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ABSTRACT 

 

 

Electrical power distribution network is an integral part of electrical power systems since it is the 

last stage in the delivery of electricity to customers. Analogous to humans’ circulatory system, if 

transmission system can be termed as the arteries of a human body, then the distribution system are 

the capillaries. The distribution network is responsible for distributing power to consumers at 

desired voltage levels with higher reliability. Alternating Current (AC) three-phase four-wire 

structure is the standard distribution system that exists throughout the world. 

With the growth in urban population and development of industries, distribution grids now 

consider a considerable amount of power. The large number of lines in a distribution system 

experience regular faults which lead to high values of line currents. A fault which occurs on a 

distribution network is defined as an irregular condition of circuit that results in energy being 

dissipated in a manner other than the serving of the intended load. 

As compared to transmission system lesser research works has been carried out for detection, 

identification, classification and location of faults in distribution system. The algorithms which 

have been developed for transmission system cannot be directly applied to distribution system 

because of certain constraints. Several techniques have been developed in order to get an errorless 

fault detection, identification and location. Traditionally, impedance based methods were 

developed but it suffered from the problem of multiple estimation. With the evolution of time, 

travelling based approaches also found its existences, but the measuring device required high 

sampling devices. With the introduction of artificial intelligence, there is a need for development of 

hybrid algorithm which not only detects, identify faults but also locate them accurately.  

Feature extraction is the basic need for development of protection algorithms using digital signal 

processing tools. It transforms data of high dimension to a lower dimension. But at the same time, 

the embedded information content is kept intact. Also the dimensionality of data is reduced. 

Further, the complexity for the purpose classification or regression is decreased. This chapter 

presents a brief concept of the tools used for feature extraction. It covers a brief overview of the 

different signal processing tools involved in the development of algorithm. Wavelet Transform, 

Wavelet Packet Transform, Gabor Transform, M – Band Wavelet Transform and Complex Dual 
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Tree Wavelet transform have been dealt. Also, it presents a brief overview of Artificial Neural 

Network meant for the classification and regression. 

The thesis gives an introduction of distribution system and the need for identification, classification 

and location of fault. Further, an extensive literature reviewed throughout this research work. 

During this the focus was on fault detection, identification and its location. Further, the detailed 

literature of signal processing tools used for feature extraction such as Wavelet Transform, 

Wavelet Packet Transform, Gabor Transform, M Band Wavelet Transform, Complex Dual Tree 

Wavelet Transform and the neural network employed for carrying out classification and location 

can be seen in next chapter.  

In the next work wavelet transform and wavelet packet transform has been used in order to collect 

the features. It has been extensively used by power system engineers for fault detection and 

location. However, it should be kept in mind that only approximations of the signal are 

decomposed to next level. It fails to accurately capture high frequency information in signals. 

Hence, in order to capture more information content in a signal, Wavelet Packet Transform is used 

which is an expansion of classical wavelet decomposition. It represents high frequency information 

in a better manner as compared to wavelet transform. A comparative result of wavelet and wavelet 

packet transform over different “daubechies” family“db1, db2, db4 and db8” has been presented. 

The result justifies the use of Wavelet Packet Transform which gives more accurate result than 

Wavelet Transform. 

Further, another technique based on the use of Gabor Transform for collecting features is presented 

in the next chapter. In Gabor Transform, one obtains the coefficients through high pass filter only. 

It gives detail information which is required to trap the sudden changes in the fault signal. In the 

present work, a level decomposition is used for fault classification and four levels decomposition 

have been used for fault location.  A comparison is presented between Gabor Transform and 

Wavelet Packet Transform. Results obtained are very promising for Gabor Transform. 

In the subsequent work, M- Band Wavelet Transform has been used to extract the feature. M-band 

decomposition gives both logarithmic and linear frequency resolution. Further, its decomposition 

yields large number of sub bands which further helps more information about the signal. In M- 

Band transform for one level decomposition one obtains the one low pass filter decomposition and 

two high pass filter decomposition. A comparison is presented between Gabor Transform and M- 
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Band Wavelet Transform. Results obtained are very promising for both the databases in case of M- 

Band Wavelet Transform. 

Another technique based on extraction of features of Dual Tree Complex Wavelet Transform is 

presented. The Dual-tree complex wavelet transform is used to overcome the two fundamental 

problems of wavelet transform as already discussed, while retaining the properties of nearly shift 

invariance and directionally selectivity. A comparison is presented between M- Band Wavelet 

Transform Dual Tree Complex Wavelet Transform. Results obtained for both the databases are 

very good that it proves that it is the best transform which give almost errorless result. 

At, the end an alternative solution to the problems associated with interruptions by means of a 

statistical modeling of current sample database applied to determine the fault location in power 

distribution systems in order to reduce the system restoration time. The current samples collected 

from the sample distribution systems are subjected to FCM to obtain clusters and fed to 

expectation maximization algorithm 

Eventually, the summary of work in the thesis is presented and also focuses on the scope for future 

work. An attempt has been made in the thesis to give an almost errorless fault location with the use 

of various digital signal processing tools and statistical based methods. It gives an edge over the 

conventional impedance based methods and also the problem of multi estimation has been 

successfully deal 
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Introduction 

Chapter 1 

 

 

1.1 ELECTRICAL POWER DISTRIBUTION NETWORK 

Electrical power distribution network [1] is an integral part of electrical power systems since it is 

the last stage in the delivery of electricity to customers. Analogous to humans’ circulatory system, 

if transmission system can be termed as the arteries of a human body, then the distribution system 

are the capillaries. Figure 1.1 represents an electrical distribution system. 

 

Figure 1.1: An Electrical Distribution System 
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Electrical power is normally generated at 11 – 25 kV in power stations. It is stepped up at sending 

end substations to HV/ UHV/ EHV levels for transmission over long distances. These lines run 

into hundreds of kilometers and deliver the power into a receiving end substation. Here, the voltage 

is being stepped down to values i.e. 66 kV or 33 kV or 11 kV. The secondary transmission system 

transfers power from these receiving end substations to secondary substation. Further, the voltage 

is stepped down to 11 kV/ 6.6 kV/ 3.3 kV at secondary substation. The segment of the power 

network that lies between a secondary substation and consumers’ installation is known as the 

distribution system. The distribution network is responsible for distributing power to consumers at 

desired voltage levels with higher reliability. Alternating Current (AC) three-phase four-wire 

structure is the standard distribution system that exists throughout the world. 

 

 

Figure 1.2: Block Diagram Representation of the Distribution System. 

 

1.1.1  Categorization of Distribution System 

Distribution System [2] has two components: (i) Feeder (ii) Distributor. A Feeder in a distribution 

network is a circuit carrying power from a main substation to a secondary substation such that 

current loading is same all along its length. The main criterion for the design of feeder is the 

current carrying capacity (thermal limits rather than voltage drops). A Distributor on the other 

hand, has variable loading along its length due to the service conditions, tapping off at intervals by 

individual consumers. The voltage variations at the consumer’s terminals, as per electricity acts 

[3], must be maintained within + 5%. Thus, the main criterion for the design of a distributor is to 

limit on percentage of voltage variations. The distribution system can be categorized into primary 
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and secondary distribution systems. The primary distribution system consists of main feeder and 

laterals. The main feeder acts as main source of supply to sub-feeders, laterals or direct connected 

distribution transformer.  

Based on the topology of the feeding system, it is further categorized into radial feeder, parallel 

feeder, loop feeder and primary network. Figure 1.3 gives the block diagram of type of distribution 

system. 

 

 

Figure 1.3: Types of Distribution System 

 

1.1.2  Radial Feeder 

A radial feeder is the simplest and the most commonly used as seen in figure 1.4. It is used 

extensively to supply small and medium residential, commercial, industrial loads. It is a feeder 

which radiates from the secondary substation. Further, it branches into sub feeders and laterals that 

is available for the areas where power needs to be delivered. The feeders and sub – feeders are 

three – phase three – wire (or four wire circuits). The laterals may be of three – phase or single 

phase. They are most economical, but least reliable since a fault in a feeder means disruption of 

supply towards the faulty section. 
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Figure 1.4: Radial Distribution System. 

1.1.3  Parallel feeder 

Parallel feeder consists of two radial feeders running in parallel which may originate from the same 

or different secondary substation as seen in figure 1.5. Each feeder supplies about half of the total 

load of that area but has the capability to supply the entire load in the event of an outage of other 

feeder. They are costlier than radial feeders, but substantially reduce the frequency and duration of 

outage. 

 

Figure 1.5: Parallel Feeder. 

 

1.1.4  Loop Feeder 

It may be defined as the system that contains two or more radial feeders which originates from the 

same or different secondary substations and are separately routed through the load areas. It is 

further classified into open loop system if the ends of the two feeders are tied together through 

normally open switches and ring feeder if the ends are tied together through normally closed 

switches. 

 

1.1.5  Primary Distribution System 

Primary Distribution System consists of number of interconnected feeders. Two or more sub 

transmission circuits supply two or more secondary substations from which the feeders take off. In 

urban areas the length of 11 kV feeders is generally up to 3 km whereas in rural areas, it extends up 
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to 20 -30 km. This system provides good flexibility and reliability and preferred for large 

distribution areas for large loads which have to be supplied with greater reliability with all other 

advantages of grid (interconnected) system. The system gives better voltage regulation. 

 

1.1.6.  Secondary Distribution System 

Secondary Distribution System consists of 3 phase four wire 400 V distributors laid along the road 

side. The service connections to consumers are tapped off the distributors at convenient points in 

the form of single phase two wire circuits or three phase four wire circuits. It is used in the form of 

radial, open loop and network configuration. A radial distributor takes off from the distribution 

transformer and runs through the area to be served by it. An open loop system consists of two 

distributors taking off from the same distribution transformer and running in different directions 

and supplying different areas with far ends tied together by normal open switching device. If two 

or more distribution transformers feed the distribution network and operate continually in parallel, 

then this type of system is known as network or grid system. It consists of a number of 

interconnected distributors. 

1.2 MOTIVATION 

With the growth in urban population and development of industries, distribution grids now 

consider a considerable amount of power. The large number of lines in a distribution system 

experience regular faults which lead to high values of line currents. A fault [4] which occurs on a 

distribution network is defined as an irregular condition of circuit that results in energy being 

dissipated in a manner other than the serving of the intended load. Depending upon its nature, it 

may either be temporary or permanent. A permanent fault is a condition in which permanent 

damage is done to the system. It comprise of failures of insulator, broken wires etc. It usually 

causes continuous interruptions. In order to get rid of the fault, a fuse, re-closer or circuit breaker 

must operate to disrupt the circuit. In case of a temporary fault, the circuit is interrupted and then 

reclosed after a delay; thereby making the system operate normally. It accounts to 50 to 90% of 

faults on overhead distribution network. Lightning, slapping of conductors in the wind, tree 

branches that fall across conductors and then fall or burn off, animals that cause faults and fall off, 

and insulator flashovers caused by pollution are some examples of temporary fault. If the fault 

persists for a longer duration temporary faults can turn into permanent faults. The fault can do 

permanent damage to conductors, insulators, or other hardware associated with the distribution 
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system. In order to give uninterrupted supply to the consumer, faults occurring in the distribution 

system needs to be identified and located accurately. Also, for proper operation of protective 

relays, correct determination of fault type is a prerequisite in digital protection schemes. Fault 

detection, identification and location on distribution system have become a prominent issue.  

As compared to transmission system lesser research works has been carried out for detection, 

identification, classification and location of faults in distribution system. The algorithms which 

have been developed for transmission system cannot be directly applied to distribution system [5] 

because of certain constraints. Several techniques have been developed in order to get an errorless 

fault detection, identification and location. Traditionally, impedance based methods were 

developed but they suffered from the problem of multiple estimation. With the evolution of time, 

travelling based approaches also found its existences, but the measuring device required high 

sampling devices. With the introduction of artificial intelligence, there is a need for the 

development of a hybrid algorithm which not only detects, identifies faults but also locates them 

accurately.  

1.3 SAMPLE DISTRIBUTION SYSTEM 

In the present work, two standard distribution systems were considered to evaluate the algorithms 

developed for the purpose of identification, classification and location of fault. Recent literature 

survey suggests that Saskan Power distribution model has been used as a standard model to 

evaluate the accuracy in many of the relevant recent work. Additionally, IEEE 13 – node feeder is 

also tested in order to establish the effectiveness of the algorithm.  

1.3.1 Saskan Power Distribution Network 

SaskPower Canada is a 25 kV distribution system proposed in [6] has been used in order to create 

the current and voltage sample database. It is considered as the sample distribution system 1 (SD 

1). The single line diagram of SaskPower in Saskatchewan (Canada) is shown in fig. 1.6. The line 

between nodes 1 and 11 is 37 km long and consists of sections of different length that are made up 

of different conductors. Single or three phase loads (values shown in kVA) are tapped at all nodes 

except for nodes 3, 4, 5, 7, 10, 11 and 17. A detailed description of the system is presented in 

Appendix A. 
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q 

Figure.1. 6: SaskPower in Saskatchewan (Canada) 

Keeping in view the multiple estimation problems, sample distribution system has been 

categorized into different zones as presented below in Table. 1.1. 

Table 1.1: Zone-wise Categorization of Sample Distribution 1 (SD 1) 

S. No Zone Nodes 

1 Zone 1 1 - 4 

2 Zone 2 5, 6 & 13 

3 Zone 3 7 - 12 

4 Zone 4 14, 15 & 16 

5 Zone 5 17 - 20 

6 Zone 6 21 - 23 

7 Zone 7 24 - 25 

 

1.3.2 IEEE 13 – Node Feeder 

IEEE 13 node feeder [7] has been created as a common set of data which could be used by 

researchers and users to verify the accuracy of their solutions. It is considered as the sample 

distribution system 2 (SD 2). Fig. 1.7 gives single line diagram of IEEE 13 node system. Some of 
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the characteristics are as follows: 

(a) It is short and relatively highly loaded for a 4.16 kV feeder 

(b) It consists of one substation voltage regulator that comprises of three single-phase units having 

wye connection. 

(c) It has overhead and underground lines with variety of phasing. 

(d) It consists of shunt capacitor banks. 

(e) It has In-line transformer. 

(f) It also has unbalanced spot and distributed loads.  

 

 

Figure1.7: IEEE 13 node feeder 

A detailed description of the model is presented in Appendix B. As mentioned above, it has also 

been categorized into different zones as seen in Table 1.2.  

Table 1.2: Zone-wise Categorization of Sample Distribution 2 (SD 2) 

S. No Zone Nodes 

1 Zone 1 632 – 633, 633 - 634 

2 Zone 2 632 – 645, 645 - 646 

3 Zone 3 650 – 632, 632 – 671, 671 - 680 

4 Zone 4 671 – 684, 684 – 652, 684 – 611 
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These systems were simulated in PSCAD (Power System Computer Aided Design) [8]. Extensive 

simulations were carried out to collect current and voltage samples over different range of fault 

resistance and fault inception angle for all the ten types of faults. Ten types of faults comprises of 

single – line to ground fault, double – line to ground faults, phase to phase faults and triple phase to 

ground fault respectively. 

1.4 EVALUATION MEASURES 

The effectiveness of the algorithm meant for identifying, classifying and locating faults system 

have been evaluated by the use of  following performance parameter:  

1.4.1 Classification of Faults 

The results of the faults classified are calculated by the following equation: 

(%) 100ms
err

S

N
TC

N
           (1.1) 

errTC : Total Classification Error (%) 

msN : Number of misclassified sample 

SN : Total number of samples 

1.4.2 Location of Faults 

The result is expressed in terms of error for location. Error in percentage is expressed by the following 

equation: 

(%) 100O A
err

A

D D
L

D


           (1.2) 

Where, 

errL : Location error 

:OD Output Distance Calculated 

AD : Actual Distance 
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1.5 OUTLINE AND CONTRIBUTIONS OF THESIS 

 

Present chapter gives an introduction of distribution system and the need for identification, 

classification and location of fault. Chapter 2 presents an extensive literature reviewed throughout 

this research work. During this the focus was on fault detection, identification and its location. 

Chapter 3 gives the detailed literature of signal processing tools used for feature extraction such as 

Wavelet Transform, Wavelet Packet Transform, Gabor Transform, M Band Wavelet Transform, 

Complex Dual Tree Wavelet Transform and the neural network employed for carrying out 

classification and location. Chapter 4 focuses on the algorithm developed by extracting the features 

of Wavelet and Wavelet Packet Transform. Chapter 5 shows the intricacies to improve result by 

using the features of Gabor Transform. Further, the accuracy was improved using M Band Wavelet 

Transform is presented in chapter 6. Chapter 7 gives the use of Complex Dual Tree Wavelet 

Transform to increase the accuracy and the results obtained are very promising. Fuzzy C-Means 

(FCM) and Statistical based approach is used for locating faults in chapter 8. Finally, in chapter 9 

conclusions from this research work are derived and further directions for future work are also 

suggested. Later, Appendix – A gives the details for designing the model of Saskan power and 

Appendix – B gives the detail parameters for modeling IEEE 13 node feeder. 
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Literature Survey 

Chapter 2 

 

 

During the past five decades, there has been a rapid growth in electric power systems. Due to 

which, there has been an increase in length of the line and its operation. Now, faults occur 

frequently on these lines. They may be due to the occurrence of storms, thunderstorm and 

lightning, snowfall, chilling rain, breakdown of insulators, and short circuit faults caused by 

animals, birds and other external sources. It has been observed that these faults results in 

mechanical damage of the system. It should be attend in priority in order to restore the service. If 

one detects, identifies the type of faults and its location then the restoration process can be fast. 

There exists a dire need for speedy identification and location of fault which helps in fast service 

restoration. It also reduces the outage time. This may increase the reliability of the system. This 

chapter makes an attempt to present the literature review of the works carried out for identification, 

classification and location of fault. The review extends itself from the traditional approaches to the 

recent developments in the field of development of algorithm for the above purpose.  

2.1 IDENTIFICATION AND CLASSIFICATION OF FAULTS 

 

Fault identification [9] based on data acquisition, data preprocessing, transient identification, 

participant phase identification, participant phase detection; participant phase classification is 

suggested in the literature reviewed. The author in [10] utilizes the concept of characteristics vector 

which is proposed to symbolize the different faults based on pre-fault characteristics vector data 

base. Classification is done by matching a fault current with one of the vectors in database. This 

vector is formed by taking into consideration fault current values at all relay locations. A 

comparative survey of fault section estimation has been made in [11]. It suggests that upon 

occurrence of fault, the improvement of speed and accuracy in fault identification, classification 

and location can be seen using hybrid based technique. The author in [12] proposed a fuzzy logic 
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based algorithm with three line currents at the substation. Author has claimed to identify the fault 

in less than one cycle period with significant variation of fault resistance. The effectiveness of the 

algorithm was tested on IEEE 13 and 34 node feeders. The classification is based on angular 

difference among the sequence components of the fundamental current and their relative 

magnitude. As the accuracy is dependent on threshold selection hence selection of proper threshold 

is a tricky affair. Fault [13] has also been identified based on analytical approach. Protection 

devices have been used to acquire the data from data acquisition system and the fault distance has 

been estimated for open and short circuit faults in a distribution network. Logistic regression and 

neural network as fault classifier has been used in [14]. The problem associated with the 

dichotomous dependent variable is analyzed using a parametric model i.e. logistic regression. It is 

used since artificial neural network ANN fails to determine. It is due to the lack of existence of any 

principle to determine the number of neurons in the hidden layer of ANN. Classifiers based on 

logistic regression and ANN [15] with a data collected over a span of 08 year have been tested. 

Although ANN performs better, but suffers due to insufficient data for various categories of faults. 

Knowledge based fault detection and identification for power system faults has been introduced in 

[16] making the use of granular computing after signal decomposition The proposed method uses 

the supervised clustering based neural network for fault diagnosis method. Several other 

techniques such as clustering algorithm for detection and classification [17], rule based approach 

[18] by comparing the sharp variations of detail signals in different phases are also proposed. 

Identifying a section affected with undetected open circuit fault using three phase voltage and by 

decoupling into three independent systems [19] is also used. Genetic algorithm [20] has been used 

to optimize the fault identification. With the introduction of wavelet transform, features have been 

extracted from utilizing the concept of initial travelling wave. The features of initial travelling 

wave from post fault signals [21] have been utilized to identify the fault. The concept of grounding 

system has been discussed in [22]. It also focuses on its advantages and disadvantages. An attempt 

to identify single phase to ground faults in a non – effectively grounded system can be observed in 

[23] – [28]. Attempt has been made to utilize the features extracted by the use of wavelet transform 

and correct determination is made. Wavelet entropy energy [29] is fed to ANN for classification is 

used in many cases. It should also be kept in mind that accurate fault identification and 

classification is the first step in for evaluating the fault location. Wavelets, Wavelet Packet 

Transforms are used as a tool so as to collect the features of voltage and current samples in order to 

develop the algorithm for the above said purpose.  
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2.2 LOCATION OF FAULTS 

Maximum number of interruptions about (80%) is due to the occurrence of faults in distribution 

networks. It is indeed a tedious task to employ the algorithms developed for transmission system 

[30] on distribution system due to its topology and different operating principles.  

 

2.2.1 Topology of Distribution System 

The characteristics of distribution system play a pivotal role in the development of algorithm for 

location of faults in distribution system. These are summarized below: 

 

(a) The feeders are heterogeneous in nature. Since, they have a variety of size. It also has 

different length of cables. Overhead and underground lines are also present. 

(b) Unbalances occur in distribution network due to the existence of untransposed lines. 

Variety of loads i.e. single, double and three phase loads too makes it unbalanced. 

(c)  Laterals can also be found along the main feeder. 

(d) Tapped loads can be found along the main feeder and laterals. 

 

The above features are responsible for introducing errors in the estimating the fault locations in a 

distribution network [31]. Also, it leads to the problem of multi – estimation. This in turn creates 

problem for the team responsible for maintenance of the power network. It should be also kept in 

mind that the network is usually spread out and has a complex configuration. Due to which the 

location and thus restoration of the service is an uphill task. Usually, the distribution network is the 

lumped-parameter model [32] and thus basically algorithms based on calculation of phasors have 

been developed. These algorithms employ symmetrical components of the current and voltage 

readings. Short circuits faults usually occur in distribution system. They are basically single line-

to-ground fault, line-to line fault, double line-to ground fault, three phase and three phase-to-

ground faults. Basically the fault resistance involved during these faults lies between 0.05 Ω and 50 

Ω. 

 



14 
 

2.3 CATEGORIZATION OF FAULT LOCATION METHODS 

Some of the techniques proposed for fault location in distribution system are summarized below. 

Based on the analysis, these methods can further be grouped into three categories, which are as 

follows: 

i. Calculation of Impedance and Fundamental Frequency Component 

ii. Travelling Wave and High frequency components  

iii. Acquiring of Knowledge  

Further, Knowledge-based method may be categorized into these groups: Artificial intelligence and 

statistical analysis based methods, Distributed device based methods and Hybrid methods. 

Traditionally, in the occurrence of outage, customers used to call for restoration of the power 

supply. But, the restoration was dependent on the geographic location from where the call has been 

made. Hence, the connectivity of area with the distribution network had to be considered in order 

to find out the accurate location of occurrence of fault. Sometimes the fault remains unattended due 

to the precise location of the network. Also, during night hours it was difficult for the engineers to 

restore the power. With the advancement of time, techniques have been developed for the locating 

faults for radial distribution system. The algorithm developed was based on an iterative approach 

which was evaluated by updating the fault current.  

 

2.3.1 Calculation of Impedance and Fundamental Frequency Component 

 

The fault distance from the primary distribution bus to the location of fault is evaluated by methods 

based on calculation of impedance. These methods employ the measurement of voltage and current 

values at one end or both ends of the line. This method [33] develops mathematical equations to 

estimate location of the fault. These methods are basically meant for radial distribution system. On 

the other hand, these methods also require information such as the circuit breaker status, 

waveforms of fault current, and status of fault indicators for non-radial system. During this 

process, first the type of the fault and faulty phases are identified. Henceforth, by the use of 

selected voltage and selected current, the apparent impedance is calculated. Due to non-

consideration of load currents at different taps, these algorithms suffer with estimation errors. 
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Girgis in [34] presented equations to compute all kinds of short circuit faults that occur at the main 

feeder and also at single-phase lateral. Here, loads were assumed as constant impedance loads. The 

dynamic nature of the loads was not taken into account. The technique was not able to perform 

where cables were involved. Saha et al. [35], proposed a method for locating faults on radial 

medium voltage (MV) system. It included several intermediate load taps. Even, the non – 

homogeneity of the feeder was considered. A MV distribution networks was used for the testing 

the effectiveness of the algorithm. It should be kept in mind that the system was assumed to be 

balanced. The author in [36], developed equations in order to estimate fault distance for all types of 

faults that occurred at the main feeder and single-phase lateral. Another method proposed to be 

used for address the issue emerging from fault résistance. The author in [37] proposed a technique 

which used the fundamental frequency component of the voltages and currents that was measured 

at a line terminal before and during the fault. The fault location technique was meant only for 

single-phase-to-ground fault on a radial system. Also, the lines were considered to be fully 

transposed. However, the proposed algorithm gave results with reasonable accuracy but it was only 

meant for line-to-ground faults. Quadratic equation formed the direct circuit analysis for locating 

faults was developed in [38]. It was implicated that all load impedance present in the network was 

considered. Intelligent Electronics Devices (IEDs) with built-in oscillography function installed at 

the substation was employed by some methods to furnish information about fault location. The 

database stored information about the network topology and its electrical parameters. This method 

was not effective for 11kV networks, since it was difficult to establish reliable statistical estimates. 

Also, they were time consuming because of the iterative procedure. Prior knowledge of the fault 

type was must before specific equation could be developed. A fault location algorithm, using 

synchronized or unsynchronized pre-fault and fault voltage and current measurements from both 

ends of the line without taking into account the line parameters is presented in [39]. This method 

was applied to power line parameter estimation. It was dependent on synchronized phasor 

measurements. Different system operating conditions from which the parameters needs to be 

estimated was also required. The main lacuna of impedance-based methods is the multi-estimation. 

