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ABSTRACT 

 

Legged locomotion holds numerous advantage over wheeled one on rough terrain. But 

computational complexity and use of fix pattern of leg movement in classical control method 

severely reduces the advantage of legged locomotion. Recent research suggests that a movement 

is composed of few simpler sub-movements called movement primitives. Dynamic Movement 

Primitives, DMP is one of the many way of introducing the concept of movement primitive to 

robotics. 

Locomotion requires strong co-ordination within and between the legs, as well as 

continuous modulation of the trajectories. In this context, Dynamic Movement Primitive (DMP) 

provides one of the most powerful tool to represent and modulate a movement. In addition to that, 

different DMPs can be coupled together to achieve complex co-ordination. DMP encodes a 

trajectory in the form of a differential equation in phase space of the canonical system. Then these 

differential equations are integrated by a numerical integration method to reproduce the encoded 

trajectory. This work uses rhythmic DMP to produce locomotion in a virtual hexapod build in 

Matalb’s SimMechanics environment. Instead of using Receptive Field Weighted Regression 

(RFWR) as a function approximator, a neuro fuzzy inference system ELANFIS has been used. 

Use of ELANFIS in DMP’s framework has been given. Along with that a coupling architecture 

have been used to couple the canonical system, present in each leg, to achieve inter leg co-

ordination. To validate control mechanism Hexapod is trained to perform three gait pattern namely, 

Tripod, Ripple, Wave. In each experiment Hexapod is trained with a gait pattern and left alone to 

reproduce the learned gait.
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Chapter 1 

 

 

INTRODUCTION 

 

 

 

Locomotion in Robot can basically be divided into two types, wheels and legs. On flat 

surface wheel robot provides one the most energy efficient way of locomotion and they are 

very easy to control. But when it comes to uneven/rough surfaces they have given very less 

preferences as they require complete ground support throughout its path for locomotion and it 

can’t always be guaranteed on uneven surfaces. Whereas legged robot requires only a set of 

foothold positions, which gives it an upper edge.  

 Due to high maneuverability of legged robot it has widely been used in military 

mission, surveillance of hazardous environment (like some area of nuclear or chemical plant), 

civil projects (like inspection of tunnels/pipelines) etc. As the Robots more and more coming 

into the real world, working alongside with the Humans, they have to deal with the uncertain 

environment as we and other animals do. So, in the recent year research in the field of legged 

Robots gaining more and more importance. But, most of control technique that are used in 

legged robots have a fixed pattern of leg movement which will work well in some but not in 

all environments. So, by using a control strategy which has a fixed pattern of leg movement 

severely reduces the advantage of legged locomotion. In this chapter problem with the classical 

control technique has been discussed very briefly and a few modern controllers like Central 

Pattern Generator(CPG) and Movement Primitive have been analyzed. 

Classical control techniques plan a set of foot hold positions in cartesian co-ordinate and 

calculate the inverse kinematics to get the desired joint angles. Finding correct foot hold 

position is key to have a stable locomotion and this process is computationally very expensive. 

So the robot takes too much time to perform a cycle of locomotion, which we very unlikely see 

in animals. Along with that classical control technique requires a precise mechanical model. 

So if model changes, one need recalculate everything in order to able the new model to perform
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 locomotion. In other scenarios like, malfunctioning of legs/ joints or a leg stuck in an obstacle, 

then the complete control techniques fails. To take care of these situations programmer has to 

made contingency plans or robot has to recalculate all the trajectory as a part of contingency 

plan, which wastes a lot of computational resources. 

Most of the recent research suggests that locomotion control in animal is mostly 

feedforward where the spinal cord receives high level control signal from brain and modulate 

the firing patterns of its neurons to change locomotion pattern. Feedback from sensory organs 

and the necessary actions like reflexes are taken care of by other part of the brain. From the 

experiments of decerebrated cat and many other experiments neurobiologists suggest that 

rhythmic pattern such as locomotion are generated by central pattern generators (CPGs), a set 

of interconnected neurons whose output oscillate with certain frequency and amplitude, present 

in our spinal cord. Gaining support from these Neurobiological studies, a lot of research in the 

field of legged robot uses CPG based controller technique, which essentially a feedforward 

control technique, for locomotion. 

Various methods have been applied to model a CPG [2] starting from complex 

biophysical model to more simpler oscillator model.  Due to its simplicity Non-linear oscillator 

models are widely used by researchers to model a CPG. W.Chen et al.[3] have used hopf 

oscillator and first order low pass filter to generate different gaits in a hexapod robot. They 

have showed one of the simplest way to perform different gait pattern in the hexapod with the 

help of a simple oscillator and low pass filter. Each leg is represented by an oscillator which 

have sinusoidal dynamics. When amplitude of the oscillator exceeds the defined threshold 

value that corresponding leg is activated. Phase difference between the oscillator is maintained 

by the time constant parameter of the low pass filter. Dynamics of the low pass filter is designed 

in such a manner that it will only affect the phase of the oscillator not its amplitude. In[4] 

Katsuyoshi Tsujita et al. have used two controller, leg motion controller and gait pattern 

controller, to make the quadruped walk. Leg motion controller is a simple PD controller, 

whereas gait pattern controller takes care of gait pattern by modifying the phase of the leg. 

Each leg’s phase is modified by considering local sensor information. R. Campos et al.[5] have 

used a nonlinear hopf oscillator whose swing and stance time can independently be controlled. 

By varying a simple parameter phase and duty factor of each leg is varied and smooth transition 

between different gait has been achieved. C. Roghett & A. J. Isspeert in their work [6] have 

used a modified hopf oscillator and a coupling architecture( discussed in [6]) to model a CPG 

and interconnection between them. Then they have integrated sensory feedback from the local 

touch sensor to explicitly change the phase space of the oscillator, which prevents immature 

lifting of the legs. All the CPG models that have been discussed above numerically integrates 

the set of coupled differential equations, but Paolo Arena et al. have proposed a unconventional 

way of modeling a CPG that directly realized in analog circuits [7] called cellular neural 

network(CNN).  

