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ABSTRACT

Persistent surveillance or exploration of any static environment requires the agent to

cover the entire mission space in a fixed amount of time. In this thesis, a similar problem

is addressed by deploying multiple agents and controlling their movement and direction

by parameterizing their trajectories. It has been proven that in a one dimensional space,

the best solution is to move the agent at maximum speed in a direction and then switch

directions when points of interest are reached, after collecting information from those

points. But in two dimensional spaces, such conclusions can no longer be drawn. In

this thesis, the agent trajectories are represented by a parametric function which can be

optimized. The points are associated with a time-varying uncertainty function which

increases if the points are not within the sensing range of the agent. First, a single

agent is considered and its trajectory is optimized by using different cost functions and

initial conditions. Infinitesimal Perturbation Analysis(IPA) is used to calculate the cost

function with respect to the trajectory parameters. A major part of this thesis is devoted

to find an appropriate cost function which solves the persistent surveillance problem.

This thesis also concentrates on providing a solution for obstacle avoidance. The problem

considered here is highly non-convex and therefore global optimizing techniques must be

used. Stochastic Comparison Algorithm is used to find a global optimal solution. The

simulation results shows the comparison between all the methods used.
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Chapter 1

Introduction

Recently there has been a wide technological advancement in the field of persistent

surveillance of autonomous agents which are able to co-ordinate and co-operate with

each other to perform various complex tasks due to the growing interest in applying au-

tonomous vehicles for search and rescue operations. The wide diversity of the tasks and

the mission space that the agents operate in imposes numerous requirements on their

motion, control, sensing and actuation systems. To ensure that the robotic team per-

forms efficient operation, it is necessary that the subtask allocation, trajectory planning,

navigation, sensor integration and communication are adequate.

Persistent surveillance differs from any traditional surveillance tasks due to the need

to monitor a dynamic environment and constantly adapt the agents path to perform

required tasks. Examples of such monitoring tasks include basic area surveillance, patrol

missions with automated unmanned vehicles, search and rescue operations and various

applications in environment where an areas routine sampling is necessary. The entire

area of the mission space should be monitored infinitely often which cannot be monitored

by a network of stationary agents. The main difficulty which arises in the design of

control strategies is balancing coverage of all the agents in the constantly changing

environment by distributing the exploration effort among them while taking into account

their individual dynamic capabilities and to ensure that the solution is time optimal even

after satisfying all the motion and sensing constraints of the system.

1
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1.1 Related work

There has been a large amount of progress in the field of robotics on coverage control [1]

and [2], trajectory optimization [?] and persistent surveillance tasks [3] [4] [5]. A simple

discrete adaptive guidance system for a roving vehicle is described in [6]. It describes

a rover with self-correcting path following capabilities for planetary explorations. The

rover executes a pre-planned trajectory with a computer controlled autonomous guidance

system in an unknown environment. Taking into account the obstacles of the terrain,

the rover auto-corrects its path so as to match the planned trajectory as close as possible

using a visual sensor. It calculates the angular dynamics of the path using the images

to manoeuvre around any obstacle or trench. Similarly, the methods of trajectory op-

timization of a launch vehicle is discussed in [7] and [8]. The former provides insight

on the practical method of using gradient approach [9] on the cost function and the

adjoint variables to control the perturbations in the launch path. The latter describes

the specific control for an ATLAS/CENTAUR flight using closed loop guidance in the

exo-atmospheric phase.

In [1] and [2], the basic idea of coverage control and data collection is described in

which the whole task is divided into three sub tasks namely coverage control, data

source detection and data collection.The agents have to locate data sources and gather

the information from them when they are in their close surroundings. In [10] coverage

control was successfully applied to co-operative air and ground surveillance in which the

unmanned aerial vehicles and ground vehicles are utilised to search for a finite number

of targets. In [3], the idea of persistent surveillance using multiple unmanned aerial

vehicles which work in harmony to successfully survey the whole mission space. In [11],

a decentralized policy is developed in which the information gathering is divided into

different agents that have to individually monitor their own sub-area allotted to them in

an unknown environment. The agents estimate the location of their own target and sub-

allot themselves to the area around it. [12] describes a coordination policy for multiple

robots in which non-parametric methods are explored to control them distributively.

The main aim is to collectively gather information in a decentralized manner where

individual robots have their own environment state and weighted sample set. In [13],

the concept of information decay is further added to [11] and the agents now have

to monitor an environment where information is a time-variant function which decays

eventually. This idea adds more definition to the cost function due to the automatic

optimization of time while optimizing decay.
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The task of control and motion planning for agents performing surveillance has been well

studied in different frameworks [4] [14]. In [5], the concept of persistent surveillance in

a changing environment with robots having limited sensing range was introduced. The

changing environment is described as a growing function in those areas where the robot

cannot reach. Therefore, the robot has to cover the whole area in the space so as to

effectively sweep and monitor the change. Similarly in [15], the robots have to sweep

a constantly changing environment where the environment is not a growing function

but a time-changing Gaussian Random field. The main aim is to find the minimum

infinite horizon cost cycle. The concept of iterative polynomial-based mobile robot

trajectory extension was introduced in [16]. The mobile robot can effectively extend

its path to adapt to the changes in command or the target and hence can perform in

a changing environment. [17] introduces dynamic programming to optimize the non-

linear trajectories of the robot. It is a very powerful method which divides the total

problem into various sub-problems reducing the computational complexity. The results

are stored and when the particular sub-problem arises again, the algorithm just uses the

old solution instead of finding the same again.

The development of new optimization methods has led to the wide use of optimal control

in controlling robotic arms and mobile agent trajectories. [18] and [19] introduce the

use of optimization techniques to control unmanned aerial vehicles and quadcoptors

in which the persistent surveillance problem is solved. The UAVs can sweep the area

with different level of interests to prioritize the sub-areas. In [14] motion planning

and controlling of the agents which perform persistent surveillance tasks are studied.

In particular we see that a framework of optimal control is designed to obtain controls

for multiple agents to address the persistent surveillance problem so as to minimize a

parameter of uncertainty in the mission space. The concept of parameterizing the agent

trajectory and adjusting the parameters to optimize the trajectory is taken from [16].

The mobile robots in all the previous cases are considered as point particles which cannot

collide. But in real time, all the robots can collide with each other and therefore collision

avoidance is also one of the major problems in any multi-robot environment. In [20] and

[21], the problem of collision avoidance of multiple agents is taken into consideration.

Neural network approach is used in [20] to plan a real-time collision-free path of robots.

In [21], industrial robots are collectively controlled such that they do not collide with

one another. The collision avoidance improves the efficiency of the whole multi-robot

exploration.
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For easier computation, there are many assumptions made in a system and therefore

we obtain the optimal solution for specific cases where some parameters are fixed. If

we take into account all the system parameters and all the cases under which they

work, then almost every system can be represented as a hybrid system. [22] introduces

hybrid systems and the basic methods to control any hybrid system which contains both

continuous and discrete dynamics and therefore are complex. [23] and [24] introduce

modelling and analysis of different hybrid systems with many examples. A model checker

is introduced in [25] to model any hybrid system. A sliding mode control approach to

control such systems is explained in [26]. The solution of the optimal multi agent

persistent problem addressed in [27] defines a new approach in which the agent’s path

is defined by certain parameters which are updated by the gradient of the cost function.

The system here is considered as a hybrid system and is modelled accordingly using

various IPA algorithms [28].

1.2 Problem Statement

The main objective is to address the multi robot exploration problem by local trajectory

optimization in two dimensional spaces. The robotic team has to cooperatively minimize

the expected cost for detecting targets in a limited two-dimensional static environment.

