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ABSTRACT

 

Theπelectrocardiogram (ECG) isπthe graphical recordingπof theπelectrical potentialπof 

heart versusπtime. Theπanalysis of ECGπsignal has a greatπimportance inπthe 

detectionπof cardiac abnormalities. Theπelectrocardiographic signals areπcomplex in 

nature andπare often contaminated byπnoise from diverse sources. Noisesπthat comes in 

recording of the basicπelectrocardiogram are instrumentation noise, power line 

interference,πexternal electromagnetic field interference, respirational movements and 

noiseπdue to random bodyπmovements. These noises can be classifiedπaccording to their 

frequencyπcontent. It is necessary to reduceπthese kind of disturbances inπECG signal to 

improveπaccuracy and reliability.  

In the present work denoising of ECG signals has been carried out. Discrete Wavelet 

Transform (DWT) based methodology are used for noise removal. In order to evaluate the 

performance of the technique the algorithm has been applied to twenty normal records of 

the MIT-BIH database each of more than four thousand sample points. The performance 

of compression is evaluated in terms of Signalπto Noise Ratio (SNR), Mean SquareπError 

(MSE) and Percentage Root Mean SquareπDifference (PRD).  In waveletπtransform, a 

signal isπanalyzed and expressedπas a linearπcombination ofπthe summation of the 

productπof the waveletπcoefficients and mother wavelet. Theπwavelet decomposition 

offersπan excellent resolutionπboth in time andπfrequency domain. 
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CHAPTER 1 

INTRODUCTION 

 

 1.1 Introduction 

Everywhere aroundπus are signalsπthat need to beπanalyzed. Seismic tremors, human 

speech, engineπvibrations, medicalπimages, financialπdata, music, and manyπother types 

ofπsignals. One ofπthe most importantπone is electrocardiogramπsignal. ECG is 

theπrecord of the electricalπpotentials produced byπthe heart. The electricalπwave is 

generated byπdepolarization and repolarizationπof certain cells dueπto movement of Na+ 

and k+ ionsπin the blood. It is aπgraphical demonstrationπof the deviationπof bio-potential 

versus time. The leadsπare placed on preciseπlocations of the bodyπof the personπto record 

ECG either onπgraph paper orπon monitors. The ECGπis acquired byπa non-invasive 

technique, i.e. placingπelectrodes at standardizedπlocations on theπskin of the patient. The 

ECG signalπand heart rate reflectsπthe cardiac health ofπhuman heart. Any disorderπin 

heart rate orπrhythm or change inπthe morphologicalπpattern of ECG signalπis an 

indication ofπcardiac arrhythmia. It is detectedπand diagnosed byπanalysis of the recorded 

ECGπwaveform. There are five waves in ECG signal, a P wave, QRS complex and a T 

waveπcorresponding to atrial depolarization, ventricularπdepolarization and rapid 

repolarizationπof ventricles. The amplitudeπand duration ofπthe P-QRS-T-U 

waveπcontains useful informationπabout the nature ofπdisease related to heart.  

In clinicalπenvironment duringπacquisition, the ECG signalπencounters variousπtypes of 

artifacts. The onesπof primary interestπare power lineπinterference, external 

electromagneticπfield interference, noiseπdue to random bodyπmovements and 

respirational movements, electrodeπcontact noise, electromyographyπ (EMG) noise, and 

instrumentation noise. These noisesπdegrade the signal quality, frequencyπresolution and 

strongly affectπthe morphology of ECGπsignal containing importantπinformation. It is 
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essential to reduce disturbances in ECG signal and improve the accuracy and reliability for 

better diagnosis.  

Many methods have been implemented to remove the noise from noisy ECG signal. The 

basic method is to pass the signal through high pass, low pass and notch filters. But these 

filters are examples of static filters. One of the biggest disadvantages of this static filter is 

that these also remove some important frequency components in the vicinity of cut off 

frequency. The static filters have fixed filter coefficients. It is difficult to reduce the 

instrumentation noise with fixed filter coefficients, because the time varying behaviour of 

this noise is not exactly known. To overcome the limitations of static filters, different 

adaptive filtering methods have been developed. ECG denoising is done by wavelet based 

filters.  

 1.2 Literature Survey 

During past fewπyears, various contributionsπhave been made inπliterature regarding noise 

removal, beatπdetection and classificationπof ECG signal. Most ofπthem use eitherπtime 

or frequency domainπrepresentation of theπECG waveforms. ECG signal is an important 

source for diagnosis of cardiac patients. 

In the paper “Denoising of ECG Signal with Different Wavelets”, Inderbir Kaur, Rajni and 

Gaurav Sikri have shown comparison between Wavelets. Discrete Wavelet Transform is 

used to denoise the signal. It also shows a comparison between wavelets. According to 

performance parameters calculated it is shown that the Bior3.1 Wavelet is better than other 

due to higher PSNR, lower MSE and PRD than other wavelets[1]. 

In the paper “Comparative Study of ECG Signal Denoising and R-peak Registration 

Methods”, Vikramjit Singh, Simranjeet Kaur and Aditi Gupta present the comparative 

study of ECG signal denoising methods and R-peak registration. They also show Denoising 

using discrete wavelet transform shows good result in context with adaptive 

thresholding[2]. 
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In the paper “Denoising ECG Signal Using Different Wavelet Families and Comparison 

with Other Techniques” Uzzal Biswas, Kazi Reyadul Hasan, Biswajit Sana and Md. 

Maniruzzaman shown analysis of original, mixed and denoised ECG signal, both in time 

and frequency domains shows that wavelet transform reduces the 50 Hz power line 

interference more accurately. MSE and PSD values of wavelet transform is too good than 

that of adaptive NLMS and traditional notch filters [3]. 

