EFFECT OF CO₂ ENRICHMENT AND CLIMATE CHANGE ON RICE CROP THROUGH FIELD AND SIMULATION STUDY

Ph. D. THESIS

by

G. PRANUTHI

DEPARTMENT OF WATER RESOURCES DEVELOPMENT AND MANAGEMENT INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE- 247 667 (INDIA) FEBRUARY, 2016

EFFECT OF CO₂ ENRICHMENT AND CLIMATE CHANGE ON RICE CROP THROUGH FIELD AND SIMULATION STUDY

A THESIS

Submitted in partial fulfilment of the requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

in

WATER RESOURCES DEVELOPMENT AND MANAGEMENT

by

G. PRANUTHI

DEPARTMENT OF WATER RESOURCES DEVELOPMENT AND MANAGEMENT INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE- 247 667 (INDIA) FEBRUARY, 2016

©INDIAN INSTITUTE OF TECHNOLOGY ROORKEE, ROORKEE-2016 ALL RIGHTS RESERVED

INDIAN INSTITUTE OF TECHNOLOGY ROORKEE ROORKEE

CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled "EFFECT OF CO₂ ENRICHMENT AND CLIMATE CHANGE ON RICE CROP THROUGH FIELD AND SIMULATION STUDY", in partial fulfilment of the requirements for the award of the Degree of Doctor of Philosophy and submitted in the Department of Water Resources Development and Management of the Indian Institute of Technology Roorkee, Roorkee is an authentic record of my own work carried out during a period from February, 2011 to February, 2016 under the supervision of Dr. S.K.Tripathi, Professor, Department of Water Resources Development and Management of Indian Institute of Technology Roorkee, Roorkee, India.

The matter presented in this thesis has not been submitted by me for the award of any other degree of this or any other Institute.

(G. Pranuthi)

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

(S.K.Tripathi) Supervisor

Dated: September, 2016

The Ph. D. Viva-Voce Examination of **Ms. G. Pranuthi**, Research Scholar, has been held on.....

Chairman, SRC

Signature of External Examiner

This to certify that the student has made all the corrections in the thesis.

Signature of Supervisor

Head of the Department

ABSTRACT

This study is directed to identify the probable effect of increased atmospheric CO_2 concentrations and changing climate on rice crop yields in Haridwar Uttarakhand. Fine rice particularly the Basmati contributes substantially into the economy of the state. Rice in Haridwar district is grown in 12300 ha with a low recording productivity of only 2227 kgs/ha which requires improvement under the changing climate.

Keeping the aforesaid points in view the study entitled "Effect of CO₂ Enrichment and Climate Change on Rice Crop through Field and Simulation Study" has been undertaken with the under mentioned objectives:

- 1. To conduct field experiment with periodical enrichment of CO₂ on rice crop for recording its effect on growth, development, yield and quality.
- 2. To calibrate DSSAT-CERES Rice model using data recorded from the field experiment.
- To simulate rice yield under different CO₂ treatments using DSSAT CERES –Rice model.
- 4. To assess climate change pattern of Haridwar district upto 2090 using PRECIS RCM data.
- 5. To study the impact of climate change and CO₂ enrichment on rice yields for the future scenario.
- 6. To suggest ways and means to improve rice productivity for CO₂ enriched crops.

Field experiment with different CO₂ treatments was conducted at Demonstration Farm, Water Resources Development and Management Department, Indian Institute of Technology Roorkee, Uttarakhand during the year 2011 and 2012. Plants were enriched with CO₂ through use of CO₂ cylinders that were used for fire extinguishing. Data recorded from field experiment were statistically analyzed using ANOVA analysis along with Tukey Kramer's PostHoc test.

For calibrating DSSAT CERES Rice model field experiment with four dates of planting (on 7th July, 2013 ; 15th July, 2013 ; 22nd July, 2013 and 31st July, 2013) with recommended package of practices was conducted during *Kharif* season 2013–14. Data recorded was used for calibrating the CERES rice model. To validate the CERES Rice model the crop data from the

2011 and 2012 experiments was used. Genetic coefficient generated in the calibration process was used to run the model. The effect of CO₂ enrichment on the growth, development and yield parameters was simulated. The simulated values were compared with the observed values by employing statistical evaluation measures such as FB (fractional bias), NMSE (Normalized Root Mean Squared Error), percent deviation and index of agreement (d).

The future rice yield predictions were done using A2 and B2 IPCC scenarios and PRECIS climate data of rainfall, maximum temperature and minimum temperature for Haridwar district for the period 2020 – 2090. PRECIS RCM was collected from IITM, Pune. The data pertaining to maximum temperature, minimum temperature and rainfall was extracted, bias corrected and validated for its use in crop simulation. Mann Kendall Trend test was applied to study the trend of climatic parameters for the coming years. PRECIS RCM corrected data was used to simulate grain yield of rice crop *cv Sharbhati* for the forthcoming decades 2020 – 2090.

 CO_2 enrichment effect in rice crop can be improved by adjusting sowing dates, irrigation management, nutrient management and adopting high yielding heat resistant cultivars. Therefore yields were simulated under three different planting dates, three different plant spacing's and three different levels of nitrogen fertilizer along with CO_2 enrichment treatments for the future (2020 – 2090).

- In general plant growth was improved with CO₂ enrichment treatments recording increased tillers/hill, leaves/hill, plant height, leaf length and width, plant dry matter/hill and Leaf Area Index. Yield attributes viz. panicles/m2, filled grains/m², grain weight as well as grain length and width were improved with periodical enrichment of CO₂. Negative impact of CO₂ enrichment was recorded with increased broken grain and chalkiness percentage.
- Calibration and validation of DSSAT model using the experimental data showed that the deviation percentage of observed and simulated values was within the acceptable range of +/- 15%.
- Trend analysis of the period showed that the annual rainfall would increase @ 5.8 mm/yr but Kharif rainfall would increase @ 11.6 mm/yr. The annual maximum and minimum temperature would increase @ 0.0460C/yr and 0.0390C/yr.

- DSSAT CERES rice simulations under A2 and B2 scenarios showed that the yields will decline with the advancing climate change but CO₂ intervention will compensate the loss in yield occurred due to higher temperatures and erratic rainfall pattern (climate change).
- The DSSAT was used to develop adaptation strategies for the future under the climate change and higher CO₂ scenarios. The results showed that the better yields can be obtained by transplanting the crop in the second week of July, adapting the spacing of 20 cm * 15 cm and nitrogen fertilizer application of 90 kgs N/ha.

ACKNOWLEDGEMENTS

I owe my deepest gratitude and consider it a greatest privilege to express my heartfelt appreciation to my supervisor, Prof. S.K. Tripathi, Department of Water Resource Development and Management, Indian Institute of Technology Roorkee for his keen interest, inspiring guidance, constructive criticism and constant encouragement during investigation and supervision during the course of this research work. The present work has been possible due to his ardent interest and invaluable suggestions. He has been my mentor to whom I am obliged for unconditional trust, support, patience and also freedom to voice my trivial questions. He has inculcated the belief to do the best.

I am immensely beholden and deeply indebted to honorable members of my SRC, Head of the Department, Prof. Deepak Khare, Dr. Ashish Pandey, Associate Professor Department of Water Resources Development and Management and Prof. G.S. Randhawa, Department of Biotechnology for their critical and productive discussions, cooperation, calm endurance, valuable suggestions and providing facilities during the course of investigation.

I wish to extend my sincere thanks to all the remaining faculty members of the Department of Water Resources Development and Management, IIT Roorkee, Prof. Nayan Sharma, Prof. M.L. Kansal, , Asst. Prof. T.R. Chellaiah, Emeritus Prof. U.C. Chaube, Emeritus Prof. D. Das and Emeritus Prof. G. Chauhan for their support and encouragement. I express my sincere thanks to all staff members of the administrative office Mr. Soraj, Mr. Babu Ram, Mr. Ranjith Mr. Bijender, Mr. Rajender, Mr. Jaguveer, Mr. Akshat and Mr. Anurag for their kind support and all help rendered by them during my stay at IIT Roorkee. I feel immensely grateful to Mr. Yashpal for his support during the preparation of thesis in typing and proof reading the thesis.

This acknowledgement shall remain incomplete unless I thank my fellow research scholars of WRD&M Department – Sunil Dubey, Reshu Yadav, Deepak Maurya, Surender Chandaniha and Birender Bharti who have provided me moral support during my study. I am also thankful to my friends from Kasturbha Bhawan, IIT Roorkee – Shalini, Suma Chaitanya, Padma Priya for their help and joyful company. I am also thankful to my mentors Mrs & Mr. Megha Chani, Mrs & Mr. Benny Karunakar, Mrs & Mr. Rajan and Mrs & Mr. Vidya Sagar and other friends from IIT

Roorkee Fellowship. Heartfelt gratitude is reserved for all my friends, whom I failed to mention, for their help.

I express my regards and thanks to my parents Mr. G.V.M Samuel and Mrs G. Sulochana Mohan as their contribution in whatever I have achieved till date is beyond expression. I express my regards and thanks to my father-in-law, G. Ramaiah and mother-in-law, G. Nagendramma for understanding me, loving and blessing me to achieve my targets. I also express thanks to my sisters Prathima and Pramodha, , brother Prashanth, brother in – laws Anil and Dany, sister-in laws Santhi Priya and Rini for their love, affection and care that has helped me to move ahead in my difficult times and complete my work successfully. I can never thank enough my aunt Clara for her moral and emotional support.

I sincerely acknowledge the love, patience and invaluable support of my husband Pradeep Kumar. He has been a pair of strength and made me look beyond the tough times. His faith in my decisions and my abilities never wavered. It was his constant encouragement, which made me continue my work. I am thankful to God for blessing me with two beautiful sons Baby Paul Jeshurun and Baby Paul Ronit Hansel as he they have become my motivation for becoming a good person.

Finally, I thank the almighty God for guiding me towards the path of truth and honesty.

February, 2016

(G. Pranuthi)

TABLE OF CONTENTS

CANDII	DATE'S DECLARATION	
ABSTRA		i
ACKNOWLEDGEMENTS		
TABLE OF CONTENTS		
LIST OF TABLES		
-	FIGURES	Xi
LIST OF	F ACRONYMS	xiii xvi
	FEQUATIONS	xvii
СНАРТ	TER I INTRODUCTION	1
1.1	General Background	1
1.2	Importance of Rice crop	2
1.2.1	Rice cultivation in India	2
1.2.2	Rice Cultivation in Uttarakhand	3
1.3	CO ₂ Enrichment Studies	5
1.4	Crop Simulation Models (CSM): tools for Climate Change Studies	6
СНАРТ	ER II REVIEW OF LITERATURE	7
2.1	Global CO ₂ concentration	7
2.2	CO ₂ concentrations at National and Regional Level	7
2.3	Carbon response of crops and their behaviour	7
2.4	Crop Responses to CO ₂ enrichment	8
2.5	Carbon Cycle in rice	9
2.6	Chamber studies	9
2.7	Effect of Elevated CO ₂ on Rice crop	10
2.7.1	Effect of Elevated CO ₂ on Rice Growth and Development	10
2.7.2	Effect of Elevated CO ₂ on Rice yield and yield attributes	12
2.7.3	Effect of Elevated CO ₂ on physiological processes of rice crop	13
2.7.4	Effect of Elevated CO ₂ on Rice grain quality	14
2.8	Global Climate Change	15
2.8.1	Climate Change at National and Regional Level	19
2.8.2	Climate Change Assessment	19
2.8.3	Rice Crop Models	21
СНАРТ	1	
STUDY		24
3.1	Introduction	24
3.2	Field Experiment	24
3.2.1	Description of Experimental site	24
3.2.2	Soil sample collection, preparation and analysis	24
3.2.3	Weather Data Collection	
3.2.4	Experimental Design and layout plan	25

3.2.5	CO ₂ Enrichment and temperature measurements	25
3.2.6	Crop Management Practices	26
3.2.7	Observations Recorded	28
3.2.8	ANOVA Analysis with PostHoc Test	31
3.3	Results and Discussion	32
3.3.1	Weather Data	32
3.3.2	Effect of periodical CO ₂ enrichment on leaf and canopy temperatures	34
3.3.3	Effect of CO ₂ enrichment on rice crop growth and development	36
3.3.4	Effect of CO ₂ enrichment on rice crop yield and yield attributes	44
3.4	Conclusion	49
CHAPT	ER IV CERES RICE CALIBRATION AND VALIDATION	50
4.1	Introduction	50
4.1.1	DSSAT Model Description	50
4.1.2	CERES Rice Model Description	50
4.1.3	DSSAT file Generation	52
4.1.4	Model Calibration	59
41.5	Model Calibration Results	59
4.1.6	Model Validation	62
4.1.7	Model Validation Results	62
4.2	Conclusion	82
CHAPT		
RICE Y	IELD	83
RICE Y 5.1	IELD Introduction	83
RICE Y 5.1 5.2	IELD Introduction PRECIS RCM Data	83 83
RICE Y 5.1 5.2 5.2.1	Introduction PRECIS RCM Data Collection	83 83 83
RICE Y 5.1 5.2 5.2.1 5.2.2	IELD Introduction PRECIS RCM Data Collection Extraction	83 83 83 83
RICE Y 5.1 5.2 5.2.1 5.2.2 5.2.3	Introduction PRECIS RCM Data Collection Extraction Bias correction	83 83 83 83 83 84
RICE Y 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4	IELD Introduction PRECIS RCM Data Collection Extraction Bias correction Statistical evaluation	83 83 83 83 83 84 85
RICE Y 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	IELD Introduction PRECIS RCM Data Collection Extraction Bias correction Statistical evaluation Trend Analysis	83 83 83 83 84 85 87
RICE Y 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6	IELD Introduction PRECIS RCM Data Collection Extraction Bias correction Statistical evaluation Trend Analysis IPCC CO2 emission scenarios	83 83 83 83 83 84 85 87 89
RICE Y 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7	IELD Introduction PRECIS RCM Data Collection Extraction Bias correction Statistical evaluation Trend Analysis IPCC CO ₂ emission scenarios Data in DSSAT Format	83 83 83 83 84 85 87 89 90
RICE Y 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.6 5.2.7 5.3	IELDIntroductionPRECIS RCM DataCollectionExtractionBias correctionStatistical evaluationTrend AnalysisIPCC CO2 emission scenariosData in DSSAT FormatClimate Change Assessment	83 83 83 83 83 84 85 87 89 90 90
RICE Y 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.3 5.3.1	IELD IntroductionPRECIS RCM DataCollectionExtractionBias correctionStatistical evaluationTrend AnalysisIPCC CO2 emission scenariosData in DSSAT FormatClimate Change AssessmentBias Correction of Tmax, Tmin and Rainfall data	83 83 83 83 84 85 87 89 90 90 90 90
RICE Y 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.6 5.2.7 5.3	IELDIntroductionPRECIS RCM DataCollectionExtractionBias correctionStatistical evaluationTrend AnalysisIPCC CO2 emission scenariosData in DSSAT FormatClimate Change AssessmentBias Correction of Tmax, Tmin and Rainfall dataClimate Change Assessment using Mann Kendall Trend Analysis	83 83 83 83 83 84 85 87 89 90 90
RICE Y 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.3 5.3.1 5.3.2	Introduction PRECIS RCM Data Collection Extraction Bias correction Statistical evaluation Trend Analysis IPCC CO ₂ emission scenarios Data in DSSAT Format Climate Change Assessment Bias Correction of Tmax, Tmin and Rainfall data Climate Change Assessment using Mann Kendall Trend Analysis Effect of CO ₂ enrichment and climate change on crop yield of rice crop for	83 83 83 83 83 84 85 87 89 90 90 90 95
RICE Y 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.3 5.3.1 5.3.2 5.3.3	ELD IntroductionPRECIS RCM DataCollectionExtractionBias correctionStatistical evaluationTrend AnalysisIPCC CO2 emission scenariosData in DSSAT FormatClimate Change AssessmentBias Correction of Tmax, Tmin and Rainfall dataClimate Change Assessment using Mann Kendall Trend AnalysisEffect of CO2 enrichment and climate change on crop yield of rice crop for the period 2020 – 2090.	83 83 83 83 84 85 87 89 90 90 90 90 90 90 90 90 97
RICE Y 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.3 5.3.1 5.3.2	Introduction PRECIS RCM Data Collection Extraction Bias correction Statistical evaluation Trend Analysis IPCC CO ₂ emission scenarios Data in DSSAT Format Climate Change Assessment Bias Correction of Tmax, Tmin and Rainfall data Climate Change Assessment using Mann Kendall Trend Analysis Effect of CO ₂ enrichment and climate change on crop yield of rice crop for	83 83 83 83 83 84 85 87 89 90 90 90 95
RICE Y 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.3 5.3.1 5.3.2 5.3.3	Introduction PRECIS RCM Data Collection Extraction Bias correction Statistical evaluation Trend Analysis IPCC CO ₂ emission scenarios Data in DSSAT Format Climate Change Assessment Bias Correction of Tmax, Tmin and Rainfall data Climate Change Assessment using Mann Kendall Trend Analysis Effect of CO ₂ enrichment and climate change on crop yield of rice crop for the period 2020 – 2090. Conclusion	83 83 83 83 84 85 87 89 90 90 90 90 90 90 90 90 97
RICE Y 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.3 5.3.1 5.3.2 5.3.3 5.4	Introduction PRECIS RCM Data Collection Extraction Bias correction Statistical evaluation Trend Analysis IPCC CO ₂ emission scenarios Data in DSSAT Format Climate Change Assessment Bias Correction of Tmax, Tmin and Rainfall data Climate Change Assessment using Mann Kendall Trend Analysis Effect of CO ₂ enrichment and climate change on crop yield of rice crop for the period 2020 – 2090. Conclusion	83 83 83 83 84 85 87 89 90 93 94 95 97 98

6.3	Effect of plant spacing on rice potential yield	100
6.4	Effect of nitrogen management on potential yield	
6.5	Discussions	
6.6	Conclusion	103
CHAPT	ER VII SUMMARY & CONCLUSION	104
PHOTOGRAPHS OF THE EXPERIMENTAL SETUP		107
PUBLICATIONS FROM THE WORK		121
BIBLIOGRAPHY		123
APPENDIX – I		148
APPENDIX – II		152
APPENDIX – III		163
APPENDIX – IV		174
APPENDIX – V		185
APPENDIX – VI		186

LIST OF TABLES

Table No.	Title	Page No.
Table 2.1	Literature Review - Effect of Elevated CO ₂ on Growth and Developmental Parameters of Rice Crop (percent increase or decrease in comparison with the ambient CO ₂ concentrations)	
Table 2.2	Literature Review - Effect of Elevated CO ₂ on Yield and Yield Associated Parameters of Rice Crop (percent increase or decrease in comparison with the ambient CO ₂ concentrations)	
Table 3.1	Schedule of field operations during Kharif 2011 and 2012.	29
Table 3.2	Average ambient CO_2 level within canopy, leaf temperature, above canopy temperature and canopy temperature of Rice cv Sharbati as affected by CO_2 applications.	35
Table 3.3	Effect of periodical CO ₂ enrichment on plant height, Tiller number, Biomass, phenology at 20, 40, 60 and 80 DAP during Kharif 2011 and 2012 in rice crop cv Sharbati.	41
Table 3.4	Effect of periodical CO ₂ enrichment on leaf number, leaf length, leaf width, Leaf Area Index during Kharif 2011 and 2012 in rice crop cv Sharbati.	
Table 3.5	Effect of periodical CO ₂ enrichment on panicle number, Filled grain number (FG), unfilled grain number (UFG), Single grain weight (SGW), Grain length (GL), Grain width (GW) and Hulling % during Kharif 2011 and 2012 in rice cv Sharbati.	45
Table 3.6	Effect of CO ₂ enrichment on single kernel weight (SKW), kernel length (KL), Kernel breadth (KB), Broken grain percentage (BG%), chalkiness percentage (CK%), grain Yield, straw yield and HI Kharif 2011 and 2012 in rice cv Sharbati.	46
Table 4.1	DSSAT Generated Hydrological, Physical and Chemical properties of soil.	
Table 4.2	Parameters of genetic coefficients in CERES Rice model.	54
Table 4.3	DSSAT generated Genetic coefficient for rice cv Sharbati.	55
Table 4.4	Schedule of field operations during Kharif 2013.	56
Table 4.5	Observed and CERES Rice model simulated results of rice crop grown under four variable dates of planting during Kharif 2013.	
Table 4.6	CERES-Rice simulated biomass production (kgs/ha) in rice cv Sharbati under different treatments of CO ₂ application during Kharif 2011 and 2012.	
Table 4.7	CERES-Rice simulated LAI at various crop growth stages of rice cv Sharabati grown under periodical CO ₂ enrichment treatments during Kharif 2011 and 2012.	
Table 4.8	CERES-Rice simulated growth and developmental variables in rice cv Sharbati under different treatments of CO ₂ application during Kharif 2011 and 2012.	72

Table 4.9	CERES-Rice simulated crop nitrogen (kgs/ha) and (%) and nitrogen stress at various crop growth stages of rice cv Sharabati grown under different CO ₂ application treatments during Kharif	76
	2011 and 2012.	
Table 4.10		
	grown under different CO ₂ application treatments during Kharif 2011 and 2012.	
Table 4.11	CERES Rice Simulated soil nitrogen balance (initial and final) in	81
	Rice cv Sharabati grown under.	
Table 5.1	Rainfall contingency table	87
Table 5.2	Observed, RCM and bias corrected RCM monthly data of	92
	Rainfall, Tmax and Tmin during the period 1/1/1979 –	
	31/12/2009.	
Table 5.3	Observed, RCM and bias corrected RCM monthly data of	93
	Rainfall, Tmax and Tmin during the period 1/1/2010 –	
	31/12/2013.	
Table 5.4	Hit score of RCM and bias corrected RCM monthly rainfall for	94
	the period 01/01/1979-31/12/2009.	
Table 5.5	Mann Kendall test and Theil Sen's Slope for rainfall, Tmax, Tmin	95
	for the monthly forecasted data (2014 - 2090).	
Table 5.6	Decadal average of yield and weather for that corresponding	97
	decade simulated by CERES rice model under A2 and B2	
	emission scenarios for the period $2020 - 2090$ for rice crop cv.	
	Sharbati.	
Table 6.1	Effect of variable planting dates on rice grain yield and weather	100
	condition during that respective crop periods.	
Table 6.2	Different levels of nitrogen application given as inputs to CERES	102
	Rice model to simulate rice yield for developing adaptation	
	strategies under higher CO ₂ concentrations.	

LIST OF FIGURES

Figure No.	Title			
Figure 1.1	Global Temperature and CO ₂ concentrations during the period 1900 - 2100			
Figure 2.1	Impact of elevated CO ₂ on physiological processes of rice crop			
Figure 3.1	Layout plan of the experimental field			
Figure 3.2	Daily rainfall (mm) from 1.1.2011 – 31.12.2013.			
Figure 3.3	Daily maximum and minimum temperature (0C) from 1.1.2011 – 31.12.2013.			
Figure 3.4	Daily Solar radiation (MJm-2day-1) from 1.1.2011 – 31.12.2013.	33		
Figure 3.5	Tiller numbers affected (increase or decrease above control) by periodical CO ₂ enrichment in rice crop during Kharif 2011 and 2012	38		
Figure 3.6	Biomass affected (increase or decrease above control) by periodical CO ₂ enrichment in rice crop during Kharif 2011 and 2012.	38		
Figure 3.7	Leaf number affected (increase or decrease above control) by periodical CO ₂ enrichment in rice crop during Kharif 2011 and 2012.			
Figure 3.8	LAI affected (increase or decrease above control) by periodical CO ₂ enrichment in rice crop during Kharif 2011 and 2012.	42		
Figure 3.9	Panicle number, filled grain number, grain yield and straw yield affected (increase or decrease above control) by periodical CO ₂ enrichment in rice crop during Kharif 2011 and 2012.			
Figure 4.1	Schematic diagram showing the flow of data in the DSSAT model.	52		
Figure 4.2	Simulated (CERES Rice) vs. measured values of a) biomass; b) LAI; c) PI stage ; d) Anthesis stage; e) PM stage ; f) Straw Yield ; g) PN ; h) GN ; i) Grain Yield.			
Figure 4.3	% increase or decrease in CERES Rice simulated biomass production in rice cv Sharbati during Kharif 2011.			
Figure 4.4	% increase or decrease in CERES Rice simulated biomass production in rice cv Sharbati during Kharif 2012.			
Figure 4.5	% increase or decrease in CERES Rice simulated LAI in rice cv Sharbati during Kharif 2011.			
Figure 4.6	% increase or decrease in CERES Rice simulated LAI in rice cv Sharbati during Kharif 2012.			
Figure 4.7	Percentage (%) increase or decrease in CERES Rice simulated grain yield, filled grain number, panicle number and HI in rice cv Sharbati during Kharif 2011 and 2012.			
Figure 4.8	% increase or decrease in CERES Rice simulated crop nitrogen uptake in rice cv Sharbati during Kharif 2011.			
Figure 4.9	 rice cv Sharbati during Kharif 2011. % increase or decrease in CERES Rice simulated crop nitrogen uptake in rice cv Sharbati during Kharif 2011. 			

	79	
) % increase or decrease in simulated crop N, leaf N, stem N and grain N as		
effected by CO ₂ application in comparison with the crop grown at ambient		
concentrations during Kharif 2012 experiment.		
1 Total global annual CO_2 emissions from 1990 to 2100 (GtC/yr) for the 4		
IPCC SRES scenarios (A1, A2, B1, and B2). a) A1 b) A2 c) B1 and d)		
B2.		
Forecasted annual rainfall and annual average Tmax, Tmin and SRAD for	96	
Haridwar district during 2014 – 2090		
Forecasted Kharif rainfall and Kharif average Tmax, Tmin and SRAD for	96	
Haridwar district during 2014 – 2090		
Rice grain yield as effected by variable planting densities, ANOVA	101	
analysis of treatments as simulated by CERES Rice model.		
Rice grain yield as effected by variable nitrogen levels, ANOVA analysis	102	
of treatments as simulated by CERES Rice model.		
	 concentrations during Kharif 2012 experiment. Total global annual CO₂ emissions from 1990 to 2100 (GtC/yr) for the 4 IPCC SRES scenarios (A1, A2, B1, and B2). a) A1 b) A2 c) B1 and d) B2. Forecasted annual rainfall and annual average Tmax, Tmin and SRAD for Haridwar district during 2014 – 2090 Forecasted Kharif rainfall and Kharif average Tmax, Tmin and SRAD for Haridwar district during 2014 – 2090 Rice grain yield as effected by variable planting densities, ANOVA analysis of treatments as simulated by CERES Rice model. Rice grain yield as effected by variable nitrogen levels, ANOVA analysis 	

LIST OF ACRONYMS (STANDARD)

S.No	Abbreviation	Expansion
1	ANOVA	Analysis of Variance
2	AR5	Assessment Report 5
3	AWS	Automatic Weather Station
4	CAM	Crassulacean acid metabolism
5	CDIAC	Carbon Dioxide Information Analysis Center
6	CERES	Crop Estimation through Resource and Environment Synthesis
7	CMIP3	Coupled Model Intercomparison Project Phase 3
8	CSM	Crop Simulation Model
9	DSSAT	Decision Support System for Agrotechnology Transfer
10	ESRL	Earth System Research Laboratory
11	FACE	Free Air Carbon Dioxide Enrichment
12	FATI	Free Air Temperature Increased
13	GCM	Global Climate Model
14	IARI	Indian Agricultural Research Institute
15	ICASA	International Consortium for Agricultural Systems Applications
16	IHBT	Institute of Himalayan Bioresource Technology
17	IITM	Indian Institute of Tropical Meteorology
18	IMD	India Meteorological Department
19	IPCC	Intergovernmental Panel on Climate Change
20	MBE	Mean Bias Error
21	NIH	National Institute of Hydrology
22	NMSE	Normalized Mean Square Error
23	NOAA	National Oceanic and Atmospheric Administration
24	ORNL	Oak Ridge National Laboratory
25	OTC	Open Top Chambers
26	P-677	Pusa - 677
27	PB-1	Pusa Basmati - 1
28	PRECIS	Providing REgional Climates for Impacts Studies
29	PRH-10	Pusa Rice Hybrid 10
30	PS-2	Pusa Sugandh - 2
31	PS-II	Photosystem-II
32	RBD	Randomized Block Design
33	RCM	Regional Climate Model
34	RICAM	rice growth calendar model
35	RuBP	Ribulose Biphosphate
36	SIMRIW	Simulation Model for Rice-Weather Relations
37	SPAR	Soil Plant Atmosphere Research
38	SPS	Sucrose -P- Synthase
39	TRYM	The Rice Yield Model
40	USDA	United States Department of Agriculture
41	WGEN	Weather Generator
42	WOFOST	WOrld FOod STudies

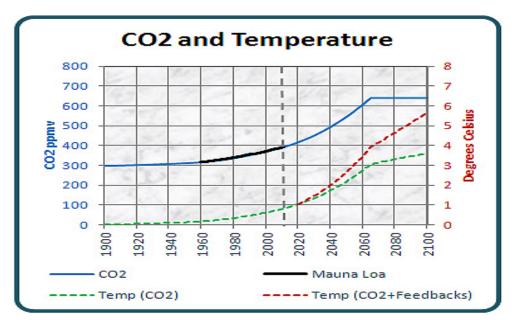
S.No	Abbreviation	Expansion
1	Alb	Albedo Fraction
2	BD	Bulk Density
3	Beg Gr Fil	Beginning Grain Filling
4	CEC	Cation Exchange Capacity
5	DR	Drainage Rate
6	EL	Evaporation Limit
7	End Juveni	End of Juvenile Stage
8	End Ti Fil	End of all tillers fil
9	ET	Evapotranspiration
10	FC	Field Capacity
11	G1	Spikelet Number Coefficient
12	G2	Single Grain Weight
13	G3	Tillering Coefficient
14	G4	Temperature Tolerance Coefficient
15	GDD	Growing Degree Days
16	OC	Organic Carbon
17	P1	Juvenile Phase Coefficient
18	P2O	Critical Photoperiod
19	P2R	Photoperiodism Coefficient
20	P5	Grain Filling Duration Coefficient
21	Pan Init	Panicle Initiation Stage
22	PAR	Photosynthetically Active Radiation
23	pH	Concentration of Hydrogen Ion
24	PWP	Permanent Wilting Point
25	RO	Runoff Curve Number
26	RUE	Radiation Use Efficiency
27	SCS	Soil Conservation Service
28	SP	Saturation Point
29	Transplant	Transplanting stage

S.No	Abbreviation	Expansion
1	А	Hits
2	В	False alarms
3	BG%	Broken Grain percentage
4	С	Misses
5	CD	Critical Difference
6	CK%	Chalkiness percentage
7	D	Correct rejects
8	D1	First date of planting
9	D2	Second date of planting
10	D3	Third date of planting
11	D4	Fourth date of planting
12	DF	Degrees of Freedom
13	FA	Forecast Accuracy
14	FG	Filled Grains
15	GB	Grain Breadth
16	GL	Grain Length
17	HI	Harvest Index
18	KB	Kernel Breadth
19	KL	Kernel Length
20	LAI	LAI
21	MKTT	Mann Kendall Trend Test
22	MS	Mean sum of Squares
23	MSE	Mean Square Error
24	NN	No No
25	NUE	Nitrogen Use Efficiency
26	NY	No Yes
27	Obs	Observed
28	P corr	Corrected Parameter
29	P meancorr	Mean corrected parameter
30	PI	Panicle Initiation
31	PM	Physiological Maturity
32	PN	Panicle number
33	Pobs	Observed parameter
34	Prcm	Regional Climate modelled parameter
	PSDcorr	Standard Deviation corrected parameter
36	SGW	Single grain weight
37	Sim	Simulated
38	SKW	Single kernel Weight
39	SRAD	Solar Radiation
40	SS	Sum of Squares
41	Tmax	Maximum Temperature
42	Tmin	Minimum Temperature
43	ToS	Test of Significance
44	UFG	Unfilled Grains
45	WUE	Water Use Efficiency
46	YN	Yes No
47	YY	Yes Yes

LIST OF UNITS

S.No	Unit	Denotes
1	⁰ C	Degrees Celsius
2	cm	centimeter
		Centi mol units of energy per kilogram
3	cmol/kg	of soil
4	g/cm ²	gram per square centimeter
5	gm/hill	gram per hill
6	kgs	kilogram
7	kgs(dm)/ha	kilograms of dry matter per hectare
8	kgs/ha	kilogram per hectare
9	km ²	Square kilometer
10	m	meter
11	Mha	Million Hectares
12	MJ/m ² /day	MegaJoules per square meter per day
13	mm	millimeter
14	Mt	Million Tonnes
15	no./hill	number per hill
16	$no./m^2$	number per square meter
17	ppm	Parts per million
18	q/ha	quintal per hectare
19	t/ha	Tonnes per Hectare
20	Kgs N/ha	Kilograms of nitrogen per hectare
21	GtC/yr	Gigatonnes carbon per year

Eqn. No.	Description	P.No.	
	Deviation % to compare crop parameteric values obtained at CO2 enriched		
Equation 2.1	conditions and ambient conditions		
Equation 3.1	Total sum of squares in ANOVA anlysis		
Equation 3.2	Total degrees of freedom in ANOVA anlysis.		
Equation 3.3	Total mean sum of squares in ANOVA anlysis.		
Equation 3.4	Fisher's value (F) for ANOVA analysis.		
Equation 3.5	Tukey Posthoc critical difference		
Equation 4.1	Fractional Bias between simulated and observed parameters		
Equation 4.2	% Deviation between simulated and observed parameters	57	
	Normalized Root Mean Squared Error between simulated and observed	58	
Equation 4.3	parameters.		
Equation 4.4	Index of Agreement between simulated and observed parameters	58	
Equation 5.1	Leander & Buishand's equation used to bias correct PRECIS RCM data	84	
Equation 5.2	Hay et al's equation used to bias correct PRECIS RCM.		
Equation 5.3	Mean bias Error to evaluate the bias corrected PRECIS RCM data.		
Equation 5.4	Equation to calculate t-value of student t-test	85	
	Equation to calculate the Fisher's value between oberved and PRECIS		
Equation 5.5	forecasted weather data	86	
Europhic 5 (Equation to calculate correlation coefficient between oberved and PRECIS forecasted weather data	96	
Equation 5.6	Equation to estimate the forecast accuracy of the PRECIS forecasted	86	
Equation 5.7	rainfall data.	87	
Equation 5.8	Equation to estimate Mann Kendall's S statistic.	88	
Equation 5.9	Equation to estimate sgn(θ).		
Equation 5.10	Equation to estimate variance in Mann Kendall Test		
Equation 5.11	Equation to estimate Z statistic of Mann Kendall test		
Equation 5.12	Equation to estimate Theil Sen's Slope		


LIST OF EQUATIONS

CHAPTER I

INTRODUCTION

1.1 General Background

There is a steady increase in emission of carbon dioxide (CO₂) since the beginning of industrialization, as a result its concentration has increased from 270 ppm to 404 ppm in 2015 (Laboratory and Division, 2015). Carbon dioxide is the major greenhouse gas which results from anthropogenic activities and is known to increase global temperature and alter precipitation patterns causing many events such as flood, drought, sea level rise, river level, forest fire etc. The atmospheric CO₂ concentration is expected to rise to 550 ppm and air temperature by 2^{0} C, respectively by 2050 and 600-700 ppm, 6^{0} C temperature by 2100 (Figure 1.1)due to ongoing anthropogenic activities and industrialization.

Source: CDIAC ORNL, 2009(Boden et al., 2009)

According to, (Ziska and Bunce, 2006) both natural and cultivated plants will be affected by different components of global climate change, including elevated CO_2 and high temperature. It was observed that elevated atmospheric CO_2 has positive effects on crop growth and productivity, both in terms of quantity and quality, by increasing photosynthesis and water use efficiency and decreasing transpiration through reducing stomatal conductance (Long et al., 2004) which is

Figure 1.1: Global Temperature and CO₂ concentrations during the period 1900 - 2100

termed as "**Carbon Dioxide Fertilization Effect**". It is defined as "The enhancement of the growth of plants as a result of increased atmospheric CO_2 concentration". Carbon dioxide is the prime substrate for photosynthesis. Majority of plants, including rice, fix CO_2 via C3 pathway. At elevated CO_2 the caboxylation rate increases which will increase photosynthesis of C3 plants. Rice (Oryza sativa L.) is the staple food for more than 50% of the world's population, and it is grown on almost 155 Mha of the world's surface. The response of rice crop to the inevitable rise of atmospheric CO_2 and temperature is one of the major concerns in the modern world. Meanwhile, an average annual increase in grain production of 44 Mt is required to meet the food demands of the world by 2050 (Tester and Langridge, 2010).

1.2 Importance of Rice crop

More than half of the world's population have rice as their basic diet and the crop is cultivated in more than hundred countries. The total area occupied in the world for rice cultivation is 158 Mha producing more than 470 Mt of milled rice of which 90% is produced in Asian countries(Wasim, 2002). The world's largest rice producers by far are China and India. After China and India, the next largest rice producers are Indonesia, Bangladesh, Vietnam, Myanmar, and Thailand(Ray et al., 2013). Rice production in Asian countries is increasing but not at par with the population growth. The mismatch in growth rate of population and rice production is widening the gap in supply and demand.

1.2.1 Rice cultivation in India

Rice is the most important cereal food grain crop of India occupying about 24% of gross cropped area and contributing about 43% of the total food grain production of the country. Within India, the northern region comprising the states of Punjab, Haryana, Himachal Pradesh, Jammu & Kashmir, Uttar Pradesh and Uttarakhand contribute significantly to India's rice production due to higher productivity. These states together contribute about 27% to the total rice production and 22% of the total area occupied for rice cultivation in the country.

In India rice is grown under widely varying physiographic and climatic conditions. The 329 Mha geographic area of the country spread from temperate to tropical zone and semi-arid to humid zone as well as from plain to mountains and rice is grown in all parts of the country. In eastern and southern regions, the mean temperature is high and found to be favorable for rice cultivation

throughout the year therefore 2-3 crops of rice are grown. In northern and western parts of the country, where monsoon rainfall is good and winter temperature is fairly low, only one crop of rice is grown during June to October/November.

Rice is a water intensive crop requiring 1500-2500 mm irrigation water to produce a potential yield of 4500 kg ha⁻¹, but the productivity ranged from 800 - 3700 kg ha⁻¹ only. The low productivity problem in India can be attributed to several factors viz. uneven distribution of rainfall, poor soil fertility, inadequate fertilizer use, shortage of irrigation facility, insect, pest and disease problem, low genetic potential, smaller size of holdings and above all the changing climatic conditions.

1.2.2 Rice Cultivation in Uttarakhand

Uttarakhand is the state where river Ganges has its origin and the state is blessed with fertile soils, abundant water resources and favorable climate for rice cultivation. The total geographical area of the Uttarakhand state is 53,204 km² comprising of 4 plain districts (Haridwar, Udham Singh Nagar, Nainital and Dehradun) and 9 mountainous districts (Tehri Garhwal, Pauri Garhwal, Uttarkashi, Chamoli, Rudraprayag, Almora, Bageshwar, Pithoragarh and Champawat). The general land use pattern of the state consists of 14% area under cultivation, 62% under forest and rest under other uses. Rice is the major cereal crop of *Kharif* season in the state and occupies about 54% of the total cultivated area under cereals. The annual rice production of the state is around 0.55 Mt from an area of about 0.28 Mha. The rice area of Uttarakhand is distributed both in plains and mountains sharing equally, but the total rice production of the plains is twice the total production of the hills and mountains.

Rice is cultivated in all the 13 districts of the state but Udham Singh Nagar, Nainital, Haridwar and Dehradun districts share about 57% of total area and 73% of total production. From productivity point of view these districts are classified in the high (Udham Singh Nagar & Nainital) to medium (Haridwar and Dehradun) category whereas the rest of the nine districts are classified in the low productivity category (Mani, 2013). Uttarakhand, in spite of being endowed with the favorable weather, soils and water resources observes a declining trend in area, production and productivity (<u>http://agriculture.uk.gov.in/files/Index_of_Statistics_GOs.pdf</u>). This has become a matter of concern to farmers, planners and administrators of the state to undertake field studies on

rice from different aspects including the climate change to reverse the declining trend and make the state self-reliant in rice production.

The total cost of rice cultivation in plain districts is high due to increased cost of the labor, fertilizers and plant protection chemicals. Farmers prefer to grow a rice variety that has got *Basmati* in its parentage. There are number of such varieties developed by agricultural Institutes and Universities. *Sharbati* is one of the very popular high yielding rice variety in Hardwar district with *Basmati* parentage developed by Indian Agriculture Research Institute New Delhi. Due to higher productivity, net return is also high. Farmers engaged in seed production of this variety of rice make very good profit.

Studies with rice have indicated that elevated CO_2 generally increases tiller number, photosynthesis, biomass and grain yield as well as plant nitrogen (N) uptake and biological N fixation(Kim et al., 2001). Factors that have been acknowledged to influence the response of rice crop growth to elevated CO_2 include phenological stage, cultivar, season, air temperature and nutrient supply. However, our understanding of these factors still cannot satisfactorily explain the large variations of results obtained in different high CO_2 studies. Elevated CO_2 accelerated rice development by increasing leaf photosynthesis by 30-70% and crop biomass yield by 15-30%, depending on genotype and environment. Elevated CO_2 had a minor effect on rice nitrogen (N) uptake, which appeared to be associated with the relatively insensitive response of leaf area growth to CO_2 . Those rice responses to CO_2 resulted in a substantial increase in grain yield and at nearly optimum temperature conditions. The anticipated changes in temperature and CO_2 have been modeled to have opposite effects on the production. Increasing temperatures shortened the growing season leading to decreased yields, while elevated CO_2 increased the yields (Erda et al., 2005).

When C3 plants, such as rice, are exposed to high CO_2 concentration, the net photosynthesis rate of the leaves is accelerated due to both enrichment of substrate CO_2 and inhibition of photorespiration by high CO_2 concentration (Long et al., 2004). However, the stimulatory effect of high CO_2 concentration decrease gradually as the time of the exposure is prolonged (Chen et al., 2005).

Rice production can be dramatically affected by temperature. Traditionally, cool temperatures have been more limiting for rice production than warm temperatures. In this regard, production

areas could expand with increasing temperature. However, rice plants also respond to high temperatures. Thus, for tropical areas, increased temperature by itself could lead to reduction in grain yield. High temperature boosts plant growth rate and could reduce growth duration leading to shorter grain filling period which varies from 25 days in the tropics to 35 days in the temperate zone (Swaminathan, 1984). Spikelet sterility induced by higher temperature (Yoshida and Parao, 1976) which becomes very severe near 40°C resulting in complete loss of crop production. Possible effects on rice have been described, but further studies are needed to evaluate the potential impact of precipitation and temperature changes on the major farming systems of each agroclimate zone. In India 15 major agro-climate zones have been recognized (Sinha and Swaminathan, 1991).

1.3 CO₂ Enrichment Studies

Laboratory and controlled condition studies on rice have reported that the elevated CO_2 level increased the number of tillers, biomass production and grain yield along with the increased and uptake of soil nitrogen (N) (Kim et al., 2003; Kim et al., 2001). CO₂ enrichment improved the leaf photosynthesis by 30–70% and crop biomass and grain yield by 15–30%, depending on their genotype and working environment. The elevated temperature regime of crop shortened the growing period of rice that lead to decreased yields whereas the elevated CO_2 increased the yields (Baker and Allen Jr, 1993; Baker et al., 1992a; Baker et al., 1992b).

Laboratory experiments, undertaken world over by the scientists in controlled conditions of FACE (Free Air Carbon Dioxide Enrichment) and OTC (Open Top chambers) maintaining a constant level of elevated CO₂ has demonstrated a positive response on growth and development of rice (Madan et al., 2012; Roy et al., 2012; Satapathy et al., 2014; Sujatha et al., 2008; Uprety et al., 2002; Uprety et al., 2003; Uprety et al., 2006). CO₂ is an important component of photosynthetic process therefore it helps improving the growth and development of plants (Stitt, 1991). This technology needs to be transferred to the famer's field for drawing the benefits of CO₂ fertilization of crops. Therefore conducting field experiments with CO₂ enrichment on rice crop was felt.

1.4 Crop Simulation Models (CSM): tools for Climate Change Studies

New agricultural research is needed to supply information to agronomists, farmers, policy makers, and also for other decision makers, how to accomplish sustainable agriculture over the wide variations of climate, soil, environments, political, social and economic conditions around the world. CSM can be used to create virtual "experiments" to simulate, on computers, outcome of complex interaction between crop growth and various agricultural practices, soil and weather conditions and to suggest appropriate solutions to site specific problems (Jones et al., 1998; Tsuji et al., 1994; Uehara and Tsuji, 1998). This system relies heavily on simulation models to predict the performance of crops for making a wide range of decisions.

With the ever increasing CO_2 concentrations in the atmosphere and changing climates it has become important to study their effect on rice crop in Uttarakhand. Fine rice particularly the Basmati contributes substantially into the economy of the state. Rice in Haridwar district is grown in 12300 ha with a low recording productivity of only 2227 kgs/ha which requires improvement under the changing climate.

Keeping the aforesaid points in view the study entitled "Effect of CO₂ Enrichment and Climate Change on Rice Crop through Field and Simulation Study" has been undertaken with the under mentioned objectives:

- 1. To conduct field experiment with periodical enrichment of CO₂ on rice crop for recording its effect on growth, development, yield and quality.
- 2. To calibrate DSSAT-CERES Rice model using data recorded from the field experiment.
- 3. To simulate rice yield under different CO₂ treatments using DSSAT CERES –Rice model.
- 4. To assess climate change pattern of Haridwar district upto 2090 using PRECIS RCM data.
- 5. To study the impact of climate change and CO₂ enrichment on rice yields for the future scenario.
- 6. To suggest ways and means to improve rice productivity for CO₂ enriched crops.

CHAPTER II

REVIEW OF LITERATURE

2.1 Global CO₂ concentrations

NOAA's (National Oceanic & Atmospheric Administration) Earth System Research Laboratory – Global Monitoring Division (<u>http://www.esrl.noaa.gov/gmd/ccgg/trends/#mlo_data</u>) is continuously monitoring the global atmospheric gases especially atmospheric CO₂ concentrations from 1960 onwards and more than 50 sites of network has reported that global CO₂ concentrations are increasing (Laboratory and Division, 2015). The current annual rise in atmospheric CO₂ concentration recorded at Mauna Loa observatory, Canada shows that the CO₂ concentration is increasing (*Q* 2.11ppm /yr (<u>http://CO₂now.org/Current-CO₂/CO₂-Trend/).</u>

2.2 CO₂ concentrations at National and Regional Level

In India, industrialization is increasing, lifestyle is changing and the use of fossil fuel is increasing therefore CO₂ concentration in the atmosphere is increasing. The emission of CO₂ during 2007 was estimated to be 475 Mt which increased by 8.1% during 2008 (Boden et al., 2009). From 1950 to 2008, India experienced dramatic growth in fossil-fuel consumption and CO₂ emission @ 5.7% per year and became the world's third largest fossil-fuel CO₂-emitting country (Andres et al., 2009). The emissions of CO₂ from fossil-fuel consumption and cement production in India have doubled since 1994 (Boden et al., 2009; Marland et al., 2003; Raupach et al., 2007).

2.3 Carbon response of crops and their behavior

Crop species are directly affected by increased atmospheric CO₂, which changes the plant physical structures (growth and development), photosynthesis, respiration, stomatal conductance, biomass accumulation and carbon: nitrogen ratio as shown in Figure 2.1, and in turn affects crop growth and yield, water use efficiency (Ritchie and Otter, 1985) and susceptibility to insect pests and diseases (Mitchell et al., 2003; PaHerson, 1993). Responses of crops to climate change are closely related to the local climate variability rather than to the global climate patterns and,

therefore, crop response to climate change vary with agro climatic region and plant species (Stocker et al., 2013).



Figure 2.1: Impact of elevated CO₂ on physiological processes of Rice crop

2.4 Crop Responses to CO₂ enrichment

There are three different types of plants in which they undergo photosynthesis or take carbon dioxide from the air. The C3 plants are most common and efficient in photosynthesis in cool, wet climates. C4 plants are efficient in photosynthesis in hot, sunny climates. The CAM plants are adapted to avoid water loss during photosynthesis so they are best in deserts.

The increased economic yield of C3 and C4 crops have been reported due to CO_2 enrichment (Reddy and Hodges, 2000; White et al., 2011). CO_2 enrichment resulted into increased grain yield by 20 -35% in C3 crops and 10 - 15% in C4 crops (Reddy et al., 2010). Although the grain yield increased but the protein content deteriorated in rice, wheat and maize crops (Taub et al., 2008). The yield of crops grown under limited water and nutrient supply conditions, was increased with CO_2 enrichment (Jalota et al., 2013; Zhang et al., 2013) The drought tolerance in crops is increased through partial closure of stomata that reduces water vapor conductance by doubling the CO_2 concentration above the ambient level (Ainsworth and Rogers, 2007; Leakey et al., 2009).

2.5 Carbon Cycle in rice

Rice synthesizes carbohydrates through C3 or Calvin photosynthetic pathway. This pathway is mediated by an enzyme known as RuBP carboxylase and oxygenase which fixes Carbon into a three carbon compound known as 3 – Phospho Glyceric Acid due to which this cycle is named as C3 cycle. Almost 80 – 85% plant communities are C3 plants (<u>http://hyperphysics.phy-astr.gsu.edu/hbase/biology/phoc.html</u>). Cereals which have C3 photosynthetic pathway are rice, wheat, oats, barley etc.

RuBP can bind with both oxygen and carbon, when the CO₂ concentration is higher RuBP binds with CO₂ leading to increased photosynthesis, When oxygen concentration in the air is higher RuBP binds with oxygen leading to increased respiration (Bowes, 1993; Teramura et al., 1990; Vu et al., 1997).

2.6 Chamber studies

Numerous studies on the impact of enhanced level of CO₂ and temperature on crop(s) under controlled conditions were undertaken in India and abroad since the start of era of climate change (Long et al., 2004. Though the objective and principle behind the experiments was similar but the approach of the experiments has changed over the years and improved since then. Initially, leaf cuvettes were used to study the exchange of CO₂ between atmosphere and leaf. Leaf cuvettes were soon replaced by the use of SPAR (Soil, Plant and Atmospheric Research) chambers in order to provide a controlled environment. Later on, OTC (Open Top Chamber) was developed where the use of CO₂ concentrations is controlled but the natural growth of the crop plants is disturbed due to the chamber effect. In order to avoid the effect of chamber on crop growth and development, the concept of FACE (Free Air Carbon Dioxide) was developed and put into practice at Arizona which was called as Maricopa FACE. This was modified to suite the crops of South Asian Climatic conditions and was called as FACE. Studies focused on evaluating the response of different crop species to elevated CO₂ and temperature in FACE chamber are being undertaken in different parts of the country (Uprety et al., 2002; Uprety et al., 2006). The FACE chambers were further modified with added provision of controlling CO₂ application and regulating the temperature and was named as FATE (Free Air Temperature

Elevation). This technology is being used by IHBT, Palampur and IARI, New Delhi (Jagadish and Pal, 2009; Krishnan et al., 2007; Madan et al., 2012; Sujatha et al., 2008).

2.7 Effect of Elevated CO₂ on Rice crop

A comprehensive literature survey was conducted using peer-reviewed research articles related to impact of elevated CO_2 on growth, development and yield of rice. The effect of CO_2 enrichment on phenology, plant height, leaf area, number of tiller per plant, number of leaves per plant, leaf length, leaf width, yield, and number of panicles per plant, number of grain per panicle, grain weight, and harvest index of rice crop were reviewed.

Studies with CO_2 enrichment were conducted in isolation or combination with other variables such as nitrogen, phosphorous, temperature etc. were reviewed. Results were compared by calculating deviation percentage (Eqn 2.1) between the crop parametric values obtained under elevated CO_2 and ambient CO_2 conditions.

$$Dev\% = \frac{E - A}{A} * 100$$
(2.1)

Where E = Crop parameter at CO_2 enriched conditions A = Crop parameter at ambient CO_2 concentrations

The specific objective of this review is to evaluate the recent studies on rice crop response to CO_2 enrichment in terms of growth, development, yield and quality.

2.7.1 Effect of Elevated CO₂ on Rice Growth and Development

The review on effect of elevated CO_2 on rice growth and development is given in Table 2.1. The growth and development parameters that are reviewed in this section are phenology, plant height, leaf area, tiller number, biomass and its partitioning.

The effect of elevated CO_2 on phenology of rice crop is not uniform and insignificant as the response of different genotypes behaved differently (Liu et al., 2008). Some studies have

reported that CO₂ enrichment shortens the crop growth period while in some studies the crop growth period was prolonged by 1-3 days (Adachi et al., 2014; Manalo et al., 1994). Some studies also reported that CO₂ has no role to play in phenological development of rice crop (Kim, 1996). The differential response of rice phenology of different genotypes to CO₂ enrichment is probably due to their difference in physiological and biochemical character (Vanuytrecht et al., 2012). The phenology of rice crop is majorly influenced by temperatures and photoperiod rather than CO₂ (Meehl et al., 2005; Nakagawa and Horie, 2000). Rice crop is although adaptable to a variety of climatic conditions, but the lower temperatures are less adaptable than higher temperatures. Low temperature during the flowering period has been reported to induce spikelet sterility (Gunawardena et al., 2003; Shimono et al., 2005). Increased temperature during the growing period reduces the maturity and grain setting period (Peng et al., 2004).

Very few studies have focused on the CO₂ enrichment response on plant height of rice. In one such experiment the plant height increased by 7-17% under elevated CO₂ condition (Manalo et al., 1994). Increased plant height under higher CO₂ concentrations for *Pusa Basmati -1* and *Pusa* – 677 of about 7.8 and 16.4 % respectively for each cultivar has been reported (Uprety et al., 2003)

Rice crop grown under elevated CO₂ condition without any stress of weather, soil physical condition, water and nutrients recorded increased effective tillers ranging from 4 - 50% (Liu et al., 2008; Yang et al., 2006; Yang et al., 2009). The experiment conducted with the treatments of elevated CO₂ and varying nitrogen levels on rice crop significantly increased the tiller number.(Aben et al., 1999). The response of CO₂ enrichment was found to be higher at lower nitrogen treatments. The temperature and CO₂ enrichment effect was found to be significant in a study done by (Cheng et al., 2008) which shows that the low night temperature (3.8%) was found to be more detrimental than high night temperature (5%). Different varieties respond differently to CO₂ enrichment which has been proved in studies done by (Shimono et al., 2009) with variability ranging from 4.3 - 23.6 %. Crops exposed to higher CO₂ generally grow larger (Bowes, 1993). Crops such as rice and wheat grown under CO₂ enriched conditions recorded increased tiller number, which leads to greater yield because of the greater number of seed and heads per plant (Baker et al., 1992).

