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ABSTRACT 
 
 
 

The study investigates hardware implementation of Fast Fourier Transform (FFT), 

considering hardware complexity and computational accuracy. The direct computation of 

FFT involves complex multiplications. Thus, hardware implementation of FFT results in 

high hardware complexity. This problem can be addressed by exploiting CORDIC 

(COrdinate Rotation Digital Computer) algorithm in FFT implementation. In FFT 

computation, the CORDIC algorithm is used to perform complex multiplications. This 

converts the complex multiplications into shift and adds operations which are very easy to 

implement in hardware. Hence, this approach reduces the hardware complexity of FFT 

implementation. Various CORDIC algorithms available in literature are discussed in detail. 

Two new CORDIC architectures are proposed. Both the proposed CORDIC architectures 

are suitable for pipelined implementation. The CORDIC architecture proposed in chapter 2 

uses unique angle set at each pipelined stage which results in latency of only 7 clock cycles. 

Further, suitable approximation of sine and cosine function using the terms with only 

negative power of two  2−𝑖  makes the architecture completely scaling-free. On the other 

hand, the proposed CORDIC architecture in chapter 3 has the very low latency of only 5 

clock cycles. This low latency can be achieved due to the use of efficient mixture of 

rotation angles at each pipelined stage. Additionally, the suitable use of Taylor series 

approximation of sine and cosine functions makes the architecture completely scaling-free. 

Performance of two proposed architectures is compared the other CORDIC architecture 

present in literature. These architectures are coded in VerilogHDL, synthesised in Xilinx 

ISE14.7 and mapped onto SPARTAN 3E XC3S500E-FG320-5 FPGA device. The 

comparison shows that proposed CORDIC architecture in chapter 2 has better accuracy, 

while the architecture proposed in chapter 3 has best performance in terms of slice-delay 

product. Finally, radix-2 four-point DIT-FFT is implemented in Virtex-4 XC4VLX25-

FF668 FPGA device by exploiting two proposed CORDIC architectures. The comparison 

of these two implementations is performed by considering hardware utilization and error in 

computation of FFT. The outputs of FFT implementations are analysed and verified using 

Xilinx ChipScope Pro Analyser. 
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CHAPTER-1 
 
 
 

INTRODUCTION 
 

 

1.1 Importance of FFT Algorithms and Applications 

 Among all the discrete transforms, Discrete Fourier Transform (DFT) is most widely 

used in digital signal processing. It allows representation of discrete time domain signal into 

frequency domain signal. DFT has widespread applications in spectral analysis of systems, 

LTI systems, calculation of convolution of signal, noise removal, multiplication of large 

polynomials etc. However, direct computation of N-point DFT has arithmetic complexity of 

𝑂 𝑁2 and which takes considerable time. The complexity of computation of DFT can be 

reduced by exploiting Fast Fourier Transform (FFT) algorithms. In general FFT 

implementation of N-point DFT requires  N log2 N complex arithmetic operations. Hence 

FFT algorithms have contributed to the DFT implementation by VLSI chips. 

1.2 Evolution of CORDIC algorithm and its use in FFT computation 

It is often required to calculate trigonometric functions in signal processors, robotics 

and linear systems. Computation techniques such as lookup tables (LUTs) can be used for 

calculating trigonometric functions. The LUTs are faster but requires memory for storing the 

intermediate points and has limited precision. A Coordinate Rotation Digital Computer 

(CORDIC) algorithm in [1] efficiently calculates trigonometric functions by using vector 

rotation. It decomposes the target angle into small elementary angles and rotates the input 

vector through these elementary angles. Each rotation by an elementary angle is called micro-

rotation, which consists of only shift-add operations. Hence, the CORDIC algorithm is very 

efficient method for calculation of trigonometric functions in hardware. This makes the 

CORDIC algorithm popular in areas such as computation of trigonometric functions, 

calculation of fast Fourier transform (FFT), discrete Hartley transform (DHT), discrete cosine 

transform (DCT), discrete sine transform (DST), digital signal processing (DSP), image 

processing and communication systems [2], [3], [5-9]. However, the major limitations of 

CORDIC algorithm are slow speed, scaling factor compensation and limited convergence 

range.  

Many variations to conventional CORDIC algorithm have been available in the 

literature. These variations have proceeded mainly in two directions. One of these is on high 

speed solutions [10] while the other is on carefully handling of scale factor for high precision 

implementation [12].  In [11], modified vector rotational CORDIC (MVR-CORDIC) reduces 

the latency of algorithm by repeating and/or skipping some micro-rotations. However, it 

requires extensive search to find the right sequence of micro-rotations. This result in variable 

scale factor and hence scaling factor calculation and compensation is required. Modified 

virtually scaling-free adaptive CORDIC in [12] uses 2
nd

 order Taylor Series approximation of 

sine and cosine functions but requires multiplication by constant scaling factor. Additionally, 
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because of pipelined implementation the area reduction achieved is not significant. Enhanced 

scaling-free CORDIC in [13] initially uses few conventional CORDIC iterations followed by 

scaling-free CORDIC iterations to reduce latency and area requirement as compared to [12]. 

However, scaling factor of an algorithm depends on the number of initial iterations of 

conventional CORDIC. 

The work in [14] uses 3rd order approximation of Taylor series to make CORDIC 

completely scaling free with improved speed. Reconfigurable CORDIC in [15] can be 

configured for either circular or hyperbolic trajectories in rotation as well as vectoring mode. 

But area requirement of this algorithm is more as compared to general CORDIC algorithms. 

In [16] and [17], the scale factor compensation/correction techniques are introduced however 

they increase the latency of algorithm. ACORDIC II algorithm in [4] reduces the number of 

adders and decreases the latency of a basic CORDIC algorithm. However, the output of 

CORDIC II has a constant scaling factor. Hence, scaling factor compensation is necessary. 

Also, accuracy of the algorithm is degraded because of large scaling factor of rotation stages. 

A brief overview of major developments in the CORDIC algorithms and architectures is 

presented in [19], [20].  

 The basic idea of exploiting CORDIC algorithm in FFT computation is using a 

CORDIC unit as basic processing unit (PU) which performs butterfly operation. In [22] 

CORDIC algorithm is used to make FFT architecture area efficient for OFDM Digital Video 

Broadcasting. The multimode processor in [23] uses CORDIC algorithm to improve its area 

and energy efficiency. 

1.3 Various CORDIC algorithms 

In this section, basic principles of various CORDIC algorithms existing in literature are 

discussed. 

 

1.3.1 Conventional CORDIC 

The CORDIC algorithm was first coined in 1959 by Jack Volder. CORDIC stands for 

COordinateRotation DIgitalComputer.  The CORDIC algorithm is an iterative method to 

implement various trigonometric and transcendental functions in hardware. The motive 

behind CORDIC is that each iteration of an algorithm consists of only add and shift 

operations; this reduces the cost of a hardware used to implement the corresponding function. 

CORDIC Theory:CORDIC is an algorithm for vector rotation. All the trigonometric 

function can be computed with the help of vector rotation. In Figure 2.1 it is shown that a 

vector (0, 1) is rotated through an angle θ.After rotation let the coordinates of a vector are 

(x,y). Where x = sin θandy = cos θ. Now if we again rotate a vector (x,y) though an angle Φ 

as shown in figure 2 we get new coordinates of the resultant vector, let them be (x‟,y‟). Then 

x‟ and y‟ can be calculated as 

𝑥 ′ = 𝑥 𝑐𝑜𝑠 𝜑 − 𝑦 𝑠𝑖𝑛 𝜑𝑎𝑛𝑑 

𝑦 ′ = 𝑦 𝑐𝑜𝑠 𝜑 + 𝑥 𝑠𝑖𝑛 𝜑                                                        (1.1) 
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Figure 1.1 Vector rotation through an angleθ 

This can be rearranged so that: 

𝑥 ′ = 𝑐𝑜𝑠 𝜑 𝑥 − 𝑦 𝑡𝑎𝑛 𝜑                                                   (1.2) 

𝑦 ′ = 𝑐𝑜𝑠 𝜑 𝑦 + 𝑥 𝑡𝑎𝑛𝜑                                                   (1.3) 

Now, what if we restrict the angle of rotation such that tan 𝜑 = ±2−𝑖? Surprisingly this 

reduces the multiplication by the tangent term to simple shift operation. Hence by performing 

series of such elementary angle rotations we can obtain a rotation by arbitrary angles. Now 

there is still cos𝜑term left to deal with. If in each rotation, i,we take a decision as which 

direction to rotate instead of whether to rotate or not the cos 𝜑  term becomes constant 

becausecos 𝜑 = cos −𝜑 . Hence the above equations become 

 

𝑥𝑖+1 = 𝐾𝑖 𝑥𝑖 − 𝑦𝑖𝑑𝑖2
−𝑖  

 