It is due to the existence of multiple fault points at the same distance. It also depends upon the 

power system model. Hence, it can be concluded that these methods gives an accurate fault 

locations but are doubtful.  
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2.3.2 Travelling Wave and High Frequency Components 

This method uses the concept of the reflection and transmission of the fault generated travelling 

waves on the faulted power network. Faults can be located with a high accuracy. But the execution 

of this method is very complicated. On the financial aspect this method is very expensive when 

compared with impedance based techniques. This is due to the fact that it needs several 

equipments, such as the GPS system, fault transient detectors and diagnostic software. Keeping in 

mind the complex configurations of distribution systems, the fault transient detectors installation is 

also a hectic task. The cross –correlation function between the incident wave and the reflected 

wave was used in [40] to locate faults in distribution systems. In the development of algorithm the 

single-ended method and the double-ended method was used. The single-ended method failed to 

fetch good result. Also, the double-ended method was unable to provide a precise result. The result 

was obtained only if the fault occurred at the line, when the fault recorders were installed, and fault 

occurred at the line or at the main feeder. Another disadvantage of these methods is that it requires 

measuring devices with a very high sampling rate (MHz). The author could not fetch solution for 

multiple faults occurring in the system at the same time.  

The author in [41], developed a new fault locator unit to locate faults which distinguished the 

reflected wave from the fault point and that from the remote bus bar. It captured high frequency 

voltage signals between 1 and 10 MHz. Accurate location of fault was a problem due to the 

presence of tapped-off loads. The proposed method was unable to give solution for locating faults 

due to existence of loads. The author in [42] suggested a technique where the difference between 

the device’s terminal voltages magnitude was considered. It is required to install some equipment 

into the distribution feeders. It was possible by only using the terminal measurements. Another 

method based on the high frequency signals measured at the substation was established in [43]. 

The discrete wavelet transform (DWT) was used in this method. It is because it can be 

implemented easily due to its reduced computational time. A correlation analysis between 

transmitted and reflected waveform was required for the purpose. In order to implement this 

method, extensive simulation was to be carried out for each branches and sub – branches of 

distribution system. The wavelet coefficients of different fault laterals were then calculated which 

were able to identify the faulted lateral. It was indeed difficult for the utilities to implement this 

method separately for every distribution feeder. Also, separate modeling for each specific feeder 

was required. Borgheti et al. [30], proposed a method on the use of continuous-wavelet transform 

(CWT). The voltage transient which was due to line faults was analyzed. Here, also the concept of 
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correlation that exists between the specified frequencies of the continuous-wavelet transformed 

signals and exact paths in the network was covered by the concept of travelling waves that was due 

to the fault. The method was not appropriate for frequencies lower than 200 Hz. The specified path 

for frequencies less than 200 Hz covered by the travelling waves did not yield proper result. This 

proved that the estimated fault location was inappropriate. The system considered for implemented 

was balanced and accuracy was unsatisfactory. It can be concluded that the most vital drawback of 

travelling wave and high frequency components methods are that they require measuring devices 

with a very high sampling rate (MHz).  

 

2.3.3 Acquiring of Knowledge  

The next category is methods which have been evolved by acquiring the knowledge. These 

methods can further be sub divided into three groups: 

1. Artificial intelligence and statistical analysis  

2. Distributed device based methods.  

3. Hybrid based methods.  

 

2.3.3.1 Artificial Intelligence (AI) and Statistical Analysis Based Methods: 

With the development of technology, various artificial intelligent methods evolved. Artificial 

neural network, fuzzy logic, expert system and genetic algorithm are few examples of artificial 

intelligence. These reduce the laborious work of the engineers or researchers. Also, they reduce the 

time taken to attend the fault and the mistakes made by human being are drastically reduced. This 

has inclined the researchers to develop algorithms based on artificial intelligence for locating faults 

in distribution system. The author in [45] – [46] has used multi-way graph partitioning method. 

This method employs the concept of weighted minimum degree reordering. Using this, it divides a 

large -scale power network into several sub-networks. It can be used online since the speed at 

which the fault section is estimated is fast. The technique for fault location using neural network 

for multi-ring distribution systems can be seen in [47]. Several conditions linked with network 

such as faulted feeder voltage, the status of circuit breaker, real power of feeders during the normal 

condition, and real power of feeders during short circuit condition was taken into account to train 

the neural network. Wen in [48] gave a concept that constructed a probabilistic causality matrix 

that established the probabilistic relationship between faulted sections and the action of protective 
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device for these sections. The faulted section was estimated by the author using parsimonious set 

covering theory and it was treated as problem of integer-programming. Further, a refined genetic 

algorithm was used to resolve the problem. The genetic algorithm was based on the concept of 

“natural selection, best survival” theory. It evaluated the most reasonable hypothesis on the result 

obtained for each hypothesis using set covering theory. Thukaram et al. [49], proposed a method 

based on state estimation of the magnitude of the voltage and phase angle at all load buses. A 

threshold was calculated which detected the faulty path. The author in [50], utilized a cause-effect 

network that represented the causality between faults and the actions of protective devices. It had a 

high-speed inference and was easy to implement. These qualities made it effective to be used for 

on-line detection of the faulted section. Also, the knowledge given by the operation of protective 

devices, rapidly located the faulted section. Further, Mora et al [51] presented a solution for the 

problem of power service continuity arising due to fault location. Statistical based method which 

utilizes the finite mixtures was used. A statistical model was developed. This utilized the extraction 

of the magnitude of the voltage sag that was recorded during the fault along with the parameters of 

the network and its topology. A fault database was created where sag magnitude of the 

measurements of the voltage was stored and statistical model was developed. The groups were 

determined using the well-defined characteristics of the sag and gave an optimal classification 

result. It also ensured good accuracy. Another advantage of this method was it was financially 

viable since it had low cost of implementation. The author in [52] proposed an algorithm that was 

based on the utilization of the eigen value and learning based method using an artificial neural 

network. The neural network was trained in a manner that mapped the non-linear relationship 

between fault location and characteristic eigenvalue. Some of the highlights of these methods were 

that it reduced the number of input signals without the use of voltage detectors. This method was 

successful in detecting and identifying the faulted line Also, it was able to recognize the different 

type of faults and correct identification of different types of fault. Also, it fetched accuracy in fault 

location. Furthermore, it was independent from the effect of harmonics. The results obtained after 

simulation proved the effectiveness of the method for locating faults in distribution system. The 

author in [53] has developed a method for locating faults meant for parallel double-circuit 

distribution lines. This method was based on calculations of impedance and analysis of travelling-

wave. The line currents were transformed into current components using the Clarke-Concordia 

transformation. After obtaining the current components, correlation matrix was constructed based 

on the sample data. The eigenvalue calculated for the current components had a non -linear 
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relationship with the distance of fault. Further, neural network was used to determine the 

relationship between eigenvalue and fault distance. Hence, the distance was calculated.  

The author in [146] has presented a technique for fault diagnosis based on Fuzzy C-means (FCM) 

algorithm of the optimal number of clusters and probabilistic neural network. FCM is being widely 

used in pattern recognition and machine learning. An attempt has been made to detect the 

occurring fault in the system. Karwan in [147] has drawn a conclusion that clustering has found a 

wide application in classification of fault. In this regard, FCM has emerged as a suitable tool for 

classification. Further, the author in [148] has presented the diagnosis algorithm using FCM which 

has not only increased classification accuracy but have also reduced the computational load. Based 

on the above literature, an attempt has been made to use FCM for classification of faults.  

 

2.3.3.2 Distribution Device Based Methods 

Second type of technique for fault location that is based on acquiring of knowledge is distributed 

device based methods. Fault location on the concept of mathematical approach is defined in [54]. 

The approach needs the information about the voltage sensors installed in the network and its 

topological structure. Matrix representation is given for the relation of the voltage sensors with 

sections of the network. Second matrix was constructed keeping in mind the topological relation 

between sections and nodes of the distribution network. Faulted sections are calculated through 

some matrix operations. Mokhlis in [55] introduced a method for fault location by single 

measurement at the considered bus of the electrical network. A database was prepared in which the 

voltage magnitude and phase angle obtained from simulation of the network considered after fault 

analysis was created. Now, the actual magnitude of voltage and its phase angle was matched. This 

proposed technique had mainly two advantages that it was simple and easy to implement. Also, if 

there were any variations in the load or network configuration, then the database can be updated 

with new result. The effect of fault resistance was not incorporated. The author in [56]; proposed a 

technique by matching the measured data at the occurrence of fault with historical data. With the 

occurrence of fault in the distribution network, the waveform of voltage sags was measured at the 

substation. Now this measurement was recorded to create a database. This measurement was taken 

for different types of fault and its location. Further, in event of fault, the database was always 

updated. Now, when actual fault happened in the system, voltage sags waveforms collected at the 

substation were compared to the voltage sags waveforms available in the database. The most 
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corresponding waveform in the database gave the exact type of fault and its location. But, this 

method would not work for the actual occurrence of fault at some location, if it does not have the 

data available for that particular type of fault.  

 

2.3.3.3 Hybrid Based Methods: 

The methods discussed till now have taken into account the fault distance calculation and the status 

of the protective device available in the network with development of only one algorithm. With the 

advent of time, some researchers have emphasized to develop hybrid methods that may employ 

more than one algorithm in order to achieve more accuracy for location the faulty section and exact 

distance of occurrence of fault. The author in [32] has proposed a hybrid method where the fault 

distances was evaluated using the measurements available at the substation. In this approach, post-

fault values of current or voltage was incorporated. This was done with the motive to get rid of the 

multiple estimation problems. This is due to the presence of numerous fault points in the network 

having similar impedance. Fault diagnosis procedure was adapted by creating a list for various 

fault locations points in the network. The effect of the change in load during different scenarios of 

fault and its effect on the operation of protective devices were obtained by extensive simulation. 

Now, when the actual fault occurred the measurements obtained were matched with that those 

available in database. This procedure was not appealing to the researchers since modeling and 

simulation of the circuit was required at different fault locations and for different types of fault. 

Also, with the change in network configuration, different set of modeling and simulation was 

required. It was indeed a time consuming procedure.  

Järventausta et al. [57], has located faults by calculating the fault distance. It used the information 

of the fault detector and also the geographical knowledge of the distribution system was used. The 

author in [58], have located faults using the measurements of fault current. They were computed 

from the short circuit analysis, and the experience of system operator. The fault distance was 

computed in [59] by matching of current patterns. Also, interrupted analysis of load was also 

considered. The author in [60] developed a framework for detection of fault and modeling. Use of 

fault alarm was required in this approach. The alarm was blown, whenever there was a discrepancy 

between the behaviors of the system and the model. It should be kept in mind that the behavior of 

the faulty system was modeled using Adaptive Neuro Fuzzy Inference System. The model was also 

meant for fault location. Mora et al. in [61], had proposed a fault location technique which was 

based on the measurement of current waveforms at the substation end. It also required the 
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knowledge of setting of protective device installed in the network. Adaptive Neuro Fuzzy 

Inference System was also used. It was capable to locate the fault the specified zones of 

distribution system. Further, validation errors of less than 1% were reported in locating the zones 

of the network. It had an advantage of not using the electrical model of the system. Since, by not 

using them even the electrical parameters of the distribution system were neglected. Fuzzy 

inference system has been used in both the above approaches. Use of neural network can be found 

in [62].  

The author in [63], has employed wavelet fuzzy neural network to locate fault. They have used use 

post-fault transient and steady-state measurements for the development of algorithm. Effect of fault 

resistance and load current has not been considered. Also, the distribution system has been 

considered to be a balanced system. This procedure has been a time taking procedure for 

computing the location.  

 

2.4 SUMMARY 

An attempt has been made in this chapter to give a brief review of the works carried out for 

identifying and locating faults in a distribution system. The techniques based on calculations of 

impedance, travelling wave and knowledge-based methods have been reviewed. Based on the 

literature reviewed the limitations of the location techniques can be summarized below: 

 

a) Voltage and current measurements from all the nodes and branches are required to detect, 

identify and locate the fault in impedance based method. 

b) The fault location algorithm which involves iterative procedure is time consuming and 

bears the risk of diverging from the solution. 

c) Use of learning techniques reduces the model dependency because they are mainly based 

on information obtained from fault databases. 

d) Heuristic procedure requires large amount of time and number of trials to be practically 

implemented in distribution system.  

 

Based on the above review, It can be concluded that knowledge based method have more accuracy 

and speed as compared to other methods. Also, it involves less cost. Artificial intelligence method 
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such as ANN algorithm when used with features obtained from digital processing tools can result 

to be more fruitful in increasing the accuracy of identification classification and location.  
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Modern Tools and Techniques for Feature 

Extraction 

Chapter 3 

 

 

Feature extraction is the basic need for development of protection algorithms using digital signal 

processing tools. It transforms data of high dimension to a lower dimension. But at the same time, 

the embedded information content is kept intact. Also the dimensionality of data is reduced. 

Further, the complexity for the purpose classification or regression is decreased. This chapter 

presents a brief concept of the tools used for feature extraction. It covers a brief overview of the 

different signal processing tools involved in the development of algorithm. Wavelet Transform, 

Wavelet Packet Transform, Gabor Transform, M – Band Wavelet Transform and Complex Dual 

Tree Wavelet transform have been dealt. Also, it presents a brief overview of Artificial Neural 

Network meant for the classification and regression. 

3. 1. NEED FOR WAVELET TRANSFORM 

The periodicity of the time functions is present in Fourier series transform [64] - [65]. It means that 

the sine and cosine waves functions used in Fourier analysis are not only located in frequency but 

they are present for every time period. If one compute the frequency information of a signal by 

using the Fourier transform one gets an average of the signal over the complete duration of time. It 

means that suppose, if a local transient exists in a signal over small interval of time in the sampling 

duration of the signal, then the Fourier transformation will be contributed by this signal. But it will 

lose its location on the time axis. Thus, one can conclude that the Fourier analysis does not take 

into account the frequencies that change with time. It is worth mentioning that in order to get detail 

on transient signal, a windowed-fourier transformation approach should be applied with a series of 

windows of different widths. Hence, a wide window gives good frequency resolution but poor time 
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resolution. On the other hand, good time resolution but poor frequency resolution can be fetched 

by a narrow window.  

Wavelet Transform conquers over the limitations of the Fourier methods since it analyzes 

functions both in time and frequency domain. It is well suited to non – periodic wideband signals. 

A power system transient signal may contain both sinusoidal and impulse components. Wavelets 

have the ability to concentrate on short - time intervals for high-frequency components and long-

time intervals for low frequency components in the presence of fundamental and low-order 

harmonics. Hence, one can say that Wavelets have an adapting window in order to provide 

appropriate resolution. 

3.2 WAVELET TRANSFORM 

Electromagnetic transients’ waveforms are naturally non-periodic in nature. It contains oscillations 

of high-frequency and have impulses of very short-duration. Further, These signals superimposed 

on signals of low power frequency. Due to this Fourier transform fails to analyze the given signal. 

Now, the signal requires a very high sampling rate as periodicity is assumed for the signal. It 

means if the signal is of large duration, good resolution can be maintained in the low-frequency 

range. Even though, Short - Term Fourier analysis has been able to resolve this problem up to 

certain extent but overall, Wavelet Transform finds edge over Fourier and Short Time Fourier 

Transform. 

3. 2. 1  Continuous Wavelet Transform 

The mother wavelet is a prototype function employed by the analysis of Wavelet. It has zero mean 

and decays sharply in an oscillations. It rapidly falls to zero on either side of its central path. 

Mathematically, the Continuous Wavelet Transform (CWT) of a given signal s (t) with respect to a 

mother wavelet g (t) is defined as: 

CWT (c, d) = 

1
( )





 
 
 


t d

s t p dt
cc .       (3.1) 

Where ( , )c d  denotes the dilation or scale factor and (d) is the translation factor. It should be 

noticed that these variables are continuous in nature. It can be seen from equation (3.1) that the 
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original one-dimensional time-domain signal s (t) is mapped to a new two-dimensional functional 

space across scale (c) and translation (d) by the wavelet transform (WT).  

Coefficient of continuous wavelet transform ( , )a b  at particular scale and translation furnishes 

information about how the original signal s(t) are scaled and in which manner. It also provides 

information about its matching with the translated mother wavelet. Further, it can be concluded 

that the set of wavelet coefficients of Continuous Wavelet Transform of a particular signal are the 

wavelet representation of the original signal s(t) with respect to the mother wavelet p(t). The 

mother wavelet can be seen as a windowing function. It should be kept in mind that the scale factor 

(c) and the windowing function size are interdependent. It means that smaller window represents a 

smaller scale. The features of a particular signal can be captures by either narrow-band frequency 

components of the signal with a smaller scale factor. Also, wideband frequency components with a 

large scale factor can too give information about the signal.  

For the purpose of multi-resolution, Wavelet transform includes an infinite set of wavelets due. For 

instance, by varying the scale and translation factors one can generate a very large family of 

wavelets. These are known as daughter wavelets and can be generated from one mother wavelet. A 

daughter wavelet can be distinguished from the family of other wavelets on the basis of number of 

coefficients and the number of iterations involved. Several types of mother wavelets can be used 

for analyzing the signal. The characteristics of the mother wavelet need to be considered for 

selecting the appropriate mother wavelets which can be used for the analysis. Haar, Symmlet, 

Daubechies, Morlet are the examples of mother wavelet Haar and Morlet are orthogonal in nature. 

Symmlet and Daubechies are non-orthogonal. It has been found that Daubechies Wavelet is 

preferred for detecting low amplitude signals. It is also helpful in short duration, fast decaying and 

oscillating type of signals can also be detected by Daubechies Wavelet.  

3. 2. 2  Discrete Wavelet Transform 

Similar to Continuous Fourier Transform and Discrete Fourier Transform, the Discrete Wavelet 

Transform is the counterpart of Continuous Wavelet Transform. It is defined by the following 

equation: 

DWT (l, q) = 
l

0 0

ll
r 00

v rd c1
g

cc

 
 
 

        (3.2) 
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Here, p (.) is the mother wavelet and the scaling and translation parameters (c) and (d) shown in 

equation (3. 2) are functions of an integer parameter m, i.e. c = l

0c  and d = l

0 0rd c which results into 

daughter wavelets. q is an integer variable which refers to a particular sample number in an input 

signal. The scaling parameter gives rise to geometric scaling, i.e. 1,
2

0 0

1 1
,

c c
,……… The logarithmic 

frequency coverage of the discrete wavelet transform is given by the above scaling.  

Rectangular time-bandwidths which are which are narrow at higher frequencies are the product of 

Discrete Wavelet Transform. The bandwidth increases with the decrease in the frequency. It 

successful isolates the highest frequency band at precisely. It takes less than the quarter cycle to 

distinguish the signal at the occurrence. It shows the multi-resolution attributes of the wavelet 

transform in the signal. Further, it analyzes a non-stationary transient signal that consists of high 

and low frequency components. 

3. 3.  Wavelet Multi-Resolution Analysis (MRA) of Fault Data 

The multi- resolution analysis of the Wavelet Transform has established itself as a successful tool 

for evaluating and examining the disturbances present in the signal due to the presence of faults. 

Basically, it approximates the signal over a range of resolutions. A detail is defined as the 

difference of approximations for present and next resolutions of the signal can also be evaluated. 

Further, the information about the signal is given in terms of approximation and details. It has been 

designed in a manner that at high frequencies, good time resolution and poor frequency resolution 

is obtained. Similarly, at lower frequencies good frequency resolution and poor time resolution is 

calculated. The process for obtaining information about Wavelet - MRA analysis of the faulted 

data explained below. This can be helpful in extracting features for the purpose of development of 

algorithm. 

3. 3. 1 Procedure for Obtaining Multi-Resolution Analysis of Fault Data 

A signal can be decomposed up to a fixed resolution level, with the use of Discrete Wavelet 

Transform and Multi – Resolution Techniques. The DWT of discrete time sequence o(v) of length 

R is essentially a multi resolution characterization of o(q) . The DWT of a signal is both limited 
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both in time as well as in resolution. A dyadic discrete wavelet transform is essentially a 

decomposition of the spectrum of o(q) , O( ) into orthogonal sub bands defined by, 

l 1 l

1 1
, l 1,2....I

2 T 2 T
           (3. 3) 

Where T is the sampling period associated with o(q)  and I gives the total number of resolution 

levels.  

As seen in figure 3. 1, it is obvious that the Discrete Wavelet Transform is implemented by using a 

bank of high pass and low pass time discrete filters, g and h . The input sequence o(q)  propagates 

through the filter bank tree which consists of low pass and high pass filters. The signal is 

decomposed into low-pass and high-pass components through convolution (and subsequent 

decimation) with filters h  and g , at each stage. Further, the bandwidth of both the filters is halved. 

The high half band width is associated with the high pass filter g and low half band width is 

connected with low pass filter h .The Discrete Wavelet Transform representation is comprises of 

scaling coefficients, Iu (q) , that represents low-pass signal information at level l i , and wavelet 

coefficients, ly (v) , provides signal detail at levels at l 1,.....I.  

Mathematically, 

l l 1

r

u (v) w(2q r)u (r) 
         

(3.4) 

l l 1

r

y (q) p(2q r)u (r)            (3.5) 

At level l , both lu (q)  and ly (q) are composed of l2 R samples, forms a tree-like relationship 

between the coefficients at successive scales ly (q)  is also called difference level m as it represents 

the difference in the signal between l 1u (v)  and lu . The resulting signal decomposition 

],,.....,,[ 21 jj cddd is the Discrete Wavelet Transform representation of faulted signal o(q) .  
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Figure 3.1: Wavelet multi resolution analysis of fault signal o(q)  

Signal can be reconstructed by applying the inverse of Discrete Wavelet Transform. With the help 

of MRA, the sub-band information can be taken out from the original faulted signal. This is used 

for identification and location of the various types of faults that occurs in the distribution systems. 

Also, information content in sub-band has useful fault signatures that represent the faulted system. 

The output of the MRA is taken to detect, identify and classify the faults. It has been observed 

through simulation that the first-stage of MRA detail signal contains adequate information which 

can be very fruitful for the detection, identification, classification and location of the fault in 

distribution network. Also, exact information about the sampling frequency, the number of stages 

of the MRA filter banks and the type of wavelet to be used should be furnished in order to obtain 

proper result. One should not forget to keep the sampling frequency under permissible limit, 

simply because of the reason that it enhances the computation load of the algorithm. 

3. 4 WAVELET PACKET TRANSFORM (WPT) 

DWT gives flexible time frequency resolution. In the high frequency region, it experiences from a 

relatively low resolution. Due to which it is an uphill task to distinguish high frequency transient 

components. WPT is an extension of classical DWT [66]. For a given transient signal, wavelet 

analysis is better than the Fourier analysis. But, DWT is unsuccessful in taking out the high 

frequency information in signals. WPT represents high frequency information in a better manner 

when compared with DWT. In case of DWT a given signal is passed through high pass and low 

pass filters to obtain a detail and an approximation. The approximations are gathered from first 

level decomposition that splits into new detail and approximations. This process recurs to obtain 

the required level of decomposition. In case of DWT, only approximations of the signal are 

decomposed to next level. But this is not sufficient for few applications where the important high 

frequency components contain the required knowledge. 
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It can be concluded that WPT splits both approximations and details. But, DWT split only 

approximations. Hence, multi-layer division of the frequency band is obtained using the orthogonal 

WPT. It yields information about the high frequency content which was unable to fetch in the case of 

DWT. A three level WPT [67] gives a total of 8 sub bands. It should be observed that each sub band 

has the information of one-eighth of the signal frequency spectrum. The representation of time for 

the signal is given by top level of the WPT. Frequency resolution is seen in bottom level. Enhanced 

frequency resolution is obtained by using WPT. Further, more features are obtained using WPT as 

compared to DWT. Figure 3.2 shows the 3rd level wavelet packet decomposition.  

 

Figure 3.2: 3rd level Wavelet Packet Transform Decomposition Tree 

If one talks about n levels of decomposition in the WPT, 2n different sets of coefficients are obtained. 

In case of DWT (3n + 1) sets of coefficients were obtained. It should be observed that However, 
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number of coefficients is same in both the cases due to the process of down sampling. Also, there 

exists no redundancy. The sequence function P(x) is defined as, 

   j/2 j/2

2r v r P s   2  w P 2 s q            (3. 6) 

   j/2 j/2

2r 1 q rP s   2  p P 2 s q      
 

       (3.7) 

Where i, q ϵ X, r ϵ R; 2j/2 Pr(2
j/2 s-q) is a WP function; j, q, r are the scale factor, time factor, 

oscillating factor respectively. P0 (s) is a scaling function or a basis function; P1 (s) is wavelet 

function; wq, eq are groups of conjugate mirror filter, that satisfies 

2 2 vu δ   r r u

r x

w w ,           (3.8) 
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w ,  
v

v l ve  1 w            (3.9) 

Signal s (t) is expressed by orthogonal wavelet packet basis function as follows: 

     1,2 2 1,2 1, 2U       U   eU q        i l i l q r i l q r

r n

r w r

      

(3.10) 

Here wv-2r, pq-2r is conjugate of wq-2r and pq-2r. 

