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ABSTRACT

Existing economic dispatch mechanisms fails to operate effectively in case of microgrid

with high penetration of renewable energy resources (RESs). An intelligent control

technique is required that can tackle both variability and unpredictability of RESs while

satisfying time varying load demands without violating operation constraints. In this

paper, we propose a MPC scheme for islanded microgrid for hourly economic dispatch

of generators, storage units and RESs. MPC, subjected to constraints and forecasts,

aims at minimizing running cost of microgrid along with rewarding renewable power

infeed. In order to have higher forecasting accuracy, SVM approach is adopted for day

ahead hourly load forecasting. Multi-layer perceptron based neural network is used for

PV array output forecast. System is modelled using MILP. MPC uses load and solar

output forecast data and solves optimal control problem subjected to constraints and

generates optimal power dispatch plan at each time instant.First generated sequence is

applied and horizon is shifted to next time instant after executing the first step of the

previously determined schedule thereby dynamically adjusting and self-correcting itself

for future time steps. The results depict the effectiveness of this method.
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Chapter 1

Introduction

Use of renewable energy resources like solar, wind etc. is increasing rapidly due to grow-

ing environment problems and unsustainability of fossil fuel[1]. This led to advancement

in the field of green power that in turn led to the initiation of advanced research pro-

grams in order to provide innovative as well as economical penetration of green power in

todays power system scenario. This gave rise to the concept of microgrid. Microgrid is a

cluster of loads, renewable energy resources and storage units, which may or may not be

connected to main grid. An intelligent energy management system assists microgrid in

making power allocation decisions. The main objective of energy management system is

to allocate power to different energy sources in the microgrid such that the cost of energy

production is optimized. As the integration of renewable energy resources increases, the

obscurity in bringing about load scheduling also increases. Due to high uncertainties in

renewable energy output, it is necessary that controller design must be robust enough

to deal with variabilities and unpredictability of energy sources.

1.1 Introduction to Microgrid

A microgrid architecture is shown in fig 1.1 The local ac loads and dc loads are the group

of consumers that includes residential buildings, factories, institutes etc. Wind turbines,

solar arrays, micro turbines, fuel cells and storage units serve as sources of electric energy.

We also have macrogrid utility connection to purchase electricity when there is a lack of

electricity generated from local generators or to trade electricity back when generated

2
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electricity is surplus in amount. In cases of emergencies or massive faults, the macrogrid

gets disconnected and the microgrid works independently to provide electricity in the

islanded mode. In places like remote islands or deserts where it is not feasible to have a

main grid connection, small islanded microgrid can function as the source of electricity

in such regions.

Figure 1.1: Microgrid Architecture

1.2 Optimal design and planning for Microgrid

The microgrid optimal operational planning involves making decisions on how to sched-

ule power generated by various DERs, storage units as well as controllable loads opti-

mally, in order to fulfil load demands and minimize the entire operating costs of the grid.

At every time step, the microgrid controller generates decision variables. They are:

1. When should DG be turned on or off (unit commitment)

2. How much power should different unit deliver to satisfy these loads at minimum

cost

3. When should storage devices be charged or discharged?

4. how much power should be bought from or sold to the main grid (if the microgrid

is in the grid-connected mode)?

5. which loads must be shed/curtailed and when?

As analogous to the utility grid operation, microgrid operation can also use unit com-

mitment (UC) and economy dispatch (ED) technique. The UC is executed from one day
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to one week ahead offering the start-up and shutdown schedule for each generation and

storage unit that can minimize the running cost of the microgrid. ED executes itself

in advance from few minutes to one hour to allocate the demand to the running units

economically, considering all unit and system constraints. The recommended methods

for the conventional power system optimization cannot be utilised directly to micro-

grids with high penetration of renewable energy resources and ES devices due to higher

variability and uncertainties in power curves. There may be huge difference between

the forecasted and actual value so controller must know to deal with this stochastic be-

haviour of renewable sources of energy. A block diagram for energy management system

is shown in fig.1.2 when a microgrid has more than two DERs; the energy management

system (EMS) is required to take the power allocation decisions.

Figure 1.2: Energy Management System

1.3 Literature Survey

A lot of focus is shown in the field of cost optimization and suitable controller design

for economic dispatch of differnet generators in microgrid. The reason behind this is

the complexity and unpredictability to the entire system and the economic profit that

could be made if the process of cost optimization perform effictively.Different heuris-

tics and metahueristics algorithms have been proposed[3]. This mainly include Genetic

Algorithms[4], PSO technique[5], evolutionary methods and tabu search algorithms. In

order to perform effictively, controller for microgrid must use advanced control algorithm

which takes into account predicted future values and uncertainities along with deploying

demand responses.It should optimally use storage units without violating any physical
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constraints. So this makes the problem computationally intensive and unappropriate

for real time use. Optimization problem remains nonlinear (MINLPs). MPC [6]turns

out to be a effective tool to solve such problems as 1) It uses a predictor which is sig-

nificant as forecasted renewable energy and load data are used to solve the problem.

