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ABSTRACT

This project is focussed on various aspects of sliding mode controller design and sup-

pression of chaos in complex non-linear system using the same. It aims at analysis of

methods which can improve the performance of sliding mode controller with respect to

various other methods. There are numerous ways which modify sliding mode strategy in

different directions to overcome its flaws such as chattering, asymptotic convergence etc.

This project keeps its main focus on dynamic sliding mode design which involves addi-

tion of an extra dynamics to the system with the primary aim of removing chattering

however this addition of dynamics also helps in acquiring desired performance specifi-

cation from the system such as improvement in transient performance. To eliminate

asymptotic convergence of sliding mode , terminal sliding mode has been investigated

and modified for better robustness and singularity avoidance. This report presents a

comparative analysis of all these upgrades of sliding mode control applied to different

chaotic system. Two different control strategies have been developed, firstly for a gen-

eralized partially linear system with minimum control input requirement. Secondly,

control strategy for any generalized chaotic system using both non-singular terminal as

well as dynamic sliding mode concept have been developed and compared with already

established results.
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Chapter 1

Introduction

1.1 Introduction

Sliding mode control(SMC) strategy is considered as one of the most efficient method for

robust controller design specifically for the case of high order non linear systems which

are prone to uncertainties in the form of external disturbances as well as parametric

uncertainties. The main advantages lies in design simplicity and corresponding good

performance produced for a number of different complex systems. It allows low sensi-

tivity to plant parameters variations and disturbances thus removing the need for exact

modelling of the plant. Also, the system dynamics is constrained to a lower ordered

manifold during sliding hence reducing the complexity level of the problem. This con-

trol methodology involves discontinuous control function which are easily implementable

using conventional power converters with “on-off” being the only admissible states. Due

to above mentioned advantages sliding mode control has been widely researched in past

two three decades and is still being applied to a number of problems such as robotics,

electric drives, process control, motion control etc.. SMC design can be broken down

in three main steps. First is to design a stable sliding manifold, second is to derive a

control law which will converge trajectories on to this sliding manifold in a finite time

also termed as reaching law and the last step is to design a control action which will

keep the system dynamics constrained to this sliding manifold for the time ahead. This

phase is termed as sliding phase. The stability of sliding manifold is important as once

1
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system enters this manifold its dynamics will be governed by parameters of sliding state

which is also the reason of its robustness or invariance toward parametric uncertainties

and external disturbances. One can observe that control action so designed is discon-

tinuous as well as it has to involve high frequency switching (theoretically infinite!)

which becomes a concern during the practical implementation of controller. The gen-

eration of this high frequency control component is also called as chattering effect and

can pose serious threat to functioning of actuators. Most of the research in the latter

half of past two decades has been on finding out new and efficient ways to reduce or

eliminate this chattering effect completely. A numerous methods have been proposed

which include boundary layer approach, higher order sliding mode control design, neural

network based sliding mode design, dynamic sliding mode control design. As expected

every method comes with its own set of pros and cons and choice of any method is

completely dependent on what the designer has in his mind.

Dynamic sliding mode control(DSMC) design incorporates selection of a switching sur-

face which is a function of time derivatives of states and controller input signal. It is

different than classical SMC as there a conventional switching surface depends on states

or error dynamics of the system along with some parameter. It is independent of the

input. Further in DSMC, time derivative of actual input signal is used to design the

controller dynamics. One can say for purely understanding purposes that actual input

signal is passed through an integrator and then applied to the system. The low pass

characteristics of the integrator eliminates any kind of high frequency signal and also

tends to smoothen out the new input thus preventing a bang- bang type control action.

The addition of additional dynamics which can also be termed as a compensator obvi-

ously increases the complexity as well as the system no longer slides on manifold with

lower order. However rest other advantages of SMC are preserved in this method also

in addition with the reduction or removal of chattering effect.

Apart from chattering one other problem faced by both conventional SMC and DSMC

is that of asymptotic convergence towards equilibrium point. Both the design strategies

tend to have a slower convergence rate when the system states are closer to origin. Thus

such type of control is effective only when there are no restriction on the time. In other

words, for more strict time or precision limits SMC and DSMC methods are not suited

and this particular reason led to the development of specifically designed non-linear

switching manifold which guarantees a finite time convergence. Such a surface is known

as terminal sliding surface and the control strategy is known as terminal sliding mode
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control (TSMC). Such control method also yields a better transient performance al-

though there have been many modifications to TSM because of its two main drawbacks.

Firstly, TSMC offers improved convergence rate only when the system states are closer

to origin. In case when system states are far away from origin the advantage no longer

remains. This particular drawback can be removed by using a surface which is combi-

nation of both linear and non-linear combination of system states thus providing better

convergence irrespective of the position of states. The second main drawback is presence

of singularities in the solution. As the non-linear term involves rational power of system

states, negative solution creates a problem. Numerous solution have been proposed for

this problem including those which focus on avoiding singular points however focus of

this project will be on designing such a surface which could eliminate the possibility

of existence of singular problems altogether. Such a surface is termed as non-singular

terminal sliding mode and has been studied mathematically in chapters ahead.

1.2 Literature Review

To develop understanding of this methodology control of chaos in non-linear system has

been taken up as an application. Chaotic system are non-linear system with strong

dependence on initial conditions. They are characterized by positive Lyapunov expo-

nent and even a slightest change in initial conditions or parameter values can cause two

approximately close trajectories to completely diverge from each other. These complex

dynamical systems have been studied a lot with focus on the synchronization of two

different chaotic systems[3] [4]. Such synchronization processes find great application

in secure communication systems [5]. However in recent times there has been a grow-

ing interest and need to control the chaotic phenomenon in such systems. For instance

Ott-Gregbogi-Yorke method developed in 1990 developed a closed feedback method to

stabilize the system to a periodic orbit or equilibrium point, however the presence of

noise might result in divergence from the desired trajectory [6]. In subsequent years many

methods have been proposed to control chaos in various systems. Such as self-controlling

feedback method were developed in early nineties[7] [8]. However the development of slid-

ing mode control and it’s robustness to external disturbance led to wide applicability in a

number of control and synchronization problems[9][10][11]. There has been a significant

amount of research on sliding mode control and its application to various fields[2][12][13]

. The main idea of SMC is to design a discontinuous switching control which brings the

trajectory to a sliding surface and keeps it there for time ahead. However, this high
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frequency switching control may be the cause of many practical problems such as wear

and tear of actuators etc. The effect is known as chattering. In the later period many

methods have been developed to eliminate this chattering effect for example higher order

sliding mode control [14], neural network based sliding mode control [15] adaptive sliding

mode control [16] [17] etc. Dynamic sliding mode control was also designed with the

motivation of eliminating chattering .Early work can be dated back to 1990 by H. Sira

Ramirez[18] which further led to crucial work in further years in this area[19] [20] [21].

