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Abstract 

Imaging technology revolutionized the area of diagnosis by being complimentary to the 

clinical diagnosis because of its non-invasive nature. With rapid advancements in imaging 

modalities, the clarity and the volume of diagnostic information being obtained by radiologists 

have made the role of medical professionals easier and the patient comfortable. However, the 

subjective analysis of images takes much time of radiologists and is prone to human error 

depending upon their expertise and experience. To overcome these limitations, researchers have 

been involved in developing computer algorithms for extracting diagnostic information from the 

images based on clinical inputs about the diseases.  

The imaging modalities such as computed tomography (CT), magnetic resonance imaging 

(MRI), ultrasound (US) and others have their advantages and disadvantages in general. Each 

modality has different perspective of information to offer about a particular disease. B-mode 

ultrasound imaging is preferred as an initial examination for soft tissue structures like liver, 

kidney, prostate, uterus etc. Its cost effective and portable nature is more suitable for extensive 

usage in countries like India. However, the quality of images being obtained by ultrasound is 

relatively of poor quality, which hinders the interpretation of images. The images obtained from 

echo based ultrasound imaging, basically have an interference pattern termed as speckle noise. 

From a radiologist’s perspective, though the speckle noise is a hindrance in their subjective 

analysis of images, it does contain necessary diagnostic information. From a researcher’s 

perspective, one who develop algorithms for objective diagnosis, speckle noise is an interference 

which is making the task difficult.  

The computer-aided diagnosis (CAD) system involve majorly pre-processing followed by 

analysis and other applications. The present work is about the development of computer-aided 

classification (CAC) systems for the classification of B-mode ultrasound images. It also includes 

exploration of possibilities to enhance the efficiency of a CAC system. Considering the 

significance and frequency of cases of kidney and liver, radiologist suggested to develop CAC 

systems for both the databases. Thus, the present work primarily comprises of two parts: One is 

concerned with kidney images and the other involves liver images. In the first part, two CAC 

systems are proposed for kidney images: 

1. a. Classification of normal, medical renal disease (MRD) and cyst classes of kidney using 

B-mode ultrasound images is carried out. It also includes the possible contribution by the features 

extracted from the de-speckled images for the classification task.  
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1. b. The cyst class recognition is comparatively easier among the three classes. So, to 

improve the classification of normal and MRD classes, a binary CAC system is proposed. To 

optimize the combination of texture features and the de-speckling methods for the classification, 

exhaustive experiments have been also carried out. 

In second part, two CAC systems for the liver images are proposed: 

2. a. First, classification of normal liver and grades of fatty liver (mild, moderate and severe) 

using B-mode ultrasound images are considered. It is also been highlighted that regions of 

interest (ROIs) from diaphragm have a contribution to make for the classification task. 

2. b. There is an overlap of image characteristics among severe fatty liver and cirrhotic liver. 

So, a binary CAC system is proposed for the classification of severe fatty liver and cirrhotic liver 

using B-mode ultrasound images. The impact of a classifier associated with the wrapper method 

of feature selection on the CAC system has been also evaluated. 

A generalized block diagram which can depict the outline of each of the above stated four 

CAC systems of the present work is shown below. 

 

Figure 1: A brief work-flow diagram 

The database used in the present work consisted of 35 kidney images comprising of 11 

normal, 16 cysts and 8 MRD images and 69 liver images which includes 12 normal, 14 mild fatty 

liver, 14 moderate fatty liver, 13 severe fatty liver and 16 cirrhotic liver images. 

The ROIs are required when sufficient number of images are not available or/and area of 

interest is confined to a small region. In the present work, sufficient numbers of non-overlapping 

ROIs of size 32 × 32 pixels are extracted from each image by the experienced radiologist. 

From each ROI, various texture features are extracted to represent the ROI image in 

quantitative form so that it can be used to perform objective classification of ROI images. In the 

present work, the features used often in classification of ultrasound medical images are 

considered, namely, first order statistics (FOS) based features, moment invariant (MI) features, 

run-length matrix (RLM) features, gray-level co-occurrence matrix (GLCM) features and Laws’ 

texture energy (Laws) features. A category of gradient (Grad) based features, which has not been 

used so frequently, is also considered to evaluate its potential in the present work. 
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In order to reduce computations in further processes and to remove redundant features 

without compromising on the efficiency of the CAC system, a feature selection process is 

considered. Differential evolution feature selection (DEFS), which is a recent wrapper method 

has been used in the present work. An optimization process has been carried out in prior to find 

out the values to be assigned to the parameters of DEFS, viz. desired number of features (texture 

features of ultrasound images), population size (number of ROI patterns) and number of 

iterations (repetitions required for the algorithm to evolve till a saturation is reached). 

Support vector machine (SVM) classifier is often considered in medical applications for the 

better performance it brings. To perform the last stage of the CAC system i.e. classification, one-

against-one multi-class SVM classifier has been considered in the present work. 

To evaluate the performances, present work is carried out basically in two stages i.e. without 

feature selection and with feature selection. Overall classification accuracy (OCA) is considered 

as a performance measure in the first stage. For feature selection stage, the DEFS process is 

repeated 30 times to obtain 30 subsets. The subset which produced highest OCA among the 30 

subsets is considered as one of the measures to evaluate the performance after feature selection. 

The OCAs obtained from 30 subsets are used to calculate average accuracy (standard deviation) 

(AASD), and is considered as another measure to show the reliability of a particular feature set 

for the classification task. 

In the present work, the methodologies employed in different stages of CAC systems (ROI 

marking, extraction of features, feature selection and classification) are same for the two 

databases of kidney and liver. Thereby, we could draw conclusions on commonalities and 

distinguishing characteristics of the stages of CAC system for the two databases. 

Brief description of CAC systems: 

CAC System 1: The radiologist suggested that the distinguishing characteristics between 

normal and MRD is constrained in the region of parenchyma of kidney and cysts are local in 

nature. The significant point being considered is the selection of ROI for the classification of 

normal, MRD and cyst classes of kidney using B-mode ultrasound images. Generally, the de-

speckling methods are used for providing better visualization of images for the radiologists, 

which in turn help them in making diagnosis easier. To overcome the limitation of subjective 

diagnosis, computer-aided systems are being proposed by the researchers to provide objective 

assistance in diagnosis. The changes in the textural information by the de-speckling methods are 

considered. Texture features are extracted from the de-speckled images and the feature sets are 
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concatenated in different combinations to enhance the potentiality of the CAC system. The 

concatenated RLM feature sets extracted from the ROIs of images de-speckled by Lee’s sigma 

and enhanced Lee methods have resulted in an AASD of 86.3(1.6). 

CAC System 2: Among the normal, MRD and cyst classes of kidney, distinguishing normal 

and MRD is more challenging, and hence in the current objective only those two classes are 

considered. To evaluate the performance of different texture features extracted from the images 

de-speckled by various methods in the classification task, six categories of texture features and 

eight de-speckling methods are considered. RLM features from the images de-speckled by Frost 

method gave an AASD of 87.0(2.9). 

CAC System 3: A CAC system is proposed for the classification of normal liver and grades 

of fatty liver i.e. mild, moderate and severe using B-mode ultrasound images. Radiologists 

consider the visibility of diaphragm along with the variations in liver texture in their subjective 

diagnosis. For the CAC system also, ROIs are considered from both within liver and diaphragm 

areas to obtain higher accuracy of the system. To combine the information of these two regions, 

ratio features, inverse ratio features and additive features are computed. The Laws ratio features 

have performed better with an AASD of 84.9(3.2). 

CAC system 4: In the line of grades of fatty liver, the advanced stage of severe fatty liver is 

cirrhotic liver. A CAC system is proposed for the classification of severe fatty liver and cirrhotic 

liver, wherein ROIs from the diaphragm area are not considered. In the present work, DEFS, a 

wrapper method is being used for the feature selection. As an another objective, two classifiers 

i.e. Naïve Bayes (NB) and K-nearest neighbour (KNN) classifiers are used along with DEFS 

algorithm to obtain different subsets of features. The concatenated set of first-order statistics and 

Laws feature subsets obtained from KNN-DEFS produced better AASD of 99.5(0.8). 

For kidney images, the CAC system 1 can be employed if normal, MRD and cyst classes are 

considered for classification. If the result of this system is not cyst, the CAC system 2 can be 

used to enhance the classification accuracy of normal and MRD. Similarly, for liver images, the 

CAC system 3 can be used for the classification of normal and grades of fatty liver (mild, 

moderate and severe). If the output of this system is severe fatty liver, then CAC system 4 can 

be utilized for further clarification among severe fatty liver and cirrhosis. 
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Chapter 1 

Introduction 

1.1 Motivation 

The revolutionary advancement of technology has made a mark and come a long way in 

medical domain. From diagnosis to treatment, modern medicine is relying on technology 

complimentary to conventional clinical methods. A wide range of medical imaging modalities 

are available to view the anatomy, physiology and the functionalities of various structures of 

human body [1]. Each modality offers a unique dimension of information about the area of body 

under study and also has its own limitations. On one hand, efforts are being made to overcome 

the limitations and on the other hand, information from different modalities is being combined 

to have more clarity on the problem at hand. 

Ultrasound imaging is often preferred as an initial examination to get the visuals of soft tissue 

structures like kidney, liver, gallbladder, pancreas, spleen, etc. The portability, cost-

effectiveness, safety, convenience are the nature of ultrasonography considered for its preference 

over other modalities such as computed tomography (CT) and magnetic resonance imaging 

(MRI)[2]. Thus, it is more suitable to countries like India. However, the subjective interpretation 

of images is inevitably vulnerable to human error and the experts have to rely on invasive 

methods for confirming the conditions of patients. Invasive methods are uncomfortable and cause 

irritation to the patients, because of which people avoid the clinical examinations. It is also prone 

to biased results due to sampling error, morbidity and mortality. The speckle noise in the 

ultrasound image is both advantageous as it contains diagnostic information and disadvantageous 

as it obstructs in making clear diagnostic statements by the radiologists.  

Kidneys have a crucial role to play for the mechanism of human body to continue its 

function. There is a spectrum of pathological conditions of kidney which are not clearly 

diagnosable by the radiologists. They are collectively termed as medical renal disease (MRD). It 

is clinically significant to distinguish MRD from other conditions of kidney at the earliest to 

administer appropriate treatment.  

Liver is a metabolic centre of human body, carrying out the vital activities which are directly 

involved with the survival of an individual. The liver cells have the capacity to rejuvenate itself 

to some degree with small injuries. However, long-term dysfunction of liver makes it unable to 

carry out regeneration as it involves major functions in the body. Liver diseases are basically of 

two types i.e. focal liver diseases and diffuse liver diseases. In focal liver diseases, the 
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abnormality is confined to a localized area of the liver parenchyma. In diffuse liver diseases, the 

abnormality is spread all over the liver. The accumulation of excess triglycerides in extra-cellular 

space called vacuoles of liver cells is called fatty liver or fatty liver disease (FLD). Medical 

fraternity has defined three stages of FLD i.e. mild, moderate and severe corresponding to 

increase in severity of the condition. An advanced stage of fibrosis is termed as liver cirrhosis, 

which is considered to be an irreversible condition. Hence, clinically it is very significant to 

detect the process of fibrosis at the earlier stage. 

1.2 B-Mode Ultrasound Imaging 

Ultrasound imaging is a method which basically involves propagating a sound wave into the 

body and the reflected sound wave (echo) is processed to form an image. Thereby it forms the 

visuals of internal structures especially soft tissues of the body. There are various modes of 

ultrasound used in medical imaging. The one which is considered often and used in the present 

work is brightness-mode or B-mode. To understand few concepts that are dealt with, in the 

present work, looking at the basics of ultrasound imaging would be necessary.  

1.2.1 Generation, propagation and reception of ultrasound waves 

The sound waves of frequencies above human hearing threshold are considered as 

ultrasound waves. To generate these sound waves piezoelectric crystals are used in the 

transducers of ultrasound probe. The vibrations that are capable of travelling through the tissues 

in the body are generated by a piezoelectric crystal. The crystal has dual nature, that when a 

voltage is applied, it expands and relaxes back to its original thickness when the applied voltage 

is withdrawn. If the voltage is applied and withdrawn repeatedly, the crystal rapidly expands and 

relaxes, generating ultrasound waves. Another property is, when the ultrasound wave reflects 

from the object and hit the crystal, it is compressed and equivalent to the intensity of the reflected 

ultrasound wave a voltage is generated. Ultrasound probes are composed of large number of 

crystals.  

Ultrasound waves are likely to reflect wherever air encounters biological tissue. Even a 

small bubble between a patient skin and probe is sufficient to reflect the ultrasound waves in lieu 

of penetrating the skin. Since it can propagate through liquid, thick liquid (jelly) between the 

probe and the patient skin is applied. 

Some of the ultrasound waves are attenuated by the absorption of energy from the body. It 

is difficult to obtain the images of deeper structures, because the attenuation of the waves is more 

as the ultrasound waves have to cross more body tissues. Every substance such as muscles, fat, 

etc. has a property called ‘acoustic impedance’. Acoustic impedance is the degree of resistance 
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the body structure projects on the acoustic wave when it tries to pass through them. The acoustic 

impedance depends on the density of the body structure and the speed of ultrasound in it. When 

an ultrasound wave passes from one structure to another having different acoustic impedance, 

part of ultrasound wave continues to travel by slightly deviating from its actual direction into the 

second structure. This is referred as refraction. Another part of ultrasound wave is reflected back 

to the probe. The volume of ultrasound wave that reflected back and the difference in the acoustic 

impedance between the structures are directly proportional.  

1.2.2 Image formation 

Reflected waves are important as they provide information for the computer to further 

process that aid in the formation of the image. As the ultrasound waves cross from one tissue to 

the next, each with different acoustic impedance, some of the waves are reflected back at each 

crossing. Multiple reflected waves returning to the probe and gives information to the computer 

to display an image showing different tissues. The process of digital image formation from the 

reflected waves may be understood as below.  

A wave of ultrasound is propagated through the probe in a narrow path. When the wave 

encounters a tissue (or any substance), a part of the wave is reflected back into the probe. The 

intensity of the reflected wave is indicated by a bright dot. The brightness of the dot and the 

intensity of the reflected wave are directly proportional. The part of the wave continued is 

reflected when it encounters another tissue. This reflected wave is registered as a bright dot on 

the screen. Thus, few dots of different brightness are formed along a line. However, when 

scanned at different lines of the object, a two dimensional image is formed on the screen. Since 

the scanning of structures and image redrawing many times a second happens so rapidly, one can 

see the changes in real-time. Ultrasound machine has few control knobs using which visual can 

be made better. For example, weakened signal strengths of deeper tissues to the greater 

attenuation over a long path can be compensated using time gain compensation (TGC) knob. 

1.2.3 Speckle noise 

Speckle is an inevitable multiplicative noise getting ingrained into the ultrasound images. 

It is an interference hampering the way of disease diagnosis as well as the algorithm developers 

of CAD systems. Yet, complete removal of speckle noise is not acceptable by the radiologists as 

it contains diagnostic information. 

Tissues such as liver parenchyma, kidney parenchyma have inhomogeneity in their 

structures equal to or smaller in size than the wavelength of the ultrasound. These structures, 

though serve as a sound absorbing medium, scatter the sound waves because of the differing 
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acoustic impedance at microscopic level that lie closer. The scattered sound waves arrive out of 

phase at the sensor, causing a granular pattern on the image. This appears as bright specks in the 

realm of lighter background. This is termed as speckle. Speckle is not an absolutely unwanted 

interference in ultrasound. The speckle pattern is not completely random, as it contains 

information about the tissue. Each pathology give rise to a characteristic speckle signal. Speckle 

is a complex phenomenon in ultrasound image formation, which has the characteristics such as 

signal dependent, spatially dependent and non-Gaussian. 

1.3 Anatomy, physiology and diseases with sonographic characteristics 

In the present work, before understanding the implications of information from the 

ultrasound images, it is beneficial to have basics of anatomy, locality of organs of interest in the 

body and their normal functions. The nature of diseases that are considered in the current research 

work and their sonographic aspects are briefly described in this section.  

The radiologists use visually recognizable features such as echogenicity and echotexture to 

distinguish normal condition from that of abnormal. Echotexture is a term used to describe a 

tissue structure that produces an echo. If the structure has same type of tissues or liquid with 

negligible or no differences of acoustic impedance, the reflection of ultrasound waves appears to 

be homogeneous. If the structure has different types of tissues, then the reflection of ultrasound 

waves shows varying shades, known as heterogeneous. Echogenicity is a relative term used to 

describe the intensity of echotexture of an area with respect to its vicinity.  If the intensity of the 

area under consideration is more than its vicinity, it is called hyperechoic. If the intensity is less 

it is hypoechoic and if it is same as that of its vicinity, it is known as isoechoic. If the structure is 

not reflecting any echoes, then it is termed as anechoic. 

1.3.1 Kidney 

Kidneys are a pair of bean-shaped organs outwardly having a concave and convex side. 

Renal hilum is externally attached to the concave surface of the kidney, in which renal artery 

enter the kidney and the renal vein and the ureter leaves the kidney. The kidney is enclosed in a 

fibrous renal capsule. The dimensions of kidney are approximately, 11-14 cm in length, 6 cm in 

width and 4 cm in thickness. In humans, the kidneys are located in retroperitoneum, one on each 

side of the spine.  

The functional unit of kidney is nephron, which is a urine producing structure. The area of 

an organ where its functional units are spread across is known as parenchyma. The major 

structures comprised in the kidney parenchyma are, the outer renal cortex and the inner renal 

medulla. The medulla region comprises of cone shaped renal pyramids with the broader base 
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being surrounded by the cortex and their apexes are pointing inwards. The cortex region 

extending in between the renal pyramids are known as renal columns. Renal corpuscle is the first 

portion of nephron located in renal cortex, where initial filtering takes place. Renal tubule is a 

passage of nephron extending from cortex into the medullary pyramids. A set of renal tubules 

drain the urine into a single collecting duct. The collected urine passes to the ureter through the 

passage of pyramids, minor calyces, major calyces and the renal pelvis. A cross-sectional view 

of kidney is depicted in Figure 1.1. 

 

Figure 1.1: Cross-sectional view of kidney 

Courtesy: http://healthfavo.com/wp-content/uploads/2013/08/human-anatomy-diagram-

kidney.png 

The main roles of kidney are serving homeostatic functions such as regulation of 

electrolytes, maintaining acid-base balance, maintaining water-salt balance thereby regulating 

blood pressure. They remove urea and ammonium through urine. They are responsible for 

absorbing water, glucose and amino acids. They produce vital hormones such as erythropoietin 

and enzymes like renin [3].     

1.3.1.1 Normal 

The normal condition of an organ cannot be characterized as the conditions of a disease 

are outlined. However, the sonographic features of a normal organ can be described and the 
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variation in these features corresponds to the diseased conditions of an organ. A sample of B-

mode ultrasound image of normal kidney is shown in Figure 1.2.  

 

Figure 1.2: B-mode ultrasound image of normal kidney. The dotted ellipse marks the boundary 

of the kidney 

The renal parenchyma is homogenous in textural appearance. It is hypoechoic compared 

to normal liver parenchyma. The pyramids of renal medulla are rounded triangular structures, 

evenly arranged in the kidney, appear hypoechoic than the cortex. The central renal complex, 

comprising the major and minor calyces and the surrounding fat, appears as an echo-rich, white, 

irregular shape lying centrally [4]. 