𝑦𝑖+1 = 𝐾𝑖 𝑦𝑖 + 𝑥𝑖𝑑𝑖2
−𝑖                                               (1.4) 

 

Where 𝐾𝑖 = cos tan−1 2−𝑖 = 1
 1 + 2−2𝑖      𝑎𝑛𝑑    𝑑𝑖 = ±1 

Removing the scale constant from the above iterative equations results in shift-add algorithm 

for vector rotation. Then each elementary rotation can be called Pseudo Rotation as shown in 

Figure 1.2. The product of all Ki‟s can be applied elsewhere in the system or can be treated as 

processing gain of an algorithm. For infinite iterations the product approaches a constant 

value of 0.6073 and hence the algorithm has processing gain of1 0.6073 = 1.647. However 

this gain value depends on number on iterations, and is given as 

𝐴𝑛 =   1 + 2−2𝑖
𝑛                                                 (1.5) 



sin( )

cos( )
X 

Y 
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Figure 1.2 Pseudo rotation 

The composite angle of all iterations depends on the sequence of directions of elementary 

rotations. We define a vector such that it accumulates the elementary rotation angles at each 

iteration. This adds a third equation to the CORDIC algorithm 

𝑍𝑖+1 = 𝑍𝑖 − 𝑑𝑖 tan 2−𝑖                                            (1.6) 

Here the elementary rotation angles can be represented in any angular unit. 

Modes of CORDIC Rotation:There are two modes defined for CORDIC rotator. First mode 

is a rotation mode which rotates an input vector by a given angle. The vector mode rotates the 

input vector to the X-axis and returns the angle required to make that rotation. 

1) Rotation Mode: In rotation mode the angle accumulator is initialized with the desired 

rotation angle. Then decision at each iteration is taken such that magnitude of a residual angle 

reduces after each iteration. The decision depends on the sign of a residual angle. The 

CORDIC equations in rotation mode are 

𝑋𝑖+1 = 𝑋𝑖 − 𝑌𝑖𝑑𝑖2
−𝑖  

𝑌𝑖+1 = 𝑌𝑖 + 𝑋𝑖𝑑𝑖2
−𝑖  

𝑍𝑖+1 = 𝑍𝑖 − 𝑑𝑖 tan 2−𝑖                                              (1.7) 

Where 𝑑𝑖 =   
−1     𝑖𝑓 𝑍𝑖 < 0

+1       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

After n number of iterations results are obtained 

𝑋𝑛 = 𝐴𝑛  𝑋0 cos 𝑍0 − 𝑌0 sin 𝑍0  

𝑌𝑛 = 𝐴𝑛  𝑌0 cos 𝑍0 + 𝑋0 sin 𝑍0  

𝑍𝑛 = 0 

𝐴𝑛 =   1 + 2−2𝑖
𝑛                                                      (1.8) 

 

2) Vector Mode: In vector mode the input vector is rotated through an angle such that it gets 

aligned with the X-axis. The result of vector rotation is a scaled magnitude of input vector 

and the angle required to align the input vector with X-axis. Decision at each iteration is 

taken such that Y component of a vector reduces in magnitude after each iteration. Hence the 

sign of a residual Y component is used to decide the direction of rotation. If the angle 
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accumulator is initialized with zero then it contains value of rotated angle, at the end of all 

iterations. In vectoring mode CORDIC equations are 

𝑋𝑖+1 = 𝑋𝑖 − 𝑌𝑖𝑑𝑖2
−𝑖  

𝑌𝑖+1 = 𝑌𝑖 + 𝑋𝑖𝑑𝑖2
−𝑖  

𝑍𝑖+1 = 𝑍𝑖 − 𝑑𝑖 tan 2−𝑖                                              (1.9) 

Where 𝑑𝑖 =  
+1 𝑖𝑓 𝑌𝑖 < 0
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

The results after n iterations are 

𝑋𝑛 = 𝐴𝑛 𝑋0
2 + 𝑌0

2 

𝑌𝑛 = 0 

𝑍𝑛 = 𝑍0 + tan−1  
𝑌0

𝑋0
   

𝐴𝑛 =   1 + 2−2𝑖
𝑛                                                      (1.10) 

 

The range of convergence of CORDIC algorithm for both rotation and vector mode 

is −𝜋
2  𝑡𝑜 +𝜋

2  . This is calculated by summation of all elementary angles of each 

rotation. For the angles outside this range trigonometric identities are used to convert the 

range. 

The CORDIC rotator described above can compute several trigonometric functions 

directly and others indirectly. By selecting initial values and mode it is possible to directly 

calculate sine, cosine, arctangent, vector magnitude and transformation between polar and 

Cartesian coordinates. 

 

1.3.2 Scaling-free CORDIC 

If the Taylor series approximation to sine and cosine function is used then processing 

gain of CORDIC can be eliminated completely. Assuming elementary angle of rotation 𝛼𝑖 is 

sufficiently small such that sin 𝛼𝑖 ≅ 2−𝑖andcos 𝛼𝑖 = 1 −
𝛼𝑖

2

2!
 = 1 − 2− 2𝑖+1 . But the 

2
nd

 order approximation used imposes a restriction on the maximum elementary angle of 

rotation that can be used in CORDIC iteration. In second order approximation the largest 

term among the ignored terms is 

   2

3
3

3 log 6
2

2
3! 3!

i

ii


 
                                                (1.11) 
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The multiplication of 
3

3!
i  with any quantity has no effect if 3𝑖 + log2 6 ≥ 𝑏.Where b is 

word length. This constraint gives the minimum value of „i‟ that can be used in scale-free 

CORDIC rotator, and is 

2log 6

3

b
i


 Where i takes only integer values 

In practice lower bound of i can be relaxed slightly and is given as: 

2.585
1

3

b
i b

 
   

 
                                                     (1.12) 

In scaling-free algorithm the target angle is achieved pure summation of each elementary 

angle. This means vector is rotated in only one direction, hence di=+1 for all iterations. 

Assuming clockwise vector rotation, CORDIC equations in matrix form can be written as: 

 

 

2 1

1

2 1
1

1

1 2 2

2 1 2

2

i i

i i

ii
i i

i

i i

X X

Y Y

Z Z

  



 






    
     

     

 

                                       (1.13) 

The drawback of this method is that range of convergence is very small. This is because the 

restriction imposed by tailor series approximation on maximum elementary angle value. 

However this algorithm provides completely scaling free output for any number of iterations.  

1.3.3 Modified virtual scaling-free adaptive CORDIC rotator algorithm and 

architecture 

The problem of range of convergence in scaling free CORDIC can solved in two 

steps: 1) Use of argument reduction technique to reduce the total angular range to be 

computed. 2) Carry out elementary rotations such the rate of convergence is enhanced and 

angle approximation error is reduced below a predefined limit. The main objective of an 

argument reduction technique is to map the results of a vector rotation by a large target angle 

θ to the results of vector rotation by a small target angle ∅. This can be achieved by dividing 

four quadrants of coordinate system into 16 equal domains each spans over an angle of π/8. 

Any input target angle lies in one of these 16 domains. To examine CORDIC rotator we first 

consider input target angle θ which lies in one of the domains of first quadrant. Domains in 

first quadrant are defined as shown in Figure 1.3 i.e. A ([0, π/8)), B ([π/8, π/4)), C ([π/4,3π/8)) 

and D ([3π/8,π/2)). In each domain angle θ is redefined in terms of an angle ∅ which bounded 

in interval [0, π/8], and is given as in Equation 1.14. For input vector [X Y]
 T

 CORDIC 

rotator is defined as in Equation 1.15 and Equation 1.16.  

