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ABSTRACT

The electrocardiogram (ECG) is the graphical recording of the electrical potential of
heart versus time. The analysis of ECG signal has a great importance in the
detection of cardiac abnormalities. The electrocardiographic signals are complex in
nature and are often contaminated by noise from diverse sources. Noises that comes in
recording of the basic electrocardiogram are instrumentation noise, power line
interference, external electromagnetic field interference, respirational movements and
noise due to random body movements. These noises can be classified according to their
frequency content. It is necessary to reduce these kind of disturbances in ECG signal to

improve accuracy and reliability.

In the present work denoising of ECG signals has been carried out. Discrete Wavelet
Transform (DWT) based methodology are used for noise removal. In order to evaluate the
performance of the technique the algorithm has been applied to twenty normal records of
the MIT-BIH database each of more than four thousand sample points. The performance
of compression is evaluated in terms of Signal to Noise Ratio (SNR), Mean Square Error
(MSE) and Percentage Root Mean Square Difference (PRD). In wavelet transform, a
signal is analyzed and expressed as a linear combination of the summation of the
product of the wavelet coefficients and mother wavelet. The wavelet decomposition

offers an excellent resolution both in time and frequency domain.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Everywhere around us are signals that need to be analyzed. Seismic tremors, human
speech, engine vibrations, medical images, financial data, music, and many other types
of signals. One of the most important one is electrocardiogram signal. ECG is
the record of the electrical potentials produced by the heart. The electrical wave is
generated by depolarization and repolarization of certain cells due to movement of Na+
and k+ ions in the blood. Itisa graphical demonstration of the deviation of bio-potential
versus time. The leads are placed on precise locations of the body of the person to record
ECG either on graph paper or on monitors. The ECG is acquired by a non-invasive
technique, i.e. placing electrodes at standardized locations on the skin of the patient. The
ECG signal and heart rate reflects the cardiac health of human heart. Any disorder in
heart rate or rhythm or change in the morphological pattern of ECG signal is an
indication of cardiac arrhythmia. It is detected and diagnosed by analysis of the recorded
ECG waveform. There are five waves in ECG signal, a P wave, QRS complex and a T
wave corresponding to atrial depolarization, ventricular depolarization and rapid
repolarization of ventricles. The amplitude and duration of the P-QRS-T-U
wave contains useful information about the nature of disease related to heart.

In clinical environment during acquisition, the ECG signal encounters various types of
artifacts. The ones of primary interest are power line interference, external
electromagnetic field interference, noise due to random body movements and
respirational movements, electrode contact noise, electromyography (EMG) noise, and
instrumentation noise. These noises degrade the signal quality, frequency resolution and

strongly affect the morphology of ECG signal containing important information. It is
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essential to reduce disturbances in ECG signal and improve the accuracy and reliability for
better diagnosis.

Many methods have been implemented to remove the noise from noisy ECG signal. The
basic method is to pass the signal through high pass, low pass and notch filters. But these
filters are examples of static filters. One of the biggest disadvantages of this static filter is
that these also remove some important frequency components in the vicinity of cut off
frequency. The static filters have fixed filter coefficients. It is difficult to reduce the
instrumentation noise with fixed filter coefficients, because the time varying behaviour of
this noise is not exactly known. To overcome the limitations of static filters, different
adaptive filtering methods have been developed. ECG denoising is done by wavelet based

filters.

1.2 Literature Survey
During past few years, various contributions have been made in literature regarding noise
removal, beat detection and classification of ECG signal. Most of them use either time
or frequency domain representation of the ECG waveforms. ECG signal is an important

source for diagnosis of cardiac patients.

In the paper “Denoising of ECG Signal with Different Wavelets”, Inderbir Kaur, Rajni and
Gaurav Sikri have shown comparison between Wavelets. Discrete Wavelet Transform is
used to denoise the signal. It also shows a comparison between wavelets. According to
performance parameters calculated it is shown that the Bior3.1 Wavelet is better than other
due to higher PSNR, lower MSE and PRD than other wavelets[1].

In the paper “Comparative Study of ECG Signal Denoising and R-peak Registration
Methods”, Vikramjit Singh, Simranjeet Kaur and Aditi Gupta present the comparative
study of ECG signal denoising methods and R-peak registration. They also show Denoising
using discrete wavelet transform shows good result in context with adaptive
thresholding[2].



In the paper “Denoising ECG Signal Using Different Wavelet Families and Comparison
with Other Techniques” Uzzal Biswas, Kazi Reyadul Hasan, Biswajit Sana and Md.
Maniruzzaman shown analysis of original, mixed and denoised ECG signal, both in time
and frequency domains shows that wavelet transform reduces the 50 Hz power line
interference more accurately. MSE and PSD values of wavelet transform is too good than
that of adaptive NLMS and traditional notch filters [3].

In the paper “A Review on feature extraction and denoising of ECG signal using wavelet
transform” , Seena V and Jerrin.Yomas proposes comparison of different feature extraction

and denoising techniques using wavelet transform[4].

In the paper “A Survey on ECG Signal DenoisingTechniques”, Sarang L. Joshi, Rambabu
A.Vatti and Rupali V.Tornekar show that to remove motion artifact and EMG noise we
should select discrete Meyer wavelet and apply the improved thresholding function which

combines features of hard and soft thresholding[5] .

