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ABSTRACT

This dissertation focuses on a meta-heuristic optimization algorithm i.e. big bang

big crunch optimization (BBBC) algorithm and major setbacks in BBBC algorithm

with respect to its conceptual and working structure. A modified BBBC optimization

algorithm is proposed, which works better than original BBBC. But, it is observed

that BBBC and modified BBBC like many other meta-heuristic optimization algorithm

suffers from the problem of getting trapped in local minima. Therefore, modified BBBC

is combined with chaos which effectively enhances the searching efficiency and greatly

improves the searching quality. These algorithms validity is quantified using various

benchmark function.

Further, this thesis, contributes various results, techniques and focuses on applica-

tion of BBBC in areas of System and Control. Starting with Model Order Reduction

(MOR), which is an integral part of System Engineering. MOR techniques have proved

to be an important technique for accelerating time-domain simulation in a variety of

CAD tools for highly complex system and controller design. There are various reduction

techniques available in literature and most of them are either complex i.e. they are too

difficult to understand while other techniques work for particular class of problems. In

this report, a novel MOR technique has been proposed using BBBC and time moment

matching method, which works for many class of problems. Now, moving onto field of

Control Engineering, utility of this algorithm for controller design has been elaborated.

In this method, a multi-objective function has been formulated and BBBC is used as

an optimization tool for fine tuning the PID controller. Above work i.e. MOR and

controller design have been validated on automatic voltage regulator system.

Another contribution of this thesis is study of utility of statistical methods in area

of Control System and Optimization. As it is known that BBBC is a relatively new

optimization technique, before which, many famous techniques like PSO and GA are

widely used in all field of engineering and talked about in optimization society. But

question always raises which one of these algorithms are better in respect to solution

finding capability (effectiveness) and computational efficiency. In this report we have

used inferential statistics as a tool to analyze this problem and bring out a concrete

conclusion in this regard.

At last we have used Taguchi method, a statistical technique, combined with BBBC to

fine tune the controller parameters.
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Chapter 1

Big Bang Big Crunch Algorithm

(BBBC)

1.1 Fundamentals of BBBC

Big Bang-Big Crunch[1] is basically an optimization method. This algorithm was pro-

posed by Erol and Eksin in 2006, which is inspired by theories of evolution of universe.

BBBC essentially consist of two phases: a big bang phase (BBP) and a big crunch phase

(BCP). In BBP, candidate solutions are uniformly disseminated over search space, where

in search space is limited by boundary constraints as in most metaheuristic optimiza-

tion technique. This uniform randomness is equivalent to energy dissipation in nature[1].

The BBP is followed by BCP which can be visualised as transformation from disordered

state of energy (uniform randomness) to ordered state of energy. The big crunch phase

acts as a concurrence operator which has only one output for many inputs or more

precisely, randomly distributed solutions are drawn into order, which can be named as

center of mass. Here, the term mass refers to the inverse of the fitness function value[1].

The centre of mass ~C(~x) is a function of position of each candidate (position vector) in

a designed search space and for kthiteration it is computed using formula.

~Ck( ~Xk) =

N∑
i=0

~xki
fki

N∑
i=0

1
fki

(1.1)

1
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Figure 1.1: Illustration of BBBC.
Blue color represents candidates moving to organised states, Red color represents center
of mass moving to disorganised state and Pink color represent movement of center of

mass.

such that ~xki ∈ ~Xk, wherein a set ~Xk = {~xki
∣∣~xki ∈ R, 1 ≤ i ≤ N, xmin ≤ xki ≤ xmax}. In

(1.1), ~xki is ith candidate in kth iteration of n-dimensional search space and fki is treated

as an objective function value or fitness function value corresponding to ith candidate

of kth iteration. More clear representation is shown in (1.2).

fki ∈ fo( ~Xk) = {fki |fki ∈ R, 1 ≤ i ≤ N} (1.2)

and N is the population size in BBP. Population size must be optimally chosen which

depends on the range of search space and number of iterations. After BCP, new candi-

dates ((k + 1)th iteration) are generated in designed search space, to be used for BBP

based on the knowledge of ~Ck( ~Xk), expressed as

~xk+1
i = ~Ck( ~Xk) + δi (1.3)

such that ~xk+1
i ∈ ~Xk+1 wherein a set ~Xk+1 = {~xk+1

i

∣∣∣~xk+1
i ∈ R, 1 ≤ i ≤ N, xmin ≤

xk+1
i ≤ xmax}. δi (spread/variance factor) is deviation of newly generated candidates

with respect to ~Ck( ~Xk) and is calculated using following equation:

δi =
riα (xmax − xmin)

K
(1.4)

In equation (1.4), α is the constant parameter generally taken to be in between [0, 1].

This parameter α limits the size of the solution space; ri is a random number from a
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Figure 1.2: Schematics Big bang big crunch algorithm

standard normal distribution which changes for each candidate such that ri ∈ (0, 1]. The

greater the value of ri the more scattered the candidate solutions are around ~Ck( ~Xk);

xmax and xmin are the upper and lower bounds on the values of the optimization prob-

lem variables, and K is a variable which increases with step size of one. This is done

for better and faster convergence to solution. After second explosion, ~Ck+1( ~Xk+1) is

calculated. These successive explosions, i.e., BBP, and contraction phases, i.e., BCP

are carried repeatedly until a stopping criterion has been met. This process is diagram-

matically represented in Fig.1.1. Pseudo code for BBBC is presented below to illustrate

coding methodology. In order to get clearer idea about basic BBBC algorithm, it is

explained using flowchart which is shown in Fig.1.2.

Pseudocode

Step 1: Initialize r, α, N and k(iteration) = 0;

Step 2: Generate population of size N , such that population set

~Xk = {~xk1, ~xk2, .., ~xki , .., ~xkN} ∈ [xmax, xmin], ∀i = 1 . . . N ;

Step 3: Evaluate objective function for each particle

fki = fo(x
k
n), n = 1 . . . N , where fo is objective function.

Step 4: Calculate the center of mass ~Ck( ~Xk) as defined in equation (1.1).
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Figure 1.3: Schematics of BBBC algorithm

Step 5: Find and store optimum value (say minimum).

leastfi = min(fk),

if(leastfk ≤ ε), then jump to step 9.

Otherwise go to step 6;

Step 6: k ← k + 1 ;

Step 7: Generate new solution around center of mass

~Xk = {~xk1, ~xk2, . . . , ~xkN} = ~Ck−1( ~Xk−1) + δ

Step 8: Go to step 3.

Step 9: At k = iter, (iter is an instant of iteration where it is assumed that opti-

mized value or solution is obtained). Return optimized ~Citer( ~Xiter) corresponding to

~Xiter = {~xiter1 . . . ~xiteri . . . ~xiterN }.
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1.2 Issue’s with BBBC

BBBC does not imitate the big bang big crunch theory to the fullest. According to the

scientific theory, universe was born out of singularity which is commonly known as big

bang singularity. After big bang the (unstable) hot mass of bodies traveling (candidate

solutions) at very high velocities under gravity took millions of years to cool down

(stable). As of now universe is in stable state. At some point of time the ever expanding

universe will experience big crunch moving back to singularity (ultimate solution or

center of mass). However, we are interested in the process of big bang and big crunch.

It can be very well visualised that after big bang large masses of bodies were traveling

at high velocities under influence of gravity. This process structure is not imbibed in

original BBBC, i.e. original BBBC does not considers velocity and gravity which is

inherent to big bang. Modified BBBC takes into account both velocity and gravity.

These moving masses in stable state collided (inelastic collision) to form planets. As

mentioned above, universe will end with singularity, but formation of singularity will

need perfect condition in terms of mass of bodies, velocity, energy of bodies etc. Again

this part of process has also been neglected in original BBBC. The Modified BBBC

considers conditioned (best) particles or swarms for formation of solution or singularity.

1.3 Proposed modified BBBC (MBBBC)

Above section discusses about issues in process structure of original BBBC. In this

section, solution(/modification) to these issues are elucidated and logical reasoning have

been presented to validate these modification. Initially, randomly generated swarms are

mapped one to one to randomly formed velocities i.e. a uniform distribution function

U is defined such that U : ~Xk=0 7→ ~V k=0 defined on closed set ~Xk=0 of real plane. Now

say, in kth iteration swarm ~xki is mapped one to one to vki i.e. a uniform distribution on

~Xk is a function U : ~Xk 7→ ~V k defined on closed set ~Xk of real plane. A center of mass

(~Ck(~xk)) is calculated in BCP using equation (1.5).

~Ck(~xk) =

N∑
i=1

~xki
fki

N∑
i=1

1
fki

(1.5)
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Crunching of all particles into the center of mass is considered as an inelastic collision

and hence the center of mass has a velocity (~V k
C ) which is given in (1.6) as

~V k
C =

N∑
i=1

~vki
fki

N∑
i=1

1
fki

(1.6)

~vki is the velocity and fki is the fitness value of ith candidate in kth iteration respectively.

After creation of center of mass and calculating its velocity, now in (k + 1)th iteration

fresh swarms ~xk+1
i ∈ ~Xk+1 are generated in search space, to be used for BBP based on

the knowledge of center of mass and velocity of center of mass in kth iteration. New

swarms ~xk+1
i are generated using formula (1.7):

~xk+1
i = ~Ck(~xk) + ~vk+1

i (1.7)

where ~vk+1
i i.e. velocity of ith candidate in (k + 1)th iteration and is calculated using

formula (1.8):

~vk+1
i = ~V k

C .g (1.8)

g in (1.8) can be defined as inverse adaptive gravity factor and is expressed in (1.9) as:

g =

(
fki − fkmin

fkmax − fkmin

)
(1.9)

or

g =

(
f ii − fkmin

favg

)
(1.10)

~xk+1
i and ~vk+1

i are again mapped one to one i.e. a uniform distribution defined on

~Xk+1 is a function U : ~Xk+1 7→ ~V k+1 defined on closed set ~Xk+1 of the real plane.

And fki is the fitness value of ith candidate in kth iteration, fkmin and fkmax are mini-

mum and maximum fitness value among N swarms in kth iteration respectively. This

process of big crunch and big bang is carried out till best solution or more appro-

priately best center of mass ~C(~x) is calculated. Detailed pseudocode is given below:

Pseudocode

Step 1: Initialise xmax, xmin, N , k = 0.

Step 2: Generate population of size N , such that population set

~Xk = {~xk1, . . . ~xki , . . . ~xkN} ∈ [xmin, xmax], ∀i = 1 . . . N
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Step 3: Each candidate in population ~xki is mapped one to one to randomly generated

velocities ~vki ∈ ~V k. Such that ~V k = {~vk1 , . . . ~vki , . . . ~vkN} ∈ [vmin, vmax],∀i = 1 . . . N

Step 4: Evaluate objective function for each particle

fki = f0(xn), n = 1 . . . N

such that fk = {fk1 , . . . fki . . . , fkN} ,∀i = 1 . . . N , where fo is an objective function.

Step 5: Calculate the center of mass ~Ck(~xk) as defined in equation (1.5).

Step 6: Find and store optimum value (say minimum),

leastfi = min(fk),

check if(leastfi ≤ ε),

then jump to step 11.

Otherwise go to step 7.

Step 7: Calculate the velocity of center of mass ~V k
C using expression (1.6).

Step 8: k ← k + 1.

Step 9: Generate new solution around center of mass ~Ck−1(~xk−1) using expression

(1.7), such that ~Xk = {~xk1, . . . ~xki , . . . ~xkN} ∈ [xmin, xmax],∀i = 1 . . . N . And the velocity

term vk=k+1
i in equation (1.7) is calculated using equation (1.8).

Step 10: Go to step 4.

Step 11: At k = iter, return optimized ~Citer(~xiter) corresponding to ~Xiter = {~xiter1 . . . ~xiteri . . . ~xiterN }.

1.4 Conceptual drawbacks in original BBBC

In this section, we will discuss various factors that were introduced in MBBBC in contrast

to original BBBC. Further, advantages of MBBBC over original BBBC is also explained.

• From expression (1.3) and (1.7) we can infer that

~xk+1
i α{xkmax − xkmin} (1.11)

xk+1
i α{fki − fkmin} (1.12)

the expression (1.11) pertaining to original BBBC is tuned per iteration and its de-

pendency is on xmax and xmin only. Hence, exploration capability of algorithm de-

creases while exploitation capability remains fairly unchanged. Expression (1.12)

related to MBBBC, is tuned for each and every particle. Each of ith particle’s

position at k + 1th iteration is decided based upon the fitness value value of ith

particle at kth iteration. Particle whose fitness value is close to minimum fitness

value (fkmin) will be properly tuned to move closer to ~Ck(~xk), hence improving ex-

ploitation capability of algorithm. Particle whose fitness value is high as compared
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to minimum fitness value (fkmin), expression (1.12) will be high and hence placing

the new particle away from ~Ck(~xk), improving exploration efficiency. Every part-

cle will have equally responsible role in finding best solution in contrast to original

BBBC.

• From expression (1.4) and (1.8) it can be concluded that

δiα
1

K
(1.13)

vk+1
i α

1

fkmax − fkmin

(1.14)

or

vk+1
i α

1

fkavg
(1.15)

δi and vk+1
i in (1.13) and (1.14) or (1.15) pertaining to expression (1.4) and (1.8)

decides the spread or variance of each particle around the center of mass. In

original BBBC, K increases in step with iteration. The idea to introduce K is to

reduce variance of particle with respect to center of mass as iteration increases,

however this factor does not consider the state of each particle. Whereas in (1.14)

terms fkavg and/or (fkmax − fkmin) collectively consider the state of particles and

contributes for improvement in exploitation of solutions to very large extent.