2)Its robust due to feedback mechanism. 3)It does not violate physical system con-

straints[7]. An MPC method is proposed for power allocation in microgrid using wind

power[8]. Stochastic MPC[9], Scenario based MPC[10], Minimax MPC[11] etc. have

been discussed in different papers. Some work have been found in literature which uses

two techniques simultaneously such as ADMM along with MPC framework to bring

about power scheduling[12]. Hooshmand et al.[13] uses an MPC for cost optimized dy-

namic economic dispatch.A mutlirate MPC is also used for coordinating regulation and

demand response[14]. An MPC is used for household power management[15]. Control

stategies for islanded microgrid is discussed[16] In various works the nonlinear objective

cost function is approximated to a linear one. Piecewise linerisation is used to convert

MINLPs to MILPs. This approximation gives us suboptimal solutions. A large amount

of work is still required in this field. As to reduces complexity sometimes some important

parameters are not considered. The stability and protection of microgrid is very vital.

A influential developement is needed in both the feilds.

1.4 Objectives

The objective of thesis is to bring about day ahead economic dispatch of energy sources

in an islanded microgrid. The islanded microgrid consist of :

1. Storage unit

2. PV array

3. Thermal generator

4. Electric load

The aim is to design a controller which allocates power to different energy sources in

microgrid such that entire running cost of microgrid is minimized. The focus here is

also on using storage units effectively so as to minimise thermal generator infeed and

maximize the renewable energy infeed in presence of uncertain forecast. Unit Commit-

ment decision and economic dispatch are the two major task that will be performed by
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the controller to be designed. In order to design MPC we need approximate value of

unknown variable. So we go for day ahead load and solar energy output forecasting.

This is termed as short term forecasting where in we use historic data to predict the

future forecast. Perfect forecasts or a formal statistical model to characterise uncer-

tainty are not required for the MPC to perform robustly. The predictions that hold

general trends are adequate since MPC generate power schedules at each time step af-

ter executing the first step of the previously calculated schedule, dynamically adjusting

thereby self-correcting itself. Optimization control problem mainly comprises cost func-

tion that penalises thermal generation and rewards power infeed from pv array over K

time steps.so the objectives can be summarised as follow:

1. To conduct Short term load forecasting using artificial intelligence techniques like

neural network and SVM [17] so as to generate day ahead hourly load Forecast

data[18]

2. Forecast pv array electric day ahead hourly output so as to set upper and lower

limit constraints on power that can be extracted from solar energy resources.

3. Design a MPC which can handle uncertainties in forecast data as well as take care

of physical constraints subjected to the optimal control problem.

4. Discuss results and check effectiveness of the proposed methodology

1.5 Thesis Organisation

The outline of the thesis is as follows: Chapter One entails basic concepts of microgrid.

It introduces microgrid and describes the main objective of the thesis. Chapter two

is dedicated to short term load forecasting. It describes neural network algorithm and

SVM technique to perform forecasting and then compares the result obtained by both the

methods. Chapter third consist of forecasting day ahead hourly PV array electric output

data and the process used to set upper and lower limits on renewable energy power

output. This bounds are used in controller design. Chapter Four involves modelling

of components present in microgrid. MILP is used for problem formulation. Chapter

Five mainly focuses on MPC and formulation of optimal control problem. Chapter Six

discusses results and conclusions drawn from the entire work done thereby suggesting

future works and improvements that needs to be conducted in this field of research.



Chapter 2

SHORT TERM LOAD

FORECASTING

2.1 Introduction

Load forecasting is mainly used by electric utility to configure important aspects of power

industry like infrastructure expansion, load switching, and setting up market price for

electric power, power scheduling etc. The process of forecasting extracts information

from historic load and weather data to make future predictions. Load forecasting is

divided into three broad categories:

1. Long term load forecast

2. Medium term load forecast

3. Short term load forecast

Short-term load forecast is used in the process of unit commitment and power dispatch.

It majorly generates hourly day ahead forecast. Methods for short-term load forecast

comprises of two approaches:

1. Conventional Approach

(a) Regression models

7
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(b) Stochastic time series

(c) Exponential smoothing

(d) Extrapolation

2. Mordern Approach

(a) Neural networks

(b) SVM and SVR

(c) Fuzzy logics

(d) PSO

(e) Genetic algorithms

2.2 ANN Approach

The entire forecasting process is broken into four main steps. These steps are:

1. Identification of input: These steps include selecting number of features for input

data.

2. Pre-processing data: This step involves Normalisation of data. Inputs are normal-

ized in the range of [0,1]

3. Selection of training set: This is breaking of data into training testing and vali-

dation data. 70 percent of data is training data. 15 percent of data is validation

data and rest 15 percent is testing data.

4. Testing the results: At last, Plot the results and calculate MAPE for test data.

The input features are the factors on which electricity consumption is depends. These

features correlates to generate forecast. They are:

1. Historic Hourly load data

2. Min/Max/ Average daily temperature

3. Min and Max daily Humidity

4. Weekday or weekend
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The historic hourly load data is taken from California ISO[19]. Weather data is taken

from San Francisco region of California as it gives sufficient representation to the change

in weather parameter across the state. The climate data depicting weather conditions

is shown in table 2.1 and 2.2.