Using Equation 1.15 and Equation 1.16  it is possible to rotate a vector through a 

target angle lying in any domain in first quadrant with the help of CORDIC rotation through 

an angle ∅[0, π/8]. This is called Domain Folding since domain B,C and D are essentially 

folded back to domain A. For the target angle lying in domain B and C a multiplication by 
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1/√2 is required while for target angles in domain D multiplication is not required, hence the 

name Virtually Scaling Free. For the input target angles lying in other quadrants the domain 

folding technique can be extended by exploiting the symmetry of coordinate axes. This is 

given in Table 1.1  

 

Figure 1.3 Different domains and definition of target angle ∅ 

,

,
4

,
4

,
2

in domain A

in domain B

in domainC

in domain D

 


 


 


 



 

 

 

                                        (1.14) 

 

   

   

   

   

cos sin
,

sin cos

cos sin cos sin1
,

cos sin cos sin2

cos sin cos sin1
,

cos sin cos sin2

A

A

B

B

C

C

X X
in domain A

Y Y

X X
in domain B

Y Y

X X
in dom

Y Y

 

 

   

   

   

   

     
     

    

     
     

        

     
     

        

sin cos
,

cos sin

D

D

ainC

X X
in domain D

Y Y

 

 

     
     

    

          (1.15) 
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   

   
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                      (1.16) 

Table 1.1 Result of CORDIC rotations for different quadrants using domain folding 

technique 

Range of target angle X1 Y1 

[0, 𝛑/8) XA YA 

[𝛑/8, 𝛑/4) XB YB 

[𝛑/4, 3𝛑/8) XC YC 

[3𝛑/8, 𝛑/2) XD YD 

[𝛑/2, 5𝛑/8) YA -XA 

[5𝛑/8, 3𝛑/4) YB - XB 

[3𝛑/4, 7𝛑/8) YC - XC 

[7𝛑/8, 𝛑) YD -XD 

[𝛑, 9𝛑/8) -YA XA 

[9𝛑/8, 5𝛑/4) -XB -YB 

[5𝛑/4, 11𝛑/8) - XC - YC 

[11𝛑/8, 3𝛑/2) YD -XD 

[3𝛑/2, 13𝛑/8) XA YA 

[13𝛑/8, 7𝛑/4) - YB XB 

[7𝛑/4, 15𝛑/8) -YC XC 

[15𝛑/8, 2𝛑) XD -YD 

 

With the help of domain folding technique it is sufficient to consider angle of rotation in 

range [0, π/8] for CORDIC rotation. But this range lies beyond the range of convergence of 

scaling free CORDIC rotator. The range of convergence of CORDIC rotator is increased by 

adaptively selecting the iteration index i for each iteration and this depends on the residual 

angle still to be computed. Hence by repeating some initial iterations the ROC of [0, π/8] can 

be achieved. Repeating of some elementary rotation steps does not add any scaling to rotator 

output. 

1.3.4 Enhanced Scaling-Free CORDIC  

This algorithm provides some modifications in scaling free CORDIC kernel to 

enhance the performance. These modifications are 1) Use of radix-4 Booth recording 

algorithm to reduce the number of iterations which leads to reduced pipelined stages. 2) 

Elimination of domain folding technique.Radix-4 booth recoding is used for Z data path 

(angle). The use of radix-4 booth recoding ensures that for every two consecutive bits of 

recoded angle only one bit can be set to 1 as much. This reduces the maximum possible 
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number of iterations to N/2 for N-bit input angle. The objective of domain folding 

elimination is to reduce the complexity of preprocessing unit. This is achieved by increasing 

the RoC to [-π/2, π/2] by using first four conventional CORDIC iterations. However 

introduction of conventional CORDIC iterations leads to use of Z datapath and a constant 

scale factor. The use of Z datapath can be avoided using scaling free kernel. 

 

1.3.5 CORDIC II Algorithm 

CORDIC II algorithm uses completely different set of elementary angles than that of 

conventional CORDIC. This set consist of three types of angles 1) Friend Angles 2) 

Uniformly-Scaled Redundant CORDIC 3) Nano-Rotations. 

1) Friend Angles: 

 This is the set of all angles having same magnitude. Let the set of angles be i  for which 

there exists set of coefficients  𝑃𝑖 = 𝐶𝑖 + 𝑗𝑆𝑖such that 𝛼𝑖 = tan 𝑆𝑖 𝐶𝑖  . Then all angles i  are 

Friend angles if all have same magnitude i.e. ∀ 𝑖, 𝑗,  𝑃𝑖 =  𝑃𝑗  . Figure 2.4 show the example 

of friend angles. The angles 1 28.13 45and    𝛼1 = 8.13° 𝑎𝑛𝑑 𝛼2 = 45°have coefficient 

 𝑃1 = 7 + 𝑗 𝑎𝑛𝑑  𝑃2 = 5 + 𝑗5respectively. Their magnitude is 𝑃1 =  𝑃2 =  50. In general 

any angle  is friend to itself and also to –𝛼 + 𝑛𝜋 2 𝑎𝑛𝑑 𝛼 + 𝑛𝜋 2 for any value of n. 

 
Figure 1.4 Example of friend angles 

2) Uniformly-Scaled Redundant (USR) CORDIC 

USR CORDIC uses the same rotation angles as the redundant CORDIC, but all the 

angles have similar scaling. The coefficients for the USR CORDIC are: 
2 1

0

2 1

1

2 1

2 2

k

k k

P

P j





 

 
                                                           (1.17) 

 

 

Figure 1.5 USR CORDIC: graphical representation of coefficients 
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Figure 1.5shows the graphical representation. It is clear that magnitude of both vectors P0 and 

P1 is almost same. Both magnitudes can be related as 
2 2

10 1.P P   Angles of the USR 

CORDIC are:     1 2 1 1 1

0 10 tan 2 2 tan 2k k kand          

3) Nano-Rotations 

This is a set of angles with the coefficients kP C jk  such that k=0,1,…,N and C is 

constant. This corresponds to a set of angles  1tank k C  . Here N is assumed to be much 

smaller than C. This leads to angle k  to be very small and hence  1tank k  is satisfied. 

Since N≪C the magnitude of all the coefficients is almost same. Figure 2.6shows the kernel 

to calculate nano-rotations.  

 

Figure 1.6 Kernel to calculate nano-rotations 

The CORDIC II algorithm consists of several stages connected in series. Where each rotation 

stage has input range [-αin, αin] and output range [-αout, αout].In general rotation stage can have 

any number of rotation angles N. Each input is rotated through one of these N angles. The 

output angle of a rotation stage is given by: 

 

   

max 1,....., 2

max 1,....., 1 2

out i
i

out i
i

i N if N is even

i N if N is odd

 

 

 

  
                              (1.18) 

 

Figure 1.7 Rotation of N-rotator (a) N=4(even) (b) N=5(odd) 
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Figure 1.8 CORDIC II Architecture 

Figure 1.7 shows both the cases when N is even and N is odd. Figure 2.8 shows the 

architecture of CORDIC II algorithm. This consists of six iteration stages connected in series. 

Input angle to the rotator can be in the range [0, 360]. At first stage a trivial rotations by 

±180° and ±90° are performed so that the residual angle at the output of the first stage is 

±45°. In 2
nd

 stage rotation through any one of the angles from the set of friend angles is done. 

This stage has a kernel [25, 24+j7, 20+j15], which corresponds to angles 0°, 16.26° and 

36.87° respectively. Scale factor for all the coefficients is 25.The maximum residual angle at 

the output of second stage is ±10.305°. The third stage uses USR CORDIC and uses a kernel 

[129, 128+j16]. The maximum residual angle after 3
rd

 stage is ±3.563°. The 4
th

 and 5
th

 stage 

uses conventional CORDIC rotation by 1.79° and 0.895° respectively. The 6
th

 stage uses 

nano-rotations. The kernel for this stage is 512 , 0,......,8kP jk k    which leads to rotation 

angles of *0.112k k  
. The remaining angle at the end of 6

th
 stage is ±0.056°. 
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CHAPTER 2 

A NEW SCALING FREE CORDIC ARCHITECTURE 

 

2.1 Introduction 

In this chapter, a new CORDIC architecture is proposed which is completely scaling 

free. Limitations of existing virtually scaling free algorithms [12] and CORDIC II algorithm 

[4] are discussed. The proposed architecture is coded in VerilogHDL, synthesised in Xilinx 

ISE14.7 and mapped onto Xilinx SPARTAN 3E XC3S500E-FG320-5 FPGA device. The 

hardware implementation results of the proposed CORDIC architecture are discussed in later 

part on this chapter. 

Existing virtually scaling free algorithm [12] reduces the average number of iterations 

to 50% compared to conventional CORDIC iterations. Additionally, the output of this 

algorithm is virtually scaling free meaning that for some input angles (angles lying in 

particular domain) the result requires to be scaled down. Hence, algorithm requires a scaling 

unit which further increases the hardware cost during implementation. However, the average 

error in computation of sine and cosine functions is more than conventional CORDIC. 

Further, pipelined implementation of this algorithm [12] has large number of (14) pipelined 

stages which results in output latency of 14 clock cycles and large hardware cost.  

The CORDIC II algorithm [4] overcomes the limitations of scaling free algorithm to 

some extend but it has its own limitations. The CORDIC II algorithm in [4] has low hardware 

cost as compared to virtually scaling free algorithm[12] when implemented onto FPGA 

board. Additionally, CORDIC II algorithm [4] has latency of only 6 clock cycles. However, 

CORDIC II [4] has very poor accuracy in sine and cosine function computation.  

2.2 Proposed CORDIC Architecture 

In literature, many algorithms [12-15] use the Taylor series approximation of sine and 

cosine functions for making CORDIC implementation completely or virtually scaling free. 

The use of Taylor series approximation puts limit on the maximum elementary angle (basic 

shift) that can be used in CORDIC algorithm. The CORDIC algorithm in [12] [13] uses 2
nd

 

order Taylor series approximation while algorithms in [14] [15] uses 3
rd

 order Taylor series 

approximation of sine and cosine functions. But, for 2
nd

 and 3
rd

 order Taylor series 

approximation, the maximum allowable elementary angle is 3.581° and 14.32° respectively. 