DSMC has been also linked to many higher order sliding mode techniques[22][23] Over

the years many modification have been reported to SMC theory and have been applied

to a lot of fields including chaotic systems[1][24]. For instance, SMC offers asymptotic

convergence which has been improved using Terminal Sliding Mode concept where the

sliding surface is non-linear combination of system’s states[13][25] Consequently, finite

time convergence rate is achieved as expected but when compared with its conventional

SMC, there is not much gain in convergence performance of TSM if the initial states

are far away from the equilibrium point. This problem was subsequently solved using

the concept of Fast TSM methods[26][27].However both TSM and FTSM suffered from

singularity problem. The singularity problem was overcome by designing a non-singular

terminal switching surface[28][29]. In [30], H. Wang has proposed a new TSM surface

to avoid the singularity problem and achieve finite time chaos control of multiple input

output system. Specifically in [31] study of FTSM methods and their convergence rate

has been done and a new non-singular terminal sliding mode(NFTSM) control technique

has been proposed. One other less popular modification to SMC was dynamic sliding

mode control (DSMC) proposed in 1993 by H. Ramirez [18]. DSMC proposes addition

of an extra dynamics to the system, termed as dynamic sliding surface, which not only

helps in improving the stability of sliding system by eliminating chattering but also helps

in obtaining desired performance from the system[23]. The main characteristic dynamic

SMC is that switching surface also depends on the input signal along with the states

of the system. The selection of additional dynamics or dynamic sliding surface depends

largely on the performance specifications[21][32],.



Chapter 2

Theory And Preliminaries

2.1 Understanding SMC

In this section we will establish the basic notion of sliding mode control technique and

analyse various advantages and disadvantages it offers thus leading our discussions to-

wards various ways of improving this method (specifically targeting the problem of

chattering reduction). Sliding Mode control theory was motivated from the concept of

variable structure system. A dynamical system whose structure varies so as to satisfy or

acquire some desired objective. This change in structure is based open an appropriate

switching logic. To develop more understanding let us consider a non-linear system in

state space form as described in eq. (2.1)

ẋ = f(x, t) +B(x, t)u(t) + d(x, t) (2.1)

Where x(t) ∈ Rn×1 represents the state variables of system, f(x, t) ∈ Rn×1 is a non-

linear vector function, B ∈ Rn×m is a full column rank control matrix and d(x, t) ∈ Rn×1

represents external disturbances to which the system is exposed.

Assumption 2.1: All parameters and disturbances are constrained with known upper

bounds i.e.

‖d(x, t)‖ ≤ D (2.2)

5
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Here D represents real positive constant term. In sliding mode control, the main task is

to design a suitable control action u(t) such that the system described in equation (2.1)

is constrained to slide on a manifold described by

s(x, t) = ˙s(x, t) = 0 (2.3)

Where sT (x, t) = [s1, s2, . . . , sm] is assumed to be continuous. System described in eq.

(2.1) is said to be in sliding mode if manifold (2.2) is reached in a finite time t = t0 and

for t ≥ t0 system states are constrained to the manifold stated in (2.2).

Figure 2.1: Phase Trajectories Of Second Order System Using Sliding Mode Control[1]

Definition 2.1 : Switching surface s(x, t) = 0 is a (n −m) dimensional manifold in Rn

determined by m× (n− 1) – dimensional intersection of switching surfaces si(x, t). The

switching surface is designed such that the system produces desired responses such as

stability, tracking etc., when constrained to s(x, t) = 0.

Definition 2.2 : A sliding mode exists if in the vicinity of switching surface, s(x, t) =

0, the tangent or velocity vectors of the state trajectories always point towards the

switching surface[2]. An ideal sliding mode exists only when the state trajectory of

controlled plant satisfies s(x, t) = 0 at every t ≥ t0 for some t0.

The control problem for system in (2.1) is to develop continuous function u+
i , u

−
i and

sliding surface s(x, t) so that the closed loop system exhibits sliding mode on the (n−m)

dimensional sliding manifold in presence of the controller
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ui(x, t) =

 u−i (x, t) si(x, t) ≤ 0

u+
i (x, t) si(x, t) ≥ 0, i = 1 . . .m

(2.4)

The design of sliding mode control can be divided in two steps

a. Construction of suitable sliding surface which would yield desired response once the

system is constrained to sliding manifold.

b. Design of discontinuous control law which will direct the system trajectories toward

sliding surface and eventually will keep it there.

Next step is to guarantee the existence and stability of the sliding surface that is the

control must ensure the sliding in finite time and the trajectories must reach the surface

at least asymptotically. In general to prove the stability of the method Lyapunov stabil-

ity criteria is used. A generalized positive definite Lyapunov function is selected whose

time derivative must be negative for all instants in the region of attraction. A suitable

candidate for Lyapunov function can be

V (x, t) = 0.5sT (t, x)s(t, x) (2.5)

Which is clearly a positive definite function. It’s time derivative

V̇ (x, t) = s(t, x)ṡ(t, x) < 0 (2.6)

In the domain of attraction then all the trajectories will converge to the sliding surface

and will stay there for time ahead. The condition described in (2.5) is termed as reach-

ability condition[10]. However a stronger condition for finite time reaching is termed as

reachability condition given as equation (2.6) where η is a real positive constant.

V̇ (x, t) = s(t, x)ṡ(t, x) < −η | s(x, t) | (2.7)

2.2 Obstacles and Improvements

2.2.1 Order of Sliding Dynamics

Standard sliding mode method can be applied only if the relative degree of the sliding

variable is 1 which means that the control action must appear in first total time derivative
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ṡ(t, x). However many methods such as higher order sliding mode control has been

developed and utilized which allow sliding mode even if the relative degree of sliding

variable is more than 1.

Definition 2.3 : A smooth autonomous SISO system represented by

ẋ(t) = a(x, t) + b(x, t)u(t) (2.8)

With control input as u(t) and output y(t) is said to have relative degree of 1 if the Lie

derivative satisfy following condition

Lay = LaLby = · · · = L(r−2)
a Lby = 0, L(r−1)

a , Lby 6= 0, (2.9)

2.2.2 Chattering

Theoretically implementation of sliding mode control requires a very high frequency

switching control action (almost infinite) to keep the plant dynamics on the sliding

surface. Practically implementing such a controller is not feasible due to reasons such

as wear and tear of actuators and physical limitation of actuators itself to work on high

frequency, excitation of unmodeled dynamics of the system, unavoidable time delays

in the system etc. which forces the switching to be finite but of significantly higher

frequency value. Due to this finite but high frequency discontinuous control system’s

trajectories no longer simply slides on the switching surface but instead oscillate in the

neighbourhood of the surface. This oscillation is termed as chattering effect. Thus

researchers have been continuously working in finding different ways to eliminate or

reduce this chattering effect. We will discuss a few in brief

2.2.2.1 Boundary Layer Method

This method utilizes a boundary layer around the switching surface and control action

is designed with the aim of smoothing the discontinuity in this layer. One of the way to

do so is to select the control action as

u = −U s

|s|+ ε
, ε > 0 (2.10)

which can also be written as

u = −Utanh(s(x, t)) (2.11)
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Figure 2.2: Chattering in Sliding Dynamics And Controller Plot[2]

Figure 2.3: Sliding Dynamics of A System Showing Chattering

The thickness of boundary layer required to remove or significantly reduce chattering

depends on the switching gain which in turn is dependent on the bounds of uncertainties.