Table 2.1: Input Features Part1

DATE HOUR MIN
TEMP

MAX
TEMP

MIN HU-
MID

MAX HU-
MID

1/06 01 20 11 55 87

1/06 02 19 11 54 86

31/09 24 16 14 67 79

Table 2.2: Input Features Part2

holiday/
working day

samehr.
prev.day

prev.day
avg.

last hr. same-
day

hourly load
data

0/1 load data from caiso

0/1 load data from caiso

0/1 load data from caiso

Neural Network model used here is a Multi-Layer Perceptron (MLP) network with a

single hidden layer. The number of neurons in the hidden layer can be varied between

11 and 23. It is set to 15 neurons as this gave better results. The activation function

used in the hidden layer neuron was Tan-sigmoid. To set the learning rate, the network

was made to run with a large number of different learning rates before settling on 0.07,

which gave us the best results. For each hour, train a neural network. The outputs of 24

network clubbed together and gave day ahead forecasting. Back propagation technique

trains neural network in this model. The neural network model used is depicted in fig.2.1

2.3 SVM Approach

SVM algorithm is a machine-learning tool that can be effectively used to solve clas-

sification and regression problems. Initially, it was used for classification and pattern

recognition purpose. Later it was modified to solve regression problems. Training data

provide a supervised learning to SVM model and thereby helping it to learn about the

correlation between inputs and outputs. In case of linear classification, the aim is to find



Chapter 2. SHORT TERM LOAD FORECASTING 10

Figure 2.1: Neural network

maximum margin hyperplane that classifies the data into groups. In case of nonlinear

decision boundary, data is mapped into a higher dimension feature space where it be-

comes linearly separable. The problem now is converted into an optimization problem,

which aims at maximizing distance between hyperplanes also termed as support vectors.

The problem statement is now a quadratic equation subjected to linear constraints. The

Figure 2.2: Linearly Separable Dataset

problem may be solved using lagranges multiplier. Let (xi, yi) denote data point of train-

ing set, b be the bias and w be a vector perpendicular to two parallel lines shown in fig
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4. The margin, distance between the support vectors is mathematically given as

2√
wtw

(2.1)

The distance can be maximized by minimising

1

2
wtw (2.2)

Problem: Find w, b so as to Minimise

1

2
wtw; subjectedto : yi(wxi + b >= 1)(∀xi ∈ trainingdataset) (2.3)

The problem may be solved using lagranges multiplier. Kernel Function: Original Fea-

ture space is mapped into higher dimensional feature space where data is linearly sepa-

rable. Kernel functions are used for performing this task.

ϕ : x→ φ(x) The common kernel function used are

Figure 2.3: use of kernel

1. Guassian RBF(infinite dimensional space)

2. Hyperbolic tangent

3. Polynomials (homogeneous and non homogeneous )

When we work in high dimensional feature spaces, the problem of expressing com-

plex functions get solved automatically. But it leads to two problems. Computational

problem arises due to increase in dimensionality and along with it comes the curse of
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dimensionality which in turn ruins the generalization of model. Generalization bounds

on the risk of overfitting. The best hyperplane is always the one with maximum margin.

The choice of kernel affects the width of margin. large margin suggest that the choice

of kernel function was right. There are no solid rules that decides which kernel function

should be used. Choice of kernel function varies with datasets and algorithms used.

2.4 Short term load forecasting using SVM

The model uses concept of clustering for forecasting the next day hourly load demand.

Forecasted weather parameters plays a crucial rule in clustering of available data. Load

demand is also affected by time factors along with temperature and humidity. Time

factors include data that represent hour of the day, time of the year, and data that

states wheather its a weekday or weekend. The aim of SVM model is to recognize this

factors and cluster data accordingly in order to predict future values. While carrying

out load forecasting, there are no strict rules to follow for selecting input feature space.

The feature selection is largely dependent on personal judgement and preliminary exper-

imentation[20]. A support vector regression model is proposed here. The input feature

are given in table 1 and table 2 of this thesis. The optimization problem is defined as

follows

Minimize : 1
2w

tw + γΣk
i=0(εi + ε∗i )

subjected to

yi − (wxi + b) ≤ εi + ε∗i

(wxi + b)− yi ≥ εi + ε∗i

γ > 0, cost function is a trade off between accuracy and the amount by which the any

deviation is tolerated. The constraints mentioned tries to maintain the error in εtube.

If it exceeds out of this tube, the deviation upto εi or ε∗i is tolerated. The objective

function strieves to minimise this slack variable ε∗i . The parameters which control re-

gression are cost function,ε-insensitive loss function and mapping function. Mapping

function used here is guassian RBF

ε-insensitive loss function,|ε| is described as

if : ε < ε, |ε| = 0,

else : ε < ε, |ε| = ε− ε
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2.5 Result

Mean absolute percentage error (MAPE) is used in statistics as a measure of prediction

accuracy of forecasted data. It is also known as Mean Absolute Percentage Deviation.

MAPE= 1
nΣi=n

i=1

∣∣∣ r(t)−f(t)r(t)

∣∣∣
Where r is actual value and f is forecasted value. From ANN approach, MAPE is 4.22The

graph below shows predicted output in blue and actual output in green. The historic

hourly data was from 1/01/15 to 1/04/16.