In ECG signal analysis QRS detection is very important for diagnosis of patients, through
this wave clinical information like heart rate, type of arrhythmic diseases etc can be
evaluated. But the detection of QRS is very difficult because it is contaminated by several
noises like base line wander, motion artifacts, power line interference etc. Wavelet is
efficient tool for signal representation in time and frequency. Wavelet based ECG signal
feature extraction and abnormal heart beat reorganization is done by Castro et al [7]. In this
method mother wavelet among the orthogonal and bi orthogonal are chosen. For feature
extraction signal is de noised and then mother wavelet function is applied to get the

features.

The ECG signal amplitude is very small and its frequency range lies between 0.05-100 Hz.
This ECG signal is corrupted by several artifacts signals those are power line interference

50/60 Hz, motion artifacts, muscle contraction, baseline drift noise, and Instrumentation
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noise due to electronic devices, so characteristics of ECG signal changes and changes the
features of ECG signal. Thus removal of such artifacts is very necessary to get correct ECG

signal.

In the paper titled, “Optimal selection of wavelet basis function applied to ECG signal
denoising”, B. N. Singh and A. K. Tiwari have applied an optimal wavelet basis function
for denoising of an ECG signal [13]. The experimental results have revealed suitability of
Daubechies mother wavelet of order 8 to be the most appropriate wavelet basis function

for the denoising application.

Several other techniques have been also proposed to extract the ECG components
contaminated with the background noise and allow the measurement of subtle features in
the ECG signal.

1.3 Report Layout

The summary of all chapters covered in this dissertation report is as follows:

Chapter 1: The chapter is the introduction to analysis and denoising of ECG signals.

Different literature survey for denoising of ECG signal algorithm are briefly discussed.

Chapter 2: This Chapter explains the generation of heart beat, basics
of electrocardiogram and ECG morphology. Artifacts that commonly appear in ECG
signal during acquisition are elaborately discussed. Different modes of lead placement
and the MIT-BIH arrhythmias database are also described.

Chapter 3: This chapter describes wavelet transforms and different approaches which are
implemented in this thesis to denoise the ECG signal including signal decomposition,

thresholding and signal reconstruction.



Chapter 4: In this chapter the result and discussion of the work carried out from generation
of noise to denoising of ECG signal. Comparison of result in terms of various parameter
like SNR, PRD and MSE

Chapter 5: Finally in this chapter the conclusion and future scope of the work have been

presented.



CHAPTER 2

BASICS OF ECG AND ARTIFACTS

This Chapter explains basics of electrocardiogram, the generation of heart beat and
morphology of ECG waveform. Artifacts that commonly appear in ECG signal during
acquisition are elaborately discussed. Different modes of lead placement and the MIT-BIH

arrhythmia database are also described.

2.1 Electrocardiogram

The ECG is a bioelectric signal, which records the electrical activity of heart versus
time. Therefore, it is an important diagnostic tool for assessing heart function. The ECG
isacquired by placing electrodes on the skin of the patient. The ECG signal provides the

following information of a human heart [15]:

« disturbances in heart rhythm and conduction

« abnormalities in the spread of electrical impulse across the heart
« information about a prior heart attack

* sign of coronary artery disease

» abnormal thickening of heart muscle

« indication of decreased oxygen delivery to the heart

» extent and location of myocardial ischemia

» changes in electrolyte concentrations



« effects of drugs on the heart
2.1.1 Structure and Physiology of Heart

The human heart weighs 250- 350 grams and is approximately equal to the size of the
fist. It is located anterior to the vertebral columnzand posterior to the sternum. It is covered
by a double-walled sac called the pericardium. The exterior part of this sac is called
the fibrous pericardium. This sac protects the heart, anchors its surrounding
structures and prevents overfilling of the heart with blood. The outer wall of the human
heart is composed of three layers. The outer layer is called the epicardium or visceral
pericardium since it is also the inner wall of the pericardium. The middle layer is called
the myocardium and is composed of cardiac muscle which contracts. The inner layer is
called the endocardium and is in contact with the blood. It also merges with the inner

lining (endothelium) of blood vessels and covers heart valves [20].

The Heart is divided into separate right and left sections by the interventricular septum.
Each of these (right and left) sections are again divided into upper and lower
compartments known as atria and ventricles respectively. Thus, human heart has four
chambers i.e. two superior atria and two inferior ventricles. The atria are the receiving
chambers and the ventricles are the discharging chambers as shown in the Fig. 2.1. The
atria are attached to the ventricles by fibrous, non-conductive tissue that keeps the
ventricles electrically isolated from the atria. The Tricuspid valve separates the right
atrium from the right ventricle. The Mitral (also known as the Bicuspid) valve separates
the left atrium from the left ventricle.

