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Abstract

The present thesis deals with the approximation properties of some well-known

linear positive operators and their new generalizations which include the Stancu

type generalization, bivariate generalization, Bézier variant and q−variant of the

well known operators. We divide the thesis into eight chapters. In Chapter 0, we

mention literature survey, basic definitions and some notations of approximation

techniques which we have used throughout the thesis. In Chapter 1, we define a

general sequence of linear positive operators and discuss their approximation be-

haviour e.g. rate of convergence in ordinary and simultaneous approximation and

the estimate of the rate of convergence for functions having a derivative equiva-

lent to a function of bounded variation. Further, we illustrate the convergence of

these operators and their first order derivatives by graphics using Matlab algorithms.

In Chapter 2, we consider a one parameter family of hybrid operators and study

the local, weighted approximation results, simultaneous approximation of deriva-

tives and statistical convergence. Also, we show the rate of convergence of these

operators to a certain function by illustrative graphics in Matlab.

The third chapter involves the Kantorovich modification of generalized Baskakov

operators. We obtain some direct results and then study weighted approximation,

simultaneous approximation and statistical convergence properties for these oper-

ators. We also obtain the rate of convergence for functions having a derivative

equivalent with a function of bounded variation for these operators. Further, we de-

fine the bivariate extension of the generalized Baskakov Kantorovich operators and

discuss the results on the degree of approximation, asymptotic theorem, order of ap-

proximation using Peetre’s K−functional and simultaneous approximation for first

order derivatives of operators in polynomial weighted spaces. Lastly, we also show
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the convergence of the bivariate operators to a certain function and demonstrate the

comparison with the bivariate Szász-Kantorovich operators through graphics using

Matlab algorithm. In Chapter 4, we study some approximation properties of the

Bézier variant of generalized Baskakov Kantorovich operators. We obtain direct the-

orem by means of the first order modulus of smoothness and the rate of convergence

for the functions having a derivative of bounded variation.

The fifth and sixth chapters deal with the q−analogues of general Gamma type

operators and the Stancu generalization of Szász-Baskakov operators respectively.

First, we obtain the moments of the operators by using the q−beta function and

then prove the basic convergence theorem. The Voronovskaja type theorem, local

and direct results and weighted approximation in terms of modulus of continuity

have been discussed for both of these operators. Lastly, we study the King type

approach in order to obtain the better approximation for both of these operators.

In the last chapter, we introduce the complex case of the Szász-Durrmeyer-

Chlodowsky operators and obtain the upper estimate, Voronovskaja type result, the

exact order in simultaneous approximation and asymptotic result with quantitative

estimates. In this way, we show the overconvergence phenomenon for these opera-

tors, namely the extensions of approximation properties orders of these convergencies

to sets in the complex plane that contain the interval [0,∞).
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Introduction

0.1 General Introduction

The theory of approximation of functions is now an extremely extensive branch of

mathematical analysis. The Weierstrass approximation theorem [155] is one of the

most fundamental theorems of approximation theory given by Weierstrass in the year

1885. This theorem characterizes that there exists a sequence of polynomials which

is dense in space of all continuous functions on a closed interval. After that there

were great mathematicians such as Runge, Lebesgue, Landau, Vallée-Poussin, Fejér,

Jackson and Bernstein who relate their names with this most celebrated theorem.

In 1912, Bernstein constructed Bernstein polynomials

Bn(f ;x) =
n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
, for any f ∈ C[0, 1], 0 ≤ x ≤ 1.

The sequence of Bernstein polynomials converges uniformly to f on [0, 1], thus giv-

ing a constructive proof of Weierstrass’s theorem. In 1940s Mirakjan [116], Favard

[47] and Szász [148] independently introduced the generalization of Bernstein poly-

nomials to infinite intervals which is given by

Gn(f ;x) = e−nx
∞∑
k=0

(nx)k

k!
f

(
k

n

)
, for any x ∈ [0,∞), and n ∈ N.

If f is continuous on (0,∞) having a finite limit at infinity, then these operators

named Szász-Mirakjan operators Gn(f) converge uniformly to f as n→∞.
The foundation of the theory of approximation by general sequences of linear posi-

tive operators was introduced by Popoviciu [133], Bohman [29] and Korovkin [104].

Subsequently, many linear positive operators were defined and their approxima-

tion behaviour was discussed by many researchers. Now, we list some of the expert

1
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mathematicians who involved in significant activities in development of theory of ap-

proximation by different linear positive operators and made many efforts to improve

the degree of approximation of the different linear positive operators: Kantorovich

[95], Phillips [130], Baskakov [25], Durrmeyer [43], Stancu [145], Rathore and Singh

[137], Lupaş and Lupaş [109], Mazhar and Totik [114], Agrawal and Thamer [13],

Srivastava and Gupta [143], Ranadive and Singh [134], Abel and Ivan [3], Abel and

Heilmann [2] etc.

The aim of the general approximation methods concerning linear positive oper-

ators is to deal with convergence behaviour. For the convergence, the important

basic concept is concerned with the study of direct results such as rate of conver-

gence, asymptotic behaviour and order of approximation. The direct results provide

the order of approximation for functions of a specified smoothness. The best ap-

proximation by direct estimates was first obtained by Jackson [92] for algebraic and

trigonometric polynomials. Rate of convergence of linear positive operators infers

speed at which a convergent sequence of polynomials approaches to the function.

Some operators reproduce constant as well as linear functions. We can also get a

better approximation by modifying the operators that do not even preserve linear

functions. King [101] was the first person who has taken initiative by modifying

Bernstein operators. He showed that the modified operators yield a better approxi-

mation than the operators Bn whenever 0 ≤ x ≤ 1
3
.

Apart from earlier well known operators, several new sequences and classes of

operators were introduced and studied. Here we give the series of some linear positive

operators: Stancu [145] introduced the positive linear operators P(α,β)
n : C[0, 1] →

C[0, 1] by modifying the Bernstein polynomials as

P(α,β)
n (f ;x) =

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k + α

n+ β

)
,

where α, β be any two non-negative real numbers which satisfy the condition 0 ≤ α ≤
β. If α, β = 0, the above sequence of operators reduces to Bernstein polynomials.

Subsequently, several authors (cf. [5], [78], [94], [150] etc.) developed such a modi-

fication for some other sequences of positive linear operators. Another modification

in Bernstein polynomials consists of Kantorovich integral operators by Kantorovich

[95] and Durrmeyer integral operators by Durrmeyer [43] in order to approximate
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Lebesgue integrable functions on [0, 1]. Also, several mixed summation-integral-type

operators [37], [44], [66], [76], [79], [139] have been constructed by using different

basis functions and their approximation behaviours were studied. In [132], Phillips

defined another alteration in Szász-Mirakjan operators by considering the value of

the function at zero explicitly. After that many researchers implemented this tech-

nique on different linear positive operators [11], [13], [69] etc.

In order to study more general case of linear positive operators, many mathe-

maticians combined different operators by using different parameters [120], [128].

Another method to generalize the operators is given by Mihesan [115] who inves-

tigated the generalized Baskakov operators and obtained the uniform convergence

on closed interval and point-wise estimate for these operators. After that Wafi

and Khatoon [152] studied many approximation properties i.e. rate of convergence,

asymptotic formula, direct and inverse estimates. They also defined the bivariate

extension of these operators and studied convergence of first derivative and Voron-

vskaja type results. In [45], Erençin and Başcanbaz-Tunca also found the weighted

approximation theorem and estimated the order of convergence for these opeators.

Later on, Erençin [44] introduced the Durrmeyer type modification of generalized

Baskakov operators and obtained some local direct results. Recently, Agrawal et

al. [8] studied simultaneous approximation and rate of convergence for these opera-

tors. In the present thesis, we define the Kantorovich modification of the generalized

Baskakov operators.

Mazhar [113] investigated the general gamma type operators and discussed some

approximation properties. In [97], Karsli reconstructed these operators and obtained

rate of convergence for that modified operators. After that Mao [111] considered

generalization of gamma type operators which include both operators defined by

Mazhar and Karsli and studied the rate of convergence for these operators.

A Bèzier curve is a parametric curve frequently used in computer graphics (i.e. de-

sign of fonts, animation etc.) and related fields. Bèzier basis functions are very

useful in computer aided design. Bojanic and Cheng [31], [30] obtained the rate of

convergence for functions with derivatives of bounded variation for Bernstein and
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Hermite-Fejer polynomials. Guo [64] studied it for the Bernstein-Durrmeyer poly-

nomials by using Berry Esseen theorem. Zeng and Chen [158] initiated the study of

rate of convergence for Bernstein-Bèzier-Durrmeyer operators. Zeng and Tao [159]

obtained the rate of convergence for Bèzier variant of Baskaov-Durrmeyer operators

for θ ≥ 1. They also termed these operators as integral type Lupaş -Bèzier opera-

tors. Abel and Gupta [1] introduced the Bèzier variant of the Baskakov operators

and then Gupta [68] estimated the convergence of Bèzier type Baskakov-Kantorovich

operators and studied the rate of convergence for 0 < θ < 1. Guo et al. [63] gave the

direct, inverse and equivalence approximation theorems with unified Ditzian-Totik

modulus ωφλ(f, t)(0 ≤ λ ≤ 1). For further research in this direction, we refer to [70],

[76] and [90] etc.

0.2 Fundamental of q−Calculus

Let q > 0. For each integer k ≥ 0, the q−integer [k]q and the q−factorial [k]q! are

defined by

[k]q :=


1− qk

1− q
, q 6= 1 for k ∈ N and [0]q = 0,

k, q = 1,

[k]q! := [1]q[2]q · · · [k]q for k ∈ N and [0]q! = 1.

The q-analogue of beta function of second kind is defined by

(0.2.1) Bq(t, s) = K(A, t)

∫ ∞/A
0

xt−1

(1 + x)t+sq

dqx,

where K(x, t) =
1

x+ 1
xt
(

1+
1

x

)t
q

(1+x)1−t
q , and (a+ b)sq = Πs−1

i=0

(
a+ qib

)
, s ∈ Z+.

In particular, for any positive integers n,m, we have

(0.2.2) K(x, n) = q
n(n−1)

2 , K(x, 0) = 1,

and

Bq(m,n) =
Γq(m)Γq(n)

Γq(m+ n)
.
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Γq(m) and Bq(m,n) are the q−analogues of the Gamma and Beta functions. As

q → 1 the q−Gamma function and q−Beta function reduce to Γ(m) and B(m,n)

respectively.

The q−analogue Ex
q of classical exponential function is defined as

Ex
q =

∞∑
j=0

qj(j−1)/2 x
j

[j]!
.

For further details on q−calculus, one can refer to [22] and [93]. The applica-

tions of q−calculus have been proved to be an active area of recent researches in

approximation theory. It has been shown that linear positive operators investigated

by q−numbers are quite effective as far as the rate of convergence is concerned and

we can have some unexpected results, which are not observed for classical case.

This type of construction was first applied to generate Bernstein operators. The

generalization of Bernstein polynomials involving q−integers was first investigated

by Lupaş [108] which provides rational functions rather than polynomials. In the

discussion of uniform convergence of q−Bernstein operators, the Korovkin theorem

is used in classical Bernstein operators. But for 0 < q < 1, we get [n]q = 1−qn
1−q →

1
1−q

as n → ∞, so for uniform convergence of q−Bernstein polynomials we take a se-

quence of qn which goes to 1 as n→∞. In the case q = 1, these polynomials coincide

with the classical ones. Phillips [130] further generalized q−Bernstein polynomials

and Phillips and other researchers obtained extensively studied these polynomials

(see [131] and references therein). Ostrovska and other researchers [88], [100], [123],

[124], [154] also derived new results about convergence properties of the q−Bernstein

polynomials. In [38], Derriennic discussed modified Bernstein polynomials with Ja-

cobi weights in q−calculus.

Many researchers introduced a similar modification on different discrete q−operators

which include the q−Blemian-Butzer-Hahn operators, q−Szász operators, q−Baskakov

operators [19], [18], [20]. Although, from the structural point of view the q−Szász-

Mirakyan operators have some resemblances to the classical Szász Mirakyan oper-

ators, they have some similarities to the Bernstein-Chlodowsky operators from the

properties of convergence standpoint, but q−Szász-Mirakyan operators with this

construction are sensitive or flexible to the rate of convergence to f . In point of
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q−Baskakov operators, Aral and Gupta [21] improved and represented the oper-

ators in terms of divided differences to study the q−derivatives, shape preserving

properties and the applications of these operators. Integral modifications of these

operators using q−beta functions of first and second kind such as q−Bernstein-

Kantorovich operators, q−Bernstein-Durrmeyer operators, q−Baskakov-Durrmeyer

operators, q−Szász-Durrmeyer operators and q−Phillips operators were also pro-

posed and moment estimation, direct results, asymptotic formula, weighted approx-

imation and the rate of convergence results have been studied for such operators. In

this direction, significant contributions have been made by (cf. [6], [35], [71], [122]

etc.).

0.3 Simultaneous Approximation

By the simultaneous approximation, we mean the approximation of derivatives of

functions by the corresponding order derivatives of operators. Lorentz [107] pio-

neered the study in this direction who studied the point-wise convergence for Bern-

stein operators. Rathore [135], [136] studied more results of simultaneous approx-

imation in detail and established the existence of Voronvskaja type formulae and

degree of approximation by means of the higher order modulus of continuity in si-

multaneous approximation. Later on several researchers implemented this method

on various operators [36], [77], [80], [84], [85] and [140].

0.4 Statistical Convergence

Six decades ago, the concept of statistical convergence was first introduced by Stein-

haus [147]. It was further developed by Fast [46] and studied by various authors.

After Gadjiev and Orhan [51], many researchers have been concerned with the Ko-

rovkin type approximation theorems for positive linear operators by using statistical

convergence. The main concept of the statistical convergence of a sequence is that

the majority of elements from sequence converge and we do not consider the other

elements in that sequence.

Let M be a subset of the set of positive integers; then the natural density of the
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set M is denoted by δ(M) and defined as

δ(M) := lim
n→∞

|Mn|
n

where Mn := {k ≤ n : k ∈ M}. The statistical convergence is a generalization of

ordinary convergence and was defined by Fast in the following way [46]:

• Statistical convergence A sequence x := (xn) is called statistically conver-

gent to l and denoted by st− lim
n→∞

xn = l, if for every ε > 0,

lim
n→∞

|{k ∈ [1, n] : |xk − l| ≥ ε}|
n

= 0.

After the statistical convergence, the different researchers introduced some

other methods.

• Lacunary statistical convergence : Recall that a lacunary sequence θ =

{kn} is an increasing integer sequence such that k0 = 0 and hn = kn− kn−1 →
∞ as n → ∞. A sequence x := (xn) is said to exhibit lacunary statistical

convergence [49], [118] if there exists l such that, for every ε > 0,

lim
n→∞

|{k ∈ (kn−1, kn) : |xk − l| ≥ ε}|
hn

= 0.

• λ−statistical convergence : Let λ = (λn) be a non-decreasing sequence of

positive numbers satisfying λn → ∞ (n → ∞), λ1 = 1, λn+1 ≤ λn + 1; then a

sequence x := (xn) is said to be λ−statistically convergent [117] if there exists

l such that, for every ε > 0,

lim
n→∞

|{k ∈ [n− λn + 1, n] : |xk − l| ≥ ε}|
λn

= 0.

• A−statistical convergence : For any non-negative regular matrix A =

(ank), statistical convergence was extended to A−statistical convergence by

Kolk [103].

Let A = (anj) be an infinite summability matrix. For a given sequence x :=

(xk), the A−transform of x, denoted by Ax = (Ax)n is defined as (Ax)n :=
∞∑
k=1

ankxk, provided the series converges for each n. A is said to be regular if
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lim
n

(Ax)n = l whenever lim
n
xn = l. Suppose that A is a non-negative regular

summability matrix. Then x is A−statistically convergent to L and denoted

by stA − lim
n
xn = l, if for every ε > 0,

lim
n

∑
k∈K(ε)

ank = 0

where K(ε) := {k : |xk − l| ≥ ε} and we write stA − limn xn = l. If A = C1,

the Cesàro matrix of order one, then the A−statistical convergence reduces to

the statistical convergence. Also, if A = I, the identity matrix, A−statistical

convergence coincides with the ordinary convergence. Statistical convergence,

lacunary statistical convergence and λ−statistical convergence are well known

examples of A−statistical convergence.

Recently, Aktuğlu [14] introduce αβ−statistical convergence methods which

include not only some well known regular matrix methods such as statistical

convergence, lacunary statistical convergence and λ−statistical convergence

methods but also some non-regular matrix methods.

0.5 Bivariate Extension

Kingsley [102] first introduced the Bernstein polynomials for functions of two vari-

ables of class C(k) (class of k times continuous and differentiable functions) on a

closed region R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. If f(x, y) is a continuous function in R, then

the bivariate generalization of Bernstein polynomials Vm,n(f ;x, y) is given by:

Vm,n(f ;x, y) =
n∑
p=0

m∑
q=0

f
(p
n
,
q

m

)
λn,p(x)λm,q(y),(0.5.1)

where λn,p(x) =
(
n
p

)
xp(1− x)n−p, λm,q(y) =

(
m
q

)
yq(1− y)n−q.

Butzer [32] has also proven some results for these polynomials. After that Stancu

[144] defined another bivariate Bernstein polynomials on the triangle

∆ := S = {(x, y) : x+ y ≤ 1, 0 ≤ x, y ≤ 1}.

In [146], Stancu considered new linear positive operators in two and several dimen-

sional variables. Barbosu [23], [24] proposed the q−analogues of two dimensional

Bernstein operators and Kantorovich-Schurer operators respectively. Many papers
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were published on approximation by modified Szász-Mirakyan and Baskakov oper-

ators for univariate and bivariate cases [48], [83], [119], [138], [142], [157] which deal

with convergence, degree of approximation and Voronovskaja type theorems as well

as convergence of partial derivatives of these operators. Later on Doğru and Gupta

[41] constructed a bivariate generalization of the q−Meyer-König and Zeller while

in [7], Agratini proposed two-dimensional extension of some univariate positive ap-

proximation processes expressed by series.

In [151], [153] Wafi and Khatoon introduced generalized bivariate Baskakov op-

erators in polynomial and exponential weighted spaces. They studied the basic

convergence, degree of approximation, direct theorems, convergence of partial first

order derivatives and also obtained a Voronovskaja type theorem.

Örkcü [121] proposed a new bivariate generalization by qR−integral. She pre-

sented many approximation properties i.e. Voronovskaja-type theorem in polyno-

mial weighted spaces and weighted A−statistical approximation properties for these

operators. Also, she estimated the rate of convergence of the proposed operators in

terms of modulus of continuity. In the present thesis, we also define the bivariate

extension for the Kantorovich modification of generalized Baskakov operators.

0.6 Complex Extension

In the complex extension of linear positive operators, we mean to extend and pre-

serve the convergence properties and orders of approximation to large sets in complex

plane than real interval. Bernstein [107] proved that if f : G → C is analytic in

the open set G ⊂ C, with D1 ⊂ G (with D1 = z ∈ C : |z| < 1), then the complex

Bernstein polynomials Bn(f ; z) =
n∑
k=0

(
n

k

)
zk(1− z)n−kf

(
k

n

)
, uniformly converges

to f in D1. This important concept of the overconvergence of Bernstein polynomials

has been discussed by many researchers: Wright [156], Kantorovich [96], Bernstein

([26], [27], [28]), Tonne [149] and Lorentz [107].

Initially, Sorin Gal has done commendable work in this direction and for uniform

convergence of Bn(f ; z) to f, he estimated upper quantitative estimates in [52]. Ex-

act quantitative estimates for different operators also studied by him in his recent
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papers [17], [54], [55]. Voronovskaja-type results with quantitative estimates for the

different operators attached to analytic functions on compact disks and the exact

order of simultaneous approximation by different complex operators were collected

by Gal [53], [56].

After that similar results have been done in this direction on different linear

positive operators e.g. complex Bernstein-Schurer and Kantorovich-Schurer polyno-

mials [16], complex Bernstein-Durrmeyer polynomials [17], complex q−Durrmeyer

type operator [60], complex Kantorovich type operators [110], complex q−Szász-

Kantorovich operators [61] etc. Recently, Gal and Gupta [57], [58], [59], Gupta

[73], Gupta and Soybaş [82] put in the overconvergence phenomenon for complex

Phillips Stancu, complex beta operators, complex Szász-Durrmeyer operators, com-

plex Baskakov-Szász-Stancu and complex genuine hybrid operators respectively.

0.7 Basic Definitions and Notations

Throughout the thesis, let R denote the set of all real numbers, C the set of all

complex numbers, N the set of all positive integers, N0 = N ∪ {0}, and C[a, b], the

space of continuous functions on [a, b].

Let CB[0,∞) denote the space of all real valued bounded and uniformly contin-

uous functions on [0,∞) endowed with the norm

‖f‖ = sup
x∈[0,∞)

|f(x)|

and C2
B[0,∞) = {g ∈ CB[0,∞) : g′, g′′ ∈ CB[0,∞)}.

Definition 1. The mth order modulus of continuity ωm(f ; δ, I) for a function contin-

uous on I is defined by

ωm(f ; δ, I) = sup{|∆m
h f(x)| : |h| ≤ δ, x, x+ h ∈ I}.

For m = 1, ωm(f ; δ) is usual modulus of continuity on [0,∞).

The Peetre’s K-functional is defined as

K2(f, δ) = inf{‖ f − g ‖ +δ ‖ g′′ ‖; g ∈ C2
B[0,∞)},(0.7.1)
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where δ > 0. By Devore and Lorentz [39, p.177, Theorem 2.4], there exists an

absolute constant C > 0 such that

K2(f, δ) ≤ Cω2(f ;
√
δ),(0.7.2)

where ω2(f ;
√
δ) is the second order modulus of continuity on [0,∞).

Further, for γ > 0, we define Cγ[0,∞) := {f ∈ C[0,∞) : |f(t)| ≤ C eγt, for some C >

0 and t ∈ [0,∞)}, endowed with the norm ‖ f ‖Cγ [0,∞)= sup
t∈[0,∞)

|f(t)|e−γt,

and for ϑ > 0, we defineDϑ[0,∞) = {f ∈ C[0,∞) : |f(t)| ≤Mf (1+tϑ), for some Mf >

0} endowed with the norm ‖f‖ϑ = sup
t∈[0,∞)

|f(t)|
(1 + tϑ)

and also D∗2[0,∞) =

{
f ∈ D2[0,∞) : lim

t→∞
|f(t)|(1 + t2)−1 <∞

}
.

Let f ∈ D∗2[0,∞). The weighted modulus of continuity is defined as :

Ω2(f, δ) = sup
x≥0,0<|h|≤δ

|f(x+ h)− f(x)|
1 + (x+ h)2

.

Lemma 0.7.1. [106] Let f ∈ D∗2[0,∞), then:

(i) Ω2(f, δ) is a monotone increasing function of δ;

(ii) lim
δ→0+

Ω2(f, δ) = 0;

(iii) for each m ∈ N,Ω2(f,mδ) ≤ mΩ2(f, δ);

(iv) for each λ ∈ [0,∞),Ω2(f, λδ) ≤ (1 + λ)Ω2(f, δ).

The Lipschitz-type maximal function of order τ introduced by Lenze [105] as

(0.7.3) ω̂τ (f, x) = sup
t6=x, t∈[0,∞)

|f(t)− f(x)|
|t− x|τ

, x ∈ [0,∞) and τ ∈ (0, 1].

Let f ∈ DBVγ[0,∞), γ ≥ 0 be the class of all functions defined on [0,∞), having

a derivative that coincides a.e. with a function of bounded variation on every finite

subinterval of [0,∞) and |f(t)| ≤Mtγ, ∀ t > 0.

We notice that the functions f ∈ DBVγ(0,∞) possess a representation

f(x) =

∫ x

0

h(t)dt+ f(0),

where h(t) is a function of bounded variation on each finite subinterval of (0,∞).
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Definition 2. For sufficiently small η > 0, the Steklov mean fη,2 of 2nd order corre-

sponding to f ∈ Cγ[0,∞) and t ∈ Hi = [ai, bi], i = 1, 2 is defined as follows:

fη,2(t) = η−2

∫ η/2

−η/2

∫ η/2

−η/2
(f(t)−∆2

hf(t))dt1dt2,

where h = t1+t2
2

and ∆2
h is the second order forward difference operator with step

length h. The following properties are satisfied (see [74], [86] and references therein):

(i) fη,2 has continuous derivatives up to order 2 over H1;

(ii) ‖ f (r)
η,2 ‖C(H2)≤ Cη−rωr(f ; η,H2), r = 1, 2;

(iii) ‖ f − fη,2 ‖C(H2)≤ Cω2(f ; η,H1);

(iv) ‖ fη,2 ‖C(H2)≤ C ‖ f ‖C(H1)≤ C||f ||Cγ[0,∞),

where C is a constant not necessarily the same at each occurrence and is independent

of f and η.

0.8 Contents of Thesis

The thesis consists of seven chapters and the description of contents in these chap-

ters is given below:

Chapter 1. In this chapter, we introduce a general sequence of summation-

integral type operators. We discuss some direct results which include Voronovskaja

type asymptotic formula, point-wise convergence for derivatives, error estimations

in terms of modulus of continuity and weighted approximation for these operators.

Also, we study simultaneous approximation by these operators and estimate the

rate of convergence for functions having a derivative that coincides a.e. with a func-

tion of bounded variation. Furthermore, the convergence of these operators and

their first order derivatives to certain functions and their corresponding derivatives

respectively is illustrated by graphics using Matlab algorithms for some particular

values of the parameters c and ρ.

The results related to the simultaneous approximation and the rate of approximation

of functions with derivatives of bounded variation are published in the Proceed-

ings of the International Conference on Recent Trends in Mathematical
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Analysis and its Applications (ICRTMAA-2014), (Springer).

Chapter 2. We introduce a one parameter family of hybrid operators and study

quantitative convergence theorems e.g. local and weighted approximation results

and simultaneous approximation of derivatives. Further, we discuss the statistical

convergence of these operators. Lastly, we show the rate of convergence of these

operators to a certain function by illustrative graphics in Matlab.

This chapter is published in Applied Mathematics and Computation (Else-

vier Publications).

Chapter 3. In the present chapter, we construct generalized Baskakov Kan-

torovich operators. We establish some direct results and then study weighted ap-

proximation, simultaneous approximation and statistical convergence properties for

these operators. We also obtain the rate of convergence for functions having a

derivative coinciding almost everywhere with a function of bounded variation for

these operators.

Also, we define the bivariate extension of the generalized Baskakov Kantorovich op-

erators and discuss the results on the degree of approximation, Voronovskaja type

theorems and their first order derivatives in polynomial weighted spaces. Further-

more, we illustrate the convergence of the bivariate operators to a certain function

through graphics using Matlab algorithm. We also discuss the comparison of the

convergence of the bivariate generalized Baskakov Kantorovich operators and the

bivariate Szász-Kantorovich operators to the function through illustrations using

Matlab.

The results in the first part of this chapter are accepted in Filomat.

Chapter 4. In this chapter, we introduce the Bèzier variant of the general-

ized Baskakov Kantorovich operators. We establish a direct approximation theorem

with the aid of the Ditzian-Totik modulus of smoothness and also study the rate

of convergence for the functions having a derivative of bounded variation for these

operators.

This chapter is published in Bollettino dell’Unione Matematica Italiana (Springer

publication).
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Chapter 5. The purpose of this chapter is to introduce the q−analogue of the

general Gamma type operators. Here, we establish the moments of the operators

and then prove the basic convergence theorem. Next, the Voronovskaja type theo-

rem and some direct results for the above operators are discussed. We also study

the rate of convergence and weighted approximation by these operators in terms of

modulus of continuity. Further, we study the A-statistical convergence of these op-

erators. Lastly, we modify these operators by King type approach to obtain better

estimates.

This chapter is published in Applied Mathematics and Computation (Else-

vier publication).

Chapter 6. In the present chapter, we construct the q−analogue of the Stancu

variant of Szász-Baskakov operators. We obtain the moments of the operators and

then prove the basic convergence theorem. Next, the Voronovskaja type theorem

and some direct results for the above operators are studied. Also, the rate of con-

vergence and weighted approximation by these operators in terms of modulus of

continuity are discussed. Lastly, we study the A−statistical convergence of these

operators and also in order to obtain better approximation we find a King type

modification of the above operators.

The results of this chapter is published in Journal of Inequalities and Applica-

tions (Springer publication).

Chapter 7. The present chapter deals with the overconvergence of the Szász-

Durrmeyer-Chlodowsky operators. Here we study the approximation properties e.g.

upper estimates, Voronovskaja type result for these operators attached to analytic

functions in compact disks. Also, we discuss the exact order in simultaneous ap-

proximation by these operators and its derivatives and the asymptotic result with

quantitative upper estimate. In this way, we put in evidence the overconvergence

phenomenon for the Szász-Durrmeyer-Chlodowsky operators, namely the extensions

of approximation properties with exact quantitative estimates and orders of these

convergencies to larger sets in the complex plane than the real interval [0,∞).
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Chapter 1

Approximation by certain genuine

hybrid operators

1.1 Introduction

Gupta and Rassias [81] introduced the Lupaş-Durrmeyer operators based on Polya

distribution and discussed some local and global direct results. Gupta [72] studied

some other hybrid operators of Durrmeyer type. Păltǎnea [129] (see also [128])

considered a Durrmeyer type modification of the genuine Szász-Mirakjan operators

based on two parameters α, ρ > 0. Inspired by his work, we now propose for f ∈
Cγ[0,∞), a general hybrid family of summation-integral type operators based on

the parameters ρ > 0 and c ∈ {0, 1} in the following way:

Bρ
α(f, x) =

∞∑
k=1

pα,k(x, c)

∫ ∞
0

θρα,k(t)f(t)dt+ pα,0(x, c)f(0),(1.1.1)

=

∫ ∞
0

Aρα(x, t)f(t)dt,(1.1.2)

where

pα,k(x, c) =
(−x)k

k!
φ(k)
α,c(x), θρα,k(t) =

αρ

Γ(kρ)
e−αρt(αρt)kρ−1

and Aρα(x, t) =
∞∑
k=1

pα,k(x, c)θ
ρ
α,k(t) + pα,0(x, c)δ(t); x ∈ (0,∞).

It is observed that the operators Bρ
α(f, x) are well defined for αρ > γ. Further, we

note that the operators (1.1.1) preserve the linear functions.

Special cases:

17
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1. If φα,0(x) = e−αx, then pα,k(x, 0) = e−αx (αx)k

k!
, we get the operators due to

Păltǎnea [129]. Also, for this case if ρ = 1, we get the Phillips operators [132].

2. If φα,1(x) = (1 + x)−α and α = n, then pα,k(x, 1) =
(α)k
k!

xk

(1 + x)α+k
, with the

rising factorial given by (n)i = n(n+ 1) · · · (n+ i− 1), (n)0 = 1. For ρ = 1, we

get the operators studied in [12].

3. If c = 0, α = n and ρ → ∞, then in view of ([128], Theorem 2.2), we get the

Szász-Mirakjan operators.

4. Similarly, if c = 1, α = n, f ∈ Π, the closure of the space of algebraic polyno-

mials in space C[0,∞) and ρ→∞, we obtain at once Baskakov operators.

The aim of the present chapter is to discuss some direct results for the generalized

operators (1.1.1). We study some direct results in simultaneous approximation by

these operators e.g. point-wise convergence theorem, Voronovskaja-type theorem

and an error estimate in terms of the modulus of continuity. Then, we obtain error

estimations by means of modulus of continuity and weighted approximation. Next,

we estimate the rate of convergence for functions having a derivative that coincides

a.e. with a function of bounded variation.

1.2 Basic Results

In the sequel, we need the following lemmas. For f : [0,∞)→ R, we define

Sα(f ;x) =
∞∑
k=0

pα,k(x, c)f

(
k

α

)
(1.2.1)

such that (1.2.1) makes sense for all x ≥ 0.

For m ∈ N0, the mth order central moment of the operators Sα is given by

υα,m(x) := Sα((t− x)m;x) =
∞∑
k=0

pα,k(x, c)

(
k

α
− x
)m

.

Lemma 1.2.1. For the function υα,m(x), we have υα,0(x) = 1, υα,1(x) = 0

and (1 + cx)[υ′α,m(x) +mυα,m−1(x)] = αυα,m+1(x).

Thus,
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(i) υα,m(x) is a polynomial in x of degree [m/2];

(ii) for each x ∈ [0,∞), υα,m(x) = O(α−[(m+1)/2]) , where [β] denotes the integral

part of β.

Proof. For the cases c = 0 and 1, the proof of this lemma can be found in [99] and

[141] respectively.

Lemma 1.2.2. For the mth order (m ∈ N0) moment of the operators (1.1.1) defined

as uρα,m(x) := Bρ
α(tm;x), we have uρα,0(x) = 1, uρα,1(x) = x,

uρα,2(x) = x2 +
x

α

(
1

ρ
+ (1 + cx)

)
and x(1 + cx)

(
uρα,m

(
x))′ = αuρα,m+1(x)−

(
m
ρ

+ αx
)
uρα,m(x), m ∈ N.

Consequently, for each x ∈ (0,∞) and m ∈ N, uρα,m(x) = xm + α−1(pm(x, c) + o(1)),

where pm(x, c) is a rational function of x depending on the parameters m and c.

Lemma 1.2.3. For c = 0, 1 if the mth order central moment µρα,m(x) is defined as

µρα,m(x) := Bρ
α((t− x)m, x) =

∞∑
k=1

pα,k(x, c)

∫ ∞
0

θρα,k(t)(t− x)mdt+ pα,0(x, c)(−x)m,

then, µρα,0(x) = 1, µρα,1(x) = 0 and there holds the following recurrence relation:

αµρα,m+1(x) = x(1 + cx)(µρα,m(x))′ +mx

(
1

ρ
+ (1 + cx)

)
µρα,m−1(x) +

m

ρ
µρα,m(x).

Consequently,

(i) µρα,m(x) is a polynomial in x of degree atmost m depending on the parameters c

and α;

(ii) for every x ∈ (0,∞), µρα,m(x) = O
(
α−[(m+1)/2]

)
, where [s] denotes the integer

part of s.

Proof. We shall prove the result for different values of c separately. For

c ∈ {0, 1}, using the identity x(1 + cx)p′α,k(x, c) = (k − αx)pα,k(x, c), we may write

x(1 + cx)(µρα,m(x))′ =
∞∑
k=1

(k − αx)pα,k(x, c)

∫ ∞
0

θρα,k(t)(t− x)mdt

−mx(1 + cx)
∞∑
k=1

pα,k(x, c)

∫ ∞
0

θρα,k(t)(t− x)m−1dt

+(−αx)pα,0(x, c)(−x)m −mx(1 + cx)pα,0(x, c)(−x)m−1

=
∞∑
k=1

pα,k(x, c)

∫ ∞
0

[(k − αt) + α(t− x)]θρα,k(t)(t− x)mdt

−mx(1 + cx)µρα,m−1(x) + αpα,0(x, c)(−x)m+1.
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Next, using the identity
d

dt
(tθρα,k(t)) = ρ(k − αt)θρα,k(t), we have

x(1 + cx)(µρα,m(x))′ =
∞∑
k=1

pα,k(x, c)

∫ ∞
0

1

ρ
(tθρα,k(t))

′(t− x)mdt

−mx(1 + cx)µρα,m−1(x) + αµρα,m+1(x)

= −m
ρ

∞∑
k=1

pα,k(x, c)

∫ ∞
0

tθρα,k(t)(t− x)m−1dt

−mx(1 + cx)µρα,m−1(x) + αµρα,m+1(x)

= −m
ρ

((
µρα,m(x)− pα,0(x, c)(−x)m

)
+ x

(
µρα,m−1(x)− pα,0(x, c)(−x)m−1

))
−mx(1 + cx)µρα,m−1(x) + αµρα,m+1(x)

= −m
ρ

(
µρα,m(x) + xµρα,m−1(x)

)
−mx(1 + cx)µρα,m−1(x) + αµρα,m+1(x),

which is the required recurrence relation. The consequences (i) and (ii) easily follow

from the recurrence relation on using mathematical induction on m.

Remark 1. From Lemma 1.2.3, for each x ∈ (0,∞) and c ∈ {0, 1} we have

µρα,2(x) =
x(1 + ρ(1 + cx))

αρ
;(1.2.2)

µρα,4(x) =
x(1 + cx)

α3ρ2

(
3ρ(1 + 2cx) + ρ2

(
(1 + 2cx)2 + 2cx(1 + cx)

)
+ 2
)

+
3x2(1 + ρ(1 + cx))2

(αρ)2

+
1

(αρ)3
(3ρx(1 + cx)(3 + ρ(1 + 2cx)) + 6x) .

Corollary 1. For x ∈ [0,∞) and α > 0, it is observed that

µρα,2(x) ≤ λx(1 + cx)

α
, where λ = 1 +

1

ρ
> 1.

Corollary 2. Let γ and δ be any two positive real numbers and [a, b] ⊂ (0,∞) be

any bounded interval. Then, for any m > 0 there exists a constant M ′ depending

on m only such that∥∥∥∥ ∞∑
k=1

pα,k(x, c)

∫
|t−x|≥δ

θρα,k(t)e
γtdt

∥∥∥∥ ≤M ′α−m,

where ‖.‖ is the sup-norm over [a, b].



21

Lemma 1.2.4. For every x ∈ (0,∞) and r ∈ N0, there exist polynomials qi,j,r(x, c)

in x independent of α and k such that

dr

dxr
pα,k(x, c) = pα,k(x, c)

∑
2i+j≤r
i,j≥0

αi(k − αx)j
(qi,j,r(x, c))

(p(x, c))r
,

where p(x, c) = x(1 + cx).

Proof. For the cases c = 0, 1, the proof of this lemma can be seen in [99] and [141]

respectively.

1.3 Convergence Estimates

Our first main result is the basic convergence theorem for the operators defined in

(1.1.1).

1.3.1 Simultaneous approximation

Throughout this section, we assume that 0 < a < b <∞.
In the following theorem, we show that the derivative B

ρ(r)
α (f ; .) is also an approxi-

mation process for f (r).

Theorem 1.3.1. (Basic convergence theorem) Let f ∈ Cγ[0,∞). If f (r) exists

at a point x ∈ (0,∞), then we have

lim
α→∞

(
dr

dwr
Bρ
α(f ;w)

)
w=x

= f (r)(x).(1.3.1)

Further, if f (r) is continuous on (a− η, b+ η), η > 0, then the limit in (1.3.1) holds

uniformly in [a, b].

Proof. By our hypothesis, we have

f(t) =
r∑

ν=0

f (ν)(x)

ν!
(t− x)ν + ψ(t, x)(t− x)r, t ∈ [0,∞),

where the function ψ(t, x)→ 0 as t→ x. From the above equation, we may write(
dr

dwr
Bρ
α(f(t);w)

)
w=x

=
r∑

ν=0

f (ν)(x)

ν!

(
dr

dwr
Bρ
α(t− x)ν ;w)

)
w=x

+

(
dr

dwr
Bρ
α(ψ(t, x)(t− x)r;w)

)
w=x

:= I1 + I2, say.
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First, we estimate I1.

I1 =
r∑

ν=0

f (ν)(x)

ν!

{
dr

dwr

(
ν∑
j=0

(
ν

j

)
(−x)ν−jBρ

α(tj;w)

)
w=x

}

=
r∑

ν=0

f (ν)(x)

ν!

ν∑
j=0

(
ν

j

)
(−x)ν−j

(
dr

dwr
Bρ
α(tj;w)

)
w=x

=
r−1∑
ν=0

f (ν)(x)

ν!

ν∑
j=0

(
ν

j

)
(−x)ν−j

(
dr

dwr
Bρ
α(tj;w)

)
w=x

+
f (r)(x)

r!

r∑
j=0

(
r

j

)
(−x)r−j

(
dr

dwr
Bρ
α(tj;w)

)
w=x

:= I3 + I4, say.