Figure 2.4: Linearly Separable Dataset



Chapter 3

PV ARRAY OUTPUT

FORECAST

3.1 Power output of PV Array

Last few decades led to developement of large-scale and medium scaled photovoltaic

system across the world. PV arrays generate electricity without pollution and hence

termed as green energy. The accurate forecasting of solar energy output is very crucial as

it can affect both stability and operating cost of the grid. Mordern forecasting approach

uses evolutionary methods and machine learning techniques to predict day ahead solar

output using historic data. This seems to provide better result as compared to methods

which only depends on solar irradiance forecastinng model.

Figure 3.1: PV array

14
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In order to study or model PV modules, four basic electrical characteristics of PV system

must be described[21]. These important features are: 1) short circuit current of the

module, 2)open circuit voltage generated by the module 3) fill factor and 4)maximum

power output.

1. Short circuit current Isc : It depends on solar irradiance and temperature of the

module. The mathematical model of PV module is expressed by the following

equation

Isc(t) = Isc,ref (1 + α(t− t0))
GHI

GHI0
(3.1)

GHI0 is the standard solar irradiance value of module.Isc,ref is the reference short

circuit current calculated at STP and GHI0. t is the temperature inoC . α is given

in the list of module specifications and its unit is A
oC

. GHI is Global Horizontle

Irradiance. Its measured in
W

m2

2. Open Circuit voltage :

Voc(t) = Voc,ref (t)(1 + β(t− t0)) (3.2)

V(oc, ref) is the reference open circuit voltage calculated at STP. βis available in

specificaton details of module.

3. Fill Form: It is the ratio of the maximum power that can be generated by a PV

module to the output power generated at any instant of time.

FF =
VmxpImxp

VocIoc
(3.3)

PV Array: Let this array have Mp and Ms number of parallel and series units of PV

module. The power is given as:

Parray = PmoduleMpMs

Inverter is used to convert DC power output of PV array to ac power. Its efficiency is

given as ηac. The ac output power is given as

Pout = ηacParray

Using these equations, Power output can be directly calculated. This is called as direct
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method. But this method is not robust. It cannot perform well in case of forecasted irra-

diance data. The uncertanities in forecasted data can be tackled effictively by techniques

like ANN and fuzzy logics.

3.2 Prediction of PV array output using ANN

A feed forward MLP model with one hidden layer 17 neurons is used to predict the

output. It was trained using supervised back propogation training method. Activation

function of neuron is TAN Sigmoid. Learning rate was decided by hit and try method.

The output vector is the Historic hourly ac pv array output data taken from California

ISO solar data. This output vector along with input features forms training data set.

The input feature consist of parameters on which output of solar cell depends. They are

as follow:

1. Hourly GHI data

2. Air temperature

3. Cell temperature

4. Short circuit current

5. Open circuit voltage

6. Time of the day

7. Month of the year

Table 3.1: Input Feature for PV output forecast

Date hour GHI air temp cell temp PV output

1/06 01 data from sa[22] data

1/06 02 data from sa[22] from

31/09 24 data from sa[22] caiso

The SolarAnywhere[22] offers world-class irradiance and weather data, and solar energy

simulation services. Developers, system owners, utilities, operators and state govern-

ments, use it to condense the risk of solar asset proprietorship by enumerating renewable

resource ambiguity. This website is used to extract solar irradiance data for forecasting

as it is easily available and has high accuracy. The input is a (n7) matrix, where n is

no. of data points in training set.
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3.3 Result

Figure 3.2: PV output forecast



Chapter 4

MODELLING OF MICROGRID

4.1 Microgrid Control Structure

Microgrid control structure is highly complex. It involves different control stages that

operates at different time scale. Controller that manages voltage stability, frequency,

power quality etc. must operate in time scale of seconds or milliseconds. There is longer

time scale (hours) for controller that take unit commitment decisions and brings about

economic dispatch of generating units and storages. A hierarchical control structure is

required for effective microgrid operation[23]. The Microgrid controller must fulfil the

following issues:

1. Frequency and Voltage Management: The system must control power through

voltage and frequency control loops using different droop control schemes.

2. Demand and supply balancing: All the load demands must be satisfied at every

instant of time without violating voltage and frequency constraints.

3. Power Quality: Microgrid must support power quality of main grid by bringing

about Reactive power compensation and harmonic compensation at the PCC

Fig.7 describes the control structure with three levels. Primary Level Control is fast with

time scale in seconds. Secondary control level is slightly slower than primary control

level whereas tertiary operates in time range of hours. We aim at tertiary control level

18



Chapter 5. MODELLING OF MICROGRID 19

wherein we solve cost optimization problem. The objective is to determine suitable set

points for all generating units and storages present in islanded microgrid such that all

demands are satisfied and power dispatched is economic. The Tertiary level control

actions are weakly dependent on fast dynamics and transient behaviour of lower level

control schemes hence steady state assumption of different components can be made

without ample loss of accuracy. The higher-level control scheme must not violate the

voltage and frequency limits established by primary controller and must not result in

line congestion. The outline of further task to carry out successful cost optimization of

Figure 4.1: Control Structure

microgrid operation include the following steps:

1. Modelling of microgrid: We strive to develop a novel model of the complete mi-

crogrid using mathematical equations and setting up physical constraints.