1.3.1.2 Medical renal disease (MRD) 

The disorders such as haematuria, proteinuria, pyuria, polyuria, etc. cause the functional 

unit of kidney i.e. nephrons to be accountably diseased partly or completely. Accordingly, the 

nephron structures appear hyperechoic and heterogeneous than in normal condition. Since, 

nephrons are miniature units and are arranged so closely, it becomes difficult for the radiologists 

to diagnose those diseases. Such diseases are categorized as medical renal disease. Thus the 

parenchyma of MRD is hyper-echoic than normal and the distinguishing between cortex and 

medulla becomes hardly possible [5]. An example of B-mode ultrasound image of MRD is shown 

in Figure 1.3. 
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Figure 1.3: An example of MRD image with dotted ellipse representing the boundary of kidney 

1.3.1.3 Cysts 

A renal cyst is a fluid filled region in the kidney. They usually appear in cortex region, 

but also possible in medullary and renal sinus regions. Most of the time, they are benign and are 

monitored without intervention. However, some cysts might be cancerous and are considered to 

remove in nephrectomy, a surgical procedure. Sometimes, there is a possibility of being confused 

with renal sinus cyst as hydronephrosis [6].  

A sample of cyst condition being displayed in B-mode ultrasound modality is shown in 

Figure 1.4. On ultrasound images, benign cysts are anechoic with no internal echoes. They have 

a smooth thin wall with posterior acoustic enhancement [7]. 
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Figure 1.4: B-mode ultrasound image of a cyst with a dotted circle emphasizing the region 

1.3.2 Liver 

Liver is a largest organ as well as largest gland of the human body. It is considered as a 

gland, because it synthesizes hormones to be released into the bloodstream. It weighs around 1.5 

kg. It is located in upper right quadrant of abdomen below the diaphragm, beside the stomach 

and under the ribs. It extends a part way into the upper left abdomen. It has four lobes, 

traditionally which is based on outer appearance of liver, two lobes i.e. right lobe and left lobe 

are visible from the frontal view and other two lobes are visible from underside view. The right 

lobe is larger compared to left lobe. The division of liver into independent 8 segments based on 

functionality is referred as Couinaud classification. The segments are numbered in roman as I to 

VIII. An illustration of location and lobes of liver is shown in Figure 1.5.  

Liver is supplied by hepatic artery and portal vein. Oxygenated blood enters liver by hepatic 

artery which is a branch of the coeliac trunk that arises from aorta, whereas nutrient rich blood 

from the gastrointestinal and also from the spleen and pancreas enters liver through portal vein. 

These blood vessels branches into small capillaries leading to the functional units of liver, 

lobules. Each lobule is structured with numerous hepatic cells (or hepatocytes), where the 

metabolic activities take place.  
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Figure 1.5: Illustration of location and lobes of liver 

Courtesy: http://www.cancer.gov/images/cdr/live/CDR658698.jpg 

The liver is responsible for carrying out 500 functions in coordination with other organs 

and systems. Because of such a complex network of functions, currently there is no artificial 

organ to take over in case of liver malfunction. Some of the major functions of liver include 

protein synthesis, production of various biochemicals to aid the digestion process and 

detoxification of intermediate and products of metabolism [8].  

1.3.2.1 Normal 

The normal liver has homogeneous echotexture and it is isoechoic or slightly hyperechoic 

in comparison with the renal cortex and hypoechoic with that of spleen [9]. The major structures 

such as hepatic artery, portal vein, bile duct and other vessels appear anechoic in relation to 

normal liver texture. The border of liver near to diaphragm and the diaphragm itself is 

hyperechoic than the liver texture [6].  

Liver, because of its multi-functionality, is more prone to become diseased. However, the 

liver has a potential to continue for a long time with disease. Only when considerable damage 

has happened that interferes with the normal function of liver, it starts exhibiting symptoms. The 

major categories of liver disease are focal liver disease and diffuse liver disease. In focal liver 

diseases, the abnormality of liver parenchyma is confined to a localized area, whereas in diffuse 
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liver diseases, the abnormality is diverged throughout the liver [10]. The stages of diffuse liver 

disease, considered in the present work are described below.  

1.3.2.2 Fatty liver disease (FLD) 

 

Figure 1.6: Sample images of (a) Normal (b) Mild (c) Moderate and (d) Severe fatty liver 

The deposition of triglycerides in hepatocytes initiates the reversible disorder of 

metabolism, known as fatty liver disease (specifically known as non-alcoholic fatty liver 

disease). Due to the deposition of fat in liver cells, it becomes unable to retain sufficient blood in 

them leading to hepatic fibrosis. Depending on whether the fat deposition is diffused or focal, 

fatty liver is categorized into two major classes [11]. In the present work, diffuse fatty liver 

condition is considered. The histological and pathological findings have validated the 

phenomenon that, diffuse liver disease severity increases in accordance with the hepatic fibrosis 
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advancement [12]. Accordingly, medical fraternity has defined three stages of fatty liver, based 

on the degree of severity. They are mild, moderate and severe fatty liver. This categorization 

would be useful for treatment planning and further investigations. Ultrasound imaging is a 

reliable non-invasive tool for the diagnosis of fatty liver [6]. A sample images of normal and 

grades of fatty liver are shown in Figure 1.6. Standard sonographic characterizations of mild, 

moderate and severe fatty liver are as follows: 

a. Mild fatty liver: with minimum diffuse of fat deposition, there is increase in 

echogenicity of liver. The visibility of diaphragm and blood vessel borders are 

normal. 

b.  Moderate fatty liver: diffuse of fat deposition and echogenicity of liver have further 

increased than in mild fatty liver. The visibility of diaphragm and blood vessel borders 

has slightly diminished.  

c. Severe fatty liver: There is an extensive increase in echogenicity. Because of increased 

attenuation at liver, the part of liver near diaphragm will be hypo-echoic. The 

diaphragm and blood vessel borders are poorly visible or nonvisible [13].  

1.3.2.3 Liver cirrhosis 

Cirrhosis is an advanced irreversible stage of diffuse liver disease. Fatty liver disease is 

one of the possible causes behind cirrhosis. Fatty liver disease is a progressive disease 

characterized by the inflammation of liver and fibrosis. If the condition is not detected at the 

initial stages, this will lead to cirrhosis. Up to 20% of fatty liver disease patients develop liver 

cirrhosis. Only 60% of liver cirrhotic patients show signs and symptoms [11]. Although, biopsy 

is considered as standard diagnostic tool, it is invasive. Thus, ultrasound is used as a non-invasive 

screening method for diagnosis. A B-mode ultrasound image example of cirrhotic liver is shown 

in Figure 1.7. 
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Figure 1.7: Sample B-mode ultrasound image of cirrhotic liver 

Cirrhosis is associated with the replacement of liver tissue by scar tissues and nodules 

due to attempted repair damage tissues. These associations leads to modifications in normal 

hepatic appearance such as increased echogenicity, heterogeneity, alteration in liver size, nodular 

surface and damaged hepatic vessels [14-18]. The increased echogenicity may be emphasized by 

increased time gain compensation (TGC) settings in obese patients. As in fatty liver disease, 

radiologists do not consider the visibility of diaphragm as a reliable feature of cirrhosis because 

of its inconsistence [6]. 

1.4 Need for CAC system and its enhancement 

With the revolutionary advancement of technology, the utilization of imaging and the 

computer algorithms have increased enormously [19-26]. The idea of CAD system is to provide 

a computer output as a secondary observer to assist radiologists and other health care 

professionals in image readings [27-40]. Three main areas of CAD system are: 

• General processing – image acquisition and digitization, image quality 

verification and re-acquisition. 

• Pre-processing – segmentation, image rotation, unbounded pixel elimination. 

• Analysis – feature extraction, classification, and other applications.  

Each of the pixels in a region is similar with respect to some characteristic or computed property, 

such as colour, intensity, or texture. Adjacent regions are significantly different with respect to 
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the same characteristic(s). The characterization of tissues using one or combinational property to 

categorize them into respective classes is termed as classification [41, 42]. 

The reasons for the need of CAC system pertaining to the current work are: 

a. To extract information from the images which normally not able to capture from visual 

inspection of ultrasound images.  

b. To overcome the inter- and intra-observer variability, an inevitable limitation of 

subjective diagnosis. 

c. To increase the potential of CAC system based on B-mode ultrasound images so that 

diagnostic confidence is elevated, thereby its utilization is extended in countries like 

India. 

The CAC systems are application dependent. Hence, the way images are interpreted by the 

radiologists needs to be utilized in developing a CAC system. This aids in improving the 

performance of CAC system from medical perspective [13].  To further improve the performance 

of CAC system from technical perspective, appropriate modifications and new methods can be 

annexed at one or more stages of CAC system. In the present work, the CAC systems involved 

the following stages: ROI marking, feature extraction, feature selection and classification. The 

same methodologies are employed in these stages of CAC system meant for kidney and liver 

databases to evaluate their potential. Inputs from medical or/and technical perspective have been 

proposed for enhancing the performance of CAC systems.  

1.5 Literature Survey 

1.5.1 Introduction 

Medical image analysis is an interesting as well as challenging field of research. It is 

interesting because of the close association with the human body, health and deeper 

understanding of mechanisms involved in well-being of an individual. The limitations of medical 

imaging modalities and the artifacts interfering in developing computer algorithms for image 

interpretation are the exhibiting challenges in this area of research. Medical image analysis 

involves meeting of medical experts and algorithm developers. With the intention to provide 

possible objective aid to assist medical fraternity, contributions from both the medical experts 

and algorithm developers are necessary.  

The significance of literature survey in research has many dimensions. Particularly, in 

medical image analysis the following factors need to be considered. 
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a. The problem which essentially requires computer-assistance, as CAC systems are 

application dependent. 

b. The frequency of the cases for the availability of sufficient data for research. 

c. The published literatures on the same line to carryout work there upon or to improve 

upon the existing methods. 

The contributions in the present work include the possible input from the medical domain as 

well as from technical aspect. Accordingly, the literature survey corresponding to kidney image 

classification, de-speckling of ultrasound for classification, liver image classification, texture 

features and feature selection are covered in following sections. 

1.5.2 Kidney image classification 

In literature, few attempts have been made towards the classification of ultrasound kidney 

images. Bommanna Raja, et.al, have studied the classification of normal, MRD and cyst classes 

by extracting kidney region [43] and using different features [5]. In [5], authors have extracted 

36 features from six categories. The process of ranking the features has been employed to reduce 

the number of features. The classification efficiency of the hybrid fuzzy system mentioned is 

96% for normal, 92% for MRD and 96% for cyst. In [7], authors have obtained 86.6% for normal, 

76.6% for MRD and 83.3% for cyst using Gabor wavelet features. There has been an attempt to 

classify the ultrasound kidney images using content descriptive power spectral features [44] and 

multi-scale differential features [45]. In [46], authors have used 28 multiple descriptive features 

with 13 highly significant for the classification. With ANN as a classifier, accuracy of 90.4% for 

normal, 86.6% for MRD and 85.7% for cyst have been obtained. In their study, the whole kidney 

area has been considered for extracting features. Whereas, the radiologist opined that the 

characteristic changes in MRD with respect to normal is in parenchyma of kidney and the cysts 

are focal in nature. 

1.5.3 De-speckling of ultrasound for classification 

Speckle noise in B-mode ultrasound images makes visual diagnosis a difficult task, but it 

also contain diagnostic information which is preferred by the radiologists. Various de-speckling 

methods have been proposed in literature [47-51]. Recent review [52] on comparison of fifteen 

de-specking methods on echocardiographic images concludes that oriented speckle reducing 

anisotropic diffusion (OSRAD) method is best for medical application. In [53], OSRAD has been 

recommended as a pre-processing step for segmentation task. In [54], speckle reducing 

anisotropic diffusion (SRAD) has been modified for processing the images before the 

classification task. Modified SRAD has shown improvement with respect to SRAD. 
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1.5.4 Liver image classification 

In literature, there are many contributions towards classification of normal, fatty liver and 

cirrhosis using different features [55-59]. Only recently [60], grades of fatty liver along with 

normal liver are considered for numerical grading. In their study, gray relational analysis (GRA) 

method has been utilized for numerical grading of fatty liver based on brightness level 

comparison between liver images and kidney parenchyma as reference from the same subject. 

But, this factor is not reliable as the echogenicity of kidney parenchyma changes in case of kidney 

diseases [13]. The most frequently considered factors are increased liver echogenicity, impaired 

visualization of hepatic vessels and diaphragm [6].  

CAC systems have been proposed for normal and cirrhotic liver images [10, 14-18]. 

Radiologists opined that, differential diagnosis between severe fatty liver and cirrhotic liver 

images is a challenging task, as the latter may be an advanced stage of former condition. Also 

the differential diagnosis between severe fatty liver and cirrhotic liver is clinically significant as 

FLD is reversible, whereas cirrhosis is not. 

1.5.5 Texture features 

In case of US images, texture features are predominant and have been used for 

classification tasks [61-63]. From the literature survey pertaining to above sections, different 

texture features are selected for the present work based on their frequency of usage and 

performance. The feature categories considered are first order statistics based features, moment 

invariant features, gray level co-occurrence matrix features, run-length matrix features, Laws 

texture energy features. In addition to these, gradient based features are considered to explore its 

potential in the present classification tasks. The detailed descriptions of these features are 

presented in next chapter on methodology.  

1.5.6 Feature selection 

The interaction among features in performing the given classification task is another 

important aspect which should be considered while designing an efficient CAC system. This can 

be accomplished by removing unnecessary features. Basically feature space dimensionality 

reduction can be approached either by transformation based feature reduction or by feature 

selection. In the present work, feature selection approach has been used. Differential evolution 

feature selection (DEFS) being the recent method, has shown better performance with 

competitive methods [64] and hence DEFS has been used.  
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1.6 Objectives 

Based on literature survey and the need for enhancing the performance of CAC systems, the 

objectives for the present work are stated as follows: 

1. To research the significance of considering appropriate ROIs for the classification of B-

mode ultrasound images. 

2. To explore the potentiality of features from de-speckled images for the classification of 

B-mode ultrasound kidney images. 

3. To evaluate the performance of texture features with respect to de-speckling methods for 

the classification of B-mode ultrasound kidney images. 

4. Explore the ways to enhance the performance of classification of fatty liver images. 

5. Exploring the optimal texture features for the classification of B-mode ultrasound images. 

6. Investigate the ways to improve the potentials of feature selection process. 

1.7 Overview of the present work 

A radiologist, interprets an image of kidney as well as liver, but consider the distinguishing 

characteristics of an organ and diseases accordingly. On the same line, to have the CAC systems 

for different organs and diseases, but common methodologies for the stages of CAC system is 

the idea behind the present work. It is also possible to know what methodology is suitable for 

kidney and liver. So, two databases of kidney and liver are considered, but the algorithms used 

at different stages of CAC systems are maintained the same for both databases. An overall flow 

of present work is depicted in Figure 1.8. 

In first part, CAC systems for kidney images are proposed. In literature, CAC systems have 

been proposed by considering normal, MRD and cyst classes of kidney using B-mode ultrasound 

images. Accordingly, a CAC system is developed to make improvement. The opinion of 

radiologist was that cysts are easily recognizable comparatively. So, another binary CAC system 

is developed for classifying only normal and MRD for two reasons: to improve classification 

performance further compared to the previous one and to avoid the biased result of cyst.  

In literature, few studies have been proposed which considers classifying grades of fatty liver 

(mild, moderate and severe). The classification of grades of fatty liver is clinically significant for 

treatment planning and the severe fatty liver (reversible stage) may develop into liver cirrhosis 

(irreversible stage). Hence, the early detection of the stage of the disease is of at most important. 

In second part, a CAC system is developed for normal and fatty liver images. To overcome the 
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ambiguity between severe fatty liver and liver cirrhosis, a separate binary CAC system is 

developed. 

 

Figure 1.8: Block diagram representation of the present workflow 

1.8 Organization of thesis 

The thesis of the present work is organized into seven chapters. The brief descriptions are 

stated below. 

Chapter 1: With necessary introduction to medical imaging, image formation and analysis, 

the attributes of various classes of B-mode ultrasound images considered in the present work are 

described. The basis of objectives for the present work, literature survey and the need for 

improving the CAC systems are discussed in this chapter. 

Chapter 2: The protocols followed for data acquisition and the ethics involved are being 

mentioned. Various methods used at different stages of CAC systems such as texture feature 

extraction, feature selection and classification are described in detail in this chapter. 



18 
 

Chapter 3: With the introduction to the CAC system for the classification of B-mode kidney 

ultrasound images, data involved in the study, experimental results are described in detail in this 

chapter. 

Chapter 4: The necessary introduction to the extension of work in chapter 3 is presented 

with the data used for the study. Evaluating the potential of texture features extracted from images 

de-speckled by various methods for the classification of normal and MRD images is the 

objective. The purpose of the study has been justified with the exhaustive experiments and their 

results are presented in this chapter. 

Chapter 5: This chapter is on CAC system for the classification of normal and grades of fatty 

liver using B-mode ultrasound images. The data used for the study and experimental results are 

presented here. 

Chapter 6: With the necessary changes required from that which is discussed in chapter 5 

lead to unique CAC system for the classification of severe fatty liver and cirrhosis. The data 

required for the study and the experimental results are described in this chapter. 

Chapter 7: Overall conclusions drawn from all the CAC systems proposed in the present 

work are mentioned in this chapter. The limitations and the future possibilities pertaining to the 

present work are also presented here. 

1.9 Concluding Remarks 

The necessary foundations have been lied out by beginning with the motivation for the 

present work. Introduction to kidney and liver disease classes under consideration are explained. 

The need for CAC systems and its further enhancement are discussed. The literature survey 

which led to the objectives of the present work is described. The organization of different aspects 

of the thesis is also included in this chapter. The next chapter is focussed on detailed descriptions 

of methodologies employed in the present work. 
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Chapter 2  

Methodology 

2.1 Introduction  

The research methodology is a blueprint that represents the intended path to be followed to 

meet the objectives that have been set. In accordance with the present work, it comprises of 

crucial steps such as setting the objectives, formulation of possible methods, data collection, 

extracting relevant information in an appropriate format, exhaustive experimentation to arrive at 

significant conclusions. 

In research area such as medical image analysis, the crucial step is finding objectives based 

on research gap as well as the requirement of the radiologists and it also necessarily involves the 

availability of sufficient cases. To meet these conditions, valuable interactions with the 

radiologists are a pre-requisite. Hence, a memorandum of understanding (MoU) has been signed 

between the Indian Institute of Technology Roorkee (IITR) and Himalayan Institute of Hospital 

and Trust (HIHT), to support each other in the research work.  

The standard database for ultrasound images of kidney and liver are hardly available. The 

researchers in this area have to obtain their own database. Thus, quantitative comparison of their 

results becomes rarely possible. The data collection phase is a time consuming process, because 

it depends on the patients with a particular disease considered for the research objective, visiting 

the hospital for diagnosis. In the span of two years from 2012 to 2014, the images of kidney and 

liver are collected. The medical images of patients are conventionally related to them. Therefore, 

it is necessary to obtain the acceptance of patients and ethical clearance from the respective 

committee in prior to the acquisition of images. It is also necessary to ensure that the images are 

used for research purpose only by maintaining the confidentiality, dignity and anonymity of 

patients.  