First, we estimate I4.

I4 =
f (r)(x)

r!

r−1∑
j=0

(
r

j

)
(−x)r−j

(
dr

dwr
Bρ
α(tj;w)

)
w=x

+
f (r)(x)

r!

(
dr

dwr
Bρ
α(tr;w)

)
w=x

:= I5 + I6, say.

By using Lemma 1.2.2, we get

I6 = f (r)(x) +O

(
1

α

)
, I3 = O

(
1

α

)
and I5 = O

(
1

α

)
, as α→∞.

Combining the above estimates, ∀x ∈ (0,∞) we obtain I1 → f (r)(x) as α→∞.
Next, we estimate I2. By making use of Lemma 1.2.4, we have

|I2| ≤
∞∑
k=1

pα,k(x, c)

(p(x, c))r

∑
2i+j≤r
i,j≥0

αi|k − αx|j|qi,j,r(x, c)|
∫ ∞

0

θρα,k(t)|ψ(t, x)||(t− x)r|dt

+

∣∣∣∣ ( dr

dwr
pα,0(w, c)

)
w=x

∣∣∣∣|ψ(0, x)(−x)r| := I7 + I8, say.

Since ψ(t, x) → 0 as t → x, for a given ε > 0 there exists a δ > 0 such that

|ψ(t, x)| < ε whenever |t− x| < δ. For |t− x| ≥ δ, |(t− x)rψ(t, x)| ≤Meγt, for some

constant M > 0. Thus, we may write

|I7| ≤
∞∑
k=1

∑
2i+j≤r
i,j≥0

αi|k − αx|j |qi,j,r(x, c)|
(p(x, c))r

pα,k(x, c)

×
(
ε

∫
|t−x|<δ

θρα,k(t)|t− x|
rdt+M

∫
|t−x|≥δ

θρα,k(t)e
γtdt

)
:= I9 + I10, say.

Let S = sup
2i+j≤r
i,j≥0

|qi,j,r(x, c)|
(p(x, c))r

. By applying the Schwarz inequality, Lemmas 1.2.1 and
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1.2.3, we get

|I9| ≤ εS
∞∑
k=1

∑
2i+j≤r
i,j≥0

αi|k − αx|jpα,k(x, c)
(∫ ∞

0

θρα,k(t)(t− x)2rdt

) 1
2

≤ εS
∑

2i+j≤r
i,j≥0

αi+j

(
∞∑
k=1

(
k

α
− x
)2j

pα,k(x, c)

) 1
2

×

(
∞∑
k=1

pα,k(x, c)

∫ ∞
0

θρα,k(t)(t− x)2rdt

) 1
2

≤ εS
∑

2i+j≤r
i,j≥0

αi+j
(
υα,2j(x)− x2jφα,c(x)

) 1
2 ×

(
Bρ
α((t− x)2r;x))− x2rφα,c(x)

) 1
2

= ε
∑

2i+j≤r
i,j≥0

αi+j{O(α−j) +O(α−s1)}1/2 × {O(α−r) +O(α−s2)}1/2, for any s1, s2 > 0.

Choosing s1, s2 such that s1 > j and s2 > r, we have

|I9| = ε
∑

2i+j≤r
i,j≥0

αi+jO(α−j/2)O(α−r/2) = ε.O(1).

Since ε > 0 is arbitrary, I9 → 0 as α→∞.
Now, we estimate I10. By applying Cauchy-Schwarz inequality, Lemma 1.2.1 and

Corollary 2, we obtain

|I10| ≤ MS
∞∑
k=1

∑
2i+j≤r
i,j≥0

αi|k − αx|jpα,k(x, c)
∫
|t−x|≥δ

θρα,k(t)e
γtdt

≤ M1

∑
2i+j≤r
i,j≥0

αi+j

(
∞∑
k=1

(
k

α
− x
)2j

pα,k(x, c)

)1/2

×

(
∞∑
k=1

pα,k(x, c)

∫
|t−x|≥δ

θρα,k(t)e
2γtdt

)1/2

,whereM1 = MS

≤ M1

∑
2i+j≤r
i,j≥0

αi+j
(
υα,2j(x)− x2jφα,c(x)

)1/2

(
∞∑
k=1

pα,k(x, c)

∫
|t−x|≥δ

θρα,k(t)e
2γtdt

)1/2

=
∑

2i+j≤r
i,j≥0

αi+j{O(α−j) +O(α−m1)}1/2{O(α−m2)}1/2, for any m1,m2 > 0.

Choosing m1 > j, we get

|I10| =
∑

2i+j≤r
i,j≥0

αi+jO(α−j/2)O(α−m2/2) = O(α(r−m2)/2),
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which implies that I10 = o(1), as α→∞, on choosing m2 > r.

Next, we estimate I8. We may write

|I8| =

∣∣∣∣ ( dr

dwr
pα,0(w, c)

)
w=x

∣∣∣∣|ψ(0, x)|xr = |φ(r)
α,c(x)| |ψ(0, x)|xr.

Now, we observe that φ
(r)
α,0(x) = e−αx(−α)r and φ

(r)
α,1(x) =

(−1)r(α)r
(1 + x)α+r

, which implies

that I8 = O(α−p) for any p > 0, in view of the fact that |ψ(0, x)xr| ≤ N1, for some

N1 > 0.

By combining the estimates I7 − I10, we obtain I2 → 0 as α→∞.
To prove the uniformity assertion, it is sufficient to remark that δ(ε) in the above

proof can be chosen to be independent of x ∈ [a, b] and also that the other estimates

hold uniformity in x ∈ [a, b]. This completes the proof of the theorem.

Next, we establish an asymptotic formula.

Theorem 1.3.2. (Voronovskaja type result) Let f ∈ Cγ[0,∞). If f admits a

derivative of order (r + 2) at a fixed point x ∈ (0,∞), then we have

lim
α→∞

α

((
dr

dwr
Bρ
α(f ;w)

)
w=x

− f (r)(x)

)
=

r+2∑
ν=1

Q(ν, r, c, x)f (ν)(x),(1.3.2)

where Q(ν, r, c, x) are certain rational functions of x independent of α.

Further, if f (r+2) is continuous on (a−η, b+η), η > 0, then the limit in (1.3.2) holds

uniformly in [a, b].

Proof. From the Taylor’s theorem, for t ∈ [0,∞) we may write

f(t) =
r+2∑
ν=0

f (ν)(x)

ν!
(t− x)ν + ψ(t, x)(t− x)r+2,(1.3.3)

where the function ψ(t, x)→ 0 as t→ x.

Now, from equation (1.3.3), we have(
dr

dwr
Bρ
α(f(t);w)

)
w=x

=
r+2∑
ν=0

f (ν)(x)

ν!

(
dr

dwr
(Bρ

α((t− x)ν ;w)

)
w=x

+

(
dr

dwr
Bρ
α(ψ(t, x)(t− x)r+2;w)

)
w=x

=
r+2∑
ν=0

f (ν)(x)

ν!

ν∑
j=0

(
ν

j

)
(−x)ν−j

(
dr

dwr
Bρ
α(tj;w)

)
w=x

+

(
dr

dwr
Bρ
α(ψ(t, x))(t− x)r+2;w

)
w=x

:= J1 + J2, say.
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Proceeding in a manner similar to the estimate of I2 in Theorem 1.3.1, for each

x ∈ (0,∞) we get αJ2 → 0 as α→∞.
Next, we estimate J1.

J1 =
r−1∑
ν=0

f (ν)(x)

ν!

ν∑
j=0

(
ν

j

)
(−x)ν−j

(
dr

dwr
Bρ
α(tj;w)

)
w=x

+
f (r)(x)

r!

r∑
j=0

(
r

j

)
(−x)r−j

(
dr

dwr
Bρ
α(tj;w)

)
w=x

+
f (r+1)(x)

(r + 1)!

r+1∑
j=0

(
r + 1

j

)
(−x)r+1−j

(
dr

dwr
Bρ
α(tj;w)

)
w=x

+
f (r+2)(x)

(r + 2)!

r+2∑
j=0

(
r + 2

j

)
(−x)r+2−j

(
dr

dwr
Bρ
α(tj;w)

)
w=x

.

By making use of Lemma 1.2.2, we have

J1 = f (r)(x) + α−1

(
r+2∑
ν=1

Q(ν, r, c, x)f (ν)(x) + o(1)

)
.

Thus, from the estimates of J1 and J2, the required result follows.

The uniformity assertion follows as in the proof of Theorem 1.3.1. This completes

the proof.

Corollary 3. From the above theorem, we have

(i) for r = 0

lim
α→∞

α(Bρ
α(f ;x)− f(x)) =

x{1 + ρ(1 + cx)}
2ρ

f ′′(x);

(ii) for r = 1

lim
α→∞

α

((
d

dw
Bρ
α(f ;w)− f ′(x)

)
w=x

)
= f ′′(x)

(
cx+

1

2

(
1

ρ
+ 1

))
+
f ′′′(x)

2

(
cx2 +

(
1

ρ
+ 1

)
x

)
.

Example 1. For α = 20, 50, 100, the convergence of the operators Bρ
α(f ;x, c) to the

function f(x) = x8 − 6x7 + 5x4 − 4x3 + 2x2 + 3 (blue) is illustrated for c = 0, ρ = 1

(green) and c = 1, ρ = 1 (red) in figures 1.1− 1.3, respectively.
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Figure 1.1 Figure 1.2

Figure 1.3

Example 2. For α = 20, 50, 100, the convergence of the operators Bρ
α(f ;x, c) to

the function f(x) = x4e(−2πx) (blue) is illustrated for c = 0, ρ = 1 (green) and

c = 1, ρ = 1 (red) in figures 1.4− 1.6, respectively.

Figure 1.4 Figure 1.5
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Figure 1.6

Example 3. For α = 50, 100, 140, the convergence of the operators

(
d

dw
Bρ
α(f ;w, c)

)
w=x

to the function
d

dx
f(x) =

d

dx
(x8 − 6x7 + 5x4 − 4x3 + 2x2 + 3) (blue) is illustrated

for c = 0, ρ = 1 (green) and c = 1, ρ = 1 (red) in figures 1.7− 1.9, respectively.

Figure 1.7 Figure 1.8

Figure 1.9
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Example 4. For α = 50, 100, 140, the convergence of the operators

(
d

dw
Bρ
α(f ;w, c)

)
w=x

to the function
d

dx
f(x) =

d

dx

(
x4e(−2πx)

)
(blue) is illustrated for c = 0, ρ = 1 (green)

and c = 1, ρ = 1 (red) in figures 1.10− 1.12, respectively.

Figure 1.10 Figure 1.11

Figure 1.12

The next result provides an estimate of the degree of approximation in

B
ρ(r)
α (f ;x)→ f (r)(x), r ∈ N.

Theorem 1.3.3. (Degree of approximation) Let r ≤ q ≤ r + 2, f ∈ Cγ[0,∞)

and f (q) exists and be continuous on (a− η, b+ η) where η > 0 is sufficiently small.

Then, for sufficiently large α∥∥∥∥( dr

dwr
Bρ
α(f ;w)

)
w=x

− f (r)(x)

∥∥∥∥
C[a,b]

≤ max{C1α
−(q−r)/2ω

(
f (q);α−1/2, (a− η, b+ η)

)
, C2 α

−1},

where C1 = C1(r, c) and C2 = C2(r, f, c).
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Proof. By our hypothesis we have

f(t) =

q∑
i=0

f (i)(x)

i!
(t− x)i +

f (q)(ξ)− f (q)(x)

q!
(t− x)qχ(t)

+φ(t, x)(1− χ(t)),(1.3.4)

where ξ lies between t and x and χ(t) is the characteristic function of (a− η, b+ η).

The function φ(t, x) for t ∈ (0,∞) \ (a− η, b+ η) and x ∈ [a, b] is bounded by Meγt

for some constant M > 0.

We operate
dr

dwr
Bρ
α(.;w) on the equality (1.3.4) and break the right hand side into

three parts E1, E2 and E3, say, corresponding to the three terms on the right hand

side of equation (1.3.4).

Now, treating E1 in a manner similar to the treatment of J1 of Theorem 1.3.2, we

get E1 = f (r)(x) +O(α−1), uniformly in x ∈ [a, b].

By making use of the inequality

|f (q)(ξ)− f (q)(x)| ≤
(

1 +
|t− x|
δ

)
ω
(
f (q); δ, (a− η, b+ η)

)
, δ > 0,

and Lemma 1.2.4, we get

|E2| ≤
ω
(
f (q); δ, (a− η, b+ η)

)
q!

{ ∞∑
k=1

∑
2i+j≤r
i,j≥0

αi|k − αx|j|qi,j,r(x, c)|
(p(x, c))r

pα,k(x, c)

×
∫ ∞

0

θρα,k(t)

(
1 +
|t− x|
δ

)
|t− x|qχ(t)dt+

(
xq +

xq+1

δ

)
φ(r)
α,c(x)

}
= E4 + E5.

Finally, let

S∗ = sup
x∈[a,b]

sup
2i+j≤r
i,j≥0

|qi,j,r(x, c)|
(p(x, c))r

,
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then by applying Schwarz inequality, Lemmas 1.2.1 and 1.2.3, we obtain

E4 ≤
ω
(
f (q); δ, (a− η, b+ η)

)
S∗

q!

∑
2i+j≤r
i,j≥0

αi+j

(
∞∑
k=1

(
k

α
− x
)2j

pα,k(x, c)

)1/2

{( ∞∑
k=1

pα,k(x, c)

∫ ∞
0

θρα,k(t)(t− x)2qdt

)1/2

+
1

δ

(
∞∑
k=1

pα,k(x, c)

∫ ∞
0

θρα,k(t)(t− x)2q+2dt

)1/2}
≤ ω

(
f (q); δ, (a− η, b+ η)

)
S∗

∑
2i+j≤r
i,j≥0

αi+j
(
υα,2j(x)− x2jφα,c(x)

)1/2

×
{(

Bρ
α((t− x)2q;x)− x2qφα,c(x)

)1/2
+

1

δ

(
Bρ
α((t− x)2q+2;x)− x2q+2φα,c(x)

)1/2
}

= ω
(
f (q); δ, (a− η, b+ η)

) ∑
2i+j≤r
i,j≥0

αi+j{O(α−j) +O(α−s1)}1/2

×{(O(α−q) +O(α−s2)}1/2 +
1

δ
{(O(α−(q+1)) +O(α−s3))}1/2, for any s1, s2, s3 > 0

Choosing s1, s2, s3 such that s1 > j, s2 > q, s3 > q + 1, we have

|E4| = ω
(
f (q); δ, (a− η, b+ η)

) ∑
2i+j≤r
i,j≥0

αi+jO

(
1

αj/2

){
O

(
1

αq/2

)
+

1

δ
O

(
1

α(q+1)/2

)}
.

Now, on choosing δ = α−1/2, we get

|E4| ≤ C1α
−(q−r)/2ω(f (q);α−1/2, (a− η, b+ η)).

Next, proceeding in a manner similar to the estimate of I8 in Theorem 1.3.1, we have

E5 = O(α−p), for any p > 0. Choosing p > 1, we have E5 = O(α−1), as α→∞.
Finally, proceeding along the lines of the estimate of I10 of Theorem 1.3.1, we obtain

E3 = o(α−1) as α→∞. On combining the estimates of E1−E5, we get the required

result.

1.3.2 Local approximation

Theorem 1.3.4. Let f ∈ CB[0,∞) and x ≥ 0. Then, there exists a constant C > 0

such that

|Bρ
α(f, x)− f(x)| ≤ Cω2

(
f ;

√
x{1 + ρ(1 + cx)}

αρ

)
.
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Proof. Let g ∈ C2
B[0,∞). From the Taylor’s theorem, we may write

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− v)g′′(v)dv,

which implies that

|Bρ
α(g, x)− g(x)| =

∣∣∣∣Bρ
α

(∫ t

x

(t− v)g′′(v)dv, x

)∣∣∣∣ .
Since ∣∣∣∣∫ t

x

(t− v)g′′(v)dv

∣∣∣∣ ≤ (t− x)2||g′′||,

by Remark 1, we have

|Bρ
α(g, x)− g(x)| ≤ x{1 + ρ(1 + cx)}

αρ
||g′′||.

From (1.1.1) it follows that

|Bρ
α(f, x)| ≤ ||f ||.

Hence

|Bρ
α(f, x)(f, x)− f(x)| ≤ |Bρ

α(f − g, x)− (f − g)(x)|+ |Bρ
α(g, x)− g(x)|

≤ 2||f − g||+ x{1 + ρ(1 + cx)}
αρ

||g′′||.

Taking infimum on the right hand side over all g ∈ C2
B[0,∞) and using (1.3.5), we

obtain the desired result. Hence, the proof is completed.

Let us now consider the Lipschitz-type space [126]:

Lip∗M(r) :=

{
f ∈ CB[0,∞) : |f(t)− f(x)| ≤M

|t− x|r

(t+ x)
r
2

;x, t ∈ (0,∞)

}
,

where M is a positive constant and r ∈ (0, 1].

Theorem 1.3.5. Let f ∈ Lip∗M(r). Then, for all x > 0, we have

|Bρ
α(f, x)− f(x)| ≤M

(
1 + ρ(1 + cx)

αρ

) r
2

.
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Proof. Initially for r = 1, we may write

|Bρ
α(f, x)− f(x)| ≤

∞∑
k=0

pα,k(x, c)

∫ ∞
0

θρα,k(t)|f(t)− f(x)|dt

≤ M

∞∑
k=0

pα,k(x, c)

∫ ∞
0

θρα,k(t)
|t− x|√
t+ x

dt.

Using the fact that
1√
t+ x

<
1√
x

and the Cauchy-Schwarz inequality, the above

inequality implies that

|Bρ
α(f, x)− f(x)| ≤ M√

x

∞∑
k=0

pα,k(x, c)

∫ ∞
0

θρα,k(t)|t− x|dt

=
M√
x
Bρ
α(|t− x|, x) ≤M

(√
1 + ρ(1 + cx)

αρ

)
,

which proves the required result for r = 1. Now for r ∈ (0, 1), applying the Hölder

inequality with p = 1
r

and q = 1
1−r , we have

|Bρ
α(f, x)− f(x)| ≤

∞∑
k=0

pα,k(x, c)

∫ ∞
0

θρα,k(t)|f(t)− f(x)|dt

≤
{ ∞∑

k=0

pα,k(x, c)

(∫ ∞
0

θρα,k(t)|f(t)− f(x)|dt
) 1

r
}r

≤
{ ∞∑

k=0

pα,k(x, c)

∫ ∞
0

θρα,k(t)|f(t)− f(x)|
1
r dt

}r
≤ M

{ ∞∑
k=0

pα,k(x, c)

∫ ∞
0

θρα,k(t)
|t− x|√
t+ x

dt

}r
≤ M

x
r
2

{ ∞∑
k=0

pα,k(x, c)

∫ ∞
0

θρα,k(t)|t− x|dt
}r

≤ M

x
r
2

(Bρ
α(|t− x|, x))r ≤M

(
1 + ρ(1 + cx)

αρ

) r
2

.

Thus, the proof is completed.

Theorem 1.3.6. Let f ∈ D2[0,∞) and ω(f ; δ, [0, b+1]) be its modulus of continuity

on the finite interval [0, b+ 1] ⊂ [0,∞). Then for any α > 0, we have

‖ Bρ
α(f)− f ‖C[0,b]≤ 4Mf (1 + b2)µρα,2(b) + 2ω

(
f ;
√
µρα,2(b), [0, b+ 1]

)
,

where µρα,2(b) =
b{1 + ρ(1 + cb)}

αρ
.
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Proof. From ([75], p.378), for x ∈ [0, b] and t ∈ [0,∞), we have

|f(t)− f(x)| ≤ 4Mf (1 + b2)(t− x)2 +

(
1 +
|t− x|
δ

)
ω (f ; δ, [0, b+ 1]) , δ > 0.

Applying Bρ
α(., x) and then Cauchy-Schwarz inequality to the above inequality, we

get

|Bρ
α(f, x)− f(x)| ≤ 4Mf (1 + b2)Bρ

α((t− x)2, x) + ω (f ; δ, [0, b+ 1])

(
1 +

1

δ
Bρ
α(|t− x|, x)

)
≤ 4Mf (1 + b2)µρα,2(b) + ω (f ; δ, [0, b+ 1])

(
1 +

1

δ

√
µρα,2(b)

)
.

By choosing δ =
√
µρα,2(b), we obtain the desired result.

1.3.3 Weighted approximation

Theorem 1.3.7. For each f ∈ D∗2[0,∞), we have

lim
α→∞

‖ Bρ
α(f)− f ‖2= 0.

Proof. From the Korovkin theorem, we see that it is sufficient to verify the following

three conditions

lim
α→∞

‖ Bρ
α(tk;x)− xk) ‖2= 0, k = 0, 1, 2.(1.3.5)

Since Bρ
α(1;x) = 1, the condition in (1.3.5) holds for k = 0. By Lemma 1.2.1, we

have for α > 0

‖ Bρ
α(t;x)− x) ‖2= 0, which implies that the condition in (1.3.5) holds for k = 1.

Similarly, we can write for α > 0

‖ Bρ
α(t2;x)− x2 ‖2 =

∥∥∥∥ρx(1 + cx) + x

ρα

∥∥∥∥
2

≤ ρ+ 1

ρα
sup

x∈[0,∞)

x

1 + x2
+
c

α
sup

x∈[0,∞)

x2

1 + x2

≤
(

1 +
1

ρ
+ c

)
1

α

which implies that lim
α→∞

‖ Bρ
α(t2;x)− x2 ‖2= 0, the equation (1.3.5) holds for k = 2.

This completes the proof.

Theorem 1.3.8. Let f ∈ D∗2[0,∞), then there exists a positive constant K such

that

sup
x∈[0,∞)

|Bρ
α(f, x)− f(x)|

(1 + x2)
3
2

≤ KΩ2

(
f,

√
1

α

)
.
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Proof. For t > 0, x ∈ [0,∞) and δ > 0, by definition of Ω2(f, δ) and Lemma 0.7.1,

we get

|f(t)− f(x)| ≤ (1 + (x+ |x− t|)2)Ω2(f, |t− x|)

≤ (1 + (2x+ t)2)

(
1 +
|t− x|
δ

)
Ω2(f, δ).

Since Bρ
α is linear and positive, we have

|Bρ
α(f, x)− f(x)|

≤ Ω2(f, δ)

{
Bρ
α(1 + (2x+ t)2, x) +Bρ

α

(
(1 + (2x+ t)2)

|t− x|
δ

, x

)}
.(1.3.6)

Applying Cauchy-Schwarz inequality to the second term of equation (1.3.6), we have

Bρ
α

(
(1 + (2x+ t)2)

|t− x|
δ

, x

)
≤ 1

δ

√
Bρ
α

(
(1 + (2x+ t)2)2

, x)
√
Bρ
α ((t− x)2, x).

Also from Lemma (1.2.2), there exist positive constant K1 and K2 such that

Bρ
α(1 + (2x+ t)2, x) ≤ K1(1 + x2),(1.3.7)

and (
Bρ
α

(
(1 + (2x+ t)2)2, x

))1/2 ≤ K2(1 + x2).(1.3.8)

Now, from (1.3.8) and Corollary 1, we get

1

δ

√
Bρ
α

(
(1 + (2x+ t)2)2

, x)
√
Bρ
α ((t− x)2, x)

≤
√
λ

δ
K2(1 + x2)

√
x(1 + cx)

α
, λ > 1

≤ 1

δ
√
α
K3(1 + x2)3/2, for some positive number K3.(1.3.9)

Combining the estimates of (1.3.6), (1.3.7), (1.3.9) and taking K = (K1 + K3),

δ = 1√
α

, we obtain the required result.

1.3.4 Rate of convergence

In this section, we shall estimate the rate of convergence for the generalized hybrid

operators Bρ
α for functions with derivatives of bounded variation. In the recent years,
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several researchers have obtained results in this direction for different sequences of

linear positive operators. We refer the reader to some of the related papers (cf. [4],

[127], [65], [74], [89] and [97] etc).

Lemma 1.3.9. For all x ∈ (0,∞), λ > 1 and α sufficiently large, we have

(i) λρα(x, t) =

∫ t

0

Aρα(x, u)du ≤ 1

(x− t)2

λx(1 + cx)

α
, 0 ≤ t < x;

(ii) 1− λρα(x, z) =

∫ ∞
z

Aρα(x, u)du ≤ 1

(z − x)2

λx(1 + cx)

α
, x < z <∞.

Proof. First we prove (i).

λρα(x, t) =

∫ t

0

Aρα(x, u)du ≤
∫ t

0

(
x− u
x− t

)2

Aρα(x, u)du

≤ 1

(x− t)2
Bρ
α((u− x)2;x)

≤ 1

(x− t)2

λx(1 + cx)

α
.

The proof of (ii) is similar.

Theorem 1.3.10. Let f ∈ DBVγ[0,∞), γ ≥ 0. Then for every x ∈ (0,∞),

2r(∈ N) > γ and sufficiently large α, we have

|Bρ
α(f ;x)− f(x)|

≤
∣∣∣∣f ′(x+)− f ′(x−)

2

∣∣∣∣{λx(1 + cx)

α

}1/2

+
x√
α

x+ x√
α∨

x− x√
α

(f ′x) +
λ(1 + cx)

α

√
[α]∑

m=1

x+ x
m∨

x− x
m

(f ′x)

+|f ′(x+)|
{
λx(1 + cx)

α

}1/2

+ |f(2x)− f(x)− xf ′(x+)|λ(1 + cx)

αx

+M ′A(r, x)

αγ/2
+ |f(x)|λ(1 + cx)

αx
,

where

f ′x(t) =


f ′(t)− f ′(x+), x < t <∞

0 , t = x

f ′(t)− f ′(x−), 0 ≤ t < x,∨b
a(f
′
x) is the total variation of f ′x on [a, b], A(r, x) is a constant depending on r and

x and M ′ is a constant depending on f and γ.
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Proof. By the hypothesis, we may write

f ′(t) =
1

2
(f ′(x+) + f ′(x−)) + f ′x(t) +

1

2
(f ′(x+)− f ′(x−)) sgn(t− x)

+δx(t)

(
f ′(t)− 1

2
(f ′(x+) + f ′(x−))

)
,(1.3.10)

where

δx(t) =

{
1 , t = x

0 , t 6= x.

From equations (1.1.2) and (1.3.10), we have

Bρ
α(f ;x)− f(x) =

∫ ∞
0

Aρα(x, t)f(t)dt− f(x) =

∫ ∞
0

(f(t)− f(x))Aρα(x, t)dt

=

∫ x

0

(f(t)− f(x))Aρα(x, t)dt+

∫ ∞
x

(f(t)− f(x))Aρα(x, t)dt

= −
∫ x

0

(∫ x

t

f ′(u)du

)
Aρα(x, t)dt+

∫ ∞
x

(∫ t

x

f ′(u)du

)
Aρα(x, t)dt

= −I1(x, α, ρ) + I2(x, α, ρ), say.

By using equation (1.3.10), we get

I1(x, α, ρ) =

∫ x

0

{∫ x

t

1

2
(f ′(x+) + f ′(x−)) + f ′x(u) +

1

2
(f ′(x+)− f ′(x−)) sgn(u− x)

+δx(u)

(
f ′(u)− 1

2
(f ′(x+) + f ′(x−))

)
du

}
Aρα(x, t)dt.

Since
∫ t
x
δx(u)du = 0, we have

I1(x, α, ρ) =
1

2
(f ′(x+) + f ′(x−))

∫ x

0

(x− t)Aρα(x, t)dt+

∫ x

0

(∫ t

x

f ′x(u)du

)
Aρα(x, t)dt

+
1

2
(f ′(x+)− f ′(x−))

∫ x

0

|x− t|Aρα(x, t)dt.(1.3.11)

Proceeding similarly, we find that

I2(x, α, ρ) =
1

2
(f ′(x+) + f ′(x−))

∫ ∞
x

(t− x)Aρα(x, t)dt+

∫ ∞
x

(∫ t

x

f ′x(u)du

)
Aρα(x, t)dt

+
1

2
(f ′(x+)− f ′(x−))

∫ ∞
x

|t− x|Aρα(x, t)dt.(1.3.12)

By combining (1.3.11) and (1.3.12), we get

Bρ
α(f ;x)− f(x) =

1

2
(f ′(x+) + f ′(x−))

∫ ∞
0

(t− x)Aρα(x, t)dt

+
1

2
(f ′(x+)− f ′(x−))

∫ ∞
0

|t− x|Aρα(x, t)dt

−
∫ x

0

(∫ x

t

f ′x(u)du

)
Aρα(x, t)dt+

∫ ∞
x

(∫ t

x

f ′x(u)du

)
Aρα(x, t)dt.
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Hence

|Bρ
α(f ;x)− f(x)| ≤

∣∣∣∣f ′(x+) + f ′(x−)

2

∣∣∣∣|Bρ
α(t− x;x)|+

∣∣∣∣f ′(x+)− f ′(x−)

2

∣∣∣∣Bρ
α(|t− x|;x)

+

∣∣∣∣ ∫ x

0

(∫ x

t

f ′x(u)du

)
Aρα(x, t)dt

∣∣∣∣+

∣∣∣∣ ∫ ∞
x

(∫ t

x

f ′x(u)du

)
Aρα(x, t)dt

∣∣∣∣.(1.3.13)

On an application of Lemma 1.3.9 and integration by parts, we obtain∫ x

0

(∫ x

t

f ′x(u)du

)
Aρα(x, t)dt =

∫ x

0

(∫ x

t

f ′x(u)du

)
∂

∂t
λρα(x, t)dt =

∫ x

0

f ′x(t)λ
ρ
α(x, t)dt.

Thus,∣∣∣∣ ∫ x

0

(∫ x

t

f ′x(u)du

)
Aρα(x, t)dt

∣∣∣∣ ≤ ∫ x

0

|f ′x(t)|λρα(x, t)dt

≤
∫ x− x√

α

0

|f ′x(t)|λρα(x, t)dt+

∫ x

x− x√
α

|f ′x(t)|λρα(x, t)dt.

Since f ′x(x) = 0 and λρα(x, t) ≤ 1, we get∫ x

x− x√
α

|f ′x(t)|λρα(x, t)dt =

∫ x

x− x√
α

|f ′x(t)− f ′x(x)|λρα(x, t)dt ≤
∫ x

x− x√
α

x∨
t

(f ′x)dt

≤
x∨

x− x√
α

(f ′x)

∫ x

x− x√
α

dt =
x√
α

x∨
x− x√

α

(f ′x).

Similarly, by using Lemma 1.3.9 and putting t = x− x
u
, we get∫ x− x√

α

0

|f ′x(t)|λρα(x, t)dt ≤ λx(1 + cx)

α

∫ x− x√
α

0

|f ′x(t)|
dt

(x− t)2

≤ λx(1 + cx)

α

∫ x− x√
α

0

x∨
t

(f ′x)
dt

(x− t)2

=
λ(1 + cx)

α

∫ √α
1

x∨
x− x

u

(f ′x)du ≤
λ(1 + cx)

α

[
√
α]∑

m=1

x∨
x− x

m

(f ′x).

Consequently,∣∣∣∣ ∫ x

0

(∫ x

t

f ′x(u)du

)
Aρα(x, t)dt

∣∣∣∣
≤ x√

α

x∨
x− x√

α

(f ′x) +
λ(1 + cx)

α

[
√
α]∑

m=1

x∨
x− x

m

(f ′x).(1.3.14)
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Also, we have∣∣∣∣ ∫ ∞
x

(∫ t

x

f ′x(u)du

)
Aρα(x, t)dt

∣∣∣∣
≤

∣∣∣∣ ∫ 2x

x

(∫ t

x

f ′x(u)du

)
∂

∂t
(1− λρα(x, t))dt

∣∣∣∣+

∣∣∣∣ ∫ ∞
2x

(∫ t

x

f ′x(u)du

)
Aρα(x, t)dt

∣∣∣∣
≤

∣∣∣∣ ∫ ∞
2x

(f(t)− f(x))Aρα(x, t)dt

∣∣∣∣+ |f ′(x+)|
∣∣∣∣ ∫ ∞

2x

(t− x)Aρα(x, t)dt

∣∣∣∣
+

∣∣∣∣ ∫ 2x

x

f ′x(u)du

∣∣∣∣|1− λρα(x, 2x)|+
∫ 2x

x

|f ′x(t)|(1− λρα(x, t))dt.

Applying Lemma 1.3.9, we get∣∣∣∣ ∫ ∞
x

(∫ t

x

f ′x(u)du

)
Aρα(x, t)dt

∣∣∣∣
≤ M

∫ ∞
2x

tγAρα(x, t)dt+ |f(x)|
∫ ∞

2x

Aρα(x, t)dt+ |f ′(x+)|
{
λx(1 + cx)

α

}1/2

+
λ(1 + cx)

αx
|f(2x)− f(x)− xf ′(x+)|

+
x√
α

x+ x√
α∨

x

(f ′x) +
λ(1 + cx)

α

[
√
α]∑

m=1

x+ x
m∨
x

(f ′x).(1.3.15)

We note that we can choose r ∈ N such that 2r > γ.

Since t ≤ 2(t − x) and x ≤ t − x when t ≥ 2x, by using Hölder’s inequality and

Lemma 1.2.3, we obtain

M

∫ ∞
2x

tγAρα(x, t)dt+ |f(x)|
∫ ∞

2x

Aρα(x, t)dt

≤ 2γM

∫ ∞
2x

(t− x)γAρα(x, t)dt+
|f(x)|
x2

∫ ∞
2x

(t− x)2Aρα(x, t)dt

≤ 2γM

(∫ ∞
0

(t− x)2rAρα(x, t)dt

)γ/2r
+ |f(x)|λ(1 + cx)

αx

≤ M ′A(r, x)

αγ/2
+ |f(x)|λ(1 + cx)

αx
, where M ′ = 2γM.(1.3.16)

By using Lemma 1.2.3 and combining (1.3.13), (1.3.14), (1.3.15) and (1.3.16), we

get the required result.



Chapter 2

Quantitative convergence results

for a family of hybrid operators

2.1 Introduction

In order to generalize the Baskakov operators, Mihesan [115] proposed the following

operators based on a non-negative constant a, independent of n as

Ma
n(f ;x) =

∞∑
k=0

W a
n,k(x)f

(
k

n

)
,(2.1.1)

where

W a
n,k(x) = e−

ax
1+x

k∑
i=0

(
k

i

)
(n)ia

k−i

k!

xk

(1 + x)n+k
,

and the rising factorial is given by (n)i = n(n+1) · · · (n+i−1), (n)0 = 1. It was seen

in [115] that
∞∑
k=0

W a
n,k(x) = 1. Obviously, if a = 0, we obtain at once the Baskakov

basis function

W 0
n,k(x) =

(
n+ k − 1

k

)
xk

(1 + x)n+k
.

By considering the generalized Baskakov basis functions, Erençin [44] proposed

the Durrmeyer type operators, which for a = 0 reduce to the modified Baskakov

type operators considered in [67].

Here we propose a new kind of hybrid operators by considering the two general-

ized basis functions of [44] and [128].

39
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For f ∈ Cγ[0,∞), we propose the hybrid operators depending on two parameters a

and ρ as follows:

La,ρn (f ;x) =
∞∑
k=1

W a
n,k(x)

∫ ∞
0

sρn,k(t)f(t)dt+W a
n,0(x)f(0), x ∈ [0,∞)(2.1.2)

where

sρn,k(t) = nρe−nρt
(nρt)kρ−1

Γ(kρ)
.

It is observed that the operators (2.1.2) preserve only the constant functions.

Special cases:

1. For a = 0 and ρ = 1, these operators include the well known operators intro-

duced in [10].

2. For a = 0 and ρ → ∞, these operators reduce to the well known Baskakov

operators.

3. For a > 0 and ρ → ∞, these operators reduce to the generalized Baskakov

operators [115].

The aim of the present chapter is to study some direct results in terms of the

modulus of continuity of second order, the weighted space and the degree of approx-

imation of f (r) by L
a,ρ(r)
n (f ; .). We also study the statistical convergence. The rate

of convergence of the operators La,ρn to a certain function is also illustrated through

graphics in Matlab.

In what follows, let us assume that 0 < c < d < ∞, H = [c, d]; 0 < c1 < c2 < d2 <

d1 <∞ and Hi = [ci, di], i = 1, 2.

2.2 Basic Results

For m ∈ N0, the mth order central moment of the generalized Baskakov operators

Ma
n is defined as

℘an,m(x) = Ma
n((t− x)m;x) =

∞∑
k=0

W a
n,k(x)

(
k

n
− x
)m

.
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Lemma 2.2.1. [9] For the function ℘an,m(x), we have

℘an,0(x) = 1, ℘an,1(x) =
ax

n(1 + x)

and

x(1 + x)2(℘an,m(x))′

= n(1 + x)℘an,m+1(x)− ax℘an,m(x)−mx(1 + x)2℘an,m−1(x), for m ≥ 1.(2.2.1)

Consequently,

(i) ℘an,m(x) is a rational function of x depending on the parameter a;

(ii) for each x ∈ (0,∞) and m ∈ N0, ℘an,m(x) = O(n−[(m+1)/2]), where [α] denotes

the integer part of α.

Lemma 2.2.2. For each x ∈ (0,∞) and r ∈ N0, there exist polynomials qi,j,r(x) in

x independent of n and k such that

dr

dxr
W a
n,k(x) = W a

n,k(x)
∑

2i+j≤r
i,j≥0

ni(k − nx)j
qi,j,r(x)

(p(x))r
,

where p(x) = x(1 + x)2.

Proof. The proof of this lemma easily follows on proceeding along the lines of the

proof of ([141], Lemma 4). Hence the details are omitted.

Lemma 2.2.3. For m ∈ N0, the mth order moment for the operators (2.1.2) defined

as

µa,ρn,m(x) := La,ρn (tm;x) =
∞∑
k=1

W a
n,k(x)

∫ ∞
0

sρn,k(t)t
mdt,

we have µa,ρn,0(x) = 1 and there holds the following recurrence relation:

n(1 + x)µa,ρn,m+1(x) = x(1 + x)2(µa,ρn,m(x))′ +

(
nx(1 + x) + ax+

m(1 + x)

ρ

)
µa,ρn,m(x).

Proof. By using the identity

x(1 + x)2

{
d

dx
W a
n,k(x)

}
=

{
(k − nx)(1 + x)− ax

}
W a
n,k(x),
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we may write

x(1 + x)2(µa,ρn,m(x))′ =
∞∑
k=1

((k − nx)(1 + x)− ax)W a
n,k(x)

∫ ∞
0

sρn,k(t)t
mdt

=
∞∑
k=1

W a
n,k(x)

∫ ∞
0

(1 + x)((k − nt) + nt)sρn,k(t)t
mdt

−(nx(1 + x) + ax)µa,ρn,m(x).

Using the identity (tsρn,k(t))
′ = ρ(k − nt)sρn,k(t), we have

x(1 + x)2(µa,ρn,m(x))′ + (nx(1 + x) + ax)µa,ρn,m(x)

= (1 + x)
∞∑
k=1

W a
n,k(x)

∫ ∞
0

1

ρ
(tsρn,k(t))

′tmdt+ n(1 + x)µa,ρn,m+1(x)

= −m(1 + x)

ρ
µa,ρn,m(x) + n(1 + x)µa,ρn,m+1(x),

which is the required recurrence relation.

Remark 2. By Lemma 2.2.3, we have

(i) µa,ρn,1(x) = x+
ax

n(1 + x)
,

(ii) µa,ρn,2(x) = x2 +
x(1 + x)

n
+

ax

n2(1 + x)

(
1 +

1

ρ

)
+

a2x2

n2(1 + x)2
+

2ax2

n(1 + x)
+

x

nρ
,

(iii) for each x ∈ (0,∞) µa,ρn,m(x) = xm + n−1(qm(x, a) + o(1)), where qm(x, a) is a

rational function of x depending on a and m.