• In expression (1.4) of original BBBC, it is observed that variance factor has two

random factors to be taken care of i.e. α and ri which effect the exploration and

exploitation nature of algorithm, whereas ~vK+1
i in MBBBC is free from any ran-

domness and is deterministic at every iteration, hence making it more predictable,

easy to understand and more efficient.

• From expression (1.9), the factor g is coined as inverse adaptive gravity factor and

it works exactly as it is named. Consider for instance that fki is nearer to fkmin,

then g would be small and hence ~vk+1
i is also small, ultimately placing particles

~xk+1
i close to center of mass and vice versa if difference between fki and fkmin is

large.

1.5 Proposed chaos modified BBBC (CMBBBC)

In above section, we successfully improved various important aspect of original BBBC.

But still it is seen that both algorithm i.e. original BBBC and MBBBC get stuck in
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local optima, which is common to all widely used meta-heuristic algorithm like PSO,

GA and ant colony optimization.

What is CHAOS?

Chaos can generally be understood as unpredictable or random behavior. Particularly,

chaos has a characteristic of nonlinear systems, which is bounded unstable dynamic

behavior, that exhibits sensitive dependence on initial condition and includes infinite

unstable periodic motion [2].

From past many years, research on chaos is gaining impetus in physics, chemistry, biol-

ogy and in nonlinear engineering systems. Due to its ease of implementation and ability

to escape local optimum, concept of chaos in optimization techniques has aroused great

interest in field of soft-computing. Hence proposed modified BBBC (MBBBC) is then

combined with chaos (CMBBBC) which further shows excellent improvement in conver-

gence rate and searching quality solutions.

Before proceeding to CMBBBC, we will develop an algorithm to be inserted into MBBBC,

which is called as Chaotic Velocity Adjustment (CVA). This algorithm i.e. CVA forms

a inevitable part in development of proposed CMBBBC.

1.5.1 Chaotic velocity adjustment (CVA)

In this paper a well known Verhulst model [3], which displays sensitive dependence on

initial condition is incorporated to develop CMBBBC. The Verhulst model is defined as

follows.

• Continuous model
dx

dt
= µ ∗ x(1− x), 0 ≤ x0 ≤ 1 (1.16)

• Discrete model

xn+1 = µ ∗ xn(xmax − xmin), 0 ≤ x0 ≤ 1 (1.17)

Discrete Verhuslt model is used in evolutionary optimization algorithm, where µ is the

driving or control parameter, x is a variable and n = 0, 1, 2, . . .. Verhuslt model exhibits

chaotic dynamics at µ = 3.56994 and a minuscule variation in initial condition of chaotic

variable x0 results in substantial difference in long term behavior. Generally chaotic

variable possesses properties like a) Irregularity b) Ergodicity c) Pseudo-randomness.

The process of CVA can be defined using following chaotic logistic equation or verhulst
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Figure 1.4: Dynamics of Verhulst chaotic model

model

cvk+1
i = 3.56994 ∗ cvki (1− cvki ) (1.18)

where cvki is the ith chaotic velocity variable at kth iteration and cvki ∈ (0, 1) under a

constraint that cv0
i ∈ (0, 1). The procedure of CVA can be elucidated as follows:

Step 1: For kth iteration, form a one to one mapping between velocity variable vki ∈

(V k
min, V

k
max) and chaotic velocity variable cvki ∈ (0, 1), where mapping function Λ(V k)

is given as:

Λ(V k) = cvki =

(
vki − V k

min

V k
max − V k

min

)
, i = 1 . . . N (1.19)

such that

cvki ∈ cV k = {cvki
∣∣cvki ∈ (0, 1) and1 ≤ i ≤ N }

and one to one map can be represented as Λ : V k 7→ cV k.

Step 2: Evaluate cvk+1
i using Verhuslt or logistic function mentioned in (1.18).

Step 3: Evaluate new velocities for same iteration that is newvki for kth iteration again

using expression (1.20) using cvk+1
i in step 2.

newvki = V k
min + cvk+1

i (V k
max − V k

min) = Π(V k), i = 1 . . . N (1.20)

such that newV k = {newvk1 , . . . newvki , . . . newvkN} ∈ [Vmin, Vmax]∀i = 1 . . . N

One to one mapping between cV k and newV k can be expressed mathematically as

Π : cV k+1 7→ newV k. From all the steps, it can be inferred that there is an indirect

one to one mapping between V k and newV k.
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The procedure of CMBBBC is elaborated which uses CVA:

Pseudocode for CMBBBC

Step 1: Initialise xmax, xmin, N and k = 0.

Step 2: Generate population of size N ,such that population set

~Xk = {~xk1, . . . ~xki , . . . ~xkN} ∈ [xmin, xmax]∀i = 1 . . . N

Step 3: Each candidate in population is mapped to randomly generated velocities.

~V k = {~vk1 , . . . ~vki , . . . ~vkN} ∈ [~V k
min,

~V k
max]∀i = 1 . . . N

Step 4: Implement CVA algorithm on the velocity of particles obtained in step 3.

Step 5: Evaluate objective function for each particle

fki = f0(xn), n = 1 . . . N

such that fk = {fk1 , . . . fki . . . , fkN} ,∀i = 1 . . . N , where f0 is objective function.

Step 6: Calculate the center of mass ~Ck(~xk) as defined in equation (1.5).

Step 7: Find and store optimum value (say minimum), leastfi = min(fk)

check if(leastfi ≤ ε), then jump to step 12.

Otherwise go to step 8.

Step 8: Calculate the velocity of center of mass ~V k
C using expression (1.6), wherein ~vki

is replaced by new~vki .

Step 9: k ← k + 1.

Step 10: Generate new solutions around center of mass ~Ck−1(~xk−1) using expression

(1.7), such that ~Xk = {~xk1, . . . ~xki , . . . ~xkN} ∈ [xmin, xmax]∀i = 1 . . . N

and the velocity term ~vk=k+1
i in equation (1.7) is calculated using equation (1.8).

Step 11: Go to step 4.

Step 12: At k = iter return optimized ~Citer(~xiter) corresponding to ~Xiter = {~xiter1 . . . ~xiteri . . . ~xiterN }.

1.6 Simulation validation and results

1.6.1 Simulation constraints

We compare CMBBBC and MBBBC with PSO and BBBC. In CMBBBC, MBBBC and

BBBC, the population size is 100. In BBBC, r ∈ [0, 1] and α = 0.2. For PSO the

population size N is 100, c1 and c2 are taken as 1.494 and inertia weight varies linearly

from 0.9 at the beginning of search to 0.4 at the end.

To test the performance of proposed algorithms, three famous benchmark optimization
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problems are used i.e.

1) Goldstein-Price (GP) function [4]:

Function: f(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)] ∗ [30 +

(2x1 − 3x2)2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)].

Input domain: Function is evaluated on xi ∈ [−2, 2],∀i = 1, 2.

Global minimum: f(x∗) = 3, x∗ = (0,−1).

(a)

Figure 1.5: Goldstein-Price function

(a)

Figure 1.6: Comparision for Goldstein-Price function

2) Branin (BR) function [4]:

Function: f(x) = (x2 − 5.1
4π2x

2
1 + 5

πx1 − 6)2 + 10(1− 1
8π ) cos(x1) + 10.

Input domain: Function is evaluated on x1 ∈ [−5, 10] and x2 ∈ [0, 15].

Global minimum: f(x∗) = 0.397887, x∗ = (−π, 12.275), (π, 2.275) and (9.42478, 2.475).
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(a)

Figure 1.7: Branin function

(a)

Figure 1.8: Comparision for Branin function

3) Egg-holder (EGG) function [4]

Function:f(x) = −(x2 + 47) sin
(√∣∣x2 + x1

2 + 47
∣∣)− x1 sin

(√
|x1 − (x2 + 47)|

)
.

Input domain:Function is evaluated on xi ∈ [−512, 512],∀i = 1, 2.

Global minimum: f(x∗) = −959.6407, x∗ = (512, 404.2319).

1.6.1.1 Fixed iteration results

We fix the total number of function evaluation as 500. Table 1.1 lists the average best

function value and standard deviation of 50 independent trials. Figs. 1.3-1.5 show the

performance of algorithms for solving three highly non-linear functions. From Table 1.1,

it can be seen that the results of CMBBBC are almost equal to their original global mini-

mum, and hence CMBBBC is superior to original BBBC, MBBBC, and PSO. From table
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(a)

Figure 1.9: Egg holder function

(a)

Figure 1.10: Comparision for Egg holder function

Table 1.1: Fixed iteration results of 50 trial runs

f CMBBBC BBBC MBBBC PSO

fGP 3.0000± 0.00002261 4.3624± 2.0310 3.2694± 0.2204 4.4345± 2.9654

fBR 0.3988± 0.00009270 0.4555± 0.0504 0.4265± 0.02489 0.43344± 0.04309

fEGG −959.6127± 0.00934 −891.525± 33.9857 −904.976± 34.5468 −858.3028± 41.3207

1.1, it can be also be inferred that MBBBC is better than original BBBC and has ef-

ficiency comparable to PSO. So, it can be concluded that CMBBBC is the most efficient.

Fig.1.3 depicts comparison for goldstein-price function and it can be inferred that MBBBC

is far better than BBBC as rate of convergence is fast and rate of convergence is very

high for CBBBC. In Fig.1.4 comparison is carried out for Branin function and again

CMBBBC is a top performer with highest rate of convergence and MBBBC is bet-

ter than original BBBC. Whereas in Fig.1.5, CMBBBC performs well as compared to
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MBBBC, PSO and BBBC.

1.7 Conclusion

This chapter investigated the shortcomings of original BBBC and then a modified BBBC

has been presented which is better than original BBBC. It is observed that BBBC and

MBBBC are getting trapped in local optima. Therefore, MBBBC is then combined

with chaos using CVA algorithm to overcome this problem, thereby improving solution

exploration phenomenally.



Chapter 2

A Comparision of BBBC, PSO

and GA Using Inferential

Statistics

2.1 Introduction

Particle swarm optimization (PSO) was formulated by Kennedy and Eberhart in 1995

with an aim to mimic graceful motion of swarms of bird as a part of a sociocognitive

study investigating the notion of ”collective intelligence” in biological population [5]. In

PSO, randomly generated swarm moves in designed search space towards optimal so-

lution based on the information sharing between particles about there local and global

best positions and also about there search space.

The Genetic Algorithm (GA) was formulated by John Holland and his group at Uni-

versity of Michigan in 1975. The GA mimics the behavior of reproduction in biotic

population, basically it is influenced by concepts of evolution and genetics. This al-

gorithm exploits the principal of ”survival of the fittest” [5], in its search for optimal

solution and generate individuals that fit to their environment. Thus, over number of

iteration desirable attribute will evolve and persist in genome composition of population,

whereas weak characteristics will subside over number generations (iteration).

In this chapter, first the PSO, GA and BBBC that are used in comparative study, and

is briefed. This comparative study is carried using Statistical testing procedure which

is explained subsequently. Secondly three well known benchmark function are used

16
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to compare the efficiency and effectiveness of PSO, GA and BBBC in this statistical

analysis.

2.2 Nomenclature

c1 = self confidence factor

c2 = swarm confidence factor

f = fitness function

g = constra int function

Ho = null hypothesis

Ha = alternative hypothesis

n = sample size

Nfeval = number of function evaluation

pgk = position of particle with best global fitness at current move k

pi = best postion of particle i in current and all previous moves

r = penalty multiplier

rand = uniformly distributed random var iable between 0 and 1

2.3 PSO versus GA

2.3.1 The Particle Swarm Optimization

The PSO is one of the most widely used algorithm for solving complex nonlinear or

linear engineering problems. The most elemental PSO algorithm can be subdivided

into three steps. First step, being generation of particles in search space, initializing

the velocity for the corresponding particles. second step being updating the velocity of

particle depending upon the knowledge of position of local and global best position of

the particles. Third step is position updation of candidates. These steps are explained

briefly below.

In first step, new particles xik and velocity vik are generated randomly using upper and

lower bound xmax and xmin as expressed in equation 2.1 and 2.2. Here, xik represents

ith candidate in kth iteration, and same can be defined for vik i.e. velocity of particle of
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ith candidate in kth iteration.

xi0 = xmin + rand(xmax − xmin) (2.1)

vi0 =
xmin + rand(xmax − xmin)

∆t
=
position

time
(2.2)

The second step updates the velocity of particle and is given below in equation 2.3

vik+1 = wvik + c1rand

(
pi − xik

)
∆t

+ c2rand

(
pgk − x

i
k

)
∆t

. (2.3)

New velocities of the candidate are designed based upon the knowledge of velocity of the

previously defined candidates vki , best position of the particle pi over iteration defined

using fitness function value and global best value of current swarm, pgk. This updated

velocity vik+1 steers the candidates toward probable solution. This equation 2.3 has

various random variables which has been defined in nomenclature section, some variables

like rand ensures good coverage of design space and avoid entrapment in local optima.

Three variables which has highest influence on steering velocities vik+1 are c1, c2 and w

which are defined in nomenclature section. Here, c1 weighs velocity of the best position

of particle over course of iteration. whereas, c2 weighs velocity of the best particle in

the current swarm, and w weighs previous velocity of particle vik.