The robots have second order continuous dynamics and limited sensor range around

their current position. Each robot is provided with an initial trajectory characterized by

a finite number of parameters. The problem of determining optimal parameters for these

trajectories will then be solved by a gradient analysis of the cost function with respect

to the parameters. Then, the method will be extended for the case when the real target

probability distribution or some obstacles in the environment are a-priori unknown,

which requires an online adaptation of the robots planned trajectory. The method will

be compared with alternative optimization approaches in a numerical search and rescue

scenario. The agents have to detect and observe several points spread over a static two

dimensional space over a specific period of time and reduce the overall cost.

1.3 Contributions

This thesis covers the solution of the problem stated by adopting optimal control policies

and uncertainty parameters. The first contribution is the reduction of the computation
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time and also the time taken to sweep the whole mission space which is very low when

compared to a discrete analysis of the problem using methods such as dynamic pro-

gramming. The trajectory undertaken by the agent is very flexible and the parameters

can be changed while in motion which makes it efficient and reduce cost further. The

second contribution will be to represent the agent’s path in form of function families

which are parameterized and can be controlled and moulded effectively by changing

their parameters. The third contribution is an efficient method for task scheduling and

allocation for a robotic team which could be applied to various real world problems such

as rescue missions and military surveillance and security. It can also be used in the

supply situation to constantly supply any number of things. The fourth contribution

is the obstacle handling capabilities which are discussed in this thesis where different

agents monitor the area considering various obstacles in their path.

1.4 Outline

This thesis consists of six chapters. The first chapter is the introduction where the

problem is introduced and all the previous works are stated and discussed. There are

some contributions listed and the outline of the thesis is presented. The second chapter

covers all the necessary theory and some derivations which are used to obtain the solu-

tions. This chapter also includes some modifications and assumptions which were made

to draw the conclusion. The third chapter covers the methodology undertaken to obtain

the optimal solution of the problem. It covers the procedure and the solution proposed

to solve the non-convex problem thereby reducing the cost. The fourth chapter covers

the procedure and steps of the stochastic comparison continuous algorithm to achieve

global optimality. The fifth chapter shows the pseudo codes and results obtained and

compares the different methods with respect to the cost and efficiency. The sixth chapter

covers the discussion and conclusion as well as the further possibilities of this thesis.



Chapter 2

Theory and Preliminaries

2.1 Preliminaries

2.1.1 Assumptions

The problem considered in this thesis is highly non-convex and has a lot of computa-

tional difficulties. And therefore, to solve the required multi-robot persistent surveillance

problem, some assumptions are made:

• All the agents are considered as point particles, i.e. they cannot collide with one

another.

• The agent velocity un(t) is a bounded variable i.e. un(t) ∈ [0, 1].

• Each agent can control its own orientation and speed.

• The agents have limited sensing range (rn = 1).

• The Fourier series considered is of first order.

6
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2.1.2 Notations used

M number of points in the mission space

N number of agents

sn(t) agent trajectory n ∈ [1, ..., N ]

un(t) scalar velocity of nth agent

rn sensing radius of nth agent

ρ(t) function controlling agent position

σn fourier series parameters

Pm(s(t)) joint probability f detecting any point

Qm(t) uncertainty of any point [am, bm] L

A rate of increment of uncertainty.

B rate of decrement of uncertainty.

J() cost function

D(wm, sn) distance between the agent and any point n ∈ [1, ..., N ] and m ∈

[1, ...,M ].

η updation parameter

2.2 Basic Concepts

2.2.1 Hybrid Systems

Hybrid systems in general consist of the systems which are heterogeneous in nature

or in composition and whose behaviour are defined by either processes or entities of

very distinct characteristics. In this thesis, the term hybrid refers to the involvement of

both continuous and discrete dynamic behaviour of the system. A hybrid system has the

ability of encompassing a very large class of systems in its structure which provides more

flexibility in dynamic phenomena modelling. Therefore these systems generally deal with

equations which contain mixtures of discrete valued and logic (digital dynamics) and

analog or continuous variables. The continuous dynamics of these systems are generally

given by differential equations of second order or more whereas the discrete dynamics

are given by a hybrid automata or by different countable states of the system.

Figure 1 describes a hybrid system in which the output depends on a trigger or an event

which generally happens when a controlled variable hits certain boundaries or certain
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Figure 2.1: A Hybrid System

Figure 2.2: A Hybrid Control System

rules. To control such system we require certain measurements and discrete control rules

and hence we obtain a system depicted in figure 2.

2.2.1.1 Studies in Hybrid Systems

The general research in hybrid systems are carried out under four different categories in

which every category is as important as the other. Modelling consists of recognising and

determining a hybrid system and to successfully model the system in terms of blocks or

mathematical approach. This category captures the rich behaviour of the hybrid system

and its sub-components. Analysisinvolves scrutinizing the issues concerning the hybrid

systems and specific simulation and computational abilities of different analog, digital

and hybrid systems. Then, the tools are developed for the verification and analysis of

the hybrid systems.

The control category consists of developing different methods to control a hybrid sys-

tem. Various hybrid controllers are synthesised which can issue continuous control as

well as work for discrete decision making with respect to certain conditions and safety

measures.The final step consists of designing the whole setup for a hybrid system con-

sidering all the inputs and outputs as well as finding new structures and schemes which

will eventually lead to easier modelling, control and verification of the hybrid system.
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2.2.1.2 Examples

As we know that a hybrid system is a system which has both continuous and discrete

elements, the control action should involve the mixture of logical decision making and

generation of continuous control laws. A very general and simple example of a hybrid

system will be the hysteresis function itself. The switching condition of the system

changes with the increase or decrease of the values of the function.

Figure 2.3: Hysteresis Function

The above hysteresis function can be modelled as a hybrid function which can be rep-

resented as follows:

x = f(x,H(x− x0)), where x and x0 denote the present and desired value respectively.

This hybrid system is not piece-wise continuous and it has a memory of itself, and

therefore we require a hybrid automaton to describe it.

Figure 2.4: Hybrid Automaton

The above automaton describes the hybrid behaviour of the hysteresis function where the

variable x is a continuously changing variable and depending on its value (> Tor < −T ),

the term y undergoes a discrete transformation between M and M . More such examples

would be simple pendulum, systems with relays and switches, computer disk drives,

constrained robotic systems and highway systems.
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There are different discrete phenomena that occur within a hybrid system they are

basically the type of jumps that the system undergoes. They are divided into four

categories:

• Autonomous Switching: It is the phenomenon of a hybrid system where the

output changes discontinuously when the continuous input hits certain boundaries.

• Autonomous jumps: This is the phenomenon in which the continuous input of

the hybrid system changes discontinuously when it hits certain boundaries.

• Controlled switching: It is the phenomenon in which the output changes abruptly

to a specific value when a control signal is given to the input usually to reduce the

cost.

• Controlled jumps: It is the phenomenon in which the continuous input state

changes discontinuously in response to a control instruction, to reduce the overall

cost.

Considering all the above phenomenon, a general hybrid system can be dynamically

represented as:

H = [D,S, J,M ], where the individual constituents are represented as follows:

• D represents the set of discrete states that the system is involved with.

• S represents the continuous dynamics of the system (Sn = [xn, f(xn)]).

• J represents a collection of autonomous jump sets.

• M represents the collection of autonomous jump transition maps which represents

the discrete dynamics of the hybrid system.

In this thesis, hybrid behaviour is observed in the uncertainty analysis of all the points

of interest in the mission space which will be discussed and analysed further and the

respective control action will be taken.