The present work has four different CAC systems followed by its own datasets distribution, 

experimental stages. Thus, the common elements involved in these four CAC systems such as 

protocols pertaining to data acquisition, regions of interest (ROIs), feature extraction methods, 

feature selection procedure and the classification system are described in this chapter. The task 

of data acquisition and the selection of ROIs are mainly performed by the experienced 

radiologist. A simple MATLAB has been written by the researcher to assist the radiologist in 

marking the ROIs and to save the respective details. The other modules are designed by the 

research scholar intending to achieve the objectives.  
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2.2 Medical ethics and ethical clearance 

The medical ethics are basically the values set from humanity perspective which must be 

followed during clinical practice and medical imaging research. Ethical guidelines indicate the 

mutual coordination principles on researchers, radiologists as well as the patients/subjects 

involved in the research activity. The recognized institutions and hospitals across the world have 

an Institutional Review Board (IRB) to review the submitted research proposals in terms of the 

ethical issues involved in undertaking a research activity. The IRB generally involves health care 

professionals and the philosophers to ensure that the researcher has considered all the significant 

ethical issues while formulating the research procedures, so that there is no ethical conflict by 

undertaking the research activity. After a thorough investigation of the submitted research 

proposal the IRB may impose certain additional guidelines to make sure the safety and rights of 

the patients/subjects. The crucial review of research proposals by the IRB in turn helps the 

researcher as well as the organization against possible legal actions of ignoring to address 

important ethical issues concerning patients/subjects.   

The aim of the present research work is to do value addition in the diagnostic performance 

obtained by most commonly available conventional gray scale B-Mode US imaging modality for 

diagnosis of kidney and liver diseases. The present research work is related to human healthcare 

and the collection of database of B-Mode kidney and liver US images with representative images 

of respective sub classes under study from various patients is absolutely necessary. Therefore for 

the present research work the author was required to obtain the ethical clearance from the medical 

ethics committee of the associated medical education and research institute, i.e., Himalayan 

Institute of Hospital and Trust (HIHT), Dehradun. The medical ethics committee of HIHT 

approved the research proposal submitted by the author after examining the research problem, 

and imposed the following research ethics for the researcher to follow:  

i. The researcher will not involve in any procedure which may infringe or interfere with the 

medical ethics.  

ii. The researcher will not provide any input to the participating radiologists, as it may bias 

their opinion regarding the medical management.  

iii. The researcher would be required to obtain consent from the patients before collecting the 

data.  

iv. There should be no disclosure of personal information of the patients in any of the 

publication by the researcher.  
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v. The data collected by the researcher would be used for academic purposes only. 

2.3 Data acquisition, assessment and description 

The database required for the present work was unique and the author had to request the 

radiologist for acquisition of images of respective classes corresponding to the objectives. The 

data acquisition period was from 2012 to 2014. The images of required classes are collected from 

patients with their consent in prior. The B-mode ultrasound images are collected from Siemens 

ACUSON X300 ultrasound machine. All images had their own clinical settings such as time gain 

compensation, magnification, dynamic range, focal lengths for obtaining best view.  

The experienced participating radiologist confirmed the presence of diseases by assessment 

criteria, including (i) visual inspection of sonographic features according to their expertise, (ii) 

follow-up of clinical history of the patient and other associated findings, and (iii) imaging 

appearance on dynamic helical computed tomography (CT)/ magnetic resonance imaging (MRI) 

/ pathological examinations and biopsy. 

The database used in the present work consisted of 35 kidney images comprising of 11 

normal, 16 cysts and 8 MRD images and 69 liver images which includes 12 normal, 14 mild fatty 

liver, 14 moderate fatty liver, 13 severe fatty liver and 16 cirrhotic liver images. The images are 

of size 800×600 pixels with 256 gray levels and 96-dpi resolution. 

2.4 Region of interest (ROI) 

The region of an ultrasound image that has pixels of interest to provide diagnostically 

relevant information is region of interest (ROI). The selection of ROI is a vital step, which 

decides the performance of a CAC system in characterizing the tissues of ultrasound images. The 

ROIs are required when sufficient number of images are not available or/and area of interest is 

confined to a small region. The use of ROI as an input image for feature extraction reduces the 

complexity of the process and hence the time involved. But, the selection of ROI size is 

significant as texture measurements are sensitive to ROI size. From other studies [56, 65-68], it 

has been noted that the ROI size must be of at least 800 pixels to provide good sampling 

distribution for estimating reliable statistics. At the same time, the ROI size must fit within the 

area of relevant information. After the trail with the classes of images in the present work and 

interaction with the radiologist, ROI window size of 32 × 32 pixels has been selected. The 

automatic selection of ROI has both limitations and complications involved in the process. 

Hence, in the present work ROIs are selected manually by the experienced participating 

radiologist. To ease the process, a MATLAB program has been provided by the researcher which 

involved loading an image, selecting a point to place the ROI window and save the respective 
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details after confirming the ROI’s location. The protocols used in selecting ROIs from different 

classes of images for each CAC systems have been described in respective chapters. 

2.5 Feature extraction 

The primary requirement for quantitative analysis of images in CAC systems is the 

numerical or quantitative representation of characteristics of images, which are termed as 

features. The process wherein mathematical methods are used to obtain the relevant features for 

the task at hand is known as feature extraction [69, 70]. Ultrasonic images exhibit texture as one 

of its characteristics attribute and the approach to characterize tissues using texture is called 

texture analysis.  

Texture of an image can be defined as a descriptor of local intensity variations in the 

neighbourhood. The texture depends on the number of pixels considered. The basic pattern and 

repetition frequency of a texture sample could be invisible to the naked eye, although 

quantitatively detectable. The texture descriptor provides the measure of characteristics such as 

smoothness, coarseness and regularity. Ultrasound images also have textural surface generated 

by the echoes of ultrasound waves from soft tissue structures. It is difficult to standardize the 

terms used to describe the texture in ultrasound images because of subjective interpretation. 

Ultrasonic texture is characterized by sonographic features. These features are basically based 

on echotexture and echogenicity appearances of tissues under consideration. The radiologists 

differentiate tissues by visualizing various sonographic features. The studies [71-75] have shown 

the correlation between quantitative analysis of ultrasound texture features and radiologists 

subjective interpretation of images. Thus, in the present work, texture features are considered to 

meet the set objectives.  

The aim of feature extraction module is to extract features which bring forth most of the 

discriminatory information from the images and contribute in the better performance of CAC 

systems. In the present work, feature extraction methods are selected majorly based on literature 

survey and also on possible potentiality of the method. The selected feature extraction methods 

and their features are described as follows. 

2.5.1 First Order Statistics (FOS) features 

The parameters that measure the possibility of a particular gray value within selected 

region of an image are categorized as first order statistics [76, 77]. The digital image is a two 

dimensional array of pixels and the intensity gray-level values of pixels vary from 0 to 2b-1, 

where b is the number of bits of that image. The ultrasound images used in the present work have 

8-bits representation. Thus, the intensity gray-level values of pixels vary from 0 to 255. The gray-
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level values of the pixels in the region of interest can be characterized by the histogram, which 

is a frequency distribution function that shows the number of pixels for each intensity level in 

the whole range.  

 

Figure 2.1: Histogram of an image representing the number of pixels (along y-axis) of each 

intensity gray-level value (along x-axis) 

Figure 2.1 is a concise and simple summary of the statistical information contained in the 

image (histogram of image shown in Figure 1.6 (a)) of size 800 × 600. Each intensity gray-level 

value is represented along x-axis and the number of pixels having a particular gray-level value is 

represented along y-axis. A gray-shade bar along x-axis also shows that the gray-level value 0 

corresponds to black colour and 255 corresponds to white colour in the image. First order 

statistics can be computed from the histogram, as they are dependent on individual pixel values 

rather than the interaction of neighbouring pixel values. 

First order statistical measures are calculated based on central tendency, diversity, shape 

and entropy of the distribution of pixel intensities of region of interest. The features considered 

in the present work are: Mean, Variance, Skewness, Kurtosis, Energy[5, 17], and Percentile (1, 

10, 50, 90 & 99) [78, 79]. Totally, 10 FOS features are estimated. 
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Mean is the sum of intensity gray-level values of pixels over number of pixels under 

consideration. Mean is the first central moment and represents the average gray-level value of 

the region considered. As mean is the numerical value of central tendency, it is often used. An 

exceptionally large or small gray-level values of few pixels can significantly vary the mean value, 

hence it is sensitive to extreme values of the pixels. Thus, it more appropriate for symmetrical 

distributions. The formula for calculating the mean is  

𝑀𝑒𝑎𝑛 =  
1

𝑀𝑁
∑∑𝐼(𝑖, 𝑗)

𝑁

𝑗=1

𝑀

𝑖=1

 

Where I(i,j) represents a two dimensional image intensity function. 

I,j are variables varying from 1 to M and 1 to N respectively. 

 Variance is an average of the squared deviations from the mean of intensity gray-level 

distribution in an image. It is the second central moment and calculated using the formula 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
1

𝑀𝑁 − 1
∑∑(𝐼(𝑖, 𝑗) − �̅�)2

𝑁

𝑗=1

𝑀

𝑖=1

 

Where �̅� represents the mean of gray-level distribution in an image. 

 Skewness is the third central moment and gives the measure of symmetry and asymmetry 

of the gray-level values around the mean. Asymmetry of histogram to the left is given by negative 

value of skewness and to the right is given by positive value of skewness. Thus, the skewness of 

normal (or symmetric) distribution, which has a ‘bell shape’ is zero. The formula for calculating 

skewness value is 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
1

𝑀𝑁
∑∑(

𝐼(𝑖, 𝑗) − �̅�

𝜎
)

3𝑁

𝑗=1

𝑀

𝑖=1

 

Where 𝜎 is standard deviation (square-root of variance), which is the spread of gray level 

distribution around the mean. 

Kurtosis is the fourth central moment, measures how close an intensity distribution is to 

the normal distribution. Thus, it is the degree of peakedness if a distribution. For a balanced 

normal distribution w.r.t peakedness, kurtosis value is 3. Distribution that are more prone to 

outliers than normal distribution have heavy tails and peakedness with kurtosis value greater than 
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3. Distribution with light tails and flatness are less prone to outliers and the kurtosis value will 

be less than 3. It is calculated by the formula  

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
1

𝑀𝑁
∑∑(

𝐼(𝑖, 𝑗) − �̅�

𝜎
)

4𝑁

𝑗=1

𝑀

𝑖=1

 

 Energy of the pixels of region can be a distinguishing measure. It is the squared sum of 

gray-level values of pixels over number of pixels. More the energy implies that much of the 

pixels have higher gray-level values and vice-versa. 

𝐸𝑛𝑒𝑟𝑔𝑦 =  
1

𝑀𝑁
∑∑(𝐼(𝑖, 𝑗))

2
𝑁

𝑗=1

𝑀

𝑖=1

 

 Percentile indicates a value below which given percentage of gray-level values may be 

found in the region of interest. For example, percentile of 1% = 75, means 1% pixels of the region 

are having gray-level value less than 75. In the present work, percentile of 1%, 10%, 50%, 90% 

and 99% are considered as features. 

2.5.2 Gradient (Grad) based features 

To calculate gradient features, the following steps are followed [78, 80]. 

i. The neighbourhood of an image pixel has to be considered. The neighbourhood of a 

pixel is as shown below.  

ii. From this neighbourhood pixels, the absolute gradient value (AGV) is calculated for 

the pixel x(i,j). AGV can be calculated either by considering 5×5 or 3×3 

neighbourhood [29]. In the present work, the latter one is used. The formula used is, 

𝐴𝐺𝑉3(𝑖, 𝑗) = √(𝑅 − 𝐻)2 + (𝑁 − 𝐿)2 

A B C D E 

F G H I J 

K L x(i,j) N O 

P Q R S T 

U V W Y Z 

Figure 2.2: Neighbourhood of a pixel x(i,j) 
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iii. For the region of interest of size M×N, AGV is calculated at each pixel forming a 

two-dimensional array, may be termed as gradient image (GI) of size m×n.  

iv. Five gradient features namely, Mean, Variance, Kurtosis, Skewness and percentage 

of pixels with non-zero gradient (PPNZG) are estimated. Formulas for these features 

are as follows 

𝐺𝑟𝑎𝑑_𝑀𝑒𝑎𝑛 =  
1

𝑚𝑛
∑∑𝐺𝐼(𝑖, 𝑗)

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐺𝑟𝑎𝑑_𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  
1

𝑚𝑛 − 1
∑∑(𝐺𝐼(𝑖, 𝑗) − 𝐺𝑟𝑎𝑑_𝑀𝑒𝑎𝑛)2

𝑛

𝑗=1

𝑚

𝑖=1

 

𝐺𝑟𝑎𝑑_𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
1

𝑚𝑛
∑∑(

𝐺𝐼(𝑖, 𝑗) − 𝐺𝑟𝑎𝑑_𝑀𝑒𝑎𝑛

√𝐺𝑟𝑎𝑑_𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
)

3𝑛

𝑗=1

𝑚

𝑖=1

 

𝐺𝑟𝑎𝑑_𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
1

𝑚𝑛
∑∑(

𝐼(𝑖, 𝑗) − 𝐺𝑟𝑎𝑑_𝑀𝑒𝑎𝑛

√𝐺𝑟𝑎𝑑_𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
)

4𝑛

𝑗=1

𝑚

𝑖=1

 

𝑃𝑃𝑁𝑍𝐺 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝐺𝐼

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝐺𝐼
 

 

2.5.3 Moments Invariant (MI) features 

Moments invariant are characteristics of closed region that are invariant of translation, 

rotation and scaling [81-83]. Moment invariants are simple mathematically calculated properties 

that are often used for classification, recognition applications. The traditional technique of 

generating invariants in terms of algebraic moments was proposed by Hu [84]. For an input image 

f(x,y), the algebraic moments is given by 

𝑚𝑝𝑞 =∑∑𝑥𝑝𝑦𝑞𝑓(𝑥, 𝑦)

𝑦𝑥

 

Often, moment invariants are represented in terms of normalized central moments, 𝜂𝑝𝑞  which is 

given by 

𝜂𝑝𝑞 =
𝜇𝑝𝑞

𝜇00
𝛾  

where,     

𝜇𝑝𝑞 =∑∑(𝑥 − �̅�)𝑝(𝑦 − �̅�)𝑞𝑓(𝑥, 𝑦)

𝑦𝑥
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�̅� =
𝑥10
𝑥00

 

and 

�̅� =
𝑥01
𝑥00

 

𝛾 =
𝑝 + 𝑞

2
+ 1 

for p+q = 2,3,…. 

𝜇𝑝𝑞 Central moments of order up to 3 are  

𝜇00 = 𝑚00, 𝜇10 = 0, 𝜇01 = 0, 𝜇11 = 𝑚11 − �̅�𝑚10, 𝜇20 = 𝑚20 − �̅�𝑚10, 𝜇02 = 𝑚02 − �̅�𝑚01, 

𝜇30 = 𝑚30 − 3�̅�𝑚20 + 2�̅�
2𝑚10 , 𝜇03 = 𝑚03 − 3�̅�𝑚02 + 2�̅�

2𝑚01,  

𝜇21 = 𝑚21 − 2�̅�𝑚11 − �̅�𝑚20 + 2�̅�
2𝑚01, 𝜇12 = 𝑚12 − 2�̅�𝑚11 − �̅�𝑚02 + 2�̅�

2𝑚10 

A set of seven invariant moments can be derived from the second and third normalized 

central moments. 

∅1 = 𝜂20 + 𝜂02 

∅2 = (𝜂20 − 𝜂02)
2 + 4𝜂11

2
 

∅3 = (𝜂30 − 3𝜂12)
2 + (3𝜂21 − 𝜂03)

2 

∅4 = (𝜂30 + 𝜂12)
2 + (𝜂21 + 𝜂03)

2 

∅5 = (𝜂30 − 3𝜂12)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)
2 − 3(𝜂21 + 𝜂03)

2]

+ (3𝜂21 − 𝜂03)(𝜂21 + 𝜂03)[3(𝜂30 + 𝜂12)
2 − (𝜂21 + 𝜂03)

2] 

∅6 = (𝜂20 − 𝜂02)[(𝜂30 + 𝜂12)
2 − (𝜂21 + 𝜂03)

2] + 4𝜂11(𝜂30 + 𝜂12)(𝜂21 + 𝜂03) 

∅7 = (3𝜂21 − 𝜂03)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)
2 − 3(𝜂21 + 𝜂03)

2]

+ (3𝜂12 − 𝜂03)(𝜂21 + 𝜂03)[3(𝜂30 + 𝜂12)
2 − (𝜂21 + 𝜂03)

2] 

2.5.4 Gray-level co-occurrence matrix (GLCM) features 

Gray-level co-occurrence matrix is a second-order statistical method. Hence, it considers 

the spatial relationship of pixels in the image. GLCM proposed by Haralick [85] is one of the 

most frequently used texture features. To understand the way GLCM is computed, consider a 

matrix of 5×5, an image f(x, y) in numerical representation, i.e. gray-levels are in numerical 

values. 
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0 0 1 3 1 

3 1 1 3 1 

3 1 3 0 3 

3 2 1 0 3 

3 3 2 1 2 

Figure 2.3: An image f(x, y) with numerical representation of pixels 

GLCM is defined based on two elements; inter pixel distance d and direction θ. If the centre pixel 

of above matrix is considered, whose value is 3, the pixel towards the right having value 0 is at 

θ = 0o and d = 1. Similarly, w.r.t to this centre pixel, top-right pixel with value 3, top pixel with 

value 1 and top-left pixel with value 1 are at d = 1 and θ = 45o, θ = 90o and θ = 135o respectively. 

GLCM of the above matrix for d = 1 and θ = 0o is computed as follows. First, note the number 

of gray-levels in the matrix are 4 i.e. 0, 1, 2, 3. The GLCM is as shown below. For i = 0, j = 0, 

number of times pixels having (0, 0) with d = 1 in 0o orientation have occurred i.e. 1 is noted in 

GLCM. For i = 0, j = 3, number of times pixels having (0, 3) have occurred is 2, entered in 

GLCM. Similarly, GLCM is computed for i = 0, 1, 2, 3 and j = 0, 1, 2, 3. For above matrix of 

5×5 image f(x, y), GLCMs with varying d and θ can be computed. Normalized GLCMs are 

obtained by computing the sum of all the values in each GLCM (number of total gray-level 

transitions in the GLCM) and dividing each element by the sum. 

j 
0 1 2 3 

i 

0 1 1 0 2 

1 1 1 1 3 

2 0 3 0 0 

3 1 3 2 1 

Figure 2.4: GLCM matrix of f(x, y) for d = 1 and θ = 0o 

The following notations are used to mathematically express the features extracted from GLCM. 

P(i, j) = (i, j)th element in normalized GLCM 

px(i) = ith element in the marginal-probability matrix obtained summing the rows of  p(i, j) 

py(i) = jth element in the marginal-probability matrix obtained summing the rows of  p(i, j) 
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The mean and standard deviations for the rows and columns of matrix are expressed as 

𝜇𝑥 =∑∑𝑖. 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

𝜇𝑦 =∑∑𝑗. 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

𝜎𝑥 =∑∑(𝑖 − 𝜇𝑥)
2. 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

𝜎𝑦 =∑∑(𝑗 − 𝜇𝑦)
2. 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

where 𝜇𝑥 and 𝜇𝑦 are the mean of px and py respectively. 𝜎𝑥 and 𝜎𝑦 are the mean of px and py 

respectively. 𝑁𝑔 represents number of gray levels. 