Last step is updating the position of particle xik+1, as given below in equation 2.4

xik+1 = xik + vik+1.∆t (2.4)

and is depicted diagrammatically in Figure

These steps i.e. velocity and position update and fitness calculation are repeated until

stopping criterion has been met.

2.3.2 The Genetic Algorithm

The genetic algorithm as said is inspired by theories of evolution and genetics. There

are various versions of GA reported in literature. In this chapter, we have used a binary

encoded GA with tournament selection, uniform crossover and low probability mutation

rate is used to solve the benchmark problems.

In GA, defined design variable are encoded into binary 0’s and 1’s which are referred
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Figure 2.1: Depiction of the velocity and position update in PSO.

to as chromosomes. This feature of encoding ensures the design variable only take

value within the defined range of search space. To perform optimization GA uses three

operator i.e. Selection operator second one being crossover operator and last one is

mutation operator. The first operator that is selection Operator is based on ”survival

of the fittest” as proposed by Darwin, wherein fittest candidates traits are passed onto

generation and unfit candidates are eliminated subsequently. The ”crossover opeartor”

characterizes mating in biotic component in nature. And finally mutation operator helps

explore diversity in population. Many research paper explains in detail the working of

GA [6].

2.4 Comparision Metrics and Hypothesis Testing

The main objective of this work is to compare the efficiency and effectiveness of PSO,

GA and BBBC using inferential statistics and set of benchmark function. There are

various hypothesis testing method such as z-testing method, t-testing method, F-testing

method and chi square test. The major difference between these test has been detailed

below in Table 2.1, 2.2, 2.3, 2.4.

After studying the differences among these test it was decided to use t-testing method

for comparison of the algorithms. So what is basically t-testing method?, How exactly is

this test is carried out? and How are the conclusion drawn from this test?. The answer

to these question will be given below in detailed manner with lucid explanation.
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Table 2.1: z-test

z-test

1) A z-test is used for testing the mean of a population
versus a standard, or comparing the means of two populations,
with large (n > 30) samples whether you know the population
standard deviation or not.
2) It is also used for testing the proportion of some
characteristic versus a standard proportion, or comparing
the proportions of two populations.
3) e.g.: Comparing the average engineering
salaries of men versus women.

Table 2.2: t-test

t-test

1) A t-test is used for testing the mean of one population
against a standard or comparing the means of two populations
if you do not know the populations standard deviation
and when you have a limited sample (n 6 30).
2) If you know the populations standard deviation,
you may use a z-test.
3) e.g.: Measuring the average diameter of shafts from
a certain machine when you have a small sample.

Table 2.3: F-test

F-test

1) An F-test is used to compare 2 populations variances.
2) The samples can be any size.
3) e.g.: Comparing the variability of bolt diameters from two
machines.

Table 2.4: chi square test

chi square test

1) Chi-square is a statistical test commonly used to compare
observed data with data we would expect to obtain according to
a specific hypothesis.
2) The test is applied when you have two categorical variables
from a single population. It is used to determine whether there is a
significant association between the two variables.
3) e.g.: Comparing the variability of bolt diameters from two
machines.
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Table 2.5: What is t-testing method?

What is t-testing method?

Is a statistical method used to test a hypothesis or a claim about a parameter in the
population. Basically, we use a ”sample”(known) from the ”population”(unknown)
to gain an insight on the characteristics of the unknown ”population”.
e.g.: Suppose we come across an article claiming that children in India watch an
average of 3 hours of TV per week.
Here, hypothesis or claim is: Indian children watching
TV for an average of three hours, and ”population” (as in definition) is children in India.

In this research work, two hypothesis are being tested. The preliminary test is to check

the effectiveness of the algorithms and second hypothesis to be tested is computational

efficiency of the algorithms. Effectiveness here corresponds to characteristics of an al-

gorithm. Which defines algorithms ability to converge sufficiently close to the actual

solution when algorithms are run repeatedly. High effectiveness refers to higher prob-

ability of finding solution very close to actual solution or getting actual solution itself.

Here, this effectiveness is quantified using ”QUALITY OF SOLUTION (Qsol)”, which

is given below in equation 2.5,

Qsol = |solution− known solution| . (2.5)

It must be noted that this test is carried out for each algorithm separately. More precisely

this test measure the effectiveness of algorithms with respect to know solution and then

compare the algorithms with respect to each other.

Now lets discuss about the second test, i.e. computational efficiency test which is a

very important work in this research work. This test compares the computational effort

required by PSO, GA and BBBC to reach a solution. This is quantified or measured

using number of function evaluationNeval. The algorithms perform until reaching certain

convergence criteria and lower the Neval is , the more efficient the algorithm. This test

and its constraints are given below.

2.5 Benchmark Test Problem

In this section, benchmark function of various characteristics have been presented. These

benchmarks function are solved using PSO, GA and BBBC fifty times each, after this

hypothesis test is carried out as mentioned in Table 2.6.
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Table 2.6: Steps to t-testing method

Steps to t-testing method

Step 1: Define the hypothesis.

We start by defining alternate hypothesis (Ha) and null hypothesis (Ho).
Ho= This hypothesis is statement about the population parameter, such as mean of
population which is given.
Ha= This hypothesis is a direct compliment of or contradicts the formed null hypothesis.
For example, Ho : µ = m, then Ha : µ 6= m.
This is a two sided hypothesis testing to test whether an unknown population mean
µ is equal to population mean m.
Another example stating one sided hypothesis is, Ho : µ > m and hence alternate
hypothesis is Ha : µ 6 m.

Step 2: Establish a decision criteria.

Choose a deisred value of α, β and n to get tcritical value from t-distribution tables
that are available in standard statistics books.

α: Probability of rejecting a null hypothesis when it is actually true.
β: Probability of rejecting a null hypothesis when it is actually false.

Step 3: Evaluate t-statistics.

Calculate the t-value as described in Table 2.7 and Table 2.8.

Step 4: Make a final conclusion about hypothesis.

In this final step of testing method, the calculated t-value and tcritical value are compared.
If t 6 tcritical, Ho i.e. null hypothesis is accepted with (1− α) confidence value.

Making a decision: Types of error

In this stage, we need to take a decision regarding rejecting or may be retaining
null hypothesis and it is very clear that we are not observing the entire population
i.e. information about population is unknown, but we only have knowledge regarding
sample of population. Due to which the decision might be wrong. The Table 2.7
shows types of error in decision making.

Table 2.7: Four outcomes of making decision

Decision
Retain the null Reject the null

TRUTH IN THE
POPULATION

True CORRECT TYPE 1 ERROR (α)
False TYPE 2 ERROR (β) CORRECT
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Table 2.8: Effectiveness test

Effectiveness Test

Objective to test whether Ha : µQsol
� x (a value depending on the problem)

Ho : µQsol
6 x

t = Q̄sol−x
s(Q̄sol)

taking α = 1%, β = 1% and n = 10

This is one sided test of significance of mean (table 6.10, [7])7→ tcritical = 2.0

Table 2.9: Efficiency test

Efficiency Test

Objective to test whether Ha1 : PSO µNeval
< GA µNeval

Ha2 : PSO µNeval
< BBBC µNeval

Ha3 : BBBC µNeval
< GA µNeval

Ho1 : PSO µNeval
> GA µNeval

Ho2 : PSO µNeval
> BBBC µNeval

Ho3 : BBBC µNeval
> GA µNeval

t1 =
GA µNeval

−PSO µNeval

s̄(x)
√

1/nGA+1/nPSO

, where s̄(x) =

√
(nGA−1)s2GA+(nPSO−1)s2PSO

nGA+nPSO−2

t2 =
BBBCµNeval

−PSO µNeval

s̄(x)
√

1/nBBBC+1/nPSO

, where s̄(x) =

√
(nBBBC−1)s2BBBC+(nPSO−1)s2PSO

nBBBC+nPSO−2

t3 =
GAµNeval

−BBBC µNeval

s̄(x)
√

1/nGA+1/nBBBC

, where s̄(x) =

√
(nGA−1)s2GA+(nBBBC−1)s2BBBC

nGA+nBBBC−2

taking α = 1%, β = 1% and nPSO = nGA = 10

This one sided test of significance of comparison of two mean (table 6.11, [7])7→tcritical = 2.5

2.5.1 The Banana (Rosenbrock) Function

The banana function is one of the famous test problem for gradient based optimization

algorithms. [8].

Properties

1) The function is unimodal.
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2) Global minimum lies in narrow, parabolic valley [9].

3) Convergence to the minimum is difficult [10].

Function

f(x) = 100(x2 − x2
1)2 + (1− x1)2

Input Domain

The function is evaluated on xi ∈ [−5, 5], i = 1, 2.

Global Minimum

f(x∗) = 0, at x∗ = [1, 1].

Figure 2.2: Rosenbrock function.

2.5.2 The Egg-Crate Function

In this function there are two design variables.

Properties

1) The function is multimodal.

Function

f(x) = x2
1 + x2

2 + 25
[
sin2 (x1) + sin2 (x2)

]
.

Input Domain

The function is evaluated on −5 ≤ xi ≤ 5, i = 1, 2.

Global Minimum

f(x∗) = 0, at x∗ = [0, 0].



Chapter 2. A Comparision of BBBC, PSO and GA Using Inferential Statistics 25

Figure 2.3: Egg-Crate Function.

2.5.3 The Rastrigin Function

This function is also one of the famous benchmark function which is used for testing

optimization algorithms.

Properties

1) The Rastrigin function has several local minima.

2) It is highly multimodal function.

3) Locations of the minima are regularly distributed [11].

Function

f(x) =
∑n

i=1

[
x2
i − 10 cos (2πxi) + 10

]
, ∀ i = 1, 2.

Input Domain

The function is evaluated on −5.12 ≤ xi ≤ 5.12, ∀ i = 1, 2.

Global Minimum

f(x∗) = 0, at x∗ = [0, 0].

2.5.4 The Goldstein-Price function

Explained in detail in section 1.6.1 (1).

2.5.5 The Branin function

Explained in detail in section 1.6.1 (2).
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Figure 2.4: Rastrigin Function.

2.5.6 The Egg-holder function

Explained in detail in section 1.6.1 (3).

2.5.7 Golinski’s Speed Reducer

The Golinski speed reducer is used in a airplane between the engine and propeller to

allow each to rotate at its most efficient speed. Here the objective is to optimize the

weight of speed reducer while gratifying all constraints imposed by gear and shaft design

practices.

More precisely, our objective would be to find minimum weight (volume) of gear box,

which is subjected to 11 constraints. Golinski speed reducer has seven design variables,

which are defined below with appropriate figure. x1= width of gear face, in cm.

x2= teeth module, in cm.

x3= number of pinion teeth.

x4= shaft 1 length between bearings, in cm.

x5= shaft 2 length between bearings, in cm.

x6= diameter of shaft 1, in cm.

x7= diameter of shaft 2, cm.

Objective Function
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Figure 2.5: The Golinski Speed Reducer.

f(x) = Cf1x1x
2
2(Cf2x

2
3+Cf3x3−Cf4)−Cf5(x2

6+x2
7)x1+Cf6(x2

6+x3
7)+Cf1(x4x

2
6+x4x

2
7)

Cf1 = 0.7854 Cf4 = 43.0934

Cf2 = 3.3333 Cf5 = 1.5079

Cf3 = 14.9334 Cf6 = 7.477

Constraints

2.6 6 x1 6 3.6 7.3 6 x5 6 8.3

0.7 6 x2 6 0.8 2.9 6 x6 6 3.9

17 6 x3 6 28 5.0 6 x7 6 5.5

7.3 6 x4 6 8.3

Global Minimum

f(x∗) = 2994.34 kg

x∗ = [3.5000 0.7000 17.0000 7.3000 7.7153 3.3502 5.2867]

2.6 Results and Discussions

As discussed and elaborated in above sections, two test were carried i.e. effectiveness test

and efficiency test using six benchmark function and a real world optimization problem

i.e. Banana function, Egg-Crate function, Rastrigin function, goldstein-Price function,

Branin function, Egg holder function, Golinski speed reducer problem. The first test i.e.
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Table 2.10: Calculated t− values for hypothesis test

Benchmark
Function

Null
Hypothesis

Effectiveness Test,
tcritical = 2
Calculated t-values

Efficiency
Test,
tcritical = 2.5
Calculated
t-values

PSO GA BBBC t1 t2 t3
Banana
Function

Ho : µQsol
6 1 1.6981 1.2413 1.9485 1.945 2.412 1.458

Egg-Crate
Function

Ho : µQsol
6 1 1.4787 1.3875 1.1247 5.642 10.897 2.127

Rastrigin
Function

Ho : µQsol
6 1 1.1260 1.1796 1.1787 10.265 23.457 1.647

Goldstein-
Price
Function

Ho : µQsol
6 16.67% 0.0312 10.584 0.0003 4.312 9.457 0.948

Branin
Function

Ho : µQsol
6 24.6% 1.3458 29.456 1.2546 20.456 4.632 2.154

Egg Holder
Function

Ho : µQsol
6 1% 1.2985 5.6478 12.176 10.541 45.127 1.945

Golinski’s
speed reducer

Ho : µQsol
6 0.145% 0.0048 1.2625 0.0012 19.458 17.456 1.564

effectiveness test measures the Qsol found using PSO, GA and BBBC with respect to

known solution. This test inspects whether Qsol is greater then 99%. The second test,

measures the efficiency of the algorithms in-terms of Neval. The lesser the Neval, more

the computational efficiency. The effectiveness test for PSO, GA and BBBC shows that

for most of the cases t < tcritical in most results in Table 2.10. This leads to acceptance

of null hypothesis and rejection of alternate hypothesis. Which means that quality of

solutions for all the three algorithm are near to there optimal solution. Whereas, for

GA we encounter some cases where t > tcritical, which leads to the conclusion that null

hypothesis is rejected and alternate hypothesis is accepted.