Recent researches have been suggesting that complex movement seen in animals are 

composed of some elementary movements called movement primitive [2]. Like sentences are 

made from words and words from phonems, motor control in vertebrate and invertebrates are 

composed of simpler building blocks. These simpler blocks/motor primitives are bounded to 
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each other by some rules to form an action [8].  As discussed in [8], motor primitive can be 

kinematic, behavioral level as it can easily be observed in stroke patient, continuous movement 

is composed of simpler discrete sub-movements. And as the patient recovers number of sub-

movement decreases and overlapping between them increases, producing a smooth and 

continuous movement. Firing pattern of neurons can be observed as primitives at neural level 

as the arm motion can be reconstructed from studying the firing pattern of neuron in cerebral 

cortex. The concept of motor primitives have successfully applied to robotics by Ijspeert et al. 

[9]. 

Dynamic Movement Primitive, DMP provides one of the most powerful tool to 

represent and modulate a movement, where a movement is learned and represented in the form 

of a differential equation. The framework of DMP is motivated from the analogy that exist 

between control policies and dynamical system, i.e. both represents change in a state as a 

function of current state and encodes a desired goal in the form of an attractor. Working 

principle of DMP is very similar to the learning procedure of animals. We all learns new thing 

by observing a teacher. Similarly in DMP first a teacher teaches a robot certain task and then 

the robot is left alone to reproduce the learned task to different real world situations. While 

teaching, robot records all the kinematics variable of the motion and then uses a sophisticated 

non-linear approximation technique to learn those movements. Due to its simplicity its getting 

very popular in the field of robot learning. In their very beginning work [9] Ijspeert et al. have 

trained the robot to perform tennis fore hand and back hand swing to different ball positions. 

D. Pongas et al. [10] have taught the robot a complex drumming beat and by modulating the 

frequency of the canonical system with the external signal it synchronizes its drumming pattern 

according to the external rhythm generator. Apart from learning these simpler tasks, DMP 

along with RL have been used to train the robot to perform much more challenging tasks like, 

under actuated pendulum swing up and playing ball in a cup [11] etc. As described in [12] 

playing ball in a cup is one of the challenging motor task as the player has to move the cup 

sidewise to induce a motion in the ball then he has to toss the ball up and catch it in the cup. Its 

even more challenging in robotics due to requirement of precise co-ordination between 

multiple degrees of freedom. But DMP along with Policy learning by Weighting Exploration 

with the Returns (PoWER) able to perform this task whose efficiency roughly comparable to 

the efficiency of a teen ager. Another policy search technique called Policy Improvement with 

Path Integral (PI2)[13] had been integrated with DMP to perform jumping task in Boston 

Dynamics’s virtual little dog. It improves it’s jumping trajectory to overcome a gap without 

falling over.  

J. Nakanishi et al. [14] had proposed a framework for learning biped locomotion using 

DMP. In their work they had obtained the data during the walking of a robot and train the DMP 

to generate the same trajectory in joint space. With the help of phase resetting and frequency 

adaptation mechanism robot was able to walk on different surface with different frictional 

properties.  

 This work can be viewed as extension of  work done by J. Nakanishi et al. [15] [14] to 

hexapedal locomotion. Unlike the conventional DMP, where Receptive Field Weighted 

Regression (RFWR)[16] has been used to approximate the forcing function, this work uses 

Extreme Learning Adaptive Neuro-fuzzy Inference System (ELANFIS)[17]. RFWR has 

various advantage over ELANFIS like, dealing with bias-variance dilemma etc. but these 
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benefits comes at the cost of tuning few open parameters. Looking at the application of DMP 

in this work ELANFIS is preferred over RFWR as it has only one meta parameter, parameter 

which is given as input to the algorithm, to tune. In their work J. nakanishi et al. have used a 

canonical system per joint, but this work uses canonical system per leg, as it is adequate enough 
for performing locomotion and gives a compact representation of coupling. By using a 

canonical system per leg, intra-leg co-ordination has been taken care of by the canonical system 

itself and for inter-limb co-ordination results obtained in [1] has been used.  

To perform experimental work a virtual hexapod built in Matlab’s SimMechanics 

Environment has been used. Designed hexapod is able to perform three different gait pattern 

namely wave, ripple and tripod in independent experiments. Each leg is designed to follow an 

ellipsoid like trajectory in task space, which is then converted into joint space by applying 

inverse kinematics method. These data are then used to train the DMP. 

Following sections are designed as follows, in Section 2, a detailed description of 

SimMechanics and its different components have been given. Along with that a procedure to 

build a Hexapod model is described. Section 3 starts with a brief overview of DMP, specifically 

Rhythmic DMP, then use of ELANFIS in DMP’s structure is given and finally a coupling 

architecture is discussed to achieve inter and intra limb co-ordination. Complete experimental 

result can be found in section 4. And Section 5 ends this thesis with conclusions and possible 

works for future.
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Chapter 2 

 

 

HEXAPOD MODEL 

 

 

 

In order to perform experimental works a platform is used to build a legged robot, where 

1. Model can be built very easily. And at the same time that platform has to be widely 

accepted by the researcher to perform physical world simulation. 

2. Robot must be joint actuated, as our controller is generating joint trajectories.  

3. Programming on the platform must be programmer friendly and multiple controller can 

be easily integrated to the model. 

SimMechanics in MATLAB best fits to our requirement as it has following features. A multi 

body system can be built very easily by using existing library files. Programming in Matlab is 

very user convenient and robot models in SimMechanics are joint actuated. Instead of building 

a model one can also import a CAD model to its interface to perform experimental work. 

 Simmechanics is a multibody simulation environment in Matlab, where one can design 

the rigid body system and define motion between them with the help of existing library files. 

During simulation Simscape solves the equation of motion for complete mechanical model and 

show the simulated result in 3D GUI of Matlab. There are two versions of SimMechanics in 

Matlab, 1st generation, which is found prior to “R2012a” release version and 2nd generation, 

which has a very improved library and more powerful computational engine, found in latter 

releases. Compare to 1st generation, latest generation i.e. 2nd have various advantages 

 Movement of inertia of a body is calculated automatically from given geometry and 

mass
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 An advance visualization based on computer graphics, which doesn’t slow down 

simulation speed while animation is turned on. 

 Animation replay option is available. 

 Initial states can be defined in each joint blocks. 