Probabilities px+y and px-y that are related to specified intensity sums or differences, are defined 

as follows 

𝑝𝑥+𝑦(𝑘) =∑ ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1
𝑖+𝑗=𝑘

     𝑘 = 2, 3, … 2𝑁𝑔

𝑁𝑔

𝑖=1

 

𝑝𝑥−𝑦(𝑘) =∑ ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1
|𝑖−𝑗|=𝑘

     𝑘 = 0, 1, …𝑁𝑔 − 1

𝑁𝑔

𝑖=1

 

Twenty one GLCM features [86-89] used in present work are defined as follows. 

𝐸𝑛𝑒𝑟𝑔𝑦 =∑∑{𝑝(𝑖, 𝑗)}2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ 𝑝(𝑖, 𝑗)log (𝑝(𝑖, 𝑗))

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =∑∑|𝑖 − 𝑗| 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
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𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑛2

{
 
 

 
 

∑ ∑ 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1
|𝑖−𝑗|=𝑛

𝑁𝑔

𝑖=1

}
 
 

 
 𝑁𝑔−1

𝑛=0

 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = ∑ ∑
1

1 + |𝑖 − 𝑗|
𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑ ∑
(𝑖 − 𝜇𝑥)(𝑗 − 𝜇𝑦)𝑝(𝑖, 𝑗)

𝜎𝑥𝜎𝑦

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

  

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑜𝑚𝑒𝑛𝑡/𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑ ∑
1

1 + (𝑖 − 𝑗)2
𝑝(𝑖, 𝑗)

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

 

𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑∑(𝑖𝑗)𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑆ℎ𝑎𝑑𝑒 =∑∑(𝑖 − 𝜇𝑥 + 𝑗 − 𝜇𝑦)
3𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑃𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 =∑∑(𝑖 − 𝜇𝑥 + 𝑗 − 𝜇𝑦)
4𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = max (𝑝(𝑖, 𝑗)) 

𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒𝑠/𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =∑∑(𝑖 − µ)2 𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

𝑆𝑢𝑚 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  ∑ 𝑖𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

𝑆𝑢𝑚 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  ∑(𝑖 − 𝑆𝑢𝑚 𝐸𝑛𝑡𝑟𝑜𝑝𝑦)2𝑝𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

 

𝑆𝑢𝑚 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑝𝑥+𝑦(𝑖)𝑙𝑜𝑔{𝑝𝑥+𝑦(𝑖)}

2𝑁𝑔

𝑖=2

 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑝𝑥−𝑦 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑥−𝑦(𝑖)𝑙𝑜𝑔{𝑝𝑥−𝑦(𝑖)}

𝑁𝑔−1

𝑖=0
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𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 (𝐼𝑀𝐶)  

𝐼𝑀𝐶1 =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

𝑚𝑎𝑥{𝐻𝑋,𝐻𝑌}
 

𝐼𝑀𝐶2 = (1 − exp [−2.0(𝐻𝑋𝑌2 − 𝐻𝑋𝑌)])1/2 

𝐻𝑋𝑌 = −∑∑𝑝(𝑖, 𝑗)log (𝑝(𝑖, 𝑗))

𝑗𝑖

 

where HX and HY are entropies of px and py   

𝐻𝑋𝑌1 = −∑∑𝑝(𝑖, 𝑗)log {𝑝𝑥(𝑖)𝑝𝑦(𝑗)}

𝑗𝑖

 

𝐻𝑋𝑌2 = −∑∑𝑝𝑥(𝑖)𝑝𝑦(𝑗)log {𝑝𝑥(𝑖)𝑝𝑦(𝑗)}

𝑗𝑖

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = (𝑆𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄)1/2 

where 

𝑄(𝑖, 𝑗) =∑
𝑝(𝑖, 𝑘)𝑝(𝑗, 𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑘)
𝑘

 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =∑∑
1

1+ (|𝑖 − 𝑗|/𝑁)
𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑀𝑜𝑚𝑒𝑛𝑡 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =∑∑
1

1+ (|𝑖 − 𝑗|/𝑁)2
𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

GLCM features defined above, Energy, Entropy, Dissimilarity, Contrast, Inverse difference, 

Correlation, Homogeneity, Autocorrelation, Cluster shade, Cluster prominence, Maximum 

probability, Sum of squares, Sum average, Sum variance, Sum entropy, Difference variance, 

Difference entropy, Information measures of correlation, Maximum correlation coefficient, 

Inverse difference normalized and Inverse difference moment normalized [5, 14, 18] along 4 

orientations (0o, 45o, 90o and 135o) for 5 values of inter pixel distance i.e., d=1, 2, 3, 4 and 5 

results in a feature set of 420 features. 

2.5.5 Run-length matrix (RLM) features 

Galloway [90] proposed the Gray level run length matrix method for extracting texture 

features from the images. The run length is the number of consecutive pixels in the run and the 

value gives the number of times such a run occurs in the image. Gray level run length matrix is 

a set of values that are the number of times consecutive and collinear pixels having same gray 

level in the image. It represents the coarseness of the texture in the image in a particular 
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orientation. The example below describes the construction of gray level run length matrix. An 

image of size 6×6 represented with pixel values is shown below. 

1 1 2 2 1 1 

3 3 1 1 2 2 

1 1 2 3 1 1 

3 1 2 2 1 1 

1 1 3 2 2 2 

2 3 1 1 2 2 

 Figure 2.5: An image g(x, y) with gray level values of pixels  

The gray level run length matrix of g(x, y) for θ = 0o is shown in Figure. From the image, for 

consecutive pixels of length 2 having gray level value 1 occurred 8 times. Hence (i=1, j=2) in 

Figure, the value is 8. Similarly, for consecutive pixels of length 1 having gray level value 3 

occurred 4 times and hence (i=3, j=1) is 4. 

Gray level i 
Run length j 

1 2 3 

1 1 8 0 

2 2 4 1 

3 4 1 0 

Figure 2.6: Gray level run length matrix of g(x,y) for θ = 0o 

In the same way matrix can be constructed for θ = 45o, 90o, and 135o. From each of these matrices, 

eleven features i.e., Short run emphasis (SRE), Long run emphasis (LRE), Gray-level non-

uniformity (GLN), Run-length non-uniformity (RLN), Run percentage (RP), Low gray-level run 

emphasis (LGRE), High gray-level rum emphasis (HGRE), Short run low gray-level emphasis 

(SRLGE), Short run high gray-level emphasis (SRHGE), Long run low gray-level emphasis 

(LRLGE) and Long run high gray-level emphasis (LRHGE) [30, 91] can be computed. Eleven 

RLM features considered along 4 orientations (0o, 45o, 90o and 135o), results in a set of 44 RLM 

features. They are defined as below. 

𝑆𝑅𝐸 =
1

𝑛𝑟
∑∑

𝑃(𝑖, 𝑗)

𝑗2

𝑁

𝑗=1

𝑀

𝑖=1
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𝐿𝑅𝐸 =
1

𝑛𝑟
∑∑𝑃(𝑖, 𝑗).

𝑁

𝑗=1

𝑗2
𝑀

𝑖=1

 

𝐺𝐿𝑁 =
1

𝑛𝑟
∑(∑𝑃(𝑖, 𝑗)

𝑁

𝑗=1

)

2
𝑀

𝑖=1

 

𝑅𝐿𝑁 =
1

𝑛𝑟
∑(∑𝑃(𝑖, 𝑗)

𝑀

𝑖=1

)

2𝑁

𝑗=1

 

𝑅𝑃 =
𝑛𝑟
𝑛𝑝

 

𝐿𝐺𝑅𝐸 =
1

𝑛𝑟
∑∑

𝑃(𝑖, 𝑗)

𝑖2

𝑁

𝑗=1

𝑀

𝑖=1

 

𝐻𝐺𝑅𝐸 =
1

𝑛𝑟
∑∑𝑃(𝑖, 𝑗).

𝑁

𝑗=1

𝑖2
𝑀

𝑖=1

 

𝑆𝑅𝐿𝐺𝐸 =
1

𝑛𝑟
∑∑

𝑃(𝑖, 𝑗)

𝑖2. 𝑗2

𝑁

𝑗=1

𝑀

𝑖=1

 

𝑆𝑅𝐻𝐺𝐸 =
1

𝑛𝑟
∑∑

𝑃(𝑖, 𝑗). 𝑖2

𝑗2

𝑁

𝑗=1

𝑀

𝑖=1

 

𝐿𝑅𝐿𝐺𝐸 =
1

𝑛𝑟
∑∑

𝑃(𝑖, 𝑗). 𝑗2

𝑖2

𝑁

𝑗=1

𝑀

𝑖=1

 

𝐿𝑅𝐻𝐺𝐸 =
1

𝑛𝑟
∑∑𝑃(𝑖, 𝑗). 𝑖2. 𝑗2

𝑁

𝑗=1

𝑀

𝑖=1

 

where P(i, j) is (i, j)th entry in gray level run length matrix, 𝑛𝑟 is the total number of runs and 

𝑛𝑝 is the total number of pixels in the image g(x, y). 

2.5.6 Laws texture energy (Laws) features 

The spatial filters proposed by Laws [92] are applied to the images in order to get their 

filtered counterpart. The texture features are computed from the filtered images. The kernels are 
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designed in such a way which will help in extracting different local property. The initial three 

1D kernel connected with underlying microstructures are:  

Gaussian (Local averaging) L3 = [1 2 1] 

Edge detector (First difference) E3 = [-1 0 1] 

Laplacian (Second difference) S3 = [-1 2 -1] 

L, E and S represent Level, Edge and Spot detector respectively. The number followed 

by them represents length of the kernel. 1D kernels of length 5 can be generated by convolving 

pairs of above kernels. Out of nine pairs, five pairs which are used often are: 

Level detector L5 = L3*L3 = [1 4 6 4 1] 

Edge detector E5 = L3*E3 = [-1 -2 0 2 1] 

Spot detector S5 = L3*S3 = [-1 0 2 0 -1] 

Wave detector W5 = E3*S3 = [-1 2 0 -2 1] 

Ripple detector R5 = S3*S3 = [1 -4 6 -4 1] 

2D kernels of size 5×5 are generated by convolving vertical and horizontal 1D kernels. 

25 2D kernels obtained from above five kernels are: 

L5L5 E5L5 S5L5 W5L5 R5L5 

L5E5 E5E5 S5E5 W5E5 R5E5 

L5S5 E5S5 S5S5 W5S5 R5S5 

L5W5 E5W5 S5W5 W5W5 R5W5 

L5R5 E5R5 S5R5 W5R5 R5R5 

Kernels of different sizes such as 3×3, 5×5, 7×7 and 9×9 which represents different 

resolutions can be used. For extracting texture energy features, kernel of size 5×5 is used often 

in literature [29, 91]. Thus, in present work, 5×5 kernels have been used. Each of the filtered 

images (FI) is further processed by texture energy measurement (TEM) filter, which is a moving 

average non-linear filter. Laws proposed to use window size of 15×15 for its optimality in terms 

of classification accuracy and computational cost.  

𝐼𝑇𝐸𝑀(𝑥, 𝑦) = ∑ ∑ |𝐹𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)|

7

𝑗=−7

7

𝑖=−7

 

From above 25 kernels, TEM images obtained from FI of diagonally opposite kernels such as 

L5E5 and E5L5, etc. are averaged to obtain totally 15 rotational invariant images. Ten first order 
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statistics features (see Section 2.5.1) from 15 rotational invariance images (give 150 features in 

total) have been used in the present work.  

2.6 Differential Evolution Feature Selection (DEFS) 

Feature selection is an essential step towards efficient performance of a classifier as it 

excludes irrelevant and redundant features while forming a subset. Thereby, it also reduces 

calculations and time of processing. Differential evolution (DE) has its advantages over other 

population based strategy in optimality and convergence speed. The algorithm of DEFS is as 

follows: 

Step 1: Initial points are chosen randomly to form initial population of size NP × DNF, 

where NP are randomly chosen initial vectors, xi, i = 0, 1, 2,…, NP-1 and DNF are desired number 

of features.  

Step 2: Mutant population is generated by adding a vector to the scaled version of difference 

of two vectors which are chosen randomly. 

𝑣𝑗,𝑖,𝑔 = 𝑥𝑗,𝑟0,𝑔 + 𝐹. (𝑥𝑗,𝑟1,𝑔 − 𝑥𝑗,𝑟2,𝑔) 

where 𝑥𝑟0, 𝑥𝑟1 and 𝑥𝑟2 are randomly chosen vectors, v is the mutant vector and F is a scale factor 

that controls the rate at which the population evolves. I is the population index runs from 0 to 

NP-1, j is the feature index runs from 0 to DNF-1 and g represents generation or iteration of 

algorithm which runs from 1 to GEN (number of generations/iterations). In DEFS, F changes 

dynamically as follows: 

𝐹 =
𝑐1 × 𝑟𝑎𝑛𝑑

max (𝑥𝑗,𝑟1,𝑔, 𝑥𝑗,𝑟2,𝑔)
 

where 𝑐1 is a constant smaller than 1. 

Step 3: A trail vector is generated by crossover between mutant vector and the population 

vector of the same index. 

𝑢𝑗,𝑖,𝑔 = {
𝑣𝑗,𝑖,𝑔 𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑟
𝑥𝑗,𝑖,𝑔                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where u is the trial vector and 𝐶𝑟 is the crossover probability that controls the fraction of 

parameter values that are copied from the mutant vector. 

Step 4: Trail vector competes with the population vector of same index. One with lower 

classification error rate is selected in the population matrix. Since, DEFS depends on feedback 
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from a classifier in selecting optimum feature subsets, it is a wrapper method. In the present 

work, k-NN classifier has been used for obtaining classification error rates. 

Step 5: Procedure repeats until each of the vectors in the population matrix have competed 

with a trial vector. 

Step 6: Vectors selected out of these competitions form the population matrix for the next 

iteration. 

Step 7: Algorithm stops with the predefined number of iterations completion.  

Rami khushaba, et.al., modified DE and utilized roulette wheel supplied with probabilities 

of relevant features distribution for feature selection [64]. 

Optimization of parameters: In the present work, for obtaining optimal values to the parameters 

of feature selection such as desired number of features, population size and the number of 

iterations, an optimization study has been performed. A 3-D matrix has been formed with 

population size of 25, 50, 75 and 100, number of iterations of 25, 50, 75 and 100 and desired 

number of features of 5, 10, 20, 30,…,100. For each position of this matrix, DEFS procedure is 

executed 30 times to obtain 30 subsets. Average accuracy and standard deviation of these 30 

subsets are tabulated. The average time taken to generate a subset is also noted down. This matrix 

revealed that, for desired number of features equal to 10, population size 50, and the number of 

iterations equal to 100 are optimal as for overall classification accuracy and computational time 

is concerned. Hence, these values are utilized in the DEFS procedure.  

2.7 Classification 

Given a sample, the task of the classifier is to assign it to the correct class. After extracting 

and selecting appropriate features which represent the classes, the classifier has training and 

testing phases to go through. For a classification task which involves d features, at least ten times 

of d features samples per class for training are required to get reliable statistical measures [93]. 

This is not practical due to constraints on availability of data which is termed as curse of 

dimensionality. Support vector machine (SVM) is an appropriate choice for image classification 

as it is less sensitive to curse of dimensionality. SVM is known for its potential to yield higher 

accuracy with less number of training samples and comparatively more number of features. SVM 

classifier separates the classes with minimal error by building optimized hyper plane in the 

feature space of higher dimensions. It maximizes the margin between the classes under 

consideration thereby exhibits robustness to the overfitting problem.  
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Basically, SVM is a binary classifier. The real life applications requirement is mostly of 

multi-class classification. There are many approaches as to how to perform multi-class 

classification using binary classifier[94]. One-against-all [95], one-against-one [96], all-and-one 

[97], direct acyclic graph SVM [98], hierarchical tree structure based methods [48, 99, 100], error 

correcting output codes [101-103] are a few to mention. From literature[104, 105], it is found 

that one-against-one multi-class SVM classifier performs better and hence has been used for the 

present classification task. SVM classifier has also been extensively used for the classification 

[106] of medical images [9, 10, 16, 107-115].  

To ensure generality and robustness for the classifier designs, two sets of images each 

consisting of representative images from each image classes are created. To avoid any biasing, 

the ROIs from one image set are used for training and the ROIs from the other image set are used 

for testing [116]. In the present work, non-linear data mapping from input space to feature space 

has been performed by using Gaussian radial basis kernel. Min-Max method of normalization 

has been used to rescale the feature values between 0 and 1 [117, 118]. One-against-one 

multiclass SVM classifier has been implemented in MATLAB. The SVM kernel parameter γ 

tunes the curvature of the decision boundary and the soft margin constant C increase the margin 

with minimum error possible. From the parameter space such as γϵ {2-5, 2-4,…, 25} and C ϵ {2-

5, 2-4,…, 25}, the optimal values are obtained by grid search method to train the SVM using 10-

fold cross-validation on training data. 

Performance Measures: Confusion matrix is the basic structure which presents classification 

results in tabular form. It tabulates predicted results versus known ground truth classes as 

reference. A generalized confusion matrix for a binary classification system is as depicted below. 

Confusion matrix of a binary 

classification system 

Predicted Class 

Positive Negative 

Known Class 
Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

Various measures are estimated from the confusion matrix to evaluate the performance of a 

classification system. The most simplified and often considered measured is accuracy. When 

there are unbalanced data samples among various classes under consideration, accuracy alone is 

not a reliable measure for evaluation. The frequently estimated parameters are sensitivity and 
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specificity [119, 120]. Accuracy for multi-class classification system would be estimated in terms 

of individual class accuracy or/and overall classification accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 

2.8 Concluding remarks 

In this chapter, the ethical issues and protocols followed during image acquisition are briefed, 

which is the initial aspect of the present work. The order in which each component of CAC 

system exists, details of those components with the methods, algorithms and various parameter 

values used are discussed in detail. The components such as ROI selection, texture feature 

extraction, feature selection and classification which are common in all four proposed CAC 

systems are presented here. Further details which are specific to each CAC systems have been 

presented in respective chapters. In next chapter, first CAC system of part 1 i.e. of kidney images 

is described. 
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Chapter 3 

SVM based CAC system for B-mode kidney 

ultrasound images 

3.1 Introduction 

Kidney is a bean-shaped soft tissue organ and has a vital role to play in urinary system. 

Nephrons are the functional unit of kidney and the region where it is spread in kidney are termed 

as parenchyma. The parenchyma is divided to form the outer renal cortex and inner renal medulla. 

Renal medulla consists of cone-shaped tissues called pyramids and the projections of renal cortex 

in between the pyramids are known as renal columns [43].  

The normal kidney has cortex, hypoechoic than liver and the demarcation between cortex 

and medulla is possible. There are disorders like hematuria, proteinuria, pyuria, polyuria, etc. 

which may involve partly or completely diseased nephrons. Sometimes, those diseases are not 

diagnosable exactly by the radiologists and are termed as medical renal disease. In MRD, 

parenchyma is hyper-echoic than normal and the demarcation between cortex and medulla 

becomes hardly possible [5]. Cysts are regions which appears anechoic because of the fluid filled 

in them. They are regions with thin wall and also exhibit posterior wall enhancement. 

Bommanna Raja, et.al., have studied the classification of above mentioned classes by 

extracting kidney region [43] and using different features [5].  In their study, the whole kidney 

area has been considered for extracting features. Whereas, the radiologist opined that the 

characteristic changes in MRD with respect to normal is in parenchyma of kidney and the cysts 

are focal in nature. Therefore, in the present work ROIs are obtained from parenchyma region of 

kidney in case of normal and MRD classes and from within lesion in case of cyst class. 