2. MPC Scheme: We aim to develop a MPC mechanism for optimizing running costs.

3. Presentation of simulation results: The final step presents simulation results to

show the effectiveness of this MPC-MILP approach in cost optimization of micro-

grid operations.
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4.2 System Description and Modelling

We use a MPC-MILP approach for solving cost optimization problem. The reason for

modelling microgrid by MILP are as follows[12]:

1. The problem statement uses both continuous and discrete decision variables. Unit

commitment decisions need binary value 1 or 0 to depict on/off status of differ-

ent generating units whereas Economic dispatch problem uses continuous decision

variables.

2. Both differential or difference equations and logical statements can describe the

behaviour of a microgrid system and its components. MILP approach can model

this effectively. It transforms Logical statements into mixed-integer linear con-

straints[24].

The reasons for using MPC are as follows:

1. It develops feedback mechanism, that makes system effectively robust to uncer-

tainties.

2. It is based on future behaviour of the system and predictions, which is important

as systems highly depend on demand and PV array generation forecast.

3. It can handle power system constraints.

Real world control problems are subject to various constraints. Some common con-

straints are cost constraints, capacity constraints and actuator constraints (amplitude

and slew rate limits). Several problems also impose constraints on state variables like

minimum tank levels, maximal pressures that cannot be exceeded etc. These constraints

may be ignored in some cases, at least in the initial design phase. But in some problems,

these constraints cannot be violated as the system operates near a constraint bound-

ary. Model Predictive Control is used to solve online optimal control problem. It uses

receding horizon approach which can be summarized in the following steps:

1. At time k and present state x(k), solve online open loop optimal problem is solved

over time interval taking into account current and future constraints

2. Implement first step of optimal control sequences
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3. Repeat the same at(k + 1)th time step using the present state x(k+1)

Model Predictive Control (MPC) uses an explicit dynamic model of the response of pro-

cess variables to change the manipulated variables into calculated control moves. Control

actions are such that it forces the process variables to follow a reference trajectory from

the current operating point to the set target point. Future control action are taken on the

basis of current measurements and future predictions. Optimal controller are designed

to minimise error from set point Basic version uses linear model, but there are many

possible models Corrections for unmeasured disturbances, model errors are included. It

uses both Single step and multi-step versions. It drives some output variables to their

optimal set points, while maintaining other outputs within specified ranges.Future val-

ues of output variables are predicted using a dynamic model of the process and present

measurements. Decision variables, u(k), at the k-th time step are calculated so that

they minimize objective function, J.Various Inequality constraints, and measured dis-

turbances are included in the control calculations. Let M be control horizon and P be

prediction horizon.At the k-th sampling instant, the values of the manipulated variables,

u, is calculated upto the next M sampling instants.This set of M control moves calcu-

lated so as to minimize the predicted deviations from the reference trajectory over the

next P sampling instants while satisfying the constraints.Usually an LP or QP problem

is solved at each sampling instant.Then the first u(k) is implemented and horizon is

shifted.An inportant property of MPC is that stability of the resultant feedback system

can be established. This is made possible because of the fact that the value function

of the optimal control problem behaves as a Lyapunov function for the closed loop sys-

tem. Usually the optimization problem is a convex problem due to the quadratic cost

and linear constraints. some standard numerical procedures like Quadratic Program-

ming algorithms are available to solve this problem.It can be observed that architecture

described here gives a form of an integral action. In particularYactual is taken to the

set-point Yset irrespective of the true plant description provided that a steady state is

reached and u is unconstrained.It calculates the disturbance by comparing the actual

controlled variable with the predicted ones. The flowchart is shown in fiig. The key

elements of MPC for are:

1. state space model

2. on-line state estimation

3. prediction of future states
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Figure 4.2: flowchart MPC

4. online optimization of future trajectory subject to constraints

The Islanded microgrid considered consist of:

1. Storage unit

2. Thermal Generator

3. Electric Load

4. Solar Panels as source of renewable energy

5. Transmission lines connecting them
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We use the Power nodes modelling framework[25]. The foundation of the Power Nodes

methodology is that any power sink or source connected to power system requires trans-

formation of some form of energy into electric energy or power, or vice versa. These

forms may be termed as supply-form or use-form of energy. It is necessary for us to fulfil

the power balance in the electric grid. Conceptualizing from physical characteristics and

the internal configuration of a use-process or supply- process that includes the associated

energy conversion, we represent it from a grid perspection as a one lumped unit with

specific parameters, a power node”.

In this exemplary case study, the microgrid operates in islanded mode. All energy

sources and sinks are represented as nodes. The microgrid model is shown in fig.8 Let

Figure 4.3: Microgrid Model

V be the set of nodes and E be the set of edges.

V =1, 2, 3....v and

E ⊆ V × V Let B be the node-edge incidence matrix with element bid = 1 if node i is

a source and bid = −1 if it act as sink. The power flow over the lines can be calculated

using Linearized DC power flow equations explained in [26].