During beginning of the thesis work, a Hexapod was build using SimMechanics 1st 

generation but due to its slower simulation speed and lack of ability to set initial joint targets 

2nd generation has been preferred. 2nd generation of SimMechanics provides complete different 

way of designing a model than its 1st generation. As discussed above, this work uses 2nd 

generation of Simmechanics to build a Hexapod, so next few paragraphs will only focus on 2nd 

generation. 

In Simmechanics one can very easily build a complex mechanical system by simply 

joining different predefined blocks. It is quite similar to assembling different parts while 

building mechanical structure in physical world. Each blocks in SimMechanics have some 

specific uses and according to the task it performs each have been categorized into different 

libraries. Few of them have been discussed bellow 

Body Element : This library contains different body blocks for representing a simpler rigid 

structure. “Solid” blocks serve as basic building blocks for designing a compound rigid 

structure. It can be used to represent a cylinder, brick, sphere or ellipsoid etc. and movement if 

inertia of each structure is calculated from it’s mass and geometry. “Inertia” block is used to 

add point mass with custom shape and center. 

Constraint : As the name suggests this library contain blocks to add angular or distance metric 

constraint between two rigid bodies. 

Force and Torque : Different blocks of this Library are used to provide internal/external 

torques/ forces to the attached frame.  

Frame and Transform : This library contains blocks to add or transform frames in a rigid 

body. “World Frame” is a unique motionless, right handed co-ordinate system, serves as base 

co-ordinate for any mechanical Model. “Rigid Transform” blocks can be used define rotational 

and translational transformation between two frames independently. 

Joint : It contains all sort of joint that are used in mechanical structure, starting from 

immovable “weld” joint to completely freely movable “6-DOF” joint. Each and every joint 

block performs only one task i.e. it defines the motion between two rigid bodies. For example, 

“ Revolute” joint block allows motion around “z-axis” only. 

By joining different blocks in a specific manner any mechanical model can be build. In the next 

section, building of single leg of the hexapod has been described and then this work has been 

extended to build a complete Hexapod model. 

 

2.1  Building of Hexapod in SimMechanics 

In order to familiar to with different blocks of SimMechanics, first single leg of 

Hexapod has been build. Then it is extended to build a complete Hexapod. Hexapod model 

consists of leg subsystems, a body and a ground subsystem (Fig. 2.1).  There are six leg 
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subsystem represented by their type. Each leg subsystem block receives the joint angle 

command form the controller and the reference co-ordinate frame from the body subsystem. 

State of each joint is taken as output from the system and given to the continuous trajectory 

generator block discussed in section 4.1. Body subsystem outputs the co-ordinate frame to 

attach legs. 

 

Fig. 2.1   Complete Hexapod model showing Ground, Leg and Body subsystems. 

 

2.1.1 Building Single Leg 

Each leg of Hexapod is having 2DOF per leg. So, the properties like, mass, dimension 

etc. of thigh and shank are defined inside the solid block named “Thigh” and “Shank” (given 

in Table 2.1). Then these two blocks are connected together through a revolute joint “Knee 

joint”. It should be noted that revolute joint is a 1DOF joint, which allows movement around 

its z-axis only. So “Rigid transform” blocks are used to set the co-ordinate frame in such a 

manner that, thigh and shank move in a desired manner. Internal dynamics of each joint is set 

to zero and initial joint target is set according to current locomotion pattern. Each leg is 

connected to the body subsystem through “ HIP joint”. “PS-converter” blocks are used convert 

Physical signal to Simulink input signal and vice-versa. PD controller is used track the joint 

angle command coming from the controller.
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Fig. 2.2  Single Leg model in SimMechanics 

 

2.1.2 Building Complete Hexapod Model 

As shown in Fig 2.5, complete hexapod model consists of three subsystem namely Leg, 

Body and Ground. Details about Leg subsystem is given above and it is worth noting that legs 

on each side of the body ( i.e. all Right/Left legs ) are identical to each other but some 

dissimilarity exist between the legs on opposite side of the body(i.e. between left and right leg). 

So leg model for both side are designed separately. Body subsystem ( Fig. 2.3 ) consists of a 

“solid” blocks, specifying the body parameters( Table 2.1) and “Rigid Transform” blocks to 

specify the co-ordinate frame to connect legs. And each leg is connected to the body through a 

revolute joint. Design of hexapod model completes with ground subsystem( Fig. 2.4), which 

essentially a solid block with infinite mass and dimension. Body subsystem connected to the 

ground Subsystem through a “6-DOF joint”. 

 

Fig. 2.3   SimMechanics model for Body Subsystem 
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Fig 2.4  SimMechanics model for Ground Subsystem 

 Mass 
(Kg) 

Length 

(m.) 

Width 

(m.) 

Thickness 

(m.) 

Body         2      0.5        0.3      0.05 

Thigh        0.5      0.15        0.01      0.001 

Shank        0.5      0.15        0.01      0.001 

Table 2.1  Different parameters of Leg and Body of Hexapod 

 

Fig. 2.5 Figure of Virtual Hexapod model build in SimMechanics II
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One of the demerits of building a robot in SimMechanics is that, it doesn’t allow the detection 

of collision between two rigid bodies. That means, two rigid bodies will pass through each 

other without colliding. Which is happened in this case, leg of hexapod instead of colliding 

with the ground, passes through it. In order to keep the legs above the ground or make the 

Hexapod walk another subsystem has been developed, called GRF (Ground Reaction Force) 

subsystem. 

 

2.2   GRF Model 

A spring-damper system between leg touchdown point and leg is used to model the 

GRF (Fig 2.7). When a leg tries to penetrate through the ground, a virtual spring-damper 

system present on the surface of the ground provides the necessary reaction force to prevent 

penetration. In a similar manner another spring damper model is used to provide the force in 

horizontal direction, which serves as frictional force. Below equations describes the frictional 

force(𝐹𝑥 ) and ground reaction forces(𝐹𝑦 )  

𝐹𝑥 = −𝐾𝑥(𝑥 − 𝑥0) − 𝑏𝑥(�̇� − 𝑥0̇)     in contact with ground 

      = 0       not in contact with ground 

𝐹𝑦 = −𝐾𝑦𝑦 − 𝑏𝑦�̇�       in contact with ground 

      = 0       not in contact with ground 

𝐾𝑥, 𝐾𝑦, 𝑏𝑥, 𝑏𝑦 are the spring and damper constant in ‘x’ and ‘y’ direction respectively. 𝑥0 is 

the leg touch down point on x- axis. And for y-axis, 𝑦0 is considered 0. 𝑥0̇ is the touchdown 

velocity in x-direction. 𝑥 and  𝑦 are current position of end effector of the leg. 