Hence, with such small angles, the convergence to target angle lying in range of 0° to ± 360°, 

requires large number of iterations in case of iterative CORDIC algorithm[12] [14], and large 

number of rotation stages in case of pipelined CORDIC algorithm[12] [15]. This problem can 

be addressed by introducing few large angles in the set of elementary angles. To implement 

such approach, we approximate sine and cosine values of corresponding angle with only 

negative powers of two as shown in Table 2.1 and this approximation is used in basic 
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equations of CORDIC algorithm. This results in rotation of input vector through the 

corresponding angle without any scale factor. The advantage of this approach is that it is 

possible to rotate input vector through a particular angle using only shift and add operation 

hence the simplicity of conventional CORDIC algorithm is still maintained. Moreover, there 

is no restriction on the angle that can be used for vector rotation. 

The proposed CORDIC architecture is suited for pipelined implementation. The 

architecture of the proposed CORDIC is shown in Figure2.1. The architecture has seven 

pipelined stages. Each pipelined stage in the architecture has three inputs (Xi, Yi, and Zi) and 

three outputs (Xi+1, Yi+1 and Zi+1). The X and Y datapaths corresponds to x and y coordinates 

of input vector to the pipelined stages respectively while the Z datapath represents the 

remaining angle of vector rotation. Each rotation stage has a fixed set of elementary angles. 

From the set of elementary angle, one angle is chosen based on the input angle to that rotation 

stage and input vector is rotated through the chosen angle. Table 2.1 summarises the angle set 

and sine and cosine function approximation used for each pipelined stage. As shown in Table 

2.1 since each rotation stage uses sine and cosine approximation for only one angle the 

shifters for each stage become simple wire connections reducing the hardware cost of 

proposed architecture. Further the proposed architecture does not have any scaling factor at 

the output since each stage in the architecture is completely scaling free. Hence proposed 

architecture is completely scaling free.  

 

Figure 2.1 Architecture of the proposed CORDIC 

Table 2.1 Summary of rotation stages of proposed architecture. 

Stage Angle Set SINE and COSINE function 

approximation used 

% Error in 

approximation 

Maximum 

Remaining 

Angle 

1 0°, ±90°, 

±180° 

- - ±45° 

2 0°, ±30° sin 30° ≅ 2−1 

cos 30° ≅ 20 − 2−3 − 2−7 − 2−10  

0 

0.021 

±15° 

3 0°, ±10° sin 10° ≅ 2−3 + 2−4 − 2−6 + 2−9 

cos 10° ≅ 20 − 2−6 + 2−11  

0.104 

5.64×10
-3

 

±5° 

4 0°, ±3.33° sin 3.33° ≅ 2−4 − 2−8 − 2−11  

cos 3.33° ≅ 20 − 2−9 + 2−12  

0.032 

0.022 

±1.67° 

5 0°, ±1.11° sin 1.11° ≅ 2−6 + 2−8 − 2−13  

cos 1.11° ≅ 20 − 2−13 − 2−14  

0.092 

4.93×10
-4

 

±0.55° 

6 0°, ±0.37° sin 0.37° ≅ 2−7 − 2−10 − 2−11  

cos 0.37° ≅ 20 

1.802 

2.01×10
-3

 

±0.185° 

7 0°, ±0.11° - - ±0.06° 

 

 45º

90º

0º180º

-90º

30º

0º

10º

0º
 15º  5º  0.55º

Stage 1 Stage 2 Stage 3

-30º -10º

3.33º

0º  1.67º

Stage 4

-3.33º

1.11º

0º

Stage 5

-1.11º

 0.185º

0.37º

0º

Stage 6

-0.37º

 0.06º

0.11º

0º

Stage 7

-0.11º
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The detailed description of each rotation stage is as follow: 

Stage 1: Stage 1 is the first pipelined stage of proposed CORDIC architecture. The stage 1 

has the elementary angle set as {-180°,-90°, 0°, +90°, +180°}. This stage rotates the input 

vector though any one angle from this set. The advantage of such rotation is that it does not 

require any shifting operation; instead only negation and addition/subtraction operations are 

required. Hence, approximation of sine and cosine functions is not required in stage 1 of 

CORDIC rotation. The rotation angle is selected based on the value of input angle to this 

rotation stage such that output angle of stage 1 is minimized. The input angle to stage 1 is in 

the range of 0° to ±360°. The maximum output angle of this stage is ±45°.  

Stage 2: As output of the stage 1 is fed to stage 2, the input angle range for the stage 2 is 

±45°. The elementary angle set for this rotation stage is {-30°, 0°, +30°}. Hence when the 

input angle to this stage is greater than +15° or less than -15° then input vector is rotated 

through +30° or-30° respectively, otherwise input vector is not rotated and passed to the next 

stage as it is. This results in the maximum output angle of ±15° at the output of stage 2. The 

sine and cosine function for angle 30° are approximated as shown in Table 2.1. In sine 

function approximation for 30° only one term with negative power of two  2−𝑖  is used while 

cosine function is approximated with the help of four terms with negative power of two 

 2−𝑖 . As shown in Table 2.1 the percentage error in approximation of sine and cosine 

function for 30° angle is 0 and 0.021 respectively. Putting these approximated sine and cosine 

functions in equation 1.1 results in vector rotation by ±30°.The hardware for the vector 

rotation through ±30° for X and Y datapath is shown in Figure 2.2 (a) and Figure 2.2 (b) 

respectively. As stated earlier, as shifting value for each shifter is fixed they become simple 

wire connection. Hence, no shifters are required in this vector rotation. The advantage of 

using such method for rotation results in completely scaling free output, hence scaling factor 

compensation circuitry is not required in the proposed architecture. 

 

Figure 2.2 Hardware for vector rotation through ±30° (a) for X datapath (b) for Y datapath 
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Figure 2.3 Hardware for vector rotation through ±10° (a) for X datapath (b) for Y datapath 

Stage 3: The elementary angle set for stage 3 is {+10°, 0°,-10°}. The sine and cosine 

function values for an angle 10° are approximated as shown in Table 2.1. The percentage 

error in this approximation of sine and cosine functions is 0.104 and 5.64 ×10
-3

 respectively. 

Even though percentage error in sine function approximation is more as compared to that of 

cosine function it does not introduce significant error in the output of CORDIC algorithm. 

This is because for smaller angle values (10°) sine function has small value hence the 

magnitude of the error is also small. The hardware required for vector rotation through ±10° 

for X and Y datapath is as shown in Figure 2.3 (a) and Figure 2.3 (b) respectively. Depending 

on the value of the input angle any one from the elementary angle set is chosen and input 

vector is rotated through this angle. The rotation angle is chosen such that output angle of 

stage 3 is minimized. The maximum output angle of this stage is ±5° which is given as input 

angle to stage 4. 

 

Figure 2.4 Hardware for vector rotation through ±3.33° (a) for X datapath (b) for Y datapath 

Stage 4: Stage 4 has elementary angle set as {+3.33°, 0°,-3.33°}. Sine and cosine functions 

for angle 3.33° are approximated as shown in Table 2.1. The percentage error in 
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approximating sine and cosine functions for angle 3.33° is only 0.032% and 0.022% 

respectively. This is very small error. The input angle to stage 4 lies in the range 0 to ±5°. 

The rotation angle is selected depending value of the input angle to stage 4. Upon selection of 

rotation angle the input vector is rotated through selected angle. The maximum output angle 

of this stage is ±1.67° which is given as input angle to stage 5. The hardware for vector 

rotation through ±3.33° for X and Y datapath is as shown in Figure 2.4 (a) and Figure 2.4 (b) 

respectively. 

Stage 5: For stage 5, ±1.11 ° angles are used along with 0° as elementary angle of rotation. 

When magnitude of input angle to this stage is less than or equal to +0.55° the input vector to 

this stage is rotated through 0°, in other words input vector is passed to next stage without 

any rotation. Otherwise input vector is rotated through ±1.11 ° depending on the sign of input 

angle to this stage. The sine and cosine functions for angle 1.11° are approximated as shown 

in Table 2.1.The percentage errors in approximating sine and cosine functions for angle 

3.33°are only 0.092 % and 4.93×10
-4 % 

respectively. The sine function approximation has 

three „power of two‟ terms on RHS of approximation equation in Table 2.1 while in case of 

cosine function approximation only two „power of two‟ terms are used on RHS. The 

hardware for vector rotation through ±1.11° for X and Y datapath is as shown in Figure 2.5 

(a) and Figure 2.5 (b) respectively. The maximum output angle of this stage is ±0.55°. 

 

Figure 2.5 Hardware for vector rotation through ±1.33° (a) for X datapath (b) for Y datapath 

Stage 6: Stage 6 has elementary angle set as {+0.37°, 0°,-0.37°}. The sine and cosine 

functions for angle 0.37° are approximated using „power of two‟ terms as shown in Table 2.1. 