Oxygen-poor blood from the whole body is received into the right atrium through large
veins called the superior and inferior vena cavaand flows. The right atrium and the right
ventricle together form a pump to the circulate blood to the lungs. The right ventricle
then pumps the blood to the lungs where the blood is oxygenated. Similarly, the left
atrium and the left ventricle together form a pump to circulate oxygen-enriched blood

received from the lungs (via the pulmonary veins) to the rest of the body [15].
7
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Figure 2.1: Structure of heart

2.2 Generation of Heart Beat

Some cardiac cells are self-excitable, contracting without any signal from the nervous
system. Even if removed from the heart and placed in culture, the cells have the self-
excitation property. The electrical potentials for contraction are caused by a group of
specialized cells in the heart which control the heartbeat. These cells produce electrical

impulses which spread across the heart causing it to contract. The main pacemaker of
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heart, the Sinoatrial node (SA node), initiates the heart beat by generating an electrical
impulse which travels to the left and right atria, causing them to contract (atrial
depolarization). Following the start of atrial depolarization, the impulse quickly arrives at
the Atrioventricular node (AV node) which is responsible for the contraction of ventricle.
The electrical signal next passes through the Bundle of His, diverges into the Right
and Left Bundle branches, and spreads through the Purkinje Fibers to the muscles of
the left and right ventricle. This causes ventricular depolarization (contraction). The
time required for the signal to travel from the AV node to the Purkinje Fibers provides
a natural delay of about 0.1 second. This delay ensures that the atria have become
completely empty before the ventricles contract. The contraction is followed by
ventricular repolarization (recovery) of the cells which were excited during the previous

depolarization wave.

Bachmann's

Sinoatrial node bundle

Atrioventricular W\ \ His bundle
node Q /
: W /%
Left posterior AN

|
bundle ‘?\_2 %{
T Purkinje
Right bundle )\ % fibers

Figure 2.2: Conduction path of electrical potential for heart beat

The SA node creates the electrical impulse which causes the heart to beat, but the
Autonomic Nervous System (ANS) controls the heart rate and the strength of heart
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contractions. The ANS consists of two parts, the Sympathetic Nervous System (SNS)
and the Parasympathetic Nervous System (PNS). The Sympathetic nerves increase the
heart rate and the contraction force, while the Parasympathetic nerves act in the reverse
manner. An idealized conduction of electrical impulse for heart beat is shown in Fig. 2.2.
A small portion of this electrical potential flows to the body surface. By applying electrodes
on the skin at the selected points, the electrical potential generated by this current can be

recorded as an ECG signal [14].

2.3 ECG Morphology
ECG waveform of a normal individual consists of P wave, QRS complex, ST segment,
T wave and U wave. The labels of Fig. 2.3 are commonly used in medical ECG

terminology.

P wave: When the electrical impulse is conducted from the SA node towards the AV
node and spreads from right to left atrium, the depolarization (contraction) of the atria

occurs. The depolarization of atria results the P Wave in the ECG.

QRS complex: The QRS complex consists of three waves, sequentially known as Q, R
and S. The rapid depolarization of both the ventricles results this complex. The muscles
of the ventricles have large muscle mass than that of atria, hence its amplitude is much

larger than that of P wave.
T wave: Ventricular repolarisation results the preceding of ST segment and the T wave.

U wave: The origin of U wave is not clear and it is rarely seen. It is probably produced

due to the repolarisation of the papillary muscles.
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Table 2.1 Features of ECG signal

Features Description Amplitude | Duration
P wave Atrial depolarization 0.1-0.2mv | 80 ms
PR interval Reflects the time the electrical 120-200ms

impulse takes to travel from the
sinus node through the AV node
and entering the ventricles

QRS complex Depolarization of ventricles 1-1.2 mv 80-120 ms
J point Point where QRS complex is  _ _
finished
ST interval Represents the period when the | _ 80-120 ms
ventricles are depolarized
T wave Repolarisation of ventricles 0.12-0.3mv | 160 ms
QT interval is measured from the beginning 300-430ms

of the QRS complexto the end of
the T wave. A prolonged QT
interval is a risk factor for
ventricular tachyarrhythmias and
sudden death

U wave repolarisation of the papillary | _ _
muscles, rarely seen
RR interval The interval between an R wave 0.2-1.2s

and the next R wave
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2.4 Noises in ECG
ECG measurements may be corrupted by many sorts of noise. The ones of primary

interest are:

* Power line interference
* Electrode contact noise
* Motion artifacts

* EMG noise

e Instrumentation noise

These artifacts strongly affects the ST segment, degrades the signal quality, frequency
resolution, produces large amplitude signals in ECG that can resemble PQRST
waveforms and masks tiny features that are important for clinical monitoring and
diagnosis. Cancelation of these artifacts in ECG signals is an important task for better

diagnosis.

2.4.1 Power Line Interference

Power line interference occurs through two mechanisms: capacitive and inductive coupling.
Capacitive coupling refers to the transfer of energy between two circuits by means of a
coupling capacitance present between the two circuits. The value of the coupling
capacitance decreases with increasing separation of the circuits. Inductive coupling on the
other hand is caused by mutual inductance between two conductors. When current flows
through wires it produces a magnetic flux, which can induce a current in adjacent circuits.
The geometry of the conductors as well as the separation between them determines the
value of the mutual inductance, and hence the degree of the inductive coupling. Typically,

capacitive coupling is responsible for high frequency noise while inductive coupling

12



introduces low frequency noise. For this reason inductive coupling is the dominant
mechanism of power line interference in electro cardiology. To limit the amount of power
line interference, electrodes should be applied properly, that there are no loose wires, and

all components have adequate shielding.

The Power line interference has frequency of 60 Hz or 50 Hz depending on the power

supply.

2.4.2 Electrode Contact Noise

Electrode contact noise is caused by variations in the position of the heart with respect to
the electrodes and changes in the propagation medium between the heart and the electrodes.
This causes sudden changes in the amplitude of the ECG signal, as well as low frequency
baseline shifts. In addition, poor conductivity between the electrodes and the skin reduces
the amplitude of the ECG signal and increases the probability of disturbances (by reducing
SNR).

