region to region interval transition probabilities are independent of the magnitude states, 
these are seen to be quite close for transitions to regions R1, R3 and R4, all of which are 
characterized by almost equally high overall frequency of earthquake occurrences. The 
transitions to region R2 with much smaller overall frequency are seen to have significantly 
less probability up to about 50 years in future. However, the interval transition probabilities 
from region R2 to itself are seen to be slightly higher than those from the other three 
regions to R2, indicating that consecutive occurrences within R2 are somewhat more likely. 
Also, from the results in Fig 6 it may be concluded that if the next occurrence has not taken 
place in any other sub-region for about 50 years, then its occurrence in the gap region R2 is 
almost equally likely. 
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 Fig.5  Example numerical results on interval transition probabilities from different initial 
regions to all the regions over a time period of 100 years. Panels (a), (b) and (c) in the 
figure corresponds to initial regions as R1, R2 and M3, respectively 

 The results in Figs. 3 and 4 can be used for the probabilistic forecasting of the 
next major earthquake in different sub-region by defining the joint transition 
probabilities from any specified initial to the final pair of magnitude and region states. 
For this purpose, magnitude to magnitude and region to region transitions are assumed 
to be statistically independent. Thus, given an initial region and magnitude combination 
(r0, m0), the transition probability to another magnitude and region combination (r1, m1) 
after elapsed time t can be defined using the concept of conditional probability as  

 )()(),,|,( 10100011 tPtPtmrmrP mmrr   (9) 
This has been used to estimate the probabilities of occurrence of a major earthquake (state 
M4) in various sub-regions from different combinations of initial pair of magnitude and 
region states. Some typical results are shown in Fig. 7(a) to (d). 
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Fig.6  Probabilities of a major earthquake (state M4) in different sub-regions as a function 
of time for four typical pairs of initial magnitude and region states 
The results in Fig. 5 do not indicate any significant dependence on the choice of the pair of 
initial magnitude and location states. However, in all the cases, the transition probabilities 
to the gap region R2 are seen to be significantly smaller than those to other sub-regions for 
periods up to about 50 years. The transition  probabilities to all  the sub-regions increase 
monotonically and become almost the same beyond 50 years of period. Thus as mentioned 
before, if the next major earthquake has not occurred in any of the sub-regions up to 50 
years, the chance of its occurrence in the gap area is also equally high with a probability 
increasing from around 0.88n at 50 years to around 0.985 at 100 years interval. To get an 
exact idea about the probabilities of a major earthquake in different sub-regions for smaller 
time periods, Table-2 gives the average numerical values of all the different combinations 
of initial states for periods  of 10, 20 and 40 years. It is seen that the probability of 
occurrence of a major earthquake in the gap area is lower by about 8% for smaller period 

(c) (d) 

(a) (b) 
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of 10 years, which further decreases to about 5% for 20 years period and to about 2% for 
the 40 years period. 
Table 2  Typical values of the transition probabilities to combination of states (R2, M4) 
from various other initial combinations of states for lapse times of 10, 50 and 100 years. 

Target 
Region 

Probability of M4 in future time of  
10 years 20 years 40 years 

R1 0.330 0.580 0.833 
R2 0.255 0.521 0.813 
R3 0.330 0.580 0.833 
R4 0.330 0.580 0.833 

  
The results in Figs. 3 ad 4 can also be useful in time-dependent probabilistic seismic hazard 
analysis(PSHA). The probabilities of transition to smaller magnitude events (e.g., to states 
M1 & M2 in Fig.3) are seen to reach unity within about 20 years, which is much smaller 
than the periods of applicability of the obtained PSHA results. Smaller magnitudes can thus 
be described separately for each source using constant occurrence rates obtained from the 
recurrence relation based on the available past data for that source only. However, the time 
dependence of the occurrence rate may be very crucial for the largest magnitudes, because 
the probability of occurrence may not reach unity for even very large time intervals. Also, 
the largest earthquakes are expected to have strong spatial dependence, because the next 
major earthquake is not likely to occur in the same seismic source. Thus, the time-
dependent occurrence of such events cannot be described straightaway for each small size 
seismic source zone used commonly in PSHA estimations.  For this purpose, the long term 
average occurrence rate of great earthquakes for the complete big region is first multiplied 
by the probabilities of transition to the next great earthquake (e.g., from M4 to M4 in Fig. 
3), which gives the occurrence rate for the entire region at different times. These are then 
distributed among all the sub-regions in proportion to the transition probabilities from the 
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sub-region of the last major earthquake (Fig.4) to get the occurrence rates at different times 
for each sun-source.  Use of these occurrence rates with the Poisson assumption would 
provide the PSHA estimates as a function of the absolute time since the last occurrence of a 
large magnitude earthquake. This will be much simpler and more efficient way than using 
the Monte-Carlo simulations  
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Chapter 5 
 