Ptr = diag(yij)×B
′ × θ (4.1)

Where yij is the admittance of line connecting ith and jth node and θis the phase angle

matrix with dimension v × 1. The admittance matrix Y is generated using relation:

Y = B × diag(yij)×B
′

(4.2)
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We define another matrixPv with dimension v×1. It gives dc power between the nodes.

Ptr = diag(yij)×B
′ × T−1

∣∣∣∣∣∣ Y
−1
bar × Pvbar

θv

∣∣∣∣∣∣ (4.3)

Pvbar is (v − 1)× 1 Pvbar Is matrix obtained by eliminating last row from Pv.

Ybaris(v − 1)× (v − 1) Matrix obtained by modifying Y matrix.

T =

∣∣∣∣∣∣ I4×4 −14×1

01×4 1

∣∣∣∣∣∣ (4.4)

as the model that we considered consist of five nodes. Power flowing through trans-

mission lines can be calculated using equation 4.1 Now we define state variables of the

system. We have four parameters to consider. They are:

u(k) = (P
′
g(k), P

′
storage(k), P

′
ren(k))′

∆(k) = (∆
′
g,∆

′
s,∆

′
ren)

x(k) = Estorage(k)

w(k) = (w
′
load(k), w

′
ren(k))′

u(k) is a real valued input control variable that conducts economic dispatch for different

energy sources and ∆(k) is binary input variable which makes unit commitment deci-

sions.

w(k) Matrix comprises of forecasted load and solar energy data. All the disturbances

and fluctuations of solar power output are content in this matrix.

x(k) gives the energy stored in storage units at kth time instant

x(k + 1) = Ax(k) +B(u(k) +H(∆)w(k)) (4.5)

Using equation 4.5, we calculate the future value of energy stored in storage unit. We

define a virtual slack. The variation of load and solar infeed can be handled with the

concept of this slack. The storage unit and thermal generator share power among each

other according to their nominal rating. The power sharing occurs such that load is

satisfied fully[27]. The power balance is such that both the increase and decrease in

demand and renewable infeed is tackled by the vector H(∆).

H(∆) = −inv(P
′
nominal∆(k))× diag(Pnominal)∆(k)× ones(1× 2)

The total power of machine i is now u(k)+H(∆)w(k) where u(k) is the set point gen-

erated and H(∆)w(k) looks after power balance amidst the occurring variations. Now
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the power flowing between nodes is:

Pv =

∣∣∣∣∣∣∣∣∣
u(k) +H(∆)w(k)

w
′
load(k)

Pnode

∣∣∣∣∣∣∣∣∣
This equation is further used to calculate power flowing through the lines.

4.3 Problem Formulation

We define cost function that rewards renewable infeed and penalises thermal generation

over k time steps.

J(x, u, w) = ΣK−1
k=0 β

k(Pg(k)−Pren(k)+CT
tr |Ptr(k)|+CT

om∆(k)+CT
swt |∆(k)−∆(k − 1)|)

(4.6)

Subjected to constraints:

xmin ≤ x(k) ≥ xman

Pmin
tr ≤ Ptr(k) ≥ Pmax

tr

wmin ≤ w(k) ≥ wmax

Pnominal = (Pnom
g , Pnom

s , 0)

diag(umin∆(k)) ≤ u(k) +H(∆)w(k) ≥ diag(umax∆(k))

CT
tr |Ptr(k)| Represents cost for power transport.

CT
swt |∆(k)−∆(k − 1)| Represent switching costs. Start-up and shut down cost are

included in it.

CT
om∆(k) Represent operating and maintenance cost of running machines. The above

problem is formulated using Yalmip[28] in MATLAB and solved with CPLEX.
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Case study

The microgrid we consider is shown in Fig. 5.2; It is operating in islanded mode. The

sampling time is 1 hour with control horizon of 6 hour and Prediction horizon of 24

hour.

The exemplary microgrid consist of:

1. RES : A PV unit with maximum capacity of 2.5 KW.

2. Thermal generator : Maximum power of this generator is 2KW. It has both switch-

ing cost and operating and maintenance cost coefficients.

3. Storage unit: 1 battery storage unit of 2.5-kW maximum power capacity is used.

4. Loads: The forecasted day ahead data serve as load data with maximum consump-

tion around 4KW.

All the values were converted into pu system. Different cost coefficients are used in cost

optimization function. This parameters used in case study and their values are shown

in table 5.1.

Assumptions:

1. The hourly optimal plan is obtained by solving control optimization problem as-

suming no error in load forecast and PV array output forecast. Although hundred

percent forecast accuracy can never be acheived but it helps in formulating opti-

mal control plan for cost optimized economic dispatch of different resources in a

microgrid.

26
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Table 5.1: Parameters

Sr.
No

Parameter Value

1 Cswt 0.2×13

2 Com 0.1×13

3 Ctr 0.1×15

4 x0 0.2

2. The lower level controller controls voltage stability, power quality and frequency.

So we assume that low level controllers were availble and high level control only

deals with economic dispatch.