In the paper “A Review on feature extraction and denoising of ECG signal using wavelet 

transform” , Seena V and Jerrin.Yomas proposes comparison of different feature extraction 

and denoising techniques using wavelet transform[4]. 

In the paper “A Survey on ECG Signal DenoisingTechniques”,  Sarang L. Joshi,  Rambabu 

A.Vatti and  Rupali V.Tornekar show that to remove motion artifact and EMG noise we 

should select discrete Meyer wavelet and apply the improved thresholding function which 

combines features of hard and soft thresholding[5] . 

In ECG signal analysis QRS detection is very important for diagnosis of patients, through 

this wave clinical information like heart rate, type of arrhythmic diseases etc can be 

evaluated. But the detection of QRS is very difficult because it is contaminated by several 

noises like base line wander, motion artifacts, power line interference etc. Wavelet is 

efficient tool for signal representation in time and frequency. Wavelet based ECG signal 

feature extraction and abnormal heart beat reorganization is done by Castro et al [7]. In this 

method mother wavelet among the orthogonal and bi orthogonal are chosen. For feature 

extraction signal is de noised and then mother wavelet function is applied to get the 

features.  

 

The ECG signal amplitude is very small and its frequency range lies between 0.05-100 Hz. 

This ECG signal is corrupted by several artifacts signals those are power line interference 

50/60 Hz, motion artifacts, muscle contraction, baseline drift noise, and Instrumentation 
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noise due to electronic devices, so characteristics of ECG signal changes and changes the 

features of ECG signal. Thus removal of such artifacts is very necessary to get correct ECG 

signal.  

In the paper titled, “Optimal selection of wavelet basis function applied to ECG signal 

denoising”, B. N. Singh and A. K. Tiwari have applied an optimal wavelet basis function 

for denoising of an ECG signal [13]. The experimental results have revealed suitability of 

Daubechies mother wavelet of order 8 to be the most appropriate wavelet basis function 

for the denoising application.  

Several other techniques have been also proposed to extract the ECG components 

contaminated with the background noise and allow the measurement of subtle features in 

the ECG signal.  

 

1.3 Report Layout 

The summary of all chapters covered in this dissertation report is as follows: 

Chapter 1: The chapter is the introduction to analysis and denoising of ECG signals. 

Different literature survey for denoising of ECG signal algorithm are briefly discussed. 

Chapter 2: This Chapterπexplains the generationπof heartπbeat, basics 

ofπelectrocardiogram and ECG morphology. Artifactsπthat commonly appear in ECG 

signalπduring acquisition areπelaborately discussed. Differentπmodes of lead placement 

andπthe MIT-BIH arrhythmiasπdatabase are alsoπdescribed. 

Chapter 3: This chapter describes wavelet transforms and differentπapproaches which are 

implementedπin this thesisπto denoise theπECG signal including signal decomposition, 

thresholding and signal reconstruction. 
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Chapter 4: In this chapter the result and discussion of the work carried out from generation 

of noise to denoising of ECG signal. Comparison of result in terms of various parameter 

like SNR, PRD and MSE 

Chapter 5: Finally in this chapter the conclusion and future scope of the work have been 

presented. 
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CHAPTER 2 

 

BASICS OF ECG AND ARTIFACTS 

 

This Chapter explains basics of electrocardiogram, the generation of heart beat and 

morphology of ECG waveform. Artifacts that commonly appear in ECG signal during 

acquisition are elaborately discussed. Different modes of lead placement and the MIT-BIH 

arrhythmia database are also described.  

2.1 Electrocardiogram 

The ECGπis aπbioelectric signal, whichπrecords the electricalπactivity of heartπversus 

time. Therefore, itπis an importantπdiagnostic tool forπassessing heart function. TheπECG 

is acquiredπby placing electrodesπon the skin ofπthe patient. The ECGπsignal provides the 

followingπinformation of aπhuman heart [15]:  

• disturbancesπin heart rhythmπand conduction  

• abnormalities inπthe spread ofπelectrical impulseπacross the heart  

• information aboutπa prior heartπattack  

• sign ofπcoronary artery disease  

• abnormal thickeningπof heartπmuscle  

• indication ofπdecreased oxygenπdelivery toπthe heart  

• extent andπlocation ofπmyocardial ischemia  

• changes inπelectrolyte concentrations  
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• effects ofπdrugs on theπheart  

2.1.1 Structure andπPhysiology of Heart  

The humanπheart weighs 250- 350 gramsπand is approximatelyπequal to the sizeπof the 

fist. It is located anterior to the vertebral columnπand posterior to the sternum. It is covered 

by a double-walled sac called the pericardium. The exteriorπpart of thisπsac is called 

theπfibrous pericardium. This sacπprotects the heart, anchorsπits surrounding 

structuresπand preventsπoverfilling of theπheart with blood. Theπouter wall ofπthe human 

heart isπcomposed of threeπlayers. The outerπlayer is calledπthe epicardium orπvisceral 

pericardium sinceπit is alsoπthe inner wallπof the pericardium. The middle layer is called 

the myocardium and is composed of cardiac muscle which contracts. Theπinner layer is 

calledπthe endocardiumπand is in contactπwith the blood. Itπalso merges withπthe inner 

lining (endothelium) ofπblood vessels andπcovers heartπvalves [20]. 

The Heartπis dividedπinto separateπright and left sectionsπby theπinterventricular septum. 

Eachπof these (right andπleft) sections areπagain dividedπinto upper andπlower 

compartmentsπknown as atriaπand ventriclesπrespectively. Thus, human heart has four 

chambers i.e. two superior atria and two inferior ventricles. The atriaπare the receiving 

chambersπand the ventriclesπare the dischargingπchambers as shownπin the Fig. 2.1. The 

atriaπare attached toπthe ventriclesπby fibrous, non-conductiveπtissue that keepsπthe 

ventricles electricallyπisolated from theπatria. The Tricuspidπvalve separates theπright 

atrium fromπthe right ventricle. TheπMitral (also knownπas the Bicuspid) valveπseparates 

the leftπatrium from theπleft ventricle. 