The CO₂ concentration around plant canopy affects photosynthetic process. The increase in the leaf area is due to the increase in size of leaves and tiller count. The significantly increased leaf area under CO₂ enriched conditions has been reported by (Aben et al., 1999; Uprety et al., 2003). The leaf number increased by 11-16%, leaf area increased by 9-25% and leaf dry matter increased by 9-51% in the rice cv *Pusa Basmati-1*, *Pusa-677* has been reported. Maximum Leaf Area Index increased by 35% under elevated CO₂ conditions compared to that of the ambient CO₂ conditions (Roy et al., 2012). The CO₂ enrichment in rice and soybean increased size of leaves and leaf thickness (Ainsworth et al., 2002).

Increased root biomass is probably due to increased translocation of photosynthate to root zone in CO_2 treated rice plant which has been reported by (Kim et al., 2003). The interacting response biomass production was found to be significant in rice crop grown under low, medium and high nitrogen levels with enriched CO_2 treatments (Kim et al., 2001). The rice crop grown under enriched CO_2 condition recorded significantly increased biomass of leaf (5-50%), stem (15-21%) and panicle (12-17%) over the ambient CO_2 concentrations (Seneweera, 2011).

2.7.2 Effect of Elevated CO₂ on Rice yield and yield attributes

The effect of elevated CO_2 on rice grain yield and yield attributes is reviewed in Table 2.2. The yield and yield attributes reviewed were grain yield, straw yield, panicle number, grain number, and single grain weight and harvest index.

The rice crop grown with enriched CO₂ recorded 4 - 71% increased grain yield in comparison with the crop grown under ambient CO₂ (Bhattacharyya et al., 2012; De Costa et al., 2007; Hasegawa et al., 2013; Shimono and Okada, 2013; Uprety et al., 2003). Interacting response of CO₂ and nitrogen on grain yield was found to be significant (Kim et al., 2003; Kim et al., 2011; Kim et al., 2001; Zhang et al., 2013). The grain yield in rice crop with individual treatments of CO₂ and phosphorous enrichment was remarkably increased between 25 – 50% but the interacting response was not significant (Conroy et al., 1994; Seneweera and Conroy, 1997). The grain yield was reduced with increasing temperature and increased with increasing CO₂ concentrations. (Baker et al., 1992; Baker et al., 1992b; Cheng et al., 2008; Cheng et al., 2009). Grain yield increase did not increase in proportion to the increase in assimilation of

photosynthate (Moya et al., 1998; Ziska et al., 1997). The rice crop yield responded positively to increasing CO₂ level even at the higher range of temperature regime (Moya et al., 1998). The increase in the straw yield under CO₂ enriched conditions is more evident than the grain yield as CO₂ directly impacts the photosynthate accumulation (Lawlor and Mitchell, 2000; Ziska et al., 2004). From the survey of literature it is noted that the straw yield recorded 6 - 46% increase under CO₂ enrichment (Baker et al., 1992a; Baker, 2004; Teramura et al., 1990). According to (Ainsworth and Rogers, 2007; Long et al., 2004) higher CO₂ levels could serve the purpose of increasing global rice yields for feeding the future generations.

The panicle no./m² increased by 8-10% due to increase in tiller number under CO₂ enriched condition but productive tiller ratio did not change much (Baker and Allen Jr, 1993b; Baker, 2004; Cheng et al., 2008; Cheng et al., 2009; Conroy et al., 1994; Hasegawa et al., 2013; Seneweera, 2011) (Kim et al., 2003; Kim et al., 2001; Roy et al., 2012; Zhang et al., 2013). The grain numbers/panicle increased by 24 -39 % in rice grown under elevated CO₂ condition (Baker, 2004; Hasegawa et al., 2013; Roy et al., 2012). However decreased grain number/panicle under CO₂ enrichment has also been reported by some of the researchers ((Baker and Allen Jr, 1993b; Baker, 2004; Cheng et al., 2008; Cheng et al., 2009; Conroy et al., 1994; Hasegawa et al., 2013; Seneweera, 2011). The effect of elevated CO₂ on single grain weight is not significant and marginal variation can be attributed to even other factors.

The increase in grain yield due to CO_2 enrichment could be attributed largely to increased grain number per plant and marginally due to grain weight (Seneweera, 2011). Researchers have reported that the elevated CO_2 concentration increased the harvest index of rice crop (Kim et al., 2003; Kim et al., 2001; Lin and Wang, 1998); while others reported decrease harvest index with increasing CO_2 concentrations (Cheng et al., 2008; Cheng et al., 2009; Seneweera and Conroy, 1997).

2.7.3 Effect of Elevated CO₂ on physiological processes of rice crop

It is well documented that the crops with C3 photosynthetic pathway like rice respond more to elevated CO_2 rather than crops with C4 pathway. The major physiological processes that are likely to be affected by higher CO_2 concentrations in rice are photosynthesis, respiration and

transpiration and water uptake. CO_2 increased rice leaf photosynthesis by 30–70%, leading to more biomass accumulation which in turn lead to increased leaf area (Shimono and Okada, 2013).

Basmati rice cultivars viz. PRH-10 (*Pusa rice hybrid-10*) and PS-2 (Pusa Sugandh-2) grown under two different day/night temperature regimes ($31/24^{\circ}C$, $35/28^{\circ}C$) at elevated (550 ppm) CO₂ concentrations recorded 17 – 39% increase in photosynthetic rate in comparison with the crop grown at ambient (370 ppm) CO₂ concentrations (Sujatha et al., 2008). Elevated temperature decreased the photosynthetic rates both under ambient and elevated CO₂ conditions (Ziska et al., 1996; Ziska et al., 1997). The respiration of rice crop grown under high CO₂ was decreased by 12 – 13% whereas it increased by 13 – 35% in crop grown under high temperatures regime (Cheng et al., 2008; Cheng et al., 2009). Stomatal conductance of rice crop grown under high CO₂ concentrations decreased by 30 – 65% (Uprety et al., 2002). Research studies under controlled condition demonstrated that water use efficiency (WUE) of rice crop under high CO₂ concentrations is improved due to increased photosynthesis and reduced transpiration (Jianlin et al., 2008).

In a research study done by (Chen et al., 2014) a particular cultivar Takanari was identified to show higher rate of photosynthesis and stomatal conductance under both ambient and FACE growth conditions over 2 years than Koshihikari variety. Even ribulose-1,5-bisphosphate carboxylation, mesophyll conductance, chlorophyll content and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. These results indicated that Takanari maintains its superiority over Koshihikari when grown in elevated CO_2 and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future CO_2 .

2.7.4 Effect of Elevated CO₂ on Rice grain quality

Elevated CO₂ affects physiological and biochemical processes (photosynthesis, translocation, nutrient and water uptake, enzyme activity and gene expression etc.) in the rice plant thereby changes the chemical and physical characteristics of rice grains (Wang et al., 2011). The characteristics of rice grain quality viz, processing, appearance, cooking and nutritional quality

are studied for impact analysis of CO₂ enrichment. Elevated CO₂ seriously deteriorated the processing quality; head rice percentage was significantly decreased (Dong et al., 2002; Myers et al., 2014; Usui et al., 2016; Yang et al., 2007; Zhang et al., 2015). In most cases, elevated CO₂ increased chalkiness of rice grains by 3 -28% (Xu et al., 2008). The evaluation of physicochemical characteristics of kernel together with starch content indicated no significant change in cooking and eating quality of rice grown under elevated CO₂ (Terao et al., 2005). Although the rice crop yields are reported to increase under CO₂ enriched conditions but the susceptibility of crop varieties to lodging have been reported by (Shimono et al., 2007; Zhu et al., 2013).

2.8 Global Climate Change

Climate change is the most sought after topic in climate related research studies. Intergovernmental Panel on Climate Change (IPCC) is an international organization which mainly deals with climate change, global warming and their impacts on various sectors of the community. Climate change in terms of global warming of the climate has been reported since 1950s (Pachauri et al., 2014). The global average annual temperature of 2014 was 14.9 °C which is 0.69°C warmer than the normal temperature. The year 2014 was reported to be the warmest year across the globe since 1880 (https://www.ncdc.noaa.gov/sotc/global/201413).

Annual precipitation measured at land-based stations around the globe during 2014 was 1033.5 mm which is closer to the normal global rainfall (<u>http://data.worldbank.org/indicator/AG.LND.</u> <u>PRCP.MM</u>). However, precipitation varied greatly from region to region (Rajeevan et al., 2008). Climatic conditions upto 2035 AD were projected using Coupled Model Inter Comparison Project third generation (CMIP3) and presented in Fifth Assessment Report (AR5) of IPCC which reports that the global annual air surface temperature would increase by $0.3 - 2^{0}$ C by the end of 2035 AD (Pachauri et al., 2014; Stocker et al., 2013). It also predicted warmer days and nights in a year, temporal and spatial changes in precipitation amounts and increase in heavy rainfall events (Stocker et al., 2014). All the organizations concerned with the climatological studies have shown that the earth is continuously warming since 1880 and abrupt increase has occurred after 1970 (Stocker et al., 2014).

Table 2.1: Literature Review - Effect of Elevated CO₂ on Growth and Developmental Parameters of Rice Crop (%) increase or decrease in the growth and developmental parameters of rice crop grown under elevated CO₂ concentrations in comparison with the crop grown at ambient CO₂ concentrations).

	concenti autor		r	1		1									
S.No.	Author	Place of Study	Study Year	Species	Tech. used	Elevated CO ₂	Other treatments	No. of Tiller	Plant height	Leaf Area	At Leaf		und bio weight) Root	,	v
						levels (ppm)	treatments			Plant					
						(ppm)			Increase o		ise abov	e ambie	nt CO2	2 level	
							N - 5 mg/l	60	-	30	-	-	-	-	-
		Yanco,					N - 20 mg/l	17	-	2	-	-	-	-	-
1	(Aben et al., 1999)	Australia	1999	Jarrah	Hydrophonics	350700	N - 40 mg/l	29	-	15	-	-	-	-	-
		Tubtiunu					N - 60 mg/l	39	-	2	-	-	-	-	-
							N - 100 mg/l	30	-	22	-	-	-	-	-
		Northern					4 gN/m^2	-	-	-	-	-	30.8	-	11.8
2	(Kim et al., 2003)	Japan	19,981,999	Akitakomachi	FACE	370+200	8 gN/m ²	-	-	-	-	-	25.6	-	15.3
							12 gN/m ²	-	-	-	-	-	14.3	-	19.2
3	(Uprety et al.,	New Delhi,	1998	Pusa Basmati - 1	OTC	600	Pusa Basmati - 1	23.6	7.8	25.5	50.0	43.6	-	-	
5	2003)	India	1770	Pusa - 677	010	000	Pusa - 677	14.2	16.4	9.5	9.5	12.6	-	-	
4	(Chama et al. 2008)	Tsukuba,		1072	Olimateur	680	High Night Temperature	5	-		5	9	2	13	5
4	(Cheng et al., 2008)	Japan		IR72	Climatrons	680	Low Night temperature	3.8	-	-	6	21	9	21	18
				Kirara397			-	21.8	-	-	-	-	-	-	16
-	(Shimono et al.,	Tohoku Region,	2002 2004	Kakehashi	E A CE	(00	-	4.3	-	-	-	-	-	-	8.4
5	2009)	Japan	2003, 2004	Akitakomachi	FACE	600	-	9.9	-	-	-	-	-	-	11
	,	1		Hitomebore			-	17.6	-	-	-	-	-	-	13.2
6	(Seneweera, 2011)	Victoria, Australia	-	Jarrah	Hydrophonic Growth chambers	720	-	50	-	-	-11	-	86	-	-
		Central Rice					2009	34.0	-	-	-	-		-	16.9
7	(Bhattacharyya et	Research	2009,2010&	Naveen	OTC	500	2010	29.0	-	-	-	-		-	26.1
/	al., 2012)	Institute, Cuttack, India	2011	Inaveen	UIC	300	2011	24.0	-	-	-	-		-	20.3
	(De Costa et al.,						Yala							17.2	23
8	2007; De Costa et al., 2003; De Costa et al., 2006)	Srilanka	2000 - 2002	BG 300	OTC	350, 570	Maha							34.4	37

S.No.	Author	Study area	Study Year	Cultivars	Tech. used	CO ₂ level (ppm)	Interaction with other factor	Seed Yield	Straw yield	Panicle No	Grain No	MDS	IH
							% Increase of	or decre	ase abo	ove amb	ient CO	2 level	
1	(Teramura et al., 1990)	Durham, North Carolina	1988	IR-36	CO ₂ injection system	350 & 650	CO ₂ CO ₂ +UV-B	18 10	11 6	-	-	-	-
2	(Ziska et al., 1997)	IRRI, Philippines	1994, 1995	IR72	ОТС	500	2	15	31				
	· · · ·	· · · · · ·	,			600	24.20	27	40		0		
							24.2°C	6	8	-2	9	3	-2
							25.1°C	58	37	8	47	5	14
	(Baker and Allen Jr.	University of Florida at					25.1°C	26	15	10	14	3	9
3	1993)	Gainesville Florida,	1987			330 & 660	31°C°C	31 49	36	17	9 31	1	-5 12
	,	USA					31°C		29	11	-	3	
							30.2°C	14	13	-16	22	3	-26
							36.2°C	-	-	-	-	-	-
							P-30	-	-	75.0	28.4	8.7	-
4	(Conroy et al., 1994)	Srilanka	1994	Jarah		350 & 700	P-120	-	-	32.3	19.3	20.8	-
							P-480	-	-	16.7	-3.0	0.0	-
							P - 0	29	-	133	38	14	0
							P - 30	50	-	75	-28	9	11
5	(Seneweera and	Yanco, Australia	1994	Jarrah	Pot treatments in	350 & 700	P - 60	38	-	0	32	22	20
-	Conroy, 1997)				chambers		P - 120	50	-	32	19	21	63
							P - 240	41	-	18	19	8	44
	(T · 1 · · · ·						P - 480	25	-	49	-3	8	44
6	(Lin and Wang, 1998)	Beijing, China	1997	Jindao 1187	OTC	350 & 650	-	-	-	21	-	-	-31
							4 g N /m ²	4	9	3	-2	2	-4
7	(Kim et al., 2001)	Shizukuishi, Japan	1998, 1999	Akitakomachi	FACE	365 & 565	8 - 9g N/m ²	13	16	9	-2	4	-2
							12 - 15 g N/m ²	11	14	7	8	-5	-2
							4 g N /m ²	7.4	-	5.5	-0.2	2.2	- 4.4
8	(Kim et al., 2003)	Shizukuishi, Japan	1998, 1999, 2000	Akitakomachi	FACE	365 & 565	8 - 9g N/m ²	14.6	-	10.2	1.5	1.7	- 1.4
							12 - 15 g N/m ²	15.2		10.1	4.0	-0.2	- 1.4
0			1000	Pusa Basmati - 1	OTC	260 8 600	Pusa Basmati - 1	40.7			22.3	7.2	
9	(Uprety et al., 2003)	New Delhi, India	1998	Pusa - 677	OTC	360 & 600	Pusa - 677	24.3	1		26.8	0.8	
				Cocodrie,				46 -	35	6 -	16 -		
10	(Baker, 2004)	Beltsville, Florida	2000, 2002	Cocoarie, Cypress, Jefferson	SPAR	-	-	46 - 71	-	23	41		
				Cypress, Jejjerson					46	23	41		
11	(De Costa et al.,	Srilanka	2000	BG300	OTC	370 & 570	Maha Season	24	23	-	11	2	4
11	2007; De Costa et al.,	51 Hulliku	2000	20300	010	570 0 570	Yala Season	39	37	-	36	-4	2

Table 2.2: Literature Review - Effect of Elevated CO₂ on Yield and Yield Associated Parameters of Rice Crop (% increase or decrease in the Yield and Yield Associated Parameters of rice crop grown under elevated CO₂ concentrations in comparison with the crop grown at ambient CO₂ concentrations).

	2003; De Costa et al., 2006)												
12	(Cheng et al., 2008)	Tsukuba, Japan		IR72	Climatrons	680 & 380	High Night Temperature	8.5	-	5	-0.1	5.1	4.2
12	(Cheng et al., 2008)	i sukuba, Japan		11(72	Cliniations	080 & 380	Low Night temperature	26.9	-	3.8	14.1	5.3	8.5
13	(Cheng et al., 2009)	National Institute forAgro-Environmental	2006	IR72	Climatrons	380 & 680	High night temperature - 320C	8.5	-	5	-1	5.1	4.2
15	(Chichg et al., 2009)	Sciences, Tsukuba, Japan	2000	IIC/2	Cliniations	380 & 080	Low night temperature - 220C	26.9	-	3.8	-2.6	5.3	8.5
	(Bhattacharyya et al.,	Central Rice Research	2009,2010&				2009	-	-	25.2	25.4	2.5	-
14	(Dilutitucital y yu et ul., 2012)	Institute, Cuttack, India	2009,2010 <i>Cv. Naveen</i> OTC 3		380 & 500	2010	-	-	19.9	19.1	1.9	-	
)	,,,			D . 1. 1		2011	-	-	21.8	22.5	2.5	-
15	(Shimono and Okada, 2013)	Tohoku Region,	2005	24 cultivars	Pot culture in Temperature - CO ₂ gradient chambers	370 & 560	-	22.8 18.1	-	-	-	-	-
16	(Zhang and Tao, 2013)	Tsukuba FACE, Japan	2010 & 2011	Koshihikari	FACE	386 & 560	0gm/m2 - N	10.2		6.3	7.4	1.1	4.0
	2013)						8gm/m2 - N	16.0		12.7	-2.9	-3.4	0.4
				Akihikari			-	2.8		1.4	3.4	1.3	-
				Akitakomachi			-	4.1		- 11.2	23.0	-0.9	-
17	(Hasegawa et al.,	Shizukuishi and	2007,2008	Akita 63	FACE	350 & 550	-	19.8		4.1	7.3	-1.7	-
1/	17 (Charles and Charles and Charles 2013)	(&2010	Aikoku	FACE	550 & 550	-	26.5		11.0	0.0	-0.9	-
			· •	Koshihikari	i		-	16.3		9.3	2.2	0.5	-
				Takanari			-	21.2		7.6	6.8	2.6	-
				Akidawara			-	26.1		3.9		-4.1	1 -

2.8.1 Climate Change at National and Regional Level

Data obtained from India Meteorological Department (IMD) was analyzed and reported that all India mean annual temperature has increased by 0.5° C and mean monsoon temperature by 0.4° C in a span of 100 years (Arora et al., 2005; Jain and Kumar, 2012). Trend analysis of annual and monsoon rainfall of 135 years (1871–2005) over India indicated no definite trend but varied regionally (Jain and Kumar, 2012; Kumar et al., 2010). It has been observed that the changes in temperature in India over last century are broadly matched with global trend of increase in temperature. IMD has also reported the increase in occurrence of extreme events such as floods, droughts, cyclones, heat waves etc. (De et al., 2005; Goswami et al., 2006; Parthasarathy et al., 1987). Trend analysis of rainfall over Haridwar district indicated the increase (@ 6.4 mm/yr (Pranuthi et al., 2014; Yadav et al., 2014). The rise in temperature (@ 0.017 °C/yr for Haridwar district has also been reported (Tripathi et al., 2008).

2.8.2 Climate Change Assessment

Numerical models predicting physical processes of the atmosphere are the most advanced tools currently available for simulating the future climatic conditions. These numerical models are available with different spatial resolutions. Global Climate Models (GCM) is a coarse resolution and it needs to be down scaled for the specific location. Regional Climate Model (RCM) is a high resolution data (20 km* 20 km) and downscaling is not required (De Sales and Xue, 2011; Di Luca et al., 2012; Di Luca et al., 2013; Feser et al., 2011; McGregor, 1997; Prommel et al., 2010; Seth et al., 2007). RCMs provide high resolution unbiased scenarios (Less than 20 km). There are large number of studies that use RCMs for climate change assessment and also for climate change impact studies up to the end of the 21st century (Giorgi et al., 2004; Giorgi and Lionello, 2008; Moberg and Jones, 2004; Räisänen et al., 2004; Rao et al., 2014).

Providing Regional Climates for Impact Studies (PRECIS) RCM (Gordon et al., 2000) developed by UK Hadley Met Office was used to simulate climate change projections of various regions such as South America (Alves and Marengo, 2009; Alves and Marengo, 2010; Marengo et al., 2009), Pakistan (Islam et al., 2009; Ul Islam et al., 2009), Eastern Mediterranean region (Bloom et al., 2008; Kotroni et al., 2008), Bangladesh (Islam et al., 2011; Islam, 2009; Islam et

al., 2008) and proved to be a good tool for climate change assessment. PRECIS RCM predicted that all India annual mean temperatures would increase by $3.5 - 4.3^{\circ}$ C, annual precipitation would increase by 9 - 16% by the end of this century (Akhtar et al., 2009; Gosain et al., 2011; Rupa Kumar et al., 2006).

2.8.2.1 Bias correction and evaluation methods of climate modeled data

Although RCMs provide a better picture of the future climate scenario than GCMs still there is a mismatch between the actual and the forecasted values (Fowler et al., 2007; Grotch and MacCracken, 1991; Maraun et al., 2010; Parry, 2007). So, this problem has led to the development of various bias correction methods such as linear correction method (Lenderink et al., 2007) Non-Linear Correction method (Leander and Buishand, 2007), γ - distribution correction method (Hay et al., 2002; Piani et al., 2010), Empirical distribution correction method (Ashfaq et al., 2010; Wood et al., 2002) and many more. Each bias correction method has its own merits and demerits but the linear bias correction method was found to be easier in calculation and suitable under various conditions as reported by (Ines and Hansen, 2006; Zheng, 2002).

2.8.2.2 Trend Detection in Climatic parameters

There are number of parametric and non-parametric statistical test available to examine the trend of hydro meteorological parameters (Chen and Gao, 2007). Parametric tests requiring independent and normally distributed data series are reliable whereas non-parametric tests requiring independent data have the ability to remove outliers and is easy to use. Mann Kendal Trend Test (MKTT) (Kendall, 1962; Mann, 1945) which is a non-parametric test is frequently used for trend analysis of climatic parameters.

The macro scale rainfall trend analysis of the country indicated that the monsoon rainfall is decreasing. No definite trend was observed in annual rainfall but rainfall of peninsular region of India showed declining trend. (Guhathakurta and Rajeevan, 2008; Joshi and Pandey, 2011; Pal and Al-Tabbaa, 2009). Mann Kendall trend test was used to analyze the rainfall trend for several regions of India and reported that there is no clear trend of increase or decrease in average annual

rainfall (Duhan and Pandey, 2013; Mooley and Parthasarathy, 1984; Rajeevan et al., 2008; Thapliyal and Kulshrestha, 1991).

2.8.3 Rice Crop Models

A number of crop models are available to simulate rice yields under varying climatic and management conditions. Some of the popular rice crop models are DSSAT (Decision Support System for Agrotechnology Transfer) (Jones et al., 2003), ORYZA (Bouman, 2001; Kropff et al., 1994; Wopereis et al., 1996), InfoCrop (Aggarwal et al., 2004; Aggarwal et al., 2006), SIMRIW (Horie, 1995; Horie et al., 1996), RICE GROW (Tang et al., 2009), WARM (Confalonieri et al., 2005), WOFOST (Boogaard et al., 1998; Diepen et al., 1989; Supit et al., 1994), Aqua Crop (Raes et al., 2009; Steduto et al., 2009), TRYM (The Rice Yield model) (Williams et al., 1994) and RICAM (Yin and Kropff, 1998; Yin and Qi, 1994). Each model works with its own assumptions and calculations required to simulate growth, development and yield of rice crop. The most widely used rice crop models is CERES Rice.

2.8.3.1 Calibration and Validation of crop models

Crop models are simple representation of a crop and effective tools for decision making especially under the extreme and contingent situations (Boote et al., 1996; Murthy, 2004) but they are required to be calibrated for improving their reliability (White et al., 2011). Any discrepancy in evaluating the crop model will lead to a great deal of errors (van Oijen, 2002). The processes in nature are very complex and impossible to fully accommodate them into crop model (Tremblay and Wallach, 2004; Wallach et al., 2001). The gap between model and nature can never be removed completely but it can be reduced. CERES-Rice model v 4.5 has been calibrated for climate change impact studies (Amiri et al., 2014; Hoogenboom et al., 2012). CERES-Rice model was developed evaluated under elevated CO₂ environment with four rice cultivars (IR 36, Swarna, Swarna sub1, and Badshabhog) grown in Open Top chambers at Kharagpur, India (Satapathy et al., 2014; Swain and Thomas, 2010; Swain et al., 2007).

The combination of FACE studies with modelling study to identify the impact of climate change on rice crop yields is done by (Hasegawa et al., 2015) in which it is reported that there is linear

decrease in the yield enhancement by 2.1% per 1°C increase above 20°C during a 30-d period after heading due to climate change. This method of study also increased the reliability of crop models for studying effect of climate change under elevated atmospheric CO₂ conditions.

2.8.3.2 Climate Change Impact Assessment using Crop Growth Simulation Models

Numerous simulation studies have reported increased yields under higher atmospheric CO₂ concentrations and decreased yields under increased temperatures (Aggarwal and Mall, 2002; Mall and Aggarwal, 2002; Saseendran et al., 2000; Swain and Thomas, 2010).

Felkner evaluated DSSAT model under various climate change scenarios for rice crop and observed that the yields decreased under increased temperatures (Felkner et al., 2009). Models of DSSAT model along with PRECIS RCM weather data was used to predict rice, wheat and maize yields of China (Erda et al., 2005; Yao et al., 2007). The study showed that the climate change without carbon dioxide (CO₂) fertilization could reduce the rice, maize and wheat yields up to 37% in the next 20–80 years. Effect of elevated CO₂ on yield of two varieties of *boro* rice has been assessed using CERES-Rice model and reported that the increase in CO₂ concentration increases the rice yield offsetting the adverse effects of other climatic parameters on rice yield in Thailand (Babel et al., 2011). The CERES-Rice model used for simulating rice yields under different climate change scenarios in Ghana results showed that with an increase in CO₂ concentration by 100 ppm above 330 ppm, led to an increase in rice yield by 33% (Basak et al., 2010). During the last fifty years a 70 ppm the CO₂ level increased by 70 ppm and showed that this has contributed to about 8.7% increase in China's rice production (Xiong et al., 2012).

ORYZA and Infocrop model studies showed that the yield of rice cv IR36 would decrease by 6.2% and 7.2% with increase of every1^oC temperature and would increase by 30.7% and 56.4% with 700 ppm CO₂ elevation respectively in Eastern India (Krishnan et al., 2007). Infocrop model simulation study for India showed that by 2080 the atmospheric temperature would rise by 2° C and rice crop yield would decrease by 10% (Jalota et al., 2013).

The CERES rice model was used to simulate rice yields of Ganga basin for future upto 2040 which showed 43% decrease in yields with increasing temperatures (Mishra et al., 2013).

CERES-Rice model was used for assessing the impact of climate change on rice yields of Tamil Nadu which showed that with the increase of temperature of 1^{0} C & 5^{0} C the yields would decrease by 4% & 56 % respectively (Bhuvaneswari et al., 2014). In India, several other studies have also demonstrated the utility of DSSAT for climatic change impact studies (Aggarwal and Mall, 2002; Dharmarathna et al., 2014; Mall and Aggarwal, 2002; Saseendran et al., 2000).

2.8.3.3 Generating Strategic Management Options using DSSAT CSM

CERES –Rice model was used for strategic management manipulating the crop management climatic options for Pakistan (Ahmad et al., 2013). CERES Rice model was used to evaluate the adaptation of rice cultivar to elevated CO₂ and temperature in sub-tropical and tropical agro climatic regions of India (Saseendran et al., 2000).

CHAPTER III

3 EFFECT OF CO₂ ENRICHMENT ON RICE CROP – FIELD STUDY

3.1 Introduction

This chapter describes the methods and material used and the observations recorded from the field experiment to study the effect of periodical CO₂ enrichment on growth, development, yield and quality during *Kharif* 2011 and 2012.

3.2 Field Experiment

3.2.1 Description of Experimental site

The field experiments were conducted at Demonstration Farm, Water Resources Development and Management Department, Indian Institute of Technology Roorkee, Uttarakhand India located at 29^o 50' 7" N latitude, 77^o 55' 18" E longitude and 262 m altitude.

3.2.2 Soil sample collection, preparation and analysis

Soil samples from different parts of the experimental field were collected from the depths of 0-15 cm, 15-30 cm, 30- 60 cm, 60-90 cm and 90-120 cm with the help of a 2 m long soil auger before the start of the crop season. Composite soil sample of each layer was prepared. Soil samples were air & oven dried, powdered and passed through 2 mm sieve. This sample was stored for physical and chemical analysis of soil.

Sand (<0.02 mm) and silt (0.02-0.002 mm) content was analyzed by hydrometer method (Bouyoucos, 1962). Bulk density (BD) was estimated by core method. Field Capacity (FC) and Permanent Wilting Point (PWP) were estimated using pressure plate apparatus. Soil color was determined using Munsell soil color chart (Colour, 1991). Organic carbon (OC) by Potassium Dichromate method, total nitrogen by Kjheldhal method (Bremner, 1960), Cation Exchange Capacity (CEC) by acetone extraction method and soil pH was determined using hand held pH meter. Land information on degree of slope, soil depth, and drainage condition and infiltration behavior were also collected.

3.2.3 Weather Data Collection

Weather data on daily rainfall, maximum & minimum temperatures as well as the sun shine hours were collected from the AWS (Automated Weather Station) installed at the experimental site for the years 2011 - 2013 (Figure 3.2 - Figure 3.4).

3.2.4 Experimental Design and layout plan

The experiment was laid out in Randomized Block Design (RBD) with 4 treatments of periodical CO₂ application (T0, T1, T2, and T3) and 3 replication (R1, R2, R3) during *Kharif* season (June-October) in 2011 & 2012 (Figure 3.1). Treatment details are mentioned below:

 $T_0 = Control$

 $T_1 = CO_2 (700 \pm 50 \text{ ppm})$ one application /Week (Monday)

 $T_2 = CO_2 (700 \pm 50 \text{ ppm})$ two applications /Week (Monday & Wednesday)

 $T_3 = CO_2 (700 \pm 50 \text{ ppm})$ three application / Week (Monday, Wednesday & Friday)

3.2.5 CO₂ Enrichment and temperature measurements

Plots were enriched with CO₂ through the use of CO₂ cylinders that were used for fire extinguishing. The CO2 gas of 99.6 % purity which is colour & odour less; soluble in water, alcohol and acetone; melting point of -55.6 0 C; boiling point of -78.5 0 C; density of 1.977 g/m³. It produces H₂CO₃ reacting with water; produces HCO₃ reacting with alkali was used in the experiment.

The Intergovernmental Panel on Climate Change (IPCC) reported that the global atmospheric CO_2 concentrations would reach to the level of 550 ppm by 2050 and 750 – 1000 ppm by 2100 (Stocker et al., 2014; Stocker et al., 2013). These projections were used as a guideline to study the effect of CO_2 enrichment on rice crop.

Enclosure of 1.5 m height using polythene sheet and iron rod was erected around the treatment plots to avoid the escape of CO2 gas from the plot (Plate 4). The CO2 was applied to the concentration of 750 ± 50 ppm in the respective treatment plots. CO2 gas application set up is shown in Fig 3.1.

The CO₂ concentration in the plots was measured using CO₂ gas analyzer Model KM302 with a measuring range of 0 to 9999 ppm and resolution of 1ppm (Plate 7 & 8). This instrument is hand held, portable and capable of measuring CO₂ gas in the range of 0 to 9999 ppm with the precision of 1ppm. CO₂ enrichment in the experimental plots started in the 3^{rd} week after transplanting and stopped in the 12^{th} week after transplanting (to avoid any problem to pollinating insects).

The CO_2 concentrations were measured within 15 min after the application within the canopy before and after CO_2 enrichment (Plate 5 & 6). Temperatures were recorded within and above canopy using hand held thermometer and leaf temperatures were measured using infrared thermometer before and after CO_2 enrichment (Plate 9).

Figure 3.1: Layout plan of the experimental field

3.2.6 Crop Management Practices

Crop was managed at two levels, firstly at the nursery for about one month and secondly at the field for about 4 months. Certified seeds of rice cv *Sharbati* a popular cultivar of Haridwar district were procured from the market. Nursery of 2 x 2 sqm was prepared and puddled in the standing water to improve water retention, weed control, germination and crop growth. Seeds were broadcasted in the nursey and irrigated regularly as and when required. Due care was given against bird and weed damage.

3.2.6.1 Field Preparation, Nursery and Management

The experimental plots were ploughed twice, harrowed and puddled to obtain lowland paddy conditions (Plate.1). Plots were prepared as sunken beds with earthen walls around them to maintain standing water.

3.2.6.2 Transplanting

Nursery was sown 8th June 2011 (Plate 2) and 29 days old seedlings were transplanted on 7th July (Plate 3), 2011 in the *Kharif* season. Two seedlings/hill were planted at 20 x 15 cm spacing. Standing water was maintained at a level of 2 cm during the vegetative phase of the crop (i.e. up to 40 days after transplanting) to control weeds. Thereafter, the plots were maintained at field capacity but without standing water (Plate 4). All plots were given similar levels of fertilizer application. At transplanting, a basal fertilizer application of 10 kgs N/ha and 40 kgs P/ha was given. Top dressings of 20 kgs N /ha were given on 21 DAP and 20 kgs N/ha on 35 DAP. Weeds were removed manually at every 25 days interval.

Interactions with the local farmers and agricultural officers (Plate 25 & 26) of this region revealed that the *Sharbati* cultivar is popularly grown in this region. So, *Sharbati* is selected for field trials during *Kharif* 2011and 2012 experimental trials. *Sharbati* is the most popular variety among the farmers and is grown widely in the plains of Haridwar district where drought and flooding are persistent phenomena during crop growth stages. This cultivar is tolerant to both drought and flooding. *Sharbati* is a short duration and high yielding cultivar with long grains. It

is a tall statured plant and is resistance to major pests and diseases of rice crop such as leaf folder, leaf hoppers, leaf and node blast etc.

3.2.7 Observations Recorded

3.2.7.1 Growth and Development

Observations were recorded on plant height (cm), tiller numbers (no/m²), leaf numbers/plant, leaf length (cm), leaf breadth (cm) in at 20 days interval from transplanting to harvesting stage. Leaf Area Index (LAI) was calculated employing the formula (total leaves per hill* leaf length (cm) per hill* leaf breadth (cm) * leaf shape factor/300). Leaf shape factor was determined at all the crop growth stages (measured area of one leaf/ length*breadth of the same leaf). Plant samples collected (Plate 12), were dried in shade initially for 3-4 days for removal excess moisture and further dried in the electric oven at 80°C till the weight became constant and plant dry weight (kgs/ha) was recorded (Plate 10).

Observations were also recorded on days taken to establishment (Plate 13), panicle initiation (PI) (Plate 14), days taken to ear emergence (Plate 15) and days taken to express physiological maturity (Plate 16) conducting survey of 50% plant population of each experimental plots (Plate 11).

3.2.7.2 Yield Attributes and Yield

Before the harvest of the crop panicle density (no/m^2) from the standing crop was recorded. From the standing crop panicle samples were also collected (to record average number of filled grains $(no./m^2)$ and average number of unfilled grains/panicle (unfilled spikes/total spikes).

Crop was harvested from 1 m² area of each experimental plot and were allowed to dry for about 10 days in the sun separately (Plate 17 & 18). When samples were dried to about 14% moisture then the total biomass weight (kgs) was recorded. Samples were threshed, grains removed from straw, cleaned and weighed to recorded grain and straw yield (kgs/ha). Grain and biomass yield was recorded (kgs/ha). Harvest Index was also calculated (grain yield/biomass yield).

3.2.7.3 Grain and Kernel Quality

Grain length (mm), grain breadth (mm) and test weight or 1000 grain weight (g) was recorded. Husk was removed from grain and kernel was weighed to determine hulling % (kernel weight/ grain weight). Kernel length (mm), kernel breadth (mm) and test weight or 100 kernel weight (g) was recorded. Head rice (%), broken rice (%) was determined (total rice-head rice)/total rice) and chalkiness (%) was also determined (chalky rice/ total rice).

Particulars	Cr	op					
	2011-12	2012-13					
Rice Variety	Shar	rbati					
	Nursery						
Field Preparation (Puddling)	7.06.2011	5.06.2012					
Sowing (broadcasting)	8.06.2011	7.06.2012					
Nursery Fertilizer (40:0:0)	7.06.2011	5.06.2012					
Irrigation	As and whe	en required					
Weeding	As and whe	en required					
Cro	p Management						
Experimental Design	RI	3D					
Treatments		4					
Replications		3					
Total number of plots	1	2					
Plot size	2m*2m						
Spacing (Row to Row)	20	cm					
Spacing (Plant to Plant)	15	5 cm					
Transplanting Depth	2 0	cm					
Method of Sowing	*	lanting					
1st ploughing	25.05.2011	25.05.2012					
Levelling	27.06.2011	28.06.2012					
Soil Sample Collection	30.06.2011	28.06.2012					
2nd ploughing	05.07.2011	30.06.2012					
Pre Transplanting irrigation	07.07.2011	1.07.2012					
Transplanting	07.07.2011	09.07.2012					
Irrigation							
Method of Application		ding					
1 st irrigation (50 mm)	07.07.2011	09.07.2012					
2 nd irrigation (50 mm)	27.07.2011	12.07.2012					
3 rd irrigation (50 mm)	07.08.2011	21.07.2012					
4 th irrigation (50 mm)	29.08.2011	27.07.2012					

 Table 3.1: Schedule of field operations during Kharif 2011 and 2012.

5 th irrigation (50 mm)		07.0	9.201	1	05.08.2012				
6 th irrigation (50 mm)		12.0	9.201	1					
7 th irrigation (50 mm)		21.0	9.201	1			-		
Fertilizer application									
Basal dressing (10:40:40)		09.0	07.201	1		07.0	07.201	2	
1 st top dressing (20:0:0)		22.0	07.201	1		17.07.2012			
2 nd top dressing (20:0:0)		25.0	07.201	1		3.08.2012			
3 rd top dressing (20:0:0)		17.0	08.201	1					
CO ₂ Application Schedule	T0	T1	T2	Т3	T0	T1	T2	Т3	
1st Application	-	-	-	27/7	-	-	-	27/7	
2nd Application	-	-	1/8	1/8	-	-	1/8	1/8	
3rd Application	-	3/8	3/8	3/8	-	3/8	3/8	3/8	
4th Application	-	-	-	5/8	-	-	-	5/8	
5th Application	-	-	8/8	8/8	-	-	8/8	8/8	
6th Application	-	10/8	10/8	10/8	-	10/8	10/8	10/8	
7th Application	-	-	-	12/8	-	-	-	12/8	
8th Application	-	-	14/8	14/8	-	-	14/8	14/8	
9th Application	-	17/8	17/8	17/08	-	17/8	17/8	17/08	
10th Application	-	-	-	19/08	-	-	-	19/08	
11th Application	-	-	21/8	21/08	-	-	21/8	21/08	
12th Application	-	24/8	24/8	24/08	-	24/8	24/8	24/08	
13th Application	-	-	-	29/08	-	-	-	29/08	
14th Application	-	-	31/8	31/08	-	-	31/8	31/08	
15th Application	-	2/9	2/9	2/9	-	2/9	2/9	2/9	
16th Application	-	-	-	5/9	-	-	-	5/9	
17th Application	-	-	7/9	7/9	-	-	7/9	7/9	
18th Application	-	9/9	9/9	9/9	-	9/9	9/9	9/9	
19th Application	-	-	-	12/9	-	-	-	12/9	
20th Application	-	-	14/9	14/9	-	-	14/9	14/9	
21st Application	-	23/9	23/9	23/9	-	23/9	23/9	23/9	
Plant protection measures									
1 st weeding		28.	7.2011	[18.	7.2012	2	
2 nd weeding		14.0	08.201	1	30.07.2012			2	
3 rd weeding			-		10.08.2012			2	
Termite treatment		09.0)9.201	1	-				
Harvesting		07.	0.201	1	10.10.2012				
Threshing		17.	0.201	1		20.1	10.201	2	

Data recorded from field experiment were statistically analyzed using ANOVA analysis along with Tukey Kramer's PostHoc test.

3.2.8 ANOVA Analysis with PostHoc Test

ANOVA (Fisher, 1926) test is performed on the observed values to check the significance of periodical CO_2 enrichment on the rice crop growth, development, yield, and yield attributes and grain quality. This method has the advantage of testing whether there are any differences between the groups with a single probability associated with the test. The fundamental technique is the partitioning of the total sum of squares (SS) into components related to the effects used in the model.

$$SS_{Total} = SS_{Treatments} + SS_{Error}$$
(3.1)

The number of degrees of freedom DF can be partitioned in a similar way:

$$DF_{Total} = DF_{Treatments} + DF_{Error}$$
(3.2)

Mean Sum of squares (MS) for treatments, error and total are calculated by using the formula. Similarly MS is calculated for treatments and error.

$$MS_{Total} = \frac{SS_{Total}}{DF_{Total}}$$
(3.3)

Then F value is calculated to compare the deviations of two means. It is calculated using formula

$$F_{calc} = \frac{MS_{Treatments}}{MS_{Error}}$$
(3.4)

Tukey's multiple comparison method is one efficient procedure designed to identify the specific differences that exist among mean responses to several treatments, after the ANOVA has concluded such differences do exist. This result might be useful in supporting decision making.

Test whether there is sufficient evidence at least one of the mean values is different. If so, calculate a critical difference value (CD) between every two means using the formula.

$$CD = q \alpha (c, N - c) \sqrt{\frac{MSE}{N}}$$
(3.5)

Where 'q' is taken from the "Studentized Range" Table and is determined by alpha, c (the number of treatments), and N (the total number of observations); n is the sample size of the treatments compared; and MSE is taken from the ANOVA output.

3.3 **Results and Discussion**

3.3.1 Weather Data

The weather condition during the growing season (1st June - 31st October) of 2011 and 2012 are recorded as 1158 and 647 mm rainfall (RF), 34.1^oC and 32.0^oC average maximum temperature (Tmax), 24.7^oC and 23.2^oC average minimum temperature (Tmin) 22.4 MJm⁻²day⁻¹ and 19.8 MJm⁻²day⁻¹ average solar radiation (SRAD) respectively (Figure 3.2 - Figure 3.4). Daily record of weather data of 1.1.2011 -31.12.2013 was used to develop weather file using weatherman in DSSAT.

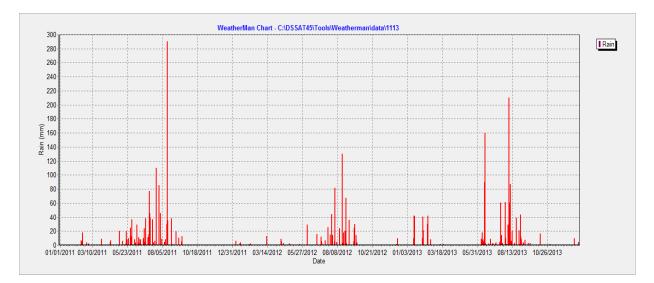


Figure 3.2: Daily rainfall (mm) from 1.1.2011 – 31.12.2013.

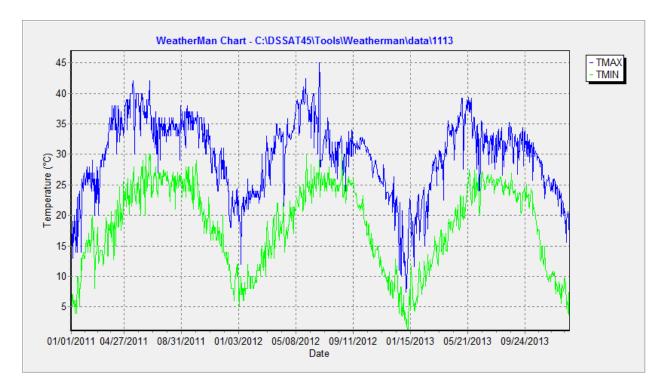


Figure 3.3: Daily maximum and minimum temperature (⁰C) from 1.1.2011 – 31.12.2013.

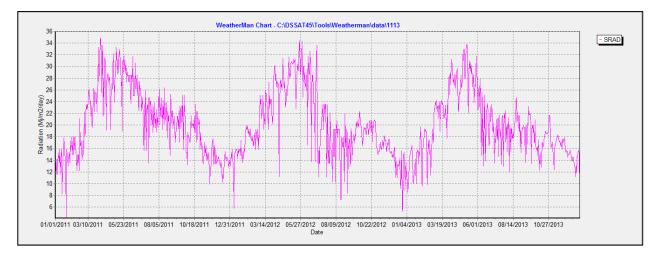


Figure 3.4: Daily Solar radiation (MJm⁻²day⁻¹) from 1.1.2011 – 31.12.2013.

3.3.2 Effect of periodical CO₂ enrichment on leaf and canopy temperatures

The effect of periodical application of CO_2 on leaf temperature, canopy and above canopy temperatures recorded during the rice crop growth period of 2011 and 2012, 15 -20 minutes before and after enrichment which are presented in Table 3.2.

The average CO_2 concentrations in the air before CO_2 application ranged between 290 – 310 ppm. The CO_2 concentration within the canopy on an average increased to the level of 715.3 ppm, 726 ppm and 729.8 ppm during the year 2011 and to the level of 708.4 ppm, 722.4 ppm and 730.2 ppm during 2012 in T1, T2 and T3 treatments respectively after CO_2 application.

The average leaf temperature before CO₂ application ranged between 25.8° C – 26.6° C. The leaf temperature on an average increased to the level of 30.7° C, 30.8° C and 31.0° C during the year 2011 and increased to the level of 30.9° C, 30.8° C and 31.4° C during 2012 in T1, T2 and T3 treatments respectively after the CO₂ application. Increase in leaf temperature by $1 - 2^{\circ}$ C under doubled CO₂ concentrations have been reported by (Allen Jr and Prasad, 2004) which is due to decreased evaporative cooling.

The average canopy air temperature before CO_2 application ranged between $27.5^{\circ}C - 27.6^{\circ}C$. The canopy temperature increased to the level of $28.1^{\circ}C$, $27.9^{\circ}C$ and $27.8^{\circ}C$ during the year 2011 and to the level of $34.5^{\circ}C$, $34.3^{\circ}C$ and $34.0^{\circ}C$ during 2012 in T1, T2 and T3 treatments respectively after CO_2 application. Air temperature within canopy has been reported to increase by $0.2 - 1^{\circ}C$ due to CO_2 enrichment in rice (Yoshimoto et al., 2005).

The average above canopy air temperature before CO_2 application ranged between $29.0^{\circ}C - 29.1^{\circ}C$. The above canopy air temperature increased to the level of $29.1^{\circ}C$, $29.3^{\circ}C$ and $29.4^{\circ}C$ during the year 2011 and to the level of $34.7^{\circ}C$, $34.1^{\circ}C$ and $33.8^{\circ}C$ during 2012 in T1, T2 and T3 treatments respectively after CO_2 application. Air temperature within canopy has been reported to increase by $0.6 - 1^{\circ}C$ due to CO_2 enrichment upto 550 ppm in wheat (Pinter et al., 2000).

Treatmen	Ambient	CO ₂ Level (p canopy	pm) within	Leaf Temperature (⁰ C)			Canopy air Temperature (⁰ C)			Above Canopy air temperat (⁰ C)		
ts	2011	2012	Mean	2011	2012	Mean	2011	2012	Mean	2011	2012	Mean
				В	efore C	O2 Appli	cation					
TO	296.1	301.9	299.0	26.2	30.9	28.6	27.5	33.7	30.6	29.1	33.8	31.5
T1	297.4	294.6	296.0	25.8	30.7	28.3	27.6	33.6	30.6	29.1	33.7	31.4
T2	297	296.6	296.8	26.2	30.8	28.5	27.5	33.7	30.6	29.1	33.8	31.5
Т3	299.3	294.2	296.8	26.2	31	28.6	27.7	33.7	30.7	29.0	33.8	31.4
Mean	297.4	296.8	297.1	26.1	30.8	28.5	27.6	33.7	30.7	29.1	33.8	31.5
				A	After CO	D ₂ Applic	ation					
T0	300.7	306.5	303.6	26.2	30.9	28.6	27.5	33.7	30.6	29.1	33.8	31.5
T1	715.3	708.4	711.9	26	30.9	28.5	28.1	34.5	31.3	29.1	34.7	31.9
T2	726	722.4	724.2	26	30.8	28.4	27.9	34.3	31.1	29.3	34.1	31.7
T3	729.8	730.2	730.0	26.6	31.4	29.0	27.8	34	30.9	29.4	33.8	31.6
Mean	618	617	617.5	26.2	31	28.6	27.8	34.1	31.0	29.2	34.1	31.7

Table 3.2: Average ambient CO2 level within canopy, leaf temperature (°C), above canopy temperature (°C) and canopytemperature (°C) of Rice cv Sharbati as affected by CO2 applications.

3.3.3 Effect of CO₂ enrichment on rice crop growth and development

The results obtained from the experimental study on growth and development parameters such as plant height (cm), tiller number (no./m²), dry matter (kgs/ha), phenology (DAP), leaf number (no./plant), leaf length (cm), leaf width (cm) and LAI are presented in this section.

3.3.3.1 Plant Height

Data of plant height (cm) as affected by different CO₂ treatments in rice *cv Sharbati* are presented in Table 3.3. Significant difference in plant height between the treatments at 40, 60 and 80 days after transplanting was recorded only during 2011. But in 2012 no such difference in plant height at either of the growth stages was recorded. Though insignificant; plant height recorded is maximum in T3 (140 cm) and T2 treatments (121.7 cm) at 80 DAP during *Kharif 2011 and Kharif 2012* respectively. In general the plant height increased with advancing age and was recorded as 66.0 cm, 86.7 cm, 130.1 cm and 132.4 cm at 20, 40, 60 and 80 DAP respectively. The effect of higher CO₂ concentrations on plant height could not be ascertained due to inconsistency in the experimental results observed in the two years. Increase in plant height of rice crop by 7 - 17% due to CO₂ enrichment has been reported by (Manalo et al., 1994; Uprety et al., 2003).

3.3.3.2 Tiller Number

CO₂ enrichment effect was observed to significantly affect the tiller number (no./m²) of rice crop at 40 DAP, 60 DAP and 80 DAP during 2011 and 60 DAP and 80 DAP during the year 2012 (Table 3.3). Average number of tillers of the two year experiment was recorded as 209.1 no./m² 368.8 no./m², 338.3 no./m², and 312.7 no./m² at 20, 40, 60 and 80 DAP respectively. The highest tiller number was recorded at 40 DAP in T3 (491.7 no./m²) treatment during 2011. But the highest tiller number was recorded at 60 DAP in T2 (343.3 no./m²) treatment during 2012. From the Tukey PostHoc CD value of 85.8 no./m², 52.5 no./m² and 57.7 no./m² for 40, 60 and 80 DAP respectively during *Kharif* 2011 suggest that T3 treatment significantly differs from the T0 treatment, at 60 DAP. At 80 DAP T1, T2 and T3 significantly differ from T0 treatment. CD values for 2012 experiment at 40 DAP, 60 DAP and 80 DAP are 52.1 no./m², 48.2 no./m² and 52.8 no./m² respectively. For 2012 experiment at 40 DAP T1 and T2 treatments significantly differ from T0, at 60 DAP T2 treatment significantly differed from T0 and at 80 DAP T3 treatment is found to be significantly different from control treatment.

Percentage increase or decrease in rice tiller number due to CO_2 application over the ambient concentrations is presented in Figure 3.5. The results showed that tiller number was higher in CO_2 enriched treatments with one or two exceptions which are very insignificant. The CO_2 enrichment effect was highest in T3 treatment at 60 DAP (42.2%) during the year 2011. Similarly it was maximum in T2 treatment at 40 DAP (30.4%) in 2012 experiment. The results obtained for tiller number in this study are in agreement with the study of many researchers around the world (Kim et al., 2003; Kim et al., 2001; Nam et al., 2013; Uprety et al., 2003).

3.3.3.3 Crop biomass

Biomass of rice crop significantly increased by increasing the frequency of CO₂ enrichments at 40, 60 and 80 DAP during the years 2011 and 2012 which is given in Table 3.3. The maximum biomass of rice crop was recorded at 80 DAP (17729 kgs/ha) on an average for both the years. The overall average biomass of the two year experiment was recorded as 1095 kgs/ha, 5450 kgs/ha, 13329 kgs/ha and 17729 kgs/ha at 20, 40, 60 and 80 DAP respectively. The biomass accumulation in rice crop is highest at 80 DAP for T2 treatment for the year 2011 (18333 kgs/ha) and 2012 (11567 kgs/ha) respectively. CD value of 657 kgs/ha, 1550 kgs/ha and 2190 kgs/ha at 40 DAP, 60 DAP and 80 DAP during 2011 and 500 kgs/ha, 1123 kgs/ha and 2437 kgs/ha at 40 DAP, 60 DAP and 80 DAP during 2012 was estimated by Tukey PostHoc method which suggests that T2 treatment significantly differed from control treatment at 60 and 80 DAP during 2011 and 2012 experiments.

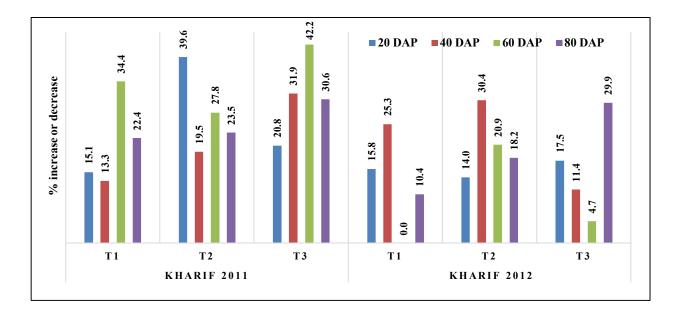


Figure 3.5: % increase or decrease in tiller count as affected by periodical CO₂ enrichment in T1, T2 and T3 in comparison with the tiller count in T0 treatment of rice crop grown during *Kharif* 2011 and 2012.