Speckle noise in B-mode ultrasound images makes visual diagnosis a difficult task, but it also 

contain diagnostic information which is preferred by the radiologists. Various de-speckling 

methods have been proposed in literature [121]. From the studies [52, 54], it has been noted that 

the de-speckling methods can be oriented towards improving either texture classification or 

segmentation. Hence, in the present work, few standard de-speckling methods have been utilized 

before feature extraction to evaluate the contribution of these methods towards improving the 

performance of classification [122]. 
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3.2 Dataset Description 

In the present work, data set consisting of 35 B-mode ultrasound kidney images i.e., 11 

normal, 8 MRD and 16 cyst images are used. These direct digital images are recorded from 35 

patients. Either left or right kidney from longitudinal plane is considered. As advised by 

experienced radiologist that the distinguishing characteristics of MRD and normal are prominent 

in parenchyma region of kidney, ROIs are obtained from parenchyma region in case of these. In 

case of cysts, ROIs within lesions are selected. The data consisted of 49 normal ROIs from 11 

normal images, 62 MRD ROIs from 8 MRD images and 62 cyst ROIs from 16 cyst images. The 

bifurcation of data set into training dataset and testing dataset is shown in Figure 3.1. 

 

Figure 3.1: Dataset Distribution 

3.3 Experimental Results 

The block diagram representation indicating workflow of the present work is as illustrated in 

Figure 3.2.  

Three experiments are conducted with two cases in each i.e., without feature selection (C1) 

and with feature selection (C2). In experiment 1 (E1), ROIs are marked and extracted from 

original (without de-speckling) US images followed by feature extraction. E1C1 represents 

features from experiment 1 without feature selection, similarly E1C2, represents features from 

experiment 1 with feature selection. These features are used for designing separate SVM 

classifiers. 
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Figure 3.2: Block diagram of CAC system for kidney ultrasound images 

Experiment 2 starts with de-speckling the US images, ROIs are extracted from the same 

locations (markings) which are saved in experiment 1. This is followed by feature extraction. 

E2C1 and E2C2 represent features from experiment 2 without and with feature selection 

respectively. Again, classification is carried out by different SVM classifiers. In experiment 3, 

features from E1 and E2 are concatenated forming larger feature set. E2 has features from ROIs 

of images de-speckled by eight methods, giving rise to that many features sets. The combinations 

considered for concatenation are mentioned in the subsection Experiment 3. E3C1 represents 

concatenated features set, is passed through SVM classifier. E3C2 represents concatenated 

features from experiment 3 after feature selection and is passed through SVM classifier which is 

shown separately.  
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Figure 3.3: Sample of a original and de-speckled images of kidney (a) Original (b) Lee (c) Lee’s 

sigma (d) enhanced Lee I Frost (f) Kaun (g) Geometric (h) SRAD (i) DPAD 

A sample of an original kidney image and corresponding de-speckled images are shown in 

Figure 3.3. The de-speckling filter parameters and their values used in the present work are 

tabulated in Table 3.1. The qualitative opinion of radiologist is that, relatively the images de-

speckled by Lee’s sigma, enhanced Lee, Frost and Kaun filter outputs are reliable and that of 

Lee, geometric filters, SRAD and DPAD filters are not. The parameters which are frequently 

used for accessing the potentiality of de-speckling methods quantitatively such as beta (β), 

correlation coefficient (CC), edge region mean square error (eMSE), root mean square error 

(RMSE), structural similarity (SSIM) index, peak signal-to-noise ratio (PSNR), figure of merit 

(FOM), image quality index (IMQI) are computed. The average (standard deviation) of the 

parameter values are tabulated in Table 3.2. The β values indicate Lee’s sigma filter 0.95(0.007) 

is better, whereas CC, eMSE, RMSE and PSNR point geometric filter to be best with their values 
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Table 3.2: Performance measures of de-speckling filters. 

De-speckling 

filters 
Β CC eMSE RMSE SSIM PSNR FOM IMQI 

Lee 0.93(0.05) 0.94(0.009) 13.03(1.8) 3.6(0.2) 0.96(0.008) 27.7(0.5) 0.96(0.01) 0.96(0.001) 

Lee’s sigma 0.95(0.007) 0.94(0.009) 12.3(0.4) 3.5(0.06) 0.96(0.002) 27.9(0.5) 0.97(0.01) 0.96(0.001) 

Enhanced Lee 0.21(0.01) 0.95(0.008) 23.5(4.5) 4.8(0.4) 0.68(0.004) 18.5(0.4) 0.79(0.02) 0.89(0.04) 

Frost 0.63(0.03) 0.92(0.01) 22.4(1.6) 4.7(0.1) 0.93(0.006) 24.6(0.6) 0.93(0.01) 0.92(0.01) 

Kaun 0.93(0.04) 0.94(0.009) 13.02(1.8) 3.6(0.2) 0.96(0.008) 27.7(0.5) 0.96(0.01) 0.96(0.001) 

Geometric 0.87(0.02) 0.99(0.001) 1.8(0.2) 1.3(0.08) 0.96(0.003) 37.6(0.8) 0.86(0.04) 0.69(0.07) 

SRAD 0.24(0.02) 0.94(0.007) 8.3(2.3) 2.8(0.3) 0.79(0.02) 21.7(0.5) 0.47(0.04) 0.88(0.06) 

DPAD 0.32(0.01) 0.7(0.04) 11(5.1) 3.2(0.7) 0.16(0.03) 10.3(1.0) 0.57(0.06) 0.29(0.06) 

 

 

Table 3.1: De-speckling filters parameters  

Method Abbreviation Filter Parameters 

Lee filter [123] Lee z=5 

Lee’s sigma filter [124] Slee z=5 

Enhanced Lee filter [47] EnLee z=5 

Frost filter [125] Frost z=5 

Kaun filter [126] Kaun z=5 

Geometric filter [49] Geo n=3 

Speckle reducing anisotropic diffusion [51] SRAD s = 0.2, n = 100, z=5 

Detail preserving anisotropic diffusion [50] DPAD s = 0.2, n = 100, z=5 

Note: z: mask size; n: number of iterations; s: step size 
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0.99(0.001), 1.8(0.2), 1.3(0.08) and 37.6(0.8) respectively. SSIM indicates the performance of 

Lee 0.96(0.008), Kaun 0.96(0.008), geometric 0.96(0.003) are more or less same with Lee’s 

sigma 0.96(0.002) being better. According to FOM, Lee’s sigma 0.97(0.01) is better. IMQI 

shows better performance 0.96(0.001) for Lee, Lee’s sigma and Kaun filters. These parameters 

are computed to find the possible correlation with the classification results from the features of 

de-speckled images. 

The classification results without feature selection are tabulated in Table 3.3. For feature 

selection, DEFS process is repeated 30 times to obtain 30 subsets [16] and the subset with best 

classification result has been shown in Table 3.4. Average accuracy and standard deviation values 

of 30 subsets are shown in Table 3.5. 

*In Table 3.3, 3.4 and 3.5, the second column i.e., Features/De-speckle/Set represents 

features from a particular feature’s category of which the name is mentioned. Similarly for 

features from De-speckling method and sets (sets are defined in subsection experiment 3). The 

feature category ‘All’ represents features from all categories concatenated together and ‘Grad + 

RLM’ indicates that features from those two categories are concatenated. 

Combinatorial representations like ‘All Enhanced Lee’ denote features from all categories 

extracted from the ROIs of images de-speckled by Enhanced Lee method. ‘All set 1-4’ means 

‘All set 1’, ‘All set 2’, ‘All set 3’ and ‘All set 4’. 

Experiment 1 (E1): Features from all texture features’ categories are extracted from the ROIs 

of original B-mode kidney ultrasound images. 

Case 1 (C1): Results obtained for individual and all features together without feature selection. 

Table 3.3 (refer E1C1) shows that, the overall classification accuracy (OCA) obtained from 

All features is 81.3%. Among individual feature categories, gradient (5 features) has performed 

well with 86% OCA value. 

When best two feature categories (gradient-86% and RLM-82.5%) are concatenated, it gave 

an OCA of 89.5% showing an increase in the performance without feature selection. 

Case 2 (C2): Feature categories having more than 10 features (i.e., RLM, GLCM, Laws, All, 

Grad + RLM) are subjected to feature selection before classification. 
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Table 3.3: Classification results without feature selection 

Experiment-

Case 

Number 

Features/ 

De-speckle/ 

Set* 

Accuracy (%) Sensitivity (%) Specificity (%) Overall 

accuracy 

(%) 
Cyst MRD Normal Cyst MRD Normal Cyst MRD Normal 

E1C1 

All 93 86 83.7 96.7 87 54.1 90.9 85.4 95.1 81.3 

FOS 100 77 77.9 100 77.4 50 100 78.1 88.7 77.9 

Grad 98.8 86 87.2 96 80.6 79.1 100 89 90.3 86 

MI 95.3 75.5 70.9 87 80 37.5 100 72.7 83.8 70.9 

RLM 93 87.2 84.8 93.5 80.5 70.8 92.7 90.9 90.3 82.5 

GLCM 93 82.5 82 90.3 83.8 58.3 94.5 81.8 91.9 79 

Laws 96.5 82 79 97 77 58 96.3 85 87 79 

Grad+RLM 97.6 90.6 90 93.4 83.9 91.6 100 94.4 90.2 89.5 

E2C1 

All Lee 95.3 82.5 80.2 96.7 87.1 45.8 94.5 80 93.5 79 

All 

Lee’s sigma 
93 86 83.7 96.7 87.1 54.1 90.9 85.5 95.1 81.3 

All 

Enhanced Lee 
98.8 82.5 83.7 96.7 83.8 62.5 100 81.8 91.9 82.5 

All Frost 90.6 82.5 84.8 96.7 80.6 54.1 87.2 83.6 96.7 79 

All Kaun 95.3 83.7 81.3 96.7 90.3 45.8 94.5 80 95.1 80.2 

All Geometric 89.5 82.5 81.3 90.3 90.3 41.6 89 78.1 96.7 76.7 

All SRAD 90.6 75.5 73.2 100 64.5 37.5 85.4 81.8 87 69.7 

All DPAD 97.6 80.2 80.2 100 77.4 54.1 96.3 81.8 90.3 79 

Grad+RLM 

Enhanced Lee 
98.8 90.6 91.8 96.7 83.8 91.6 100 94.5 91.9 90.6 

Note: * Please refer result section for the description of representations used in second column 
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Table 3.4: Best classification results with feature selection 

Experiment-

Case Number 

Features/ 

De-speckle/ Set* 

Accuracy (%) Sensitivity (%) Specificity (%) 
Overall 

accuracy 

Cyst MRD Normal Cyst MRD Normal Cyst MRD Normal (%) 

E1C2 

All 96 90.7 91.8 93 90.3 83.3 98.1 90.9 95.2 89.5 

RLM 97.7 89 87.1 96.8 80.7 83.2 98 94.5 88.6 88.3 

GLCM 94.1 87 90.7 87.1 83.7 87.5 98.2 94.6 88.7 86 

Laws 100 90.7 90.6 100 87.1 83.3 100 92.7 93.5 90.6 

Grad+RLM 97.6 91.8 89.5 93.5 87 87.5 100 94.5 90.3 89.5 

E2C2 

Grad+RLM 

Enhanced Lee 
100 90.6 90.6 100 77.4 95.8 100 98.1 88.7 90.6 

All 

Lee’s sigma 
100 90.6 90.6 100 83.8 87.5 100 94.5 91.9 90.6 

All 

Enhanced Lee 
100 90.6 90.6 100 80.6 91.6 100 96.3 90.3 90.6 

E3C2 

RLM set 1 

RLM set 2 

RLM set 3 

RLM set 4 

97.6 

98.8 

98.8 

98.8 

88.3 

89.5 

90.6 

90.6 

88.3 

90.6 

91.6 

91.8 

96.7 

96.7 

96.7 

96.7 

77.4 

83.8 

87.1 

77.4 

87.5 

87.5 

87.5 

100 

98.1 

100 

100 

100 

94.5 

 92.7 

92.7 

98.1 

88.7 

  91.9 

93.5 

88.7 

87.2 

89.5 

90.6 

90.6 

GLCM set 1 

GLCM set 2 

GLCM set 3 

GLCM set 4 

97.6 

95.3 

96.5 

94.1 

86 

91.8 

90.6 

89.5 

88.3 

91.8 

91.8 

90.6 

93.5 

93.5 

90.3 

83.8 

80.6 

87 

90.3 

83.8 

83.3 

87.5 

87.5 

95.8 

100 

96.3 

100 

100 

89 

94.5 

90.9 

92.7 

90.3 

93.5 

93.5 

88.7 

86 

89.5 

89.5 

87.2 

Laws set 1 

Laws set 2 

Laws set 3 

Laws set 4 

100 

100 

100 

97.6 

88.3 

91.8 

94.1 

90.6 

88.3 

91.8 

94.1 

93.3 

100 

100 

100 

96.7 

90.3 

93.5 

90.3 

93.5 

70.8 

79.1 

91.6 

79.1 

100 

100 

100 

98.1 

87.2 

90.9 

96.3 

89 

95.1 

96.7 

95.1 

98.3 

88.3 

91.8 

94.1 

90.6 

Grad+RLM set 1 97.6 87.2 87.2 93.5 77.4 87.5 100 92.7 87 86 

Grad+RLM set 2 100 91.8 91.8 100 80.6 95.8 100 98.1 90.3 91.8 

Grad+RLM set 3 97.6 89.5 91.8 93.5 80.6 95.8 100 94.5 90.3 89.5 

Grad+RLM set 4 96.5 91.8 93 93.5 83.8 95.8 98.1 96.3 91.9 90.6 

All set 1-4 100 100 100 100 100 100 100 100 100 100 

Note: * Please refer result section for the description of representations used in second column 
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Table 3.5: Classification results from 30 subsets 

Experiment-

Case 

Number 

Features/ 

De-speckle/ Set* 

Average accuracy 

(%)  

(standard deviation) 

E1C2 

 

 

All 84.0(3.4) 

RLM 84.0(1.7) 

GLCM 82.4(3.1) 

Laws 83.1(3.7) 

Grad+RLM 84.7(2.4) 

E2C2 

Grad+RLM 

Enhanced Lee 
86.4(2.5) 

All 

Lee’s sigma 
84.5(3.4) 

All 

Enhanced Lee 
84.7(3.0) 

E3C2 

RLM set 1 83.5(1.5) 

RLM set 2 86.3(1.6) 

RLM set 3 86.2(2.7) 

RLM set 4 84.6(2.9) 

GLCM set 1 82.2(2.2) 

GLCM set 2 85.3(3.0) 

GLCM set 3 84.2(2.7) 

GLCM set 4 83.6(2.7) 

Laws set 1 84.0(2.6) 

Laws set 2 82.4(4.1) 

Laws set 3 82.2(3.8) 

Laws set 4 82.8(4.1) 

Grad+RLM set 1 83.9(1.4) 

Grad+RLM set 2 86.2(1.6) 

Grad+RLM set 3 86.2(2.2) 

Grad+RLM set 4 85.9(2.2) 

All set 1 85.8(5.4) 

All set 2 84.7(5.0) 

All set 3 84.9(3.4) 

All set 4 86.7(5.9) 

Note: * Please refer result section for the description of 

representations used in second column 

 

With feature selection (refer Table 3.4, E1C2), the performance of All features increased 

from 81.3% to 89.5% OCA, RLM features increased from 82.5% to 88.3% OCA and that of 

GLCM features increased from 79% to 86% OCA. Laws’ features out performed with an OCA 

of 90.6%. These results show the significance of feature selection and Laws features.  



48 
 

Experiment 2 (E2): Texture features are extracted from the ROIs of de-speckled ultrasound 

images. 

Case 1 (C1): Classification results are obtained for ROIs of images de-speckled by different 

methods, considering all the features (refer Table 3.3, E2C1). Lee’s sigma features resulted in an 

OCA of 81.3% same as that of original images and enhanced Lee filter features has shown an 

increase in an OCA of 82.5%. Hence these two are considered for case 2 study.  

Case 2 (C2): Subsets obtained from feature selection by considering all features in case of Lee’s 

sigma have increased performance from 81.3% to 90.6% OCA and that of enhanced Lee filter is 

from 82.5% to 90.6% OCA. Concatenation of gradient and RLM features from enhanced Lee 

filter also gave an OCA of 90.6% (refer Table 3.4, E2C2). 

Experiment 3 (E3): Here, all features of ROIs from original image, images de-speckled by Lee’s 

sigma and enhanced Lee filter are concatenated to form 4 sets. 

Set 1: Original image features and Lee’s sigma filter features are concatenated. 

Set 2: Lee’s sigma filter features and enhanced Lee filter features are concatenated. 

Set 3: Original image features and enhanced Lee filter features are concatenated. 

Set 4: Original images features, Lee’s sigma filter features and enhanced Lee filter features are 

concatenated. 

From Table 3.4, comparing the results of experiment 1 (E1C2) and experiment 3 (E3C2), 

RLM features have an increased OCA from 88.3% to 90.6% (both set 3 and set 4). GLCM 

features have shown better improvement in OCA from 86% to 89.5% (both set 2 and set 3). 

Similarly, Laws’ features have shown an increase from 90.6% to 94.1% OCA. All features 

together from set 1, set 2, set 3 and set 4 have shown an OCA of 100% in E3C2, whereas it is 

89.5% OCA in E1C2. These results show the significance of combining features from ROIs of 

original image with that of de-speckled images.  

Classification results from 30 subsets:  

The features that are passed through feature selection process have been repeated 30 times to 

obtain 30 subsets as mentioned earlier. The average accuracies with standard deviation are 

tabulated in Table 3.5. A feature set could be considered better for classification task if the 

standard deviation is less and the average accuracy is more. In other words, that feature set would 

result with better accuracy with most of the subsets. In that respect, experiment 1 (refer Table 

3.5, E1C2) shows that RLM features from the ROIs of original images perform better with 
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average accuracy (in %) and standard deviation (AASD) of 84.0(1.7). Grad + RLM features from 

the ROIs of original images (in E1C2) and from the ROIs of images de-speckled by enhanced 

Lee method (in E2C2) showed an AASD of 84.7(2.4) and 86.4(2.5) respectively. This indicates 

the contribution of features from de-speckled images.  

From Table 3.5, comparing the results of E1C2 and E3C2, RLM features have shown an 

increased AASD from 84(1.7) to 86.3(1.6) (set 2). GLCM features have performed better with 

AASD from 82.4(3.1) to 85.3(3.0) (set 2). Similarly, Laws features with AASD from 83.1(3.7) 

to 84(2.6) (set 1). Grad + RLM features are also on the same line with AASD from 84.7(2.4) to 

86.2(1.6) (set 2). These results indicate the positive influence on classification by concatenating 

features from the ROIs of original images with that of de-speckled images in different 

combinations (as set1, set2, etc.). 

3.4 Additional Observations from the present work 

The contribution of individual texture feature category for classification of normal, MRD and 

cyst US images has been obtained. This has helped in reconsidering significant features in further 

processes. Concatenation of features like gradient (5 features-86% OCA) and RLM (44 features-

82.5% OCA) have shown notable performance of 89.5% OCA (in original image) and 90.6 % 

OCA (in enhanced Lee image). The subsets (10 features) obtained from Grad + RLM (49 

features) have 2 to 3 features of gradient. This shows the significance of gradient features in 

classification of kidney images.  

