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ABSTRACT

Lignocellulosic biomass-derived fast pyrolysis oil (FPO) has found applications within
the petroleum refinery in recent years. This thesis investigates the possibility of upgrading FPO
along with petroleum-derived fraction, vacuum gas oil (VGO), in fluid catalytic cracking (FCC)
unit and look into the aspects of fast pyrolysis process integration in refinery context. The
expelled Jatropha curcas seed cake (JCC) has been chosen as a biomass feedstock which is
pyrolyzed in bubbling fluidized bed reactor at 530 °C temperature and atmospheric pressure. The
char particles, which are not separable from pyrolysis gases or vapors by cyclone separator, are
inherently collected along with FPO in large concentrations from nano-to-micro scale, which are
highly dispersible and make FPO highly viscous to semi-solid. The char particles (> 200 nm) are
separated by micro filtration (pore size: 0.2 i) under vacuum line from FPO which helps in
stabilization. The char free FPO is highly oxygenated (32 wt.%) and hence it has been
hydrodeoxygenated over Pd/Al,O3 catalyst in a continuous stirred tank reactor at 300 °C
temperature and 80 bar pressure to produce hydrodeoxygenated fast pyrolysis oil (HDO), which
contains 10 wt.% of oxygen.

The FPO is blended in proportions of 5, 10, 15, 17, and 20 with vacuum gas oil for
catalytic cracking in advanced cracking evaluation (ACE-R) FCC unit. The FCC unit operating
parameters like temperature and catalyst-to-oil ratios are optimized based on the higher yields of
gasoline on catalytic cracking of pure VGO over equilibrium FCC catalyst. The results of co-
processing of FPO with VGO indicated that the yields of gasoline and light cycle oil increased
from 29 to 35 wt% and 14.8 to 20.4 wt.%, respectively, whereas the yields of dry gas and LPG
decreased from 2.1 to 1.4 wt.% and 38.8 to 23.7 wt%, respectively, for an increase in the
blending ratio from 5 to 20%. Moreover, the FCC product distribution pattern at iso-conversion
of 66% is compared on co-processing of VGO, VGO with FPO and VGO with HDO. Further,
the FPO and HDO are characterized by *H, *C, and **P NMR techniques. From the NMR
analysis it is observed that the liquid distillate from the co-processing of FPO with VGO contains
more iso-paraffinic CH3z substructure components, whereas the liquid on co-processing HDO
with VGO contains more paraffinic CH; substructure. The 3P NMR analysis of crude FPO and



HDO indicated that hydroxyl, carboxylic and methoxy groups are reduced during the
hydrodeoxygenation of FPO.

Furthermore, the co-processing studies have been extended to envisage the specific role
of nature of aliphatic (acetic acid, acetol and glycolaldehyde) and aromatic (guaiacol)
compounds, which helps in understanding the path of fast pyrolysis process integration with
refinery units. From the experimental investigations on co-processing of C2-C3 carbonyls and
VGO, it is observed that the presence of acetol increased the FCC conversion from 68 to 78 %
with an increase in blending ratio. It is due to the increase in the yield of liquefied petroleum gas
(LPG) from 21 to 47 wt.% and at the cost of decrease in yield of gasoline from 39 to 23 wt.%
followed by light cycle oil (LCO) from 18 to 12 wt.% and heavy cycle oil (HCO) from 11 to 7
wt.%. The yield of LPG increases linearly with an increase in blending ratio. Further, the
presence of acetol reduced the coke formation as compared to pure VGO catalytic cracking over
FCC equilibrium catalyst at a constant C/O ratio of 5.