Now lets look into the results of efficiency test, again as the condition says if t > tcritical

then this leads to rejection of null hypothesis and the acceptance of alternate hypothesis

with a confidence level of 99%. From the results of efficiency test in Table 2.10, it

can be observed that for first and second hypothesis t > tcritical except for Banana

function. Which leads to conclusion that computational efficiency or effort required

to reach solution for benchmark problem by PSO is better than GA and BBBC. One

exceptional case that is banana function in first hypothesis, where t < tcritical suggests

that computational efficiency of GA is better than PSO. Now lets take a look on results

obtained for third hypothesis i.e. Ha3 : BBBC µNeval
< GA µNeval

, it can be seen

that for all t < tcritical. This leads to conclusion that null hypothesis is accepted with
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confidence level of 99%, and hence prooves that computational effort required by BBBC

is to obtain the solution is lesser then GA.

2.7 Conclusion

In this research work, we have conducted two test first test is effectiveness test and other

test is efficiency test. The results obtained during these test are very convincing, it is

found that effectiveness of algorithm which essentially indicates algorithms ability to

reach to an optimal solution or near to it, is same for all the three algorithms i.e. PSO,

GA and BBBC. And hence can be easily concluded with reference to result in Table

2.10 that all the three algorithms are equally effective. From second hypothesis test

regarding computational efficiency of algorithms, it was seen that PSO is better than

GA and BBBC, and it is also inferred that BBBC has better computational efficiency

than GA.



Chapter 3

A Novel Model Order Reduction

Technique Using BBBC and Time

Moment Matching Method

3.1 Introduction

The concept of model order reduction (MOR) is basically practiced in the field of systems

and control engineering which analyses the properties of dynamical systems to reduce

their complexity and retain their input-output behaviour as much as possible. MOR

simplifies the understanding of the system, and minimizes the computational burden

in the simulation studies. Moreover unlike the design of complex H∞ and µ synthesis

based control schemes, it enables the control practitioners to design simple control laws

thereby making controller computationally and cost efficient [12]. Advanced robust con-

trol concepts such as H control and synthesis are widely used in various engineering

applications wherein the design schemes produce highorder controllers even for a simple

second-order plant [13]. To cope with the aforementioned challenges faced when dealing

with large-scale dynamical systems, many studies of different MOR approaches have

been proposed using variety of concepts. Over thirty years of research in MOR of lin-

ear time-invariant (LTI) system, the developed methods conceptualizes dominant pole

retention, singular value decomposition and Hankel norm based approximation, Krylov

subspace method, H∞-optimization methods [14],[15],[16]. One of the important trends

in these studies is the optimization (minimization) of integral error criterion between the

actual plant and its reduced model. In recent years, there is a widespread interest and

30
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research in evolutionary optimization techniques mainly because of its intuitiveness, ease

of implementation, and the ability to effectively solve highly nonlinear, mixed integer

optimization problems of complex engineering systems. Now-a-days, these evolutionary

optimization techniques unified with conventional MOR techniques have shown highly

promising results, even results better than the conventional techniques. Among vari-

ous evolutionary techniques, particle swarm optimization (PSO) and genetic algorithm

(GA) are considered to be highly reliable algorithm for solving optimization problems

[17]. On the same lines, a novel universe inspired evolutionary technique so called Big

Bang Big Crunch (BBBC) can be used for order reduction of systems of various complex-

ities [1]. Recently, a mixed method is proposed for order reduction of LTI systems for

both single-input single-output (SISO) and multi-input multi-output (MIMO) systems

[18]. This method is based on unification of BBBC and Routh approximation method.

It is observed that this method is better than the existing method and has been applied

for low-order systems but a more accurate and improved results can also be achieved.

Therefore, in this paper, an alternative mixed method is proposed to obtain reduced

model using BBBC and time moment matching [19] method. In this approach, numer-

ator coefficients of reduced-order transfer function model are optimized using BBBC

technique and denominator is evaluated from time moment matching method [19] using

full-order plant’s information. This proposed method is applied to SISO, MIMO and

time delayed system. The comparison of the existing approaches and proposed approach

has been carried which show the remarkable improvement in integral square error (ISE)

and other performance parameters.

3.2 Model order reduction from control system perspec-

tive

In control theory, MOR can be defined as follows.

Definition 1: Let G(s) : u → y be the transfer function of the full-order system

with ordern, then the model reduction scheme seeks a reduced-order transfer function

model G̃(s) : u→ ỹ with ñ so that ñ < n and for the same inputu(t), we haveỹ(t) ≈ y(t).

In other words, MOR leads to optimization problem in the following manner.
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Definition 2: MOR defines the problem of finding the reduced-model G̃(s) from the

full-order plant G(s)using optimization formulation such that

minimize ISE =

∫
[y(t)− ỹ(t)]2dt

subject to ISE < ε

where ε is an error tolerance.

3.3 Basics of Time Moments Matching method

Let the impulse response of high-order asymptotically stable system be g(t) then

G(s) =

∞∫
0

g(t)e−stdt

Now using the power series expansion for e−st, G(s) can be written as

G(s) =

∞∫
0

g(t){1− st+
s2t2

2!
− s3t3

3!
+ ...}dt =

∞∫
0

g(t)dt− s
∞∫

0

tg(t)dt+ s2

∞∫
0

t2

2!
g(t)dt− ...

or

G(s) = c0 + c1s+ c2s
2 + ...

where,

ci =
(−1)i

i!

∞∫
0

tig(t)dt, ∀i = 0, 1, 2, ...

=

[
(−1)i

i!

]
[the ith timemoment of g(t)]

Thus, the time moment of the reduced system G̃(s) are proportional to power series

expansion of G(s), about s = 0. In time moment method [19], the idea is to match as

many time moments [19] of original and reduced system as much possible.
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3.4 Main Results

3.4.1 Statement of Problem

In this subsection, we define the mathematical expressions for asymptotically stable,

LTI-SISO and MIMO plants.

SISO system: The original nth order system can be written in, usual notation, in

transfer function form as

G(s) =

m∑
k=0

aks
k

n∑
k=0

bksk
=
a0 + a1s+ a2s

2 + a3s
3 + · · ·+ ams

m

b0 + b1s+ b2s2 + b3s3 + · · ·+ bnsn
, m ≤ n and k, m , n ∈ I

(3.1)

where G(s) is BIBO stable continuous-time original system of order n, ak and bk are

constant coefficients of s (complex variable) in numerator and denominator polynomials

respectively. Our objective is to reduce the original full-order system G(s) into its

approximated reduced-order model G̃(s) of form

G̃(s) =

mr∑
k=0

ãks
k

nr∑
k=0

b̃ksk
, mr 6 nr and k,mr, nr ∈ I (3.2)

where ãk and b̃k are coefficients of s in numerator and denominator, respectively.

MIMO system: The original nthorder MIMO system can be written in transfer func-

tion matrix form as

[G(s)] =
1

n∑
k=0

bksk


a11 . . . a1m

...
. . .

...

ap1 · · · apm

 (3.3)

where, [G(s)] is original system and dimension of [G(s)] is p×m. Equation (7) can also

be represented as

[G(s)] = [gij ]p×m =


g11 . . . g1m

...
. . .

...

gp1 · · · gpm

 , i, j 6= 0 (3.4)

where,

gij =
aij

n∑
k=0

bksk
=
A0 +A1s+A2s

2 + · · ·+Ams
m

b0 + b1s+ b2s2 + · · ·+ bnsn
,m 6 n (3.5)



Chapter 3. Application of BBBC in model order reduction 34

The model reduction of (7) gives

[
G̃(s)

]
=

1
nr∑
k=0

b̃ksk


ã11 . . . ã1m

...
. . .

...

ãp1 · · · ãpm

 (3.6)

Where, [G̃(s)] is reduced system corresponding to original system [G(s)] and dimension

of [G̃(s)] is p×m. In other words, (3.6) can be written as

[G̃(s)] = [g̃ij ]p×m =


g̃11 . . . g̃m
...

. . .
...

g̃p1 · · · g̃pm

 (3.7)

where,

g̃ij =
ãij

z∑
k=0

b̃ksk
=
Ã0 + Ã1s+ Ã2s

2 + · · ·+ Ãws
w

b̃0 + b̃1s+ b̃2s2 + · · ·+ b̃zsz
, w 6 z (3.8)

where w < m, z < n

3.5 Proposed algorithm

In this subsection, we discuss the procedure of our proposed MOR algorithm. Let us

consider a full-order plant described in (3.1). The required form of reduced-order model

having order p, p < n can be written as

G̃(s) =
x0 + x1s+ ...+ xp−1

p−1

1 + a13s+ a12s2 + · · ·+ a1psp
(3.9)

such that p < n. The proposed algorithm constitutes two parts:

3.5.0.1 Determination of denominator polynomial using Time Moment Match-

ing method

We follow the time moment matching [19] to obtain the denominator polynomial of

reduced model.

Step 1: In (3.1), divide the numerator and denominator coefficient of G(s) with b0 to
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Figure 3.1: Schematic representation of working of proposed algorithm.

get

G(s) =

m∑
k=0

aks
k

n∑
k=0

bksk
=

a0/bo + a1/bos+ a2/bos2 + a3/bos3 + · · ·+ am/bosm

1 + b1/bos+ b2/bos2 + b3/bos3 + · · ·+ bn/bosn
, m 6 n (3.10)

which can be further written as

G(s) =
a21 + a22s+ a23s

2 + a24s
3 + · · ·+ a2ms

m

1 + a12s+ a13s2 + a14s3 + · · ·+ a1nsn
(3.11)

Step 2: Now, arranging the coefficient of rational polynomial function of (3.11) in

Routhian array form as:

1 a12 a13 a14 · · · a1n

a21 a22 a23 · · · a2m 0

a31 a32 a33 · · · a3m 0

a41 a42 a43 · · · a4m 0

a51 a52 a53 · · · a5m 0
... · · · · · · · · ·

... 0

(3.12)

where, ak,l = ak−1,1 × a1,l+1 − ak−1,l+1 × a1,1 ∀k = 3, 4, ...and l = 1, 2, .... Next, the
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values obtained from Routhian array can be used as,

G (s) = a21 − a31s+ a41s
2 − a51s

3 + · · ·

Step 3: Using ci = (−1)k+2 × ak1∀k = 2, 3, ... and i = 0, 1, 2, .... The matrix can be

structured into the form as shown in Fig.3.1

Figure 3.2: Moment matrix

This matrix can be written as shown in (3.12) which is called as partitioned matrix can

be written as  Ĉ1

Ĉ2

 =

 C11 0

C21 C22

×
 Â1

0

+

 Â2

0

 (3.13)

where, C11, C21, C22 are of order (m+ 1)× n, n× n, n× (m+ 1), respectively.

Step 4: Lastly calculate Â1 = C−1
21 × Ĉ2. For calculating the denominator coefficient

defined by Â1 =
[
â12 â13 .... â1n

]T
, then say the second-order denominator can be

written as D̃(s) = â12s
2 + â13s+ 1.

3.5.0.2 Determination of Numerator polynomial using BBBC

Once the denominator polynomial of form: D̃(s) = â1ps
p+â1p−1s

p−1+...+â12s
2+â1s+1

where p < n is calculated. Our objective is to calculate the coefficients [x0, x1, . . . , xp−1]

of Ñ(s) as can be inferred from (3.9) using BBBC such that the ISE get minimized.

The steps to obtain the numerator coefficients can be further illustrated in the following

algorithm.
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Algorithm

Let G(s) be given.

Step 1: Initialise r, α,N,∆t and iter(iteration) = 1 ;

Step 2: Generate population (containing N particles)

Xiter
k = {xiter1 , xiter2 , . . . , xiterN } ∈ [xmax, xmin], ∀k = 1 . . . N

Step 3: Evaluate objective function for each particle

ISEiterk (xikter) =
∑

[y(i∆t)− ỹ(i∆t)]2,∀k = 1 . . . N

Step 4: Find and store

leastISE = min(ISEiterk )

if(leastISE 6 ε) Then jump to step 9

Otherwise Go to step 5;

Step 5: Calculate the center of mass as defined in Equation (1.1)

Step 6: iter ← iter + 1

Step 7: Generate of new solution around center of mass

Xiter
k = {xiter1 , xiter2 , . . . , xiterN } = ~C(xiter−1

k ) + δi (3.14)

Step 8: Go to step 3

Step 9: At k = iter, return optimized ~Citer(~xiter) corresponding to ~Xiter = {~xiter1 . . . ~xiteri . . . ~xiterN }

3.6 Numerical Studies

In this section, the proposed MOR method is applied to six different problems and the

results are compared with other recently developed schemes.