3.5  WAVELET ENERGY 

The wavelet energy is defined as the sum of square of coefficients of the detailed WPT. There is a 

variation in the energy of wavelet coefficient over different scales. It depends on the input signals. The 

wavelet energy of coefficients p (t) is expressed as follows: 

   2

1

N x t  



U

j

i

abp

          

(3.11) 

Since, the faulted signals contain high frequency components, the energy of detail coefficients can be 

used to differentiate these signals. Hence, for a faulty signal one obtains seven features with three-levels 

WPT  
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3.6  WAVELET ENTROPY 

A signal can be extended in various manners. Depending upon the extension, the size of number of 

binary sub trees may vary. Hence, it is mandatory to obtain a best decomposition by using a suitable 

algorithm. Entropy is defined as the amount of information contained in a signal. Several algorithms for 

entropy is available for WP. The entropy must be an additive cost function such that E (0) =0 and: 

  (N x   ) i

i

N x

        

(3.12) 

The (non-normalized) Shannon entropy is given by, 

  2 21    log( )i i iN x x x           (3.13) 

Hence, 

  2 2

,1      log( ) i i

i

i rN x y x

          

(3.14) 

Where si is the probability distribution of the energy contained in the wavelet coefficients at the nth sub 

frequency band with the level j. The probability distribution function is defined as, 

2 2

( , ) ( , )| | ||( ||) /i j u j ux b bi           (3.15) 

With  , and log2pi = 0 if 𝛑 =0 Upper limit ‘m’ represents the number of wavelet coefficients 

at the nth sub frequency band with level j. When the value of the entropy is greater than one, then it is 

possible to furnish more information about the signal which needs to be decomposed so that simple 

frequency component of the signal can be obtained. It provides distinguish features about the signal. 

With the use of node coefficients, it reduces the size of feature vector. The entropy of the wavelet 

coefficients is bordered by, 

 , 20           entropy j uN b log f           (3.16) 

If the energy content in a signal is spread out across the constituent wavelet coefficients within the sub 

frequency band, then the Shannon entropy would have a large value. On the other hand, it presumes that 

some amount of the energy is concentrated on a few dominant components contained in a signal.  
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Several entropy algorithms like ‘log energy’, ‘threshold’, ‘sure’, ‘norm’ and ‘user’ entropies are 

available. But these entropies require the optional parameter depending on the entropy type. Algorithms 

meant for ‘Shannon’ and ‘log energy’ entropy does not require them. Figure 3.3 shows the faulted phase 

current under fault condition. The corresponding colored coefficients for terminal nodes after applying 

wavelet packet transform are shown in figure 3.4. The initial purple color corresponds to coefficients 

obtained from normal decomposition of approximations and blue color gives the coefficients obtained 

from the decomposition of details.  

 

 

Figure 3.3: Faulted Phase Current Waveform 

 

Figure 3.4: Colored coefficients for Terminal Nodes with WPT up to 3rd level Decomposition 
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3.7 GABOR TRANSFORM 

Dennis Gabor [68] introduced the Gabor filter in 1946. It is developed from the short – time 

Fourier transform. It contains a Gaussian window. It can be observed as a particular case of the 

Short-Time Fourier Transform. Further, the frequency and its phase content of a signal can be 

determined throughout the time period. There are some reasons that justify the use of this 

transform. First and foremost, it presents a best example of localization in combined spatial and 

frequency domains. This further helps in taking our information from the signals. Another 

important aspect of the Gabor transform lower order of entropy is also reduced. It helps in 

applications meant for data reduction. These properties make it useful for power system protection 

applications. The function which has to be transformed is first multiplied by a Gaussian function. 

This is considered as the window. The time-frequency analysis is done by transforming the 

resultant function with Fourier transform. The Gaussian window used is as follows: 

   
0, 0 0 0.exp( ) ta t p t t jf t          (3.17) 

Here ( )p t is the window function: 

   
1

2 22( ) 2 exp p t t          (3.18) 

: Window Width 

: Phase constant of the changing oscillations 

0 :f Frequency of these oscillations 

0 :t  Window function Centre 

The Fourier Transform of this basis function has similar analytical concept which is as follows: 

  0 0
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
        (3.19) 

Where, 
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In order to get the accurate time and frequency resolutions, the window function should be selected 

properly in time-frequency analysis. As one knows that the Heisenberg inequality principle 

restricts the existence of window with arbitrary small duration, both in time as well as bandwidth 

in frequency. It implies that a trade -off exists between both time and the frequency resolutions. 

For a function ( )p t , width is calculated by the root mean square value of the second moment of its 

energy distribution. Hence, time resolution is denoted by the following equation: 
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         (3.21) 

Where: 

( )t : Resolution of Time  

2
( )p t : Distribution of Energy 

The resolution of the frequency also known as the useful bandwidth is computed from ( )P p and is 

given by: 

22

2

( )

( )

( )









 




f P f df

f

P f df

        (3.22) 

Where, ( ) f is the resolution of frequency. The uncertainty principle states that the product of 

resolution of time and frequency is lower surrounded by the Heisenberg inequality which is 

expressed below: 

1
( ) ( )

2
  f t          (3.23) 



35 
 

Gabor transform meets the lower boundary in the Heisenberg inequality =1/2. Perfect time 

resolution is achieved when ( ) ( )p t t  condition is satisfied; this is the expression for unit 

impulse function ( )t . Window function ( )p t can also be selected by a unit step function ( )o t . It 

may result into ideal frequency resolution with no time resolution. Gabor has established that the 

when the window is of Gaussian shape, lower bound of the inequality is achieved [69]. Using 

Gabor Transform, the frequency and time resolution is represented by: 

1
( )

2
 


t


           (3.24) 

( )  f             (3.25) 

Two conditions of" " is taken into account. When 0 , the Gabor elementary function (GEF) 

turns into a sinusoidal of infinite duration. It reduces to traditional Fourier transform with ideal 

frequency resolution. For  , the window function turn into a delta function. An outstanding 

time resolution is achieved with no frequency resolution. Therefore, in order to get the required 

frequency and time resolutions " " should be selected properly. The amount of effective overlap 

of the GEF across the neighboring windows can also be computed. The GEF for one – dimensional 

discrete-time signals is given by: 
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Here, n and k integers represents the temporal and frequency sampling indices. Also, 

( )p t represents the Gaussian window function,  
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The (GEFs) is regarded as a set of shifted and modulated window functions with specific effective 

width and shift parameter" "N which in turn controls the discrete time shift along time axis. These 

windows concentrate on window intervals[ 2 , 2 ]  N nN N nN  with centers at point nN . The 

convergence of the solution is affected by the selection of   and N . The Gabor representation for 

any signal ( )s t , in order to find out a set of coefficients is given by: 

( )
 

 

   nk nk

n k

s t b a           (3.28) 
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Here, mra is the basis function. For 1- D a finite extent  ( ), 0, 1 s t t L with L , only finite 

number of windows intervals shall be present. When L dN , where d is a positive integer that 

represents the number of windows covering the whole signal ( )s t , the GEFs’ can be translated so 

that they are centered at central point of each window as follows: 

2 ( ) ( )

( ) ( ( ) ).


 
q k q t

j
N

mra t p q t nN ee         (3.29) 

Where,  

1
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2


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N
q y y           (3.30) 

Gabor Transform is redrafted as: 
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nk nk

n k
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The coefficients nkb constitute one dimensional Gabor transform.  

3.8 MULTI BAND WAVELET TRANSFORMS (M - BAND WT) 

M - Band Wavelets are simplification of the conventional wavelets [70]. Signals with high 

frequency content having relatively narrow bandwidth cannot be analyzed by standard wavelets. 

Their decomposition yields a logarithmic frequency resolution. But, logarithmic and linear 

frequency resolution decomposition is obtained using M-band. Also, a large number of sub bands 

are available by its decomposition which further gives more information about the signal. It also 

performs multi scale, multi directional filtering of the signal. It is used a tool to view signals at 

different scales. Decomposition of a signal is achieved by exposing it to the family of functions 

which are produced from wavelet through its dilations and translations.  

M-band orthonormal wavelets were introduced as direct simplification of the two band Daubechies 

orthogonal wavelets [71]. It is able to zoom in onto narrowband high-frequency components of a 

signal. When compared with two band wavelets energy compactness is better in case of M – Band 

[72].  
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An M-Band wavelet is defined as a tight frame for the set of square integrable functions over the 

set of real numbers 2 ( )P N [73]. There are 1,K wavelets, ( ), 1,......., 1 a s a K  are connected 

with the scaling function. For function 2( ) ( )y s P N , it is perceived that  

1

, , , ,

1

( ) ( ), ( ) ( )
 

  

   
a K

a b c a b c

a b D c D

y s y s s s         (3.32) 

Here, D stands for the set of integers while the inner product operator is denoted by ,  . By scaling 

and shifting the corresponding wavelets ( ) :a s , the 
, , ( )a b c s functions are derived 

/2
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For the scaling function 0 ( )s in 2 ( )P N , the wavelet functions are defined as follows 
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The recursive equation is satisfied by the scaling. It is compactly supported in[0.( 1) / ( 1)] F K , 
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Here, the sequence 0g is the scaling filters of length F KC where C  gives the regularity of 

scaling function and fulfils the following equation: 
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The ( 1)K ga vectors are known as the wavelet filters that satisfies the following equation 
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3.8.1 Multi Resolution Analysis: 

The study of multi resolution concept is given by the scaling and the 1K wavelet functions. It is 

a sequence of approximation spaces for 2 ( )P N . If the space spanned by translates of ( )a s for 

fixed b and c D , then it is defined by
, , ,{ }a b a b cW Span  , It can be observed that 

1
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Thus, the 
0,aW spaces from a multi resolution for 2 ( )P N . A significant feature of M-Band wavelet 

is that scaling factor 0g specifies a unique ( )o s and hence a unique multi resolution analysis. For 

example, with 4K , 

1 0 10 20 30

2 1 11 21 31

,

,

V V W W W

V V W W W

   

   
         (3.41) 

Where bV  and bW are the spaces spanned by the scaling and wavelet functions different resolution. 

It can be observed in figure 3.5.  

 

 

Figure 3.5: Spanned Nested vector spaces functions in standard and M- Band wavelet 
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The scale – space tiling for standard wavelet M=2 and M band wavelet (M=4) can be seen in figure 

3.6. From the figure shown below it is quite evident the frequency tiling in the standard wavelet 

decompositions are logarithmic , while in case of M-Band decomposition a mixture of logarithmic 

as well as linear frequency tiling is observed.  

 

Figure 3.6: Tiling in 2-band and 4-band  

3.8.2 M - Band Wavelet Filters 

A close relation exists between M-Band wavelets and M-channel filter banks. The filter bank is a 

set of band pass filters that has both the property of frequency and orientation selection. In the 

stage of filtering, orthogonal and linear M-band wavelet transform decompose signals into 

K K channels. This corresponds to different direction and resolutions.  A typical M-channel filter 

bank is shown below in figure 3.7. 
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Figure 3.7: Structure of an M-channel filter bank (M=4) 

3.9 THE DUAL TREE COMPLEX WAVELET TRANSFORM (DTCWT) 

Wavelet based transform are successfully applied in the field of pattern recognition. The major 

problem of the common decimated Discrete Wavelet Transform (DWT) is its lack of shift 

invariance. The wavelet coefficients vary substantially when there are shifts of the input signal. 

Complex Wavelet Transform does not suffer from this problem. But, they generally lack in speed 

in calculating the coefficients. They also have poor inversion properties [74]. Kingsbury [75, 76] 

developed Dual-Tree Complex Wavelet Transform (DTCWT) to find the solution for the above 

problem. It retained the properties of nearly shift invariance as well as directionally selectivity. It 

consists of a dual tree structure of the wavelet transform. The author has introduced a delay of one 

sample between level one filter in each tree. Also, linear-phase filters with alternate odd-length and 

even-length have been employed. The odd/even filter approach has its own problem which is 

discussed later. A new Q-shift dual-tree is shown in figure 3.8.  
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Figure 3.8: The 1-D Q-Shift Dual Tree Structure 

 

Two sets of filters are used for implementation of DT-CWT. One set of filters is used at first level. 

At higher levels, the other set of filters are employed. The filters beyond level one have even 

length. It may not be a longer linear phase. A group delay of ¼ samples is present. The necessary 

difference in delay of 1/2 samples is obtained by using the time reverse of the tree and filters in 

tree b. At each scale, the real part of the complex wavelet coefficients can found at one tree. The 

other tree gives the imaginary part. DT-CWT employs two real DWTs in essence. When the two 

trees are joined, the complex coefficients appear. The properties are summarized below: 

(i) It has nearly shift invariance; 

(ii) They have good selectivity and directionality in 2D (or higher dimension) like Gabor filters 

(iii)It can be perfectly reconstructed by using short linear phase filters 

(iv) Redundancy is limited It is not governed by the presence of the number of scales.  

(v) It has an efficient order N computation: 2m times the simple real DWT for m-dimensional 

signal. 

The real wavelet transform suffers mainly from the following four problems: 

1. Oscillations: It is a band pass function. Wavelet-based processing is complex because the 

coefficients oscillate around positive and negative singularities. Hence, singularity 

extraction and modeling of the signal is a daunting task [77]. Since an oscillating function 
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often passes through zero, singularities give way for large wavelet coefficients which is not 

correct. This means that a wavelet overlapping a singularity can have a small or even zero 

wavelet coefficient.  

2. Shift variance: A small shift of the signal greatly disturbs the wavelet coefficient 

oscillation pattern around singularities. Wavelet-domain processing is made complex by 

this procedure. Algorithm should be developed in a manner that it should be capable of 

handling a broad range of wavelet coefficient patterns [78], [79], [80], [81], and [82].  

3. Aliasing: There exists wide spacing between the samples of the wavelet coefficient. The 

wavelet coefficients are computed via iterated discrete-time down sampling operations. 

These are mixed together with non ideal low-pass and high-pass filters that result into 

substantial aliasing. When the wavelet and scaling coefficients are not changed the inverse 

of DWT cancels the aliasing. Artifacts are present in the reconstructed signal during the 

wavelet coefficient processing. It also disturbs the delicate balance between the forward 

and inverse transforms.  

4. Deficient of Directionality: Sinusoidal signals in Fourier transform corresponds to higher 

dimensions in highly directional plane waves. A checkerboard pattern is created by the 

construction of multi dimension wavelets. It has orientation along several directions and 

hence lacks the sense of directional selectivity. 

DTCWT [83], [84], [85] was introduced in 1983. The first part gives information about the real 

part while the second gives the imaginary part.  

The condition of proper reconstruction for WT is satisfied by the use of two different sets of 

filter. They are designed jointly in order to get an analytical transform. If it is presumed that 

0 1( ), ( )h n h n  indicates the low-pass/high-pass filter pair for the upper filter bank, and let 

0 1( ), ( )b m b m is the low-pass/high-pass filter pair for the lower filter bank. It indicates that the 

two real wavelets associated with each of the two real wavelet transforms as ( ), ( )a bt t  . The 

filters are designed in such a manner that the complex wavelet ( ) : ( ) ( ) a bt t j t   is 

approximately analytic. Equivalently, they are designed so that ( )b t is approximately the 

Hilbert transform of ( )a t . Filters are themselves real. One of the advantages of DTCWT is that 

it does not involve complex arithmetic.  
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In order to obtain the inverse of the transform, the real part and the imaginary part are both 

inverted. The inverse of each of the two real DWTs are used to get two real signals. Final 

output is obtained by averaging the two real signals. The original signal ( )x n can be recovered 

alone from either the real part or the imaginary part. If the two real DWTs are represented by 

the square matrices aP and bP then the dual-tree CWT can be represented by the rectangular 

matrix 

 
  
 

a

b

P
P

P
           (3.42) 

 

If the vector s denotes a real signal, then a an P s gives the real part and b bn P s is the imaginary 

part of the dual-tree CWT. The complex coefficients are known by a bn jn . Inverse of P is then 

given by  
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This is verified by: 
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One half factor between the forward and inverse transforms is shared to get the 
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If the two real DWTs are orthonormal transforms, then the transpose of aP is its inverse . 1t

a aP P  . 

In the similar manner, for bP , the transpose of the rectangular matrix P is a left inverse . 1tP P . 

The inverse of the DTCWT can be performed using the transpose of the forward dual-tree CWT. It 

also has the self-inverting [86] property.  

The dual-tree wavelet transform manages to separate the real and imaginary parts of the complex 

wavelet coefficients. However, the complex coefficients can be calculated using the following 

form: 
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It is worth mentioning that the complex sum or difference of the matrix has unit value: 

1 1
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It is observed that the identity matrix on the right-hand side is twice the size of those on the left-

hand side. Therefore, if the two real DWTs are orthonormal transforms, then the dual-tree CWT 

satisfies 

*. d dP P I
           (3.48)

 

Where *denotes conjugate transpose. If  
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When x is real, then *q r so v need not be computed when the input signal x is complex, then 

*q r so both r  and q  need to be computed. When the DTCWT is applied to a real signal, the 

output of the upper and lower filter banks will be the real and imaginary parts of the complex 

coefficients. They can be collected separately. If the DTCWT is applied to a complex signal, then 

the output of both the upper and lower filter banks will also be complex. Hence, it cannot be 

labeled as the real and imaginary.  

When the two real DWTs are orthonormal and the 1 2  factor is included, the DTCWT gains 

Parseval’s energy theorem: the energy of the input signal is equal to the energy in the wavelet 

domain  

2 2 2
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( ( . ) ( . ) ) ( )  a b

j n m

e j m e j m s m

       (3.50) 

 

The DTCWT is easy to implement. In addition, because the dual-tree DTCWT is implemented 

using two real wavelet transforms, the use of the DTCWT can be informed by the existing theory 

and practice of real wavelet transforms. 
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3.10  ARTIFICIAL NEURAL NETWORK (ANN) 

A neural network [87] is defined as the set of organized elements better known as neurons. Each 

connection has weight associated with it. The neurons are usually arranged in a series of layers. It 

can give the desired output based on the adjustment of weights and trial and error method. It 

basically consists of three or more layers [88]. The first layer is the input layer which feds data into 

the network. The intermediate layer also knows as the hidden layer has weights associated with it. 

The neurons in the hidden layer collect the weighted inputs and compute the outputs by the given 

transfer function hidden layer is fed to the subsequent layer until the desired output is achieved. No 

rule defines the selection of hidden layer. It is basically selected on hit and trial method. Artificial 

Neural Network (ANN) is a powerful tool [89] which can effectively solve the existing protection 

problems such as identifying classifying and locating faults. Based on the training with the 

simulation/field data, the fault and no fault conditions can be differentiated. 

 

Data can be classified in neural network. The technique of classification involves two main steps 

the first one is learning and other one is recall. In the process of learning the network weights are 

adjusted in such a manner that the data become accustomed to the patterns of the training data. On 

the other hand, in the process of the recall, this trained network gives the responses of the test data. 

Several training algorithms are available for feed-forward networks. They employ the gradient of 

the performance function in order to optimize the performance. The gradient is computed back 

propagation technique. It performs computational backwards through the network. Back 

propagation artificial neural networks (BP-ANN) are highly effective for the purpose of pattern 

recognition. They find their effective use in detection, identification and location of faults in both 

distribution and transmission system. 

 

3.11 LEARNING IN ARTIFICIAL NEURAL NETWORK 

For the purpose of learning in neural network, the nature of data sets needs to be described. These 

data sets are input vectors, outputs vector and target vector. The neural network is always trained to 

get the desired output. The algorithms for learning in ANN can easily be classified into three 

categories. 
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3.11.1 Supervised Learning 

During the training a neural network, input vectors are fed to network in order to get the output. The 

received output is now compared matched until the resulting output is achieved. Whenever there 

exists a difference between obtained output and preferred output an error signal is generated. This 

error modifies the network weights till the point when the actual output equals the desired output. 

Multi-Layer Perceptron (MLP) is based on the concept of supervised learning. 

3.11.2 Unsupervised Learning 

In case of unsupervised learning, the network receives inputs but does not obtain supervised target 

outputs. It refers to the difficulty of finding the hidden structure. During the training process, the 

network is fed with different input vectors. It randomly systematizes the input vectors into clusters. 

Now, when an input vector is fed during the course of testing the network matches the output with 

the input vector. The self-organizing map (SOM) and adaptive resonance theory (ART) are the 

example of unsupervised learning algorithms. 

3.11.3. Self-Supervised Learning 

In this process learning occurs by a knowledge component without having a training system 

providing feedback on correctness. The system generates the error signal is fed back. Several 

iterations are required to obtain the correct target.  

3.12 MULTI-LAYER PERCEPTRON (MLP) 

A Multi-Layer Perceptron (MLP) [90] is an example of feed forward artificial neural network. It 

consists of several layers. Each layer is connected to the next layer. Each node consists of a neuron 

with a nonlinear activation function. MLP works on the concept of a supervised learning. As usual it 

consists of input hidden and output layer. Hidden layer is the link between the inputs and the output. 

It extracts useful features from the input data so that the output values can be predicted. It is 

sometimes known as Back Propagation Network (BPN). Since, the training is done by error back 

propagation. 
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Figure 3.9: Multi-Layer Perceptron (MLP) 

 

When an input pattern is applied to the input layer of network, it propagates through each next layer 

of the network until an output is generated. Now, the obtained output is compared with desired 

target.  An error signal is calculated for each output. This error signal then propagates backward from 

the output layer to each node in the intermediate layer in order to obtain the output. The weights are 

updated by the error signal that is received. Back propagation algorithm is an iterative gradient 

search algorithm that minimizes the cost function equal to the mean square error/mean squared error 

with regularization between the desired and actual output of MLP. Multi-Layer Perceptron can be 

seen in figure 3.9. 

 

3.12.1 Performance Function  

Selection of performance function plays a vital role while training a neural network. Usually, the 

performance function selected for training feed forward neural networks is the mean sum of squares 

of errors. 
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Here, “t” and “a” represents the “N” dimensional vector of the input model. In order to improve the 

simplification process, the performance function is modified by adding a term that consists of the 

mean of the sum of the squares of the network weights and biases. 

msereg mse  (1 ) msw              (3.52) 

Where  is the performance ratio and  
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It leads the network to have smaller weights and biases. On the same hand, it asserts that the 

response of the network is smooth.  

 

3.12.2 Activation Function 

To add layers one need to do one more thing other than just connecting some new weights. By using 

a sigmoidal activation function, efficient output layer is obtained. It tends to get rid of mathematical 

values that are in the middle. They may force values to become from low to even lower and high to 

be even higher. It should be noted that there are two basic commonly used sigmoidal activation 

functions. 

The Logistic Sigmoid which is also called as the logsig.  
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The tangential sigmoid also called as the tansig, is derived from the hyperbolic tangent. It is able to 

handle negative numbers.  
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The author in [149] and [150] has used very less data for training in neural network and more than 

60% data have been tested. The same concept is employed in the present thesis while training and 

testing the neural network. 

3.13 SUMMARY 

A brief description of the various digital signal processing tools have been discussed in this 

chapter. Features are extracted by the use of these tools which has been used for development of 

algorithm for detection, identification and location of fault in distribution system. The literature has 

been given in terms of the tools used for extracting the features and the improvement of the result. 

The brief literature is available so that in the subsequent chapters only governing equations are 

given. The transforms have been given in the order in which they have been used. At last, theory is 

given about the Back Propagation Neural Network which has been used throughout the work to 

classify and locate the fault. 
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Wavelet Transform and Wavelet Packet 

Transform Based Features 

Chapter 4 

 

 

During the past five decades, there has been a rapid growth in electric power systems. Due to 

which, there has been an increase in length of the line and its operation. The lines experience 

regular faults. This causes rise in line currents. In the present scenario of digital protection, 

protective relays can be operated well in time, if one has the appropriate knowledge of the type of 

fault. Due to unavailability of adequate system information, detection, identification and 

classification of faults in a electrical distribution system is a challenging task for power system 

engineers. Whenever fault occurs in the system, proper information about the fault type and its 

exact location is required for restoration of power supply. Faults has also been identified by use of 

fuzzy logic [12] which utilizes the angle and magnitude comparison was successful in 

identification and classification of faults but it needs exact determination of threshold. This method 

is a tedious method since it involves an iterative procedure. With the introduction of application of 

digital signal processing tools in the field of power system, accurate results are approachable.  

Wavelet Transform [91] – [92] has been able to capture the information of high frequency signals. 

It has a wide application in content based image retrieval, image compression, image segmentation, 

image encryption [93] – [94]. It had also found its application in detecting faults in transmission 

[95] – [100] and distribution system. Successful algorithms have been developed identifying and 

locating different types of faults. The author in [101] has been successful in identifying faults in a 

non –linear system by using Wavelet Transform. The author in [102] – [104] has been successful 

in detecting high impedance fault in distribution system.  

When WT fails to capture the information content in the signal WPT is employed to develop the 

algorithm. Several works [105] – [106] have been carried out for combination of WPT and 

artificial intelligence.  
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In the present chapter, current and voltage measurement have been collected at the substation end 

for both the sample distribution system as discussed in the previous chapter. Current samples are 

used for the purpose of identification and classification, whereas voltage samples are used for 

locating faults. Features are collected using wavelet and wavelet packet decomposition. These 

features are then fed to artificial neural network. This is for classifying and locating all ten types of 

fault with perfection. A comparative analysis of the result between wavelet and wavelet packet 

transform over different “daubechies” is presented. Further, feature extraction time, training time 

per sample and testing time per sample is also provided. 

 

4.1 SAMPLE DISTRIBUTION SYSTEM 

In order to overcome the multiple estimation problems, due to the existence of multiple locations 

(usually far away, one from each other) in the power distribution network, the sample 1 has been 

divided into 7 zones and sample 2 has been divided into 04 zones as discussed earlier in chapter -1. 

Table 1 gives a complete overview of the number of current and voltage samples collected at each 

zones respectively: 

Table: 4.1- Number of current and voltage samples collected 

Name SD 1 SD 2 

No of Zones 7 4 

Fault Resistance (Ω) 0.05, 10, 20, 30, 40, 

50 

0.05, 10, 20, 30, 40, 

50 

Fault Inception Angle ( ) 0, 60, 90, 180 0, 60, 90, 180 

Fault Types 10 10 

Total Samples 3107 768 

 

In the first distribution system considered for simulation zone 1, zone 2 and zone 3 consists of all 

ten types of faults. Zone 4 and zone 5 consists of only one fault since it involves only phase –b.  