The underlying mechanism resulting in these baseline disturbances is electrode-skin
impedance variation. The larger the electrode-skin impedance, the smaller the relative
impedance change needed to cause a major shift in the baseline of the ECG signal. If the
skin impedance is extraordinarily high, it may be impossible to detect the signal features
reliably in the presence of body movement. Sudden changes in the skin-electrode
impedance induce sharp baseline transients which decay exponentially to the baseline
value. This transition may occur only once or rapidly several times in succession.
Characteristics of this noise signal include the amplitude of the initial transition and the

time constant of the decay.
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2.4.3 Motion Artifacts

Motion artifacts are baseline changes caused by electrode motion. The usual causes of
motion artifacts are vibrations, movement, or respiration of the subject. The peak amplitude
and duration of the artifacts are random variables which depend on the variety of unknowns
such as the electrode properties, electrolyte properties (if one is used between the electrode
and skin), skin impedance, and the movement of the patient. In this ECG signal, the

baseline drift occurs at an unusually low frequency (approximately less than 1Hz).

2.4.4 Electromyographic Noise

Electromyographic noise is caused by the contraction of other muscles besides the heart.
When other muscles in the vicinity of the electrodes contract, they generate depolarization
and repolarization waves that can also be picked up by the ECG. The extent of the crosstalk
depends on the amount of muscular contraction (subject movement), and the quality of the
probes. It is well established that the amplitude of the Electromyographic signal is
stochastic (random) in nature and can be reasonably modelled by a Gaussian distribution
function. The mean of the noise can be assumed to be zero; however, the variance is
dependent on the environmental variables and will change depending on the conditions.
Certain studies have shown that the standard deviation of the noise is typically 10% of the
peak-to-peak ECG amplitude. While the actual statistical model is unknown, it should be
noted that the electrical activity of muscles during periods of contraction can generate
surface potentials comparable to those from the heart and could completely drown out the

desired signal. The frequency of this EMG noise is in between 100-500 Hz.

2.4.5 Instrumentation Noise

The electrical equipment’s used in ECG measurements also contribute noise. The major

sources of this form of noise are the electrode probes, cables, signal processor or
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amplifier, and the analog-to-digital converter. Unfortunately instrumentation noise
cannot be eliminated as it is inherent in electronic components, but it can be reduced
through higher quality equipment and careful circuit design. Another form of noise,
called flicker noise, is very important in ECG measurements, due to the low frequency
content of ECG data. The actual mechanism that causes this type of noise is not yet
understood, but one widely accepted theory is that itis caused by the energy traps which
occur between the interfaces of two materials. It is believed that the charge carriers get
randomly trapped/released and cause flicker noise.

2.5 ECG Database

Since 1975, the laboratories at Boston's Beth Israel Hospital (now the Beth Israel
Deaconess Medical Centre) and at Massachusetts Institute of Technology (MIT) have
supported the research in arrhythmia analysis and related subjects by creating a
database. One of the first major products of their effort was the Massachusetts Institute
of Technology Beth Israel Hospital (MIT-BIH) database. This database was completed
and began distributing in 1980. The database was the first generally available set of
standard test material for evaluation of arrhythmia detectors and has been used for that
purpose as well as for basic research into cardiac dynamics at more than 500 sites
worldwide [26].

The MIT-BIH Arrhythmia Database contains 48 half-hour excerpts of two-channel
ambulatory ECG recordings. These are obtained from 47 subjects collected from a mixed
population of inpatients (about 60%) and outpatients (about 40%) studied by the BIH
Arrhythmia Laboratory. The subjects were taken from, 25 men aged 32 to 89 years and
22 women aged 23 to 89 years. About half (25 of 48 complete records and reference
annotation files for all 48 records) of this database has been freely available in
PhysioNet's inception in September 1999 [8]. The 23 remaining signal files, which had
been available only on the MIT-BIH Arrhythmia Database CD-ROM, were posted in
15



February 2005. The recordings were digitized at 360 samples per second per channel

with 11-bit resolution over a 10 mV range.
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CHAPTER 3

WAVELETS AND ECG DENOISING ALGORITHMS

Algorithms which are implemented in this thesis for ECG enhancement purpose are

described here. For denoising purpose thresholding and wavelet filter bank are used.

3.1 Wavelet Transform

The Fourier transform is useful tool to analyze the frequency components of the signal.
However, if we take the Fourier transform over the whole time axis, we cannot tell at
what instant a particular frequency rises. Short-time Fourier transform (STFT) uses a
sliding window to find spectrogram, which gives the information of both time and
frequency. But still another problem exists i.e. the length of window limits the resolution
in frequency. Wavelet transform seems to be a solution to the problem above. Wavelet
transforms (WT) are based on small wavelets with limited duration. In WT both the time
and frequency resolutions vary in time-frequency plane in order to obtain a

multiresolution analysis.

In wavelet transform, a signal x(t) which belongs to the square integrable subspace
L2(R) is expressed in terms of scaling function @j«(t) and mother wavelet function ;jk(t).

Here j is the parameter of dilation or the visibility in frequency and k is the parameter of

the position.

x(#)= Z Qi Pip i D+ Z ij-k ¥k (D)
k

J=h k
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where a, b are the coefficients associated with @jk(t) and yjk(t) respectively.