The percentage error in approximating sine and cosine functions for angle 3.33° is 1.802 % 

and 2.01×10
-3 

% respectively. As shown in Table 2.1, the sine function is approximated by 

using three „power of two‟ terms while the cosine function is approximated by using only one 

„power of two‟. The maximum output angle of this stage is ±0.185° which is given as input 

angle to stage 7.The hardware for vector rotation through ±1.11° for X and Y datapath is as 

shown in Figure 2.6 (a) and Figure 2.6 (b) respectively. 
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Figure 2.6 Hardware for vector rotation through ±0.37° (a) for X datapath (b) for Y datapath 

Stage 7: Stage 7 employs an elementary angle from the set of conventional CORDIC along 

with the angle 0°. The elementary angle set is {+0.112°, 0°,-0.112°}. For implementation of 

this rotation stage conventional CORDIC equation with the shift value of 9 is used as shown 

in Equation 2.1. As the shift value is fixed, the shifting operation can be implemented using 

only hardwired connections and hence no actual shifter hardware is required. The input 

vector to this rotation stage is rotated through any one angle from the elementary angle set 

and the selection of this angle depends on the value of the input angle to this stage. The 

maximum output angle of this stage is ±0.06°. As the large shift index value (9) is used for 

vector rotation in stage 7, the output of stage 7 has scaling factor of approximately one. Since 

the maximum output angle of stage7 is ±0.06° the maximum residual angle of this algorithm 

is ±0.06°. 

Xi+1 = 𝑋𝑖 ∓ 𝑌𝑖 2−9  

Yi+1 = 𝑌𝑖 ±  𝑋𝑖 2−9                                                   (2.1) 

 

2.3 Hardware Implementation Results 

The proposed architecture along with modified virtually scaling free CORDIC 

algorithm [12], CORDIC II algorithm [4] are coded in VerilogHDL, synthesised in Xilinx 

ISE 14.7 and mapped onto XC3S500E-FG320-5 FPGA device which is from SPARTAN 3E 

device family. The XC3S500E device has a total of 4656 slices, 9312 four-input LUTs and 

9312 slice flip-flops (FFs). The proposed architecture is compared with other CORDIC 

architectures. This comparison is done by considering hardware requirement of architectures, 

maximum frequency of operation, latency, slice-delay product and accuracy. Table 2.2 shows 

the comparison of CORDIC algorithms in terms of hardware cost, latency, maximum 
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frequency of operation and slice-delay product, whereas in Table 2.3 error performance of 

CORDIC algorithms is compared. The hardware requirement of CORDIC architectures when 

mapped onto XC3S500E device is calculated in terms of number of slices, slice FFs and four-

input LUTs occupied by architecture. The proposed architecture occupies total 900 slices 

(19% of total number of slices available), 1612 four-input LUTs (17% of total number of 

LUTs available) and 544 slice flip-flops (5% of total number of slice flip-flops available). 

Hence, it is clear from the Table 2.2 that proposed architecture occupies less hardware as 

compared to modified virtually scaling free CORDIC [12] when implemented on FPGA. 

Further, slice-delay product of proposed architecture is lesser than modified virtually scaling 

free CORDIC [12] but more than that of CORDIC II algorithm [4]. However the error 

performance of proposed architecture is much better than the CORDIC II algorithm [4] as 

shown in Table 2.3. The proposed architecture has latency of 7 clock cycles as compared to 

that of 6 and 16 in CORDIC II [4] and modified virtually scaling free CORDIC [12] 

respectively. 

Table 2.2: Comparison of hardware cost of CORDIC architectures 

Algorithm Slice 

(A) 

LUTs  Slice 

FFs 

Max. Freq 

MHz (B) 

Latency 

(C) 

Slice-Delay 

Product 

(A*C/B) 

CORDIC II [4] 597 1078 468 85.85 7 48.58 

MVSFA CORDIC [12] 1174 2144 722 68.85 14 238.71 

Proposed CORDIC 900 1612 544 63.59 7 99.07 

 

The error performance is calculated in terms of Bit Error Position (BEP) which tells 

the position of error measured from the most significant bit (MSB). For example, BEP of 12 

means that bit error occurs on the 12
th

 bit from the MSB. Hence, for better error performance 

BEP should be as large as possible. In other words the error should lie as far as possible from 

the MSB since as we go away from the MSB by one bit position the weight of a bit gets 

halved. 

Table 2.3 Comparison of error performance of CORDIC architectures 

Algorithm Max. Error (BEP) Avg. Error (BEP) 

SINE COSINE SINE COSINE 

CORDIC II [4] 6.01 5.98 6.78 6.71 

MVSFA CORDIC [12] 10.97 10.97 12.60 12.57 

Proposed CORDIC 9.28 9.30 12.27 12.07 

 

The error performance shown in Table 2.3 is computed in terms of maximum and 

average bit error positions for sine and cosine function computation using different CORDIC 

architectures. When CORDIC rotator is used in rotation mode and initial values of X and Y 

datapaths are 1 and 0 respectively, the outputs of the CORDIC rotator are nothing but sine (Y 

datapath) and cosine (X datapath) values of the input angle (initial value of Z datapath). The 

error in computation of sine and cosine values for different input angles is calculated by 



 

19 
 

comparing the results of the CORDIC architecture to the actual values of sine and cosine 

functions from MATLAB. The error for different input angles using proposed architecture is 

plotted in Figure 2.7 and Figure 2.8 for sine and cosine functions respectively. 

 

Figure 2.7 BEP in computation of SINE values of input angles 

 

Figure 2.8 BEP in computation of COSINE values of input angles 

 In case of proposed architecture, for the sine and cosine function computation 

maximum error occurs at 9.28th and 9.30
th

bit position from MSB respectively. Also the 

average error for sine and cosine function computation occurs at 12.27
th

 and 12.07
th

 bit 

position from MSB respectively. Hence, maximum error performance of modified virtually 

scaling free CORDIC [12] is better than that of proposed CORDIC by only one bit position. 

However, the average error of both the architectures for sine and cosine computation is 

almost same. Further, in case of proposed CORDIC architecture maximum error and average 

error is improved by three and six bit positions respectively as compared to the error 
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performance of CORDIC II algorithm [4]. Hence, proposed architecture is most efficient 

when both hardware requirement and error performance are taken into account. 

2.4 Summary 

In this chapter, a new CORDIC architecture is proposed and discussed in detail. The 

proposed architecture uses a unique angle set at each pipelines stage to reduce the latency of 

architecture. Further, suitable approximation of sine and cosine function using the terms with 

only negative power of two  2−𝑖  makes the architecture completely scaling-free. The 

proposed architecture along with other architectures is coded in VerilogHDL, synthesised in 

Xilinx ISE14.7 and mapped onto XC3S500E-FG320-5 FPGA device which is from 

SPARTAN 3E device family. The performance of architecture is calculated in terms of 

hardware requirement, maximum frequency of operation, latency, slice-delay product and bit 

error position. This algorithm is more accurate as compared to CORDIC II [4] and requires 

less hardware as compared to modified virtually scaling free CORDIC [12]. Hence, proposed 

architecture is most efficient when both hardware requirement and error performance are 

taken into account. 
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CHAPTER 3 

LOW LATENCY SCALING FREE PIPELINED CORDIC 

ARCHITECTURE 

 

3.1 Introduction 

In this chapter, a new CORDIC architecture is proposed which has very low latency 

in pipelined implementation. In literature, only Hybrid CORDIC algorithm [21] has less 

latency than the proposed architecture. However, Hybrid CORDIC algorithm [21] requires 

more calculations at each iteration and produces variable scaling factor. The outputs of the 

proposed CORDIC architecture do not have any scaling factor. Hence, the proposed 

architecture is completely scaling free. Because of the scaling free nature of proposed 

architecture scaling factor calculation and compensation circuitry is not required for its 

hardware implementation. The proposed architecture is coded in VerilogHDL and 

synthesised in Xilinx ISE14.7. Further it is mapped onto XC3S500E-FG320-5 Xilinx FPGA 

device which is from SPARTAN-3E device family. The hardware implementation results of 

this architecture are presented in tabular form and compared with the implementation results 

of some of the other pipelined architectures present in the literature. The hardware 

implementation results provide information about hardware requirement, maximum 

frequency of operation, latency, slice-delay product and accuracy of the architecture. 