Similarly, Zone 6 and zone 7 consists of only one fault since it involves only phase –c. On the 

other hand, in the second distribution system considered zone 1 and zone 3 comprises of all ten 

types of fault. While, zone 2 involves 4 types as it involves phase – b and phase – c. Also, zone 4 

involves 4 types as it involves phase – a and phase – c respectively. 
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The sampling frequency considered for the present work is 15.360 kHz. The duration of run for the 

present simulation in both the cases is 0.5 sec. Fault has been incepted according to the various 

inception angle. The solution time step is 25 µs. It is the EMTDC simulation time step. The 

channel plot step is 65.104 µs which in turn determines the sampling frequency. It should be kept 

in mind that more is the sampling frequency; more is the information content in a signal. In the 

present work and in the consequent chapters effort has been made that the algorithm effectively 

works with minimum information content.  

 

4.2 FEATURE EXTRACTION 

 

Feature extraction is the basic need for development of protection algorithms using digital signal 

processing tools. It transforms data of high dimension to a lower dimension. But at the same time, 

the embedded information content is kept intact. Also the dimensionality of data is reduced. Further, 

the complexity for the purpose classification or regression is decreased. The signal is analyzed by 

multi – resolution approach. It has been designed in a manner that at high frequencies, good time 

resolution and poor frequency resolution is obtained. Similarly, at lower frequencies good frequency 

resolution and poor time resolution is calculated. In the present work wavelet and wavelet packet 

transform is used to extract the features of current and voltage samples.  

4.2.1 Wavelet Transform (WT) 

Wavelet Transform conquers over the limitations of the Fourier methods since it analyzes 

functions both in time and frequency domain. It is well suited to non – periodic wideband signals. 

It is defined by the following equation: 

DWT (l, q) = 
l

0 0

ll
r 00

v rd c1
g

cc

 
 
 

         (4.1) 

Here, p (.) is the mother wavelet and the scaling and translation parameters (c) and (d) shown in 

equation (3. 2) are functions of an integer parameter m, i.e. c = l

0c  and d = l

0 0rd c which results into 

daughter wavelets. q is an integer variable which refers to a particular sample number in an input 

signal. The scaling parameter gives rise to geometric scaling, i.e. 1,
2

0 0

1 1
,

c c
,……… The logarithmic 

frequency coverage of the discrete wavelet transform is given by the above scaling.  
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The logarithmic frequency coverage of the discrete wavelet transform is given by the above scaling. 

In case of DWT, only approximations of the signal are decomposed to next level. In the present 

work, third level decomposition has been carried out for the voltage and current signals. Figure 4.1 

gives third level decomposition of the current signals. 

4.2.2 Wavelet Packet Transform (WPT) 

WPT represents high frequency information in a better manner when compared with DWT. In case 

of DWT, only approximations of the signal are decomposed to next level. WPT splits both 

approximations and details. Figure 4.2 gives third level decomposition of the current signals. 

 

 

Figure 4.1: Third level decomposition of current signal using DWT 

If one talks about n levels of decomposition in the WPT, 2n different sets of coefficients are obtained. 

In case of DWT (3n + 1) sets of coefficients were obtained. It should be observed that However, 

number of coefficients is same in both the cases due to the process of down sampling. Also, there 

exists no redundancy. The sequence function P(x) is defined as, 

   j/2 j/2

2r v r P s   2  w P 2 s q            (4.2) 
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   j/2 j/2

2r 1 q rP s   2  p P 2 s q      
 

       (4.3) 

Where i, q ϵ X, r ϵ R; 2j/2 Pr(2
j/2 s-q) is a WP function; j, q, r are the scale factor, time factor, 

oscillating factor respectively. P0 (s) is a scaling function or a basis function; P1 (s) is wavelet 

function; wq, eq are groups of conjugate mirror filter, that satisfies 

2 2 vu δ   r r u

r x

w w ,           (4.4) 

  2 r

r X

w ,  
v

v l ve  1 w            (4.5) 

Signal s (t) is expressed by orthogonal wavelet packet basis function as follows: 

     1,2 2 1,2 1, 2U       U   eU q        i l i l q r i l q r

r n

r w r

       

(4.6) 

Here wv-2r, pq-2r is conjugate of wq-2r and pq-2r. 

 

 

Figure 4.2: Third level decomposition of current signal using WPT 
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The different frequency distributions used in wavelet transform and wavelet packet transform for 

three level decomposition of current signal is seen in Table 4.2: 

Table 4.2: Frequency Distribution for different levels of decomposition 

Decomposition Level Frequency in Hz 

Initial Frequency 15360 

1st 7680 

2nd 3840 

3rd 1920 

 

4.3 NEURAL NETWORK  

A neural network [87] is defined as the set of organized elements better known as neurons. Each 

connection has weight associated with it. It basically consists of three or more layers [88]. The first 

layer is the input layer which feds data into the network. The intermediate layer also knows as the 

hidden layer has weights associated with it. The neurons in the hidden layer collect the weighted 

inputs and compute the outputs by the given transfer function hidden layer is fed to the subsequent 

layer until the desired output is achieved In the present work, Levenberg–Marquardt algorithm is 

employed. The network performance parameters mean square error “mse” was used for the 

purpose of classification and mean square error with regularization “msereg” was used for the 

purpose of location. 

 

For the purpose of classification, the current samples features collected from WT and WPT are fed 

to the neural network. In the present work, the network stops learning, at the instant when the mean 

square error (MSE) or number of iterations reaches a predetermined target value of 0.000001 and 

the number of epochs considered was 2000. The purpose of training is to reduce mse to reasonably 

low value in few epochs. A maximum of 2000 epochs was considered since as per the 

configuration of the sample system some samples required approximately 1800 – 1950 epochs to 

obtain accuracy. Similarly, for the purpose of location maximum of epoch considered was 3000. 

Another feature of the algorithm is that it only involves 33% of the samples for training and rest 

77% for testing. It has been observed in the literature almost 50% - 70% of samples are used for 

training the neural network and rest data is used for testing. 
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Figure 4.3: Algorithm for Fault Classification 

 

4.4 ALGORITHM 

Separate algorithm has been developed for classifying and locating faults in distribution system. 

The algorithm is effective in giving results by employing less than quarter of full cycle data of the 

sample collected. The algorithm for classification of fault is given in flowchart as shown in figure 4. 

3. 
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4.5 EXPERIMENTAL RESULTS AND DISCUSSION 

4.5.1 Classification Result for SD1 

The results are presented below in terms of total classification error; classification error for all 

sections for both sample 1 and sample 2. The results are compared for different daubechies 

family“db1, db2, db4 and db8” respectively. Total Classification Error is determined as:  

 
Number of Misclassified Samples

Total Classification Error %age 100
Total number of samples in that particular zone

   

 

 

Figure 4.4: Total Classification Error for SD1 

It is observed from the above figure that 99.61% of the samples have been classified accurately by 

using mother wavelet “db1” WPT features. At the same time, db1 of WT gives a maximum error of 

7.848837%. Even though “db2” of WT gives a slightly better result (0.0323%) than db2 of WPT, 

overall WPT outperforms the WT features. Based on the above figure it is concluded that current 

features obtained from WPT yield better classification result.  

Fig. 4.5 depicts the classification error for four different types of daubechies considered in WT and 

WPT for all the seven sections of SD1. As seen from the above figure: section 1, section 2 does not 

give any error for both the features. WT db1 of section 3, section 4, and section 5 gives a maximum 

error of 10. 4166%, 95.833% and 100% as compared with db2, db4 and db8 respectively. One thing 

should be kept in mind that section 1, 2 and 3 consists of 2880 samples whereas section 4, 5, 6 and 7 

constitutes only 216 samples. WT db1 in section 4 and section 5 gives a maximum error of 95.83% 
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and 100% respectively whereas WPT db1 gives 0% error for the same section. WT db1, db2, db4 

and db8 fail to classify the sections 4, 5, 6 and 7 accurately. It might be due to the fact that very less 

samples were considered for training. 

 

Figure 4.5: Classification Error for all Sections for SD1 

It is evident from the above figure that section 1 and section 2 are classified properly and both WPT 

and WT give better result. In section 3, db4 and db8 of WPT gives no error as compared to db1 and 

db2 of WPT. But for section 4 and section 5 db1 of WPT outperforms completely with no error over 

db2, db4 and db8 where the error is (10.416%, 19.444%) for db2, (47.9166%, 77.777%) for db4, 

and (35.416%, 48.611%) for db8 respectively. Based on the other results it is therefore concluded 

that db1 of WPT provides best result for classification.  

 

4.5.2 Classification Result for SD2 

It is seen from the 4.6 figure that 99.158% of the samples have been classified accurately by 

using“db1” WPT features. On the same time db1, db2, db4 and db8 of WT gives a maximum error 
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of 9.864%, 7.321%, 3.465% and 10.621% respectively. Whereas db1 (0.842%) of WPT have an 

edge over db2, db4 and db8 where the error are 1.962%, 3.132%, 2.216% respectively.  

 

 

Figure 4.6: Total Classification Error for SD2 

The classification error for four different types of daubechies considered in WT and WPT for all the 

four sections of SD2 can be observed in Fig. 4.7. It is obvious from the above figure that WT does 

not performs well to classify the faults. Db4 of WT gives better result than “db1”, “db2” and “db8” 

respectively. But for more accuracy, WPT performs far better than db1, db2 db4 and db8 of WPT. 

Using db1 of WPT, section 1 has an error of 1.612% as compared to the results of section 2, 3 and 4 

which has an error of 0.913%, 0.324% and 0.889% respectively. Still, mother wavelet db1 of WPT 

yields accurate result. 
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Figure 4.7: Classification Error for all Sections for SD2 

4.5.3 Location Result for SD1 

Fig. 4.8 depicts the location error obtained from using features obtained from WPT for all the seven 

sections of SD1. It is seen from the results obtained in zone - 1 that the maximum error is 0. 2468% 

and average error is 0.0161% for AG fault which is very good. The maximum and average error for 

double – phase to ground BCG fault in this zone is 0.2752% and 0.0206% respectively. Further, 

improvement in results can be noticed in zone - 2 where maximum and average error is 0.515 and 

0.2% respectively for double – phase to ground fault (ACG fault) which proves the effectiveness of 

the algorithm. Similarly, the maximum error and average error in section – 3 is 3.5065% and 0.3288 

respectively for AG fault. The maximum error is due to the fact that laterals are present. The results 

presented in the other sections are almost negligible and are in the range which would not disturb 

the effectiveness of the algorithm. 
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Figure 4.8: Location Error for all Sections for SD1 

 

Table 4.3: Maximum and Average Error 

Section Maximum 

Error 

Average Error 

Section - 4 0.341 0.211 

Section - 5 0.132 0.111 

Section – 6 0.4001 0.121 

Section - 74 0.352 0.310 
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Table 4.3 gives a detail description of the results obtained for section 4, 5, 6 and 7 respectively. As 

discussed earlier in chapter 2, these sections consist of only one phase. Similar appealing results are 

also observed in section 4, 5 and 6 respectively. It should also be kept in mind that the results have 

been compared with the impedance based method as adopted in [6] and [107]. 

4.5.4 Location Result for SD2 

Fig. 4.9 depicts the location error obtained from using features obtained from WPT for all the four 

sections of SD1. 

 

Figure 4.9: Location Error for all Sections for SD2 

The location error are represented as maximum error and average error. As seen from the above 

figure the maximum error is 9.9538 metres in zone1 , 9.865 mts in zone 2 , 98304 mts in zone 3 and 

4.7835mts. The average error is 5.1328 m, 5.39 m, 4.93 m, and 2.32m which is very promising. The 

results have not been compared with any other results since for this particular system since in any 

literature fault location has not been carried out. Further, zone wise error % age is presented below. 

In order to introspect the result obtained and to get a better picture of the error obtained zone wise 

error is demonstrated for all the ten types of fault. As mentioned in chapter-1, 1to 10 represents the 

ten different types of faults involving different phases. Fig. 4.10 depicts the location error for zone 

1. Results have been presented as maximum error and average error respectively. Here, the 

maximum error is 0.985% for AG fault. The average error is same 0.586% for AG and CG fault. 

The maximum error for all types of fault lies in between 0.7% to 0.9% respectively. Overall, the 
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error result is less than 1% which is very promising. The average error lies in between 0.402% to 

0.586%. 

 

 
Figure 4.10: Location Error for Zone 1 for SD2 

 

 
Figure 4.11: Location Error for Zone 1 for SD2 

Fig. 4.11 depicts the location error for zone 2. Results have been presented as maximum error and 

average error respectively. Here, the maximum error is 0.495% .Average error for BG fault is more 

i. e. 0.283%. Zone 2 also demonstrates better result.  

Fig. 4.12 presents the location error for zone 3. Results have been presented as maximum error and 

average error respectively. Here, the maximum error is 0.986% for BC fault and average error is 

0.572% for ABG fault. Excluding ABCG fault, all other types of fault are in between 0.51% to 
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0.55%. It may be due to the fact that it involves all three phases and ground. In zone 3 also the 

results for all the ten types of fault are under 1%. Overall, the error result is very promising.  

 

 
Figure 4.12: Location Error for Zone 3 for SD2 

Fig. 4.13 depicts the location error for zone 4. Results have been presented as maximum error and 

average error respectively. Here, the maximum error is 1.003% for AG fault; rest CG and AC are 

with 0.917% and 0.964% respectively .Average error for AG, CG and AC fault is. 0.544%., 0.519% 

and 0485% respectively. Zone 4 also demonstrates better result but has the maximum slightly error 

more than 1% which does not make any difference. 
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Figure 4.13: Location Error for Zone 4 for SD2 

 

 

4.6 COMPUTATIONAL TIME 

In the figure 4.14, computation time taken for various processes involved for development of 

algorithm using WT has been presented. The computational time for WPT is presented in figure 

4.15. It should be noted that all these times were evaluated after calculating the total time taken for 

each process divided by total no of samples considered. The configuration of the computer on which 

the algorithm for fault classification and fault location was tested is as: Corei7 processor, 3.2GHz 

speed, 12 GB Ram memory. 
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Figure 4.14: Computational Time for Different Evolutionary Process using WT 

 

The feature extraction time is 3.35 ms which is very low as compared with other signal processing 

tools. The time taken for identification of faults is 11.28ms, classification of faults is 2.54 ms and 

for location of fault is 18.29 ms respectively. 

 

 

Figure 4.15: Computational Time for Different Evolutionary Process using WPT 



68 
 

 

The feature extraction time is 18.96 ms which is very low as compared with other signal processing 

tools. The time taken for identification of faults is 15.87 ms, classification of faults is 4.64 ms and 

for location of fault is 26.14 ms respectively. 

 

4.7 SUMMARY 

A comparative analysis of the result between wavelet and wavelet packet transform over different 

“daubechies” has been presented for the purpose of classification. As per the result obtained even 

though the classification accuracy is 99.61% in case of WPT and 99.03% in case of WT for SD1, 

the location accuracy obtained is more in case of WPT. It is quite evident from the results obtained 

that the feature extracted from WPT yield better result as compared to WT. It should be kept in 

mind that since WPT gives better classification result in both SD1 and SD2, hence these features 

were used for the purpose of location. The WPT results are promising but the computation time 

taken to obtain the result is high. This is proved due to the fact that both approximations and details 

are decomposed in WPT.  
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Gabor Transform Based Features 

Chapter 5 

 

 

Electric Power Distribution System is a complicated network of electrical power system. This is 

due to its complex configuration and extended lines. Now, these are subjected to faults which 

results in high value of current. Fast and exact location of fault plays a pivotal role in speeding up 

system restoration which is the need of modern day. Unlike transmission system which involves 

relatively a simple connection, distribution system has a very complicated structure thereby 

making it a herculean task to design the network for computational analysis. Transmission system 

had been a broad area for engineers due to its simplified structure. It carries major portion of power 

over long distances. But at present, the network of distribution system has expanded, the amount of 

power carried by the distribution grids has also enhanced quite considerably. Due to insufficient 

information about the network, and sometimes occurrence of high impedance faults, detection, 

identification and location of faults in a distribution system is indeed challenge. Further, in present 

scenario of digital protective relays, for correct operation of protective relays, there should be 

correct and fast determination of fault. 

As already discussed, the methods adopted for locating faults in transmission lines cannot be easily 

applied to distribution system. Modern day trend recommends the use of algorithms developed by 

employing features extracted from digital signal processing tools. The author in [108] has defined 

an approach for detecting fault in transmission line using time – frequency analysis. Wavelet 

transform came into play for extraction of current features that can be subjected to algorithm meant 

for appropriate location of faults but yet an errorless fault location could not be achieved. Data 

structure based on N-ary trees has been proposed for locating faults. It contains all the information 

about the parameter of the network in compact manner. Further, it is helpful in development of 

algorithm for locating faults. Since, the uses of WT and WPT have already been discussed in the 

previous chapter. Now, Gabor Transform has also found its use in some of algorithms developed 

for identifying and classifying faults in transmission system. The author in [109] – [110] has 

introduced a concept of detecting, identifying and classifying faults in transmission system using 
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the features extracted from Gabor Transform and feeding it to ANN for the above said purpose. 

Recently, the features extracted from Gabor Transform were fed to ANN for detecting arcing faults 

in transmission lines [111]. The results obtained are good and hence, the combinations of features 

of GT and ANN have proved to be worth. The features of GT have not been used till date for 

detecting, identifying, classifying and locating faults in distribution system.  

In the present chapter Gabor transform are used for fault identification and location in distribution 

system. Current and voltage samples have been measured at the substation end for both the sample 

distribution system as discussed in the Chapter 1. Current samples are used in the purpose of fault 

identification and classification, whereas voltage samples are used for locating faults. Also, 

discrimination between load current and fault current has been made. 

Henceforth, current and voltage features are collected using Gabor decomposition. These features 

are provided as an input to artificial neural network for the purpose of fault classification and 

location of all ten types of fault with perfection. Further, feature extraction time, time taken for 

identification, classification and location of fault, is also provided. 

5.1 SAMPLE DISTRIBUTION SYSTEM 

Two sample distribution systems have been considered as already described in section 1.3.1 and 

1.3.2 of Chapter 1. The problem of the multiple estimation of location of faults has also been 

tackled. It arises due to presence of laterals at the same distance in the power distribution network 

by dividing the network into various zones. 

The sample distribution (SD 1) has been divided into 7 zones and sample distribution (SD 2) has 

been divided into 04 zones. In the first distribution system considered for simulation, zone 1, zone 

2 and zone 3 consists of all ten types of faults. Zone 4 and zone 5 consists of only one fault since it 

involves only phase –b.  Similarly, Zone 6 and zone 7 consists of only one fault since it involves 

only phase –c.  

On the other hand, in the second distribution system considered zone 1 and zone 3 comprises of all 

ten types of fault. While, zone 2 involves 4 types as it involves phase – b and phase – c. Also, zone 

4 involves 4 types as it involves phase – a and phase – c respectively. Also, the current and voltage 

database have been made by increasing the load present in the particular zone to 25%. 
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In total 7750 samples have been used for evaluating the effectiveness of the algorithm developed. 

A total of 6214 current and voltage samples for zone 1 and 1536 samples for zone 2 have been 

collected for preparing the database and used for testing the algorithm. Table 5.1 gives a complete 

overview of the number of current and voltage samples collected at each zones respectively: 

Table: 5 1- Number of current and voltage samples collected 

Name SD 1 SD 2 

No of Zones 7 4 

Fault Resistance (Ω) 0.05, 10, 20, 30, 40, 50 0.05, 10, 20, 30, 40, 50 

Fault Inception Angle ( ) 0, 60, 90, 180 0, 60, 90, 180 

Fault Types 10 10 

Load (+) 25% 25% 

Total Samples 6214 1536 

 

The sampling frequency considered for the present work is 12.000 kHz. The duration of run for the 

present simulation in both the cases is 0.5 sec. Fault has been simulated at various inception angles 

as mentioned in Table 5.1. The solution time step is 42 µs. This is the EMTDC simulation time 

step. The channel plot step is 83.333 µs which in turn determines the sampling frequency. This is 

the time interval at which EMTDC sends data to PSCAD for plotting as well as writing data to 

output files. It should be kept in mind that more is the sampling frequency; more is the information 

content in a signal.  

5.2 DISCRIMINATION BETWEEN LOAD CURRENT AND FAULT 

CURRENT 

Sometimes, there is a similarity between load data and fault data. Due to which one may consider 

the load data to be classified as fault. This leads to wrong estimation of fault. In order to overcome 

this difficulty, current and voltage samples collected at 100% and 25% increased load has been 

distinguished from fault data by calculating mean and standard deviation and then subjecting it to 

ANN.  
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5.2.1 Mean 

It is the average of current and voltage signal. For a normal signal without fault, its value is zero. 

During the presence of faults, transients present in the signal makes the value of mean other than 

zero. Mathematically, it is represented as: 

2

1
2 1

1
( )

 
t

t

y y t dt
t t

          (5.1) 

( )y t  represent the signal and y is its average. 

 

 

5.2.2 Standard Deviation: 

It is the computation of deviation from its mean value. Mathematically, it is given 

as:
2

1

1

2 2
1 2( , ) ( ( ( ) ) ) 

t

t

t t y t y dt         

 (5.2) 

 : Standard deviation. Standard deviation for a normal signal without fault is one. While, for a 

transient signal the value deviates from one. Figure 5.1 gives the method adopted to distinguish 

between load data and fault data.  
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Figure 5.1: Algorithm for Fault and Load Discrimination 

 

At first, about 40% of fault data comprising of different phases voltages and current were fed to 

artificial neural network along with the load data which consists of load voltage and load current 

for training. Rest 60 % of the data was used for testing. In zone 1 of SD1 out of 6214 samples, only 

65 samples were found out to be mismatching i.e. 98.95% of fault data were correctly classified. In 

zone 2 of SD1 out of 1536 samples, 28 samples were misclassified i.e. 98.15% of fault data were 

correctly classified. Now, these samples were considered for classification into ten types of faults 

as well as its location.  

5.3 FEATURE EXTRACTION 

 

Feature extraction transforms data of high dimension to a lower dimension. But at the same time, 

the embedded information content is kept intact. In the previous chapter wavelet and wavelet 

packet transform were used for feature extraction. As already discussed in Chapter 3 under section 

3.2.2 wavelet transform suffers from mainly two disadvantages in order to analyze the signal. It 
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lacks in shift invariance. It means even when there is a small shift in the input signal, major 

difference in the distribution of energy between DWT coefficients at different scales is observed. 

Also, the frequency resolution of the decomposition filter may not be able to extract necessary 

information from the fault signal. Wavelet packet transform too suffers from the problem of shift – 

invariance since it is difficult to determine “the best basis” i.e. the one which provides the 

representation of input signal minimizing a cost function.  

As mentioned earlier in the present algorithm, Gabor transform is used as a tool to extract the 

features of current and voltage samples.  

5.3.1 Gabor Transform (GT) 

As discussed in the Chapter 3, under section Gabor filter was originally introduced by Dennis 

Gabor. It is developed from the short – time Fourier transform. It contains a Gaussian window. 

There are some reasons that justify the use of this transform.  

 It presents a best example of localization in combined spatial and frequency domains. This 

further helps in taking our information from the signals.  

 Lower order of entropy is also reduced. It helps in applications meant for data reduction.  

The Gaussian window used is as follows: 

   
0, 0 0 0.exp( ) ta t p t t jf t          (5.3) 

Here ( )p t is the window function: 

   
1

2 22( ) 2 exp p t t           (5.4) 

: Window Width 

: Phase constant of the changing oscillations 

0 :f Frequency of these oscillations 

0 :t  Window function Centre 

The Gabor representation for any signal ( )s t , in order to find out a set of coefficients is given by: 
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( )
 

 

   nk nk

n k

s t b a           (5.5) 

Here, mra is the basis function. For 1- D a finite extent  ( ), 0, 1 s t t L with L , only finite 

number of windows intervals shall be present. When L dN , where d is a positive integer that 

represents the number of windows covering the whole signal ( )s t , the GEFs’ can be translated so 

that they are centered at central point of each window as follows: 

2 ( ) ( )

( ) ( ( ) ).


 
q k q t

j
N

mra t p q t nN ee         (5.6) 

Where,  

1
( )

2


 

N
q y y           (5.7) 

Gabor Transform is redrafted as: 

1 1

0 0

( )
 

 


d n

nk nk

n k

s t b a           (5.8) 

The coefficients nkb constitute one dimensional Gabor transform.  

  

Figure 5.2: 1 Level Decomposition for Fault Classification. 
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Figure 5.3: 4 level decomposition of current signal using Gabor transform 

 

In Gabor Transform, one obtains the coefficients through high pass filter only. It gives detail 

information which is required to trap the sudden changes in the fault signal. In the present work, 

the signals are decomposed by one level as shown in figure 5.2 and are used for fault classification. 

Further, they are decomposed by four levels as shown in figure 5.3 and have been used for fault 

location.  

The different frequency distributions used in Gabor Transform for up to four level decomposition 

of current signal is seen in Table 5.2: 

Table 5.2: Frequency Distribution for different levels of decomposition 

Decomposition Level Frequency in Hz 

Initial Frequency 12000 

1st 6000 

2nd 3000 

3rd 1500 

4th 750 
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5.4 NEURAL NETWORK 

 

In the present work, Levenberg–Marquardt algorithm is employed. The network performance 

parameters mean square error “mse” was used for the purpose of fault classification and mean 

square error with regularization “msereg” has been employed for the purpose of location of faults. 

 

In case of fault classification, the features of current samples collected from GT are fed to the 

neural network. In the present work, the network stops learning when either the mean square error 

(mse) or number of iterations have reached a predetermined target value which was set to 0.000001 

and the number of epochs considered was 1500. The purpose of training is to reduce mse to 

reasonably low value in few epochs. A maximum of 1500 epochs was considered since as per the 

configuration of the sample system some samples required approximately 1800 – 1950 epochs to 

obtain accuracy. Similarly, for the purpose of fault location maximum value of 4000 epoch was 

considered. Another feature of the algorithm is that it only involves 25% of the samples for 

training and rest 75% for testing.  