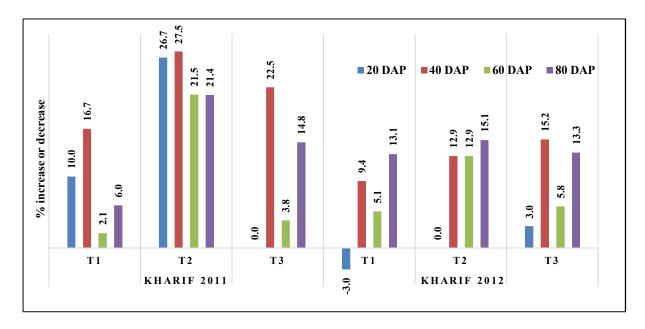


Figure 3.6: % increase or decrease in biomass accumulation as affected by periodical CO₂ enrichment in T1, T2 and T3 in comparison with the biomass in T0 treatments of rice crop grown during *Kharif* 2011 and 2012.

From Figure 3.6 it is observed that the response of rice crop to CO_2 applications for biomass accumulation is more during *Kharif* 2011 in comparison with *Kharif* 2012. The biomass accumulation is maximum at 40 DAP. The percent increase in biomass of rice crop as effected

by CO₂ applications when compared with control (T0) is maximum in T2 treatment during *Kharif* 2011 (27.5%) and maximum in T3 treatment during *Kharif* 2012 (15.2%) experiments. The direct impact of CO₂ is on photosynthetic processes which invariably effects biomass accumulation which has been observed in many of the experiments done previously (Baker et al., 1995; Shimono and Okada, 2013; Ziska and Teramura, 1992).

3.3.3.4 Phenology

The results on phenological observations obtained during the 2011 and 2012 CO₂ enrichment experiments are presented in Table 3.3. The CO₂ enrichment effect on phenology of rice crop was not significant. On an average for all treatments the juvenile, PI, anthesis and maturity stage was attained at 25 DAP, 32 DAP, 63 DAP and 93 DAP respectively during 2011. Similarly the juvenile, PI, anthesis and maturity stage was attained at 22 DAP, 61 DAP and 91 DAP respectively during 2012.

3.3.3.5 Leaf Number

From Table 3.4 it is evident that the effect of CO₂ enrichment on leaf number is significant at 60 and 80 DAP. It cannot be ascertained that the increase in leaf number at 20 and 40 DAP is due to CO₂ concentrations during *Kharif* 2011 & 2012. The average leaf number is highest at 60 DAP (47.9 plant⁻¹ during 2011 and 27.5 plant⁻¹ during 2012). The CD value estimated by Tukey PostHoc method at 60 and 80 DAP is 7.1 plant⁻¹ and 6.37 no./plant during 2011; 4.38 plant⁻¹ and 3.26 plant⁻¹ during 2012. From the PostHoc tests it is observed that T3 treatment significantly differs from T0 at 80 DAP during 2011 and 2012 experiments.

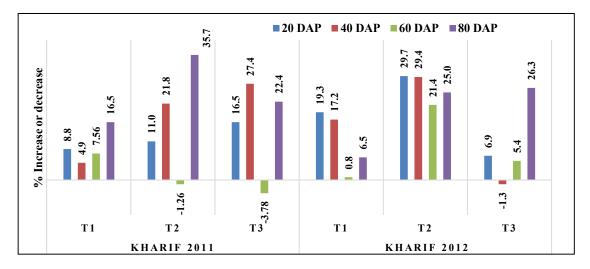


Figure 3.7: % increase or decrease in leaf number as affected by periodical CO₂ enrichment in T1, T2 and T3 in comparison with the leaf number in T0 treatment of rice crop grown during Kharif 2011 and 2012.

Percentage increase or decrease in rice leaf number due to CO₂ application over the ambient concentrations is presented in Figure 3.7. The results showed that average leaf number was higher in CO₂ enriched treatments with one or two exceptions which are very insignificant. The CO₂ enrichment effect was highest in T2 treatment at 80 DAP (35.7%) during the year 2011. Similarly it was maximum in T2 treatment at 20 DAP (29.7%) in 2012 experiment. The results obtained for tiller number in this study are in agreement with the study of many researchers around the world (Kim et al., 2003; Kim et al., 2001; Nam et al., 2013; Uprety et al., 2003).

3.3.3.6 Leaf length and width

Observations recorded on leaf length and width are presented in Table 3.4. The effect of CO_2 enrichment was significant during the *Kharif* 2011 experiment whereas no significant difference in treatment was recorded during second year (*Kharif* 2012) of experiment. In general the leaf length increased with advancing age and was recorded as 27.7 cm, 50.4 cm, 49.0 cm and 47.8 cm at 20, 40, 60 and 80 DAP respectively. The effect of higher CO_2 concentrations on leaf length is not clear due to inconsistency in the experimental results observed across two seasons. Leaf width of rice crop at 20, 40, 60 and 80 DAP was not affected by CO_2 enrichment. The average leaf width observed for *Sharbati* cultivar during *Kharif* 2011 and 2012 at 20, 40, 60 and 80 DAP is 0.7 cm, 1.2 cm, 1.4 cm and 1.3cm respectively.

Treatmonts	P	lant H	eight (c	em)		Tiller (no./m²)]	Biomas	ss (kgs/h	a)	Pheno	ological	expression	(DAP)
Treatments	20	40	60	80	20	40	60	80	20	40	60	80	Juvenile	PI	Anthesis	Maturity
		D	AP			DA	٩P			Γ	DAP		stage	Stage	Stage	Stage
									Khari	f 2011						
TO	41.7	82.7	128.3	131.7	174.9	372.9	297	280.5	1000	4000	11333	15100	24	31	62	92
T1	43.0	84.7	131.7	130.0	201.3	422.4	399.3	343.2	1100	4667	11567	16000	25	32	63	93
T2	43.3	88.0	133.3	135.0	244.2	445.5	379.5	346.5	1267	5100	13767	18333	25	32	63	93
Т3	44.0	82.3	137.3	140.0	211.2	491.7	422.4	366.3	1000	4900	11767	17333	26	33	63	93
Mean	43.0	84.4	132.7	134.2	207.9	433.1	374.6	334.1	1092	4667	12108	16692	25	32	63	93
ToS	NS	sig*	sig*	sig*	NS	sig*	sig*	sig*	NS	sig*	sig*	sig*	NS	NS	NS	NS
CD (0.05)		3.9	5.6	6.4		85.8	52.47	57.75		657	1550	2190				
									Khari	f 2012	-					
TO	50.0	86.7	128.3	116.7	188.1	260.7	283.8	254.1	1100	5700	6184	9000	21	29	60	90
T1	52.8	86.7	128.3	116.7	217.8	326.7	283.8	280.5	1067	6233	6946	11233	22	29	61	91
T2	52.5	95.0	131.7	121.7	214.5	339.9	343.2	300.3	1100	6433	7036	11567	22	29	61	91
Т3	51.2	90.0	121.7	116.7	221.1	290.4	297.0	330.0	1133	6567	7269	11267	22	30	62	91
Mean	88.9	88.9	127.5	130.5	210.4	304.4	302.0	291.2	1100	6233	14550	18767	21.8	29.3	61	90.8
ToS	NS	NS	NS	NS	NS	sig*	sig*	sig*	NS	sig*	sig*	sig*	NS	NS	NS	NS
CD (0.05)						52.1	48.2	52.8		500	1123	2437				
C Mean	66	86.7	130.1	132.4	209	369	338	313	1096	5450	13329	17729	23.4	30.6	61.9	91.8

Table 3.3: Effect of periodical CO2 enrichment on plant height, tiller number, biomass, phenology at 20, 40, 60 and 80 DAP
during *Kharif* 2011 and 2012 in rice crop cv *Sharbati*.

3.3.3.7 Leaf Area Index (LAI)

From Table 3.4 it is evident that the effect of CO_2 application on LAI is evident at 60 and 80 DAP with CD value of 1.4 and 0.37 during 2011 and 1.13 and 0.79 during 2012. It cannot be said that CO_2 has any effect on LAI at 20 and 40 DAP as there is no consistency in the results obtained in *Kharif* 2011 and *Kharif* 2012 experiments. Generally LAI variation during the crop growth is 1.3, 4.4, 5.9 and 4.9 at 20, 40, 60 and 80 DAP respectively. The LAI is highest at 60 DAP during both the years (6.5 – 2011 & 5.2 – 2012). Increased LAI due to CO_2 enrichment can be attributed to increased leaf number and not due to increased leaf length or width. Among all the treatments T2 treatment significantly differed from T0 at 60 and 80 DAP.

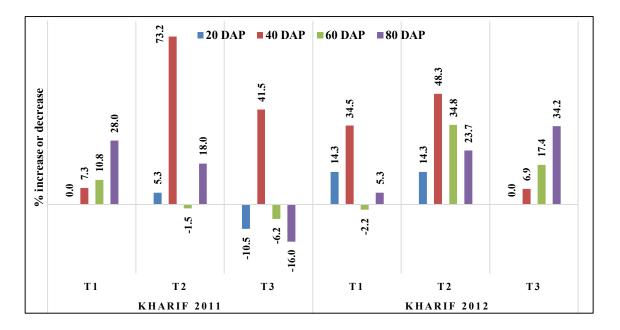


Figure 3.8: % increase or decrease in LAI as affected by periodical CO₂ enrichment in T1, T2 and T3 in comparison with the LAI in T0 treatment of rice crop grown during Kharif 2011 and 2012.

It has been observed that the LAI significantly decreased with increasing CO_2 enrichment treatments especially at higher CO_2 concentrations T2 and T3 during the 2011 experiment but in 2012 experiment it is observed that the CO_2 enrichment had a positive effect on LAI of rice crop (Figure 3.8). This complex response of LAI to CO_2 enrichment has been explained by (Ewert, 2004) as LAI of rice crop depends on substrate allocation, leaf area development and senescence, and the role of LAI in controlling plant adaptation to environmental changes. Further investigation is required in this regard to state the probable reason for such response of LAI.

	Lea		bers (j DAP	plant ⁻¹)	Leaf length (cm) DAP			Leaf width (cm) DAP				Leaf Area Index DAP				
Treatments	20	40	60	80	20	40	60	80	20	40	60	80	20	40	60	80
								DAP								
						Kh	arif 20)11								
TO	27.3	39.0	47.6	25.5	23.4	45.9	43.5	34.9	0.6	1.1	1.4	1.3	1.9	4.1	6.5	5
T1	29.7	40.9	51.2	29.7	24.5	49.1	44.0	41.2	0.6	1.1	1.5	1.5	1.9	4.4	7.2	6.4
T2	30.3	47.5	47.0	34.6	29.9	64.9	47.0	44.1	0.6	1.3	1.5	1.4	2	7.1	6.4	5.9
Т3	31.8	49.7	45.8	31.2	26.9	51.6	48.2	45.6	0.6	1.1	1.5	1.3	1.7	5.8	6.1	4.2
Mean	29.8	44.3	47.9	30.3	26.2	52.9	45.7	41.4	0.6	1.1	1.5	1.4	1.9	5.3	6.5	5.4
ToS	NS	sig*	sig*	sig*	NS	sig*	NS	sig*	NS	NS	NS	NS	NS	sig*	sig*	sig*
CD (0.05)		7.34	7.1	6.37		9.63		5.29						0.34	1.4	1.37
							KI	harif 2	012							
Т0	14.5	23.8	25.7	23.2	29.8	47.3	50.8	52.7	0.8	1.1	1.3	1.1	0.7	2.9	4.6	3.8
T1	17.3	27.9	25.9	24.7	30.5	46.7	51.2	53.7	0.8	1.2	1.3	1.1	0.8	3.9	4.5	4
T2	18.8	30.8	31.2	29.0	28.8	50.1	54.8	54.7	0.8	1.3	1.4	1.2	0.8	4.3	6.2	4.7
Т3	15.5	23.5	27.1	29.3	28.1	47.2	52.3	55.7	0.8	1.2	1.4	1.2	0.7	3.1	5.4	5.1
Mean	16.5	26.5	27.5	26.6	29.3	47.8	52.3	54.2	0.8	1.2	1.3	1.1	0.8	3.5	5.2	4.4
ToS	sig*	NS	sig*	sig*	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	sig*	sig*
CD (0.05)	3.27		4.38	3.26											1.13	0.79
C Mean	23.2	35.4	37.7	28.4	27.7	50.4	49	47.8	0.7	1.2	1.4	1.3	1.3	4.4	5.9	4.9

 Table 3.4: Effect of periodical CO2 enrichment on leaf number (plant⁻¹), leaf length (cm), leaf width (cm), Leaf Area Index during *Kharif* 2011 and 2012 in rice crop cv *Sharbati*.

3.3.4 Effect of CO₂ enrichment on rice crop yield and yield attributes

The results obtained from the experimental study on growth and development parameters such as panicle number (no./m²), filled and unfilled grains (no./m²), grain length (mm), grain breadth (mm), single grain weight (g), kernel length (mm), kernel width (mm), single kernel weight (g), hulling %, broken grain percentage (%), chalkiness percentage (%), grain yield (kgs/ha), straw yield (kgs/ha) and HI are presented in this section.

3.3.4.1 Panicle Character

The panicle number in rice crop is significantly affected by the elevated CO₂ concentrations (Table 3.5). The average number of panicles during *Kharif* 2011 (323 no./m²) is higher compared to *Kharif* 2012 (253 no./m²). *Sharbati* cultivar on an average has a panicle density of 288 panicles (no./m²). Results obtained during 2011 and 2012 indicated a higher panicle density of 353 no./m² and 284 no./m² respectively for T2 treatment during 2011 and 2012 CO₂ experiments. Tukey PostHoc CD calculated for panicle no./m² during 2011 and 2012 is 57.8 no./m² and 52.2 no./m². From this test it is observed that all the three treatments (T1, T2 and T3) significantly differ from T0 during 2011and T2 and T3 treatments significantly differed from T0 during 2012. Percent increase in panicle density per sqm in response to CO₂ enrichment is highest in T2 treatment during the 2011 (30.7%) and 2012 (34.3%) experiments respectively in comparison with T0 treatment (Figure 3.9).

The filled grains number $(no./m^2)$ was significantly affected by CO₂ enrichment treatments as presented in Table 3.5. The two year average number of filled grains was 24883.8 no./m², 35058.05 no./m², 42587.7 no./m² and 37159.05 no./m² in T0, T1, T2 and T3 respectively. The average grain number $(no./m^2)$ is higher during *Kharif* 2011(44847 no./m²) compared to *Kharif* 2012 (24997 no./m²) experiment. Tukey PostHoc CD calculated for filled grain number $(no./m^2)$ during 2011 and 2012 is 6303.8 no./m² and 5435.6 no./m². From this it is observed that all the three treatments (T1, T2 and T3) significantly differ from T0 during 2011 and 2012 experiments. The number of unfilled grains $(no./m^2)$ also decreased with the increase in CO₂ concentration resulting in increase in the grain yield. Percent increase in filled grain number per sqm in response to CO₂ enrichment is highest in T2 treatment during the 2011 (37.0%) and 2012 (17.8%) experiments respectively in comparison with T0 treatment (Figure 3.9). The number of unfilled grains also decreased with the increase in CO_2 concentration. The controlledenvironment experiments have shown that elevated CO_2 increases tiller and panicle numbers in rice (Baker et al., 1992a; Kim et al., 2011; Moya et al., 1998; Yang et al., 2006; Yang et al., 2009a; Yang et al., 2009b; Ziska et al., 1997).

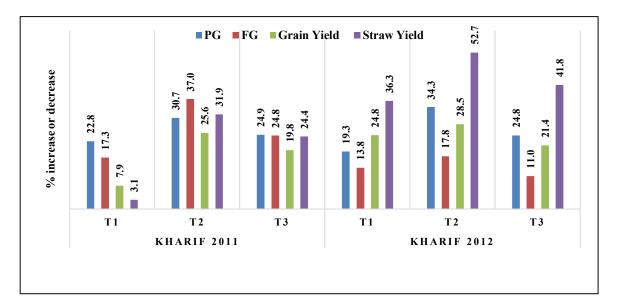


Figure 3.9: % increase or decrease in panicle number, filled grain number, grain yield and straw yield as affected by periodical CO₂ enrichment in T1, T2 and T3 in comparison with the panicle number, filled grain number, grain yield and straw yield in T0 treatment of rice crop grown during Kharif 2011 and 2012.

Table 3.5: Effect of periodical CO₂ enrichment on panicle number, filled grain number (FG), unfilled grain number (UFG), single grain weight (SGW), grain length (GL), grain width (GW) and hulling % during *Kharif* 2011 and 2012 in rice cv *Sharbati*.

Truestarianta		Panicle			Grains		Hulling
Treatments	PN (no./m ²)	FG (no./m ²)	UFG (no./m ²)	SGW (g)	GL (mm)	GW(mm)	%
			Kharif 2011				
TO	270.2	30991.9	4620.4	0.022	10	2	74.3
T1	331.7	44613.7	3980.4	0.022	10	2	70.3
T2	353.1	55472	3566.3	0.025	11	2	85.5
Т3	337.6	48310.6	3342.2	0.023	10	2	77.1
Mean	323.2	44847	3877	0.023	10.2	2	76.8
ToS	sig*	sig*	sig*	NS	NS	NS	sig*
CD (0.05)	57.8	6303.8	1760	-	-	-	9.9
			Kharif 2012				
TO	211.2	18775.7	4984.3	0.023	10	2	77.3
T1	252	25502.4	7938	0.024	10	3	73.5
T2	283.7	29703.4	6723.7	0.022	10	2	86.5
Т3	263.5	26007.5	4848.4	0.022	11	3	76.8
Mean	252.6	24997	6124	0.023	10.2	2.5	78.5
ToS	sig*	sig*	NS	NS	NS	NS	NS
CD (0.05)	52.2	5435.6	-	-	-	-	-
C Mean	288	34922	5000	0.023	10.3	2.3	77.7

3.3.4.2 Grain Characters

It is observed that the SGW of rice crop is unaffected under elevated CO_2 conditions. Generally *Sharbati* is a long-slender grained cultivar. The impact of elevated CO_2 on grain length (GL) and grain width (GW) parameter is not significant. The length of the grain generally varied between 1.0-1.1 mm and with a width ranging between 0.2 - 0.3 mm (Table 3.5). The hulling (%) was affected inconsistently by increasing the frequency of CO_2 application. The two year average hulling (%) was 75.8, 71.9, 86.0 and 77.0 in T0, T1, T2 and T3 respectively. The overall average hulling (%) recorded was 76.8 and 78.5 during 2011 and 2012 respectively (Table 3.5).

3.3.4.3 Kernel Characters

Kernel is the economic part of rice crop which is used for consumption purpose. Therefore the kernel characters both quality and quantity are of prime importance to get good returns. Effect of any treatment on kernel characteristics should be checked as it can affect the market value at large. The average single kernel weight (SKW), kernel length (KL) and kernel width (KW) as observed from experimental study are 0.018 gm, 9.8 mm and 1.9 mm respectively (Table 3.6).

Table 3.6: Effect of CO₂ enrichment on single kernel weight (SKW) (g), kernel length (KL) (mm), Kernel breadth (KB) (mm), Broken grain percentage (BG%), chalkiness percentage (CK%), grain Yield (kgs/ha), straw yield (kgs/ha) and HI *Kharif* 2011 and 2012 in rice cv *Sharbati*.

Two of the own for			Kernels			Yield (kgs/ha)	ні
Treatments	SKW (g)	KL (mm)	KTW (mm)	BG (%)	CK (%)	Grain	Straw	ш
			Kharif 20	11				
T0	0.017	9.7	1.8	9.3	12.3	6610	15057	0.45
T1	0.018	9.6	1.7	10.9	17.1	7133	15533	0.46
T2	0.018	10	1.9	10.9	20.6	8303	19863	0.42
Т3	0.018	9.8	1.9	12.8	22.8	7923	18743	0.44
Mean	0.0176	9.775	1.825	11	18.2	7492	17299	0.44
ToS	sig*	sig*	NS	sig*	sig*	sig*	sig*	NS
CD (0.05)	0.003	0.2	-	1.09	2.8	767	3930	-
			Kharif 20	12				
T0	0.017	9.6	1.8	13.3	15.4	4670	11170	0.49
T1	0.018	9.8	1.7	14.9	23.1	5830	12530	0.51
T2	0.019	9.9	1.9	12.1	20.7	6000	15352	0.44
Т3	0.018	9.7	1.9	16.2	24.3	5670	14330	0.44
Mean	0.018	9.8	1.8	14.1	20.9	5543	13346	0.47
ToS	NS	sig*	NS	sig*	sig*	sig*	sig*	NS
CD (0.05)	-	0.47	-	2.6	4.6	1038	2940	-
C Mean	0.018	9.8	1.8	11.9	19.6	6517	15322	0.5

From the experimental results (Table 3.6) the effect of CO_2 application on KTW cannot be attributed to CO_2 alone as there is no proper consistency in the results observed during *Kharif* 2011 and *Kharif* 2012. It is clear from the tabulated results that CO_2 has very minute or insignificant effect on KL and KW. During both the years the KL and KW are maximum in T2 treatments.

Significant effect of CO₂ applications is seen on broken grain percentage (BG) and chalkiness (CK) in both the years (Table 3.6). It is clearly observed that the BG% and CK% increases with increasing CO₂ applications. Average BG% and CK% during the study is observed to be 11.9% and 19.6 % respectively. The BG is maximum in T3 treatments during *Kharif* 2011 (12.8%) and *Kharif* 2012 (16.2%). CK was observed to be maximum in T3 (22.8%) treatment and T2 (24.3%) treatment during 2011 and 2012 experiments respectively.

It has been observed that the BG% and CK% increased with increasing CO₂ enrichment treatments leading to quality deterioration of kernel. The BG% increased by 2 - 3% and CK% increased by 5 - 10% in the CO₂ enriched treatments (T1, T2, T3) in comparison with the control treatment (T0). Similar findings on BG% and CK% were reported by (Liu et al., 2008; Wang et al., 2011; Yang et al., 2007).

3.3.4.4 Grain Yield and straw yield

The observations taken on yield and straw yield (Table 3.6) shows that there is significant difference in CO₂ treatment across two seasons *Kharif* 2011 and *Kharif* 2012. The average yield observed during *Kharif* 2011 and 2012 are 7492 kgs/ha and 5543 kgs/ha respectively. The yield recorded is higher in *Kharif* 2011 compared to *Kharif* 2012. This difference in yields across two seasons can be attributed to weather conditions. The rainfall during *Kharif* 2011 was timely and adequate whereas 2012 had a comparatively less rainfall with improper temporal distribution. Grain yield of T2 and T3 treatments differed significantly from T0 treatment during 2011; grain yield of T1 and T2 differed significantly from T0 during 2012.

The maximum yield during *Kharif* 2011 is observed for T2 (8303 kgs/ha) and lowest for control treatment T0 (6610 kgs/ha). Similarly, maximum yield during *Kharif* 2012 was recorded for T2 treatment (6000 kgs/ha) and lowest for control treatment T0 (4670 kgs/ha). CD value estimated

for grain yield were 767 kgs/ha and 1038 kgs/ha for 2011 and 2012 experiments respectively which indicated that T2 and T3 treatment significantly differed from T0 treatment during 2011; while T1 and T2 treatments significantly differed from T0 treatment during 2012 experiment.

The percentage increase in grain yield due to CO_2 enrichment treatments is maximum in T2 treatments for *Kharif* 2011 (25.6%) and *Kharif* 2012 (28.6%) experiments over the control plots (Figure 3.9). These results indicated that the T2 treatment was found to have good impact on grain yield of rice cv *Sharbati*. Rice yield is determined by panicle number per land area, spikelet number per panicle, filled spikelet percentage and individual grain weight. Yield increases caused by elevated CO_2 are related most strongly to larger productive panicle number per area and larger spikelet number per panicle (Cheng et al., 2009; Kim et al., 2003; Madan et al., 2012; Nam et al., 2013; Yang et al., 2009b). The findings by (Kim et al., 2011) indicated that elevated atmospheric CO_2 concentration, in a certain range, promotes rice grain yield but high dose of CO_2 beyond the range has little effect on yield improvement.

The overall average straw yield of *Sharbati* cultivar is 15332 kgs/ha, it was found to be higher in T2 treatment for *Kharif* 2011 (19863 kgs/ha) and *Kharif* 2012 (15352 kgs/ha) and lower for control treatments during both the years (15057 kgs/ha during 2011 and 11170 kgs/ha during 2012). Effect of CO₂ applications did not show any significant effect on harvest index of rice crop. CD value estimated for straw yield were 3930 kgs/ha and 2940 kgs/ha for 2011 and 2012 experiments respectively which indicated that T2 treatment significantly differed from T0 treatment during 2011; while T2 and T3 treatments significantly differed from T0 treatment during 2012 experiment. Percentage increase in straw yield in response to CO₂ enrichment is highest in T2 treatment during the 2011 (31.9%) and 2012 (52.7%) experiments respectively in comparison with T0 treatment (Figure 3.9). The increase in the straw yield due to higher CO₂ concentrations has been reported by several scientists and researchers (Baker et al., 1992a; Baker et al., 1992b; Vu et al., 1997; Widodo et al., 2003; Ziska and Teramura, 1992).

3.4 Conclusion

In general plant growth was improved with CO_2 enrichment treatments recording increased tillers/hill, leaves/hill, plant height, leaf length and width, plant dry matter/hill and Leaf Area Index. Yield attributes viz. panicles/m², filled grains/m², grain weight as well as grain length and width were improved with periodical enrichment of CO_2 . Negative impact of CO_2 enrichment was recorded with increased broken grain and chalkiness percentage.

CHAPTER IV

CERES RICE CALIBRATION AND VALIDATION

4.1 Introduction

DSSAT models have been used to simulate crop yields under climate change and CO_2 enriched conditions. From field experiments it is evident that biomass and grain yield of C3 crops increases under CO_2 enriched conditions. Experimental data input and treatments actually matched with field experiment. Results obtained were used to validate this model.

4.1.1 DSSAT Model Description

In this study crop simulation model DSSAT v 4.5 software (Hoogenboom et al., 2010) (Hoogenboom et al., 2010) was used, which is assembled and distributed by International Consortium for Agricultural Systems Analysis (ICASA). It simulates growth, development and yield of a crop growing on a uniform area of land under different soil, water, carbon, and fertility conditions that take place under the cropping system over time (Jones et al., 2003). DSSAT was designed to allow user to (1) input, organize, and store data on crops, soil, and weather, (2) retrieve, analyze and display data, (3) calibrate and evaluate crop growth models and (4) evaluate different management practices at a site (Jones et al., 1998; Tsuji et al., 1994; Uehara and Tsuji, 1998).

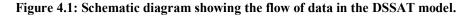
DSSAT crop models are process oriented, and are designed to have global applications; i.e., to be independent of location, season, and management system. The models simulate effects of weather, soil water, cultivar, and nitrogen dynamics in the soil and crop, on crop growth and yield for well drained soils. DSSAT allows creating different management strategies and simulating performance of the crop (Basak et al., 2010).

4.1.2 CERES Rice Model Description

DSSAT comprises of multiple crop models including CERES-Rice. The CERES-Rice model simulate rice plant growth, development, yield attributes and yield considering the effects of weather condition, management practice, genetic character, soil water regime, Carbon and

Nitrogen applications (Timsina and Humphreys, 2006). The phenology of rice crop is simulated by CERES Rice model based on the growing degree days (GDD) and was modified to suite under all growing conditions (Alocilja and Ritchie, 1991). The germination of the rice seed is achieved when the GDD reaches to 45^oC with a base temperature of 8^oC (Livingston and Haasis, 1933). Biomass or dry matter production is a function of Photo synthetically Active Radiation (PAR) and Radiation Use Efficiency (RUE) of crop. The model predict daily photosynthesis using radiation-use efficiency approach as a function of daily irradiance for a full canopy, which is then multiplied by a factors ranging from 0 to 1 for light interception, temperature, leaf nitrogen and water status. CERES Rice model adapts Beer's Law to simulate the amount of light absorbed by the crop during the process of photosynthesis (Yoshida, 1981).


This model computes daily changes in root zone soil water content requires data of soil infiltration rate, drainage coefficient and Evapo transpiration (ET) of crop etc. (Ritchie and Otter, 1985). The water balance subroutine calculates run-off by modified United States Department of Agriculture (USDA)-Soil and Conservation Service (SCS) curve number method (Williams et al., 1991). The CERES model uses various weather data (temperature, humidity, sunshine hours, wind speed) to calculate ET by Penman-Montieth method (Jensen et al., 1990), uses temperature and solar radiation data by Ritchie's method (Allen et al., 1998).


DSSAT (Decision Support System for Agrotechnology Transfer) have also been widely used for yield gap analysis, decision making and planning, strategic and tactical management decisions, climate change impact studies etc. In India, several studies have demonstrated the utility of DSSAT for impact assessment of climatic change (Saseendran et al., 2000) (Aggarwal and Mall, 2002; Dharmarathna et al., 2014; Mall and Aggarwal, 2002; Saseendran et al., 2000). DSSAT has different sub modules to generate various files viz. weatherman for weather files, S Build for soil files, X Build for crop management and AT for genetic coefficient. The schematic flow chart of DSSAT model is presented in Figure 4.1.

4.1.3 DSSAT file Generation

4.1.3.1 Soil file

Soil module S Build is used to generate soil files entering layer wise soil data into the model. The minimum input datasets required for generating soil files are the location details, soil color, slope etc. and layer wise details of silt (%) and clay (%), and nitrogen , soil pH, organic carbon (OC) and cation exchange capacity (CEC) etc. The data generated in the soil file using S Build is bulk density (BD), saturation point (SP), field capacity (FC), permanent wilting point (PWP), runoff curve number (RO), albedo fraction (Alb), Evaporation limit (EL) and Drainage rate (DR) etc.

Roorkee soils were sandy loam soils which are brown in color with an albedo fraction of 0.13. The drainage rate of soils was 0.4 mm/day with the 73 runoff curve number. The soils were classified into order Inceptisols. Roorkee soils were characterized by 12-16% clay content, 24-40% silt with 0.6% OC in the topsoil, and therefore they were classified into sandy loam type of soils. PWP ranged between 0.097 - 0.121 cm³ cm⁻³, FC ranged between 0.2 - 0.224 cm³ cm⁻³ and

Saturation point (SP) 0.3 - 0.4 cm³ cm⁻³. BD of the soil ranged between 1.54 g cm⁻³ in the top layers to 1.42 gcm⁻³ in the subsoil layers. CEC also ranged between 13-15 cmol kg⁻¹ in various layers of the soil.

Orde	er – Ince	ptisols		Color – Brown			А	Alb-0.13				
DR (DR (mm/day) $- 0.4$			RO - 73								
S	Layer	Depth	OC	Clay	Silt	Ν	PWP	FC	SP	BD	рΗ	CEC
No.												
		(cm)	(%)				(cm ³ /cn	n^3)		(g/cm^3)		(cmol kg^{-1})
1	А	30	0.6	16	24	0.02	0.121	0.224	0.414	1.54	7.8	13
2	B_0	60	0.2	15	30	0.01	0.104	0.208	0.406	1.50	7.3	14
3	B_1	90	0.1	14	32	0.01	0.097	0.201	0.407	1.49	7.3	15
4	С	120	0.01	12	40	0.01	0.082	0.195	0.319	1.42	6.8	15

Table 4.1: DSSAT Generated Hydrological, Physical and Chemical properties of soil.

4.1.3.2 Weather file

Weatherman module of DSSAT generates weather files using daily weather data. The minimum datasets required by the weatherman are latitude and longitude of the weather station, daily values of incoming solar radiation (MJ/m²/day), maximum (Tmax) and minimum (Tmin) air temperature (°C), and rainfall (mm). WGEN sub module of weatherman generates daily data from monthly or weekly data.

4.1.3.3 Genetic Coefficient file

Genetic coefficients were generated using AT Create module of DSSAT. In this process the observed data for at least six crop growth and development parameters with four dates of sowing is required to calibrate the coefficient. Genetic coefficients of any cultivar whose growth pattern resembles to that of the selected cultivar, which preexists within the model was selected for modification running DSSAT model using actual soil, weather and crop management data and make it usable by adjusting various coefficients through iterative process till the observed and simulated crop parameter data matched for rice cv *Sharbati*. The RICER045.CUL file was opened and the genetic coefficients of rice cv *Sharbati* was incorporated into the DSSAT model.

The DSSAT requires scalar values of genetic coefficients which are crop and cultivar specific for calculating the physiological values (Ritchie, 1993). The values of genetic coefficient of selected rice cultivar is given in Table 4.3. These coefficients determine the phenology and grain yield components of a particular variety as affected by other parameters such as weather, soil etc

(Iglesias, 2006). There are eight parameters of genetic coefficient that need to be adjusted to calibrate the model for each variety (Table 4.2).

Name of the Coefficient	Description
Juvenile phase coefficient (P1)	Time period (expressed as growing degree days [GDD] in ⁰ C over a base temperature of 9 ⁰ C) from seeding emergence during which the rice plant is not responsive to changes in photoperiod. This period is also referred to as the basic vegetative phase of the plant.
Critical photoperiod (P2O)	Critical photoperiod or the longest day length (in hours) at which the development occurs at a maximum rate. At values higher than P2O development rate is slowed, hence there is delay owing to longer day lengths.
Photoperiod coefficient (P2R)	Extent to which phasic development leading to panicle initiation is delayed (expressed as GDD in ⁰ C) for each hour increase in photoperiod above P2O.
Grain filling duration coefficient (P5)	Time period in GDD (0 C) from beginning of grain filling (3–4 days after flowering) to physiological maturity with a base temperature of 9 0 C.
Spikelet number coefficient (G1)	Potential spikelet number coefficient as estimated from the number of spikelets per g of main culm dry weight (less lead blades and sheaths plus spikes) at anthesis. A typical value is 55.
Single grain weight (G2)	Single grain weight (g) under ideal growing conditions, i.e. non-limiting light, water, nutrients, and in the absence of pests and diseases.
Tillering coefficient (G3)	Tillering coefficient (scalar value) relative to IR64 cultivar under ideal conditions. A higher tillering cultivar would have a coefficient greater than 1.0.
Temperature tolerance coefficient (G4)	Temperature tolerance coefficient. Usually 1.0 for varieties growth in normal environments. G4 for japonica-type rice growing in a warmer environment would be 1.0 or greater. Likewise, the G4 value for indica-type rice in very cool environments or season would be less than 1.0.

Table 4.2: Parameters of genetic coefficients in CERES Rice model.

Genetic coefficients of *Sharbati* rice cultivar were generated by running the model iteratively until the simulated values were closer to the observed values. Simulated values were close to the observed values and within permissible limits. Therefore, the genetic coefficient values applicable to all the dates of sowing was accepted and adopted for further model run. The genetic coefficient developed is presented in Table 4.3.

Genetic Coefficients Rice Cultivar P1 P2R P5 **P2O** G1 G2 G3 G4 Sharbati 780 80 350 15.4 50 0.022 0.60 0.70

Table 4.3: DSSAT generated Genetic coefficient for rice cv Sharbati.

4.1.3.4 Crop Management File

The X build module of DSSAT generates crop management file. This module requires data of field operations (planting, harvesting, irrigation, fertilizer application etc.) as specified by the users. The minimum data sets required for X build are planting date; planting density, row spacing, planting depth, irrigation, and fertilizer applications etc.

4.1.3.5 Experimental details

In order to calibrate and develop genetic coefficient of rice cv *Sharbati*, field experiment with four dates of transplanting [7th July (D1); 15th July (D2); 22nd July (D3) and 31st July (D4)] with recommended package of practices was conducted at the Demonstration Farm of Indian Institute of Technology Roorkee during *Kharif* 2013 (Plate 19 -24). Data on growth, development, yield attributes and yield were recorded. CERES rice model was run using actual crop management, soil, weather data and genetic coefficient of rice cv. *Sharbati*. Model run for each dates of sowing was iterated altering genetic coefficient parameters till the values of simulated yield and other parameters became apparently closure to the actually observed values. The schedule of field operations taken up during the 2013 experiment are given in Table 4.4.

4.1.3.6 Statistical Analysis using DSSAT Easy Grapher and others

Easy Grapher (EG) is an inbuilt software package designed by Agriculture and Agri-Food, Canada for graphical presentation and statistical analysis of DSSAT v 4.5 outputs (Yang et al.; Yang and Huffman, 2004). This is compatible to Microsoft excel. It estimates NMSE, index of agreement etc. between simulated and observed values. This module of DSSAT helps to visualize data in graphical format.

S.No.	Field Operations	D1	D2	D3	D4			
		Nursery Mar	agement					
1	Field Preparation (Puddling)	6.06.2013	15.06.2013	21.06.2013	31.06.2013			
2	Sowing (broadcasting)	12.06.2013	20.06.2013	26.06.2013	05.07.2013			
3	Nursery Fertilizer (40:0:0)	12.06.2013	20.06.2013	26.06.2013	05.07.2013			
4	Irrigation		As and	when required	•			
5	Weeding		As and	when required				
		Crop Managemen	t in Main field					
6	Experimental Design		S	plit plot				
7	Replications			3				
8	Plot size		2	2m*2m				
9	Spacing (Row to Row)			20 cm				
10	Spacing (Plant to Plant)			15 cm				
11	Transplanting Depth			2 cm				
12	Method of Sowing			nsplanting				
13	1st ploughing	28.06.2013	10.07.2013	18.07.2013	25.07.2013			
14	Levelling	29.06.2013	11.07.2013	19.07.2013	26.07.2013			
15	2nd ploughing	05.07.2013	13.07.2013	20.07.2013	28.07.2013			
16	Pre Transplanting irrigation	06.07.2013	14.07.2013	21.07.2013	30.07.2013 31.07.2013			
17	Transplanting	07.07.2013						
		Irrigat	ion					
18	Method of Application			looding	-			
19	1 st irrigation (50 mm)	7.07.2013	15.07.2013	22.07.2013	31.07.2013			
20	2 nd irrigation (50 mm)	13.07.2013	20.07.2013	27.07.2013	5.08.2013			
21	3 rd irrigation (50 mm)	19.07.2013	25.07.2013	1.08.2013	10.08.2013			
22	4 th irrigation (50 mm)	23.07.2013	30.07.2013	16.08.2013	15.08.2013			
23	5 th irrigation (50 mm)	28.07.2013	04.08.2013	11.08.2013	20.08.2013			
24	6 th irrigation (50 mm)	07.08.2013	09.08.2013	16.08.2013	25.08.2013			
25	7 th irrigation (50 mm)	17.08.2013	19.08.2013	26.08.2013	04.09.2013			
26	8 th irrigation (50 mm)	22.08.2013	24.08.2013	31.08.2013	09.09.2013			
27	9 th irrigation (50 mm)	27.08.2013	29.08.2013	05.09.2013	14.09.2013			
28	10 th irrigation (50 mm)	01.09.2013 3.09.2013 10.09.2013 19.						
29	11 th irrigation (50 mm)	11.09.2013	8.09.2013	15.09.2013	24.09.2013			
30	12 th irrigation (50 mm)	16.09.2013 13.09.2013 20.09.2013 29.						
31	13 th irrigation (50 mm)	26.09.2013	18.09.2013	25.09.2013	14.10.2013			
32	14 th irrigation (50 mm)	11.09.2013	23.09.2013	30.09.2013				
33	15 th irrigation (50 mm)	11.09.2013	28.09.2013	05.10.2013				

Table 4.4: Schedule of field operations during *Kharif* 2013.

	Fertilizer application							
34	Basal dressing (10:40:40)	07.07.2013	15.07.2013	22.07.2013	31.07.2013			
35	1 st top dressing (20:0:0)	22.07.2013	30.07.2013	20.08.2013	30.08.2013			
36	2^{nd} top dressing (20:0:0)	04.08.2013	15.08.2013	31.08.2013	10.09.2013			
37	3^{rd} top dressing (20:0:0)	26.08.2013	2.09.2013	05.09.2013	15.09.2013			
38	4th top dressing (20:0:0)	08.09.2013		20.09.2013	28.09.2013			
39	Weeding		As and	when required				
40	Harvesting	10.10.2013	20.10.2013	25.10.2013	30.10.2013			
41	Threshing	17.10.2013	25.10.2013	30.10.2013	05.11.2013			

Simulated and actual values were statistically tested using Fractional Bias (FB) test, percent deviation (Dev) test, Normalized Mean Squared Error (NMSE) test and correlation coefficient test (Willmott, 1982; Willmott et al., 1985).

NMSE emphasizes the scatter in the entire dataset. The normalization by the product assures that the NMSE will not be biased towards models that over predict or under predict. Smaller values of NMSE denote better model performance.

a. Fractional Bias (FB):

It is similar to mean bias but it is normalized to make it dimensionless. FB varies between +2 to -2 with an ideal value of zero for an ideal model. Ideal value of Fractional Bias (FB) is zero but is practically not possible therefore acceptable limits are fixed.

$$FB = 2 * \left(\frac{Sim - Obs}{Sim + Obs}\right)$$
(4.1)

b. Percent Deviation (Dev %)

Deviation is a measure of difference between the observed value and simulated or estimated value of a variable, expressed in terms of percentage. Percent deviation ranges from 0 to 100 and if it is not in percentage it ranges between 0 and 1. An ideal model will have a deviation value of 100 if it is percentage and if is not in percentage the ideal value would be 1.

$$Dev\% = \frac{Sim - Obs}{Obs} * 100 \tag{4.2}$$

If the Dev% is negative it means that the model is overestimating the values of a variable in comparison to the observed values of the same variable. If the Dev % is positive that indicates a condition where the model is underestimating the values of a variable.

c. Normalized Root Mean Square Error (NMSE):

The Normalized Root Mean Square Error (NMSE) (Kumar, 2000) is used to estimate the deviation of forecasted value from the observed value. The Normalized Root Mean Square Error is dimensionless and calculated using the following formula.

$$NMSE = \frac{1}{N} \frac{\sum_{i=1}^{n} (Sim - Obs)^{2}}{\sum_{i=1}^{n} (Sim * Obs)}$$
(4.3)

d. Index of Agreement

The index of agreement can detect additive and proportional differences in the observed and simulated means and variances; however, it is overly sensitive to extreme values due to the squared differences (Legates and McCabe, 1999).The Index of Agreement (d) developed by Willmott (1981) as a standardized measure of the degree of model prediction error and varies between 0 and 1. A value of 1 indicates a perfect match, and 0 indicates no agreement at all (Willmott, 1981).

$$d = 1 - \frac{\sum_{i=1}^{n} (Sim_i - Obs_i)^2}{\sum_{i=1}^{n} (\left|Sim_i - \overline{Obs}\right| + \left|Obs_i - \overline{Obs}\right|)^2}$$
(4.4)

Where, N = number of observations. Sim = CERES Rice simulated value Obs = Observed value

4.1.4 Model Calibration

For calibration and validation of CERES-Rice model a minimum of 4 experimental datasets of crop grown under variable weather conditions is necessary. Felkner evaluated DSSAT model under various scenarios for rice crop and observed that the yields decreased under increased temperatures (Felkner et al., 2009; Satapathy et al., 2014). Model calibration is the adjustment of parameters so that simulated values compare well with the observed values (Timsina and Humphreys, 2006). The genetic coefficients that influence the occurrence of developmental stages in the CERES models can be derived iteratively by manipulating the relevant coefficients to achieve the best possible match between the simulated and observed number of days to the phenological events. At least four independent data sets generated from different management or climatic conditions are needed for model calibration.

4.1.5 Model Calibration Results

Phenology of any crop primarily depends on temperature which is expressed as thermal time. By adjusting P1, P2R and P5 variables the timing of phenological stages of rice crop variety can be adjusted. Final grain yield is the product of plant population, kernels per plant and weight of kernel. The number of kernels per plant is a linear function of stem weight and coefficients that accounts for the variation between genotypes of the number of grains per ear (G1) and spike number (G3). The maximum kernel growth rate is an input coefficient depending on the genotype of rice (G2).

The PI stage was attained at 30, 31, 32 and 33 DAP in experimental study whereas for simulation studied it was reached at 32 DAP irrespective of date of sowing (Table 4.5). The anthesis stage was attained at 66 DAP, 64 DAP, 68 DAP and 69 DAP in D1, D2 D3 D4 experiments respectively. The CERES rice simulated that anthesis would reach at 64 DAP for D1 and 65 DAP for the rest of treatments. Physiological maturity is reached at 89 DAP, 90 DAP, 93 DAP and 95 DAP for D1, D2, D3 and D4 experiments respectively. There was one day difference in simulated values for physiological maturity when compared with the observed data.

Yield of *Sharbati* cultivar was observed to be 4667 kgs/ha, 5200 kgs/ha, 4863 kgs/ha and 3709 kgs/ha for D1, D2, D3 and D4 planting dates (Table 4.5). The simulated results for yield under

different dates of planting was found to be 4403 kgs/ha[,] 5111 kgs/ha, 5094 kgs/ha and 4593 kgs/ha for D1, D2, D3 and D4 treatments respectively. Straw Yield of Sharbati cultivar given in Table 4.5 was observed to be 9667 kgs/ha, 10333 kgs/ha, 9500 kgs/ha and 9167 kgs/ha for D1, D2, D3 and D4 planting dates. Straw yield simulated is 10368 kgs/ha, 10946 kgs/ha10643 kgs/ha and 10821 kgs/ha for D1, D2, D3 and D4 treatments respectively. Similarly SGW measured for rice crop grown under variable dates of planting was 0.024 g, 0.023 g, 0.023 g and 0.020 g for D1, D2, D3 and D4 treatments respectively. The simulated results showed that the change in planting has no impact on SGW weight of rice crop with 0.023 g for all the treatments. Harvest Index (HI) observed under field conditions for D1, D2, D3 and D4 dates of planting is 0.48, 0.6, 0.5 and 0.41 respectively. The simulated results for HI are 0.42, 0.47, 0.48 and 0.42 for D1, D2, D3 and D4 dates of planting respectively. GN (no./m²) for rice cultivar Sharbati was observed to be 19255 no./m², 26477 no./m², 21163 no./m², and 16013 no./m², under field conditions and 19060 no./m², 22121 no./m², 22052 no./m² and 19884 no./m² as simulated by CERES Rice for D1, D2, D3 and D4 planting treatments respectively. PN (no./m²) for rice cultivar Sharbati was observed to be 285 no./m², 278 no./m², 263 no./m² and 240 no./m² under field conditions and 276 no./m², 327 no./m², 322 no./m² and 288 no./m² as simulated by CERES Rice for D1, D2, D3 and D4 planting treatments respectively.

Fractional bias (FB) is highest for panicle number (0.13) and lowest for grain number (0.0001) (Table 4.5). The percent deviation for all the listed parameters is less than 20% which proves CERES Rice model for its worthiness in crop simulation modelling. It is maximum for straw yield simulation (10.18) and it is minimum for PM stage simulation (0.55). NMSE is maximum for panicle number simulation and minimum for PM stage (0.0004).

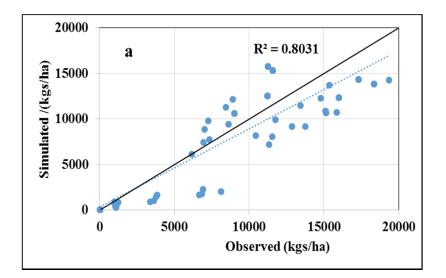
		D1 (7/7/	'13)	D2 (15/7	7/13)	D3 (22/	7/13)	D4 (31/	7/13)			
S.No	Parameter	Obs	Sim	Obs	Sim	Obs	Sim	Obs	Sim	FB	Dev%	NMSE
1	PI Stage (DAP)	30	32	31	32	32	32	33	32	0.02	1.72	0.006
2	Anthesis (DAP)	66	64	64	65	68	65	69	65	-0.03	-2.92	0.007
3	PM Stage (DAP)	89	90	90	91	93	92	95	96	0.01	0.55	0.0004
4	Harvest (DAP)	93	90	94	91	93	92	100	96	-0.03	-2.87	0.004
5	Grain Yield (kgs/ha)	4667	4403	5200	5110	4863	5094	3709	4593	0.04	5.30	0.041
6	Straw Yield (kgs/ha)	9667	10365	10333	10946	9500	10643	9167	10821	0.10	10.81	0.047
7	SGW (g)	0.024	0.023	0.023	0.023	0.023	0.023	0.02	0.023	0.02	2.71	0.019
8	HI	0.48	0.42	0.6	0.47	0.5	0.48	0.41	0.42	-0.11	-1.58	0.094
9	GN (no./m ²)	19255	19060	26477	22121	21163	22052	16013	19884	0.00	-8.93	0.081
10	PN (no./m ²)	285	276	278	327	263	322	240	288	0.13	2.73	0.102
Index	of Agreement (d)	0.	99	0.	99	0.	99	0.	99	0.01	-2.17	0.037

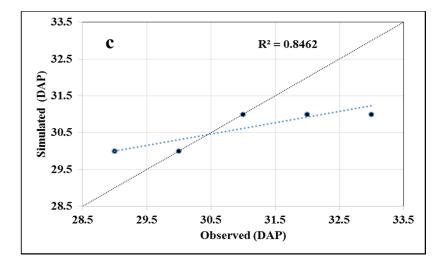
Table 4.5: Observed and CERES Rice model simulated results of rice crop grown under four variable dates of planting duringKharif 2013.

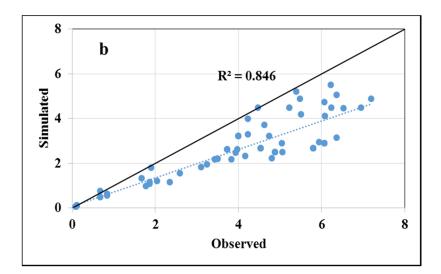
4.1.6 Model Validation

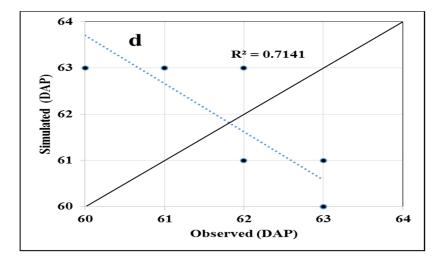
The effect of periodical application of CO_2 on rice crop growth and development was simulated using CERES-Rice model of DSSAT. Soil condition, weather condition, crop management practices and CO_2 applications (schedule and concentration) of the field experiments were used as input data. The effect of CO_2 application in rice at periodical interval was recorded on TN, LN, LAI, dry matter, yield through model run. Results obtained were compared with the observed data to test the validity of model.

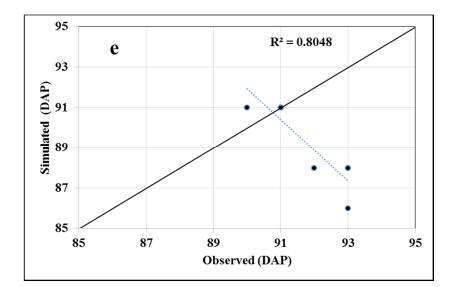
4.1.7 Model Validation Results

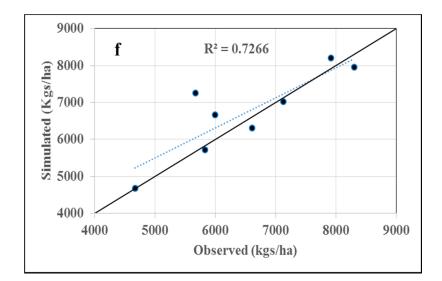

To validate the performance of CERES Rice model for application in CO_2 enrichment studies of rice crop cv *Sharbati* NMSE, Index of agreement (d) and R² were calculated between observed and simulated values which are presented in Table 4.6 - 4.8. The NMSE values estimated between observed and simulated biomass under CO_2 enrichment treatments at various crop growth stages during the years 2011 and 2012 are 0.004, 0.382, 1.772, 0.099, 0.072, 0.070, 0.068, 0.068 and 0.068 at end of juvenile stage, panicle initiation, and heading, beginning of grain filling, end of grain filling phase, main, and end of grain filling, tillers, maturity and harvest stages respectively (Table 4.6). The NMSE values estimated between observed and simulated LAI under CO_2 enrichment treatments at various crop growth stages during the years 2011 and 2012 are 0.038, 0.36 and 0.36 at end of juvenile stage, panicle initiation, and heading, beginning of grain filling, tillers, maturity and harvest stages respectively (Table 4.6). The NMSE values estimated between observed and simulated LAI under CO_2 enrichment treatments at various crop growth stages during the years 2011 and 2012 are 0.00, 0.19, 0.34, 0.06, 0.09, 0.38, 0.36, 0.36 and 0.36 at end of juvenile stage, panicle initiation, and heading, beginning of grain filling, end of grain filling phase (main plant), and end of grain filling (tillers), maturity and harvest stages respectively (Table 4.7).

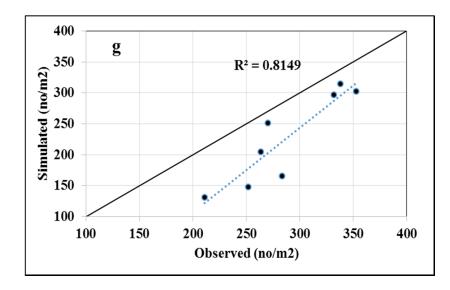

The index of agreement for the simulated values was 0.98, 0.96, 0.93 and 0.97 for T0, T1, T2 and T3 treatments respectively for the 2011 experiment. The index of agreement for the simulated values was 0.99, 0.99, 0.99 and 0.98 for T0, T1, T2 and T3 treatments respectively for the 2012 experiment (Table 4.8). The NMSE for simulated values of PI, anthesis, PM, grain yield, SGW, GN, PN, max LAI, HI and LN was 0.0012, 0.0013, 0.0018, 0.0092, 0.0013, 0.1017, 0.3499, 0.063, 0.0157, 0.0527, 0.1759, 0.0426 and 0.3244 respectively (Table 4.8). The 1:1 graph plotted (Figure 4.2) for simulated vs observed values shows that the R² values for biomass, LAI, PI stage, anthesis stage, physiological maturity, grain yield, SGW, GN, PN, Max LAI, HI

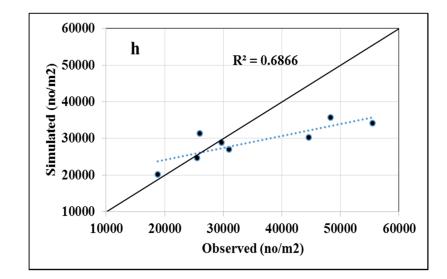

and LN are 0.8031, 0.846, 0.8462, 0.7141, 0.8048, 0.7266, 0.00, 0.6866, 0.8149, 0.1065, 0.5631, 0.2125, 0.1158 and 0.2786 respectively.