While co-processing of glycolaldehyde dimer with vacuum gas oil, the FCC conversion
increased from 69 to 75% with an increase in the blending ratio from 5 to 10 %; whereas beyond
that the conversion decreased to 65 % for the blending ratio of 20 %. The dry gas and liquefied
petroleum gas yield first increased from 1.8 to 2.4 wt.% and 35 to 43 wt.%, respectively with an
increase in blending ratio from 5 to 10 %; and on further increase in blending ratio to 20 % the
yields of dry gases and LPG decreased to 1.8 and 27 wt.%, respectively. Further, it was observed
that the gasoline yield first decreased from 27 to 25 wt.%, and then increased to 32 wt.% with an
increase in blending ratio. While the light cycle oil yield first decreased from 17 to 15 wt.% and
then increased to 20 wt.%; whereas the yield of heavy cycle oil first decreased from 11 to 9
wt.%, and then increased to 13 wt.% with an increase in blending ratio from 5 to 10 wt.%. The
yield of ethylene and propylene also followed the same trend with an increase in blending ratio
of glycolaldehyde up to 10 wt.% blending, and there on the yields decreased with further
increase in blending ratio. The increase in coke formation is observed beyond the blending ratio
of 10% which is due to the increase in poly-aromatics formation. Similar results are found from
the poly-aromatics analysis based on nuclear magnetic resonance (NMR) spectroscopy.
Furthermore, the blended FCC feedstock and their liquid distillates were structurally

characterized by means of average structural parameters like branchiness index, substitution



index, average length of alkyl chains, and fraction of aromaticity per molecule by *H, and gated
decoupled **C NMR techniques.

Further, an attempt has been made to study the effect of catalyst-to-oil ratio (C/O) on the
product distribution for the catalytic cracking of mixture of VGO with guaiacol and acetic acid.
The simulated distillation (SIMDIST) based product analysis indicated that the presence of
guaiacol increased the product selectivity of gasoline fraction; whereas the presence of acetic
acid clearly increased the yield of light olefins, CO and CO,. The FCC conversion is higher on
co-processing guaiacol followed by acetic acid with vacuum gas oil as compared to pure VGO
catalytic cracking. An increase in coke and aromatics was observed in the following order:
guaiacol +VGO feed > acetic acid +VGO feed > VGO. Higher yields of light olefins, CO and
CO; are observed while catalytic cracking of acetic acid +VGO feed with equilibrium FCC
catalyst, subsequently light olefins have been reduced in case of guaiacol +VGO feed as
compared to other feeds. The cracking patterns of liquid distillate have been further supported by
FTIR analysis on cracking of acetic acid +VGO and guaiacol+ VGO feeds. It has been found that
the carboxylic acid peaks (1650-1720 cm') were completely absent which indicated the
complete conversion of acetic acid. However, the formation of phenol is observed in the liquid
distillate on cracking of guaiacol+VGO feed. Therefore, it is preferable to separate the aromatic
oxygenated compounds from pyrolysis oil before co-processing it with vacuum gas oil in
refinery FCC unit by keeping in mind the limitations of total aromatics and the benzene

percentages in gasoline.

On catalytic cracking of glycerol by varying the temperature from 350 to 550 °C it is
observed that a 100% conversion beyond 430°C and a maximum acetaldehyde yield of 53 wt.%
is seen at 550 °C. The kinetic parameters were estimated with 4— (VGO, coke, gases and liquid
distillate) and 5- (VGO, coke, dry gases, LPG and liquid distillate) lumps kinetic models for
catalytic cracking of VGO and VGO with FPO. The experiments for VGO and VGO with FPO
cracking have been carried out at different WHSV, varying from 6-24 h™*, a constant reaction
temperature (530 °C) and catalyst-to—oil (C/O) ratio of 5. The deviation between the predicted

and experimental products yields, for both 4— and 5— lumps models, is found to be less than 5%.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

The demand of energy due to increase in worldwide population, depletion and concerns
of environmental impact with the fossil energy resources forced the nations to take part in the
development of alternative energy resources. The worldwide consumption of liquid fuels is
bound to increase from 87 to 97 million barrels per day from 2010 to 2020, respectively and it is
projected to 115 million barrels per day in 2040 [John et al. 2013]. The proved world oil reserves

were estimated to be ~1638 billion barrels as of January 1, 2013 [www.ogj.com]. The fluid