 

5.5 ALGORITHM 

 

Separate algorithm has been developed for classification and location of faults.  The algorithm is 

effective in giving results by employing less than quarter of full cycle data of the sample collected. 

The algorithm for classification of fault is given in flowchart shown in figure 5.4.  
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Figure 5.4: Algorithm for Fault Classification and Location 

 

The following notations are required for preparing the algorithm: 

:aG  Absolute values of Gabor transform components in phase “a”. 

:bG  Absolute values of Gabor transform components in phase “b” 

:cG  Absolute values of Gabor transform components in phase “c” 

aM : Peak absolute value of Gabor transform component aG  

bM : Peak absolute value of Gabor transform component bG  

cM : Peak absolute value of Gabor transform component cG  
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, ,a a b b c cS I S I S I             (5.9) 

Where 

aS : refers to summation of current in phase “a” 

bS : refers to summation of current in phase “b” 

cS : refers to summation of current in phase “c” 

The values of , ,a b cS S S has been calculated using equation. (5.9). The system kept for observation is 

an unbalanced system which in turn provides variation in the magnitude of current for all the ten 

types of faults considered for different resistances. Hence, there exists a need for converting the 

values under similar benchmark for the purpose of computation. Thus, these values are subjected to 

normalization using equation (5.10).  

Further, , ,a b cr r r values are calculated.  

10* *

10* *

10* *

a a a

b b b

c c c

r M S

r M S

r M S







           (5.10) 

 

5.6 EXPERIMENTAL RESULTS AND DISCUSSION 

 

5. 6. 1 Classification Result for SD1 

The results are presented below in terms of total classification error; classification error for all 

sections for both sample 1 and sample 2.Total Classification Error is determined as:  

 
Number of Misclassified Samples

Total Classification Error %age 100
Total number of samples in that particular zone

 

 

 

It is depicted that 99.94% of faults have been accurately classified from the features obtained from 

Gabor Transform as compared to Wavelet Packet Transform where 97.294% of faults have been 

classified accurately. Table 5.3 gives the classification error for all the seven zones of sample 

distribution system 1 (SD1). Since, in the chapter – 4, WPT has given better result as compared to 

WT hence, the results of WPT has been compared with GT.  
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Table 5.3: Classification Error for Zones for SD1 

S. No Zones WPT GT 

1 Zone 1 0.57 0.033 

2 Zone 2 1.97 0.077 

3 Zone 3 0.045 0 

4 Zone 4 0.121 0.028 

5 Zone 5 0 0 

6 Zone 6 0 0 

7 Zone 7 0 0 

 

 

It can be seen from the above figure that the errors obtained are very less. With GT features 

Zone 1 and zone 2 has an error of 0.0333% and 0.0778% only as compared to 0.57% and 1.97% 

of WPT. Zone 3 of WPT gives error of 0.045% as compared to negligible error in case of GT. 

Zone 4 has an error of 0.28% which is also minimal. It is worth mentioning that zone 3, zone 5, 

zone 6 and zone 7 are errorless.  

 

5. 6. 2 Classification Result for SD1 

 

Table 5.4: Classification Error for Zones for SD2 

S. No Zones WPT GT 

1 Zone 1 0.32 0 

2 Zone 2 0.08 0 

3 Zone 3 0.04 0 

4 Zone 4 0.87 0.263 
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When the algorithm is applied to the features collected from the Gabor transform for SD2, the 

classification accuracy is 99.73% while the features extracted from Wavelet Packet Transform gives 

the classification accuracy of 98.69%. It is obvious that Gabor Transform fetches better result as 

compared to Wavelet Packet Transform. From table 5.4, it is obvious that errors are found in almost 

all zones for the features collected from WPT. It is observed that only zone 4 has an error of 0.263% 

while other zones are errorless for the features collected from GT while WPT gives the error of 

0.87%. The result obtained from GT turns out to be promising as already discussed that zone 1 and 

zone 3 have maximum samples and zone 4 has very less sample. 

5. 6. 3 Location Result for SD1 

Table 5.6 depicts the location error for SD1 for all sections with a comparison between WPT and 

GT. The location errors are compared with the work of G. Morales Espana [121] where only 

average error has been demonstrated as shown in Table 2. Zone 4, zone 5, zone 6 and zone 7 results 

have not been reported owing to less number of samples.  

Table 5.5: Average Error for all zones [112] 

Zones Average Error 

Zone 1 1.483 

Zone2 1.437 

Zone 3 1.642 

 

 

Table 5.6: Fault Location Error for Zones for SD1 

 

S. No 

 

Zones 

WPT GT 

Maximum Error Average Error Maximum Error Average Error 

1 Zone 1 85.89 -6.23 43.61 -4.19 

2 Zone 2 248.76 20.146 139.276 10.057 

3 Zone 3 498.34 7.89 256.89 2.091 

4 Zone 4 3.45 0.86 0.088 0.006 

5 Zone 5 2.45 -0.57 0.557 -0.081 

6 Zone 6 3.56 -1.34 1.52 -0.945 

7 Zone 7 86.23 2.34 45.141 1.86 
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In the table shown above, the results obtained from Gabor features are very promising as compared 

to the results obtained from Wavelet Packet Transform. As discussed earlier, zone 1, 2 and 3 

constitute the maximum number of samples, so the average error is just -4.190, 10.057, 2.091 m 

only which is negligible in case of GT while it is -6.23, 20.146 and 7.89 m respectively in case of 

WPT. It should be noted clearly that the negative sign indicates that the fault was under reached. It 

is obvious from the above table that the fault was under reached at zone 1, 5 and 6. The maximum 

error in zone 1, 2 and 3 is just 43.61, 139.276, 256.89 m as compared to 85.89, 248.76, 498.34 m in 

WPT. This again shows that the results obtained from GT are better than WPT. But that is not at all 

the problem since as per the details of the distance given zone 1 is in kilometers and few meters 

does not make any operational difference.  

 

 

 

Table 5.7: Fault Location Error for Zone 1 for SD1 

 

S. No 

 

Faults 

WPT GT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 5.97 -1.245 3.162 -0.775 

2 BG 5.632 -0.887 3.101 -0.667 

3 CG 5.234 -1.456 3.2759 -0.810 

4 ABG 5.567 -2.345 3.4326 -0.162 

5 ACG 5.212 -1.008 3.3875 -0.187 

6 BCG 4.987 -0.986 3.1218 -0.544 

7 ABCG 6.234 1.763 4.3618 0.3045 

8 AB 6.487 -0.258 3.4938 -0.125 

9 AC 3.879 -0.348 3.3984 -0.300 

10 BC 3.97 -0.987 3.1013 -0.920 
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Table 5.7 illustrates the location error of zone 1 in % age for all the ten types of fault. It is quite 

obvious that except ABCG fault all faults were under reached. BC has the maximum average error 

of 0.920% in GT while WPT has 0.987% error as compared to other phase faults. The maximum 

error in terms of WPT is found in the case of AB fault with 6.487% while in case of GT, AB has the 

minimum fault average with 0.125%. ABCG fault has the maximum average of 4.36% in case of 

GT while it is 6.234% in case of WPT. The results obtained in WPT gives more error as compared 

to GT as obvious from the above table It should be kept in mind that the average error results when 

compared with [112] as shown in Table 5.5, is promising since the error is less than 1% as 

compared to 1.48%. 

 

Table 5.8 gives the location error of zone 2. It is seen that all faults over reach. The average error is 

almost around 1% which is far superior 1.437% as compared with [112] in the case of GT. In case 

of WPT the average error is in between the range of 2.00% to 2.9%. The maximum error in terms of 

GT, that too for just one case, is also around 13.9%. While in case of WPT, the maximum error goes 

up to 24.89%. In zone 2 also the results turned out to be good. 

 

Table 5.8: Fault Location Error for Zone 2 for SD1 

 

S. No 

 

Faults 

WPT GT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 23.48 2.56 13.926 1.009 

2 BG 24.84 2.58 13.924 1.0097 

3 CG 25.60 2.19 13.913 1.0037 

4 ABG 23.46 2.45 13.927 1.0095 

5 ACG 23.59 2.62 13.913 1.0031 

6 BCG 24.89 2.87 13.912 1.0031 

7 ABCG 24.67 2.76 13.913 1.0031 

8 AB 24.87 2.82 13.926 1.0092 

9 AC 21.32 2.56 13.911 1.0022 

10 BC 19.89 2.01 13.914 1.0040 
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The results of zone 3 are presented in Table 5.9. Here, except AG, BG, CG and ACG, all faults 

were under reach. The average error per fault is even less than the average error of zone 3 as 

presented in [111] if compared with the features obtained from GT. In case of GT, ACG fault has an 

average error of 1.5578% while the maximum error is 25.350%. Only, AG, CG and ACG faults 

have average value of more than 1% while rest all are under 1%. If one observes the result obtained 

from WPT, the maximum error is 53. 45% in case of CG fault. The average error is 6.67% for this 

particular case.  

 

 

Table 5.9: Fault Location Error for Zone 3 for SD1 

 

S. No 

 

Faults 

WPT GT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 43.28 6.65 24.798 1.2396 

2 BG 48.35 3.56 20.062 0.9267 

3 CG 53.45 6.67 25.689 1.3255 

4 ABG 49.23 1.25 3.385 -0.249 

5 ACG 32.31 3.67 25.350 1.5578 

6 BCG 6.24 -1.789 3.8761 -1.167 

7 ABCG 5.234 -2.213 4.991 -0.175 

8 AB 14.567 -1.458 7.481 -0.257 

9 AC 46.89 -2.345 24.859 -0.492 

10 BC 29.87 -1.345 10.614 -0.615 

 

Table 5.10 depicts the location error of zone 4. In case of GT, the maximum error is 0.008% while 

the average error is 0.0006% which is almost negligible. While, WPT have 2.452% as the maximum 

error and 1.23% as the average error. Zone 4 consists of only CG fault. 

 

 

 



85 
 

Table 5.10: Fault Location Error for Zone 4 for SD1 

 

S. No 

 

Faults 

WPT GT 

Maximum Error Average Error Maximum Error Average Error 

1 CG 2.452 1.23 0.0088 0.0006 

 

It is seen from table 5.11 the location error of zone 5. The maximum error calculated is 0.3178% 

while the average error is -0.321% which is almost negligible by the use of GT feature. When WPT 

feature is employed the maximum error is 1.452% and average error is -1.008%. Zone 4 consists of 

only BG fault. It is seen that the fault was located beyond the fault point. 

Table 5.11: Fault Location Error for Zone 5 for SD1 

 

S. No 

 

Faults 

WPT GT 

Maximum Error Average Error Maximum Error Average Error 

1 BG 1.452 -1.008 0.317 -0.0321 

 

It is obvious from table 5.12 the fault location error for zone 6 is very less. The maximum error 

reported is 0.817% while the average error is -0.953% which is also very good as obtained from GT. 

In case of WPT, the maximum error was 2.345% and the average error was -1.458%.  The error 

shows that the fault was under reach. 

Table 5.12: Fault Location Error for Zone 6 for SD1 

 

S. No 

 

Faults 

WPT GT 

Maximum Error Average Error Maximum Error Average Error 

1 CG 2.345 -1.458 0.817 -0.95321 

 

 

Table 5.13 gives the fault location error of zone 7. The average error is 1.15% while the 

maximum error is 6.45%. When GT features are employed. When WPT features are used the 

maximum error is 1.365% and average error is -2.458%. It should be noted down that the author 

in [111] has not given the results for zone 4, 5, 6 and 7 due to very small number of sample used 

in that work. 
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Table 5.13: Fault Location Error for Zone 7 for SD1 

 

S. No 

 

Faults 

WPT GT 

Maximum Error Average Error Maximum Error Average Error 

1 CG 1.365 -2.458 0.817 -0.95321 

 

 

5. 6. 4 Location Result for SD2 

It can be seen from table 5. 14 the fault location error for all the sections are presented.  

 

Table 5.14: Location Error for Zones for SD2 

 

S. No 

 

Zones 

WPT GT 

Maximum Error Average Error Maximum Error Average Error 

1 Zone 1 7.346 4.562 4.9921 2.508 

2 Zone 2 8.456 7.321 4.9393 2.4815 

3 Zone 3 6.224 5.865 4.9766 2.4264 

4 Zone 4 6.543 5.641 4.720 2.4832 

 

In case of GT, zone 1 has the maximum average error of 2.50 m as compared with other zones. 

Zone 2 and zone 4 has almost similar average error of 2.5 and 2.48 m. It should be kept in mind that 

no literature is available for locating faults in IEEE 13 node system since the distances are very 

small. The results are very promising as it constitutes very negligible error. The maximum error is 

all between 4.9 and 5 m, but still they are very promising. When WPT is used the zone 2 has the 

maximum error of 8.456 m while zone 1 has the minimum average error of 5.641m. 
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Table 5.15: Fault Location Error for Zone 1 for SD2 

 

S. No 

 

Faults 

WPT GT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 6.23 2.34 0.4939 0.2757 

2 BG 5.67 2.21 0.4825 0.2815 

3 CG 6.78 2.14 0.462 0.2335 

4 ABG 8.76 2.46 0.4866 0.2995 

5 ACG 9.23 3.45 0.4579 0.2736 

6 BCG 7.86 2.45 0.4800 0.2799 

7 ABCG 6.76 2.21 0.4851 0.2104 

8 AB 4.56 1.98 0.4992 0.2190 

9 AC 3.67 1.67 0.4937 0.2072 

10 BC 5.78 1.87 0.4919 0.2273 

 

 

Table 5.15 depicts the fault location error for zone 1 of SD2. Here, it is found that ACG fault has the 

maximum average error of 0.299% as compared with other faults. All the error for these faults is in 

the range of 0.2% to 0.3%, which is very promising. The maximum error for ACG is 0.4866% while 

the maximum error for AB fault is more i. e. 0.499% .The results obtained are very promising in 

case of GT. If we observe the result obtained for WPT, it is found that the maximum error is 9.23% 

which is far more than GT. Also, the average error is 3.45% for ACG fault which is gain more as 

compared to the results obtained by GT features.  

 

Table 5.16: Fault Location Error for Zone 2 for SD2 

 

S. No 

 

Faults 

WPT GT 

Maximum Error Average Error Maximum Error Average Error 

1 BG 2.252 1.008 0.49908 0.3023 

 

It can be seen from table 5.16, that the results for fault location error for zone 2 of SD 2 that it 

involves only phase b. The maximum error in this zone is 0.499% and average error is 0.3023% in 

case of GT while in WPT the maximum error is 2.252% and average error is 1.008%. 
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Table 5.17: Fault Location Error for Zone 3 for SD2 

 

S. No 

 

Faults 

WPT GT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 5.45 1.45 0.4976 0.2711 

2 BG 6.23 1.21 0.4507 0.2390 

3 CG 4.48 1.64 0.3599 0.1464 

4 ABG 4.98 1.32 0.4688 0.2402 

5 ACG 4.63 1.31 0.4534 0.2801 

6 BCG 3.48 1.28 0.4963 0.2680 

7 ABCG 3.98 1.86 0.4973 0.2634 

8 AB 2.87 1.43 0.4900 0.2504 

9 AC 3.98 1.32 0.4770 0.1992 

10 BC 2.86 1.33 0.4545 0.2683 

 

It is seen from table 5.17, the fault location error for zone 3 of SD2. Zone 3 comprises of all ten 

types of fault. Here, AG fault has the maximum average error of 0.2711% and AC fault has 

minimum average error of 0.199%. The maximum error reported is that of AG and BCG with 

0.4976% and 0.4963% respectively. It can be concluded that the results are very promising since 

the error is almost less than 0.5% in case of GT. Similarly, in case of WPT the maximum error 

of 6.23% is observed in BG fault and the maximum average error is seen in ABCG fault with 

1.86%.  

 

Table 5.18: Fault Location Error for Zone 4 for SD2 

 

S. No 

 

Faults 

WPT GT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 3.45 1.01 0.440 0.244 

2 CG 2.48 1.23 0.463 0.245 

3 AC 4.98 1.11 0.469 0.292 
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Zone- 4 involves two phases A and phase C as seen from table 5.18. Here AC fault 0.292% has 

more average error than AG and CG fault i.e. 0.244% and 0.245% respectively. AG and CG faults 

have similar average fault %age. CG and AC fault have the maximum error of 0.463% and 0.469% 

respectively when the features are taken from GT. In case of WPT, the maximum error for AC is 

4.98% and minimum average error is 1.01%. Based on the above results, it is therefore concluded 

that the results obtained from GT are very promising.  

 

5.7 COMPUTATIONAL TIME 

In the figure 5.5, computation time taken for various processes involved for development of 

algorithm has been presented. It should be noted that all these times were evaluated after calculating 

the total time taken for each process divided by total no of samples considered. The configuration of 

the computer on which the algorithm for fault classification and fault location was tested is as: 

Corei7 processor, 3.2GHz speed, 12 GB Ram memory. 

 

 

Figure 5.5: Computational Time for Different Evolutionary Process 
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The feature extraction time is 25.96 ms which is quite high as compared with other signal 

processing tools. The time taken for identification of faults is 16.81ms, classification of faults is 

5.46 ms and for location of fault is 28.81 ms respectively. 

 

5.8 SUMMARY 

An algorithm for detection, identification, classification and location of faults is presented in this 

chapter.  Discrimination between load signals and fault signals have also been presented. Gabor 

Transform has not found its use in any other literature for algorithms meant for locating faults in 

distribution system. The features extracted are basically decomposition of high frequency content in 

the signal. The results are very promising when the features of GT are combined with ANN. In the 

case of GT classification an accuracy of 99.94% is obtained in comparison to 97.294% in case of 

WPT for SD1. Similarly, the maximum error attained by using GT features is equal to 139.27 m as 

compared with WPT where the error in location is 248.76m. For SD2, the classification accuracy is 

99.73% for GT as compared to 98.69% in case of WPT. Similarly, the location error in terms of 

WPT is almost approximately double when compared with GT features where the maximum error is 

8.456 m as compared to 4.99 m. Thus, it proves that GT provides optimal feature extraction signal 

for ANN. The results which have been obtained are very promising giving less error in both sample 

distribution system 1 and sample distribution system 2. The results have been compared with WPT 

and it has been proved that GT yields better result. The time taken for different evolutionary 

processes has been given which shows that the feature extraction takes more time.  
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M – Band Transform Based Features 

Chapter 6 

 

 

There exists a need for uninterrupted supply in power transmission and distribution systems. An 

uninterrupted supply is required. The service continuity is measured by these parameters known as 

the system average interruption frequency index (SAIFI) and system average interruption duration 

index (SAIDI). When the faults occur in the system, these indices get affected. If the faults are 

diagnosed and located properly, then the  

It is broadly established that by locating faults, one can reduce the impact of such faults on the 

SAIFI and SAIDI indexes in some ways such as: With the proper location of fault, the service can 

be brought back into the service. When the zone which is affected by the fault is detected and the 

exact distance is located, one can perform sectionalized switching operations in order to minimize 

the affected area; and by locating non -permanent faults, one can take fruitful preventive steps in 

ascertaining that the fault does not occur in future.  

As already discussed, many algorithms have been developed to locate faults in power transmission 

systems. But they are not useful for locating faults in distribution systems, due to reasons 

addressed in Chapter 2 under section 2.2.1. Several methods have been proposed for locating faults 

in power distribution systems. Previously, Impedance-based methods were developed that 

estimates the distance of fault but gave uncertain locations if some distances were similar. Also, 

while developing algorithms, economics have to be considered so that the cost of implementation 

does not rise. 

On the other hand, many researchers have recently addressed the problem of fault location by 

using knowledge-based techniques but due to the inadequacy of availability of information the 

technique fails. Further, it is not economically viable. With the advent of time, methods based on 

soft computing [113] were employed. In the previous chapters, WT and WPT and GT had been 

utilized to extract features for detection, identification and location of faults in electrical 
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distribution system. Each had its own limitations and advantages. Now, for the work carried out in 

the present chapter, the sampling frequency was decreased and also the database was increased. 

There was a need for another transform to extract the features so that whatever error remains 

should be decreased. 

The author in [114] – [116] has used M – Band transform for detection of transient signals. Also, it 

had thrown light on the design of filters. Now, the author in [117] has given the decomposition of 

M – Band Wavelet.  

In the present chapter, M - Band transform is used for fault identification and location in 

distribution system. Current and voltage samples have been measured at the substation end for both 

the sample distribution system as discussed in the Chapter 1. Current samples are used in the 

purpose of fault identification and classification, whereas voltage samples are used for locating 

faults. Also, discrimination between load current and fault current has been made. 

 

Further, current and voltage features are collected using M - Band Transform decomposition. 

These extracted features are then subjected to ANN for the purpose of fault classification and 

location of all ten types of fault with perfection. Further, feature extraction time, time taken for 

identification, classification and location of fault, is also provided. It is worth mentioning that till 

date M – Band transform has not been found for detecting, identifying and locating faults in either 

transmission or distribution network. 

 

6. 1 SAMPLE DISTRIBUTION SYSTEM 

 

Two sample distribution systems have been considered as already described in section 1.3.1 and 

1.3.2 of Chapter 1. The problem of the multiple estimation of location of faults has also been 

tackled. It arises due to presence of laterals at the same distance in the power distribution network 

by dividing the network into various zones. 

The sample distribution (SD 1) has been divided into 7 zones and sample distribution (SD 2) has 

been divided into 04 zones. In the first distribution system considered for simulation, zone 1, zone 

2 and zone 3 consists of all ten types of faults. Zone 4 and zone 5 consists of only one fault since it 
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involves only phase –b.  Similarly, Zone 6 and zone 7 consists of only one fault since it involves 

only phase –c.  

On the other hand, in the second distribution system considered zone 1 and zone 3 comprises of all 

ten types of fault. While, zone 2 involves 4 types as it involves phase – b and phase – c. Also, zone 

4 involves 4 types as it involves phase – a and phase – c respectively. Also, the current and voltage 

database have been made by increasing the load present in the particular zone to 50%. 

In total 7750 samples have been used for evaluating the effectiveness of the algorithm developed. 

A total of 6214 current and voltage samples for zone 1 and 1536 samples for zone 2 have been 

collected for preparing the database and used for testing the algorithm. Table 6.1 gives a complete 

overview of the number of current and voltage samples collected at each zones respectively: 

Table: 6 1- Number of current and voltage samples collected 

Name SD 1 SD 2 

No of Zones 7 4 

Fault Resistance (Ω) 0.05, 10, 20, 30, 40, 50 0.05, 10, 20, 30, 40, 50 

Fault Inception Angle ( ) 0, 60, 90, 180 0, 60, 90, 180 

Fault Types 10 10 

Load (+) 50% 50% 

Total Samples 6214 1536 

 

The sampling frequency considered for the present work is 8.00 kHz. The duration of run for the 

present simulation in both the cases is 0.5 sec. Fault has been simulated at various inception angles 

as mentioned in Table 6.1. The solution time step is 62 µs. This is the EMTDC simulation time 

step. The channel plot step is 125 µs which in turn determines the sampling frequency. This is the 

time interval at which EMTDC sends data to PSCAD for plotting as well as writing data to output 

files. It should be kept in mind that more is the sampling frequency; more is the information 

content in a signal.  
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6.2 DISCRIMINATION BETWEEN LOAD CURRENT AND FAULT 

CURRENT 

 

Sometimes, there is a similarity between load data and fault data. Due to which one may consider 

the load data to be classified as fault. This leads to wrong estimation of fault. In order to overcome 

this difficulty, current and voltage samples collected at 100% and 50% increased load has been 

distinguished from fault data by calculating mean and standard deviation and then subjecting it to 

ANN.  

6.2.1 Mean 

It is the average of current and voltage signal. For a normal signal without fault, its value is zero. 

During the presence of faults, transients present in the signal makes the value of mean other than 

zero. Mathematically, it is represented as: 

2

1
2 1

1
( )

 
t

t

y y t dt
t t

          (6.1) 

( )y t  represent the signal and y is its average. 

6.2.2 Standard Deviation: 

It is the computation of deviation from its mean value. Mathematically, it is given 

as:
2

1

1

2 2
1 2( , ) ( ( ( ) ) ) 

t

t

t t y t y dt         

 (6.2) 

 : Standard deviation. Standard deviation for a normal signal without fault is one. While, for a 

transient signal the value deviates from one. Figure 6.1 gives the method adopted to distinguish 

between load data and fault data.  

At first, about 40% of fault data comprising of different phases voltages and current were fed to 

artificial neural network along with the load data which consists of load voltage and load current 

for training. Rest 60 % of the data was used for testing. In zone 1 out of 6214 samples only 127 

samples were found out to be mismatching i.e. 97.95% of fault data were correctly classified. In 

zone 2 out of 1536 samples, 18 samples were misclassified i.e. 98.82% of fault data were correctly 
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classified. Now, these samples were considered for classification into ten types of faults as well as 

its location.  

 

6.3 FEATURE EXTRACTION 

 

Feature extraction transforms data of high dimension to a lower dimension. But at the same time, 

the embedded information content is kept intact. In the previous chapter wavelet and wavelet packet 

transform were used for feature extraction.  

 

Figure 6.1: Algorithm for Fault and Load Discrimination 

 

In the previous chapter, GT were used for feature extraction. The Gabor wavelet is used as discrete 

wavelet transform with either continuous or discrete input signal. But it suffers from the 

disadvantage that it does not have orthonormal bases. That means the inverse of transform could not 

be easily constructed. Also, since Gabor transform involves numerous parameters for feature 
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extraction, hence it is computationally expensive. As mentioned earlier in the present algorithm, M - 

Band transform is used as a tool to extract the features of current and voltage samples. Needless to 

mention that M - Band Transform has not been used earlier for classifying and locating faults in a 

distribution system as per the literature reported. It also reduces computational requirements as 

compared to Gabor Transform. 