Example 1: Consider a fourth-order system [18] expressed in transfer function form

as:

G1(s) =
s3 + 7s2 + 24s+ 24

s4 + 10s3 + 35s2 + 50s+ 24
(3.15)

On dividing the numerator and denominator by 24 in (3.15), we have

G1(s) =
1 + s+ 0.292s2 + 0.0416s3

1 + 2.083s+ 1.458s2 + 0.4167s3 + 0.0416s4
(3.16)



Chapter 3. Application of BBBC in model order reduction 38

Now arranging the above transfer function (3.16) in Routh array form, we get

1 2.083 1.458 0.4167 0.0416

1 1 0.292 0.0416 0

1.083 1.166 0.3751 0.0416 0

1.0898 1.2039 0.4096 0.045 0

1.0661 1.1793 0.4091 0.0453 0

1.0414 1.1453 0.3989 0.0443 0

1.0239 1.1195 0.3896 0.0433 0

1.0133 1.1032 0.3833 0.0426 0

Forming partitioned matrix using value of ci∀i = 0, 1, ... where c0 = 1, c1 = −1.083, c2 =

1.0899, c3 = −1.0663 as in (3.17).


1

−1.083

1.089

−1.066

 =


0 0 0 0

−1 0 0 0

1.083 −1 0 0

−1.089 1.083 0 0

×

â12

â13

0

0

+


â21

â22

0

0

 (3.17)

From partitioned moment matrix in (3.17), we get, C21 =

 1.083 −1

−1.0899 1.083

 and

therefore Â1 = (C21)−1 × Ĉ2 =

 1.3744

0.3986

. After this step, the BBBC algorithm is

employed to find the coefficients of numerator, such that objective functions (ISE) get

minimised and the results obtained are x1 = 0.28389 and x2 = 1.00043. Hence, the

reduced- order model of a original system obtained is

G̃1(s) =
1.00043 + 0.28389s

1 + 1.3744s+ 0.3986s2
(3.18)

The comparison of original model with proposed reduced models and other recently

developed reduced order models in time domain and frequency domain is performed,

which is shown in Fig.3.2, 3.3 and Fig.3.4, 3.5. respectively. It is observed that in

both domains, proposed model is a better approximation with respect to original model

in comparison with other existing models. Further in order to validate this, ISE are

calculated for all the models. They are shown in Table 3.2. It is observed that the ISE

of the proposed model is the least in comparison to other existing models. Furthermore,



Chapter 3. Application of BBBC in model order reduction 39

the qualitative comparison is also carried out which is shown in Table 3.1. For qualitative

comparison, rise time, settling time, and peak overshoot are considered. Again, it is

found that the proposed method has better performance parameters.

Table 3.1: Qualitative comparison with respect to transient response

Model Order Reduction Technique Rise Time (Tr) Settling Time (Ts) Peak Overshoot(Mp)

Original System 2.260 3.931 0

Proposed Method 2.268 3.958 0

Sikander & Prasad [20] 2.301 3.410 1.0722

Desai and Prasad [18] 2.278 3.619 0.274

Truncation Method [21] 2.737 4.080 0.564

Routh Hurwitz [22] 1.926 5.587 3.595

Pade Approximation [23] 2.260 3.947 0

Singular Perturbation [24] 2.259 3.917 0

Balanced Realization [25] 2.089 5.355 2.059

Parmar Method [26] 2.188 3.219 1.301

Chen et al [27] 2.301 3.410 1.072

Pal [28] 15.381 27.361 0

Parthasarathy and Jayasimha [29] 1.591 5.563 4.099

Davision [30] 1.696 3.257 0

Sheih and Wei [31] 4.961 8.834 0

Safonov and Chiang [32] 3.801 6.747 0

Example 2 Let us now take an eighth order system [? ]:

G2(s) =
18s7 + 514s6 + 5982s5 + 36380s4 + 122664s3 + 222088s2 + 185760s+ 40320

s8 + 36s7 + 546s6 + 4536s5 + 22449s4 + 67284s3 + 118124s2 + 109584s+ 40320
(3.19)

On dividing the coefficients of both numerator and denominator by 40320 in (3.19), we

get

G2(s) =
1 + 4.607s+ 5.508s2 + 3.042s3 + 0.9023s4 + 0.1484s5 + 0.01276s6 + 0.0004464s7

1 + 2.718s+ 2.93s2 + 1.669s3 + 0.5568s4 + 0.1125s5 + 0.01354s6 + 0.0008929s7 + 0.0000248s8

(3.20)

Now, for the second-order reduced model, the partition matrix is


1

1.889

−2.5563

−2.7863

 =


0 0 0 0

−1 0 0 0

1.889 −1 0 0

2.5563 1.889 0 0

×

â12

â13

0

0

+


â21

â22

0

0

 (3.21)

For calculating denominator using Â1 = C−1
21× Ĉ2, we get Â1 =

1.2434

0.2075

. And using

BBBC algorithm to search optimal coefficient of numerator, we get x1 = 3.10735 and
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(a)

(b)

(c)

Figure 3.3: Step response comparision for example 1
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Table 3.2: Comparison between various Model Order Reduction techniques with re-
spect to ISE

Model Reduction Technique Reduced Order Model ISE

Proposed Method 0.28389s+1.00043
0.3986s2+1.3744s+1

1.1478× 10−3

Sikander and Prasad [20] 0.6997s+0.6997
s2+1.45771s+0.6997

27.7989× 10−3

Desai and Prasad [18] 0.8058s+0.7944
s2+1.65s+0.7944

2.8358× 10−3

Truncation Method [21] 7s2+24s+24
35s2+50s+24

70.138× 10 - 3

Routh Hurwitz [22] 20.57s+24
30s2+42s+24

97.41283× 10 - 3

Pade Approximation [23] 0.7311s+2.5088
s2+3.4481s+2.5088

1.234× 10−3

Singular Perturbation [24] 0.02957s2+0.6925s+2.501
s2+3.395s+2.501

9.449

Balanced Realization [25] 0.8216s+0.4542
s2+1.268s+0.4663

14.19× 10−3

Parmar Method [26] 0.7442575s+0.6991576
s2+1.45771+0.6997

17.4381× 10 - 3

Chen et al.[27] 0.6997s+0.6997
s2+1.4577s+0.6997

27.7989× 10 - 3

Pal [28] s+34.2465
s2+239.882s+34.2465

19.4603

Parthasarathy and
Jayasimha [29]

s+0.6997
s2+1.45771s+0.6997

342.0218× 10 - 3

Davision[30] −s2+2
s2+3s+2

2735.7076× 10 - 3

Sheih and Wei [31] s+2.3014
s2+5.7946s+2.3014

1474.5453× 10 - 3

Saifonov and Chiang [32] s+5.403
s2+8.431s+4.513

1786.6177× 10 - 3

x2 = 1.00944. Hence, the realized reduced-order model obtained is

G̃2(s) =
3.1084s+ 1.0005

0.2075s2 + 1.2434s+ 1
(3.22)

the obtained reduced order model shows ISE of 38.1244× 10−3. The obtained transfer

function from Desai and Prasad mixed method [18] is

G̃DP (s) =
2.06774s+ 0.43184

s2 + 1.17368s+ 0.43184
(3.23)

with ISE=19.2386 and the model derived from Sikander and Prasads mixed method

[20] is

G̃SP (s) =
16.92s+ 5.263

s2 + 6.893s+ 5.262
(3.24)

with ISE=69.569 × 10−3. From the ISE analysis, it is found that that the proposed

method gives least ISE, i.e. modelling error is minimized. Fig. 3.6 shows the compar-

ison of the step response of original 8th order system G(s) with reduced second order
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(a)

(b)

Figure 3.4: Step response comparision for example 1

system obtained using the proposed method G̃2(s), Desai and Prasad mixed method

[18] G̃DP (s) and Sikander and Prasad mixed method [20] G̃SP (s). Further, from the fre-

quency response characteristic shown in Fig. 3.7, it can be concluded that the proposed

method is nearly in tune with frequency response characteristics of the original model.

Example 3: Consider an example of two-input, two-output (TITO) system from [18]

as

[G(s)] =

 G11 G12

G21 G22

 =

 2(s+5)
(s+1)(s+10)

(s+4)
(s+2)(s+5)

(s+10)
(s+1)(s+20)

(s+6)
(s+2)(s+3)

 (3.25)
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(a)

(b)

(c)

Figure 3.5: Frequency response comparision for example 1
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(a)

(b)

Figure 3.6: Frequency response comparision for example 1

[G(s)] can be further written as [G(s)] = 1
Dn(s)

a11(s) a12(s)

a21(s) a22(s)

where

Dn(s) = s6 + 41s5 + 571s4 + 3491s3 + 10060s2 + 13100s + 6000



Chapter 3. Application of BBBC in model order reduction 45

Figure 3.7: Step response comparisons for Example 2.

Figure 3.8: Frequency response comparison for Example 2.

where,

a11(s) = 2s5 + 70s4 + 762s3 + 3610s2 + 7700s+ 6000

a12(s) = s5 + 38s4 + 459s3 + 2182s2 + 4160s+ 2400

a21(s) = s5 + 30s4 + 331s3 + 1650s2 + 3700s+ 3000

a22(s) = s5 + 42s4 + 601s3 + 3660s2 + 9100s+ 6000

(3.26)

The reduced model of [G(s)] using our proposed scheme is presented in Table 3.3. For

comparison, with model obtained using Desai and Prasads mixed method [18] and Sikan-

der and Prasad mixed method [20]. The obtained results show that the proposed method



Chapter 3. Application of BBBC in model order reduction 46

is far superior to other two methods. This is also observed through step response and

frequency response characteristic as shown in Fig.3.8, and Fig.3.9, 3.10 respectively.

Table 3.3: Comparison between various MOR techniques with respect to ISE

Model Method Transfer function ISE

G11(s)
Proposed Method 0.2023s+1

0.10224s2+1.10237s+1
7.91154× 10−7

Sikander & Prasad [20] 0.7938s+0.6181
s2+1.34952s+0.6181

0.1672

Desai & Prasad [18] 0.9475s+0.7091
s2+1.548267s+0.7091

0.0701

G12(s)
Proposed Method 0.10084s+0.4

0.10097s2+0.7021s+1
1.27668× 10−8

Sikander & Prasad [20] 0.42728s+0.24717
s2+1.34952s+0.6181

0.0958

Desai & Prasad [18] 0.4892s+0.2837
s2+1.548267s+1

0.0602

G21(s)
Proposed Method 0.05025s+0.5

0.05052s2+1.0505s+1
5.6205× 10−9

Sikander & Prasad [20] 0.37952s+0.309
s2+1.34952s+0.6181

0.03121

Desai & Prasad [18]
0.455s+0.3546

s2+1.548267s+0.7091 0.0101

G2(s)
Proposed Method 0.1676s+1

0.1673s2+0.8343s+1
8.4009× 10−8

Sikander & Prasad [20] 0.93382s+0.6181
s2+1.34952s+0.6181

0.2004

Desai & Prasad [18] 1.126s+0.7091
s2+1.548267s+1

0.0636

Example 4 Let us take another example of TITO power system plant of order 10 [? ]

to strengthen the reliability of proposed method as:

A =



−0.5517 0 −0.3091 0 0 0 0 0 0 0.1695

−0.0410 0 −0.3050 0 0 0 0 0 0 0

0 314.1593 0 0 0 0 0 0 0 0

9.5540 0 −0.8660 −20 0 0 0 0 0 0

0 0 0 0 −0 0 0 0 0.0421 −0.0328

−0.1962 10.8696 −0.1672 0 0 −10.8696 0 0 0 0

−0.9386 51.9849 −0.7999 0 0 −41.1153 −10.8696 0 0 0

−0.9386 51.9849 −0.7999 0 0 −41.1153 −10.8696 −0.1 0 0

0 0 0 −1000 −1000 0 0 1000 −20 0

0 0 0 0 0 0 0 0 1.0526 −0.8211





Chapter 3. Application of BBBC in model order reduction 47

(a)

(b)

(c)
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(d)

Figure 3.9: Step response comparisons of (a) G11(s), (b) G12(s), (c) G21(s), and (d)
G22(s) for Example 3.

(a)

Figure 3.10: Frequency response comparison of (a) G11 (b) G12 for example 3.
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(a)

(b)

Figure 3.11: Frequency response comparison of (a) G21 (b) G22 for example 3.

B =

 0 0 0 0 0 0 0 0 1000 0

0 0.0926 0 0 0 0.4428 2.1179 2.1179 0 0

T

C =

 0 0 1 0 0 0 0 0 0 0

0.4777 0 −0.0433 0 0 0 0 0 0 0

 , D =

 0 0

0 0

 (3.27)
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Given state space form is converted into transfer function form

 G11(s)

G21(s)

 =
1

D(s)


29.08s8 + 1868s7 + 46100s6 + 545900s5 + 3185000s4 + 8702000s3

+12060000s2 + 7606000s+ 648300

−1.26s8 − 85.17s7 − 2089s6 − 25680s5 − 109800s4 − 711800s3 − 1083000s2

−297200s− 19430


(3.28)

where
D(s) = s10 + 64.21s9 + 1596s8 + 19470s7 + 126800s6 + 503600s5+

1569000s4 + 3240000s3 + 4061000s2 + 2905000s+ 253100

and

G11(s) =

29.08s8 + 1868s7 + 46100s6 + 545900s5 + 3185000s4 + 8702000s3 + 12060000s2

+7606000s+ 648300

D(s)
(3.29)

G21(s) =

−1.26s8 − 85.17s7 − 2089s6 − 25680s5 − 109800s4 − 711800s3 − 1083000s2

−297200s− 19430

D(s)
(3.30)

For G11(s) in (3.29), after arranging it in Routh form, we get required ci
′s as c0 =

2.561, c1 = 0.652,c2 = −0.9327 c3 = 1.836, c4 = −17.7491, c5 = 179.2176 and c6 =

−1792.3375. Using these value we can calculate denominator coefficient Â2 and the

obtained denominator is

D̃11(s) = 2.3108s3 + 2.7911s2 + 10.2646s+ 1

and the numerator coefficients are obtained using BBBC algorithm which is found out

to be

Ñ11(s) = 17.42257s2 + 24.6483s+ 2.8875

Hence, the third-order reduced model is

G̃11(s) =
Ñ11(s)

D̃11(s)
=

17.42257s2 + 24.6483s+ 2.8875

2.3108s3 + 2.7911s2 + 10.2646s+ 1
(3.31)

The ISE of (3.31) is 68.26931. The only problem with above system is that dc gain

obtained does not match with the original system model. The DC gain shown by original
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system is G(0) = 2.561 whereas reduced model shows a DC gain of G̃(0) = 2.8875. Since,

DC gain is not matching, we made slight modification in algorithm. We fix the G̃(0)

same as G(0) and then calculate the rest unknown numerator coefficients using BBBC.