 While implementing in Simulink, a sensor block is used to sense leg’s x and y position 

and velocity. Whenever y position of a leg falls bellow zero, indicating leg in contact with the 

ground. At that moment x-position and velocity are stored and necessary reaction and  frictional 

force is applied to the leg. Model generating frictional force is shown in the figure bellow. 

 

Fig. 2.6  Block diagram showing generation of frictional force 
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Figure 2.7 shows the contact modeling with spring damper system in both horizontal and 

vertical direction. Values of spring and damper constant are given in Table 2.2. Finding right 

value for the spring damper is one the challenging task, because smaller the value more the leg 

penetrates into the ground. And for higher value, above differential equation becomes very stiff 

and Matlab solver takes too much time to solve it. As the designed controller is completely 

open loop a few hundred change in parameters value( given in Table 2.2), Hexapod will behave 

in a complete different manner. 

 

Fig. 2.7  Force exerted by spring, damper system on a leg during contact with the ground. 

 

 Spring  Damper 

Horizontal 2130 1056 

Vertical 3910 2745 

 

Table 2.2  Value of Spring and Damper constant for both Horizontal and Vertical force
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Chapter 3 

 

 

LEARNING LOCOMOTION USING DMP 

 

 

 

Recent researches have suggested that, complex movement seen in animals are 

composed of some elementary movements called movement primitive [2]. Like sentences are 

made from words and words from phonems, motor control in vertebrate and invertebrates are 

composed of simpler building blocks. These simpler blocks/motor primitives are bounded to 

each other by some rules to form an action [8]. 

 As discussed in [8], motor primitive can be kinematic, at behavioral level, as it can 

easily be observed in stroke patient that continuous movement is composed of simpler discrete 

sub-movements. And as the patient recovers number of sub-movement decreases and 

overlapping between them increases, producing a smooth and continuous movement. Firing 

pattern of neurons can be observed as primitives at neural level as the arm motion can be 

reconstructed from studying the firing pattern of neuron in cerebral cortex. 

 The concept of motor primitives have successfully been applied to robotics by Ijspeert 

et al.[9], where a dynamical system is used to encode a trajectory. Discrete movements are 

encoded through a point attractor dynamics whereas oscillator are used for rhythmic 

movement. As the locomotion is a rhythmic task in the next section discusses only about 

rhythmic DMP. 

This chapter organized as follows, first a brief discussion about the structure and 

learning procedure of rhythmic DMP is given. Then the use of ELANFIS as function 

approximator in DMP’s framework has been discussed. And in the end a coupling architecture 

is given, which plays a vital role in inter limb co-ordination. 
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3.1  Rhythmic DMP 

 DMP [9] is a trajectory encoding scheme, where trajectories are encoded in the form of 

a non-linear differential equation. Representation of DMP is motivated from the analogy that 

exist between control policies and dynamical system, i.e. both represents change in a state as a 

function of current state and both encodes a desired goal in the form of an attractor.  

A simple 2nd order linear dynamical system represented by the equation �̈� = 𝑐1�̇� +

𝑐2(𝑔 − 𝑦) is sufficient to represent a movement. where 𝑦  represents angular position,  �̇� 

velocity and �̈� acceleration. Solving the above DE for appropriate value of 𝑐1and 𝑐2 , a 

monotonically increasing 𝑦 starting from any desired position 𝑦0 to goal/attractor 𝑔 can be 

obtained (Figure 3.1). if we add some non-linear term to the above DE a complex trajectory 

(as shown in the Figure 3.2) can be created. 

  

Fig 3.1 : Plot of 𝑦 for a critically damped system starting from 𝑦0 =1 to goal 𝑔 = 5 

 

 

Fig 3.2 : Solution of differential equation after adding some Non-linear term 

 In the original frame work [9], DMP consists of two 2nd order differential equation, a 

transformation system and a canonical system. In a very generalized form both the equations 

are given bellow 

�̈� = ℎ(𝑦, �̇�, 𝑥, 𝑤)           3.1 

�̈� = 𝑔(𝑥, �̇�)            3.2 



3 Learning Locomotion using DMP  Page 16 

 

In the transformation system (Eq. 3.1),  𝑤 is a parameter vector, which shapes y’s trajectory to 

any desired complex shape and it is the parameter which is learned by the function 

approximator. And job of the canonical system (Eq. 3.2) to make transformation system time-

independent. Time invariance property is highly desirable as one can couple different canonical 

system together to achieve desired co-ordination between the transformation system. In their 

original work[9], a 2nd order dynamical system has been proposed for canonical system but in 

the later research it had been suggested that a 1st order system is sufficient to represent it. 

In this thesis the convention used in [18] is followed. A movement in one dimension 

can be obtained by integrating following set of differential equation, known as transformation 

system. 

𝜏�̇� =  𝛼𝑧(𝛽𝑧(𝑦0 − 𝑦) − 𝑧) + 𝑓                                  3.3 

𝜏�̇� = 𝑧                                                                          3.4  

Where the variables y, z, 𝑧 ̇ represents position, velocity and acceleration of the movement 

respectively, τ is the temporal scaling factor, 𝛼𝑧, 𝛽𝑧 are constants which determines damping 

of the above system, 𝑦0 represents the base-line of oscillation and 𝑓 is a non-linear forcing 

function, which makes the above system to represent any complex trajectory. This forcing 

function is learned with the help of a function approximator ( ELANFIS, in this case. See 

section 3.2). Basis functions of these function approximator are made dependent on the solution 

of another differential equation, canonical system. A simple phase oscillator(Eq. 3.5) is most 

commonly used as canonical system in rhythmic DMP. 