catalytic cracking (FCC) process is extensively used for cracking hydrocarbons having high
molecular weight into low molecular weight such as petrochemical feedstocks like C3-C4
olefins, liquefied petroleum gas (LPG), gasoline and light cycle oil (blend component of Diesel
and Jet fuel). Herein the cracking mechanism follows the carbonium ion theory. The cracking
occurs over a catalyst containing hot-fluidized-micro spherical particles of acidic SiO,-Al,03
with a short contact time. The chief advantages of catalytic cracking are: (i) cost effectiveness
when compared to hydrocracking; (ii) enhanced product quality and selectivity over thermal
cracking process; (iii) flexibility in processing of various types of feedstocks such as atmospheric
gas oil, vacuum gas oil, thermally cracked gas oil, hydro-treated VGO, hydrocracker bottom,
coker gas oil, solvent deasphalted oil, reduced crude oil and vacuum residue etc. The FCC
process in petroleum refining has evolved over the last 60 years in fulfilling the challenges like
cracking heavier and metallic contaminated feeds (with Ni and V), increasing operating
flexibility, accommodating environmental legislation, and maximizing reliability.

Routinely, the FCC plants have been operated on either gasoline or middle distillates
modes; however the developments in new generation catalysts led to operate in LPG mode. The
chief reactions involved in the catalytic cracking are cracking (primary reaction), and many
secondary reactions such as isomerisation (double bond and skeletal), dehydrogenation,

hydrogen transfer, cyclization, condensation, alkylation and dealkylation. Besides, the non-
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condensable gases like methane, ethane and ethylene are also obtained due to the cleavage of
terminal bonds of hydrocarbon feedstock. Thus, ultimate composition of catalytic cracking
product is a function of relative rates of different competing reactions [Scherzer et al. 1990].
Globally, there are more than 400 FCC units operating in various capacities with fresh
feed; wherein the UOP has been participated in the original nameplate design of FCC units from
the scale of minimum 2000 bpsd (Montana Refining, Great Falls, USA) to maximum 135,000
bpsd (Reliance Industries, Jam Nagar, India) [Ibsen et al. 2006]. Presently, India and China have
emerged as the key players for the growth of refinery FCC capacity. In the period 2005-2010,
both countries reached the refinery FCC capacity of 43.0 MMTPA, which is 43.0% of the global
refinery FCC capacity in which, India alone is having the refinery FCC capacity of ~18.0
MMTPA to process fresh feed [http://petroleum.nic.in/ refinery.pdf]. It helped in becoming net

exporters of gasoline and other light hydrocarbons to the regions like Asia Pacific and the
Middle East.

Lignocellulosic biomass has been the potential feedstock for partial fulfillment of
primary energy demand and it will increase by 41% between 2012 and 2035 [Dudley et al.
2014]. Various pyrolysis techniques have been developed so far for the conversion of
lignocellulosic biomass into biofuels. Fast pyrorlysis technology is considered to be the most
promising one for getting higher (50-75%) yields of crude (liquid) fast pyrolysis oil (FPO) as an
alternative to crude petroleum. The produced crude FPO as such cannot be used as a liquid fuel
due to its lower heating value (15-20 MJ/kg) and the presence of oxygenated compounds that
self-react during handling at ambient temperature to form larger molecules [Elliot et al. 1984].
The advantage of FPO is its higher oil density, i.e. ~1200 kg/m?, as compared to the original
biomass (~150 kg/m®) [Venderbosch et al. 2010b]. The pyrolysis oil obtained either by catalytic
or non-catalytic route contains higher oxygen content (~40% with non-catalytic and ~22% with
catalytic) in the form of aliphatic and aromatic oxygenates.

The raw FPO is a complex mixture of water, carboxylic acids, hydroxy-aldehydes,
hydroxy-ketones, phenolics, guaiacols, catechols, syringols, vanilins, sugars, and levoglucosan
[Elliot et al. 1989]. The FPO is immiscible with petroleum-derived fractions as it is highly
oxygenated (~40 wt.%), acidic (pH~2-3), thermally and chemically unstable, and hence it cannot
be directly utilized for fuel applications. Therefore, the FPO requires further upgrading in order

to convert it into usable liquid hydrocarbons. Thereby, a number of upgrading technologies have
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been proposed in few last decades, such as thermal treatment [Demirbas et al. 2010], high
pressure thermal treatment [Venderbosch et al. 2010a], thermal hydrotreating [Samolada et al.
1998], and catalytic emulsion [Zapata et al. 2012]. Further, the FPO can be upgraded via
hydrodeoxygenation at mild operating conditions to get hydrodeoxygenated FPO (HDO).
Otherwise, the HDO can be further hydrodeoxygenated in the second stage [Mercader et al.
2010a] or it can be processed partially or co-processed with petroleum fractions in a refinery
fluid catalytic cracking process [Graca et al. 2009c] to get a clear liquid hydrocarbons, suitable
for fuel applications.