Ñ11dc(s) = 16.8003s2 + 25.6068s+ 2.561

And G̃11(s) becomes

G̃11dc(s) =
Ñ11dc(s)

D̃11dc(s)
=

16.8003s2 + 25.6068s+ 2.561

2.3108s3 + 2.7911s2 + 10.2646s+ 1
(3.32)

wherein DC gain of both original system and reduced model matches accurately but

with marginal increase of performance function (ISE) which come out to be 69.1327.

For the same system, we applied Desai and Prasad mixed method [18] and found the

reduced order model as

G̃11DP (s) =
Ñ11DP (s)

D̃11DP (s)
=

3.2023099s2 + 2.081667s+ 0.2056

s3 + 0.85591s2 + 0.92131s+ 0.08027
(3.33)

which shows an ISE of 147.3 and it is more than the proposed model.

()

The step and frequency response characteristics shown in Fig. 3.11 and 3.12, have

considerable differences in both models but the proposed method is far better then Desai

and Prasads mixed method [18]. It can be observed in frequency response characteristic

(Fig. 3.12) that in working range of frequency (50-60 Hz), the proposed model imitates

original model very well and hence results into more robust controller design keeping in

view minor deviation but with heavily reduced numerical task.

Now, let us take G21(s) of (3.30) the obtained ci
′s are c0 = −0.07676, c1 = −0.2931,

c2 = 0.31714, c3 = −0.76656, c4 = 7.1841, c5 = −72.3491 and c6 = 723.5899. Using

these value we reduce system to third- order model. And the obtained denominator is

D̃21(s) = 4.8812s3 + 7.6535s2 + 10.672s + 1. Now, using BBBC algorithm we find out

optimal numerator which shows to be Ñ21(s) = −4.00055s2 − 0.95028s − 0.0909 and

hence

G̃21(s) =
Ñ21(s)

D̃21(s)
=
−4.00055s2 − 0.95028s− 0.0909

4.8812s3 + 7.6535s2 + 10.672s+ 1
(3.34)

This reduced transfer function gives ISE=0.61606. In this case also, DC gain of original

system and reduced system does not match, therefore we follow the same procedure as
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Figure 3.13: Frequency response comparison for Example 4

Figure 3.14: Step response comparison for Example 4.

Figure 3.15: Frequency response comparison for Example 4
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mentioned earlier and hence the realized reduced transfer function is

G̃21dc(s) =
Ñ21dc(s)

D̃21dc(s)
=

−4.1s2 − 0.9594s− 0.07676

4.8812s3 + 7.6535s2 + 10.672s+ 1
(3.35)

The ISE of this transfer function is 0.6278, which is slightly more than G̃21(s). For

the same problem, Desai and Prasad mixed method [18] is applied, the reduced order

transfer function is obtained as

G̃21DP (s) =
Ñ21DP (s)

D̃21DP (s)
=

−0.3287s2 − 0.0716s− 0.00615

s3 + 0.8559s2 + 0.92131s+ 0.08027
(3.36)

which shows an ISE of 1.12626.

The comparison between step response of original system (G21(s)) , reduced third order

model by proposed method (G̃21(s)) and the reduced order model by Desai and Prasad

mixed method (G̃21DP (s)) are shown in Fig. 3.13. The step and frequency responses

depicted have deviations but our proposed method is better then Desai and Prasads

mixed method [18]. And again it can be observed that our model is emulating frequency

response characteristics in working range of frequency very well, hence this model can

be used successfully used keeping in mind a difference in step response.

Example 5

Time delays often appear in many real-world engineering systems either in state, the

control input, or the measurements (output). Now let us consider in this example a time

delayed system of order 7 as

G(s) =
(4000s+ 50000)e−0.3s

s7 + 69s6 + 1764s5 + 20280s4 + 102500s3 + 221375s2 + 187500s+ 50000
(3.37)

Delay element in (3.37) is Pade approximated, where the order of approximation is three,

the generalized third order Pade approximant is

R3(s) =
120− 60sT + 12(sT )2 − (sT )3

120 + 60sT + 12(sT )2 + (sT )3 (3.38)

and using (3.38), the resultant transfer function is

Gpade(s) =
−4000s4 + 110000s3 − 666700s2 − 15560000s+ 222200000

s10 + 109s9 + 5191s8 + 141300s7 + 2396000s6 + 25680000s5 + 167500000s4 + 610500000s3

+1111000000s2 + 866700000s+ 222200000

(3.39)

The proposed method is applied to transfer function in (3.39), the obtained ci
′s are
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c0 = 1, c1 = −3.9705,c2 = 10.484andc3 = −23.7888. Using these values, we reduce

system to a second-order model. The denominator of this second order model is D̃(s) =

2.928s2 + 3.378s + 1. Now, using BBBC algorithm, we find out an optimal numerator

as Ñ(s) = 0.238432s2 − 0.54329s + 1. Using this numerator and denominator, reduced

order model can be written as

G̃(s) =
Ñ(s)

D̃(s)
=

0.238432s2 − 0.54329s+ 1

2.928s2 + 3.378s+ 1
(3.40)

If Desai and Prasads mixed method [18] is applied on (3.39), the obtained transfer

function is

G̃DP (s) =
0.0989s+ 0.2328

s2 + 0.90802s+ 0.2328
(3.41)

The transfer function in (3.40) and (3.41) shows an ISE of 0.0329 and 0.5928 respec-

tively which clearly shows that proposed method is highly reliable. Fig. 3.15, 3.16 shows

the comparison between original system (G(s)), Pad approximated model (Gpade(s)),

proposed reduced model (G̃(s)), and Desai and Prasads reduced model (G̃DP (s)). Note

that here Gpade(s) and G(s) in Fig. 3.15 exactly imitates each other, hence distinction

is not possible.

Example 6: Example considered in (3.37) has a delay of 0.3 seconds which is negligible,

therefore let us consider another example having a delay of 2 seconds in output as.

G(s) =
(4000s+ 50000)e−2s

s7 + 69s6 + 1764s5 + 20280s4 + 102500s3 + 221375s2 + 187500s+ 50000
(3.42)

Using the Pade approximation in (3.38), the resultant transfer function is

Gpade(s) =
−4000s4 − 26000s3 + 240000s2 − 690000s+ 750000

s10 + 75s9 + 2193s8 + 31914s7 + 251620s6 + 1167000s5 + 3357000s4 + 6032000s3

+6433000s2 + 3563000s+ 750000

(3.43)

The reduced model is obtained using proposed mixed method which is given as

G̃(s) =
1.27s2 − 0.898s+ 1

5.622s2 + 4.2859s+ 1
(3.44)
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Figure 3.16: Step response comparison for Example 5

Figure 3.17: Frequency response comparison for Example 5

In order to show comparative results, the reduced order model is obtained using existing

Desai and Prasads mixed method which is given as

G̃DP (s) =
−0.01336s+ 0.14526

s2 + 0.6901s+ 0.14526
(3.45)

Fig. 3.17 and Fig. 3.18 show step and frequency response comparison of original system

(G(s)), Pad approximated model (Gpade(s)), proposed reduced order model (G̃(s)), and

Desai and Prasads reduced order model (G̃DP (s)) respectively. The figs indicate that

the proposed method is better approximating the reduced order model in comparison to

exiting techniques.
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Figure 3.18: Step response comparison for Example 6

Figure 3.19: Frequency response comparison for Example 6

3.7 Conclusion

This chapter addresses the model-order reduction problem for LTI-SISO, MIMO and

time delayed systems. We proposed a unifying framework for developing reduced-order

model using the recently developed optimization scheme of BBBC. The performance and

efficiency of the proposed method is demonstrated through application to several high-

order systems and compared with the well known and recently developed methods. We

observe that the proposed algorithm performs well in both time and frequency domain

testing.



Chapter 4

Optimial PID Controller Design

in Automatic Voltage Regulator

(AVR) System Using BBBC

4.1 Introduction

The automatic voltage regulator (AVR) controls the output of the exciter so that gen-

erated voltage and reactive power changes in desired manner. In most modern power

systems, the AVR is a controller that senses the generator output voltage and initiates

the corrective action by changing the exciter control in the desired direction [33]. Over

the past few decades, various control techniques have been formulated but the clas-

sical proportional-integral-derivative (PID) controller is considered to be outstanding

among them. Moroever, the PID controllers are widely used as they induce stability

and robustness into the systems [34], [35], [36]. Hence, PID is still a favored choice

for AVR systems. It is observed that the PID tuning is a time consuming task espe-

cially in industrial systems which generally possesses non linearities, delay time and

systems are of higher-order. In literature, many methods have been proposed for tuning

of PID contoller. First paper on PID tuning is based on Ziegler-Nichols technique [35],

[36]. But it suffers from major drawbacks such as (a) it is challenging to achieve best

performance of system, (b) forces the process into the condition of marginal stability

and (c) more importantly this method is not applicable for open loop unstable sys-

tems. Furthermore, many artificial intelligence techniques such as neuro-fuzzy system,

neural network and fuzzy logic [37], [38], [39] have been schemed for fine tuning PID

57



Chapter 4. Optimial PID controller design in AVR system using BBBC 58

controllers parameters. However, these techniques impose high convergence time and

lengthy training process. Likewise numerous analytical techniques like lambda tuning

method [40], Lyapunov thoerm [41] and stability boundary locus [42] are being used for

efficient tuning of the PID controller parameter. With strong development in the field

of evolutionary computation, various tuning techniques are being proposed using meta-

heuristic optimization algorithms such as particle swarm optimization (PSO), Genetic

Algorithm (GA) [43],[44], [45], [46], [47], [48]. Recently, Gaing [46] worked on a Particle

Swarm optimization approach for optimum design of PID controller in AVR System as

these algorithm are able to handle highly non-linear, mixed integer optimization prob-

lems of complex engineering systems however these algorithm requires huge memory

to carry out computationally intensive task. On various occasions, these metaheuristc

techniques are blended with other mathematical approaches for ease of computation.

On the same line, Hasanien [49] proposed a mixed method which was combination of

Taguchi method [50] and GA for tuning of AVR systems and demonstrated improved

results.

BBBC [1] is utilized for efficient tuning of the PID controller for AVR systems. The

results obtained shows exciting improvement in various performance time domain pa-

rameters.

4.2 Performance criterion

The main purpose of fitness function is to optimize various performance parameters.

There are various performance criterion widely used in control systems such as integral

of squared error (ISE), the integral of absolute error (IAE), integral of time weighted

squared error (ITSE) and integral of time weighted absolute error (ITAE). Among which

ISE and IAE weigh the error equally over the entire defined time interval whereas ITSE

and ITAE gives higher weightage to error at later times in interval. The ISE, IAE,

ITAE, and ITSE in time domain are illustrated below.

ISE =

∞∫
0

e2(t)dt (4.1)

IAE =

∞∫
0

|e(t)| dt (4.2)
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ITSE =

∞∫
0

te2(t)dt (4.3)

ITAE =

∞∫
0

t|e(t)|dt (4.4)

Here,a fitness function has been suggested in time domain for BBBC-PID controller

design. This performance criterion comprises of peak overshoot (Mp), rise time (tr),

settling time (ts), steady state error (ess) and ISE, which is presented in discrete form

in expression (9)

fi =
M∑
i=0

[e2(i∆t)] + w1Mp + w2tr + w3ts + w4ess (4.5)

where, M = 5T
∆t , e(i∆t) is difference between reference voltage and output voltage at

(i∆t) instant, T is the time constant of process, ∆t is taken as 0.1 sec for computa-

tional convenience and weight matrix W = {w1, w2, w3, w4} decides relative significance

of described parameters and is designed to realize required specification for controller

design.

4.3 Linearised model of AVR system

The prominent components of AVR system are amplifier, exciter, the generator and

the sensor as arranged in Fig. 4.1. The output voltage of generator Vt is regularly

sensed by the voltage sensor and this voltage signal is conditioned and evaluated to see

the fuctuation with respect to reference signal in the comparator. The resulting error

voltage is fed as input to controller. The control signal emanating from controller is fed

to amplifier and gradually to generator field winding through exciter. AVR system by

nature is a nonlinear system with nonlinearity such as saturation, hysteresis, dead time

etc. We know that the system analysis becomes highly complex when these nonlinearities

are considered. Hence, this system is linearised taking into consideration dominant time

constants and avoiding nonlinearities. The linearized model of AVR system as shown in

Fig. 4.1. comprises of

• Amplifier model

The first order amplifier model is characterized by Amplifier gain Ka and Time constant

τa. The transfer function of this system is given as:
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Figure 4.1: Block diagram of an AVR system with PID controller

VR(s)

Ve(s)
=

Ka

1 + sτa
(4.6)

where VR and Ve corresponds to input voltage to exciter system and error voltage re-

spectively and quintessential values of Ka and τa lies in the range of 10 to 400 and 0.02

to 0.1s respectively.