From Table 3.3, though FOS features set is 100% accurate in classifying cyst, performed poor 

with MRD and normal. Gradient features showed promising improvement with accuracy of 

98.8% for cyst, 86% for MRD and 87.2% for normal. Grad + RLM features from images de-

speckled by enhanced Lee method showed improved performance than from that of original 

images. Accuracy has increased for cyst from 97.6% to 98.8% and for normal from 90% to 

91.8%. The feature selection subsets of experiment 3 that gave best results, have 3 to 6 (out of 

10) de-speckled image features. This indicates that features extracted from ROIs of de-speckled 

images have an additional contribution to make for objective classification. Thus, it is 

advantageous to concatenate features from ROIs of original image with that of de-speckled 

images.  

From Table 3.4, comparing E1C2 and E3C2, RLM features have shown improvement in 

accuracy for cyst from 97.7% to 98.8%, for MRD from 89% to 90.6 and for normal from 87.1% 

to 91.8% with set 4. GLCM features have shown increased accuracy for cyst from 94.1% to 

97.6% (set 1), for MRD from 87% to 91.8% (set 2) and for normal from 90.7% to 91.8% (set 2 
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and set 3). Similarly, Laws features have significant improvement in accuracy for MRD from 

90.7% to 94.1% and for normal from 90.6% to 94.1% with set 3. All features sets i.e., All set 1, 

All set 2, All set 3 and All set 4 have exhibited prominent increase in accuracy for cyst from 96% 

to 100%, for MRD from 90.7% to 100 and for normal from 91.8% to 100%.  

From Table 3.5, in E1C2, RLM features showed better performance with ASSD of 84(1.7). 

In E3C2, RLM, GLCM and Grad + RLM features performed better with set 2 compared to other 

sets. GLCM features of set 2 performed better (85.3(3.0)) than Laws features of set 1 (84.0(2.6)). 

But, Laws features consisted of less number of features and thus computations involved is less. 

RLM features of set 2 (88 features) performed better with ASSD of 86.3(1.6) with less 

computations involved. Thus, RLM features of set 2 are comparatively more promising with 

better accuracy for most of the subsets in the classification of kidney ultrasound images.  

From Table 3.2, it is observed that the parameter β and FOM indicate Lee’s sigma filter is 

better as mentioned earlier. From Table 3.5, it is reflecting from the contributions of Lee’s sigma 

filter features. Enhanced Lee filter features have also performed well in classification, but no 

parameter of performance of de-speckling filter indicated about the same. Hence, there are no 

consistent correlation between the parameters signifying the performance of de-speckling 

methods and the classification results obtained from the features of de-speckled images. 

3.5 Concluding Remarks 

A classification study of three classes of kidney ultrasound images has been performed. ROIs 

from parenchyma region is considered for normal and MRD images and for cysts, ROIs are taken 

from within lesions as they are focal in nature. Among individual feature categories, gradient 

features and Grad + RLM features gave an OCA of 86% and 89.5% respectively, without feature 

selection. The maximum OCA of 90.6% is obtained from Laws’ features after feature selection. 

The Laws’ features of ROIs from original image concatenated with that of images de-speckled 

by Enhanced Lee method gave maximum OCA of 94.1% after feature selection. Thus, feature 

selection module is necessary to reduce the number of features without compromising on the 

OCA.  

By considering all features from the ROIs of original as well as de-speckled images followed 

by feature selection gave maximum OCA of 100%. But, the idea of CAC system is to be 

interactive in real-time for the radiologists and extracting all features would take time 

comparatively. So, the most reliable features for the classification of ultrasound kidney images 

have been RLM and Grad features. RLM features from original images gave an AASD of 

84.0(1.7). RLM features from set 2 gave an AASD of 86.3(1.6). Grad + RLM features from images 
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de-speckled by enhanced Lee filter gave an AASD of 86.4(2.5). The promising results obtained 

from the present work indicate the usefulness of the proposed CAC system to aid radiologists in 

objective classification. Thus, the study concludes with the recommendation to consider texture 

features from the ROIs of de-speckled images and concatenating with that of original images for 

elevating the performance of classification. 

The radiologist is of the opinion that the cyst is easily recognizable compared to the ambiguity 

between normal and MRD classes of kidney. In this chapter, the feature categories which 

performed better in case 1 of experiment 2 are only considered to carry out feature selection 

process i.e. case 2 of experiment 2. But, the possibility is that other feature categories may 

perform better when extracted from different de-speckling method. Hence, an exhaustive study 

is carried out considering normal and MRD classes of kidney and the results are presented in 

next chapter. 
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Chapter 4 

Performance evaluation of texture features and de-

speckling on the classification of B-mode kidney 

ultrasound images 

4.1 Introduction 

The chapter is an extended study on classification of kidney images in with continuation of 

previous chapter. Among the three classes of kidney, normal, MRD and cyst, cysts are easily 

distinguishable. Hence, in the present work, only normal and MRD classes are considered to 

evaluate the performance of classification without the bias of cyst class.  

The distinct characteristics which contribute for the classification of normal and MRD lies in 

parenchyma of kidney and hence is the region of interest in the present work. A sample of normal 

kidney and MRD images with ROIs marked are shown in Figure 4.1. From Figure 4.1, it can be 

noted that, marking ROIs in the medullary region which has pyramids and renal columns is 

difficult. Hence, in the present work, ROIs are considered from the outer renal cortex region only. 

 

Figure 4.1: Example of B-mode Ultrasound kidney images with ROIs marked. A Normal and b 

MRD. The dots forming outer ellipse highlights the kidney and the area between the two ellipses 

represents cortex. 

Speckle noise ingrained in B-mode ultrasound images is one of the factors restraining the 

radiologists in subjective diagnosis. At the same time, it also contains relevant information for 

the diagnosis. On one hand, as a part of computer-aided diagnosis, numerous de-speckling 
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methods have been proposed to facilitate better visualization to the radiologists. On other hand, 

de-speckling methods could be used as a pre-processing step to enhance the performance of 

objective classification.  

The conclusion of Chapter 3 is that the features extracted from the de-speckled images 

increase the performance of classification [127]. In the present work, the extended objective is 

to evaluate the performance of a particular texture feature category with respect to different de-

speckling methods on the classification of normal and MRD B-mode kidney ultrasound images. 

For that purpose, the same six texture feature categories and eight de-speckling methods 

considered in the previous chapter have been used. 

4.2 Dataset Description 

In the present work, clinically acquired data set used comprises of 19 B-mode kidney 

ultrasound images, i.e. 11 normal and 8 MRD images, collected from 19 patients. The details of 

database dispersal for training and testing phases of CAC system is depicted in Figure 4.2. 

 

Figure 4.2: Dataset Description 

4.3 Experimental Results 

The proposed CAC system for the classification of normal kidney and MRD is as shown in 

Figure 4.3. 

In the present work, four experiments are performed with two cases in each i.e. without 

feature selection and with feature selection. In experiment 1 (Exp 1), features extracted using six 
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texture feature categories from original images are considered for the classification. In 

experiment 2 (Exp 2), features from Exp 1 concatenated in different combinations are used for 

the classification task. In experiment 3 (Exp 3), features extracted from images de-speckled by 

eight methods are used for the classification task. In experiment 4 (Exp 4), the features used in 

Exp 3 are concatenated in combinations same as that of Exp 2 and are provided to the 

classification task. 

The performance of classification is evaluated using overall classification accuracy (OCA), 

best OCA of a subset (out of 30 subsets) and average accuracy (standard deviation) (AASD). 

Accordingly, OCA, best OCA and AASD of all the four experiments are tabulated in Table 4.1, 

Table 4.2 and Table 4.3 respectively. In Table 4.1, Table 4.2 and Table 4.3, each row corresponds 

to particular features set, mentioned in the first column. Along columns, features from original 

images and de-speckled images are represented. For example, FOS features from original images 

(Exp 1) resulted in an OCA of 67.2 % (refer Table 4.1). ‘All ftrs’ represents concatenation of 

features from all the categories. 

 

Figure 4.3: Proposed CAC system 
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OCAs obtained before feature selection (refer Table 4.1) 

Among the individual feature categories of original images (Exp 1) and de-speckled images 

(Exp 3), RLM features from the images de-speckled by Frost method resulted with a highest 

OCA of 87.2 %. Grad features from the images de-speckled by enLee method and GLCM 

features from the images de-speckled by Frost method gave an OCA of 81.8 %. But, number of 

features involved with Grad category is only five. Laws features from images de-speckled by 

enLee and Frost methods exhibited same performance with an OCA of 80 %. 

Out of six, four categories of texture features i.e. Grad, RLM, GLCM and Laws, performed 

better and hence are considered for concatenation. Among the concatenated feature sets of 

original images (Exp 2) and de-speckled images (Exp 4), concatenation of Grad (81.8 %) and 

RLM (83.6 %) features of images de-speckled by enLee method resulted in an enhanced outcome 

with an OCA of 87.2 %. Similarly, concatenation of Grad (78.1 %) and GLCM (81.8 %) features 

of images de-speckled by Frost method gave an OCA of 85.4%. All ftrs from enLee method gave 

an improved OCA of 85.4 %, compared to that of individual sets. 

Best OCAs obtained after feature selection (refer Table 4.2) 

Individual feature categories and concatenated feature sets having more than 10 features are 

considered for feature selection process. Each feature set has been through the feature selection 

process 30 times to obtain 30 optimal subsets. The best OCA obtained for a subset among the 30 

subsets has been mentioned in Table 4.2.  

Among the individual feature categories, RLM features from the images de-speckled by Frost 

method have shown an increase in OCA from 87.2 % (Table 4.1) to 92.7 % (Table 4.2). Similarly, 

GLCM features from images de-speckled by Lee’s sigma (Lee 2) and enLee methods have 

resulted in an enhanced OCA from 76.3 % (Table 4.1) to 92.7 % (Table 4.2) and 80 % (Table 

4.1) to 92.7 % (Table 4.2) respectively. Among concatenated feature sets, Grad + GLCM and 

RLM + GLCM feature sets from the images de-speckled by enLee method have shown improved 

OCA from 80 % (Table 4.1) to 92.7 % (Table 4.2). On the same line, RLM + Laws features set 

from the images de-speckled by Frost and Kaun methods have boosted the OCA from 87.2 % 

(Table 4.1) to 92.7 % (Table 4.2) and 78.1 % (Table 4.1) to 92.7 % (Table 4.2) respectively. 

AASD of 30 subsets (refer Table 4.3) 

From the 30 optimal subsets obtained for each feature set, average accuracy (standard 

deviation) is computed and tabulated in Table 4.3. Feature set having higher average accuracy 

and less standard deviation implies that the most of the subsets of that feature set are resulting in 

higher OCAs. Hence, the feature set is able to provide optimal subsets.
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Table 4.1: OCAs without feature selection 

Features 
Exp 

No. 

Original 

image 

Exp 

No. 

De-speckling methods 

Lee 1 Lee 2 enLee Frost Kaun Geo SRAD DPAD 

FOS 

Exp 1 

67.2 

Exp 3 

69 67.2 65.4 67.2 69 67.2 67.2 76.3 

Grad 78.1 65.4 78.1 81.8 78.1 65.4 78.1 76.3 61.8 

MI 63.6 63.6 63.6 58.1 63.6 63.6 61.8 67.2 67.2 

RLM 81.8 83.6 81.8 83.6 87.2 83.6 76.3 74.5 56.3 

GLCM 76.3 76.3 76.3 80 81.8 78.1 80 72.7 61.8 

Laws 72.7 70.9 72.7 80 80 70.9 74.5 72.7 65.4 

Grad + RLM 

Exp 2 

85.4 

Exp 4 

85.4 85.4 87.2 87.2 85.4 80 74.5 69 

Grad + GLCM 76.3 80 76.3 80 85.4 80 81.8 72.7 72.7 

RLM+GLCM 76.3 80 76.3 80 83.6 80 80 72.7 58.1 

Grad + Laws 74.5 67.2 74.5 81.8 78.1 67.2 80 74.5 65.4 

RLM + Laws 78.1 78.1 78.1 85.4 87.2 78.1 78.1 76.3 69 

GLCM + Laws 74.5 78.1 74.5 83.6 87.2 80 70.9 74.5 69 

All ftrs 76.3 81.8 76.3 85.4 85.4 80 74.5 72.7 67.2 

Note: OCA: Overall classification accuracy; Exp No: Experiment number 

The values in bold represents the best along the row and the values in italics represents the best along the column 
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Table 4.2: Best OCA of a subset (out of 30 subsets) obtained after feature selection 

Features 
Exp 

No. 

Original 

image 

Exp 

No. 

De-speckling methods 

Lee 1 Lee 2 enLee Frost Kaun Geo SRAD DPAD 

RLM 

Exp 1 

87.2 

Exp 3 

89 90.9 89 92.7 85.4 85.4 76.3 61.8 

GLCM 89 90.9 92.7 92.7 90.9 90.9 87.2 78.1 69 

Laws 81.8 81.8 80 83.6 83.6 81.8 83.6 78.1 76.3 

Grad + RLM 

Exp 2 

89 

Exp 4 

85.4 89 90.9 90.9 87.2 89 78.1 70.9 

Grad + GLCM 89 89 90.9 92.7 92.7 90.9 87.2 78.1 65.4 

RLM + GLCM 90.9 90.9 90.9 92.7 92.7 90.9 87.2 81.8 67.2 

Grad + Laws 83.6 80 81.8 83.6 83.6 83.6 85.4 81.8 78.1 

RLM + Laws 89 89 87.2 90.9 92.7 92.7 89 80 74.5 

GLCM + Laws 87.2 81.8 87.2 85.4 89 83.6 85.4 80 76.3 

All ftrs 89 89.6 89 90.9 89 85.4 89 81.8 76.3 

Note: OCA: Overall classification accuracy; Exp No: Experiment number 

The values in bold represents the best along the row and the values in italics represents the best along the column 
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Table 4.3: AASD of 30 subsets obtained after feature selection 

Features 
Exp 

No. 

Original 

image 

Exp 

No. 

De-speckling methods 

Lee 1 Lee 2 enLee Frost Kaun Geo SRAD DPAD 

RLM 

Exp 1 

81.3(2.8) 

Exp 3 

79.9(3.9) 81.6(3.3) 82.2(2.8) 87(2.9) 78.8(3.8) 78.0(3.6) 72.2(2.6) 57.3(1.7) 

GLCM 85.3(3.7) 86.7(2.2) 85.7(4.4) 86.9(2.8) 86.9(3.6) 86.3(2.5) 74.5(7.1) 74.6(2.7) 58.7(3.0) 

Laws 74.4(3.5) 71.8(12.8) 73.9(3.8) 75.6(3.5) 77.4(3.0) 74.5(4.4) 76.1(3.6) 71.1(3.6) 67.0(3.5) 

Grad + RLM 

Exp 2 

82.0(3.8) 

Exp 4 

80.6(3.0) 82.6(3.2) 84.0(2.4) 86.9(2.2) 80.5(4.3) 79.1(5.0) 73.1(2.7) 61.5(4.2) 

Grad + GLCM 85.8(3.1) 86.7(1.6) 84.6(4.4) 86.5(3.6) 86.0(4.9) 86.5(2.2) 79.1(7.7) 74.9(1.8) 59.3(3.1) 

RLM + GLCM 84.4(2.9) 84.0(4.4) 84.6(3.3) 85.8(4.0) 85.8(2.7) 83.5(5.5) 75.7(5.1) 74.7(2.9) 60.0(3.3) 

Grad + Laws 75.2(4.3) 75.5(4.1) 73.8(4.2) 76.8(3.7) 78.2(2.7) 75.8(4.9) 76.9(4.2) 73.1(5.6) 67.1(3.2) 

RLM + Laws 79.4(4.1) 78.5(4.0) 79.9(4.4) 82.4(4.8) 86.0(5.0) 79.5(4.9) 80.7(4.3) 70.8(4.2) 69.4(3.3) 

GLCM + Laws 77.4(3.8) 76.3(4.2) 78.1(4.7) 77.8(4.5) 79.9(5.0) 76.9(4.7) 78.2(4.3) 74.2(3.0) 70.6(3.7) 

All ftrs 80.3(4.3) 77.3(5.5) 79.8(5.1) 79.8(5.2) 83.1(4.3) 78.1(4.7) 79.4(5.1) 73.9(3.3) 70.1(3.7) 

Note: AASD: Average accuracy (standard deviation); Exp No: Experiment number 

The values in bold represents the best along the row and the values in italics represents the best along the column 
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Among the individual feature sets, RLM features from the images de-speckled by Frost 

method have performed better with an AASD of 87(2.9). GLCM features from the images de-

speckled by enLee method also performed quite near with an AASD of 86.9(2.8). Among 

concatenated feature sets, Grad + RLM feature set from the images de-speckled by Frost method 

performed better with decreased SD i.e. AASD of 86.9(2.2). Grad + GLCM features from the 

images de-speckled by Lee method (Lee 1) have shown promising result with an AASD of 

86.7(1.6). For most of the feature sets, features from the images de-speckled by Frost method 

have performed better compared to features from the images de-speckled by other methods. 

4.4 Additional observations from the present work 

Features perspective 

Among the six categories of texture features, FOS and MI have not shown satisfactory 

performance compared to other categories. Grad features from the images de-speckled by enLee 

method have shown improved performance with an OCA of 81.8 % whereas that of original 

images was 78.1 %. Similarly, RLM features from original images and the images de-speckled 

by Frost method gave an OCA of 81.8 % and 87.2 % respectively. GLCM features from the 

images de-speckled by Frost method have shown increased OCA of 81.8 % compared to that of 

original images was 76.3 % OCA. Laws’ features from the images de-speckled by enLee and 

Frost methods have shown same response with an OCA of 80 %, whereas that of original images 

was 72.7% (refer Table 4.1). Similarly, for concatenated feature sets, features from the images 

de-speckled by enLee and Frost methods have enhanced performance compared to that of 

original images. 

De-speckling methods perspective  

For original images and the images de-speckled by Lee 1, Lee 2 and Kaun methods, Grad + 

RLM features performed better with an OCA of 85.4 %. For images de-speckled by enLee and 

Frost methods, Grad + RLM features outperformed with an OCA of 87.2 %. Among the features 

from the images de-speckled by Geometric (Geo) method, Grad + GLCM features have shown 

better performance with an OCA of 81.8 % (refer Table 4.1).  

After feature selection, Grad + GLCM features from the original images performed better 

with an AASD of 85.8(3.1) (refer Table 4.3). Similarly, for the images de-speckled by Lee 1 and 

Kaun methods, Grad + GLCM features outperformed with an AASD of 86.7(1.6) and 86.5(2.2) 

respectively. In case of images de-speckled by Lee 2 and enLee methods, GLCM features stands 

first with an AASD of 85.7(4.4) and 86.9(2.8) respectively. For the images de-speckled by Frost 

method, RLM features have shown better results with an AASD of 87(2.9). 
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Results are indicating that the features of each category obtained from images de-speckled 

by various methods perform differently. Selection of appropriate combination of texture feature 

category and the method used to de-speckle the images is a vital step in enhancing the 

performance of a CAC system. 

4.5 Concluding Remarks 

In the present work, a CAC system is proposed for the classification of normal and MRD 

classes of kidney using B-mode ultrasound images. To evaluate the performance of texture 

features and de-speckling on the classification task, six categories of texture features and eight 

de-speckling methods are used. Both individual feature sets and concatenated feature sets have 

been considered for the evaluation. Grad features set having five features from the images de-

speckled by enLee method have shown promising OCA of 81.8 % without feature selection.  