2.2.2 Optimal Control

Optimal control theory is a branch of control system that deals with the dynamics of the

system mostly in terms of differential equations of the various states of the system. It is
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a mature discipline of mathematics which has numerous applications both in science and

engineering. In this type of control, the inputs and outputs are generally represented by

some functions of time and there are various states which determine the input output

characteristics.

The very basic aim of any optimal control system is to minimize or maximize any cost

function on which the entire system’s efficiency depends on. Any system which can be

represented in the state variable form can be optimally controlled. So in mathematical

terms, any optimal control problem can be defined as:

min
x,u

J (x, u) , Given, ẋ = f (x, u) , for all x ∈ X and u ∈ U

The general approach in an optimal control is to find out the smallest possible variation

of the functional which is to be optimised and then equating that variation to zero such

that the resulting value of the input and the parameters may lead to a solution where

there is no variation of the functional i.e. any minimum or maximum point where the

slope is zero. This means the optimal minimised solution for any function f(t) at any

time τ will be f∗(τ , u∗(τ)) if for all t ∈ [0, T ] , f∗ (t, u∗ (t)) ≤ f(t, u(t)).

There are various approaches within optimal control which are used to find out the

optimal solution like the direct method, Lagrange multiplier, Hamiltonian approach,

etc. Here we use the Pontryagin minimum principle and the Euler-Lagrange equations

to determine the optimal cost using a Hamiltonian approach. Generally a cost function

minimisation system has a fixed starting point and a free ending point, i.e. x(t0) is fixed

and x(tf ) is free. The concept is shown in the following figure:

Figure 2.5: Free end point and time system
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2.2.3 Local Optimization

Local optimization is a method of finding the locally optimum value for any function

i.e. to maximize or minimize the function within a specified range of input values. It is

called local optimal value because it does not guarantee the best solution or the ‘global’

solution for any function or system. Gradient descent is a widely used local optimization

method. The gradient descent algorithm uses the slope of the cost function to determine

the optimal solution. The main aim of this optimization technique is to converge to a

local optimum. The gradient of the function at any point is taken. Then, the solution

is stepped in the negative direction of the gradient and the process is repeated.

The algorithm will eventually converge to a local optimum where the gradient is zero

(which corresponds to a local minimum). Its counterpart, the gradient ascent, finds the

local maximum by stepping it towards the positive direction of the gradient. They are

both first-order algorithms because they take only the first derivative of the function.

If f(x) is the function which has to be locally optimized, an initial value x0 is selected and

we havef(x0). Depending on the requirement, we can either find the local minimum or

maximum by finding the gradient ∇f(x0). Intuitively, the gradient provides the slope of

the function at the initial point and its direction will point to an increase in the function.

And therefore we have to change the value of the input so as to decrease the value of

the function which would be in the negative of the gradient. xk+1 = xk − λ∇f(xk)

The term ′λ′ ensures that the algorithm makes very small changes to the variable such

that it doesn’t cross the local optimum. Given stable conditions (a certain choice of λ),

it is guaranteed that f(xk+1) ≤ f(xk).

Figure 2.6: Gradient Descent

The above plot shows the results of the gradient descent method applied to a simple

square function. We can observe form the plot how the method finds the local optimum
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of the function (f(x) = 0). Each point depicts the function value after every iteration

of the gradient descent with a fixed value of λ as 0.1. There are some other methods

in which the value of λ also changes after every iteration so as to make the descent

smoother.

2.2.4 Convex and Non-Convex Optimization

A convex optimization problem maintains the properties of a linear programming prob-

lem which are easy to compute whereas a non convex problem maintains the properties

of a non-linear programming problem. In a convex optimizing problem, all the con-

straints are convex functions which usually converge to a particular global optimum.

Many examples and control techniques of such systems are described in [29] All the

linear and conic functions are convex in nature and usually converge to an optimum or

prove that they have no solution. A simple convex function is shown below:

Figure 2.7: A Convex Function - Parabola

A nonconvex optimization problem may have multiple locally optimal points and it can

take a lot of time to identify whether the problem has no solution or if the solution is

global. A non-convex function is neither convex nor concave i.e. which has lots of ups

and downs. A simple example will be a sine function.

The basic difference between the two categories is that in convex optimization problem

there can be only one optimal solution, which is globally optimal although there might

be cases in which there is no feasible solution to the problem. Hence, the efficiency in

time of the convex optimization problem is much better. And therefore, convex problem

usually is much easier to deal with in comparison to a non-convex problem.
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Figure 2.8: A Non-Convex Function - Sine Function

Non-convex optimization involves various steps to solve the problem. Formulating the

problem in mathematical terms is very important. Recently, many different techniques

are used to solve a non-convex problem such as simulated annealing and other evolution-

ary algorithms along with other heuristics which lead to local solution. The methods

such as dynamic programming, mixed integer programming and interval methods are

used to probably converge to a globally optimal solution.

2.2.5 IPA Algorithm

Infinitesimal Perturbation Analysis (IPA) is a method which calculates the gradient of

any cost function. It has a unique property of finding out the gradient of any performance

measure with respect to many variables. The finite differencing method requires the user

to differentiate twice, once with x and again with (x+ ∆x), for a small value of ∆x, to

find the gradient with respect to single parameter. If the cost function is J(w, x), the

finite differential will be 1
∆x [J(w1, x+ ∆x) − J(w2, x)].

The viewpoint in which the Perturbation Analysis differs from other conventional meth-

ods is that it considers that there is more knowledge about the system in the output

analysis of a single experiment run on any Discrete Event Dynamic System(DEDS). The

method which perturbation analysis uses is to rebuild a perturbed sample path from the

initial path with very slight change in parameters. Perturbation algorithms generally

consist of two paths: generation and propagation. Any path in a discrete event dynamic

system, the IPA algorithm introduces imaginary perturbations in the event times while

calculating the gradient with respect to a single parameter. . It is more efficient because

in the end, the IPA algorithm assumes that the event changes in time in the initial and

the perturbed path ae the same.

The IPA algorithm consists of the following events:
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1. Exogenous events. Any event is called as exogenous if a discrete change has oc-

curred in any variable at an event time tk which does not depend on the control

vector σ which should satisfy ∂tk
∂σ . These events are usually the events which have

uncontrolled input process changes .

2. Endogenous events. Any event is called as endogenous if at any time instant tk,

the event has a continuously differentiable function fk such that tk = min[t > tk1 :

gk(x(σ, t), σ) = 0]

3. Induced events. An event at time tk is induced if it is triggered by the occurrence

of another event at time tm ≤ tk. The triggering can be by any of the above three

events.

2.2.6 Stochastic Comparision Algorithm

Stochastic optimization is an area of much importance and is the one that provides

huge challenge in theoretical as well as practical point of analysis. The discrete event

systems have given rise to various problems including the analysis and design of complex

stochastic systems where the function to be optimized often cannot be represented in

a closed form and hence, there has to be a direct observation from the actual data

to optimise the function. Stochastic optimization can generally be divided into two

categories i.e. discrete and continuous optimization. In this thesis we consider the

continuous optimization where the objective function depends on a continuous parameter

vector. One common approach should be the gradient estimator which drives the whole

process towards a minimum point but the main problem is that the gradient approach

may easily lead a system to a local minima if there are multiple local minima in a

system. To overcome the problem of settling down in a local minima, it is absolutely

necessary for the optimization to willingly move towards a bad neighbourhood so that the

trajectory may jump out of the local minima and move towards the global minima. There

are many processes applied to solve this particular problem, one would be Simulated

Annealing, but however it requires the accurate evaluation of the objective function

values. Furthermore, there is no theoretical for the SA algorithm which can be applied

to the stochastic optimization problems. General optimization search is usually based

on the neighbouring points, which means that if the neighbouring area is small, then it

will be hard to jump out of any local minima and if the area is large, occasionally a very

bad move is possible which will eventually lead to inefficient optimization.
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The stochastic continuous algorithm takes into account a very wide spread of initial

conditions so that the local minima with respect to each starting condition is found out

and compared with each other, eventually finding out the global optima. This process

converges slowly but is highly efficient and provides better results. The Stochastic

algorithm for the continuous optimization which is described in [30] is used in this

thesis to converge to a global optimum. the steps are as follows:

• Initialize the sample sets S and Z.