6.3.1 M - Band Transform (MBT) 

 

M - Band Wavelets are simplification of the conventional wavelets [70]. Signals with high 

frequency content having relatively narrow bandwidth cannot be analyzed by standard wavelets. 

Their decomposition yields a logarithmic frequency resolution. But, logarithmic and linear 

frequency resolution decomposition is obtained using M-band. Also, a large number of sub bands 

are available by its decomposition which further gives more information about the signal. It also 

performs multi scale, multi directional filtering of the signal. It is used a tool to view signals at 

different scales. Decomposition of a signal is achieved by exposing it to the family of functions 

which are produced from wavelet through its dilations and translations.  

M-band orthonormal wavelets were introduced as direct simplification of the two band Daubechies 

orthogonal wavelets [71]. It is able to zoom in onto narrowband high-frequency components of a 

signal. When compared with two band wavelets energy compactness is better in case of M – Band 

[72].  

An M-Band wavelet is defined as a tight frame for the set of square integral functions over the set 

of real numbers 2 ( )P N [73]. There are 1,K wavelets, ( ), 1,......., 1 a s a K  are connected with 

the scaling function. For function 2( ) ( )y s P N , it is perceived that  

1

, , , ,

1

( ) ( ), ( ) ( )
 

  

   
a K

a b c a b c

a b D c D

y s y s s s         (6.3) 

Here, D stands for the set of integers while the inner product operator is denoted by ,  . By scaling 

and shifting the corresponding wavelets ( ) :a s , the 
, , ( )a b c s functions are derived 

/2

, , ( ) ( )

1,......, 1, ,

 

   

b b

a b c as K K s c

a K c D b D

 
         (6.4) 

For the scaling function 0 ( )s in 2 ( )P N , the wavelet functions are defined as follows 



97 
 

1

0

0

( ) ( ) ( )

1,......, 1

 


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
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c
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        (6.5) 

The recursive equation is satisfied by the scaling. It is compactly supported in[0.( 1) / ( 1)] F K , 

1

0 0

0

( ) ( ) ( )
 



 
c F

o

c

s K g c Ks m           (6.6) 

Here, the sequence 0g is the scaling filters of length F KC where C  gives the regularity of 

scaling function and fulfils the following equation: 

1

0

0

( )
 




c F

c

g c K           (6.7) 

1

0 0

0

( ) ( )
 



 
c F

c

g c g c Kq q          (6.8) 

The ( 1)K ga vectors are known as the wavelet filter that satisfies the following equation: 

1

0 0

0

( ) ( ) ( ) ( )
 



  
c F

c

g c g c Kq q a b          (6.9) 

In the present work, decomposition up to two levels is used for fault classification and 

decomposition up to four levels has been used for fault location. In M- Band transform for a level 

decomposition one obtains the one low pass filter decomposition and two high pass filter 

decomposition. Figure 6.2 gives decomposition up to two levels for fault classification. Ia (phase a) 

refer to current in phase a. Figure 6.3 gives the decomposition of current signal in phase b (Ib).  
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Figure 6.2: Two level decomposition of Current Signal (Ia) using M - Band Transform 

 

The different frequency distributions used in M – Band transform for four level decomposition of 

current signal is seen in Table 6.2: 

Table 6.2: Frequency Distribution for different levels of decomposition 

Decomposition Level Frequency in Hz 

Approximations 

Frequency in Hz 

Detail 

Initial Frequency 8000 

1st  2666 2667, 2667 

1st 889 889, 889 

2nd 296 296, 296 

3rd 99 99, 99 
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Figure 6.3: Two level decomposition of Current Signal (Ib) using M - Band Transform 

 

6.4 NEURAL NETWORK 

 

In the present work,; Levenberg–Marquardt algorithm is employed. The network performance 

parameters mean square error “mse” was used for the purpose of fault classification and mean 

square error with regularization “msereg” has been employed for the purpose of location of faults. 

In case of fault classification, the features of current samples collected from MBT are subjected to 

the neural network. In the present work, the network stops learning when either the mean square 

error (mse) or number of iterations have reached a predetermined target value which was set to 

0.000001 and the number of epochs considered was 3000. The purpose of training is to reduce mse 

to reasonably low value in few epochs. A maximum of 3000 epochs was considered since as per 

the configuration of the sample system some samples required approximately 2400 – 2800 epochs 

to obtain accuracy. Similarly, for the purpose of fault location maximum value of 4000 epoch was 

considered. Another feature of the algorithm is that it only involves 20% of the samples for 

training and rest 80% for testing.  
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6.5 ALGORITHM 

 

Separate algorithm has been developed for classification and location of faults. The algorithm is 

effective in giving results by employing less than quarter of full cycle data of the sample collected. 

Mean and Standard deviation is calculated after feature extraction. They are calculated using 

equation 6.1 and 6.2 respectively. It is evident from the flowchart that features are extracted from 

M- band transform. Hence forth, mean and standard deviation are evaluated of the extracted features 

and are subjected to ANN for fault classification and location. 

 

 

Figure 6.4: Algorithm for Fault Classification and Location 
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6.6 EXPERIMENTAL RESULTS AND DISCUSSION 

6.6.1 Classification Result for SD1 

The results are presented below in terms of total classification error; classification error for all 

sections for both sample 1 and sample 2. Total Classification Error is determined using the same 

mathematical relationship given by equation (1.1). The same is given below for ready reference. 

 
Number of Misclassified Samples

Total Classification Error %age 100
Total number of samples in that particular zone

   

It is depicted that 99.76% of faults have been accurately classified from the features obtained from 

M - Band Transform while Gabor Transform gives 97.56% accuracy. Table 6.3 gives the 

classification error for all the seven zones of sample distribution system 1 (SD 1). 

 

Table 6.3: Classification Error for Zones for SD1 

S. No Zones GT MBT 

1 Zone 1 1.086 0.0416 

2 Zone 2 0.875 0.0185 

3 Zone 3 0.113 0 

4 Zone 4 0.232 0.176 

5 Zone 5 0.012 0 

6 Zone 6 0.112 0 

7 Zone 7 0.014 0 

 

In case of MBT features, it can be seen from the above table that the errors obtained are very less. 

Zone 1 and zone 2 has an error of 0.4166% and 01851% only. Zone 4 has an error of 0.176% which 

is also very low. It is worth mentioning that zone 3, zone 5, zone 6 and zone 7 are errorless. If the 

GBT features are considered zone 1 has the maximum error of 1.086% while zone 7 has the 

minimum error of 0.014%. Zone 2 has an error of 0.875% while other zones 3,4,5,6 and 7 has very 

less error beyond 0.25%. 
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6.6.2 Classification Result for SD2 

When the algorithm is applied to the features collected from the M - Band Transform for SD 2, the 

classification accuracy is 99.82%. While using Gabor Transform the classification accuracy turns 

out to be 98.68%. Table 6.4 gives the zone wise classification error for SD 2. It is observed that only 

zone 4 has an error of 0.176% while other zones are errorless. The result turns out to be promising, 

as already discussed, zone 1 and zone 3 have maximum samples and zone 4 has very less sample in 

case of MBT features. It is observed that the maximum error of 0.87% is reported using GT 

Table 6.4: Classification Error for Zones for SD2 

S. No Zones GT MBT 

1 Zone 1 0.32 0 

2 Zone 2 0.08 0 

3 Zone 3 0.04 0 

4 Zone 4 0.87 0.176 

 

6. 6. 3 Location Result for SD1 

Table 6.6 depicts the location error for SD1 for all sections. The location error are compare with the 

work of G. Morales Espana [118] where only average error has been demonstrated as shown in 

Table 2. Zone 4, zone 5, zone 6 and zone 7 results have not been reported owing to less number of 

samples. The results have been compared with this paper as at the initial stage in chapter 4; the 

results have been compared with [31]. The results obtained thereafter have shown improvement. 

Also, varieties of conditions have been adapted. 

 

Table 6.5: Average Error for all zones [118] 

Faults Average Error 

Single - Phase 1.75 

Phase to Phase 1.04 

Double Phase to Ground 0.72 

Three Phase 1.45 
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Table 6.6: Fault Location Error for All Zones for SD1 

 

S. No 

 

Zones 

GT  MBT 

Maximum Error Average Error Maximum Error Average Error 

1 Zone 1 56.87 -39.897 46.274 -23.0502 

2 Zone 2 234.578 15.673 139.260 10.05 

3 Zone 3 14.568 6.23 4.980 2.3546 

4 Zone 4 1.87 0.987 0.0272 0.0014 

5 Zone 5 2.34 0.875 0.0272 0.0014 

6 Zone 6 3.453 -0.453 0.4172 -0.0212 

7 Zone 7 69.786 2.453 45.1412 1.86 

 

 

In the figure shown above, the results obtained from M - Band Transform features are very 

promising. As discussed earlier, zone 1, 2 and 3 constitute the maximum number of samples, so the 

average error is just -23.05, 10.057, 2.3546 m only which is significantly low. It should be noted 

clearly that negative sign indicates that the fault was under reach from the actual fault location. It is 

obvious from the above figure that the fault was under reach from the exact location at zone 1, and 

6. The average error determines that some of the faults may be positive but when the average is 

taken on the whole the faults are under reach from the exact location of fault. The maximum error in 

zone 1 is just 46.27 m. But that is not at all the problem since as per the details of the distance given 

zone 1 is in kilometer and few meters does not make any operational difference. When the results 

are further compared with Gabor Transform, it is observed that the maximum error obtained is 

234.578 m for zone 2 which is far worse as compared with MBT. The minimum average error for 

GT is for zone 6 with -0.453m. The average error in zone 1 and zone 6 gives an indication that it 

was under reach from the exact location of fault The results obtained are much better than the 

results reported in [118], thereby making the algorithm more robust.  
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Table 6.7: Fault Location Error for Zone 1 for SD1 

 

S. No 

 

Faults 

GT  MBT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 7.654 -4.234 4.1648 -2.241 

2 BG 7.348 -4.112 3.6497 -2.2467 

3 CG 8.018 -3.976 4.2637 -2.2484 

4 ABG 5.467 -2.897 0.9735 -2.3828 

5 ACG 6.346 -3.113 4.5623 -2.0891 

6 BCG 5.876 -3.124 4.6279 -2.2295 

7 ABCG 5.112 -2.765 4.2124 -2.2758 

8 AB 3.214 -2.674 0.3313 -2.53 

9 AC 3.876 -2.546 3.7009 -2.316 

10 BC 2.231 -2.879 0.7612 -2.4909 

 

Table 6.7 illustrates the location error of zone 1 in % age for all the ten types of fault. It is quite 

obvious all faults were estimated before the fault point. BCG has the maximum average error of 

4.620% as compared to other phase faults. AB has the minimum fault average with 0.331%. BC 

fault has the maximum average of – 2.49% when MBT features are considered. When the results are 

compared with GT it is obvious from the above table that the maximum error is 7.348% for AG 

fault and least for BC fault with 2.231%. In terms of average error, the maximum average error for 

AG fault is 4.234%. Needless to mention all the faults have been under reach from exact occurrence 

of fault.  

Table 6.8 gives the location error of zone 2. It is seen that all faults were located after the location. 

The average error is almost around 1% which is far superior to 1.437% as reported in [118]. The 

maximum error, that too for just one case, is also around 13.925%. In zone 2 also, the results have 

turned out to be better when MBT features are considered. When GT features are employed for the 

algorithm. The maximum error is for ABCG fault with 18.987% and the average error is 2.456% for 

AG fault. It is also observed that average error range is between 2.456% to 1.011% which is more 

than the features obtained for MBT. 
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Table 6.8: Fault Location Error for Zone 2 for SD1 

 

S. No 

 

Faults 

GT  MBT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 18.543 2.456 13.9258 1.0217 

2 BG 17.678 2.211 13.9144 1.0197 

3 CG 17.986 1.865 13.8783 0.9972 

4 ABG 14.567 1.347 13.9261 1.0219 

5 ACG 14.234 1.321 13.8862 0.9952 

6 BCG 16.891 1.112 13.8672 0.9916 

7 ABCG 18.987 1.568 13.8775 0.9905 

8 AB 16.342 1.082 13.9245 1.0233 

9 AC 14.567 1.089 13.8976 1.0008 

10 BC 13.998 1.011 13.8726 0.9955 

 

The results of zone 3 are presented in table 6.9. Here, except AG, BG, CG, AC and ABCG, all 

faults were under reach from the exact location. The average error per fault is even less than the 

average error of zone 3 as presented in [118]. AG fault has the maximum average error of 0.923% 

while the maximum error is 10.687% using MBT features. When GT features are considered, the 

maximum error is for AG fault with 14.354% and the average error is 2.321%. For BC fault only 

0.335% error is reported.  
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Table 6.9: Fault Location Error for Zone 3 for SD1 

 

S. No 

 

Faults 

GT  MBT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 14.354 2.321 10.6871 0.9213 

2 BG 7.654 0.998 6.7241 0.3054 

3 CG 13.546 0.885 11.1156 0.4726 

4 ABG 8.834 -0.654 5.458 -0.228 

5 ACG 9.823 -0.458 7.7461 -0.0125 

6 BCG 6.785 -0.865 4.4713 -0.4274 

7 ABCG 9.834 0.564 6.1743 0.1292 

8 AB 8.835 -0.546 7.6037 -0.177 

9 AC 8.457 0.248 7.2232 0.0133 

10 BC 9.487 0.335 7.1096 -0.0573 

 

Table 6.10: Fault Location Error for Zone 4 for SD1 

 

S. No 

 

Faults 

GT  MBT 

Maximum Error Average Error Maximum Error Average Error 

1 CG 1.003 0.554 0.0027 0 

 

Table 6.10 depicts the location error of zone 4. The maximum error obtained is 0.027%, while the 

average error computed is 0.0001% which is almost negligible using MBT. While, GT gave the 

maximum error of 1.003% and average error of 0.554% respectively. Zone 4 consists of only CG 

fault. 

Table 6.11: Fault Location Error for Zone 5 for SD1 

 

S. No 

 

Faults 

GT  MBT 

Maximum Error Average Error Maximum Error Average Error 

1 BG 3.994 0.553 3.7668 0.112 
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It is seen from table 6.11 the location error of zone 5. The maximum error calculated is 3.7688% 

while the average error is -0.112% which is almost negligible for MBT. GT fetched the maximum 

error of 3.994% and average error of 0.553% respectively. Zone 4 consists of only BG fault. It is 

seen that the fault was over reached from the fault point. 

 

Table 6.12: Fault Location Error for Zone 6 for SD1 

 

S. No 

 

Faults 

GT  MBT 

Maximum Error Average Error Maximum Error Average Error 

1 CG 1.345 -0.458 0.0417 -0.0021 

 

 

It is obvious from table 6.12 that the fault location error for zone 6 is very less. The maximum error 

reported is 0.0417% while the average error is -0.0021% which is also very good in case of MBT. 

The error shows that the fault was under reach from the exact point of fault. In case of GT, the 

maximum error was 1.345% and -0.458% respectively. 

 

Table 6.13: Fault Location Error for Zone 7 for SD1 

 

S. No 

 

Faults 

GT  MBT 

Maximum Error Average Error Maximum Error Average Error 

1 CG 6.548 0.458 4.5141 0.1861 

 

Table 6.13 gives the fault location error of zone 7. The average error is 0.1861% while the 

maximum error is 4.514% using MBT. The maximum error for GT is 6.548% and the average error 

reported is 0.458%. It should be noted down that the author in [118] has not given the results for 

zone 4, 5, 6 and 7 due to very small number of sample used in that work. 
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6. 6. 4 Location Result for SD2 

Table 6. 14, provides the fault location error for all the sections are presented below. 

 

Table 6.14: Location Error for Zones for SD2 

 

S. No 

 

Zones 

GT  MBT 

Maximum Error Average Error Maximum Error Average Error 

1 Zone 1 6.348 3.562 4.9895 2.7022 

2 Zone 2 7.856 4.351 4.9393 2.4815 

3 Zone 3 5.984 4.885 4.9804 2.3546 

4 Zone 4 5.993 4.681 4.7835 2.3255 

 

 

Using MBT, Zone 1 has the maximum average error of 2.70 m as compared with other zones. 

Zone 2, zone 3 and zone 4 have almost similar average error of 2.48, 2.35 and 2.32 m 

respectively. One should not forget that no literature is available for locating faults in IEEE 13 

node system since the distances are very small. The results are very promising as it constitutes 

very negligible error. The maximum error is between 4.9 and 5 m for zone 1, zone 2 and zone 3 

and just 4.78m for zone 4. When the GT features are taken into account, the maximum error is 

7.856m for zone 2 and the average error is 4.885m for zone 3. The average error is almost 

double from the average error obtained in MBT. Thereby, the results obtained from MBT are 

very promising.  

 

Figure 6.15 depicts the fault location error for zone 1 of SD 2. Here, it is found that ABCG fault 

has the maximum average error of 0.338% as compared with other faults. All the error for these 

faults is in the range of 0.2% to 0.3%, which turns out to be very appealing. The maximum error 

for ABCG is 0.498%.The results obtained are very promising. In the figure given below, 1 to 10 

refers to different types of faults in sequence: AG, BG, CG, ABG, ACG, BCG, ABCG, AB, AC, 

and BC respectively when MBT features are employed. In case of GT features, the maximum 

error is 4.78% for CG fault while maximum average error is 2.55% for BCG fault. The 

minimum average error is 0.67% for AC. 
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Table 6.15: Fault Location Error for Zone 1 for SD2 

 

S. No 

 

Faults 

GT  MBT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 3.23 1.34 0.4795 0.2271 

2 BG 3.67 1.21 0.476 0.258 

3 CG 4.78 2.14 0.4762 0.253 

4 ABG 3.76 2.46 0.479 0.269 

5 ACG 3.23 1.45 0.491 0.333 

6 BCG 2.87 2.55 0.493 0.2624 

7 ABCG 3.76 2.11 0.498 0.338 

8 AB 3.66 0.98 0.476 0.261 

9 AC 2.67 0.67 0.452 0.252 

10 BC 2.78 0.87 0.457 0.244 

 

 

Table 6.16: Fault Location Error for Zone 2 for SD2 

 

S. No 

 

Faults 

GT  MBT 

Maximum Error Average Error Maximum Error Average Error 

1 BG 1.252 1.778 0.4740 0.2369 

 

It can be observed from table 6.16, that the results for fault location error for zone 2 of SD2 

involves only B phase. The maximum error in this zone is 0.474% and average error is 0.2369% 

in case of MBT while it is 1.252% and 1.778% in case of GT. 
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Table 6.17: Fault Location Error for Zone 3 for SD2 

 

S. No 

 

Faults 

GT  MBT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 1.576 0.876 0.447 0.239 

2 BG 1.436 1.211 0.495 0.283 

3 CG 1.834 1.433 0.445 0.245 

4 ABG 1.246 1.021 0.498 0.242 

5 ACG 1.664 1.025 0.441 0.229 

6 BCG 1.332 0.876 0.464 0.256 

7 ABCG 1.021 0.763 0.483 0.223 

8 AB 0.884 0.675 0.448 0.224 

9 AC 0.821 0.321 0.424 0.192 

10 BC 0.764 0.347 0.479 0.216 

 

It is seen from table 6.17, the fault location error for zone 3 of SD2. Zone 3 comprises of all ten 

types of fault. Here, BCG fault has the maximum average error of 0.256% and AC fault has 

minimum average error of 0.192%. The maximum error reported is that of AG and BCG with 

0.498% and 0.483% respectively using MBT. For GT features, the maximum error is for ACG fault 

with 1.664%. The average error is for CG fault with 1.433%. Also, the range of average error is 

from 0.321% to 1.433% which is more than MBT It can be concluded that the results are very 

effective, since the error is less than 0.5% for MBT as compared to GT. 

Table 6.18: Fault Location Error for Zone 4 for SD2 

 

S. No 

 

Faults 

GT  MBT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 1.45 1.21 0.440 0.253 

2 CG 1.48 1.23 0.438 0.260 

3 AC 1.98 1.41 0.411 0.213 

 

 

Zone- 4 involves two phase A and phase C as seen from table 6.18. Here, CG fault has more 

average error of 0.260% than AG and AC fault i.e. 0.253% and 0.213% respectively. AG fault has 
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the maximum error of 0.440% as compared to the error of CG and AC with 0.438% and 0.411% 

respectively in MBT. While using GT, it is observed that the maximum error is for AC with 1.98% 

and average error is 1.41%. Both maximum as well as average error is more for GT. Based, on the 

above results it is therefore concluded that the results of MBT are very promising.  

6.7 COMPUTATIONAL TIME 

 

In the figure 6.5, computation time taken for various processes involved for development of 

algorithm has been presented. It should be noted that all these times were evaluated after calculating 

the total time taken for each process divided by total no of samples considered. The configuration of 

the computer on which the algorithm for fault classification and fault location was tested is as: 

Corei7 processor, 3.2GHz speed, 12 GB Ram memory. 

 

 

Figure 6.5: Computational Time for Different Evolutionary Process 

The feature extraction time is 10.25 ms which is quite high as compared with other signal 

processing tools. The time taken for identification of faults is 15.68ms, classification of faults is 

4.66 ms and for location of fault is 25.24 ms respectively.  
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6.8 SUMMARY 

An algorithm for detection, identification, classification and location of faults is presented in this 

chapter. Discrimination between load signals and fault signals have also been presented. M- Band 

Wavelet Transform has not found its use in any other literature for algorithms meant for locating 

faults in distribution system. The features extracted are basically decomposition of both high 

frequency as well as low frequency content in the signal in different levels. The results are very 

promising when the features of MBT are combined with ANN. In case of MBT the accuracy is 

99.76% for SD1 and 99.82% for SD2 as compared to 97.56% and 98.68% for GT for SD1 and SD2 

respectively. For locating faults, the maximum error is 139.26 m for SD 1 and 4.98 m for SD 2 

using MBT as compared to 234.58 m and 4.98 m using GT for SD 1 and SD 2 respectively. Thus, it 

proves that MBWT provides optimal feature extraction signal for ANN. The results which have 

been obtained are very promising giving less error in both sample distribution system 1 and sample 

distribution system 2. The results have been compared with GT and for the particular frequency 

considered the MBT yields better result as evident from the chapter. The time taken for different 

evolutionary processes has been given which shows that the feature extraction takes less time.  
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Dual Tree Complex Wavelet Transform Based 

Features 

Chapter 7 

 

 

Distribution feeders are the last shackle of the energy chain. It is that part of the network where 

power is delivered to the customer. This part of electrical power systems is also important as 

electrical generation and transmission. Distribution feeder is considered to be the prominent part of 

power by some of the engineers. Power needs to be delivered to consumers without fluctuations in 

voltage, should have minimal electrical tripping.  

The author in [119] has given a complete review of methods meant for fault location. From the 

traditionally impedance based method, knowledge based to travelling based method [120] each 

have its own drawback. If impedance based methods were unable to tackle the multiple estimation 

problem, then the methods based on travelling waves employed huge equipment cost. Since, 

travelling wave based requires very high sampling frequency. The author in [121] had combined 

the most commonly used digital signal processing tool wavelet with support vector machine to 

classify faults in distribution system with distributed generation. The author in [122] and [123] 

have designed kalman filter and employed decision tree based algorithm to detect high impedance 

faults in distribution network. 

With the advent of time, methods based on amalgamation of signal processing tools and artificial 

intelligence was employed. In the previous chapters, WT, WPT, GT and MBWT had been utilized 

to extract features for detection, identification and location of faults in electrical distribution 

system. Each had its own limitations and advantages. Now, for the work carried out in the present 

chapter, the sampling frequency was further decreased and also the database was increased. There 

was a need for another transform to extract the features so that whatever error remains should be 

decreased. 
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The use of DTCWT can be found in the field of biometric security [124], image texture retrieval 

[125], content based image retrieval [126], estimation of motion [127], can be found. But this 

transform even with lot of edge over the traditional transforms have not been used in detection, 

identification, classification and location of faults in either transmission or distribution system.  

In the present chapter, DTCWT is used for fault identification and location in distribution system. 

Current and voltage samples have been measured at the substation end for both the sample 

distribution system as discussed in the Chapter 1. Current samples are used in the purpose of fault 

identification and classification, whereas voltage samples are used for locating faults. Also, 

discrimination between load current and fault current has been made. 

 

Further, current and voltage features are collected using Dual Tree Complex Wavelet Transform 

decomposition. These extracted features are then subjected to ANN for the purpose of fault 

classification and location of all ten types of fault with perfection. Further, feature extraction time, 

time taken for identification, classification and location of fault, is also provided. It is worth 

mentioning that till date Dual Tree Complex Wavelet Transform has not been found for detecting, 

identifying and locating faults in either transmission or distribution network. 

 

7. 1 SAMPLE DISTRIBUTION SYSTEM 

 

Two sample distribution systems have been considered as already described in section 1.3.1 and 

1.3.2 of Chapter 1. The problem of the multiple estimation of location of faults has also been 

tackled. It arises due to presence of laterals at the same distance in the power distribution network 

by dividing the network into various zones. 

The sample distribution (SD 1) has been divided into 7 zones and sample distribution (SD 2) has 

been divided into 04 zones. In the first distribution system considered for simulation, zone 1, zone 

2 and zone 3 consists of all ten types of faults. Zone 4 and zone 5 consists of only one fault since it 

involves only phase –b.  Similarly, Zone 6 and zone 7 consists of only one fault since it involves 

only phase –c.  

On the other hand, in the second distribution system considered zone 1 and zone 3 comprises of all 

ten types of fault. While, zone 2 involves 4 types as it involves phase – b and phase – c. Also, zone 
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4 involves 4 types as it involves phase – a and phase – c respectively. Also, the current and voltage 

database have been made by increasing the load present in the particular zone to 50%. 

In total 15500 samples have been used for evaluating the effectiveness of the algorithm developed. 