Solving optimization control problem

The OCP is a MILP problem. The branch-and-bound method are usually applied to

such problems. The problem is formulated using YALMIP toolbox in MATLAB and it

is solved using CPLEX 12.0

5.1 Results

Without a high level controller, the system is operated with only one aim of satisfying

the load demands. It sometimes take power from the source with high operating cost

rather than utilising a cheap available energy resource. Hence a high level controller is

imployed. Model predictive approach is used and MILP-MPC controller is implemented

to obtain the optimal solution for microgrid so as to reduce the running cost. The control

strategy used formulate an optimal plan of 24 hours based on predictions of day ahead

demand ,renewable power infeed and energy prices.

1. As the sampling time is 1 hour, the day ahead time varying load forecast data of

24 hours is sampled at sampling time of 1 hour. Fig 5.1 shows the day ahead load

forecast with upper and lower bounds.

2. Similarly PV array output is sampled with same sampling time and forecasted

lower and upper bounds are calculated. This bounds serve as constraints while

solving OCP. They are shown in fig 5.2

3. ∆(k) and u(k) are decision variable which makes the day ahead optimal control

plan. At the first kth time instance, both the decision variables are initialised with
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Figure 5.1: Load over time with predicted bounds

Figure 5.2: RES infeed over time

their current states. MPC-MILP based OCP is solved which generates the future

decision variables (u(k+1),u(k+2),......u(k+m)) (∆(k+1),∆(k+2), ......∆(k+m))

where m is control horizon.Only the first decision variable generated are imple-

mented and thereafter the horizon is shifted. At the next sampling instance, the

new state of the system is considered, and optimization problem is solved again

using this set of new information. using receding horizon approach, the generated

optimal plan can compensate for disturbances that have recently arised. The entire

process is repeated at (k + 1)th instance.

4. The solution of MPC-MILP problem generated hourly economic power dispatch

results. The optimal plan for thermal generator and storage unit is shown in fig
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5.3 and fig 5.4

Figure 5.3: Optimised control input for storage unit

Figure 5.4: Optimised control input for thermal generator

As from k=0 to 5 and k=19 to 23, RES infeed is zero. Hence storage unit and thermal

generator share the load on the basis of their nominal rating as decided by parameter

H(∆). From k=11 to 15 the storage unit is charged as RES infeed high and it supply

power to load.

As OCP aimed at reducing runnning cost, thermal generator was used only once in a

day k=19 to k=3 to reduce switching cost. Storage unit charged and discharged itself

throughout the day depending on RES infeed.
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5.2 Conclusion

This thesis proposed an MPC-MILP approach on modelling and optimization of an is-

landed microgrid. Mixed integer programming was used to model microgrid. Physical

constraints were imposed on optimal control problem using MILP. The solution of OCP

generated hourly economic dispatch plan for different energy sources in microgrid.The

receding horizon approach of MPC made the economic dispatch plan dynamic and self

correcting as it utilised both load and renewable energy forecast data. Machine learn-

ing techniques like SVM and ANN were used for forecasting. The proposed approach

was implemented on an exemplary microgrid and this scheme is able to economically

optimize microgrid operations. Unit commitment and economic dispatch decisions can

be satisfactorily made using this approach. The hourly optimal plan was obtained by

solving MPC based optimal control problem assuming no error in load forecast and PV

array output forecast and assuming the availability of low level controller.

5.3 Future work

Future work include uncertainty modelling so as to deal with problem of errors in fore-

casting data. Weather conditions may lead to generation reduced power from renewable

energy resources and this factors must be considered. Future work must also focus cost

optimization and power scheduling of various distributed energy resources connected

in grid connected mode of microgid. The cost function should encourage the use of

renewable sources of energy and must bring about energy optimization.



Bibliography

[1] P. Denholm, E. Ela, B. Kirby, and M. Milligan, “The role of energy storage with

renewable electricity generation,” IEEE Transactions on Power Delivery, vol. 28, no.

1, pp. 411-418, Jan 2013.

[2] A. Takeuchi, T. Hayashi, Y. Nozaki, and T. Shimakage, “Optimal scheduling using

metaheuristics for energy networks,” Smart Grid, IEEE Transactions on, vol. 3, pp.

968-974, 2012.

[3] G.-C. Liao, “Solve environmental economic dispatch of Smart MicroGrid containing

distributed generation systemUsing chaotic quantum genetic algorithm,” Interna-

tional Journal of Electrical Power Energy Systems, vol. 43, pp. 779-787, 2012 .

[4] P. Li, D. Xu, Z. Zhou, W.-J. Lee, and B. Zhao,“Stochastic Optimal Operation of

Microgrid Based on Chaotic Binary Particle Swarm Optimization” Smart Grid,

IEEE Transactions on, vol. 7, pp. 66-73, 2016..

[5] B. Otomega, A. Marinakis, M. Glavic, and T. Van Cutsem,“Model predictive control

to alleviate thermal overloads,” IEEE Transactions on Power Systems, vol. 22, pp.

1384-1385, 2007.

[6] A. Parisio, E. Rikos, and L. Glielmo, “A model predictive control approach to micro-

grid operation optimization,” Control Systems Technology, IEEE Transactions on,

vol. 22, pp. 1813-1827, 2014.