However, among the aforementioned upgrading techniques, catalytic cracking seems to
be a good option for effective use of trillion dollars refinery infrastructure as well as integration
of fast pyrolysis process with refinery [Jones et al. 2009]. The acidic natured FCC catalyst is also
known for deoxygenation (such as dehydration, decarboxylation, and decarbonylation) in
addition to conventional FCC reactions [Sadeghbeigi, 2000], due to its very high effectivity. The
B-scission reaction is the primary reaction in fluid catalytic cracking, which occurs by breakage
of B C-C bond, and various secondary reactions such as alkylation, hydrogenation [Sedran,
1994], isomerization [Mortensen et al., 2011], and condensation [Sedran, 1994; Whitmore,
1934]. Whitmore (1934) reported that the catalytic cracking of hydrocarbons is a chain reaction
which follows carbonium ion theory. Adjaye and Bakhshi (1995a) proposed the reaction
mechanism for pyrolysis oil catalytic cracking and reported that during pyrolysis oil catalytic
cracking over acidic zeolites undesirable products are produced, such as tar and char. Corma et
al. (2007) described the reaction mechanism in two categories, former one results in the
hydrogen production and the later one leads to the hydrogen consumption. Another simplified
reaction mechanism proposed by Fogassy et al. (2010) for deoxygenation reactions of pyrolysis

oil is as follows:

CxHy0, = aCy_p_g_eHy_2c0, 2p_c_a + bCO, + cH,0 +dCO + eC

Chen et al. (1986) reported that the effective hydrogen index (H/Cg), which is related to
the amount of hydrogen available for energy production, and defined as: H/Cq¢ = (H-20-3N-
2S)/C; where H, O, N, S and C are corresponding to the number of moles of hydrogen, oxygen,
nitrogen, sulfur and carbon present in the feedstock. For energy production the H/C¢s should be



Chapter 1: Introduction

above the inflection point of 1.2, either processing or co-processing the biomass-derived FPO
with petroleum-derived VGO or LCO in fluid catalytic cracking unit. Therefore, it is necessary
to partially deoxygenate the FPO to reduce the oxygen level in order to improve the H/C of
pyrolysis oil for better processing in FCC units. This makes the process problematic as the FCC
process is originally developed for petroleum fractions. A critical review has been published by
Talmadge et al. (2014) on outlook of how to modify the overall chemistry of biomass-derived
pyrolysis liquids in order to integrate pyrolysis process with standard petroleum refineries.

The conventional FCC technology is aimed to improve the gasoline yield, however while
co-processing the FPO with VGO it is very much essential to look into the product
characterization and also the causes of coke formation. Samolada et al. (1998) coprocessed the
hydrotreated flash pyrolysis oil (a heavy fraction) with light cycle oil (LCO) for 15:85 blending
ratio in a modified MAT fixed bed reactor system (MAT, ASTM D3907-80) over FCC
(ReUSY?2) catalyst. An increase in coke and gasoline production by 32% and 56%, respectively,
was reported while co-processing hydrotreated flash pyrolysis oil (a heavy fraction) with LCO as
compared to the pure LCO processing. Fogassy et al. (2010) reported a higher dry gas and coke
yields, lower LPG vyields, similar yields of gasoline and LCO while co-processing HDO with
VGO in 20:80 blending ratio as compared to the processing of pure VGO. They carried out the
catalytic cracking reaction in a validated micro-activity test reactor (i.e. a fixed bed quartz
reactor) for VGO cracking over equilibrium FCC catalyst. Fogassy et al. (2011) further extended
the co-processing of HDO studies with VGO over various types of FCC catalysts in terms of
structural parameters of zeolites. It was mentioned that most of the lignin-derived molecules on
co-processing of HDO are partially cracked into smaller methoxyphenols over FCC, HY and
HZSM-5 catalysts and reported that very few oxygenated molecules are entered into pores of
zeolite.