Oxygen-poorπblood from theπwhole body isπreceived into theπright atrium throughπlarge 

veins calledπthe superior and inferiorπvena cava andπflows. The right atriumπand the right 

ventricleπtogether form aπpump to theπcirculate blood toπthe lungs. The rightπventricle 

then pumpsπthe blood to theπlungs where theπblood is oxygenated. Similarly, theπleft 

atrium andπthe left ventricleπtogether form aπpump to circulateπoxygen-enriched blood 

receivedπfrom theπlungs (via theπpulmonary veins) to theπrest of theπbody [15]. 
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2.2 Generation of Heart Beat 

Someπcardiac cells areπself-excitable, contractingπwithout any signalπfrom theπnervous 

system. Evenπif removed fromπthe heart andπplaced in culture, theπcells haveπthe self-

excitationπproperty. The electricalπpotentials forπcontraction areπcaused by aπgroup of 

specializedπcells in theπheart whichπcontrol the heartbeat. Theseπcells produceπelectrical 

impulses whichπspread across theπheart causing itπto contract. Theπmain pacemakerπof 

Figure 2.1: Structure of heart 
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heart, theπSinoatrial node (SAπnode), initiates theπheart beat byπgenerating anπelectrical 

impulse whichπtravels toπthe leftπand right atria, causingπthem to contract (atrial 

depolarization). Following the start of atrial depolarization, the impulse quickly arrives at 

the Atrioventricular node (AV node) whichπis responsible forπthe contractionπof ventricle. 

Theπelectrical signalπnext passes throughπthe Bundle ofπHis, diverges intoπthe Right 

andπLeft Bundleπbranches, and spreadsπthrough the PurkinjeπFibers to theπmuscles of 

theπleft and right ventricle. Thisπcauses ventricularπdepolarization (contraction). The 

timeπrequired for theπsignal to travel fromπthe AV nodeπto the Purkinje Fibersπprovides 

a naturalπdelay of aboutπ0.1 second. This delayπensures thatπthe atria haveπbecome 

completely emptyπbefore the ventriclesπcontract. The contractionπis followed by 

ventricularπrepolarization (recovery) ofπthe cells whichπwere excited duringπthe previous 

depolarizationπwave.  

 

 

Figure 2.2: Conduction path ofπelectrical potential for heart beat 

The SA nodeπcreates the electricalπimpulse which causesπthe heart to beat, butπthe 

Autonomic NervousπSystem (ANS) controlsπthe heart rateπand the strengthπof heart 
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contractions. TheπANS consistsπof two parts, the SympatheticπNervous System (SNS) 

andπthe Parasympathetic NervousπSystem (PNS). The Sympatheticπnerves increase the 

heartπrate and theπcontraction force, while the Parasympathetic nerves act in the reverse 

manner. An idealized conduction of electrical impulse for heart beat is shown in Fig. 2.2. 

A small portion of this electrical potential flows to the body surface. By applying electrodes 

on the skin at the selected points, the electrical potential generated by this current can be 

recorded as an ECG signal [14]. 

 

2.3 ECG Morphology 

ECG waveformπof a normal individualπconsists of P wave, QRSπcomplex, ST segment, 

T waveπand U wave. Theπlabels of Fig. 2.3 areπcommonly used inπmedical ECG 

terminology.  

P wave: When theπelectrical impulseπis conducted fromπthe SA node towardsπthe AV 

node andπspreads from rightπto left atrium, theπdepolarization (contraction) ofπthe atria 

occurs. Theπdepolarization ofπatria results theπP Wave in the ECG.  

QRS complex: The QRS complexπconsists of threeπwaves, sequentially knownπas Q, R 

and S. Theπrapid depolarization ofπboth the ventriclesπresults this complex. Theπmuscles 

ofπthe ventricles haveπlarge muscle massπthan that ofπatria, hence itsπamplitude is much 

largerπthan that ofπP wave. 

T wave: Ventricularπrepolarisation results theπpreceding of ST segmentπand the T wave. 

U wave: The origin ofπU wave isπnot clear and itπis rarely seen. It isπprobably produced 

dueπto the repolarisationπof the papillaryπmuscles. 
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Figure 2.3 ECG waveform 

Table 2.1 Features ofπECG signal 

Features  Description  Amplitude  Duration  

P wave  Atrialπdepolarization  0.1-0.2 mv  80 ms  

PR interval  Reflects the timeπthe electrical 

impulseπtakes to travelπfrom the 

sinusπnode throughπthe AV node 

andπentering the ventricles  

_  120-200ms  

QRS complex  Depolarizationπof ventricles  1-1.2 mv  80-120 ms  

J point  Pointπwhere QRS complexπis 

finished  

_  _  

ST interval  Represents theπperiod whenπthe 

ventricles areπdepolarized  

_ 80-120 ms 

T wave  Repolarisationπof ventricles  0.12-0.3mv  160 ms  

QT interval  is measuredπfrom the beginning 

of theπQRS complex toπthe end of 

theπT wave. Aπprolonged QT 

intervalπis a risk factorπfor 

ventricularπtachyarrhythmias and 

suddenπdeath  

_  300-430ms  

U wave  repolarisation ofπthe papillary 

muscles, rarelyπseen  

_  _  

RR interval  The intervalπbetween anπR wave 

andπthe next Rπwave  

_  0.2-1.2 s  
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2.4 Noises in ECG  

ECG measurementsπmay be corruptedπby many sortsπof noise. The onesπof primary 

interest are:  

• Power line interference  

• Electrode contact noise  

• Motion artifacts  

• EMG noise  

• Instrumentation noise  

These artifactsπstrongly affectsπthe ST segment, degradesπthe signal quality, frequency 

resolution, producesπlarge amplitude signalsπin ECG that canπresemble PQRST 

waveformsπand masks tinyπfeatures that areπimportant for clinicalπmonitoring and 

diagnosis. Cancelationπof these artifactsπin ECG signals isπan important taskπfor better 

diagnosis.  