3.2 Proposed Architecture 

The proposed CORDIC architecture is well suited for pipelined implementation with 

only 5 pipelined stages whereas CORDIC II [4] and modified virtually scaling free CORDIC 

[12] has 6 and 14 pipelined stages respectively. The architecture of the proposed CORDIC 

architecture is shown in Figure 3.1. Since the architecture has five pipelined stages, for each 

input the corresponding output is available after five clock cycles, hence the architecture has 

latency of only five clock cycles. Each pipelined stage in the architecture has three inputs (Xi, 

Yi, and Zi) and three outputs (Xi+1, Yi+1 and Zi+1). The X and Y datapaths corresponds to x and 

y coordinates of input vector to the pipelined stages respectively while the Z datapath 

represents the remaining angle of vector rotation. There is a fixed set of rotation angles for 

each pipelined stage in the architecture and depending on the value of the input remaining 

angle to the pipelined stage only one angle from this set is selected for vector rotation. The 

angle of rotation in each pipelined stage is selected such that at the output of each pipelined 

stage the remaining rotation angle has minimum value.  

The modified virtually scaling free algorithm in [12] uses 2
nd

 order Taylor series 

approximation of sine and cosine functions for vector rotation. This results in maximum 

angle of rotation for a pipelined stage to only 3.58°. Hence, multiple rotations of 3.58° are 

required depending on the value of input angle. This results in more hardware and increased 

latency of the implementation. This issue can be addressed by using larger rotation angles for  
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Figure 3.1 Architecture of proposed architecture. 

initial pipelined stages. The higher order Taylor series approximation allows using large 

angles for vector rotation. Hence, the 4
th

 and 3
rd

 order Taylor series approximations of sine 

and cosine functions are also exploited in the proposed architecture. For the rotation angle of 

 2−𝑖 , the 4
th

 and 3
rd

 order Taylor series approximations are shown in Equation 3.1 and 

Equation 3.2 respectively for sine and cosine functions. Here „i‟ is the shift index. 

sin 2−𝑖 ≅ 2−𝑖 − 2− 3𝑖+3                                         (3.1 a) 

cos 2−𝑖 ≅ 1 − 2− 2𝑖+1 + 2− 4𝑖+5 + 2− 4𝑖+7 + 2− 4𝑖+8                  (3.1 b) 

sin 2−𝑖 ≅ 2−𝑖 − 2− 3𝑖+3                                         (3.2 a) 

cos 2−𝑖 ≅ 1 − 2− 2𝑖+1                                         (3.2 b) 

However, as in equation 3.1(a) 4
th

 order Taylor series approximation of sine function 

involves only two terms. Hence, the accuracy of sine values for larger input angles degrades. 

As a result we add few more terms to the right hand side (RHS) of the equation 3.1(a) to 

improve the accuracy of the approximation. Similarly, to improve the accuracy of 3
rd

 order 

Taylor series approximation of sine function one term on the RHS of the equation 3.2(a) is 

added.  As shown in Figure 3.1 stage 2, stage 3 and stage 4 uses improved 4
th

order,improved 

3
rd

 order and 2
nd

 order Taylor series approximation of sine and cosine functions. 

The details of each pipelined stage are as follows: 

Stage 1: The input angle to the proposed architecture can be in the range 0° to ±360°.This 

input is fed to the stage 1. Stage 1 rotates the input vector though any one angle from its angle 

set such that the maximum output angle at the output of the stage is ±45°. The angle set for 

this stage is {-180°,-90°,0°,+90°,+180°}. The rotation angle is selected based on the value of 

the input angle to this stage.  The advantage of this stage is that it does not require any shift 

operation instead only negation and addition/subtraction are sufficient. Hence, less hardware 

is requirement for implementation of this stage. 

Stage2: The angle set for stage 2 is {-28.65°, 0°, +28.65°}.   In Equation 3.1 the shift index 

i=1 results in the rotation angle of 28.65°. The 4
th

 order Taylor series approximation of sine 

cosine functions shown in Equation 3.1 results in percentage error of 1.032% and 0.012% for 

sine and cosine functions respectively. Hence, clearly sine function approximation produces 

significant error in the approximation. To improve the accuracy in sine function 

approximation stage 2 uses improved 4
th

 order Taylor series approximation of sine function. 

28.65º

0º

14.32º

0º

7.162º

3.581º

0º

1.79º

0.112k k   

 16.35º  3.581º  0.895º  0.056º

Stage 2 Stage 3 Stage 4 Stage 5

 45º

90º

0º180º

-90º

Stage 1

Trivial Rotations
Improved 4th order 

approximation

Improved 3rd order 

approximation

2nd order 

approximation

Modified Nano-

Rotations

 360º



 

23 
 

This means two more terms are added on the RHS of the Equation 3.1(a). Hence, the 

Equation 3.1(a) now gets modified to Equation 3.3 and it has percentage error of 0.014% in 

the approximation. However, the approximation for cosine function is not modified and is 

same as shown in Equation 3.1(b). Hence, the use of two extra terms in sine function 

approximation improves the overall accuracy of algorithm at the cost of small hardware 

overhead. Since in stage 2, only rotation through 28.65° is performed by exploiting improved 

4
th

 order Taylor series approximation the shifters become simple wired connections and 

hence reducing the hardware cost. The rotation of input vector through 0° does not require 

any operation to be performed. The input vector and input angle are passed to next stage 

without any operation.  

sin 2−1 ≅ 2−1 − 2−6 − 2−8 − 2−10                                       (3.3) 

To rotate the input vector through 28.65°, the approximated values of sine and cosine 

function are put into basic CORDIC equation. Hence, this results into a completely scaling 

free rotation. The hardware requirement of X and Y datapath for implementing rotation 

through ±28.65° is shown in Figure 3.2 and Figure 3.3 respectively. Depending on the value 

of input angle to stage 2 rotation angle and its direction is decided. The maximum output 

angle of stage 2 is ±16.35°. 

 

Figure 3.2 Hardware for X datapath for vector rotation through ±28.65° 

Stage3: The stage 3 has five angles in its angle set and the angle set is {-14.32°,-

7.162°,0°,+7.162°,+14.32°}. For this stage improved 3
rd

 order Taylor series approximation of 

sine and cosine functions is used. The 3
rd

 order Taylor series approximation of sine and 

cosine functions shown in Equation 3.2. For the angle 14.32° the 3
rd

 order approximation of 

sine and cosine functions results in percentage error of 0.26% and 0.017% respectively. 

Similarly for rotation angle 7.162° the percentage error in sine and cosine approximation is 

0.07% and 0.001% respectively. Hence, clearly sine function has higher error as compared to 

cosine function. To improve the accuracy in approximation of sine function, one extra term is 

added in RHS of equation 3.2(a) and equation 3.2(a) gets modified to equation 3.3. The error 

in sine function approximation for angle 14.32° and 7.162° is now reduced to 0.06% and 

0.016% respectively. Hence, the approximation used in stage 3 is named as improved 3
rd
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Figure 3.3 Hardware for Y datapath for vector rotation through ±28.65° 

order Taylor series approximation. For cosine function approximation only Taylor series 

terms as shown in equation 3.2(b) are sufficient and provide sufficient accuracy. Hence, 

equation 3.2(b) is not modified. The addition of one more term in sine approximation adds 

two extra shifters and two adders in hardware implementation. However, the improvement in 

accuracy is more significant as compared to hardware overhead. The vector rotation through 

angles 14.32° and 7.162° is implemented in same hardware instead of separate ones. This 

hardware implementation for X and Y datapath is shown in Figure 3.4 and Figure 3.5 

respectively. Because of barrel shifters used in the hardware it possible to use same hardware 

for the rotation through both the angles.  The shift index (i) equal to 2 results in rotation angle 

of 14.32° while i=3 corresponds to rotation angle of 7.162°. The angle of rotation is selected 

based on the input angle to stage 3. The maximum output angle of this stage is ±3.581° and 

this is fed as input angle to stage 4. 

sin 2−𝑖 ≅ 2−𝑖 − 2− 3𝑖+3 − 2− 3𝑖+5                                         (3.3) 

 

Figure 3.4 Hardware for X datapath for vector rotation through ±14.32° and ±7.162°. 
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Figure 3.5 Hardware for Y datapath for vector rotation through ±14.32° and ±7.162°. 

Stage4: The angle set for stage 4 consist of five angles {-3.581°,-1.79°,0°,+1.79°,+3.581°}. 