Mercader et al. (2010a) carried out the co-processing of HDO with long-residue in a
fluidized bed MAT-5000 reactor over equilibrium FCC catalyst and reported near normal FCC
gasoline (44-46 wt.%) and LCO (23-25 wt.%) products without an excessive increase in
undesired coke and dry gases, as compared to the base feed. Thegarid et al. (2013) further
reported that high levels of oxygen can be allowed in upgraded HDO (up to 28 wt.%) for co-
processing in FCC unit without deterioration of the yield structure. These studies were further

extended for co-processing of catalytic pyrolysis oil (CPO) with VGO and compared the results
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of co-processing of HDO with VGO. An increase in alkyl phenols in addition to increase in coke,
olefins, and aromatics were reported, while co-processing of CPO with VGO as compared to
HDO with VGO.

With this view preliminary investigations were carried out by Gayubo et al. (2004a, b)
and Adjaye et al. (1996), Adjaye and Bakhshi (1995a, b), Sharma and Bakhshi (1993), and
Srinivas et al. (2000). It was reported that there was a coke formation during the processing of
pyrolysis oil oxygenated compounds over zeolite catalyst in isothermal fixed bed reactor at
temperature less than 410 °C, which follows the following order: phenol or aldehyde > acetone
or acetic acid > alcohols. Further, it has been mentioned that phenols have low reactivity while
high conversions can be achieved with acids, esters, alcohols, aldehydes, and ketones. Graca et
al. (2009a, 2009b) studied the transformation of mixtures of methylcyclohexane in a Pyrex fixed
bed reactor with small amounts of phenol over an HZSM-5 and HY zeolite for temperature
ranging from 350 to 450 °C. It has been reported that by increasing the reaction temperature
from 350 to 450 °C, HY zeolite limits the effect of phenol addition on the zeolite activity and
stability whereas HZSM-5 does not limit the effect of phenol addition. Graca et al. (2009¢ and
2011a, b) studied the co-processing of pyrolysis oil model compounds such as acetic acid,
phenol, guaiacol and acetol with vacuum gas oil in FCC approach. Besides, Lappas et al., (2009)
also studied the effect of FPO representative model compounds on product yields while co-
processing them with VGO/LCO.

1.2 MOTIVATION

In spite of several studies on co-processing at laboratory and pilot plant levels, the
understanding of presence of type of FPO components on the FCC product distribution remains
limited. In addition there is a lack of JCC-derived FPO (indigenous feedstock) scope for co-
processing in FCC unit with VGO to get drop in liquid hydrocarbons. The same holds for the
understanding on ways to optimizing the process parameters, so as to obtain the limitations on
co-processing of raw or hydrodeoxygenated FPO with petroleum-derived fraction i.e., VGO and

specific effect of type of FPO compounds on FCC product distribution.
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1.3 OBJECTIVES

On overall basis, the objective of the present work is to pursue and describe the studies on co-

processing of FPO with VGO in FCC process in an effective way and to find an application as an

alternative to fossil based hydrocarbons. These studies will help in broad understanding of the

blending limitations of JCC-derived fast pyrolysis oil (FPO) or its hydrodeoxygenated oil (HDO)

with VGO before co-processing in a refinery FCC unit. The specific objectives of the present

study are as follows:

1)  Preparation of biomass-derived feedstocks for co-processing in FCC unit.

a.
b.

Production of FPO from JCC in fluidized bed reactor set up.

To study the effect of operating temperature on hydrodeoxygenation of FPO over
Pd/Al,O5 catalyst in CSTR.

To perform the characterization of feedstocks and products using *H, **C and 3P NMR

techniques.

2)  Catalytic cracking of FPO and HDO with VGO in FCC unit.

a.

To study the effect of blending ratio of FPO with VGO on FCC unit product
distribution.

To perform the catalytic cracking of HDO with VGO at iso-conversion of FPO with
VGO and pure VGO.