𝜏ɸ̇ = 1            3.5 

Where ɸ is the phase of oscillator, ɸ є [ 0,2π ]. Amplitude of oscillation is assumed as one in 

this work. 

Working principle of DMP is very similar to the learning procedure of animals. We all 

learns new thing by observing a teacher. Similarly, in DMP first a teacher teaches a robot 

certain task and then the robot is left alone to reproduce the learned task to different real world 

situations. The next section discuses, how DMP learns and reproduce a trajectory. And finally 

different distinguishing characteristics of DMP which makes him popular in the field of 

trajectory learning are given. 

 

3.1.1 Learning a Movement 

 One of the distinguishing characteristic of DMP is that, it can learn from a single 

demonstration. During demonstration of a teacher, all the kinematics variables like joint angle, 

velocity and acceleration of the movements are recorded and latter they are used to train the 

DMP. There are several ways one can get these data for training, In various experiment authors 

have used different methods to get this information. For e.g. learning a tennis swing [9] or 

performing ball in a cup experiment [19] they have used sense suit to record the trajectory, but 

for same ball in a cup experiment[11] trajectory has been recorded by taking it robot in hand. 

For some cases where Human and Machine interaction is not that straight forward ( like
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 generating swing and stance data for legged robot) one can give this initial knowledge in hand 

coded form[20]. In this thesis for locomotion task, each leg of the robot is made to follow an 

ellipsoid trajectory in the task space ( see figure 4.2) and with the help of inverse kinematics 

these trajectories are transformed into joint space (see section 4.2 for more details) to obtained 

the data for training. 

 These data are then used in the following equation to generate target for function 

approximator 

𝑓𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜏2�̈�𝑑𝑒𝑚𝑜 − 𝛼𝑧(𝛽𝑧(𝑔 − 𝑦𝑑𝑒𝑚𝑜) − 𝜏�̇�𝑑𝑒𝑚𝑜)      3.6 

Where 𝑦𝑑𝑒𝑚𝑜, �̇�𝑑𝑒𝑚𝑜, �̈�𝑑𝑒𝑚𝑜 are the recorded joint angle, velocity and acceleration 

respectively. 𝑓𝑡𝑎𝑟𝑔𝑒𝑡 is the target forcing function which has to be learned with the help of a 

statistical learning rule and input to these function approximators are obtained by integrating 

the canonical system(Eqn. 3.5). In this work ELANFIS has been used as function approximator 

to approximate the nonlinear forcing function. More details about ELANFIS and its use in 

DMP has been given in section 3.2. 

 

3.1.2 Reproducing the Learned movement 

Learned parameters of the function approximator are used approximate the forcing function, 

which is then added to the Transformation system to shape the trajectory and the solution of 

canonical system drives the function approximator. In order to reproduce the learned movement 

both Transformation System and Canonical System are numerically integrated. And by varying 

the high level parameters ( e.g. τ, 𝑦0 etc ) one can change the behavior of the task in a particular 

context.  

 

3.1.3 Distinguishing Characteristics of DMP 

Few of the distinguishing characteristics which makes DMP very popular among the 

robotics researchers are given bellow  

 Co-ordination in Multi DOF : In multi DOF robot, a transformation system is 

used to represent each DOF and a canonical system is shared between them to 

achieve co-ordination. Even coupling among the canonical systems are used 

achieve co-ordination between them. 

 Learning complex task : it can very easily be integrated with RL( Reinforcement 

Learning ) technique to learn very complex motor task. 

 Movement recognition : with the help of RFWR, DMP can be used to recognize a 

movement. This can be done by comparing weights of function approximator of 

two movements. 
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3.2  Use of ELANFIS in DMP 

Receptive field weighted regression(RFWR) is the most popular choice for function 

approximator in DMP’s framework. This is due to it’s fast learning algorithm and ability to 

achieve stable parametrization. Fast learning procedure is highly desirable as the robot has to 

modify its trajectory online to different real world situations. Having a stable parametrization 

comes handy while recognizing a movement like hand written recognition. As different kernels 

are learned independent of each other for a particular task/trajectory weights of linear models 

are stable and invariant to change in high level parameters like 𝜏, 𝑔, r etc., where each of them 

is having their usual meaning in DMP.  

 As described in [18], one can made any changes to DMP unless and until it is not 

disturbing its basic design principle. i.e. A canonical system, which should generate the 

necessary phase to avoid explicit time dependency. A dynamical system as Transformation 

System, whose stability can be easily analyzed when exited with non-linear forcing function. 

And a function approximator, to learn the non-linear forcing function. Few of the striking 

feature of RFWR which makes it popular in DMP’s framework are its fast learning method and 

ability to add and modify receptive fields whenever required. These flexibilities come at the 

cost of tuning few open loop parameters like, threshold for adding or removing receptive fields, 

first or second order learning rates etc. This work, with the help of ELANFIS, reduces these 

open parameters which is very convenient from function approximation point of view. Like 

RFWR, ELANFIS has very fast learning algorithm but it lacks in the ability of 

adding/removing the receptive fields. These addition and/or modification of receptive fields 

plays a key role while recognizing a movement as parameters of the receptive field remains 

constant for a particular task [18]. Movement recognition is very useful while identifying hand 

written characters [18], but certainly a redundant advantage while performing locomotion. 

Looking into these facts, this work uses ELANFIS, which essentially have only one open 

parameter i.e. number of hidden neurons. ElANFIS also has one shot learning algorithm which 

makes him equally applicable for online learning. 

 

3.2.1 ELANFIS 

ELANFIS[17] is a neuro fuzzy learning machine which combines the structure of 

ANFIS[21] and the learning mechanism of ELM[22]. It overcomes the drawback of ELM and 

ANFIS. By adopting sugeno type fuzzy system it overcomes the randomness associated with 

the ELM strategy and the Computational complexity of ANFIS is hugely reduced by using 

ELM like learning method.  