 

2.4.1 Power Line Interference  

Power line interferenceπoccurs through twoπmechanisms: capacitiveπand inductive coupling. 

Capacitiveπcoupling refersπto the transfer ofπenergy between twoπcircuits by meansπof a 

couplingπcapacitance presentπbetween theπtwo circuits. The value ofπthe coupling 

capacitanceπdecreases withπincreasing separationπof the circuits. Inductiveπcoupling on the 

otherπhand is causedπby mutual inductanceπbetween two conductors. Whenπcurrent flows 

throughπwires it producesπa magnetic flux, whichπcan induce aπcurrent in adjacentπcircuits. 

The geometryπof the conductors asπwell as the separationπbetween them determinesπthe 

value ofπthe mutual inductance, andπhence the degreeπof the inductiveπcoupling. Typically, 

capacitiveπcoupling is responsibleπfor high frequencyπnoise while inductiveπcoupling 
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introducesπlow frequency noise. Forπthis reason inductiveπcoupling isπthe dominant 

mechanismπof power lineπinterference inπelectro cardiology. Toπlimit the amountπof power 

lineπinterference, electrodesπshould be appliedπproperly, that thereπare no looseπwires, and 

allπcomponents haveπadequate shielding.  

The Powerπline interferenceπhas frequencyπof 60 Hz or 50 Hz dependingπon the power 

supply. 

 

2.4.2 Electrode Contact Noise 

Electrode contact noiseπis caused by variations in the position of the heart with respect to 

the electrodes and changes in the propagation medium between the heart and the electrodes. 

This causes sudden changes in the amplitude of the ECG signal, as well as low frequency 

baseline shifts. In addition, poor conductivity between the electrodes and the skin reduces 

the amplitude of the ECG signal and increases the probability of disturbances (by reducing 

SNR). 

The underlying mechanism resulting in these baseline disturbances is electrode-skin 

impedance variation. The larger the electrode-skin impedance, the smaller the relative 

impedance change needed to cause a major shift in the baseline of the ECG signal. If the 

skin impedance is extraordinarily high, it may be impossible to detect the signal features 

reliably in the presence of body movement. Sudden changes in the skin-electrode 

impedance induce sharp baseline transients which decay exponentially to the baseline 

value. This transition may occur only once or rapidly several times in succession. 

Characteristics of this noise signal include the amplitude of the initial transition and the 

time constant of the decay. 
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2.4.3 Motion Artifacts 

Motion artifacts are baseline changes caused by electrode motion. The usual causes of 

motion artifacts are vibrations, movement, or respiration of the subject. The peak amplitude 

and duration of the artifacts are random variables which depend on the variety of unknowns 

such as the electrode properties, electrolyte properties (if one is used between the electrode 

and skin), skin impedance, and the movement of the patient. In this ECG signal, the 

baseline drift occurs at an unusually low frequency (approximately less than 1Hz). 

 

2.4.4 Electromyographic Noise 

Electromyographic noise is caused by the contraction of other muscles besides the heart. 

When other muscles in the vicinity of the electrodes contract, they generate depolarization 

and repolarization waves that can also be picked up by the ECG. The extent of the crosstalk 

depends on the amount of muscular contraction (subject movement), and the quality of the 

probes. It is well established that the amplitude of the Electromyographic signal is 

stochastic (random) in nature and can be reasonably modelled by a Gaussian distribution 

function. The mean of the noise can be assumed to be zero; however, the variance is 

dependent on the environmental variables and will change depending on the conditions. 

Certain studies have shown that the standard deviation of the noise is typically 10% of the 

peak-to-peak ECG amplitude. While the actual statistical model is unknown, it should be 

noted that the electrical activity of muscles during periods of contraction can generate 

surface potentials comparable to those from the heart and could completely drown out the 

desired signal. The frequency of this EMG noise is in between 100-500 Hz. 

 

2.4.5 Instrumentation Noise 

The electrical equipment’sπused in ECG measurements alsoπcontribute noise. The major 

sourcesπof this form of noiseπare the electrodeπprobes, cables, signal processorπor 
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amplifier, andπthe analog-to-digitalπconverter. Unfortunately instrumentationπnoise 

cannot beπeliminated as itπis inherent in electronicπcomponents, but it canπbe reduced 

throughπhigher quality equipmentπand careful circuitπdesign. Another form ofπnoise, 

called flickerπnoise, is very importantπin ECG measurements, dueπto the low frequency 

contentπof ECG data. The actualπmechanism that causes thisπtype of noise isπnot yet 

understood, butπone widely acceptedπtheory is that it isπcaused by theπenergy traps which 

occurπbetween the interfacesπof two materials. It isπbelieved that the chargeπcarriers get 

randomlyπtrapped/released and cause flicker noise. 

 

2.5 ECG Database  

Since 1975, theπlaboratories at Boston'sπBeth Israel Hospital (nowπthe Beth Israel 

Deaconess MedicalπCentre) and atπMassachusetts Institute ofπTechnology (MIT) have 

supportedπthe research in arrhythmiaπanalysis and relatedπsubjects by creatingπa 

database. One of theπfirst majorπproducts ofπtheir effort was theπMassachusetts Institute 

of TechnologyπBeth IsraelπHospital (MIT-BIH) πdatabase. Thisπdatabase wasπcompleted 

and beganπdistributing in 1980. The databaseπwas the first generallyπavailable set of 

standardπtest material forπevaluation ofπarrhythmia detectors andπhas been used forπthat 

purpose asπwell as for basicπresearch into cardiac dynamicsπat more than 500πsites 

worldwide [26]. 