• Initialize X0 = S0, n = 0.

• For a given sample Xn = Sn, choose the next sample point from Zn.

• For a chosen set Zn = rn, set

Xn+1 = {
Zn , with a probability pn

Xn , with a probability (1 − pn)

where pn = P [g(rn) < g(sn)]

• Replace n by n+1 and go to Step 3.



Chapter 3

Obtaining a Locally Optimal

Solution

3.1 Agent trajectories

The vital part of this thesis is to decide the function which will be assigned to the

agents so that they could be easily parameterized and can provide valuable feedback

control. The agent trajectories are the most important part of the solution as changing

them constantly based on previous results will lead to a global optimal solution. The

available trajectories are Lissajous functions, Fourier series and elliptical trajectories. In

this research, we select the Fourier series because of its flexibility and ease of usage to

change the parameters and obtain the optimal solution. Fourier series trajectories are

well known to approximate any type of periodic curves of arbitrary shape by dividing

the periodic function into sum of many simple sinusoidal functions. Therefore in the

frequency domain, they provide a wider base when there is non-uniform distribution of

differently weighted sampling points and irregular mission space. We consider N mobile

robots spread across a two dimensional rectangular mission space Ω ≡ [0, R1] X [0, R2]

∈ R2. The position of any agent at any time t is given by:

sn(t) = [sx
n(t), sy

n(t)], where sx
n(t) ∈ [0, R1] and sy

n(t) ∈ [0, R2] (3.1)

17



Chapter 3. Obtaining a Locally Optimal Solution 18

The agents follow dynamics as below:

ṡx
n(t) = un(t)cosθn(t) , ṡy

n(t) = un(t)sinθn(t) (3.2)

Where un(t) is the scalar velocity of the nth agent and θn(t) is the angle relative to the

positive direction which lies between 0 and 2π. As we assign Fourier series to all the

mobile agents, we assume that γ is the order of the Fourier series. The agents path in

terms of Fourier series can be determined as follows:

sx
n(t) = ax

n,0 +
Γx

n∑
γ=1

ax
n,γ sin (2πγfx

nρn(t) + φx
n,γ) (3.3)

sy
n(t) = ay

n,0 +
Γy

n∑
γ=1

ay
n,γ sin (2πγfy

nρn(t) + φy
n,γ) (3.4)

It is assumed that all the robots can control and change their own speed and direction

with the change in their parameters. General assumptions made are that each robot

is a point particle and the individual robots cannot collide with one another. The

sensing range taken is one unit of the space which means that the robot can sense

everything within one unit radius around it. In our two dimensional approach, each

agents trajectory is represented by individual parametric equations for all

sx
n(t) = f(σn, ρn(t)), sy

n(t) = g(σn, ρn(t)) (3.5)

n=1,,N and σn = [σ1
n, σ

2
n, σ

3
n, σ

Γ
n]T is the vector of the parameters by which we control

the agent trajectories. The position of the agent over time is controlled by the function

ρn(t). We can observe that the functions f(.) and g(.) depend on the inputs un(t) and

θn(t) and hence the parameter vector indirectly will affect them and therefore there is

a clear dependence of the functions f(.) and g(.) on the parameter vector σn. Also this

clear dependence allows us to find out the derivative with respect to the parameters.

∂sx
n

∂σn
= ∂f(σn, ρn(t))

∂σn
and

∂sy
n

∂σn
= ∂g(σn, ρn(t))

∂σn
(3.6)

3.2 Cost Function

Let us assume that there are M points spread uniformly over the entire mission space

which serve as objects of interest for the multiple agents. There is also a probability

function associate with each point [a, b] which determines the probability of each point
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to be detected by any mobile agent over the entire mission space. It is also assumed that

the probability is 1 if [a, b] = sn and that the probability function is a monotonically

non-increasing function in the Euclidean distance D(w,sn) = ||w - sn|| between w and

sn. This captures the reduced effectiveness of the agents sensor over its finite range

of a single unit. Therefore the probability is zero if D(w, sn) is greater than one unit.

Therefore the probability function can be given as:

pn(w, sn(t)) = {
1 −D(w, sn(t)), if D(w, sn) ≤ 1

0 , if D(w, sn) > 1
. (3.7)

As we have multiple agents in our analysis, we have to consider the joint probability of

each point which may be detected by any mobile agent and not just consider a single

agent while calculating the probability function. We have to assume that there must be

at least a single point over the total space which cannot be detected initially by all the

agents. Therefore the total joint probability of detecting any point when all the agents

are considered assuming detection independence is given as:

Pm(s(t)) = 1 −
N∑

n=1
[1 − pn(w, sn(t))] (3.8)

3.3 Uncertainty based analysis

It this approach, a certain time varying factor of uncertainty ′Q′ is associated with every

point [a, b] which increases at a fixed rate A if the point is not being sensed by any mobile

agent (Pm(s(t)) = 0) and decreases by a probabilistic rate B when it is being sensed by

any agent. Moreover the uncertainty cannot be negative because of its obvious reasons.

Therefore the final modelled dynamics of the uncertainty function is:

Q̇m(t) = {
0 , if Qm(t) = 0, Am ≤ BPm

Am −BPm(s(t)) , otherwise

(3.9)

Also, it is assumed that all the initial conditions Qm(0),m = 1, ,M are given and

B > Am > 0 for all m = 1, ,M . This ensures that the uncertainty strictly decreases

when [a, b] = sn. Therefore the aim here will be to reduce the total uncertainty of the

points in the mission space by controlling through un(t), θn(t) and hence controlling all

the movement of the mobile agents so that they visit every point and reduce the overall
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uncertainty within a fixed time horizon. Therefore the cost function is given by:

min
un(t), θn(t)

J =
∫ T

0

M∑
m=1

Qm(t)dt (3.10)

Subject to the uncertainty dynamics (3.9) and the agent dynamics (3.2) and control

constraints 0 ≤ θn(t) ≤ 2pi, 0 ≤ un(t) ≤ 1, t ∈ [0, T ] and constraints sn(t) ∈ ω for all

t ∈ [0, T ], n = 1, , N.

3.4 Applying Optimal Control

We apply the Hamiltonian approach to solve the required optimal control problem.