 As shown in the figure 3.3 ELANFIS has same structure as that of ANFIS. Given figure 

shows the structure for two inputs and each input is having two membership functions. To 

understand the figure clearly a sugeno type two rules are given bellow 

𝑖𝑓 𝑋 𝑖𝑠 𝐴1𝑎𝑛𝑑 𝑌 𝑖𝑠 𝐵1  𝑡ℎ𝑒𝑛  𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

𝑖𝑓 𝑋 𝑖𝑠 𝐴2𝑎𝑛𝑑 𝑌 𝑖𝑠 𝐵2  𝑡ℎ𝑒𝑛  𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

First part of the rule (before ‘then’) is represented in the top part of the figure called the Premise 

part and the bottom part of the figure represents the consequent part of the rule. 𝐴1, 𝐴2 and 
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𝐵1, 𝐵2 are the fuzzy membership functions. Most common choice for the membership function 

is ball shape function given as, 

µ(𝑥) =  1

1 + (
𝑥− 𝑐𝑖

𝑎𝑖
)
2𝑏𝑖⁄   

where 𝑐𝑖, 𝑎𝑖, 𝑏𝑖 are the center and shape deciding parameters. Involvement of input ‘X’ and 

‘Y’ to these membership function is given by µ(x) and µ(y) called the membership grades. 

Firing strength of the fuzzy rule is calculated by multiplying (while finding T-norm) the 

membership grades of the inputs, which is done in the second layer of the premise part of the 

figure. Apart from finding the T-norm two membership grades can be ‘OR’ed together to find 

the firing strength. The firing strength 𝑤𝑖 of the fuzzy rule is given as 

𝑤𝑖 = µ𝐴𝑖
(𝑥) ∗ µ𝑩𝑖

(𝑦)          3.7 

Then these firing strengths are normalized and multiplied with the consequent part of the rule. 

Parameters of the consequent part i.e. p,q,r are learned with by using least square estimation 

method. Second layer of the consequent part in the figure 3.3 finds the final output as  

𝑡 =  ∑𝑤𝑖̅̅ ̅ 𝑥𝑖              3.8 

 

Fig. 3.3  Structure of ELANFIS[17] 

 In ELANFIS parameters of the fuzzy membership function i.e. for bell shape 

membership function center and width , are kept constant, Which hugely reduces the 

computational complexity of ELANFIS as they doesn’t have to be calculated by 
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computationally expensive gradient descent method.  For given input normalized firing 

strength is calculated from randomly chosen premise parameter. Then the consequent 

parameters are found out by applying Moore-penrose pseudoinverse. It had successfully been 

applied to control the height of water in a conical tank with the help of inverse control and 

model predictive control mechanism. 

 

3.2.2 ELANFIS in DMP 

As one can observe that phase of the canonical system (Eqn. 3.5) has a linearly increasing 

dynamics. In order to produce rhythmic behavior basis function has to repeat itself after certain 

interval. So von mises basis function (Eqn. 3.9) is used, which is essentially a periodic Gaussian 

function  

𝛹𝑖 = exp ( ℎ𝑖(cos(𝛷 − 𝑐𝑖) − 1))        3.9 

ℎ𝑖 and 𝑐𝑖 are the width and center of the 𝑖𝑡ℎ basis function. Presence of cosine function makes 

it repeat after 2π interval. Fig bellow shows the plot of different variable of rhythmic Dynamic 

System. 

 

Fig. 3.4 Time evolution of joint position(1.a), velocity(1.b) and acceleration(1.c). 2.a shows 

the solution of phase dynamics. 2.b plots of basis function with respect to time(10 basis 

function per period)  

Solution of the canonical system is given i/p to the function approximator and the target is 

generated after putting the necessary data in the Eqn. 3.6. After training, learned consequent 

parameters are used at the time of reproducing the movement. 



3.3 Inter and Intra limb Co-ordination  Page 21 

 

 

3.3  Inter and Intra limb Co-ordination 

Till now trajectory generation for a single joint or a DOF has been discussed. In order 

to produce co-ordination between different DOF, each DOF has to couple to each other. Co-

ordination between the DOF is highly necessary in order to perform a specific task. Taking the 

example of locomotion task, each joint with in a leg and each leg with in themselves have to 

co-ordinate with each other to perform stable locomotion.  

 Unlike [15], where a canonical system per joint has been used, this work uses a 

canonical system per leg. This representation has couple of benefits, First, it reduces number 

of coupling term from 12( as Hexapod is having 2DOF per leg ) to 6 and gives a compact 

representation of phase Dynamics. Second, it gives one the better way to achieve inter and intra 

limb coordination. As shown in the figure bellow, trajectory of each joint is taken care of by 

the Transformation system and by sharing a canonical system between two (in this case) 

transformation system intra limb co-ordination has been achieved. For inter limb co-ordination, 

the coupling architecture discussed in [1] has been used. 

 

Fig. 3.5  Coupling Architecture to achieve Intra-limb co-ordination. 

 In order to perform a particular gait pattern each leg has to maintain certain phase 

difference with other. Canonical system which represents the phase of a leg has to coupled with 

other canonical systems in a such a manner that, certain desired phase difference among them 

can be maintained. In [1] E. Klavins et al. have proposed a framework in which two oscillatory 

systems can achieve in phase and out phase relationship depending on the connection specified 

between them.  

 A potential energy function ‘𝑉’(Eqn. 3.10) is defined on the phase difference in such a 

manner that, it has unique minima at π. 

𝑉 = cos (𝛷1 − 𝛷2)                   3.10 

Then the phase dynamics/ reference field is added with -ve gradient of the energy function. 

This  -ve gradient term drifts phase to its stable unique minima. The oscillator dynamics after 

adding with -ve gradient term is given in Eqn  3.11 

ɸ̇𝑖 = 𝑘1 − 𝑘2  ∑ 𝑐𝑖,𝑗  sin (𝑛
𝑗=1 𝛷𝑖 − 𝛷𝑗)                 3.11 

Where 𝑘1 is the natural frequency of the oscillator, 𝑘2 is the gradient constant determines the 

rate of convergence of stable limit cycle. 𝑐𝑖,𝑗 is the coupling matrix, which defines phase 
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relationship between two oscillators. If 𝑐𝑖,𝑗 is set to ‘1’ then the oscillator ‘i’ and ‘j’ are in 

phase, if set to ‘-1’ then they are out of phase and ‘0’ indicates no coupling. Phase dynamics 

of the canonical system is added with the -ve gradient term, which dives the complete 

dynamical system to have a stable limit cycle defined by the coupling matrix. Details about the 

coupling matrix and desired phase difference to achieve different gait pattern is given in 

Section 4.
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Chapter 4 

 

 

EXPERIMENTAL RESULT 

 

 

 

In order to validate the control architecture discussed in chapter 3, a virtual hexapod build in 

Matlab’s Simulink environment has been used. But model development discussed in chapter 

2 is not sufficient to perform experimental work. So, few additional blocks are designed 

which has been discussed in this chapter. Section 4.1 discusses about generation of smooth 

joint trajectory from discrete joint angle command by using cubic spline method. Procedure 

adapted to generate joint trajectory data for different locomotion pattern has been discussed 

in section 4.2. Section 4.3 concludes this chapter with discussion about the experimental 

work. 