Stage 4 uses 2
nd

 order Taylor series approximation of sine and cosine functions to rotate the 

vector through one of the angle from the angle set. Equation 3.4 shows the 2
nd

 order Taylor 

series approximation of sine and cosine functions. For an angle 3.581° the percentage error in 

sine and cosine function calculation is 0.065% and 0.00006% respectively. While for rotation 

angle of 1.79° this error is further reduced to 0.016% and 3.98×10
-8 

% for sine and cosine 

functions respectively. Hence, 2
nd

 order provides acceptable accuracy in sine and cosine 

approximations. The hardware required for stage 4 is shown in Figure 3.6. The hardware for 

vector rotation though ±3.581° and ±1.79° is same and requires only four shifters and four 

adders. The shift index of value 4 corresponds to rotation angle of ±3.581° and shift index 

with value 5 corresponds to rotation angle of ±1.79°. This stage requires lesser hardware as 

compared to stage 2 and stage 3 since less number of terms on the RHS of the equation 3.4 

are used in sine and cosine function approximation. The angle of rotation is selected based on 

the value of the input angle to this stage. The maximum output angle of this stage is ±0.895°.  

 sin 2−𝑖 ≅ 2−𝑖                                         (3.4 a) 

cos 2−𝑖 ≅ 1 − 2− 2𝑖+1                                         (3.4 b) 

Stage5: The angles set of stage 5 consists of linearly spaced angles which are αk= k × 0.112° 

where k=0, 1...., 8. We call these rotation angles as modified nano-rotations. These angles are 

same as that used in CORDIC II [4]. However, in stage 5 the rotation of vector through these 

angles differs from that in CORDIC II [4]. Stage 5 is implemented such that the output of this 

stage is not scaled at all. This is in contrast with the last stage of CORDIC II which has scale 

factor of approximately 1024. Hence, by eliminating the scaling factor of this stage the 

truncation error which is present in case of CORDIC II algorithm [4] is avoided in this 

architecture. The hardware for this stage is shown in Figure 3.7. Depending on the value of 

the input angle to stage 5 angle of rotation is selected such that remaining angle at the output 

of stage 5 is minimum. Then the input vector is rotated through rotated through the selected 

angle using hardware shown in Figure 3.7. Figure 3.7(a) shows the hardware for modified 

nano-rotator. It requires only two adders, two shifters and two multiply by „k‟ units. The 
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hardware for multiply by „k‟ unit is shown in Figure 3.7(b). This unit multiplies the input 

with the selected value of „k‟.  

 

Figure 3.6 Hardware for X and Y datapath for vector rotation through ±3.581° and ±1.79°. 

 

Figure 3.7 Architecture of modified nano-rotator (Stage 5). (a) Modified nano-rotator for 

angle set αk= k × 0.112°, k=0, 1...., 8. (b) Multiplication by k unit. 

The detail of each pipelined stage is summarised in Table3.1. 

Table 3.1 Summary of rotation stages of proposed architecture. 

Stage Angle Set Maximum Remaining Angle 

1 0°, ±90°, ±180° ±45° 

2 0°, ±28.65° ±16.35° 

3 0°, ±7.162°, ±14.32° ±3.581° 

4 0°, ±1.79°, ±3.581° ±0.895° 

5 αk=k×0.112° 

k=0,1....,8. 

±0.056° 
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3.3 Hardware Implementation Results 

The proposed architecture along with modified virtually scaling free CORDIC 

algorithm [12], CORDIC II algorithm [4] are coded in VerilogHDL, synthesised in Xilinx 

ISE 14.7 and mapped onto SPARTAN 3E XC3S500E-FG320-5 FPGA device. Table 3.2 and 

Table 3.3 show the implementation results and error performance of these algorithms 

respectively. The algorithms are compared in terms of hardware requirement when mapped 

onto FPGA device, maximum operating frequency, latency of each algorithm and accuracy of 

the implementation. Hardware required for implementation of the algorithm onto FPGA 

device is given in terms of occupied number of  slices, total number of four-input LUTs and 

number of slice flip-flops occupied. The proposed architecture occupies 703 slices (15% of 

total number of slices available), 1303 four-input LUTs (13% of total number of LUTs 

available) and 387 slice flip-flops (4% of total number of slice flip-flops available).  

Table 3.2: Comparison of hardware cost of CORDIC architectures 

Algorithm Slice 

(A) 

LUTs  Slice 

FFs 

Max. Freq 

MHz (B) 

Latency 

(C) 

Slice-Delay 

Product 

(A*C/B) 

CORDIC II [4] 597 1078 468 85.85 7 48.58 

MVSFA CORDIC [12] 1174 2060 722 68.85 14 238.71 

Proposed CORDIC 703 1303 387 75.46 5 46.58 

 

Table 3.3 Comparison of error performance of CORDIC architectures 

Algorithm Max. Error Avg. Error 

SINE COSINE SINE COSINE 

CORDIC II [4] 6.01 5.98 6.78 6.71 

MVSFA CORDIC [12] 10.97 10.97 12.60 12.57 

Proposed CORDIC 7.91 7.93 11.68 11.28 

 

Figure 3.8 Bit error position for sine function 
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Figure 3.9 Bit error position for cosine function 
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Figure 3.10 Maximum remaining angle of algorithms versus latency 

In Table 3.3 error performance of proposed architecture is summarised. The error is 

measured in terms of Bit Error Position (BEP). For sine function datapath the algorithm has 

maximum error at 7.9
th

 bit position from most significant bit (MSB) and average error at 

11.68
th

 position from MSB. Further for cosine function datapath the maximum and average 

error occurs at 7.93
th

 and 11.28
th

 bit position from MSB respectively. The error for different 

input angles is plotted in Figures 3.8 and Figure 3.9 for sine and cosine functions 

respectively. As shown in Table 3.2 slice-delay product of proposed architecture is least as 

compared to other architectures. Hence, proposed architecture is most efficient in terms of 

area- time product. Further, the proposed CORDIC architecture has much better accuracy 
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than CORDIC II [4]. However, the accuracy of proposed architecture is degraded by only one 

decimal bit position as compared to modified virtually scaling free CORDIC [12]. Hence, 

proposed CORDIC architecture has best performance in terms of slice-delay product without 

compromising on accuracy. 

In Figure 3.10 maximum remaining angle versus latency of proposed CORDIC 

architecture is plotted along with other low latency algorithms such as CORDIC II [4] and 

Hybrid CORDIC [21]. Plot shows that only Hybrid CORDIC algorithm [21] beat the latency 

of the proposed CORDIC at the cost of more complex iterations and variable scaling factor. 

3.4 Summary 

In this chapter a new CORDIC architecture is proposed which has very low latency in 

pipelined implementation. Additionally, the proposed architecture is completely scaling-free 

hence scaling factor calculation and compensation is not required. In literature, only Hybrid 

CORDIC algorithm [21] has less latency than the proposed architecture as Hybrid CORDIC 

is based on high radix CORDIC. However, the Hybrid CORDIC algorithm [21] requires 

more calculations at each iteration and produces variable scaling factor. The proposed 

architecture is coded in VerilogHDL, synthesised in Xilinx ISE14.7 and mapped onto 

XC3S500E-FG320-5 FPGA device which is from SPARTAN 3E device family. The 

performance of algorithm is calculated in terms of hardware requirement, maximum 

frequency of operation, latency, slice-delay product and accuracy. The implementation 

exhibit the best performance of proposed architecture in terms of slice-delay product without 

affecting the accuracy.  
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CHAPTER-4 
 
 
 

HARDWARE IMPLEMENTATION OF FFT ALGORITHM 

USING CORDIC 

 
 

This chapter explains the hardware implementation of FFT algorithms using the CORDIC 

architecture.  

4.1 Overview of FFT Algorithm 

 The N- point discrete Fourier transform (DFT) of N-sample signal x[n] is defined as 

shown in equations 4.1 and 4.2. Where XDFT[k] is a frequency domain signal and x[n] is a 

time domain signal.  

𝑋𝐷𝐹𝑇 𝑘  =   𝑥 𝑛 𝑒−𝑗2𝜋𝑛𝑘 𝑁 𝑁−1
𝑛=0 ,            𝑘 = 0, 1, 2, …… , 𝑁 − 1                  (4.1) 

𝑥 𝑛  =
1

𝑁
 𝑋𝐷𝐹𝑇 𝑘 𝑒

−𝑗2𝜋𝑛𝑘 𝑁 𝑁−1
𝑘=0 ,            𝑛 = 0, 1, 2, …… , 𝑁 − 1               (4.2) 

Clearly, the DFT computation involves complex multiplications. N-point DFT implemented 

by using Equation 4.1 has N
2
 complex multiplications and hence has computational 

complexity ofO(N2).  However, fast and efficient computation of DFT is possible by using 

algorithms called as Fast Fourier Transform (FFT) algorithms. FFT algorithms calculate N-

point DFT by calculating many smaller sized DFTs. This results in computational complexity 

of radix-2 N-point FFT of onlyO(N. log2 N). Hence, FFT algorithms are fast and efficient for 

hardware implementation of DFT. 