The state vector is taken as x(t) = [sx
1(t), sy

1(t), , sx
N (t), sy

N (t), Q1(t), , QM (t)]T and

the co-state vector ϑ(t) = [µx
1(t), µy

1(t), , µx
N (t), µy

N (t), λ1(t), , λM (t)]T . Due to the

discontinuity of dynamics of Qm(t), the optimal state trajectory solution may contain a

boundary arc where Qm(t) = 0 for any m, otherwise the state will evolve in an interior

arc. The derived Hamiltonian is:

H =
∑
m

Qm(t)+
∑
m

λm.Q̇m(t)+
∑

n

µx
n.un(t).cos θn(t)+

∑
n

µy
n.un(t).sin θn(t) (3.11)

And the co-state equations ϑ̇ = −∂H
∂x are:

λ̇m(t) = − ∂H

∂Qm
= −1 (3.12)

µ̇x
n(t) = − ∂H

∂sx
n

= −
∑

m
∂

∂sx
n
.λm.Q̇m(t)

= −
∑

[am,bm] ∈ R(sn)

Bλm(sx
n − am)

D(am, bm, sn(t))

N∑
i̸=n

[1 − pi(wm, si(t)] (3.13)
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µ̇y
n(t) = − ∂H

∂sy
n

= −
∑

m
∂

∂sy
n
.λm.Q̇m(t)

= −
∑

[am,bm] ∈ R(sn)

Bλm(sy
n − bm)

D(am, bm, sn(t))

N∑
i̸=n

[1 − pi(wm, si(t)] (3.14)

Moreover, the above Hamiltonian can also be represented after some algebraic operations

and by combining the trigonometric terms, we obtain the following:

H =
∑
m

Qm(t) +
∑
m

λm.Q̇m(t) +
∑

n

sgn(µy
n(t)).un(t). sin( θn(t) + φn(t))√

(µx
n(t))2 + (µy

n(t))2
(3.15)

φn(t) is defined such that tan (φn(t)) = µx
n(t)

µy
n(t) . Applying the Pontryagin minimum

principle to the Hamiltonian equation with optimum values of θn(t) and un(t), it can

be immediately concluded that it is absolutely necessary for the above optimal control

problem to satisfy u∗
n(t) = 1. The optimal value θ∗

n(t) can be found out by solving
∂H
∂θn

= 0:

∂H

∂θn
= −µx

n.un(t).sin θn(t) + µy
n.un(t).cos θn(t) = 0 (3.16)

Which further gives θ∗
n(t) = µy

n(t)
µx

n(t) . Since we know that u∗
n(t) = 1, n = 1, , N, the

only variable left to calculate is θ∗
n(t). This can be done by modelling the problem as

a two point boundary value problem which shall involve both forward and backward

integrations of the co-state and state equations to find out the value of ∂H/(∂θn) after

each iteration and by applying gradient descent approach until the required objective

function converges to a possibly global or local minimum. Clearly this is a non-convex

and a computationally intensive problem which scales poorly with size of the mission

space and the number of agents. It is also required that the mission time should be

discretized which further adds complexity to the whole process.

Since now it is known that u∗
n(t) = 1, n = 1, , N, we can tell from (3.2) that (ṡx

n)2 +

(ṡy
n)2 = 1, which gives from (3.6):

(∂f(σn, ρn(t))
∂ρn(t)

ρ̇n(t))
2

+ (∂g(σn, ρn(t))
∂ρn(t)

ρ̇n(t))
2

= 1 (3.17)

From the above equation, we obtain the dynamics of ρn(t) as:

ρ̇n(t) = [(∂f(σn, ρn(t))
∂ρn(t)

)
2

+ (∂g(σn, ρn(t))
∂ρn(t)

)
2
]

−1
2

(3.18)
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With the required initial conditions ρn(0) = 0, n = 1, ..., N and also ρn(t) ∈ [0, 2π).

Therefore the final dynamics of ρn(t) is:

ρ̇n(t) = 1
2π

[(fx
n

γx
n∑

γ=1
ax

n,γ cos (2πγfx
nρn(t) + φx

n,γ))
2

+ (fy
n

γy
n∑

γ=1
ay

n,γ cos (2πγfy
nρn(t) + φy

n,γ))
2

]

−1
2

(3.19)

3.4.1 IPA Equations

The cost function which was derived earlier (3.10) can also be written as:

min
σn, n=1,,N

J =
∫ T

0

M∑
m=1

Qm(σ1, , σn, t)dt (3.20)

Due to the dependence of the uncertainty on the parameters of the agent trajectory, the

cost function is modified in the above form to perform necessary analysis. Considering

our system as a hybrid system, we concentrate on all the events which are causing

transitions in the dynamics of Qm(t) . Initially if Qm(t) = 0 and Am − BPm ≤ 0,

applying the IPA equations to Qm(t) and using (3.9), we get

d

dt

∂Qm(t)
∂σn

= 0 (3.21)

When Qm(t) ≤ 0, we have

d

dt

∂Qm(t)
∂σn

= −B∂pn(wm, sn(t))
∂σn

N∑
i ̸=n

[1 − pi(wm, si(t)] (3.22)

Noting that pn(wm, sn(t)) ≡ pn(D(wm, sn(t))), we have

∂pn(wm, sn(t))
∂σn

= ∂pn(wm, sn(t))
∂D(wm, sn(t))

.
∂D(wm, sn(t))

∂σn
(3.23)

Where D(wm, sn(t)) = [(sx
n − am)2 + (sy

n − bm)2]
1
2 . Using partial differential equa-

tions and by representing D(wm, sn(t)) as D, we get:

∂D

∂σn
= 1

2D
( ∂D
∂sx

n

∂sx
n

∂σn
+ ∂D

∂sy
n

∂sy
n

∂σn
) (3.24)
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And from (3.7), ∂pn(wm,sn(t))
∂D(wm,sn(t)) = −1 and hence the final equation of the uncertainty

dynamics is:

d

dt

∂Qm(t)
∂σn

= B

2D
( ∂D
∂sx

n

∂sx
n

∂σn
+ ∂D

∂sy
n

∂sy
n

∂σn
)

N∑
i̸=n

[1 − pi(wm, si(t)] (3.25)

Where ∂D(wm,sn(t))
∂sx

n
= 2(sx

n − am) and ∂D(wm,sn(t))
∂sy

n
= 2(sy

n − bm). The only differen-

tials of the equation left to be calculated are (∂sx
n)/(∂σn)and(∂sy

n)/(∂σn) which can be

calculated by individually from (3.3).

The amplitude parameter vectors for each agent’s position values sx
n and sy

n are Ax
n =

[ax
n,0, a

x
n,1, , a

x
n,γx

n
] and Ay

n = [ay
n,0, a

y
n,1, , a

y
n,γy

n
]. Their respective phase parameters are

φx
n = [φx

n,0, φ
x
n,1, , φ

x
n,γx

n
] and φy

n = [φy
n,0, φ

y
n,1, , φ

y
n,γy

n
]. Therefore the parameter vector is

defined as σn = [ Ax
n A

y
n f

x
n φ

x
n φ

y
n ] and hence we can define the values of ( ∂sx

n)
(∂σn)and( ∂sy

n)
(∂σn)

as:

∂sx
n

∂σn
= [ ∂s

x
n

∂Ax
n

,
∂sx

n

∂Ay
n
,
∂sx

n

∂fx
n

,
∂sx

n

∂φx
n

,
∂sx

n

∂φy
n

] (3.26)

∂sy
n

∂σn
= [ ∂s

y
n

∂Ax
n

,
∂sy

n

∂Ay
n
,
∂sy

n

∂fx
n

,
∂sy

n

∂φx
n

,
∂sy

n

∂φy
n

] (3.27)

From (3.3) , each value of the above vector are found out to be:

∂sx
n

∂Ax
n

= {
1 , γ = 0

sin (2πγfx
nρn(t) + φx

n,γ), otherwise
} (3.28)

∂sy
n

∂Ax
n

= 0 (3.29)

∂sy
n

∂Ay
n

= {
1 , γ = 0

sin (2πγfy
nρn(t) + φy

n,γ), otherwise
} (3.30)

∂sx
n

∂Ay
n

= 0 (3.31)

∂sx
n

∂fx
n

= 2πρn(t)
γx

n∑
γ=1

ax
n,γ .γ. cos (2πγfx

nρn(t) + {φx
n,γ) (3.32)
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∂sy
n