 

4.1   Experimental Setup 

In chapter 2 building of a Hexapod model along with ground and necessary ground reaction 

force has been discussed. In order to use the developed model in experiment a lower level 

controller has been developed. This is due to, DMP acts as a higher level controller and 

generates the necessary joint angle command, so system requires a lower level controller to 

keep track of these commands. In this work computed torque control technique [23] has been 

used as lower level controller. 

DMP controller generates joint angle command at a rate of 100 samples per second. When 

these discrete angle commands are given to the Hexapod model, the “ode solver” of Matlab 

takes too much time to solve the dynamics of the model. In order to overcome this problem 

these discrete joint angle commands are made continuous with the help of cubic spline 

interpolation method[24].  
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There are several smooth function which can join initial joint angle θ(𝑡0) to the final joint 

angle θ(𝑡𝑓), cubic spline is one of the simplest way to do that. In this method joint angle is 

represented with 3rd order polynomial of time given in Eqn 4.1 

𝜃(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 + 𝑎3𝑡

3
        4.1 

Taking the derivative of the above equation and putting the initial conditions values, the above 

four coefficient can be determined. 

�̇�(𝑡) =  𝑎1 +  2𝑎2𝑡 +  3𝑎3𝑡
2

            4.2 

These initial conditions i.e. initial and final joint angles and joint velocities are obtained from 

system and controller respectively. Joint angle and velocity of each joint of the system are 

sampled and used as initial joint angle θ(𝑡0)  and velocity 𝜃(𝑡0)̇ . Final joint joint angle θ(𝑡𝑓)  

and velocity 𝜃(𝑡𝑓)̇  are given by the controller. For simplicity this work assumes initial and final 

velocity as zero. Fig 4.1 shows the Matlab implementation of cubic spline method. 

 

 

Fig. 4.1  Cubic spline interpolation method developed in Matlab to generate continuous trajectory 

 

4.2  Generation of joint trajectory Data 

Generating training data is one of the vital part while designing a controller using DMP. 

As discussed in chapter 3.2, various method has been used to train a DMP. Overall what is 

common to all these approach is that, they all are recording kinematics parameters of the 

movement. In this work, end effector of the leg has been made to follow the trajectory as shown 

in the figure 4.2. The ‘x’ and ‘y’ co-ordinates of the end effector have been obtained as given 

below 

𝑥 = 𝐴𝑐𝑜𝑠ɸ         (0 ≤ ɸ < 2π ) 

𝑦 = 𝐵𝑠𝑖𝑛ɸ          (0 ≤ ɸ < π ) 

𝑦 = 𝐵′𝑠𝑖𝑛ɸ          (π ≤ ɸ < 2π ) 

Where A, B, 𝐵′  are positive constant which take care of stride length and height of the 

trajectory respectively. Trajectory in the task space have been converted into joint space with 

the help of inverse kinematics. And as discussed in the section 3.2, these joint trajectories are 

used to train the DMP.  
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Fig. 4.2  Trajectory followed by a leg while performing locomotion 

 Geometrical approach for finding the inverse kinematics has been used. As the leg is 

planar, one can apply plane geometry to find the solution. As shown in the figure 4.3, 𝜃1 and 

 𝜃2 are the hip and knee angle respectively which has to be found out from x and y co-ordinate 

of the leg. From figure 4.3 it is clear that  

ɸ = 𝑡𝑎𝑛−1(𝑥 𝑦⁄ )          4.3 

and 𝜃2 =  𝛾 −  ɸ + 900 − 𝜃1         4.4 

applying law of cosine to ΔABC  

𝛾 =  𝑐𝑜𝑠−1(𝑙2 √𝑙1
2 + 𝑙2

2⁄ )         4.5 

and  𝜃1 = 900 - ɸ - 𝑐𝑜𝑠−1(𝑙1 √𝑙1
2 + 𝑙2

2⁄ )        4.6 

putting the values obtained from equation 4.3,4.5,4.6 in equation 4.4, 𝜃2 can be found out. 

 

Fig. 4.3  Different parameters of Inverse kinematics 

 This work is intended to make the hexapod walk with three different gait patterns 

namely Wave, Ripple and Tripod. And it has been achieved by training DMP with different 

trajectories(shown in figure 4.4, a pair of trajectories for each gait). The only parameter which 

distinguishes different gaits is the duty factor, ratio of legs stance period to total cycle period. 

Tripod have lowest duty factor of 0.5, for ripple it increases to ¾ and for wave gait it is 5/6.
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Fig. 4.4  Joint angle trajectory of Hip and Knee for Wave (Top), Ripple (middle) and Tripod(bottom)  

 

4.3  Experiments 

Each gait patterns are learned and reproduced by Hexapod independently. Learned 

parameters of ELANFIS are used approximate the forcing function. Transformation system 

augmented with these forcing function are integrated with the help of semi-implicit euler 

method to reproduce the learned trajectory. This integration is purely discrete in nature and 

trajectory samples are generated at the rate of 100 samples per second. These discrete samples 

are interpolated with the help of cubic spline interpolation to generate continuous like 

trajectory. And finally a PD controller is used to keep track of these commands.  
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Animals in nature produces very diverse gait pattern, for instance, insects have tripod, 

tetrapod, wave, transition gaits etc. Apart from these regular gaits, hexapod is found with some 

other irregular gaits[25] which is described as due to the probing behavior of front leg. Due to 

existence of complexity in analyzing these gait pattern, it attracted considerable amount of 

research. Various coupling methods has been proposed to model these behaviors. In this work, 

a very simple rule described in[3] has been followed. i.e. legs on ipsilateral side are always in 

phase, while legs on contralateral side of same segment of the body are out of phase with each 

other. For instance, fore right leg is in phase with middle right leg and hind right leg, but it is 

180º out of phase with fore left leg. 