SEMI-MARKOV MODEL 
 

5.1  Introduction 
Generalization of Markov process is semi-Markov process, which allow sojourn time 
between transitions to happen randomly based on any kind of holding time distribution 
functions which rely on present state and next visited state. Semi-Markov models have 
been used to represent the sequence of large magnitude earthquakes and to characterize 
spatial and temporal seismic gaps. In Markov model holding time hij(t), defined as the 
probability that process stays in state i for a time period t before it make transition to state j, 
is exponentially distributed with parameters conditionally on present state i. As Markov 
process is associated with the property of memorylessness, so the exponential is the only 
memoryless continuous random variable. Every instant is like the beginning of a new 
random period, which has the same distribution regardless of how much time has already 
elapsed. The memoryless property makes it easy to reason about the average behavior of 
exponentially distributed items in queuing systems. However, semi-Markov is not 
restricted to exponentially distributed holding times. In semi-Markov process, holding time 
in a given state is identically distributed, conditional on both the current state and the next 
state, thus providing the greater flexibility in modeling. In semi-Markov model, parameters 
and distributions have been chosen to assure increasing hazard rates for holding time 
distributions e.g., Weibull, Lognormal, Gamma distributions, which implies that 
probability of an earthquake occurrence in near futures increases with time since the last 
event. The increasing hazard captures some of the characteristics of stress build up and 
release.   
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The semi-Markov model defines a stationary discrete-time, discrete-state process in which 
successive state occupancies are governed by transition probability of the Markov process, 
which is discussed in previous section 5.1.  

5.2  Mathematical Formulation 
In present model, two states are considered associated with the magnitude of earthquake 
and the region in which it occurred. The region states viz. R1, R2, R3 and R4 along with 
the epicenters of the earthquakes with magnitude MW≥ 6 are shown in Fig 7. The set of all 
values that the state variables can assume forms the state space. Because the state space 
must have a finite set of states, the state variables cannot take on a range of real numbers, 
but instead are restricted to discrete values. All the events that can occur and cause a state 
transition forms the event state. The event set must be finite. The stay in any state known as 
holding time is described by an positive integer-valued random variable that depends upon 
on the presently occupied state and the state to which the next transition will be made. 
Distribution of holding time(tij=Tn-Tn-1) is independent of its behavior before Tn-1 but may 
be a function of present state X(Tn-1)=i and next visiting state X(Tn)=j. If all holding times 
in a semi-Markov chain are equal to a constant value, the chain can be studied as a discrete-
time Markov chain. To describe it completely only transition probabilities are needed. If a 
semi-Markov chain has only one state, all its holding times can only be a function of this 
one state, hence they are independent and identically distributed. Thus chain is studied as a 
renewal stream with renewal at each  transitions. The basic parameters for the semi-
Markov models are defined as below 
1 Transition Matrix 
Transition matrix is obtained by calculating all the transition probabilities pij. Thus, pij 
forms the ijth element of the transition matrix, which is discussed in detail in section 5.1. 
For N number of states, sum of elements of transition matrix along ith row must be 1. 

  
∑  pே௝ୀଵ (݅, ݆) = 1 

 

 
(10) 
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Transition matrix is calculated for both magnitude states and the region states separately. 

 
Fig. 7  Four sub-regions to define the location states of the  earthquake magnitudes MW≥6  
in the region of study for application of semi-Markov model (Sources for preparing this 
seismotectonic map are taken from GSI: Seismotectonic Atlas of India and its environs) 
2 Holding Time 
Before the transition from state i to state j, the process remains in state i which is referred 
as holding time tij. The holding times are positive, integer-valued random variables. All 
holding times are finite and each equal to one time unit. The probability mass function Tij 
in tij is called the holding time mass function for a transition from state i to j. 

 P{tij=m}= Tij(m); m=1,...,n. 
 

(11) 

Here, n is the number of time intervals. The ijth element of holding time mass function 
Tij(m) is obtained as 
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 P{tij=m} =   ୬୳୫ୠୣ୰ ୭୤ ୲୰ୟ୬ୱ୧୲୧୭୬ୱ ୤୰୭୫ ୱ୲ୟ୲ୣ ௜ ୲୭ ୱ୲ୟ୲ୣ ௝ ୢ୳୰୧୬୥ ୟ ୲୧୫ୣ ୧୬୲ୣ୰୴ୟ୪ ௠
୲୭୲ୟ୪ ୬୳୫ୠୣ୰ ୭୤ ୲୰ୟ୬ୱ୧୲୧୭୬ୱ ୤୰୭୫ ୱ୲ୟ୲ୣ ௜ ୲୭ ୱ୲ୟ୲ୣ ௝  

 
(12) 

3  Core Matrix 
The ijth element of the core matrix C(m) is the probability of the joint event in which a 
system that entered i at time t=0 makes its next transition to state j after a holding time m. 

Cij(m) = P((Xn = j|Xn-1= i), (tij = m)) 
           = P(Xn = j|Xn-1 = i).P(tij = m) 

 Cij(m) = Pij . Tij(m) 
 

(13) 

where, i,j = {1,2,...,N}, m={1,2,...,n}. N is the total number of states and n represents the 
total number of time intervals. Number of time intervals are created by equally dividing the 
range of string which is created by differences between the two successive years, 
proceeding through whole data. In doing so, a suitable single unit for time interval ∆t is 
chosen. 