A total of 12428 current and voltage samples for zone 1 and 3072 samples for zone 2 have been 

collected for preparing the database and used for testing the algorithm. Table 7.1 gives a complete 

overview of the number of current and voltage samples collected at each zones respectively.  

Table: 7 1- Number of current and voltage samples collected 

Name SD 1 SD 2 

No of Zones 7 4 

Fault Resistance (Ω) 0.05, 10, 20, 30, 40, 50 0.05, 10, 20, 30, 40, 50 

Fault Inception Angle ( ) 0, 60, 90, 180 0, 60, 90, 180 

Fault Types 10 10 

Load (+) 50% 50% 

Load (-) 50% 50% 

Total Samples  12428 3072 

 

The sampling frequency considered for the present work is 4.00 kHz. The duration of run for the 

present simulation in both the cases is 0.5 sec. Fault has been simulated at various inception angles 

as mentioned in Table 7.1. The solution time step is 125 µs. This is the EMTDC simulation time 

step. The channel plot step is 250 µs which in turn determines the sampling frequency. This is the 

time interval at which EMTDC sends data to PSCAD for plotting as well as writing data to output 

files. It should be kept in mind that more is the sampling frequency; more is the information 

content in a signal.  

 

7.2 DISCRIMINATION BETWEEN LOAD CURRENT AND FAULT 

CURRENT 

 

Sometimes, there is a similarity between load data and fault data. Due to which one may consider 

the load data to be classified as fault. This leads to wrong estimation of fault. In order to overcome 

this difficulty, current and voltage samples collected at 100% , 50% increased load, as well as 50% 
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decreased load has been distinguished from fault data by calculating mean and standard deviation 

and then subjecting it to ANN.  

 

 

Figure 7.1: Algorithm for Fault and Load Discrimination 

 

7.2.1 Mean 

It is the average of current and voltage signal. For a normal signal without fault, its value is zero. 

During the presence of faults, transients present in the signal makes the value of mean other than 

zero. Mathematically, it is represented as: 

2

1
2 1

1
( )

 
t

t

y y t dt
t t

         (7.1) 

( )y t  represent the signal and y is its average. 
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7.2.2 Standard Deviation: 

It is the computation of deviation from its mean value. Mathematically, it is given 

as:
2

1

1

2 2
1 2( , ) ( ( ( ) ) ) 

t

t

t t y t y dt         

 (7.2) 

 : Standard deviation. Standard deviation for a normal signal without fault is one. While, for a 

transient signal the value deviates from one. Figure 7.1 gives the method adopted to distinguish 

between load data and fault data.  

At first, about 40% of fault data comprising of different phases voltages and current were fed to 

artificial neural network along with the load data which consists of load voltage and load current 

for training. Rest 60 % of the data was used for testing. In zone 1 out of 12428 samples only 344 

samples were found out to be mismatching i.e. 97.23% of fault data were correctly classified. In 

zone 2 out of 3072 samples, 42 samples were misclassified i.e. 98.63% of fault data were correctly 

classified. Now, these samples were considered for classification into ten types of faults as well as 

its location.  

 

7.3 FEATURE EXTRACTION 

As discussed earlier, feature extraction transforms data of high dimension to a lower dimension. But 

at the same time, the embedded information content is kept intact. In the previous chapter M Band 

Wavelet transform were used for feature extraction. The M – Band Wavelet is used as discrete 

wavelet transform with either continuous or discrete input signal. But it suffers from the 

disadvantage that it has design limitations in two band decomposition: such as orthogonality, 

realness, symmetry. As mentioned earlier in the present algorithm, Dual Tree Complex Wavelet 

transform is used as a tool to extract the features of current and voltage samples. Dual Tree 

Complex Wavelet Transform has not been used for classifying and locating faults in a distribution 

system as per the literature reported. 
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7.3.1 Dual Tree Complex Wavelet Transform (DTCWT) 

 

Wavelet based transform are successfully applied in the field of pattern recognition. The major 

problem of the common decimated Discrete Wavelet Transform (DWT) is its lack of shift 

invariance. The wavelet coefficients vary substantially when there are shifts of the input signal. 

Complex Wavelet Transform does not suffer from this problem. But, they generally lack in speed 

in calculating the coefficients. They also have poor inversion properties [74]. Kingsbury [75, 76] 

developed Dual-Tree Complex Wavelet Transform (DTCWT) to find the solution for the above 

problem. It retained the properties of nearly shift invariance as well as directionally selectivity. It 

consists of a dual tree structure of the wavelet transform. 

The first part gives information about the real part while the second gives the imaginary part. The 

condition of proper reconstruction for WT is satisfied by the use of two different sets of filter. They 

are designed jointly in order to get an analytical transform. If it is presumed that 0 1( ), ( )h n h n  

indicates the low-pass/high-pass filter pair for the upper filter bank, and let 0 1( ), ( )b m b m is the low-

pass/high-pass filter pair for the lower filter bank. It indicates that the two real wavelets associated 

with each of the two real wavelet transforms as ( ), ( )a bt t  . The filters are designed in such a 

manner that the complex wavelet ( ) : ( ) ( ) a bt t j t   is approximately analytic. Equivalently, they 

are designed so that ( )b t is approximately the Hilbert transform of ( )a t . Filters are themselves 

real. One of the advantages of DTCWT is that it does not involve complex arithmetic. In order to 

obtain the inverse of the transform, the real part and the imaginary part are both inverted. The 

inverse of each of the two real DWTs are used to get two real signals. Final output is obtained by 

averaging the two real signals.  

When the two real DWTs are orthonormal and the 1 2  factor is included, the DTCWT gains 

Parseval’s energy theorem: the energy of the input signal is equal to the energy in the wavelet 

domain  

2 2 2

.

( ( . ) ( . ) ) ( )  a b

j n m

e j m e j m s m

      (7.3) 

 

In the present work, decomposition up to two levels is used for fault classification and four levels 

decomposition have been used for fault location.  Figure 7.2 gives the two level decomposition. 
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Figure 7.2: Two level decomposition of current signal using DTCWT 

 

7.4 NEURAL NETWORK 

 

In the present work; Levenberg–Marquardt algorithm is employed. The network performance 

parameters mean square error “mse” was used for the purpose of fault classification and mean 

square error with regularization “msereg” has been employed for the purpose of location of faults. 

In case of fault classification, the features of current samples collected from DTCWT are fed to the 

neural network. In the present work, the network stops learning when either the mean square error 

(mse) or number of iterations have reached a predetermined target value which was set to 0.000001 

and the number of epochs considered was 3000. The purpose of training is to reduce mse to 

reasonably low value in few epochs. A maximum of 3000 epochs was considered since as per the 

configuration of the sample system some samples required approximately 2600 – 2800 epochs to 

obtain accuracy. Similarly, for the purpose of fault location maximum value of 4000 epoch was 



120 
 

considered. Another feature of the algorithm is that it only involves 20% of the samples for 

training and rest 80% for testing.  

 

7.5 ALGORITHM 

Separate algorithm has been developed for classification and location of faults. The algorithm is 

effective in giving results by employing less than quarter of full cycle data of the sample collected. 

Mean and Standard deviation is calculated after feature extraction. They are calculated using 

equation 7.1 and 7.2 respectively. Further, Skewness [128] is calculated using the equation given 

below:  

 

Figure 7.3: Algorithm for Fault Classification and Location 
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7.5.1 Skewness: 

Asymmetry of a given signal with respect to its mean is given by skewness. Its value equals zero for 

a normal signal. And, it is non – zero for transient signals. Mathematically, it is drafted below as: 

2

1

t

3

t

1 2

(y(t) y)

A(t , t )







        (7.4) 

7.6 EXPERIMENTAL RESULTS AND DISCUSSION 

7.6.1 Classification Result for SD1 

The results are presented below in terms of total classification error; classification error for all 

sections for both sample 1 and sample 2. Total Classification Error is determined using the same 

mathematical relationship given by the equation (1.1). The same is given below for ready reference. 

 
Number of Misclassified Samples

Total Classification Error %age 100
Total number of samples in that particular zone

   

It is depicted that 99.67% of faults have been accurately classified from the features obtained from 

DTCWT While 97.116% of faults are classified accurately using MBT. Table 7.3 gives the 

classification error for all the seven zones of sample distribution system 1 (SD 1). 

Table 7.3: Classification Error for Zones for SD1 

S. No Zones MBT DTCWT 

1 Zone 1 1.086 0.03157 

2 Zone 2 0.675 0.0059 

3 Zone 3 0.413 0 

4 Zone 4 0.332 0 

5 Zone 5 0.112 0 

6 Zone 6 0.112 0 

7 Zone 7 0.114 0 

 

It can be seen from the above figure that the errors obtained are very less. Zone 1 and zone 2 have 

error of 0.0315% and0.0059% only in DTCWT. It is worth mentioning that zone 3, 4, 5 and 6 are 
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errorless. On the other hand, using MBT all zones have error including Zone 1 with a maximum 

error of 1.086% with minimum error in zone 5 and 6 with error %age of 0.112 respectively. 

7. 6. 2 Classification Result for SD2 

When the algorithm is applied to the features collected from the Dual Tree Complex Wavelet 

Transform for SD2, the classification accuracy is 99.89% Using DTCWT while, MBT has an 

accuracy of 98.09%. Table 7.4 gives the zone wise classification error for SD2. It is observed that 

only zone 4 has an error of 0.111% while other zones are errorless. Using MBT, zone 4 has the 

maximum error of 0.87% and minimum error of 0.18%.  The result turns out to be promising as 

already discussed zone 1 and zone 3 have maximum samples and zone 4 has very less sample. 

Table 7.4: Classification Error for Zones for SD2 

S. No Zones MBT DTCWT 

1 Zone 1 0.62 0 

2 Zone 2 0.18 0 

3 Zone 3 0.24 0 

4 Zone 4 0.87 0.111 

 

7. 6. 3 Location Result for SD1 

Table 7.5 depicts the location error for SD1 for all the sections. The results have not been compared 

with any other paper due to the fact that the performance evaluation carried out for this work has 

some additional features such as huge database, and the samples have been collected at relatively 

lower frequency. But, the work has been compared with the MBT in order to prove the effectiveness 

of DTCWT since till chapter – 6, MBT has given the best result in comparison with the other 

transforms used so far.  
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Table 7.5: Fault Location Error for All Sections for SD1 

 

S. No 

 

Zones 

MBT DTCWT 

Maximum Error Average Error Maximum Error Average Error 

1 Zone 1 7.789 -17.453 4.2957 -5.1627 

2 Zone 2 18.987 -3.458 11.6406 -0.0021 

3 Zone 3 4.563 2.743 2.222 0.0005 

4 Zone 4 6.892 -3.452 0.0167 -0.0034 

5 Zone 5 9.845 2.386 0.0272 0.0014 

6 Zone 6 7.431 -2.543 0.4172 -0.0212 

7 Zone 7 8.432 3.49 5.1412 1.86 

 

 

In the table shown above, the results obtained from DTCWT features are very promising. As 

discussed earlier, zone 1, 2 and 3 constitute the maximum number of samples, so the average error 

is just -5.1627, -0.0021, and 0.0005 m only, which is significantly low. It should be noted clearly 

that negative sign indicates that the fault was under reach from the exact fault location for zone 1 

and 2. It was located beyond the fault point for zone 3. It is obvious from the above figure that the 

fault was located before the exact location at zone 1, 2, 4 and 6. The maximum error in zone 1 is 

just 46.27 m. But that is not at all the problem since as per the details of the distance given zone 1 is 

in kilometer and few meters does not make any operational difference. In case of MBT, it is found 

that the maximum error is 18.987 m in zone 2 and 9.845 m as compared with DTCWT. Also, the 

maximum average error is 17.453 m for AG fault which is more than three times the result obtained 

in DTCWT. It is also observed that the results of MBT are inferior when compared with DTCWT. 

The results obtained for zone are very much efficient and proves the effectiveness of the algorithm 

using DTCWT. 
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Table 7.6: Fault Location Error for Zone 1 for SD1 

 

S. No 

 

Faults 

MBT  DTCWT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 3.654 -2.234 0.81 -0.66 

2 BG 4.328 -3.112 0.429 -0.464 

3 CG 2.018 -2.974 0.7063 -0.641 

4 ABG 3.467 -2.397 0.110 -0.546 

5 ACG 2.346 -1.713 0.341 -0.457 

6 BCG 2.876 -2.124 0.361 -0.476 

7 ABCG 3.112 -1.765 0.3532 -0.41503 

8 AB 1.214 -1.674 0.112 -0.5391 

9 AC 1.876 -8.546 0.4194 -0.42661 

10 BC 3.231 -1.879 0.3823 -0.53044 

 

Table 7.6 illustrates the location error of zone 1 in % age for all the ten types of fault using MBT 

and DTCWT. It is quite obvious that all faults were estimated before the fault point. AG has the 

maximum average error of – 0.66% as compared to other phase faults. ABCG has the minimum 

fault average with -0.415%. AG fault has the maximum error of 0.81%. But still, the error is less 

than 1% using DTCWT. But the results obtained using MBT has substantial error. The maximum 

error is 4.328% in BG fault and the average error is more in AC i. e 8.546%.  

 

 

Table 7.7 gives the location error of zone 2. It is seen that all faults were located after the location 

except AG and ABG. The average error is also less than 0.08%. BG constitutes the fault with 

maximum average error. It also has the maximum error of 1.16% using DTCWT. With MBT, the 

maximum error is for BG fault with 5.538% and has an average error of 3.112%. ABG and AG fault 

are under reach from the location of fault. 
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Table 7.7: Fault Location Error for Zone 2 for SD1 

 

S. No 

 

Faults 

MBT  DTCWT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 1.654 -1.434 0.31 -0.062 

2 BG 5.358 3.112 1.16 0.075 

3 CG 1.718 1.674 0.6066 0.0279 

4 ABG 2.467 -1.357 0.1812 -0.0934 

5 ACG 1.336 1.213 0.1989 0.0065 

6 BCG 1.896 1.124 0.35527 0.0103 

7 ABCG 1.172 2.345 0.07117 0.0108 

8 AB 1.264 1.674 0.424 0.0012 

9 AC 1.836 1.536 0.2254 0.0203 

10 BC 1.291 1.729 0.239 0.008 

 

The results of zone 3 are presented in table 7.8. Here, except AG, BCG, ABCG, and AC faults were 

located before the exact location. The average error per fault is even less than 0.01% which does not 

make any difference. BCG fault has the maximum average error of 0.009%. While the maximum 

error is 0.222% of AG by using DTCWT. When MBT is used, maximum error of 1.754% is 

obtained in AG followed by 1.718% in CG. The average error is maximum for ABG with 1.857% 

and the minimum average error is for AC fault with 1.116%. 
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Table 7.8: Fault Location Error for Zone 3 for SD1 

 

S. No 

 

Faults 

MBT  DTCWT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 1.754 -1.433 0.222 -0.004 

2 BG 1.258 1.712 0.199 0.004 

3 CG 1.718 1.684 0.074 0.0057 

4 ABG 1.367 1.857 0.0858 0.004 

5 ACG 1.236 1.263 0.127 0.009 

6 BCG 1.766 -1.194 0.129 -0.006 

7 ABCG 1.372 -1.225 0.0484 -0.005 

8 AB 1.244 1.644 0.0757 0.004 

9 AC 1.336 -1.116 0.0466 -0.0008 

10 BC 1.191 -1.121 0.0624 -0.0021 

 

 

Table 7.9 depicts the location error of zone 4. The maximum error obtained is 0.0017%, while the 

average error computed is 0.000% which is almost negligible Using DTCWT. While, the maximum 

error of 1.583% and average error of 1.554% is obtained using M – Band Transform. Zone 4 

consists of only CG fault. 

 

Table 7.9: Fault Location Error for Zone 4 for SD1 

 

S. No 

 

Faults 

MBT  DTCWT 

Maximum Error Average Error Maximum Error Average Error 

1 CG 1.583 1.554 0.0017 0 

 

It is seen from the table 7.10 the location error of zone 5. The maximum error calculated is 3.7644% 

while the average error is -0.0837% which is almost negligible using DTCWT. Similarly, using 

MBT the maximum error is 6.994% and -0.553% respectively. Zone 4 consists of only BG fault. It 

is seen that the fault was under reach from the fault point. 
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Table 7.10: Fault Location Error for Zone 5 for SD1 

 

S. No 

 

Faults 

MBT  DTCWT 

Maximum Error Average Error Maximum Error Average Error 

1 BG 6.994 -0.553 3.7644 -0.0837 

 
 

It is obvious from figure 7.11 the fault location error for zone 6 is very less. The maximum error 

reported is 0.0317% while the average error is -0.0011% which is also very good when the features 

of DTCWT are used. Also, the maximum error is 1.345% and 0.458% using MBT. The error shows 

that the fault was under reach from the exact fault point. All these error are almost negligible. 

 

Table 7.11: Fault Location Error for Zone 6 for SD1 

 

S. No 

 

Faults 

MBT  DTCWT 

Maximum Error Average Error Maximum Error Average Error 

1 CG 1.345 -0.458 0.0317 -0.0011 

 

 

Table 7.12 gives the fault location error of zone 7. By using CTDWT, The average error is 0.0861% 

while the maximum error is 3.41%. Also, the maximum error using MBT is 4.548% and average 

error is 0.658% which is more. It should be kept in mind that zone 4, 5, 6 and 7 consists of very less 

number of samples. 

Table 7.12: Fault Location Error for Zone 7 for SD1 

 

S. No 

 

Faults 

MBT  DTCWT 

Maximum Error Average Error Maximum Error Average Error 

1 CG 4.548 0.658 3.41 0.0861 
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7. 6. 4 Location Result for SD2 

It can be seen from table 7. 13 the fault location error for all the sections are presented.  

Table 7.13: Fault Location Error for Zones for SD2 

 

S. No 

 

Zones 

MBT  DTCWT 

Maximum Error Average Error Maximum Error Average Error 

1 Zone 1 5.348 3.762 4.78 2.56 

2 Zone 2 5.756 3.351 4.66 2.21 

3 Zone 3 4.984 5.985 4.91 2.12 

4 Zone 4 7.893 3.881 4.783 2.3255 

 

Using DTCWT, Zone 1 has the maximum average error of 2.56 m as compared with other 

zones. Zone 2, 3 and 4 has almost similar average error of 2.21, 2.12 and 2.32 m respectively. 

The maximum error is for zone 3 in the range of 4.91 m. It should be kept in mind that no 

literature is available for locating faults in IEEE 13 node system since the distances are very 

small. The results are very promising as it constitutes very negligible error. The maximum error 

is between 4.6 and 5 m for zone 1, zone 2 and zone 3 and just 4.66 m for zone 2. But still they 

are very promising. When the results are compared with MBT, it is found that the maximum 

error is 7.893m for zone 4 and the average error is 5.985m for zone 3. The results obtained are 

inferior if compared with DTCWT. 

 

Table 7.14 depicts the fault location error for zone 1 of SD2. Here, it is found that ABCG fault 

has the maximum average error of 0.3% as compared with other faults. All the error for these 

faults is in the range of 0.2% to 0.3%, which is very promising. The maximum error for ABCG 

is 0.499% using DTCWT. The results obtained from MBT does not give better result as the 

maximum error is 1.87% for AB fault and the average error is 1.98%. The other errors are also 

high in this case. The results obtained are very promising for DTCWT. 

 

 

 



129 
 

 

 

Table 7.14: Fault Location Error for Zone 1 for SD2 

 

S. No 

 

Faults 

MBT  DTCWT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 1.54 0.889 0.475 0.245 

2 BG 1.34 0.996 0.492 0.228 

3 CG 1.65 0.873 0.493 0.230 

4 ABG 1.23 1.34 0.490 0.27 

5 ACG 1.34 1.65 0.48 0.29 

6 BCG 1.43 1.87 0.46 0.29 

7 ABCG 1.32 1.22 0.47 0.23 

8 AB 1.87 1.98 0.49 0.27 

9 AC 1.34 1.23 0.46 0.27 

10 BC 1.36 1.68 0.499 0.3 

 

 

Table 7.15: Fault Location Error for Zone 2 for SD2 

 

S. No 

 

Faults 

MBT  DTCWT 

Maximum Error Average Error Maximum Error Average Error 

1 BG 2.654 1.448 0.475 0.300 

 

 

It can be seen from table 7.15, that the results for fault location error for zone 2 of SD2 that it 

involves only B phases. The maximum error in this zone is 0.475% and average error is 0.3% 

only by using DTCWT. By the use of MBT, the maximum error is 2.654% and the average error 

is 1.448% respectively. 
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Table 7.16: Fault Location Error for Zone 3 for SD2 

 

S. No 

 

Faults 

MBT DTCWT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 0.887 0.654 0.483 0.239 

2 BG 0.982 0.467 0.481 0.245 

3 CG 1.234 0.989 0.498 0.221 

4 ABG 1.564 0.653 0.483 0.221 

5 ACG 1.348 0.884 0.476 0.250 

6 BCG 1.223 1.218 0.447 0.215 

7 ABCG 1.008 1.266 0.496 0.281 

8 AB 0.987 1.253 0.472 0.261 

9 AC 0.884 1.348 0.499 0.300 

10 BC 0.926 1.118 0.476 0.222 

 

It is seen from table 7.16 the fault location error for zone 3 of SD2. Zone 3 comprises of all ten 

types of fault. Here, AC fault has the maximum average error of 0.3% and BCG fault has minimum 

average error of 0.221%. The maximum error reported is that of AC followed by CG with 0.499% 

and 0.498% respectively in case of DTCWT. While, using MBT the maximum error is 1.564% in 

ACG fault and average error of 0.467%. Also, it is observed that the maximum error are in the range 

between 1.564% and 0.884%. While, the average error obtained is 0.467% which is twice the error 

obtained for DTCWT. It can be concluded that the results are very promising for DTCWT, since the 

error is less than 0.5%. 

Table 7.17: Fault Location Error for Zone 4 for SD2 

 

S. No 

 

Faults 

MBT  DTCWT 

Maximum Error Average Error Maximum Error Average Error 

1 AG 1.25 0.98 0.468 0.306 

2 CG 1.38 1.03 0.483 0.290 

3 AC 1.18 1.11 0.450 0.191 
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Zone- 4 involves two phase A and phase C as seen from table 7.17. Here AG fault has more average 

error of 0.306% than CG and AC fault i.e. 0.290% and 0.191% respectively. CG fault has the 

maximum error of 0.483% as compared to the error of AG and CG with 0.468% and 0.450% 

respectively in the case of DTCWT. When the features from MBT are used, it is observed that the 

maximum error is of 1.38% for CG fault and the average error is 1.11% for AC fault. Needless to 

say that all the errors obtained in MBT are more than DTCWT. Based, on the above results it is 

therefore concluded that the results obtained from DTCWT are very promising.  

7.7 COMPUTATIONAL TIME 

 

In the figure 7.4, computation time taken for various processes involved for the development of 

algorithm has been presented. It should be noted that all these times were evaluated after calculating 

the total time taken for each process divided by the total no of samples considered. The 

configuration of the computer on which the algorithm for fault classification and fault location was 

tested is as: Corei7 processor, 3.2GHz speed, 12 GB Ram memory. 

 

 

Figure 7.4: Computational Time for Different Evolutionary Process 
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The feature extraction time is 6.25 ms which is quite low as compared with other signal processing 

tools. The time taken for identification of faults is 13.28ms, classification of faults is 3.54 ms and 

for location of fault is 20.29 ms respectively.  

 

 

7.8 SUMMARY 

An algorithm for detection, identification, classification and location of faults is presented in this 

chapter. Discrimination between load signals and fault signals have also been presented. DTCWT 

has not found its use in any other literature for algorithms meant for locating faults in distribution 

system. The features extracted are basically decomposition of both high frequency as well as low 

frequency content in the signal in different levels. The results are very promising when the features 

of DTCWT are combined with ANN. It is evident that classification accuracy of about 99.67% for 

SD 1 and 99.89% for SD 2 is fetched using DTCWT. Whereas, MBT gives classification accuracy 

of only 97.116% for SD 1 and 98.09% for SD2 respectively. Also, in case of location, the maximum 

error reported for SD1 is 11.64 m using DWT, while using MBT the error is 18.98 m. Further, the 

location error obtained for SD2 using DTCWT is just 4.91 m while using MBT is 7.89 m 

respectively. Thus, it proves that DTCWT provides optimal feature extraction signal for ANN. The 

results have been compared with MBT and hence, the results of DTCWT which have been obtained 

are very promising giving less error in both sample distribution system 1 and sample distribution 

system 2. The times taken for different evolutionary processes have been given which shows that 

the feature extraction takes less time.  
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FCM and Statistical Based Approach 

Chapter 8 

 

Distribution system comprises of number of radial feeders which has to be highly reliable and 

efficient under normal and emergency condition. As already discussed, the methods proposed for 

fault location in transmission lines are not easily applicable to distribution systems.  

The author in [129] – [130] has presented a complete overview of the work carried out for 

detecting, identifying and locating faults in a distribution system. The author in [131] – [132] has 

presented algorithm for estimating the error as well as identifying in the faults in a series 

compensated transmission line. Needless to mention that these techniques are basically based on 

the modern day algorithms were more than one algorithm is developed for detection, identification, 

classification and location of faults. Support Vector Machine as classifier has been used. Other 

work includes locating faults on underground cable [133] – [134], use of artificial intelligence 

[135], considering the sags in voltage for location of fault [136] etc are few works which have been 

carried out in the direction of fault location in distribution system. The author in [137] – [138] has 

also located fault in distribution system but they have considered the phases which involved the 

ground. Even, the present day scenario of detecting fault in distributed generation has been dealt in 

[139].  