Lemma 2.2.4. If the mth order (m ∈ N0) central moment for the operators (2.1.2)

is defined as

T a,ρn,m(x) := La,ρn ((t− x)m;x) =
∞∑
k=1

W a
n,k(x)

∫ ∞
0

sρn,k(t)(t− x)mdt+W a
n,0(x)(−x)m,

then T a,ρn,0 (x) = 0, T a,ρn,1 (x) = ax
n(1+x)

and there holds the following recurrence relation:

n(1 + x)T a,ρn,m+1(x) = x(1 + x)2

{
(T a,ρn,m(x))′ +m

(
1 +

1

ρ(1 + x)

)
T a,ρn,m−1(x)

}
+

(
ax+

m(1 + x)

ρ

)
T a,ρn,m(x).
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Proof. By using the identity

x(1 + x)2

{
d

dx
W a
n,k(x)

}
=

{
(k − nx)(1 + x)− ax

}
W a
n,k(x),

we may write

x(1 + x)2(T a,ρn,m(x))′ =
∞∑
k=1

((k − nx)(1 + x)− ax)W a
n,k(x)

∫ ∞
0

sρn,k(t)(t− x)mdt

−mx(1 + x)2

∞∑
k=1

W a
n,k(x)

∫ ∞
0

sρn,k(t)(t− x)m−1dt

−(nx(1 + x) + ax)W a
n,0(x)(−x)m −m(−x)m−1x(1 + x)2W a

n,0(x).

Thus,

x(1 + x)2
{

(T a,ρn,m(x))′ +mT a,ρn,m−1(x)
}

=
∞∑
k=1

((k − nx)(1 + x)− ax)W a
n,k(x)

∫ ∞
0

sρn,k(t)(t− x)mdt

−(nx(1 + x) + ax)W a
n,0(x)(−x)m

=
∞∑
k=1

W a
n,k(x)

∫ ∞
0

(1 + x)((k − nt) + n(t− x) + nx)sρn,k(t)(t− x)mdt

−(nx(1 + x) + ax)T a,ρn,m(x).

Using the identity (tsρn,k(t))
′ = ρ(k − nt)sρn,k(t), we have

x(1 + x)2
(
(T a,ρn,m(x))′ +mT a,ρn,m−1(x)

)
+ (nx(1 + x) + ax)T a,ρn,m(x)

= (1 + x)
∞∑
k=1

W a
n,k(x)

∫ ∞
0

1

ρ
(tsρn,k(t))

′(t− x)mdt+ n(1 + x)T a,ρn,m+1(x) + nx(1 + x)T a,ρn,m(x)

= −m(1 + x)

ρ
T a,ρn,m(x)− mx(1 + x)

ρ
T a,ρn,m−1(x) + n(1 + x)T a,ρn,m+1(x) + nx(1 + x)T a,ρn,m(x),

which is the required recurrence relation.

Corollary 4. For the function T a,ρn,m(x), we have

(i) T a,ρn,2 (x) =
ax

n(1 + x)
+
x(1 + x)

n
+

x

nρ
+

a2x2

n2(1 + x)2
+

ax

n2ρ(1 + x)
;

(ii) T a,ρn,m(x) is a rational function of x;

(iii) for every x ∈ (0,∞), T a,ρn,m(x) = O
(
n−[(m+1)/2]

)
, where [α] denotes the integer

part of α.
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Corollary 5. Let γ and δ be any two positive real numbers and H ⊂ (0,∞) be any

bounded interval. Then, for any m > 0 there exists a constant M ′ depending on m

only such that ∥∥∥∥ ∞∑
k=1

W a
n,k(x)

∫
|t−x|≥δ

sρn,k(t)e
γtdt

∥∥∥∥ ≤M ′n−m,

where ‖.‖ is the sup-norm over H.

Lemma 2.2.5. [62] Let f ∈ C(H). Then,

‖ f (i)
η,2k ‖C(H)≤ Ci{‖ fη,2 ‖C(H) + ‖ f (2k)

η,2 ‖C(H)}, i = 1, 2, · · · , 2k − 1,

where Ci’s are certain constants independent of f.

2.3 Main Results

2.3.1 Local approximation

Theorem 2.3.1. Let f ∈ CB[0,∞) and x ≥ 0. Then, there exists a constant C > 0

such that

|La,ρn (g;x)− g(x)| ≤ Cω2(f ;
√
ζa,ρn (x)) + ω

(
f ;

ax

n(1 + x)

)
,

where ζa,ρn (x) =
ax

n(1 + x)
+
x(1 + x)

n
+

x

nρ
+

2a2x2

n2(1 + x)2
+

ax

n2ρ(1 + x)
.

Proof. First, we define the auxiliary operators

L
a,ρ

n (f ;x) = La,ρn (f ;x) + f(x)− f
(
x+

ax

n(1 + x)

)
.(2.3.1)

We observe that L
a,ρ

n (1;x) = 1 and L
a,ρ

n (t;x) = x.

Let g ∈ C2
B[0,∞). From the Taylor’s theorem, we may write

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− v)g′′(v)dv,

which implies that

L
a,ρ

n (g;x)− g(x) = g′(x)L
a,ρ

n ((t− x);x) + L
a,ρ

n

(∫ t

x

(t− v)g′′(v)dv;x

)
= L

a,ρ

n

(∫ t

x

(t− v)g′′(v)dv;x

)
= La,ρn

(∫ t

x

(t− v)g′′(v)dv;x

)
−
∫ x+ ax

n(1+x)

x

(
x+

ax

n(1 + x)
− v
)
g′′(v)dv.
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Hence,

|La,ρn (g;x)− g(x)|

≤ La,ρn

(∣∣∣∫ t

x

(t− v)g′′(v)dv
∣∣∣;x)+

∣∣∣∫ x+ ax
n(1+x)

x

(
x+

ax

n(1 + x)
− v
)
g′′(v)dv

∣∣∣.
Since ∣∣∣∫ t

x

(t− v)g′′(v)dv
∣∣∣ ≤ (t− x)2‖g′′‖

and ∣∣∣∫ x+ ax
n(1+x)

x

(
x+

ax

n(1 + x)
− v
)
g′′(v)dv

∣∣∣ ≤ ( ax

n(1 + x)

)2

‖g′′‖,

we have

|La,ρn (g;x)− g(x)| ≤
{
La,ρn ((t− x)2;x) +

(
ax

n(1 + x)

)2}
‖g′′‖

≤
{

ax

n(1 + x)
+
x(1 + x)

n
+

x

nρ
+

2a2x2

n2(1 + x)2
+

ax

n2ρ(1 + x)

}
‖g′′‖

≤ ζa,ρn (x)‖g′′‖.(2.3.2)

In view of (2.3.1), we obtain

|La,ρn (g;x)− g(x)|

≤ |La,ρn (f − g;x)|+ |(f − g)(x)|+ |La,ρn (g;x)− g(x)|+
∣∣∣∣f (x+

ax

n(1 + x)

)
− f(x)

∣∣∣∣.
Since |La,ρn (f ;x)| ≤ 3‖f‖, we have

|La,ρn (g;x)− g(x)| ≤ 4‖f − g‖+ |La,ρn (g;x)− g(x)|+
∣∣∣∣f (x+

ax

n(1 + x)

)
− f(x)

∣∣∣∣.
Using (2.3.2), we get

|La,ρn (g;x)− g(x)| ≤ 4‖f − g‖+ ζa,ρn (x)‖g′′‖+ ω

(
f ;

ax

n(1 + x)

)
.

Now, taking the infimum on the right hand side over all g ∈ C2
B[0,∞), we obtain

|La,ρn (g;x)− g(x)| ≤ 4K2(f ; ζa,ρn (x)) + ω

(
f ;

ax

n(1 + x)

)
.

Thus in view of (0.7.2), we get

|La,ρn (g;x)− g(x)| ≤ Cω2

(
f ;
√
ζa,ρn (x)

)
+ ω

(
f ;

ax

n(1 + x)

)
.

Hence, the proof is completed.
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2.3.2 Weighted approximation

Theorem 2.3.2. Let f ∈ D∗2[0,∞). Then, we have

lim
n→∞

‖La,ρn (f)− f‖2 = 0.(2.3.3)

Proof. From [50], we know that it is sufficient to verify the following three conditions

lim
n→∞

‖La,ρn (tk;x)− xk‖2 = 0, k = 0, 1, 2.(2.3.4)

Since La,ρn (1;x) = 1, (2.3.4) holds true for k = 0.

By Remark 2, we have

‖La,ρn (t;x)− x‖2 = sup
x∈[0,∞)

∣∣∣∣x+
ax

n(1 + x)
− x
∣∣∣∣ 1

1 + x2

≤ a

n
.

Thus, lim
n→∞

‖La,ρn (t;x)− x‖2 = 0. Similarly, we obtain

‖La,ρn (t2;x)− x2‖2

= sup
x∈[0,∞)

∣∣∣∣x(1 + x)

n
+

ax

n2(1 + x)

(
1 +

1

ρ

)
+

a2x2

n2(1 + x)2
+

2ax2

n(1 + x)
+

x

nρ

∣∣∣∣ 1

1 + x2

≤ 2 + 2a+ ρ−1

n
+
a2 + a+ aρ−1

n2
,

which implies that lim
n→∞

‖La,ρn (t2;x)− x2‖2 = 0. Thus, the proof is completed.

2.3.3 Simultaneous approximation

In the following theorem, we show that the derivative

(
dr

dwr
La,ρn (f ;w)

)
w=x

is also

an approximation process for f (r)(x).

Theorem 2.3.3. (Basic convergence theorem) Let f ∈ Cγ[0,∞). If f (r) exists

at a point x ∈ (0,∞), then we have

lim
n→∞

(
dr

dwr
La,ρn (f ;w)

)
w=x

= f (r)(x).(2.3.5)

Further, if f (r) is continuous on (c− κ, d+ κ), κ > 0, then the limit in (2.3.5) holds

uniformly in [c, d].
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Proof. By our hypothesis, we have

f(t) =
r∑
i=0

f (i)(x)

i!
(t− x)i + ψ(t, x)(t− x)r, t ∈ [0,∞),(2.3.6)

where the function ψ(t, x)→ 0 as t→ x. From equation (2.3.6), we can write(
dr

dwr
La,ρn (f(t);w)

)
w=x

=
r∑
i=0

f (i)(x)

i!

(
dr

dwr
La,ρn ((t− x)i;w)

)
w=x

+

(
dr

dwr
La,ρn (ψ(t, x)(t− x)r;w)

)
w=x

:= I1 + I2, say.

First, we estimate I1.

I1 =
r∑
i=0

f (i)(x)

i!

{
dr

dwr

(
i∑

v=0

(
i

v

)
(−x)i−vLa,ρn (tv;w)

)}
w=x

=
r∑
i=0

f (i)(x)

i!

i∑
v=0

(
i

v

)
(−x)i−v

(
dr

dwr
La,ρn (tv;w)

)
w=x

=
r−1∑
i=0

f (i)(x)

i!

i∑
v=0

(
i

v

)
(−x)i−v

(
dr

dwr
La,ρn (tv;w)

)
w=x

+
f (r)(x)

r!

r∑
v=0

(
r

v

)
(−x)r−v

(
dr

dwr
La,ρn (tv;w)

)
w=x

:= I3 + I4, say.

Now, we may write

I4 =
f (r)(x)

r!

r−1∑
v=0

(
r

v

)
(−x)r−v

(
dr

dwr
La,ρn (tv;w)

)
w=x

+
f (r)(x)

r!

(
dr

dwr
La,ρn (tr;w)

)
w=x

:= I5 + I6, say.

Making use of Remark 2 (iii) , we obtain

I6 = f (r)(x) +O

(
1

n

)
, I3 = O

(
1

n

)
and I5 = O

(
1

n

)
, as n→∞.

From the above estimates, for each x ∈ (0,∞) we have I1 → f (r)(x) as n→∞.
In view of Lemma 2.2.2, we have

|I2| ≤
∞∑
k=1

∑
2i+j≤r
i,j≥0

ni|k − nx|j |qi,j,r(x)|
(p(x))r

W a
n,k(x)

∫ ∞
0

sρn,k(t)ψ(t, x)|t− x|rdt

+|ψ(0, x)(−x)r|
(
dr

dwr
W a
n,0(w)

)
w=x

:= I7 + I8.(2.3.7)



48

Now, we estimate I7.

Since ψ(t, x) → 0 as t → x, for a given ε > 0 there exists a δ > 0 such that

|ψ(t, x)| < ε whenever |t− x| < δ. For |t− x| ≥ δ, we have |(t− x)rψ(t, x)| ≤Meγt,

for some M > 0. Thus, from equation (2.3.7) we may write

|I7| ≤
∞∑
k=1

∑
2i+j≤r
i,j≥0

ni|k − nx|j |qi,j,r(x)|
(p(x))r

W a
n,k(x)

(
ε

∫
|t−x|<δ

sρn,k(t)|t− x|
rdt

+M

∫
|t−x|≥δ

sρn,k(t)e
γtdt

)
:= J1 + J2, say.

Let K = sup
2i+j≤r
i,j≥0

|qi,j,r(x)|
(p(x))r

.

Using Schwarz inequality, Lemma 2.2.1 and Corollary 4 we have

J1 = ε K
∞∑
k=1

∑
2i+j≤r
i,j≥0

ni|k − nx|jW a
n,k(x)

(∫ ∞
0

sρn,k(t)

)1/2

×
(∫ ∞

0

sρn,k(t)|t− x|
2rdt

)1/2

≤ ε K
∑

2i+j≤r
i,j≥0

ni+j

(
∞∑
k=0

W a
n,k(x)

(
k

n
− x
)2j

− x2jW a
n,0(x)

)1/2

×
(
La,ρn ((t− x)2r;x)− x2rW a

n,0(x)
)1/2

= ε
∑

2i+j≤r
i,j≥0

ni+j
{
O

(
1

nj

)
+O

(
1

ns

)}1/2

×
{
O

(
1

nr

)
+O

(
1

np

)}1/2

, for any s, p > 0.

Choose s and p such that s > j, and p > r

J1 ≤ ε
∑

2i+j≤r
i,j≥0

ni+jO

(
1

nj/2

)
O

(
1

nr/2

)
= ε.O(1).

Since ε > 0 is arbitrary, J1 → 0 as n→∞.
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Again, by using Schwarz inequality, Lemma 2.2.1 and Corollary 5, we obtain

J2 ≤ M1

∑
2i+j≤r
i,j≥0

ni+j

(
∞∑
k=0

(
k

n
− x
)2j

W a
n,k(x)− x2jW a

n,0(x)

)1/2

×

(
∞∑
k=1

W a
n,k(x)

∫
|t−x|≥δ

sρn,k(t)e
2γtdt

)1/2

≤ M1

∑
2i+j≤r
i,j≥0

ni+j
{
O

(
1

nj

)
+O

(
1

np

)}1/2{
O

(
1

nm

)}1/2

, for any p > 0.

Choose p such that p > j

J2 ≤ M1

∑
2i+j≤r
i,j≥0

ni+jO

(
1

nj/2

)
O

(
1

nm/2

)
= M1O

(
1

n(m−r)/2

)

which implies that J2 → 0, as n→∞ on choosing m > r.

From the above estimates of J1 and J2, I7 → 0, as n→∞.
Next, we estimate I8.

|I8| = |ψ(0, x)(−x)r|
(
dr

dwr
W a
n,0(w)

)
w=x

.

Since |ψ(0, x)(−x)r| < N1 for some N1 > 0, we get(
dr

dwr
W a
n,0(w)

)
w=x

=

(
dr

dwr

(
e
−aw
1+w (1 + w)−n

))
w=x

→ 0 as n→∞,

which yields that I8 → 0 as n → ∞. By combining the estimates of I7 and I8, we

obtain I2 → 0 as n→∞. Thus, from the estimates of I1 and I2, the required result

follows.

To prove the uniformity assertion, it is sufficient to remark that δ(ε) in the above

proof can be chosen to be independent of x ∈ [c, d] and also that the other estimates

hold uniformity in x ∈ [c, d]. This completes the proof.

Next, we establish a Voronovskaja type asymptotic formula in simultaneous ap-

proximation.

Theorem 2.3.4. (Voronovskaja type result) Let f ∈ Cγ[0,∞). If f (r) exists at

a point x ∈ (0,∞), then we have

lim
n→∞

n

((
dr

dwr
La,ρn (f ;w)

)
w=x

− f (r)(x)

)
=

r+2∑
v=1

Q(v, r, a, x)f (v)(x),(2.3.8)
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where Q(v, r, a, x) are certain rational functions of x depending on the parameter a.

Further, if f (r+2) is continuous on (c − κ, d + κ), κ > 0, then the limit in (2.3.8)

holds uniformly in [c, d].

Proof. From the Taylor’s theorem, we may write

f(t) =
r+2∑
v=0

f (v)(x)

v!
(t− x)v + ψ(t, x)(t− x)r+2, t ∈ [0,∞),(2.3.9)

where the function ψ(t, x)→ 0 as t→ x. From equation (2.3.9), we obtain(
dr

dwr
La,ρn (f(t);w)

)
w=x

=
r+2∑
v=0

f (v)(x)

v!

(
dr

dwr
La,ρn ((t− x)v;w)

)
w=x

+

(
dr

dwr
La,ρn (ψ(t, x)(t− x)r+2;w)

)
w=x

=
r+2∑
v=0

f (v)(x)

v!

v∑
j=0

(
v

j

)
(−x)v−j

(
dr

dwr
La,ρn (tj;w)

)
w=x

+

(
dr

dwr
La,ρn (ψ(t, x)(t− x)r+2;w)

)
w=x

:= S1 + S2, say.(2.3.10)

Proceeding along the lines of the estimate of I2 of Theorem 2.3.3, it follows that for

each x ∈ (0,∞)

lim
n→∞

n

(
d

dw
(La,ρn (ψ(t, x)(t− x)r+2;w)

)
w=x

= 0.

Now, we estimate S1.

S1 =
r−1∑
v=0

f (v)(x)

v!

v∑
j=0

(
v

j

)
(−x)v−j

(
dr

dwr
La,ρn (tj;w)

)
w=x

+
f (r)(x)

r!

r∑
j=0

(
r

j

)
(−x)r−j

(
dr

dwr
La,ρn (tj;w)

)
w=x

+
f (r+1)(x)

(r + 1)!

r+1∑
j=0

(
r + 1

j

)
(−x)r+1−j

(
dr

dwr
La,ρn (tj;w)

)
w=x

+
f (r+2)(x)

(r + 2)!

r+2∑
j=0

(
r + 2

j

)
(−x)r+2−j

(
dr

dwr
La,ρn (tj;w)

)
w=x

.

In view of Remark 2 (iii), we have

S1 =
r−1∑
v=1

f (v)(x)O

(
1

n

)
+ f (r)(x)

(
1 +O

(
1

n

))
+ f (r+1)(x)O

(
1

n

)
+ f (r+2)(x)O

(
1

n

)

= f (r)(x) + n−1

(
r+2∑
v=1

Q(v, r, a, x)f (v)(x) + o(1)

)
.
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Combining the estimates of S1 and S2, we get the required result. The uniformity

assertion follows as in proof of Theorem 2.3.3. Hence the proof is completed.

Corollary 6. From the above theorem, we deduce the following Voronovskaja type

asymptotic results:

(i) for r = 0, we have

lim
n→∞

n(La,ρn (f ;x)− f(x)) =
ax

1 + x
f ′(x) +

1

2

(
ax

(1 + x)
+ x(1 + ρ−1 + x)

)
f ′′(x);

and

(ii) for r = 1, we get

lim
n→∞

n

((
d

dw
La,ρn (f ;w)

)
w=x

− f ′(x)

)
=

a

(1 + x)2
f ′(x) +

(
x+ 2 +

a(x2 − x+ 1)

(1 + x)2

)
f ′′(x)

+

(
x2

2
+ x+

ax(2 + x)(3x+ 1)

3(1 + x)2

)
f ′′′(x).

The next result provides an estimate of the degree of approximation in

L
a,ρ(r)
n (f ;x)→ f (r)(x), r ∈ N.

Theorem 2.3.5. (Degree of approximation) Let f ∈ Cγ[0,∞) for some γ > 0

and 0 < c < c1 < d1 < d <∞. Then for n sufficiently large, we have∥∥∥∥ (La,ρ(r)
n (f ; .)

)
− f (r)

∥∥∥∥
C(H1)

≤ C1ω2(f (r);n−1/2, H) + C2n
−1‖f‖Cγ [0,∞),

where C1 = C1(r) and C2 = C2(r, f).

Proof. We can write∥∥∥∥ (La,ρ(r)
n (f ; .)

)
− f (r)

∥∥∥∥
C(H1)

≤
∥∥∥∥La,ρ(r)

n ((f − fη,2); .)

∥∥∥∥
C(H1)

+

∥∥∥∥ (La,ρ(r)
n (fη,2; .)

)
− f (r)

η,2

∥∥∥∥
C(H1)

+‖f (r) − f (r)
η,2‖C(H1) := M1 +M2 +M3.

Since f
(r)
η,2 = (f (r))η,2, hence by property (iii) of the Steklov mean, we get

M3 ≤ C1ω2(f (r); η,H).

Next, applying Theorem 2.3.4 and Lemma 2.2.5, we obtain

M2 ≤ C2n
−1

r+2∑
i=r

‖ f (i)
η,2 ‖C(H1)≤ C3n

−1{‖ fη,2 ‖C(H1) + ‖ f (r+2)
η,2 ‖C(H1)}.
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By using properties (ii) and (iv) of Steklov mean, we get

M2 ≤ C4n
−1{‖ f ‖Cγ [0,∞) +η−2ω2(f (r)); η,H)}.

Let c∗ and d∗ be such that 0 < c < c∗ < c1 < d1 < d∗ < d <∞ and H∗ denote the

interval [c∗, d∗]. Now, we estimate M1.

Let f − fη,2 ≡ F. By our hypothesis we can write

F (t) =
r∑

m=0

F (m)(x)

m!
(t− x)m +

F (r)(ξ) + F (r)(x)

r!
(t− x)rχ(t)

+θ(t, x)(1− χ(t)),(2.3.11)

where ξ lies in between t and x, and χ is the characteristic function of the interval

H∗. For t ∈ H∗ and x ∈ H1, we get

F (t) =
r∑

m=0

F (m)(x)

m!
(t− x)m +

F (r)(ξ) + F (r)(x)

r!
(t− x)r,

and for t ∈ [0,∞) \H∗, x ∈ H1 we define

θ(t, x) = F (t)−
r∑

m=0

F (m)(x)

m!
(t− x)m.

Now, operating L
a,ρ(r)
n on both sides of (2.3.11), we get three terms J1, J2, and J3,

corresponding to three terms in right hand side of (2.3.11). By using Theorem 2.3.4,

we get

|J1| = F (r) + n−1

(
r−1∑
v=1

Q(v, r, a, x)F (v)(x) + o(1)

)
which implies that J1 ≤‖ f (r) − f (r)

η,2 ‖C(H1) .

Next, by applying Theorem 2.3.4, we obtain

|J2| ≤
2 ‖ F (r) ‖

r!
La,ρ(r)
n ((t− x)rχ(t);x)

≤ C5 ‖ f (r) − f (r)
η,2 ‖C(H∗) .

Lastly, we can easily find that

|J3| = La,ρ(r)
n (1− χ(t)θ(t, x);x) = O(n−s), for any s > 0.

Combining the estimates of J1−J3, and from property (iii) of Steklov mean, we get

M1 ≤ C6 ‖ f (r) − f (r)
η,2 ‖C(H∗)≤ C6 ω2(f (r); η,H).

On choosing η = n−1/2, the required result follows.
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2.3.4 Statistical convergence

In the following result, we prove a weighted Korovkin theorem via A-statistical

convergence.

Theorem 2.3.6. Let (ank) be a non-negative regular summability matrix and x ∈
[0,∞). Then, for all f ∈ D∗2[0,∞) we have

stA − lim
n
‖La,ρn (f ; .)− f‖2 = 0.

Proof. From (i) of Remark 2, stA−limn ‖La,ρn (e0;x)−e0(x)‖2 = 0. By (ii) of Remark

2, we obtain

sup
x∈[0,∞)

|La,ρn (e1;x)− e1(x)|
1 + x2

= sup
x∈[0,∞)

|x+ ax
n(1+x)

− x|
1 + x2

≤ a

n
.

Since stA − lim
n

a

n
= 0, stA − lim

n
‖La,ρn (e1; .) − e1‖2 = 0. Similarly, from (iii) of

Remark 2, we get

sup
x∈[0,∞)

|La,ρn (e2;x)− e2(x)|
1 + x2

= sup
x∈[0,∞)

1

1 + x2

∣∣∣∣x(1 + x)

n
+

ax

n2(1 + x)

(
1 +

1

ρ

)
+

a2x2

n2(1 + x)2
+

2ax2

n(1 + x)
+

x

nρ

∣∣∣∣
≤ 2 + 2a+ ρ−1

n
+
a+ aρ−1 + a2

n2
.(2.3.12)

For ε > 0, we define the following sets

E :=

{
n : ‖La,ρn (e2; .)− e2‖2 ≥ ε

}
E1 :=

{
n :

2 + 2a+ ρ−1

n
≥ ε

2

}
E2 :=

{
n :

a+ aρ−1 + a2

n2
≥ ε

2

}
.

From (2.3.12), it is clear that E ⊆ E1 ∪ E2 which implies that for all n ∈ N∑
k∈E

ank ≤
∑
k∈E1

ank +
∑
k∈E2

ank.

Taking the limit n→∞, we have stA − limn ‖La,ρn (e2; .)− e2‖2 = 0. This completes

the proof of the theorem.
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Now, we illustrate the rate of convergence of the operators La,ρn to a certain

function using Matlab in the following example:

Example 5. For n = 50, 100, the rate of convergence of the operators La,ρn (f ;x) to

the function f(x) = x2 −
√

5x −
√

3 (red) is illustrated for a = 1, ρ = 2 (blue) in

figures 2.1− 2.2, respectively.

Figure 2.1 The Convergence of L1,2
50 (f ;x) (blue) to f(x) (red).

F igure 2.2 The Convergence of L1,2
100(f ;x) (blue) to f(x) (red).



Chapter 3

Generalized Baskakov Kantorovich

operators

3.1 Introduction

The generalized Baskakov operators M̃a
n [115] is defined as

M̃a
n(f ;x) =

∞∑
k=0

W a
n,k(x)f

(
k

n+ 1

)
,

where W a
n,k(x) = e

−ax
1+x

Pk(n,a)
k!

xk

(1+x)n+k
, Pk(n, a) =

k∑
i=0

(
k

i

)
(n)ia

k−i, and

(n)0 = 1, (n)i = n(n+1)···(n+i−1) for i ≥ 1. In [44], Erençin defined the Durrmeyer

type modification of generalized Baskakov operators introduced by Mihesan [115],

as

Lan(f ;x) =
∞∑
k=0

W a
n,k(x)

1

B(k + 1, n)

∫ ∞
0

tk

(1 + t)n+k+1
f(t)dt, x ≥ 0,

and discussed some approximation properties. Here, we consider the Kantorovich

modification of generalized Baskakov operators for the function f ∈ Dϑ[0,∞) as

follows :

Ka
n(f ;x) = (n+ 1)

∞∑
k=0

W a
n,k(x)

∫ k+1
n+1

k
n+1

f(t)dt, a ≥ 0.(3.1.1)

As a special case, for a = 0 these operators include the well known Baskakov-

Kantorovich operators (see e.g. [160]). The purpose of this chapter is to study

55
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some local direct results, degree of approximation for functions in a Lipschitz type

space, approximation of continuous functions with polynomial growth, simultaneous

approximation, statistical convergence and the approximation of absolutely contin-

uous functions having a derivative coinciding almost everywhere with a function of

bounded variation by the operators defined in (3.1.1). Lastly, we also introduce the

bivariate extension of these operators and obtain some approximation properties.

Throughout this chapter, M denotes a constant not necessary the same at each

occurrence.

3.2 Moment Estimates

For r ∈ N0, the rth order moment of the generalized Baskakov operators M̃a
n is

defined as

υan,r(x) := M̃a
n(tr;x) =

∞∑
k=0

W a
n,k(x)

(
k

n+ 1

)r
and the central moment of rth order for the operators M̃a

n is defined as

℘̃an,r(x) := M̃a
n((t− x)r;x) =

∞∑
k=0

W a
n,k(x)

(
k

n+ 1
− x
)r

.

Lemma 3.2.1. For the function υan,r(x), we have

υan,0(x) = 1, υan,1(x) =
1

n+ 1

(
nx+

ax

1 + x

)
and

x(1 + x)2(υan,r(x))′ = (n+ 1)(1 + x)υan,r+1(x)− (a+ n(1 + x))x υan,r(x).(3.2.1)

Consequently, for each x ∈ [0,∞) and r ∈ N,

υan,r(x) = xr + n−1(qr(x, a) + o(1))(3.2.2)

where qr(x, a) is a rational function of x depending on the parameters of a and r.

Proof. The values of υan,r(x), r = 0, 1 can be found by a simple computation. Differ-

entiating υan,r(x) with respect to x and using the relation

x(1 + x)2

(
d

dx
W a
n,k(x)

)
= ((k − nx)(1 + x)− ax)W a

n,k(x),
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we can easily get the recurrence relation (3.2.1). To prove the last assertion, we note

that the equation (3.2.2) clearly holds for r = 1. The rest of the proof follows by

using (3.2.1) and induction on r.

Lemma 3.2.2. For the function ℘̃an,r(x), we have

℘̃an,0(x) = 1, ℘̃an,1(x) =
1

n+ 1

(
−x+

ax

(1 + x)

)
and

x(1 + x)2(℘̃an,r(x))′

= (n+ 1)(1 + x)℘̃an,r+1(x)− ax℘̃an,r(x)− rx(1 + x)2℘̃an,r−1(x), r ∈ N,(3.2.3)

Consequently,

(i) ℘̃an,r(x) is a rational function of x depending on the parameters a and r;

(ii) for each x ∈ (0,∞) and r ∈ N0, ℘̃an,r(x) = O(n−[(r+1)/2]), where [α] denotes the

integer part of α.

Proof. Proof of this lemma follows along the lines similar to Lemma 3.2.1. The

consequences (i) and (ii) follow from (3.2.3) by using induction on r.

Lemma 3.2.3. For the rth order (r ∈ N0) moment of the operators (3.1.1), defined

as T an,r(x) := Ka
n(tr;x), we have

T an,r(x) =
1

r + 1

r∑
j=0

(
r + 1

j

)
1

(n+ 1)r−j
υan,j(x),

where υan,j(x) is the jth order moment of the operators M̃a
n .

Consequently, T an,0(x) = 1, T an,1(x) = 1
n+1

(
nx+

ax

1 + x
+

1

2

)
,

T an,2(x) =
1

(n+ 1)2

(
n2x2 + n

(
x2 + 2x+

2ax2

1 + x

)
+

a2x2

(1 + x)2
+

2ax

1 + x
+

1

3

)
,

and for each x ∈ (0,∞) and r ∈ N, T an,r(x) = xr+n−1(pr(x, a)+o(1)), where pr(x, a)

is a rational function of x depending on the parameters a and r.



58

Proof. From equation (3.1.1), we have

T an,r(x) = (n+ 1)
∞∑
k=0

W a
n,k(x)

∫ k+1
n+1

k
n+1

trdt

=
n+ 1

r + 1

∞∑
k=0

W a
n,k(x)

{(
k + 1

n+ 1

)r+1

−
(

k

n+ 1

)r+1}

=
n+ 1

r + 1

∞∑
k=0

W a
n,k(x)

{ r+1∑
j=0

(
r + 1

j

)(
k

n+ 1

)j (
1

n+ 1

)r+1−j

−
(

k

n+ 1

)r+1}

=
n+ 1

r + 1

∞∑
k=0

W a
n,k(x)

{ r∑
j=0

(
r + 1

j

)(
k

n+ 1

)j (
1

n+ 1

)r+1−j }

=
1

r + 1

r∑
j=0

(
r + 1

j

)
1

(n+ 1)r−j

∞∑
k=0

W a
n,k(x)

(
k

n+ 1

)j
=

1

r + 1

r∑
j=0

(
r + 1

j

)
1

(n+ 1)r−j
υan,j(x)(3.2.4)

from which the values of T an,r(x), r = 0, 1, 2 can be found easily. The last assertion

follows from equation (3.2.4) by using Lemma 3.2.1, the required result is immediate.

Lemma 3.2.4. For the rth order central moment of Ka
n, defined as

V a
n,r(x) := Ka

n((t− x)r;x),

we have

(i) V a
n,0(x) = 1, V a

n,1(x) =
1

n+ 1

(
−x+

ax

1 + x
+

1

2

)
and V a

n,2(x) =
1

(n+ 1)2

{
nx(x+1)−x(1−x)+

ax

1 + x

(
ax

1 + x
+ 2(1− x)

)
+

1

3

}
;

(ii) V a
n,r(x) is a rational function of x depending on parameters a and r;

(iii) for each x ∈ (0,∞), V a
n,r(x) = O

(
1

n[ r+1
2 ]

)
.

Proof. Using equation (3.1.1), assertion (i) follows by a simple computation. To
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prove the assertions (ii) and (iii), we may write

V a
n,r(x) = (n+ 1)

∞∑
k=0

W a
n,k(x)

∫ k+1
n+1

k
n+1

(t− x)rdt

=
n+ 1

r + 1

∞∑
k=0

W a
n,k(x)

{(
k + 1

n+ 1
− x
)r+1

−
(

k

n+ 1
− x
)r+1}

=
n+ 1

r + 1

∞∑
k=0

W a
n,k(x)

{
r+1∑
ν=0

(
r + 1

ν

)(
k

n+ 1
− x
)r+1−ν (

1

n+ 1

)ν
−
(

k

n+ 1
− x
)r+1

}

=
1

r + 1

r+1∑
ν=1

(
r + 1

ν

)
1

(n+ 1)ν−1

∞∑
k=0

W a
n,k(x)

(
k

n+ 1
− x
)r+1−ν

=
1

r + 1

r+1∑
ν=1

(
r + 1

ν

)
1

(n+ 1)ν−1
℘̃an,r+1−ν(x),

from which assertion (ii) follows in view of Lemma 3.2.2. Also, we get

|V a
n,r(x)| ≤ C

r+1∑
ν=1

1

nν−1

1

n[ r+1−ν
2

]
≤ C

1

n[ r+1
2

]
.

This completes the proof.

Remark 3. From Lemma 3.2.4, for λ > 1, x ∈ (0,∞) and n sufficiently large, we

have

Ka
n((t− x)2;x) = V a

n,2(x) ≤ λx(1 + x)

n+ 1
.

Now, for f ∈ CB[0,∞), x ≥ 0 the auxiliary operators are defined as

K̃a
n(f ;x) = Ka

n(f ;x)− f
(

1

n+ 1

(
nx+

ax

1 + x
+

1

2

))
+ f(x).

Lemma 3.2.5. Let f ∈ C2
B[0,∞). Then for all x ≥ 0, we have

|K̃a
n(f ;x)− f(x)| ≤ 1

2
γan(x) ‖ f ′′ ‖,

where

γan(x) = Ka
n((t− x)2;x) +

1

(n+ 1)2

(
−x+

ax

1 + x
+

1

2

)2

=
1

(n+ 1)2

{
(n+ 2)x2 + (n− 2)x+

2a2x2

(1 + x)2
− 4ax2

1 + x
+

3ax

1 + x
+

7

12

}
.
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Proof. It is clear from the definition of K̃a
n that

K̃a
n(t− x;x) = 0.

Let f ∈ C2
B[0,∞). From the Taylor expansion of f , we have

f(t)− f(x) = (t− x)f ′(x) +

∫ t

x

(t− u)f ′′(u)du.

Hence

K̃a
n(f ;x)− f(x)

= f ′(x)K̃a
n(t− x;x) + K̃a

n

(∫ t

x

(t− u)f ′′(u)du;x

)
= K̃a

n

(∫ t

x

(t− u)f ′′(u)du;x

)
= Ka

n

(∫ t

x

(t− u)f ′′(u)du;x

)
−
∫ 1

n+1
(nx+ ax

1+x
+ 1

2
)

x

(
1

n+ 1

(
nx+

ax

1 + x
+

1

2

)
− u
)
f ′′(u)du

and thus

|K̃a
n(f ;x)− f(x)|

≤ Ka
n

(∣∣∣∣ ∫ t

x

(t− u)f ′′(u)du

∣∣∣∣;x)
+

∣∣∣∣ ∫ 1
n+1

(nx+ ax
1+x

+ 1
2

)

x

(
1

n+ 1

(
nx+

ax

1 + x
+

1

2

)
− u
)
f ′′(u)du

∣∣∣∣.(3.2.5)

Since ∣∣∣∣ ∫ t

x

(t− u)f ′′(u)du

∣∣∣∣ ≤ (t− x)2

2
‖ f ′′ ‖

and∣∣∣∣∣
∫ 1

n+1
(nx+ ax

1+x
+ 1

2
)

x

(
1

n+ 1

(
nx+

ax

1 + x
+

1

2

)
− u
)
f ′′(u)du

∣∣∣∣∣
≤ 1

2(n+ 1)2

(
−x+

ax

1 + x
+

1

2

)2

‖f ′′‖ ,

it follows from (3.2.5) that

|K̃a
n(f ;x)− f(x)| ≤ 1

2

{
Ka
n((t− x)2;x) +

1

(n+ 1)2

(
−x+

ax

1 + x
+

1

2

)2}
‖ f ′′ ‖

=
1

2
γan(x) ‖f ′′‖ .

This completes the proof of the lemma.
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3.3 Main Results

3.3.1 Local approximation

Theorem 3.3.1. Let f ∈ CB[0,∞). Then for all x ≥ 0, there exists a constant

C > 0 such that

|Ka
n(f ;x)− f(x)| ≤ Cω2

(
f ;
√
γan(x)

)
+ ω

(
f ;

1

n+ 1

∣∣∣∣− x+
ax

1 + x
+

1

2

∣∣∣∣) ,
where γan(x) is as defined in Lemma 3.2.5.

Proof. For f ∈ CB[0,∞) and g ∈ C2
B[0,∞), by the definition of the operators K̃a

n,

we obtain

|Ka
n(f ;x)− f(x)| ≤ |K̃a

n(f − g;x)|+ |(f − g)(x)|+ |K̃a
n(g;x)− g(x)|

+

∣∣∣∣f ( 1

n+ 1

(
nx+

ax

1 + x
+

1

2

))
− f(x)

∣∣∣∣
and

|K̃a
n(f ;x)| ≤‖ f ‖ Ka

n(1;x) + 2 ‖ f ‖= 3 ‖ f ‖ .

Therefore, we have

|Ka
n(f ;x)− f(x)| ≤ 4 ‖ f − g ‖ +|K̃a

n(g;x)− g(x)|+ ω

(
f ;

1

n+ 1

∣∣∣∣− x+
ax

1 + x
+

1

2

∣∣∣∣) .
Now, using Lemma 3.2.5, the above inequality reduces to

|Ka
n(f ;x)− f(x)| ≤ 4 ‖ f − g ‖ +γan(x) ‖ g′′ ‖ +ω

(
f ;

1

n+ 1

∣∣∣∣− x+
ax

1 + x
+

1

2

∣∣∣∣) .
Thus, taking infimum over all g ∈ C2

B[0,∞) on the right-hand side of the last

inequality and using (0.7.2), we get the required result.

Let us now consider the Lipschitz-type space in two parameters [125]:

Lip
(a1,a2)
M (α) :=

{
f ∈ CB[0,∞) : |f(t)− f(x)| ≤M

|t− x|α

(t+ a1x2 + a2x)
α
2

;x, t ∈ (0,∞)

}
,

for a1, a2 > 0, where M is a positive constant and α ∈ (0, 1].