The coefficients a, b can be calculated as we calculate the coefficients in Fourier

transform.

The expression of a, b are given in the following equations

a,,= [ 2@, @) dt

o

by = [ x(O), () dt

—

The scaling function @j«(t) can be expressed as
0,:()=2" p(2’t k)

i k(t) can also be derived from its shifted version i.e. @jx(2t). The expression of @jk(t)

in terms of @;k(2t) will be
o(1)=hy(m) N2 p(2t —n)

n is the shifting parameter and hy(n) are the coefficients.

The mother wavelet function yj«(t) is expressed as
v, (O=2"y(2't-F)

i k(t) can also be written using shifted version @jk(t) i.e. @jk(2t).
18



The expression of yjk(t) will be
w(O)=> h,(m)N2 (2t —n)
n is the shifting parameter and hy(n) are the coefficients.

3.2 Discrete Wavelet Transform

The discrete wavelet transform (DWT) is an implementation of the wavelet transform
using a discrete set of the wavelet scales and translations obeying some defined rules. In
other words, this transform decomposes the signal into mutually orthogonal set of

wavelets.

The scaling function ¢jk(n) and the mother wavelet function w;jx(n) in discrete domain

are

@, (M=2"" (2" n—k)

() =22y (2 n—k)
The DWT of an discrete signal x(n) of length M-1 is given by

x() =W, (s k)@, (1) + i SW, (o Ky, (1)

J=Jjg ¥
Here, Wo(jo,k) and Wy (jo,k) are called the wavelet coefficients.

pjk(n) and wjk(n) are orthogonal to each other. Hence we can simply take the inner
product to obtain the wavelet coefficients.
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W[ jn.fr]=ﬁz x(n)@; [n]

W, K=o Sx0v,l] 72
The coefficients Wgp(jo,k) are called the approximation coefficients and the coefficients
Wy (jo,k) are called the detailed coefficients. The DWT can be realized in terms of high
pass and low pass filters. The approximation properties of filter banks and their relation to
wavelets are presented in the paper [44]. The output of the low pass filter gives the
approximation coefficients and the output of the high pass filter gives the detailed

coefficients. To get the filter coefficients Wo(jo,k) and Wy jo,K) can be rewritten as

W,(j.k)=> h,(n—2k)W,(j+1.m)

W, (j.k)=> h,(m—2k)W,(j+1.m)

h, and h, are the filter coefficients of the low pass filter and high pass filter respectively.

Computation of the wavelet coefficients at every possible scale is a fair amount of work
and it generates an awful lot of data. Selection of a subset of scales and positions based on
powers of two (dyadic scales and positions) results in a more efficient and accurate
analysis. Mallat has introduced repetitive application of high pass and low pass filters to
calculate the wavelet expansion of a given sequence of discrete numbers [14].

3.3 Wavelet Decomposition
The DWT decomposes the signal into approximate and detail information as discussed
in section 3.2. Thus, it helps in analyzing the signal at different frequency bands

with different resolutions.
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3.3.1 Single stage wavelet filtering

In single stage wavelet filtering the original signal x(n) is passed through two
complementary filters and emerges as two signals. The filtering process, at its most

basic level is shown in Fig. 3.1.

D = detailed coefficients

() A = approximation coefficients
. length of xjn). D, A =M

!

-
T
bl

Figure 3.1 Single stage wavelet filtering

If single stage wavelet filter is applied on a digital signal, then we end with twice as
much data as we started with. The original signal x(n) consists of M samples of data.
The resulting approximation and detail coefficients are each of length M, for a total of
2M.

There exists an alternative method to perform the decomposition using wavelets.
By down sampling A and D to half of their lengths i.e. M/2, the total length of resulting
signal can be maintained. The final output signals after down sampling are denoted as

cA and cD. It is diagrammatically shown in Fig. 3.2.

+ HPF i
» "®_" <D @ : Down sampling
¢D : High frequency component
x(m) cA : Low frequency component
length of x(n) =M
» LPF _.®_> cA length of cA and cD = M/2

Figure 3.2 Single stage wavelet filtering with down sampling
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3.3.2 Multistage wavelet filtering

The wavelet decomposition process can be iterated, so that one signal is broken down

into many lower resolution components. This is called the wavelet decomposition tree.

r x(n)

chAi cD1
h Y
r chla _i cD;
cD
i 3 CD3
cA, cD,

Figure 3.3 Multistage wavelet decomposition tree

Since multistage wavelet filtering analysis process is iterative, theoretically it can be
continued till infinite levels. Ideally the decomposition can be done only until the
individual details consist of a single sample. In practice, a suitable number of

decomposition levels based on the nature and frequency component of the signal.
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3.4 Thresholding
3.4.1 Soft of Hard Thresholding

Thresholding can be either soft or hard . Hard thresholding zeroes out all the signal
values smaller than Y. Soft thresholding does the same thing, and apart form that,
subtracts Y from the values larger than Y. In contrast to hard thresholding, soft
thresholding causes no discontinuities in the resulting signal. In Matlab, by default, soft
thresholding is used for denoising and hard thresholding for compression. There are two
ways to apply the threshold value to the wavelets coefficients; the hard and soft

thresholds which were expressed as formulas respectively as shown in Figure 3.5

Y:{D |¥{( Thr

Y |Y|z Thr

0 |Y|¢ Thr
Y=4 . N .
sign(¥) 4'|j1”|—1"fu'} |I"| = Thr

Y is the wavelets coefficient.