∂fx
n

= 0 (3.33)

∂sx
n

∂φx
n

= ax
n,γ . cos(2πγfx

nρn(t) + φx
n,γ) (3.34)

∂sy
n

∂φx
n

= 0 (3.35)

∂sx
n

∂φy
n

= 0 (3.36)

∂sy
n

∂φy
n

= ay
n,γ . cos (2πγfy

nρn(t) + {φy
n,γ) (3.37)

Using all the above equations, we can finally find the value of d
dt

∂Qm(t)
∂σn

and then use it to

find out ∂Qm(t)
∂σn

. As we have a hybrid behaviour in the dynamics of Qm(t), we separate

the continuous integration into parts within which there are no changes in dynamics,

which means that we break the whole time period into various small event times τk,

which define the number of changes in the dynamics of Qm(t). The value of K ′ defines

the total number of changes in dynamics and therefore we integrate within each range

[τk, τ(k+1))∀k = 0, ,K and finally sum up the whole integral value. The gradient of the

uncertainty is given by:

∂Qm(t)
∂σn

=
∂Qm(τ+

k )
∂σn

+ {

0 , if Qm(t) = 0, Am ≤ BPm(s(t))

∫ τk+1
τk

d
dt

∂Qm(t)
∂σn

dt , otherwise

.

(3.38)

The only part of the equation left to be solved is ∂Qm(τ+
k

)
∂σn

which is solved using the

IPA equations from chapter 2. The gradient ∇τk = ∂τk
∂σn

for k = 1,. . . ,K,. Since the

system is a hybrid, we have two cases where the dynamics shift and hence we have two

values for∂Qm(τ+
k

)
∂σn

.

Case 1: If at any τk, Q̇m(t) switches from Q̇m(t) = 0 to Q̇m(t) = Am −BPm(s(t)), it is

obvious that the dynamics are continuous and therefore we get:

∂Qm(τ+
k )

∂σn
=

∂Qm(τ−
k )

∂σn
, m = 1, ,M (3.39)
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Case 2: If at any τk, Q̇m(t) switches from Q̇m(t) = Am − BPm(s(t))toQ̇m(t) = 0, then

we have Qm(τk) = 0. In this case, similar to [28], we determine the value of ∇τk in

order to determine∂Qm(τ+
k

)
∂σn

. This event is endogenous and therefore from [28], we have

∇τk = −
∇Qm(τ−

k )
Am −BPm(s(τ−

k ))
(3.40)

∂Qm(τ+
k )

∂σn
=

∂Qm(τ−
k )

∂σn
−

[ Am −BPm(s(τ−
k ))]∂Qm(τ−

k
)

∂σn

Am −BPm(s(τ−
k ))

= 0 (3.41)

Therefore from the above two equations, we conclude that ∂Qm(τ+
k

)
∂σn

is always equal to 0

regardless of ∂Qm(τ−
k

)
∂σn

.

3.4.2 Gradient Evaluation

The cost function as derived earlier was:

min
σn, n=1,,N

J =
∫ T

0

M∑
m=1

Qm(σ1, , σn, t)dt (3.42)

According to optimal control approach, we have to minimise the gradient of the cost

function, and therefore the gradient of the cost function is found by differentiating the

cost function:

∇J =
M∑

m=1

K∑
k=0

(
∫ τk+1

τk

∇Qm(t)dt+ Qm(τk+1)∇τk+1 − Qm(τk)∇τk) (3.43)

We observe from prior calculations that all the terms of the form Qm(τk)∇τk are can-

celled out for all k (with τ0 = 0, τ(k + 1) = T fixed) and therefore we finally obtain the

following:

∇J =
M∑

m=1

K∑
k=0

∫ τk+1

τk

∇Qm(t)dt (3.44)

3.4.3 Parameter Optimization

Our main aim is to minimise J(σ1, , σn) by finding out an optimal parameter vector

[σ∗
1, , σ

∗
n]. Therefore after every iteration of the process, we update the parameter vector
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by a small portion from the gradient of the cost function which gives:

[σl+1
1 , , σl+1

n ] = [σl
1, , σ

l
n] − η∇J(σl

1, , σ
l
n) (3.45)

This process continues until when the value of ∇J is less than a particular threshold ′ϵ′

and also the value η is reduced after every iteration so that the settlement of the system

at any optimum point is smooth.

The procedure in this approach is:

1. Initialize the parameter vector σn and the initial conditions of uncertainty Qm(0)

and also the values of η, A and B.

2. Calculate the value of ρn(t).

3. Calculate the initial agent trajectories sx
n(t) and sy

n(t).

4. Using the above trajectories, find out the derivative of the gradient of the uncer-

tainty d
dt

∂Qm(t)
∂σn

with respect to each point in the mission space.

5. Integrate the above derivative to find out the gradient of the uncertainty∂Qm(t)
∂σn

.

6. Using the gradient of uncertainty, find out the cost gradient

∇J =
M∑

m=1

K∑
k=0

∫ τk+1

τk

∇Qm(t)dt

7. Finally, update the parameter vector [σl+1
1 , , σl+1

n ] = [σl
1, , σ

l
n]− η∇J(σl

1, , σ
l
n) and

repeat the whole process until the cost gradient is less than a threshold ′ϵ′.

8. Apply stochastic continuous algorithm and repeat the above steps to obtain the

best parameter vector.

9. Plot all the agent trajectories after every 10 iterations.

3.5 Nearest Point Optimization

We have seen the uncertainty based optimization for the present problem which includes

lot of complex calculations and integrations which are highly non-convex in nature.

Another approach to this problem would be to find out the closest the agent trajectories
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get to any point and then try to optimize that particular distance from the point. The

idea is to find out a point in the whole trajectory which is closest to any fixed point of

interest and then we try to minimize the distance between the two points by updating

the parameters.

Let us assume that rn is the sensing radius of any agent in consideration. Therefore

from (3.5), the probability of any point wm = [a, b] to be detected by the agent is

pn(wm, sn(t)) = {
1 − D(wm,sn(t))

rn
, if D(w, sn) ≤ 1

0 , if D(w, sn) > 1
. (3.46)

The cost function should try to minimize the distance between the point of interest and

the closest point in its trajectory. Which means the cost is zero if the agent senses the

points of interest and is an increasing function with respect to the distance if the agent

is not sensing the point. Therefore the cost function is taken as:

J(σ1, , σn) = max
m=1,, M

(0, (D(wm, sn(tc))
rn

)
2

− 0.5)
2

(3.47)

The cost function is taken as a square function to help us find out a continuous and

differentiable gradient for updating the parameters. Here, the term sn(tc) represents the

point in the trajectory of the ‘nth’ agent which is closest to the point of interest wm.

Applying optimal approach to the above cost function requires the gradient of the cost

function which can be calculated by derivation of the cost function with respect to the

parameter vector.

∂J

∂σn
= ∂

∂σn
( max
m=1,, M

(0, (D(wm, sn(tc))
rn

)
2

− 0.5)
2

) (3.48)

∇J = 2 ( max
m=1,, M

(0, 1 − (D(wm, sn(tc))
rn

)
2
)). 2D(wm, sn(tc))

rn
2 .

∂D(wm, sn(tc))
∂σn

(3.49)

Applying partial differentiation and from (3.24), we get the cost gradient as:
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∇J = 2
rn

2 (∂D(wm, sn(tc))
∂sx

n

∂sx
n

∂σn
+ ∂D(wm, sn(tc))

∂sy
n

∂sy
n

∂σn
) . max

m=1,, M
(0, (D

rn
)
2

− 0.5)

(3.50)

Where ∂D(wm,sn(t))
∂sx

n
= 2(sx

n − am)and ∂D(wm,sn(t))
∂sy

n
= 2(sy

n − bm). The terms ∂sx
n

∂σn
and

∂sy
n

∂σn
can be found out similarly as in (3.26) - (3.34) .