Theorem 3.3.2. Let f ∈ Lip(a1,a2)
M (α). Then, for all x > 0, we have

|Ka
n(f ;x)− f(x)| ≤M

(
V a
n,2(x)

(a1x2 + a2x)

)α
2

.
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Proof. First we prove the theorem for the case α = 1. We may write

|Ka
n(f ;x)− f(x)| ≤ (n+ 1)

∞∑
k=0

W a
n,k(x)

∫ k+1
n+1

k
n+1

|f(t)− f(x)|dt

≤ M(n+ 1)
∞∑
k=0

W a
n,k(x)

∫ k+1
n+1

k
n+1

|t− x|√
t+ a1x2 + a2x

dt.

Using the fact that 1√
t+a1x2+a2x

< 1√
a1x2+a2x

and the Cauchy-Schwarz inequality, the

above inequality implies that

|Ka
n(f ;x)− f(x)| ≤ M(n+ 1)√

a1x2 + a2x

∞∑
k=0

W a
n,k(x)

∫ k+1
n+1

k
n+1

|t− x|dt

≤ M√
a1x2 + a2x

(Ka
n((t− x)2;x))1/2 ≤M

√ V a
n,2(x)

a1x2 + a2x

 .

Thus the result hold for α = 1. Now, let 0 < α < 1, then applying the Hölder

inequality with p = 1
α

and q = 1
1−α , we have

|Ka
n(f ;x)− f(x)| ≤ (n+ 1)

∞∑
k=0

W a
n,k(x)

∫ k+1
n+1

k
n+1

|f(t)− f(x)|dt

≤
{ ∞∑

k=0

W a
n,k(x)

(
(n+ 1)

∫ k+1
n+1

k
n+1

|f(t)− f(x)|dt

) 1
α }α

≤
{ ∞∑

k=0

W a
n,k(x)(n+ 1)

∫ k+1
n+1

k
n+1

|f(t)− f(x)|
1
αdt

}α
≤ M

{ ∞∑
k=0

W a
n,k(x)(n+ 1)

∫ k+1
n+1

k
n+1

|t− x|√
t+ a1x2 + a2x

dt

}α
≤ M

(a1x2 + a2x)
α
2

{ ∞∑
k=0

W a
n,k(x)(n+ 1)

∫ k+1
n+1

k
n+1

|t− x|dt
}α

≤ M

(a1x2 + a2x)
α
2

(Ka
n((t− x)2;x))α/2 ≤M

(
V a
n,2(x)

(a1x2 + a2x)

)α
2

.

Thus, the proof is completed.

Next, we obtain the local direct estimate of the operators defined in (3.1.1) using

the Lipschitz-type maximal function of order τ.

Theorem 3.3.3. Let f ∈ CB[0,∞) and 0 < τ ≤ 1. Then, for all x ∈ [0,∞) we

have

|Ka
n(f ;x)− f(x)| ≤ ω̂τ (f, x)(V a

n,2(x))
τ
2 .
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Proof. From the equation (0.7.3), we have

|Ka
n(f ;x)− f(x)| ≤ ω̂τ (f, x)Ka

n(|t− x|τ ;x).

Applying the Hölder’s inequality with p =
2

τ
and

1

q
= 1− 1

p
, we get

|Ka
n(f ;x)− f(x)| ≤ ω̂τ (f, x)(Ka

n(t− x)2;x)
τ
2 = ω̂τ (f, x)(V a

n,2(x))
τ
2 .

Thus, the proof is completed.

Theorem 3.3.4. Let f ∈ D2[0,∞) and ω (f ; δ, [0, b+ 1]) be its modulus of continuity

on the finite interval [0, b + 1] ⊂ [0,∞) with b > 0. Then for every x ∈ [0, b] and

n ∈ N, we have

|Ka
n(f ;x)− f(x)| ≤ 4Mf (1 + b2)V a

n,2(x) + 2ω
(
f ;
√
V a
n,2(x), [0, b+ 1]

)
.

Proof. From [87], for x ∈ [0, b] and t ∈ [0,∞), we have

|f(t)− f(x)| ≤ 4Mf (1 + b2)(t− x)2 +

(
1 +
|t− x|
δ

)
ω (f ; δ, [0, b+ 1]) , δ > 0.

Applying Ka
n(.;x) to the above inequality and then Cauchy-Schwarz inequality to

the above inequality, we obtain

|Ka
n(f ;x)− f(x)| ≤ 4Mf (1 + b2)Ka

n((t− x)2;x) + ω (f ; δ, [0, b+ 1])

(
1 +

1

δ
Ka
n(|t− x|;x)

)
≤ 4Mf (1 + b2)V a

n,2(x) + ω (f ; δ, [0, b+ 1])

(
1 +

1

δ

√
V a
n,2(x)

)
.

By choosing δ =
√
V a
n,2(x), we obtain the desired result.

3.3.2 Weighted approximation

Theorem 3.3.5. For each f ∈ D∗2[0,∞), we have

lim
n→∞

‖ Ka
n(f)− f ‖2= 0.

Proof. From [50], we observe that it is sufficient to verify the following three condi-

tions:

lim
n→∞

‖ Ka
n(tk;x)− xk) ‖2= 0, k = 0, 1, 2.(3.3.1)
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Since Ka
n(1;x) = 1, the condition in (3.3.1) holds for k = 0. Also, by Lemma 3.2.3

we have

‖ Ka
n(t;x)− x) ‖2

=

∥∥∥∥ 1

n+ 1

(
−x+

ax

1 + x
+

1

2

)∥∥∥∥
2

≤ 1

n+ 1

(
sup

x∈[0,∞)

x

1 + x2
+ a sup

x∈[0,∞)

x

(1 + x)(1 + x2)
+

1

2
sup

x∈[0,∞)

1

1 + x2

)

≤ 1

n+ 1

(
a+

3

2

)
,

which implies that the condition in (3.3.1) holds for k = 1. Similarly, we can write

‖ Ka
n(t2;x)− x2 ‖2

=

∥∥∥∥ 1

(n+ 1)2

(
n2x2 + n

(
x2 + 2x+

2ax2

1 + x

)
+

a2x2

(1 + x)2
+

2ax

1 + x
+

1

3
− (n+ 1)2x2

)∥∥∥∥
2

≤ 1

(n+ 1)2

(
(n+ 1) sup

x∈[0,∞)

x2

1 + x2
+ 2n sup

x∈[0,∞)

x

1 + x2
+ 2an sup

x∈[0,∞)

x2

(1 + x)(1 + x2)

+2a sup
x∈[0,∞)

x

(1 + x)(1 + x2)
+ a2 sup

x∈[0,∞)

x2

(1 + x)2(1 + x2)
+

1

3
sup

x∈[0,∞)

1

1 + x2

)
≤ 1

(n+ 1)2

(
(n+ 1)(2a+ 1) +

(
2n+ a2 +

1

3

))
,

which implies that the equation (3.3.1) holds for k = 2. This completes the proof of

theorem.

Theorem 3.3.6. Let f ∈ D∗2[0,∞), then there exists a positive constant M1 such

that

sup
x∈[0,∞)

|Ka
n(f, x)− f(x)|

(1 + x2)
3
2

≤M1Ω2

(
f, n−1/2

)
.

Proof. For t ≥ 0, x ∈ [0,∞) and δ > 0, by the definition of Ω2(f, δ) and Lemma

0.7.1, we get

|f(t)− f(x)| ≤ (1 + (x+ |x− t|)2)Ω2(f, |t− x|)

≤ (1 + (2x+ t)2)

(
1 +
|t− x|
δ

)
Ω2(f, δ).

Since Ka
n is linear and positive, we have

|Ka
n(f, x)− f(x)|

≤ Ω2(f, δ)

{
Ka
n(1 + (2x+ t)2, x) +Ka

n

(
(1 + (2x+ t)2)

|t− x|
δ

, x

)}
.(3.3.2)
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From Lemma (3.2.3), there exist positive constant M1 and M2 such that

Ka
n(1 + (2x+ t)2, x) ≤M1(1 + x2),(3.3.3)

and (
Ka
n

(
(1 + (2x+ t)2)2, x

))1/2 ≤M2(1 + x2).(3.3.4)

Applying Cauchy-Schwarz inequality to the second term of equation (3.3.2), (3.3.4)

and Remark 3, we get

Ka
n

(
(1 + (2x+ t)2)

|t− x|
δ

, x

)

≤ 1

δ

√
Ka
n

(
(1 + (2x+ t)2)2

, x)
√
Ka
n ((t− x)2, x)

≤
√
λ

δ
M2(1 + x2)

√
x(1 + x)

n+ 1
, λ > 1

≤ 1

δ
√
n
M3(1 + x2)3/2, for some positive number M3.(3.3.5)

Combining the estimates of (3.3.2), (3.3.3), (3.3.5) and taking M = (M1 +M3),

δ = 1√
n
, we obtain the required result.

3.3.3 Simultaneous approximation

Theorem 3.3.7. (Basic convergence theorem) Let f ∈ Dϑ[0,∞). If f (r) exists

at a point x ∈ (0,∞), then we have

lim
n→∞

(
dr

dwr
Ka
n(f ;w)

)
w=x

= f (r)(x).

Proof. By our hypothesis, we have

f(t) =
r∑

ν=0

f (ν)(x)

ν!
(t− x)ν + ψ(t, x)(t− x)r, t ∈ [0,∞),

where the function ψ(t, x)→ 0 as t→ x. From the above equation, we may write(
dr

dwr
Ka
n(f(t);w)

)
w=x

=
r∑

ν=0

f (ν)(x)

ν!

(
dr

dwr
Ka
n(t− x)ν ;w)

)
w=x

+

(
dr

dwr
Ka
n(ψ(t, x)(t− x)r;w)

)
w=x

:= I1 + I2, say.
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Now, we estimate I1.

I1 =
r∑

ν=0

f (ν)(x)

ν!

{
dr

dwr

(
ν∑
j=0

(
ν

j

)
(−x)ν−jKa

n(tj;w)

)
w=x

}

=
r∑

ν=0

f (ν)(x)

ν!

ν∑
j=0

(
ν

j

)
(−x)ν−j

(
dr

dwr
Ka
n(tj;w)

)
w=x

=
r−1∑
ν=0

f (ν)(x)

ν!

ν∑
j=0

(
ν

j

)
(−x)ν−j

(
dr

dwr
Ka
n(tj;w)

)
w=x

+
f (r)(x)

r!

r∑
j=0

(
r

j

)
(−x)r−j

(
dr

dwr
Ka
n(tj;w)

)
w=x

:= I3 + I4, say.

First, we estimate I4.

I4 =
f (r)(x)

r!

r−1∑
j=0

(
r

j

)
(−x)r−j

(
dr

dwr
Ka
n(tj;w)

)
w=x

+
f (r)(x)

r!

(
dr

dwr
Ka
n(tr;w)

)
w=x

:= I5 + I6, say.

By using Lemma 3.2.3, we get I6 = f (r)(x)+O

(
1

n

)
, I3 = O

(
1

n

)
and I5 = O

(
1

n

)
.

Combining the above estimates, for each x ∈ (0,∞) we obtain I1 → f (r)(x) as

n→∞.
Since ψ(t, x) → 0 as t → x, for a given ε > 0 there exists a δ > 0 such that

|ψ(t, x)| < ε whenever |t − x| < δ. For |t − x| ≥ δ, |ψ(t, x)| ≤ M |t − x|β, for some

M,β > 0.

By making use of Lemma 2.2.2, we have

|I2| ≤ (n+ 1)
∞∑
k=0

∑
2i+j≤r
i,j≥0

ni|k − nx|j |qi,j,r(x)|
(p(x))r

W a
n,k(x)

∫ k+1
n+1

k
n+1

ψ(t, x)(t− x)rdt

≤ (n+ 1)
∞∑
k=0

∑
2i+j≤r
i,j≥0

ni|k − nx|j |qi,j,r(x)|
(p(x))r

W a
n,k(x)

×
(
ε

∫
|t−x|<δ

|t− x|rdt+M

∫
|t−x|≥δ

|t− x|r+βdt
)

:= I7 + I8, say.

Let S = sup
2i+j≤r
i,j≥0

|qi,j,r(x)|
(p(x))r

and by applying the Schwarz inequality, Lemmas 2.2.1 and
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3.2.4, we get

|I7| ≤ ε(n+ 1)
1
2S

∞∑
k=0

∑
2i+j≤r
i,j≥0

ni|k − nx|jW a
n,k(x)

(∫ k+1
n+1

k
n+1

(t− x)2rdt

) 1
2

≤ ε(n+ 1)
1
2S

∑
2i+j≤r
i,j≥0

ni

(
∞∑
k=0

(k − nx)2jW a
n,k(x)

) 1
2
(
∞∑
k=0

W a
n,k(x)

∫ k+1
n+1

k
n+1

(t− x)2rdt

) 1
2

= ε.S
∑

2i+j≤r
i,j≥0

ni

(
∞∑
k=0

(k − nx)2jW a
n,k(x)

) 1
2
(

(n+ 1)
∞∑
k=0

W a
n,k(x)

∫ k+1
n+1

k
n+1

(t− x)2rdt

) 1
2

≤ ε.S
∑

2i+j≤r
i,j≥0

O
(
n

2i+j
2

)
O
(
n−r/2

)
= ε.O(1).

Since ε > 0 is arbitrary, I7 → 0 as n → ∞. Let s(∈ N) > r + β. Again, by using

Schwarz inequality, Lemmas 2.2.1 and 3.2.4, we obtain

I8 ≤ MS(n+ 1)
∞∑
k=0

∑
2i+j≤r
i,j≥0

ni|k − nx|jW a
n,k(x)

∫
|t−x|≥δ

|t− x|r+βdt

≤ M ′(n+ 1)

δs−r−β

∞∑
k=0

∑
2i+j≤r
i,j≥0

ni|k − nx|jW a
n,k(x)

∫ k+1
n+1

k
n+1

|t− x|sdt, where MS = M ′

≤ M ′(n+ 1)1/2

δs−r−β

∞∑
k=0

∑
2i+j≤r
i,j≥0

ni|k − nx|jW a
n,k(x)

(∫ k+1
n+1

k
n+1

|t− x|2sdt

)1/2

≤ M ′

δs−r−β

∑
2i+j≤r
i,j≥0

ni

(
∞∑
k=0

W a
n,k(x)(k − nx)2j

)1/2(
(n+ 1)

∞∑
k=0

W a
n,k(x)

∫ k+1
n+1

k
n+1

(t− x)2sdt

)1/2

=
M ′

δs−r−β

∑
2i+j≤r
i,j≥0

niO(nj/2)O(n−s/2) =
M ′

δs−r−β
O(n

(r−s)
2 )

which implies that I8 → 0, as n→∞.
Now, by combining the estimates of I7 and I8, we get I2 → 0 as n→∞. Thus, from

the estimates of I1 and I2, we obtained the required result.

Theorem 3.3.8. (Voronovskaja type result) Let f ∈ Dϑ[0,∞). If f admits a

derivative of order (r + 2) at a fixed point x ∈ (0,∞), then we have

lim
n→∞

n

((
dr

dwr
Ka
n(f ;w)

)
w=x

− f (r)(x)

)
=

r+2∑
ν=1

Q(ν, r, a, x)f (ν)(x),
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where Q(ν, r, a, x) are certain rational functions of x depending on the parameters

a, r, ν.

Proof. From the Taylor’s theorem, we have

f(t) =
r+2∑
ν=0

f (ν)(x)

ν!
(t− x)ν + ψ(t, x)(t− x)r+2, t ∈ [0,∞)(3.3.6)

where ψ(t, x)→ 0 as t→ x and ψ(t, x) = O(t− x)ϑ.

From the equation (3.3.6), we have(
dr

dwr
Ka
n(f(t);w)

)
w=x

=
r+2∑
ν=0

f (ν)(x)

ν!

(
dr

dwr
(Ka

n((t− x)ν ;w)

)
w=x

+

(
dr

dwr
Ka
n(ψ(t, x)(t− x)r+2;w)

)
w=x

=
r+2∑
ν=0

f (ν)(x)

ν!

ν∑
j=0

(
ν

j

)
(−x)ν−j

(
dr

dwr
Ka
n(tj;w)

)
w=x

+

(
dr

dwr
Ka
n(ψ(t, x))(t− x)r+2;w

)
w=x

:= T1 + T2, say.

Proceeding in a manner to the estimates of I2 in Theorem 3.3.7, for each x ∈ (0,∞)

we get

lim
n→∞

n

(
dr

dwr
(Ka

n(ψ(t, x)(t− x)r+2;w)

)
w=x

= 0.

Now, we estimate T1.

T1 =
r−1∑
ν=0

f (ν)(x)

ν!

ν∑
j=0

(
ν

j

)
(−x)ν−j

(
dr

dwr
Ka
n(tj;w)

)
w=x

+
f (r)(x)

r!

r∑
j=0

(
r

j

)
(−x)r−j

(
dr

dwr
Ka
n(tj;w)

)
w=x

+
f (r+1)(x)

(r + 1)!

r+1∑
j=0

(
r + 1

j

)
(−x)r+1−j

(
dr

dwr
Ka
n(tj;w)

)
w=x

+
f (r+2)(x)

(r + 2)!

r+2∑
j=0

(
r + 2

j

)
(−x)r+2−j

(
dr

dwr
Ka
n(tj;w)

)
w=x

.

By making use of Lemma 3.2.3, we have

T1 = f (r)(x) + n−1

(
r+2∑
ν=1

Q(ν, r, a, x)f (ν)(x) + o(1)

)
. Thus, from the estimates of T1

and T2, the required result follows. This completes the proof.



69

Corollary 7. From the above theorem, we have

(i) for r = 0

lim
n→∞

n(Ka
n(f ;x)− f(x)) =

(
ax

1 + x
+

1

2
− x
)
f ′(x) +

1

2
(x+ x2)f ′′(x);

(ii) for r = 1

lim
n→∞

n

((
d

dw
Ka
n(f ;w)− f ′(x)

)
w=x

)
=

(
−1 +

a

(1 + x)2

)
f ′(x)+

(
1 +

ax

1 + x

)
f ′′(x)

+
1

2
x(1 + x)f ′′′(x).

In this section, we obtain an estimate of the degree of approximation for rth

order derivative of Ka
n for smooth functions.

Theorem 3.3.9. (Degree of approximation) Let r ≤ q ≤ r + 2, f ∈ Dϑ[0,∞)

and f (q) exists and be continuous on (a−η, b+η), η > 0. Then, for sufficiently large

n, we have∥∥∥∥( dr

dwr
Ka
n(f ;w)

)
w=x

− f (r)(t)

∥∥∥∥
C[a,b]

≤ C1n
−(q−r)/2ω

(
f (q);n−1/2, (a− η, b+ η)

)
+ C2 n

−1,

where C1 = C1(r) and C2 = C2(r, f).

Proof. By our hypothesis we have

f(t) =

q∑
i=0

f (i)(x)

i!
(t− x)i +

f (q)(ξ)− f (q)(x)

q!
(t− x)qχ(t)

+φ(t, x)(1− χ(t)),(3.3.7)

where ξ lies between t and x and χ(t) is the characteristic function of (a− η, b+ η).

The function φ(t, x) for t ∈ [0,∞) \ (a − η, b + η) and x ∈ [a, b] is bounded by

M |t− x|κ for some constants M,κ > 0.

Operating
dr

dwr
Ka
n(.;w) on the equality (3.3.7) and breaking the right hand side into

three parts J1, J2 and J3, say, corresponding to the three terms on the right hand

side of equation (3.3.7) as in the estimate of I8 in Theorem 3.3.7, it can be easily

shown that J3 = o(n−1), uniformly in x ∈ [a, b].

Now treating J1 in a manner similar to the treatment of T1 of Theorem 3.3.8, we
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get J1 = f (r)(t) +O(n−1), uniformly in t ∈ [a, b].

Finally, let

S1 = sup
x∈[a,b]

sup
2i+j≤r
i,j≥0

qi,j,r(x)

(p(x))r
,

then making use of the inequality

|f (q)(ξ)− f (q)(x)| ≤
(

1 +
|t− x|
δ

)
ω
(
f (q); δ, (a− η, b+ η)

)
, δ > 0,

the Schwarz inequality, Lemmas 2.2.1 and 3.2.4, we obtain

|J2| ≤ (n+ 1)
∞∑
k=0

∑
2i+j≤r
i,j≥0

ni|k − nx|jqi,j,r(x)

(p(x))r
W a
n,k(x)

∫ k+1
n+1

k
n+1

|f (q)(ξ)− f (q)(x)|
q!

|t− x|qχ(t)dt

≤
ω
(
f (q); δ, (a− η, b+ η)

)
S1

q!

∑
2i+j≤r
i,j≥0

ni

(
∞∑
k=0

(k − nx)2jW a
n,k(x)

)1/2

×
{(

(n+ 1)
∞∑
k=0

W a
n,k(x)

∫ k+1
n+1

k
n+1

(t− x)2qdt

)1/2

+
1

δ

(
(n+ 1)

∞∑
k=0

W a
n,k(x)

∫ k+1
n+1

k
n+1

(t− x)2q+2dt

)1/2}
≤ C1

(
n−(q−r)/2)ω (f (q);n−1/2, (a− η, b+ η)

)
, on choosing δ = n−1/2.

By combining the estimates of J1 − J3, we get the required result.

3.3.4 Statistical convergence

Theorem 3.3.10. Let (ank) be a non-negative regular summability matrix and x ∈
[0,∞). Then, for all f ∈ D∗2[0,∞) we have

stA − lim
n
‖Ka

n(f, .)− f‖ζ+2 = 0.

Proof. From ([42], p. 191, Th. 3), it is sufficient to show that stA− limn ‖Ka
n(ei, .)−

ei‖2 = 0, where ei(x) = xi, i = 0, 1, 2.

In view of Lemma 3.2.3, it follows that

stA − lim
n
‖Ka

n(e0, .)− e0‖2 = 0.(3.3.8)



71

Again, by using Lemma 3.2.3, we have

sup
x∈[0,∞)

|Ka
n(e1, x)− e1(x)|

1 + x2
= sup

x∈[0,∞)

∣∣∣∣ 1

n+ 1

(
−x+

ax

1 + x
+

1

2

) ∣∣∣∣
1 + x2

≤ 1

n+ 1

(
a+

3

2

)
.

For ε > 0, we define the following sets

B : =

{
n : ‖Ka

n(e1, .)− e1‖2 ≥ ε

}
B1 : =

{
n :

1

n+ 1

(
a+

3

2

)
≥ ε

}
,

which yields us B ⊆ B1 and therefore for all n, we have
∑
k∈B

ank ≤
∑
k∈B1

ank and hence

stA − lim
n
‖Ka

n(e1, .)− e1‖2 = 0.(3.3.9)

Proceeding similarly,

‖ Ka
n(e2; .)− e2 ‖2

= sup
x∈[0,∞)

1

1 + x2

∣∣∣∣ n

(n+ 1)2

(
−x2 + 2x+

2ax2

1 + x

)
+

1

(n+ 1)2

(
a2x2

(1 + x)2
+

2ax

1 + x
− x2 +

1

3

) ∣∣∣∣
≤ 1

n+ 1
(2a+ 3) +

1

(n+ 1)2

(
a2 + 4a+

13

3

)
.

Let us define the following sets

G : =

{
n : ‖Ka

n(e2, .)− e2‖2 ≥ ε

}
G1 : =

{
n :

1

n+ 1
(2a+ 3) ≥ ε

2

}
G2 : =

{
n :

1

(n+ 1)2

(
a2 + 4a+

13

3

)
≥ ε

2

}
.

Then, we obtain G ⊆ G1 ∪G2, which implies that∑
k∈G

ank ≤
∑
k∈G1

ank +
∑
k∈G2

ank

and hence

stA − lim
n
‖Ka

n(e2, .)− e2‖2 = 0.(3.3.10)

This completes the proof of the theorem.
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3.3.5 Rate of approximation

The rate of convergence for functions with derivative of bounded variation is an inter-

esting area of research in approximation theory. A pioneering work in this direction

is due to Bojanic and Cheng ([31], [30]) who estimated the rate of convergence with

derivatives of bounded variation for Bernstein and Hermite-Fejer polynomials by

using different methods.

Now, we shall estimate the rate of convergence for the generalized Baskakov Kan-

torovich operators Ka
n for functions with derivatives of bounded variation defined on

(0,∞) at points x where f ′(x+) and f ′(x−) exist, we shall prove that the operators

(3.1.1) converge to the limit f(x).

The operators Ka
n(f ;x) also admit the integral representation

Ka
n(f ;x) =

∫ ∞
0

J a
n (x, t)f(t)dt,(3.3.11)

where J a
n (x, t) := (n+1)

∞∑
k=0

W a
n,k(x)χn,k(t), where χn,k(t) is the characteristic func-

tion of the interval

[
k

n+1
, k+1
n+1

]
with respect to [0,∞).

In order to prove the main result, we need the following Lemma.

Lemma 3.3.11. For fixed x ∈ (0,∞), λ > 1 and n sufficiently large, we have

(i) αan(x, y) =
∫ y

0
J a
n (x, t)dt ≤ 1

(x− y)2

λx(1 + x)

n+ 1
, 0 ≤ y < x,

(ii) 1− αan(x, z) =
∫∞
z
J a
n (x, t)dt ≤ 1

(z − x)2

λx(1 + x)

n+ 1
, x < z <∞.

Proof. First we prove (i).

αan(x, y) =

∫ y

0

J a
n (x, t)dt ≤

∫ y

0

(
x− t
x− y

)2

J a
n (x, t)dt

≤ 1

(x− y)2
Ka
n((t− x)2;x)

≤ 1

(x− y)2

λx(1 + x)

n+ 1
.

The proof of (ii) is similar.
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Theorem 3.3.12. Let f ∈ DBVγ(0,∞). Then, for every x ∈ (0,∞), and n suffi-

ciently large, we have

|Ka
n(f ;x)− f(x)| ≤

∣∣∣∣− x+
ax

1 + x
+

1

2

∣∣∣∣
n+ 1

|f ′(x+) + f ′(x−)|
2

+

√
λx(1 + x)

n+ 1

|f ′(x+)− f ′(x−)|
2

+
λ(1 + x)

n+ 1

[
√
n]∑

k=1

x∨
x−(x/k)

(f ′x) +
x√
n

x∨
x−(x/

√
n)

(f ′x)

+
λ(1 + x)

n+ 1

[
√
n]∑

k=0

x+x/k∨
x

(f ′x) +
x√
n

x+x/
√
n∨

x

(f ′x),

where
∨d
c(f
′
x) denotes the total variation of f ′x on [c, d] and f ′x is defined by

f ′x(t) =


f ′(t)− f ′(x−), 0 ≤ t < x

0 , t = x

f ′(t)− f ′(x+), x < t <∞.

Proof. For u ∈ [0,∞), we may write

f ′(u) = f ′x(u) +
1

2
(f ′(x+) + f ′(x−)) +

1

2
(f ′(x+)− f ′(x−))sgn(u− x)

+δx(u){f ′(u)− 1

2
(f ′(x+) + f ′(x−))},(3.3.12)

where

δx(u) =

{
1 , u = x

0 , u 6= x.

From (3.3.11) we get

Ka
n(f ;x)− f(x) =

∫ ∞
0

J a
n (x, t)(f(t)− f(x))dt

=

∫ ∞
0

J a
n (x, t)

∫ t

x

f ′(u)dudt.(3.3.13)

It is obvious that∫ ∞
0

(∫ t

x

(
f ′(u)− 1

2
(f ′(x+) + f ′(x−))

)
δx(u)du

)
J a
n (x, t)dt = 0.

By (3.3.13), we have∫ ∞
0

(∫ t

x

1

2
(f ′(x+) + f ′(x−))du

)
J a
n (x, t)dt =

1

2
(f ′(x+) + f ′(x−))

∫ ∞
0

(t− x)J a
n (x, t)dt

=
1

2
(f ′(x+) + f ′(x−))Ka

n((t− x);x)
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and by using Schwarz inequality, we obtain∣∣∣∣ ∫ ∞
0

J a
n (x, t)

(∫ t

x

1

2
(f ′(x+)− f ′(x−))sgn(u− x)du

)
dt

∣∣∣∣
≤ 1

2
|f ′(x+)− f ′(x−)|

∫ ∞
0

|t− x|J a
n (x, t)dt

=
1

2
|f ′(x+)− f ′(x−)|Ka

n(|t− x|;x)

≤ 1

2
|f ′(x+)− f ′(x−)|(Ka

n((t− x)2;x))1/2.

From Lemma 3.2.3, Remark 3 and from the above estimates, (3.3.13) becomes

|Ka
n(f ;x)− f(x)| ≤ 1

2(n+ 1)
|f ′(x+) + f ′(x−)|

∣∣∣∣− x+
ax

1 + x
+

1

2

∣∣∣∣
+

1

2
|f ′(x+)− f ′(x−)|

√
λx(1 + x)

n+ 1
+

∣∣∣∣ ∫ x

0

(∫ t

x

f ′x(u)du

)
J a
n (x, t)dt

+

∫ ∞
x

(∫ t

x

f ′x(u)du

)
J a
n (x, t)dt

∣∣∣∣.(3.3.14)

Let

Uan(f ′x, x) =

∫ x

0

(∫ t

x

f ′x(u)du

)
J a
n (x, t)dt,

and

Van(f ′x, x) =

∫ ∞
x

(∫ t

x

f ′x(u)du

)
J a
n (x, t)dt.

Now, we estimate the terms Uan(f ′x, x) and Van(f ′x, x). Since
∫ d
c
dtα

a
n(x, t) ≤ 1 for all

[c, d] ⊆ (0,∞), using integration by parts and Lemma 3.3.11 with y = x − x√
n

we

have

|Uan(f ′x, x)| =

∣∣∣∣ ∫ x

0

(∫ t

x

f ′x(u)du

)
dtα

a
n(x, t)dt

∣∣∣∣
=

∣∣∣∣ ∫ x

0

αan(x, t)f ′x(t)dt

∣∣∣∣
≤

(∫ y

0

+

∫ x

y

)
|f ′x(t)||αan(x, t)|dt

≤ λx(1 + x)

n+ 1

∫ y

0

x∨
t

(f ′x)(x− t)−2dt+

∫ x

y

x∨
t

(f ′x)dt

≤ λx(1 + x)

n+ 1

∫ y

0

x∨
t

(f ′x)(x− t)−2dt+
x√
n

x∨
x−(x/

√
n)

(f ′x).
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By the substitution of u =
x

x− t
, we get

λx(1 + x)

n+ 1

∫ x−x/
√
n

0

(x− t)−2

x∨
t

(f ′x)dt

=
λ(1 + x)

n+ 1

∫ √n
1

x∨
x−(x/u)

(f ′x)du

≤ λ(1 + x)

n+ 1

[
√
n]∑

k=1

∫ k+1

k

x∨
x−(x/u)

(f ′x)du ≤
λ(1 + x)

n+ 1

[
√
n]∑

k=1

x∨
x−(x/k)

(f ′x).

Thus we obtain

|Uan(f ′x, x)| ≤ λ(1 + x)

n+ 1

[
√
n]∑

k=1

x∨
x−(x/k)

(f ′x) +
x√
n

x∨
x−(x/

√
n)

(f ′x).(3.3.15)

Also

|Van(f ′x, x)| =

∣∣∣∣ ∫ ∞
x

(∫ t

x

f ′x(u)du

)
J a
n (x, t)dt

∣∣∣∣
=

∣∣∣∣ ∫ ∞
z

(∫ t

x

f ′x(u)du

)
dt(1− αan(x, t)) +

∫ z

x

(∫ t

x

f ′x(u)du

)
dt(1− αan(x, t))

∣∣∣∣
=

∣∣∣∣ ∫ z

x

f ′x(u)(1− αan(x, z))du−
∫ z

x

f ′x(t)(1− αan(x, t))dt

+

(∫ t

x

f ′x(u)(1− αan(x, t))du

)∞
z

−
∫ ∞
z

f ′x(t)(1− αan(x, t))dt

∣∣∣∣
≤

∣∣∣∣ ∫ z

x

f ′x(t)(1− αan(x, t))dt

∣∣∣∣+

∣∣∣∣ ∫ ∞
z

f ′x(t)(1− αan(x, t))dt

∣∣∣∣.
By using Lemma 3.3.11, with z = x+ (x/

√
n), we obtain

|Van(f ′x, x)| ≤ λx(1 + x)

n+ 1

∫ ∞
z

t∨
x

(f ′x)(t− x)−2dt+

∫ z

x

t∨
x

(f ′x)dt

≤ λx(1 + x)

n+ 1

∫ ∞
x+(x/

√
n)

t∨
x

(f ′x)(t− x)−2dt+
x√
n

x+(x/
√
n)∨

x

(f ′x).

By substitution of v =
x

t− x
, we get

λx(1 + x)

n+ 1

∫ ∞
x+(x/

√
n)

t∨
x

(f ′x)(t− x)−2dt =
λ(1 + x)

n+ 1

∫ √n
0

x+(x/v)∨
x

(f ′x)dv

≤ λ(1 + x)

n+ 1

[
√
n]∑

k=0

∫ k+1

k

x+(x/v)∨
x

(f ′x)dv

≤ λ(1 + x)

n+ 1

[
√
n]∑

k=0

x+(x/k)∨
x

(f ′x).
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Thus, we obtain

|Van(f ′x, x)| ≤ λ(1 + x)

n+ 1

[
√
n]∑

k=0

x+(x/k)∨
x

(f ′x) +
x√
n

x+(x/
√
n)∨

x

(f ′x).(3.3.16)

From (3.3.14)-(3.3.16), we get the required result.

3.4 Bivariate Operators

Let I = [0,∞) × [0,∞) and wγ(x) = (1 + xγ)−1 for γ ∈ N0(set of all non-negative

integers). Further, for fixed γ1, γ2 ∈ N0, let wγ1,γ2(x, y) = wγ1(x)wγ2(y). Then, for

f ∈ Cγ1,γ2(I) := {f ∈ C(I) : wγ1,γ2(x, y)f(x, y) is bounded and uniformly continuous on I},
we define a bivariate extension of the operators (3.1.1) as follows:

Ka
n1,n2

(f ;x, y)

= (n1 + 1)(n2 + 1)
∞∑
k1=0

∞∑
k2=0

W a
n1,n2,k1,k2

(x, y)

∫ k2+1
n2+1

k2
n2+1

∫ k1+1
n1+1

k1
n1+1

f(u, v)du dv,(3.4.1)

where

W a
n1,n2,k1,k2

(x, y) =
xk1yk2pk1(n, a)pk2(n, a)e

−ax
1+x e

−ay
1+y

k1!k2!(1 + x)n1+k1(1 + y)n2+k2
.

If f ∈ Cγ1,γ2(I) and if f(x, y) = f1(x)f2(y) for all (x, y) ∈ I, then

Ka
n1,n2

(f(u, v);x, y) = Ka
n1

(f1(u);x)Ka
n2

(f2(v); y),(3.4.2)

for (x, y) ∈ I and n1, n2 ∈ N. The sup norm on Cγ1,γ2(I) is given by

‖ f ‖γ1,γ2= sup
(x,y)∈I

|f(x, y)|wγ1,γ2(x, y), f ∈ Cγ1,γ2(I).(3.4.3)

For f ∈ Cγ1,γ2(I), we define the modulus of continuity

ω(f ;Cγ1,γ2 ; t, s) := sup
0<h<t,0<δ<s

‖ ∆h,δf(., .) ‖γ1,γ2 , t, s ≥ 0,(3.4.4)

where ∆h,δf(x, y) := f(x+ h, y + δ)− f(x, y) for (x, y) ∈ I and h, δ > 0. Moreover,

for fixed m ∈ N, let Cm
γ1,γ2

(I) be the space of all functions f ∈ Cγ1,γ2(I) having

the partial derivatives
∂k

∂xs∂yk−s
∈ Cγ1,γ2(I), s = 1, 2, · · · , k; k = 1, 2, · · · ,m. The

bivariate part is organized as follows:
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In Section 3.5 of this part, we give some definitions and auxiliary results. In Section

3.6, we prove the main results of this section wherein we study the degree of ap-

proximation, Voronovskaja type theorems and simultaneous approximation of first

order derivatives for bivariate Baskakov Kantorovich operators Ka
n1,n2

. The section

3.7 is devoted to the illustrations of the convergence of the operators Ka
n1,n2

to a

certain function and the comparison of the convergence with the bivariate Szász

Kantorovich operators to the function using Matlab.

3.5 Auxiliary Results

Lemma 3.5.1. Let ei,j : I → I, ei,j = xiyj, 0 ≤ i, j ≤ 2 be two-dimensional test

functions. Then the bivariate operators defined in (3.4.1) satisfy the following re-

sults:

(i) Ka
n1,n2

(e0,0;x, y) = 1;

(ii) Ka
n1,n2

(e1,0;x, y) =
1

n1 + 1

(
n1x+ ax

1+x
+ 1

2

)
;

(iii) Ka
n1,n2

(e0,1;x, y) =
1

n2 + 1

(
n2y + ay

1+y
+ 1

2

)
;

(iv) Ka
n1,n2

(e2,0;x, y) =
1

(n1 + 1)2

(
n2

1x
2 + n1x

2 + 2n1x+
2an1x

2

1 + x
+

a2x2

(1 + x)2
+

2ax

1 + x
+ 1

3

)
;

(v) Ka
n1,n2

(e0,2;x, y) =
1

(n2 + 1)2

(
n2

2y
2 + n2y

2 + 2n2y +
2an2y

2

1 + y
+ a2y2

(1+y)2
+ 2ay

1+y
+ 1

3

)
;

(vi) Ka
n1,n2

(e3,0;x, y) =
1

(n1 + 1)3

(
n3

1x
3+

3n2
1x

2

2
(3+2x)+

3n1x
2

2
+
n1x

2
(4x2+6x+5)

+
3ax3n2

1

1 + x
+

3an1x
2

1 + x

{
(3+x)+

ax

1 + x

}
+

ax

1 + x

{
7

2
+

7

2

ax

(1 + x)
+

a2x2

(1 + x)2

}
+

1

4

)
;

(vii) Ka
n1,n2

(e0,3;x, y) =
1

(n2 + 1)3

(
n3

2y
3 +

3n2
2y

2

2
(3+2y)+

3n2y
2

2
+
n2y

2
(4y2 +6y+5)

+
3ay3n2

2

1 + y
+

3an2y
2

1 + y

{
(3+y)+

ay

1 + y

}
+

ay

1 + y

{
7

2
+

7

2

ay

(1 + y)
+

a2y2

(1 + y)2

}
+

1

4

)
.

Lemma 3.5.2. For n1, n2 ∈ N, we have

(i) Ka
n1,n2

(u− x;x, y) =
1

n1 + 1

(
−x+

ax

1 + x
+

1

2

)
;
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(ii) Ka
n1,n2

(v − y;x, y) =
1

n2 + 1

(
−y +

ay

1 + y
+

1

2

)
;

(iii) Ka
n1,n2

((u−x)2;x, y) =
1

(n1 + 1)2

(
(n1 + 1)x2 + (n1 − 1)x+

a2x2

(1 + x)2
+ 2ax

(
1− x
1 + x

)
+

1

3

)
;

(iv) Ka
n1,n2

((v−y)2;x, y) =
1

(n2 + 1)2

(
(n2 + 1)y2 + (n2 − 1)y +

a2y2

(1 + y)2
+ 2ay

(
1− y
1 + y

)
+

1

3

)
.

Remark 4. For every x ∈ [0,∞) and n ∈ N, we have

Ka
n1,n2

((u− x)2;x, y) ≤
{ξan1

(x)}2

n1 + 1
,

where {ξan1
(x)}2 = φ2(x) + (1+a)2

n1+1
and φ(x) =

√
x(1 + x).