In simple words, system having large uncertainties will be in need of larger boundary
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Figure 2.4: Controller Dynamics for Reducing Chattering[2]

layer for removal of chattering. Increasing boundary layer will have two effects. Firstly it

will reduce the system accuracy and secondly as we go on increasing width of boundary

layer system no longer remains in sliding mode which was the basic intention of control

design.

2.2.2.2 Adaptive Sliding Mode Control

The basic idea in adaptive control is to estimate the uncertain plant parameters (or,

equivalently, the corresponding controller parameters) on-line based on the measured

system signals, and use the estimated parameters in the control input computation.

An adaptive controller is a controller that can modify its behaviour in response to

changes in the dynamics of the process and the disturbances. Adaptive control can

be considered as a special type of nonlinear feedback control in which the stages of

the process can be separated into two categories, which can change at different rates.

The slowly changing states are viewed as parameters with a fast time scale for the

ordinary feedback and a slower one for updating regulator parameters. One of the goals

of adaptive control is to compensate for parameter variations, which may occur due

to nonlinear actuators, changes in the operating conditions of the process, and non-

stationary disturbances acting on the process. As we have discussed in previous section

the magnitude of switching gain depends upon bounds of the uncertainty. However

this uncertain aspect of the system dynamics will not always remain at its maximum

permissible limit. Keeping that fact in mind we can design a controller in two ways.

First, we can keep the switching gain at a fixed value such that the sliding surface is
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stable in terms of Lyapunov stability criteria or secondly we can let the switching gain

adapt itself with respect to changing disturbance. In second case the gain doesn’t have

to remain at large fixed value.

2.2.2.3 Dynamic Sliding Mode Control

A design method proposed earlier to eliminate chattering and to excite minimally the

unmodeled dynamics is to introduce compensator dynamics in sliding mode through a

new class of switching which has the interpretation of linear operators. In this method-

ology we consider the switching surface as not merely a hyper surface in the original

state space of the plant but a linear operator representable as a linear time invariant

dynamic system itself, acting on the states. The sliding system with and added com-

pensator (extra dynamics) is an augmented system which is of higher order than the

original system. The designed compensator may not only improve the stability of the

sliding system but also yield desired performance and characteristics.

Let us consider the same system as described in [19]

ẋ1

ẋ2

 =

A11 A12

A21 A22


x1

x2

+

 0

B2

u (2.12)

Where x1 ∈ Rn ,x2 ∈ Rm and u ∈ Rm. The matrices are real, compatible and B2 is a

full rank matrix. The switching surface is

ζ = C(x1) + x2 (2.13)

Here ζ denotes switching surfaces that are linear operators and s denotes the conven-

tional static switching surface and C(.) is a linear operator which has a realization as a

dynamic system given by


ż = Fz +Gx1

y = Hz + Lx1

(2.14)

Assumption- C(.) has an equal number of poles and zeros (or less zero). Clearly this

allows the physical realization of system in (2.13). Thus new switching surface can be
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written as

ζ = Hz + Lx1 + x2 (2.15)

And corresponding equivalent control can be calculated using

ζ = Hz + Lx1 + x2 = 0 (2.16)

ζ̇ = HFz +HGx1 + LA11x1 + LA12x2 +A21x1 +A22x2 +B2ueq = 0 (2.17)

⇒ ueq = −B−2 1[HFz +HGx1 + LA11x1 + LA12x2 +A21x1 +A22x2] (2.18)

And

x2 = −Hz − Lx1 (2.19)

Thus we can also express eq. (2.18) as

ueq = −B−1
2 [(HF −LA12H −A22H)z+ (HG+LA11−LA12L+A21−A22L)x1] (2.20)

When the system is in sliding mode its dynamics can now be represented by

 ż
ẋ1

 =

 (F G

A21H A21 −A12L)


 (z

x1)

 (2.21)

And all its pole can be placed by selecting proper value of (F,G,H,L) if the pair

(A11, A12) is controllable. In contrast to this if we select a static switching surface

as s = Lx1 + x2 , the corresponding dynamics of the same system as given in (2.11) can

be represented as

ẋ1 = (A11 −A12L)x1 (2.22)

And all its poles can be placed by selection of proper value of L if the pair (A11, A12)

is controllable Another way of utilizing dynamic sliding technique is to use a sliding

surface which is not only dependent on the states of the system but also on the input

signal to the plant. This new sliding surface can be expressed as

σ = ṡ(x, t) + s(x, t) (2.23)
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Where s(t, x) represents the static switching surface. A suitable candidate for static

switching surface for nth order system represented in controllable canonical form



ẋ1 = x2

ẋ2 = x3

.

.

.

ẋn = a(x, t) + b(x, t)u

(2.24)

can be

s(x, t) =
n∑
i=1

Cixi (2.25)

Where Cn = 1 and the coefficient C ′is are selected in such a way that they satisfy a

Hurwitz polynomial. For understanding purposes, let’s restrict our study to a second

order system in which case the static and dynamic sliding surfaces will be given as


s(x, t) = x2 + Cx1

σ = ṡ(t, x) + s(t, x) = ẋ2 + (C + λ)x2 + λCx1

(2.26)

It is clear from eq. (2.26) that sliding surface σ will involve control action u and thus in

order satisfy the reaching condition with respect to this new switching surface we will

encounter the time derivative of control input. One can understand that in dynamic

sliding mode control methodology instead of applying a control input directly to the

plant we rather use the time derivative of input signal and pass it through an integrator.

Since integrators are low pass filters the output so received is free from high frequency

components and hence when applied to the plant the overall dynamics in sliding mode

is free from chattering.



Chapter 3

Control of Partially Linear

Chaotic System

Control of chaos can be broadly classified in two groups

a. Methods in which the trajectories in phase plane are continuously monitored and a

feedback process is applied to force them to move in some desired trajectory. Feedback

methods do not change the controlled system and stabilize unstable periodic orbits to

strange chaotic orbits.

b. Non-feedback methods, in which some other parameters or information about the

system is explored and utilized. These methods do change the system to some extent.

The non-feedback methods are less flexible and require more prior knowledge of equation

of motion but the need to monitor phase trajectories is eliminated. The control signal

can be applied at any time and we can switch from one periodic orbit to another with-

out encountering chaotic behaviour. However transient chaos may be observed while

switching. Further we do not need to wait for the system trajectories to close in on a

suitable unstable periodic orbit. In this section we will focus on utilizing a single input

controller to control a chaotic Lorenz system to one of the unstable equilibrium points

3.1 System Description

Consider a class of partially linear chaotic system as follows

14



Chapter 3. Control of Partially Linear Chaotic System 15


ẋ1 = a1x1 + b1x2

ẋ2 = a2x1 + b2x2 + f(x1, x2, x3)

ẋ3 = −x3 + h(x1, x2, x3)

(3.1)

where x1, x2, x3 represent states of the system while a1, a2, b1, b2 are real constants and

f(x1, x2, x3), h(x1, x2, x3) are nonlinear smooth functions defined on R3 → R. Some

of the models which fit in this description are Lorenz system, Lu system, Rucklidge

attractor, Lu-Chen system etc. The problem at hand requires a suitable controller

design so that the states of the corresponding chaotic system can converge to a desired

equilibrium point. Consider the system to be represented by following set of equations