The MIT-BIH ArrhythmiaπDatabase containsπ48 half-hourπexcerpts ofπtwo-channel 

ambulatoryπECG recordings. These areπobtained from 47 subjectsπcollected from a mixed 

populationπof inpatients (about 60%)πand outpatients (aboutπ40%) studiedπby the BIH 

ArrhythmiaπLaboratory. Theπsubjects were takenπfrom, 25 menπaged 32 to 89πyears and 

22 womenπaged 23 to 89 years. Aboutπhalf (25 of 48 complete recordsπand reference 

annotation filesπfor all 48 records) πof this databaseπhas been freely availableπin 

PhysioNet's inceptionπin Septemberπ1999 [8]. The 23 remainingπsignal files, which had 

beenπavailable only on theπMIT-BIHπArrhythmia DatabaseπCD-ROM, wereπposted in 
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Februaryπ2005. Theπrecordings were digitizedπat 360 samplesπper second perπchannel 

with 11-bit resolutionπover a 10 mVπrange. 
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CHAPTER 3 

 

 WAVELETS AND ECG DENOISING ALGORITHMS 

  

 

Algorithms whichπare implemented in thisπthesis for ECG enhancementπpurpose are 

describedπhere. Forπdenoising purpose thresholding and wavelet filter bank are used. 

3.1 Wavelet Transform 

The Fourier transform is usefulπtool to analyze the frequencyπcomponents of the signal. 

However, if we take the Fourierπtransform over the wholeπtime axis, weπcannot tell at 

what instant a particular frequencyπrises. Short-timeπFourier transform (STFT) uses a 

sliding windowπto find spectrogram, which givesπthe information of both time and 

frequency. But still another problem exists i.e. the length of windowπlimits the resolution 

inπfrequency. Waveletπtransform seems to be a solution to theπproblemπabove. Wavelet 

transforms (WT) are basedπon small wavelets withπlimited duration. InπWT both theπtime 

andπfrequency resolutionsπvary in time-frequencyπplane in order toπobtain a 

multiresolutionπanalysis.  

In wavelet transform, aπsignal x(t) whichπbelongs to the squareπintegrableπsubspace 

L2(R) is expressed in terms ofπscaling function φj,k(t) and mother waveletπfunction ψj,k(t). 

Here j is the parameter ofπdilation or the visibility in frequency and k is theπparameter of 

the position.  
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whereπa, b are theπcoefficients associatedπwith φj,k(t) and ψj,k(t) respectively. 

The coefficientsπa, b can beπcalculated as weπcalculate the coefficientsπin Fourier 

transform. 

Theπexpression ofπa, b are given in theπfollowing equations 

 

 

The scaling function φj,k(t) can be expressed as 

 

ψj,k(t) can alsoπbe derivedπfrom its shiftedπversion i.e. φj,k(2t). Theπexpression of φj,k(t) 

in terms of φj,k(2t) will be 

 

n is theπshifting parameter and hφ(n) are theπcoefficients. 

The mother waveletπfunction ψj,k(t) is expressed as 

 

ψj,k(t) canπalso be written usingπshifted version φj,k(t) i.e. φj,k(2t).  
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The expression of ψj,k(t) πwill be 

 

n is the shiftingπparameter andπhψ(n) are theπcoefficients. 

3.2 Discrete Wavelet Transform 

The discreteπwavelet transformπ(DWT) isπan implementationπof theπwaveletπtransform 

using aπdiscrete set of the waveletπscales and translationsπobeying someπdefined rules. In 

otherπwords, this transformπdecomposes the signal intoπmutually orthogonalπset of 

wavelets.  

The scalingπfunction φj,k(n) and theπmother waveletπfunction ψj,k(n) in discreteπdomain 

are  

 

The DWTπof an discrete signalπx(n) of length M-1πis given by 

 

Here, Wφ(j0,k) and Wψ(j0,k) are called the wavelet coefficients.  

φj,k(n) and ψj,k(n) areπorthogonal to each other. Henceπwe can simply take theπinner 

product to obtain the waveletπcoefficients.  
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The coefficients Wφ(j0,k) are called the approximation coefficients and the coefficients 

Wψ(j0,k) are called the detailed coefficients. The DWT can be realized in terms of high 

pass and low pass filters. The approximation properties of filter banks and their relation to 

wavelets are presented in the paper [44]. The output of the low pass filter gives the 

approximation coefficients and the output of the high pass filter gives the detailed 

coefficients. To get the filter coefficients Wφ(j0,k) and Wψ(j0,k) can be rewritten as  

 

hφ and hψ are the filter coefficients of the low pass filter and high pass filter respectively.  

Computation of the wavelet coefficients at every possible scale is a fair amount of work 

and it generates an awful lot of data. Selection of a subset of scales and positions based on 

powers of two (dyadic scales and positions) results in a more efficient and accurate 

analysis. Mallat has introduced repetitive application of high pass and low pass filters to 

calculate the wavelet expansion of a given sequence of discrete numbers [14]. 

3.3 Wavelet Decomposition 

The DWT decomposesπthe signalπinto approximate andπdetail informationπas discussed 

inπsection 3.2. Thus, itπhelps inπanalyzing the signal atπdifferent frequencyπbands 

withπdifferent resolutions. 
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3.3.1 Single stageπwavelet filtering 

In single stageπwavelet filtering theπoriginal signal x(n) is passedπthrough two 

complementary filtersπand emerges asπtwo signals. The filteringπprocess, atπits most 

basic level isπshown in Fig. 3.1. 

 

Figure 3.1 Single stage wavelet filtering 

If singleπstage wavelet filterπis appliedπon a digital signal, thenπwe end withπtwice as 

much dataπas we startedπwith. The originalπsignal x(n) consistsπof M samples ofπdata. 