 

Figure 4.1 Butterfly Operation 

This makes FFT a very commonly used algorithm in digital signal processing. The butterfly 

structure of FFT algorithm is shown in Figure 4.1. Each butterfly uses one complex 

multiplication and two complex additions. Such butterfly units are repeated so as to form 

butterfly diagram for given point FFT. Figure 4.2 shows butterfly diagram for radix- 2 four-

point DIT–FFT. It requires four butterfly units. The input is decimated in time and given to 

FFT butterfly unit.  
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Figure4.2 Butterfly diagram for radix-2 4-point DIT-FFT 

 

4.2 FPGA Implementation of FFT using CORDIC 

 CORDIC can be exploited to implement the FFT so that the hardware complexity of 

FFT implementation can be reduced. This is because complex multiplications in FFT 

computation can be performed using CORDIC algorithm. Hence, complex multiplications get 

reduced to simple shift and add operations. The idea behind exploitation of CORDIC in FFT 

computation is explained herewith. Figure 4.1 shows the single butterfly operation. The input 

to butterfly are A and B and .i

NA W B and .i

NA W B  are outputs. Where i

NW is called twiddle 

factor and is given as 

𝑊𝑁
𝑖 = 𝑒𝑗2𝜋𝑖 𝑁 = cos 2𝜋𝑖

𝑁  + 𝑗 sin 2𝜋𝑖
𝑁                                   (4.3) 

The inputs A and B to the butterfly unit can be complex. Let 0 0B x jy  , then the product 

.i

NW B  is given as 

𝑊𝑁
𝑖 . 𝐵 =  x0cos 𝜃 + 𝑦0 sin 𝜃 + 𝑗 −x0sin 𝜃 + 𝑦0 cos 𝜃       𝑤ℎ𝑒𝑟𝑒 𝜃 = 2𝜋𝑖

𝑁       (4.4) 

In general, the CORDIC algorithm for inputs as 𝑋 = 𝑥0, 𝑌 = 𝑦0  𝑎𝑛𝑑 𝑍 = 𝜃 produces the 

outputs as 

 
𝑋𝑛

𝑌𝑛
 = 𝐾𝑛  

x0cos 𝜃 − 𝑦0 sin 𝜃
x0sin 𝜃 + 𝑦0 cos 𝜃

                                               (4.5) 

Where𝐾𝑛 is the gain of the CORDIC algorithm. From Equations 4.4 and 4.5 it can be 

observed that if we give the input y0 to the CORDIC as negative to that of actual input and 

take output Yn as negative of the actual output, then CORDIC produces same output as that of 

complex multiplication operation in Equation 4.4. In this way CORDIC algorithm performs 

single butterfly operation of FFT algorithm. Figure 4.3 shows the implementation of single 

butterfly operation.  By repeating such butterfly operations FFT can be implemented. 
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Figure 4.3 Implementation of single butterfly operation 

 

4.3 Hardware Implementation Results 

Radix-2 four-point DIT-FFT is implemented in VerilogHDL for a word-length of 16-

bits.The FFT implementation is done by using two proposed CORDIC architectures in 

Chapter 2 and Chapter 3. These implementations are simulated and synthesized using Xilinx 

ISE14.7 and mapped onto Virtex-4 XC4VLX25-FF668 FPGA device. The Virtex-4 FPGA 

has total of 10752 slices, 21504 slice flip-flops and 21504 four-input LUTs. Hardware 

implementation results of these implementations are summarized in Table 4.1. Hardware 

complexity of particular algorithm is shown in terms of total number of slices, slice-flip-flops 

and four-input LUTs occupied when mapped onto FPGA.  To perform the error analysis of 

FFT percentage error is calculated. To decide the reference for error calculation FFT function 

in MATLABR2011b is used. Hence, error is calculated with respect to the output obtained by 

MATLAB function. For a 16-bit wordlength the bit error position (BEP) in computation of 

FFT using different CORDIC algorithm is summarized in Table 4.2. 

 

Table 4.1 Comparison of Hardware cost for different FFT implementations 

FFT Using Slice 4-Input LUTs Slice FFs 

Proposed CORDIC (chapter 2) 395 688 615 

Proposed CORDIC (chapter 3) 464 810 741 

 

Table 4.2 Comparison error performance for different FFT implementations 

FFT Using Bit Error Position 

Real Part Imaginary Part 

Proposed CORDIC (chapter 2) 15.66 16.17 

Proposed CORDIC (chapter 2) 15.97 16.17 

 

As shown in Table 4.1, FFT implemented by CORDIC architecture proposed in 

chapter 2 occupies 395 slices (3% of total number of slices available), 688 four-input LUTs 

(3% of total number of LUTs available) and 615 slice flip-flops (2% of total number of slice 

flip-flops available) and FFT implemented by CORDIC architecture proposed in chapter 3 

occupies 464 slices (4% of total number of slices available), 810 four-input LUTs (3% of 

total number of LUTs available) and 741 slice flip-flops (3% of total number of slice flip-
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Unit

-1

-1

Xn

Yn

X=x0

Y=y0

Z= θ

Butterfly Unit
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flops available). Hence, it is clear that the FFT module implemented using proposed 

CORDIC architectures occupies very less hardware when mapped onto Virtex-4 

XC4VLX25-FF668 FPGA device. 

As shown in Table 4.2 the calculated average bit position error for real and imaginary 

part of the output of FFT implemented using proposed CORDIC architecture in chapter 2 is 

15.66 and 16.17 respectively. Moreover, FFT implementation using proposed CORDIC in 

chapter 3 has average bit error position at 15.97
th

 and 16.17
th

 bit for real and imaginary part 

respectively. As the given error performance is for 16 bit wordlength, it is clear that for radix-

2 four-point FFT has almost no error in output when implemented using any of the proposed 

architecture. The experimental setup for FFT implementation is shown in Figure 4.4. Figure 

4.5 shows the output of FFT computation which is analysed using ChipScope Pro Analyzer in 

the laptop. In Figure 4.5 inputs (xin0_r, xin0_im,....., xin3_r, xin3_im) are the inputs to FFT 

module while (X0_R, X0_IM,......., X3_R,X3_IM) are the outputs . Here decimal 1 is 

represented as 0100 000 000 000 000. All input/outputs are displayed in signed decimal 

radix. 

 

 
 

Figure4.4 Experimental Setup 

 
Figure 4.5 Output of FFT computation analysed using ChipScope Pro Analyze 
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CHAPTER-5 
 
 

CONCLUSION 

 
 

The conventional CORDIC algorithm and its various versions are elaborately 

explained. The CORDIC algorithm is very useful for trigonometric function computations in 

hardware, as it computes these functions using only add and shift operations. Two new 

CORDIC architectures are proposed. These architectures along with other CORDIC 

algorithms are coded in VerilogHDL, synthesised in Xilinx ISE14.7 and mapped onto 

SPARTAN 3E XC3S500E-FG320-5 FPGA device. Their performance in terms of hardware 

cost, maximum operating frequency, latency and error in computation of sine and cosine 

functions are compared with other existing CORDIC algorithms in literature. The proposed 

architecture discussed in chapter 2 employs novel approach to rotate the input vector by using 

a sine and cosine function approximation using negative powers of two. For 16 bit 

wordlength the slice-delay product of proposed CORDIC is 99.07 and average bit error 

position in sine and cosine function computation is 12.27
th

 and 12.07
th

 bit respectively. 

Hence, from the comparison with other algorithms, it is concluded that proposed architecture 

is most efficient when both hardware requirement and error performance are taken into 

account. It is shown that proposed CORDIC architecture in chapter 3 has latency of only 5 

clock cycles whereas CORDIC II [4] and modified virtually scaling free CORDIC [12] has 

latency of 6 and 14 clock cycles respectively. Hence, proposed CORDIC architecture 

provides very low latency. The implementation exhibit the best performance of proposed 

architecture in terms of slice-delay product. Additionally, both the proposed CORDIC 

architectures are completely scaling free. Hence, need scaling factor calculation and/or 

compensation is totally avoided which required in case of other CORDIC algorithms [4] [12] 

[21]. 

For efficient hardware implementation of FFT, the CORDIC architecture is exploited 

to reduce the hardware complexity. The radix-2 four-point DIT-FFT is implemented using 

two proposed architectures. These implementations are coded in VerilogHDL, synthesised in 

Xilinx ISE14.7 and mapped onto Virtex-4 XC4VLX25-FF668-12 FPGA device. These two 

FFT implementations are compared in terms hardware cost and average bit error position in 

FFT computation. The FFT implementation using proposed CORDIC architecture in chapter 

2 and chapter 3 occupies 395 (3% of total number of slices available) and 464 (4% of total 

number of slices available) slices respectively when mapped onto Virtex-4 XC4VLX25-

FF668-12. Hence, it is concluded that FFT implementation using proposed CORDIC 

architectures in chapter 2 and chapter 3 occupies very less hardware. For 16 bit wordlength, 

the average bit position error in FFT computation for real and imaginary part when 

implemented using proposed CORDIC architecture in chapter 2 is 15.66 and 16.17 

respectively. Moreover, FFT implementation using proposed CORDIC in chapter 3 has 

average bit error position at 15.97
th

 and 16.17
th

 bit for real and imaginary part respectively. 

Hence, for 16 bit wordlength the radix-2 four-point FFT has almost no error in output when 

implemented using proposed CORDIC architectures in chapter 2 and chapter. 
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