ẋ1 = a1x1 + b1x2

ẋ2 = a2x1 + b2x2 + f(x1, x2, x3) + d(t) + u(t)

ẋ3 = −x3 + h(x1, x2, x3)

(3.2)

u(t) ∈ R Represent the controller dynamics and d(t) describes the external disturbances

affecting system’s behaviour. Let D0 be a positive constant such that the uncertain

aspect of the system is bounded as ‖d(t)‖ ≤ D0 and ‖ḋ(t))‖ ≤ D1. For ease of designing

and analysis of controller dynamics, let’s transform the system into controllable canonical

form [15]. Let the control input be composed as follows

u(t) = u1(t) + u2(t) (3.3)

where u1(t) = −f(x1, x2, x3) which acts as feedback linearisation term


ẋ1 = a1x1 + b1x2

ẋ2 = a2x1 + b2x2 + d(t) + u(t)

ẋ3 = −x3 + h(x1, x2, x3)

(3.4)

Eq. (3.4) can be written as

ẋ1

ẋ2

 =

a1 b1

a2 b2


x1

x2

+

0

1

 d(t) +

0

1

u (3.5)
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Using a suitable transformation matrix P we can transform the above set of equation

into controllable form

x̄1

x̄2

 = P−1

x1

x2

 (3.6)

Then equation (3.6) can be transformed into

 ˙̄x1

˙̄x2

 =

0 1

α β


x̄1

x̄2

+

0

1

 d(t) +

0

1

u(t) (3.7)

Here α, β represent the new real constants after transformation process. The above

transformation shifts whole problem to the selection of a proper controller u2(t) such

that the system dynamics described by (3.7) converge to a specified equilibrium point.

It will be shown the convergence of the two transformed states in (3.7) will eventually

force the convergence of the third state depicted in eq. (3.4).

3.2 Dynamic Sliding Mode Controller Design

Let us define error variables as
e1 = x̄1 − x̄1d

ė1 = ˙̄x1 − ˙̄x1d = x̄2 = e2

ė2 = ˙̄x2 = αe1 + βe2 + d(t) + u2(t) + αx̄1d

(3.8)

Here x̄1d denotes the transformed value which can be a static equilibrium point or a

periodic cycle or any arbitrary trajectory. The error dynamics for state x3 can be

directly written as

ė3 = h(e1, e2, e3)− γ(e3 + x3d) (3.9)

Construct the switching function Such that C must be Hurwitz

s(t) = e2 + Ce1 (3.10)

Then

ṡ = αe1 + βe2 + d(t) + u2(t) + αx̄1d + Ce2 (3.11)



Chapter 3. Control of Partially Linear Chaotic System 17

The main aspect of dynamic sliding mode is that the sliding surface is a function of

differential of the states. Define a new switching dynamics such that σ = ṡ+λs, where

λ must be Hurwitz [1]. Clearly when σ = 0 then eventually e1 → 0 asymptotically and

hence the system will be stabilized at the desired point in space

σ = ṡ+ λs (3.12)

σ̇ = (C+β+λ)(α(e1 + x̄1d)+d(t)+u2(t))+((C+β)(β+λ)+α)e2 + ḋ(t)+ u̇2(t) (3.13)

By selecting a proper value of dynamic controller can be forced to converge at zero.

u̇2(t) = −(C+β+λ)(α(e1 + x̄1d)+d(t)+u2(t))−((C+β)(β+λ)+α)e2−k1sgn(σ)−k2σ

(3.14)

And adaptive update law as

k̇1 = −η|σ| (3.15)

Proof: Select the Lyapunov function as

V = 1
2σ

2 + 1
2η (k̀1 − k1)2 (3.16)

Differentiating Lyapunov function with respect to time, we get

V̇ = σσ̇ + (k̀1 − k1)(−k̇1) (3.17)

Using eq. (3.13)

V̇ = σ((C + β + λ)(α(e1 + x̄1d) + d(t) + u2(t)) + ((C + β)(β + λ) + α)e2 + ḋ(t)+

+u̇2(t)) + 1
η

(k̀1 − k1)(−k̇1)

(3.18)

From eq. (3.14), (3.15) we can modify above equation as

V̇ = σ((C + β + λ)d(t) + ḋ(t)− k1sgn(σ)− k2σ)− 1
η

(k̀1 − k1)(k̇1)

≤ (C + β + λ)D0|σ|+D1|σ| − k2σ
2 + k̀1|σ|

(3.19)

Thus if k̀1 > (C+β+λ)D0 +D1 then the reaching condition is satisfied and hence using

the controller derived as in eq. (3.14) and adaptive law in eq. (3.15) the trajectories
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will converge to σ = 0 and eventually will stay there which will make the error to

asymptotically decay to zero.

3.2.1 DSMC of Lorenz System

To prove the feasibility of method described above let us take a chaotic Lorenz system

along with the presence of uncertainty in one of the states


ẋ1 = −ax1 + ax2

ẋ2 = rx1 − x2 − x1x3 + d(t) + u(t)

ẋ3 = −bx3 + x1x2

(3.20)

Where x1, x2, x3 represent the state variables of the system, d(t) denotes the uncertain

aspect and u(t) is the dynamic controller which we need to design. a, r and b are real

constant parameters. The above system shows chaotic behaviour for the parametric

value of a = 10, r = 28 and b = 8
3 .As described in section 3.2, eq. (3.3)

u1(t) = −x1x3 (3.21)

Utilizing (3.21) in (3.20), system dynamics changes into


ẋ1 = −ax1 + ax2

ẋ2 = rx1 − x2 + d(t) + u(t)

ẋ3 = −bx3 + x1x2

(3.22)

Selecting the transformation as described in eq. (3.6) where transformation matrix P is

P =

a 0

a 1

 (3.23)

We can rewrite eq. (3.22) as

 ˙̄x1

˙̄x2

 =

 0 1

a(r − 1) a+ 1


x̄1

x̄2

+

0

1

 d(t) +

0

1

u(t) (3.24)
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Describing the error dynamics from equations


ė1 = e2

ė2 = a(r − 1)e1 + (a+ 1)e2 + a(r − 1)x̀1d + d(t) + u2(t)
(3.25)

Based on the controller derived in section 3.2

u̇2(t) = −(C + a+ 1 + λ)(a(r − 1)(e1 + x̀1d) + u2(t))

−((C + a+ 1)(a+ 1 + λ) + a(r − 1))e2 − k1sgn(σ)− k2σ
(3.26)

With the selection of this controller and a proper adaptive gain update law it can be

show that the error dynamics described in equation (3.25) asymptotically converge to

zero. From the results described in next section it can also be verified that the internal

error dynamics of the system also converges to zero.