Original signal Hard thresholded signal  Soft thresholded signal
1 - 1 1
0D.5¢ 0D.5¢ 0.5
0 0 0
-0.5 -0.5 —-0.5
-1 -1 -1
-1 0 1T - 0 [ 0 1

Fig. 3.4 Hard and Soft Thresholding
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3.4.2 Selection of Threshold

Thresholding of the wavelet coefficients can be done using either hard thresholding or
soft thresholding [14]. The selection of the threshold value for denoising can be done

using any of the four selection rules explained as below [7]:

MINMAX Thresholding: It uses a fixed threshold chosen to yield minimax performance

for mean square error against an ideal procedure. The minimax principle is used in
statistics in order to design estimators. Since the de-noised signal can be assimilated to
the estimator of the unknown regression function, the minimax estimator is the one that
realizes the minimum of the maximum mean square error obtained for the worst function

in a given set.

RIGEROUS SURE Thresholding: It is used for the soft threshold estimator based on

Stein's Unbiased Estimate of Risk (quadratic loss function). One gets an estimate of the

risk for a particular threshold value and minimizing the risks and gives a selection of the

threshold value.

UNIVERSAL Thresholding: This was proposed by Donoho and can be used as an

alternative to the use of minimax threshold. It is bigger in magnitude than the minimax

threshold. The value of the threshold is calculated as:
THR = sqgrt (2*log(length(X))
Where, THR is the threshold value and X is noisy signal.

HEURISTIC SURE Thresholding: This is a heuristic variant of the rigorous sure method.

It is a mixture of the two previous options. As a result, if the signal to noise ratio is very
small, the SURE estimate is very noisy. If such a situation is detected, the fixed form

threshold is used.
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3.5 Wavelet Reconstruction
In section 3.2.3, the analysis of a signal by discrete wavelet transform decomposition is
discussed. This process is called decomposition or analysis. After decomposition, the task
is to again reconstruct the original signal without loss of important information. This
process is called reconstruction, or synthesis. The synthesis is done mathematically by

using the inverse discrete wavelet transform (IDWT).

In wavelet analysis, filtering and followed by down sampling are involved. But the
wavelet reconstruction process consists of up sampling followed by filtering. Up
sampling is the process of lengthening a signal component by inserting zeros between

samples.

O O

cD cD

L J

x(n) x'(n)

L

Decomposition stage Reconstruction stage

Figure 3.5 Single stage decomposition and reconstruction

We combine cA and cD by IDWT to get the reconstructed original signal. However,
instead of combining, we can feed a vector of zeros in place of the detail coefficients
vector or approximation coefficients as per our requirement. For example, when cD is
made zero before combining with cA, it yields a reconstructed approximation Al. Al

has the same length as the original signal x(n) and which is a real approximation of it.
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For multiple level reconstruction, the single stage reconstruction technique is iterated to

reassemble the original signal.

3.6 Denoising Algorithm
e Generation of Noise
e Addition of Noise to Original ECG Signal
e Decomposition of Noisy ECG Signal
e Thresholding
e Reconstruction of ECG Signal

e Performance Evaluation of Denoised ECG Signal

26



CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, all the simulation results using the algorithms discussed in chapter 3 are
presented under different subsections. The ECG waveform taken from MIT-BIH
database, generated noises and the corrupted ECG signal are also shown.

4.1 ECG Waveform

All the simulations shown in later parts of thesis are carried out with data no. 103 of MIT-

BIH arrhythmia database [8]. The ECG signal waveform is shown in Figure. 4.1

Qriginal ECG signal
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Figure 4.1 ECG Signal from MITBIH arrhythmia database
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4.2 Generation of Noise
The artifacts in ECG can be categorized according to their frequency content. The low

frequency noise (electrode contact noise and motion artifact) has frequency less than 1
Hz, high frequency noise (EMG noise) whose frequency is more than 100 Hz and power
line interference of frequency 50 Hz or 60 Hz (depending on the supply). These noises

are generated in MATLAB based on their frequency content.

4.2.1 Generation of Low Frequency Noise

Baseline drift noise is generated by adding two sine waves of frequency 0.4Hz and 0.1Hz

and Sawtooth wave of 0.25Hz which is shown in Figure. 4.2.
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Sawtooth Wave
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Fig 4.2 Noise Signal of Low Frequency

4.2.2 Generation of High Frequency Noise

High frequency noises are generated by multiplying the sine wave of frequency 150Hz
with arandom signal. The resulted high frequency noise is shown in Figure. 4.3.

High Frequency Moise

Amplitude(my)

0 500 1000 1500 2000 2500 3000 3500
Samples

Figure 4.3 High frequency noise
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4.2.3 Generation of Power Line Interference

Here the 50Hz power supply is considered. Thus, a sine wave of 50Hz amplitude is taken
to represent the power line interference. The generated power line interference is shown
in Figure. 4.4.

Power line frequency Moise
0.1 T T T

Amplitude(my)

01 i i |
0 500 1000 1500 2000 2500 3000 3500
Samples

Figure 4.4 Power line interference

4.3 ADDITION OF NOISE TO ECG

The noise signal is generated and are added to form a noise for ECG signals. Now this
noise is added with the ECG signals to get the corrupted ECG signal. Figure. 4.5 and

Figure. 4.6 shows Noise and the corrupted ECG signal respectively.
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Fig. 4.6 Noisy ECG Signal
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4.4 Evaluation Factor of Denoising

For evaluation of denoising algorithm following parameters are evaluated.