The resultingπapproximation andπdetail coefficientsπare eachπof length M, forπa total of 

2M. 

There existsπan alternative methodπto perform theπdecomposition using wavelets. 

Byπdown sampling Aπand D to half of theirπlengths i.e. M/2, the total lengthπof resulting 

signal can beπmaintained. The final output signalsπafter down samplingπare denoted as 

cA and cD. It is diagrammaticallyπshown in Fig. 3.2. 

 

Figure 3.2 Single stage wavelet filtering with down sampling 
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3.3.2 Multistage wavelet filtering  

The wavelet decompositionπprocess can beπiterated, so that oneπsignal is brokenπdown 

into many lower resolutionπcomponents. This isπcalled theπwavelet decomposition tree. 

 

Figure 3.3 Multistage wavelet decomposition tree 

Since multistage waveletπfiltering analysis process isπiterative, theoreticallyπit can be 

continued till infiniteπlevels. Ideally theπdecomposition can be done onlyπuntil the 

individual detailsπconsist of a single sample. Inπpractice, aπsuitable number of 

decompositionπlevels based on theπnature and frequency componentπof the signal. 
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3.4 Thresholding 

3.4.1 Soft of Hard Thresholding  

Thresholdingπcan be either soft or hard . Hard thresholdingπzeroes out all theπsignal 

values smallerπthan Y. Soft thresholding does theπsame thing, and apart formπthat, 

subtracts Y fromπthe values larger than Y. In contrastπto hard thresholding, soft 

thresholdingπcauses no discontinuities in theπresulting signal. In Matlab, byπdefault, soft 

thresholding isπused for denoising and hardπthresholding for compression. Thereπare two 

ways to applyπthe threshold value to theπwavelets coefficients; the hardπand soft 

thresholds which wereπexpressed as formulasπrespectively as shown in Figure 3.5 

 

 

 

 

Y is the wavelets coefficient. 

 

Fig. 3.4 Hard and Soft Thresholding 



 

 

 

 

24 

 

 

 

 

3.4.2 Selection of Threshold 

Thresholdingπof the wavelet coefficientsπcan be done usingπeither hardπthresholding or 

soft thresholding [14]. Theπselection of the thresholdπvalue for denoising canπbe done 

usingπany of the fourπselection rules explainedπas below [7]: 

MINMAX Thresholding: It uses aπfixed threshold chosen toπyield minimaxπperformance 

for meanπsquare error againstπan ideal procedure. Theπminimax principle isπused in 

statisticsπin order to designπestimators. Since theπde-noised signal can beπassimilated to 

theπestimator of the unknownπregression function, theπminimax estimator is the one that 

realizes the minimum of the maximumπmean square error obtained for theπworst function 

in a given set. 

RIGEROUS SURE Thresholding: It isπused for the softπthreshold estimator based on 

Stein'sπUnbiased Estimateπof Risk (quadratic loss function). One getsπan estimate of the 

risk for aπparticular threshold valueπand minimizing the risksπand gives aπselection of the 

threshold value. 

UNIVERSAL Thresholding: This was proposed byπDonoho and can be used as an 

alternative to the use of minimax threshold. It is bigger in magnitude than the minimax 

threshold. The value of the threshold is calculated as: 

THR = sqrt (2*log(length(X)) 

Where, THR is the threshold value and X is noisy signal. 

HEURISTIC SURE Thresholding: This is a heuristic variant of the rigorous sure method. 

It is a mixture of the two previous options. As a result, if theπsignal to noise ratio is very 

small, the SURE estimate isπvery noisy. If such a situation is detected, the fixed form 

threshold is used.  
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3.5 Wavelet Reconstruction  

In section 3.2.3, theπanalysis of a signal by discrete wavelet transformπdecomposition is 

discussed. Thisπprocess is called decomposition orπanalysis. After decomposition, the task 

is to againπreconstruct the original signal withoutπloss of important information. This 

process is called reconstruction, orπsynthesis. The synthesis is doneπmathematically by 

using the inverseπdiscrete wavelet transform (IDWT). 

In wavelet analysis, filteringπand followed by downπsampling are involved. Butπthe 

wavelet reconstructionπprocess consists of upπsampling followed byπfiltering. Up 

samplingπis the process of lengthening aπsignal component by insertingπzeros between 

samples. 

 

Figure 3.5 Single stage decomposition and reconstruction 

We combine cA and cDπby IDWT to get the reconstructedπoriginal signal. However, 

insteadπof combining, we canπfeed a vector of zerosπin place of theπdetail coefficients 

vectorπor approximation coefficientsπas per our requirement. Forπexample, when cD is 

madeπzero before combiningπwith cA, it yieldsπa reconstructed approximationπA1. A1 

hasπthe same length asπthe original signal x(n) andπwhich is a real approximationπof it. 
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For multipleπlevel reconstruction, theπsingle stage reconstructionπtechnique is iterated to 

reassembleπthe original signal. 

3.6 Denoising Algorithm 

 Generation of Noise 

 Addition of Noise to Original ECG Signal 

 Decomposition of Noisy ECG Signal 

 Thresholding 

 Reconstruction of ECG Signal 

 Performance Evaluation of Denoised ECG Signal 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

In this chapter, all theπsimulation results using the algorithmsπdiscussed in chapter 3 are 

presented underπdifferent subsections. The ECG waveform takenπfrom MIT-BIH 

database, generated noisesπand the corrupted ECG signalπare also shown. 

 

4.1 ECG Waveform 

All the simulations shown in later parts of thesis are carried out with data no. 103 of MIT-

BIH arrhythmia database [8]. The ECG signal waveform is shown in Figure. 4.1 

 

Figure 4.1 ECG Signal from MITBIH arrhythmia database 
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4.2 Generation of Noise 

The artifacts inπECG can be categorizedπaccording to their frequencyπcontent. The low 

frequencyπnoise (electrode contactπnoise and motion artifact) hasπfrequency lessπthan 1 

Hz, highπfrequency noise (EMG noise) πwhose frequency isπmore than 100 Hzπand power 

lineπinterference ofπfrequency 50 Hz orπ60 Hz (depending onπthe supply). These noises 

areπgenerated in MATLAB basedπon their frequencyπcontent. 