Proof. From Lemma 3.5.2 (iii), we have

Ka
n1,n2

((u− x)2;x, y) ≤ (n1 + 1)x2 + n1x

(n1 + 1)2
+

1

(n1 + 1)2

(
a2x2

(1 + x)2
+

2ax

1 + x
+

1

3

)
≤ 1

n1 + 1

(
x(1 + x) +

(1 + a)2

n1 + 1

)
=
{ξan1

(x)}2

n1 + 1
.

Lemma 3.5.3. For every γ1 ∈ N0 there exist positive constants Mk(γ1), k = 1, 2

such that

(i) wγ1(x)Ka
n

(
1

wγ1(t)
;x

)
≤M1(γ1),

(ii) wγ1(x)Ka
n

(
(t− x)2

wγ1(t)
;x

)
≤M2(γ1)

{ξan(x)}2

n+ 1
,

for all x ∈ R0 = R+ ∪ {0},R+ = (0,∞) and n ∈ N.

Lemma 3.5.4. For every γ1, γ2 ∈ N0 there exist positive constant M3(γ1, γ2), such

that

‖ Ka
n1,n2

(f ; ., .) ‖γ1,γ2≤M3(γ1, γ2) ‖ f ‖γ1,γ2(3.5.1)

for every f ∈ Cγ1,γ2(I) and for all n1, n2 ∈ N.

Proof. From equation (3.4.2) and Lemma 3.5.3, we get

wγ1,γ2(x, y)Ka
n1,n2

(
1

wγ1,γ2(u, v)
;x, y

)
=

(
wγ1(x)Ka

n1

(
1

wγ1(u)
;x

))(
wγ2(y)Ka

n2

(
1

wγ2(v)
; y

))
≤ M1(γ1) M2(γ2),(3.5.2)
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for all (x, y) ∈ I and n1, n2 ∈ N.
Taking supremum on the left side of the inequality of (3.5.2) and using (3.4.3), we

obtain ∥∥∥∥Ka
n1,n2

(
1

wγ1,γ2(u, v)
; ., .

)∥∥∥∥
γ1,γ2

≤M4(γ1, γ2).(3.5.3)

Now, ‖ Ka
n1,n2

(f ; ., .) ‖γ1,γ2≤‖ f ‖γ1,γ2
∥∥∥Ka

n1,n2

(
1

wγ1,γ2 (u,v)
; ., .
)∥∥∥

γ1,γ2
. From (3.5.3), we

get the desired result.

3.6 Main Results

3.6.1 Local approximation

For f ∈ CB(I) (the space of all bounded and uniformly continuous functions on I,

let C2
B(I) = {f ∈ CB(I) : f (p,q) ∈ CB(I), 0 ≤ p+q ≤ 2}, where f (p,q) is (p, q)th-order

partial derivative with respect to x, y of f, equipped with the norm

||f ||C2
B(I) = ||f ||CB(I) +

2∑
i=1

∥∥∥∥∂if∂xi
∥∥∥∥
CB(I)

+
2∑
i=1

∥∥∥∥∂if∂yi
∥∥∥∥
CB(I)

.

The Peetre’s K−functional of the function f ∈ CB(I) is given by

K(f ; δ) = inf
g∈C2

B(I)
{||f − g||CB(I) + δ||g||C2

B(I), δ > 0}.

It is also known that the following inequality

K(f ; δ) ≤M1{ω2(f ;
√
δ) + min(1, δ)||f ||CB(I)}(3.6.1)

holds for all δ > 0 ([33], page 192). The constant M1 is independent of δ and f and

ω2(f ;
√
δ) is the second order modulus of continuity.

For f ∈ CB(I), the complete modulus of continuity for bivariate case is defined as

follows:

ω(f ; δ) = sup

{
|f(u, v)−f(x, y)| : (u, v), (x, y) ∈ I and

√
(u− x)2 + (v − y)2 ≤ δ

}
.

The details of the modulus of continuity for the bivariate case can be found in [15].

Now, we find the order of approximation of the sequence Ka
n1,n2

(f ;x, y) to the func-

tion f(x, y) ∈ CB(I) by Peetre’s K−functional.
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Theorem 3.6.1. For the function f ∈ CB(I), the following inequality

|Ka
n1,n2

(f ;x, y)− f(x, y)|

≤ 4K(f ;Ma
n1,n2

(x, y))

+ω

f ;

√(
1

n1 + 1

(
−x+

ax

1 + x
+

1

2

))2

+

(
1

n2 + 1

(
−y +

ay

1 + y
+

1

2

))2


≤ M

{
ω2

(
f ;
√
Ma

n1,n2
(x, y)

)
+ min{1,Ma

n1,n2
(x, y)}||f ||C2

B(I)

}

+ω

f ;

√(
1

n1 + 1

(
−x+

ax

1 + x
+

1

2

))2

+

(
1

n2 + 1

(
−y +

ay

1 + y
+

1

2

))2


holds. The constant M > 0 is independent of f and Ma
n1,n2

(x, y),

where Ma
n1,n2

(x, y) =
{ξan1

(x)}2

n1 + 1
+
{ξan2

(y)}2

n2 + 1
.

Proof. We define the auxiliary operators as follows:

K
a

n1,n2
(f ;x, y) = Ka

n1,n2
(f ;x, y)

−f
(

1

n1 + 1

(
n1x+

ax

1 + x
+

1

2

)
,

1

n2 + 1

(
n2y +

ay

1 + y
+

1

2

))
+ f(x, y).(3.6.2)

Then, from Lemma 3.5.2, we have

K
a

n1,n2
((u− x);x, y) = 0 and K

a

n1,n2
((v − y);x, y) = 0.

Let g ∈ C2
B(I) and (u, v) ∈ I. Using the Taylor’s theorem, we have

g(u, v)− g(x, y) =
∂g(x, y)

∂x
(u− x) +

∫ u

x

(u− α)
∂2g(α, y)

∂α2
dα +

∂g(x, y)

∂y
(v − y)

+

∫ v

y

(v − β)
∂2g(x, β)

∂β2
dβ.(3.6.3)

Operating K
a

n1,n2
on both sides of (3.6.3), we get
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K
a

n1,n2
(g;x, y)− g(x, y)

= K
a

n1,n2

(∫ u

x

(u− α)
∂2g(α, y)

∂α2
dα;x, y

)
+K

a

n1,n2

(∫ v

y

(v − β)
∂2g(x, β)

∂β2
dβ;x, y

)
= Ka

n1,n2

(∫ u

x

(u− α)
∂2g(α, y)

∂α2
dα;x, y

)
−
∫ 1

n1+1(n1x+ ax
1+x

+ 1
2)

x

(
1

n1 + 1

(
n1x+

ax

1 + x
+

1

2

)
− α

)
∂2g(α, y)

∂α2
dα

+Ka
n1,n2

(∫ v

y

(v − β)
∂2g(x, β)

∂β2
dβ;x, y

)
−
∫ 1

n2+1(n2y+ ay
1+y

+ 1
2)

y

(
1

n2 + 1

(
n2y +

ay

1 + y
+

1

2

)
− β

)
∂2g(x, β)

∂β2
dβ.

Hence,

|Ka

n1,n2
(g;x, y)− g(x, y)|

≤ Ka
n1,n2

(∣∣∣∣ ∫ u

x

|u− α|
∣∣∣∣∂2g(α, y)

∂α2

∣∣∣∣dα∣∣∣∣;x, y)
+

∣∣∣∣ ∫ 1
n1+1(n1x+ ax

1+x
+ 1

2)

x

∣∣∣∣ 1

n1 + 1

(
n1x+

ax

1 + x
+

1

2

)
− α

∣∣∣∣∣∣∣∣∂2g(α, y)

∂α2

∣∣∣∣dα∣∣∣∣
+Ka

n1,n2

(∣∣∣∣ ∫ v

y

|v − β|
∣∣∣∣∂2g(x, β)

∂β2

∣∣∣∣dβ∣∣∣∣;x, y)
+

∣∣∣∣ ∫ 1
n2+1(n2y+ ay

1+y
+ 1

2)

y

∣∣∣∣ 1

n2 + 1

(
n2y +

ay

1 + y
+

1

2

)
− β

∣∣∣∣∣∣∣∣∂2g(x, β)

∂β2

∣∣∣∣dβ∣∣∣∣
≤

{
Ka
n1,n2

((u− x)2;x, y) +

(
1

n1 + 1

(
n1x+

ax

1 + x
+

1

2

)
− x
)2}

||g||C2
B(I)

+

{
Ka
n1,n2

((v − y)2;x, y) +

(
1

n2 + 1

(
n2y +

ay

1 + y
+

1

2

)
− y
)2}

||g||C2
B(I)

≤
{

1

n1 + 1
{ξan1

(x)}2 +

(
1

n1 + 1

(
−x+

ax

1 + x
+

1

2

))2

+
1

n2 + 1
{ξan2

(y)}2 +

(
1

n2 + 1

(
−y +

ay

1 + y
+

1

2

))2}
||g||C2

B(I).

Thus, we get

|Ka

n1,n2
(g;x, y)− g(x, y)| ≤

{
2

n1 + 1
{ξan1

(x)}2 +
2

n2 + 1
{ξan2

(y)}2

}
||g||C2

B(I).

Also,

|Ka

n1,n2
(f ;x, y)| ≤ |Ka

n1,n2
(f ;x, y)|+ |f(x, y)|

+

∣∣∣∣f ( 1

n1 + 1

(
n1x+

ax

1 + x
+

1

2

)
,

1

n2 + 1

(
n2y +

ay

1 + y
+

1

2

))∣∣∣∣
≤ 3||f ||CB(I).(3.6.4)
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Now, from equation (3.6.4), we get

|Ka
n1,n2

(f ;x, y)− f(x, y)|

≤ |Ka

n1,n2
(f − g;x, y)|+ |Ka

n1,n2
(g;x, y)− g(x, y)|+ |g(x, y)− f(x, y)|

+

∣∣∣∣f ( 1

n1 + 1

(
n1x+

ax

1 + x
+

1

2

)
,

1

n2 + 1

(
n2y +

ay

1 + y
+

1

2

))
− f(x, y)

∣∣∣∣
≤ 3||f − g||CB(I) + ||f − g||CB(I) + |Ka

n1,n2
(g;x, y)− g(x, y)|

+

∣∣∣∣f ( 1

n1 + 1

(
n1x+

ax

1 + x
+

1

2

)
,

1

n2 + 1

(
n2y +

ay

1 + y
+

1

2

))
− f(x, y)

∣∣∣∣
≤ 4||f − g||CB(I) +

{
2

n1 + 1
{ξan1

(x)}2 +
2

n2 + 1
{ξan2

(y)}2

}
||g||C2

B(I)

+

∣∣∣∣f ( 1

n1 + 1

(
n1x+

ax

1 + x
+

1

2

)
,

1

n2 + 1

(
n2y +

ay

1 + y
+

1

2

))
− f(x, y)

∣∣∣∣
≤

(
4||f − g||CB(I) + 2Ma

n1,n2
(x, y)||g||C2

B(I)

)
+ω

f ;

√(
1

n1 + 1

(
−x+

ax

1 + x
+

1

2

))2

+

(
1

n2 + 1

(
−y +

ay

1 + y
+

1

2

))2
 .

Taking the infimum on the right hand side over all g ∈ C2
B(I) and using (3.6.1), we

obtain

|Ka
n1,n2

(f ;x, y)− f(x, y)|

≤ 4K(f ;Ma
n1,n2

(x, y))

+ω

f ;

√(
1

n1 + 1

(
−x+

ax

1 + x
+

1

2

))2

+

(
1

n2 + 1

(
−y +

ay

1 + y
+

1

2

))2


≤ M

{
ω2

(
f ;
√
Ma

n1,n2
(x, y)

)
+ min{1,Ma

n1,n2
(x, y)}||f ||C2

B(I)

}

+ω

f ;

√(
1

n1 + 1

(
−x+

ax

1 + x
+

1

2

))2

+

(
1

n2 + 1

(
−y +

ay

1 + y
+

1

2

))2
 .

Hence, the proof is completed.

3.6.2 Rate of convergence of bivariate operators

Theorem 3.6.2. Suppose that f ∈ C1
γ1,γ2

(I) with γ1, γ2 ∈ N0 then there exist a

positive constant M5(γ1, γ2) such that for all (x, y) ∈ I and n1, n2 ∈ N

wγ1,γ2(x, y)|Ka
n1,n2

(f ;x, y)− f(x, y)| ≤M5(γ1, γ2)

{
‖ fx ‖γ1,γ2

ξan1
(x)

√
n1 + 1

+ ‖ fy ‖γ1,γ2
ξan2

(y)
√
n2 + 1

}
.
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Proof. Let (x, y) ∈ I be a fixed point. Then, we have

f(t, z)− f(x, y) =

∫ t

x

fu(u, z)du+

∫ z

y

fv(x, v)dv for (t, z) ∈ I

Ka
n1,n2

(f(t, z);x, y)− f(x, y)

= Ka
n1,n2

(∫ t

x

fu(u, z)du;x, y

)
+Ka

n1,n2

(∫ z

y

fv(x, v)dv;x, y

)
.(3.6.5)

Now, by using (3.4.3), we get∣∣∣∣ ∫ t

x

fu(u, z)du

∣∣∣∣ ≤‖ fx ‖γ1,γ2 ∣∣∣∣ ∫ t

x

du

wγ1,γ2(u, z)

∣∣∣∣ ≤‖ fx ‖γ1,γ2 ( 1

wγ1,γ2(t, z)
+

1

wγ1,γ2(x, z)

)
|t− x|,

and analogously∣∣∣∣ ∫ z

y

fv(x, v)dv

∣∣∣∣ ≤‖ fy ‖γ1,γ2 ( 1

wγ1,γ2(x, z)
+

1

wγ1,γ2(x, y)

)
|z − y|.

By using these inequalities and from (3.4.2), we obtain for n1, n2 ∈ N

wγ1,γ2(x, y)

∣∣∣∣Ka
n1,n2

(∫ t

x

fu(u, z)du;x, y

)∣∣∣∣
≤ wγ1,γ2(x, y)Ka

n1,n2

(∣∣∣∣∫ t

x

fu(u, z)du

∣∣∣∣ ;x, y)
≤ ‖ fx ‖γ1,γ2 wγ1,γ2(x, y)

{
Ka
n1,n2

(
|t− x|

wγ1,γ2(t, z)
;x, y

)
+Ka

n1,n2

(
|t− x|

wγ1,γ2(x, z)
;x, y

)}
= ‖ fx ‖γ1,γ2 wγ2(y)Ka

n2

(
1

wγ2(z)
; y

)
×
{
wγ1(x)Ka

n1

(
|t− x|
wγ1(t)

;x

)
+Ka

n1
(|t− x|;x)

}
,(3.6.6)

and analogously

wγ1,γ2(x, y)

∣∣∣∣Ka
n1,n2

(∫ z

y

fv(x, v)dv;x, y

) ∣∣∣∣
≤‖ fy ‖γ1,γ2

{
wγ2(y)Ka

n2

(
|z − y|
wγ2(z)

; y

)
+Ka

n2
(|z − y|; y)

}
.(3.6.7)

By the Cauchy Schwarz inequality and Remark 4, we get for n1 ∈ N

Ka
n1

(|t− x|;x) ≤
(
Ka
n1

((t− x)2;x)
)1/2 (

Ka
n1

(1;x)
)1/2 ≤

ξan1
(x)

√
n1 + 1

(3.6.8)

and

wγ1(x)Ka
n1

(
|t− x|
wγ1(t)

;x

)

≤ wγ1(x)

(
Ka
n1

(
(t− x)2

wγ1(t)
;x

))1/2(
Ka
n1

(
1

wγ1(t)
;x

))1/2

≤ M6(γ1)
ξan1

(x)
√
n1 + 1

, in view of Lemma 3.5.3.(3.6.9)



84

Analogously for n2 ∈ N, we have

Ka
n2

(|z − y|; y) ≤
ξan2

(y)
√
n2 + 1

,(3.6.10)

and

wγ2(y)Ka
n2

(
|z − y|
wγ2(z)

; y

)
≤M7(γ2)

ξan2
(y)

√
n2 + 1

.(3.6.11)

From equations (3.6.5)-(3.6.11), we obtain

wγ1,γ2(x, y) | Ka
n1,n2

(f(t, z);x, y)− f(x, y) |

≤M8(γ1, γ2)

{
‖ fx ‖γ1,γ2

ξan1
(x)

√
n1 + 1

+ ‖ fy ‖γ1,γ2
ξan2

(y)
√
n2 + 1

}
, for all n1, n2 ∈ N.

Thus the proof is completed.

Theorem 3.6.3. Suppose that f ∈ Cγ1,γ2(I) with some γ1, γ2 ∈ N0. Then there

exists a positive constant M9(γ1, γ2) such that

wγ1,γ2(x, y) | Ka
n1,n2

(f(t, z);x, y)− f(x, y) |≤M9(γ1, γ2)ω

(
f ;Cγ1,γ2 ;

ξan1
(x)

√
n1 + 1

,
ξan2

(y)
√
n2 + 1

)
,

for all (x, y) ∈ I and n1, n2 ∈ N.

Proof. Let fh,δ be the Steklov function of f ∈ Cγ1,γ2(I), defined by the formula

fh,δ(x, y) :=
1

hδ

∫ h

0

du

∫ δ

0

f(x+ u, y + v)dv,(3.6.12)

(x, y) ∈ I and h, δ ∈ R+. From (3.6.12) it follows that

fh,δ(x, y)− f(x, y) =
1

hδ

∫ h

0

du

∫ δ

0

∆u,vf(x, y)dv,

∂

∂x
fh,δ(x, y) =

1

hδ

∫ δ

0

∆h,0f(x, y + v)dv

=
1

hδ

∫ δ

0

(∆h,vf(x, y)−∆0,vf(x, y))dv,

∂

∂y
fh,δ(x, y) =

1

hδ

∫ h

0

∆0,δf(x+ u, y)du

=
1

hδ

∫ δ

0

(∆u,δf(x, y)−∆u,0f(x, y))du.

Thus, from (3.4.3) and (3.4.4) we obtain

‖ fh,δ − f ‖γ1,γ2 ≤ ω(f ;Cγ1,γ2 ;h, δ),(3.6.13)
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∥∥∥∥∂fh,δ∂x

∥∥∥∥
γ1,γ2

≤ 2h−1ω(f ;Cγ1,γ2 ;h, δ),(3.6.14)

∥∥∥∥∂fh,δ∂y

∥∥∥∥
γ1,γ2

≤ 2δ−1ω(f ;Cγ1,γ2 ;h, δ).(3.6.15)

For h, δ ∈ R+, we can write

wγ1,γ2(x, y) | Ka
n1,n2

(f(t, z);x, y)− f(x, y) |

≤ wγ1,γ2(x, y){Ka
n1,n2

(f(t, z)− fh,δ(t, z);x, y)+ | Ka
n1,n2

(fh,δ(t, z);x, y)− fh,δ(x, y) |

+ | fh,δ(x, y)− f(x, y) |} := R1 +R2 +R3.(3.6.16)

By (3.4.3), Lemma 3.5.4 and (3.6.13) it follows that

R1 ≤‖ Ka
n1,n2

(f − fh,δ;.,.) ‖γ1,γ2 ≤ M10(γ1, γ2)‖f − fh,δ‖γ1,γ2
≤ M10(γ1, γ2)ω(f ;Cγ1,γ2 ;h, δ),

and

R3 ≤ ω(f ;Cγ1,γ2 ;h, δ).

By using Theorem 3.6.2 and (3.6.14) and (3.6.15), we get

R2 ≤ M11(γ1, γ2)

{∥∥∥∥∂fh,δ∂x

∥∥∥∥
γ1,γ2

ξan1
(x)

√
n1 + 1

+

∥∥∥∥∂fh,δ∂y

∥∥∥∥
γ1,γ2

ξan2
(y)

√
n2 + 1

}
≤ 2M11(γ1, γ2)ω(f ;Cγ1,γ2 ;h, δ)

{
h−1 ξan1

(x)
√
n1 + 1

+ δ−1 ξan2
(y)

√
n2 + 1

}
.

Consequently, we drive from (3.6.16)

wγ1,γ2(x, y) | Ka
n1,n2

(f(t, z);x, y)− f(x, y) |

≤M12(γ1, γ2)ω(f ;Cγ1,γ2 ;h, δ)

{
1 + h−1 ξan1

(x)
√
n1 + 1

+ δ−1 ξan2
(y)

√
n2 + 1

}
,

for all (x, y) ∈ I, n1, n2 ∈ N and h, δ ∈ R+.

On choosing h =
ξan1

(x)
√
n1 + 1

and δ =
ξan2

(y)
√
n2 + 1

, we immediately obtain the required

result.

As a consequence of Theorem 3.6.3, we have

Theorem 3.6.4. Let f ∈ Cγ1,γ2(I) with some γ1, γ2 ∈ N0. Then for every (x, y) ∈ I,

lim
n1,n2→∞

Ka
n1,n2

(f ;x, y) = f(x, y).
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Theorem 3.6.5. (Voronovskaja type theorem) Let f ∈ C2
γ1,γ2

(I). Then for

every (x, y) ∈ I, we have

lim
n→∞

n{Ka
n,n(f ;x, y)− f(x, y)} =

(
−x+

ax

1 + x
+

1

2

)
fx(x, y) +

(
−y +

ay

1 + y
+

1

2

)
fy(x, y)

+
x

2
(1 + x)fxx(x, y) +

y

2
(1 + y)fyy(x, y).

Proof. Let (x, y) ∈ I be fixed. By Taylor formula, we may write

f(u, v) = f(x, y) + fx(x, y)(u− x) + fy(x, y)(v − y)

+
1

2
{fxx(x, y)(u− x)2 + 2fxy(x, y)(u− x)(v − y) + fyy(x, y)(v − y)2}

+ψ(u, v;x, y)
√

(u− x)4 + (v − y)4,

where ψ(., .;x, y) ≡ ψ(., .) ∈ Cγ1,γ2(I) and ψ(x, y) = 0. Thus, we get

Ka
n,n(f(u, v);x, y) = f(x, y) + fx(x, y)Ka

n(u− x;x) + fy(x, y)Ka
n(v − y; y)

+
1

2
{fxx(x, y)Ka

n((u− x)2;x) + 2fxy(x, y)Ka
n(u− x;x)Ka

n(v − y; y)

+fyy(x, y)Ka
n((v − y)2; y)}+Ka

n,n(ψ(u, v)
√

(u− x)4 + (v − y)4;x, y).

Hence, using Lemma 3.2.4, we have

lim
n→∞

n{Ka
n,n(f(u, v);x, y)− f(x, y)}

= fx(x, y)

(
−x+

ax

1 + x
+

1

2

)
+ fy(x, y)

(
−y +

ay

1 + y
+

1

2

)
+

1

2
{x(1 + x)fxx(x, y) + y(1 + y)fyy(x, y)}

+ lim
n→∞

nKa
n,n

(
ψ(u, v)

√
(u− x)4 + (v − y)4;x, y

)
.(3.6.17)

Applying the Hölder’s inequality, we have

|Ka
n,n(ψ(u, v)

√
(u− x)4 + (v − y)4;x, y)|

≤ {Ka
n,n(ψ2(u, v);x, y)}1/2

{
Ka
n,n

((
(u− x)4 + (v − y)4

)
;x, y

)}1/2

≤ {Ka
n,n(ψ2(u, v);x, y)}1/2{Ka

n((u− x)4;x) +Ka
n((v − y)4; y)}1/2.

By Theorem 3.6.4

lim
n→∞

Ka
n,n(ψ2(u, v);x, y) = ψ2(x, y) = 0,
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and from Lemma 3.2.4 (iii), for each (x, y) ∈ I,Ka
n((u − x)4;x) = O

(
1
n2

)
and

Ka
n((v − y)4; y) = O

(
1
n2

)
. Hence

lim
n→∞

nKa
n,n

(
ψ(u, v)

√
(u− x)4 + (v − y)4;x, y

)
= 0.(3.6.18)

By combining (3.6.17) and (3.6.18), we obtain the desired result.

3.6.3 Simultaneous approximation

Theorem 3.6.6. Let f ∈ C1
γ1,γ2

(I). Then for every (x, y) ∈ R2
+ = R+ × R+,

lim
n→∞

(
∂

∂w
Ka
n,n(f ;w, y)

)
w=x

=
∂f

∂x
(x, y),(3.6.19)

lim
n→∞

(
∂

∂ν
Ka
n,n(f ;x, ν)

)
ν=y

=
∂f

∂y
(x, y).(3.6.20)

Proof. We shall prove only (3.6.19) because the proof of (3.6.20) is similar. By the

Taylor formula for f ∈ C1
γ1,γ2

(I), we have

f(u, v) = f(x, y) + fx(x, y)(u− x) + fy(x, y)(v − y)

+ψ(u, v;x, y)
√

(u− x)2 + (v − y)2 for (u, v) ∈ I,

where ψ(u, v;x, y) ≡ ψ(., .) ∈ Cγ1,γ2(I) and ψ(x, y) = 0.

Operating Ka
n,n(.; ., y) to the above inequality and then by using Lemma 3.5.2, we

get(
∂

∂w
Ka
n,n(f(u, v);w, y)

)
w=x

= f(x, y)

(
∂

∂w
Ka
n,n(1;w, y)

)
w=x

+ fx(x, y)

(
∂

∂w
Ka
n,n(u− x;w, y)

)
w=x

+fy(x, y)

(
∂

∂w
Ka
n,n(v − y;w, y)

)
w=x

+

(
∂

∂w
Ka
n,n(ψ(u, v;x, y)

√
(u− x)2 + (v − y)2;w, y)

)
w=x

, for (u, v) ∈ I

= fx(x, y)

{
∂

∂w

(
1

n+ 1

(
nw +

aw

1 + w
+

1

2

))}
w=x

+fy(x, y)

{
∂

∂w

(
1

n+ 1

(
ny +

ay

1 + y
+

1

2

))}
w=x

+ E, say.



88

It is sufficient to prove that E → 0, as n→∞.

E = (n+ 1)2

∞∑
k1=0

∞∑
k2=0

(
∂

∂w
W a
n,n,k1,k2

(w, y)

)
w=x

×
∫ k2+1

n+1

k2
n+1

∫ k1+1
n+1

k1
n+1

ψ(u, v)
√

(u− x)2 + (v − y)2du dv

= (n+ 1)2

∞∑
k1=0

∞∑
k2=0

{(k1 − nx)(1 + x)− ax}
x(1 + x)2

W a
n,n,k1,k2

(x, y)

×
∫ k2+1

n+1

k2
n+1

∫ k1+1
n+1

k1
n+1

ψ(u, v)
√

(u− x)2 + (v − y)2du dv

=
n(n+ 1)2

x(1 + x)

∞∑
k1=0

∞∑
k2=0

(
k1

n
− x
)
W a
n,n,k1,k2

(x, y)

×
∫ k2+1

n+1

k2
n+1

∫ k1+1
n+1

k1
n+1

ψ(u, v)
√

(u− x)2 + (v − y)2du dv

− a

(1 + x)2
Ka
n,n(ψ(u, v)

√
(u− x)2 + (v − y)2;x, y) := E1 + E2, say.

First, we estimate E1 by using Schwarz inequality.

E1 ≤
n

x(1 + x)

(
∞∑
k1=0

W a
n,k1

(x)

(
k1

n
− x
)2
)1/2

×

(
(n+ 1)2

∞∑
k1=0

∞∑
k2=0

W a
n,n,k1,k2

(x, y)

∫ k2+1
n+1

k2
n+1

∫ k1+1
n+1

k1
n+1

ψ2(u, v)((u− x)2 + (v − y)2)du dv

)1/2

≤ n

x(1 + x)

(
∞∑
k1=0

W a
n,k1

(x)

(
k1

n
− x
)2
)1/2

{Ka
n,n(ψ4(u, v);x, y)(Ka

n((u− x)4;x)

+2Ka
n((u− x)2;x)(Ka

n((v − y)2; y) +Ka
n((v − y)4; y))}1/4

|E1| ≤ M12(x, y){Ka
n,n(ψ4(u, v);x, y)}1/4, in view of Lemma 3.2.4.

From Theorem 3.6.4, we obtain

lim
n→∞

Ka
n,n(ψ4(u, v);x, y) = ψ4(x, y) = 0, for (x, y) ∈ R2

+.

To estimate E2, proceeding in a manner similar to the estimate of E1, we get E2 → 0,

as n→∞. Combining the estimates of E1 and E2, it follows that E → 0, as n→∞.
This completes the proof.

Similarly, we can prove the following theorem:
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Theorem 3.6.7. Let f ∈ C3
γ1,γ2

(I). Then for every (x, y) ∈ R2
+, we have

lim
n→∞

n

{(
∂

∂w
Ka
n,n(f ;w, y)

)
w=x

− ∂f

∂x
(x, y)

}

=

(
−1 +

a

(1 + x)2

)
fx(x, y) +

(
1 +

ax

1 + x

)
fxx(x, y)

+

(
−y +

ay

1 + y
+

1

2

)
fxy(x, y) +

y

2
(1 + y)fxyy(x, y) +

x

2
(1 + x)fxxx(x, y)

and

lim
n→∞

n

{(
∂

∂ν
Ka
n,n(f ;x, ν)

)
ν=y

− ∂f

∂y
(x, y)

}

=

(
−1 +

a

(1 + y)2

)
fy(x, y) +

(
1 +

ay

1 + y

)
fyy(x, y)

+

(
−x+

ax

1 + x
+

1

2

)
fxy(x, y) +

x

2
(1 + x)fxxy(x, y) +

y

2
(1 + y)fyyy(x, y).

3.7 Numerical Examples

In the following, we give some numerical results regarding the approximation prop-

erties of bivariate generalized Baskakov-Kantorovich operators Ka
n1,n2

(f ;x, y) using

Matlab algorithms for construction of operators.

Let us consider the function f : I → R0, f(x, y) = x2y2 − 9xy2 + 4x2. The conver-

gence of the bivariate generalized Baskakov-Kantorovich operators to the function

f is illustrated in Example 6.

Example 6. For n1 = n2 = 100; n1 = n2 = 500 and a = 10, the convergence

of the bivariate generalized Baskakov-Kantorovich operators Ka
n1,n2

(f ;x, y) (red) to

the function f(x, y) = x2y2− 9xy2 + 4x2 (yellow) is illustrated in figures 3.1 and 3.2

respectively. We observe that as the values of n1 and n2 increase, the error in the

approximation of the function by the operators becomes smaller.



90

Figure 3.1 The Convergence of K10
100,100(f ;x, y) (red) to f(x, y) (yellow).

F igure 3.2 The Convergence of K10
500,500(f ;x, y) (red) to f(x, y) (yellow).

Example 7. For n1 = n2 = 100; n1 = n2 = 500 and a = 10, the comparison of the

bivariate generalized Baskakov-Kantorovich operators Ka
n1,n2

(f ;x, y) (red) and the

bivariate Szász-Kantorovich operators (blue) to the function f(x, y) = x2y2−9xy2 +

4x2 (yellow) is illustrated in figures 3.3 and 3.4 respectively. It is observed that the

error in the approximation of f by the bivariate Szász-Kantorovich operators is

smaller than the bivariate generalized Baskakov-Kantorovich operators.
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Figure 3.3 The Comparison of bivariate Szász-Kantorovich (blue) and

bivariate generalized Baskakov-Kantorovich K10
100,100(f ;x, y) (red) to f(x, y) (yellow).

F igure 3.4 The Comparison of bivariate Szász-Kantorovich (blue) and

bivariate generalized Baskakov-Kantorovich K10
500,500(f ;x, y) (red) to f(x, y) (yellow).



92



Chapter 4

Bèzier variant of the generalized

Baskakov Kantorovich operators

4.1 Introduction

For θ ≥ 1, we now define the Bèzier variant of the operators (3.1.1) on [0,∞) as:

Ka
n,θ(f ;x) = (n+ 1)

∞∑
k=0

F
(θ)
n,k,a(x)

∫ k+1
n+1

k
n+1

f(t)dt,(4.1.1)

where F
(θ)
n,k,a(x) = [Jan,k(x)]θ − [Jan,k+1(x)]θ and Jan,k(x) =

∞∑
j=k

W a
n,j(x),

when k ≤ n and 0 otherwise.

Some important properties of Jan,k(x) are as follows:

• Jan,k(x)− Jan,k+1(x) = W a
n,k(x), k = 0, 1, 2, 3 · · · ;

• Jan,0(x) > Jan,1(x) > Jan,2(x) > · · · > Jan,n(x) > 0, x ∈ [0,∞).

The operators Ka
n,θ(f ;x) also admit the integral representation

Ka
n,θ(f ;x) =

∫ ∞
0

J a
n,θ(x, t)f(t)dt,(4.1.2)

where J a
n,θ(x, t) := (n + 1)

∞∑
k=0

F
(θ)
n,k,a(x)χn,k(t), where χn,k(t) is the characteristic

function of the interval

[
k

n+1
, k+1
n+1

]
with respect to [0,∞).

It is easily verified that for θ = 1, the operators (4.1.1) reduce to (3.1.1), i.e.

93
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Ka
n,1(f ;x) = Ka

n(f ;x).

The purpose of this chapter is to introduce the Bèzier variant of the opera-

tors (3.1.1) and investigate a direct approximation theorem with the aid of the

Ditzian-Totik modulus of smoothness and the rate of convergence for functions with

derivatives of bounded variation.

4.2 Auxiliary Results

Lemma 4.2.1. For f ∈ CB[0,∞), ‖ Ka
n(f) ‖≤‖ f ‖ .

Proof. From (3.1.1) and Lemma 3.2.4, the proof of this lemma is immediate. Hence

the details are omitted.

Lemma 4.2.2. Let f ∈ CB[0,∞). Then, ‖ Ka
n,θ(f) ‖≤ θ ‖ f ‖ .

Proof. Using the well known inequality |aβ − bβ| ≤ β|a− b| with 0 ≤ a, b ≤ 1, θ ≥ 1

and the definition of F
(θ)
n,k,a(x), we have

0 < [Jan,k(x)]θ − [Jan,k+1(x)]θ ≤ θ[Jan,k(x)− Jan,k+1(x)] = θW a
n,k(x).(4.2.1)

Hence, from the definition of the operator Ka
n,θ(f ;x) and Lemma 4.2.1, we get

‖ Ka
n,θ(f ;x) ‖≤ θ ‖ Ka

n(f) ‖≤ θ ‖ f ‖ .

4.3 Main Results

4.3.1 Direct approximation theorem

In this section, first we recall the definitions of the Ditizian-Totik modulus of

smoothness ωφτ (f, t) and Peetre’s K−functional [40]. Let φ(x) =
√
x(1 + x) and

f ∈ CB[0,∞). Here, we use moduli ωφτ (f, t) which unify the classical modulus

ω(f, t), τ = 0 and the Ditzian-Totik modulus ωφ(f, t), τ = 1. For 0 ≤ τ ≤ 1, we

define

ωφτ (f, t) = sup
0≤h≤t

sup
x±hφ

τ (x)
2
∈[0,∞)

∣∣∣∣f (x+
hφτ (x)

2

)
− f

(
x− hφτ (x)

2

)∣∣∣∣
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and the K−functional

Kφτ (f, t) = inf
g∈Wτ

{‖ f − g ‖ +t ‖ φτg′ ‖},

where Wτ = {g : g ∈ ACloc; ‖ φτg′ ‖< ∞} and ‖ . ‖ is the uniform norm on

CB[0,∞). It is proved that [40], ωφτ (f, t) ∼ Kφτ (f, t), i.e. there exists a constant

M > 0 such that

M−1ωφτ (f, t) ≤ Kφτ (f, t) ≤Mωφτ (f, t).(4.3.1)

Lemma 4.3.1. For f ∈ Wτ , φ(x) =
√
x(1 + x), 0 ≤ τ ≤ 1 and t, x > 0, we have∣∣∣∣∫ t

x

f ′(u)du

∣∣∣∣ ≤ 2τ
(
x−τ/2(1 + t)−τ/2 + φ−τ (x)

)
|t− x| ‖φτf ′‖ .

Proof. By applying Hölder’s inequality, we get∣∣∣∣∫ t

x

f ′(u)du

∣∣∣∣ ≤ ‖φτf ′‖
∣∣∣∣∫ t

x

du

φτ (u)

∣∣∣∣ ≤ ‖φτf ′‖ |t− x|1−τ ∣∣∣∣∫ t

x

du

φ(u)

∣∣∣∣τ .(4.3.2)

Now, ∣∣∣∣∫ t

x

du

φ(u)

∣∣∣∣ ≤ ∣∣∣∣∫ t

x

du√
u

∣∣∣∣ ( 1√
1 + x

+
1√

1 + t

)
and ∣∣∣∣∫ t

x

du√
u

∣∣∣∣ ≤ 2|t− x|√
x

.

On using above estimates in (4.3.2) and then the inequality |a+ b|r ≤ |a|r + |b|r, 0 ≤
r ≤ 1, we obtain∣∣∣∣∫ t

x

f ′(u)du

∣∣∣∣ ≤ ‖φτf ′‖ |t− x| 2τ

xτ/2

∣∣∣∣ 1√
1 + x

+
1√

1 + t

∣∣∣∣τ
≤ ‖φτf ′‖ |t− x| 2τ

xτ/2
(
(1 + t)−τ/2 + (1 + x)−τ/2

)
.

Lemma 4.3.2. For any s ≥ 0 and each x ∈ [0,∞), there holds the inequality

Ka
n((1 + t)−s;x) ≤ C(s)(1 + x)−s,

where C(s) is a constant dependent on s.
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Proof. For x = 0, the result holds from (3.1.1). For x ∈ (0,∞), using (4.2.1) we

have

Ka
n((1 + t)−s;x) = (n+ 1)

∞∑
k=0

W a
n,k(x)

∫ k+1
n+1

k
n+1

1

(1 + t)s
dt.

We first observe that

(n+ 1)

∫ k+1
n+1

k
n+1

1

(1 + t)s
dt ≤

(
1 +

k

n+ 1

)−s
.

Thus, we get

Ka
n((1 + t)−s;x) ≤ 1

(1 + x)s

∞∑
k=0

e
−ax
1+x pk(n, a)xk

k!(1 + x)n+k−s

(
1 +

k

n+ 1

)−s
.(4.3.3)

On using the ratio test, we note that for each x > 0, the series on the right hand

side (4.3.3) is convergent. This proves the desired result.

Theorem 4.3.3. For f ∈ CB[0,∞), we have∣∣Ka
n,θ(f ;x)− f(x)

∣∣ ≤ Cωφτ

(
f,
φ1−τ (x)√
n+ 1

)
.(4.3.4)

Proof. By the definition of Kφτ (f, t), for fixed n, x, τ we can choose g = gn,x,τ ∈ Wτ

such that

||f − g||+ φ1−τ (x)√
n+ 1

||φτg′|| ≤ 2Kφτ
(
f,
φ1−τ (x)√
n+ 1

)
.(4.3.5)

Applying Lemma 4.2.1, we may write∣∣Ka
n,θ(f ;x)− f(x)

∣∣ ≤ 2||f − g||+ |Ka
n,θ(g;x)− g(x)|.(4.3.6)

Using the representation g(t) = g(x) +
∫ t
x
g′(u)du and Lemma 4.3.1, we obtain

∣∣Ka
n,θ(g;x)− g(x)

∣∣ =

∣∣∣∣Ka
n,θ

(∫ t

x

g′(u)du;x

)∣∣∣∣
≤ 2τ ||φτg′||

{
φ−τ (x)Ka

n,θ(|t− x|;x) + x−τ/2Ka
n,θ

(
|t− x|

(1 + t)τ/2
;x

)}
.(4.3.7)

By using Cauchy-Schwarz inequality, (4.2.1) and Remark 3, we have

Ka
n,θ(|t− x|;x) ≤

(
Ka
n,θ((t− x)2;x)

)1/2

≤
√
θλφ(x)√
n+ 1

.(4.3.8)



97

Similarly, from Lemma 4.3.2, we get

Ka
n,θ

(
|t− x|

(1 + t)τ/2
;x

)
≤ θKa

n

(
|t− x|

(1 + t)τ/2
;x

)
≤ θ

(
Ka
n((t− x)2;x)

)1/2 (
Ka
n((1 + t)−τ ;x)

)1/2

≤ C1θ

√
λφ(x)√
n+ 1

(1 + x)−τ/2.(4.3.9)

By combining (4.3.7)-(4.3.9), we get∣∣Ka
n,θ(g;x)− g(x)

∣∣ ≤ C2||φτg′||
φ1−τ (x)√
n+ 1

.(4.3.10)

Using (4.3.1), (4.3.5)-(4.3.6) and (4.3.10), we obtain the required relation (4.3.4).