With the help of all the equations above, we finally obtain the value of the cost gradient

∇J and use it to update the parameter vector.

[σl+1
1 , , σl+1

n ] = [σl
1, , σ

l
n] − η∇J(σl

1, , σ
l
n) (3.51)

This process is continued until the gradient is below a fixed threshold or when all the

points of interest are well observed and then we have an optimal solution of the problem

which has an optimal trajectory of the agent within the mission space.

The procedure of this approach is:

1. Initialize the parameter vector σn and the initial conditions of uncertainty Qm(0)

and also the values of η, A and B.

2. Calculate the value of ρn(t).

3. Calculate the initial agent trajectories sx
n(t) and sy

n(t).

4. Using the agent trajectories, find out the cost gradient:

∇J = 2
rn

2 (∂D(wm, sn(tc))
∂sx

n

∂sx
n

∂σn
+ ∂D(wm, sn(tc))

∂sy
n

∂sy
n

∂σn
) . max

m=1,, M
(0, (D

rn
)
2

− 0.5)

(3.52)

5. Finally, update the parameter vector [σl+1
1 , , σl+1

n ] = [σl
1, , σ

l
n]− η∇J(σl

1, , σ
l
n) and

repeat the whole process until the cost gradient is less than a threshold ′ϵ′.

6. Apply stochastic continuous algorithm and repeat the above steps to obtain the

best parameter vector.

7. Plot all the agent trajectories after every 10 iterations.
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3.6 Obstacle Detection Problem

We have calculated and solved the optimal control problem by two different methods

and now by taking it a step further, we try to omit some point in the mission space

as an obstacle through which the agent trajectory shall not pass. To be able to attain

a solution for this problem, the above two methods must be combined to create a new

parameter updating function which will realise even the obstacle avoiding problem. The

uncertainty analysis requires the sum of the total uncertainty to be minimised and

therefore this method cannot be both used for surveillance as well as obstacle avoidance.

The cost function that we have come up with for obstacle avoidance is similar to (3.47)

but instead of moving towards the point as in gradient descent, we use the positive

gradient approach so as to move away from the point and maximise the distance of the

closest point to the obstacle as much as possible. Therefore, the parameter updating

equation from (3.45) and (3.47) will be:

[σl+1
1 , , σl+1

n ] = [σl
1, , σ

l
n] − η3η1∇J1(σl

1, , σ
l
n) − (1 − η3) η2∇J2(σl

1, , σ
l
n) (3.53)

∇J1 =
M∑

m=1

K∑
k=0

∫ τk+1

τk

∇Qm(t)dt or (3.54)

∇J1 = 2
rn

2 (∂D(wm, sn(tc))
∂sx

n

∂sx
n

∂σn
+ ∂D(wm, sn(tc))

∂sy
n

∂sy
n

∂σn
) max

m=1,, M
(0, (D

rn
)
2

− 0.5)

(3.55)

∇J2 = − 2
rn

2 (∂D(wo, sn(tc))
∂sx

n

∂sx
n

∂σn
+ ∂D(wo, sn(tc))

∂sy
n

∂sy
n

∂σn
) max

m=1,, M
(0, 1 − (D

rn
)
2
)

(3.56)

Where J2 = maxm=1,, M (0, 1 − (D(wm,sn(tc))
rn

)
2
)
2
. The cost is zero if the point is outside

the sensing range and it is positive and increasing as the trajectory comes close to it

within the sensing range rn.

The procedure which is followed is:
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1. Initialize the parameter vector σn and the initial conditions of uncertainty Qm(0)

and also the values of η, A and B.

2. Calculate the value of ρn(t).

3. Calculate the initial agent trajectories sx
n(t) and sy

n(t).

4. Using the above trajectories, find out the derivative of the gradient of the uncer-

tainty
d

dt

∂Qm(t)
∂σn

with respect to each point in the mission space.

5. Integrate the above derivative to find out the gradient of the uncertainty ∂Qm(t)
∂σn

.

6. Using the gradient of uncertainty, find out the cost gradient from (3.55) and (3.56).

7. Finally, update the parameter vector from (3.53) and repeat the whole process

until both the cost gradients are less than a threshold ′ϵ′.

8. Apply stochastic continuous algorithm and repeat the above steps to obtain the

best parameter vector.

9. Plot all the agent trajectories after every 10 iterations.

The parameter which is very crucial for updating the parameter vector is the value of

η. There are various methods and procedure to choose the value of η some of which are

tried and tested out in this thesis. As the problem is very complex and non-convex, we

still cannot assure which one is the best. The general cost gradient sums up to be a very

huge number due to three step vector integration. The methods of deciding the value of

η which are tested are:

• Initializing the value of η as a small number 0.1 and then multiplying it by 0.1 after

every iteration because the cost gradient is around four to five times the power of ten.

• Normalizing the power of tens in the cost gradient and then taking a specific value of

η 0.1 to 0.2.

• Providing an individual η to the cost gradient value for every point of interest with

respect to the individual cost, so as to achieve better control.

∇J =
M∑

i=1
ηm∇Jm (3.57)
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Where ∇Jm =
∑K

k=0
∫ τk+1

τk
∇Qm(t)dt .



Chapter 4

Towards A Globally Optimal

Solution

As discussed in chapter 2, this stochastic comparison algorithm is necessary to obtain

global optimum in systems where there are no specific points where the gradient of the

cost function is equal to zero, which is definitely the case here. Due to the highly non-

convex behaviour of the system, it is difficult to conclude whether the solution obtained

is globally optimum because this approach requires assumption of many initial conditions

and has three step integration which makes it very complex. In this thesis, we use the

Stochastic comparison algorithm in [30] to find the global optimum.

The cost function minσn, n=1,,NJ(σ1, , σn) =
∫ T

0
∑M

m=1Qm(σ1, , σn, t)dt is continuous in

σn and hence the stochastic comparison algorithm for a general continuous optimization

problem can be applied to it. The parameter vector σn is considered to be a controllable

vector and the stochastic analysis consists of the following steps:

• Take two sets of parametric values ψy = σn,y
0, , σn,y

R] and ψz = [σn,z
0, , σn,z

R]

• Initialize σn
0 = [σ0

1, , σ
0
n] ∈ ψy and i = 0.

• While i < R, do the following steps:

• Take a sample value σ(n, y)i = ψy(i).

• Repeat

32
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• Compute the value of sn(t) = [sx
n(t), sy

n(t)] using ψy(i).

• Compute the gradient of cost function ∇J(σ(n, y)i).

• Update the parameter vector σ(n, y)i.

• Until ∇J(σ(n, y)i) < ϵ.

• Take another sample value σ(n, z)i = ψz(i).

• Repeat

• Compute the value of sn(t) = [sx
n(t), sy

n(t)]usingψz(i) .

• Compute the gradient of cost function ∇J(σ(n, z)i) .

• Update the parameter vector σ(n, z)i.

• Until ∇J(σ(n, z)i) < ϵ.

• Set the new parameter by the following rule:

σn
i+1 = {

σn,z
i , with a probability pi

σn,y
i , with a probability 1 − pi

. (4.1)

Where pi = P [ J(σn,z
i) < J(σn,y

i)]

• Replace i by i+ 1.

• End While.

• Set σ∗
n = σi

n.