[7] P. Meibom, R. Barth, B. Hasche, H. Brand, C. Weber, and M. O’Malley, “Stochastic

optimization model to study the operational impacts of high wind penetrations in

Ireland,” Power Systems, IEEE Transactions on,vol. 26, pp. 1367-1379, 2011. A.

Parisio and L. Glielmo, “Stochastic model predictive control for economic/environ-

mental operation management of microgrids,”in Control Conference (ECC), 2013

European, 2013, pp. 2014-2019..

31



Bibliography 32

[8] C. Hans, P. Sopasakis, A. Bemporad, R. Jrg, and C. Reincke-Collon, “Scenario-Based

Model Predictive Operation Control of Islanded Microgrids,”2015.

[9] C. A. Hans, V. Nenchev, J. Raisch, and C. Reincke-Collon, “Minimax model predic-

tive operation control of microgrids,” 19th IFAC World Congress, 2014, pp. 10287-

10292.

[10] T. Wang, D. O’Neill, and H. Kamath, “Dynamic Control and Optimization of Dis-

tributed Energy Resources in a Microgrid,” Smart Grid, IEEE Transactions on,vol.

6, pp. 2884-2894, 2015.

[11] A. Hooshmand, H. A. Malki, and J. Mohammadpour, “Power flow management of

microgrid networks using model predictive control,” Computers Mathematics with

Applications,vol. 64, pp. 869-876, 2012.

[12] L. Xie and M. D. Ili, “Model predictive economic/environmental dispatch of power

systems with intermittent resources,” in Decision and Control and European Control

Conference (CDC-ECC), 2011 50th IEEE Conference on, 2011, pp. 5150-5157.

[13] P. Stluka, D. Godbole, and T. Samad,“Energy management for buildings and mi-

crogrids,” IEEE Transaction on power delivery, vol. 31, no. 1, pp. 1355-1367, Mar.

2016.

[14] J. Lopes, C. Moreira, and A. Madureira,”Defining control strategies for microgrids

islanded operation ‘” Power Systems, IEEE Transactions on,vol. 21, pp. 916-924,

2006.

[15] D. C. Park, M. El-Sharkawi, R. Marks, L. Atlas, and M. Damborg,”Electric load

forecasting using an artificial neural network ‘” Power Systems, IEEE Transactions

onvol. 6, pp. 442-449, 1991.

[16] W.-C. Hong,”Electric load forecasting by support vector model” Applied Mathe-

matical Modelling,vol. 33, pp. 2444-2454, 2009.

[17] J. Shi, W.-J. Lee, Y. Liu, Y. Yang, and P. Wang, ”Forecasting power output of

photovoltaic systems based on weather classification and support vector machines,”

Industry Applications, IEEE Transactions on,vol. 48, pp. 1064-1069, 2012.

[18] H.-T. Yang, C.-M. Huang, Y.-C. Huang, and Y.-S. Pai, ”A weather-based hybrid

method for 1-day ahead hourly forecasting of pv power output,”Sustainable Energy,

IEEE Transactions on, vol. 5, pp. 917-926, 2014.



Bibliography 33

[19] A. Parisio and L. Glielmo, ”Energy efficient microgrid management using model

predictive control,”in Decision and Control and European Control Conference (CDC-

ECC), 2011 50th IEEE Conference on,2011, pp. 5449-5454.

[20] A. Bemporad and M. Morari, ”Control of systems integrating logic, dynamics, and

constraints,”Automatica, vol. 35, pp. 407-427, 1999.

[21] K. Heussen, S. Koch, A. Ulbig, and G. O. Andersson, ”Energy storage in power

system operation: The power nodes modeling framework,” in Innovative Smart Grid

Technologies Conference Europe (ISGT Europe), 2010 IEEE PES, 2010, pp. 1-8.

[22] K. Purchala, L. Meeus, D. Van Dommelen, and R. Belmans, ”Usefulness of DC

power flow for active power flow analysis,”in Power Engineering Society General

Meeting, 2005. IEEE, 2005, pp. 454-459.

[23] A. Bemporad, F. Borrelli, and M. Morari, ”Min-max control of constrained uncer-

tain discrete-time linear systems,” Automatic Control, IEEE Transactions on, vol.

48, pp. 1600-1606, 2003.

[24] J. Lfberg, ”YALMIP: A toolbox for modeling and optimization in MATLAB,” in

Computer Aided Control Systems Design, 2004 IEEE International Symposium on,

2004, pp. 284-289.


	Candidate's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Notations
	1 Introduction
	1.1 Introduction to Microgrid 
	1.2 Optimal design and planning for Microgrid 
	1.3 Literature Survey
	1.4 Objectives
	1.5 Thesis Organisation

	2 SHORT TERM LOAD FORECASTING
	2.1 Introduction
	2.2 ANN Approach 
	2.3 SVM Approach
	2.4 Short term load forecasting using SVM
	2.5 Result

	3 PV ARRAY OUTPUT FORECAST
	3.1 Power output of PV Array
	3.2 Prediction of PV array output using ANN
	3.3 Result

	4 MODELLING OF MICROGRID
	4.1 Microgrid Control Structure 
	4.2 System Description and Modelling
	4.3 Problem Formulation

	5 Case study
	5.1 Results
	5.2 Conclusion
	5.3 Future work

	Bibliography