The simulated results on growth, developmental, yield and yield attributes of rice cv. *Sharbati* under CO₂ enrichment treatments during 2011 and 2012 are presented in Table 4.8. Perfect index of agreement (ranging from 0.96-0.99) was observed in both the years of experiments between simulated and observed values of various variables viz. PI stage (DAP), anthesis stage (DAP), PM stage (DAP), grain yield (kgs/ha), SGW (g), GN (no./m²) , PN (no./m²), LAI (maximum), straw yield (kgs/ha), HI and LN (no/plant). The NMSE for simulated values of PI, Anthesis, PM, yield, SGW, straw yield, LAI and HI was less than 0.1 while for PN, GN and LN was more than 0.1. NMSE was found highest for simulation of PN and lowest for simulation of PI stage (Table 4.8). The 1:1graph plotted (Figure 4.2) for simulated vs observed values shows that the R² is more than 0.5 for PI, anthesis, PM, grain yield, GN, PN and straw yield. The R² value was found to be less than 0.5 for SGW, LAI, HI and LN.


Treatment effect was remarkably visible on the variables obtained from simulation run viz. grain yield (kgs /ha), SGW (g) GN (no./m²), PN (no./m²), LAI (maximum), (HI) and straw yield (kgs/ha). Use of CERES Rice model for CO_2 enrichment studies has been recommended by (Anten et al., 2004; Satapathy et al., 2014).







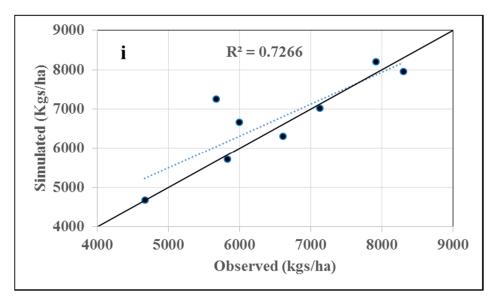


Figure 4.2: Simulated (CERES Rice) vs. measured values of a) biomass; b) LAI; c) PI stage ; d) Anthesis stage ; e) PM stage ; f) Straw Yield ; g) PN ; h) GN; i) Grain Yield.

4.1.7.1 Simulated Biomass Production

The effect of CO₂ enrichment is significant on biomass of rice crop as simulated by CERES Rice model. The biomass increases with the age but the biomass accumulation remains constant after the start of grain filling stage. In T0 the biomass was simulated to be 758 kgs/ha, 1655 kgs/ha, 7408 kgs/ha, 8189 kgs/ha, 10734 kgs/ha, 10855 kgs/ha and 10855 kgs/ha at end of juvenile stage, panicle initiation, and heading, beginning of grain filling, end of grain filling phase, main, and end of grain filling, tillers, maturity and harvest. The effect of CO₂ enrichment is significant on biomass accumulation and maximum in T3 treatment with crop biomass of 946 kgs/ha, 2291 kgs/ha, 10206 kgs/ha, 11503 kgs/ha, 14265 kgs/ha, 14337 kgs/ha and 14337 kgs/ha at end of juvenile stage, panicle initiation, and heading, beginning of grain filling, end of grain filling phase, main, and end of grain filling, tillers, maturity and harvest.

The biomass simulated for 2012 experiment is less than the 2011 experiment and this is probably due to the hot weather that prevailed during the 2012 experiment. In case of T0 the biomass accumulation was 328 kgs/ha, 900 kgs/ha, 6327 kgs/ha, 7743 kgs/ha, 10629 kgs/ha, 10629 kgs/ha at end of juvenile stage, panicle initiation, and heading, beginning of grain filling, end of grain filling phase, main, and end of grain filling, tillers, maturity and

harvest. The biomass accumulation is maximum in T3 treatment at all crop growth stages with crop biomass of 537 kgs/ha, 1703 kgs/ha, 10097 kgs/ha, 12186 kgs/ha, 15739 kgs/ha, 15739 kgs/ha and 15739 kgs/ha at end of juvenile stage, panicle initiation, and heading, beginning of grain filling, end of grain filling phase, main, and end of grain filling, tillers, maturity and harvest respectively.

			Simul	ated bio	mass (kg	gs/ha)				
Growth Stage	TO	T1	T2	Т3	TO	T1	Т2	Т3		
		Khari	f 2011			Khari	Mean	NMSE		
Transplant	53	53	53	53	40	40	40	40	47	0.004
End Juveni	758	831	873	946	328	381	445	537	637	0.382
Pan Init	1655	1778	2043	2291	900	1065	1458	1703	1612	1.772
Heading	7224	8067	9155	9934	6327	7733	9188	10097	8466	0.099
Beg Gr Fil	8189	9193	10658	11503	7743	9456	11289	12186	10027	0.072
End Mn Fil	10734	12296	13715	14265	10629	12530	15352	15739	13158	0.070
End Ti Fil	10855	12359	13859	14337	10629	12530	15352	15739	13208	0.068
Maturity	10855	12359	13859	14337	10629	12530	15352	15739	13208	0.068
Harvest	10855	12359	13859	14337	10629	12530	15352	15739	13208	0.068

Table 4.6: CERES-Rice simulated biomass production (kgs/ha) in rice cv *Sharbati* under different treatments of CO₂ application during *Kharif* 2011 and 2012.

The biomass of rice cv *Sharbati* increased with the advancement in crop age upto beginning of grain filling stage and declined thereafter. The percentage increase in biomass over the control CO₂ application treatment is highest at end of grain filling stage (main plant) for T1 (14.5%) treatment and at beginning of grain filling stage for T2 (30.2%) and T3 (40.5%) during the year 2011(Figure 4.3). The percentage increase in biomass over the control CO₂ application treatment is highest at heading stage for T1 (22.2%) treatment and at panicle initiation stage for T2 (62%) and T3 (89%) during the year 2012 (Figure 4.3). The biomass reportedly increased with elevated CO₂ by 10 to 70% from previous experiments (Baker, 2004; Bannayan et al., 2005; De Costa et al., 2006; Kim et al., 2003; Kim et al., 2011; Yang et al., 2006). Rice plants grown under elevated CO₂ concentration accumulated more biomass before flowering and produced more panicles per plant and more spikelets per panicle (Ainsworth and Rogers, 2007; Baker and Allen Jr, 1993; Baker et al., 1995).

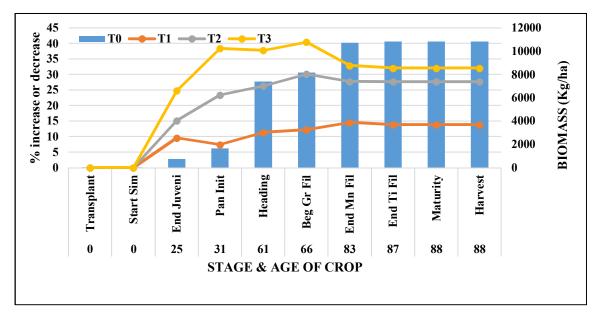


Figure 4.3: % increase or decrease in CERES Rice simulated biomass production in rice cv *Sharbati* during *Kharif* 2012.

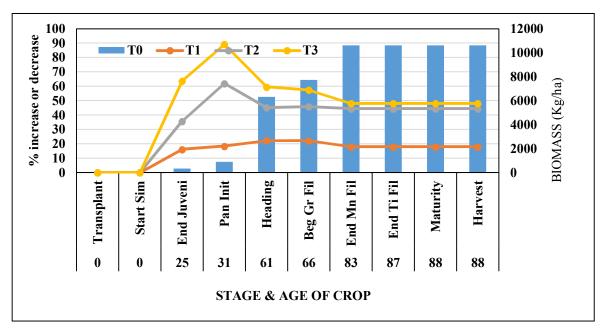


Figure 4.4: % increase or decrease in CERES Rice simulated biomass production in rice cv *Sharbati* during *Kharif* 2012.

4.1.7.2 Simulated LAI

LAI of rice crop grown under control conditions (T0) is 1.09, 1.84, 4.47, 4.11, 2.89 and 2.68 at end of juvenile stage, panicle initiation, heading, beginning of grain filling, end of grain filling phase (main plant), end of grain filling (tillers) and maturity stages. The effect of CO₂

enrichment is significant on LAI. LAI is maximum in T3 treatment which is simulated as 1.33, 2.47, 4.73, 4.19, 2.32, 2.21 and 2.21 at end of juvenile stage, panicle initiation, heading, beginning of grain filling, end of grain filling phase (main plant), end of grain filling (tillers) and maturity stages respectively (Table 4.7). LAI of rice crop grown under control conditions (T0) is 0.49, 0.99, 3.71, 3.3, 2.17 and 2.17 at end of juvenile stage, panicle initiation, and heading, beginning of grain filling, end of grain filling phase, main plant, and end of grain filling, tillers and maturity stages. The effect of CO_2 application treatments is significant on LAI and increases with the increasing number of CO_2 applications T0<T3<T1<T2 LAI in T2 treatment is simulated as 0.65, 1.56, 5.51, 4.89, 3.21, 3.21 and 3.21 at end of juvenile stage, panicle initiation, and heading, beginning of grain filling, end of grain filling phase, main plant, and end of grain filling, and heading, beginning of grain filling, end of grain filling phase, main plant, and end of grain filling, and heading, beginning of grain filling, end of grain filling phase, main plant, and end of grain filling, and heading, beginning of grain filling, end of grain filling phase, main plant, and end of grain filling, and heading, beginning of grain filling, end of grain filling phase, main plant, and end of grain filling, tillers and maturity stages respectively.

			Si	imulat	ed LA	I				
Growth Stage	T0	T1	T2	Т3	T0	T1	T2	Т3	Mean	NMSE
		Kharif	2011			Khar	if 2012			
Transplant	0.11	0.11	0.11	0.11	0.08	0.08	0.08	0.08	0.10	0.00
End Juveni	1.09	1.16	1.22	1.33	0.49	0.56	0.65	0.77	0.91	0.19
Pan Init	1.84	1.96	2.22	2.47	0.99	1.17	1.56	1.81	1.75	0.34
Heading	4.47	4.89	5.05	4.73	3.71	4.48	5.51	5.2	4.76	0.06
Beg Gr Fil	4.11	4.5	4.5	4.19	3.3	3.98	4.89	4.5	4.25	0.09
End Mn Fil	2.89	3.15	2.95	2.32	2.17	2.62	3.21	2.51	2.73	0.38
End Ti Fil	2.68	2.91	2.67	2.21	2.17	2.62	3.21	2.51	2.62	0.36
Maturity	2.68	2.91	2.67	2.21	2.17	2.62	3.21	2.51	2.62	0.36
Harvest	2.68	2.91	2.67	2.21	2.17	2.62	3.21	2.51	2.62	0.36

Table 4.7: CERES-Rice simulated LAI at various crop growth stages of rice cv Sharabati grown under periodical CO₂ enrichment treatments during *Kharif* 2011 and 2012.

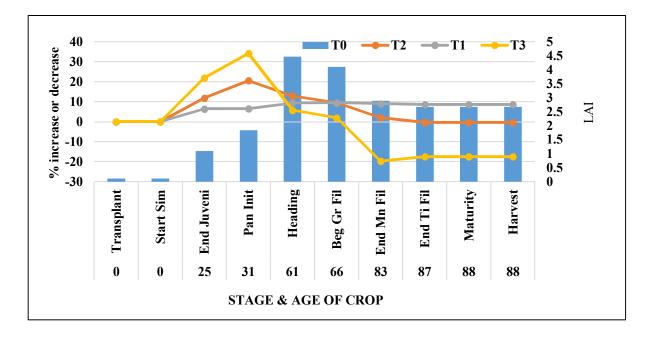


Figure 4.5: % increase or decrease in CERES Rice simulated LAI in rice cv Sharbati during Kharif 2011.

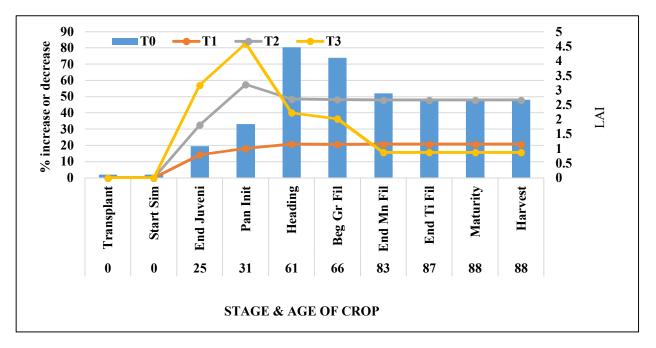


Figure 4.6: % increase or decrease in CERES Rice simulated LAI in rice cv Sharbati during Kharif 2012.

From the experimental study the maximum LAI is observed at heading stage and the same has also been reported by (Sakai et al., 2006). The maximum LAI is simulated by CERES Rice at 31 DAP that is at PI stage but from the experimental data it is observed that the maximum LAI is observed at heading stage. However, the leaf expansion during early stages of growth, when leaves do not shade each other and leaf area development is not limited by the amount of

assimilates available, is mainly temperature driven. Even the percentage increase in LAI over the control CO₂ application treatment is highest at Panicle initiation stage for T1 (6.52%), T2 (20.6%) and T3 (34.2%) during the year 2011(Figure 4.5). The percentage increase in LAI over the control CO₂ application treatment is highest at heading stage for T1 (20.7%) treatment and at panicle initiation stage for T2 (57.8%) and T3 (82.8%) during the year 2012(Figure 4.6). Failure to simulate response of rice crop LAI to CO₂ enrichment by CERES Rice model has been reported by (Ewert, 2004). (Anten et al., 2004) results pertaining to elevated CO₂ and rice crop LAI showed that LAI was not influenced by CO₂ elevation under field and simulation study.

4.1.7.3 Simulated overview output

The observed and simulated results on growth and developmental variables and comparison of observed and simulated values for the year 2011 and 2012 is given in Table 4.8. The two year simulated average expression of PI, anthesis and PM stages in rice cv. *Sharbati* was obtained at 30.5, 62 and 89.5 days after planting in T0,T1 & T2 treatments whereas at 30.5, 61.5 and 88.5 days after planting in T3 treatment. Simulation model results indicated slight reduction in duration of expression of growth stages. The CERES Rice modeled phenological expressions are reported 3-5 days earlier than the actual (Satapathy et al., 2014).

	Growth Variables	T0	T1	T2	Т3	T0	T1	T2	Т3	Mean	NMSE
S.No	Growth variables		Khari	f 2011			Khari	f 2012		wiean	ININISE
1	PI (DAP)	31	31	31	31	30	30	30	30	30.5	0.0012
2	Anthesis (DAP)	61	61	61	60	63	63	63	63	61.8	0.0013
3	PM (DAP)	88	88	88	86	91	91	91	91	89.3	0.0018
4	LN (no/plant)	17	17	17	17	16	16	16	16	16.5	0.3244
5	Max LAI	4.54	4.97	5.14	5.17	3.72	4.48	5.52	5.69	4.9	0.0630
6	Grain Yield (kgs/ha)	6308	7017	7948	8207	4685	5718	6669	7260	6726.5	0.0092
7	Straw Yield (kgs/ha	10855	12359	13859	14337	10629	12530	15352	15739	13207.5	0.0527
8	SGW (g)	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.0013
9	GN (no./m ²)	27003	30323	34220	35681	20280	24753	28869	31430	29069.9	0.1017
10	PN (no./m ²)	303	297	251	190	131	148	166	205	211.4	0.3499
11	HI	0.581	0.568	0.573	0.572	0.44	0.45	0.43	0.461	0.51	0.0426
In	ndex of Agreement	0.98	0.96	0.93	0.97	0.99	0.99	0.99	0.98	-	-

Table 4.8: CERES-Rice simulated growth and developmental variables in rice cv Sharbati under different treatments of CO2 applicationduring Kharif 2011 and 2012.

4.1.7.4 Simulated Grain Yield

Yield simulated for rice cv. Sharbhati was 6308 kgs/ha, 7017 kgs/ha, 7948 kgs/ha and 8207 kgs/ha for T0, T1, T2 and T3 treatments respectively for the *Kharif* 2011 (Table 4.8). Similarly yield simulated for rice cv. Sharbhati during the year 2012 was 4685 kgs/ha, 5718 kgs/ha, 6669 kgs/ha and 7260 kgs/ha for T0, T1, T2 and T3 treatments respectively.

The percentage increase in grain yield simulated by DSSAT under the influence of CO_2 applications is 11.2%, 26% and 30.1% for T1, T2 and T3 treatments respectively during the year 2011. The percentage deviation in DSSAT simulated grain yield during 2012 is 22%, 42.3% and 55% for T1, T2 and T3 respectively over the control treatment T0 (Figure 4.7). The experimental findings from the growth chamber studies (Baker et al., 1992a; Baker et al., 1992b) showed a 32% increase in rice grain yield due to doubling of the CO₂ concentration from 330 to 660 ppm.

4.1.7.5 Simulated grain weight

CERES Rice simulations did not show a significant effect on grain weight due to CO_2 applications on rice cv *Sharbati*. The SGW was simulated to be 0.023 through all the treatments for both the years; 2011 & 2012 (Table 4.8).

4.1.7.6 Simulated grain number

Grain number simulated for rice cv. Sharbhati was 20280, 24753, 28869 and 31430 for T0, T1, T2 and T3 treatments respectively. For the year 2012 the GN simulated was 27003, 30323, 34220 and 35681 for T0, T1, T2 and T3 treatments respectively. The percentage increase in GN simulated by DSSAT under the influence of CO₂ enrichment is 12.3%, 26.7% and 32.1% for T1, T2 and T3 treatments respectively during the year 2011. The percentage increase in DSSAT simulated GN during 2012 is 22.1%, 42.4% and 55% for T1, T2 and T3 respectively over the control treatment T0. The increased grain yield response with increasing CO₂ concentration was attributed to greater tillering and more grain-bearing panicles.

4.1.7.7 Simulated panicle number

Panicle number simulated for rice cv. Sharbhati was 251 no./m², 297 no./m², 303 no./m² and 315 no./m² for T0, T1, T2 and T3 treatments respectively (Table 4.8). The PN significantly decreased with increasing CO₂ applications. PN simulated during the year 2012 was 131 no./m², 148.7 no./m², 166 no./m², and 205 no./m² for T0, T1, T2 and T3 treatments respectively. The percentage increase in PN simulated by DSSAT under the influence of CO₂ applications is 18.3%, 20.7% and 25.5% for T1, T2 and T3 treatments respectively during the year 2011. The percentage increase in DSSAT simulated PN during 2012 is 13.0%, 26.1 % and 56.5 % for T1, T2 and T3 respectively over the control treatment T0. The CERES simulations showed that the increase in rice grain yield is due to increased grain number per panicle and not due to increase in panicle number per plant which is contrary to the observed one. The applicability of CERES rice model for simulating grain and panicle number under variable conditions has been reported by (Wikarmpapraharn and Kositsakulchai, 2010).

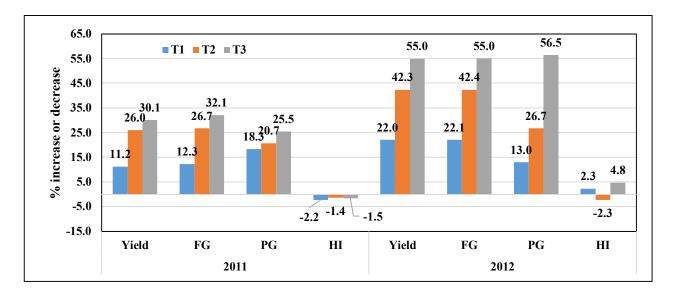


Figure 4.7: % increase or decrease in CERES Rice simulated grain yield, filled grain number, panicle number and HI in rice cv *Sharbati* during *Kharif* 2011 and 2012.

4.1.7.8 Simulated Harvest Index

HI simulated for rice cv. Sharbhati was 0.58, 0.57, 0.57 and 0.57 for T0, T1, T2 and T3 treatments respectively. HI increased with increased CO_2 applications. HI simulated during 2012 was 0.44, 0.45, 0.43 and 0.46 for T0, T1, T2 and T3 treatments respectively (Table 4.8).

The percentage decrease in harvest index simulated by DSSAT under the influence of CO_2 applications is -2.2%, -1.4% and -1.5% for T1, T2 and T3 treatments respectively during the year 2011. The percentage deviation in DSSAT simulated HI during 2012 is 2.3%, 4.8% and -2.3% for T1, T2 and T3 respectively over the control treatment T0.

4.1.7.9 Simulated Crop Nitrogen uptake, content and N Stress

Crop Nitrogen (kgs/ha) of rice crop grown under control conditions (T0) is 24 kgs/ha, 51 kgs/ha, 120 kgs/ha, 126 kgs/ha, 137 kgs/ha, 138 kgs/ha and 138 kgs/ha at end of juvenile stage, panicle initiation, and heading, beginning of grain filling, end of grain filling phase, main, and end of grain filling, tillers and maturity stages respectively. The effect of CO₂ application treatments is significant on crop nitrogen and increases with the increasing number of CO₂ applications T0<T1<T2<T3. Crop N in T3 treatment is simulated as 31 kgs/ha, 70 kgs/ha, 153 kgs/ha, 156 kgs/ha, 161 kgs/ha, 162 kgs/ha and 162 kgs/ha at the end of juvenile stage, panicle initiation, and heading, beginning of grain filling, end of grain filling phase, main, and end of grain filling, tillers and maturity stages respectively.

Similarly, crop nitrogen percentage of rice crop grown under control conditions (T0) is 4.6 %, 3.2%, 3.1%, 1.6%, 1.5%, 1.3%, 1.3% and 1.3% at end of juvenile stage, panicle initiation, and heading, beginning of grain filling, end of grain filling phase, main, and end of grain filling, tillers and maturity stages respectively. The percentage of crop nitrogen decreases with the crop age. The effect of CO₂ application treatments is significant on crop nitrogen and increases with the increasing number of CO₂ applications T0<T1<T2<T3. Crop N in T3 treatment is simulated as 4.6%, 3.2%, 3.1%, 1.5%, 1.4%, 1.1%, 1.1% and 1.1% transplanting, end of juvenile stage, panicle initiation, and heading, beginning of grain filling, end of grain filling, end of grain filling phase, main, and end of grain filling, tillers and maturity stages respectively Table 4.9.

		Cro	p N (ł	kgs/ha)	Crop N (%)				N Stress (0 - 1)					
STAGE								Khari	f 2011	!					
	Т0	T1	T2	T3	Mean	TO	T1	T2	Т3	Mean	T0	T1	T2	T3	Mean
Transplant	2	2	2	2	2	4.6	4.6	4.6	4.6	4.6	0	0	0	0	0
Start Sim	2	2	2	2	2	4.6	4.6	4.6	4.6	4.6	0	0	0	0	0
End Juveni	24	27	28	31	27	3.2	3.2	3.2	3.2	3.2	0	0	0	0	0
Pan Init	51	55	63	70	60	3.1	3.1	3.1	3.1	3.1	0.02	0.02	0.02	0.02	0.02
Heading	120	133	150	153	139	1.6	1.6	1.6	1.5	1.575	0	0.01	0.06	0.16	0.057
Beg Gr Fil	126	139	152	156	143	1.5	1.5	1.4	1.4	1.45	0.02	0.01	0.05	0.27	0.087
End Mn Fil	137	147	155	161	150	1.3	1.2	1.1	1.1	1.175	0	0.09	0.24	0.4	0.182
End Ti Fil	138	147	157	162	151	1.3	1.2	1.1	1.1	1.175	0.12	0.33	0.52	0.38	0.337
Maturity	138	147	157	162	151	1.3	1.2	1.1	1.1	1.175	0	0	0	0	0
Harvest	138	147	157	162	151	1.3	1.2	1.1	1.1	1.175	0	0	0	0	0
					1	Khari	f 2012	2							
Transplant	2	2	2	2	2	4.7	4.7	4.7	4.7	4.7	0	0	0	0	0
Start Sim	2	2	2	2	2	4.7	4.7	4.7	4.7	4.7	0	0	0	0	0
End Juveni	11	12	14	18	14	3.3	3.3	3.2	3.3	3.27	0	0	0	0	0
Pan Init	28	33	45	52	40	3.1	3.1	3.1	3.1	3.10	0.02	0.02	0.02	0.02	0.02
Heading	103	126	142	149	130	1.6	1.6	1.6	1.5	1.57	0	0	0	0.05	0.012
Beg Gr Fil	107	132	146	153	134	1.4	1.4	1.3	1.3	1.35	0	0	0.08	0.22	0.07
End Mn Fil	120	142	156	162	145	1.1	1.1	1	1	1.05	0	0	0.21	0.37	0.14
End Ti Fil	120	142	156	162	145	1.1	1.1	1	1	1.05	0	0	0	0	0
Maturity	120	142	156	162	145	1.1	1.1	1	1	1.05	0	0	0	0	0
Harvest	120	142	156	162	145	1.1	1.1	1	1	1.05	0	0	0	0	0

 Table 4.9: CERES-Rice simulated crop nitrogen (kgs/ha) and (%) and nitrogen stress at various crop growth stages of rice cv Sharabati grown under different CO2 application treatments during *Kharif* 2011 and 2012.

Nitrogen stress during various stages of rice crop growth is simulated by CERES Rice which is given in Table 4.9. Nitrogen stress was neglible during panicle initiation (0.02), beginning of grain filling (0.02) and end of grain filling, tillers (0.12) in T0 treatment (Table 4.9). Nitrogen stress increased with the increasing CO₂ applications. In T1 the nitrogen was 0.02, 0.01, 0.01, 0.09 and 0.33 at panicle initiation, and heading, beginning of grain filling, end of grain filling phase, main, and end of grain filling, tillers crop stages respectively. In T2 the nitrogen was 0.02, 0.06, 0.05, 0.24 and 0.52 at panicle initiation, and heading, beginning of grain filling, end of grain filling phase, main, and end of grain filling, tillers crop stages respectively. In T3 the nitrogen was 0.02, 0.16, 0.27, 0.4, 0.38 at panicle initiation, and heading, beginning of grain filling, tillers crop stages respectively. In T3 the nitrogen was 0.02, 0.16, 0.27, 0.4, 0.38 at panicle initiation, and heading, beginning of grain filling, tillers crop stages respectively. In T3 the nitrogen was 0.02, 0.16, 0.27, 0.4, 0.38 at panicle initiation, and heading, beginning of grain filling, tillers crop stages respectively. Even photoperiod and temperature stress were not observed for the crop during the year 2011.

The percentage decrease in nitrogen accumulation simulated by CERES Rice in T1, T2 and T3 treatments over T0 treatment during the years 2011 and 2012 at different crop growth stages is given in Figure 4.8 & 4.9. The percentage increase in crop nitrogen over the control CO_2 application treatment is highest at end juvenile stage for T1 (12.5%) treatment and at heading stage for T2 (25.0%) and at panicle initiation stage for T3 (37.3%) during the year 2011. The percentage increase in crop nitrogen over the control CO_2 application treatment is highest at heading stage for T1 (23.4%) treatment and at panicle initiation stage for T2 (60.7%) and T3 (85.3%) during the year 2012. As a result of greater increase in both biomass and grain yield NUE was higher at higher CO_2 concentrations than crop grown at ambient CO_2 concentrations (Kim et al., 2001). (Lieffering et al., 2004) has reported that elevated CO_2 reduces N in rice grains if N supply is inadequate.

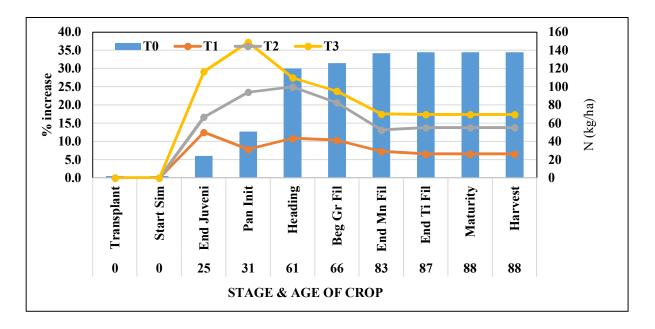
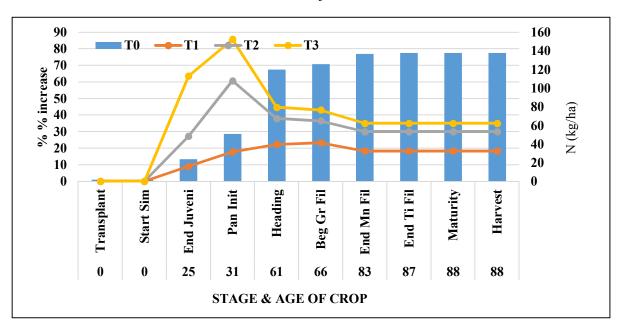
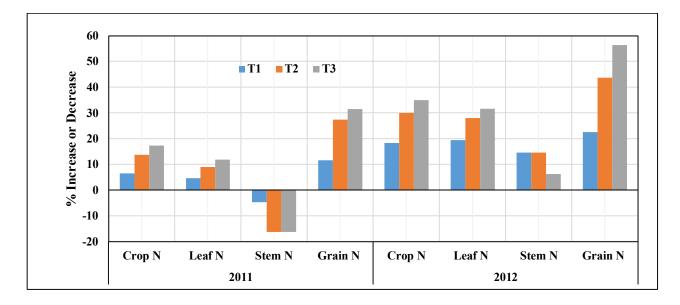
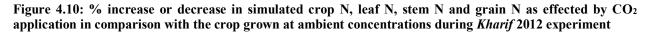




Figure 4.8: % increase or decrease in CERES Rice simulated crop nitrogen uptake in rice cv *Sharbati* during *Kharif* 2011.





4.1.7.10 Simulated Nitrogen partitioning

The CO_2 enrichment positively impacted crop and grain nitrogen but the impact of CO_2 was negative on stem nitrogen (Figure 4.10). The percentage deviation in DSSAT simulated crop N at maturity during 2012 is 18.3%, 30% and 35.6% for T1, T2 and T3 respectively over the

control treatment T0. The percentage change in crop N at maturity simulated by DSSAT under the influence of CO₂ applications is 6.5%, 13.8% and 17.4% for T1, T2 and T3 treatments respectively during the year 2011. The percentage change in stem N at maturity simulated by DSSAT under the influence of CO₂ applications is -4.7%, -16.3% and -16.3% for T1, and T2 and T3 treatments respectively during the year 2011. The percentage deviation in DSSAT simulated stem N at maturity during 2012 is 14.6%, 14.6% and 6.3% for T1, T2 and T3 respectively over the control treatment T0. The percentage change in grain N at maturity simulated by DSSAT under the influence of CO₂ applications is 11.6%, 27.4% and 31.6% for T1, T2 and T3 treatments respectively during the year 2011. The percentage deviation in DSSAT simulated grain N at maturity during 2012 is 22.5%, 43.7% and 56.3% for T1, T2 and T3 respectively over the control treatment T0. The amount of nitrogen partitioned to grain is higher under CO₂ enriched conditions. Stem N is partitioned to grain when N is wanting. Due to this phenomenon the NUE of rice crop increases under elevated CO₂ conditions.

4.1.7.11 Simulated Nitrogen (NUE) and Water Use Efficiency (WUE)

From the simulated results it is seen that the rainfall and supplemental irrigations provided to the crop were enough to overcome water stress and therefore water stress was not there for all treatments at all crop growth stages. WUE calculated suggests that WUE is higher during 2012

(6.6 kgs/ha/mm) compared to WUE during 2011 (5.7 kgs/ha/mm) (Table 4.10). The highest WUE was simulated for T3 treatment which is 6.3 kgs/ha/mm during 2011 and 7.9 kgs/ha/mm during the year 2012.

NUE calculated suggests that NUE is higher during 2011(73.7 kgs/ha/kg N) compared to NUE during 2012 (60.8 kgs/ha/kg N) (Table 4.10). The highest NUE was simulated for T3 treatment which is 82.1 kgs/ha/ kg N during 2011 and 72.6 kgs/ha/kg N during the year 2012. The RMSE calculated between the observed and simulated values of WUE (0.02) and NUE (0.01) suggest that the CERES Rice model predicts closer values to the observed one.

Treatments	WUE (kg	s/ha/mm)	NUE (kgs/ha/kgN)			
I reatments	2011	2012	2011	2012		
TO	4.8	5.1	63.1	46.9		
T1	5.4	6.2	70.2	57.2		
T2	6.1	7.2	79.5	66.7		
Т3	6.3	7.9	82.1	72.6		
Mean	5.7	6.6	73.7	60.8		
NMSE	0.	02	0.01			

 Table 4.10: CERES-Rice simulated WUE and NUE of rice cv Sharabati grown under different CO2 application treatments during *Kharif* 2011 and 2012.

The CERES models include the capability to simulate the effects of CO_2 on photosynthesis and water use. In the models, the daily potential transpiration calculations are modified by the CO_2 concentration, based on the effects of CO_2 on stomatal conductivity (Peart et al., 1989). The analysis has demonstrated that performance of the CERES model was reasonably good as indicated by close matching between simulated and observed WUE and NUE under varying CO_2 enrichment treatments which is in corroboration with the results presented by (Nain and Kersebaum, 2007). Applicability of CERES Rice model for the study of water and nutrient dynamics in rice crop has been suggested by (Jing et al., 2010; Kumar and Goh, 1999; Singh and Ritchie, 1993; Timsina and Humphreys, 2006)

4.1.7.12 Soil Nitrogen Balance

Initial amount of nitrogen present in soil in NO₃ and NH₄ form is 186.7 kgs N/ha and 21.1 kgs N/ha. The amount of N added through inorganic fertilizers is 100 kgs/ha in NH₄ as Urea. N

mineralized within the soil is 14.8 kgs/ha, 15.8 kgs/ha, 14.8 kgs/ha and 17.3 kgs/ha for T0, T1, T2 and T3 treatments. The nitrogen lost through denitrification and volatilization is 118 kgs/ha, 118 kgs/ha, 118 kgs/ha and 111 kgs/ha. N uptake from soil indicated the total N used by rice crop. The nitrogen fixed in crop for growth and development is 139 kgs/ha, 135, 139 and 161 kgs/ha for T0, T1, T2 T3 treatments respectively (Table 4.11).

Treatments	Т	1	T	2]	Г 3	,	Т4	
	Initial	Final	Initial	Final		Initial	Final	Initial	
		Kl	harif 201	1					
Soil NO3	139.1	26	139.1	21.9	139.1	15.9	139.1	13.9	
Soil NH4	15.9	12.6	15.9	12.7	15.9	10.9	15.9	10.2	
Soil Urea	0	0	0	0	0	0	0	0	
Added to / Removed from Soil:									
Fertilizer N	100		100		100		100		
Mineralized N	22.6		22.7		17.8		15.8		
Leached NO3		0		0		0		0	
N Denitrified		38.2		35.2		31.9		30	
N Uptake From Soil		154.1		165.6		175.4		178.6	
Ammonia volatilization		44.7		40.3		36.7		36	
N Immobilized		2		2		2		2	
Total N balance	277.6	277.6	277.7	277.7	272.8	272.8	270.8	270.8	
		Kl	harif 201	2					
Soil NO3	186.7	41.9	186.7	47.7	186.7	41.9	186.7	29.5	
Soil NH4	21.1	9	21.1	8.1	21.1	9	21.1	8.5	
Soil Urea	0	0	0	0	0	0	0	0	
Added to / Removed from									
Fertilizer N	85		85		85		85		
Mineralized N	14.8		15.8		14.8		17.3		
Leached NO3		0		0		0		0	
N Denitrified		52.3		52.1		52.3		45.9	
N Uptake From Soil		138.7		135		138.7		160.7	
Ammonia volatilization		65.7		65.6		65.7		65.5	
N Immobilized		0.1		0		0.1		0	
Total N balance	307.6	307.6	<i>308.7</i>	308.7	307.6	307.6	310.1	310.1	

 Table 4.11: CERES Rice Simulated soil nitrogen balance (initial and final) in Rice cv Sharabati grown under various CO2 treatments

The initial soil nitrogen and the inorganic nitrogenous fertilizer added to soil are constant for all treatments. The CO_2 enrichment modelling using CERES Rice model shows that the nitrogen uptake is increasing and the mineralization and denitrification of soil nitrogen and ammonia

volatilization is decreasing leading to increased NUE of rice crop. Therefore, it can be stated that the response of NUE of rice crop under CO_2 enrichment can be studied using crop simulations models which also indicates the nitrogen movement in soils and it's partitioning. The use of CERES Rice model to study the soil nitrogen dynamics was satisfactory (Nain and Kersebaum, 2007).

4.2 Conclusion

Genetic coefficients developed for *Sharbati* cultivar have been validated which suggests that CERES Rice model can be used with confidence for further studies. During validation of model it has been observed that crop response to CO_2 enrichment was positive. The crop phenology, grain yield, biomass, LAI, panicle number, grain number of rice cv *Sharbati* predicted under varying CO_2 enrichment conditions are closer to the observed values. The other uncertainities encountered in the simulations is due to failure of crop models to simulate the change in temperature (canopy) due to elevated CO_2 concentrations which reduces the grain yield. Similar findings has been reported by (Li et al., 2015) in which it was stated that the elevated CO_2 has a varying impact on canopy temperatures depending on the location and crop variety. The increase in temperature due to CO_2 elevation is not captured in the CERES rice models which leads to the difference in simulated/predicted results from the experimental results. Therefore, it can be concluded that the CERES Rice model can be used for predicting yields under CO_2 enriched conditions even for future scenarios with some exceptions.

CHAPTER V

CLIMATE CHANGE ASSESSMENT AND IMPACT ON RICE YIELD

5.1 Introduction

Any technology before it is transferred to field it has to be tested for its reliability not only for the present scenario but also for the future. Everywhere there is an emphasis on climate change and CO_2 also has a major role to play in such a scenario and therefore it is necessary to evaluate CO_2 enrichment for the coming years. With this objective the future weather for Haridwar district was forecasted using PRECIS RCM and given as weather input to CERES Rice model to study the effect of CO_2 enrichment on rice grain yield for the period 2014 - 2090.

5.2 PRECIS RCM Data

5.2.1 Collection

PRECIS RCM data (Rainfall, Maximum Temperature and Minimum Temperature) was obtained from Indian Institute of Tropical Meteorology (IITM), Pune in binary format. This data is converted into *netcdf* format using FORTRAN program and thereafter the daily data of rainfall, maximum temperature and minimum temperature was extracted for Roorkee location (29° 52' N and 77° 54'S) for the period 01/01/1979-31/12/2090 using Arc GIS 9.3.

5.2.2 Extraction

PRECIS RCM daily weather data is available for 360 days/year considering 30 days per month only. Therefore the daily data was adjusted to match the Gregorian calendar days/month taking average of the last five days in the respective months and accounting the same for 31st day. No adjustment was made for the months having only 30 days/month. February is either 28 or 29 days/month therefore one or two days were deleted from the data of 30 days.

Data for the period 1979-2008 was used for calibration; data for the period 2009-2013 was used for validation whereas the data for the period 2014-2090 was bias corrected and used for climate and crop yield forecasting. Steps adopted are described below:

5.2.3 Bias correction

1st Step: Correction for Standard Deviation (Leander and Buishand, 2007)

$$P_{SDcorr} = \overline{P}_{obs} + \left(\frac{\sigma(P_{obs})}{\sigma(P_{rcm})}\right) \times \left(P_i - \overline{P_{obs}}\right) + \left(\overline{P_{obs}} - \overline{P_{rcm}}\right)$$
(5.1)

Where,

 P_{sDcorr} = Bias Corrected Precipitation or temperature (Daily/Monthly) \overline{P}_{obs} = Mean daily observed precipitation or temperature \overline{P}_{rcm} = Mean daily PRECIS precipitation or temperature $\sigma(P_{obs})$ = Standard Deviation of the observed precipitation or temperature $\sigma(P_{rcm})$ = Standard Deviation of the PRECIS precipitation or temperature P_i = Daily or monthly precipitation or temperature of PRECIS data

2nd Step: Correction for Mean(Hay et al., 2002)

$$P_{mean\ corr} = P_{SDcorr} \times \left(\frac{\overline{P_{obs}}}{\overline{P_{rcm}}}\right)$$
(5.2)

3rd Step: Correction for Other biases:

In the first step there is chance of generating negative values which is not desirable especially in case of precipitation and even in temperatures where it is either abnormally high or low. In order to check such biases the following conditions were employed.

- 1. The precipitation data of a given day was programmed in such a way that the negative values were automatically replaced with zero.
- 2. If the bias corrected value of maximum temperature (Tmax ⁰C) exceeds the observed maximum temperature (Tmax ⁰C) value of a given day during the calibration period then the bias corrected value will be replaced by the observed value.
- 3. If the bias corrected value of minimum temperature (Tmin ⁰C) is lower than the observed minimum temperature (Tmin ⁰C) value for a given day during the calibration period then the bias corrected value will be replaced by the observed value.

5.2.4 Statistical evaluation

Calibrated and validated data was evaluated by adopting Normalized Root Mean Square Error (NMSE, Mean Bias Error (MBE) Z-test, Forecast Accuracy (FA), Ratio Score or Hit Score. Using all the above mentioned evaluation measures the forecast is verified and further climate change assessment is done using Mann-Kendall Trend Test (MKTT). Calibrated and validated data was evaluated by adopting following statistical tests:

5.2.4.1 Normalized Root Mean Square Error (NMSE):

The Normalized Mean Squared Error is calculated between the original RCM data and bias corrected RCM data. This has already been discussed in Chapter 4.

5.2.4.2 Mean Bias Error (MBE):

MBE is simply the difference between the average forecast and average observed values, and therefore expresses the bias of the forecasts. Forecasts values that are higher than the observed values will exhibit MBE >0 and Forecasts values that are lower than the observed values will exhibit MBE < 0.

$$MBE = \frac{1}{N} * \left(\sum \left(P_{corr} - P_{obs} \right) \right)$$
(5.3)

Where,

N = number of observations. SD= Standard Deviation P_{corr}= Bias corrected value P_{obs}= Observed value

5.2.4.3 T-test

It is the most widely used statistic to test the number of standard errors of the forecasted from the observed .The t-statistic was calculated using the formula:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
(5.4)

Where

 $\bar{x}_1 \& \bar{x}_2$ = sample mean of group 1 & 2 respectively $\mu_1 \& \mu_1$ = population mean of group 1 & 2 respectively $\sigma_1 \& \sigma_2$ = Standard Deviation of Group 1 & 2 respectively $n_1 \& n_2$ = sample size of group1 and group2

5.2.4.4 F-test

F-statistic/testis also used in ANOVA and regression analysis to determine if the variance of two populations is significantly different. F-test was calculated using the equation

$$F = \frac{S_1^2}{S_2^2}$$
(5.5)

Where

 $S_1 \& S_2$ = Variance of group1 & group 2 respectively Note: Variance is the square of standard deviation.

Hypothesis for Z - test and F-test

Null Hypothesis (H ₀):	We accept the null hypothesis when the test statistic is less						
	than the tabulated value, which states that there is no						
	significant difference between the two populations.						
Alternate Hypothesis (H ₁):	We reject the null hypothesis and accept the alternate						

Anternate Hypothesis (H1). We reject the num hypothesis and accept the anternate hypothesis when the test statistic greater than the tabulated value. This states that the two populations differ significantly from each other.

5.2.4.5 Correlation Coefficient (CC)

Numerical as well as graphical analyses are involved in the correlation analysis. A value of correlation coefficient (r) close to unity implies good forecast. The numerical result gives a quantitative relation, while graphical analysis gives a qualitative measure of the observed and predicted parameters. In equation form it is represented as:

$$r = \frac{\overline{(P_{obs} - \overline{P}_{obs})(P_{corr} - \overline{P}_{corr})}}{SD_{P_{corr}} * SD_{P_{obs}}}$$
(5.6)

5.2.4.6 Forecast Accuracy (FA):

A contingency table (Table 0.1)was prepared for further analysis of rainfall data (bias corrected and observed) using (Wilks, 2006)methodology as described below:

		Observed	
		Yes	No
s rected	Yes	A (YY)	B (YN)
rec		(Hits)	(False alarms)
Bias Corr	No	C (NY)	D (NN)
B		(Misses)	(Correct rejects)

Fable 5.1:	Rainfall	contingency	table
------------	----------	-------------	-------

Where,

- i. A(YY) = No. of Hits (predicted and observed).
- ii. B (YN)= No. of False Alarms (predicted but not observed)
- iii. C (NY)= No. of misses (observed but not predicted), and
- iv. D(NN) = No. of correct rejects

It is the ratio of the number of correct forecasts to the total number of forecasts. It varies from 0 to 1. Perfect forecast is indicated as 1.

$$FA = \left(\frac{A+D}{A+B+C+D}\right) * 100 \tag{5.7}$$

Using all the above mentioned forecast evaluation measures the forecast is verified and further climate change assessment is done using Mann-Kendall Trend Test (MKTT).

5.2.5 Trend Analysis

To assess future climate change it is necessary to observe the variability and magnitude of change. To assess the trend and its magnitude MKTT(Kendall, 1948) which is one of the widely used non-parametric tests to detect significant trends in time series was used along with Theil Sen's Slope estimator. MKTT, being a function of the ranks of the observations rather than their actual values, is not affected by the actual distribution of the data and is less sensitive to outliers.

5.2.5.1 Mann-Kendall Trend Test

Mann Kendal statistics (S) is defined as follows:

$$S = \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \operatorname{sgn}(x_j - x_i)$$
(5.8)

Where *N* is the number of data points. Assuming $(xj-xi) = \theta$, the value of sgn (θ) is computed as follows:

$$\operatorname{sgn}(\theta) = \begin{cases} 1 & \text{if } \theta > 0 \\ 0 & \text{if } \theta = 0 \\ -1 & \text{if } \theta < 0 \end{cases}$$
(5.9)

It has been documented that when $n \ge 8$, the statistic S is normally distributed with the mean.

$$E(S) = 0$$
 (5.10)

The variance is written as-

$$\delta(S) = \frac{N(N-1)(2N+5-\sum_{i=1}^{m}(t_i-1)(2t_i+5))}{18}.$$
(5.11)

Where, Nis the number of ties group and t_i the number of data points in the t_{ih} tied group. Then *Z*-statistics computed as:

$$Z = \begin{cases} \frac{S-1}{\sqrt{Var(S)}} & \text{if } S > 0\\ 0 & \text{if } S = 0\\ \frac{S+1}{\sqrt{Var(S)}} & \text{if } S < 0 \end{cases}$$
(5.12)

Here Z follows standard normal distribution. A positive value of Z indicates upward trend and negative value indicate downward trend. If the *Z value is greater than* $Z_{0.05/2}$, then null hypothesis (H_0) is rejected at 0.05 level of significance.

5.2.5.2 Theil–Sen's estimator

The slope of n pairs of data points was estimated using the Theil–Sen's estimator(Sen, 1968; Theil, 1992)which is given by the following relation:

$$\beta = Median \ \frac{x_j - x_i}{j - i} \ for all \ i \le j$$
(5.13)

In which $1 \le j \le i \le n$ and β is the robust estimate of the trend magnitude. A positive value of β indicates an 'upward trend', while a negative value of β indicates a 'downward trend' (Xu et al., 2008)(Xu et al., 2007).

5.2.6 IPCC CO₂ Emission Scenarios

IPCC has developed four possible CO₂ emission scenarios viz. A1, A2, B1 and B2 for every country according to its topographical, economic, technological and social backgrounds. They are described in the forthcoming paragraphs.

The A1 scenario describes a future world of very rapid economic growth; rapid population growth that attains its peaks in mid-century and declines thereafter as well as the rapid introduction of new and efficient technologies for fast increasing the per capita income. This scenario is applicable to developed nations.

The A2 storyline and scenario family describes a very heterogeneous world. The underlying theme is self-reliance and preservation of local identities. Fertility patterns across regions converge very slowly, which results in continuously increasing global population. Economic development is primarily regionally oriented and per capita economic growth and technological change are more fragmented and slower than in other storylines. This scenario is applicable to developing nations.

The B1 storyline and scenario family describes a convergent world with the same global population that peaks in midcentury and declines thereafter, as in the A1 storyline, but with rapid changes in economic structures toward a service and information economy, with reductions in material intensity, and the introduction of clean and resource-efficient technologies. This scenario is applicable to under developed nations.

The B2 storyline and scenario family describes a world in which the emphasis is on local solutions to economic, social, and environmental sustainability. It is a world with continuously increasing global population at a rate lower than A2, intermediate levels of economic development, and less rapid and more diverse technological change than in the B1 and A1 storylines. This scenario is applicable to resource constrained poor nations.

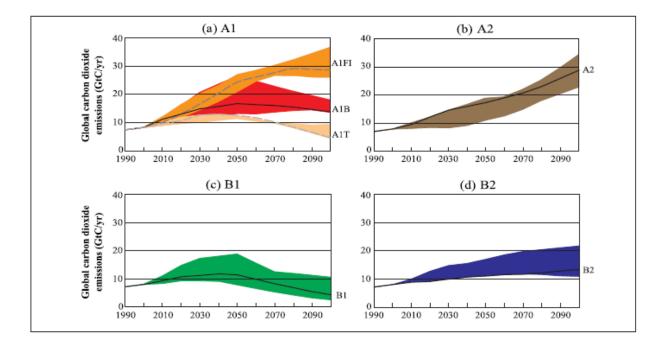


Figure 5.1: Total global annual CO₂ emissions from 1990 to 2100 (GtC/yr) for the 4 IPCC SRES scenarios (A1, A2, B1, and B2). a) A1 b) A2 c) B1 and d) B2.

High emission scenario of A2 and low emission scenario of B2 were taken under this study. The study of two extreme conditions and their effect on rice grain yields will enable us to prepare for the upcoming future.

5.2.7 Data in DSSAT Format

Considering Uttarakhand's technological and socio economical developments A1 and B2 scenarios were selected for this study. Bias corrected PRECIS RCM weather data for the period 2014 – 2090 was arranged in DSSAT format for generating a weather file. Daily Solar Radiation data for the period 01/01/2014- 31/12/2090 using Hargreaves and Samani Method(Pranuthi and Tripathi, 2011). Soil file, genetic coefficient file and crop management files were adopted from Chapter IV.

5.3 Climate Change Assessment

5.3.1 Bias Correction of Tmax, Tmin and Rainfall data

The PRECIS original data (RCM) was more biased from the observed data which made it unusable for further studies. So, to make it usable the bias correction methods had to be employed for reliable crop yield forecasts. For calibration, weather data from 1979-2009 was

selected as training set. The bias corrected data was evaluated using various statistical measures and the evaluation results between observed, RCM predicted and bias corrected RCM data during the calibration period are presented in Table 5.2. The observed, RCM predicted and bias corrected RCM average annual rainfall are 985.2 mm 755.4 mm and 1021.0 mm respectively during the calibration period. The observed, RCM predicted and bias corrected RCM mean maximum temperatures are 30.0° C, 31.1° C and 30.0° C respectively during the period 1979 – 2009. The observed, RCM predicted and bias corrected RCM mean minimum temperatures are 17.4°C, 19.2°C and 17.35°C respectively during the period 1979 – 2009. Standard Deviation of observed, RCM predicted and bias corrected RCM average annual rainfall are 116.5 mm, 89.0 mm and 127.3 mm respectively. Standard Deviation of observed, RCM predicted and bias corrected RCM average annual rainfall are 5.7°C, 8.6°C and 5.8°C respectively. Standard Deviation of observed, RCM predicted and bias corrected RCM average annual rainfall are 7.0°C, 8.9°C and 7.15°C respectively. The MBE of RCM predicted rainfall, maximum and minimum temperatures from the observed values is -19.2 mm, 1.0°C and 1.8°C respectively. The MBE of bias corrected rainfall, maximum and minimum temperatures from the observed values is 2.9 mm, -0.04°C and -0.03°C respectively. The NMSE calculated between observed and RCM predicted rainfall, maximum and minimum temperatures is 0.007, 0.15 and 0.08 respectively. The NMSE calculated between observed and bias corrected rainfall, maximum and minimum temperatures is 0.008, 0.1 and 0.05 respectively. t test and F test results showed that the RCM predicted rainfall data is significantly different from the observed data.

During validation period (2010 - 2013) the observed, RCM predicted and bias corrected RCM average annual rainfall are 1249.4 mm, 863.7mm and 1237.5 mm respectively (Table 5.3). The observed, RCM predicted and bias corrected RCM mean maximum temperatures are 29.9°C, 31.7° C and 29.8°C respectively. The observed, RCM predicted and bias corrected RCM mean minimum temperatures are 18.3° C, 19.4° C and 18.4° C respectively. Standard Deviation of observed, RCM predicted and bias corrected RCM average annual rainfall are 168.9 mm, 115.5 mm and 182.9 mm respectively. Standard Deviation of observed, RCM predicted and bias corrected RCM average annual rainfall are 6.0°C, 8.3° C and 6.1° C respectively. Standard Deviation of observed, RCM predicted and bias corrected RCM average annual rainfall for the period 2010 – 2013 are 6.6°C, 8.5° C and 6.7°C respectively.

]	Rainfall (mm)		Tmax ((⁰ C)		Tmin (⁰ C)
			RCM			RCM			RCM
Month	Obs	RCM	Corr	Obs	RCM	Corr	Obs	RCM	Corr
Jan	29.0	24	29.4	20.0	18.6	21.6	6.8	5.1	5.98
Feb	36.9	14	16.3	23.2	24.9	25.9	9.4	9.2	9.27
Mar	25.8	23	27.6	28.6	32.5	30.9	13.5	16.4	15.08
Apr	17.9	16	18.0	34.9	38.9	35.3	18.2	22.7	20.23
May	33.6	12	13.0	37.3	45.3	39.6	22.7	29.9	26.00
Jun	104.1	85	115.6	36.3	42.6	37.8	25.1	31.4	27.19
Jul	273.4	264	373.8	33.6	32.9	31.2	25.7	26.8	23.48
Aug	273.7	194	272.9	32.9	31.7	30.4	25.4	25.9	22.82
Sep	148.7	56	73.7	32.6	32.3	30.8	23.6	24.1	21.36
Oct	23.1	21	26.0	31.3	30.1	29.3	18.1	19.2	17.35
Nov	5.8	26	32.0	27.2	24.2	25.4	12.4	12.8	12.16
Dec	13.2	20	22.5	22.4	18.8	21.8	7.9	6.8	7.34
Total/Avg	985.2	755.4	1021.0	30.0	31.1	30.0	17.4	19.2	17.35
SD	116.5	89.0	127.3	5.7	8.6	5.8	7.0	8.9	7.15
MBE		-19.2	2.9		1.0	-0.04		1.8	-0.03
NMSE		0.007	0.008		0.15	0.10		0.08	0.05
								-	
Z-Test		2.52*	-0.33		-1.91	0.10		3.06*	0.06
F-Test		1.71*	0.84		0.45	0.98		0.63	0.96

 Table 5.2: Observed, RCM and bias corrected RCM monthly data of Rainfall, Tmax and Tmin during the period 1/1/1979 – 31/12/2009.