4.3.2 Rate of convergence

Lemma 4.3.4. Let x ∈ (0,∞), then for θ ≥ 1, λ > 2 and sufficiently large n, we

have

(i) αan,θ(x, y) =
∫ y

0
J a
n,θ(x, t)dt ≤

θλ

n+ 1

φ2(x)

(x− y)2
, 0 ≤ y < x;

(ii) 1− αan,θ(x, z) =
∫∞
z
J a
n,θ(x, t)dt ≤

θλ

n+ 1

φ2(x)

(z − x)2
, x < z <∞.

Proof. (i) From (4.2.1) and Remark 3, we get

αan,θ(x, y) =

∫ y

0

J a
n,θ(x, t)dt ≤

∫ y

0

(
x− t
x− y

)2

J a
n,θ(x, t)dt

≤ Ka
n,θ((t− x)2;x) (x− y)−2 ≤ θKa

n((t− x)2;x)(x− y)−2

≤ θ
λ

n+ 1

φ2(x)

(x− y)2
.

The proof of (ii) is similar, hence it is omitted.

Theorem 4.3.5. Let f ∈ DBVγ(0,∞), θ ≥ 1 and let
∨d
c(f
′
x) be the total variation

of f ′x on [c, d] ⊂ (0,∞). Then, for every x ∈ (0,∞) and sufficiently large n, we have

|Ka
n,θ(f ;x)− f(x)| ≤ θ1/2

θ + 1

√
λx(1 + x)

n+ 1
|f ′(x+) + θf ′(x−)|

+
θ3/2

θ + 1

√
λx(1 + x)

n+ 1
|f ′(x+)− f ′(x−)|

+θ
λ(1 + x)

n+ 1

[
√
n]∑

k=1

x∨
x−(x/k)

(f ′x) +
x√
n

x∨
x−(x/

√
n)

(f ′x)

+θ
λ(1 + x)

n+ 1

[
√
n]∑

k=0

x+(x/k)∨
x

(f ′x) +
x√
n

x+(x/
√
n)∨

x

(f ′x),
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where λ > 2, and the auxiliary function f ′x is defined by

f ′x(t) =


f ′(t)− f ′(x−), 0 ≤ t < x

0, t = x

f ′(t)− f ′(x+), x < t <∞.

Proof. From the definition of the function f ′x(t), for any f ∈ DBVγ(0,∞), we may

write

f ′(t) =
1

θ + 1

(
f ′(x+) + θf ′(x−)

)
+ f ′x(t)

+
1

2

(
f ′(x+)− f ′(x−)

)(
sgn(t− x) +

θ − 1

θ + 1

)
+δx(t)

(
f ′(x)− 1

2

(
f ′(x+) + f ′(x−)

))
,(4.3.11)

where

δx(t) =

{
1 , x = t

0 , x 6= t.

From (4.1.2) and the fact that
∫∞

0
J a
n,θ(x, t)dt = Ka

n,θ(e0;x) = 1, we get

Ka
n,θ(f ;x)− f(x) =

∫ ∞
0

[f(t)− f(x)]J a
n,θ(x, t)dt

=

∫ ∞
0

(∫ t

x

f ′(u)du

)
J a
n,θ(x, t)dt.(4.3.12)

It is clear that∫ ∞
0

J a
n,θ(x, t)

∫ t

x

[
f ′(x)− 1

2

(
f ′(x+) + f ′(x−)

)]
δx(u)dudt = 0.

Thus, from (4.3.11) and (4.3.12), for sufficiently large n, we have∣∣∣∣∫ ∞
0

(∫ t

x

1

θ + 1

(
f ′(x+) + θf ′(x−)

)
du

)
J a
n,θ(x, t)dt

∣∣∣∣
≤ 1

θ + 1

∣∣∣∣f ′(x+) + θf ′(x−)

∣∣∣∣Ka
n,θ(|t− x|;x)

=

√
θ

θ + 1

∣∣∣∣f ′(x+) + θf ′(x−)

∣∣∣∣
√

λ

n+ 1
φ(x)(4.3.13)

and by applying Cauchy-Schwarz inequality, we obtain
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∣∣∣∣∫ ∞
0

(∫ t

x

1

2

(
f ′(x+)− f ′(x−)

)(
sgn(u− x) +

θ − 1

θ + 1

)
du

)
J a
n,θ(x, t)dt

∣∣∣∣
≤ θ

θ + 1
|f ′(x+)− f ′(x−)|

∫ ∞
0

|t− x| J a
n,θ(x, t)dt

=
θ

θ + 1
|f ′(x+)− f ′(x−)|Ka

n,θ (|t− x| ;x)

≤ θ

θ + 1
|f ′(x+)− f ′(x−)|

(
Ka
n,θ

(
(t− x)2;x

))1/2

≤ θ3/2

θ + 1
|f ′(x+)− f ′(x−)|

√
λ

n+ 1
φ(x).(4.3.14)

By using Lemma 3.2.4, Remark 3 and considering (4.3.12)-(4.3.14) we obtain the

following estimate∣∣Ka
n,θ(f ;x)− f(x)

∣∣ ≤ ∣∣Ua
n,θ(f

′
x, x) + V a

n,θ(f
′
x, x)

∣∣
+

√
θ

θ + 1
|f ′(x+) + θf ′(x−)|

√
λ

n+ 1
φ(x)

+
θ3/2

θ + 1
|f ′(x+)− f ′(x−)|

√
λ

n+ 1
φ(x),(4.3.15)

where

Ua
n,θ(f

′
x, x) =

∫ x

0

(∫ t

x

f ′x(u)du

)
J a
n,θ(x, t)dt,

and

V a
n,θ(f

′
x, x) =

∫ ∞
x

(∫ t

x

f ′x(u)du

)
J a
n,θ(x, t)dt.

Now, let us estimate the terms Ua
n,θ(f

′
x, x) and V a

n,θ(f
′
x, x). Since

∫ d
c
dtα

a
n,θ(x, t) ≤ 1,

for all [c, d] ⊆ (0,∞), using integration by parts and applying Lemma 4.3.4 with

y = x− (x/
√
n), we have∣∣Ua

n,θ(f
′
x, x)

∣∣ =

∣∣∣∣∫ x

0

∫ t

x

(
f ′x(u)du

)
dtα

a
n,θ(x, t)

∣∣∣∣
=

∣∣∣∣∫ x

0

αan,θ(x, t)f
′
x(t)dt

∣∣∣∣
≤

(∫ y

0

+

∫ x

y

)
|f ′x(t)|

∣∣αan,θ(x, t)∣∣ dt
≤ θ

λφ2(x)

n+ 1

∫ y

0

x∨
t

(f ′x)(x− t)−2dt+

∫ x

y

x∨
t

(f ′x)dt

≤ θ
λφ2(x)

n+ 1

∫ y

0

x∨
t

(f ′x)(x− t)−2dt+
x√
n

x∨
x−(x/

√
n)

(f ′x).
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By the substitution of u = x/(x− t), we obtain

θ
λφ2(x)

n+ 1

∫ x−(x/
√
n)

0

(x− t)−2

x∨
t

(f ′x)dt = θ
λ(1 + x)

n+ 1

∫ √n
1

x∨
x−x/u

(f ′x)du

≤ θ
λ(1 + x)

n+ 1

[
√
n]∑

k=1

∫ k+1

k

x∨
x−x/u

(f ′x)du

≤ θ
λ(1 + x)

n+ 1

[
√
n]∑

k=1

x∨
x−x/k

(f ′x).

Hence we reach the following result

∣∣Ua
n,θ(f

′
x, x)

∣∣ ≤ θ
λ(1 + x)

n+ 1

[
√
n]∑

k=1

x∨
x−x/k

(f ′x) +
x√
n

x∨
x−(x/

√
n)

(f ′x).(4.3.16)

Again, using integration by parts and applying Lemma 4.3.4 with z = x+(x/
√
n),

we have

|V a
n,θ(f

′
x, x)| =

∣∣∣∣ ∫ ∞
x

(∫ t

x

f ′x(u)du

)
dt(1− αan,θ(x, t))dt

∣∣∣∣
=

∣∣∣∣ ∫ z

x

f ′x(t)(1− αan,θ(x, t))dt+

∫ ∞
z

f ′x(t)(1− αan,θ(x, t))dt
∣∣∣∣

< θ
λφ2(x)

n+ 1

∫ ∞
z

t∨
x

(f ′x)(t− x)−2dt+

∫ z

x

t∨
x

(f ′x)dt

≤ θ
λφ2(x)

n+ 1

∫ ∞
x+(x/

√
n)

t∨
x

(f ′x)(t− x)−2dt+
x√
n

x+x/
√
n∨

x

(f ′x).(4.3.17)

By the substitution of u = x/(t− x), we get

θ
λφ2(x)

n+ 1

∫ ∞
x+(x/

√
n)

t∨
x

(f ′x)(t− x)−2dt = θ
λφ2(x)

x(n+ 1)

∫ √n
0

x+x/u∨
x

(f ′x)du

≤ θ
λ(1 + x)

n+ 1

[
√
n]∑

k=1

∫ k+1

k

x+x/u∨
x

(f ′x)du

≤ θ
λ(1 + x)

n+ 1

[
√
n]∑

k=1

x+x/k∨
x

(f ′x).(4.3.18)

Now, combining (4.3.17)-(4.3.18), we obtain

|V a
n,θ(f

′
x, x)| ≤ θ

λ(1 + x)

n+ 1

[
√
n]∑

k=1

x+x/k∨
x

(f ′x) +
x√
n

x+(x/
√
n)∨

x

(f ′x).(4.3.19)
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By collecting the estimates (4.3.15), (4.3.16) and (4.3.19), we get the required result.

This completes the proof of theorem.
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Chapter 5

General Gamma type operators

based on q-integers

5.1 Introduction

In [113], Mazhar investigated and studied some approximation properties of the

following sequence of linear positive operators

Hn(f ;x) =

∞∫
0

∞∫
0

gn(x, u)gn−1(u, t)f(t)du dt

=
(2n)!xn+1

n!(n− 1)!

∞∫
0

tn−1

(x+ t)2n+1
f(t)dt, n > 1, x > 0,

where gn(x, u) = xn+1

n!
e−xuun. Recently, Karsli [97] considered a modification and

studied the rate of convergence of these operators for the functions with derivatives

of bounded variation.

Ln(f ;x) =

∞∫
0

∞∫
0

gn+2(x, u)gn(u, t)f(t)du dt

=
(2n+ 3)!xn+3

n!(n+ 2)!

∞∫
0

tn

(x+ t)2n+4
f(t)dt, x > 0.

Later on, Karsli and Özarslan [98] established some local and global approximation

results for the operators Ln(f ;x).
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In 2007, Mao [111] defined the following generalized Gamma type operators

(Mn,kf) (x) =

∞∫
0

∞∫
0

gn(x, u)gn−k(u, t)f(t)du dt

=
(2n− k + 1)!xn+1

n!(n− k)!

∞∫
0

tn−k

(x+ t)2n−k+2
f(t) dt, x > 0,(5.1.1)

which include the operators Hn(f ;x) for k = 1 and the operators Ln−2(f ;x) for

k = 2.

For f ∈ Dϑ[0,∞), 0 < q < 1, 0 ≤ α ≤ β and each positive integer n, we

introduce the following Stancu type modification of the operators (5.1.1) based on

q−integers:

(
M

(α,β)
n,k,q f

)
(x) =

[2n− k + 1]q!
(
q

2n−k+1
2 x

)n+1

[n]q![n− k]q!
q

(n−k)(n−k+1)
2

×
∫ ∞/A

0

tn−k

(q
2n−k+1

2 x+ t)2n−k+2
f

(
[n]qt+ α

[n]q + β

)
dqt.(5.1.2)

For α = β = 0, we denote
(
M

(α,β)
n,k,q f

)
(x) by (Mn,k,qf) (x). Clearly, if q → 1−

and α = β = 0, the operators defined by (5.1.2) reduce to the operators given by

(5.1.1).

Very recently, the case k = 2, namely (Mn,2,qf) (x) was introduced and studied by

Cai and Zeng [34]. Subsequently, Zhao et al. [161] discussed the Stancu type gen-

eralization of (Mn,2,qf) (x), i.e.
(
M

(α,β)
n,2,q f

)
(x).

In the present chapter, we study the basic convergence theorem, Voronovskaja

type asymptotic formula, local approximation, rate of convergence, weighted ap-

proximation, point-wise estimation and A−statistical convergence of the operators

(5.1.2). Further, to obtain better approximation we also modify the operators (5.1.2)

by using King type approach.

5.2 Moment Estimates

Lemma 5.2.1. For any m, k ∈ N0 satisfying m, k ≤ n and 0 < q < 1, one has

(Mn,k,qt
m) (x) = q

m
2

(k−m) [n− k +m]q![n−m]q!

[n]q![n− k]q!
xm.
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Proof. We observe that for every x ∈ [0,∞), using (0.2.1) and (0.2.2), we obtain

(Mn,k,qt
m) (x)

=
[2n− k + 1]q!

(
q

2n−k+1
2 x

)n+1

[n]q![n− k]q!
q(n−k)(n−k+1)/2

∫ ∞/A
0

tn−k(
q

2n−k+1
2 x+ t

)2n−k+2
tmdqt

=
[2n− k + 1]q!

(
q

2n−k+1
2 x

)n+1

[n]q![n− k]q!
q

(n−k)(n−k+1)
2

∫ ∞/A
0

tn−k+m(
q

2n−k+1
2 x

)2n−k+2
(

1 + t

q
2n−k+1

2 x

)2n−k+2
dqt

=
[2n− k + 1]q!

[n]q![n− k]q! (qn+1x)n−k+1

∫ ∞/A
0

tn−k+m(
1 + t

q
2n−k+1

2 x

)2n−k+2
dqt

=
[2n− k + 1]q!q

(2n−k+1)(n−k+m+1)/2

[n]q![n− k]q!q(n−k+1)(n+1)/2
xm
∫ ∞/A

0

(
t

q
2n−k+1

2 x

)n−k+m

(
1 + t

q
2n−k+1

2 x

)2n−k+2
dq

(
t

q
2n−k+1

2 x

)

=
[2n− k + 1]q!q

(2n−k+1)(n−k+m+1)/2

[n]q![n− k]q!q(n−k+1)(n+1)/2

Bq(n− k +m+ 1, n−m+ 1)

K(A, n− k +m+ 1)
xm

= q
m
2

(k−m) [n− k +m]q![n−m]q!

[n]q![n− k]q!
xm.

Lemma 5.2.2. For the operators (Mn,k,qf) (x) and
(
M

(α,β)
n,k,q f

)
(x) as defined in

(5.1.2), the following equalities hold:

1. (Mn,k,qt
0) (x) = 1;

2. (Mn,k,qt) (x) = q
(k−1)

2
[n− k + 1]q

[n]q
x;

3. (Mn,k,qt
2) (x) = qk−2 [n− k + 2]q[n− k + 1]q

[n− 1]q[n]q
x2, for n > 1;

4.
(
M

(α,β)
n,k,q t

0
)

(x) = 1;

5.
(
M

(α,β)
n,k,q t

)
(x) = q

(k−1)
2

[n− k + 1]q
[n]q + β

x+
α

[n]q + β
;

6.
(
M

(α,β)
n,k,q t

2
)

(x) =

(
[n]q

[n]q + β

)2{
[n− k + 2]q[n− k + 1]q

[n]q[n− 1]q
qk−2x2

+
2α[n− k + 1]q

[n]2q
q
k−1
2 x+

α2

[n]2q

}
, for n > 1.
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Proof. The proof of this lemma is an immediate consequence of Lemma 5.2.1. Hence

the details are omitted.

Remark 5. For every q ∈ (0, 1), we have

(Mn,k,q(t− x)) (x) = x

{
[n− k + 1]q

[n]q
q
k−1
2 − 1

}
,

(
Mn,k,q(t− x)2

)
(x) = x2

{
[n− k + 2]q[n− k + 1]q

[n]q[n− 1]q
qk−2 − 2

[n− k + 1]q
[n]q

q
k−1
2 + 1

}
, for n > 1

:= γn,k,q(x), say

and(
M

(α,β)
n,k,q (t− x)

)
(x) =

(
q
k−1
2

[n− k + 1]q
[n]q + β

− 1

)
x+

α

[n]q + β
,(

M
(α,β)
n,k,q (t− x)2

)
(x) =

(
qk−2 [n− k + 2]q[n− k + 1]q[n]q

[n− 1]q([n]q + β)2
− q

(k−1)
2

2[n− k + 1]q
([n]q + β)

+ 1

)
x2

+2α

(
q

(k−1)
2

[n− k + 1]q
([n]q + β)2

− 1

[n]q + β

)
x+

α2

([n]q + β)2
, for n > 1

:= γ
(α,β)
n,k,q (x), say.

Lemma 5.2.3. For f ∈ CB[0,∞), one has∥∥∥M (α,β)
n,k,q f

∥∥∥ ≤‖ f ‖ .
Proof. In view of (5.1.2) and Lemma 5.2.2, the proof of this lemma easily follows.

5.3 Main Results

Theorem 5.3.1. Let qn ∈ (0, 1), such that qnn → 0 as n → ∞ and J > 0. Then

for each f ∈ Dϑ[0,∞), the sequence
{(
M

(α,β)
n,k,q f

)
(x)
}

converges to f uniformly on

[0, J ] if and only if lim
n→∞

qn = 1.

Proof. First, we assume that lim
n→∞

qn = 1. We have to show that
{(
M

(α,β)
n,k,q f

)
(x)
}

converges to f uniformly on [0, J ]. From Lemma 5.2.1, we see that(
M

(α,β)
n,k,q t

0
)

(x)→ 1,
(
M

(α,β)
n,k,q t

1
)

(x)→ x,
(
M

(α,β)
n,k,q t

2
)

(x)→ x2, uniformly on [0, J ]

as n → ∞. Therefore, the well known property of Korovkin theorem implies that{(
M

(α,β)
n,k,q f

)
(x)
}

converges to f uniformly on [0, J ] provided f ∈ Dϑ[0,∞).
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We show the converse part by contradiction. Assume that qn does not converge to 1.

Then, it must contain a subsequence {qnk} such that qnk ∈ (0, 1), qnk → a ∈ [0, 1) as

k →∞. Thus,
1

[nk + s]qnk
=

1− qnk
1− (qnk)

nk+s
→ (1− a) as k →∞. Choosing n = nk,

q = qnk in
(
M

(α,β)
n,k,q t

2
)

(x), from Lemma 5.2.1, we have
(
M

(α,β)
n,k,q t

2
)

(x) 9 x2 as

k →∞, which leads us to a contradiction. Hence, lim
n→∞

qn = 1. This completes the

proof.

Theorem 5.3.2. (Voronovskaja type theorem) Let f ∈ Dϑ[0,∞) and qn ∈
(0, 1) be a sequence such that qn → 1 and qnn → 0 as n → ∞. Suppose that f ′′(x)

exists at a point x ∈ [0,∞), then we have

lim
n→∞

[n]qn

((
M

(α,β)
n,k,qn

f
)

(x)− f(x)
)

=

(
α−

(
β +

k − 1

2

)
x

)
f ′(x) +

x2

2
f ′′(x).

Proof. By the Taylor’s formula, we may write

f(t) = f(x) + (t− x)f ′(x) +
1

2
f ′′(x)(t− x)2 + r(t, x)(t− x)2,(5.3.1)

where r(t, x) is the Peano form of the remainder and lim
t→x

r(t, x) = 0.

Applying
(
M

(α,β)
n,k,q f

)
(x) to the both sides of (5.3.1), we get

[n]qn

((
M

(α,β)
n,k,qn

f
)

(x)− f(x)
)

= [n]qnf
′(x)

(
M

(α,β)
n,k,qn

(t− x)
)

(x) +
1

2
[n]qnf

′′(x)
(
M

(α,β)
n,k,qn

(t− x)2
)

(x)

+[n]qn

(
M

(α,β)
n,k,qn

(t− x)2r(t, x)
)

(x).

In view of Remark 5, we have

(5.3.2) lim
n→∞

[n]qn

(
M

(α,β)
n,k,qn

(t− x)
)

(x) = α−
(
β +

k − 1

2

)
x

and

(5.3.3) lim
n→∞

[n]qn

(
M

(α,β)
n,k,qn

(t− x)2
)

(x) = x2.

Now, we shall show that

[n]qn

(
M

(α,β)
n,k,qn

(t− x)2r(t, x)
)

(x)→ 0

when n→∞. By using Cauchy-Schwarz inequality, we have(
M

(α,β)
n,k,qn

(t− x)2r(t, x)
)

(x)

≤
√(

M
(α,β)
n,k,qn

r2(t, x)
)

(x)

√(
M

(α,β)
n,k,qn

(t− x)4
)

(x).(5.3.4)
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We observe that r2(x, x) = 0 and r2(·, x) ∈ Dϑ[0,∞). Then, it follows from Theorem

5.3.1 that

(5.3.5) lim
n→∞

(
M

(α,β)
n,k,qn

r2(t, x)
)

(x) = r2(x, x) = 0,

in view of the fact that
(
M

(α,β)
n,k,qn

(t− x)4
)

(x) = O

(
1

[n]2qn

)
. Now, from (5.3.4) and

(5.3.5), we get

(5.3.6) lim
n→∞

[n]qn

(
M

(α,β)
n,k,qn

(t− x)2r(t, x)
)

(x) = 0.

From (5.3.2), (5.3.3) and (5.3.6), we get the required result.

Theorem 5.3.3. (Voronovskaja type theorem) Let f ∈ Dϑ[0,∞) and qn ∈
(0, 1) be a sequence such that qn → 1 and qnn → 0 as n → ∞. If f ′′(x) exists on

[0,∞), then

lim
n→∞

[n]qn

((
M

(α,β)
n,k,qn

f
)

(x)− f(x)
)

=

(
α−

(
β +

k − 1

2

)
x

)
f ′(x) +

x2

2
f ′′(x)

holds uniformly on [0, J ], where J > 0.

Proof. Let x ∈ [0, J ]. The remainder part of the proof of this theorem is similar to

that of the proof of the previous Theorem. So we omit it.

5.3.1 Local approximation

Theorem 5.3.4. Let f ∈ CB[0,∞) and q ∈ (0, 1). Then, for every x ∈ [0,∞) and

n ≥ 2, we have∣∣∣(M (α,β)
n,k,q f

)
(x)− f(x)

∣∣∣ ≤ Cω2(f ; δ
(α,β)
n,k,q (x))+ω

(
f ;

∣∣∣∣ [n− k + 1]q
[n]q + β

q
k−1
2 x+

α

[n]q + β
− x
∣∣∣∣) ,

where C is an absolute constant and

δ
(α,β)
n,k,q (x) =

((
M

(α,β)
n,k,q (t− x)2

)
(x) +

(
[n− k + 1]q

[n]q + β
q
k−1
2 x+

α

[n]q + β
− x
)2
)1/2

.

Proof. For x ∈ [0,∞), we consider the auxiliary operators M
(α,β)

n,k,q defined by(
M

(α,β)

n,k,q f
)

(x)

=
(
M

(α,β)
n,k,q f

)
(x)− f

(
[n− k + 1]q

[n]q + β
q
k−1
2 x+

α

[n]q + β

)
+ f(x).(5.3.7)
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From Lemma 5.2.2, we observe that the operators M
(α,β)

n,k,q are linear and reproduce

the linear functions. Hence

(5.3.8)
(
M

(α,β)

n,k,q (t− x)
)

(x) = 0.

Let g ∈ C2
B[0,∞). By Taylor’s theorem, we have

g(t) = g(x) + g′(x)(t− x) +

∫ t

x

(t− u)g′′(u)du, t ∈ [0,∞).

Applying M
(α,β)

n,k,q to both sides of the above equation and using (5.3.8), we have(
M

(α,β)

n,k,q g
)

(x) = g(x) +

(
M

(α,β)

n,k,q

∫ t

x

(t− u)g′′(u)du

)
(x) .

Thus, by (5.3.7) we get∣∣∣(M (α,β)

n,k,q g
)

(x)− g(x)
∣∣∣

≤
(
M

(α,β)
n,k,q

∫ t

x

|t− u||g′′(u)|du
)

(x)

+

∫ [n−k+1]q
[n]q+β

q
k−1
2 x+ α

[n]q+β

x

∣∣∣∣ [n− k + 1]q
[n]q + β

q
k−1
2 x+

α

[n]q + β
− u
∣∣∣∣ |g′′(u)|du

≤

((
M

(α,β)
n,k,q (t− x)2

)
(x) +

(
[n− k + 1]q

[n]q + β
q
k−1
2 x+

α

[n]q + β
− x
)2
)
‖ g′′ ‖

≤
(
δ

(α,β)
n,k,q (x)

)2

‖ g′′ ‖ .(5.3.9)

On the other hand, by (5.3.7) and Lemma 5.2.3, we have

(5.3.10)
∣∣∣(M (α,β)

n,k,q f
)

(x)
∣∣∣ ≤ ∣∣∣(M (α,β)

n,k,q f
)

(x)
∣∣∣+ 2 ‖ f ‖≤ 3 ‖ f ‖ .

Using (5.3.9) and (5.3.10) in (5.3.7), we obtain∣∣∣(M (α,β)
n,k,q f

)
(x)− f(x)

∣∣∣ ≤ ∣∣∣(M (α,β)

n,k,q f − g
)

(x)
∣∣∣+ |(f − g)(x)|+

∣∣∣(M (α,β)

n,k,q g
)

(x)− (g)(x)
∣∣∣

+

(
f

(
[n− k + 1]q

[n]q + β
q
k−1
2 x+

α

[n]q + β

)
− f(x)

)
≤ 4 ‖ f − g ‖ +

(
δ

(α,β)
n,k,q (x)

)2

‖ g′′ ‖

+

(
f

(
[n− k + 1]q

[n]q + β
q
k−1
2 x+

α

[n]q + β

)
− f(x)

)
.

Hence, taking infimum on the right hand side over all g ∈ C2
B[0,∞) and using

(0.7.2), we get the required result.
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5.3.2 Rate of convergence

Theorem 5.3.5. Let f ∈ D2[0,∞), q ∈ (0, 1) and ω (f ; δ, [0, b+ 1]) be its modulus

of continuity on the finite interval [0, b+ 1] ⊂ [0,∞), where b > 0. Then, for every

n ≥ 2,∣∣∣(M (α,β)
n,k,q f

)
(x)− f(x)

∣∣∣ ≤ 4Mf (1 + b2)γ
(α,β)
n,k,q (x) + 2ω

(
f ;

√
γ

(α,β)
n,k,q (x), [0, b+ 1]

)
,

where γ
(α,β)
n,k,q (x) is as defined in Remark 5.

Proof. From ([75], p.378), for x ∈ [0, b] and t ∈ [0,∞), we get

|f(t)− f(x)| ≤ 4Mf (1 + b2)(t− x)2 +

(
1 +
|t− x|
δ

)
ω (f ; δ, [0, b+ 1]) , δ > 0.

Thus, by applying Cauchy-Schwarz inequality, we have∣∣∣(M (α,β)
n,k,q f

)
(x)− f(x)

∣∣∣
≤ 4Mf (1 + b2)

(
M

(α,β)
n,k,q (t− x)2

)
(x) + ω (f ; δ, [0, b+ 1])

(
1 +

1

δ

((
M

(α,β)
n,k,q (t− x)2

)
(x)
) 1

2

)
= 4Mf (1 + b2)γ

(α,β)
n,k,q (x) + 2ω

(
f ;

√
γ

(α,β)
n,k,q (x), [0, b+ 1]

)
,

on choosing δ =
√
γ

(α,β)
n,k,q (x). This completes the proof of the theorem.

5.3.3 Weighted approximation.

In this section, we shall discuss about the weighted approximation theorems for the

operators (5.1.2). Throughout the section, we assume that {qn} is a sequence in

(0, 1) such that qn → 1 and qnn → 0 as n→∞.

Theorem 5.3.6. For each f ∈ D∗2[0,∞), we have

lim
n→∞

∥∥∥M (α,β)
n,k,qn

f − f
∥∥∥

2
= 0.

Proof. From the Korovkin theorem [50], we see that it is sufficient to verify the

following three conditions

(5.3.11) lim
n→∞

∥∥∥(M (α,β)
n,k,qn

tν
)

(x)− xν
∥∥∥

2
= 0, ν = 0, 1, 2.
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Since
(
M

(α,β)
n,k,qn

1
)

(x) = 1, the condition holds for ν = 0.

By Lemma 5.2.2, we have

∥∥∥(M (α,β)
n,k,qn

t
)

(x)− x
∥∥∥

2
≤

∥∥∥∥∥
(
q
k−1
2

n [n− k + 1]qn
[n]qn + β

− 1

)
x+

α

[n]qn + β

∥∥∥∥∥
2

≤
(
q
k−1
2

n [n− k + 1]qn
[n]qn + β

− 1

)
sup

x∈[0,∞)

x

1 + x2
+

α

[n]qn + β
sup

x∈[0,∞)

1

1 + x2

≤
∣∣∣∣q

k−1
2

n [n− k + 1]qn
[n]qn + β

− 1

∣∣∣∣+
α

[n]qn + β
→ 0 as n→∞.

Hence the equation (5.3.11) holds for ν = 1. Similarly, we can write for n > 1∥∥∥(M (α,β)
n,k,qn

t2
)

(x)− x2
∥∥∥

2

≤
∣∣∣∣qk−2
n [n− k + 2]qn [n− k + 1]qn [n]qn

[n− 1]qn([n]qn + β)2
− 1

∣∣∣∣+

∣∣∣∣2q
k−1
2

n α[n− k + 1]qn
([n]qn + β)2

∣∣∣∣+
α2

([n]qn + β)2

which implies that lim
n→∞

∥∥∥(M (α,β)
n,k,qn

t2
)

(x)− x2
∥∥∥

2
= 0, the equation (5.3.11) holds for

ν = 2. Thus, the proof is completed.

Now, we present a weighted approximation theorems for functions in D∗2[0,∞).

Theorem 5.3.7. For each f ∈ D∗2[0,∞) and d > 0, we have

lim
n→∞

sup
x∈[0,∞)

∣∣∣(M (α,β)
n,k,qn

f
)

(x)− f(x)
∣∣∣

(1 + x2)1+d
= 0.

Proof. Let x0 ∈ [0,∞) be arbitrary but fixed. Then

sup
x∈[0,∞)

∣∣∣(M (α,β)
n,k,qn

f
)

(x)− f(x)
∣∣∣

(1 + x2)1+d
= sup

x≤x0

∣∣∣(M (α,β)
n,k,qn

f
)

(x)− f(x)
∣∣∣

(1 + x2)1+d
+ sup

x>x0

∣∣∣(M (α,β)
n,k,qn

f
)

(x)− f(x)
∣∣∣

(1 + x2)1+d

≤ ‖M (α,β)
n,k,qn

f − f ‖C[0,x0] + ‖ f ‖2 sup
x>x0

∣∣∣(M (α,β)
n,k,qn

(1 + t2)
)

(x)
∣∣∣

(1 + x2)1+d

+ sup
x>x0

|f(x)|
(1 + x2)1+d

.(5.3.12)

Since |f(x)| ≤‖ f ‖2 (1 + x2), we have sup
x>x0

|f(x)|
(1 + x2)1+d

≤ ‖ f ‖2

(1 + x2
0)d

.

Let ε > 0 be arbitrary. We can choose x0 to be so large that

(5.3.13)
‖ f ‖2

(1 + x2
0)d

<
ε

3
.
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In view of Theorem 5.3.1, we obtain

‖ f ‖2 lim
n→∞

∣∣∣(M (α,β)
n,k,qn

(1 + t2)
)

(x)
∣∣∣

(1 + x2)1+d
=

(1 + x2)

(1 + x2)1+d
‖ f ‖2=

‖ f ‖2

(1 + x2)d
≤ ‖ f ‖2

(1 + x2
0)d

<
ε

3
.

Using Theorem 5.3.5, we can see that the first term of the inequality (5.3.12), implies

that

(5.3.14) ‖M (α,β)
n,k,qn

f − f ‖C[0,x0]<
ε

3
, as n→∞.

Combining (5.3.12)-(5.3.14), we get the desired result.

Theorem 5.3.8. If f ∈ D∗2[0,∞), then we have∣∣∣(M (α,β)
n,k,qn

f
)

(x)− f(x)
∣∣∣ ≤ C(1 + x2+λ)Ω2(f, δn), x ∈ [0,∞),

where λ ≥ 1, δ2
n = max{an, bn, cn}, an, bn, cn being

(
qk−2
n

[n− k + 2]qn [n− k + 1]qn [n]qn
[n− 1]qn([n]qn + β)2

+ 1

)
,

2α

(
q

(k−1)
2

n
[n−k+1]qn
([n]qn+β)2

)
and

α2

([n]qn + β)2
respectively and C is a positive constant in-

dependent of f and n.

Proof. From the definition of Ω2(f, δ) and Lemma 0.7.1, we have

|f(t)− f(x)| ≤ (1 + x+ |t− x|2)

(
1 +
|t− x|
δ

)
Ω2(f, δ)

≤ (1 + (2x+ t)2)

(
1 +
|t− x|
δ

)
Ω2(f, δ)

:= φx(t)

(
1 +

1

δ
ψx(t)

)
Ω2(f, δ),

where φx(t) = 1 + (2x+ t)2 and ψx(t) = |t− x|. Then, we obtain∣∣∣M (α,β)
n,k,qn

(f ;x)− f(x)
∣∣∣ ≤ (M (α,β)

n,k,qn
(φx;x) +

1

δn
M

(α,β)
n,k,qn

(φxψx;x)

)
Ω2(f, δn).

Now, applying the Cauchy-Schwarz inequality to the second term on the righthand

side, we get
∣∣∣(M (α,β)

n,k,qn
f
)

(x)− f(x)
∣∣∣

(5.3.15) ≤
((

M
(α,β)
n,k,qn

φx

)
(x) +

1

δn

√(
M

(α,β)
n,k,qn

φ2
x

)
(x)

√(
M

(α,β)
n,k,qn

ψ2
x

)
(x)

)
Ω2(f, δn).

From Lemma 5.2.2,

1

1 + x2

(
M

(α,β)
n,k,qn

(
1 + t2

))
(x) =

1

1 + x2
+

(
qk−2
n [n]qn [n− k + 1]qn [n− k + 2]qn

[n− 1]qn([n]qn + β)2

)
x2

1 + x2

+
2αq

k−1
2

n [n− k + 1]qn
([n]qn + β)2

x

1 + x2
+

α2

([n]qn + β)2

1

1 + x2

≤ 1 + C1.(5.3.16)
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For each t ≥ 0 and x ∈ [0,∞), we get

φx(t) = 1 + (2x+ t)2 ≤ 1 + 2(4x2 + 2t2).

From (5.3.15) and (5.3.16), there exists a positive constant C2 such that

Mα,β
n,k,qn

(φx;x) ≤ C2(1 + x2).

Proceeding similarly,
1

1 + x4

(
M

(α,β)
n,k,qn

(1 + t4)
)

(x) ≤ 1+C3, so there exists a positive

constant C4, such that

√(
M

(α,β)
n,k,qn

φ2
x

)
(x) ≤ C4(1 + x2), where x ∈ [0,∞).

Also, we get(
M

(α,β)
n,k,qn

ψ2
x

)
(x) =

(
qk−2
n

[n− k + 2]qn [n− k + 1]qn [n]qn
[n− 1]qn([n]qn + β)2

− qn
(k−1)

2
2[n− k + 1]qn

([n]qn + β)
+ 1

)
x2

+2α

(
q

(k−1)
2

n
[n− k + 1]qn
([n]qn + β)2

− 1

[n]qn + β

)
x+

α2

([n]qn + β)2

≤ anx
2 + bnx+ cn.

Hence, from (5.3.15), we have∣∣∣(M (α,β)
n,k,qn

f
)

(x)− f(x)
∣∣∣ ≤ (1 + x2)

(
C2 +

1

δn
C4

√
anx2 + bnx+ cn

)
Ω2(f, δn).

If we take δ2
n = max{an, bn, cn}, then we get∣∣∣(M (α,β)
n,k,qn

f
)

(x)− f(x)
∣∣∣ ≤ (1 + x2)

(
C2 + C4

√
x2 + x+ 1

)
Ω2(f, δn)

≤ C5(1 + x2+λ)Ω2(f, δn), x ∈ [0,∞).

Hence, the proof is completed.

Next, we obtain the local direct estimate of the operators defined in (5.1.2), using

the Lipschitz-type maximal function of order τ.

Theorem 5.3.9. Let f ∈ CB[0,∞) and 0 < τ ≤ 1. Then, for all x ∈ [0,∞) we

have ∣∣∣(M (α,β)
n,k,q f

)
(x)− f(x)

∣∣∣ ≤ ω̂τ (f, x)
(
γ

(α,β)
n,k,q (x)

)τ/2
.

Proof. From the equation (0.7.3), we have∣∣∣(M (α,β)
n,k,q f

)
(x)− f(x)

∣∣∣ ≤ ω̂τ (f, x)
(
M

(α,β)
n,k,q |t− x|

τ
)

(x).

Applying the Hölder’s inequality with p =
2

τ
and

1

q
= 1− 1

p
, we get∣∣∣(M (α,β)

n,k,q f
)

(x)− f(x)
∣∣∣ ≤ ω̂τ (f, x)

(
M

(α,β)
n,k,q (t− x)2

) τ
2

(x) = ω̂τ (f, x)
(
γ

(α,β)
n,k,q (x)

)τ/2
.

Thus, the proof is completed.
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5.3.4 Statistical convergence

Let qn ∈ (0, 1) be a sequence such that

stA − lim
n
qn = 1, stA − lim

n
qnn = a(a < 1) and stA − lim

n

1

[n]qn
= 0.(5.3.17)

Theorem 5.3.10. Let A = (ank) be a non-negative regular summability matrix and

(qn) be a sequence satisfying (5.3.17). Then, for any compact set K ⊂ [0,∞) and

for each function f ∈ C(K), we have

stA − lim
n

∥∥∥(M (α,β)
n,k,qn

f
)

(.)− f
∥∥∥ = 0.

Proof. Let x0 = max
x∈K

x. From Lemma 5.2.2, stA − lim
n

∥∥∥(M (α,β)
n,k,qn

e0

)
(.)− e0

∥∥∥ = 0.

Again, by Lemma 5.2.2, we have

sup
x∈K

∣∣∣(M (α,β)
n,k,qn

e1

)
(x)− e1(x)

∣∣∣ ≤ ∣∣∣∣q
k−1
2

n [n− k + 1]qn
([n]qn + β)

− 1

∣∣∣∣x0 +
α

[n]qn + β
.

For ε > 0, let us define the following sets:

E :=

{
j :
∥∥∥(M (α,β)

j,k,qj
e1

)
(.)− e1

∥∥∥ ≥ ε

}

E1 :=

{
j :

∣∣∣∣q
k−1
2

j [j − k + 1]qj
([j]qj + β)

− 1

∣∣∣∣ ≥ ε

2

}
E2 :=

{
j :

α

[j]qj + β
≥ ε

2

}
,

which implies that E ⊆ E1 ∪ E2 and hence for all n ∈ N, we obtain

∑
j∈E

anj ≤
∑
j∈E1

anj +
∑
j∈E2

anj.