To perform the characterization of FPOs and their catalytically cracked products using
'H and °C NMR techniques.

3) Catalytic cracking of pyrolysis oil model compounds and glycerol with VGO in FCC unit.

a.
b.

4)

To optimize the process parameters of catalytic cracking of VGO for gasoline.
To study the effect of aliphatic oxygenates (acetic acid, hydroxy acetone, glycerol &
glycolaldehyde) and aromatic oxygenate (2-methoxy phenol) of FPO while co-
processing with VGO on FCC product distribution by varying catalyst-to-oil (C/O) and
blending ratios.
To perform the characterization of FCC liquid by 'H and *C NMR, and FTIR
techniques.

Kinetic modelling for catalytic cracking of VGO and VGO with FPO.
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1.4 THESIS ORGANIZATION

The thesis is organized in the following manner:

Chapter 1 introduces the subject matter.

Chapter 2 presents the work of previous researchers in the areas of developments in the fast
pyrolysis technologies, challenges ahead of processing FPO in FCC unit. In addition the
approaches for the stabilization of FPO are summarized. Finally the scope of integration of fast
pyrolysis process with refinery FCC unit is also described.

Chapter 3 deals with the outline of the materials used in the experimental setup, experimental
work, synthesis processes description and product analysis using various analytic techniques in
detail.

Chapter 4 discusses the catalytic cracking of JCC-derived FPO with VGO in FCC unit. It also

discusses the characteristics of feedstock and catalysts used.

Chapter 5 discusses the effect of pyrolysis oil model compounds (acetic acid, guaiacol, acetol,
glycolaldehyde) and glycerol addition with VGO on FCC product distribution.

Chapter 6 describes the application of 5-lump kinetic model for estimating Kinetic parameters
for catalytic cracking of VGO and FPO blended feed with VGO.

Chapter 7 states the overall chapter vise observations, conclusions drawn from the experimental

work and possible recommendations for future research.
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CHAPTER 2

LITERATURE REVIEW

2.1 GENERAL

Lignocellulosic biomass is considered to be a realistic resource of green energy [Melero
et al. 2012], for sustainable development [Eissen et al. 2002] and food security [Moreira et al.
2005, Nogueira et al. 2013a, b]. With this background several thermochemical conversion
techniques have been envisaged for the conversion of lignocellulosic biomass into crude
pyrolysis oil. Fast pyrolysis has been considered for the production of so called “second
generation” biofuels and green chemicals. The production of pyrolysis oils by fast pyrolysis
technique at industrial scale has been demonstrated with numerous types of pyrolysis reactor
configurations, but nevertheless it has so far not been adopted in commercial practice. The crude
FPO is highly oxygenated and unstable; hence it requires further processing by means of
deoxygenation in order to convert it into hydrocarbons of fuel range. Thus thermal, catalytic and
chemical stabilization techniques have been anticipated for the stabilization of FPO so that the
stable liquid can be directly used as fuel or can be easily further upgraded.

This chapter summarizes the various technologies for fast pyrolysis of biomass followed
by real challenges, associated with them, for use in refinery FCC as co-processing feedstock.
Then, a brief introduction into crude FPO stabilization techniques is given. The investigation
leading to the present work wherein the schemes proposed so far for integration of fast pyrolysis
process with petroleum refinery was described.

2.2 BIOMASS FAST PYROLYSIS PROCESS DEVELOPMENTS

The typical biomass pyrolysis processes have been classified into the following
categories: conventional carbonization, pressurized carbonization, conventional, fast, flash-
liquid, flash-gas, vacuum, methano-pyrolysis and hydro-pyrolysis. These typical names have
been decided on the basis of their unique characteristics like process environment, operating

parameters (i.e., heating rate, residence time, and reaction temperature) and products obtained.
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Fast pyrolysis is a process wherein the thermal degradation of organic materials is occurs in the
absence of oxygen at atmospheric pressure, 450-600 C of temperature, with short hot vapor
residence time, typically <3 s. The usual steps involved in the fast pyrolysis process are biomass
drying, pyrolysis (reaction) followed by char particle separation and liquid recovery. The
produced pyrolysis vapors are further quenched to obtain fast pyrolysis liquid.