This coupling architecture has been achieved with the help of the framework discussed 

in[1](and briefly in section 3.3 of this thesis). By specifying values of coupling parameters to 

‘1’ or ‘-1’, two oscillators can be made in phase or out of phase. Phase of each leg is represented 

by a simple uncoupled phase oscillator (Eqn. 4.6). Then these oscillators are coupled with the 

-ve gradient term as given in Eqn. 4.7. Here the subscript ‘i’ represents the leg number. And 

the hexapod legs are numbered in such a fashion that leg number increases from front to 

back while starting from fore left i.e., 1 correspond to fore left leg, 2 for middle left etc. 

𝜏ɸ̇ = 1                        4.6 

ɸ̇𝑖 =
1

𝜏
−  𝑘 ∑ 𝑐𝑖,𝑗  sin (ɸ𝑖

6
𝑗=1 − ɸ𝑗)           4.7 

‘c’ is the coupling matrix, which defines phase relationship between two oscillator and is given 

in Eqn. 4.8. Each row and column represents the corresponding leg number. There is no self-

coupling exist between a oscillator so, all the diagonal element of the coupling matrix are set 

to zero. 

𝑐 =  

[
 
 
 
 
 

0 1 1 −1 −1 −1
1 0 1 −1 −1 −1
1 1 0 −1 −1 −1

−1 −1 −1 0 1 1
−1 −1 −1 1 0 1
−1 −1 −1 1 1 0 ]

 
 
 
 
 

           4.8 

 As discussed coupling helps in achieving only 00 or 1800. But in order to perform 

different gait pattern, each oscillator has to attain certain phase difference other than  00 or 

1800.  This has been achieved by creating a pseudo phase variable 𝛷′ given in eqn. bellow 

𝛷′ =  𝛷 +  𝛼             4.9 

Now this 𝛷′ is added to the phase dynamics in place of Φ, so Eqn. 4.7 modifies to 

ɸ̇𝑖 =
1

𝜏
−  𝑘 ∑ 𝑐𝑖,𝑗  sin (6

𝑗=1 ɸ𝑖
′ − ɸ𝑗

′ )                   4.10 

When Φ = 𝛷′, all the phase variable behave according to they have coupled i.e. 𝛷1, 𝛷2, 𝛷3 and 

𝛷4, 𝛷5, 𝛷6 forms two group, all the oscillator inside a group are in phase with each other but, 

they are out of phase with the oscillator outside of the group as shown in the figure 4.5(before 

10 sec.). At the moment some α is added(at t=10sec.), that particular pseudo phase 

variable(𝛷2
′ in this case) suddenly shifts from stable phase to a unstable one. According to the 

designed dynamics negative gradient term will try to bring the pseudo phase variable to stable 
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one. But as per the eqn. 4.9, the real phase 𝛷2 will maintain ‘α’ phase difference and shifts 

from the group by the same phase difference.  

 

Fig. 4.5  Plot of Phase dynamics(Eqn. 4.10) with and without α 

 Phases starts from different initial condition and converges to the stable value around t 

= 4sec. A keen observer must have noticed that, there is a certain deviation in the phase of 𝛷4, 

𝛷5, 𝛷6 group and . 𝛷1, and . 𝛷3 as well at t = 10 ( at the time of adding nonzero α ). This is 

due to, when two homogeneous oscillators are coupled to each other it can be observed as a 

virtual spring connected between them [26]. When pseudo phase tries to stabilize itself it affects 

phase of all other oscillators. But its effect is very weak as majority of oscillators are already 

stable and combine to form a strong group.  

 In order to perform different gait pattern different values of α is added the different 

oscillator which is given in Table bellow. It should be noted that, coupling matrix is already 

taken care of the in and out of phase relationship between the legs, so Table 4.1 lists only 

additional phase (α) that has to be added to ɸ in order to perform different locomotion pattern. 

 ɸ𝟏 ɸ𝟐 ɸ𝟑 ɸ𝟒 ɸ𝟓 ɸ𝟔 

Wave 0 π
3⁄  2π

3⁄  0 π
3⁄  2π

3⁄  

Ripple 0 π
2⁄  π 0 π

2⁄  π 

Tripod 0 π 0 0 π 0 

Table 4.1.  Additional phase required to perform different gaits 

Desired gait patterns are shown in the Fig. 4.6, Where shaded area represents legs are in stance 

phase and light area for swing.  
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Fig. 4.6    Swing and Stance Phase of each leg for Tripod gait (A), Ripple gait (B) and Metacronal Wave 

gait (C). Here each leg is represented by its initial. LH for Left Hind leg, LM for Left Middle leg etc. 

 First joint trajectory for ripple gait is obtained by using inverse kinematics method. 

Then with the help of ELANFIS non-linear forcing function is learned. This completes the 

learning phase of DMP. At the time of reproducing these learned parameters are used to 

approximate the non-linear forcing function, which in turn augments the Transformation 

System. After integrating the Transformation System and Canonical System learned trajectory 

is reproduced. Similar procedure is used to perform the remaining two gaits. And Fig. 4.7 

shows hexapod performing above mentioned three gait patterns.  
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Chapter 5 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

In this thesis, DMP is used as a CPG to generate different gait patterns in a virtual 

Hexapod robot build in Matlab’s Simulation environment, SimMechanics. Details about 

SimMechanics and building of multibody structure in it’s environment has been discussed. And 

with the help of a virtual spring damper system ground reaction force has been modeled. A 

brief overview of Rhythmic DMP and use of ELANFIS as function approximator in DMPs 

frame work has been given. In the end a coupling framework is discussed to achieve inter leg 

co-ordination. With the help of coupling Hexapod is able to perform three different gait pattern, 

wave, ripple and tripod. 

 In this work, Hexapod is able to perform three different gait patterns but in three 

independent experiments. This work can be extended to perform all these gait pattern in a single 

run and show a stable transition between gaits.
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