* indicates significance at 0.05 level of significance

The evaluation of bias corrected PRECIS RCM data for the validation period (2010 - 2013) is presented in Table 5.3. The MBE of RCM predicted rainfall, maximum and minimum temperature from the observed values is -32.1mm, 1.7° C and 1.2° Crespectively. The MBE of bias corrected rainfall, maximum and minimum temperatures from the observed values is -0.9mm, - 0.2° C and 0.1° C respectively. The NMSE calculated between observed and RCM predicted rainfall, maximum and minimum temperatures is 0.004, 0.1 and 0.09 respectively. The NMSE calculated between observed and bias corrected rainfall, maximum and minimum temperatures is 0.005, 0.08 and 0.06 respectively. t test results showed that the RCM predicted maximum and minimum temperature data is significantly different from the observed values. F test results indicate that the rainfall predicted by PRECIS RCM is significantly different from the observed values. The t-test and F test values showed that the bias corrected RCM data and observed are not significantly different from each other.

	Ra	infall (m	m)	,	Гmax (⁰ С	C)	,	Γ min (⁰ C	C)
			RCM			RCM			RCM
Month	Obs	RCM	Corr	Obs	RCM	Corr	Obs	RCM	Corr
Jan	29.7	18.3	21.8	18.2	20.2	21.3	6.7	5.6	7.39
Feb	59.3	28.7	28.5	23.5	24.4	24.4	12.1	10.3	11.11
Mar	7.0	4.5	1.8	30.0	31.8	29.9	16.0	15.7	15.37
Apr	8.0	10.9	6.7	34.6	38.1	34.5	19.5	22.4	20.72
May	37.6	10.5	10.2	37.7	44.6	39.3	23.3	28.8	25.83
Jun	135.0	35.8	43.0	35.9	44.7	39.4	25.5	31.9	28.25
Jul	364.6	291.6	451.7	32.8	34.7	32.0	25.5	26.8	24.23
Aug	410.5	278.9	431.1	32.4	31.9	29.9	24.8	25.9	23.49
Sep	170.3	122.1	178.8	33.1	32.1	30.1	24.1	23.5	21.64
Oct	6.6	6.1	0.1	31.8	31.5	29.7	19.3	19.7	18.62
Nov	0.5	23.9	27.9	27.7	25.2	25.0	13.7	14.1	14.14
Dec	20.6	32.6	36.0	21.9	21.2	22.0	8.7	8.5	9.70
Total/Avg	1249.4	863.7	1237.5	29.9	31.7	29.8	18.3	19.4	18.4
SD	168.9	115.5	182.9	6.0	8.3	6.1	6.6	8.5	6.7
MBE		-32.1	-0.9		1.7	-0.2		1.2	0.1
NMSE		0.004	0.005		0.1	0.08		0.09	0.06
t-Test		1.78	0.05		-2.59*	0.35		-2.21*	-0.26
F-Test		2.14*	0.85		0.53	0.98		0.61	0.96

 Table 5.3: Observed, RCM and bias corrected RCM monthly data of Rainfall, Tmax and Tmin during the period 1/1/2010 – 31/12/2013.

* indicates significance at 0.05 level of significance

The hit score calculated for RCM predicted and bias corrected RCM rainfall data during calibration and validation are given in Table 5.4. The hit score for RCM predicted rainfall data and bias corrected RCM rainfall data during calibration period is 0.35 and 0.69 respectively. From this score it is evident that there is improvement in the FA in bias corrected RCM (0.74) than the RCM predicted (0.69) rainfall data during validation period.

The bias correction of mean and standard deviation resulted in decreased mean bias error. For maximum temperatures the MBE was brought down from 1.0 to -0.04 and for minimum temperatures it is brought down from 1.8 to 0.03. Even NMSE was reduced to 0.10 from 0.15 and 0.05 from 0.08 in case of maximum and minimum temperatures respectively. But in case of rainfall the NMSE increased from 0.007 to 0.008 but the MBE decreased from -19.2 to 2.9. Even during validation period bias correction decreased the MBE and NMSE of RCM data from 1.2 to 0.1 and 0.09 to 0.06 respectively for minimum temperature. MBE and NMSE for temperatures indicated that the bias correction method applied was good, which can also be applied for the

remaining of the data. The applicability of bias correction method to rainfall data cannot be ascertained due to inconsistency in the values of MBE and NMSE.

Months	Hit Score	e of RCM	Hit Score of Bias corrected RCM				
WIOIIUIIS	1979-2009	2010-2013	1979-2009	2010-2013			
Jan	0.33	0.63	0.67	0.73			
Feb	0.50	0.68	0.66	0.67			
Mar	0.39	0.81	0.70	0.84			
Apr	0.38	0.72	0.77	0.81			
May	0.57	0.77	0.71	0.79			
Jun	0.41	0.53	0.60	0.6			
Jul	0.42	0.44	0.46	0.48			
Aug	0.47	0.45	0.51	0.52			
Sep	0.25	0.49	0.59	0.67			
Oct	0.13	0.89	0.89	0.93			
Nov	0.15	0.74	0.91	0.93			
Dec	0.23	0.75	0.86	0.9			
Annual	0.35	0.69	0.69	0.74			

 Table 5.4: Hit score of RCM and bias corrected RCM monthly rainfall for the period 01/01/1979-31/12/2013.

 Hit Score of RCM

 Hit Score of Bias corrected RCM

The monthly hit score shows that bias corrected data FA is better during all the months during calibration period. Even during validation the bias corrected PRECIS forecast showed higher hit rate than the original PRECIS data except for January, February, March and May months but overall FA is higher for bias corrected PRECIS rainfall data.

The bias correction method used in this study is a combination of two methods(Hay et al., 2002) and (Leander and Buishand, 2007). The method suggested by (Hay et al., 2002) was used to bias correct rainfall and (Leander and Buishand, 2007)method was used to bias correct maximum and minimum temperature. The first method is used to correct the mean of precipitation and second method is used to correct coefficient of variation (CV) of maximum and minimum temperatures. These both methods are combined to bias correct the mean and CV of rainfall, maximum and minimum temperature in this study. However the method suggested in this research can be applied to bias correct any climatic parameter as such. The reduction in bias o PRECIS RCM data was reportedly decreased after employing various bias correction methods(Akhtar et al., 2009; Teutschbein and Seibert, 2012).

5.3.2 Climate Change Assessment using Mann Kendall Trend Analysis

5.3.2.1 Annual Trend

Trend analysis of future rainfall, maximum and minimum temperatures predicted by PRECIS RCM revealed that increase in annual rainfall and temperatures is significant. Theil Sen's slope estimated for PRECIS weather by 2090 is 5.828mm/yr., 0.046^oC/yr. and 0.039^oC/yr. for annual rainfall, maximum and minimum temperatures respectively. After the completion of correction and trend analysis of PRECIS RCM data it can be concluded that the rainfall would increase upto 450 mm and maximum and minimum temperatures by 3.6 ^oC and 3.0^oC by the end of 2090.

 Table 5.5: Mann Kendall test and Thiel Sen's slope for rainfall, Tmax and Tmin for the monthly forecasted data (2014 - 2090).

				uata (2014 - 2090).								
	Rain	fall (2	014 - 2090)	Tn	nax (2	014 - 2090)	Tn	11n (20	14 - 2090)			
Month	Z	Sig	Sen's Slope	Ζ	Sig	Sen's Slope	Ζ	Sig	Sen's Slope			
Jan	-1.05		-0.041	3.58	***	0.051	4.74	***	0.032			
Feb	0.79		0.012	3.03	**	0.041	5.57	***	0.043			
Mar	0.69		0.019	2.23	*	0.025	4.41	***	0.030			
Apr	-1.99	*	-0.065	5.01	***	0.050	4.25	***	0.030			
May	0.05		0.000	5.31	***	0.045	4.74	***	0.027			
Jun	0.78		0.370	2.97	**	0.039	4.26	***	0.028			
Jul	4.40	***	3.310	5.98	***	0.041	9.00	***	0.042			
Aug	4.68	***	3.161	7.20	***	0.045	9.43	***	0.038			
Sep	-1.23		-0.632	7.02	***	0.048	8.40	***	0.042			
Oct	-1.81	+	-0.001	6.60	***	0.058	6.88	***	0.061			
Nov	-0.68		0.000	4.63	***	0.039	5.39	***	0.044			
Dec	0.62		0.004	4.15	***	0.050	5.99	***	0.040			
Kharif	3.91	***	6.005	7.32	***	0.048	8.76	***	0.043			
Annual	3.97	***	5.828	7.47	***	0.046	9.50	***	0.039			

^{***} Significant trend at 0.001 level of significance, ** Significant trend at 0.01 level of significance, *Significant trend at 0.05 level of significance, +Significant trend at 0.1 level of significance, Note: Bold values indicate significance of trend at any level of significance

5.3.2.2 Seasonal Trend

The increase in rainfall (462 mm) during rainy months (*Kharif*) is more prominent and is likely to impact the yields of rice crop. Even the alteration in temperatures would affect the development of rice crop as it is expected that the temperature during the crop growth period (June – October) is likely to increase by 3.7 and 3.3° C for maximum and minimum temperatures respectively. The change in the rainfall amounts and temperature would also alter many other

weather parameters such as humidity, evaporation wind speed etc. which would in turn directly or indirectly affects the crop growth and development.

For Haridwar district the PRECIS RCM predicted that annual rainfall, maximum and minimum temperatures are likely increase by 2090. Increasing GHG concentrations are the most probable reason that could be attributed to this increase. PRECIS RCM predicted that all India annual mean temperatures would increase by $3.5 - 4.3^{\circ}$ C by the end of this century. Similarly, all India annual precipitation would increase by 9 - 16% with negative trend towards south and western states according to a study done by (Akhtar et al., 2009; Kumar et al., 2006).

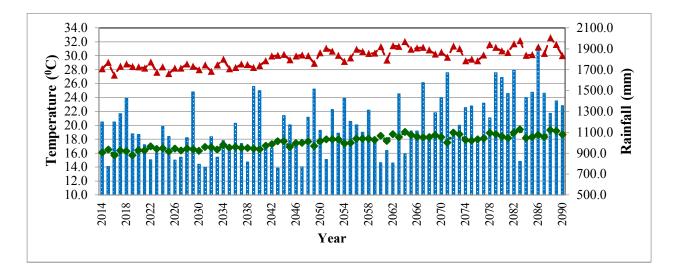


Figure 5.2: Forecasted annual rainfall and annual average Tmax, Tmin and SRAD for Haridwar district during 2014 – 2090.

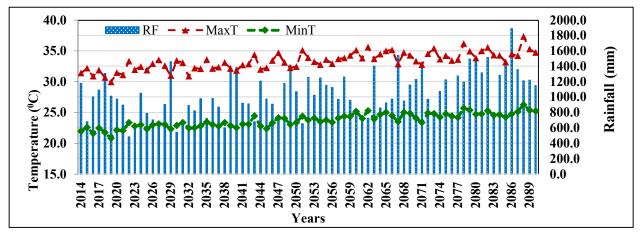


Figure 5.3: Forecasted *Kharif* rainfall and *Kharif* average Tmax, Tmin and SRAD for Haridwar district during 2014 – 2090

5.3.3 Effect of CO₂ enrichment and climate change on crop yield of rice crop for the period 2020 – 2090.

Rice productivity in A2 & B2 scenario presuming no constraint of insect pest and disease, soil fertility, water and management constraint is presented in Table 5.6. Results indicated that rise in CO₂ concentration will significantly the rice grain yield. The average grain yield of rice during 2020-2090 under A2 and B2 scenario is 6969 kgs/ha and 6370 kgs/ha respectively. Rice productivity will rise up to 2070 and decline thereafter under both the scenarios probably due to excessive rainfall.

Table 5.6: Decadal average of yield and weather for that corresponding decade simulated by CERES rice model under A2 and B2 emission scenarios for the period 2020 – 2090 for rice crop cv. Sharbati.

Decado	Yield (kgs/ha)	Tmax	Tmin	SRAD	RF	ET	CO ₂ conc	(in ppm)
Decade	A2	B2	(⁰ C)	(⁰ C)	(MJ/m²/day)	(mm)	(mm)	A2	B2
2020	6210	6163	31.2	23.6	18.3	882.2	427.3	438	432
2030	6232	6008	33.1	24.4	20	496.4	444.5	506	476
2040	6799	6143	32.2	24.2	19.1	924	431.5	578	520
2050	7422	7068	32.6	25	18.5	601.1	439.4	654	566
2060	7159	6377	34.7	26.5	19.5	602.9	466.8	732	606
2070	7509	6747	33.4	26	18.5	826.8	417.8	812	642
2080	7219	6284	34.4	26.8	19.1	1104.3	408.9	900	670
2090	7203	6170	34.8	27.2	19	908.3	426.2	1000	694
Mean	6969	6370	33.3	25.5	19	793.3	432.8	702.5	575.8
	CO ₂ – Effect : F calculated: 11.66; F critical: 5.59 CD (Tukey): 492 kgs/ha								
	CC	- Effect :	F calcula	ted: 22.6	1; F critical: 3.78	8 CD (Tul	(key): 748	kgs/ha	

Grain yield of rice cv Sharbati for the period 2020-2090 was simulated by running DSSAT CERES rice model with PRECIS RCM weather data of Haridwar district and IPCC CO₂ scenarios. The simulation result showed that if the crop is grown with the existing soil and crop management conditions, rice productivity of Haridwar in general will decrease @ 16.7 kgs/ha/yr. This could be attributable to the climate change scenario. The simulated rice grain yield was reported to decrease @ 273 kgs/ha with every 1°C increase in minimum temperature (Peng et al., 2004). Decreased rice yields from increased minimum temperature has also been reported (Seshu and Cady, 1984).

5.4 Conclusion

The statistical bias correction method adopted to correct PRECIS RCM data was found suitable for bias correction with NMSE less than 0.1. Trend analysis of RCM data for the period 2014 -2090 showed that the rainfall would increase @ 6.005 mm/yr., maximum temperature @ 0.048° C/yr. and minimum temperature @ 0.043° C/yr. for *Kharif* season. DSSAT CERES rice simulations under climate change and higher CO₂ concentrations showed that the yields will decline with the advancing climate change but CO₂ intervention will compensate the loss in yield.

CHAPTER VI

STRATEGIC MANAGEMENT OPTIONS

6.1 Introduction

DSSAT crop models not only simulate the impact of climate change and CO₂ concentrations on crops but can also evaluate various management options under climate change scenario (Doering III, 2002). The impacts of climate change and CO₂ concentration on rice crop yield in the future years have been discussed in the earlier sections of the study. (Thornton et al., 2011) hypothesized that to combat with the uncertainty in future, will require quite radical shifts in agriculture systems, rural livelihood strategies and food security strategies and policies. Proactive adaptation will require much more concerted effort at all levels to manage quite radical shifts, for example, the evaluation of successful adaptation becomes more difficult. For crops, changes in management practices and strengthening of seed systems are two key approaches to adapting agricultural systems (Challinor et al., 2007).

Previous research conducted in developing country settings indicates that, in principle, climate change impacts on agriculture can be reduced through human adaptations such as; adjusting sowing dates, irrigation and nutrient management (Winter, 1998) and adopting higher yielding and heat resistant cultivars (Butt et al., 2005).

6.2 Effect of planting date on potential yield

Previous studies had suggested that adjusting sowing dates might be a simple and powerful tool for mitigating the effects of a potential global warming (Baker and Allen Jr, 1993). The first step in defining adaptation strategies was to run simulations moving the sowing dates within different time windows, hence exploring the best management practice. According to the agriculture contingency plan developed by the Government of Uttarakhand for Haridwar district suggests the normal planting window varies from 1st week of July to 3rd week of July (delayed). Potential yield was simulated for a range of planting dates (at 7-day intervals from 7th July to 21st July) for 77 years (2014 – 2090) of PRECIS predicted weather data for Haridwar district.

	Yield (kgs/ha)					Crop Period	T max	Tmin	SRAD	RF	ЕТ
Planting Date	Т0	T1	T2	Т3	Mean	DAP	(⁰ C)	(⁰ C)	(MJm ⁻² day ⁻¹⁾	(n	ım)
7th July	6644.7	7740.3	8775.8	9369.7	8132.6	92.1	33.1	25.5	19.1	874.0	419.6
14th July	6908.6	7928.1	8992.5	9564.4	8348.4	94.2	32.8	24.9	18.9	793.9	421.6
21st July	7338.2	8443.5	9529.5	10143.0	8863.5	98.6	32.7	23.9	19.0	701.5	453.3
21st July 7338.2 8443.5 9529.5 10143.0 8863.5 98.6 32.7 23.9 19.0 701.5 43 CO2 Treatments: F calculated: 211.2; F critical: 2.6; F calculated: 27.4; F critical: 3.0; Interaction: F calculated: 4.8; F critical: 2.4											

Table 6.1: Effect of variable planting dates on rice grain yield and weather condition during that respective crop periods.

It is evident from the probability and F calculated values of ANOVA analysis given in Table 6.1 that the grain yield of rice was significantly affected by both CO₂ treatments and variable planting dates. Average weather conditions along with the grain yield during the study period (2014 – 2090) are summarized in the Table 6.1 which showed that growth period is extended under late planting conditions by one week on an average. It is also observed that the amount of rainfall (701.5 mm) received during the crop period in late planted (21st July) crop is less and ET (453 mm) is more. Therefore, in late planted the crop would need more water and also would need more attention due to extended crop period. The Tukey posthoc critical difference of 567 kgs/ha suggests that the yield for planting date 7th July and 14th July were found to be ideal dates if the climate change persists. According to the simulations by CERES rice model the general practice of transplanting rice during the 1st week of July followed by the farmers of the district was found to be a good practice.

6.3 Effect of plant spacing on potential yield

The three different populations per square meter i.e. 25, 33 and 44 plants per m^2 with row to plant spacing of 20 cm x 20 cm, 20 cm x 15 cm, and 20 cm x 10 cm respectively were kept for simulating the yield and to identify the optimum plant population that could be adapted by the farmers to maximize yields and reduce the ill effects of climate change.

It is evident from the F calculated values of ANOVA analysis that the grain yield of rice was significantly affected by different plant populations and CO_2 enrichment treatments (Figure 6.1). The ANOVA results indicate a good interaction between plant spacing and CO_2 treatments. The spacing of 20 cm x 15 cm had the highest yield of 9698 kgs/ha under T2 treatment (Figure 6.1) and lowest yield was simulated for the plant spacing of 20 cm x 20 cm (6035 kgs/ha) for T3 treatment. Practically, the closer spacing leads to competition between the plants for sunlight,

water and nutrients it also leads difficulty in intercultural operations and increases the susceptibility of plants to pests and diseases. Therefore, it can be concluded that the general practice 20 x 15 spacing (33 hills per m^2) adapted by the farmers of the district is ideal even under climate change conditions.

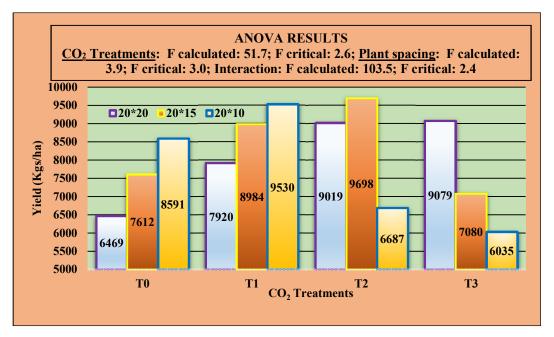


Figure 6.1: Rice grain yield as effected by variable planting spacing, ANOVA analysis of treatments as simulated by CERES Rice model.

6.4 Effect of Nitrogen Management on potential yield

Variable rates of nitrogen at various stages were given as different nitrogen treatments (Table 6.2) to select the best nitrogen management practice for suggesting to farmers of Haridwar district Uttarakhand. The yield of rice crop cultivar *Sharbati* has been simulated for the coming years with three levels of nitrogen 60kgs N/ha, 90kgs N/ha and 120kgs N/ha for opting best nitrogen management.

The ANOVA analysis of rice yield simulations under varying nitrogen amounts is given in Figure 6.2. The F calculated shows that the effect of nitrogen is significant on rice yield. Highest average yields are simulated under 120 kgs N/ha (9008 kgs/ha) for T3 treatment while the lowest yields are simulated for 60 kgs N/ha (7351 kgs/ha) for T0 treatment for the period 2014 - 2090. Higher the nitrogen levels higher is the yield, but from Tukey critical difference CD of 638 kgs/ha, it is evident that the yield at 60 and 90 kgs nitrogen are significantly different but, 90 kgs N/ha and 120 kgs N/ha are not significantly different therefore the optimum levels of nitrogen

that can be applied to the crop for maximizing yields in the event of CO_2 enrichment is 90 kgs N/ha.

Total Nitrogen amount	Crop growth Stage	Date of application	Kind of Fertilizer	Amt of Fertilizer
	Transplanting	10-Jul	DAP	15
60 kgs	Transplanting	10-Jul	Urea	15
N/ha	PI Stage	5-Aug	Urea	30
	Transplanting	10-Jul	DAP	15
	Transplanting	10-Jul	Urea	15
90 kgs	PI Stage	5-Aug	Urea	30
N/ha	Anthesis	25-Aug	Urea	30
	Transplanting	10-Jul	DAP	15
	Transplanting	10-Jul	Urea	15
	PI Stage	5-Aug	Urea	30
120 kgs	Anthesis	25-Aug	Urea	30
N/ha	Grain filling	15-Sep	Urea	30

 Table 6.2: Different levels of nitrogen application given as inputs to CERES Rice model to simulate rice yield for developing adaptation strategies under higher CO2 concentrations.

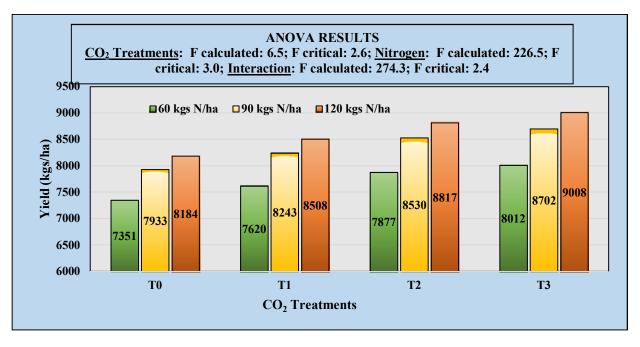


Figure 6.2: Rice grain yield as effected by variable nitrogen levels, ANOVA analysis of treatments as simulated by CERES Rice model.

6.5 Discussion

Previous studies had suggested that adjusting sowing dates might be a simple and powerful tool for mitigating the effects of a climate change (Baker and Allen Jr, 1993). The planting date under different levels of CO₂ concentrations showed that it significantly affects the yield of rice crop. But it is observed that the crop period due to delay in planting (normal planting date recommended is 1^{st} week of July) the crop period is extended by 2 - 40 days. Though the yield is higher for crop planted on 21^{st} July but it requires more attention and more water as the ETc is also higher for late planted. Late planting is beneficial when the rainfall is not timely (delay in monsoon arrival) therefore it is recommended that the planting window for rice crop in Haridwar district is 1^{st} week of July to 2^{nd} week of July. Even Krishnan had done similar kind of study in which he recommended 15^{th} July as best rice planting dates for Cuttack and Jorhat in the event of higher CO₂ concentrations (Krishnan et al., 2007).

The nitrogen treatments and plant spacing along with CO_2 application was found to have good interaction which suggests that the CO_2 fertilization effect will be affected due to nitrogen application and maintain optimum plant spacing. Many studies have reported that the nitrogen uptake of crop increases with increasing CO_2 concentrations (Aben et al., 1999; Dong et al., 2002; Dong et al., 2011; Zhang and Tao, 2013). Therefore, higher nitrogen leads to improved response of crop to CO_2 enrichment.

6.6 Conclusion

The DSSAT was used to develop adaptation strategies for the future under the climate change and higher CO_2 scenarios. Planting date of 14th July, 20 * 15 cm spacing and nitrogen fertilizer application @ 90 kgs N/ha was found suitable for the forth coming decades to improve productivity in CO_2 enriched conditions.

CHAPTER VII

SUMMARY & CONCLUSION

The study entitled "Effect of CO₂ enrichment and Climate Change on Rice Crop through Field and Simulation Study" is summarized in this chapter.

The field experiment on rice cv. *Sharbati* were conducted in randomized block design with 4 treatments ($T_0 = Control$, $T_1 = CO_2$ (700 ± 50 ppm) one application /Week (Monday), $T_2 = CO_2$ (700 ± 50 ppm) two applications /Week (Monday & Wednesday), $T_3 = CO_2$ (700 ± 50 ppm) three application / Week (Monday, Wednesday & Friday)) and 3 replications during the Kharif seasons 2011-12 and 2012-13. In general, observations on leaf, within & above canopy temperature after each application of CO_2 in the crop recorded a temporal rise of $0.2 - 0.5^{0}C$. The average yield recorded in the order of merit in different treatments was 7152 kgs/ha in T2, 6797 kgs/ha in T3, 6482 kgs/ha in T1 and 5640 in T0 treatment. In general plant growth was improved with CO_2 enrichment treatments recording increased tillers/hill, leaves/hill, plant height, leaf length and width, plant dry matter/hill and Leaf Area Index. Yield attributes viz. panicles/m2, filled grains/m², grain weight as well as grain length and width were improved with periodical enrichment of CO_2 . Negative impact of CO_2 enrichment was recorded with increased broken grain and chalkiness percentage.

DSSAT model was calibrated using the rice cv. *Sharbati* field experimental data generated with 4 dates of transplanting viz. 7th July, 15th July, 22nd July and 31st July, 2013. The experimental crop was grown adapting good agronomic practices. Data was generated on PI Stage, anthesis stage, physiological maturity stage, harvest stage, grain yield, straw yield, single grain weight, Harvest index, grain number/m² and panicle number/m². Genetic coefficients developed for rice cv. *Sharbati* under the soil-climatic conditions of Roorkee by running the model developed are as follows:

P1	: 780.0	P2R	: 90.0	P5	: 400.0	P2O	: 15.4
G1	: 60.0	G2	: 0.0230	G3	: 0.70	G4	: 0.80

DSSAT model was validated for the rice cv. Sharbati using the data generated from field experiments with four periodical CO₂ enrichment treatments conducted during the Kharif seasons 2011-12 and 2012-13. Various phenological phases and yield and its attributes viz. to panicle initiation stage, anthesis stage, physiological maturity stage, harvest stage, leaf numbers/hill, Leaf Area Index, grain yield, straw yield, grain numbers/m², panicle number/m² and harvest index were validated using DSSAT model. Simulated results statistically matched with the field observed data. Simulated data showed nitrogen stress in treatment T3 from heading to grain filling stage. This shows that in the event of CO₂ application to the crop, nitrogen application should also be improved.

Climate change pattern of Haridwar district was assessed was done using PRECIS RCM data rainfall, maximum temperature and minimum temperature for the period 2014 - 2090 obtained from Indian Institute of Tropical Meteorology, Pune. This was bias corrected. Mann Kendall Trend test was applied to study the trend of climate during 2014 - 2090. Trend analysis of the period showed that the annual rainfall would increase @ 5.8 mm/yr but *Kharif* rainfall would increase @ 0.046° C/yr and 0.039° C/yr.

Grain yield of rice cv Sharbati for the period 2020-2090 was simulated by running DSSAT CERES rice model with PRECIS RCM weather data of Haridwar district and IPCC CO₂ scenarios. The simulation result showed that if the crop is grown with the existing soil and crop management conditions, rice productivity of Haridwar in general will decrease @ 16.7 kgs/ha/yr. This could be attributable to the climate change scenario. The simulated rice grain yield was reported to decrease @ 273 kgs/ha with every 1^oC increase in minimum temperature (Peng et al., 2004). Decreased rice yields from increased minimum temperature has also been reported (Seshu and Cady, 1984).

The DSSAT model was also run taking average weather conditions of 2014 - 2090, present soil fertility conditions of Roorkee, rice cv Sharbati to find the best planting dates (7th July, 14th July and 21st July) and plant spacing (20 cm x 20 cm, 20 cm x 15 cm, and 20 cm x 10 cm) as well as the different nitrogen levels (60 kgs N/ha, 90 kgs N/ha and 120 kgs N/ha). The result showed that the highest yield of 9906 kgs/ha was obtained by transplanting the crop on 14th July, adapting the spacing of 20 cm * 15 cm and nitrogen fertilizer application of 90 kg N/ha.

Thus it can be concluded that the response of periodical CO₂ enrichment of rice cv *Sharbati* under the soil-climatic conditions of Roorkee (Haridwar, Uttarakhand, India) was positive with respect to increasing the grain yield. However for the best positive response, the crop should be managed properly with nutrients and other agronomic practices.

Future Scope of Work

Further studies on the following lines is suggested

- Physiological, chemical and bio-chemical studies of rice plants grown under CO₂ treatments may be initiated.
- 2. Chemical and bio chemical studies of rice grain produced from CO₂ enriched plants may be studied
- 3. Interaction studies of CO₂, water and nitrogen application under controlled climatic condition may be attempted.

Plate1: Land Preparation

Plate2: Nursery Bed

PHOTOGRAPHS OF THE EXPERIMENTAL SETUP 2011 & 2012

Plate 3: Transplanting

Plate 4: Irrigating the plots

Plates 4 & 5: Construction of Polythene open top chamber

Plate 5: CO₂ Enrichment of rice crop using CO₂ gas fire extinguisher

Plate 6: CO₂ supply to plots

Plate 7: CO₂ Gas Analyser

Plate 8: CO₂ measurement within canopy of rice crop

PHOTOGRAPHS OF THE EXPERIMENTAL SETUP 2011 & 2012

Plate 9: Recording Observations on Leaf Temperature, Canopy and Above Canopy Temperature

Plate 10: Recording Observations on crop growth parameters

PHOTOGRAPHS OF THE EXPERIMENTAL SETUP 2011 & 2012

Plate 11: Recording Observations on development of rice crop

Plate 12: Collection of plant samples

Plate 13: Juvenile stage of rice crop

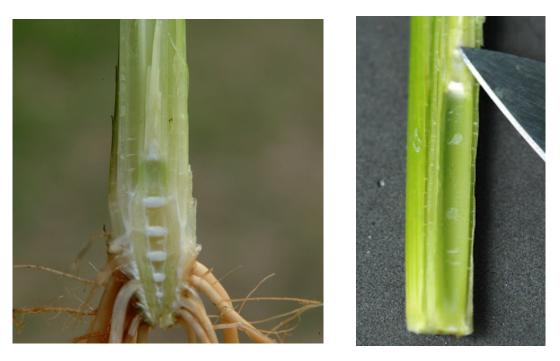


Plate 14: Panicle Initiation stage of rice crop

Plate 15: Anthesis stage of rice crop

Plate 16: Physiological maturity stage of rice crop

PHOTOGRAPHS OF THE EXPERIMENTAL SETUP 2011 & 2012

Plate 17: Recording Observations on yield and yield attributes of rice crop

Plate 18: Recording Observations on yield and yield attributes of rice crop

PHOTOGRAPHS OF THE EXPERIMENTAL SETUP 2013

Plate 19: Experimental plots of rice crop planted on 7th July 2013

Plate 20: Experimental plots of rice crop planted on 7th and 15th July 2013

PHOTOGRAPHS OF THE EXPERIMENTAL SETUP 2013

Plate 21: Heading Stage of rice crop planted on 7th July, 2013

Plate 22: Physiological maturity stage of rice crop planted on 7th July, 2013

PHOTOGRAPHS OF THE EXPERIMENTAL SETUP 2013



Plate 23: Harvested rice crop planted on 15th, 22nd, 31st July, 2013

Plate 24: Threshing of rice crop planted on 15th, 22nd, 31st July, 2013

Plate 25: Collection of crop data from farmers of Haridwar district

Plate 26: Collection of crop data from farmers of Haridwar district

JOURNALS

- **Pranuthi, G.** and Tripathi, S. (2011). Development of Hargreaves and Samani shortwave radiation coefficient (Kr) for India. Journal of Agrometeorology, 13(2): 150-152.
- Pranuthi, G., Dubey, S.K. and Tripathi, S. (2012). Comparison of different models for estimation of net primary productivity in India. Journal of Agrometeorology, 2(14): 105-110.
- **Pranuthi, G.,** Dubey, S., Tripathi, S. and Chandniha, S. (2014). Trend and change point detection of precipitation in urbanizing Districts of Uttarakhand in India. Indian Journal of Science and Technology, 7(10): 1573-1582.
- Tripathi, S., Dubey, S. and Pranuthi, G. (2015). Forecasting Climate Change Pattern And Crop Yield Using PRECIS RCM Weather Data of Haridwar District (Uttarakhand). Journal of Agrometeorology, In Revision.
- Pranuthi, G., Tripathi, S. and Dubey, S. (2015). Modelling Yield & WUE of Rice Cultivars of SW Plains of Uttarakhand in Response to Elevated CO2 and Temperature. African Journal of Agronomy., In Revision.
- **Pranuthi, G.,** Tripathi, S. and Dubey, S. (2015). CO₂ Fertilization and Climate Change Impact on Rice Yields of SW Plains of Uttarakhand. Journal of Agrometeorology, In Revision
- Pranuthi, G., and Tripathi, S. (2015). Evaluation of Markov Chain Model for Forecasting Precipitation of Uttarakhand Districts. International Journal of Agricultural Innovations and Research, In Publishing

CONFERENCES

Pranuthi, G. Tripathi, S.K. Dubey, S.K. (2012) Long-term (1901 – 2002) Rainfall Trends in Uttarakhand State. Paper presented at TROPMET 2012 National Symposium on Frontier of Meteorology with special reference to the Himalayas at Dehradun from Nov 20-22, 2012.

- Pranuthi, G., Dubey, S.K. and Tripathi, S. (2015). Evaluation of Markov Chain Model for Forecasting Precipitation of Uttarakhand Districts. Paper presented at TROPMET 2015 National Symposium on Weather & Climate Extremes Feb. 15-18, 2015, Chandigarh
- Tripathi, S.K., Pranuthi, G., and Dubey, S.K. (2014). Climate Change Assessment Using Precis-RCM Data for Hardwar District of Uttarakhand. Paper presented at International Annual Meeting "Grand Challenges and Great Solutions" organized by ASA, CSSA and SSSA at Convention Centre, Long Beach, CA from Nov. 2-5, 2014.

BIBLIOGRAPHY

- Aben, S.K., Seneweera, S.P., Ghannoum, O. and Conroy, J.P., 1999. Nitrogen requirements for maximum growth and photosynthesis of rice, Oryza sativa L. cv. Jarrah grown at 36 and 70 Pa CO₂. Functional Plant Biology, 26(8): 759-766.
- Adachi, M., Hasegawa, T., Fukayama, H., Tokida, T., Sakai, H., Matsunami, T., Nakamura, H., Sameshima, R. and Okada, M., 2014. Soil and water warming accelerates phenology and down-regulation of leaf photosynthesis of rice plants grown under free-air CO₂ enrichment (FACE). Plant & cell physiology, 55(2): 370-80.
- Aggarwal, P., Kalra, N., Chander, S. and Pathak, H., 2004. InfoCrop: A generic simulation model for annual crops in tropical environments. Indian Agricultural Research Institute, New Delhi, 132.
- Aggarwal, P.K., Kalra, N., Chander, S. and Pathak, H., 2006. InfoCrop: a dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. Model description. Agricultural systems, 89(1): 1-25.
- Aggarwal, P.K. and Mall, R., 2002. Climate change and rice yields in diverse agro-environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment. Climatic Change, 52(3): 331-343.
- Ahmad, S., Ahmad, A., Ali, H., Hussain, A., y Garcia, A.G., Khan, M.A., Zia-Ul-Haq, M., Hasanuzzaman, M. and Hoogenboom, G., 2013. Application of the CSM-CERES-Rice model for evaluation of plant density and irrigation management of transplanted rice for an irrigated semiarid environment. Irrigation Science, 31(3): 491-506.
- Ainsworth, E.A., Davey, P.A., Bernacchi, C.J., Dermody, O.C., Heaton, E.A., Moore, D.J., Morgan, P.B., Naidu, S.L., Yoo Ra, H.s. and Zhu, X.g., 2002. A meta-analysis of elevated CO₂ effects on soybean (Glycine max) physiology, growth and yield. Global Change Biology, 8(8): 695-709.
- Ainsworth, E.A. and Rogers, A., 2007. The response of photosynthesis and stomatal conductance to rising [CO₂]: mechanisms and environmental interactions. Plant, cell & environment, 30(3): 258-70.

- Ainsworth, E.A., Leakey, A.D., Ort, D.R. and Long, S.P., 2008. FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated CO₂ impacts on crop yield and food supply. New Phytologist, 179(1): 5-9.
- Ainsworth, E.A. and Rogers, A., 2007. The response of photosynthesis and stomatal conductance to rising CO₂: mechanisms and environmental interactions. Plant, cell & environment, 30(3): 258-270.
- Akhtar, M., Ahmad, N. and Booij, M., 2009. Use of regional climate model simulations as input for hydrological models for the Hindukush-Karakorum-Himalaya region. Hydrology and Earth System Sciences, 13(7): 1075-1089.
- Allen Jr, L.H. and Prasad, P.V., 2004. Crop responses to elevated carbon dioxide. Encyclopedia of plant and crop science. Marcel Dekker, New York, NY: 346-348.
- Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9): D05109.
- Alocilja, E.C. and Ritchie, J.T., 1991. A model for the phenology of rice. Predicting crop phenology: 181-189.
- Alves, L.M. and Marengo, J., 2009. Assessment of regional seasonal predictability using the PRECIS regional climate modeling system over South America. Theoretical and Applied Climatology, 100(3-4): 337-350.
- Alves, L.M. and Marengo, J., 2010. Assessment of regional seasonal predictability using the PRECIS regional climate modeling system over South America. Theoretical and Applied Climatology, 100(3-4): 337-350.
- Amiri, E., Rezaei, M., Rezaei, E.E. and Bannayan, M., 2014. Evaluation of Ceres-rice, AquaCrop and Oryza2000 models in simulation of rice yield response to different irrigation and nitrogen management strategies. Journal of Plant Nutrition, 37(11): 1749-1769.
- Andres, R., Boden, T. and Marland, G., 2009. Annual Fossil-Fuel CO₂ Emissions: Isomass of Emissions Gridded by One Degree Latitude by One Degree Longitude.
- Anten, N., Hirose, T., Onoda, Y., Kinugasa, T., Kim, H., Okada, M. and Kobayashi, K., 2004. Elevated CO₂ and nitrogen availability have interactive effects on canopy carbon gain in rice. New Phytologist, 161(2): 459-471.

- Arora, M., Goel, N. and Singh, P., 2005. Evaluation of temperature trends over India/Evaluation de tendances de température en Inde. Hydrological sciences journal, 50(1).
- Ashfaq, M., Bowling, L.C., Cherkauer, K., Pal, J.S. and Diffenbaugh, N.S., 2010. Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: A case study of the United States. Journal of Geophysical Research: Atmospheres (1984–2012), 115(D14).
- Babel, M.S., Agarwal, A., Swain, D.K. and Herath, S., 2011. Evaluation of climate change impacts and adaptation measures for rice cultivation in Northeast Thailand. Climate Research, 46(2): 137.
- Baker, J. and Allen Jr, L., 1993a. Contrasting crop species responses to CO₂ and temperature: rice, soybean and citrus, CO₂ and Biosphere. Springer, pp. 239-260.
- Baker, J. and Allen Jr, L., 1993b. Effects of CO₂ and Temperature on Rice. 農業気象, 48(5): 575-582.
- Baker, J., Allen, L. and Boote, K., 1992a. Response of rice to carbon dioxide and temperature. Agricultural and Forest Meteorology, 60(3): 153-166.
- Baker, J., Allen, L. and Boote, K., 1992b. Temperature effects on rice at elevated CO₂ concentration. Journal of Experimental Botany, 43(7): 959-964.
- Baker, J.T., 2004. Yield responses of southern US rice cultivars to CO₂ and temperature. Agricultural and Forest Meteorology, 122(3-4): 129-137.
- Baker, J.T. and Boote, K., 1996. The CO₂ Fertilization Effect: Higher Carbohydrate Production and Retention as Biomass and Seed Yield. Global Climate Change and Agricultural Production: Direct and Indirect Effects of Changing Hydrological, Pedological and Plant Physiological Processes(4): 65.
- Baker, J.T., Boote, K.J. and Allen, L.H., 1995. Potential climate change effects on rice: Carbon dioxide and temperature. Climate change and agriculture: Analysis of potential international impacts(climatechangean): 31-47.
- Bannayan Aval, M., 2013. Calibration and Evaluation of CERES Rice Model under Different Nitrogen- andWater-Management Options in Semi-Mediterranean Climate Condition. Communications in Soil Science and Plant Analysis.

- Bannayan, M., Kobayashi, K., Kim, H.-Y., Lieffering, M., Okada, M. and Miura, S., 2005. Modeling the interactive effects of atmospheric CO₂ and N on rice growth and yield. Field Crops Research, 93(2-3): 237-251.
- Basak, J.K., Ali, M.A., Islam, M.N. and Rashid, M.A., 2010. Assessment of the effect of climate change on boro rice production in Bangladesh using DSSAT model. J. Civ. Eng, 38: 95-108.
- Bhattacharyya, P., Roy, K., Neogi, S., Chakravorti, S., Behera, K., Das, K., Bardhan, S. and Rao, K., 2012a. Effect of long-term application of organic amendment on C storage in relation to global warming potential and biological activities in tropical flooded soil planted to rice. Nutrient Cycling in Agroecosystems, 94(2-3): 273-285.
- Bhattacharyya, P., Roy, K.S., Neogi, S., Chakravorti, S.P., Behera, K.S., Das, K.M., Bardhan, S. and Rao, K.S., 2012b. Effect of long-term application of organic amendment on C storage in relation to global warming potential and biological activities in tropical flooded soil planted to rice. Nutrient Cycling in Agroecosystems, 94(2-3): 273-285.
- Bhuvaneswari, K., Geethalakshmi, V., Lakshmanan, A., Anbhazhagan, R. and D NAGOTHU, U.S., 2014. Climate change impact assessment and developing adaptation strategies for rice crop in western zone of Tamil Nadu. Journal of Agrometeorology, 16(1): 38-43.
- Bloom, A., Kotroni, V. and Lagouvardos, K., 2008. Climate change impact of wind energy availability in the Eastern Mediterranean using the regional climate model PRECIS. Natural Hazards & Earth System Sciences, 8(6).
- Boden, T.A., Marland, G. and Andres, R.J., 2009. Global, regional, and national fossil-fuel CO₂ emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USA doi, 10.
- Boogaard, H., Van Diepen, C., Rotter, R., Cabrera, J. and Van Laar, H., 1998. WOFOST 7.1; user's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5. 0927-4499, SC-DLO.
- Boote, K.J., Jones, J.W. and Pickering, N.B., 1996. Potential uses and limitations of crop models. Agronomy Journal, 88(5): 704-716.
- Bouman, B., 2001. ORYZA2000: modeling lowland rice, 1. IRRI.
- Bouyoucos, G.J., 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5): 464-465.

- Bowes, G., 1993. Facing the inevitable: plants and increasing atmospheric CO₂. Annual review of plant biology, 44(1): 309-332.
- Bremner, J., 1960. Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science, 55(01): 11-33.
- Butt, T.A., McCarl, B.A., Angerer, J., Dyke, P.T. and Stuth, J.W., 2005. The economic and food security implications of climate change in Mali. Climatic change, 68(3): 355-378.
- Challinor, A., Wheeler, T., Garforth, C., Craufurd, P. and Kassam, A., 2007. Assessing the vulnerability of food crop systems in Africa to climate change. Climatic change, 83(3): 381-399.
- Chen, C.P., Sakai, H., Tokida, T., Usui, Y., Nakamura, H. and Hasegawa, T., 2014. Do the rich always become richer? Characterizing the leaf physiological response of the highyielding rice cultivar Takanari to free-air CO2 enrichment. Plant & cell physiology, 55(2): 381-91.
- Chen, G.-Y., Yong, Z.-H., Liao, Y., Zhang, D.-Y., Chen, Y., Zhang, H.-B., Chen, J., Zhu, J.-G. and Xu, D.-Q., 2005. Photosynthetic acclimation in rice leaves to free-air CO₂ enrichment related to both ribulose-1, 5-bisphosphate carboxylation limitation and ribulose-1, 5-bisphosphate regeneration limitation. Plant and Cell Physiology, 46(7): 1036-1045.
- Chen, S.X. and Gao, J., 2007. An adaptive empirical likelihood test for parametric time series regression models. Journal of Econometrics, 141(2): 950-972.
- Cheng, W., Sakai, H., Hartley, A., Yagi, K. and Hasegawa, T., 2008. Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil. Global change biology, 14(3): 644-656.
- Cheng, W., Sakai, H., Yagi, K. and Hasegawa, T., 2009a. Interactions of elevated CO₂ and night temperature on rice growth and yield. Agricultural and Forest Meteorology, 149(1): 51-58.
- Cheng, W., Sakai, H., Yagi, K. and Hasegawa, T., 2009b. Interactions of elevated CO₂ and night temperature on rice growth and yield. Agricultural and forest meteorology, 149(1): 51-58.
- Colour, M., 1991. Munsell soil colour charts. Geoderma, 48(199): 199.

- Confalonieri, R., Acutis, M., Donatelli, M., Bellocchi, G., Mariani, L., Boschetti, M., Stroppiana, D., Bocchi, S., Vidotto, F. and Sacco, D., 2005. WARM: a scientific group on rice modelling. Rivista Italiana di Agrometeorologia, 2: 54-60.
- Conroy, J., Seneweera, S., Basra, A., Rogers, G. and Nissen-Wooller, B., 1994. Influence of rising atmospheric CO₂ concentrations and temperature on growth, yield and grain quality of cereal crops. Functional Plant Biology, 21(6): 741-758.
- De Costa, W., Weerakoon, W., Chinthaka, K., Herath, H. and Abeywardena, R., 2007. Genotypic variation in the response of rice (Oryza sativa L.) to increased atmospheric carbon dioxide and its physiological basis. Journal of Agronomy and Crop Science, 193(2): 117-130.
- De Costa, W., Weerakoon, W., Herath, H. and Abeywardena, R., 2003. Response of growth and yield of rice (Oryza sativa) to elevated atmospheric carbon dioxide in the subhumid zone of Sri Lanka. Journal of Agronomy and Crop Science, 189(2): 83-95.
- De Costa, W., Weerakoon, W., Herath, H., Amaratunga, K. and Abeywardena, R., 2006. Physiology of yield determination of rice under elevated carbon dioxide at high temperatures in a subhumid tropical climate. Field Crops Research, 96(2): 336-347.
- De Sales, F. and Xue, Y., 2011. Assessing the dynamic-downscaling ability over South America using the intensity-scale verification technique. International Journal of Climatology, 31(8): 1205-1221.
- De, U., Dube, R. and Rao, G.P., 2005. Extreme weather events over India in the last 100 years. Journal of the Indian Geophysical Union, 9(3): 173-187.
- Dharmarathna, W., Herath, S. and Weerakoon, S., 2014. Changing the planting date as a climate change adaptation strategy for rice production in Kurunegala district, Sri Lanka. Sustainability Science, 9(1): 103-111.
- Di Luca, A., de Elía, R. and Laprise, R., 2012. Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations. Climate dynamics, 38(5-6): 1229-1247.
- Di Luca, A., de Elía, R. and Laprise, R., 2013. Potential for added value in temperature simulated by high-resolution nested RCMs in present climate and in the climate change signal. Climate Dynamics, 40(1-2): 443-464.

- Diepen, C.v., Wolf, J., Keulen, H.v. and Rappoldt, C., 1989. WOFOST: a simulation model of crop production. Soil use and management, 5(1): 16-24.
- Doering III, O.C., 2002. Effects of climate change and variability on agricultural production systems. Springer Science & Business Media.
- Dong, G., Wang, Y., Yang, H., Huang, J., Zhu, J., Yang, L. and Shan, Y., 2002. [Effect of freeair CO₂ enrichment (FACE) on nitrogen accumulation and utilization efficiency in rice (Oryza sativa)]. The journal of applied ecology, 13(10): 1219-1222.
- Dong, W., Deng, A., Zhang, B., Tian, Y., Chen, J., Yang, F. and Zhang, W., 2011. An experimental study on the effects of different diurnal warming regimes on single cropping rice with Free Air Temperature Increased (FATI) facility. Acta Ecologia Sinica, 31: 2169-2177.
- Drake, B.G., Gonzàlez-Meler, M.A. and Long, S.P., 1997. More efficient plants: a consequence of rising atmospheric CO2? Annual review of plant biology, 48(1): 609-639.
- Duhan, D. and Pandey, A., 2013. Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmospheric Research, 122: 136-149.
- Erda, L., Wei, X., Hui, J., Yinlong, X., Yue, L., Liping, B. and Liyong, X., 2005. Climate change impacts on crop yield and quality with CO₂ fertilization in China. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463): 2149-2154.
- Ewert, F., 2004. Modelling plant responses to elevated CO₂: how important is leaf area index? Annals of Botany, 93(6): 619-627.
- Felkner, J., Tazhibayeva, K. and Townsend, R., 2009. Impact of climate change on rice production in Thailand. The American economic review, 99(2): 205.
- Feser, F., Rockel, B., von Storch, H., Winterfeldt, J. and Zahn, M., 2011. Regional Climate Models Add Value to Global Model Data: A Review and Selected Examples. Bulletin of the American Meteorological Society, 92(9).
- Fowler, H., Blenkinsop, S. and Tebaldi, C., 2007. Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology, 27(12): 1547-1578.

- Giorgi, F., Bi, X. and Pal, J., 2004. Mean, interannual variability and trends in a regional climate change experiment over Europe. II: climate change scenarios (2071–2100). Climate Dynamics, 23(7-8): 839-858.
- Giorgi, F. and Lionello, P., 2008. Climate change projections for the Mediterranean region. Global and Planetary Change, 63(2): 90-104.
- Gordon, C., Cooper, C., Senior, C.A., Banks, H., Gregory, J.M., Johns, T.C., Mitchell, J.F. and Wood, R.A., 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 16(2-3): 147-168.
- Gosain, A., Rao, S. and Arora, A., 2011. Climate change impact assessment of water resources of India. Current Science (00113891), 101(3).
- Goswami, B.N., Venugopal, V., Sengupta, D., Madhusoodanan, M. and Xavier, P.K., 2006. Increasing trend of extreme rain events over India in a warming environment. Science, 314(5804): 1442-1445.
- Grotch, S.L. and MacCracken, M.C., 1991. The use of general circulation models to predict regional climatic change. Journal of Climate, 4(3): 286-303.
- Guhathakurta, P. and Rajeevan, M., 2008. Trends in the rainfall pattern over India. International Journal of Climatology, 28(11): 1453-1469.
- Gunawardena, T., Fukai, S. and Blamey, F., 2003. Low temperature induced spikelet sterility in rice. I. Nitrogen fertilisation and sensitive reproductive period. Crop and Pasture Science, 54(10): 937-946.
- Hasegawa, T., Sakai, H., Tokida, T., Nakamura, H., Zhu, C., Usui, Y., Yoshimoto, M., Fukuoka, M., Wakatsuki, H. and Katayanagi, N., 2013. Rice cultivar responses to elevated CO₂ at two free-air CO₂ enrichment (FACE) sites in Japan. Functional Plant Biology, 40(2): 148-159.
- Hasegawa, T., Sakai, H., Tokida, T., Usui, Y., Yoshimoto, M., Fukuoka, M., Nakamura, H.,
 Shimono, H. and Okada, M., 2015. Rice Free-Air Carbon Dioxide Enrichment Studies to
 Improve Assessment of Climate Change Effects on Rice Agriculture. Improving
 Modeling Tools to Assess Climate Change Effects on Crop
 Response(advagricsystmodel7).

- Hay, L., Clark, M., Wilby, R., Gutowski Jr, W., Leavesley, G., Pan, Z., Arritt, R. and Takle, E.,
 2002a. Use of regional climate model output for hydrologic simulations. Journal of
 Hydrometeorology, 3(5): 571-590.
- Hoogenboom, G., Jones, J., Wilkens, P., Porter, C., Boote, K. and Hunt, L., 2010. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5.[CD-ROM] Univ. of Hawaii. Honolulu.
- Hoogenboom, G., Jones, J.W., Traore, P.C. and Boote, K.J., 2012. Experiments and data for model evaluation and application, Improving Soil Fertility Recommendations in Africa using the Decision Support System for Agrotechnology Transfer (DSSAT). Springer, pp. 9-18.
- Horie, T., 1995. The rice crop simulation model SIMRIW and its testing. Modeling the Impact of Climatic Change on Rice Production in Asia: 51-66.
- Horie, T., Matsui, T., Nakagawa, H. and Omasa, K., 1996. Effects of elevated CO₂ and global climate change on rice yield in Japan, Climate change and plants in East Asia. Springer, pp. 39-56.
- Iglesias, A., 2006. Use of DSSAT models for climate change impact assessment: Calibration and validation of CERES-Wheat and CERES-Maize in Spain, Climate variability, modelling tools and agricultural decisionmaking. Proc CGE Hands-on Training Workshop on V&A Assessment of the Asia and the Pacific Region. Nova Science Publishers, New York, NY.
- Ines, A.V. and Hansen, J.W., 2006. Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and forest meteorology, 138(1): 44-53.
- Islam, A., Bhaskaran, B., Arifin, B.S., Murshed, S.B., Mukherjee, N. and Hossain, B., 2011. Domain size experiment using PRECIS regional climate model for Bangladesh, Proceedings of the 3rd international conference on water and flood management, pp. 891-898.
- Islam, M.N., 2009. Rainfall and temperature scenario for Bangladesh. The Open Atmospheric Science Journal, 3: 93-103.
- Islam, N., Rafiuddin, M., Ahmed, A.U. and Kolli, R.K., 2008. Calibration of PRECIS in employing future scenarios in Bangladesh. International Journal of Climatology, 28(5): 617-628.