RLM features from the images de-speckled by Frost method which involved 44 features 

resulted in a best performance with an AASD of 87(2.9) for the classification of normal and 

MRD classes of kidney using B-mode ultrasound images. The promising results suggests that the 

proposed CAC system can be used by the radiologists in their regular clinical diagnosis of normal 

and MRD classes using B-mode kidney ultrasound images. From the exhaustive experiments 

carried out on the proposed CAC system, it is recommended to consider an appropriate 

combination of texture feature category and the de-speckle method as a pre-processing step to 

improve the performance of a CAC system. The comparative discussions on the performance of 

CAC systems in chapter 3 and chapter 4 are given in the conclusion chapter (chapter 7). 

With next chapter (chapter 5), the CAC systems involving liver images are discussed in 

detail. 
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Chapter 5 

CAC system for B-mode fatty liver ultrasound images 

using texture features 

5.1 Introduction 

Liver is considered as a vital organ because of its functions such as detoxification, protein 

synthesis and aiding in digestion by the production of necessary bio-chemicals. Hence, survival 

of a person is at risk in case of liver diseases [8]. Though the diagnosis of liver diseases is carried 

through liver function tests which include clinical biochemistry and blood tests, radiological 

study is also required in most of the cases [11]. Ultrasonography is preferred over computed 

tomography (CT) because of its non-radiation and inexpensive nature. It is also non-invasive and 

conducive for real-time applications.  

Fatty liver or fatty liver disease (FLD) occurs because of accumulation of triglyceride fat in 

liver cells creating large vacuoles. Though it is a reversible condition, if not treated in time it may 

lead to inflammation of liver, which in turn can cause fibrosis and hardening of liver. When 

fibrosis condition becomes extensive, the condition is termed as cirrhosis which often results in 

liver failure [60]. Hence, it is very important to detect the grades of fatty liver at an earlier stage. 

Based on visual characteristics of B-mode ultrasound images, medical fraternity characterise 

fatty liver disease as mild, moderate and severe fatty liver according to degree of severity, which 

in turn help clinicians in treatment planning and further investigations.  

A CAC system provides the objective aid to the domain experts in their diagnosis. This is 

required because of inter and intra-observer variability in subjective perception and its 

implications on the diagnosis, which is critical [13].  

In the present work, a CAC system is proposed for the diagnosis of grades of fatty liver 

disease along with normal liver tissue by using B-mode ultrasound images. In literature, there 

are many contributions towards classification of normal, fatty liver and cirrhosis using different 

features [55-59]. Only recently [60], grades of fatty liver along with normal liver are considered 

for numerical grading. In their study, gray relational analysis (GRA) method has been utilized 

for numerical grading of fatty liver based on brightness level comparison between liver images 

and kidney parenchyma as reference from the same subject. But, this factor is not reliable as the 

echogenicity of kidney parenchyma changes in case of kidney diseases [13]. The most frequently 
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considered factors are increased liver echogenicity, impaired visualization of hepatic vessels and 

diaphragm [6].  

The echo-textural characteristics of liver images considered in this study are outlined in the 

sequence of their developmental stage in Table 5.1.  

Table 5.1: Echo-textural characteristics of liver images 

Echo-textural 

characteristics 
Normal 

Fatty liver 

Mild Moderate Severe 

Liver echo-

texture 
 

Homogeneous 

Medium 

echogenicity 

 

Increased 

echogenicity 

 

Increased 

than mild 

 

Increased 

than 

moderate 

 

Diaphragm 

visibility 

Normal 

 

Normal 

 

Less than 

mild 

 

Poor or no 

visibility 

 

The echo-textural characteristics and diaphragm visibility of normal liver tissue is considered 

as reference. The degree of variation from normal liver tissue is the basis for defining the echo-

textural characteristics and diaphragm visibility of grades of fatty liver. As the degree of severity 

increases from mild-moderate-severe fatty liver, echogenicity of liver increases and diaphragm 

visibility degrades [13]. 

5.2 Dataset Description 

For the present work, fifty three B-mode ultrasound images consisting of 12 normal, 14 mild, 

14 moderate and 13 severe fatty liver images of 53 patients are used. In the present work, liver 

ROIs (LROIs) are considered to represent the echogenicity of liver parenchyma and one 

diaphragm ROI (DROI) is considered to represent its visibility in each image. As fatty liver is 

diffused liver disease, the echogenic characteristics spread all over the liver parenchyma. For 

each image, an adequate number of LROIs are extracted excluding hepatic ducts and blood 

vessels. As suggested by the participating radiologist, one DROI for each image is also extracted. 

Totally, 60 LROIs for each class (normal, mild, moderate and severe fatty liver) and 53 DROIs 

i.e., one DROI from each image of normal, mild, moderate and severe fatty liver classes are 

extracted. Detailed dataset descriptions used for training and testing phases of CAC system are 

illustrated in Figure 5.1. An image with ROIs marked is shown in Figure 5.2. 
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Figure 5.1: Dataset Description 

 

Figure 5.2: An example showing LROIs and DROI marked on severe fatty liver image 
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5.3 Feature sets 

Texture features are extracted from LROIs to form one feature set to perform the 

classification task. To improve the accuracy, features are also extracted from considering DROI 

for each image. The features from LROIs and corresponding DROI are combined in three ways 

to form (i) ratio features set, (ii) inverse ratio features set and (iii) additive features set. Each 

LROI feature value is divided by corresponding DROI feature value of that image to obtain ratio 

feature value (equation 1) [107], its reciprocal gives inverse ratio feature value (equation 2) and 

their addition gives additive feature value (equation 3).  

𝑟𝑎𝑡𝑖𝑜 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 =  
𝐿𝑅𝑂𝐼 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒

𝐷𝑅𝑂𝐼 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒
       (1) 

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑟𝑎𝑡𝑖𝑜 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 =  
𝐷𝑅𝑂𝐼 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒

𝐿𝑅𝑂𝐼 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒
      (2) 

𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 =  𝐿𝑅𝑂𝐼 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 + 𝐷𝑅𝑂𝐼 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒  (3) 

5.4 Experimental Results 

The block diagram of proposed CAC system for the classification of normal and grades of 

fatty liver images is shown in Figure 5.3. 

Three experiments are carried out in the present work with two cases i.e., with and without 

feature selection, in each.  

In experiment 1(Exp 1), features extracted from LROIs (lftrs) are considered for the 

classification task. 

In experiment 2(Exp 2), DROIs are also considered along with LROIs and combined as 

described earlier to obtain ratio features set (rftrs), inverse ratio features set (irftrs) and additive 

features set (aftrs). These feature sets are fed separately for the individual classifiers.  

In experiment 3(Exp 3), lftrs, rftrs, irftrs and aftrs are concatenated in different 

combinations to obtain the classification accuracy. 

Experiment 1: The results of Exp 1 are tabulated in Table 5.2. It shows very poor 

performance, with the highest overall classification accuracy (OCA) being 44.1% for MI features 

(lftrs). Hence, lftrs are not considered for feature selection process. 

Experiment 2: With All features (rftrs) taken together, have shown better performance with 

an OCA of 76.6%. But, from Table 5.3 it is clear that the major contribution is of FOS features 

(rftrs) and Laws features (rftrs) which individually outperformed with an OCA of 79.1% and 
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80% respectively. FOS+Laws features (rftrs) have shown degraded OCA of 78.3%. FOS+Laws 

features (irftrs and aftrs) are not considered as their OCAs are not good enough individually. 

Irftrs have shown considerable OCAs. With All features (irftrs) taken together, have been 

able to perform with an OCA of 73.3%, whereas the major contribution comes from the Laws 

features (irftrs) which resulted with an OCA of 70.8%. aftrs have resulted in lower OCAs. 

 

Figure 5.3: Proposed CAC system 

 Table 5.2: Classification results of Experiment 1 without feature selection 

Texture features Lftrs 

All ftrs 34.1 

FOS 35.8 

Grad 34.1 

MI 44.1 

RLM 43.3 

GLCM 40 

Laws 37.5 
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Table 5.3: Classification results (OCAs in %) of Experiment 2 without feature selection 

Texture features rftrs irftrs aftrs 

All ftrs 76.6 73.3 51.6 

FOS 79.1 65 55.8 

Grad 65 58.3 40.8 

MI 68.3 66.6 34.1 

RLM 51.6 52.5 50 

GLCM 60 60.8 46.6 

Laws 80 70.8 56.6 

FOS+Laws 78.3   

 

Table 5.4: Classification results: average accuracy (standard deviation) of Experiment 2 

with feature selection 

Texture features rftrs irftrs aftrs 

All ftrs 85.2(2.9) 82.0(2.7) 70.7(3.0) 

RLM 56.3(3.1) 59.4(1.5) 57.6(2.7) 

GLCM 66.8(3.3) 67.3(2.6) 62.4(4.1) 

Laws 84.9(3.2) 79.1(2.8) 66.6(3.0) 

FOS+Laws 85.4(3.6)   

 

The number of features in Grad, MI and FOS feature categories, are less than or equal to 

10. So, except Grad, MI and FOS features, the rest of the feature categories are presented for 

feature selection. For each feature set, DEFS process is repeated 30 times to obtain 30 subsets. 

The average accuracies and standard deviations are tabulated in Table 5.4. FOS+Laws features 

(rftrs) have shown increased accuracy of 85.4(3.6). Whereas, Laws features (rftrs) have resulted 

with an average accuracy (standard deviation) of 84.9(3.2) with less computations involved. 

Compared to rftrs, irftrs and aftrs have no promising results to offer here. 

Experiment 3: rftrs+irftrs have produced OCAs of 76.6%, 75.8%, 77.5% and 71.6% for all 

features taken together, FOS features, Laws features and FOS+Laws features respectively (refer 

Table 5.5). Because of less number of features in Grad and MI feature categories, except Grad, 

MI features, other features are fed through feature selection process. After feature selection, 

FOS+Laws features (rftrs+irftrs) have outperformed with an average accuracy (standard 

deviation) of 85.4(2.7) (refer Table 5.6). 
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Table 5.5: Classification results (OCAs in %) of Experiment 3 without feature selection 

Texture  

features 

rftrs 

+ 

irftrs 

rftrs 

+ 

aftrs 

irftrs 

+ 

aftrs 

lftrs 

+ 

rftrs 

lftrs 

+ 

irftrs 

lftrs 

+ 

aftrs 

All ftrs 76.6 61.6 63.3 61.6 59.1 45 

FOS 75.8 55.8 63.3 38.3 59.1 50.8 

Grad 60.8 44.1 48.3 53.3 53.3 40.8 

MI 67.5 60.8 52.5 63.3 45.8 48.3 

RLM 50.8 50.8 53.3 45.8 51.6 46.6 

GLCM 57.5 54.1 50 53.3 42.5 41.6 

Laws 77.5 60.8 64.1 60.8 61.6 56.6 

FOS+Laws 71.6      

 

Table 5.6: Classification results: average accuracy (standard deviation) of Experiment 3 

with feature selection 

Texture 

features 

rftrs 

+ 

irftrs 

rftrs 

+ 

aftrs 

irftrs 

+ 

aftrs 

lftrs 

+ 

rftrs 

lftrs 

+ 

irftrs 

lftrs 

+ 

aftrs 

All ftrs 85.0(2.1) 81.0(3.3) 79.9(3.2) 83.5(3.3) 80.9(2.4) 72.4(2.7) 

FOS 73.1(1.2) 61.8(2.7) 65.0(2.5) 58.6(2.3) 67.6(3.8) 61.1(1.6) 

RLM 59.2(3.1) 59.4(3.9) 59.6(4.1) 59.2(2.9) 60.7(2.7) 56.5(3.4) 

GLCM 66.6(2.5) 66.9(3.4) 69.1(3.0) 65.3(3.0) 66.3(2.7) 60.7(4.0) 

Laws 85(4.0) 81.4(2.6) 79.6(2.7) 82.4(5.7) 79.4(2.5) 69.4(2.8) 

FOS+Laws 85.4(2.7)      

 

Discussion on experiment 2 and 3: From Table 5.3 and 5.5, features of RLM (rftrs) and 

RLM (lftrs+irftrs) obtained an OCA of 51.6%. After feature selection, an average accuracy and 

standard deviation of RLM features (rftrs) is 56.3(3.1) (refer Table 5.4) and that of RLM 

features (lftrs+irftrs) is 60.7(2.7) (refer Table 5.6). It is also noted that RLM features 

(lftrs+irftrs) obtained best average accuracy and standard deviation of 60.7(2.7) among other 

combinations. From Table 5.6, GLCM features (aftrs+irftrs) obtained best average accuracy 

and standard deviation of 69.1(3.0) among other combinations. These results indicate the 

significance of irftrs in combination with lftrs and aftrs for RLM and GLCM feature categories 

respectively.  

Features of Laws (rftrs+aftrs) and Laws (lftrs+rftrs) obtained an OCA of 60.8% (refer 

Table 5.5). After feature selection, an average accuracy (standard deviation) obtained by Laws 

features (rftrs+aftrs) is 81.4(2.6) and that of Laws features (lftrs+rftrs) is 82.4(5.7) (refer Table 

5.6). These results are projected on All features taken together obtaining 61.6% of OCA for All 
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features (rftrs+aftrs) and All features (lftrs+rftrs) (refer Table 5.5). After feature selection, an 

average accuracy (standard deviation) of 81.0(3.3) and 83.5(3.3) obtained respectively (refer 

Table 5.6). These results indicate the significance of lftrs over aftrs, when concatenated with 

rftrs.  

5.5 Additional observations from the present work 

This study revealed that texture features considered are not efficient in distinguishing the 

normal and grades of fatty liver images if features from only LROIs extracted are used (refer 

Table 5.2). Features extracted from DROI combined with features extracted from LROIs have 

shown increased OCA (refer Table 5.4), thereby indicating the presence of relevant information 

in features extracted from DROI for the task. The present work also shows that when features of 

two ROIs are to be combined to represent a class of image, the way chosen to combine has a 

significant role to play.  

In [107], only ratio features have been considered for the study and there is no reason 

mentioned for the same. Hence, in the present work, in addition to ratio features other potential 

possibilities such as inverse ratio features and additive features are also explored for the 

classification of normal and grades of fatty liver images. The lftrs, rftrs, irftrs and aftrs are 

concatenated in different combinations. There is increased average accuracy (standard deviation) 

in RLM features (lftrs+irftrs) and GLCM features (irftrs+aftrs) (refer Table 5.6). These 

findings reveal that, concatenation of feature sets may increase the classification accuracy for 

particular feature category such as RLM. The combination for which better classification 

accuracy is obtained, may be different for different feature category as shown in above example. 

5.6 Concluding Remarks 

Medical domain knowledge for the diagnosis of severity of fatty liver images has been 

utilized in objectifying the task of classification of normal, mild, moderate and severe fatty liver 

images. The results have proved that the features extracted from only LROIs are not sufficient 

enough for the classification of normal and grades of fatty liver images e.g. Laws features OCA 

is 37.5%. Features extracted from DROI combined with features extracted from LROIs obtained 

an increase in OCA, e.g. Laws feature (rftrs) OCA is 80%. After feature selection, Laws 

features (rftrs) obtained an average accuracy (standard deviation) of 84.9(3.2). The promising 

results obtained by the present work indicate that the proposed CAC system is of significant 

utility in objective assistance for the radiologists in routine clinical diagnosis of fatty liver 

disease. 
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The radiologist is of the opinion that, there is an ambiguity often faced in distinguishing 

severe fatty liver and cirrhosis which is an advanced stage of the former. From the present work, 

if the result of an image given to the CAC system is recognised as a severe fatty liver, then to 

overcome the ambiguity, a separate binary CAC system would be necessary. This is of the reason 

that, in case of cirrhosis, visibility of diaphragm is not a consistent reliable feature according to 

the radiologist. The same has been observed in the database of cirrhosis images. Thus, a separate 

CAC system has been proposed for the classification of severe fatty liver and cirrhosis. The 

details of second CAC system for liver images are presented in next chapter. 
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Chapter 6 

CAC system for severe fatty liver and cirrhosis using 

B-mode ultrasound images 

6.1 Introduction 

Excess accumulation of triglyceride fat in hepatic cells creates large vacuoles. This condition 

is termed as fatty liver or fatty liver disease (FLD). In case, this condition is not detected and 

treated at the initial stage, its consecutive developmental stages are fibrosis and hardening of the 

liver. The condition of too much fibrosis of liver is termed as cirrhosis and often results in liver 

failure [60]. Hence, detection of fatty liver at the earlier stage becomes clinically significant. 

Medical fraternity recognize fatty liver disease in three stages such as mild, moderate and severe 

fatty liver according to degree of severity. Beyond severe fatty liver is the irreversible stage of 

cirrhosis. This stage-wise characterization of disease helps clinicians in treatment planning. 

The presence of inter and intra-observer variations involved in subjective perception and its 

implications on the diagnosis of fatty liver have been stated in study [13]. Hence, a computer-

aided classification (CAC) system is extremely required to provide an objective aid to the 

medical fraternity for differential diagnosis between severe fatty liver and cirrhosis. 

In literature, there are CAC systems proposed for normal and cirrhotic liver images [10, 14-

18]. Radiologists opined that, differential diagnosis between severe fatty liver and cirrhotic liver 

images is a challenging task, as the latter may be an advanced stage of former condition. Also 

the differential diagnosis between severe fatty liver and cirrhotic liver is clinically significant as 

FLD is reversible, whereas cirrhosis is not. Accordingly, in the present work a CAC system for 

differential diagnosis between severe fatty liver disease and cirrhotic liver is proposed.  

The factors often considered in characterizing grades of fatty liver are increased liver 

echogenicity, impaired visualization of hepatic vessels and diaphragm [6]. As participating 

radiologist opined that the visibility of diaphragm is not considered as a criterion in the diagnosis 

of cirrhotic liver, regions of interest (ROIs) extracted from liver parenchyma (LROIs) are 

considered in the present work. 

6.2 Dataset Description 

Image database used in the present work consists of total twenty-nine B-mode ultrasound 

images with 13 severe fatty liver images and 16 cirrhotic liver images collected from 29 patients. 

The echogenic characteristics spread all over the liver parenchyma as severe fatty liver disease 
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and cirrhosis are diffuse liver diseases. As per the opinion of experienced participating 

radiologist, sufficient numbers of LROIs are extracted from each image excluding blood vessels 

and hepatic ducts. For both the classes, 60 LROIs are extracted. The description of distribution 

of dataset for training and testing phases of CAC system is shown in Figure 6.1. 

 

Figure 6.1: Dataset Description 

6.3 Experimental Results 

The proposed CAC system for the classification of severe fatty liver and cirrhotic liver 

consists is depicted in the block diagram shown in Figure 6.2. 

The proposed CAC system has been designed for differential diagnosis between severe fatty 

liver and cirrhotic liver images. Radiologists opined that in cases of cirrhosis, visibility of 

diaphragm is not considered as a criterion. Rather, the coarse texture, nodularity and shrinkage 

of liver size are considered. Hence, only echo-textural characteristics within liver parenchyma 

are considered here. Texture features are extracted from the LROIs of severe fatty liver and 

cirrhotic liver images. 

Two experiments are carried out in the present work. In experiment 1, overall classification 

accuracy (OCA), sensitivity for severe fatty liver and sensitivity for cirrhotic liver are computed 

from confusion matrix. These results are obtained without feature selection for individual texture 

feature categories and for concatenated feature sets. Allftrs represents concatenation of features 

of six categories. 
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Figure 6.2: Proposed CAC system 

In experiment 1, the design of CAC system without feature selection for different texture 

feature categories is experimented and the results obtained are tabulated in Table 6.1. It can be 

observed that the MI features set consisting of seven features, yield the sensitivity value of 96.6% 

for cirrhotic liver, though the OCA is poor. The FOS features set which consists of ten features 

has been able to classify with an OCA of 98.3 %. The Grad features set which contains only five 

features has also shown better classification with an OCA of 93.3 %. The Laws features set 

achieved the OCA value of 91.6 %.  Hence, these three categories (FOS, Grad and Laws) are 

considered in different combinations for concatenation. From Table 6.1, it can be observed that 

without feature selection concatenated sets have not shown improvement compared to the 

individual feature sets. 