3.2.2 Simulation

For the verification of proposed method, let’s take the initial condition as (x1(0), x2(0), x3(0)) =

(3,−4, 2) and the desired equilibrium point to be(x1d, x2d, x3d) = (6
√

2, 6
√

2, 27) which is

unstable .The value of parameters of the switching surface are selected as C = 15andλ =

8. Assume the disturbance function to be

d(t) = 0.5− sin(πx1)sin(2πx2)sin(3πx3)

as in [11].Using the controller given in (3.26) and control of chaotic Lorenz system is

achieved. Fig 3.1 shows phase portrait of chaotic Lorenz system given in (3.20). Fig

3.2 shows the errors dynamics after utilization of controller as described in (3.23) .Fig

3.3 and Fig 3.4 shows the states of converging to their corresponding values and the

switching surface respectively. Fig. 3.5 depicts the final controller derived.
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Figure 3.1: Phase Trajectory of Chaotic Lorenz System

Figure 3.2: Error Dynamics For Lorenz System
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Figure 3.3: Switching Surface s(t, x)

Figure 3.4: Controller Dynamics u(t)
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Figure 3.5: Comparison between ASMC and DSMC Method- State x1(t)

Figure 3.6: Comparison between ASMC and DSMC Method- State x2(t)
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Figure 3.7: Comparison between ASMC and DSMC Method- State x3(t)
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3.2.3 Analysing Results

Dynamic sliding mode controller design for the control of partially linear chaotic system

have been investigated. It can be observed that with the use of a dynamic switching

surface instead of conventional static one eliminates chattering completely. A suitable

dynamic sliding controller has been designed for chaotic Lorenz system which is stabiliz-

ing the system to origin and thus helping in chaos suppression. Further the results have

been compared with the adaptive sliding mode control method developed in [17] and

significant improvement in transient behaviour and convergence rate of the controlled

system can be clearly noticed. However,appropriate transformation of some states of

chaotic Lorenz system was needed and hence the controller design process involved two

stages. First stage helped in converting the system into partially linear form while the

second part of the controller helped in stabilizing the system. Also all the states have

been stabilized to an unstable equilibrium point of the chaotic Lorenz system and to the

origin.

One can clearly argue about the generality of this algorithm as for transformation process

requires feedback linearisation of states and that may be a cause of concerns in some

systems but this algorithm is able to produce effective control with minimum input

signals and can be applied on higher ordered system as well. It is also to be noted

that adaptive gain has been utilized for control signal which not only helps in better

performance under noisy environment but also it eliminates the need for any information

related to uncertainty bounds and hence improves system’s robustness towards unknown

noise signals.



Chapter 4

Dynamic Switching Surfaces

One of the crucial aspect in sliding mode control of any system is selection of a proper

switching surfaces. Selection of proper surface is important for convergence of the sys-

tem’s states to their respective equilibrium points or trajectories. There are not too

many arguments which helps in deciding the parameters of switching surface. However

when we go one step ahead and try to use a compensator (or dynamic sliding surface)

things change a bit. We can now use this additional dynamics to adjust different perfor-

mance characteristics to our desires specifications. In this section we will try to analyse

and compare the effect of different switching surfaces and corresponding parameters on

the control performance of chaotic system.

4.1 System Descriptions and Controller Formulation

4.1.1 Duffing Holmes System

Let us take a system as shown is figure 4.1 which is a simple spring mass system attached

to a wall by a spring with stiffness k, frictional resistance r acting between the block

and surface and a force F. We have analysed this system many number of times and

thus it is well known that depending on the value of friction coefficient r, system will

show different behaviour. For example, in absence of friction if a force F is applied and

removed immediately the system will keep on oscillating (assuming absence of any other

dissipative forces too). However if any kind of dissipative force is present in the system

25
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oscillatory behaviour will decay gradually depending upon the overall time constant of

the system. However if instead of applying an impulsive force we expose this system to

a time varying force and add a non-linearity to system we can generate both periodic

and chaotic post transient solutions. One of the ways to add non-linearity is to select

a non-linear spring whose restoring force is proportional to the cube of displacement of

the block from its equilibrium point i.e. k = −(ax + cx3) and the time varying forcing

function can be chosen as a simple sinusoidal function.

The overall mathematical model of such a system can be derived as equation (4.1).


ẋ1 = x2

ẋ2 = ax1 + bx2 + cx1
3 + dcos(ωt)

(4.1)

Figure 4.1: Mass Damper System

As stated earlier and further shown in figure 4.2, 4.3 system described above can show

both periodic and chaotic behaviour for different values of parametric values.

The two figures show the phase portrait of the system described in equation (4.1) and

it can be clearly seen that for a certain set of parameters system shows periodic post

transient behaviour as shown in above figures while for slight changes in parameters

its behaviour settles to a chaotic attractor also known as strange attractor. The same

thing can be verified by the time series graph of the system for the different parametric

values. It can be clearly seen that Duffing Holmes system shows one of the most striking

characteristic of chaotic system and that is sensitive dependence on initial conditions

and parametric values.
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Figure 4.2: Periodic Post Transient Behaviour of Holmes System

Figure 4.3: Chaotic Post Transient Behaviour of Holmes System
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Figure 4.4: Periodic Time Series of Holmes System

Figure 4.5: Chaotic Time Series of Holmes System
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4.1.2 Control Performance For Duffing Holmes System

As we have stated earlier that the concept of dynamic sliding mode utilises the addition

of an extra dynamics to the system in such a way that the normal chattering problem of

the conventional SMC can be avoided as well as the selection can help in achieving the

desired transient and steady state performance, in this section we will try to analyse the

effect of different dynamic switching surface on the control of chaotic system. Since our

main focus will be on the switching surface we will try to avoid the chattering problem

with the help of appropriate modification in the controller dynamics.

The system dynamics can be described by the mathematical model


ẋ1 = x2

ẋ2 = ax1 + bx2 + cx1
3 + dcos(ωt) + u(t)

(4.2)

As we can see that currently the system is assumed to be free of any kind of external

disturbances and parametric uncertainties. The control problem is to design a suitable

control signal which will direct the states of the system to origin and keep it there. How-

ever the first step in sliding mode control is to select a suitable static switching surface

as already described in the previous section. For all the three cases to be discussed

ahead the dynamics of static/conventional switching surface will be taken as the linear

combination of the states

s = c1x1 + c2x2, where c1, c2 > 0 (4.3)

Further, the second step is to select a dynamic switching surface which will not only

help in the control of given system but as well as will help in obtaining desired steady

state and transient performances. Three different types of switching surface has been

selected and their names are motivated from the basic controllers present in classical

control theory because of the fact that their mathematical structure has a resemblance.

a.) PID Switching – As the name suggest the dynamic switching surface have a propor-

tional, integral and derivative term as shown in (4.4)

σ = ṡ+ λ1s+ λ2 +
∫
sdt (4.4)
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where s corresponds to conventional surface. The time differentiation of (4.4) will yield

σ̇ = s̈+ λ1ṡ+ λ2s (4.5)

Further using the defined static switching surface in terms of system states

σ̇ = c1ẋ2 + c2ẍ2 = C11ẋ2 + λ1c1x1 + C12x2 + 3cx1
2x2 − dωsin(ωt) + u̇(t) (4.6)

Constructing the Lyapunov function as

V = 0.5σTσ (4.7)

Differentiating (4.7) with respect to time and utilizing the information in (4.5)

V̇ = σσ̇ = σ(C11ẋ2 + λ1c1x1 + C12x2 + 3cx1
2x2 − dωsin(ωt) + u̇(t)) (4.8)