Above equation is represented in form of congruent matrix multiplication form. 
Thus, core matrix can be obtained by multiplication of corresponding elements of 
transition matrix P and holding time mass matrix T(m). 

 C(m)= P.*T(m) (14) 
Sum of the elements of C(m) across the ith row gives the waiting time mass function wi(m) 
for the ith state. 

 wi(m) = ∑ Cij(m)ே௝ୀଵ  
 

(15) 

wi(m) is the probability that waiting time for ith state is equal to m. 
The cumulative probability distribution of the waiting time is obtained from 
 ≤ wi(n) = ∑ wi(m)௡௠ୀଵ  

 
(16) 
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≤ wi(n) is the probability that the waiting time for the ith state is less than or equal to n. The 
complementary of ≤ wi(n) is given by 

 Gwi(n) = ∑ ஶ௠ୀ௡ାଵ(݉)݅ݓ  (17) 
Gwi(n) is the probability that waiting time for the ith state is greater than n. 
4  Interval Transition Probability Matrix 
The most important statistical parameters of the semi-Markov process are the interval 
transition probabilities. The probability of a transition from state i to state j in the interval 
(0,n) requires that the process makes at least one transition during that interval. The process 
could have made its first transition from state i to some state at time m, where (0≤m<n), 
and then sum of succession of transitions, it could have made its way to state j at time n. 
Thus, interval transition probability F(n) is obtained as follows 

 F(n) = Gw(n) + ∑ ݊)ܨ(݉)ܥ − ݉)௡௠ୀ଴ ; n=0,1,2,... 
 

(18) 

Since T(0) is equal to 0, so F(n) is obtained for the interval 1≤m<n. Thus for any 
time interval n, F(n) is obtained through a recursive procedure. For n=1, by putting in 
above formula to obtain F(1), first we have to find F(0). F(0) represents the condition in 
which the process is in present time t=0, and willing to emerge itself further in future 
state. Thus, to generalize F(0), if i=j then it is equal to one and zero for other conditions 
in which process exist. So, F(0) may be represented using Kronecker Delta or Identity 
Matrix. 
 Fij(0) =൜1,   ݂݅ ݅ = ݆

0,   ݂݅ ݅ ≠ ݆  (19) 

For the development of semi-Markov model, only earthquake magnitudes MW≥6 
are considered from the earthquake catalog, ranging from year 1803 to 2015. To develop 
the transition probability matrix for both magnitude and region states, four magnitude 
states are defined belonging to the following class intervals for earthquake magnitudes 
given below  
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Table 3  States for earthquake magnitudes in Semi-Markov model 
Earthquake magnitude (MW) class interval Magnitude states 
6≤MW<6.5 M1 
6.5≤MW<7 M2 
7≤MW<7.5 M3 
MW≥7.5 M4 

 
Thus, each earthquake event is given a particular magnitude state and region state as per 
the magnitude class interval defined in above table and the region in which that 
earthquake event occur. Continuing in above way over whole earthquake data taken for 
the model, a Markov chain is developed for both magnitude states and region states. 
Four region states are defined corresponding to each sub-region viz. R1, R2, R3 and R4. 
Transition matrix so obtained for both states is used further in the process for the 
calculation of interval transition probability matrix for both states, which will give the 
probability of occurrence of earthquakes for a particular magnitude state in a particular 
region. 

Next in the process, holding time mass matrix is calculated for both magnitude 
states and region states. For this first holding time is estimated between two successive 
earthquake events continuing over whole earthquake data as follows 

  
tij = Tn-Tn-1 

 

 
(20) 

where Tn-1 is the time of previous earthquake visiting state ith and Tn is the time of next 
earthquake visiting jth state 

Now, a suitable length of time interval ∆t is chosen to obtain the n numbers of 
the equal holding time intervals. Here, in this model ∆t is taken equal to 5 years and 
number of holding time intervals are defined on the basis of the range of the holding 
times tij  of events which is equal to difference between maximum holding time and 
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minimum holding time. In this way, following holding time intervals are developed and 
an integer is assigned to each interval.  
Table 4 Class intervals for holding times between two successive occurrences of 
earthquakes 
Holding time interval (yr.)  Integer assigned to each interval 
0≤tij≤5 1 
6≤tij≤10 2 
11≤tij≤15 3 
16≤tij≤20 4 
21≤tij≤25 5 
26≤tij≤30 6 
 
Thus, in this case total six intervals are defined (n=6) each of which having length equal to 
5 years (∆t=5 years). Continuing over whole earthquake data, each holding time between 
successive earthquakes is assigned with an integer according to the class intervals for 
holding time  defined in above table. Thus, ijth element of holding time mass matrix Tij(m) 
for a particular time interval m is obtained as  

  
P{tij=m} =   ௡௨௠௕௘௥ ௢௙ ௧௥௔௡௦௜௧௜௢௡௦ ௙௥௢௠ ௦௧௔௧௘ ௜ ௧௢ ௦௧௔௧௘ ௝ ௗ௨௥௜௡௚ ௔ ௧௜௠௘ ௜௡௧௘௥௩௔௟ ௠

௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௧௥௔௡௦௜௧௜௢௡௦ ௙௥௢௠ ௦௧௔௧௘ ௜ ௧௢ ௦௧௔௧௘ ௝  
 

 
(21) 

 Here, m≤n i.e., m=1,2,3...,6. In this way, holding time mass matrix is obtained for 
both magnitude and region states corresponding to each time interval. Thus a total six mass 
matrix are obtained for both states. 