With the introduction of digital signal processing tools in power system, wavelet transform came 

into play for extraction of current features that can be subjected to algorithm meant for appropriate 

location of faults but yet an errorless fault location could not be achieved. Also, methods based on 

amalgamation of signal processing tools and artificial intelligence was employed. In the previous 

chapters, WT, WPT, GT, MBWT and DTCWT had been utilized to extract features for detection, 

identification and location of faults in electrical distribution system. Each had its own limitations 

and advantages. But these approaches were based on extraction of features by use of digital signal 

processing tools and were developed keeping in mind the present scenario. 

In the present chapter, the current samples collected from the sample distribution systems are 

subjected to FCM to obtain clusters and fed to expectation maximization algorithm [13]. This 
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chapter attempts to presents a solution to tackle the problem of interruption in service in 

distribution system. A current sample database collected from the measurements at substation end 

has been statistically modeled. It is an attempt to detect, identify and locate fault in distribution 

system with a permissible accuracy. 

 

8. 1 SAMPLE DISTRIBUTION SYSTEM 

 

Two sample distribution systems have been considered as already described in section 1.3.1 and 

1.3.2 of Chapter 1. The problem of the multiple estimation of location of faults has also been 

tackled. It arises due to presence of laterals at the same distance in the power distribution network 

by dividing the network into various zones. 

The sample distribution (SD 1) has been divided into 7 zones and sample distribution (SD 2) has 

been divided into 04 zones. In the first distribution system considered for simulation, zone 1, zone 

2 and zone 3 consists of all ten types of faults. Zone 4 and zone 5 consists of only one fault since it 

involves only phase –b.  Similarly, Zone 6 and zone 7 consists of only one fault since it involves 

only phase –c.  

On the other hand, in the second distribution system considered zone 1 and zone 3 comprises of all 

ten types of fault. While, zone 2 involves 4 types as it involves phase – b and phase – c. Also, zone 

4 involves 4 types as it involves phase – a and phase – c respectively.  

Table: 8 1- Number of current and voltage samples collected 

Name SD 1 SD 2 

No of Zones 7 4 

Fault Resistance (Ω) 0.05, 10, 20, 30, 40, 50 0.05, 10, 20, 30, 40, 50 

Fault Inception Angle ( ) 0, 60, 90, 180 0, 60, 90, 180 

Fault Types 10 10 

Total Samples  1428 320 

 

In total 1748 samples have been used for evaluating the effectiveness of the algorithm developed. 

A total of 1428 current and voltage samples for zone 1 and 320 samples for zone 2 have been 
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collected for preparing the database and used for testing the algorithm. Table 8.1 gives a complete 

overview of the number of current and voltage samples collected at each zones respectively.  

 

The sampling frequency considered for the present work is 2.00 kHz. The duration of run for the 

present simulation in both the cases is 0.5 sec. Fault has been simulated at various inception angles 

as mentioned in Table 8.1. The solution time step is 250 µs. This is the EMTDC simulation time 

step. The channel plot step is 500 µs which in turn determines the sampling frequency. This is the 

time interval at which EMTDC sends data to PSCAD for plotting as well as writing data to output 

files. It should be kept in mind that more is the sampling frequency; more is the information 

content in a signal.  

 

8.2 APPROACHES FOR FAULT LOCATION 

An approach to resolve the problem of fault location in distribution system subjected to different 

kinds of fault by examining system behavior is presented. After simulating a distribution system 

with different types fault over a range of fault resistance and at various locations, current 

waveforms are recorded at the substation end. These samples are pre-processed in PSCAD to 

obtain the r.m.s value. Each and every sample in the created database has sufficient information 

about the system. It basically gives the outcome of the different conditions that occur in the system. 

It helps in the process of data classification, while establishing certain classes in the model. At first 

data has been analyzed by considering the distribution system into groups where fault can be easily 

detected and located. The objective is set in such a manner that these particular groups correspond 

to zones so that a relationship is established data classification and fault location. Fuzzy c- mean is 

then applied on these current samples thus obtained and are subjected to expectation – 

maximization algorithm for fault classification and fault location of zones respectively. A detailed 

algorithm for FCM and EM-algorithm applied for the above purpose is presented below: 

 

8.2.1 Fuzzy c-Means (FCM) Clustering 

 

Dunn [140] introduced the concept of Fuzzy c-means (FCM) clustering in 1974. It was further 

simplified by Bezdek [141] in 1981 and has since being admired. It is considered as a derivative of 

k-means clustering. Clustering data allows the conformation of meaningful groups in an analytical 
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way, which helps to classify data according to similarities or affinities. The clustering algorithms 

are developed by computing the metric differences for the distance calculation. Various types of 

clustering methods have been developed. Out of them fuzzy clustering finds its vital representation 

in the field of data mining, artificial intelligence, numerical taxonomy, pattern recognition, image 

analysis, image processing, and medicine. It is widely used because of fuzzy membership, as it 

allows membership functions to all clusters in a data set making it appropriate for analysis of the 

clusters. Fuzzy C-means algorithm is based on the minimization of a criterion function. FCM 

clustering algorithm is applied because of good performance and less execution time to obtain 

clustered data. In the proposed work, authors have used algorithm [142] to fix the number of 

clusters. 

If one consider a matrix of a  data elements (fault signal), each of size ( 3)s s  is represented as 

1 2( , ,....., ). nB b b b  The clustering are established by FCM through an iterative procedure that 

minimizes the objective function as drafted in Equation (8.1) 

Objective function: 
2

1 1

( , ) ( , )
c n

m

m ij j i

i j

O U C U D x C
 

       (8.1) 

Constraint: 
1

1;
c

ij

i

U j


           (8.2)
 

Where, ijU  is membership of the 
thj  data in the thi  cluster iC

, m  stands for the fuzziness of the 

system ( 2)m   and D  represents the distance between the cluster center and data point. 

 

8.3 FCM Algorithm 

The Flow chart of FCM algorithm is shown in figure 8.1. The implementation steps are given 

below:  
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Figure 8.1: Flowchart for FCM algorithm 

 

Input: fault signal data; Output: Clustered data; 

 Initialize the cluster centers iC . 
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 The distance is computed by D  between the cluster center and data point by using equation 

(8.3) 

2
2( , )j i j iD x C x C           (8.3) 

 The membership values are evaluated by using equation (8. 4) 

1
2 ( 1)

1

( , )

( , )

m
c

j i

ij

k j k

D x C
U

D x C






  
       

         (8.4) 

 The cluster centers are updated using equation. (8.5) 

1

1

n
m

ij j

j

i n
m

ij

j

U x

C

U










          (8.5) 

 The iterative process starts: 

1. The membership values are renewed ijU by using equation (8.4) 

2 the cluster centers are updated
 iC  by using equation (8.5). 

3 The distance is revised D  using equation (8.3). 

4 If ; ( 0.001)new oldC C      then move to step1. 

5 Else stop the process 

 Each fault signal is assigned a specific cluster for which the membership is maximal. 

8.4 EXPECTATION – MAXIMIZATION ALGORITHM 

Initial values for the centers are calculated using the knowledge of the groups, obtained using the 

FCM algorithm. The initial value of covariance matrix is used as the identity matrix. The mixture 

coefficients are then evaluated maintaining the proportionate of data in each group, in relation to 

the sample. Once initial parameters are obtained, the estimation of the mixture model parameters is 

initiated by the Expectation - Maximization algorithm [143] – [144], which is an iterative 

procedure until the desired convergence is achieved. It is an iterative approach to maximum 

likelihood estimation. Each iteration of an EM algorithm involves two steps: an Estimation (E) step 

and a Maximization (M) step. The M step involves the maximization of a likelihood function that 
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is redefined in each iteration by the E step. The results are the final values of parameters  (mean 

vector), V (covariance matrix) and p (weight/ coefficient of mixture) of each group. The steps of 

the Expectation – Maximization algorithm are as follows: 

1. The number of components of the mixture is computed by using the fuzzy cluster-mean 

algorithm. 

2. The initial values of parameter are evaluated for each component
 0 (0) (0)

( , , )V p . 

3. Estimate the posterior probability for each observation (Expectation-steep) as shown in the 

following equations: 

( ; , )

( )

ii j i
ij

j

p x V

f x

 
           (8.6) 

1

( ) ( ; , )
G

j g j g g

g

f x p x V 


         (8.7) 

Where ij  represents the posterior probability of jx  corresponding to the i  term, 

( ; , )ij ix V   is the normal multivariate density and ( )jf x  corresponds to the estimated 

mixture of distributions for the i  terms evaluated in jx  and j  is an index which indicates 

the total amount of data. 

4. Update,  ,V , p  of each component (maximization-step) by using equations (8.8) – (8.10). 

, , ii ip V  are the updated estimations. 
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5. Repeat steps 3 and 4, until desired convergence is obtained. 

Subsequently, the groups are organized in classes associated to faults. It is based on the probability 

of appearance in each group as presented by the mixture model in the following equation: 

1

( ) ( ; , )
G

FM g g g g

g

f x p x V 


          (8.11) 



140 
 

Where ( )FMf x  corresponds to mixture model of sample ( )x which corresponds to random sample of 

n  observations of dimension d .  

Based on the statistical model, fault location is based on the response obtained from the model. 

Current waveforms which have been recorded are used to locate the answer for this problem. Each 

and every sample in the created database has sufficient information about the system. It basically 

gives the outcome of the different conditions that occur in the system. It helps in the process of 

data classification, while establishing certain classes in the model. It should be kept in mind that 

each class corresponds to a zone within the distribution network. The distribution network has been 

taken divided into several zones. The work focuses to establish the match between fault location 

and data classification within zones. Since, the groups are known; the current samples collected are 

subjected to Fuzzy Cluster Means algorithm, in order to evaluate the centers of groups so that the 

method is initialized. Further, the shape and final proportion of groups within the distribution is 

defined by using EM algorithm and the initial estimation. At this step, the shape of the covariance 

matrices for each distribution and the shape of each group is determined by a heterocedastic model. 

Further, the coefficients obtained are mapped within the group to determine the occurrence of the 

fault.  

8. 5 RESULTS AND DISCUSSION 

A brief analysis of the result is presented below for both the sample distribution system considered  

8.5.1 Sample Distribution System 1 

The results of sample distribution system have been compared with the results reported in [145]. 

Table: 8.2 give the classification result. From the above table, it is obvious that the result obtained 

for classification after subjecting the current samples to FCM is far promising as compared from 

Reference [145]. It can be observed that the results of Single –phase to line faults and line to line 

faults does not make any difference, But the results obtained for ABG, BCG and CAG faults are 

far promising as 95.12%, 90.05% and 90.01% as compared to 81.25%, 79.16%, 77.08% 

respectively. Even, the result for ABCG fault i.e. 90% is given which is not available in the 

reported paper. The results prove the worth of FCM algorithm as compared to k-mean algorithm. 

The location result is represented in Table 8.3.  
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Table 8.2: The Classification Result for SD1 

Sr. No Types of Fault Name of 

the Fault 

REF [13] PM 

1 Single – Phase 

to Ground 

Fault 

AG 100% 100% 

2 BG 100% 100% 

3 CG 100% 100% 

4 Line to Line 

Fault 

AB 100% 100% 

5 BC 100% 100% 

6 CA 100% 100% 

7 Double Line to 

Ground Fault 

ABG 81.25 95.12% 

8 BCG 79.16 90.05% 

9 CAG 77.08 90.01% 

10 Three Phase to 

Ground Fault 

ABCG NA 90% 

 

Table 8.3: The Location Result for SD1 

Sr. No Types of Zone REF [13] PM 

1 Zone 1 99.43% 99.98% 

2 Zone 2 95.17% 98.25% 

3 Zone 3 82.62% 94.52% 

4 Zone 4 56.49% 78.77% 

5 Zone 5 NA 80.25% 

6 Zone 6 NA 81.43% 

7 Zone 7 NA 84% 

 

The results obtained give the probability of the samples which are given to the zones. As seen from 

the result, Proposed method i.e. the samples obtained from FCM yields far better results as 

compared to the K- mean algorithm. Specially, for zone 4, the difference in result is almost about 

20%. The results for other zones have not been reported but still they can be said promising 

because these zones contain very few samples.  
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8.5.2  Sample Distribution System 2 

 

The classification result of the current samples obtained from IEEE 13 node feeder is presented in 

Table: 8. 4. It’s worth mentioning that the results have not been compared with anyone since no 

result for this feeder is reported. The results obtained are very promising since all the faults are 

accurately classified into different types of faults.  

Table. 8.4: Classification Result for SD 2 

Sr. No Types of Fault Name of 

the Fault 

PM 

1 Single – Phase 

to Ground 

Fault 

AG 100% 

2 BG 100% 

3 CG 100% 

4 Line to Line 

Fault 

AB 100% 

5 BC 100% 

6 CA 100% 

7 Double Line to 

Ground Fault 

ABG 100% 

8 BCG 100% 

9 CAG 100% 

10 Three Phase to 

Ground Fault 

ABCG 100% 

 

Table 8.5 gives the location result of the sample distribution system2. It should be kept in mind 

that zone 1 and zone 3 gives 100% result as it comprises of all the three phases. While, zone 2 and 

zone 4 gives 75% and 78.77% result as it involves two phases and consists of less number of 

sample.  

Table 8.5: Zone Classification Result for SD 2 

Sr. No Types of Zone PM 

1 Zone 1 100% 

2 Zone 2 75% 

3 Zone 3 100% 

4 Zone 4 78.77% 
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8.6 SUMMARY 

 

A probabilistic based method for location of faults in distribution systems has been given in this 

chapter. The approach is based on statistical modeling of the samples obtained after been clustered 

by the use of FCM. Results obtained after the clusters are administered to expectation – 

maximization algorithm for the given feeder is promising It should be kept in mind that the 

proposed algorithm has not been applied to current samples of distribution system as per the 

literature available till date. 

The selection of the number of groups or zones is the drawback for the proposed method if other 

distribution system is considered. But for the two sample distribution system, the groups have been 

defined. This method allows an optimization for classification of data which enables good model 

accuracy. Also, this method if implemented is economically viable. 
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Conclusion and Future Perceptive 

Chapter 9 

 

 

Distribution system comprises of number of radial feeders which has to be highly reliable and 

efficient under normal and emergency condition. As already discussed, the methods proposed for 

fault location in transmission lines are not easily applicable to distribution systems due to the 

configuration of the network. 

The database was collected over range of different sampling frequency starting from 16.00 kHz to 

02.00 kHz. Also, several digital signal processing tools were used to extract the feature and provide 

good results. The algorithms have been designed to almost accurately detect, identify, classify and 

locate faults in electrical distribution system. The problem of multiple estimation that arouse in the 

algorithms developed from impedance based calculation has been dealt off. 

Two sample distribution networks have been considered as a standard database in order to test the 

effectiveness of the algorithm. These databases are the standard databases employed for testing the 

algorithm. The features have been extracted from wavelet transform, wavelet packet transform, 

Gabor Transform, Multi band Wavelet Transform and Dual Tree Complex Wavelet Transform. 

Among, all DTCWT has given the best results. It has been successful in computing fault distances 

without any error. The results obtained for classification is more than 99% for sample distribution 

system 1 and more than 98.5% respectively. Similarly, the results for location of faults for sample 

distribution system 1 are less than 1% and sample distribution system 2 is less than 2% 

respectively. 

A comparative analysis of the result between wavelet and wavelet packet transform over different 

“daubechies” has been presented for the purpose of classification. As per the result obtained even 

though the classification accuracy is 99.61% in case of WPT and 99.03% in case of WT for SD1, 

the location accuracy obtained is more in case of WPT. It is quite evident from the results obtained 

that the feature extracted from WPT yield better result as compared to WT. for both SD1 and SD2. 

It should also be kept in mind that the sampling frequency considered for this case is 15.360 kHz. 
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In the case of GT classification an accuracy of 99.94% is obtained in comparison to 97.294% in 

case of WPT for SD1. Similarly, the maximum error attained by using GT features is equal to 

139.27 m as compared with WPT where the error in location is 248.76m. For SD2, the 

classification accuracy is 99.73% for GT as compared to 98.69% in case of WPT. Similarly, the 

location error in terms of WPT is almost approximately double when compared with GT features 

where the maximum error is 8.456 m as compared to 4.99 m. Thus, it proves that GT provides 

optimal feature extraction signal for ANN. The results which have been obtained are very 

promising giving less error in both sample distribution system 1 and sample distribution system 2. 

It is worth reminding that the sampling frequency considered in the present case is 12.00 kHz. 

The results are very promising when the features of MBT are combined with ANN. In case of 

MBT the accuracy is 99.76% for SD1 and 99.82% for SD2 as compared to 97.56% and 98.68% for 

GT for SD1 and SD2 respectively. For locating faults, the maximum error is 139.26 m for SD 1 

and 4.98 m for SD 2 using MBT as compared to 234.58 m and 4.98 m using GT for SD 1 and SD 2 

respectively. Thus, it proves that MBWT provides optimal feature extraction signal for ANN. The 

results which have been obtained are very promising giving less error in both sample distribution 

system 1 and sample distribution system 2. The results have been compared with GT and for the 

particular frequency considered the MBT yields better result as evident from the chapter. The 

sampling frequency considered in the present case is 8.00 kHz. 

It is evident that classification accuracy of about 99.67% for SD 1 and 99.89% for SD 2 is fetched 

using DTCWT. Whereas, MBT gives classification accuracy of only 97.116% for SD 1 and 

98.09% for SD2 respectively. Also, in case of location, the maximum error reported for SD1 is 

11.64 m using DWT, while using MBT the error is 18.98 m. Further, the location error obtained 

for SD2 using DTCWT is just 4.91 m while using MBT is 7.89 m respectively. Thus, it proves that 

DTCWT provides optimal feature extraction signal for ANN at 4.00 kHz. Hence, it can be 

concluded that DTCWT will provide better classification and location results at low frequency. 

In an attempt to present non transform based technique, as an extension to transform based 

techniques, a new statistical approach which is nowadays very popular is presented. With this 

feeling the author has attempted to give a new methodology to classify and locate faults by using 

FCM in an attempt to detect, identify and locate fault in distribution system. The method is found 

to give improved accuracy to that of transformed based tools. As discussed in chapter -2, clustering 
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methods are very popular methods in classification. Hence, the detection, identification and 

classification of faults have also been carried out by the use of Fuzzy cluster means and 

expectation maximization algorithm. The purpose had been to correctly classify the faults and 

locate the particular zones associated with it. It is worth to mention that in the proposed algorithm 

current samples are used instead of conventionally used voltage samples.” 

Other important feature of the work reported is that computational time for carrying out different 

evolutionary process has also been discussed. The feature extraction time, time taken for 

identification, classification and location of faults have been successfully derived. The time has 

been computed for each sample. 

Among all, Gabor Transform takes the maximum time followed by Wavelet Packet Transform, M 

Band DWT, DTCWT and WT. The reason have been explained in the thesis.  

9.1 THESIS OUTCOME 

After investigation of all the developed algorithms with a large number of fault cases with all 

possible types of faults, faults parameters and system parameters variations, following outcomes of 

this work can be listed:  

 

 The fault classification, fault zone identification and fault location algorithms developed in 

this work show considerable improvement in terms of accuracy compared to the methods 

available in the literature.  

 All algorithms in this work are developed for single end measurement only. This eliminates 

the requirement of measurements from other end, communication channel and installation 

of high frequency based travelling wave’s detector.  

 All fault detection, identification, classification and location algorithms are developed to 

work with measurements of three phase currents and voltages  

 All fault classification and fault zone identification algorithms designed in this work are 

developed to work with less than quarter cycle post fault measurements only. This reduces 

the processing time of the algorithms thereby, making them quite fast for practical 

implementation.  
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 Among the features collected by different signal processing tools, DTCWT presents 

superior result. The orders in which features have been extracted and good results have 

been obtained are in sequence as follow: DTCWT, M – Band DWT, Gabor Transform, 

WPT and WT. 

 Statistical based method employing the use of Fuzzy Cluster Mean and Expectation 

Maximization algorithm has also been used. 

 

9.2 FUTURE PERSPECTIVES 

 

 Fault needs to be detected, identified and classified in multi ring feeder system. As per the 

available literature very little work has been reported. Barely two or three papers have been 

successful in the above purpose. 

 Faults needs to be located in the distribution systems with underground cables. These 

cables are also the part of the network. Most of the researchers neglect the underground 

cables and develop the algorithm. 

 Detection of high impedance fault is also an important issue which needs to be addressed. 

High impedance faults cause major destruction to the equipment installed in the network. 

 Nowadays, distributed generation has found a significant role in the distribution networks. 

Faults needs to be detected, identified and located in distribution network with distributed 

generation. 
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APPENDIX - A 

 

Electrical Parameters of SaskPower Distribution System: 

Equivalent Distribution System Source Data: 

Base Voltage 

(kV)  

Base Capacity 

(MVA)  

Positive and Negative 

Sequence Impedance (p.u.)  

Zero Sequence 

Impedance (p.u.)  

25  10  0.68283+j2.98139  0.09496+j1.39289  

 

Line Data: 

Section 

between 

nodes 

Length 

of 

Section 

(km) 

Series Impedance (Ohms/km) Shunt Admittance 

(Mhos/km) 

Positive & 

Negative 

Sequence 

Zero 

Sequence 

Positive & 

Negative 

Sequence 

Zero 

Sequence 

1 & 2 2.414 0.3480+j0.5166 0.5254+j1.7040 j3.74 E-06 j2.49 E-06 

2 & 6 16.092 0.3480+j0.5166 0.5254+j1.7040 j3.74 E-06 j2.49 E-06 

6 & 7 4.023 0.3480+j0.5166 0.5254+j1.7040 j3.74 E-06 j2.49 E-06 

7 & 8 5.150 0.5519+j0.5390 0.7290+j1.727 j3.59 E-06 j2.39 E-06 

8 & 9 2.414 0.5519+j0.5390 0.7290+j1.727 j3.59 E-06 j2.39 E-06 

9 & 10 4.506 0.5519+j0.5390 0.7290+j1.727 j3.59 E-06 j2.39 E-06 

10 & 11 2.414 0.3480+j0.5166 0.5254+j1.7040 j3.74 E-06 j2.49 E-06 

6 & 12 2.414 0.3480+j0.5166 0.5254+j1.7040 j3.74 E-06 j2.49 E-06 

8 & 13 2.414 7.3977+j0.8998 7.3977+j0.8998 j2.51 E-06 j2.51 E-06 
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13 & 14 2.414 7.3977+j0.8998 7.3977+j0.8998 j2.51 E-06 j2.51 E-06 

13 & 15 2.414 7.3977+j0.8998 7.3977+j0.8998 j2.51 E-06 j2.51 E-06 

15 & 16 2.414 7.3977+j0.8998 7.3977+j0.8998 j2.51 E-06 j2.51 E-06 

15 & 17 2.414 7.3977+j0.8998 7.3977+j0.8998 j2.51 E-06 j2.51 E-06 

9 & 18 2.414 7.3977+j0.8998 7.3977+j0.8998 j2.51 E-06 j2.51 E-06 

18 & 19 2.414 7.3977+j0.8998 7.3977+j0.8998 j2.51 E-06 j2.51 E-06 

18 & 20 3.219 7.3977+j0.8998 7.3977+j0.8998 j2.51 E-06 j2.51 E-06 

20 & 21 3.219 7.3977+j0.8998 7.3977+j0.8998 j2.51 E-06 j2.51 E-06 

 

 

Load data: 

Node 

Number  

Phase  Connected 

Size (kVA)  

Composition (%)  

Heating  Lighting  Motor  

1  A  15.0  99.8  0.1  0.1  

2  A  15.0  99.8  0.1  0.1  

7  B  15.0  99.8  0.1  0.1  

11  A, B & C  1000.0  0.1  0.1  99.8  

12  A, B & C  67.5  99.8  0.1  0.1  

14  B  15.0  99.8  0.1  0.1  

15  B  15.0  99.8  0.1  0.1  

16  B  7.5  99.8  0.1  0.1  



167 
 

 

17  B  15.0  99.8  0.1  0.1  

18  C  25.0  99.8  0.1  0.1  

19  C  15.0  99.8  0.1  0.1  

21  C  15.0  99.8  0.1  0.1  

 

Power Factor of Loads: 

Type of Load  Power Factor  

Heating  1.0  

Lighting  0.85 lag  

Motor  0.8 lag  
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APPENDIX - B 

 

Electrical Parameters of IEEE 13 – Node Feeder: 

Load Model Codes: 

 

 

 

 

 

 

 

 

 

 

Load Data: 

Node Load Ph-1 Ph-1 Ph-2 Ph-2 Ph-3 Ph-3 

 Model kW kVAr kW kVAr kW kVAr 

634 Y-PQ 160 110 120 90 120 90 

645 Y-PQ 0 0 170 125 0 0 

646 D-Z 0 0 230 132 0 0 

652 Y-Z 128 86 0 0 0 0 

671 D-PQ 385 220 385 220 385 220 

675 Y-PQ 485 190 68 60 290 212 

692 D-I 0 0 0 0 170 151 

611 Y-I 0 0 0 0 170 80 

 

 

 

 

Code Connection Model 

Y-PQ Wye Constant kW and kVAr 

Y-I Wye Constant Current 

Y-Z Wye Constant Impedance 

D- PQ Delta Delta Constant kW and 

kVAr 

D-I Delta Delta Constant Current 

D-Z Delta Delta Constant Impedance 
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Shunt Capacitor Bank: 

Node Ph-A Ph-B Ph-C 

 kVAr kVAr kVAr 

675 200 200 200 

611   100 

 

Overhead Line Spacing: 

Spacing ID Type 

500 Three – Phase, 4 wire 

505 Two – Phase ,3 wire 

510 Single – Phase , 2 wire 

 

Overhead Line Spacing: 

Config. Phasing Phase  Neutral  Spacing Configuration. 

  ACSR ACSR ID  

601 B A C N 556,500 26/7 4/0 6/1 500 601 

602 C A B N 4/0 6/1 4/0 6/1 500 602 

603 C B N 1/0 1/0 505 603 

604 A C N 1/0 1/0 505 604 

605 C N 1/0 1/0 510 605 

 

 

 

 

 

 

 