So as discussed earlier, now the problem shifts to selection of a proper time derivative

of control input such that the system states converge to equilibrium points at steady

state. One of the valid choice can be

u̇(t) = −((C11a+ λ2c1)x1 + (C11b+ C12)x2 + C11(cx3
1 + dcos(ωt) + u(t))+

+3cx2
1x2 − dωsin(ωt))− (µ+ η‖σ‖(β−1))σ

(4.9)

The proposed controller yields a negative definite time derivative of Lyapunov function

and hence provides a stable control dynamics.

b.) PD Switching – This type of switching is a subset of that described in PID type

with only proportional and derivative terms of conventional sliding surface

σ = ṡ+ λ1s (4.10)

The corresponding time derivative control signal has to be selected as

u̇(t) = −((C11 + b)ax1 + (C11b+ λ1c1 + a+ b2)x2 + (C11 + 1)(cx3
1 + dcos(ωt) + +u(t))+

+3cx2
1x2 − dωsin(ωt))− (µ+ η‖σ‖(β−1))σ

(4.11)
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c.) PI Switching – It includes proportional and integral aspects of the conventional

switching surface as depicted in the equation

σ = λ1s+ λ2

∫
sdt (4.12)

Figure 4.6: Converging System States for Duffing Holmes System

4.1.3 Genesio System and It’s Control

On the similar lines as described above a simple third order choatic system known as

Genesio system has been controlled using three different switching surfaces.The chaotic

Genesio system was first discovered by Genesio and Tesi can be described by following

mathematical model[33]. The system shows chaotic behaviour as shown in figures below


ẋ1 = x2

ẋ2 = x3

ẋ3 = −ax1 − bx2 − cx3 + x2
1

(4.13)
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Figure 4.7: Phase Portrait for Chaotic Genesio System

Figure 4.8: Chaotic Time Series for Genesio System

A detailed analysis of this system has already been done in [34] and the results are being

reflected here to understand the dynamics of this system. It has been observed that for
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the range α < 0 and β < 0 no bounded solution exists which further implies that for

these parametric values there exists no stable attractor. However, for α > 0and β > 0

the system shows a fixed point, limit cycle and chaotic behaviour as we go on varying the

values. One of the identified set of parametric value which results into chaotic motion

for this system is a = 6, b = 2.92, c = 1.2 with the initial condition x(0) =
[
4 3 −4

]
as used in[35] . The same set has been used to derive controllers for three different cases

of switching surfaces and since the process is similar the mathematical equation leading

to the controller design has been eliminated from this section.

Figure 4.9: Converging System States for Genesio System

4.2 Control of General Class of Chaotic System

The performance of sliding mode control design is dependent on the type of switching

or sliding surface to which all the states of system are forced to converge using proper

controller signal. One of the mostly used sliding surface is linear combination of system

states with the parameter of the surface satisfying Hurwitz polynomial. However such a

surface can only provide asymptotic convergence to the equilibrium points that means

it will take almost infinite time for the states to converge to a specified points. This

becomes a drawback when the requirement is restricted highly in terms of reaching time
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and precision value. In these cases the conventional asymptotic convergence can be a

problem when the system states lie close to origin. This issue, however can be solved

by designing non linear switching manifold with finite time convergence rate. Terminal

sliding mode (TSM) design gives us one such non linear switching surface with fast

convergence as well as improved transient behaviour. The TSM was first introduced in

[36] and then there have been several application of the same with as many modifications.

4.2.1 Terminal Sliding Mode – A Brief analysis

As Described above TSM utilizes a non-linear switching surface given by following equa-

tion [35]

s = x2 + cx
(p/q)
1 (4.14)

Here p, q > 0 and both are odd real integers and only real solution is considered so that

the term x
(p/q)
1 remains real under all circumstances. Further, when the states achieve

sliding mode i.e. they are on the surface described in (4.14) starting from any given

initial condition x(0), the time to reach to origin can be given by yu2002variable

tfinal = p

c(p− q)p/(c(p− q))|x1(0)|((p−q)/q) (4.15)

And the state dynamics during sliding are defined by

ẋ1 = −cxp/q1 (4.16)

Clearly from eq. (4.15), it can be seen that the total time taken to achieve convergence

is finite and depends on the initial condition x1(0) as well as parameters c, p and q. For

a fixed initial condition,tfinal can be minimized by choosing higher values of c. Further

if we select a Lyapunov function as

V = 0.5x2
1 (4.17)

Then the corresponding time derivative will yield

V̇ = x1ẋ1 = −cx(p+q)/q
1 (4.18)

Clearly for the dynamics to be stable, time derivative of Lyapunov function must be

negative definite and to ensure that the term (p+ q) must be even which is assured by
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the fact that both p and q are odd real numbers. The equation (4.18) also makes it

clear that the state x1 = 0 is terminally stable and not necessarily asymptotically stable.

Also an interesting fact about the TSM surface given in eq. (4.14) is that although the

convergence rate is finite but it does depend on initial condition i.e. convergence rate

is faster when system states are closer to the origin and thus TSM might not offer the

same advantage over linear switching surface if the system states are far away from the

origin. This particular drawback of TSM can be overcome using the concept of Fast

Terminal Sliding Mode (FTSM) as used in the paper by Yu and Man. One such surface

has been investigated in [35] and can be described by

s = x2 + c1x1 + c2x
p/q
1 (4.19)

When the states are far away from origin above surface can be approximated by conven-

tional switching surface and similarly when the states are closer to origin the equation

can be approximated by eq.(4.14 ) thus reducing the convergence time irrespective of

the position of system states from the origin. Apart from the drawback discussed above

both the methods TSM and FTSM suffer from singularity problem that can be observed

when the solution states turn negative and thus tend to shift the problem into complex

number domain and thus the switching surface no longer remains in real domain. There

have been many methods to overcome this singularity issue, many of which tend to

discard singular solution however one particular method completely overcomes the sin-

gularity problem by making modifications in switching surface itself [32]. Such strategy

has been termed as Non-singular Fast Terminal Sliding Mode (NFTSM) control and it

has been proven that such a surface gives fast finite time convergence, strong robust-

ness and singularity avoidance. In the next section a NFTSM switching surface based

controller has been designed and the results have been compared with the dynamic PI

based sliding surface and non-singular terminal sliding based control structures.

4.2.2 Generalized System Description

Consider a system whose dynamics is defined by following equations


ẋ1 = A11x1 + A12x2

ẋ2 = (A21 + ∆A21)x1 + (A22 + ∆A22)x2 + f(x1,x2) + B2u + d(x1,x2)
(4.20)
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where x1 ∈ Rm,x2 ∈ Rn−m represents states of the system, u ∈ Rn−m denotes the

control input to be designed later and f(x1, x2) is the nonlinearity present in the system.

Aij represents matrix of suitable order where i = 1, 2, j = 1, 2 and ∆A2j represents

the corresponding uncertainties in the parameters. The external disturbance has been

represented by the term d(x1,x2). Most of the chaotic system discovered so far can

be described directly or can be transformed to a mathematical model in the form of

equation (4.20).

Assumption 4.1: The parametric uncertainties as well as external disturbances in the

system are bounded that is

‖∆A2j‖ ≤ qj‖xj‖, where j = 1, 2 (4.21)

‖d(x1,x2)‖ ≤ q3 (4.22)

Where qj(j = 1, 2, 3) are positive real numbers and ‖.‖ denotes the norm

Assumption 4.2: Matrix B2 ∈ R(n−m)×(n−m) is a full rank matrix.