• Exciter model

The first order exciter model is characterized by gain Ke and Time constant τe. The

transfer function for this system can be expressed as:

VF (s)

VR(s)
=

Ke

1 + sτe
(4.7)

where VF and VR corresponds to input voltage to generator system and input voltage

to exciter system respectively, the quintessential values of Ke and τe lies in the range of

1 to 10 and 0.4 to 1s respectively.

• Generator model

The first order Generator model is characterized by gain Kg and Time constant τg. The

transfer function for this system can be written as:

Vt(s)

VF (s)
=

Kg

1 + sτg
(4.8)

Vt and VF corresponds to terminal voltage of generator and input voltage to generator

respectively. The quintessential values of Kg and τg lies in the range of 0.7 to 1 and 1

to 2s respectively.
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• Sensor model

The first order Sensor model is characterized by gain Ks and Time constant τs. The

transfer function is given as:

VS(s)

Vt(s)
=

Ks

1 + sτs
(4.9)

VS and Vt are input voltage to sensor system and terminal voltage of generator system

respectively. Here Ks = 1 and the sensor time constant τs ranges from 0.001 to 0.06s.

4.4 PID controller

The ideal version of PID controller is given by formula.

u(t) = KP e(t) +KI

t∫
0

e(τ)dτ +KD
de

dt
(4.10)

This can be put in laplace domain as:

u(s) = (KP +
KI

s
+ sKD)E(s) (4.11)

where u is the control signal and e is the control error (e = r − y). The reference value

r, is also called as set-point value. The control signal is thus a sum of three terms: a

proportional term that is proportional to the error, an integral term that is proportional

to the integral of the error, and a derivative term that is proportional to the derivative

of the error. The controller parameters are proportional gain kp, integral gain ki and

derivative gain kd. The controller in (10) can also be parameterized as

u(t) = KP

e(t) +
1

Ti

t∫
0

e(τ)dτ + Td
de

dt

 (4.12)

where Ti is the integral time constant and Td the derivative time constant. The propor-

tional part acts on the present value of the error, the integral represents an average of

past errors and the derivative can be interpreted as a prediction of future errors based

on linear extrapolation [51].

The designer’s challenge is to choose a set of controller gains that produces a system

response within specifications. In ( equation 4.11) it can be seen that this is equivalent
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to choosing one gain and a pole-zero pattern - staying within the allowable configura-

tions. The pole-zero pattern comprise of a zero that can be controlled and a pole that

is constrained to be at the origin.

Figure 4.2: Step response of change in the terminal voltage without PID controller.

4.5 Implementation of BBBC-PID controller

This paper employs BBBC [1] optimization algorithm for optimal tuning of PID con-

troller parameters i.e. K = [KP ,KI ,KD], such that desired transient response is ob-

tained for AVR system.

4.5.1 Parameter initialisation

In every meta-heuristic optimization technique, first step is to generate population for

unknown parameters. In the same way, in this proposed approach using BBBC, popula-

tion is to be generated for unknown parameters, i.e,KP , KI and KD, in vector form and

it is interpreted as K = [KP ,KI ,KD]. Each parameter here acts as an individual and

elements in these individual parameter are candidate. These individuals are elaborated

as given below.

KPi ∈ KP = {KPi

∣∣KPi ∈ R1×N ,KP min ≤ KPi ≤ KP max }



Chapter 4. Optimial PID controller design in AVR system using BBBC 63

KIi ∈ KI = {KIi

∣∣KIi ∈ R1×N ,KI min ≤ KIi ≤ KI max }

KDi ∈ KD = {KDi

∣∣KDi ∈ R1×N ,KDmin ≤ KDi ≤ KDmax }

where i = 1 . . . N and KPi, KIi and KDi are candidates of individual parameters, and

hence size of matrix K is N × 3.

4.5.2 BBBC-PID controller design algorithm

In this section, we are going to introduce an algorithm which facilitates in finding an

optimal solution for individual parameters. The details of all the variables are mentioned

in section IV-A. Exploration procedure of the BBBC-PID controller is given below.

Step 1: Define the lower and upper bounds of the three individual parameters (controller

parameters) and initialize randomly the candidates of the population.

Step 2: For each initial candidate of the population, utilize the Routh-Hurwitz crite-

rion to evaluate the closed-loop system stability and determine the values of the four

performance criteria in the time domain, namely MP , ESS , tr, and ts.

Step 3: Calculate the fitness value of each candidate in the population using the per-

formance criterion given by (9).

Step 4: Calculate the Center of mass as defined in (1) using fitness values obtained in

step 3.

Step 5: Compare each candidates fitness value with defined least value(ε) that is

leastfi = min(f iterk ), if(leastfi ≤ ε). Then jump to step (8), otherwise go to step

(6).

Step 6: Generate new candidates around center of mass as defined in section (2) under

pseudocode step (7).

Step 7: Go to step (3).

Step 8: Return optimal center of mass i.e. KP , KI , KD.

4.6 Simulation results and discussion

Using above algorithm, PID controller is designed for AVR system using MATLAB.

AVR system has following parameters: the gain components of AVR system are chosen
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Figure 4.3: Response of change in the terminal voltage with PID controller.

to be Ka = 10, Ke = 1, Kg = 1 and Ks = 1. The time constant of the components are

set as τa = 0.1s, τe = 0.4s, τg = 1s and τs = 0.01s. The values of gain and time constant

are taken from [46].

As seen from Fig. 4.2, the original model of AVR system has considerably high peak

overshoot and large settling time. The rise time equals to 0.2607, the settling time equals

to 6.9865 sec, the maximum peak overshoot (MPOS) equals to 50.69%, and the ESS

equals to 8.81%.

The proposed optimal controller design using BBBC gives best result. This tuned con-

trollers response is compared with optimal PSO, optimal GA. Optimum models GA

is carried out in matlab toolbox. In GA optimization model the optimal parame-

ters are KGA = [0.772, 0.72, 0.319]. In PSO modeling technique optimal values are

KPSO = [0.67, 0.59, 0.26], and optimal values obtained using BBBC optimization tech-

nique is KBBBC = [0.599, 0.53, 0.2599]. The simulation results are shown in Table 4.1.

It can be observed from its time response parameter results (Table 4.1) that rise time,

settling time and peak overshoot are lesser then all the modeling techniques mentioned

in Table 4.1.

The test results obtained using PSO are far superior than GA, as PSO is computation-

ally efficent then GA. In PSO candidates in swarm have knowledge of both its position

and remaining candidates position, it does not loose this information and search is
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Table 4.1: Comparision of optimum models

Modelling Techique MPOS(%) Rise time
Settling

Time
Ess(%)

Optimum GA 4.74 0.333 0.86 1

Optimum PSO 17 0.42 0.81 0.9

Optimum BBBC 1.7 0.3 0.46 0.48

carried by sharing this information all the way till solution is obtained. Where as in

GA unfit candidates are abandoned and only healthy candidates are preserved, conse-

quently population include share of finest individual. Moreover result obtained using

BBBC technique are better then that obtained using PSO and GA. In BBBC each can-

didate in search space is weighted with respect to values returned by objective function.

Importance of each candidate is measured and this information is used to form a solution

(center of mass). More refined solution is obtained by creating population around the

present solution (center of mass).

4.7 Conclusion

In this chapter a new optimization technique i.e. BBBC was used to optimally design

a PID controller in automatic voltage regulator system for improvising its response to

step input. The proportional gain [KP ], derivative gain [KD] and Integral gain [KI ]

are parameters in search space.The optimized value obtained yeilds better step response

compared to earlier PSO and GA. As a result of this proposed BBBC-PID approach

better decision can be actuated when disturbance occurs on exciter to maintain proper

voltage profile across line.



Chapter 5

Novel Optimial PID Controller

Design in Automatic Voltage

Regulator (AVR) System Using

Taguchi Combined BBBC

(TC-BBBC)

5.1 Introduction

In previous chapter we discussed about controller design for AVR sustem using BBBC

and a proposed objective function. During this problem it was noticed that computa-

tional effort to optimize this problem was very high due to complex objective function.

And hence there was a need to reduce this computational effort. Basically, reduction in

computational effort here means that reduction in number of variable. So, there was a

need to find a method in which dimension of the problem can be reduced. During this

search we came across a statistical method called as ”Taguchi method”, which is an op-

timization method or more appropriately here we use this for dimensionality reduction

of an problem. This method has been applied to many practical electrical engineer-

ing system which is used to optimize system parameters [52], [53], [54], [55],[56]. This

method is a very easy statistical technique which uses no sophisticated software package,

we have used Microsoft excel and Matlab 2015.
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This chapter presents a novel PID design technique using TC-BBBC method. A multi-

objective function is formed which optimizes system parameters i.e. the maximum per-

centage overshoot (Mp), the rise time (tr), the settling time (ts) and the steady state

error (ess). Whereas in optimization algorithm, kp, ki and kd will form a search space.

The optimum value of the design variable i.e. kp, ki and kd will be obtained using

Taguch method using Analysis of Mean (ANOM). We are also using Analysis of Vari-

ance (ANOVA) to choose two most dominant design variable. Then BBBC with the

help of Matlab is used to obtain optimized value of two design variable. The efficacy of

this method is then compared with PSO and GA optimization technique.

5.2 Linearised model of AVR system

The model has been explained in section 4.3.

5.3 Optimization by The Taguchi Method

The Taguchi method [57], [58] was proposed based on formation of orthogonal array,

[59] this is a basis of dimensionality reduction i.e. reduction of design variable. The

Orthogonal array in Taguchi method depends on number of factors and number of levels

which are used to study variation in parameters. This is highly advantageous because

of less number of experiments. For example if we have four factor and each factor has

three levels then total experiments to totally describe the variation would be 34 = 81.

Whereas, Taguchi method only needs 9 experiment ot totally describe the experiment.

5.3.1 Orthogonal Array

Orthogonal arrays are employed in industrial experiment to study the effect of various

control factor on the industrial system. The specialty of these array is that the columns

for the independent variables are ’orthogonal’ to each other.

Benefits

1) Valid conclusion can be retrieved over the entire region spanned by design variable.

2) Saving in computational effort.

3) Easy analysis of system behavior.
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Data required for forming an Orthogonal Array

1) Number of factors to be studied.

2) Number of levels for each factor.

3) 2 factor interaction to be studied.

4) Special difficulties in running experiment.

Notation of Matrix Experiments = LNe(Nl
Nf )

where

L is an orthogonal array with following specification as given below.

Ne=Number of experiments.

Nl=Number of levels.

Nf=Number of factors.

All these variable are related to each other and satisfies following relation

Ne = (Nl − 1)×Nf + 1 (5.1)

Example of typical L9 Orthogonal Array

There are standard orthogonal arrays available, and each arrays represents number of

independent design variables and levels . For example, if we have 4 independent vari-

able and each variable having 3 level values. With this information, if we conduct an

experiment to analyze the impact of 4 independent design variable, then for such case

L9 orthogonal array is a right choice. This L9 orthogonal array assumes that there is

no interaction between any two factor. Assumption of no interaction is valid for many

cases. But, there are cases where interaction is inevitable and can be observed clearly.

Table 5.1: L9(34) Orthogonal Array

L9(34) Orthogonal Array

Independent Varaibles

Experiment Variable 1 Variable 2 Variable 3 Variable 4
Performance
Parameter

Values

1 1 1 1 1 P1

2 1 2 2 2 P2

3 1 3 3 3 P3

4 2 1 2 3 P4

5 2 2 3 1 P5

6 2 3 1 2 P6

7 3 1 3 2 P7

8 3 2 1 3 P8

9 3 3 2 1 P9
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5.3.2 Properties of Orthogonal Array [60]

Following properties of Orthogonal Array helps in reducing total number of experiments

to be carried out.

1) The vertical column under each independent variables of the above table has a special

combination of level settings. All the level settings appears an equal number of times.

For L9 array under variable 4 , level 1 , level 2 and level 3 appears thrice. This is called

the balancing property of orthogonal arrays.

2) All the level values of independent variables are used for conducting the experiments.

3) The sequence of level values for conducting the experiments shall not be changed. This

means one can not conduct experiment 1 with variable 1, level 2 setup and experiment

4 with variable 1 , level 1 setup. The reason for this is that the array of each factor

columns are mutually orthogonal to any other column of level values. The inner product

of vectors corresponding to weights is zero. If the above 3 levels are normalized between

−1 and 1, then the weighing factors for level 1, level 2 , level 3 are −1 , 0 , 1 respectively.

Hence the inner product of weighing factors of independent variable 1 and independent

variable 3 would be

(−1×−1 +−1× 0 +−1× 1) + (0× 0 + 0× 1 + 0×−1) + (1× 0 + 1× 1 + 1×−1) = 0.

Coming back to our problem of optimizing PID values for controller design of AVR

system. Now we will form an orthogonal array which will have four factors i.e. A, B,

C and D. Here, factor A is propotional gain (kp), B is integral gain (ki), C is derivative

gain (kd) and D is saturation limit, saturation limit is fixed to 100 for the AVR system

stability.