(a) Percentage Root Mean Square Difference: represents the standard deviation of difference

between original signal sample and reconstructed signal. It is represented by equation (4.2).

PRD(%) = 100 * J(z [X(m) - Y())? |Z [X(n)] ) (4.2)

Where X is original signal and Y is reconstructed signal

(b) Signal to Noise Ratio: is the ratio of signal power to noise power which is expressed in
decibels (dB). SNR is represented by equation (4.3)

SNR = 10 * logyo ( X1 _, [X(n)]? |2 [X(n) - Y()]?) (4.3)

(c) Mean Square Error: It measures the average of the squares of the errors or deviations, that
is, the difference between the estimator and what is estimated. MSE is a risk function,

corresponding to the expected value of the squared error loss or quadratic loss.

N
MSE = 1/N Z [X(n) — Y(n)]?
n=1
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4.5 Results

Table 4.1 ECG analysis of Biorthogonal Mother Wavelet

Biorthogonal | Soft Thresholding Hard Thresholding
PRD SNR MSE PRD SNR MSE
11 0.3976 | 8.0109 | 0.0052 | 0.3265 | 9.7232 | 0.0045
1.3 0.3473 | 9.185 0.0043 | 0.2959 | 10.5769 | 0.0038
1.5 0.3507 | 9.101 0.0044 | 0.2895 | 10.7657 | 0.0037
2.2 0.3975 | 8.0142 | 0.0056 | 0.3182 | 9.9473 | 0.0043
2.4 0.4288 | 7.3559 | 0.0063 | 0.2935 | 10.6479 | 0.0037
2.6 0.3552 | 8.99 0.0045 | 0.28 11.0568 | 0.0034
2.8 0.2868 | 10.8486 | 0.0032 | 0.2698 | 11.3778 | 0.0032
3.1 0.7842 | 2.1116 | 0.0405 | 0.6346 | 3.9502 | 0.0222
3.3 0.529 |5.5306 |0.0101 | 0.4309 | 7.3123 | 0.0086
3.5 0.384 | 8.3134 | 0.0055 | 0.3125 | 10.1038 | 0.0042
3.7 0.2742 | 11.2399 | 0.0031 | 0.2765 | 11.1661 | 0.0033
3.9 0.267 | 11.4689 | 0.0029 | 0.2709 | 11.3441 | 0.0032
4.4 0.3782 | 8.4446 | 0.005 | 0.2901 | 10.7479 | 0.0036
5.5 0.3899 | 8.1812 | 0.0053 | 0.2831 | 10.961 | 0.0035
6.8 0.2993 | 10.4784 | 0.0035 | 0.2734 | 11.2642 | 0.0032
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Fig 4.7 Biorthogonal 3.9 wavelet using Soft Thresholding
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Fig 4.8 Biorthogonal 2.8 wavelet using Hard Thresholding

Table 4.2 ECG analysis of Reverse Biorthogonal Mother Wavelet

Reverse Soft Thresholding Hard Thresholding
Biorthogonal PRD SNR MSE PRD SNR MSE
1.1 0.3992 | 7.9758 | 0.0053 | 0.3228 | 9.8223 | 0.0044
1.3 0.3597 | 8.8805 | 0.0045 | 0.2971 | 10.5416 | 0.0038
1.5 0.3357 | 9.4816 | 0.0041 | 0.2841 | 10.9303 | 0.0035
2.2 0.4756 | 6.4557 | 0.0078 | 0.4025 | 7.9039 | 0.0069
24 0.4172 | 7.5933 | 0.006 | 0.3282 | 9.678 | 0.0047
2.6 0.3794 | 8.4183 | 0.0051 | 0.2916 | 10.7041 | 0.0037
2.8 0.3355 | 9.4863 | 0.0044 | 0.2896 | 10.7653 | 0.0037
3.1 0.9903 | 0.0851 | 0.8908 | 0.9861 | 0.1219 | 0.9092
3.3 0.4592 | 6.7595 | 0.0084 | 0.474 6.485 | 0.0115
3.5 0.3994 | 7.9717 | 0.0061 | 0.3813 | 8.375 | 0.0071
3.7 0.3532 | 9.0402 | 0.0049 | 0.3531 | 9.0428 | 0.0058
3.9 0.3304 | 9.6198 | 0.0043 | 0.323 | 9.8168 | 0.0047
4.4 0.3597 | 8.8816 | 0.0046 | 0.2787 | 11.0971 | 0.0034
5.5 0.4092 | 7.7619 | 0.0057 | 0.2972 | 10.5376 | 0.0038
6.8 0.3212 | 9.8633 | 0.004 | 0.2785 | 11.103 | 0.0034
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Fig 4.9 Reverse Biorthogonal 6.8 wavelet using Soft Thresholding
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Fig 4.10 Reverse Biorthogonal 6.8 wavelet using Hard Thresholding
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Table 4.2 ECG analysis of Symlet Mother Wavelet

Amplitude{imV)