Hence, taking limit as n→∞, we have stA − lim
n

∥∥∥(M (α,β)
n,k,qn

e1

)
(.)− e1

∥∥∥ = 0.

Similarly, by using Lemma 5.2.2, we have

sup
x∈K

∣∣∣(M (α,β)
n,k,qn

e2

)
(x)− e2(x)

∣∣∣ ≤ ∣∣∣∣qk−2
n [n]qn [n− k + 1]qn [n− k + 2]qn

[n− 1]qn([n]qn + β)2
− 1

∣∣∣∣x2
0

+

∣∣∣∣2αq
k−1
2

n [n− k + 1]qn
([n]qn + β)2

∣∣∣∣x0 +
α2

([n]qn + β)2
.
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Now, let us define the following sets:

F :=

{
j :
∥∥∥(M (α,β)

j,k,qj
e2

)
(.)− e2

∥∥∥ ≥ ε

}
F1 :=

{
j :

∣∣∣∣qk−2
j [j]qj [j − k + 1]qj [j − k + 2]qj

[j − 1]qj([j]qj + β)2
− 1

∣∣∣∣ ≥ ε

3

}

F2 :=

{
j :

∣∣∣∣2αq
k−1
2

j [j − k + 1]qj
([j]qj + β)2

∣∣∣∣ ≥ ε

3

}
F3 :=

{
j :

α2

([j]qj + β)2
≥ ε

3

}
.

Then, we obtain F ⊆ F1 ∪ F2 ∪ F3, which implies that∑
j∈F

anj ≤
∑
j∈F1

anj +
∑
j∈F2

anj +
∑
j∈F3

anj.

Thus, as n → ∞ we get stA − lim
n

∥∥∥(M (α,β)
n,k,qn

e2

)
(.)− e2

∥∥∥ = 0. This completes the

proof.

Theorem 5.3.11. Let A = (ank) be a nonnegative regular summability matrix and

(qn) be a sequence in (0, 1) satisfying (5.3.17). Let the operators M
(α,β)
n,k,qn

, n ∈ N, be

defined as in (5.1.2). Then, for each function f ∈ D∗2[0,∞), we have

stA − lim
n

∥∥∥(M (α,β)
n,k,qn

f
)

(.)− f
∥∥∥
ζ+2

= 0, ζ > 0.

Proof. From ([42], p. 191, Th. 3), it is sufficient to prove that

stA − lim
n

∥∥∥(M (α,β)
n,k,qn

ei

)
(.)− ei

∥∥∥
2

= 0, where ei(x) = xi, i = 0, 1, 2.

From Lemma 5.2.2, stA − lim
n

∥∥∥(M (α,β)
n,k,qn

e0

)
(.)− e0

∥∥∥
2

= 0 holds.

Again using Lemma 5.2.2, we have∥∥∥(M (α,β)
n,k,qn

e1

)
(.)− e1

∥∥∥
2
≤ sup

x∈[0,∞)

{
x

(1 + x2)

∣∣∣∣q
k−1
2

n [n− k + 1]qn
([n]qn + β)

− 1

∣∣∣∣+
1

(1 + x2)

α

([n]qn + β)

}

=

∣∣∣∣q
k−1
2

n [n− k + 1]qn
([n]qn + β)

− 1

∣∣∣∣+
α

([n]qn + β)
.(5.3.18)

For each ε > 0, let us define the following sets:

G :=

{
j :
∥∥∥(M (α,β)

j,k,qj
e1

)
(.)− e1

∥∥∥
2
≥ ε

}

G1 :=

{
j :

∣∣∣∣q
k−1
2

j [j − k + 1]qj
([j]qj + β)

− 1

∣∣∣∣ ≥ ε

2

}
G2 :=

{
j :

α

[j]qj + β
≥ ε

2

}
,
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which yields us G ⊆ G1∪G2 in view of (5.3.18) and therefore for all n ∈ N, we have∑
j∈G

anj ≤
∑
j∈G1

anj +
∑
j∈G2

anj.

Hence, on taking limit as n→∞, stA − lim
n

∥∥∥(M (α,β)
j,k,qj

e1

)
(.)− e1

∥∥∥
2

= 0. Proceeding

similarly,∥∥∥(M (α,β)
n,k,qn

e2

)
(.)− e2

∥∥∥
2
≤

∣∣∣∣qk−2
n [n]qn [n− k + 1]qn [n− k + 2]qn

[n− 1]qn([n]qn + β)2
− 1

∣∣∣∣
+

∣∣∣∣2αq
k−1
2

n [n− k + 1]qn
([n]qn + β)2

∣∣∣∣+
α2

([n]qn + β)2
.

Now, let us define the following sets:

R :=

{
j :
∥∥∥(M (α,β)

j,k,qj
e2

)
(.)− e2

∥∥∥
2
≥ ε

}
R1 :=

{
j :

∣∣∣∣qk−2
j [j]qj [j − k + 1]qj [j − k + 2]qj

[j − 1]qj([j]qj + β)2
− 1

∣∣∣∣ ≥ ε

3

}

R2 :=

{
j :

∣∣∣∣2αq
k−1
2

j [j − k + 1]qj
([j]qj + β)2

∣∣∣∣ ≥ ε

3

}
R3 :=

{
j :

α2

([j]qj + β)2
≥ ε

3

}
.

Then, we obtain R ⊆ R1 ∪R2 ∪R3, which implies that∑
j∈R

anj ≤
∑
j∈R1

anj +
∑
j∈R2

anj +
∑
j∈R3

anj.

Hence, taking limit as n → ∞ we get stA − lim
n

∥∥∥(M (α,β)
n,k,qn

e2

)
(.)− e2

∥∥∥
2

= 0. This

completes the proof of the theorem.

5.4 Better Estimates

It is well known that the classical Bernstein polynomials preserve constant as well as

linear functions. To make the convergence faster, King [101] proposed an approach

to modify the Bernstein polynomials, so that the sequence preserves test functions

e0 and e2, where ei(t) = ti, i = 0, 1, 2. As the operator M
(α,β)
n,k,q (f ;x) defined in (5.1.2)

reproduces only constant functions, this motivated us to propose the modification
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of this operator, so that it can preserve constant as well as linear functions.

The modification of the operators given in (5.1.2) is defined as

(
M̃

(α,β)
n,k,q f

)
(x) =

[2n− k + 1]q!

(
q

2n−k+1
2 sqn(x)

)n+1

[n]q![n− k]q!
q(n−k)(n−k+1)/2

×
∫ ∞/A

0

tn−k

(q
2n−k+1

2 sqn(x) + t)2n−k+2
f

(
[n]qt+ α

[n]q + β

)
dqt,

where sqn(x) =
([n]q + β)x− α
q
k−1
2 [n− k + 1]q

for x ∈ In =
[

α
[n]q+β

,∞
)

and n ∈ N.

Lemma 5.4.1. For each x ∈ In, by simple computations, we have

1.
(
M̃

(α,β)
n,k,q 1

)
(x) = 1;

2.
(
M̃

(α,β)
n,k,q t

)
(x) = x;

3.
(
M̃

(α,β)
n,k,q t

2
)

(x) =
[n− k + 2]q[n]q

q[n− k + 1]q[n− 1]q
x2+

2α

[n]q + β

(
1− [n− k + 2]q[n]q

q[n− k + 1]q[n− 1]q

)
x

+
α2

([n]q + β)2

(
[n− k + 2]q[n]q

q[n− k + 1]q[n− 1]q
− 1

)
, for n > 1.

Consequently, for each x ∈ In , we have the following equalities:(
M̃

(α,β)
n,k,q (t− x)

)
(x) = 0;(

M̃
(α,β)
n,k,q (t− x)2

)
(x)

=

(
[n− k + 2]q[n]q

q[n− k + 1]q[n− 1]q
− 1

)
x2 +

2α

[n]q + β

(
1− [n− k + 2]q[n]q

q[n− k + 1]q[n− 1]q

)
x

+
α2

([n]q + β)2

(
[n− k + 2]q[n]q

q[n− k + 1]q[n− 1]q
− 1

)
, for n > 1

= ξ
(α,β)
n,k,q (x), say.(5.4.1)

Theorem 5.4.2. Let f ∈ CB[0,∞) and x ∈ In. Then for every x ∈ [0,∞), there

exists a positive constant C such that∣∣∣(M̃ (α,β)
n,k,q f

)
(x)− f(x)

∣∣∣ ≤ Cω2

(
f ;

√
ξ

(α,β)
n,k,q (x)

)
,

where ξ
(α,β)
n,k,q (x) is given by (5.4.1).
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Proof. Let g ∈ C2
B[0,∞), x ∈ In and t ∈ [0,∞). Using the Taylor’s expansion we

have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− u)g′′(u)du.

Applying M̃
(α,β)
n,k,q on both sides and using Lemma 5.4.1, we get

(
M̃

(α,β)
n,k,q g

)
(x)− g(x) =

(
M̃

(α,β)
n,k,q

(∫ t

x

(t− u)g′′(u)du

))
(x).

Obviously, we have
∣∣∣∫ tx(t− u)g′′(u)du

∣∣∣ ≤ (t− x)2‖g′′‖. Therefore∣∣∣(M̃ (α,β)
n,k,q g

)
(x)− g(x)

∣∣∣ ≤ (M̃ (α,β)
n,k,q (t− x)2

)
(x) ‖ g′′ ‖= ξ

(α,β)
n,k,q (x) ‖ g′′ ‖ .

Since
∣∣∣(M̃ (α,β)

n,k,q f
)

(x)
∣∣∣ ≤ ‖f‖, we get∣∣∣(M̃ (α,β)

n,k,q f
)

(x)− f(x)
∣∣∣ ≤ ∣∣∣(M̃ (α,β)

n,k,q (f − g)
)

(x)
∣∣∣+ | (f − g)(x) | +

∣∣∣(M̃ (α,β)
n,k,q g

)
(x)− g(x)

∣∣∣
≤ 2‖f − g‖+ ξ

(α,β)
n,k,q (x)‖g′′‖.

Finally, taking the infimum over all g ∈ C2
B[0,∞) and using (0.7.1), (0.7.2) we obtain∣∣∣(M̃ (α,β)

n,k,q f
)

(x)− f(x)
∣∣∣ ≤ Cω2

(
f ;

√
ξ

(α,β)
n,k,q (x)

)
,

which proves the theorem.

Theorem 5.4.3. Let f ∈ Dϑ[0,∞) and qn ∈ (0, 1) be a sequence such that qn → 1

and qnn → 0 as n→∞. Suppose that f ′′(x) exists at a point x ∈ In, then we have

lim
n→∞

[n]qn

((
M̃

(α,β)
n,k,q f

)
(x)− f(x)

)
=

1

2
xf ′′(x).

Proof. The proof follows along the lines of Theorem 5.3.2.



Chapter 6

Szász-Baskakov type operators

based on q-integers

6.1 Introduction

For f ∈ Dϑ[0,∞), Gupta [69] introduced the following operators

(6.1.1) Tn(f ;x) =
∞∑
ν=1

qn,ν(x)

∫ ∞
0

bn,ν−1(t)f(t)dt+ e−nxf(0),

where qn,ν(x) = e−nx (nx)ν

ν!
, bn,ν(x) =

1

B(ν + 1, n)

xν

(1 + x)n+ν+1
, x ∈ [0,∞) by con-

sidering the value of the function at zero explicitly and studied an estimate of error

in terms of the higher order modulus of continuity in simultaneous approximation

for a linear combination of the operators (6.1.1), introduced by May [112]. Later on,

Gupta and Noor [79] discussed some direct results in simultaneous approximation

for the operators (6.1.1).

For f ∈ Dϑ[0,∞), 0 < q < 1, 0 ≤ α ≤ β and each positive integer n, we introduce

the following Stancu type modification of the operators (6.1.1) based on q−integers:

B(α,β)
n,q (f ;x) =

∞∑
ν=1

qn,ν(q, x)qν−1

∫ ∞/A
0

bn,ν−1(q, t)f

(
qν [n]qt+ α

[n]q + β

)
dqt

+Eq (−[n]qx) f

(
α

[n]q + β

)
,(6.1.2)

where qn,ν(q, x) =
Eq (−[n]qx) [n]νqx

ν

[ν]q!
and bn,ν(q, t) =

tνqν(ν−1)/2

(1 + t)n+ν+1Bq(ν + 1, n)
.

For α = β = 0, we denote B
(α,β)
n,q (f ;x) by Bn,q(f ;x).

119
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Clearly, if q → 1− and α = β = 0, the operators defined by (6.1.2) reduce to the

operators given by (6.1.1).

The purpose of the present chapter is to study the basic convergence theorem,

Voronovskaja type asymptotic formula, local approximation, rate of convergence,

weighted approximation, point-wise estimation and A−statistical convergence of

the operators (6.1.2). Further, to obtain better approximation we also propose a

modification of these operators by using a King type approach.

6.2 Moment Estimates

Lemma 6.2.1. For Bn,q(t
m;x), m = 0, 1, 2, one has

1. Bn,q(1;x) = 1;

2. Bn,q(t;x) =
[n]qx

[n− 1]q
, for n > 1;

3. Bn,q(t
2;x) =

q[n]2q
[n− 1]q[n− 2]q

x2 +
[2]q[n]q

q[n− 1]q[n− 2]q
x, for n > 2.

Proof. We observe that Bn,q are well defined for the functions 1, t, t2. Thus, for

every x ∈ [0,∞), using (0.2.1) and (0.2.2), we obtain

Bn,q(1;x) =
∞∑
ν=1

qn,ν(q, x)qν−1

∫ ∞/A
0

bn,ν−1(q, t)dqt+ Eq (−[n]qx)

=
∞∑
ν=0

qn,ν(q, x) = 1.

Next, for f(t) = t, again applying (0.2.1) and (0.2.2), we get

Bn,q(t;x) =
∞∑
ν=1

qn,ν(q, x)qν−1

∫ ∞/A
0

bn,ν−1(q, t)qνt dqt

=
[n]q

[n− 1]q
x.

Proceeding similarly, we have

Bn,q(t
2;x) =

[2]q[n]q
q[n− 1]q[n− 2]q

x+
q[n]2q

[n− 1]q[n− 2]q
x2,

by using [ν + 2]q = [2]q + q2[ν]q.
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Lemma 6.2.2. For the operators B
(α,β)
n,q (f ;x) as defined in (6.1.2), the following

equalities hold:

1. B
(α,β)
n,q (1;x) = 1;

2. B
(α,β)
n,q (t;x) =

[n]2q
([n]q + β)[n− 1]q

x+
α

[n]q + β
, for n > 1;

3. B
(α,β)
n,q (t2;x) =

(
[n]q

[n]q + β

)2{(q[n]2q + 2α[n− 2]q)

[n− 1]q[n− 2]q
x2 +

[2]q[n]q
q[n− 1]q[n− 2]q

x

}
+

(
α

[n]q + β

)2

, for n > 2.

Proof. This Lemma is an immediate consequence of Lemma 6.2.1. Hence the details

of its proof are omitted.

Lemma 6.2.3. For f ∈ CB[0,∞), one has

∥∥B(α,β)
n,q (f)

∥∥ ≤ ‖f‖ .
Proof. In view of (6.1.2) and Lemma 6.2.2, the proof of this lemma easily follows.

Remark 6. For every q ∈ (0, 1), we have

B(α,β)
n,q ((t− x);x) =

([n]2q − ([n]q + β)[n− 1]q)x+ α[n− 1]q

([n]q + β)[n− 1]q
, n > 1

and

B(α,β)
n,q ((t− x)2;x) =

{
1 +

q[n]4q
([n]q + β)2[n− 1]q[n− 2]q

+ (α− 1)
2[n]2q

([n]q + β)2[n− 1]q

}
x2

+

{
[2]q[n]3q

q([n]q + β)2[n− 1]q[n− 2]q
− 2α

[n]q + β

}
x+

α2

([n]q + β)2
, n > 2

:= γ(α,β)
n,q (x), say.

6.3 Main Results

Theorem 6.3.1. Let 0 < qn < 1 and J > 0. Then for each f ∈ Dϑ[0,∞), the

sequence {B(α,β)
n,qn (f ;x)} converges to f uniformly on [0, J ] if and only if lim

n→∞
qn = 1.
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Proof. First, we assume that lim
n→∞

qn = 1. We have to show that {B(α,β)
n,qn (f ;x)} con-

verges to f uniformly on [0, J ]. From Lemma 6.2.2, we see that B
(α,β)
n,qn (1;x) → 1,

B
(α,β)
n,qn (t;x)→ x, B

(α,β)
n,qn (t2;x)→ x2, uniformly on [0, J ] as n→∞.

Therefore, the well-known property of the Korovkin theorem implies that {B(α,β)
n,qn (f ;x)}

converges to f uniformly on [0, J ] provided f ∈ Dϑ[0,∞).

We show the converse part by contradiction. Assume that qn does not converge to 1.

Then, it must contain a subsequence {qnk} such that qnk ∈ (0, 1), qnk → a ∈ [0, 1)

as k →∞.
Thus,

1

[nk + s]qnk
=

1− qnk
1− (qnk)

nk+s
→ (1 − a) as k →∞. Choosing n = nk, q = qnk

in B
(α,β)
n,qn (t2;x), from Lemma 6.2.2, we have

B(α,β)
n,qn (t2;x) → (a+ 2α(1− a))x2

(1 + (1− a)β)2
+

(1− a2)x

a(1 + (1− a)β)2
+

(1− a)2α2

(1 + (1− a)β)2
9 x2 as

k →∞,
which leads us to a contradiction. Hence, lim

n→∞
qn = 1. This completes the proof.

Theorem 6.3.2. (Voronovskaja type theorem) Let f ∈ Dϑ[0,∞) and qn ∈
(0, 1) be a sequence such that qn → 1 and qnn → 0 as n → ∞. Suppose that f ′′(x)

exists at a point x ∈ [0,∞), then we have

lim
n→∞

[n]qn(B(α,β)
n,qn (f ;x)− f(x)) = (α− βx)f ′(x) + (1− α)x(1− x)f ′′(x).

Proof. By the Taylor’s formula, we may write

(6.3.1) f(t) = f(x) + (t− x)f ′(x) +
1

2
f ′′(x)(t− x)2 + r(t, x)(t− x)2,

where r(t, x) is the Peano form of the remainder and lim
t→x

r(t, x) = 0.

Applying B
(α,β)
n,qn (f ;x) to the both sides of (6.3.1), we get

[n]qn(B(α,β)
n,qn (f ;x)− f(x)) = [n]qnf

′(x)B(α,β)
n,qn ((t− x);x) +

1

2
[n]qnf

′′(x)B(α,β)
n,qn ((t− x)2;x)

+[n]qnB
(α,β)
n,q ((t− x)2r(t, x);x).

In view of Remark 6, we have

(6.3.2) lim
n→∞

[n]qnB
(α,β)
n,qn ((t− x);x) = α− βx

and

(6.3.3) lim
n→∞

[n]qnB
(α,β)
n,qn ((t− x)2;x) = 2x(1− x)(1− α).
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Now, we shall show that

[n]qnB
(α,β)
n,qn

(
r(t, x)(t− x)2;x

)
→ 0, when n→∞.

By using the Cauchy-Schwarz inequality, we have

(6.3.4) B(α,β)
n,qn

(
r(t, x)(t− x)2;x

)
≤
√
B

(α,β)
n,qn (r2(t, x);x)

√
B

(α,β)
n,qn ((t− x)4;x).

We observe that r2(x, x) = 0 and r2(·, x) ∈ Dϑ[0,∞). Then, it follows from Theorem

6.3.1 that

(6.3.5) lim
n→∞

B(α,β)
n,qn (r2(t, x);x) = r2(x, x) = 0,

in view of the fact that B
(α,β)
n,qn ((t − x)4;x) = O

(
1

[n]2qn

)
. Now, from (6.3.4) and

(6.3.5), we get

(6.3.6) lim
n→∞

B(α,β)
n,qn (r(t, x)(t− x)2;x) = 0,

and from (6.3.2), (6.3.3) and (6.3.6), we get the required result.

Theorem 6.3.3. (Voronovskaja type theorem) Let f ∈ Dϑ[0,∞) and qn ∈
(0, 1) be a sequence such that qn → 1 and qnn → 0 as n → ∞. If f ′′(x) exists on

[0,∞), then

lim
n→∞

[n]qn(B(α,β)
n,qn (f ;x)− f(x)) = (α− βx)f ′(x) + (1− α)x(1− x)f ′′(x)

holds uniformly on [0, J ], where J > 0.

Proof. Let x ∈ [0, J ]. The remainder part of the proof of this theorem is similar to

that of the proof of the previous theorem. So we omit it.

6.3.1 Local approximation

Theorem 6.3.4. Let f ∈ CB[0,∞) and q ∈ (0, 1). Then, for every x ∈ [0,∞) and

n ≥ 2, we have∣∣B(α,β)
n,q (f(t);x)− f(x)

∣∣ ≤ Cω2(f ; δ(α,β)
n,q (x))+ω

(
f ;

([n]qq
n−1 − β[n− 1]q)x+ α[n− 1]q

([n]q + β)[n− 1]q

)
,

where C is an absolute constant and

δ(α,β)
n,q =

(
B(α,β)
n,q ((t− x)2;x) +

(
([n]qq

n−1 − β[n− 1]q)x+ α[n− 1]q
([n]q + β)[n− 1]q

)2
)1/2

.
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Proof. For x ∈ [0,∞), we consider the auxiliary operators B
(α,β)

n,q defined by

(6.3.7) B
(α,β)

n,q (f ;x) = B(α,β)
n,q (f ;x)− f

(
[n]2qx

([n]q + β)[n− 1]q
+

α

[n]q + β

)
+ f(x).

From Lemma 6.2.2, we observe that the operators B
(α,β)

n,q are linear and reproduce

the linear functions. Hence

(6.3.8) B
(α,β)

n,q ((t− x);x) = 0.

Let g ∈ C2
B[0,∞). By Taylor’s theorem, we have

g(t) = g(x) + g′(x)(t− x) +

∫ t

x

(t− u)g′′(u)du, t ∈ [0,∞).

Applying B
(α,β)

n,q to the both sides of the above equation and using (6.3.8), we have

B
(α,β)

n,q (g;x) = g(x) +B
(α,β)

n,q

(∫ t

x

(t− u)g′′(u)du;x

)
.

Thus, by (6.3.7) we get

|B(α,β)

n,q (g;x)− g(x)| ≤ B(α,β)
n,q

(∫ t

x

|t− u||g′′(u)|du;x

)

+

∫ [n]2qx

([n]q+β)[n−1]q
+ α

[n]q+β

x

∣∣∣∣ [n]2qx

([n]q + β)[n− 1]q
+

α

[n]q + β
− u
∣∣∣∣|g′′(u)|du

≤
(
B(α,β)
n,q ((t− x)2;x) +

(
[n]2qx

([n]q + β)[n− 1]q
+

α

[n]q + β
− x
)2)

‖g′′‖

≤
(
δ(α,β)
n,q

)2 ‖g′′‖ .(6.3.9)

On other hand, by (6.3.7) and Lemma 6.2.3, we have

(6.3.10) |B(α,β)

n,q (f ;x)| ≤ |B(α,β)
n,q (f ;x)|+ 2 ‖f‖ ≤ 3 ‖f‖ .

Using (6.3.9) and (6.3.10) in (6.3.7), we obtain

|B(α,β)
n,q (f ;x)− f(x)| ≤ |B(α,β)

n,q (f − g;x)|+ |(f − g)(x)|+ |B(α,β)

n,q (g;x)− g(x)|

+

∣∣∣∣f ( [n]2qx

([n]q + β)[n− 1]q
+

α

[n]q + β

)
− f(x)

∣∣∣∣
≤ 4 ‖f − g‖+

(
δ(α,β)
n,q

)2 ‖g′′‖+

∣∣∣∣f ( [n]2qx+ α[n− 1]q

([n]q + β)[n− 1]q

)
− f(x)

∣∣∣∣.
Hence, taking infimum on the right hand side over all g ∈ C2

B[0,∞) and using

(0.7.2), we get the required result.
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Theorem 6.3.5. Let f ∈ D2[0,∞), qn ∈ (0, 1) and ω (f ; δ, [0, b+ 1]) be its modulus

of continuity on the finite interval [0, b+ 1] ⊂ [0,∞), where b > 0. Then, for every

n > 2,

|B(α,β)
n,qn (f ;x)− f(x)| ≤ 4Mf (1 + b2)γ(α,β)

n,qn (x) + 2ω

(
f ;

√
γ

(α,β)
n,qn (x), [0, b+ 1]

)
,

where γ
(α,β)
n,qn (x) is defined in Remark 6.

Proof. From [87], for x ∈ [0, b] and t ∈ [0,∞), we get

|f(t)− f(x)| ≤ 4Mf (1 + b2)(t− x)2 +

(
1 +
|t− x|
δ

)
ω (f ; δ, [0, b+ 1]) , δ > 0.

Thus, by applying the Cauchy-Schwarz inequality, we have

|B(α,β)
n,qn (f ;x)− f(x)|

≤ 4Mf (1 + b2)(B(α,β)
n,qn (t− x)2;x) + ω (f ; δ, [0, b+ 1])

(
1 +

1

δ

(
B(α,β)
n,qn (t− x)2;x

) 1
2

)
= 4Mf (1 + b2)γ(α,β)

n,qn (x) + 2ω

(
f ;

√
γ

(α,β)
n,qn (x), [0, b+ 1]

)
,

on choosing δ =

√
γ

(α,β)
n,qn (x). This completes the proof of the theorem.

6.3.2 Weighted approximation.

Throughout the section, we assume that {qn} is a sequence in (0, 1) such that

qn → 1 and qnn → 0 as n→∞.

Theorem 6.3.6. For each f ∈ D∗2[0,∞), we have

lim
n→∞

∥∥B(α,β)
n,qn (f)− f

∥∥
2

= 0.

Proof. Making use of the Korovkin type theorem on weighted approximation [50],

we see that it is sufficient to verify the following three conditions

(6.3.11) lim
n→∞

∥∥B(α,β)
n,qn (tk;x)− xk)

∥∥
2

= 0, k = 0, 1, 2.

Since B
(α,β)
n,qn (1;x) = 1, the condition in (6.3.11) holds for k = 0.

By Lemma 6.2.2, we have for n > 1∥∥B(α,β)
n,qn (t;x)− x

∥∥
2
≤

∣∣∣∣ [n]qnq
n−1
n − β[n− 1]qn

([n]qn + β)[n− 1]qn

∣∣∣∣ sup
x∈[0,∞)

x

1 + x2
+

α

[n]qn + β
sup

x∈[0,∞)

1

1 + x2

≤
∣∣∣∣ [n]qnq

n−1
n − β[n− 1]qn

([n]qn + β)[n− 1]qn

∣∣∣∣+
α

[n]qn + β
,
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which implies that the condition in (6.3.11) holds for k = 1.

Similarly, we can write for n > 2∥∥∥B(α,β)
n,qn (t2;x)− x2

∥∥∥
2

≤
∣∣∣∣ qn[n]2qn
[n− 1]qn [n− 2]qn

+
2α

[n− 1]qn
− 1

∣∣∣∣+
[2]qn [n]qn

qn[n− 1]qn [n− 2]qn
+

α2

([n]qn + β)2
,

which implies that lim
n→∞

∥∥B(α,β)
n,qn (t2;x)− x2

∥∥
2

= 0, (6.3.11) holds for k = 2.

Now, we present a weighted approximation theorem for functions in D∗2[0,∞).

Theorem 6.3.7. For each f ∈ D∗2[0,∞) and d > 0, we have

lim
n→∞

sup
x∈[0,∞)

|B(α,β)
n,qn (f ;x)− f(x)|

(1 + x2)1+d
= 0.

Proof. Let x0 ∈ [0,∞) be arbitrary but fixed. Then

sup
x∈[0,∞)

|B(α,β)
n,qn (f ;x)− f(x)|

(1 + x2)1+d
≤ sup

x≤x0

|B(α,β)
n,qn (f ;x)− f(x)|

(1 + x2)1+d
+ sup

x>x0

|B(α,β)
n,qn (f ;x)− f(x)|

(1 + x2)1+d

≤
∥∥B(α,β)

n,qn (f)− f
∥∥
C[0,x0]

+ ‖f‖2 sup
x>x0

|B(α,β)
n,qn (1 + t2;x)|
(1 + x2)1+d

+ sup
x>x0

|f(x)|
(1 + x2)1+d

.(6.3.12)

Since |f(x)| ≤ ‖f‖2 (1 + x2), we have sup
x>x0

|f(x)|
(1 + x2)1+d

≤ ‖f‖2

(1 + x2
0)d

.

Let ε > 0 be arbitrary. We can choose x0 to be so large that

‖f‖2

(1 + x2
0)d

<
ε

3
.(6.3.13)

In view of Theorem 6.3.1, we obtain

‖f‖2 lim
n→∞

|B(α,β)
n,qn (1 + t2;x)|
(1 + x2)1+d

=
1 + x2

(1 + x2)1+d
‖f‖2

=
‖f‖2

(1 + x2)d
≤ ‖f‖2

(1 + x2
0)d

<
ε

3
.(6.3.14)

Using Theorem 6.3.5, we can see that the first term of the inequality (6.3.12), implies

that

(6.3.15)
∥∥B(α,β)

n,qn (f)− f
∥∥
C[0,x0]

<
ε

3
, as n→∞.

Combining (6.3.13)-(6.3.15), we get the desired result.



127

Theorem 6.3.8. If f ∈ D∗2[0,∞), then we have

|B(α,β)
n,qn (f ;x)− f(x)| ≤ C(1 + x2+λ)Ω2(f, δn), x ∈ [0,∞),

where λ ≥ 1, δ2
n = max{αn, βn, γn}, αn, βn, γn being

(
qn[n]4qn + 2α[n− 2]qn [n]2qn

[n− 1]qn [n− 2]qn([n]qn + β)2
+

1

)
,

(
2[n]3qn

qn[n− 1]qn [n− 2]qn([n]qn + β)2

)
and

α2

([n]qn + β)2
, respectively and C is a pos-

itive constant independent of f and n.

Proof. From the definition of Ω2(f, δ) and Lemma 0.7.1, we have

|f(t)− f(x)| ≤ (1 + (x+ |t− x|)2)

(
1 +
|t− x|
δ

)
Ω2(f, δ)

≤ (1 + (2x+ t)2)

(
1 +
|t− x|
δ

)
Ω2(f, δ)

:= φx(t)

(
1 +

1

δ
ψx(t)

)
Ω2(f, δ),

where φx(t) = 1 + (2x+ t)2 and ψx(t) = |t− x|. Then we obtain

|B(α,β)
n,qn (f ;x)− f(x)| ≤

(
B(α,β)
n,qn (φx;x) +

1

δn
B(α,β)
n,qn (φxψx;x)

)
Ω2(f, δn).

Now, applying the Cauchy-Schwarz inequality to the second term on the right hand

side, we get |B(α,β)
n,qn (f ;x)− f(x)|

≤
(
B(α,β)
n,qn (φx;x) +

1

δn

√
B

(α,β)
n,qn (φ2

x;x)

√
B

(α,β)
n,qn (ψ2

x;x)

)
Ω2(f, δn).(6.3.16)

From Lemma 6.2.2,

1

1 + x2
B(α,β)
n,qn (1 + t2;x) =

1

1 + x2
+

(
qn[n]4qn + 2α[n− 2]qn [n]2qn

[n− 1]qn [n− 2]qn([n]qn + β)2

)
x2

1 + x2

+
[2]qn [n]3qn

qn[n− 1]qn [n− 2]qn([n]qn + β)2

x

1 + x2
+

α2

([n]qn + β)2

1

1 + x2

≤ 1 + C1, where C1 is a positive constant.(6.3.17)

From (6.3.17), there exists a positive constant C2 such that

B(α,β)
n,qn (φx;x) ≤ C2(1 + x2).

Proceeding similarly,
1

1 + x4
B

(α,β)
n,qn (1+t4;x) ≤ 1+C3, where C3 is a positive constant.

So there exists a positive constant C4, such that

√
B

(α,β)
n,qn (φ2

x;x) ≤ C4(1 + x2),
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where x ∈ [0,∞). Also, we get

B(α,β)
n,qn (ψ2

x;x) =

{
qn[n]4qn + 2α[n− 2]qn [n]2qn

[n− 1]qn [n− 2]qn([n]qn + β)2
+ 1−

2[n]2qn
([n]qn + β)[n− 1]qn

}
x2

+

{
2[n]3qn

qn[n− 1]qn [n− 2]qn([n]qn + β)2
− 2α

[n]qn + β

}
x+

α2

([n]qn + β)2

≤ αnx
2 + βnx+ γn.

Hence, from (6.3.16), we have

|B(α,β)
n,qn (f ;x)− f(x)| ≤ (1 + x2)

(
C2 +

1

δn
C4

√
αnx2 + βnx+ γn

)
Ω2(f, δn).

If we take δ2
n = max{αn, βn, γn}, then we get

|B(α,β)
n,qn (f ;x)− f(x)| ≤ (1 + x2)

(
C2 + C4

√
x2 + x+ 1

)
Ω2(f, δn)

≤ C5(1 + x2+λ)Ω2(f, δn), x ∈ [0,∞).

Hence, the proof is completed.

Next, we obtain the local direct estimate of the operators defined in (6.1.2), using

the Lipschitz-type maximal function of order τ.

Theorem 6.3.9. Let f ∈ CB[0,∞) and 0 < τ ≤ 1. Then, for all x ∈ [0,∞) we

have

|B(α,β)
n,q (f ;x)− f(x)| ≤ ω̂τ (f, x)

(
γ(α,β)
n,q (x)

)τ/2
.

Proof. From (0.7.3), we have

|B(α,β)
n,q (f ;x)− f(x)| ≤ ω̂τ (f, x)B(α,β)

n,q (|t− x|τ ;x).

Applying Hölder’s inequality with p =
2

τ
and

1

q
= 1− 1

p
, we get

|B(α,β)
n,q (f ;x)− f(x)| ≤ ω̂τ (f, x)(B(α,β)

n,q (t− x)2;x)
τ
2 = ω̂τ (f, x)

(
γ(α,β)
n,q (x)

)τ/2
.

Thus, the proof is completed.

6.3.3 Statistical convergence

Let qn ∈ (0, 1) be a sequence such that

(6.3.18) stA − lim
n
qn = 1, stA − lim

n
qnn = a(a < 1) and stA − lim

n

1

[n]qn
= 0.
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Theorem 6.3.10. Let A = (ank) be a non-negative regular summability matrix and

(qn) be a sequence satisfying (6.3.18). Then, for any compact set K ⊂ [0,∞) and

for each function f ∈ C(K), we have

stA − lim
n

∥∥B(α,β)
n,qn (f ; .)− f

∥∥ = 0.

Proof. Let x0 = max
x∈K

x. From Lemma 6.2.2, stA− lim
n

∥∥B(α,β)
n,qn (e0; .)− e0

∥∥ = 0. Again,

by Lemma 6.2.2, we have

sup
x∈K
|B(α,β)

n,qn (e1;x)− e1(x)| ≤
∣∣∣∣ [n]2qn
([n]qn + β)[n− 1]qn

− 1

∣∣∣∣x0 +
α

[n]qn + β
.

For ε > 0, let us define the following sets:

F :=

{
k :
∥∥∥B(α,β)

k,qk
(e1; .)− e1

∥∥∥ ≥ ε

}
F1 :=

{
k :

∣∣∣∣ [k]2qk
([k]qk + β)[k − 1]qk

− 1

∣∣∣∣ ≥ ε

2

}
F2 :=

{
k :

α

[k]qk + β
≥ ε

2

}
,

which implies that F ⊆ F1 ∪ F2 and hence for all n ∈ N, we obtain∑
k∈F

ank ≤
∑
k∈F1

ank +
∑
k∈F2

ank.

Hence, taking the limit as n→∞, we have stA − lim
n

∥∥B(α,β)
n,qn (e1; .)− e1

∥∥ = 0.

Similarly, by using Lemma 6.2.2, we have

sup
x∈K
|B(α,β)

n,qn (e2;x)− e2(x)| ≤
∣∣∣∣ qn[n]4qn + 2α[n− 2]qn
[n− 1]qn [n− 2]qn([n]qn + β)2

− 1

∣∣∣∣x2
0

+
[2]qn [n]3qn

qn[n− 1]qn [n− 1]qn([n]qn + β)2
x0 +

α2

([n]qn + β)2
.

Now, let us define the following sets:

G :=

{
k :
∥∥∥B(α,β)

k,qk
(e2; .)− e2

∥∥∥ ≥ ε

}
G1 :=

{
k :

∣∣∣∣ qk[k]4qk + 2α[k − 2]qk
[k − 1]qk [k − 2]qk([k]qk + β)2

− 1

∣∣∣∣ ≥ ε

3

}
G2 :=

{
k :

[2]qk [k]3qk
qk[k − 1]qk [k − 1]qk([k]qk + β)2

≥ ε

3

}
G3 :=

{
k :

α2

([k]qk + β)2
≥ ε

3

}
.
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Then, we obtain G ⊆ G1 ∪G2 ∪G3, which implies that∑
k∈G

ank ≤
∑
k∈G1

ank +
∑
k∈G2

ank +
∑
k∈G3

ank.

Thus, as n→∞ we get stA − lim
n

∥∥B(α,β)
n,qn (e2;.)− e2

∥∥ = 0. This completes the proof.

Theorem 6.3.11. Let A = (ank) be a non-negative regular summability matrix and

(qn) be a sequence in (0, 1) satisfying (6.3.18). Let the operators B
(α,β)
n,qn , n ∈ N, be

defined as in (6.1.2). Then, for each function f ∈ D∗2[0,∞), we have

stA − lim
n

∥∥B(α,β)
n,qn (f ; .)− f

∥∥
ζ+2

= 0, ζ > 0.

Proof. From ([42], p. 191, Th. 3), it is sufficient to prove that

stA − lim
n

∥∥B(α,β)
n,qn (ei; .)− ei

∥∥
2

= 0, where ei(x) = xi, i = 0, 1, 2.

From Lemma 6.2.2, stA − lim
n

∥∥B(α,β)
n,qn (e0; .)− e0

∥∥
2

= 0 holds.

Again using Lemma 6.2.2, we have∥∥B(α,β)
n,qn (e1; .)− e1

∥∥
2
≤ sup

x∈[0,∞)

{
x

(1 + x2)

∣∣∣∣ [n]2qn
([n]qn + β)[n− 1]qn

− 1

∣∣∣∣+
1

(1 + x2)

α

([n]qn + β)

}
≤

∣∣∣∣ [n]2qn
([n]qn + β)[n− 1]qn

− 1

∣∣∣∣+
α

([n]qn + β)
.(6.3.19)

For each ε > 0, let us define the following sets:

R :=

{
k :
∥∥∥B(α,β)

k,qk
(e1; .)− e1

∥∥∥
2
≥ ε

}
R1 :=

{
k :

∣∣∣∣ [k]2qk
([k]qk + β)[k − 1]qk

− 1

∣∣∣∣ ≥ ε

2

}
R2 :=

{
k :

α

[k]qk + β
≥ ε

2

}
,

which yields R ⊆ R1 ∪R2 in view of (6.3.19), we have∑
k∈R

ank ≤
∑
k∈R1

ank +
∑
k∈R2

ank.

Hence, on taking the limit as n→∞, stA − lim
n

∥∥B(α,β)
n,qn (e1; .)− e1

∥∥
2

= 0.