Table 5.2: Design Variables and Levels

Design Variable Level 1 Level 2 Level 3

kp 0.6 0.7 0.8

ki 0.5 0.6 0.7

kd 0.2 0.25 0.3

D 100 100 100

5.3.3 Performing the Experiment

After forming an orthogonal array as shown in Table 5.3, which describes the reduced

number of experiments to be carried out. Now, using these values in Table 5.3 the

experiment is carried out to calculate the values of Mp(%), tr(s), ts(s) and Ess(%) as
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Table 5.3: L9 Orthogonal Array

Exp. No. kp ki kd D

1 0.6 0.5 0.2 100

2 0.6 0.6 0.25 100

3 0.6 0.7 0.3 100

4 0.7 0.5 0.25 100

5 0.7 0.6 0.3 100

6 0.7 0.7 0.2 100

7 0.8 0.5 0.3 100

8 0.8 0.6 0.2 100

9 0.8 0.7 0.25 100

shown in Table 5.4. To obtain the values of all the system parameters described above

we have used Matlab.

After performing the experiment the next task is to analyse the experimental data. This

Table 5.4: Result of Experiment performed

Exp. No. Mp(%) tr(s) ts(s) Ess%

1 1.79 0.52 0.47 1.45

2 0 1 1.78 2.84

3 0 1 1.89 3.86

4 2.34 0.41 1.03 0

5 1.8 0.37 0.985 1.35

6 9.34 0.42 1.739 1.42

7 4.45 0.34 1.158 1

8 11.5 0.393 0.949 0

9 8.25 0.36 0.785 1

analysis is carried out using two important parameters i.e. ANOM and ANOVA. These

statistical measures are used to assess the effect of variation in three design variable that

are kp, ki and kd, and to find relative importance of design variable respectively.

5.3.3.1 ANOM

1) Overall Mean: Average value all the performance parameter.

m =
1

9

9∑
i=1

P (5.2)

Where, P=[Mp tr ts Ess], is performance parameters of the system. Overall mean is

calculated for all the system parameters and is listed below in Table 5.5.

2) Average Effect of a Design Variable at One Setting : In this calculation one setting

is chosen and effect of this setting on the design variable is calculated. For example, we
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Table 5.5: Mean of system parameters P

Mp(%) tr(s) ts(s) Ess%

m (overall mean) 4.39 0.536 1.205 1.441

chose kp of level 3 from Table 5.2, which is represented as k3
p. Then, this calculation

represents the effect of k3
p on performance parameter. Let us consider that we need effect

of k3
p on performance parameter Mp, which is represented using below equation 5.3

mk3p
(Mp) =

1

3
(Mp(7) +Mp(8) +Mp(9)) (5.3)

Expected effect of all the performance parameter are given below in table

Table 5.6: Mp for all factors

Setting Factor Mp of kp Mp of ki Mp of kd
1 0.595 2.85 7.542

2 4.493 4.433 3.53

3 8.065 5.862 2.085

5.3.4 Analysis of Variance (ANOVA)

This test is also known by other name i.e. Fisher anaysis of variance. This test measures

variance among groups, when there are more than two groups. More precisely this test
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Figure 5.1: Setting parameters of kp, ki and kd

Table 5.7: tr for all factor

Setting Factor tr of kp tr of ki tr of kd
1 0.84 0.423 0.444

2 0.4 0.587 0.59

3 0.364 0.593 0.57

measures the statistical significance of design variables. This is calculated here using

equation given below.

SSFA = 3
3∑
i=1

(mAi −m)2. (5.4)
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Figure 5.2: Setting parameters of kp, ki and kd

Table 5.8: ts for all factors

Setting Factor ts of kp ts of ki ts of kd
1 1.392 0.892 1.056

2 1.254 1.244 1.208

3 0.965 1.475 1.348

SSFB = 3
3∑
i=1

(mBi −m)2. (5.5)

SSFC = 3

3∑
i=1

(mCi −m)2. (5.6)
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Figure 5.3: Setting parameters of kp, ki and kd

Table 5.9: Ess for all factors

Setting Factor Ess of kp Ess of ki Ess of kd
1 2.716 0.816 0.96

2 0.926 1.4 1.283

3 0.666 2.093 2.066

5.3.5 Discussion

From Table 5.5-5.9 it can be seen that design variable ki is minimizing Mp, tr, ts and Ess.

Observation tells us that k1
i is optimal value which reduces all the factor simultaneously.

Whereas, Kp reduces Mp for first factor and for other settings, parameters that are

tr, ts and Ess increases. Again, same is the case with kd does not have a great effect
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Figure 5.4: Setting parameters of kp, ki and kd

Table 5.10: Effect of various factors on the dynamic response

Mp tr ts Ess

SSF
Factor
Effects

(%)
SSF

Factor
Effects

(%)
SSF

Factor
Effects

(%)
SSF

Factor
Effects

(%)

A 83.7 57.64 0.42 81.85 0.285 30.75 7.47 62.97

B 13.5 9.32 0.055 10.87 0.516 55.49 2.45 20.65

C 48.1 33.04 0.037 7.28 0.128 13.76 1.94 16.38

Sum 145.3 100 0.514 100 0.929 100 11.86 100

on design variable. Therefore, design variable Kp and kd needs to be optimized for

better results. For optimization of these design variable BBBC optimization algorithm

is used in order to obtain the optimal values. The optimal of ki is k1
i = 0.5. Hence,

as it was contemplated that number of variables will decrease, leading to reduction in

computational burden and lesser usage of memory.

5.4 Optimization by BBBC

History and details of BBBC are detailed in chapter 1. BBBC has been used in various

branches of engineering such as in civil engineering for optimal truss design [61], [62],

skeletal or frame design [63], least-cost design of water distribution system [64], it is also

used in data clustering [65], optimal economic dispatch of power [66], optimal reconfigu-

ration and distributed generation power allocation in distribution systems [67], reactive

power dispatch [68], optimal preventive control action on power systems [69], adaptive

fuzzy model based inverse controller design [70], power system stabilizer design [71] in

electrical engineering.

In any optimization process, we need to have an objective function. Here, we have system

parameters P=[Mp tr ts Ess] which needs to be optimized. After application of Taguchi
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method, we found that ki = k1
i = 0.5. And hence, now there are only two parameters

kp and kd which are to be optimized such that system parameter P get minimized.

5.4.1 Creation of Objective Function

All the details of system parameters P are available and using this data and Matlab

curve fitting toolbox a polynomial model with respect to Mp, tr, ts and Ess is formed.

These polynomial models are given below

Mp = 4.29 + 3.735kp − 2.73kd − 1.315kpkd − 0.1617k2
p + 1.2833k2

d (5.7)

tr = 0.11− 0.2378kp + 0.0628kd − 0.1332kpkd + 0.2022k2
p − 0.0828k2

d (5.8)

ts = 0.14− 0.2139kp + 0.146kd − 0.303kpkd − 0.0758k2
p − 0.0063k2

d (5.9)

Ess = 0.003− 0.025kp + 0.001kd − 0.0015kpkd + 0.004k2
p + 0.001k2

d. (5.10)

The constraints are 0.5 6 kp 6 1 and 0 6 kd 6 0.3.

5.4.2 BBBC approach

Now, BBBC optimizatin algorithm is used to optimize the above objective function in

equation 5.7-5.10. The optimal values are kp = 0.56 and kd = 0.2. At these optimal

values, the optimized value of system parameters are Mp = 0.006%, tr = 0.6322s,

ts = 0.5238s and Ess = 0.03%.

5.5 Simulation Result

This method i.e. TC-BBBC is applied here to fine tune the PID values. The fine tuned

PID values obtained using TC-BBBC has to be compared with other optimum PID

value obtained using PSO, GA and TC-BBBC. The optimium value obtained using GA

is kp = 0.772, ki = 0.72 and kd = 0.319. In PSO, the optimum values are kp = 0.67,

ki = 0.59 and kd = 0.26. Whereas, optimal values from TC-BBBC are kp = 0.56,

ki = 0.5 and kd = 0.2. The simulation results for the obtained optimal values are shown

in From Table 5.11, it can be observed that peak overshoot of the TCBBBC is has lowest

possible peak overshoot as compared to all optimum models. The rise time TCBBBC

is bit higher as compared to other models. The settling time is better as compared to
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Table 5.11: Simulation result for all optimum models

Model Mp(%) tr(s) ts(s) Ess(%)

GA 4.74 0.33 0.86 1

PSO 1.7 0.42 0.81 0.9

BBBC 1.175 0.3 0.46 0.48

TC-BBBC 0.006 0.63 0.52 0.03

GA and PSO, but is slightly higher as compared to BBBC. The steady state error for

TCBBBC model is the lowest among all the models.

Figure 5.5 compares the step response of change in terminal voltage of AVR system with

PID controller tuned using GA, PSO, BBBC, TCBBBC

Figure 5.5: Change in terminal voltage of AVR with optimum models

It must be noted that Mp has been reduced by 99.64%, the ts reduced by 35.8% and

Ess is also reduced by 96.6%. Therefore TCBBBC technique for controller design gives

us an optimum design.

5.6 Conclusion

This chapter provides a glimpse of application of statistical technique in controller de-

sign. Here, we have combined Taguchi method and BBBC optimization for controller

design in automatic voltage regulator. The Taguchi method has helped in reduction of
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design variable in search space, and hence increasing computational and memory man-

agement efficiency. One more point worth noting is that this method is best suited

for fine tuning already available design variables value. The values of design variable

obtained using this technique is near optimal, which are better than other technique.



Chapter 6

Conclusion and Future Scope

6.1 Conclusion

The research work presented in this thesis is concerned with the detailed study of

recently developed algorithm i.e. BBBC, and to demonstrate it’s utility in field of System

and Control engineering. This report also focuses on utility of statistical techniques like

hypothesis testing and Taguchi method in Control engineering.

Our investigation into BBBC algorithm revealed various shortcomings with respect

to its concept and working structure. Therefore, to mitigate these short comings various

modification has been proposed into this algorithm. Along with this work, it was also

found that BBBC and MBBBC, like many algorithm get stuck in local optima.And

hence, this problem was overcome by introduction of chaos in BBBC and Modified

BBBC. Proposed MBBBC and CMBBBC has been compared with PSO in term of

there convergence rate and its effectiveness. It was found that MBBBC is far better

than BBBC. CMBBBC never get stuck in local optima and has very high convergence

rate as well as effectiveness.

A novel model order reduction technique has been proposed which is combination of

BBBC and time moment matching method. This techniques utility is shown for various

linear time invariant system of order ranging from fourth order to tenth order system

and time delayed system of tenth order system. It is observed that proposed algorithm

performs well in both time and frequency domain.
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This dissertation also presents utility of BBBC algorithm for controller design in

automatic voltage regulator system (AVR). In this work, we have formulated a multi-

objective function and BBBC algorithm has been used as an optimization tool. This

work has shown highly improved results as compared to other techniques.

During this work question was raised regarding the efficiency of BBBC with respect

to well known algorithms like PSO and GA. Therefore, to find out concrete conclusion

regarding efficiency and effectiveness of BBBC compared to PSO and GA, we have

used a technique in inferential statistics i.e. hypothesis testing. And results shows that

effectiveness of BBBC is on par with PSO and GA, whereas computational efficiency of

BBBC is far better than GA.

During work on controller design of AVR system using BBBC algorithm, we found

that there was still some scope of improvement in terms of its maximum peak overshoot

and steady state error. This challenge of fine tuning the design variables was achieved

by using a statistical technique i.e. Taguchi method in combination with BBBC. Obser-

vation shows an improvement in both of these parameters.

6.2 Future work

While this thesis shows a potential of MOR of linear time variant system and time

delayed system using optimization technique in combination of analytical technique.

Many opportunities exist to further extend the scope of this work.

Extending the proposed MOR technique for higher order high frequency

switching systems.

In chapter two, the proposed technique for order reduction has shown very promising

results for system with low frequency switching. But, this algorithm shows weakness

in the case of high frequency switching systems. For example, the system given be-

low equation 6.1 shows high frequency variations. Future work might be to extended

proposed work for this type of systems.

G(s) =
2s e−s

(s+ 1)2 + 10000
(6.1)
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Extending proposed multi-objective function for AVR system controller de-

sign to more complex model (higher order) of AVR including various non-

linearities.

In chapter 4, we have proposed a multi-objective function (Equation 4.5) which has

shown a very promising result in case of generalized model (Figure 4.1). There are var-

ious complex models of AVR system in literature like [72], [73], [74].

Extending hypothesis testing method on various other powerful optimization

technique and forming a mathematical proof regarding there effectiveness

and computational efficiency.

In chapter 2, we have demonstrated a method of finding a conclusion regarding effective-

ness and computational efficiency of BBBC, PSO and GA. This method can be extended

to various other powerful optimization technique like ant colony optimization technique,

artificial bee colony, firefly algorithm etc.. The whole elaborated list of optimization

technique has been provided in [75].

Extending the work of searching various method in statistics for fine tuning

design variables (PID values) in controller design.

In last chapter, we have used Taguchi method in combination with BBBC algorithm to

fine tune various system parameters in AVR controller design. This work can be extended

by finding out various others statistical technique to fine tune controller design variable,

like various methods described in [76], [77], [78].

Extending the work of comparing PSO, GA and BBBC using ANOVA tech-

nique.

In chapter 2, we have compared the efficiency of of PSO, GA, BBBC using t-testing

method. This test can also be carried out using ANOVA technique. Hence, the work of

comparing the algorithms using ANOVA technique can be a next milestone.
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