Now, our next target is reduced to get only interval transition probability matrix. 
For this, first we have to find the core matrix which is obtained by multiplication of 
corresponding elements of transition probability matrix and holding time mass matrix 
for each holding time interval 

C(m)= P.*T(m) 



31 
 

where, m=1,2,3,...,6. 
Next, complementary probability distribution Gwi(n) defined as probability that waiting 
time for the ith state is less than or equal to n is estimated, which is given as  

Gwi(n) = ∑ ௠ୀ௡ାଵ∞(݉)݅ݓ , for n=1,2,...,6. 
where, wi(m) represents the probability that the waiting time for ith state is equal to m for 
m=1,2,3...,6. 
Finally, interval transition probability matrix is obtained using the following recursive 
procedure 

F(n) = Gw(n) + ∑ ݊)ܨ(݉)ܥ − ݉)௡௠ୀ଴ ; n= 1,2,... 
Above equation goes for n=1 up to 6. Thus, total six interval transition 

probability matrices are obtained  for each time interval corresponding to both region 
and magnitude states. For calculate F(1), initially we have to calculate F(0), which is 
equal to Kronecker Delta or Identity Matrix, as explained in the sec 5.2. 

Fij(0) =൜1,   ݂݅ ݅ = ݆
0,   ݂݅ ݅ ≠ ݆  

Interval transition probabilities so obtained are used to calculate the overall 
probability of occurrence of earthquake in a particular region for a particular magnitude 
states. For this we have to determine the joint probability between the region and 
magnitude interval transition probabilities . For this, it is assumed that region to region 
transition probabilities are independent from magnitude to magnitude transition 
probabilities. If the previous earthquake is within region r0 having magnitude m0, then 
the probability of occurrence of the next earthquake within region r1 having magnitude 
m1 after d time periods is a conditional probability defined as follows 

 P(R=r1, M=m1| r0, m0, d) = P(r1, m1|r0, m0, d) = P(r1| r0, d). P(m1|m0, d) 
             = FR{r0 r1, d}.FM{m0 m1, d} 

 

 
(22) 
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Here, it is important to note that the above discussed parameters are calculated separately 
for both magnitude to magnitude transitions and region to region transitions. 

 5.3 Results and discussion 
For semi-Markov model, Markov chain is developed as discussed in the sec 7 to calculate 
the transition probability matrices for both magnitude and region states. The Transition 
probability matrices thus obtained are given as below 

PM = 














04.06.
008.2.

1111.0556.3889.44.
0714.1071.25.5714.

   
PR= 















4211.1053.1579.3158.
1429.6429.02143.
6667.0033.

35.2.045.

 
Holding time mass matrix for both region and magnitude states is given below as  
Holding time mass matrices for magnitude states 

Tm(1)= 














0106667.
005.1
5.18571.1
16667.15625.

 Tm(2)= 














00033.
005.0
5.01429.0
0003125.

 

 

Tm(3)= 














0000
0000
0000
033.00

 

 

Tm(4)= 














0000
0000
0000
0000625.

 

 

Tm(5)= 














0000
0000
0000
0000

 

 

Tm(6)= 














0000
0000
0000
0000625.
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Holding time mass matrix for region 

Tr(1)= 














1.0000    1.0000    1.0000    1.0000 
1.0000    0.6667    0.0000    0.6667 
0.5000    0.0000    0.0000    1.0000 
0.8571    0.5000    0.0000    0.4444 

 Tr(2)= 














0.0000    0.0000    0.0000    0.0000 
0.0000    0.0000    0.0000    0.3333 
0.5000    0.0000    0.0000    0.0000 
0.1429    0.5000    0.0000    0.5556 

 

 

Tr(3)= 














0.0000    0.0000    0.0000    0.0000 
0.0000    0.1111    0.0000    0.0000 
0.0000    0.0000    0.0000    0.0000 
0.0000    0.0000    0.0000    0.0000 

 

 

Tr(4)= .
0.0000    0.0000    0.0000    0.0000 
0.0000    0.1111    0.0000    0.0000 
0.0000    0.0000    0.0000    0.0000 
0.0000    0.0000    0.0000    0.0000 














 

 

Tr(5)= 














0.0000    0.0000    0.0000    0.0000 
0.0000    0.0000    0.0000    0.0000 
0.0000    0.0000    0.0000    0.0000 
0.0000    0.0000    0.0000    0.0000 

 

 

Tr(6)= 














0.0000    0.0000    0.0000    0.0000 
0.0000    0.1111    0.0000    0.0000 
0.0000    0.0000    0.0000    0.0000 
0.0000    0.0000    0.0000    0.0000 

 

 
 

Interval transition probability matrices for both magnitude and region states as discussed in 
sec 7, are obtained below as 
Interval transition probability for magnitude state 

FM(1)= 














2.4.04.
04.4.2.