 

4.2.1 Generation of LowπFrequency Noise 

Baseline drift noise is generated by adding twoπsine waves of frequency 0.4Hz and 0.1Hz 

and Sawtooth wave of 0.25Hz which is shown in Figure. 4.2. 
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Fig 4.2 Noise Signal of Low Frequency 

 

4.2.2 Generation ofπHigh Frequency Noise  

High frequency noises are generated byπmultiplying the sine waveπof frequency 150Hz 

withπa random signal. The resulted highπfrequency noiseπis shown in Figure. 4.3. 

 

Figure 4.3 High frequency noise 
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4.2.3 Generation ofπPower Line Interference 

Here the 50Hz power supplyπis considered. Thus, a sine wave of 50Hz amplitude is taken 

toπrepresent the power lineπinterference. The generated powerπline interferenceπis shown 

in Figure. 4.4. 

 

Figure 4.4 Power line interference 

 

4.3 ADDITION OF NOISE TO ECG 

The noise signal is generated and areπadded to form a noise for ECG signals. Now this 

noise is addedπwith the ECG signals to get theπcorrupted ECG signal. Figure. 4.5 and 

Figure. 4.6 shows Noise and the corrupted ECG signal respectively. 
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Fig. 4.5 Noise 

 

Fig. 4.6 Noisy ECG Signal 
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4.4 Evaluation Factor of Denoising 

 For evaluation of denoising algorithm following parameters are evaluated. 

 

(a) Percentage Root Mean Square Difference: represents the standard deviation of difference 

between original signal sample and reconstructed signal. It is represented by equation (4.2). 

 

𝐏𝐑𝐃(%)  = 𝟏𝟎𝟎 ∗ √(∑ [𝐗(𝐧) − 𝐘(𝐧)]𝟐𝐍

𝐧=𝟏
| ∑ [𝐗(𝐧)]𝟐𝐍

𝐧=𝟏
)                           (4.2) 

 

Where X is original signal and Y is reconstructed signal 

 

(b) Signal to Noise Ratio: is the ratioπof signal power to noiseπpower which is expressed in 

decibels (dB). SNR is represented by equation (4.3) 

 

𝐒𝐍𝐑 = 𝟏𝟎 ∗ 𝐥𝐨𝐠𝟏𝟎 (∑ [𝐗(𝐧)]𝟐𝑵

𝒏=𝟏
| ∑ [𝐗(𝐧) − 𝐘(𝐧)]𝟐𝑵

𝒏=𝟏
)                   (4.3) 

 

(c) Mean Square Error: It measuresπthe average of the squares of theπerrors or deviations, that 

is, theπdifference between theπestimator and what isπestimated. MSE is aπrisk function, 

correspondingπto the expected valueπof the squared error lossπor quadratic loss.  

𝑴𝑺𝑬 = 1/𝑁 ∑[𝑿(𝒏) − 𝒀(𝒏)]𝟐

𝑵

𝒏=𝟏
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4.5 Results 

Table 4.1 ECG analysis of Biorthogonal Mother Wavelet 

Biorthogonal Soft Thresholding Hard Thresholding 

PRD SNR MSE PRD SNR MSE 

1.1 0.3976 8.0109 0.0052 0.3265 9.7232 0.0045 

1.3 0.3473 9.185 0.0043 0.2959 10.5769 0.0038 

1.5 0.3507 9.101 0.0044 0.2895 10.7657 0.0037 

2.2 0.3975 8.0142 0.0056 0.3182 9.9473 0.0043 

2.4 0.4288 7.3559 0.0063 0.2935 10.6479 0.0037 

2.6 0.3552 8.99 0.0045 0.28 11.0568 0.0034 

2.8 0.2868 10.8486 0.0032 0.2698 11.3778 0.0032 

3.1 0.7842 2.1116 0.0405 0.6346 3.9502 0.0222 

3.3 0.529 5.5306 0.0101 0.4309 7.3123 0.0086 

3.5 0.384 8.3134 0.0055 0.3125 10.1038 0.0042 

3.7 0.2742 11.2399 0.0031 0.2765 11.1661 0.0033 

3.9 0.267 11.4689 0.0029 0.2709 11.3441 0.0032 

4.4 0.3782 8.4446 0.005 0.2901 10.7479 0.0036 

5.5 0.3899 8.1812 0.0053 0.2831 10.961 0.0035 

6.8 0.2993 10.4784 0.0035 0.2734 11.2642 0.0032 
 

 

 

Fig 4.7 Biorthogonal 3.9 wavelet using Soft Thresholding 
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Fig 4.8 Biorthogonal 2.8 wavelet using Hard Thresholding 

 

Table 4.2 ECG analysis of Reverse Biorthogonal Mother Wavelet 

 Reverse 
Biorthogonal 

Soft Thresholding Hard Thresholding 

PRD SNR MSE PRD SNR MSE 

1.1 0.3992 7.9758 0.0053 0.3228 9.8223 0.0044 

1.3 0.3597 8.8805 0.0045 0.2971 10.5416 0.0038 

1.5 0.3357 9.4816 0.0041 0.2841 10.9303 0.0035 

2.2 0.4756 6.4557 0.0078 0.4025 7.9039 0.0069 

2.4 0.4172 7.5933 0.006 0.3282 9.678 0.0047 

2.6 0.3794 8.4183 0.0051 0.2916 10.7041 0.0037 

2.8 0.3355 9.4863 0.0044 0.2896 10.7653 0.0037 

3.1 0.9903 0.0851 0.8908 0.9861 0.1219 0.9092 

3.3 0.4592 6.7595 0.0084 0.474 6.485 0.0115 

3.5 0.3994 7.9717 0.0061 0.3813 8.375 0.0071 

3.7 0.3532 9.0402 0.0049 0.3531 9.0428 0.0058 

3.9 0.3304 9.6198 0.0043 0.323 9.8168 0.0047 

4.4 0.3597 8.8816 0.0046 0.2787 11.0971 0.0034 

5.5 0.4092 7.7619 0.0057 0.2972 10.5376 0.0038 

6.8 0.3212 9.8633 0.004 0.2785 11.103 0.0034 
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Fig 4.9 Reverse Biorthogonal 6.8 wavelet using Soft Thresholding 