Definition 4.1: Finite Time Stability- Suppose x(t) ∈ Rn represents the states of a

system. This system has finite time stability if there exists a positive constant T such

that lim(t→ T ) ‖x(t)‖ = 0 and if for t ≥ T, ‖x(t)‖ = 0.

Lemma 4.1: Let V (t) be a continuous positive definite function which satisfies following

condition

V̇ (t) ≤ −CV (t) ∀ t ≥ t0, V (t0) ≥ 0, (4.23)

where C > 0 and 0 < η < 1 are two positive constants. Then, for any give t0, V (t)

satisfies following condition

V 1−η(t) ≤ V 1−η(t0)− C(1− η)(t− t0), t0 ≤ t ≤ t1 (4.24)

and

V (t) ≡ 0 ∀t ≤ t1 (4.25)

where t1 can be given by

t1 = t0 + V (1− η)(t0)
C(1− η) (4.26)



Chapter 4. Dynamic Switching Surfaces 37

4.3 Controller Design

This section deals with the controller design using two different techniques. First we

will use Non Singular Fast Terminal Sliding Mode Control (NFTSM) method and later

on the concept of dynamics sliding mode (DSM) will be utilized.

4.3.1 Non Singular Fast TSM Controller

Let us select a switching surface as mentioned below

s(t) = C1x1 + C2sign(x1)|x1|γ1 + C3sign(x2)|x2|γ2 (4.27)

Where s(t) represents a (n−m) dimensional switching surface with the various matrices

described as C1 ∈ R(n−m)×m, C2 ∈ R(n−m)×m, C3 ∈ R(n−m)×(n−m) such that all the

elements Cij > 0.γ1 = diag(γ1) and γ2 = diag(γ2) represents two diagonal matrices of

order m and (n−m) respectively. Here γ1 > γ2 and 0 < γ2 < 1.

The vectors sign(x1)|x1|γ1 and sign(x2)|x2|γ2 can be defined as

sign(x1)|x1|γ1 =
[
sign(x11)|x11|γ1 sign(x12)|x12|γ1 · · · sign(x1m)|x1m|γ1

]T
(4.28)

sign(x2)|x2|γ2 =
[
sign(x21)|x21|γ2 sign(x22)|x22|γ2 · · · sign(x2(n−m))|x2(n−m)|γ2

]T
(4.29)

Theorem 4.1: Let all the assumptions to be valid, based on the selection of switching

surface in (4.27) the following control input is selected as

u = −(B2)−1{A21x1 + A22x2 + f(x1,x2) + (µ+ ρ‖s‖β−1 + (q1‖x1‖+ q2‖x2‖+ q3)‖s‖−1)s

(C2γ2|x2|γ2−I(n−m))−1(C1(A11x1 + A12x2) + C2(γ1|x1|γ1−Im)(A11x1 + A12x2))}

(4.30)

where 0 < β < 1 and ρ, µ > 0. Then the system in equation (1) starting from any given

initial state will approach the sliding surface s = 0 in finite time T and will stay on it

for t > T .

Proof Consider V (t) to be Lyapunov candidate such that

V (t) = 0.5sT s (4.31)
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Taking its time derivative and with the help of eq. (4.27) we get,

V̇(t) = sT(C1ẋ1 + C2γ1|x1|γ1−Im ẋ1 + C3γ2|x2|γ2−In−m ẋ2)

= sT(C1(A11x1 + A12x2) + C2γ1|x1|γ1−Im)(A11x1 + A12x2)+C3γ2|x2|γ2−In−m

(A21 + ∆A21)x1 + (A22 + ∆A22)x2 + f(x1,x2) + B2u + d(x1,x2)))

(4.32)

On selecting u as mentioned in eq. (4.30)

V̇(t) = sT(C3γ2|x2|γ2−In−m){−(µ+ ρ‖s‖β−1+(q1‖x1‖+ q2‖x2‖+ q3)‖s‖−1)s

+∆A22x2 + A21x1 + d(x1,x2)} ≤ −α(µ‖s‖2 + ρ‖s‖β+1) ≤ −2αρV(+1)/2)

(4.33)

Thus it is clear that in accordance with lemma 1 and controller in (4.30), the system

will reach the sliding surface s=0 in a finite time.

4.3.2 Dynamic Sliding Mode Controller Design

For the same system defined in eq. (4.20) we will design a controller using the concept of

dynamic sliding mode. Instead of working on a conventional switching surface, DSMC

develops a surface which depends not only the states of the system but also the control

dynamics which improves the response of the system as well as helps in removing chat-

tering as will be shown in later sections. Dynamic switching surface is a combination

of conventional surface and its integral which resembles to PI (Proportional + Integral)

control structure. However a significant point to note is that DSMC also uses asymptotic

convergence as conventional SMC. Let the conventional switching surface be defined as

sd = C1x1 + C2x2 (4.34)

where C1 ∈ R(n−m)×m, C2 ∈ R(n−m).

Then the dynamic sliding surface can be defined as

σ(t) = sd + λ

∫
sd (4.35)
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Using the time derivative of eq. (4.34)

ṡd = C2{(A21 + ∆A21)x1 + (A22 + ∆A22)x2 + f(x1,x2) + B2u + d(x1,x2)}

+C1(A11x1 + A12x2)

(4.36)

ṡd = Ã1x1 + Ã2x2 + C2{∆Ã21 + ∆Ã22 + f(x1,x2) + B2u + d(x1,x2)} (4.37)

where Ã1 = C1A11 + C2A21, Ã2 = C1A12 + C2A22 and ∆Ã1 = A21x1,∆Ã2 = A22x2

Theorem 4.2: Considering all the assumptions to be valid, based on the selection of

static and dynamic switching surface in (4.34) and (4.35) the time derivative of control

input is selected as

u = −(B2C2)−1{[(Ã1 + λC1)x1 + (Ã2 + λC2)x2 + C2f(x1,x2)+

(µ+ ρ‖σ‖β−1 + ‖C2‖(q1‖x1‖+ ‖x2‖+ q3)‖σ‖−1)σ]}
(4.38)

where 0 < β < 1 and ρ, µ > 0. Then the system in equation (4.20) starting from any

given initial state will approach the sliding surface s = 0 in finite time T and will stay

on it for t > T .

Proof: Let a new Lyapunov candidate as

V (t) = 0.5σTσ, (4.39)

where σ has been defined in equation (4.35). Time derivative of (4.39) will provide

V̇(t) = σ(Ã1x1 + Ã2x2 + C2{∆Ã21 + ∆Ã22 + f(x1,x2)u + d(x1,x2)]+

+λ(C1x1 + C2x2)})
(4.40)

On selection of the controller described in theorem 2 and assuming all the assumption

to be valid we can reach to the same conclusion as in the proof of NFTSM controller i.e.