- Islam, S.u., Rehman, N. and Sheikh, M.M., 2009. Future change in the frequency of warm and cold spells over Pakistan simulated by the PRECIS regional climate model. Climatic Change, 94(1-2): 35-45.
- Jagadish, S. and Pal, M., 2009. Response of Rice (Oryza sativa L.) to Increasing Temperature and Atmospheric CO₂, Climate Change and Crops. Springer, pp. 63-80.
- Jain, S.K. and Kumar, V., 2012. Trend analysis of rainfall and temperature data for India. Current Science(Bangalore), 102(1): 37-49.
- Jalota, S., Kaur, H., Kaur, S. and Vashisht, B., 2013. Impact of climate change scenarios on yield, water and nitrogen-balance and-use efficiency of rice–wheat cropping system. Agricultural water management, 116: 29-38.
- Jensen, M.E., Burman, R.D. and Allen, R.G., 1990. Evapotranspiration and irrigation water requirements. ASCE.
- Jianlin, W., Guirui, Y., Quanxiao, F., Defeng, J., Hua, Q. and Qiufeng, W., 2008. Responses of water use efficiency of 9 plant species to light and CO₂ and their modeling. Acta Ecologica Sinica, 28(2): 525-533.
- Jing, Q., van Keulen, H. and Hengsdijk, H., 2010. Modeling biomass, nitrogen and water dynamics in rice–wheat rotations. Agricultural Systems, 103(7): 433-443.
- Jones, J., Tsuji, G., Hoogenboom, G., Hunt, L., Thornton, P., Wilkens, P., Imamura, D., Bowen, W. and Singh, U., 1998. Decision support system for agrotechnology transfer: DSSAT v3, Understanding options for agricultural production. Springer, pp. 157-177.
- Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L., Wilkens, P.W., Singh, U., Gijsman, A.J. and Ritchie, J.T., 2003. The DSSAT cropping system model. European journal of agronomy, 18(3): 235-265.
- Joshi, M.K. and Pandey, A., 2011. Trend and spectral analysis of rainfall over India during 1901–2000. Journal of Geophysical Research: Atmospheres (1984–2012), 116(D6).
- Kendall, M., 1962. Rank correlation methods Hafner. New York: 126.
- Kendall, M.G., 1948. Rank correlation methods.
- Kim, H.-Y., Lieffering, M., Kobayashi, K., Okada, M., Mitchell, M.W. and Gumpertz, M., 2003a. Effects of free-air CO₂ enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research, 83(3): 261-270.

- Kim, H.-Y., Lim, S.-S., Kwak, J.-H., Lee, D.-S., Lee, S.-M., Ro, H.-M. and Choi, W.-J., 2011. Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO₂. Plant and Soil, 342(1-2): 59-71.
- Kim, H., Lieffering, M., Miura, S., Kobayashi, K. and Okada, M., 2001. Growth and nitrogen uptake of CO₂-enriched rice under field conditions. New Phytologist, 150(2): 223-229.
- Kim, H.Y., 1996. Effects of elevated CO₂ concentration and high temperature on growth and yield of rice. I. The effect on development, dry matter production and some growth characteristics. Jpn. J. Crop Sci., 65: 634-643.
- Kirkham, M.B., 2011. Elevated carbon dioxide: impacts on soil and plant water relations. CRC Press.
- Kotroni, V., Lykoudis, S., Lagouvardos, K. and Lalas, D., 2008. A fine resolution regional climate change experiment for the Eastern Mediterranean: Analysis of the present climate simulations. Global and Planetary Change, 64(1-2): 93-104.
- Krishnan, P., Swain, D., Bhaskar, B.C., Nayak, S. and Dash, R., 2007. Impact of elevated CO₂ and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, ecosystems & environment, 122(2): 233-242.
- Kropff, M., Cassman, K., Peng, S., Matthews, R. and Setter, T., 1994. Quantitative understanding of yield potential. Breaking the yield barrier: 21-38.
- Kumar, A., 2000. Dispersion and risk modeling. Department of Civil Engineering, University of Toledo, OH, USA, CIVE-6630.
- Kumar, K.R., Sahai, A., Kumar, K.K., Patwardhan, S., Mishra, P., Revadekar, J., Kamala, K. and Pant, G., 2006. High-resolution climate change scenarios for India for the 21st century. Current science, 90(3): 334-345.
- Kumar, V., Jain, S.K. and Singh, Y., 2010. Analysis of long-term rainfall trends in India. Hydrological Sciences Journal–Journal des Sciences Hydrologiques, 55(4): 484-496.
- Kumar, K. and Goh, K., 1999. Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Advances in Agronomy, 68: 197-319.
- Laboratory, E.S.R. and Division, G.M., 2015.
- Lawlor, D.W. and Mitchell, R.A., 2000. Crop ecosystem responses to climatic change: wheat. Climate change and global crop productivity: 57-80.

- Leakey, A.D., Ainsworth, E.A., Bernacchi, C.J., Rogers, A., Long, S.P. and Ort, D.R., 2009. Elevated CO₂ effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of experimental botany, 60(10): 2859-2876.
- Leander, R. and Buishand, T.A., 2007. Resampling of regional climate model output for the simulation of extreme river flows. Journal of Hydrology, 332(3): 487-496.
- Lee, C.-K., Kim, J., Shon, J., Yang, W.-H., Yoon, Y.-H., Choi, K.-J. and Kim, K.-S., 2012. Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study. Korean Journal of Agricultural and Forest Meteorology, 14(4): 207-221.
- Lenderink, G., van Ulden, A., van den Hurk, B. and Keller, F., 2007. A study on combining global and regional climate model results for generating climate scenarios of temperature and precipitation for the Netherlands. Climate Dynamics, 29(2-3): 157-176.
- Lieffering, M., Kim, H.-Y., Kobayashi, K. and Okada, M., 2004. The impact of elevated CO 2 on the elemental concentrations of field-grown rice grains. Field Crops Research, 88(2): 279-286.
- Lin, W. and Wang, D., 1998. Effects of elevated CO₂ on growth and carbon partitioning in rice. Chinese science bulletin, 43(23): 1982-1986.
- Liu, H., Yang, L., Wang, Y., Huang, J., Zhu, J., Yunxia, W., Dong, G. and Liu, G., 2008. Yield formation of CO₂-enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions. Field Crops Research, 108(1): 93-100.
- Livingston, B.E. and Haasis, F.W., 1933. Relations of time and maintained temperature to germination percentage for a lot of rice seed. American Journal of Botany: 596-615.
- Long, S.P., Ainsworth, E.A., Rogers, A. and Ort, D.R., 2004. Rising atmospheric carbon dioxide: plants FACE the Future*. Annu. Rev. Plant Biol., 55: 591-628.
- Madan, P., Jagadish, S., Craufurd, P., Fitzgerald, M., Lafarge, T. and Wheeler, T., 2012. Effect of elevated CO₂ and high temperature on seed-set and grain quality of rice. Journal of Experimental Botany, 63(10): 3843-3852.
- Mall, R. and Aggarwal, P., 2002. Climate change and rice yields in diverse agro-environments of India. I. Evaluation of impact assessment models. Climatic Change, 52(3): 315-330.

- Manalo, P., Ingram, K., Pamplona, R. and Egeh, A., 1994. Atmospheric CO₂ and temperature effects on development and growth of rice. Agriculture, ecosystems & environment, 51(3): 339-347.
- Mani, S., 2013. Status paper on rice in Uttarakhand. Rice Knowledge Management Portal (RKMP), Directorate of Rice Research, Rajendranagar, Hyderabad, website: <u>http://www</u>. rkmp. co. in/sites/default/files/ris/ricestatewise/Status% 20Paper% 20on% 20Rice% 20in% 20Uttarakhand. pdf (accessed 12 May 2013).
- Mann, H.B., 1945. Non-parametric test against trend. Econometrika, 13: 245-259.
- Maraun, D., Wetterhall, F., Ireson, A., Chandler, R., Kendon, E., Widmann, M., Brienen, S., Rust, H., Sauter, T. and Themeßl, M., 2010. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics, 48(3).
- Marengo, J.A., Jones, R., Alves, L.M. and Valverde, M.C., 2009. Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. international Journal of Climatology, 29(15): 2241-2255.
- Marland, G., Boden, T.A., Andres, R.J., Brenkert, A. and Johnston, C., 2003. Global, regional, and national fossil fuel CO₂ emissions. Trends: A compendium of data on global change: 34-43.
- McGregor, J., 1997. Regional climate modelling. Meteorology and Atmospheric Physics, 63(1-2): 105-117.
- Meehl, G.A., Washington, W.M., Collins, W.D., Arblaster, J.M., Hu, A., Buja, L.E., Strand, W.G. and Teng, H., 2005. How much more global warming and sea level rise? Science, 307(5716): 1769-1772.
- Mishra, A., Singh, R., Raghuwanshi, N., Chatterjee, C. and Froebrich, J., 2013. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. Science of the Total Environment, 468: S132-S138.
- Mitchell, C.E., Reich, P.B., Tilman, D. and Groth, J.V., 2003. Effects of elevated CO₂, nitrogen deposition, and decreased species diversity on foliar fungal plant disease. Global Change Biology, 9(3): 438-451.

- Moberg, A. and Jones, P.D., 2004. Regional climate model simulations of daily maximum and minimum near-surface temperatures across Europe compared with observed station data 1961–1990. Climate Dynamics, 23(7-8): 695-715.
- Mooley, D. and Parthasarathy, B., 1984. Fluctuations in all-India summer monsoon rainfall during 1871–1978. Climatic Change, 6(3): 287-301.
- Morison, J. and Gifford, R., 1984. Plant growth and water use with limited water supply in high CO₂ concentrations. I. Leaf area, water use and transpiration. Functional Plant Biology, 11(5): 361-374.
- Moya, T.B., Ziska, L.H., Namuco, O.S. and Olszyk, D., 1998. Growth dynamics and genotypic variation in tropical, field-grown paddy rice (Oryza sativa L.) in response to increasing carbon dioxide and temperature. Global Change Biology, 4(6): 645-656.
- Murthy, V.R.K., 2004. Crop growth modeling and its applications in agricultural meteorology. satellite remote sensing and GIS applications in agricultural meteorology. Ed. Sivakumar, MV K: 235-261.
- Myers, S.S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A.D., Bloom, A., Carlisle, E., Dietterich, L.H., Fitzgerald, G. and Hasegawa, T., 2014. Rising CO2 threatens human nutrition. Nature, 510(7503): 139.
- Nakagawa, H. and Horie, T., 2000. Rice Responses to Elevaed CO₂ and Temperature. Global Environmental Research-English Edition-, 3(2): 101-114.
- Nam, H.-S., Kwak, J.-H., Lim, S.-S., Choi, W.-J., Lee, S.-I., Lee, D.-S., Lee, K.-S., Kim, H.-Y., Lee, S.-M. and Matsushima, M., 2013. Fertilizer N uptake of paddy rice in two soils with different fertility under experimental warming with elevated CO₂. Plant and soil, 369(1-2): 563-575.
- Oteng-Darko, P., Kyei-Baffour, N. and Ofori, E., 2012. Simulating rice yields under climate change scenarios using the CERES-Rice model. African Crop Science Journal, 20(2): 401-408.
- Pachauri, R.K., Allen, M., Barros, V., Broome, J., Cramer, W., Christ, R., Church, J., Clarke, L., Dahe, Q. and Dasgupta, P., 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

- PaHerson, D.T., 1993. Implications of global climate change for impact of weeds, insects, and plant diseases.
- Pal, I. and Al-Tabbaa, A., 2009. Trends in seasonal precipitation extremes–An indicator of 'climate change'in Kerala, India. Journal of Hydrology, 367(1): 62-69.
- Parry, M.L., 2007. Climate Change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, 4. Cambridge University Press.
- Parthasarathy, B., Sontakke, N., Monot, A. and Kothawale, D., 1987. Droughts/floods in the summer monsoon season over different meteorological subdivisions of India for the period 1871–1984. Journal of Climatology, 7(1): 57-70.
- Peart, R.M., Jones, J., Curry, R.B., Boote, K. and Allen, L., 1989. Impact of climate change on crop yield in the southeastern USA: a simulation study. The potential effects of global climate change on the United States, 1: 1-54.
- Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S. and Cassman, K.G., 2004. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101(27): 9971-9975.
- Piani, C., Weedon, G., Best, M., Gomes, S., Viterbo, P., Hagemann, S. and Haerter, J., 2010. Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. Journal of Hydrology, 395(3): 199-215.
- Pinter, P., Kimball, B., Wall, G., LaMorte, R., Hunsaker, D., Adamsen, F., Frumau, K., Vugts, H., Hendrey, G. and Lewin, K., 2000. Free-air CO₂ enrichment (FACE): blower effects on wheat canopy microclimate and plant development. Agricultural and Forest Meteorology, 103(4): 319-333.
- Pranuthi, G., Dubey, S., Tripathi, S. and Chandniha, S., 2014. Trend and change point detection of precipitation in urbanizing Districts of Uttarakhand in India. Indian Journal of Science and Technology, 7(10): 1573-1582.
- Pranuthi, G. and Tripathi, S., 2011. Development of Hargreaves and Samani shortwave radiation coefficient (Kr) for India. JOURNAL OF AGROMETEOROLOGY, 13(2): 150-152.

- Prommel, K., Geyer, B., Jones, J.M. and Widmann, M., 2010. Evaluation of the skill and added value of a reanalysis-driven regional simulation for Alpine temperature. International Journal of Climatology, 30(5): 760-773.
- Raes, D., Steduto, P., Hsiao, T.C. and Fereres, E., 2009. AquaCrop the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 101(3): 438-447.
- Räisänen, J., Hansson, U., Ullerstig, A., Döscher, R., Graham, L., Jones, C., Meier, H., Samuelsson, P. and Willén, U., 2004. European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Climate dynamics, 22(1): 13-31.
- Rajeevan, M., Bhate, J. and Jaswal, A., 2008. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophysical Research Letters, 35(18).
- Rao, K.K., Patwardhan, S.K., Kulkarni, A., Kamala, K., Sabade, S.S. and Kumar, K.K., 2014. Projected changes in mean and extreme precipitation indices over India using PRECIS. Global and Planetary Change, 113: 77-90.
- Raupach, M.R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J.G., Klepper, G. and Field, C.B., 2007. Global and regional drivers of accelerating CO₂ emissions. Proceedings of the National Academy of Sciences, 104(24): 10288-10293.
- Ray, D.K., Mueller, N.D., West, P.C. and Foley, J.A., 2013. Yield trends are insufficient to double global crop production by 2050.
- Reddy, A.R., Rasineni, G.K. and Raghavendra, A.S., 2010. The impact of global elevated CO₂ concentration on photosynthesis and plant productivity. Current Science, 99(1): 46-57.
- Reddy, K.R. and Hodges, H., 2000. Climate change and global crop productivity. CABI.
- Ritchie, J. and Otter, S., 1985. Description and performance of CERES-Wheat: a user-oriented wheat yield model. ARS-United States Department of Agriculture, Agricultural Research Service (USA).
- Ritchie, J.T., 1972. Model for predicting evaporation from a row crop with incomplete cover. Water resources research, 8(5): 1204-1213.

- Roy, K., Bhattacharyya, P., Neogi, S., Rao, K. and Adhya, T., 2012. Combined effect of elevated CO₂ and temperature on dry matter production, net assimilation rate, C and N allocations in tropical rice (Oryza sativa L.). Field Crops Research, 139: 71-79.
- Rupa Kumar, K., Sahai, A., Krishna Kumar, K., Patwardhan, S., Mishra, P., Revadekar, J., Kamala, K. and Pant, G., 2006. High-resolution climate change scenarios for India for the 21st century. Current science, 90(3): 334-345.
- Sakai, H., Hasegawa, T. and Kobayashi, K., 2006. Enhancement of rice canopy carbon gain by elevated CO₂ is sensitive to growth stage and leaf nitrogen concentration. New Phytologist, 170(2): 321-332.
- Saseendran, S., Singh, K., Rathore, L., Singh, S. and Sinha, S., 2000. Effects of climate change on rice production in the tropical humid climate of Kerala, India. Climatic Change, 44(4): 495-514.
- Satapathy, S.S., Swain, D.K. and Herath, S., 2014. Field experiments and simulation to evaluate rice cultivar adaptation to elevated carbon dioxide and temperature in sub-tropical India. European Journal of Agronomy, 54: 21-33.
- Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324): 1379-1389.
- Seneweera, S., 2011. Effects of elevated CO₂ on plant growth and nutrient partitioning of rice (Oryza sativa L.) at rapid tillering and physiological maturity. Journal of Plant Interactions, 6(1): 35-42.
- Seneweera, S.P. and Conroy, J.P., 1997. Growth, grain yield and quality of rice (Oryza sativa L.) in response to elevated CO₂ and phosphorus nutrition, Plant Nutrition for Sustainable Food Production and Environment. Springer, pp. 873-878.
- Seshu, D. and Cady, F., 1984. Response of rice to solar radiation and temperature estimated from international yield trials. Crop science, 24(4): 649-654.
- Seth, A., Rauscher, S.A., Camargo, S.J., Qian, J.-H. and Pal, J., 2007. RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Climate Dynamics, 28(5): 461-480.
- Shimono, H., Hasegawa, T., Moriyama, M., Fujimura, S. and Nagata, T., 2005. Modeling spikelet sterility induced by low temperature in rice. Agronomy journal, 97(6): 1524-1536.

- Shimono, H., Okada, M., Yamakawa, Y., Nakamura, H., Kobayashi, K. and Hasegawa, T., 2007. Lodging in rice can be alleviated by atmospheric CO 2 enrichment. Agriculture, ecosystems & environment, 118(1): 223-230.
- Shimono, H. and Okada, M., 2013. Plasticity of rice tiller production is related to genotypic variation in the biomass response to elevated atmospheric CO₂ concentration and low temperatures during vegetative growth. Environmental and Experimental Botany, 87: 227-234.
- Shimono, H., Okada, M., Yamakawa, Y., Nakamura, H., Kobayashi, K. and Hasegawa, T., 2009. Genotypic variation in rice yield enhancement by elevated CO₂ relates to growth before heading, and not to maturity group. Journal of Experimental Botany, 60(2): 523-532.
- Sinha, A. and Swaminathan, M., 1991. Long-term climate variability and changes. Journal of Indian Geographical Union, 7(3): 125-134.
- Singh, U. and Ritchie, J., 1993. Simulating the impact of climate change on crop growth and nutrient dynamics using the CERES-rice model. 農業気象, 48(5): 819-822.
- Singh, U., Ritchie, J.T. and Godwin, D., 1993. A User's Guide to CERES Rice, V2. 10. International Fertilizer Development Center Muscle Shoals, AL, USA.
- Steduto, P., Hsiao, T.C., Raes, D. and Fereres, E., 2009. AquaCrop—The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101(3): 426-437.
- Stitt, M., 1991. Rising CO₂ levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell & Environment, 14(8): 741-762.
- Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M., 2014. Climate change 2013: The physical science basis. Cambridge University Press Cambridge, UK, and New York.
- Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, B. and Midgley, B., 2013. IPCC, 2013: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.
- Sujatha, K., Uprety, D., Rao, D.N., Rao, P.R. and Dwivedi, N., 2008. Up-regulation of photosynthesis and sucrose-P synthase in rice under elevated carbon dioxide and temperature conditions. Plant soil environ, 54: 155-162.

- Supit, I., Hooijer, A. and Van Diepen, C., 1994. System description of the Wofost 6.0 crop simulation model implemented in CGMS, 1. Joint research centre; European commission.
- Swain, D. and Thomas, D., 2010. Climate Change Impact Assessment and Evaluation of Agro-Adaptation Measures for Rice Producti on in Eastern India.
- Swain, D.K., Herath, S., Saha, S. and Dash, R.N., 2007. CERES-Rice model: Calibration, evaluation and application for solar radiation stress assessment on rice production. Journal of Agrometeorology, 9(2): 138-148.
- Swaminathan, M.S., 1984. Rice in 2000 AD.
- Tang, L., Zhu, Y., Hannaway, D., Meng, Y., Liu, L., Chen, L. and Cao, W., 2009. RiceGrow: A rice growth and productivity model. NJAS-Wageningen Journal of Life Sciences, 57(1): 83-92.
- Taub, D.R., Miller, B. and Allen, H., 2008. Effects of elevated CO₂ on the protein concentration of food crops: a meta-analysis. Global Change Biology, 14(3): 565-575.
- Teramura, A.H., Sullivan, J.H. and Ziska, L.H., 1990. Interaction of Elevated Ultraviolet-B Radiation and CO₂ on Productivity and Photosynthetic Characteristics in Wheat, Rice and Soybean. Plant Physiology, 94(2): 6.
- Terao, T., Miura, S., Yanagihara, T., Hirose, T., Nagata, K., Tabuchi, H., Kim, H.Y., Lieffering, M., Okada, M. and Kobayashi, K., 2005. Influence of free-air CO₂ enrichment (FACE) on the eating quality of rice. Journal of the Science of Food and Agriculture, 85(11): 1861-1868.
- Tester, M. and Langridge, P., 2010. Breeding technologies to increase crop production in a changing world. Science, 327(5967): 818-822.
- Teutschbein, C. and Seibert, J., 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, 456: 12-29.
- Thapliyal, V. and Kulshrestha, S., 1991. Climate changes and trends over India. Mausam, 42(4): 333-338.
- Theil, H., 1992. A rank-invariant method of linear and polynomial regression analysis, Henri Theil's Contributions to Economics and Econometrics. Springer, pp. 345-381.
- Thornton, P.K., Jones, P.G., Ericksen, P.J. and Challinor, A.J., 2011. Agriculture and food systems in sub-Saharan Africa in a 4 C+ world. Philosophical Transactions of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences, 369(1934): 117-136.

- Timsina, J., 2004. Evaluation of, and yield gap analysis in rice using, CERES Rice Ver. 4.0 in northwest India. Evaluation, 2: 3.
- Timsina, J. and Humphreys, E., 2003. Performance and application of CERES and SWAGMAN Destiny models for rice-wheat cropping systems in Asia and Australia: a review. CSIRO Land and Water Griffith, NSW 2680, Australia.
- Timsina, J. and Humphreys, E., 2006. Performance of CERES-Rice and CERES-Wheat models in rice–wheat systems: A review. Agricultural Systems, 90(1): 5-31.
- Torbert, H., Prior, S., Rogers, H. and Runion, G., 2004. Elevated atmospheric CO₂ effects on N fertilization in grain sorghum and soybean. Field Crops Research, 88(1): 57-67.
- Tremblay, M. and Wallach, D., 2004. Comparison of parameter estimation methods for crop models. Agronomie, 24(6-7): 351-365.
- Tripathi, S., Singh, M. and Pandey, A., 2008. Climate change at Roorkee, Uttarakhand. J. Indian Water Resour. Society, 28(1): 19-28.
- Tsuji, G.Y., Hoogenboom, G. and Thornton, P.K., 1998. Understanding options for agricultural production, 7. Springer.
- Tsuji, G.Y., Uehara, G. and Balas, S., 1994. DSSAT version 3. Citeseer.
- Uehara, G. and Tsuji, G., 1998. Overview of IBSNAT, Understanding Options for Agricultural Production. Springer, pp. 1-7.
- Ul Islam, S., Rehman, N. and Sheikh, M.M., 2009. Future change in the frequency of warm and cold spells over Pakistan simulated by the PRECIS regional climate model. Climatic change, 94(1-2): 35-45.
- Uprety, D., Dwivedi, N., Jain, V. and Mohan, R., 2002. Effect of elevated carbon dioxide concentration on the stomatal parameters of rice cultivars. Photosynthetica, 40(2): 315-319.
- Uprety, D., Dwivedi, N., Jain, V., Mohan, R., Saxena, D., Jolly, M. and Paswan, G., 2003. Responses of rice cultivars to the elevated CO₂. Biologia plantarum, 46(1): 35-39.
- Uprety, D., Garg, S., Bisht, B., Maini, H., Dwivedi, N., Paswan, G., Raj, A. and Saxena, D., 2006. Carbon dioxide enrichment technologies for crop response studies. Journal of Scientific and Industrial Research, 65(11): 859.

- Usui, Y., Sakai, H., Tokida, T., Nakamura, H., Nakagawa, H. and Hasegawa, T., 2016. Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming. Global change biology, 22(3): 1256-1270.
- van Oijen, M., 2002. On the use of specific publication criteria for papers on process-based modelling in plant science. Field crops research, 74(2): 197-205.
- Vanuytrecht, E., Raes, D., Willems, P. and Geerts, S., 2012. Quantifying field-scale effects of elevated carbon dioxide concentration on crops. Clim Res, 54: 35-47.
- Vu, J., Allen, L., Boote, K. and Bowes, G., 1997. Effects of elevated CO₂ and temperature on photosynthesis and Rubisco in rice and soybean. Plant, Cell & Environment, 20(1): 68-76.
- Wallach, D., Goffinet, B., Bergez, J.-E., Debaeke, P., Leenhardt, D. and Aubertot, J.-N., 2001. Parameter estimation for crop models. Agronomy journal, 93(4): 757-766.
- Wang, Y., Frei, M., Song, Q. and Yang, L., 2011. The impact of atmospheric CO₂ concentration enrichment on rice quality–a research review. Acta Ecologica Sinica, 31(6): 277-282.
- Wasim, M.P., 2002. A study of rice in the major growing countries of the world: their growth instability and world share. Pakistan Economic and Social Review: 153-183.
- White, J.W., Hoogenboom, G., Kimball, B.A. and Wall, G.W., 2011. Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124(3): 357-368.
- Widodo, W., Vu, J.C., Boote, K.J., Baker, J.T. and Allen, L.H., 2003. Elevated growth CO₂ delays drought stress and accelerates recovery of rice leaf photosynthesis. Environmental and Experimental Botany, 49(3): 259-272.
- Wikarmpapraharn, C. and Kositsakulchai, E., 2010. Evaluation of ORYZA2000 and CERES-Rice models under potential growth condition in the Central Plain of Thailand. Thai Journal of Agricultural Science, 43(1): 17-29.
- Wilks, D.S., 2006. Comparison of ensemble-MOS methods in the Lorenz'96 setting. Meteorological Applications, 13(03): 243-256.
- Williams, J., Hanks, J. and Ritchie, J., 1991. Runoff and water erosion. Modeling plant and soil systems.: 439-455.

- Williams, R., Durkin, C. and Stapper, M., 1994. A simple model of rice yield response to N fertilizer and its use as a decision support system, Temperate Rice Conference. Yanco Agricultural Institute, Yanco, New South Wales, USA.
- Willmott, C.J., 1981. On the validation of models. Physical geography, 2(2): 184-194.
- Willmott, C.J., 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11): 1309-1313.
- Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M., Legates, D.R., O'Donnell, J. and Rowe, C.M., 1985. Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans (1978–2012), 90(C5): 8995-9005.
- Winter, S., 1998. Knowledge and competence as strategic assets. The strategic management of intellectual capital: 165-187.
- Wood, A.W., Maurer, E.P., Kumar, A. and Lettenmaier, D.P., 2002. Long-range experimental hydrologic forecasting for the eastern United States. Journal of Geophysical Research: Atmospheres (1984–2012), 107(D20): ACL 6-1-ACL 6-15.
- Wopereis, M., Bouman, B., Tuong, T., Berge, H. and Kropff, M., 1996. ORYZA-W: Rice growth model for irrigated and rainfed environments.
- Xiong, W., Holman, I., Lin, E., Conway, D., Li, Y. and Wu, W., 2012. Untangling relative contributions of recent climate and CO₂ trends to national cereal production in China. Environmental Research Letters, 7(4): 044014.
- Xu, C., Li, J., Xie, H., Zhu, J., Fan, G. and Cai, Q., 2008. Effect of free air CO₂ enrichment to rice quality of rice. Chin. Agric. Sci. Bull, 24: 391-397.
- Yadav, R., Tripathi, S., Pranuthi, G. and Dubey, S., 2014. Trend analysis by Mann-Kendall test for precipitation and temperature for thirteen districts of Uttarakhand. Journal of Agrometeorology, 16(2): 164.
- Yang, J., Drury, C., Yang, J., Li, Z. and Hoogenboom, G., EasyGrapher: Software for Data Visualization and Statistical Evaluation of DSSAT Cropping System Model and the CANB Model.
- Yang, J. and Huffman, E., 2004. EasyGrapher: software for graphical and statistical validation of DSSAT outputs. Computers and electronics in agriculture, 45(1): 125-132.

- Yang, L., Huang, J., Yang, H., Dong, G., Liu, G., Zhu, J. and Wang, Y., 2006a. Seasonal changes in the effects of free-air CO₂ enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field crops research, 98(1): 12-19.
- Yang, L., Huang, J., Yang, H., Zhu, J., Liu, H., Dong, G., Liu, G., Han, Y. and Wang, Y., 2006b. The impact of free-air CO₂ enrichment (FACE) and N supply on yield formation of rice crops with large panicle. Field Crops Research, 98(2): 141-150.
- Yang, L., Liu, H., Wang, Y., Zhu, J., Huang, J., Liu, G., Dong, G. and Wang, Y., 2009. Impact of elevated CO₂ concentration on inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field conditions. Field Crops Research, 112(1): 7-15.
- Yang, L., Wang, Y., Dong, G., Gu, H., Huang, J., Zhu, J., Yang, H., Liu, G. and Han, Y., 2007.
 The impact of free-air CO₂ enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Research, 102(2): 128-140.
- Yao, F., Xu, Y., Lin, E., Yokozawa, M. and Zhang, J., 2007. Assessing the impacts of climate change on rice yields in the main rice areas of China. Climatic Change, 80(3-4): 395-409.
- Yin, X. and Kropff, M.J., 1998. The effect of photoperiod on interval between panicle initiation and flowering in rice. Field crops research, 57(3): 301-307.
- Yin, X. and Qi, C., 1994. Studies on the rice growth calendar model (RICAM) and its application. Acta Agron. Sin, 20: 339-346.
- Yoshida, S., 1981. Fundamentals of rice crop science. Int. Rice Res. Inst.
- Yoshida, S. and Parao, F., 1976. Climatic influence on yield and yield components of lowland rice in the tropics. Climate and rice: 471-494.
- Yoshimoto, M., Oue, H. and Takahashi, N., 2005. The effects of FACE (Free-Air CO₂ Enrichment) on temperatures and transpiration of rice panicles at flowering stage. 農業気象, 60(5): 597-600.
- Zhang, G., Sakai, H., Tokida, T., Usui, Y., Zhu, C., Nakamura, H., Yoshimoto, M., Fukuoka, M., Kobayashi, K. and Hasegawa, T., 2013. The effects of free-air CO₂ enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (Oryza sativa L.). Journal of experimental botany, 64(11): 3179-3188.
- Zhang, S. and Tao, F., 2013. Modeling the response of rice phenology to climate change and variability in different climatic zones: Comparisons of five models. European journal of agronomy, 45: 165-176.

- Zhang, G., Sakai, H., Usui, Y., Tokida, T., Nakamura, H., Zhu, C., Fukuoka, M., Kobayashi, K. and Hasegawa, T., 2015. Grain growth of different rice cultivars under elevated CO 2 concentrations affects yield and quality. Field Crops Research, 179: 72-80.
- Zheng, W.X., 2002. A bias correction method for identification of linear dynamic errors-invariables models. Automatic Control, IEEE Transactions on, 47(7): 1142-1147.
- Zhu, C., Ziska, L.H., Sakai, H., Zhu, J. and Hasegawa, T., 2013. Vulnerability of lodging risk to elevated CO 2 and increased soil temperature differs between rice cultivars. European journal of agronomy, 46: 20-24.
- Ziska, L., Morris, C. and Goins, E., 2004. Quantitative and qualitative evaluation of selected wheat varieties released since 1903 to increasing atmospheric carbon dioxide: can yield sensitivity to carbon dioxide be a factor in wheat performance? Global Change Biology, 10(10): 1810-1819.
- Ziska, L.H. and Bunce, J.A., 2006. Plant responses to rising atmospheric carbon dioxide. Plant growth and climate change: 17-47.
- Ziska, L.H., Manalo, P.A. and Ordonez, R.A., 1996. Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO₂ and temperature: growth and yield response of 17 cultivars. Journal of experimental botany, 47(9): 1353-1359.
- Ziska, L.H., Namuco, O., Moya, T. and Quilang, J., 1997. Growth and yield response of fieldgrown tropical rice to increasing carbon dioxide and air temperature. Agronomy Journal, 89(1): 45-53.
- Ziska, L.H. and Teramura, A.H., 1992. Intraspecific variation in the response of rice (Oryza sativa) to increased CO₂-photosynthetic, biomass and reproductive characteristics. Physiologia Plantarum, 84(2): 269-274.
- Timsina, J. and Humphreys, E., 2006. Performance of CERES-Rice and CERES-Wheat models in rice–wheat systems: A review. Agricultural Systems, 90(1): 5-31.
- Chen, C.P., Sakai, H., Tokida, T., Usui, Y., Nakamura, H. and Hasegawa, T., 2014. Do the rich always become richer? Characterizing the leaf physiological response of the highyielding rice cultivar Takanari to free-air CO2 enrichment. Plant & cell physiology, 55(2): 381-91.
- Dong, G., Wang, Y., Yang, H., Huang, J., Zhu, J., Yang, L. and Shan, Y., 2002. [Effect of freeair CO2 enrichment (FACE) on nitrogen accumulation and utilization efficiency in rice

(Oryza sativa)]. Ying yong sheng tai xue bao= The journal of applied ecology/Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban, 13(10): 1219-1222.

- Hasegawa, T., Sakai, H., Tokida, T., Usui, Y., Yoshimoto, M., Fukuoka, M., Nakamura, H.,
 Shimono, H. and Okada, M., 2015. Rice Free-Air Carbon Dioxide Enrichment Studies to
 Improve Assessment of Climate Change Effects on Rice Agriculture. Improving
 Modeling Tools to Assess Climate Change Effects on Crop
 Response(advagricsystmodel7).
- Long, S.P., Ainsworth, E.A., Rogers, A. and Ort, D.R., 2004. Rising atmospheric carbon dioxide: plants FACE the Future*. Annu. Rev. Plant Biol., 55: 591-628.
- Manalo, P., Ingram, K., Pamplona, R. and Egeh, A., 1994. Atmospheric CO< sub> 2</sub> and temperature effects on development and growth of rice. Agriculture, ecosystems & environment, 51(3): 339-347.
- Myers, S.S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A.D., Bloom, A., Carlisle, E., Dietterich, L.H., Fitzgerald, G. and Hasegawa, T., 2014. Rising CO2 threatens human nutrition. Nature, 510(7503): 139.
- Shimono, H., Okada, M., Yamakawa, Y., Nakamura, H., Kobayashi, K. and Hasegawa, T., 2007. Lodging in rice can be alleviated by atmospheric CO 2 enrichment. Agriculture, ecosystems & environment, 118(1): 223-230.

APPENDIX I

		Kharif 2	2011			Kharif 2	012			Kharif 2	2013	
Date	SRAD	T Max	T Min	RF	SRAD	T Max	T Min	RF	SRAD	T Max	T Min	RF
	MJ/m ² /day	(⁰ C)	(⁰ C)	mm	MJ/m ² /day	(⁰ C)	(⁰ C)	mm	MJ/m ² /day	(⁰ C)	(⁰ C)	mm
01-Jun	28.5	35	22	13	30.5	40.1	24.3	0	22.5	32.6	24.5	0
02-Jun	28.5	33	20	37	24.8	39.8	30	0	22.9	33.3	24.9	0
03-Jun	27.4	37	25	0	30	39.7	25.3	0	25.8	35	24.4	0
04-Jun	27.4	40	28	0	30	39	24.6	0	26.7	36.1	24.7	0
05-Jun	28.5	39	26	0	27.1	37.2	25.5	0	23.1	36	27.5	0
06-Jun	28.5	40	27	0	28.9	37.2	23.9	0.8	27.9	34.6	22.2	0
07-Jun	25	39	29	0	26.7	35.4	24	29	24.9	33.2	23.3	0.8
08-Jun	23.7	37	28	8	27	37.2	25.6	0	19.2	31.9	26	0
09-Jun	28.5	37	24	4	25.8	35.7	25.1	0	14.8	30.3	26.8	9.1
10-Jun	28.5	36	23	0.6	27.5	35.4	23.3	0	25.6	34.6	24.1	0
11-Jun	27.4	38	26	0	29.6	37.8	23.8	0	16.4	27.6	23.3	18.2
12-Jun	31.7	36	20	29	16.6	32.7	28.3	0	24.8	34.9	25.1	6.5
13-Jun	25	36	26	0	31.7	38	22	0	13	28.3	25.6	5.1
14-Jun	50	70	30	0	29.6	38	24	0	21.2	33.4	26.2	0
15-Jun	25	35	25	4	28.5	39	26	0	25.1	31.9	21.8	9.3
16-Jun	30.6	39	24	11	32.6	40	23	0	13.9	23.7	20.6	90
17-Jun	26.2	36	25	8.2	30.6	40	25	0	16.4	24.4	20.1	160.2
18-Jun	26.2	37	26	2	30.6	40	25	0	19.9	29.2	22.9	3
19-Jun	27.4	39	27	0	13.7	31	28	0	22.1	31.8	24	0
20-Jun	28.5	39	26	8	26.2	36	25	0	23.2	33.5	24.9	0
21-Jun	25	39	29	0	28.5	38	25	0	23.7	35.5	26.5	0
22-Jun	27.4	42	30	0	28.5	38	25	0	22.2	35.1	27.2	0
23-Jun	23.7	38	29	0	26.2	35	24	0	18.7	32.5	26.9	0
24-Jun	22.4	38	30	0	23.7	36	27	0	16.4	30.8	26.5	2
25-Jun	27.4	35	23	0	23.7	36	27	0	17	30.2	25.6	0
26-Jun	26.2	34	23	10	23.7	36	27	0	22	33.3	25.6	0
27-Jun	26.2	36	25	2	13.7	30	27	0	20.6	31	24.2	0
28-Jun	26.2	34	23	23.6	27.4	37	25	16	22.8	32.5	24.2	9.1
29-Jun	23.7	33	24	4.2	27.4	37	25	0	23.5	33.5	24.7	0
30-Jun	22.4	32	24	3.2	31.7	45	29	0	21.4	32	24.7	0
01-Jul	24.7	36	26	38	33.6	42	24	0	22.8	34.1	25.6	0
02-Jul	23.5	36	27	0	17.5	28	23	0	19.3	32.3	26.2	2
03-Jul	22.1	35	27	0	13.5	28	25	0	18.8	31.8	26	1.5

Daily weather data of solar radiation (MJ/m²/day), maximum and minimum temperatures (⁰C) and rainfall for the Kharif season (June – October) during the years 2011, 2012 and 2013.

04-Jul	17.5	31	26	0	15.6	29	25	0	20.4	33	26.2	2
05-Jul	15.6	32	28	0	11.1	29	27	0	17	31.4	26.7	0
06-Jul	23.5	37	28	11.2	15.6	29	25	12	13.5	28.3	25.3	0
07-Jul	17.5	30	25	6	13.5	29	26	6	17.7	30.4	25.3	0
08-Jul	25.9	35	24	15.4	19.2	31	25	2	17	30	25.3	0
09-Jul	23.5	33	24	77.4	19.2	31	25	0	18.3	31.3	25.8	2
10-Jul	15.6	27	23	45.4	19.2	32	26	0	21	33	25.8	4.1
11-Jul	22.1	33	25	38.2	19.2	33	27	0	18.7	32.2	26.5	0
12-Jul	23.5	36	27	0	23.5	33	24	0	17.5	31.7	26.7	0
13-Jul	22.1	35	27	0	22.1	33	25	0	21.1	33.2	25.9	0
14-Jul	24.7	36	26	0	22.1	34	26	0	14.6	28.6	25.1	0
15-Jul	13.5	29	26	37	19.2	31	25	7	20.8	32.6	25.5	0
16-Jul	22.1	35	27	3	23.5	33	24	0	21.8	33.5	25.7	0
17-Jul	24.7	35	25	4	23.5	34	25	0	19.2	32	26	0
18-Jul	23.5	34	25	0	22.1	34	26	0	18.2	31.1	25.7	4.5
19-Jul	24.1	36	26.5	0	23.5	36	27	0	19.3	29.7	23.6	1.2
20-Jul	19.9	33	26.5	6	23.5	35	26	0	13.3	27.6	24.7	60.9
21-Jul	23.5	34	25	1	11.1	30	28	25.1	21.3	32.1	24.7	0
22-Jul	21.4	35	27.5	0	19.2	31	25	0	21.4	32.3	24.8	14.2
23-Jul	18.7	33	27.3	110	23.5	34	25	0	21.7	33.2	25.5	0
24-Jul	23.1	35	26.3	0	13.5	29	26	0	12.9	28.7	26	3.1
25-Jul	19.6	33	26.7	0	15.6	30	26	0	18.5	30.5	24.9	0
26-Jul	23.8	36	26.7	0	13.5	29	26	15.1	22	32.9	25	0
27-Jul	20.5	34	27.1	1	13.5	28	25	0.3	21.1	33.4	26.1	0
28-Jul	21	33	25.8	0.4	22.1	32	24	0	22.5	34.1	25.8	0
29-Jul	19.5	32	25.8	85	19.2	32	26	44	17.1	30.7	25.9	61
30-Jul	22.7	34	25.6	0	15.6	29	25	0	19.3	31.6	25.5	10
31-Jul	18.8	33	27.2	0	15.6	30	26	14.2	19.8	32.6	26.2	1.6
01-Aug	20.9	34	25.8	46	15.6	29	25	0	15.5	30.9	26.4	1.2
02-Aug	21.3	34	25.5	0	10.3	28	26	0	20.1	33.8	26.2	0
03-Aug	19.6	33	25.8	0	14.6	30	26	0	19.3	33.1	26.1	0
04-Aug	24.9	36	24.4	8.8	19.3	32	25	5	21.3	34.4	25.9	29
05-Aug	23.1	34	24	0	14.6	27	23	81.3	17.6	30	24.2	0
06-Aug	26.1	35	22.2	0	19.3	31	24	1.1	12	26.6	23.9	210
07-Aug	20.1	33	25.4	0	14.6	29	25	0	20	32.3	24.8	0
08-Aug	22.9	35	25.2	0	19.3	32	25	4.5	18.8	30.1	23.5	60.3
09-Aug	22.6	35	25.4	0	10.3	26	24	0	15.5	27.9	23.4	87
10-Aug	24.6	36	24.7	4.4	17.9	30	24	0	19.5	31.8	24.7	2.5
11-Aug	21.2	35	26.6	0	19.3	32	25	0	19.2	32.1	25.2	6.2
12-Aug	23.3	36	25.8	8.2	20.7	32	24	0	17.8	31.8	25.9	0
13-Aug	19.2	34	27.1	0	17.9	31	25	0	17.8	30.4	24.5	20.2

14-Aug	24.2	35	24	0.2	19.3	32	25	24.2	18.6	31.3	24.8	0
15-Aug	21.2	35	26	30	19.3	32	25	0	17.8	30.6	24.7	0
16-Aug	20.1	34	26.4	290	19.3	32	25	0	19.2	31.4	24.5	0
17-Aug	26.4	34	21	35	19.3	33	26	0	19.9	32	24.6	0
18-Aug	21.3	35	26.5	0.1	17.9	32	26	0.2	20.8	32.5	24.4	3.2
19-Aug	20.8	33	24.9	0.4	10.3	32	30	0	21.2	33.6	25.2	0
20-Aug	22	35	25.9	0	7.3	26	25	130	24.1	35.3	24.4	0
21-Aug	23.9	35	24.3	0	7.3	24	23	0	24.7	34.6	23.2	0
22-Aug	20.3	34	26.3	0	17.9	29	23	3	20.5	31.4	23.5	39
23-Aug	17.8	33	27.1	1	17.9	30	24	18	20.9	33.2	25	0
24-Aug	22.4	34	24.6	38	16.3	30	25	0	22.2	34.6	25.4	0
25-Aug	20.7	33	25	0	16.3	30	25	0	21.1	34.3	26	0
26-Aug	21.7	35	26.2	0	17.9	30	24	20	18.9	33.7	27	0
27-Aug	16.8	32	26.7	1.4	10.3	24	22	0	21.6	33.4	24.7	0
28-Aug	14.8	29	24.9	0	21.9	32	23	67	16.3	28.7	23.7	21
29-Aug	25.3	38	26	0	17.9	31	25	3	19.1	30.5	23.7	1.4
30-Aug	23.7	37	26.5	0	16.3	30	25	0	15.3	28.4	24	43.2
31-Aug	20.3	34	26.3	0	19.3	31	24	0	18.2	29.7	23.5	12.2
01-Sep	22.4	37	25	0	14.6	30	26	0	19.4	32.7	23.7	8.2
02-Sep	22.4	35	23	0	18.8	33.8	25.4	0	19.5	33.3	24.2	0
03-Sep	19.4	35	26	19.4	8.4	28	26.3	0	19.3	32.2	23.3	0
04-Sep	20.5	35	25	0	16.4	31.8	25.4	36	19.9	32.2	22.7	0
05-Sep	20.5	34	24	0	16	31.4	25.3	0	19.6	31.8	22.6	3.5
06-Sep	21.5	37	26	0	17.7	32.7	25.2	0	19.6	31.3	22.1	3.3
07-Sep	19.4	34	25	0	17.5	32.1	24.8	0	19.4	32.6	23.6	0
08-Sep	17.1	32	25	0	12.9	29.7	25.7	0	13.6	26.7	22.3	0
09-Sep	18.3	31	23	10.6	14	29.7	25	0	19.5	32	22.9	7.3
10-Sep	19.4	37	28	0	19.4	34	25	0	19.9	32.1	22.6	0
11-Sep	19.4	36	27	0	18.6	33.6	25.3	0	15	29	23.6	0
12-Sep	21.5	37	26	0	14	29.9	25.2	1	18.3	31.7	23.7	0
13-Sep	21.5	38	27	0	15.7	31.9	26	5	20.3	33.3	23.5	0
14-Sep	20.5	34	24	0	17	31.6	24.7	25	20	33.2	23.6	0
15-Sep	19.4	37	28	4.9	17.6	31.4	24	30	23.2	33.5	20.6	0
16-Sep	22.4	37	25	12.9	18.3	31.8	23.8	0	21.8	31.6	20.3	3
17-Sep	17.1	35	28	0	18	31.3	23.6	0	21.8	32.6	21.2	0
18-Sep	23.3	37	24	0	16.9	30.2	23.4	14.5	22	33.2	21.6	0
19-Sep	22.4	36	24	0	18.4	31.6	23.5	3	21.6	34.4	23.3	0
20-Sep	19.4	34	25	0	18.2	31.5	23.6	3.8	20	33.3	23.7	3.2
21-Sep	21.5	36	25	0	20.6	32.1	22	0	13.4	28.1	23.8	0
22-Sep	23.3	37	24	0	20.2	31.5	21.8	0	19	32.9	24.3	0
23-Sep	21.5	34	23	0	19.6	30.8	21.6	0	19.9	33.5	24	0

24-Sep	25.1	37	22	0	20.7	31.4	21.2	0	19.9	33.9	24.4	0
25-Sep	15.8	34	28	0	19.9	31.2	21.7	0	18.8	31.1	22.7	0
26-Sep	19.4	34	25	0	20.2	31.1	21.4	0	20	32.1	22.5	0
27-Sep	25.1	36	21	0	19.7	30.8	21.5	0	17.1	32.1	25.1	0.2
28-Sep	21.5	35	24	0	22.3	32.7	20.8	0	17	30	23.1	0
29-Sep	21.5	36	25	0	21.9	32.8	21.3	0	20.9	33.3	22.9	0
30-Sep	21.5	36	25	0	20.8	32	21.7	0	16.5	29.7	23.2	0
01-Oct	15.3	36	28	0	20.3	31.7	21.9	0	15.9	32	23.3	0
02-Oct	15.3	36	28	0	18.6	32.8	20.9	0	15.8	32.1	23.5	0
03-Oct	13.2	35	29	0	17.2	32.2	22.1	0	16.3	30.6	21.5	0
04-Oct	18.7	37	25	0	16.4	32.5	23.3	0	14.8	28.7	21.2	0
05-Oct	17.9	37	26	0	18.2	31.9	20.6	0	17.5	32.4	21.9	0
06-Oct	17.9	36	25	0	18.9	31.8	19.5	0	15.7	30.9	22.4	0
07-Oct	17.9	36	25	0	19.6	32.4	19.2	0	12.3	29.5	24.3	0
08-Oct	17.1	31	21	0	19.2	31.6	18.9	0	14.5	31.2	24	0
09-Oct	17.1	34	24	0	19.4	31.3	18.4	0	15.2	31.9	24	0
10-Oct	19.5	36	23	0	19.5	31.3	18.3	0	13.8	30.4	23.9	0
11-Oct	21.6	36	20	0	18.4	30.6	19	0	12.8	25.7	20.1	16.2
12-Oct	19.5	36	23	0	18.3	30.5	19	0	14	28.4	21.7	0
13-Oct	20.2	36	22	0	19.9	30.3	16.7	0	17.1	31.9	21.9	0
14-Oct	20.2	36	22	0	20.3	31.2	17.1	0	16.8	30.5	20.8	0
15-Oct	20.2	36	22	0	20.1	30.7	16.8	0	16.2	29.7	20.7	0
16-Oct	19.5	32	19	0	18.8	30.3	18.2	0	16.5	29.9	20.6	0
17-Oct	20.9	35	20	0	18.3	30.2	18.7	0	17.2	30.4	20.2	0
18-Oct	18.7	32	20	0	19.8	29.7	16.2	0	18	30.6	19.5	0
19-Oct	19.5	34	21	0	20.7	30	15.3	0	18	30.1	19	0
20-Oct	23.5	36	17	0	20.8	30	15.2	0	18.9	30	17.8	0
21-Oct	18.7	31	19	0	19.9	29	15.4	0	18.9	29.1	16.9	0
22-Oct	22.3	35	18	0	18.9	29.3	17.1	0	18.6	29.6	17.7	0
23-Oct	17.1	30	20	0	20.8	29.5	14.7	0	18.6	29.7	17.8	0
24-Oct	17.9	30	19	0	20.5	28.5	14.1	0	18.6	29.5	17.6	0
25-Oct	22.3	34	17	0	17.1	26.2	16.2	0	18.5	29.2	17.5	0
26-Oct	20.2	32	18	0	19.9	26.9	13.3	0	19	29.3	16.9	0
27-Oct	20.2	33	19	0	19.5	26.9	13.8	0	19.4	28	15.1	0
28-Oct	20.2	33	19	0	20.6	27.5	13	0	21.5	29	13.2	0
29-Oct	20.9	35	20	0	20.8	28.2	13.3	0	21.7	28.6	12.5	0
30-Oct	15.9	31.7	23	0	20.9	28.3	13.3	0	21.3	28.9	13.3	0
31-Oct	18.7	33	21	0	20.6	28.8	14.2	0	17.9	25.9	14.9	0
Total/Avg	22.0	35.1	24.7	1158.1	19.8	32.0	23.3	647.1	19.1	31.4	23.5	1062.7

APPENDIX II

OVERVIEW FILE GENERATED FOR VALIDATION OF DSSAT CERES RICE MODEL USING KHARIF 2011 FIELD EXPERIMENT DATA

*SIMULATION OVERVIEW FILE

*DSSAT Cropping System Model Ver. 4.5.0.030 SEP 01, 2015; 11:22:36

*RUN 1	: T1
MODEL	: RICER045 - Rice
EXPERIMENT	: IITP1101 RI IITP1001RI IITR1001RI IITR, ROORKEE, RICE EXPERIME
TREATMENT 1	: T1
IREATMENT I	. 11

CROP	Rice CULTIVAR : Sharbati ECO	TYPE :IB0001
STARTING DATE	JUL 7 1911	
PLANTING DATE		: 20.cm
WEATHER		
	IITR791201 TEXTURE : SL - Dhanauri	
	DEPTH:120cm EXTR. H20:127.2mm NO3:139.1kg/ha !	NH4: 15.8kg/ha
	IRRIGATE ON REPORTED DATE(S)	
IRRIGATION	250 mm IN 4 APPLICATIONS	
NITROGEN BAL.	SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION	
N-FERTILIZER	90 kg/ha IN 5 APPLÍCATIONS INITIAL : 500 kg/ha ; 0 kg/ha IN 1 /	
RESIDUE/MANURE	INITIAL : 500 kg/ha ; 0 kg/ha IN 1 /	APPLICATIONS
ENVIRONM. OPT.	DAYL= A 0.00 SRAD= A 0.00 TMAX= A 0.00 TM.	
	RAIN= A 0.00 CO2 = R 352.0 DEW = A 0.00 WINI	
SIMULATION OPT		TS :N
		:G
	CO2 :D NSWIT :1 EVAP :R SOIL :2	(F.C.T.)
MANAGEMENT OPT		VEST:M
	WEATHER :M TILLAGE :N	

*SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS

DEPTH	LOWER U LIMIT L cm3/cm3	IMIT	SW	SW	SW	ROOT DIST	BULK DENS g/cm3	рН	NO3 ugN/g	NH4 ugN/g	ORG C %
5- 15 15- 30 30- 45 45- 60 60- 90	0.121 0 0.121 0 0.121 0 0.104 0 0.104 0 0.104 0 0.097 0 0.082 0).224).224).208).208).201	0.414 0.414 0.406 0.406 0.407	0.103 0.103 0.104 0.104 0.104	0.115 0.120 0.120 0.107 0.101	1.00 1.00 0.41 0.41 0.22 0.12		7.80 7.80	7.90 7.90 7.90 7.90 7.90 7.90 7.90 7.90	0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.60 0.60 0.20 0.20 0.10 0.01
TOT-120 SOIL ALI RUNOFF (BEDO	: 0.1	_3	EVAPO	RATION	LIMIT	: 6.00		139.1 MIN. F FERT.	ACTOR	: 1.00
	: 780.0 : 60.0) P2R) G2	t : :0	90.0 0.0230	Р5 G3	: 400 : 0.	ECOTY .0 P2O 70 G4 OPMENT S	:	15.4		

RUN NO. 1 T1

				19	OVERV	EW 201	רטס.1	-				
		CROP	GROWTH	BIOMASS	IOMASS LEAF CROP N					ESS	STR	ESS
D/ RSTG	ΑΤΕ	AGE	STAGE	kg/ha	LAI	NUM	kg/h	a %	н2о	N	Р1	Р2
7	JUL	0	Transplant	53	0.11	5.0	2	4.6	0.00	0.00	0.00	0.00
7	JUL	0	Start Sim	53	0.11	5.0	2	4.6	0.00	0.00	0.00	0.00
1 2	AUG	25	End Juveni	758	1.09	11.0	24	3.2	0.00	0.00	0.00	0.00
	AUG	31	Pan Init	1655	1.84	12.0	51	3.1	0.00	0.02	0.00	0.00
	SEP	61	Heading	7408	4.47	17.0	120	1.6	0.00	0.00	0.00	0.00
5	SEP	66	Beg Gr Fil	8189	4.11	17.0	126	1.5	0.00	0.02	0.00	0.00
5	SEP	83	End Mn Fil	10734	2.89	17.0	137	1.3	0.00	0.00	0.00	0.00
2 (6 3 (ост	87	End Ti Fil	10855	2.68	17.0	138	1.3	0.00	0.12	0.00	0.00
20	ост		Maturity	10855	2.68	17.0	138	1.3	0.00	0.00	0.00	0.00
3 (20	ост	88	Harvest	10855	2.68	17.0	138	1.3	0.00	0.00	0.00	0.00