0556.0556.4444.4444.
0714.0714.25.6071.

 FM(2)= 














0286.1886.26.5229.
0365.0365.6278.2992.
1169.0947.3370.4513.
0511.0490.22.6348.

 

 

FM(3)= 














0493.0665.3891.4950.
0792.0789.3566.4853.
0795.1112.2842.5252.
0631.1184.2630.5555.

 

 

FM(4)= 














0.0671    0.0977    0.2919    0.5433 
0.0912    0.1060    0.3011    0.5017 
0.0698    0.1135    0.2862    0.5305 
0.0585    0.1073    0.2624    0.5718 
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FM(5)= 














0.0725    0.1090    0.2780    0.5405
0.0714    0.1113    0.2806    0.5366
0.0652    0.1067    0.2824    0.5457
0.0627    0.1024    0.2766    0.5583

 FM(6)= 














0.0653    0.1070    0.2754    0.5523
0.0665    0.1086    0.2828    0.5421
0.0652    0.1051    0.2802    0.5495
0.0618    0.1007    0.2669    0.5706

 

 
 

Interval transition probability matrix for region states   

FR(1)= 














0.4211    0.1053    0.1579    0.3158
0.1429    0.7143    0.0000    0.1429
0.3333    0.0000    0.3333    0.3333
0.3000    0.1000    0.0000    0.6000

 FR(2)=














0.3397    0.1511    0.1191    0.3901 
0.1642    0.5497    0.0226    0.2635 
0.5737    0.0684    0.0526    0.3053 
0.2506    0.2230    0.0474    0.4790 

 

 

FR(3)= 














0.3300    0.2027    0.0758    0.3915
0.1761    0.5105    0.0335    0.2799
0.3371    0.1598    0.1081    0.3950
0.2788    0.2466    0.0554    0.4193

 

 

FR(4)= 














0.2988    0.2422    0.0700    0.3891
0.1906    0.4928    0.0365    0.2802
0.3162    0.2001    0.0834    0.4003
0.2684    0.2795    0.0572    0.3949

 

 

FR(5)=














0.2806    0.2737    0.0645    0.3812 
0.2046    0.4650    0.0394    0.2911 
0.2991    0.2415    0.0677    0.3918 
0.2662    0.3007    0.0571    0.3761 

 

 

FR(6)=














0.2709    0.2973    0.0600    0.3718 
0.2093    0.4485    0.0423    0.2999 
0.2818    0.2722    0.0639    0.3821 
0.2590    0.3200    0.0562    0.3649 

 
 

By rearranging above interval transition probability matrix  for magnitude states 
so obtained, magnitude to magnitude interval transition probability by time of 
occurrence without considering the spatial dimension are shown below in the table. In 
these tables, the sum of each column is equal to one. The ijth element of this table shows 
the probability of transition of earthquake of given magnitude state i to a particular 
magnitude state j during a particular time period. 
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Table 5 Magnitude to magnitude interval transition probabilities without considering 
spatial parameters  

Probability 
Holding Time interval 1 2 3 4 5 6 

Time(Year) 1-5 yr 6-10 yr 7-15 yr 16-20 yr 21-25 yr 26-30 yr 
M1 to M1 .6071 .6348 .5555 .5718 .5583 .5706 
M1 to M2 .25 .22 .2630 .2624 .2766 .2669 
M1 to M3 .0714 .0940 .1184 .1073 .1024 .1007 
M1 to M4 .0714 .0511 .0631 .0585 .0627 .0618 
M2 to M1 .44 .4513 .5252 .5305 .5457 .5495 
M2 to M2 .44 .337 .2842 .2862 .2824 .2802 
M2 to M3 .0556 .0947 .1112 .1135 .1067 .1051 
M2 to M4 .0556 .1169 .0795 .0698 .0652 .0652 
M3 to M1 .2 .2992 .4853 .5017 .5366 .5421 
M3 to M2 .4 .6278 .3566 .3011 .2806 .2828 
M3 to M3 .4 .0365 .0789 .106 .1113 .1086 
M3 to M4 0 .0365 .0792 .0912 .0714 .0665 
M4 to M1 .4 .5229 .4950 .5433 .5405 .5523 
M4 to M2 0 .26 .3891 .2919 .2780 .2754 
M4 to M3 .4 .1886 .0655 .0977 .1090 .1070 
M4 to M4 .2 .0286 .0493 .0671 .0725 .0653 

 
Tables for region to region transition probabilities by time of occurrence without 
considering dimension of magnitude is given below. This shows the probability of 
earthquake occurrence in a region during a year if the last earthquake occurrence in a 
particular region is given. The sum of each column in the table is equal to one. 
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Table.6 Region to region interval transition probabilities without considering magnitudes 
Probability 