In experiment 2, except FOS, MI and Grad feature sets which consists of less than or equal 

to 10 features, other feature sets and concatenated feature sets are considered for feature selection. 

For feature selection, 30 subsets are obtained by repeating DEFS algorithm 30 times. The subsets 

are obtained separately from KNN-DEFS and NB-DEFS. Experiment 2 consists of two stages. 

In stage 1, sensitivity for severe fatty liver and sensitivity for cirrhotic liver are computed from 
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the confusion matrix obtained for a subset (out of 30 subsets) which resulted in highest OCA. In 

stage 2, classification average accuracy (standard deviation) of the 30 subsets is computed. 

Table 6.1: CAC system results without feature selection with SVM classifier (Expt. 1) 

Features 
Confusion Matrix Sen.Sev.Fat 

(%) 

Sen.Cir 

(%) 

OCA 

(%)  Sev. Fat Cir 

Allftrs 
Sev. Fat 26 6 

86.6 80 83.3 
Cir 4 24 

FOS 
Sev. Fat 30 1 

100 96.6 98.3 
Cir 0 29 

Grad 
Sev. Fat 29 3 

96.6 90 93.3 
Cir 1 27 

MI 
Sev. Fat 11 1 

36.6 96.6 66.6 
Cir 19 29 

RLM 
Sev. Fat 21 11 

70 63.3 66.6 
Cir 9 19 

GLCM 
Sev. Fat 19 9 

63.3 70 66.6 
Cir 11 21 

Laws 
Sev. Fat 29 4 

96.6 86.6 91.6 
Cir 1 26 

FOS+Grad+ 

Laws 

Sev. Fat 28 1 
93.3 96.6 95 

Cir 2 29 

FOS+Grad 
Sev. Fat 30 3 

100 90 95 
Cir 0 27 

FOS+Laws 
Sev. Fat 29 3 

96.6 90 93.3 
Cir 1 27 

Grad+Laws 
Sev. Fat 29 4 

96.6 86.6 91.6 
Cir 1 26 

Note: Sev. Fat: Severe fatty liver; Cir: Cirrhotic liver; Sen.Sev.Fat: Sensitivity of severe 

fatty liver; Sen.Cir: Sensitivity of cirrhotic liver; OCA: overall classification accuracy. 

 

In stage 1 of experiment 2, the classification results are computed for a subset (out of 30 

subsets) which resulted in highest OCA. The classification results for subsets obtained using 

KNN-DEFS and NB-DEFS are tabulated in Table 6.2 and Table 6.3, respectively. Overall, the 

OCAs of all the feature sets have increased after feature selection. From Table 6.2 and 6.3, it can 

be observed that the subsets of RLM features set from KNN-DEFS and NB-DEFS have yielded 

an OCA of 78.3 %, and 75 %, respectively. Similarly, the subsets of Laws features set from 

KNN-DEFS and NB-DEFS yield an OCA of 100 % and 98.3 %. The concatenated features sets 

such as Allftrs, FOS + Grad + Laws and FOS + Laws have shown an OCA of 100 % in both 

feature selection methods. Hence, to strengthen the validation of results, stage 2 has been carried 

out. 
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Table 6.2: Best classification results after feature selection using KNN-DEFS with SVM 

classifier (Expt. 2, Stage 1) 

Features 
Confusion Matrix Sen.Sev.Fat 

(%) 

Sen.Cir 

(%) 

OCA 

(%)  Sev. Fat Cir 

Allftrs 
Sev. Fat 30 0 

100 100 100 
Cir 0 30 

RLM 
Sev. Fat 27 10 

90 66.6 78.3 
Cir 3 20 

GLCM 
Sev. Fat 24 6 

80 80 80 
Cir 6 24 

Laws 
Sev. Fat 30 0 

100 100 100 
Cir 0 30 

FOS+Grad+ 

Laws 

Sev. Fat 30 0 
100 100 100 

Cir 0 30 

FOS+Grad 
Sev. Fat 30 2 

100 93.3 96.6 
Cir 0 28 

FOS+Laws 
Sev. Fat 30 0 

100 100 100 
Cir 0 30 

Grad+Laws 
Sev. Fat 30 0 

100 100 100 
Cir 0 30 

Note: Sev. Fat: Severe fatty liver; Cir: Cirrhotic liver; Sen.Sev.Fat: Sensitivity of severe 

fatty liver; Sen.Cir: Sensitivity of cirrhotic liver; OCA: Overall classification accuracy. 

 

In stage 2 of experiment 2, for each features set, classification average accuracy (standard 

deviation) are estimated from 30 subsets obtained. The results of stage 2 are tabulated in Table 

6.4. The subsets of RLM features yielded an average accuracy (standard deviation) value of 70.6 

(2.8) and 68.4(3.9) from KNN-DEFS and NB-DEFS, respectively. The subset of FOS + Grad + 

Laws features set from KNN-DEFS showed better performance by yielding an average accuracy 

(standard deviation) of 99.2(1.0) in comparison with 97.5(1.2) as yielded by NB-DEFS method. 

The subsets of FOS + Laws feature set obtained by KNN-DEFS method gave the best 

performance with average accuracy (standard deviation) value of 99.5(0.8). 

6.4 Additional observations from the present work 

The results of the exhaustive experimentations carried out in the present work indicates that, 

amongst the individual feature sets, FOS features set consisting of only ten features outperformed 

with an OCA value of 98.3 % without feature selection. This is possibly because of increase in 

intensity of cirrhotic liver images compared to severe fatty liver images. Radiologist opined that, 

sometimes in obese patients, to have better visualization, the gain parameter in ultrasound 

machine is increased. This also contributes to the increase in intensity of cirrhotic liver images. 

Hence, to rely more on textural characteristics of nodular properties of cirrhotic liver images, 

FOS + Laws features set is recommended. 
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Table 6.3: Best classification results after feature selection using NB-DEFS with SVM 

classifier (Expt. 2, Stage 1) 

Features 
Confusion Matrix Sen.Sev.Fat 

(%) 

Sen.Cir 

(%) 

OCA 

(%)  Sev. Fat Cir 

Allftrs 
Sev. Fat 30 0 

100 100 100 
Cir 0 30 

RLM 
Sev. Fat 23 8 

76.6 73.3 75 
Cir 7 22 

GLCM 
Sev. Fat 26 8 

86.6 73.3 80 
Cir 4 22 

Laws 
Sev. Fat 30 1 

100 96.6 98.3 
Cir 0 29 

FOS+Grad+ 

Laws 

Sev. Fat 30 0 
100 100 100 

Cir 0 30 

FOS+Grad 
Sev. Fat 30 2 

100 93.3 96.6 
Cir 0 28 

FOS+Laws 
Sev. Fat 30 0 

100 100 100 
Cir 0 30 

Grad+Laws 
Sev. Fat 30 1 

100 96.6 98.3 
Cir 0 29 

Note: Sev. Fat: Severe fatty liver; Cir: Cirrhotic liver; Sen.Sev.Fat: Sensitivity of severe 

fatty liver; Sen.cir: Sensitivity of cirrhotic liver; OCA: Overall classification accuracy. 

 

Table 6.4: CAC system results: average accuracy (standard deviation) after feature 

selection with SVM classifier (Expt. 2, Stage 2) 

Features KNN-DEFS (AASD) NB-DEFS (AASD) 

Allftrs 97.4 (1.4) 97.7(1.5) 

RLM 70.6(2.8) 68.4(3.9) 

GLCM 76.4(2.2) 76.3(2.1) 

Laws 98.0(1.8) 97.2(0.9) 

FOS+Grad+Laws 99.2 (1.0) 97.5(1.2) 

FOS+Grad 96.6 96.3(0.5) 

FOS+Laws 99.5(0.8) 97.9(1.1) 

Grad+Laws 97.1(1.6) 98.0(0.5) 

Note: AASD: Average Accuracy (in %) (Standard Deviation) 

 

From computations of average accuracy (standard deviation) and the OCA values obtained 

for 30 subsets during feature selection, it is observed that the FOS + Laws features set gave higher 

average accuracy and less standard deviation (highlighted with bold numbers in Table 6.4) and 

thus can be considered as optimal for characterization of severe fatty and cirrhotic liver tissue. 

During feature selection process, feature subsets are obtained by two wrapper methods i.e., 

KNN-DEFS and NB-DEFS. In classification stage, SVM classifier is used in both cases. From 

the results reported in Table 6.4, it can be observed that the optimal subsets yielded by KNN-
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DEFS based wrapper method of feature selection yield better classification accuracy in 

comparison with the optimal subsets yielded by NB-DEFS based wrapper method of feature 

selection. Thus it can be concluded that selection of a suitable classifier in wrapper based feature 

selection algorithms can enhance the performance of the CAC system design.  

6.5 Concluding Remarks 

The aim of the present work is to enhance the potential of conventional gray scale B-mode 

ultrasound imaging modality for differential diagnosis between severe fatty liver and cirrhotic 

liver. Accordingly, medical domain knowledge has been utilized in considering the ROI from 

the liver parenchyma for the developing the proposed CAC system for characterization of severe 

fatty and cirrhotic liver tissue. The optimal subsets of FOS + Laws features set yielded by KNN-

DEFS wrapper based feature selection algorithm outperformed with an average accuracy 

(standard deviation) value of 99.5(0.8).  

From the exhaustive experiments carried out in the present work, it can be concluded that 

selection of a suitable classifier in wrapper based feature selection algorithms can enhance the 

performance of the CAC system design.  The study also highlights the significance of 

concatenation of FOS + Laws features to capture the nodular properties of cirrhotic liver 

parenchyma yielding better texture discrimination between severe fatty liver and cirrhotic liver 

disease.  

The promising result obtained in the present work, indicate the usefulness of the proposed 

CAC system for characterization of severe fatty liver and cirrhotic liver images during routine 

clinical practice by the radiologists. 
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Chapter 7 

Conclusions 

The present work proposed four CAC systems, through which the set objectives have been 

achieved. In this chapter, the description of each objective being achieved are presented in brief. 

The two databases of kidney and liver B-mode ultrasound images are considered for 

classification using same methodologies. An overall perspective from the results of these 

databases are included. The limitations and future possibilities of the present work are also been 

outlined. 

7.1 Concluding Remarks 

Objective 1: The significance of considering appropriate ROIs for the classification of B-

mode ultrasound images  

In case of kidney image classes considered, the distinguishing characteristics among normal 

and MRD cases are prominent in the region of renal parenchyma. In cysts, the characteristic 

region is localized to small area. Hence, ROIs are considered corresponding to these regions and 

the system yielded promising result, an OCA of 89.5 % for Grad+RLM features without feature 

selection (refer chapter 3).  

In case of normal and fatty liver images, the dominant distinguishing features are present in 

diaphragm region. Hence, inclusion of features from DROIs showed tremendous improvement 

in the results. For example, OCA of 80 % for Laws ratio features without feature selection (refer 

chapter 5). 

Objective 2: The potentiality of features from de-speckled images for the classification of B-

mode ultrasound images 

The algorithms used for de-speckling of an ultrasound image bring changes in visual 

characteristics of an image. Hence, in the present work, features extracted from the de-speckled 

images are used for classification. From the results presented in chapter 3, it is found that the 

features from the de-speckled images have the potential to enhance the performance of a CAC 

system. It is also observed that, by concatenating features from original images and de-speckled 

images followed by feature selection would further enhance the performance of a CAC system. 

For example, an OCA of 79 % and 82.5 % for Laws and RLM features without feature selection 

increased to an OCA of 90.6% and 88.3 % respectively after feature selection. The results further 
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increased to an OCA of 94.1 % and 90.6% for set 3 (features from original images and images 

de-speckled by enhanced Lee method concatenated) after feature selection. 

Objective 3: Evaluating the performance of texture features w.r.t. de-speckling methods for 

the classification of B-mode ultrasound images. 

From the results of chapter 3, it has been observed that, each feature category’s classification 

performance is different when the features are extracted from images de-speckled by various 

methods. Hence, the work has been extended with only two classes of kidney (normal and MRD) 

in chapter 4 to explore the right combination of feature category and de-speckling method, which 

would result in best performance. For example, after feature selection, RLM features obtained 

an OCA of 87.2 % (features from original images) has increased to an OCA of 89 % (features 

from images de-speckled by Lee1/enLee method) and 92.7 % (features from images des-speckled 

by Frost method). It is concluded that, an appropriate combination of feature category and de-

speckling method would contribute greatly in improving the accuracy of the CAC system. 

Objective 4: A way to enhance the performance of classification of fatty liver images 

To distinguish grades of fatty liver from normal liver images, radiologists consider diaphragm 

visibility along with the texture of liver parenchyma. Hence, in the work presented in chapter 5, 

ROIs from these regions are considered and combined to represent the characteristics of a 

particular image. ROIs are combined in three ways forming ratio features, inverse ratio features 

and additive features. Ratio features performed better in the current work. For example, Laws 

features obtained an OCA of 80 %, 70.8 % and 56.6 % in case of ratio features, inverse ratio 

features and additive features respectively.  

Objective 5: Optimal texture features for the classification of B-mode ultrasound images 

Six texture feature categories such as first order statistics, gradient, moment invariant, 

GLCM, RLM and Laws features are considered. Gradient based features which are five in 

number have been hardly used in literature. But, in all the CAC systems gradient features 

performance has been better. In the present work, each feature category’s classification 

performances have been estimated. Features with good performance have been considered in 

forming concatenated feature sets. Further, to reduce the number of features by excluding 

irrelevant or redundant features has been carried out using a feature selection process. 

Objective 6: A way to improve the potential of feature selection process 
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In the present work, DEFS algorithm has been used for feature selection. DEFS is a wrapper 

method, i.e, it involves a classifier within the feature selection process. In the work presented in 

chapter 6, two classifiers namely, KNN and NB are considered. For KNN-DEFS and NB-DEFS, 

separate feature subsets are obtained and used for classification. The features subsets from KNN-

DEFS performed better. For example, an OCA of 98.3 % for Laws features subsets from NB-

DEFS is obtained, whereas for the subsets from KNN-DEFS, OCA of Laws features is 100 %. 

Thereby, it is concluded that the classifier in wrapper method of feature selection has an impact 

on the performance of CAC system. 

Apart from the objectives, the concluding remark from the present work is that, the 

methodologies used at various stages of CAC system are same for both kidney and liver database. 

The ROI size of 32×32 pixels is used in extracting necessary texture information. To have an 

overview of performance of the texture feature categories in all the CAC systems, few 

comparative results are tabulated in Table 7.1.  

 

 

In Table 7.1, for comparison purpose, the OCAs for six categories of texture features extracted 

from original images, without feature selection are tabulated. The results under the columns CAC 

system 1 and CAC system 2 are of features extracted from the original images. CAC system 3 

results are of ratio features set of LROI and DROI feature values from original images. CAC 

system 4 column represents OCAs of features from original images. 

FOS features showed 79.1 % OCA in CAC system 3, whereas 98.3 % OCA for CAC system 

4 which can be credited to increased intensity in cirrhosis. Grad features (5 features) showed 

promising performance with 86 %, 78.1 % and 93.3 % OCAs for CAC system 1, CAC system 2 

and CAC system 4 respectively. MI features have consistently not performed well in any of the 

CAC systems. RLM features have a clear indication of good performance for kidney images with 

82.5 % and 81.8 % OCAs in case of CAC system 1 and CAC system 2 respectively. To some 

Table 7.1: OCAs of four CAC systems without feature 

selection 

Texture 

features 

Kidney Images (part 1) Liver Images (part 2) 

CAC 

system 1 

CAC 

system 2 

CAC 

system 3 

CAC 

system 4 

FOS 77.9 67.2 79.1 98.3 

Grad 86 78.1 65 93.3 

MI 70.9 63.6 68.3 66.6 

RLM 82.5 81.8 51.6 66.6 

GLCM 79 76.3 60 66.6 

Laws 79 72.7 80 91.6 

Note: OCA – Overall classification accuracy (in %) 



84 
 

extent, the degraded performance of GLCM features may be credited to large number of features 

(420 features) involved without feature selection. Laws features have low performance in case 

of CAC system 2, otherwise it yielded good results with 79 %, 80 % and 91.6 % OCAs for CAC 

system 1, CAC system 3 and CAC system 4 respectively.  

DEFS and SVM have shown promising performance in feature selection and classification 

respectively. The parameter values used with DEFS algorithm such as number of features, 

population size and the number of iterations remained same for all the CAC systems. 

With reference to the present workflow depicted in Figure 1.8, in first part, CAC system 1 

can be used when three classes of kidney (normal, MRD and cyst) are considered for the 

classification. The best result obtained is an AASD of 86.3(1.6) for RLM features extracted from 

ROIs of images de-speckled by Lee’s sigma and enhanced Lee methods. If the output is other 

than cyst for CAC system 1, CAC system 2 may be used for improving the accuracy of 

classification between normal and MRD classes. The result observed in the present work is an 

AASD of 87.0(2.9) for RLM features from the ROIs of images de-speckled by Frost method. 

There is a little improvement in average accuracy and the standard deviation is increased, but the 

feature category has changed and number of features utilized is much less.  

In second part, CAC system 3 is developed for the classification of normal and grades of fatty 

liver. The Laws ratio features results have been better with an AASD of 84.9(3.2). If the output 

of CAC system 3 is a severe fatty liver, it may further led through CAC system 4 for clarification 

between severe fatty liver and cirrhosis. The results obtained have been an AASD of 99.5(0.8) 

for the concatenated set of FOS and Laws features subsets from KNN-DEFS. CAC system 3 

involved ratio features i.e. features from DROI combined with that of LROI whereas in CAC 

system 4, Laws features in combination with FOS features have shown much improvement in 

the average accuracy and standard deviation. 

Misclassification Remarks 

Misclassification occurs because of existing limitation from radiologist’s perspective as well 

as researcher’s perspective. The radiologist’s opinion on misclassification results are the non-

uniformity in the angle, resolution and imaging device parameter settings considered during 

image acquisition led the CAC system prediction go wrong in certain cases. The other reason 

being the demarcation line between classes in terms of texture is overlapping some time. From 

the observation that, currently used texture feature categories showed varied performances in 

classification, it can be inferred to have a tailored texture features for the classification of B-
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mode ultrasound images. At the same time, the possible limitations of the algorithms used for 

feature selection and classification cannot be ruled out. 

7.2 Limitations 

The limitations pertaining to the present work that have been observed are as follows: 

The standard benchmark database on ultrasound images is not available for the researchers. 

Its implications are 

i. Researchers have to build their own database which is a time consuming process. 

ii. Quantitative comparison of various studies is not possible. 

7.3 Future Possibilities 

1. The parameter values used for the de-speckling filters are ideal values proposed by 

respective researchers in their study. Optimization of those values for a particular classification 

task at hand is an open area of research. 

2. In the present work, standard de-speckling methods are used. The authors of OSRAD, 

claim that the method is suitable as a pre-processing for segmentation. On the similar line, there 

is a possibility to design de-speckling filters that are tailored for CAC systems.  
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