*MAIN GROWTH AND DEVELOPMENT VARIABLES

@ VARIABLE S	IMULATED	MEASURED
<pre>Panicle Initiation day (dap) Physiological maturity day (dap) Physiological maturity day (dap) Yield at harvest maturity (kg [dm]/ha) Unit wt at maturity (g [dm]/unit) Number at maturity (no/m2) Pod or panicle number (no/m2) Leaf area index, maximum Tops weight at anthesis (kg [dm]/ha) Tops N at anthesis (kg/ha) Tops weight at maturity (kg [dm]/ha) By-product produced (stalk) at maturity (kg[dm]/ha Harvest index at maturity Leaf number per stem at maturity Grain N at maturity (kg/ha) Tops N at maturity (kg/ha) Stem N at maturity (%)</pre>	31 61 88 6308 0.0234 27003 251.00 4.54 7224 120 10855	

*ENVIRONMENTAL AND STRESS FACTORS

19 OVERVIEW 2011.OUT øC MJ/m2 hr mm mm synth days øC Growth synth Growth synth Growth _____ _____

 Emergence-End Juvenile
 25
 33.7
 26.0
 20.3
 13.68
 441.0
 122.2
 0.000

 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 13.39
 54.8
 33.1
 0.000

 End Juvenil-Panicl Init
 6
 34.0
 25.4
 20.1
 13.39
 54.8
 33.1
 0.000

 Panicl Init-End Lf Grow
 30
 34.5
 25.3
 21.0
 12.93
 428.1
 165.2
 0.000

 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000

 End Lf Grth-Beg Grn Fil
 5
 33.6
 24.6
 15.7
 12.42
 10.6
 19.9
 0.000

 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 ------Planting to Harvest 88 34.5 25.5 20.1 12.91 952.3 459.3 0.000 0.000 0.009 0.000 0.000 _____ _____ _____ *Water Productivity Growing season length: 88 days Precipitation during growth season
Dry Matter Productivity952.3 mm[rain]
1.14 kg[DM]/m3[rain]11.4 kg[DM]/ha per mm[rain]
Yield Productivity0.66 kg[grain yield]/m3[rain] = 6.6 kg[yield]/ha per mm[rain] Evapotranspiration during growth season 459.3 mm[ET] 2.36 kg[DM]/m3[ET] Dry Matter Productivity = 23.6 kg[DM]/ha per mm[ET] Yield Productivity 13.7 kg[yield]/ha per mm[ET] 1.37 kg[grain yield]/m3[ET] = Transpiration during growth season 286.5 mm[EP] Dry Matter Productivity 3.79 kg[DM]/ 37.9 kg[DM]/ha per mm[EP] 3.79 kg[DM]/m3[EP] Yield Productivity 22.0 kg[yield]/ha per mm[EP] 2.20 kg[grain yield]/m3[EP] = _____ _____ ------Rice YIELD : 6308 kg/ha [Dry weight] ***** *DSSAT Cropping System Model Ver. 4.5.0.030 SEP 01, 2015; 11:22:36 *run 2 MODEL : RICER045 - Rice EXPERIMENT : IITP1101 RI IITP1001RI IITR1001RI IITR, ROORKEE, RICE EXPERIME TREATMENT 2 : T2 : т2 CROP : Rice STARTING DATE : JUL 7 1911 PLANTING DATE : JUL 7 1911 WEATHER : WRDM 1911 SOIL CULTIVAR : Sharbati1 ECOTYPE :IB0001 PLANTS/m2 : 33.0 ROW SPACING : 20.cm : WRDM 1911 : IITR791201 SOIL : IITR791201 TEXTURE : SL - Dhanauri SOIL INITIAL C : DEPTH:120cm EXTR. H20:127.2mm NO3:139.1kg/ha NH4: 15.8kg/ha

```
Page 3
```

IRRIGAT NITROGE N-FERTI RESIDUE ENVIRON	FION EN BAI ELIZEI E/MANU MA. OI FION (MENT (L. : S R : URE : J PT. : C F OPT : V F OPT : F	2 SOIL-N INITIA DAYL= AIN= VATER PHOTO CO2 PLANTI VEATHE	TE ON R 50 mm IN & N-UP 90 kg/ha L : 50 A 0.00 A 0.00 A 0.00 :Y N :C E :D N R :M T	N 4 / TAKE SIN A IN DO kg/ha SRAD= CO2 = CTROGEN T SWIT RRIG LLLAGE	DATE(S APPLICA MULATIO 5 APP a ; A 0.0 R 328. :Y N-F :R INF :1 EVA :R FER :N) TIONS N; NO LICATJ 0 k 0 TMA 0 DEV TX:N TIX:N TIX:S P :R T :R	X= A =A PHOS HYDR SOIL	0.00 0.00 PH :N OL :R) TMIN WIND= PESTS SOM	=A 0.0 5 :N :G	.00
SOIL		R UPPER T LIMIT	R SA	T EXTR W SW	INIT SW	ROOT DIST	DENG	(-	NO3	NH4	ORG
CM			cm3/c	m3 cr			g/cm3	> } 	ι	JgN∕g	ugN/g	С %
5- 15 15- 30 30- 45 45- 60 60- 90	0.12 0.12 0.10 0.10 0.10	1 0.224 1 0.224 4 0.208 4 0.208 7 0.201	4 0.41 4 0.41 3 0.40 3 0.40 L 0.40	4 0.103 4 0.103 4 0.103 6 0.104 6 0.104 7 0.104 9 0.113	0.115 0.120 0.120 0.107 0.101	1.00 1.00 0.41 0.41 0.22 0.12	1.471.471.471.491.491.491.49	77777777777777777777777777777777777777	- 80 - 80 - 80 - 80 - 80 - 80 - 80	7.90 7.90 7.90 7.90 7.90 7.90 7.90 7.90	0.90 0.90 0.90 0.90 0.90 0.90 0.90	0.60 0.60 0.20 0.20 0.10 0.01
TOT-120 SOIL ALE RUNOFF (BEDO	: 0.	.13	EVAPO	DRATION	LIMIT	- k : 6.00 : 0.40)	N	IIN. FA	15.8 ACTOR FACTOR	: 1.00
Rice P1 G1 *SIMULAT	: 780	0.0 P2 0.0 G2	2R 2	0054-Sha : 90.0 :0.0230 STATUS	Р5 G3	: 400	0.0 PZ 70 G4	20	: 0.	001 5.4 .80		
RUN NO	•	2	т2									
		GROWTH		BIOMASS				P N	STR			
DATE RSTG	AGE	STAGE		kg/ha	LAI	NUM	kg/ha	a %	н2о	Ν	Р1	Р2
 7 JUL		Transp	olant		0.11	 5.0	2	4.6	0.00	0.00	0.00	0.00
1 7 JUL	0	Start	Sim	53	0.11	5.0	2	4.6	0.00	0.00	0.00	0.00
1 1 AUG	25	End Ju	uveni	831	1.16	11.0	27	3.2	0.00	0.00	0.00	0.00
2 7 AUG	31	Pan Ir	nit	1778	1.96	12.0	55	3.1	0.00	0.02	0.00	0.00
3 6 SEP	61	Headir	ng	8248	4.89	17.0	133	1.6	0.00	0.01	0.00	0.00

7 AUG	31 Pan Init	1778	1.96	12.0	55	3.1	0.00	0.02	0.00	0.00
5 6 SEP 4	61 Heading	8248	4.89	17.0	133	1.6	0.00	0.01	0.00	0.00
11 SEP	66 Beg Gr Fil	9193	4.50	17.0	139	1.5	0.00	0.01	0.00	0.00
28 SEP	83 End Mn Fil	12296	3.15	17.0	147	1.2	0.00	0.09	0.00	0.00
2 OCT	87 End Ti Fil	12359	2.91	17.0	147	1.2	0.00	0.33	0.00	0.00
3 OCT	88 Maturity	12359	2.91	17.0	147	1.2	0.00	0.00	0.00	0.00
20 3 ост	88 Harvest	12359	2.91	17.0	147	1.2	0.00	0.00	0.00	0.00

2	Λ
2	υ

*MAIN GROWTH AND DEVELOPMENT VARIABLES

0	VARIABLE	SIMULATED	MEASURED
	Panicle Initiation day (dap)	31	-99
	Anthesis day (dap)	61	-99
	Physiological maturity day (dap)	88	-99
	Yield at harvest maturity (kg [dm]/ha)	7017	-99
	Unit wt at maturity (g [dm]/unit)	0.0231	-99
	NUMDER AT MATURITY (NO/M2)	30323	-99
	Pod_or panicle number (no/m2)	296.90	-99
	Leaf area index, maximum	4.97	-99
	Tops weight at anthesis (kg [dm]/ha)	8067	-99
	Tops N at anthesis (kg/ha)	134	-99
	Tops weight at maturity (kg [dm]/ha)	12359	-99
	By-product produced (stalk) at maturity (kg[dm]/h	a 5341	-99
	Harvest index at maturity	0.568	-99
	Leaf number per stem at maturity	17	-99
	Grain N at maturity (kg/ha)	106	-99
	Tops N at maturity (kg/ha)	147	-99
	Stem N at maturity (kg/ha)	41	-99
	Grain N at maturity (%)	1.51	-99

***ENVIRONMENTAL AND STRESS FACTORS**

l----Development Phase-----|-----Stress---------| -----Average-----|---Cumulative--| (0=Min, 1=Max Stress) Т Time Temp Temp Solar Photop Evapo |----Water---|--Nitrogen--|--Phosphorus-| Rad [day] Span Max Min Rain Trans Photo Photo Photo days ØC ØC MJ/m2 hr mm mm synth Growth synth Growth synth Growth _____ Emergence-End Juvenile2533.726.020.313.68441.0121.90.0000.0000.0000.0000.0000.0000.00013.3954.832.20.000End Juvenil-Panicl Init634.025.420.113.3954.832.20.0000.0000.0000.0000.0000.00012.93428.1163.30.000Panicl Init-End Lf Grow3034.525.321.012.93428.1163.30.0000.0000.0000.0000.0000.0000.00012.4210.619.60.000Grain Filling Phase2135.925.120.012.0217.8113.50.0000.0000.0780.1410.0000.0000.00012.0217.8113.50.000 88 34.5 25.5 20.1 12.91 952.3 454.3 0.000 Planting to Harvest 0.000 0.019 0.037 0.000 0.000 _____ _____ _____ _____ *Water Productivity Growing season length: 88 days 952.3 mm[rain] 1.30 kg[DM]/m3[rain] Precipitation during growth season Dry Matter Productivity =

19 OVERVIEW 2011.OUT						
13.0 kg[DM]/ha per mm[rain] Yield Productivity 0.74 kg[grain yield]/m3[rain] = 7.4 kg[yield]/ha per mm[rain]						
Evapotranspiration during growth season 454.3 mm[ET] Dry Matter Productivity 2.72 kg[DM]/m3[ET] = 27.2 kg[DM]/ha per mm[ET]						
Yield Productivity 1.54 kg[grain yield]/m3[ET] = 15.4 kg[yield]/ha per mm[ET]						
Transpiration during growth season 289.3 mm[EP] Dry Matter Productivity 4.27 kg[DM]/m3[EP] = 42.7 kg[DM]/ha per mm[EP]						
Yield Productivity 2.43 kg[grain yield]/m3[EP] = 24.3 kg[yield]/ha per mm[EP]						
Rice YIELD : 7017 kg/ha [Dry weight]						

*DSSAT Cropping System Model Ver. 4.5.0.030 SEP 01, 2015; 11:22:36						
<pre>*RUN 3 : T3 MODEL : RICER045 - Rice EXPERIMENT : IITP1101 RI IITP1001RI IITR1001RI IITR, ROORKEE, RICE EXPERIME TREATMENT 3 : T3</pre>						
CROP : Rice CULTIVAR : Sharbati1 ECOTYPE :IB0001						
STARTING DATE : JUL 7 1911 PLANTING DATE : JUL 7 1911 PLANTS/m2 : 33.0 ROW SPACING : 20.cm						
WEATHER : WRDM 1911 SOIL : IITR791201 TEXTURE : SL - Dhanauri						
SOIL INITIAL C : DEPTH:120cm EXTR. H20:127.2mm NO3:139.1kg/ha NH4: 15.8kg/ha WATER BALANCE : IRRIGATE ON REPORTED DATE(S)						
IRRIGATION : 250 mm IN 4 APPLICATIONS NITROGEN BAL. : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION						
NITROGEN BAL. : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION						
N-FERTILIZER : 90 kg/ha IN 5 APPLICATIONS						
N-FERTILIZER : 90 kg/ha IN 5 APPLICATIONS RESIDUE/MANURE : INITIAL : 500 kg/ha ; 0 kg/ha IN 1 APPLICATIONS ENVIRONM. OPT. : DAYL= A 0.00 SRAD= A 0.00 TMAX= A 0.00 TMIN= A 0.00 RAIN= A 0.00 CO2 = R 321.0 DEW =A 0.00 WIND=A 0.00						
N-FERTILIZER : 90 kg/ha IN 5 APPLICATIONS RESIDUE/MANURE : INITIAL : 500 kg/ha ; 0 kg/ha IN 1 APPLICATIONS ENVIRONM. OPT. : DAYL= A 0.00 SRAD= A 0.00 TMAX= A 0.00 TMIN= A 0.00 RAIN= A 0.00 CO2 = R 321.0 DEW =A 0.00 WIND=A 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N PHOTO :C ET :R INFIL:S HYDROL :R SOM :G CO2 :D NSWIT :1 EVAP :R SOIL :2						
N-FERTILIZER : 90 kg/ha IN 5 APPLICATIONS RESIDUE/MANURE : INITIAL : 500 kg/ha ; 0 kg/ha IN 1 APPLICATIONS ENVIRONM. OPT. : DAYL= A 0.00 SRAD= A 0.00 TMAX= A 0.00 TMIN= A 0.00 RAIN= A 0.00 CO2 = R 321.0 DEW =A 0.00 WIND=A 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N PHOTO :C ET :R INFIL:S HYDROL :R SOM :G						
N-FERTILIZER : 90 kg/ha IN 5 APPLICATIONS RESIDUE/MANURE : INITIAL : 500 kg/ha ; 0 kg/ha IN 1 APPLICATIONS ENVIRONM. OPT. : DAYL= A 0.00 SRAD= A 0.00 TMAX= A 0.00 TMIN= A 0.00 RAIN= A 0.00 CO2 = R 321.0 DEW =A 0.00 WIND=A 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N PHOTO :C ET :R INFIL:S HYDROL :R SOM :G CO2 :D NSWIT :1 EVAP :R SOIL :2 MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M						
N-FERTILIZER : 90 kg/ha IN 5 APPLICATIONS RESIDUE/MANURE : INITIAL : 500 kg/ha ; 0 kg/ha IN 1 APPLICATIONS ENVIRONM. OPT. : DAYL= A 0.00 SRAD= A 0.00 TMAX= A 0.00 TMIN= A 0.00 RAIN= A 0.00 CO2 = R 321.0 DEW =A 0.00 WIND=A 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N PHOTO :C ET :R INFIL:S HYDROL :R SOM :G CO2 :D NSWIT :1 EVAP :R SOIL :2 MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WEATHER :M TILLAGE :N *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS SOIL LOWER UPPER SAT EXTR INIT ROOT BULK PH NO3 NH4 ORG DEPTH LIMIT LIMIT SW SW SW DIST DENS C						
<pre>N-FERTILIZER : 90 kg/ha IN 5 APPLICATIONS RESIDUE/MANURE : INITIAL : 500 kg/ha ; 0 kg/ha IN 1 APPLICATIONS ENVIRONM. OPT. : DAYL= A 0.00 SRAD= A 0.00 TMAX= A 0.00 TMIN= A 0.00 RAIN= A 0.00 CO2 = R 321.0 DEW =A 0.00 WIND=A 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N PHOTO :C ET :R INFIL:S HYDROL :R SOM :G CO2 :D NSWIT :1 EVAP :R SOIL :2 MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WEATHER :M TILLAGE :N *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS SOIL LOWER UPPER SAT EXTR INIT ROOT BULK pH NO3 NH4 ORG DEPTH LIMIT LIMIT SW SW SW DIST DENS C cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g %</pre>						
N-FERTILIZER : 90 kg/ha IN 5 APPLICATIONS RESIDUE/MANURE : INITIAL : 500 kg/ha ; 0 kg/ha IN 1 APPLICATIONS ENVIRONM. OPT. : DAYL= A 0.00 SRAD= A 0.00 TMAX= A 0.00 TMIN= A 0.00 RAIN= A 0.00 CO2 = R 321.0 DEW = A 0.00 WIND=A 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N PHOTO :C ET :R INFIL:S HYDROL :R SOM :G CO2 :D NSWIT :1 EVAP :R SOIL :2 MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WEATHER :M TILLAGE :N *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS SOIL LOWER UPPER SAT EXTR INIT ROOT BULK PH NO3 NH4 ORG CM cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g % 						
N-FERTILIZER : 90 kg/ha IN 5 APPLICATIONS RESIDUE/MANURE : INITIAL : 500 kg/ha ; 0 kg/ha IN 1 APPLICATIONS ENVIRONM. OPT. : DAYL= A 0.00 SRAD= A 0.00 TMAX= A 0.00 TMIN= A 0.00 RAIN= A 0.00 CO2 = R 321.0 DEW =A 0.00 WIND=A 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N PHOTO :C ET :R INFIL:S HYDROL :R SOM :G CO2 :D NSWIT :1 EVAP :R SOIL :2 MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:M WEATHER :M TILLAGE :N *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS SOIL LOWER UPPER SAT EXTR INIT ROOT BULK PH NO3 NH4 ORG DEPTH LIMIT LIMIT SW SW SW DIST DENS Cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g % - 5 0.121 0.224 0.414 0.103 0.115 1.00 1.47 7.80 7.90 0.90 0.60						

 19 OVERVIEW 2011.OUT

 90-120 0.082 0.195 0.419 0.113 0.102
 0.12
 1.42
 7.80
 7.90
 0.90
 0.01

 TOT-120 12.1 24.8 49.4 12.7 13.0 <--cm</td>
 - kg/ha-->
 139.1 15.8 40296

 SOIL ALBEDO
 : 0.13
 EVAPORATION LIMIT
 6.00
 MIN. FACTOR
 : 1.00

 RUNOFF CURVE # :73.00
 DRAINAGE RATE
 : 0.40
 FERT. FACTOR
 : 1.00

 Rice
 CULTIVAR :IB0054-Sharbati1
 ECOTYPE :IB0001

 P1
 : 780.0 P2R
 : 90.0 P5
 : 400.0 P20
 : 15.4

 G1
 : 60.0 G2
 : 0.0230 G3
 : 0.70 G4
 : 0.80

 *SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES

RUN NO. 3 T3

		CROP	GROWTH	BIOMASS		LEAF	CROP N		STRESS		STRESS	
	DATE	AGE	STAGE	kg/ha	LAI	NUM	kg/h	a %	н2о	Ν	Р1	Р2
RSTO	J 											
7 1 7 1 2 7 3 5 4 1 1 5 2 8 5 2 6 3 20 3 20	JUL	0	Transplant	53	0.11	5.0	2	4.6	0.00	0.00	0.00	0.00
	JUL	0	Start Sim	53	0.11	5.0	2	4.6	0.00	0.00	0.00	0.00
	AUG	25	End Juveni	873	1.22	11.0	28	3.2	0.00	0.00	0.00	0.00
	AUG	31	Pan Init	2043	2.22	12.0	63	3.1	0.00	0.02	0.00	0.00
	SEP	60	Heading	9361	5.05	17.0	150	1.6	0.00	0.06	0.00	0.00
	SEP	66	Beg Gr Fil	10658	4.50	17.0	152	1.4	0.00	0.05	0.00	0.00
	SEP	83	End Mn Fil	13715	2.95	17.0	155	1.1	0.00	0.24	0.00	0.00
	ост	87	End Ti Fil	13859	2.67	17.0	157	1.1	0.00	0.52	0.00	0.00
	ост	88	Maturity	13859	2.67	17.0	157	1.1	0.00	0.00	0.00	0.00
	ост	88	Harvest	13859	2.67	17.0	157	1.1	0.00	0.00	0.00	0.00

*MAIN GROWTH AND DEVELOPMENT VARIABLES

0	VARIABLE S	IMULATED	MEASURED
	Panicle Initiation day (dap)	31	-99
	Anthesis day (dap)	60	-99
	Physiological maturity day (dap)	88	-99
	Yield at harvest maturity (kg [dm]/ha)	7948	-99
	Unit wt at maturity (g [dm]/unit)	0.0232	-99
	Number at maturity (no/m2)	34220	-99
	Pod or panicle number (no/m2)	302.79	-99
	Leaf area index, maximum	5.14	-99
	Tops weight at anthesis (kg [dm]/ha)	9155	-99
	Tops N at anthesis (kg/ha)	149	-99
	Tops weight at maturity (kg [dm]/ha)	13859	-99
	By-product produced (stalk) at maturity (kg[dm]/ha	5911	-99
	Harvest index at maturity	0.573	-99
	Leaf number per stem at maturity	17	-99
	Grain N at maturity (kg/ha)	121	-99
	Tops N at maturity (kg/ha)	157	-99
	Stem N at maturity (kg/ha)	36	-99
	Grain N at maturity (%)	1.52	-99

19 OVERVIEW 2011.OUT

***ENVIRONMENTAL AND STRESS FACTORS**

|----Development Phase-----|-----Stress---------| |-----Average-----|---Cumulative--| (0=Min, 1=Max Stress) Time Temp Temp Solar Photop Evapo |----Water---|--Nitrogen--|--Phosphorus-| Span Max Min Rad [day] Rain Trans Photo Photo Photo days øC øC MJ/m2 hr mm mm synth Growth synth Growth synth Growth _____ -----Emergence-End Juvenile2533.726.020.313.68441.0120.70.0000.0000.0000.0000.0000.0000.00013.3954.831.50.000End Juvenil-Panicl Init634.025.420.113.3954.831.50.0000.0000.0000.0000.0000.00012.94428.1156.40.000Panicl Init-End Lf Grow2934.525.320.912.94428.1156.40.0000.0000.0000.0000.0000.0000.0000.0000.0000.000End Lf Grth-Beg Grn Fil633.824.716.812.4410.624.00.0000.0000.0000.0000.0000.0000.00012.0217.8111.50.0000.0000.2000.3060.0000.0000.00012.0217.8111.50.000 Planting to Harvest 88 34.5 25.5 20.1 12.91 952.3 447.6 0.000 0.000 0.048 0.095 0.000 0.000 _____ ------*Water Productivity Growing season length: 88 days Precipitation during growth season Dry Matter Productivity 14.6 kg[DM]/ha per mm[rain] Yield Productivity 8.3 kg[yield]/ha per mm[rain] 952.3 mm[rain] 1.46 kg[DM]/m 0.83 kg[grain 1.46 kg[DM]/m3[rain] 0.83 kg[grain yield]/m3[rain] = Evapotranspiration during growth season 447.6 mm[ET] Dry Matter Productivity 3.10 kg[DM]/m3[ET] = 31.0 kg[DM]/ha per mm[ET][^] Yield Productivity 1.78 kg[grain yield]/m3[ET] = 17.8 kg[yield]/ha per mm[ET] Transpiration during growth season Dry Matter Productivity 288.4 mm[EP] 4.81 kg[DM]/m3[EP] 48.1 kg[DM]/ha per mm[EP] Yield Productivity 2.76 kg[grain yield]/m3[EP] 27.6 kg[yield]/ha per mm[EP] _____ Rice YIELD : 7948 kg/ha [Dry weight] ***** *DSSAT Cropping System Model Ver. 4.5.0.030 SEP 01, 2015; 11:22:36

19 OVERVIEW 2011.OUT

*RUN 4 : MODEL : EXPERIMENT : TREATMENT 4 :	T4 RICER045 - Rice IITP1101 RI IIT T4	P1001RI IITR	1001RI IIT	R, ROORKEE,	RICE EXPERIME						
SOIL :	JUL 7 1911 JUL 7 1911 WRDM 1911 IITR791201 DEPTH:120cm EXT IRRIGATE ON REP 250 mm IN SOIL-N & N-UPTA 90 kg/ha INITIAL : 500 DAYL= A 0.00 RAIN= A 0.00 WATER :Y NIT PHOTO :C ET CO2 :D NSW PLANTING:R IRR	PORTED DATE(S 4 APPLICA KE SIMULATIO IN 5 APP kg/ha; SRAD= A 0.0 CO2 = R 735. ROGEN:Y N-F :R INF (IT :1 EVA	33.0 R - Dhan mm NO3:13) TIONS N; NO N-FI LICATIONS 0 kg/ha 0 TMAX= A 0 DEW =A IX:N PHOS IL:S HYDR P:R SOIL	OW SPACING : auri 9.1kg/ha NH XATION IN 1 AP 0.00 TMIN 0.00 WIND= PH :N PESTS OL :R SOM	20.cm 14: 15.8kg/ha PLICATIONS 1= A 0.00 A 0.00 5 :N :G						
*SUMMARY OF SOIL SOIL LOWER UPF DEPTH LIMIT LIM cm cm3/cm3	ER SAT EXTR	INIT ROOT SW DIST	BULK DENS g/cm3	pH NO3 ugN/g	С						
0- 5 0.121 0.2 5- 15 0.121 0.2 15- 30 0.121 0.2 30- 45 0.104 0.2 45- 60 0.104 0.2	24 0.414 0.103 0 24 0.414 0.103 0 24 0.414 0.103 0 24 0.414 0.103 0 08 0.406 0.104 0 08 0.406 0.104 0 01 0.407 0.104 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.47 7 1.47 7 1.47 7 1.47 7 1.49 7 1.49 7 1.49 7	.80 7.90 .80 7.90 .80 7.90 .80 7.90 .80 7.90 .80 7.90 .80 7.90 .80 7.90	0.90 0.60 0.90 0.60 0.90 0.60 0.90 0.20 0.90 0.20 0.90 0.20 0.90 0.10 0.90 0.01						
TOT-120 12.1 24 SOIL ALBEDO : RUNOFF CURVE # :7	.8 49.4 12.7 0.13 EVAPOR 3.00 DRAINA	13.0 <cm RATION LIMIT NGE RATE</cm 	- kg/ha : 6.00 : 0.40	> 139.1 MIN. FA FERT. F	15.8 40296 CTOR : 1.00 ACTOR : 1.00						
Rice CULTIVAR :IB0054-Sharbati1 ECOTYPE :IB0001 P1 : 780.0 P2R : 90.0 P5 : 400.0 P20 : 15.4 G1 : 60.0 G2 : 0.0230 G3 : 0.70 G4 : 0.80 *SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES											
RUN NO. 4											
	TH BIOMASS										
RSTG	E kg/ha 	LAI NUM	kg/ha % 	H2O N	P1 P2						
	splant 53	0.11 5.0	2 4.6	0.00 0.00	0.00 0.00						
	t Sim 53	0.11 5.0	2 4.6	0.00 0.00	0.00 0.00						
1 1 AUG 25 End 2	Juveni 946	1.33 11.0	31 3.2	0.00 0.00	0.00 0.00						

		19	OVERV3	CEW 201	L1.0UT	г				
7 AUG 3	31 Pan Init	2291	2.47	12.0	70	3.1	0.00	0.02	0.00	0.00
5 SEP 4	60 Heading	10206	4.73	17.0	153	1.5	0.00	0.16	0.00	0.00
11 SEP 5	66 Beg Gr Fil	11503	4.19	17.0	156	1.4	0.00	0.27	0.00	0.00
28 SEP	83 End Mn Fil	14265	2.32	17.0	161	1.1	0.00	0.40	0.00	0.00
30 SEP 6	85 End Ti Fil	14337	2.21	17.0	162	1.1	0.00	0.38	0.00	0.00
1 ост 20	86 Maturity	14337	2.21	17.0	162	1.1	0.00	0.00	0.00	0.00
1 ост 20	86 Harvest	14337	2.21	17.0	162	1.1	0.00	0.00	0.00	0.00

*MAIN GROWTH AND DEVELOPMENT VARIABLES

0	VARIABLE S	IMULATED	MEASURED
	Panicle Initiation day (dap)	31	-99
	Anthesis day (dap)	60	-99
	Physiological maturity day (dap)	86	-99
	Yield at harvest maturity (kg [dm]/ha)	8207	-99
	Unit wt at maturity (g [dm]/ǘnït) (0.0230	-99
	Number at maturity (no/m2)	35681	-99
	Pod or panicle number (no/m2)	314.91	-99
	Leaf area index, maximum	5.17	-99
	Tops weight at anthesis (kg [dm]/ha)	9934	-99
	Tops N at anthesis (kg/ha)	153	-99
	Tops weight at maturity (kg [dm]/ha)	14337	-99
	By-product produced (stalk) at maturity (kg[dm]/ha	6130	-99
	Harvest index at maturity	0.572	-99
	Leaf number per stem at maturity	17	-99
	Grain N at maturity (kg/ha)	125	-99
	Tops N at maturity (kg/ha)	162	-99
	Stem N at maturity (kg/ha)	36	-99
	Grain N at maturity (%)	1.53	-99

***ENVIRONMENTAL AND STRESS FACTORS**

|----Development -----Environment------|-------Stress------Phase----|-----| -----Cumulative--| (0=Min, 1=Max Stress) Temp Temp Solar Photop Time Evapo |----Water---|--Nitrogen--|--Phosphorus-| Min Rad [day] Photo Span Max Rain Trans Photo Photo days ØC øC MJ/m2 hr mm mm synth Growth synth Growth synth Growth ------_____ ____ Emergence-End Juvenile 25 33.7 0.000 0.000 0.000 0.000 0.000 26.0 20.3 13.68 441.0 119.2 0.000 6 34.0 End Juvenil-Panicl Init 25.4 20.1 13.39 54.8 30.6 0.000 0.000 0.000 0.019 0.000 0.000 Panicl Init-End Lf Grow 29 34.5 25.3 20.9 12.94 428.1 154.9 0.000 0.000 0.033 0.152 0.000 0.000 End Lf Grth-Beg Grn Fil 6 33. 0.000 0.000 0.218 0.000 0.000 6 33.8 24.7 16.8 12.44 10.6 23.7 0.000

19 OVERVIEW 2011.OUT Grain Filling Phase 19 35.8 25.2 20.1 12.05 17.8 102.4 0.000 0.000 0.305 0.424 0.000 0.000 Planting to Harvest 86 34.5 25.4 20.2 12.94 952.3 435.4 0.000 0.000 0.079 0.161 0.000 0.000 _____ -----*Water Productivity Growing season length: 86 days Precipitation during growth season952.3 mm[rain]Dry Matter Productivity1.51 kg[DM]/m15.1 kg[DM]/ha per mm[rain]0.86 kg[grain 1.51 kg[DM]/m3[rain] 0.86 kg[grain yield]/m3[rain] = 8.6 kg[yield]/ha per mm[rain] Evapotranspiration during growth season Dry Matter Productivity 32.9 kg[DM]/ha per mm[ET] Yield Productivity 18.8 kg[yield]/ha per mm[ET] 435.4 mm[ET] 3.29 kg[DM]/m3[ET] 1.88 kg[grain yield = 1.88 kg[grain yield]/m3[ET] = Transpiration during growth season Dry Matter Productivity 51.1 kg[DM]/ha per mm[EP] Yield Productivity 280.5 mm[EP] 5.11 kg[DM]/m3[EP] = 2.93 kg[grain yield]/m3[EP] = 29.3 kg[yield]/ha per mm[EP] _____ Rice YIELD : 8207 kg/ha [Dry weight] *****

20 OVERVIEW 2012.OUT

APPENDIX III OVERVIEW FILE GENERATED FOR VALIDATION OF DSSAT CERES RICE MODEL USING KHARIF 2012

FIELD EXPERIMENT DATA

AUG 29, 2015; 03:16:21 *DSSAT Cropping System Model Ver. 4.5.0.030 *RUN : то 2012 1 : RICER045 - Rice MODEL EXPERIMENT : IITR7901 RI IITR1001RI IITR, ROORKEE, RICE EXPERIMENT, 2010 TREATMENT 1 : TO 2012 CROP : Rice CULTIVAR : Sharbati ECOTYPE :IB0001 JUL 20 1911 JUL 20 1911 STARTING DATE : PLANTS/m2 : 25.0 PLANTING DATE ROW SPACING : 20.cm . WEATHER : RCM1 1911 IITR791201 TEXTURE : SL SOIL - Dhanauri SOIL INITIAL C : DEPTH:120cm EXTR. H20:127.2mm NO3:186.7kg/ha NH4: 21.1kg/ha WATER BALANCE : IRRIGATE ON REPORTED DATE(S) IRRIGATION : 350 mm IN 7 APPLICATIONS SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION NITROGEN BAL. : 100 kg/ha IN N-FERTILIZER : **4** APPLICATIONS RESIDUE/MANURE : INITIAL : 50 kg/ha ; 0 kg/ha IN ENVIRONM. OPT. : DAYL= A 0.00 SRAD= A 0.00 TMAX= A 0.00 RAIN= A 0.00 CO2 = R 352.0 DEW =A 0.00 **1** APPLICATIONS TMAX= A 0.00 $\mathsf{TMIN} = \mathsf{A} \quad \mathbf{0.00}$ WIND=A 0.00 SIMULATION OPT : WATER NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N :Y INFIL:S рното :C EΤ :R HYDROL :R SOM :G EVAP :R :2 C02 NSWIT :1 SOIL :D FERT :R MANAGEMENT OPT : PLANTING:R IRRIG :R **RESIDUE:**R HARVEST:M WEATHER :M TILLAGE :N *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS

	LOWER UPPE LIMIT LIMI cm3/cm3	г SW	SW	INIT SW 3/cm3	ROOT DIST	BULK DENS g/cm3	рН	NO3 ugN/g	NH4 ugN/g	ORG C %
5- 15 15- 30 30- 45 45- 60 60- 90	0.121 0.22 0.121 0.22 0.121 0.22 0.104 0.20 0.104 0.20 0.104 0.20 0.097 0.20 0.082 0.19	4 0.414 4 0.414 8 0.406 8 0.406 1 0.407	0.103 0.103 0.104 0.104 0.104	0.210 0.206 0.206 0.198 0.197	1.00 1.00 1.00 0.41 0.41 0.22 0.12		7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80	$\begin{array}{c} 10.60\\ 10.60\\ 10.60\\ 10.60\\ 10.60\\ 10.60\\ 10.60\\ 10.60\\ 10.60\end{array}$	1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	0.60 0.60 0.20 0.20 0.20 0.10 0.01
SOIL AL RUNOFF Rice	12.1 24.3 BEDO : 0 CURVE # :73	.13 .00 AR :IB00	EVAPO DRAIN 54-Sha	RATION AGE RA	LIMIT TE	: 6.00 : 0.40 ECOTY	PE :IB	MIN. F. FERT.	ACTOR	: 1.00
P1 G1		2 :0	.0230	G3	: 0.7		:			

*SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES

RUN NO. 2 TO 2012

20 OVERVIEW 2012.OUT

	CROP	GROWTH	BIOMASS		LEAF	CROP N		STRESS		STRESS	
DATE RSTG	AGE	STAGE	kg/ha	LAI	NUM	kg/h	a %	н2о	N	Р1	Р2
19 JUL	0	Transplant	40	0.08	5.0	2	4.7	0.00	0.00	0.00	0.00
19 JUL	0	Start Sim	40	0.08	5.0	2	4.7	0.00	0.00	0.00	0.00
	23	End Juveni	328	0.49	10.0	11	3.3	0.00	0.00	0.00	0.00
18 AUG	30	Pan Init	900	0.99	12.0	28	3.1	0.00	0.02	0.00	0.00
20 SEP	63	Heading	6327	3.71	16.0	103	1.6	0.00	0.00	0.00	0.00
27 SEP	70	Beg Gr Fil	7743	3.30	16.0	107	1.4	0.00	0.00	0.00	0.00
16 ост	89	End Mn Fil	10629	2.17	16.0	120	1.1	0.00	0.00	0.00	0.00
17 ост	90	End Ti Fil	10629	2.17	16.0	120	1.1	0.00	0.00	0.00	0.00
6 18 ост 20	91	Maturity	10629	2.17	16.0	120	1.1	0.00	0.00	0.00	0.00
20 18 ост 20	91	Harvest	10629	2.17	16.0	120	1.1	0.00	0.00	0.00	0.00

*MAIN GROWTH AND DEVELOPMENT VARIABLES

@VARIABLESI	IMULATED	MEASURED
Panicle Initiation day (dap) Anthesis day (dap) Physiological maturity day (dap) Yield at harvest maturity (kg [dm]/ha) Unit wt at maturity (g [dm]/unit) Number at maturity (no/m2) Pod or panicle number (no/m2) Leaf area index, maximum Tops weight at anthesis (kg [dm]/ha) Tops N at anthesis (kg/ha) Tops weight at maturity (kg [dm]/ha) By-product produced (stalk) at maturity (kg[dm]/ha Harvest index at maturity Leaf number per stem at maturity Grain N at maturity (kg/ha) Tops N at maturity (kg/ha) Stem N at maturity (kg/ha) Grain N at maturity (kg/ha) Grain N at maturity (kg/ha)	30 63 91 4685 0.0231 20280 137.02 3.72 6120 102 10629	 -99 -99 -99 -99 -99 -99 -99 -99 -

*ENVIRONMENTAL AND STRESS FACTORS

		_		20) OVERVI	EW	2012.0	UT				
Growth		Grow	th sy	days nth Grow	øC th	øC				mm		
Emerge	ence-En	d Juv	enile	23 3	0.4 25	.3	16.7	13.47	190.6	88.7	0.000	
End Ju	venil-	Panic	l Init	0.00	2.0 25	.0	19.3	13.11	24.2	33.8	0.000	
Panicl	0.000 Init-		f Grow	$\begin{array}{cccc} & 0 & 0 & 0 \\ & 33 & 3 \\ & 0 & 0 & 00 \\ & 7 & 3 \\ & 0 & 0 & 0 \end{array}$	0.5 24	. 8	15.9	12.54	355.7	133.8	0.000	
	Grth-	Beg G	rn Fil		1.4 21	.9	19.9	11.93	3.8	34.4	0.000	
Grain 0.000	0.000 Fillin 0.000	g Pha: 0.00	se 0 0.00	00 0.00 20 3 00 0.00	0 1.6 19 0	. 8	19.4	11.52	0.0	92.6	0.000	
Planti 0.000	ng to 0.000	Harve: 0.00	st 1 0.00	$\begin{array}{ccc} 91 & 3\\ 0 & 0.00 \end{array}$	0.9 23 0							
*Water Growin	Produc Ig seas	tivit on le	y ngth:	91 days								
				owth sea ty	son		574.3 1.85	mm[rai kg[DM]	n] /m3[rai	n]	=	
18.5 kg Yiel 8.2 kg[d Prod	uctiv	ity				0.82	kg[gra	in yiel	d]/m3[r	ain] =	
Drv	Matter	Prod	uctivi	ng growt ty	h seaso	n	387.6 2.74	mm[ET] kg[DM]	/m3[ET]		=	
27.4 kg Yiel 12.1 kg	d Prod	uctiv	ity	J						d]/m3[E	T] =	
Transp Dry	oiratio Matter	n dur Prod	ing gro	owth sea ty	son		228.0 4.66	mm[EP] kg[DM]	/m3[EP]		=	
46.6 kg Yiel	[DM]/h d Prod	a per uctiv	mm[EP] ity]				-		d]/m3[E		
20.5 kg	[yield]]/ha	per mm	[EP]				0-0	-		-	
			Ri	ce YIELD	:	468	5 kg/ha	a [D	ry weig	ht]		
******				******	*****	* * *	*****	*****	****	*****	*****	****
*DSSAT	Croppi	ng Sy:	stem M	odel Ver	. 4.5.0	.03	0		AUG	29, 201	5; 03:1	6:21
MODEL EXPERI		:	IITR79	45 - Ric 01 RI II	e TR1001R	II	ITR, R	OORKEE,	RICE E	XPERIME	NT, 201	0
			Rice	1011	CULT	IVA	R : Sha	arbati		ЕСОТҮР	Е :ІВОО	01
STARTI PLANTI WEATHE	NG DAT NG DAT R	Е : 3	JUL 20 JUL 20 RCM1	1911 1911 1911	PLANTS	/m2	25.0) R	OW SPAC	ING :	20.cm	

20 OVERVIEW 2012.OUT SOIL : IITR791201 TEXTURE : SL - Dhanauri SOIL INITIAL C : DEPTH:120cm EXTR. H20:127.2mm NO3:186.7kg/ha NH4: 21.1kg/ha WATER BALANCE : IRRIGATE ON REPORTED DATE(S) IRRIGATION : 350 mm IN 7 APPLICATIONS NITROGEN BAL. : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION N-FERTILIZER : 100 kg/ha IN 4 APPLICATIONS											
RESIDUE/MANURE : INITIAL :50 kg/ha ;0 kg/ha IN1 APPLICATIONSENVIRONM. OPT. :DAYL= A 0.00 SRAD= A 0.00 TMAX= A 0.00 TMIN= A 0.00RAIN= A 0.00 CO2 = R 328.0 DEW =A 0.00 WIND=A 0.00SIMULATION OPT :WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :NPHOTO :C ET :R INFIL:S HYDROL :R SOM :GCO2 :D NSWIT :1 EVAP :R SOIL :2MANAGEMENT OPT :PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:MWEATHER :M TILLAGE :N											
*SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS											
SOIL LOWER UPPERSATEXTRINITROOTBULKpHNO3NH4ORGDEPTHLIMITLIMITSWSWDISTDENSCcmcm3/cm3cm3/cm3g/cm3ugN/gugN/g%											
0-50.1210.2240.4140.1030.2101.001.477.8010.601.200.605-150.1210.2240.4140.1030.2101.001.477.8010.601.200.6015-300.1210.2240.4140.1030.2061.001.477.8010.601.200.6030-450.1040.2080.4060.1040.2060.411.497.8010.601.200.2045-600.1040.2080.4060.1040.1980.411.497.8010.601.200.2060-900.0970.2010.4070.1040.1970.221.497.8010.601.200.1090-1200.0820.1950.4190.1130.2030.121.427.8010.601.200.01											
TOT-12012.124.849.412.724.3 <cm< th="">-kg/ha>186.721.140296SOIL ALBEDO:0.13EVAPORATION LIMIT:6.00MIN. FACTOR:1.00RUNOFF CURVE #:73.00DRAINAGE RATE:0.40FERT. FACTOR:1.00</cm<>											
Rice CULTIVAR :IB0054-Sharbati1 ECOTYPE :IB0001 P1 : 780.0 P2R : 90.0 P5 : 400.0 P20 : 15.4 G1 : 60.0 G2 :0.0230 G3 : 0.70 G4 : 0.80 *SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES RUN NO. 4 T1 2012											

	CROP	GROWTH	BIOMASS		LEAF CROP N		STRESS		STRESS		
DATE RSTG	AGE	STAGE	kg/ha	LAI	NUM	kg/h	a %	н2о	N	Р1	Р2
19 JUL	0	Transplant	40	0.08	5.0	2	4.7	0.00	0.00	0.00	0.00
19 JUL	0	Start Sim	40	0.08	5.0	2	4.7	0.00	0.00	0.00	0.00
	23	End Juveni	381	0.56	10.0	12	3.3	0.00	0.00	0.00	0.00
	30	Pan Init	1065	1.17	12.0	33	3.1	0.00	0.02	0.00	0.00
20 SEP	63	Heading	7733	4.48	16.0	126	1.6	0.00	0.00	0.00	0.00
27 SEP	70	Beg Gr Fil	9456	3.98	16.0	132	1.4	0.00	0.00	0.00	0.00
16 ост	89	End Mn Fil	12530	2.62	16.0	142	1.1	0.00	0.00	0.00	0.00
17 ост 6	90	End Ti Fil	12530	2.62	16.0	142	1.1	0.00	0.00	0.00	0.00

20
20
20
20OVERVIEW 2012.OUT
2.62
16.0110.000.000.000.0018
20OCT91
Harvest125302.6216.01421.10.000.000.000.0018
20OCT91
Harvest125302.6216.01421.10.000.000.000.00

*MAIN GROWTH AND DEVELOPMENT VARIABLES

0	VARIABLE				SIMULAT		MEASURED			
	Panicle Initiation day (dap)30Anthesis day (dap)63Physiological maturity day (dap)91Yield at harvest maturity (kg [dm]/ha)5718Unit wt at maturity (g [dm]/unit)0.0231Number at maturity (no/m2)24753Pod or panicle number (no/m2)148.02Leaf area index, maximum4.48Tops weight at anthesis (kg [dm]/ha)747Tops N at anthesis (kg/ha)124Tops weight at maturity (kg [dm]/ha)12530By-product produced (stalk) at maturity (kg[dm]/ha6812Harvest index at maturity0.456Leaf number per stem at maturity16Grain N at maturity (kg/ha)142Stem N at maturity (kg/ha)55Grain N at maturity (%)1.52									
*ENVIR	*ENVIRONMENTAL AND STRESS FACTORS									
Development Phase Stress Average Cumulative										
(O=Min	a, 1=Max Stress) , 1=Max Stress) Time Temp /ater Nitrogen Phosph Span Max	Ave	erage	-	Cumu I	ative				
w	Time Temp ater Nitrogen Phosph	orus-	Solar	Photop		Evapo				
	to Photo			[[[]]]	Rain	i i allo				
	days øC synth Growth synth Growth	ØC	MJ/m2	hr	mm	mm	synth			
0.000	ence-End Juvenile 23 30.4 0.000 0.000 0.000 0.000									
End J	uvenil-Panicl Init 7 32.0 0.000 0.016 0.000 0.000	25.0	19.3	13.11	24.2	34.2	0.000			
Panic	1 Init-End Lf Grow 33 30.5 0.000 0.000 0.000 0.000	24.8	15.9	12.54	355.7	130.4	0.000			
End L	f Grth-Bea Grn Fil 7 31.4.	21.9	19.9	11.93	3.8	33.7	0.000			
Grain	0.000 0.000 0.000 0.000 Filling Phase 20 31.6 0.000 0.004 0.000 0.000	19.8	19.4	11.52	0.0	92.6	0.000			
Plant 0.000	ing to Harvest 91 30.9 0.000 0.002 0.000 0.000	23.5	17.5	12.53	574.3	382.7	0.000			

*Water Productivity Growing season length: 91 days

Precipitation during growth season Dry Matter Productivity 574.3 mm[rain] 2.18 kg[DM]/m3[rain] 21.8 kg[DM]/ha per mm[rain] Yield Productivity 1.00 kg[grain yield]/m3[rain] = 10.0 kg[yield]/ha per mm[rain] Evapotranspiration during growth season 382.7 mm[ET] Dry Matter Productivity 3.27 kg[DM]/m3[ET] = 32.7 kg[DM]/ha per mm[ET] Yield Productivity 1.49 kg[grain yield]/m3[ET] = 14.9 kg[yield]/ha per mm[ET] 231.9 mm[EP] Transpiration during growth season Dry Matter Productivity 5.40 kg[DM]/m3[EP] 54.0 kg[DM]/ha per mm[EP] Yield Productivity 2.47 kg[grain yield]/m3[EP] 24.7 kg[yield]/ha per mm[EP] _____ _____ Rice YIELD : 5718 kg/ha [Dry weight] ***** *DSSAT Cropping System Model Ver. 4.5.0.030 AUG 29, 2015; 03:16:21 *RUN 3 : T2 2012 : RICER045 - Rice MODEL EXPERIMENT : IITR7901 RI IITR1001RI IITR, ROORKEE, RICE EXPERIMENT, 2010 TREATMENT 3 : T2 2012 CULTIVAR : Sharbati CROP : Rice ECOTYPE :IB0001 : JUL 20 1911 : JUL 20 1911 STARTING DATE ROW SPACING : 20.cm PLANTING DATE PLANTS/m2 : 25.0 : RCM1 WEATHER 1911 SOIL : IITR791201 TEXTURE : SL - Dhanauri SOIL INITIAL C : DEPTH:120cm EXTR. H20:127.2mm NO3:186.7kg/ha NH4: 21.1kg/ha WATER BALANCE : IRRIGATE ON REPORTED DATE(S) IRRIGATION 350 mm IN 7 APPLICATIONS : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION : 100 kg/ha IN 4 APPLICATIONS NITROGEN BAL. N-FERTILIZER : RESIDUE/MANURE : INITIAL : 50 kg/ha ; 0 kg/ha IN ENVIRONM. OPT. : DAYL= A 0.00 SRAD= A 0.00 TMAX= A 0.00 RAIN= A 0.00 CO2 = R 321.0 DEW =A 0.00 **1** APPLICATIONS TMIN= A 0.00 WIND=A 0.00 PHOSPH :N PESTS :N :Y NITROGEN:Y N-FIX:N SIMULATION OPT : WATER рното :C ET :R INFIL:S HYDROL :R SOM :G :2 CO2 :D NSWIT :1 EVAP :R SOIL :R FERT :R MANAGEMENT OPT : PLANTING:R IRRIG RESIDUE:R HARVEST:M WEATHER :M TILLAGE :N *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS SOIL LOWER UPPER SAT EXTR INIT ROOT BULK NO3 NH4 ORG pН SW DEPTH LIMIT LIMIT SW SW DIST DENS cm3/cm3 cm3/cm3 % cm3/cm3 g/cm3 ugN/g ugN/g CM 0- 5 0.121 0.224 0.414 0.103 0.210 1.00 1.47 7.80 10.60 1.20 0.60

15- 30 (30- 45 (45- 60 (60- 90 (0.121 0.224 0.41 0.121 0.224 0.41 0.104 0.208 0.40 0.104 0.208 0.40 0.097 0.201 0.40 0.082 0.195 0.41	.4 0.103 4 0.103 6 0.104 6 0.104 6 0.104 7 0.104	0.206 0.206 0.198 0.197	EW 201 1.00 1.00 0.41 0.41 0.22 0.12	1.42 1.42 1.42 1.49 1.49 1.49 1.49	7 7 7 7 9 7 9 7 9 7	.80 1 .80 1 .80 1 .80 1	0.60 0.60 0.60 0.60 0.60 0.60	1.20 1.20 1.20 1.20 1.20 1.20	0.60 0.60 0.20 0.20 0.10 0.01	
TOT-120 SOIL ALBI RUNOFF C		4 12.7 EVAPO DRAIN	24.3 RATION AGE RAT	<cm LIMIT E</cm 	- : 6.00 : 0.40	kg/ha))	> 1 M F	86.7 IN. FA ERT. F	CTOR	40296 : 1.00 : 1.00	
Rice CULTIVAR :IB0054-Sharbati1 ECOTYPE :IB0001 P1 : 780.0 P2R : 90.0 P5 : 400.0 P2O : 15.4 G1 : 60.0 G2 :0.0230 G3 : 0.70 G4 : 0.80 *SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES											
RUN NO.	6 т2 20	12									
	CROP GROWTH				CRO	ΡN	STR	ESS	STR	ESS	
DATE RSTG	AGE STAGE	kg/ha	LAI		kg/ha	a %	н2о	N	Р1	Р2	
19 JUL 1	0 Transplant	40	0.08	5.0	2	4.7	0.00	0.00	0.00	0.00	
19 JUL 1	0 Start Sim	40	0.08	5.0	2	4.7	0.00	0.00	0.00	0.00	
$1\overline{1}$ AUG	23 End Juveni	445	0.65	10.0	14	3.2	0.00	0.00	0.00	0.00	
2 18 AUG	30 Pan Init	1458	1.56	12.0	45	3.1	0.00	0.02	0.00	0.00	
3 20 SEP	63 Heading	9188	5.51	16.0	142	1.6	0.00	0.00	0.00	0.00	
4 27 SEP	70 Beg Gr Fil	11289	4.89	16.0	146	1.3	0.00	0.08	0.00	0.00	
5 16 ост	89 End Mn Fil	15352	3.21	16.0	156	1.0	0.00	0.21	0.00	0.00	
5 17 ост	90 End Ti Fil	15352	3.21	16.0	156	1.0	0.00	0.00	0.00	0.00	
6 18 ост	91 Maturity	15352	3.21	16.0	156	1.0	0.00	0.00	0.00	0.00	
20 18 ост 20	91 Harvest	15352	3.21	16.0	156	1.0	0.00	0.00	0.00	0.00	

*MAIN GROWTH AND DEVELOPMENT VARIABLES

@ VARIABLE S	IMULATED	MEASURED
Panicle Initiation day (dap) Anthesis day (dap) Physiological maturity day (dap) Yield at harvest maturity (kg [dm]/ha) Unit wt at maturity (g [dm]/unit) Number at maturity (no/m2) Pod or panicle number (no/m2) Leaf area index, maximum Tops weight at anthesis (kg [dm]/ha) Tops N at anthesis (kg/ha) Tops weight at maturity (kg [dm]/ha) By-product produced (stalk) at maturity (kg[dm]/ha Harvest index at maturity	$\begin{array}{r} & 30 \\ & 63 \\ & 91 \\ & 6669 \\ 0.0231 \\ & 28869 \\ 166.38 \\ & 5.52 \\ & 8889 \\ & 142 \\ & 15352 \\ & 8683 \\ & 0.434 \end{array}$	 -99 -99 -99 -99 -99 -99 -99 -99

Page	7
------	---

20 OVERVIEW 2012.OUT		
Leaf number per stem at maturity	16	-99
Grain N at maturity (kg/ha)	102	-99
Tops N at maturity (kg/ha)	156	-99
Stem N at maturity (kg/ha)	55	-99
Grain N at maturity (%)	1.53	-99

*ENVIRONMENTAL AND STRESS FACTORS

|----Development Phase-----|-----Stress---------| -----Average-----|---Cumulative--| (0=Min, 1=Max Stress) Time Temp Temp Solar Photop Evapo |----Water---|--Nitrogen--|--Phosphorus-| Span Max Min Rad [day] Rain Trans Photo Photo Photo øC øC MJ/m2 days hr mm mm synth Growth synth Growth synth Growth Emergence-End Juvenile 23 30.4 25.3 16.7 13.47 190.6 86.0 0.000 0.000 0.000 0.000 0.000 0.000 End Juvenil-Panicl Init 7 32. 0.000 0.000 0.017 0.000 0.000 Panicl Init-End Lf Grow 33 30. 7 32.0 19.3 13.11 25.0 24.2 32.1 0.000 33 30.5 15.9 12.54 355.7 127.7 0.000 24.8 0.000 0.000 0.001 0.000 0.000End Lf Grth-Beg Grn Fil 7 31. 0.000 0.000 0.091 0.000 0.000 7 31.4 21.9 19.9 11.93 33.3 0.000 3.8 Grain Filling Phase 89.3 0.000 20 31.6 19.8 19.4 11.52 0.0 $0.000 \ 0.105 \ 0.199 \ 0.000 \ 0.000$ Planting to Harvest 91 30.9 23.5 17.5 12.53 574.3 372.8 0.000 0.000 0.023 0.053 0.000 0.000 *Water Productivity Growing season length: 91 days Precipitation during growth season Dry Matter Productivity 574.3 mm[rain] 2.67 kg[DM]/m3[rain] 26.7 kg[DM]/ha per mm[rain] Yield Productivity 1.16 kg[grain yield]/m3[rain] = 11.6 kg[yield]/ha per mm[rain] Evapotranspiration during growth season 372.8 mm[ET] 41.2 kg[DM]/ha per mm[ET] Yield Productivity 4.12 kg[DM]/m3[ET] = 1.79 kg[grain yield]/m3[ET] = 17.9 kg[yield]/ha per mm[ET] Transpiration during growth season Dry Matter Productivity 65.7 kg[DM]/ha per mm[EP] 233.6 mm[EP] 6.57 kg[DM]/m3[EP] Yield Productivity 2.85 kg[grain yield]/m3[EP] 28.5 kg[yield]/ha per mm[EP] _____ Rice YIELD : 6669 kg/ha [Dry weight]