Holding Time interval 1 2 3 4 5 6 
Time(Year) 1-5 yr 6-10 yr 7-15 yr 16-20 yr 21-25 yr 26-30 yr 

R1 to R1 .6 .4790 .4193 .3949 .3761 .3649 
R1 to R2 0 .0474 .0554 .0572 .0571 .0562 
R1 to R3 .1 .2230 .2466 .2795 .3007 .3200 
R1 to R4 .3 .2506 .2788 .2684 .2662 .2590 
R2 to R1 .3333 .3053 .3950 .4003 .3918 .3821 
R2 to R2 .3333 .0526 .1081 .0834 .0677 .0639 
R2 to R3 0 0.0684 .2466 .2795 .3007 .3200 
R2 to R4 .3 .2506 .2788 .2684 .2662 .2590 
R3 to R1 .1429 .2635 .2799 .2802 .2911 .2999 
R3 to R2 0 .0226 .0335 .0365 .0394 .0423 
R3 to R3 .7143 .5497 .5105 .4928 .4650 .4485 
R3 to R4 .1429 .1642 .1761 .1906 .2046 .2093 
R4 to R1 .3158 .3901 .3915 .3891 .3812 .3718 
R4 to R2 .1579 .1191 .0758 .0700 .0645 .0600 
R4 to R3 .1053 .1511 .2027 .2422 .2737 .2973 
R4 to R4 .4211 .3397 .3300 .2988 .2806 .2709 

 
Above values shown in the tables, are draw in the form of graphs as given below. The 
graphs shows the plot of interval transition probabilities for both magnitude and region 
states with the number of time intervals. Each time interval being equal to 5 years. Thus, 
prediction is made over a total of 30 years. From the graphs it can be shown that, 
probabilities are varying randomly with time following a arbitrary trend. But, it is not 
consistent with the practical understanding of occurrence of earthquakes, as explained by 
elastic rebound model, which shows that probability should increase with time. It is true, 
because as the holding time increases for a event to occur, as in this case for occurrence of 
earthquake, the probability for occurrence of that event also increases. In this report, semi-
Markov model is applied only for the past earthquake data, that consists of total of 57 
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number of earthquakes, which had occurred in the past. So, it is the limitation for the 
application of model in this report. However, more realistic and practical results may be 
obtained using simulation, and by choosing  parameters and distributions to assure 
increasing hazard rates for holding time distributions e.g., Weibull, Lognormal, Gamma 
distributions, which implies that probability of an earthquake occurrence in near futures 
increases with time since the last event. The increasing hazard captures some of the 
characteristics of stress build up and release. 

 
Fig.  8  Interval transition probabilities for transitions from state M1 to other all magnitude 
states 
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Fig.  9  Interval transition probabilities for transitions from state 2 to other all magnitude 
states 

 
Fig. 10  Interval transition probabilities for transitions from state M3 to other all magnitude 
states 
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Fig.  11  Interval transition probabilities for transitions from state M4 to other all magnitude 
states 

 
Fig. 12 Interval transition probabilities for transitions from region state R1 to other all 
region states 
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Fig. 13 Interval transition probabilities for transitions from region state R2 to other all 
region states 

 

Fig. 14  Interval transition probabilities for transitions from region state R3 to other all 
region states 
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Fig. 15  Interval transition probabilities for transitions from region state R4 to other all 
region states 
After obtaining the interval transition probabilities for region and magnitude states, time 
and magnitude of earthquake occurrences can be forecasted for each region in next 30 
years, since there are six time intervals, each time interval being equal to five years. Using 
conditional probability as defined earlier in sec 7. For this, it is assumed that region to 
region transition probabilities are independent from magnitude to magnitude transition 
probabilities. If the previous earthquake is within region r0 having magnitude m0, then the 
probability of occurrence of the next earthquake within region r1 having magnitude m1 after 
d time periods is a conditional probability defined as follows 

 P(R=r1, M=m1| r0, m0, d) = P(r1, m1|r0, m0, d) = P(r1| r0, d). P(m1|m0,d) 
               = FR{r0 r1, d}.FM{m0 m1, d} 

 

 
(23) 

The last great earthquake occurred in region R3 of magnitude 7.8( state M4)  in 2015. 
Thus, the most probable occurrence of an earthquake within region R2 ( considered as 
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seismic gap, in which no major earthquake had occurred in the past) belonging to a 
magnitude state of M4, in the next 25 years is .285%. 
Some graphs of overall probability for occurrences of  major earthquakes (state M4) in 
seismic gap sub-region R2, for a given initial condition are shown below 

 
Fig. 16  Overall interval transition probabilities for transitions from region state( R3,M3) to 
other all region states and magnitude state M4 
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Fig. 17  Overall interval transition probabilities for transitions from region state( R3,M1) to 
other all region states and magnitude state M4 

   
Fig 18  Overall interval transition probabilities for transitions from region state ( R2,M1) to 
other all region states and magnitude state M4 
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Fig. 19  Overall interval transition probabilities for transitions from region state( R4,M1) to 
other all region states and magnitude state M4 
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Chapter 6 
 

CONCLUSION 
 

9.1 Markov Model 
This paper has developed a Markov model for the occurrence of earthquakes in central 
Himalayan region of Nepal and contiguous areas, the central Nepal of which is represented 
by a seismic gap. This and the areas to its east, west and north are therefore considered four 
different sub-regions. Also, by classifying the annual maximum magnitudes in the entire 
region into four states of a Markov chain, formulation is presented to predict the time-
dependent probabilities of occurrence of a major earthquake(Mw≥7.5) in the four sub-
regions, conditional on different combinations of the magnitude and sub-region of the just 
previous earthquake. 