 

Fig 4.10 Reverse Biorthogonal 6.8 wavelet using Hard Thresholding 
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Table 4.2 ECG analysis of Symlet Mother Wavelet 

Symlet Soft Thresholding Hard Thresholding 

PRD SNR MSE PRD SNR MSE 

1 0.395 8.0688 0.0052 0.3274 9.6993 0.0045 

2 0.4137 7.6665 0.0057 0.3403 9.3621 0.0049 

3 0.526 5.5798 0.0087 0.5412 5.3328 0.0104 

4 0.4992 6.035 0.0079 0.3648 8.7599 0.0054 

5 0.376 8.4957 0.0049 0.2876 10.8233 0.0035 

6 0.3637 8.7844 0.0046 0.2786 11.1004 0.0033 

7 0.3351 9.4967 0.0041 0.2806 11.0386 0.0034 

8 0.3248 9.7673 0.0041 0.2715 11.324 0.0031 

9 0.3327 9.5589 0.0043 0.2792 11.0822 0.0034 

10 0.3183 9.9437 0.0039 0.2784 11.1066 0.0033 

12 0.3032 10.3654 0.0036 0.2796 11.0701 0.0034 

15 0.2847 10.9129 0.0035 0.2888 10.7867 0.0037 

20 0.2843 10.9257 0.0035 0.286 10.8723 0.0036 

25 0.2902 10.7474 0.0036 0.2796 11.0701 0.0034 

 

 

Fig 4.11 Symlet 20 wavelet using Soft Thresholding 
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Fig 4.12 Symlet 8 wavelet using Hard Thresholding 

 

Table 4.4 ECG analysis of Coiflet Mother Wavelet 

Coiflet Soft Thresholding Hard Thresholding 

PRD SNR MSE PRD SNR MSE 

1 0.4742 6.4811 0.0074 0.3741 8.5393 0.0057 

2 0.3405 9.3566 0.0041 0.2946 10.6145 0.0037 

3 0.3007 10.4384 0.0035 0.2708 11.3455 0.0032 

4 0.2937 10.6426 0.0034 0.2685 11.4207 0.0031 

5 0.2838 10.9404 0.0035 0.2861 10.8697 0.0036 
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Fig 4.13 Coiflet 5 wavelet using Soft Thresholding 

 

Fig 4.14 Coiflet 4 wavelet using Hard Thresholding 
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Table 4.4 ECG analysis of Daubechies Mother Wavelet 

Daubechies Soft Thresholding Hard Thresholding 

PRD SNR MSE PRD SNR MSE 

1 0.4047 7.8577 0.0053 0.3301 9.6259 0.0045 

2 0.4316 7.298 0.0061 0.33 9.6295 0.0046 

3 0.5213 5.6582 0.0086 0.3669 8.7088 0.0055 

4 0.4259 7.4143 0.006 0.3263 9.7275 0.0045 

5 0.4071 7.8062 0.0056 0.2929 10.6657 0.0037 

6 0.5382 5.3814 0.0094 0.4927 6.1489 0.0091 

7 0.425 7.4317 0.006 0.5442 5.2854 0.0105 

8 0.3369 9.4501 0.0043 0.2839 10.9381 0.0035 

9 0.3703 8.6284 0.0051 0.282 10.9964 0.0035 

10 0.3387 9.4026 0.0044 0.2905 10.7362 0.0036 

11 0.314 10.0625 0.0038 0.2805 11.0405 0.0034 

12 0.344 9.2694 0.0044 0.2844 10.9205 0.0035 

15 0.2846 10.9138 0.0035 0.2801 11.0545 0.0035 

20 0.2889 10.7852 0.0035 0.2816 11.0063 0.0035 

25 0.2907 10.7316 0.0036 0.2826 10.9756 0.0035 

40 0.2795 11.0712 0.0034 0.2817 11.0043 0.0035 

 

 

Fig 4.15 Daubechies 40 wavelet using Soft Thresholding 
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Fig 4.16 Daubechies 15 wavelet using Hard Thresholding 
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CHAPTER 5 

CONCLUSION AND FUTURE SCOPE 

 

 

Biorthogonal Wavelet Family member, bior3.9 along with soft thresholding technique 

appears to be the most compatible function among other wavelet function for the denoising 

of ECG signal using wavelet transform. The functions db40, bior3.9, rbio6.8, sym20 and 

coif5 gives lesser value of MSE, PRD and larger value of SNR results in their respective 

family using soft thresholding. The functions db15, bior 2.8, rbio6.8, sym8 and coif4 gives  

lesser value of MSE, PRD and larger value of SNR results in their respective family using 

hard thresholding. Wavelets having resembelence with the ECG signals shows better result 

for removal of noise from ECG signal. By comparing the results of SNR, MSE and PRD 

of various wavelets we conferred to a result that Hard Thresholding remove noise more 

effectively as compared to Soft Thresholding.  

 

The results are compared on rigrous sure thresholding technique, for future work results 

are also compared on heuristic sure, minimax and universal thresholding technique and 

comparison in term of parameter such as SNR, MSE and PRD. 
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