The critical challenges involved during the operation of fast pyrolysis are the selection of
pyrolysis reactor configuration, rate of heat transfer, controlled reaction temperature and vapor
residence time, char/soot particle separation and liquid recovery. Several processes have been
proposed based on the type of reactor configurations used and applications. The performance and

status of major fast pyrolysis technologies is reported in Table 2.1 and Table 2.2, respectively.

2.2.1 Auger Pyrolyzer

An auger fast pyrolyzer is shown in Figure 2.1a. An auger is used to simultaneously mix
and pass on the lignocellulosic biomass continuously by being brought into direct contact with
sand or steel shots, which act as a heat carrier. The heat carrier is heated seperately prior to
metering into the reactor. The precise control of residence time of biomass particles in the reactor
could be possible with this auger technique. The produced volatile vapors and aerosols exit at
various ports of the reactor, whereas the char is moved axially along the reactor section and
stored in a seperate container along with the heat carrier. This kind of design with mechanical
mixing concept could be highly suitable for producing pyrolysis oil in a distributed and
decentralized mode of biomass processing scheme. The disadvantages of the auger reactor are:
(i) it is very difficult to separate char and heat carrier at the reactor end; (ii) there is chance of
more fines formation in the char, and (iii) it requires a heating and circulating system for heat
carrier.

The technology so-called Lurgi-Ruhrgas (LR)-mixer reactor earlier in 1950’s initiated
with a collaboration of Lurgi and Ruhrgas Companies for coal pyrolysis for town gas production
[Peters et al. 1963]. Later, the Karlsruhe Institute of Technology (KIT) has developed biolig®
process (Biomass to Liquid Karlsruhe) and scaled up to demonstration level of 500 kg/h for the
flash pyrolysis pilot plant [Channiwala et al. 2002] using sand as a heat carrier for straw
feedstock. Advanced Bio Refinery Inc (ABRI) has developed the commercial units from the

scale of 20 kg/day to even 1 t/d and their trials are successful [Hedley et al. 2007].

10
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Table 2.1: Performance of major fast pyrolysis reactors

Reactor Biomass feedstock FPO, Heat Residence  Solids Inert Particle Status
wt.% transfer  time, sec throughput gas size, mm

Auger Pine wood 67 Low <30 Low Low <4 Demonstration
[Ingram et al. 2008]

Ablative Wood 70  High <0.1 Low High <20 Pilot
[Mohan et al. 2006]

Bubbling Soft wood 75  High <3 High High <3 Commercial

fluidized bed [Mohan et al. 2006]

Circulating Wood 75  High <1 High Very <2 Commercial

fluidized bed [Mohan et al. 2006] high

Rotating cone  Palm derived EFB 70  Veryhigh <1 Very high Low <10 Commercial

[http://www.btg-
btl.com]

Demonstration: 200-2000 kg/h; Commercial: 2 t/h-20 t/h

11


http://www.btg-btl.com/
http://www.btg-btl.com/

Chapter 2: Literature Review

Table 2.2: Status of major fast pyrolysis technologies in 2014 (above 6 tons/day) [Source: Oasmaa et al. 2015]

Technology Country Host organization  Capacity, Application Status

TPD*
Auger Canada ABRI-Tech 48 Fuel Dormant
Ablative Germany Pytec 6 Fuel Dormant
Bubbling bed Canada Dynamotive 200 Energy Dormant
Fluidized bed Finland Fortum 240 Fuel Operational
Circulating bed Canada Ensyn 75 Fuel Operational
Circulating bed Brazil Ensyn/Fibria 400 Fuel In design phase
Circulating bed, catalytic ~ USA KiOR 500 Catalytic bio-oil for HDO  Dormant
Rotating cone Malaysia Genting 48 Fuel Operational
Rotating cone Netherlands Empyro BV 120 Fuel Commissioning

*TPD: Tons per day on dry feed basis

12
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Figure 2.1: Pyrolysis reactor configurations: (a) Auger, (b) Ablative, (c) Bubbling fluidized bed,
(d) Circulating fluidized bed and (e) Rotating cone
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