Proceeding similarly,∥∥B(α,β)
n,qn (e2; .)− e2

∥∥
2
≤

∣∣∣∣ qn[n]4qn + 2α[n− 2]qn
[n− 1]qn [n− 2]qn([n]qn + β)2

− 1

∣∣∣∣
+

[2]qn [n]3qn
qn[n− 1]qn [n− 1]qn([n]qn + β)2

+
α2

([n]qn + β)2
.
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Now, let us define the following sets:

M :=

{
k :
∥∥∥B(α,β)

k,qk
(e2; .)− e2

∥∥∥
2
≥ ε

}
M1 :=

{
k :

∣∣∣∣ qk[k]4qk + 2α[k − 2]qk
[k − 1]qk [k − 2]qk([k]qk + β)2

− 1

∣∣∣∣ ≥ ε

3

}
M2 :=

{
k :

[2]qk [k]3qk
qk[k − 1]qk [k − 1]qk([k]qk + β)2

≥ ε

3

}
M3 :=

{
k :

α2

([k]qk + β)2
≥ ε

3

}
.

Then, we obtain M ⊆M1 ∪M2 ∪M3, which implies that∑
k∈M

ank ≤
∑
k∈M1

ank +
∑
k∈M2

ank +
∑
k∈M3

ank.

Hence, taking the limit as n → ∞ we get stA − lim
n

∥∥B(α,β)
n,qn (e2;.)− e2

∥∥
2

= 0. This

completes the proof of the theorem.

6.4 Better Estimates

We propose a modification of the operators B
(α,β)
n,q (f ;x) defined in (6.1.2), so that it

can preserve constant as well as linear functions.

The modification of the operators given in (6.1.2) is defined as

B̃(α,β)
n,q (f ;x) =

∞∑
ν=1

qn,ν(r
q
n(x))qν−1

∫ ∞/A
0

bn,ν−1(q, t)f

(
qν [n]qt+ α

[n]q + β

)
dqt

+Eq

(
− [n]q r

q
n(x)

)
f

(
α

[n]q + β

)
,

where rqn(x) =
([n]q + β)[n− 1]qx− α[n− 1]q

[n]2q
for x ∈ In =

[
α

[n]q+β
,∞
)

and

n > 1.

Lemma 6.4.1. For each x ∈ In, by simple computations, we have

(i) B̃
(α,β)
n,q (1;x) = 1;

(ii) B̃
(α,β)
n,q (t;x) = x;

(iii) B̃
(α,β)
n,q (t2;x) =

[n− 1]q(q[n]2q + 2α[n− 2]q)

[n− 2]q[n]2q
x2+

[2]q[n]3q − 2qα[n− 1]q(q[n]2q + 2α[n− 2]q)

q([n]q + β)[n− 2]q[n]2q
x

+
α2[n]2q(q[n− 1]q + [n− 2]q) + 2α3[n− 1]q[n− 2]q

([n]q + β)2[n]2q[n− 2]q
, for n > 2.
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Consequently, for each x ∈ In , we have the following equalities

B̃(α,β)
n,q (t− x;x) = 0;

B̃(α,β)
n,q ((t− x)2;x) =

[n]2q(q[n− 1]q − [n− 2]q) + 2α[n− 1]q[n− 2]q

[n− 2]q[n]2q
x2

+
[2]q[n]3q − 2qα[n− 1]q(q[n]2q − 2α[n− 2]q)

q([n]q + β)[n− 2]q[n]2q
x

+
α2[n]2q(q[n− 1]q + [n− 2]q) + 2α[n− 1]q[n− 2]q

([n]q + β)2[n]2q[n− 2]q
, for n > 2.

:= ξ(α,β)
n,q (x), say.(6.4.1)

Theorem 6.4.2. Let f ∈ CB[0,∞) and x ∈ In. Then, there exists a positive constant

C such that

|B̃(α,β)
n,q (f ;x)− f(x)| ≤ Cω2

(
f ;

√
ξ

(α,β)
n,q (x)

)
,

where ξ
(α,β)
n,q (x) is given by (6.4.1).

Proof. Let g ∈ C2
B[0,∞), x ∈ In and t ∈ [0,∞). Using Taylor’s expansion we have

g(t) = g(x) + (t− x)g′(x) +

∫ t

x

(t− u)g′′(u)du.

Applying B̃
(α,β)
n,q on both sides and using Lemma 6.4.1, we get

B̃(α,β)
n,q (g;x)− g(x) = B̃(α,β)

n,q ((t− x);x)g′(x) + B̃(α,β)
n,q

(∫ t

x

(t− u)g′′(u)du;x

)
.

Obviously, we have
∣∣∣∫ tx(t− u)2g′′(u)du

∣∣∣ ≤ (t− x)2‖g′′‖. Therefore

| B̃(α,β)
n,q (g;x)− g(x) |≤ B̃(α,β)

n,q ((t− x)2;x) ‖g′′‖ = ξ(α,β)
n,q (x) ‖g′′‖ .

Since | B̃(α,β)
n,q (f ;x) |≤ ‖f‖, we get

| B̃(α,β)
n,q (f ;x)− f(x) | ≤ | B̃(α,β)

n,q (f − g;x) | + | (f − g)(x) | + | B̃(α,β)
n,q (g;x)− g(x) |

≤ 2‖f − g‖+ ξ(α,β)
n,q (x)‖g′′‖.

Finally, taking the infimum over all g ∈ C2
B[0,∞) and using (0.7.1), (0.7.2) we obtain

| B̃(α,β)
n,q (f ;x)− f(x) |≤ Cω2

(
f ;

√
ξ

(α,β)
n,q (x)

)
,

which proves the theorem.



Chapter 7

Approximation by complex

Szász-Durrmeyer-Chlodowsky

operators in compact disks

7.1 Introduction

For a real function of real variable f : [0,∞) → R, İzgi [91] introduced the fol-

lowing composition of Szász-Mirakjan operators by taking the weight function of

Chlodowsky-Durrmeyer operators on C[0,∞) as

(Fnf) (x) =
n+ 1

bn

∞∑
k=0

pn,k

(
x

bn

)∫ bn

0

φn,k

(
t

bn

)
f(t)dt, 0 ≤ x ≤ bn,(7.1.1)

where pn,k(x) = e−nx
(nx)k

k!
, φn,k(t) =

(
n

k

)
tk(1 − t)n−k and bn is a sequence of

positive real numbers which satisfy lim
n→∞

bn =∞, lim
n→∞

bn
n

= 0.

In the present chapter, we extend some overconvergence properties of the Szász-

Durrmeyer-Chlodowsky operators to complex domain. The complex Szász-Durrmeyer-

Chlodowsky operators are obtained from the real version, simply by replacing the

real variable x by the complex variable z in the operators defined by (7.1.1), which

is given below:

(Fnf) (z) =
n+ 1

bn

∞∑
k=0

pn,k

(
z

bn

)∫ bn

0

φn,k

(
t

bn

)
f(t)dt,(7.1.2)

133
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where z ∈ C is such that 0 ≤ Re(z) ≤ bn.

Throughout the chapter, we consider DR := {z ∈ C : |z| < R}, R > 1. By

HR, we mean the class of all functions satisfying: f : [R, bn] ∪ DR → C is con-

tinuous in [R, bn] ∪ DR, analytic in DR i.e. f(z) =
∞∑
p=0

cpz
p for all z ∈ DR. Let

1 ≤ r < R and ‖ f ‖r= sup
|z|≤r
|f(z)|. In this chapter, we present rate of convergence,

Voronovskaja type result for the Szász-Durrmeyer-Chlodowsky operators Fn(f ; z)

for analytic functions on compact disks and also study the exact order of approxi-

mation for these operators.

7.2 Auxiliary Results

In order to obtain the main results, we first prove basic lemmas:

Lemma 7.2.1. Denoting ep(z) = zp and Πn,p(z) = Fn(ep; z), for all ep = tp, p ∈
N0, n ∈ N and z ∈ C, we have Fn(e0; z) = 1 and

Πn,p+1(z) =
bnz

n+ p+ 2
Π′n,p(z) +

nz + (p+ 1)bn
n+ p+ 2

Πn,p(z).

Also, Πn,p(z) is a polynomial of degree p.

Proof. Using bnz p
′
n,k

(
z

bn

)
= (kbn − nz) pn,k

(
z

bn

)
, we have

bnz Π′n,p(z) =
n+ 1

bn

∞∑
k=0

bnz p
′
n,k

(
z

bn

)∫ bn

0

φn,k

(
t

bn

)
tp dt

=
n+ 1

bn

∞∑
k=0

(kbn − nz) pn,k

(
z

bn

)∫ bn

0

φn,k

(
t

bn

)
tp dt

=
n+ 1

bn

∞∑
k=0

pn,k

(
z

bn

)∫ bn

0

{(k + 1)bn − (n+ 1)t+ (n+ 1)t− bn − nz)} φn,k
(
t

bn

)
tp dt.

Using the identity (bn − t)
(
tφn,k

(
t

bn

))′
= {(k + 1)bn − (n + 1)t}

(
φn,k

(
t

bn

))
,
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we obtain

bnz Π′n,p(z) =
n+ 1

bn

∞∑
k=0

pn,k

(
z

bn

)∫ bn

0

{(k + 1)bn − (n+ 1)t}
(
φn,k

(
t

bn

))
tp dt

+(n+ 1) Πn,p+1(z)− (nz + bn) Πn,p(z)

=
n+ 1

bn

∞∑
k=0

pn,k

(
z

bn

)∫ bn

0

(bn − t)
(
tφn,k

(
t

bn

))′
tp dt

+(n+ 1) Πn,p+1(z)− (nz + bn) Πn,p(z).

Thus integrating by parts on the right side, we get

bnzΠ′n,p(z) = −pbn Πn,p(z) + (p+ 1) Πn,p+1(z) + (n+ 1) Πn,p+1(z)− (nz + bn) Πn,p(z)

= (n+ p+ 2) Πn,p+1(z)− (nz + (p+ 1)bn) Πn,p(z),

which completes the proof of the recurrence relation. Further, by mathematical

induction on p, we easily get that Πn,p(z) is a polynomial of degree p.

Lemma 7.2.2. Let f ∈ HR and be bounded and integrable on [0, bn]. Suppose that

f(z) =
∞∑
p=0

cpz
p for all z ∈ DR and 1 ≤ r < R. Then for all |z| ≤ r and n ∈ N, we

have

Fn(f ; z) =
∞∑
p=0

cpFn(ep; z).

Proof. For any m ∈ N and r < R, we define fm(z) =
m∑
p=0

cpz
p if |z| ≤ r and

fm(x) = f(x) if x ∈ (r, bn]. Since |fm(z)| ≤
∞∑
p=0

|cp|rp = Cr for |z| ≤ r, m ∈ N and

fm is bounded and integrable on [0, bn]

|Fn(fm; z)| ≤ n+ 1

bn

∞∑
k=0

∣∣∣∣pn,k ( z

bn

)∣∣∣∣ ∫ bn

0

φn,k

(
t

bn

)
|fm(t)| dt <∞.

Thus, Fn(fm; z) is well defined and an analytic function of z.

Similarly, for the function f, it follows that Fn(f ; z) is also well defined and it is an

analytic function of z.

Further, we assume that fm,p(z) = cpep(z) if |z| ≤ r and fm,p(x) = f(x)
m+1

if x ∈ (r, bn].

Let |z| ≤ r and 1 ≤ r < R.
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Defining fm(z) =
m∑
p=0

fm,p(z), by the linearity of Fn, it follows that

Fn(fm; z) =
m∑
p=0

cpFn(ep; z) for all |z| ≤ r and m, n ∈ N.

It is sufficient to prove that for any fixed n ∈ N

lim
m→∞

Fn(fm; z) = Fn(f ; z),

uniformly in compact disk |z| ≤ r.

But this is immediate from lim
m→∞

‖fm − f‖r = 0, from ‖fm − f‖B[0,∞) ≤ ‖fm − f‖r
and from the inequality

|Fn(fm; z)−Fn(f ; z)|

≤ n+ 1

bn

∞∑
k=0

∣∣∣∣pn,k ( z

bn

)∣∣∣∣ ∫ bn

0

φn,k

(
t

bn

)
|fm(t)− f(t)|dt

≤ ‖ fm − f ‖r
∞∑
k=0

∣∣∣∣pn,k ( z

bn

)∣∣∣∣
≤ ‖ fm − f ‖r

∞∑
k=0

∣∣∣∣∣∣∣
e
−nz
bn

(
nz
bn

)k
k!

∣∣∣∣∣∣∣
≤ ‖ fm − f ‖r

∣∣∣e−nzbn

∣∣∣ ∞∑
k=0

(n|z|)k

k!(bn)k

≤ ‖ fm − f ‖r
∣∣∣e−nzbn

∣∣∣ en|z|bn ≤Mr,n ‖ fm − f ‖r

valid for all |z| ≤ r, where ‖ . ‖B[0,∞) denotes the uniform norm on [0,∞). Thus, as

m→∞, we get the required result.

7.3 Main Results

7.3.1 Upper estimates

In the following theorem, we obtain an upper estimate of the error in the approxi-

mation of an analytic function by the operators (7.1.2) in a compact disk.

Theorem 7.3.1. Let f : [R, bn]∪DR → C be continuous in [R, bn]∪DR and analytic

in DR. Further, let f be bounded and integrable in [0, bn]. Suppose that there exists
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M > 0 and A ∈
(

1
R
, 1
)

with the property |cp| ≤
MAp

(2p)!
, ∀ p ∈ N0. Let 1 ≤ r < 1

A
be

arbitrary but fixed then for all |z| ≤ r and n ≥ n0, n0 ∈ N, we have

|Fn(f ; z)− f(z)| ≤ Cr,A(f)
bn + 1

n+ 2
, where Cr,A(f) = M

∞∑
p=1

(Ar)p <∞.

Proof. By using the recurrence relation of Lemma 7.2.1, we have

Πn,p+1(z) =
bnz

n+ p+ 2
Π′n,p(z) +

nz + (p+ 1)bn
n+ p+ 2

Πn,p(z), ∀z ∈ C, p ∈ N0, n ∈ N.

From this we immediately get the recurrence formula

Πn,p(z)− zp =
bnz

n+ p+ 1

(
Πn,p−1(z)− zp−1

)′
+
nz + pbn
n+ p+ 1

(
Πn,p−1(z)− zp−1

)
+

(2p− 1)bn − (p+ 1)z

n+ p+ 1
zp−1, ∀z ∈ C, p, n ∈ N.

Now, for 1 ≤ r < R, by linear transformation the Bernstein’s inequality in the closed

unit disk becomes P ′p(z) ≤ p
r
‖Pp‖r, for all |z| ≤ r, where Pp(z) is a polynomial of

degree ≤ p. Thus, from the above recurrence relation, we get

‖Πn,p − ep‖r ≤
bnr

n+ p+ 1
‖Πn,p−1 − ep−1‖r

p− 1

r
+
nr + pbn
n+ p+ 1

‖Πn,p−1 − ep−1‖r

+
(2p− 1)bn + (p+ 1)r

n+ p+ 1
rp−1

≤
(
r +

(2p− 1)bn
n+ 2

)
‖Πn,p−1 − ep−1‖r +

(2p− 1)bn + (p+ 1)r

n+ 2
rp−1

≤
(
r +

(2p− 1)bn
n+ 2

)
‖Πn,p−1 − ep−1‖r +

2p(bn + 1)rp

n+ 2
.

In what follows we prove the result by mathematical induction with respect to p,

that this recurrence relation implies

‖Πn,p − ep‖r ≤
(2p)!rp(bn + 1)

n+ 2
, for all p ∈ N, n ≥ n0, n0 ∈ N.

Indeed for p = 1 and n ≥ n0, n0 ∈ N, the left hand side is
bn + 2r

n+ 2
and the right

hand side is
2r(bn + 2)

n+ 2
. Suppose that it is valid for p, the above recurrence relation

implies that

‖Πn,p+1 − ep+1‖r ≤
(
r +

(2p+ 1)bn
n+ 2

)
(2p)!rp(bn + 1)

n+ 2
+ (2p+ 2)rp+1 bn + 1

n+ 2
,
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it remains to prove that(
r +

(2p+ 1)bn
n+ 2

)
(2p)!rp(bn + 1)

n+ 2
+ (2p+ 2)rp+1 bn + 1

n+ 2
≤ (2p+ 2)!rp+1(bn + 1)

n+ 2

or (
r +

(2p+ 1)bn
n+ 2

)
(2p)! + (2p+ 2)r ≤ (2p+ 2)!r.

It is easy to see by mathematical induction that this last inequality holds true for

all p ≥ 1 and n ≥ n0, n0 ∈ N. From the hypothesis on f, by Lemma 7.2.2 we can

write

Fn(f ; z) =
∞∑
p=0

cpFn(ep; z) =
∞∑
p=0

cpΠn,p(z), for all z ∈ DR, n ∈ N,

which from the hypothesis on cp immediately implies for all |z| ≤ r with

Re(z) ≤ bn, n ∈ N with n ≥ n0, n0 ∈ N

|Fn(f ; z)− f(z)| ≤
∞∑
p=1

|cp||Πn,p(z)− ep(z)| ≤
∞∑
p=1

M(Ar)p(bn + 1)

n+ 2
= Cr,A(f)

(bn + 1)

n+ 2
,

where Cr,A(f) = M
∞∑
p=1

(Ar)p <∞ for all 1 ≤ r < 1
A
, by ratio test. Thus, the proof

is completed.

7.3.2 Voronovskaja-type result

In the following theorem we obtain a quantitative Voronovskaja-type result:

Theorem 7.3.2. Let f ∈ HR and be bounded and integrable on [0, bn] and suppose

that there exists M > 0 and A ∈
(

1
R
, 1
)

with the property |cp| ≤
MAp

(2p)!
. Let 1 ≤ r < 1

A

be arbitrary but fixed then for all |z| ≤ r and p ∈ N0, n ≥ n0, n0 ∈ N, we have∣∣∣∣Fn(f ; z)− f(z)− bn
n+ 2

((
1− 2z

bn

)
f ′(z) + z

(
1− z

2bn

)
f ′′(z)

)∣∣∣∣ ≤ Lr,A(f)
(bn + 1)2

(n+ 2)2
,

where Lr,A(f) =
2M

(1− Ar) log 1
Ar

+ 4M

[α]∑
p=1

p(Ar)p <∞.
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Proof. By using Lemma 7.2.2, we may write Fn(f ; z) =
∞∑
p=0

cpFn(ep; z) and

bn
n+ 2

((
1− 2z

bn

)
f ′(z) + z

(
1− z

2bn

)
f ′′(z)

)
=

bn
n+ 2

∞∑
p=1

cp

(
p2zp−1 − p2 + 3p

2bn
zp
)
.

Defining Πn,p(z) = Fn(ep)(z), we get∣∣∣∣Fn(f ; z)− f(z)− bn
n+ 2

((
1− 2z

bn

)
f ′(z) + z

(
1− z

2bn

)
f ′′(z)

)∣∣∣∣
≤

∞∑
p=1

|cp|
∣∣∣∣Πn,p(z)− ep(z)− bn

n+ 2

(
p2ep−1(z)− p2 + 3p

2bn
ep(z)

)∣∣∣∣ ,
for all z ∈ DR, n ∈ N. Now, by applying Lemma 7.2.1, we get the following recur-

rence relation

Πn,p(z) =
bnz

n+ p+ 1
Π′n,p−1(z) +

nz + pbn
n+ p+ 1

Πn,p−1(z).

Let us denote

En,p(z) = Πn,p(z)− ep(z)− bn
n+ 2

(
p2ep−1(z)− p2 + 3p

2bn
ep(z)

)
.

Then,

En,p(z) =
bnz

n+ p+ 1
E ′n,p−1(z) +

nz + pbn
n+ p+ 1

En,p−1(z) + Xn,p(z),(7.3.1)

where

Xn,p(z)

=
1

2(n+ p+ 1)(n+ 2)

(
zp−2b2

n{2(p− 1)2(p− 2) + 2p(p− 1)2}

+zp−1bn{(n+ 2)(4p− 2) + 2n(p− 1)2 − 2(n+ p+ 1)p2 − (p− 1)(2p2 + p− 2)}

+zp{2n(n+ 2)− 2(n+ p+ 1)(n+ 2)− n(p− 1)2 − 3n(p− 1) + (p2 + 3p)(n+ p+ 1)}
)

=
1

2(n+ p+ 1)(n+ 2)

(
zp−2b2

n{4(p− 1)3} − zp−1bn{4p3 + p2 − 10p+ 6}

+zp{(p+ 1)(p2 + 3p− 4)}
)
.

Hence

|Xn,p(z)| ≤ 2(bn + 1)2(p+ 1)3

(n+ 2)2
rp, ∀ n ∈ N.(7.3.2)
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It is immediate that En,p(z) is a polynomial in z of degree ≤ p and that

En,0(z) = 0. Combining (7.3.1) and (7.3.2), we have

|En,p(z)| ≤ bnr

n+ 2
|E ′n,p−1(z)|+

(
r +

pbn
n+ 2

)
|En,p−1(z)|+ 2(bn + 1)2(p+ 1)3

(n+ 2)2
rp.

Now, we shall find the estimate of E ′n,p−1(z) for p ≥ 1. Taking into account the fact

that En,p−1(z) is a polynomial of degree ≤ p− 1, we have

|E ′n,p−1(z)| ≤ p− 1

r
‖En,p−1‖r ≤

p− 1

r

(
‖Πn,p−1 − ep−1‖r

+

∥∥∥∥ bn
n+ 2

(
(p− 1)2ep−2(z)− (p− 1)2 + 3(p− 1)

2bn
ep−1(z)

)∥∥∥∥
r

)
≤ p− 1

r

(
(2p− 2)!rp−1(bn + 1)

n+ 2
+

2(p− 1)2bn + (p− 1)(p+ 2)

2(n+ 2)
rp−1

)
≤ 2(2p− 2)!(p− 1)rp−2(bn + 1)

n+ 2
, ∀ n ∈ N.

Thus

rbn
n+ 2

|E ′n,p−1(z)| ≤ 2(2p− 2)!(p− 1)rp−1(bn + 1)2

(n+ 2)2
, ∀ n ∈ N

and

|En,p(z)|

≤
(
r +

pbn
n+ 2

)
|En,p−1(z)|+ 2(2p− 2)!(p− 1)rp−1(bn + 1)2

(n+ 2)2
+

2(bn + 1)2(p+ 1)3

(n+ 2)2
rp

≤
(
r +

pbn
n+ 2

)
|En,p−1(z)|+ 4(2p)!rp(bn + 1)2

(n+ 2)2
, for all |z| ≤ r and n ∈ N.

For 1 ≤ p ≤ n+ 2

bn
= α (say) and |z| ≤ r, taking into account that (r + pα) ≤ (r+1),

we have

|En,p(z)| ≤ (r + 1)|En,p−1(z)|+ 4(2p)!rp(bn + 1)2

(n+ 2)2
.

But En,0(z) = 0, for any z ∈ C, therefore by writing the inequality for 1 ≤ p ≤ α,

we easily obtain step by step the following

|En,p(z)| ≤ 4rp(bn + 1)2

(n+ 2)2

p∑
j=1

(2j)! ≤ 4p(2p)!rp(bn + 1)2

(n+ 2)2
.
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Denoting by [α] the integral part of α, it follows that∣∣∣∣Fn(f ; z)− f(z)− bn
n+ 2

((
1− 2z

bn

)
f ′(z) + z

(
1− z

2bn

)
f ′′(z)

)∣∣∣∣
≤

[α]∑
p=1

|cp||En,p(z)|+
∞∑

p=[α]+1

|cp||En,p(z)|

≤
[α]∑
p=1

|cp|
4p(2p)!rp(bn + 1)2

(n+ 2)2
+

∞∑
p=[α]+1

|cp||En,p(z)|

≤ 4M(bn + 1)2

(n+ 2)2

[α]∑
p=1

p(Ar)p +
∞∑

p=[α]+1

|cp||En,p(z)|.

But

∞∑
p=[α]+1

|cp||En,p(z)| ≤
∞∑

p=[α]+1

|cp|
(
|Πn,p(z)− ep(z)|+ bn

n+ 2

∣∣∣∣p2ep−1(z)− p2 + 3p

2bn
ep(z)

∣∣∣∣)

≤
∞∑

p=[α]+1

|cp|
(∣∣∣∣(2p)!rp(bn + 1)

n+ 2

∣∣∣∣+
rp

n+ 2

∣∣∣∣p2bn +
p(p+ 3)

2

∣∣∣∣)

≤ 2
∞∑

p=[α]+1

|cp|
(2p)!rp(bn + 1)

n+ 2

≤ 2M(bn + 1)

(n+ 2)

∞∑
p=[α]+1

(Ar)p ≤ 2M(bn + 1)

(n+ 2)

(Ar)α

(1− Ar)
,∀n ≥ n0, n0 ∈ N.

Also, by et = 1 + t+ t2

2
+ · · ·, we get et ≥ t ∀ t ≥ 0, which combined with

1

(Ar)α
= eα log( 1

Ar ) ⇒ 1

(Ar)α
≥ α log 1

Ar
, for all α > 0. So, (Ar)α ≤ 1

α log 1
Ar

.

Therefore, we get

∞∑
p=[α]+1

|cp||En,p(z)| ≤ 2M(bn + 1)2

(n+ 2)2(1− Ar) log 1
Ar

, for all |z| ≤ r and n ≥ n0, n0 ∈ N.

Finally, we obtain∣∣∣∣Fn(f ; z)− f(z)− bn
n+ 2

((
1− 2z

bn

)
f ′(z) + z

(
1− z

2bn

)
f ′′(z)

)∣∣∣∣
≤ 4M(bn + 1)2

(n+ 2)2

[α]∑
p=1

p(Ar)p +
2M(bn + 1)2

(n+ 2)2(1− Ar) log 1
Ar

,

where for rA < 1, by ratio test the above series is convergent. This completes the

proof of the theorem.
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7.3.3 Exact order of approximation

To obtain the exact degree of approximation by Fn(f ; z), in the following theorem

we get a lower estimate of the error in the approximation of f by Fn(f ; z):

Theorem 7.3.3. In the hypothesis of Theorem 7.3.2, if f is not a polynomial of

degree ≤ 0, then for any 1 ≤ r < R, we have

‖ Fn(f)− f ‖r≥
bn + 1

n+ 2
Pr(f), n ≥ n0, n0 ∈ N,

where the constants in the equivalence Pr(f) > 0, depends on f, r.

Proof. For all |z| ≤ r, and n ∈ N, we can write the following equality

Fn(f ; z)− f(z)

=
bn + 1

n+ 2

{(
z

(
1− z

2bn

)
f ′′(z) +

(
1− 2z

bn

)
f ′(z)

)
+
bn + 1

n+ 2

(
(n+ 2)2

(bn + 1)2

(
Fn(f ; z)− f(z)− bn + 1

n+ 2

((
1− 2z

bn

)
f ′(z) + z

(
1− z

2bn

)
f ′′(z)

)))}
.

By applying the property

‖ F +G ‖r≥ | ‖ F ‖r − ‖ G ‖r | ≥‖ F ‖r − ‖ G ‖r,

it follows that

‖Fn(f ; .)− f‖r

≥ bn + 1

n+ 2

{∥∥∥∥(e1

(
1− e1

2bn

)
f ′′ +

(
1− 2e1

bn

)
f ′
)∥∥∥∥

r

−bn + 1

n+ 2

(
(n+ 2)2

(bn + 1)2

∥∥∥∥(Fn(f ; .)− f − bn + 1

n+ 2

(
e1

(
1− e1

2bn

)
f ′′ +

(
1− 2e1

bn

)
f ′
)∥∥∥∥

r

)}
.

Taking into account that by hypothesis f is not a polynomial of degree ≤ 0 in DR,

we get ∥∥∥∥(e1

(
1− e1

2bn

)
f ′′ +

(
1− 2e1

bn

)
f ′
)∥∥∥∥

r

> 0.

Indeed, supposing the contrary, it follows that

z

(
1− z

2bn

)
f ′′(z) +

(
1− 2z

bn

)
f ′(z) = 0 for all |z| ≤ r.(7.3.3)

Let us take f(z) =
∞∑
p=0

cpz
p, where cp, 0 ≤ p <∞, are certain constants.

Then

f ′(z) =
∞∑
p=1

pcpz
p−1, f ′′(z) =

∞∑
p=2

p(p− 1)cpz
p−2.
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By substituting these values in (7.3.3), we obtain(
1− z

2bn

) ∞∑
p=2

p(p− 1)cpz
p−1 +

(
1− 2z

bn

) ∞∑
p=1

pcpz
p−1 = 0,

or

c1 +

(
4c2 −

2

bn
c1

)
z +

∞∑
p=2

(
(p+ 1)2cp+1 −

p(p+ 3)

2bn
cp

)
zp = 0, |z| ≤ r.

From the above series, we easily get cp = 0, ∀p ∈ N and f(z) = c0, a contradiction

to hypothesis.

Now, from Theorem 7.3.2, we have
(n+ 2)2

(bn + 1)2

∥∥∥∥(Fn(f ; .)− f − bn + 1

n+ 2

(
e1

(
1− e1

2bn

)
f ′′ +

(
1− 2e1

bn

)
f ′
)∥∥∥∥

r

≤ Lr,A(f), ∀ n ≥ n0, n0 ∈ N.

Therefore there exists an index n∗ > n0 depending only on f, r such that n ≥ n∗ we

have∥∥∥∥e1

(
1− e1

2bn

)
f ′′ +

(
1− 2e1

bn

)
f ′
∥∥∥∥
r

−bn + 1

n+ 2

(
(n+ 2)2

(bn + 1)2

∥∥∥∥Fn(f ; .)− f − bn + 1

n+ 2

(
e1

(
1− e1

2bn

)
f ′′ +

(
1− 2e1

bn

)
f ′
)∥∥∥∥

r

)
≥ 1

2

∥∥∥∥(e1

(
1− e1

2bn

)
f ′′ +

(
1− 2z

bn

)
f ′
)∥∥∥∥

r

,

which immediately implies that

‖Fn(f ; .)− f‖r ≥
bn + 1

2(n+ 2)

∥∥∥∥e1

(
1− e1

2bn

)
f ′′ +

(
1− 2e1

bn

)
f ′
∥∥∥∥
r

.

For n0 ≤ n < n∗, we have

‖Fn(f ; .)− f‖r ≥
bn + 1

(n+ 2)
Jr,n(f)

with Jr,n(f) =
n+ 2

bn + 1
‖Fn(f ; .)− f‖r > 0. Indeed, if we would have

‖Fn(f ; .)− f‖r = 0, it would follow that Fn(f ; z) = f(z) for all |z| ≤ r, which is

valid only for f, a constant function, contradicting the hypothesis on f. Therefore,

finally we get

‖Fn(f ; .)− f‖r ≥
bn + 1

(n+ 2)
Pr(f), for all n ≥ n0, n0 ∈ N,
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where

Pr(f) = min

{
Jr,n0(f), Jr,n0+1(f), · · ·Jr,n∗−1(f),

1

2

∥∥∥∥e1

(
1− e1

2bn

)
f ′′ +

(
1− 2e1

bn

)
f ′
∥∥∥∥
r

}
which completes the proof.

Now, combining Theorem 7.3.1 and Theorem 7.3.3, we immediately get the fol-

lowing:

Corollary 8. In the hypothesis of Theorem 7.3.2, if f is not a polynomial of degree

≤ 0, then for any 1 ≤ r < R, we have

‖ Fn(f ; .)− f ‖r∼
bn + 1

n+ 2
, n ≥ n0, n0 ∈ N

holds, where the constant in the equivalence ∼ depends on f, r.

7.3.4 Simultaneous approximation

Concerning the derivatives of complex Szász-Durrmeyer-Chlodowsky operators, we

can prove the following results:

Theorem 7.3.4. In the hypothesis of Theorem 7.3.2, let 1 ≤ r < r1 < R and p ∈ N,
then for all |z| ≤ r and n ≥ n0, n0 ∈ N, we have

|F (p)
n (f ; z)− f (p)(z)| ≤ (bn + 1)Cr1,A(f) p! r1

(n+ 2)(r1 − r)p+1
,

where Cr1,A(f) is defined as in Theorem 7.3.1.

Proof. Denoting by Γ, the circle of radius r1 > 1 and center 0, since for any |z| ≤ r

and ν ∈ Γ we have |ν − z| ≥ r1 − r, by Cauchy’s formula, it follows that for all

n ∈ N, we get

|F (p)
n (f ; z)− f (p)(z)| =

p!

2π

∣∣∣∣∫
Γ

Fn(f ; ν)− f(ν)

(ν − z)p+1
dν

∣∣∣∣ .
For all ν ∈ Γ and n ∈ N with n ≥ n0, n0 ∈ N, we get

|F (p)
n (f ; z)− f (p)(z)| ≤ p! r1 (bn + 1)Cr1,A(f)

(n+ 2) (r1 − r)p+1
,

which proves the theorem.
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Theorem 7.3.5. In the hypothesis of Theorem 7.3.2, let 1 ≤ r < r1 < R and f be

not a polynomial of degree ≤ p− 1, (p ≥ 1) then we have

‖ F (p)
n (f ; .)− f (p) ‖r∼

bn + 1

n+ 2
, for all n ≥ n0, n0 ∈ N,

where the constant in the equivalence ∼ depends only on f, r, r1, p.

Proof. Let Γ be a circle of radius r1 > r ≥ 1 and center 0, we have∥∥∥F (p)
n (f ; .)− f (p)

∥∥∥
r

=

∥∥∥∥ bn + 1

(n+ 2)

{
p!

2πi

∫
Γ

[
ν

(
1− ν

2bn

)
f ′′(ν) +

(
1− 2ν

bn

)
f ′(ν)

]
(ν − z)p+1

dν +
bn + 1

(n+ 2)

p!

2πi

×
∫

Γ

(n+ 2)2

(bn + 1)2

[
Fn(f ; ν)− f(ν)− bn + 1

(n+ 2)

((
1− 2ν

bn

)
f ′(ν) + ν

(
1− ν

2bn

)
f ′′(ν)

)]
(ν − z)p+1

dν

}∥∥∥∥
r

≥ bn + 1

(n+ 2)

{∥∥∥∥(e1

(
1− e1

2bn

)
f ′′ +

(
1− 2e1

bn

)
f ′

2

)(p)∥∥∥∥
r

− bn + 1

(n+ 2)

∥∥∥∥ p!2π

× (n+ 2)2

(bn + 1)2

∫
Γ

(
Fn(f ; ν)− f(ν)− bn + 1

(n+ 2)

(
e1

(
1− e1

2bn

)
f ′′ +

(
1− 2e1

bn

)
f ′
))

(ν − z)p+1
dν

∥∥∥∥
r

}
.

Now, applying Theorem 7.3.2

∥∥∥∥ p!2π

(n+ 2)2

(bn + 1)2

∫
Γ

(
Fn(f ; ν)− f(ν)− bn + 1

(n+ 2)

(
e1

(
1− e1

2bn

)
f ′′ +

(
1− 2e1

bn

)
f ′
))

(ν − z)p+1
dν

∥∥∥∥
r

}

≤ p!

2π

2πr1 (n+ 2)2

(bn + 1)2 (r1 − r)p+1

∥∥∥∥Fn(f ; ·)− f − bn + 1

(n+ 2)

((
1− 2e1

bn

)
f ′ + e1

(
1− e1

2bn

)
f ′′
)∥∥∥∥

r1

≤ p! r1 Lr1,A(f)

(r1 − r)p+1
,

but by hypothesis on f, we have

∥∥∥∥((1− 2e1

bn

)
f ′ + e1

(
1− e1

2bn

)
f ′′
)(p) ∥∥∥∥

r

> 0.

Indeed if we suppose the contrary that∥∥∥∥((1− 2e1

bn

)
f ′ + e1

(
1− e1

2bn

)
f ′′
)(p) ∥∥∥∥

r

= 0,

then (
1− 2z

bn

)
f ′(z) + z

(
1− z

2bn

)
f ′′(z) = Qp−1(z),
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where Qp−1(z) is a polynomial of degree ≤ p − 1, thus f satisfies the differential

equation (
1− 2z

bn

)
f ′(z) + z

(
1− z

2bn

)
f ′′(z) = Qp−1(z), ∀ |z| ≤ r.

Now, denoting f ′(z) = y(z), the above differential equation reduces to(
1− 2z

bn

)
y(z) + z

(
1− z

2bn

)
y′(z) = Qp−1(z), ∀ |z| ≤ r.

In what follows, let us define y(x) = y1(x) + iy2(x), where y1(x) and y2(x) are real

functions of the real variable and i2 = −1. The functions yj(x), j = 1, 2 satisfy the

differential equations(
1− 2x

bn

)
yj(x) + x

(
1− x

2bn

)
y′j(x) = Qp−1(x), ∀ x ∈ [−1, 1], j = 1, 2,(7.3.4)

which is a non-homogeneous differential equation. By a similar reasoning as in the

proof of Theorem 7.3.3, the unique solution of homogeneous differential equation cor-

responding to equation (7.3.4) is yj(x) = 0, ∀x ∈ [−1, 1]. To find the particular so-

lution of non-homogeneous differential equation (7.3.4) of the form yj(x) =

p−1∑
k=0

ckx
k

with ck ∈ R, by simple calculations we easily obtain that(
1− 2x

bn

) p−1∑
k=0

ckx
k +

(
1− x

2bn

) p−1∑
k=1

kckx
k = Qp−1(x) =

p−1∑
k=0

dkx
k (say),

which implies that

c0 = d0, (k + 1)ck −
(
k − 1

2bn
+

2

bn

)
ck−1 = dk, k ∈ {1, 2, · · · p− 1}.

Thus, ck’s can be uniquely determined. Hence, it follows that y1(x) and y2(x) are

polynomials of degree ≤ p− 1 in x. Now, because y(z) is the analytic continuation

of y(x), from the identity theorem on analytic functions, it follows that y(z) is a

polynomial of degree ≤ p− 1 in z, a contradiction to the hypothesis.

So, ∥∥∥∥∥
(
e1

(
1− e1

2bn

)
f ′′ +

(
1− 2e1

bn

)
f ′
)(p)

∥∥∥∥∥
r

> 0.

In continuation, reasoning exactly as in the proof of Theorem 7.3.3 and using The-

orem 7.3.4, we get the desired conclusion.
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integral type operators. Ukräın. Mat. Zh., 59(8):1135–1139, 2007.

[67] V. Gupta. A note on modified Baskakov type operators. Approx. Theory Appl.

(N.S.), 10(3):74–78, 1994.

[68] V. Gupta. An estimate on the convergence of Baskakov-Bézier operators. J.
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[82] V. Gupta and D. Soybaş. Approximation by complex genuine hybrid operators.

Appl. Math. Comput., 244:526–532, 2014.

[83] M. Gurdek, L. Rempulska, and M. Skorupka. The Baskakov operators for

functions of two variables. Collect. Math., 50(3):289–302, 1999.

[84] M. Heilmann and M. W. Müller. On simultaneous approximation by the

method of Baskakov-Durrmeyer operators. Numer. Funct. Anal. Optim., 10(1-

2):127–138, 1989.

[85] M. Heilmann and M. W. Müller. Direct and converse results on simultaneous

approximation by the method of Bernstein-Durrmeyer operators. In Algo-

rithms for approximation, II (Shrivenham, 1988), pages 107–116. Chapman

and Hall, London, 1990.

[86] E. Hewitt and K. Stromberg. Real and Abstract Analysis. McGraw Hill, New

York, 1956.
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[90] N. Ispir and İ. Yüksel. On the Bezier variant of Srivastava-Gupta operators.

Appl. Math. E-Notes, 5:129–137 (electronic), 2005.
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[108] A. Lupaş. A q-analogue of the Bernstein operator. In Seminar on Numerical

and Statistical Calculus (Cluj-Napoca, 1987), volume 87 of Preprint, pages
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properties of bivariate q−Stancu-beta operators. Journal of Function Spaces,

page 7, 2014.

[120] G. Nowak. Approximation properties for generalized q-Bernstein polynomials.

J. Math. Anal. Appl., 350(1):50–55, 2009.
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