The above algorithm defines the method of stochastic continuous algorithm in a pseudo

code manner. The first step is to take two sample sets of the initial values of the

parameter vectors. We then take one value from each of those sets and then compute

the whole optimal control problem as shown in previous chapter. Finally we obtain

two solutions from the two initial conditions after updating the parameter vectors many

number of times. The cost functions of both optimal solutions are compared and the

final optimal parameter vector is found from (4.1).

The probability can be determined in two ways, the first will be updating the probability

pi = 1, if J(σi
n,z) < J(σi

n,y) every time or else pi = 0. Another method will be to observe
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the whole process and record the number of times J(σ(n, z)i)is less than J(σ(n, y)i) and

the final probability pi will be:

pi = no. of times J(σn,z
i) < J(σn,y

i)
R (total iterations)

(4.2)

This approach leads the solution slowly towards the global optimum but still does not

ensure any such thing due to the high non-convexity of the problem.



Chapter 5

Results

5.1 Single agent, first order

There were various approaches taken and many different methods were performed on

the optimal control problem to obtain the solution. The first step was to just find out

the solution of a single agent problem with the order of the Fourier series to be one.

Therefore a single agent is considered in the mission space which has to reduce the overall

cost function of the system. We begin by assuming the initial values of the parameter

vector. The initial agent trajectory is found out and from the previous equations we

find out the cost gradient. We update the parameter vector until the cost gradient is

less than a particular threshold.

The results obtained after every 10 iterations are shown as below:

The first figure shows us the initial trajectory of the agent with respect to the initial

values of the parameter vector. We see a gradual change in the agent trajectory and

the next images show the agent trajectories after every 10 iterations. The final image

shows us the optimal solution obtained by a single agent which shows us clearly that

the agent visits every point at least once within its sensing range of 1 unit. The cost to

the number of iterations is compared with the other approaches in the end. This result

gives us the basic idea how the agent optimizes its own trajectory with respect to all

the points over the mission space. The time as well as the length of the trajectory is

35
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Figure 5.1: Agent trajectories after every 10 iterations

optimized automatically. The amount of time taken to compute the solution is also very

less.

5.2 Single agent, first order, point to point cost function:

We try to slightly change the parameter updating process by updating just with re-

spect to one point at a time and then calculating the agent trajectories and parameters

again and then updating the parameter with respect to the second point and so on,

i.e., instead of calculating the cost gradient as sum of the uncertainty of all the points

together, we considered it to be the uncertainty of a single point at a time. Which

means that the parameters are being updated with respect to each point at a time

which shall provide better results. The procedure is same as previous until step no. 5

till which the uncertainty gradient (∂Qm(t))/(∂σn) is found out. The only difference

in his and the previous is the value of the cost gradient. Here the cost gradient is

∇J =
∑M

m=1
∑K

k=0

(∫ τk+1
τk

∇Qm (t) dt+ Qm (τk+1) ∇τk+1 − Qm (τk) ∇τk

)
Where i = 1, ,M, keeps on increasing after every iteration, which means the cost gradient

and the parameter vector are updated with respect to a single point each time and

therefore in this case it requires 25 iterations just to complete one iteration of the

previous approach taking into account all the points. And the process is repeated with

all the points over and over.

Following are the images of the initial and final trajectories:
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Figure 5.2: Initial and Final Trajectory for a point to point cost function analysis

From the above images we observe that the path of the agent slightly changes and it

disperses more towards the points in the mission space. The cost versus iteration graph

shows us that the approach takes more iterations to reach the lowest cost but the lowest

cost is far more lower than the previous approach.

5.3 Multi agent Analysis:

Moving on forward with the number of agents we considered two mobile agents and the

order of the Fourier series to be 2. The computational code is far more complex but

the results are better than a single agent. In this approach the total mission space is

automatically divided between the two mobile agents for the persistent surveillance of the

mission space. The second order of the Furious series gives the agent for more flexibility

to manoeuvre within the region space and optimize the solution. The procedure is quite

similar to the single agent approach from before, the only differences are the extra agent

and the order of the series. The following images shows us the mobile agents initial

trajectories and the final trajectories:
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Figure 5.3: Initial and Final Trajectory for a multi-agent analysis

By taking a look at the above images it is clear that the agents are able to take more

complex paths due to the order of Fourier series. The final optimal trajectories show us

that the mobile agents have divided the whole mission space into two parts and that any

single point is just observed by a single agent. This divides the total work and makes it

much more time optimal.

5.4 Nearest point algorithm

From Chapter 3 a different approach of finding out the cost gradient by minimizing the

closest distance to every point was discussed. Here we try to simulate the condition

and observe the differences with respect to the uncertainty analysis. Here again a single

agent is considered with its Fourier series order to be one.

The following results were obtained:

From the above image of the final trajectory we can easily conclude that the agent tries

to pass through all the points which is obvious due to the nature of the cost function. We

also observe a simplicity in calculation and much better time optimal performance but
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Figure 5.4: Initial and Final Trajectory for the nearest point analysis

it is still unsure whether the solution is globally optimal with respect to cost. Therefore

we also try to plot the cost versus number of iterations to compare it with the previous

solutions.

5.5 Obstacle avoidance

We now take a further step and try to put an obstacle within the mission space to

observe whether the agent is able to detect obstacle and avoid it. Therefore we try to

simulate a condition explained in chapter 3 which has two cost gradients, one determines

the obstacles and the other ensures that all the points in the mission space are being

observed respectively. Again here a single agent is considered with the order of Fourier

series as one.

The following images shows the final trajectory after optimization.

The above graph shows us that the results are acceptable and the obstacle is avoided

successfully. All of these approaches shows us that there are countless possibilities for

the design of this specific problem and hence countless solutions.



Chapter 5. Results 40

Figure 5.5: Obstacle avoidance initial and final trajectory



Chapter 6

Conclusions and future work

In this thesis, the multi agent persistent surveillance problem in two dimensional spaces

is observed and many different approaches and solutions were obtained. Using the the-

ories in chapter 2, we derived the solutions for the given problem. Fourier series were

used to determine the agents trajectories and IPA algorithm was used by a Hamiltonian

approach using gradient descent and stochastic comparison algorithm to attain the op-

timal solution. Also, different types of cost functions were analysed and their respective

final agent trajectories and costs were compared. There are still some limitations which

could not be solved by this thesis: First limitation would be deciding the value of η. It

is unimaginable how the value of η affects the solution in a very major way. The optimal

solution completely depends on the value of η and very slight changes in this parameter

leads to huge changes in the solution. Many different approaches were tried in this thesis

to decide the value of η but unfortunately it cannot be declared that any approach is

the optimum because of its non-derivability and randomness. The only procedure is to

select the value of η based on various experiments by hit and trial. It would be really

better if a procedure is found out to select the optimum value of η.

The second limitation will be deciding the initial values of the parameter vector which

determines the entire path to optimization of the trajectories. We definitely have used

the stochastic continuous algorithm to select the best possible initial conditions for the

parameter vector but even the sample matrix from which the initial values are taken

are defined by the user himself which also leans towards a trial and error process which

shows us the inability of the solution to select its own initial optimum conditions.

41
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The next limitation is the inability to declare the global optimum solution due to the

sole non-convex behaviour of the system. Even if we obtain a better solution every time

than the previous, it is unsure that any solution is the global optimum solution for the

system.

The future work will surely be to find out an algorithm to select the optimum initial

conditions for the system without any trial and error. An interesting task will be to find

out a better cost function which shall make the system less non-convex so that we may

have a chance to attain global optimality. Other work may include the objects of interest

moving in a pre-defined motion themselves within a specific space. Also, future work

may include the agent to perform more complex tasks rather than just surveillance.
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