Dependence of future earthquakes on both the magnitude and location of the 
previous earthquake is not possible by other commonly used probability distributions to 
describe the recurrence intervals of earthquakes. The renewal models used to consider 
time dependence of occurrence rates of very large magnitude earthquakes since the time 
of last earthquake are applicable to the same category of earthquakes over a very large 
region, whereas the proposed Markov model is able to account for the dependence 
among earthquakes of different magnitudes in adjacent sub-regions. 

Illustrative numerical results for periods beyond 50 years indicate the same high 
probability (which is more than 85%) of occurrence of a major earthquake (MW>7.5) in 
the gap area as in the other three sub-regions. For smaller periods since the last major 
earthquake, this probability for the gap area decreases by about 5-8% with decrease in 
time period. 
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It has been also explained that how the results on the interval transition probabilities 
obtained from the Markov model can be useful in carrying out time-dependent probabilistic 
seismic hazard analysis (PSHA) for the region of study. It has been indicated that the time-
dependence need to be considered for the large regional earthquakes only. The transition 
probabilities for low to moderate magnitude earthquakes reach unity within 10 to 15 years, 
which is much smaller than the time periods of applicability of the estimated hazard. Thus 
these earthquakes can be described independently for each seismic source by constant 
occurrences rates. However, the occurrence rate of major can be defined as a function of 
time in proportion to the magnitude transition probability since the time of previous major 
earthquakes. For use in PSHA computations, the occurrence rate at any given time is then 
divided among various source regions in proportion to the region to region transition 
probabilities. 

9.2 Semi-Markov Model 
The difference between the Markov model and Semi-Markov model is that of holding time 
distribution. In Markov model we use exponential distribution of holding times between 
events, because exponential distribution possesses property of memorylessness. But, semi-
Markov is generalized Markovian process. In semi-Markov process, holding time in a 
given state is identically distributed, conditional on both the current state and the next state, 
thus providing the greater flexibility in modeling. In semi-Markov model, parameters and 
distributions have been chosen to assure increasing hazard rates for holding time 
distributions e.g., Weibull, Lognormal, Gamma distributions, which implies that 
probability of an earthquake occurrence in near futures increases with time since the last 
event. The increasing hazard captures some of the characteristics of stress build up and 
release. Semi-Markov process has the basic Markovian property of one-step memory i.e., 
the probability that the next earthquake is of a given magnitude depends on the magnitude 
of previous earthquake. So, the results obtained in this report for semi-Markov model are 
merely not so accurate because of limitation of past data available on earthquake events. To 
obtain reliable and practical results, suitable parameters have to be choose ,assuring that 
probability of occurrences of earthquakes increases with time since last time. Results 
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obtained for overall probability for occurrence of earthquakes, as shown in Fig 15, 16, 17 
and 18, shows the probability distribution of events over time domain is varying randomly, 
not assuring that probability increases with time since last time. To obtain such results, 
simulation have to be follow with holding time distribution assuming a suitable probability 
distribution like log-normal etc. The process for obtaining results using simulation is still 
going on. 
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APPENDIX 
List of the available data on early maximum magnitude earthquakes used in the Markov 
model with the magnitude and location states indicated 

Date Lon. Lat M 
Region 
State 

Magnitude 
State 

01:09:1803 79 31.5 7.5 1 4 
1809 79 30 6 1 2 

28:08:1816 81 30 7.5 1 4 
29:10:1826 85.33 27.7 6 3 2 
26:08:1833 85.7 27.7 7.6 3 4 
05:03:1842 78 30 5.5 1 2 
11:04:1843 80 30 5.1 1 1 
27:02:1849 88.3 27 6 3 2 