Symlet | Soft Thresholding Hard Thresholding
PRD SNR MSE PRD SNR MSE

1 0.395 |[8.0688 | 0.0052 | 0.3274 | 9.6993 | 0.0045

2 0.4137 | 7.6665 | 0.0057 | 0.3403 | 9.3621 | 0.0049

3 0.526 |5.5798 |0.0087 | 0.5412 | 5.3328 | 0.0104

4 0.4992 | 6.035 0.0079 | 0.3648 | 8.7599 | 0.0054

5 0.376 | 8.4957 | 0.0049 | 0.2876 | 10.8233 | 0.0035

6 0.3637 | 8.7844 | 0.0046 | 0.2786 | 11.1004 | 0.0033

7 0.3351 | 9.4967 | 0.0041 | 0.2806 | 11.0386 | 0.0034

8 0.3248 | 9.7673 | 0.0041 | 0.2715 | 11.324 | 0.0031

9 0.3327 | 9.5589 | 0.0043 | 0.2792 | 11.0822 | 0.0034

10 0.3183 | 9.9437 | 0.0039 | 0.2784 | 11.1066 | 0.0033

12 0.3032 | 10.3654 | 0.0036 | 0.2796 | 11.0701 | 0.0034

15 0.2847 | 10.9129 | 0.0035 | 0.2888 | 10.7867 | 0.0037

20 0.2843 | 10.9257 | 0.0035 | 0.286 | 10.8723 | 0.0036

25 0.2902 | 10.7474 | 0.0036 | 0.2796 | 11.0701 | 0.0034
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Fig 4.11 Symlet 20 wavelet using Soft Thresholding
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Fig 4.12 Symlet 8 wavelet using Hard Thresholding

Table 4.4 ECG analysis of Coiflet Mother Wavelet

Coiflet

Soft Thresholding

Hard Thresholding

PRD SNR

MSE

PRD SNR MSE

0.4742 | 6.4811

0.0074

0.3741 | 8.5393 | 0.0057

0.3405 | 9.3566

0.0041

0.2946 | 10.6145 | 0.0037

0.3007 | 10.4384

0.0035

0.2708 | 11.3455 | 0.0032

0.2937 | 10.6426

0.0034

0.2685 | 11.4207 | 0.0031

GV WIN|F

0.2838 | 10.9404

0.0035

0.2861 | 10.8697 | 0.0036
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Fig 4.13 Coiflet 5 wavelet using Soft Thresholding
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Fig 4.14 Coiflet 4 wavelet using Hard Thresholding
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Table 4.4 ECG analysis of Daubechies Mother Wavelet

Daubechies | Soft Thresholding Hard Thresholding
PRD SNR MSE PRD SNR MSE
1 0.4047 | 7.8577 | 0.0053 | 0.3301 | 9.6259 | 0.0045
2 0.4316 | 7.298 0.0061 | 0.33 9.6295 | 0.0046
3 0.5213 | 5.6582 | 0.0086 | 0.3669 | 8.7088 | 0.0055
4 0.4259 | 7.4143 | 0.006 | 0.3263 | 9.7275 | 0.0045
5 0.4071 | 7.8062 | 0.0056 | 0.2929 | 10.6657 | 0.0037
6 0.5382 | 5.3814 | 0.0094 | 0.4927 | 6.1489 | 0.0091
7 0.425 | 7.4317 0.006 | 0.5442 | 5.2854 0.0105
8 0.3369 | 9.4501 | 0.0043 | 0.2839 | 10.9381 | 0.0035
9 0.3703 | 8.6284 0.0051 | 0.282 10.9964 | 0.0035
10 0.3387 | 9.4026 | 0.0044 | 0.2905 | 10.7362 | 0.0036
11 0.314 | 10.0625 | 0.0038 | 0.2805 | 11.0405 | 0.0034
12 0.344 | 9.2694 0.0044 | 0.2844 | 10.9205 | 0.0035
15 0.2846 | 10.9138 | 0.0035 | 0.2801 | 11.0545 | 0.0035
20 0.2889 | 10.7852 | 0.0035 | 0.2816 | 11.0063 | 0.0035
25 0.2907 | 10.7316 | 0.0036 | 0.2826 | 10.9756 | 0.0035
40 0.2795 | 11.0712 | 0.0034 | 0.2817 | 11.0043 | 0.0035
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Fig 4.15 Daubechies 40 wavelet using Soft Thresholding
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Fig 4.16 Daubechies 15 wavelet using Hard Thresholding
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CHAPTER 5

CONCLUSION AND FUTURE SCOPE

Biorthogonal Wavelet Family member, bior3.9 along with soft thresholding technique
appears to be the most compatible function among other wavelet function for the denoising
of ECG signal using wavelet transform. The functions db40, bior3.9, rbio6.8, sym20 and
coif5 gives lesser value of MSE, PRD and larger value of SNR results in their respective
family using soft thresholding. The functions db15, bior 2.8, rbio6.8, sym8 and coif4 gives
lesser value of MSE, PRD and larger value of SNR results in their respective family using
hard thresholding. Wavelets having resembelence with the ECG signals shows better result
for removal of noise from ECG signal. By comparing the results of SNR, MSE and PRD
of various wavelets we conferred to a result that Hard Thresholding remove noise more

effectively as compared to Soft Thresholding.
The results are compared on rigrous sure thresholding technique, for future work results

are also compared on heuristic sure, minimax and universal thresholding technique and

comparison in term of parameter such as SNR, MSE and PRD.
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