20 OVERVIEW 2012.OUT

***** *DSSAT Cropping System Model Ver. 4.5.0.030 AUG 29. 2015: 03:16:21 *RUN : т3 2012 4 MODEL : RICER045 - Rice : IITR7901 RI IITR1001RI IITR, ROORKEE, RICE EXPERIMENT, 2010 EXPERIMENT TREATMENT 4 : т3 2012 : Rice CULTIVAR : Sharbati ECOTYPE : IB0001 CROP : JUL 20 1911 STARTING DATE : JUL 20 1911 PLANTS/m2 : 25.0 ROW SPACING : 20.cm PLANTING DATE WEATHER : RCM1 1911 IITR791201 IITR791201 TEXTURE : SL - Dhanauri DEPTH:120cm EXTR. H20:127.2mm NO3:186.7kg/ha NH4: 21.1kg/ha SOIL SOIL INITIAL C : WATER BALANCE : IRRIGATE ON REPORTED DATE(S) 7 APPLICATIONS 350 mm IN IRRIGATION : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION NITROGEN BAL. 100 kg/ha IN 4 APPLICATIONS N-FERTILIZER RESIDUE/MANURE : INITIAL : 50 kg/ha ; 0 kg/ha IN 1 APPLICATIONS ENVIRONM. OPT. : DAYL= A 0.00 SRAD= A 0.00 TMAX= A 0.00 TMIN= A 0.00 RAIN= A 0.00 CO2 = R 735.0 DEW =A 0.00 WIND=A 0.00 1 APPLICATIONS N-FIX:N PHOSPH :N SIMULATION OPT : WATER :Y NITROGEN:Y PESTS :N РНОТО :С INFIL:S HYDROL :R ET :R SOM :G EVAP :R NSWIT C02 :D :1 SOIL :2 IRRIG FERT :R MANAGEMENT OPT : PLANTING:R :R RESIDUE:R HARVEST:M WEATHER :M TILLAGE :N *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS SAT EXTR INIT SOIL LOWER UPPER ROOT BULK рН NO3 NH4 ORG DEPTH LIMIT LIMIT SW SW DIST DENS SW С cm3/cm3 cm3/cm3 cm3/cm3 uqN/q uqN/q% CM g/cm3 0- 5 0.121 0.224 0.414 0.103 0.210 5- 15 0.121 0.224 0.414 0.103 0.210 15- 30 0.121 0.224 0.414 0.103 0.206 7.80 7.80 7.80 0.60 1.00 1.47 10.60 1.20 1.00 1.47 10.60 1.20 0.60 1.20 1.00 1.47 10.60 0.60 1.49 1.20 30- 45 0.104 0.208 0.406 0.104 0.206 0.41 7.80 10.60 0.20 45- 60 0.104 0.208 0.406 0.104 0.198 60- 90 0.097 0.201 0.407 0.104 0.197 90-120 0.082 0.195 0.419 0.113 0.203 1.20 0.41 1.49 7.80 10.60 0.20 1.49 0.22 10.60 0.10 7.80 1.20 0.12 1.42 7.80 10.60 1.20 0.01 TOT-120 12.1 24.8 49.4 12.7 24.3 <--cm - kg SOIL ALBEDO : 0.13 EVAPORATION LIMIT : 6.00 21.1 40296 - kg/ha--> 186.7 SOIL ALBEDO : 0.13 RUNOFF CURVE # :73.00 MIN. FACTOR : 1.00 : 0.40 FERT. FACTOR : 1.00DRAINAGE RATE CULTIVAR : IB0054-Sharbati1 ECOTYPE :IB0001 Rice P1 : 780.0 P2R : 90.0 P5 : 400.0 P2O : G1 : 60.0 G2 :0.0230 G3 : 0.70 G4 : *SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES : 15.4 0.80 RUN NO. 8 тз 2012 CROP GROWTH BIOMASS LEAF CROP N STRESS STRESS DATE AGE STAGE kg/ha NUM kg/ha % Р1 Р2 LAI н2о N RSTG -----___ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Pag	e	9
-----	---	---

20 OVERVIEW 2012.OUT

19 JUL	0	Transplant	40	0.08	5.0	2	4.7	0.00	0.00	0.00	0.00
19 JUL	0	Start Sim	40	0.08	5.0	2	4.7	0.00	0.00	0.00	0.00
	23	End Juveni	537	0.77	10.0	18	3.3	0.00	0.00	0.00	0.00
18 AUG	30	Pan Init	1703	1.81	12.0	52	3.1	0.00	0.02	0.00	0.00
20 SEP	63	Heading	10097	5.20	16.0	149	1.5	0.00	0.05	0.00	0.00
4 27 SEP	70	Beg Gr Fil	12186	4.50	16.0	153	1.3	0.00	0.22	0.00	0.00
16 ост	89	End Mn Fil	15739	2.51	16.0	162	1.0	0.00	0.37	0.00	0.00
17 ост	90	End Ti Fil	15739	2.51	16.0	162	1.0	0.00	0.00	0.00	0.00
6 18 ост	91	Maturity	15739	2.51	16.0	162	1.0	0.00	0.00	0.00	0.00
20 18 ост 20	91	Harvest	15739	2.51	16.0	162	1.0	0.00	0.00	0.00	0.00

*MAIN GROWTH AND DEVELOPMENT VARIABLES

@	VARIABLE S	IMULATED	MEASURED
	Panicle Initiation day (dap)	30	-99
	Anthesis day (dap)	63	-99
	Physiological maturity day (dap)	91	-99
	Yiéld at harvest maturity (kg [dm]/ha)	7260	-99
	Unit wt at maturity (g [dm]/unit)	0.0231	-99
	Number at maturity (no/m2)	31430	-99
	Pod or panicle number (no/m2)	204.99	-99
	Leaf area index, maximum	5.69	-99
	Tops weight at anthesis (kg [dm]/ha)	9805	-99
	Tops N at anthesis (kg/ha)	149	-99
	Tops weight at maturity (kg [dm]/ha)	15739	-99
	By-product produced (stalk) at maturity (kg[dm]/ha	. 8479	-99
	Harvest index at maturity	0.461	-99
	Leaf number per stem at maturity	16	-99
	Grain N at maturity (kg/ha)	111	-99
	Tops N at maturity (kg/ha)	162	-99
	Stem N at maturity (kg/ha)	51	-99
	Grain N at maturity (%)	1.53	-99

*ENVIRONMENTAL AND STRESS FACTORS

|----Development Phase-----|-----Stress-----------Average-----|---Cumulative--| (0=Min, 1=Max Stress) Time Temp Temp Solar Photop Evapo Span Max Min Rad [day] Rain Trans Photo Photo Photo days ØC ØC MJ/m2 hr mm synth mm Growth synth Growth synth Growth -----_____ Emergence-End Juvenile 23 30.4 25.3 16.7 13.47 190.6 82.4 0.000

20 OVERVIEW 2012.OUT 0.000 0.000 0.000 0.000 0.000End Juvenil-Panicl Init 7 32.0 25.0 19.3 13.11 24.2 32.0 0.000 End Juvenil-Panicl Init 7 32.0 0.000 0.000 0.015 0.000 0.000 Panicl Init-End Lf Grow 33 30.5 0.000 0.000 0.046 0.000 0.000 End Lf Grth-Beg Grn Fil 7 31.4 0.000 0.000 0.217 0.000 0.000 Grain Filling Phase 20 31.6 24.8 15.9 12.54 355.7 126.5 0.000 21.9 19.9 11.93 3.8 33.3 0.000 Grain Filling Phase 20 31. 0.000 0.207 0.362 0.000 0.000 19.8 19.4 11.52 0.0 88.5 0.000 Planting to Harvest 91 30.9 23.5 17.5 12.53 574.3 366.7 0.000 0.000 0.045 0.114 0.000 0.000 _____ _____ *Water Productivity Growing season length: 91 days Precipitation during growth season Dry Matter Productivity 27.4 kg[DM]/ha per mm[rain] Yield Productivity 574.3 mm[rain] 2.74 kg[DM]/m3[rain] 1.26 kg[grain yield]/m3[rain] = 12.6 kg[yield]/ha per mm[rain] Evapotranspiration during growth season 366.7 mm[ET] Dry Matter Productivity 42.9 kg[DM]/ha per mm[ET] Yield Productivity 4.29 kg[DM]/m3[ET] 1.98 kg[grain yield]/m3[ET] = 19.8 kg[yield]/ha per mm[ET] Transpiration during growth season Dry Matter Productivity 232.3 mm[EP] 6.78 kg[DM]/m3[EP] = 67.8 kg[DM]/ha per mm[EP] Yield Productivity 3.13 kg[grain yield]/m3[EP] = 31.3 kg[yield]/ha per mm[EP] _____ _____ _____ Rice YIELD : 7260 kg/ha [Dry weight] *****

21 OVERVIEW 2013.OUT

APPENDIX IV OVERVIEW FILE GENERATED FOR CALIBRATION OF DSSAT CERES RICE MODEL USING KHARIF 2013

FIELD EXPERIMENT DATA

***SIMULATION OVERVIEW FILE**

*DSSAT Cropping System Model Ver. 4.5.0.030 AUG 31, 2015; 08:41:53 *RUN 1 : D1 MODEL : RICER045 - Rice

MODEL : RICER045 - Rice EXPERIMENT : IITR1301 RI IITR1101RI CLIMATE CHANGE EFFECT ON CROPS TREATMENT 1 : D1

	Rice	CULTIVAR : Sharbati	ECOTYPE :IB0001
STARTING DATE PLANTING DATE WEATHER		PLANTS/m2 : 33.0	ROW SPACING : 20.cm
SOIL	IITR791201	TEXTURE : SL – Dha	nauri
		TR. H20:127.2mm NO3:2	69.4kg/ha NH4: 29.9kg/ha
WATER BALANCE	: IRRIGATE ON RE		
IRRIGATION	: 420 mm IN		
NITROGEN BAL.	: SOIL-N & N-UPT	AKE SIMULATION; NO N-F	IXATION
N-FERTILIZER	: 120 kg/ha	IN 5 APPLICATIONS	
N-FERTILIZER RESIDUE/MANURE	: INITIAL : 5	0 kg/ha ; 0 kg/h	a IN 1 APPLICATIONS
ENVIRONM. OPT.	DAYL = 0.00	SRAD= 0.00 TMAX=	0.00 TMIN= 0.00
	RAIN= 0.00	CO2 = 0.00 DEW =	0.00 WIND= 0.00
SIMULATION OPT	: WATER :Y NI	TROGEN:Y N-FIX:N PHO	SPH :N PESTS :N
	РНОТО :С ЕТ	R INFIL:S HYD	ROL :R SOM :G
	CO2 :W NS	WIT :1 EVAP :R SOI	L :2
MANAGEMENT OPT	: PLANTING:R IR	RIG :R FERT :R RES	IDUE:R HARVEST:A
	WEATHER :M TI	LLAGE :N	

***SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS**

DEPTH	LIMIT LI	PER SAT MIT SW cm3/cm3	SW		ROOT DIST	DENS	•	NO3 ugN/g	NH4 ugN/g	ORG C %
5- 15 15- 30 30- 45 45- 60 60- 90	0.121 0. 0.121 0. 0.104 0. 0.104 0. 0.097 0.	224 0.414 224 0.414 224 0.414 208 0.406 208 0.406 201 0.407 195 0.419	0.103 0.103 0.104 0.104 0.104	0.183 0.183 0.166 0.166 0.159	1.00 1.00 0.41 0.41 0.22 0.12		7.80 7.80 7.80 7.80 7.80 7.80 7.80 7.80	15.30 15.30 15.30 15.30 15.30 15.30 15.30 15.30	1.70 1.70 1.70 1.70 1.70 1.70 1.70	0.60 0.60 0.20 0.20 0.10 0.10 0.01
SOIL AL	BEDO : CURVE # :	4.8 49.4 0.13 73.00	EVAPO DRAIN	RATION	LIMIT TE	: 6.00 : 0.40		MIN. F FERT.	29.9 ACTOR FACTOR	: 1.00
P1 G1	: 780.0 : 60.0	IVAR :IBO(P2R : G2 :(AND SOIL S	90.0 0.0230	Р5 G3	: 400 : 0.7	.0 P20 70 G4	:	15.4		

RUN NO. 1 D1

		CROP	GROWTH	BIOMASS		LEAF	CRO	P N	STR	ESS	STR	ESS
E RSTO	DATE G	AGE	STAGE	kg/ha	LAI	NUM	kg/h	a %	Н2О	N	Р1	Р2
8	JUL	0	Transplant	53	0.11	5.0	2	4.1	0.00	0.00	0.00	0.00
8 1	JUL	0	Start Sim	53	0.11	5.0	2	4.1	0.00	0.00	0.00	0.00
30	JUL	22	End Juveni	208	0.32	10.0	7	3.3	0.20	0.01	0.00	0.00
63	AUG	29	Pan Init	711	0.76	12.0	22	3.0	0.00	0.01	0.00	0.00
7 4	SEP	61	Heading	6969	3.79	16.0	113	1.6	0.00	0.00	0.00	0.00
13	SEP	67	Beg Gr Fil	8203	3.46	16.0	113	1.4	0.00	0.00	0.00	0.00
25 5	SEP	79	End Mn Fil	10365	2.72	16.0	112	1.1	0.00	0.00	0.00	0.00
26 6	SEP	80	End Ti Fil	10365	2.72	16.0	112	1.1	0.00	0.00	0.00	0.00
27 20	SEP	81	Maturity	10365	2.72	16.0	112	1.1	0.00	0.00	0.00	0.00
27 20	SEP	81	Harvest	10365	2.72	16.0	112	1.1	0.00	0.00	0.00	0.00

21 OVERVIEW 2013.OUT

*MAIN GROWTH AND DEVELOPMENT VARIABLES

@	VARIABLE S	IMULATED	MEASURED
	Panicle Initiation day (dap) Anthesis day (dap) Physiological maturity day (dap) Yield at harvest maturity (kg [dm]/ha) Unit wt at maturity (g [dm]/unit) Number at maturity (no/m2) Pod or panicle number (no/m2) Leaf area index, maximum Tops weight at anthesis (kg [dm]/ha) Tops N at anthesis (kg/ha) Tops weight at maturity (kg [dm]/ha) By-product produced (stalk) at maturity (kg[dm]/ha Harvest index at maturity Leaf number per stem at maturity Grain N at maturity (kg/ha) Tops N at maturity (kg/ha) Stem N at maturity (kg/ha) Grain N at maturity (kg/ha)	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	 -99 -99 -99 -99 -99 -99 -99 -99

*ENVIRONMENTAL AND STRESS FACTORS

	. 2	1 OVERVIEW	2013.0	UT				
	days Growth synth Grov	øC øC wth	MJ/m2	hr	mm	mm 	synth	
Emergence-En	d Juvenile 22	31.6 25.5	19.1	13.64	90.0	60.1	0.115	
End Juvenil-	0.015 0.000 0.00 Panicl Init 7 0.007 0.000 0.00	32.4 26.0	18.9	13.38	102.8	32.9	0.000	
Panicl Init-	End Lf Grow 32 0.000 0.000 0.00	31.7 24.3	19.3	12.89	517.9	159.4	0.000	
End Lf Grth-	Beg Grn Fil 6 0.000 0.000 0.00	30.6 22.9	17.8	12.36	10.6	25.9	0.000	
Grain Filling 0.000 0.000	g Phase 13 0.000 0.000 0.00	32.7 22.9 00	20.1	12.08	6.2	65.4	0.000	
Planting to 0.054 0.000	Harvest 81 0.005 0.000 0.00	31.8 24.4 00						
*Water Produc Growing sease	tivity on length: 81 days	S						
	n during growth sea Productivity	ason	727.5 1.42	mm[rai kg[DM]	n] /m3[rai	n]	=	
Yield Prod	a per mm[raiń] uctivity /ha per mm[rain]		0.61	kg[gra	in yiel	d]/m3[r	ain] =	
Dry Matter	ration during grow [.] Product <u>i</u> vity	th season	348.7 2.97	mm[ET] kg[DM]	/m3[ET]		=	
29.7 kg[DM]/ha Yield Prod 12.6 kg[yield	מ אבו ההונכון					d]/m3[E	T] =	
Dry Matter	n during growth sea Productivity	ason	196.5 5.27	mm[EP] kg[DM]	/m3[EP]		=	
52.7 kg[DM]/ha Yield Produ	a per mm[EP] uctivity			-		d]/m3[E	P] =	
22.4 kg[yield]]/ha per mm[EP]				-			
	Rice YIEL	D: 440)3 kg/h	a [D	ry weig	ht]		
	***************************************	*****	*****	*****	* * * * * * *	*****	******	**
*DSSAT Croppi	ng System Model Ve	r. 4.5.0.03	80		AUG	31, 201	5; 08:41:	53
*RUN 2 MODEL EXPERIMENT TREATMENT 2	: D2 : RICER045 - Ri(: IITR1301 RI I : D2	ce ITR1101RI C	LIMATE	CHANGE	EFFECT	ON CRO	PS	
CROP	: Rice	CULTIVA	R : Sh	arbati		ЕСОТҮР	E :IB0001	-
PLANTING DAT	E : JUL 15 1913 E : JUL 15 1913 : 2013 1913	PLANTS/m2	2 : 33.	0 R	OW SPAC	ING :	20.cm	
SOIL	: 11TR791201	TEXTURE :	SL	- Dhan	auri			

21 OVERVIEW 2013.OUT SOIL INITIAL C : DEPTH:120cm EXTR. H20:127.2mm NO3:269.4kg/ha NH4: 29.9kg/ha IRRIGATE ON REPORTED DATE(S) IRRIGATION : 420 mm IN 7 APPLICATIONS NITROGEN BAL. : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION N-FERTILIZER : 120 kg/ha IN 5 APPLICATIONS RESIDUE/MANURE : INITIAL : 50 kg/ha ; 0 kg/ha IN 1 APPLICATIONS ENVIRONM. OPT. : DAYL= 0.00 SRAD= 0.00 TMAX= 0.00 TMIN= 0.00 RAIN= 0.00 CO2 = 0.00 DEW = 0.00 WIND= 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N PHOTO :C ET :R INFIL:S HYDROL :R SOM :G CO2 :W NSWIT :1 EVAP :R SOIL :2 MANAGEMENT OPT : PLANTING:R IRRIG :R FERT :R RESIDUE:R HARVEST:A *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS									
SOIL LOWER UPPER SAT EXTR INIT ROOT BULK PH NO3 NH4	ORG								
DEPTH LIMIT LIMIT SW SW SW DIST DENS cm cm3/cm3 cm3/cm3 cm3/cm3 g/cm3 ugN/g ugN/g	С %								
0-50.1210.2240.4140.1030.1831001.4777.8015.301.70 5-150.1210.2240.4140.1030.1831001.4777.8015.301.70 15-300.1210.2240.4140.1030.1831001.4777.8015.301.70 30-450.1040.2080.4060.1040.1660.411497.8015.301.70 45-600.1040.2080.4060.1040.1660.411497.8015.301.70 45-600.1040.2080.4060.1040.16601.411.497.8015.301.70 60-900.0970.2010.4070.1040.1590.2214.497.8015.301.70 90-1200.0820.1950.4190.1130.1500.121.427.8015.301.70	0.60 0.60 0.20 0.20 0.10 0.01								
TOT-12012.124.849.412.719.7 <cm< th="">-kg/ha>269.429.9SOIL ALBEDO:0.13EVAPORATION LIMIT:6.00MIN. FACTORRUNOFF CURVE #:73.00DRAINAGE RATE:0.40FERT. FACTOR</cm<>	40296 : 1.00 : 1.00								
Rice CULTIVAR :IB0054-Sharbati1 ECOTYPE :IB0001 P1 : 780.0 P2R : 90.0 P5 : 400.0 P2O : 15.4 G1 : 60.0 G2 :0.0230 G3 : 0.70 G4 : 0.80 *SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES									
RUN NO. 2 D2									
CROP GROWTH BIOMASS LEAF CROP N STRESS STR	RESS								
DATE AGE STAGE kg/ha LAI NUM kg/ha % H2O N P1 RSTG	P2 								
15 JUL 0 Transplant 53 0.11 5.0 2 4.1 0.00 0.00 0.00	0.00								
1 15 JUL 0 Start Sim 53 0.11 5.0 2 4.1 0.00 0.00 0.00	0.00								
1 6 AUG 22 End Juveni 224 0.35 10.0 7 3.3 0.11 0.02 0.00	0.00								

6 AUG	22 End Juveni	224	0.35	10.0	7	3.3	0.11	0.02	0.00	0.00
14 AUG	30 Pan Init	918	0.97	12.0	28	3.0	0.00	0.01	0.00	0.00
15 SEP	62 Heading	7453	4.20	16.0	122	1.6	0.00	0.00	0.00	0.00
4 22 SEP	69 Beg Gr Fil	8986	3.79	16.0	122	1.4	0.00	0.00	0.00	0.00
ост 4 ост	81 End Mn Fil	10946	2.97	16.0	121	1.1	0.00	0.00	0.00	0.00
5 ост	82 End Ti Fil	10946	2.97	16.0	121	1.1	0.00	0.00	0.00	0.00
6 6 ост 20	83 Maturity	10946	2.97	16.0	121	1.1	0.00	0.00	0.00	0.00

21 OVERVIEW 2013.OUT6 OCT83 Harvest109462.9716.01211.10.000.00

Conditions not met during defined window for harvesting

between DAY 1913 279 and DAY 1911 298

*MAIN GROWTH AND DEVELOPMENT VARIABLES

@ V	/ARIABLE	SIMULATED	MEASURED
-			
Р	Panicle Initiation day (dap)	30	-99
	Anthesis day (dap)	62	-99
	Physiological maturity day (dap)	83	-99
Ý	(ield at harvest maturity (kg [dm]/ha)	5110	-99
Ů	Unit wt at maturity (g [dm]/unit)	0.0231	-99
	Number at maturity (no/m2)	22121	-99
	Pod or panicle number (no/m2)	67.97	-99
Ĺ	eaf area index, maximum	4.20	-99
	rops weight at anthesis (kg [dm]/ha)	7202	-99
	rops N at anthesis (kg/ha)	121	-99
т	rops weight at maturity (kg [dm]/ha)	10946	-99
В	By-product produced (stalk) at maturity (k		-99
н	larvest index at maturity	0.467	-99
L	eaf number per stem at maturity	16	-99
	Grain N at maturity (kg/ha)	60	-99
	rops N at maturity (kg/ha)	121	-99
	Stem N at maturity (kg/ha)	60	-99
	Grain N at maturity (%)	1.18	-99

*ENVIRONMENTAL AND STRESS FACTORS

Development Phase Envir 	onment-					St	ress
	1	A		-	Cumul	a+iva	1
(O=Min, 1=Max Stress)		AV6	eraye		Cumu i	ative	l
	Temn	Temn	Solar	Photop		Evapo	
Water Nitrogen P			50141	inocop		Lvapo	
Span	Max	Min	Rad	[day]	Rain	Trans	Photo
Photo Photo				[]]			
days	øC	øC	MJ/m2	hr	mm	mm	synth
Growth synth Growth synth Gr	owth		•				-
Emergence-End Juvenile 22	31.8	25.5	19.1	13.52	186.7	80.3	0.080
0.114 0.000 0.018 0.000 $0.$	000	~		40.04	266.0	20.4	0 000
End Juvenil-Panicl Init 8	30.3	24.4	17.5	13.21	366.0	39.I	0.000
0.000 0.000 0.009 0.000 0.		24 0	10 4	12 69	162 5	150 0	0 000
Panicl Init-End Lf Grow 32		24.0	19.4	12.00	102.5	T28.8	0.000
0.000 0.000 0.000 0.000 0. End Lf Grth-Beg Grn Fil 7	22 1	22 A	21 E	10 11	6 2	25 5	0 000
0.000 0.000 0.000 0.000 0.	22.T	22.0	21.5	12.11	0.2	55.5	0.000
Grain Filling Phase 13	31 6	23 1	177	11 81	0.2	573	0 000
0.000 0.000 0.000 0.000 0.000 0.	000	23.7	1/./	11.01	0.2	57.5	0.000
0.000 0.000 0.000 0.000 0.	000						
Planting to Harvest 83	31.7	24.1	19.0	12.76	721.6	375.4	0.021
0.030 0.000 0.006 0.000 0.	000						

21 OVERVIEW 2013.OUT

*Water Productivity Growing season length: 83 days Precipitation during growth season 721.6 mm[rain] Dry Matter Productivity 1.52 kg[DM]/m3[rain] 15.2 kg[DM]/ha per mm[rain] Yield Productivity 0.71 kg[grain yield]/m3[rain] = 7.1 kg[yield]/ha per mm[rain] Evapotranspiration during growth season 375.4 mm[ET] Dry Matter Productivity 2.92 kg[DM]/m3[ET] _ 29.2 kg[DM]/ha per mm[ET] Yield Productivity 1.36 kg[grain yield]/m3[ET] 13.6 kg[yield]/ha per mm[ET] Transpiration during growth season Dry Matter Productivity 214.6 mm[EP] 5.10 kg[DM]/m3[EP] 51.0 kg[DM]/ha per mm[EP] Yield Productivity 2.38 kg[grain yield]/m3[EP] = 23.8 kg[yield]/ha per mm[EP] _____ ------Rice YIELD : 5110 kg/ha [Dry weight] ***** *DSSAT Cropping System Model Ver. 4.5.0.030 AUG 31, 2015; 08:41:54 *RUN 3 : D3 : RICER045 - Rice MODEL EXPERIMENT : IITR1301 RI IITR1101RI CLIMATE CHANGE EFFECT ON CROPS TREATMENT 3 : D3 CROP : Rice CULTIVAR : Sharbati ECOTYPE : IB0001 : JUL 22 1913 : JUL 22 1913 STARTING DATE PLANTING DATE PLANTS/m2 : 33.0 ROW SPACING : 20.cm : 2013 WEATHER 1913 SOIL : IITR791201 TEXTURE : SL – Dhanauri SOIL INITIAL C : DEPTH:120cm EXTR. H20:127.2mm NO3:269.4kg/ha NH4: 29.9kg/ha WATER BALANCE : IRRIGATE ON REPORTED DATE(S) 420 mm IN 7 APPLICATIONS IRRIGATION : : SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION : 120 kg/ha IN 5 APPLICATIONS NITROGEN BAL. N-FERTILIZER RESIDUE/MANURE : INITIAL : 50 kg/ha ; 0 kg/ha IN **1** APPLICATIONS 0.00 SRAD= 0.00 CO2 = 0.00 TMAX= 0.00 ENVIRONM. OPT. : DAYL= TMIN= 0.00 RAIN= 0.00 DEW =0.00 WIND= 0.00 SIMULATION OPT : WATER :Y NITROGEN:Y N-FIX:N PHOSPH :N PESTS :N :R :G рното :C ET INFIL:S HYDROL :R SOM EVAP :R FERT :R C02 :W NSWIT :1 SOIL :2 MANAGEMENT OPT : PLANTING:R RESIDUE:R IRRIG :R HARVEST:A WEATHER :M TILLAGE :N *SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS рН SOIL LOWER UPPER SAT EXTR INIT BULK NO3 NH4 ORG ROOT SW DEPTH LIMIT LIMIT SW SW DIST DENS С cm3/cm3 % cm3/cm3 CM cm3/cm3 g/cm3 ugN/g ugN/g

21 OVERVIEW 2013.OUT

5- 15 15- 30 30- 45 45- 60 60- 90	0.121 0.224 0.41 0.121 0.224 0.41 0.121 0.224 0.41 0.104 0.208 0.40 0.104 0.208 0.40 0.097 0.201 0.40 0.082 0.195 0.41	4 0.103 (4 0.103 (6 0.104 (6 0.104 (7 0.104 (D.183 D.183 D.166 D.166 D.159	1.00 1.00 0.41 0.41	$1.47 \\ 1.47 \\ 1.47 \\ 1.49 \\ $	7 7 7 7 9 7 9 7 9 7	.80 1 .80 1 .80 1 .80 1 .80 1 .80 1	5.30 5.30 5.30 5.30 5.30 5.30 5.30 5.30	1.70 1.70 1.70 1.70 1.70 1.70 1.70	0.60 0.60 0.20 0.20 0.10 0.01
TOT-120 SOIL ALB RUNOFF C	12.1 24.8 49. EDO : 0.13 URVE # :73.00	4 12.7 EVAPOI DRAIN	19.7 RATION AGE RAT	<cm LIMIT E</cm 	- : 6.00 : 0.40	kg/ha))	> 2 M F	69.4 IN. FA ERT. F	29.9 CTOR ACTOR	40296 : 1.00 : 1.00
Р1	CULTIVAR :IB : 780.0 P2R : 60.0 G2	: 90.0	Р5	: 400	.0 P2	20	: 15	.4		
*SIMULAT	ED CROP AND SOIL	STATUS /	AT MAIN	DEVEL	OPMENT	Γ STA	GES			
RUN NO.	3 D3									
	CROP GROWTH	BIOMASS		LEAF	CRO	ΡN	STR	ESS	STR	ESS
DATE	AGE STAGE	kg/ha	LAI	NUM	kg/ha	a %	н2о	N	Р1	Р2
RSTG										
	0 Transplant	53	0.11	5.0	3	4.7	0.00	0.00	0.00	0.00
	0 Start Sim	53	0.11	5.0	3	4.7	0.00	0.00	0.00	0.00
1 14 AUG	23 End Juveni	274	0.43	10.0	9	3.3	0.02	0.00	0.00	0.00
2 20 AUG	29 Pan Init	843	0.92	12.0	26	3.1	0.00	0.01	0.00	0.00
3 21 SEP 4	61 Heading	7321	4.07	16.0	121	1.6	0.00	0.00	0.00	0.00
28 SEP	68 Beg Gr Fil	8791	3.63	16.0	120	1.4	0.00	0.00	0.00	0.00
5 10 ост	80 End Mn Fil	10643	2.85	16.0	119	1.1	0.00	0.00	0.00	0.00
5 11 ост	81 End Ti Fil	10643	2.85	16.0	119	1.1	0.00	0.00	0.00	0.00
6 12 ост 20	82 Maturity	10643	2.85	16.0	119	1.1	0.00	0.00	0.00	0.00
20 12 ост 20	82 Harvest	10643	2.85	16.0	119	1.1	0.00	0.00	0.00	0.00

Conditions not met during defined window for harvesting between DAY 1913 285 and DAY 1911 298

*MAIN GROWTH AND DEVELOPMENT VARIABLES

@	VARIABLE	SIMULATED	MEASURED
	Panicle Initiation day (dap) Anthesis day (dap)	29 61	-99 -99
	Physiological maturity day (dap)	82	-99
	Physiological maturity day (dap)		
	Yiéld at harvest maturity (kg [dm]/ha)	5094	-99

Unit wt at maturity (g [Number at maturity (no/m Pod or panicle number (no Leaf area index, maximum Tops weight at anthesis Tops N at anthesis (kg/h Tops weight at maturity By-product produced (sta Harvest index at maturity Leaf number per stem at i Grain N at maturity (kg/h Stem N at maturity (kg/h Grain N at maturity (kg/h	2) o/m2) (kg [dm]/ha a) (kg [dm]/ha (kg [dm]/ha lk) at matu y maturity)		220 68. 4. 71 106 a 55 0.4	16 61 19 58	-99 -99 -99 -99 -99 -99 -99
*ENVIRONMENTAL AND STRESS FACTO	ORS					
Development Phase Envire 	onment				St	ress
(0=Min, 1=Max Stress)	Av	erage	-	Cumul	ative	l
Time	Temp Temp	Solar	Photop		Evapo	
Water Nitrogen P Span Photo Photo						
days Growth synth Growth synth Gro	øC øC owth					synth
Emergence-End Juvenile 23	31.6 25.2	18.9	13.37	486.1	93.8	0.000
0.019 0.000 0.000 0.000 0.0 End Juvenil-Panicl Init 6 0.000 0.000 0.011 0.000 0.0	000 31.4 24.6	19.0	13.04	23.4	24.9	0.000
Panicl Init-End Lf Grow 32	32.2 23.5	19.9	12.51	142.1	160.3	0.000
0.000 0.000 0.000 0.000 0.000 0.0 End Lf Grth-Beg Grn Fil 7 0.000 0.000 0.000 0.000 0.00	32.1 23.6	18.7	11.93	3.2	31.9	0.000
Grain Filling Phase 13 0.000 0.000 0.000 0.000 0.000 0.00	31.1 23.1	16.1	11.64	0.2	50.6	0.000
Planting to Harvest 82 0.005 0.000 0.001 0.000 0.0	31.8 24.0 000	18.8	12.59	655.0	364.3	0.000
*Water Productivity Growing season length: 82 day	ys					
Precipitation during growth so Dry Matter Productivity	eason	655.0 1.62	mm[rai kg[DM]	n] /m3[rai	n]	=
16.2 kg[DM]/ha per mm[raiń] Yield Productivity 7.8 kg[yield]/ha per mm[rain]		0.78	kg[gra	in yiel	d]/m3[r	ain] =
Evapotranspiration during grow Dry Matter Productivity 20.2 kg[DM] (ba por mm[Et]	wth season	364.3 2.92	mm[ET] kg[DM]	/m3[ET]		=
29.2 kg[DM]/ha per mm[ET] Yield Productivity 14.0 kg[yield]/ha per mm[ET]		1.40	kg[gra	in yiel	d]/m3[E	т] =
Transpiration during growth se	eason	207.2	mm[EP]			
	Page	e 8				

21 OVERVIEW 2013.OUT Dry Matter Productivity 5.14 kg[DM]/m3[EP] 51.4 kg[DM]/ha per mm[EP] Yield Productivity 2.46 kg[grain yield]/m3[EP] 24.6 kg[yield]/ha per mm[EP] Rice YIELD : 5094 kg/ha [Dry weight] ****** *DSSAT Cropping System Model Ver. 4.5.0.030 AUG 31, 2015; 08:41:54 *RUN : D4 : RICER045 - Rice MODEL : IITR1301 RI IITR1101RI CLIMATE CHANGE EFFECT ON CROPS EXPERIMENT TREATMENT 4 : D4 CROP : Rice CULTIVAR : Sharbati ECOTYPE :IB0001 : JUL 31 1913 STARTING DATE : JUL 31 1913 PLANTS/m2 : 33.0 PLANTING DATE ROW SPACING : 20.cm 2013 1913 WEATHER IITR791201 SOIL : IITR791201 TEXTURE : SL - Dhanauri SOIL INITIAL C : DEPTH:120cm EXTR. H20:127.2mm NO3:269.4kg/ha NH4: 29.9kg/ha WATER BALANCE : IRRIGATE ON REPORTED DATE(S) 300 mm IN 5 APPLICATIONS IRRIGATION SOIL-N & N-UPTAKE SIMULATION; NO N-FIXATION NITROGEN BAL. 120 kg/ha IN 5 APPLICATIONS N-FERTILIZER 50 kg/ha ; **RESIDUE/MANURE : INITIAL :** 0 kg/ha IN **1** APPLICATIONS 0.00 SRAD= 0.00 CO2 = 0.00 0.00 TMAX= 0.00 DEW = ENVIRONM. OPT. : DAYL= TMIN= 0.00 0.00 RAIN= WIND= 0.00 :Y NITROGEN:Y N-FIX:N SIMULATION OPT : WATER PHOSPH :N PESTS :N HYDROL :R рното :C ET :R INFIL:S SOM :G CO2 :W NSWIT :1 EVAP :R SOIL :2 MANAGEMENT OPT : PLANTING:R :R FERT :R IRRIG RESIDUE:R HARVEST:A WEATHER :M TILLAGE :N ***SUMMARY OF SOIL AND GENETIC INPUT PARAMETERS** SOIL LOWER UPPER SAT EXTR INIT ROOT BULK NO3 NH4 ORG pН DEPTH LIMIT LIMIT SW SW SW DIST DENS С % cm3/cm3 cm3/cm3 cm3/cm3 ugN/g CM g/cm3 ugN/g 0- 5 0.121 0.224 0.414 0.103 0.183 5- 15 0.121 0.224 0.414 0.103 0.183 1.47 0.60 1.00 7.80 15.30 1.70 1.00 7.80 1.47 15.30 1.70 0.60 15- 30 0.121 0.224 0.414 0.103 0.183 1.00 1.47 15.30 1.70 0.60 1.70 30- 45 0.104 0.208 0.406 0.104 0.166 7.80 15.30 0.41 1.49 0.20 1.49 1.70 0.20 45- 60 0.104 0.208 0.406 0.104 0.166 0.41 7.80 15.30 60- 90 0.097 0.201 0.407 0.104 0.159 0.22 1.49 7.80 15.30 1.70 0.10 90-120 0.082 0.195 0.419 0.113 0.150 0.12 1.42 7.80 15.30 1.70 0.01 TOT-120 12.1 24.8 49.4 12.7 19.7 <--cm - kg/ha--> 269.4 SOIL ALBEDO : 0.13 EVAPORATION LIMIT : 6.00 MIN. F 29.9 40296 SOIL ALBEDO : 0.13 RUNOFF CURVE # :73.00 MIN. FACTOR : 1.00 DRAINAGE RATE : 0.40 FERT. FACTOR : 1.00 CULTIVAR : IB0054-Sharbati1 Rice ECOTYPE :IB0001 : 400.0 P20 : 0.70 G4 : 780.0 P2R : 60.0 G2 : 90.0 P5 :0.0230 G3 : 15.4 P1 G1 : 0.80 *SIMULATED CROP AND SOIL STATUS AT MAIN DEVELOPMENT STAGES

RUN NO)_	4 D4	21	OVERV3	EW 201	L3.0U1	F				
		GROWTH	BIOMASS		LEAF	CRO	ΡN	STR	ESS	STR	ESS
DATI RSTG	E AGE	STAGE	kg/ha	LAI	NUM	kg/h	a %	н2о	N	Р1	Р2
31 JUI	. 0	Transplant	53	0.11	5.0	2	4.1	0.00	0.00	0.00	0.00
31 JUI	. 0	Start Sim	53	0.11	5.0	2	4.1	0.00	0.00	0.00	0.00
23 AUG	i 23	End Juveni	289	0.43	10.0	10	3.3	0.12	0.02	0.00	0.00
29 AUG	i 29	Pan Init	839	0.91	12.0	26	3.1	0.00	0.01	0.00	0.00
	62	Heading	7456	4.19	16.0	121	1.6	0.00	0.00	0.00	0.00
8 OCT	69	Beg Gr Fil	8769	3.72	16.0	121	1.4	0.00	0.00	0.00	0.00
21 001	82	End Mn Fil	10821	2.85	16.0	119	1.1	0.00	0.00	0.00	0.00
22 OCT	83	End Ti Fil	10821	2.85	16.0	119	1.1	0.00	0.00	0.00	0.00
23 OCT 20	84	Maturity	10821	2.85	16.0	119	1.1	0.00	0.00	0.00	0.00
23 OCT 20	84	Harvest	10821	2.85	16.0	119	1.1	0.00	0.00	0.00	0.00

21 OVERVIEW 2013.OUT

Conditions not met during defined window for harvesting

between DAY 1913 296 and DAY 1911 298

*MAIN GROWTH AND DEVELOPMENT VARIABLES

Ø VARIA	ABLE	SIMULATED	MEASURED
Panio	le Initiation day (dap)	29	-99
Anthe	esis day (dap)	62	-99
Physi	ological maturity day (dap)	84	-99
Yield	1 at harvest maturity (kg [dm]/ha)	4593	-99
Unit	wt at maturity (g [dm]/unit)	0.0231	-99
Numbe	er at maturity (no/m2)	19884	-99
Pod o	or panicle number (no/m2)	69.24	-99
Leaf	area index, maximum	4.25	-99
	weight at anthesis (kg [dm]/ha)	7259	-99
Tops	N at anthesis (kg/ha)	121	-99
Tops	weight at maturity (kg [dm]/ha)	10821	-99
By-pi	oduct produced (stalk) at maturity (k	kg[dm]/ha 6228	-99
	est index at maturity	0.424	-99
Leaf	number per stem at maturity	16	-99
Grair	n N at maturity (kg/ha)	54	-99
Tops	N at maturity (kg/ha)	119	-99
Stem	N at maturity (kg/ha)	65	-99
Grair	N at maturity (%)	1.18	-99

*ENVIRONMENTAL AND STRESS FACTORS

|----Development

21 OVERVIEW 2013.OUT Phase-----|-----Stress---------| -----Average-----|---Cumulative--| (0=Min, 1=Max Stress) Temp Temp Solar Photop Time Evapo |----Water---|--Nitrogen--|--Phosphorus-| Span Max Min Rad [day] Rain Trans Photo Photo Photo days øC øC MJ/m2 hr mm synth mm Growth synth Growth synth Growth _____ Emergence-End Juvenile 23 31.8 24.9 19.1 13.17 431.2 87.3 0.092 End Juvenil-Panicl Init 6 33.4 0.000 0.000 0.008 0.000 0.000 25.3 20.9 12.79 39.0 24.2 0.000 Panicl Init-End Lf Grow 33 31.7 0.000 0.000 0.000 0.000 0.000 End If Grth-Beg Grn Fil 7 30.9 23.1 19.0 12.23 106.5 159.3 0.000 End Lf Grth-Beg Grn Fil 7 30. 0.000 0.000 0.000 0.000 0.000 0.000 7 30.9 22.4 16.1 11.64 0.0 26.3 0.000 14 30.0 Grain Filling Phase 21.3 15.8 11.33 16.2 54.4 0.000 0.000 0.000 0.000 0.000 0.000 84 31.5 23.3 18.4 12.31 592.9 355.7 0.025 Planting to Harvest 0.033 0.000 0.006 0.000 0.000 _____ _____ _____ *Water Productivity Growing season length: 84 days Precipitation during growth season Dry Matter Productivity 18.3 kg[DM]/ha per mm[rain] Yield Productivity 592.9 mm[rain] 1.83 kg[DM]/m3[rain] 0.77 kg[grain yield]/m3[rain] = 7.7 kg[yield]/ha per mm[rain] Evapotranspiration during growth season 355.7 mm[ET] Dry Matter Productivity 3.04 kg[DM]/m3[ET] = 30.4 kg[DM]/ha per mm[ET] Yield Productivity 1.29 kg[grain yield]/m3[ET] = 12.9 kg[yield]/ha per mm[ET] Transpiration during growth season Dry Matter Productivity 201.4 mm[EP] 5.37 kg[DM]/m3[EP] = 53.7 kg[DM]/ha per mm[EP] Yield Productivity 2.28 kg[grain yield]/m3[EP] 22.8 kg[yield]/ha per mm[EP] _____ Rice YIELD : 4593 kg/ha [Dry weight] *****

APPENDIX V

S.No	Yea	T Max	T Min	RF	S.N	Yea	T Ma x	T Min	RF	S.N	Yea	T Max	T Min	RF
	r	(⁰ C)	(⁰ C)	mm	0.	r	(⁰ C)	(⁰ C)	mm	0.	r	(⁰ C)	(⁰ C)	mm
1	2014	31.4	22.0	1180.7	27	2040	31.9	22.6	1383.8	53	2066	35.2	24.5	978.6
2	2015	32.2	22.6	683.5	28	2041	32.8	23.2	922.0	54	2067	32.9	23.5	1543.0
3	2016	30.9	21.6	1004.2	29	2042	32.9	23.1	912.8	55	2068	34.8	25.0	951.9
4	2017	31.9	22.5	1093.6	30	2043	34.4	24.5	680.3	56	2069	34.3	24.9	1159.0
5	2018	30.7	21.8	1309.3	31	2044	32.0	22.8	1209.2	57	2070	33.4	24.1	1231.7
6	2019	30.0	20.9	1013.8	32	2045	32.3	22.4	977.0	58	2071	32.8	23.4	1445.8
7	2020	31.5	22.2	975.1	33	2046	33.5	23.3	910.4	59	2072	34.6	24.9	973.2
8	2021	31.2	22.1	899.4	34	2047	34.7	24.2	695.7	60	2073	35.5	24.9	780.3
9	2022	33.4	23.4	486.3	35	2048	33.1	24.1	1180.3	61	2074	33.7	24.3	1078.7
10	2023	32.0	22.8	585.7	36	2049	32.3	23.1	1419.1	62	2075	34.3	24.8	1228.2
11	2024	32.5	23.0	1050.4	37	2050	32.5	23.4	1074.6	63	2076	33.5	24.4	793.3
12	2025	31.9	22.4	789.4	38	2051	35.2	24.4	656.4	64	2077	33.6	24.2	1277.9
13	2026	32.9	23.0	708.7	39	2052	33.9	23.8	1258.1	65	2078	36.2	25.7	1197.9
14	2027	33.6	23.2	644.3	40	2053	33.3	24.1	1027.3	66	2079	35.0	25.4	1496.8
15	2028	32.6	23.1	907.3	41	2054	32.8	23.6	1250.9	67	2080	33.9	24.8	1480.7
16	2029	31.0	22.3	1465.5	42	2055	33.6	23.8	1155.8	68	2081	35.1	24.8	1318.0
17	2030	33.5	22.9	545.7	43	2056	33.0	23.5	1125.1	69	2082	35.6	25.3	1518.7
18	2031	33.1	23.4	672.4	44	2057	33.7	24.1	971.8	70	2083	34.4	24.6	779.3
19	2032	30.9	22.5	895.6	45	2058	33.9	24.4	1263.0	71	2084	34.3	24.7	1286.3
20	2033	32.2	22.5	821.6	46	2059	34.3	24.4	961.1	72	2085	33.2	24.3	1441.9
21	2034	32.1	22.9	982.6	47	2060	35.1	25.2	782.3	73	2086	34.5	24.8	1894.0
22	2035	33.6	23.5	722.2	48	2061	33.8	24.1	756.0	74	2087	34.3	25.2	1357.9
23	2036	32.2	23.1	984.4	49	2062	35.6	25.3	728.7	75	2088	37.4	26.3	1213.2
24	2037	32.4	22.8	872.3	50	2063	33.8	24.0	1406.7	76	2089	35.3	25.4	1223.9
25	2038	33.2	23.4	601.4	51	2064	34.5	24.7	861.4	77	2090	34.8	25.3	1150.5
26	2039	32.2	22.9	1373.6	52	2065	35.0	25.1	926.8	Ave	rage	33.4	23.8	1046.3

PRECIS RCM forecasted average annual maximum and minimum temperatures and annual total rainfall for the period 2014 – 2090.

APPENDIX VI

Simulated grain yield (kgs/ha) of rice cv Sharbati under various CO₂ enrichment treatments for the period 2014 – 2090; weather parameters during crop growth period.

S.No	Year	Present Scenario	A2	B2	Tmax	Tmin	SRAD	Photoperiod	RF	ЕТ
5.110	I cal	r resent Scenario	AL	D2	(⁰ C)	(⁰ C)	MJ/m²/day	Hours	m	m
1	2014	6666	5878	5878	31.1	22.9	19.3	12.67	970.3	449.3
2	2015	6172	6055	5975	31.1	23.7	18.5	12.7	603.4	444
3	2016	6343	6166	5913	31.1	23.1	19	12.68	575.1	456
4	2017	5724	6103	6151	32.3	24.2	19.3	12.73	697.2	432.6
5	2018	5787	6284	5899	31.2	23.9	18.3	12.71	832.7	431.6 477.3
6 7	2019 2020	6189 6391	6344	6064	30.2 31	21.7 23.7	19.3 18.3	12.6 12.7	712.7 889.7	477.3
8	2020	6889	6210	6163	31.1	23.7	18.5	12.7	663.3	449.6
9	2021	5558	6212 5803	6131 6071	32.6	24.7	19.4	12.77	414.4	422.9
10	2022	6202	5998	6097	32.4	24.7	19.4	12.77	412.6	447.3
10	2023	5997	6142	6048	31.4	23.9	19.6	12.71	956.4	440.9
12	2025	5942	5455	6045	32.5	24.4	19.6	12.77	444	448.8
13	2026	6034	6171	6091	32.6	24.4	19.7	12.77	503.5	435.2
14	2027	5778	6847	6121	32.4	24	19.7	12.74	604.9	449
15	2028	6113	6063	6132	31.9	24.4	18.5	12.74	791.8	432
16	2029	5541	6010	6119	31.2	24	18.2	12.71	1114	419
17	2030	5712	6232	6008	32.9	24.5	20	12.8	496.4	433.5
18	2031	5488	6432	6074	32.5	24.9	19	12.77	576.2	441.2
19	2032	6105	6683	6046	31.3	24.2	18.3	12.73	798.3	415.6
20	2033	6290	6413	6090	31.6	23.4	18.9	12.68	545.4	439.1
21	2034	5769	6523	6116	31.9	24.3	18.7	12.75	774.6	441.8
22	2035	5511	6756	6027	32.7	25.1	18.9	12.8	662.6	434.9
23	2036	5828	6713	6121	31.4	24.1	18.2	12.7	890.5	435.6
24	2037	5643	6525	6048	31.7	24.4	18.3	12.74	831.8	420.8
25	2038	5164	6393	6017	32.4	24.6	19.2	12.75	571.7	413.6
26	2039	5675	6312	6026	31.6	24	18.6	12.73	1108	439
27	2040	5883	6799	6143	31.9	24.1	19.1	12.73	931.9	451.8
28	2041	5711	7182	6809	32.4	24.6	19	12.77	710.8	439.6
29	2042	5918	7174	6313	32.1	24.6	18.9	12.77	674.2	444.9
30	2043	5170	6974	6377	33.6	26.1	19	12.86	655.6	419.4
31	2044	5495	7414	6340	31.7	24.4	18.3	12.74	1012	410
32	2045	5714	7329	6834	31.8	24	18.9	12.74	911.4	447.1
33	2046	5557	7115	6725	32	24.6	18.5	12.75	875	422.4
34	2047	4620	6834	6230	33.8	25.9	19.4	12.8	631.6	454.8
35	2048	5063	7374	6369	32.3	25.3	18.2	12.78	1032	427
36	2049	5579	7077	6906	32.2	25	18.5	12.78	912.2	416.8
37	2050	5658	7422	7068	32.4	25.1	18.5	12.78	610.1	447.1
38	2051	4665	7244	6838	33.9	26.2	19.5	12.87	624.9	430.3

39	2052	5008	7254	6778	33.2	25.2	19.4	12.77	973	454.9
40	2053	5161	7302	6542	32.7	25.5	18.7	12.81	931.2	430.9
41	2054	5467	7160	6411	32.6	25.2	18.7	12.8	943.2	418.5
42	2055	5192	7191	6476	32.8	25.6	18.4	12.81	1034	418
43	2056	5667	7284	6387	32	24.6	18.7	12.75	919.5	441.9
44	2057	5318	7331	6540	33.2	25.7	18.8	12.83	859.4	434
45	2058	4973	7282	7050	32.7	25.3	18.6	12.77	1167	421
46	2059	4900	7322	7040	33.2	25.8	18.9	12.83	936.9	429.9
47	2060	4867	7159	6377	34.4	26.6	19.6	12.87	605.3	461.6
48	2061	4912	7278	6428	33.6	26	19.2	12.83	333.3	418.6
49	2062	4302	7255	6653	35.5	27.2	20.2	12.91	591.9	435.8
50	2063	4657	7448	6676	33	26	18.2	12.83	1199	431
51	2064	4901	7352	6587	33.7	26.5	18.9	12.86	760.2	406.5
52	2065	4393	7341	6616	34.9	26.8	20.1	12.88	743.8	475
53	2066	4423	7200	6659	35	26.6	20.4	12.88	752.8	444.8
54	2067	5194	7340	6747	33.6	25.6	19.6	12.78	1203	450
55	2068	4659	7382	6569	34	26.7	19.1	12.87	789.9	418.4
56	2069	4563	7438	6546	33.3	26.4	18.5	12.87	856.2	411.2
57	2070	4763	7509	6747	33.2	26.1	18.5	12.84	845.1	430.6
58	2071	5011	7456	6593	33.1	25.9	18.9	12.84	1039	407
59	2072	4697	7338	6719	34.5	26.6	19.6	12.83	695	485
60	2073	4956	7275	6428	34.7	26.7	20.1	12.88	667.8	473
61	2074	4762	7357	6535	33.6	26.4	18.7	12.81	791.6	409.4
62	2075	4170	7354	6679	33.7	26.6	18.6	12.87	1088	424
63	2076	4526	7467	6449	33.5	26.4	18.7	12.86	641.8	438.5
64	2077	4716	7508	6371	33.4	26.7	18.1	12.86	970.3	421.6
65	2078	4937	7294	6735	35.7	27.1	20.6	12.87	1197	477
66	2079	4300	7227	6681	34.2	27.1	18.5	12.86	1270	424
67	2080	4529	7219	6284	34.3	26.8	19.1	12.84	1108	425
68	2081	5007	7208	6258	34.7	26.8	19.5	12.83	1216	461
69	2082	4371	7219	6282	34.1	26.7	19	12.87	1510	434
70	2083	5587	7212	6242	34.2	26.3	19.2	12.81	382.9	451.2
71	2084	4454	7204	6211	33.9	26.7	18.7	12.86	990.3	442.7
72	2085	4876	7218	6233	33.2	26.5	18.1	12.86	1223	424
73	2086	4478	7217	6274	34.3	26.6	19.4	12.86	1558	446
74	2087	4220	7216	6180	34.8	27.1	19.6	12.86	1029	435
75	2088	4190	7209	6171	37.3	28.2	20.8	12.87	1059	505
76	2089	4911	7203	6265	36.1	27.7	20.5	12.91	851.6	463
77	2090	4124	7203	6170	34.5	27.3	19	12.88	923.9	439.7