V̇(t) ≤ −2αρV(β+1)/2

4.4 Control of Unified Chaotic System

To verify and compare various aspects of the methods discussed in previous section we

will take unified chaotic system as an example[36]. The dynamics of the system is defined
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Parametric Value System
0 ≤ α < 0.8 Generalized Lorenz System
α = 0.8 Lü System

0.8 ≤ α ≤ 1 Generalized Chen System

Table 4.1: Parameter Value and System Behaviour

by following mathematical model


ẋ1 = (25α+ 10)(x2 − x1),

ẋ2 = (28− 35α+ d1)x1 − x1x3 + (29α− 1 + d2)x2 + d4 + u1,

ẋ3 = x1x2 − ((8 + α)/3 + d3)x3 + d5 + u2

(4.41)

The above system got its name from the fact that there are more than one chaotic

systems hidden in the dynamics and can be recognized by changing the parameter .

The set of equations in (4.41) shows chaotic behaviour for α ∈ [0, 1]. The different

chaotic system and the corresponding α has been tabulated below. The system states

are represented by vector x =
[
x1 x2 x3

]T
and di(i = 1, 2, 3) represents the bounded

parametric uncertainties and di(i = 4, 5) denotes the matched disturbance experienced

by the system. As described previously α denotes the system parameters satisfying

0 ≤ α ≤ 1 for chaotic behaviour. We will design controller using the concept of NFTSM

and DSMC and eventually will compare the results of the two with results published in

[36].

NFTSM: Selecting the switching surface as described in eq. (4.27), i.e.

s1(t) = C1x1 + C2sign(x1)|x1|γ1 + C3sign(x2)|x2|γ2 (4.42)

s2(t) = C3sign(x3)|x3|γ2 (4.43)

Here γi(i = 1, 2) and Ci(i = 1, 2, 3) are positive real numbers with γ1 > γ2 and 0 < γ2 <

1. Using theorem 1 following controller can be derived which will stabilize the system’s

state in a finite time

u1 = −(C2γ2)−1{(C1 + C1γ1|x1|γ1−1)(25α+ 10)(x2 − x1)} − (28− 35α)x1

+x1x3 − (29α− 1)x2 − (µ+ ρ‖s1‖β−1 + (q1‖x1‖+ q2‖x2‖+ q4)‖s‖−1)s
(4.44)

u2 = −(x1x2 −
(8 + α)

3 x3 + (µ+ ρ‖s1‖β−1 + (q3‖x3‖+ q5)‖s2‖−1)s2) (4.45)
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Parameter Value Parameter Value
β 0.5 q4 2
γ1 7/5 q5 2
γ2 3/5 λ 10

qi(i = 1, 2) 7/5 µ 4
ρ 4 α 0 ,0.8

Table 4.2: Various Parametric Values

DSMC: Using static switching surface as defined in eq. (4.34)

s1 = C1x1 + C2x2 (4.46)

s2 = C2x3 (4.47)

Corresponding dynamics surface can be developed using eq. (4.35) and with the help of

theorem 2 controller dynamics is proposed as

u1 = −(C2)−1{(Ã1+1)x1 + (Ã2+2)x2 − C2x1x3

+(µ+ ρ‖‖β−1 + ‖C2‖(q1‖x1‖+ q2‖x2‖+ q4)‖σ‖−1)σ}
(4.48)

u2 = −(x1x2 − ((8 + α)/3)x3 + (µ+ ρ‖s1‖β−1 + (q3‖x3‖+ q5)‖s2‖−1)s2) (4.49)

where Ã1 = −C1(25α+10)+C2(28−35α) , and Ã2 = C1(25α+10)+C2(29α−1) . The

different parameter values for both the control methods have been tabulated in table 1

4.5 Simulation

For simulation purposes, unified chaotic system, in previous section, has been taken with

two different values of α, α = 0 and α = 0.8 which represents generalised Lorenz system

and Lu system respectively. Initial values are selected as x1(0) = 5, x2(0) = −2, x3(0) =

−5. External disturbance and parametric uncertainties are

d1 = sin(x1), d2 = cos(x2), d3 = cos(t) and d4, d5 = 0.5sin(x1)sin(x2)sin(x3)

The switching surface parameters have been chosen as C1 = C2 = C3 = 1 for all the

cases. Other parametric values used are shown in the table 1. Figure 4.10,4.11,4.12

show the state response of generalized Lorenz system α = 0and figure 4.13, 4.14, 4.15

show the state response of Lu systemα = 0.8 when the controller is designed by using
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NFTSM, NTSM and DSMC respectively. It can be seen from the figures that system’s

states gets converged to their equilibrium values in all case. Both the methods have

been compared with NTSM methodology derived in[36] .

Figure 4.10: Converging States of Unified Chaotic System using NFTSM (α = 0)

Figure 4.11: Converging States of Unified Chaotic System Using NTSM (α = 0)
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Figure 4.12: Converging States of Unified Chaotic System Using DSMC (α = 0)

Figure 4.13: Converging States of Unified Chaotic System Using NFTSM (α = 0.8)
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Figure 4.14: Converging States of Unified Chaotic System Using NTSM (α = 0.8)

Figure 4.15: Converging States of Unified Chaotic System Using DSMC (α = 0.8)
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4.6 Analysing Result

Firstly, three different switching surfaces and their consequent effects on system output

has been observed using chaotic duffing holmes and gensio system. For both convergence

rate and better transient performance, PID and PI model sliding surface show better re-

sult and also due to integrating term present steady state accuracy is improved while PD

based surface shows oscillatory transient performance and poor steady state accuracy

if the control input is less than the number of states of the system.To further comment

on the speed of response for dynamic switching surface we have utilized non-singular

fast terminal sliding mode controller design has been utilized.A DSM as well as NFTSM

Control has been developed for a general class of chaotic system and their effectiveness

have been compared using already established result of NTSM. The controller demon-

strated forces all the state trajectories to converge to their equilibrium state even in

the presence of external disturbances and parametric uncertainties for both the system

and hence shows strong robustness. Overall the performance of NFTSM is seen much

better in terms of convergence time as well as transient performance for both the sys-

tem. DSMC on the other hand is the slowest among the three in terms of time taken to

reach equilibrium point due to its asymptotic convergence property but the choice of its

dynamic surface yields a relatively good transient performance in comparison to NTSM

method.



Chapter 5

Conclusion

In broader sense this project deals with study of dynamic sliding surface and the ad-

vantages obtained by addition of an extra dynamics to the system. Also this project

performs the study of terminal sliding mode control and its various modification namely

fast terminal sliding and non-singular fast sliding mode control and tries to draw a

comparison between controllers obtained from both.

Dynamic sliding mode control offers elimination of chattering from the system due to

its ability to work on time derivative of input signal and act as a low pass filter for the

same thus removing any high frequency component from the input. In other words this

additional dynamics work in similar ways as that of the compensator in classical control

theory and hence by changing the structure of dynamic switching surface performance

of system state responses can be changed. A smartly selected surface can yield better

transient as well as steady state performances than other. However dynamic sliding mode

doesn’t tackles the issue of asymptotic convergence and hence suffers in convergence rate

of response and this fact is evident from the comparative results drawn in chapter 4

where a non-singular fast terminal sliding mode control gives much better convergence

rate than dynamic sliding and also in terms of transient behaviour performance of both

the system is competitive. Controllers designed using both these concepts show strong

robustness towards parametric uncertainty and matched external disturbances and can

be utilized for chaos suppression in any complex non-linear system.
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