05:1852 88.3 27 6.4 3 2 
18:06:1862 88.3 27 5.1 3 1 
29:03:1863 88.3 27 5.7 3 2 
16:12:1865 88.3 27 5.1 3 1 
23:05:1866 85.3 27.7 7 3 3 
07:07:1869 85 28 6.4 3 2 
22:05:1871 78.1 30.45 4.5 1 1 
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25:09:1899 88.3 27 6 3 2 
13:12:1902 85 30 6.7 4 3 
31:03:1904 89 31 6.9 4 3 
13:06:1906 79 31 6 1 2 
20:08:1908 89 32 7 4 3 
17:02:1909 87 27 5.1 3 1 
14:10:1911 80.5 31 6.5 1 3 
06:03:1913 83 30 6.5 2 3 
05:05:1915 84 30 6 4 2 
28:08:1916 81 30 7.2 1 3 
28:04:1918 82 30.5 4 1 1 
24:04:1923 87.8 29.6 4 4 1 
15:12:1925 85.8 30 4.3 4 1 
27:07:1926 80.05 30.5 6.5 1 3 
29:11:1927 83 30 4.3 2 1 
18:06:1931 84 30.5 4.3 4 1 
25:03:1932 89.2 30 4.6 4 1 
18:05:1933 80 29.5 4.6 1 1 
15:01:1934 86.762 26.773 8.1 3 4 

Date Lon. Lat M   



54 
 

27:05:1936 83.283 28.345 7 2 3 
20:10:1937 78 31 4.7 1 1 
29:01:1938 87 27.5 4.8 3 1 
04:06:1939 86.5 28.5 4.8 3 1 
10:04:1940 81.5 30 4.8 1 1 
29:10:1944 83.5 31.5 6.8 4 3 
04:06:1945 80 30.3 6.5 1 3 
19:08:1947 79.09 31.2 4.8 1 1 
05:05:1948 78.75 30.44 4.8 1 1 
11:08:1949 89 31 4.8 4 1 
28:05:1951 87 29 4.8 4 1 
19:11:1952 86.6 29.8 4.8 4 1 
03:12:1953 85.6 31.4 6.7 4 3 
04:09:1954 83.8 28.3 6.5 2 3 
04:08:1955 86.4 30.8 4.8 4 1 
22:04:1957 84.3 30.8 4.8 4 1 
31:12:1958 79.9 29.94 6.3 1 2 
24:12:1961 80.83 29.43 4.8 1 1 
14:07:1962 79.5 30.4 4.8 1 1 
27:11:1963 79.1 30.8 4.8 1 1 
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26:09:1964 80.46 29.96 6 1 2 
12:01:1965 87.84 27.4 6 3 2 
27:06:1966 80.89 29.71 6.1 1 2 
02:03:1967 86.38 28.7 5.4 3 1 
31:05:1968 79.92 29.91 5.3 1 1 
22:06:1969 79.4 30.5 5.5 1 2 
12:02:1970 81.57 29.24 5.5 2 2 
03:05:1971 84.328 30.789 5.5 4 2 
21:08:1972 88.023 27.228 5.4 3 1 
02:01:1973 88.085 31.173 5.4 4 1 
27:09:1974 85.512 28.594 5.7 3 2 
19:01:1975 78.525 31.937 6 1 2 
08:09:1976 78.764 32.033 5.5 1 2 
19:02:1977 78.432 31.797 5.6 1 2 
10:02:1978 84.698 28.033 5.5 3 2 
20:05:1979 80.27 29.932 5.8 1 2 
29:07:1980 81.091 29.628 6.5 1 3 
28:05:1981 78.436 31.829 5.4 1 1 
23:01:1982 82.284 31.675 6.3 4 2 
27:01:1983 81.343 29.042 5.2 2 1 
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18:05:1984 81.793 29.52 5.8 2 2 
08:12:1985 86.573 30.841 5.2 4 1 
20:06:1986 86.824 31.216 6 4 2 
09:08:1987 83.739 29.465 5.6 2 2 
20:08:1988 86.626 26.72 6.8 3 3 
22:05:1989 87.858 27.381 5.3 3 1 
09:01:1990 88.108 28.154 5.7 3 2 
19:10:1991 78.791 30.77 6.9 1 3 
02:06:1992 81.904 28.938 5.4 2 1 
20:03:1993 87.328 29.027 6.2 4 2 
23:07:1994 86.601 31.097 5.4 4 1 
30:07:1995 88.21 30.246 6.4 4 2 
03:07:1996 88.191 30.106 5.6 4 2 
05:01:1997 80.5 29.8 5.7 1 2 
03:09:1998 87 27.87 5.8 3 2 
28:03:1999 79.421 30.511 6.5 1 3 
06:09:2000 86.97 28.38 5.5 3 2 
27:11:2001 82.26 29.56 5.5 2 2 
04:06:2002 81.42 30.566 5.6 1 2 
27:05:2003 79.337 30.556 5.3 1 1 
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11:07:2004 83.666 30.719 6.2 4 2 
07:04:2005 83.655 30.517 6.3 4 2 
14:02:2006 88.416 27.387 5.3 3 1 
22:07:2007 78.288 30.869 5.3 1 1 
25:08:2008 83.652 31.061 6.7 4 3 
24:07:2009 85.963 31.169 5.5 4 2 
26:02:2010 86.776 28.507 5.5 3 2 
18:09:2011 88.154 27.804 6.9 3 3 
17:02:2012 82.787 32.388 5.4 4 1 
30:06:2013 81.431 31.816 5.6 4 2 
30:03:2014 86.558 31.357 5.4 4 1 
25:04:2015 84.79 28.28 7.9 3 4 

 


