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ABSTRACT 

Identification of wood is an important and difficult issue to deal with because of its complex 

biological structure. Correct identification of wood species is necessary for price fixation, 

fraudulent checking, protection of threatened plant and tree species at risk, and helping custom 

officials in proper assessment of wood species and implementation of tariffs accordingly. Wood 

is by and large classified into hardwood (HW) and softwood (SW) species. Softwood trees have 

limited number of cell types, which makes discrimination of softwood species a difficult task. On 

the other hand, hardwood species have a complex cellular structure and are easy to distinguish 

amongst the similar species.  

The wood identification task is accomplished by using 1) traditional, and 2) machine vision 

based methods. In, traditional approaches, wood experts usually identify the wood species by 

examining surface of the wood specimen at two different stages, first with the naked eye, then 

with a magnifier. Recognition of large volumes of wood species, employing traditional approach 

is prolonged, erroneous and unfeasible sometimes. To overcome the problems associated with 

the traditional methods of wood identification, machine vision technology was employed for 

wood identification. It works on the principle of obtaining certain statistical parameter of the wood 

species; thus, helpful in minimizing the error in wood identification. The machine vision based 

systems outperform experienced officers when large volumes of wood species are to be 

identified repeatedly with utmost accuracy, without getting fatigued.  

The macroscopic, microscopic and stereogram images of wood species have been used 

by the researchers for forest/wood species classification. A comprehensive analysis of the state-

of-the-art work published in the area of forest/wood species classification shows that different 

texture features and classification algorithms are used for wood species identification. Further, 

microscopic images of wood carries significant information useful in its precise identification as 

compared to limited information possessed by macroscopic images. Hence, current work utilizes 

microscopic images for hardwood species identification.  

The classification accuracy of hardwood species can be improved either by getting 

appropriate discernible texture features from the image using suitable feature extraction 

technique and/or by using suitable classifier. However, performance of the classifiers highly 

depends on the quality of its input features. This has been the motivation behind the proposal 

of using multiresolution texture feature extraction techniques to extract the significant features 

of the hardwood specie images for their efficient classification.  

In the light of the above background, the objectives of the present research work have 

been broadly categorized as design and development of suitable feature extraction techniques, 

and determination of vessel elements of hardwood species. Thus, the key objectives of this 

research work are formulated as: (1) Design and development of multiresolution texture feature 
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extraction techniques to acquire substantial information of the microscopic images of hardwood 

species, useful in their classification; (2) Employing feature dimensionality and feature selection 

techniques to investigate their effect in improving the classification of hardwood species; (3) 

Selection of appropriate multiclass classification algorithms to evaluate the effectiveness of 

multiresolution feature extraction techniques for classification of hardwood species, and 

determining the best combination of feature extraction and classification algorithms for better 

discrimination of hardwood species; and (4) Segmentation and determination of vessel elements 

to compute their hydraulic conductivity and lumen resistivity. 

To accomplish the above objectives, initially the state-of-the-art texture feature extraction 

techniques have been investigated for the classification of hardwood species. The texture 

descriptors produced by the state-of-the-art texture feature extraction techniques are based on 

spatial interactions over a fixed neighbourhood size on single scale image, which is appropriate 

for micro-texture analysis only. But, the microscopic images of hardwood species have four key 

elements namely vessels, rays, parenchyma and fibres, that too of varied shapes and sizes. In 

order to identify these images efficiently, it must be analysed at several scales of resolution as 

referred above. The smaller objects are the candidates to be examined at higher resolutions; 

whereas large size objects need to be examined at coarse view (lower) resolutions. To achieve 

multiresolution features, the images are decomposed at several levels of resolution; wherein 

each of the subimages coefficients contain varied and valuable information. Thereafter, the 

texture feature extraction techniques namely variants of local binary pattern (LBP), local 

configuration pattern (LCP), local ternary pattern (LTP), completed local binary pattern (CLBP) 

and local phase quantization (LPQ) are chosen to extract significant information from 

multiresolution images. The feature vector data obtained from each of the subimages are 

concatenated to increase the significant information of the images. 

The multiresolution based texture feature extraction techniques have tendency to 

produce large number of complex features and many of the features may not be significant. 

Keeping this aspect in mind, feature selection and feature dimensionality reduction techniques 

have been employed not only to improve the classification accuracy but at the same time to 

minimize the computation time needed by classification algorithms. The principal component 

analysis (PCA) has been incorporated to reduce feature vector data dimensions by computing 

a few orthogonal linear combinations of the original dataset features with maximal variance. In 

addition, the minimal redundancy maximal relevance (mRMR) feature selection technique 

based on mutual information quotient has been chosen to eliminate the irrelevant features, and 

retain a subset of features that efficiently describes the observed input data.  

The classification algorithms do play important role in improving the overall classification 

accuracy. Thus, four widely used classification algorithms, namely, linear discriminant analysis 

(LDA), random forest (RF), linear SVM and radial basis function (RBF) kernel SVM have been 



iii 

 

employed to see the effect of features produced by proposed texture feature extraction 

techniques on the classification accuracy. Further, the performance of proposed feature 

extraction techniques, have been assessed with two different approaches; namely, 1) The 10-

fold cross validation, and 2) Randomly divided database (RDD). Furthermore, under the 

individual approaches the results have further been categorized under full feature vector data 

(FFVD), PCA reduced feature vector data and mRMR feature selection based reduced feature 

vector data.  

The present research work initially, examines the efficiency of several state-of-the-art 

texture feature extraction techniques for the classification of hardwood species. The selection 

of the feature extraction techniques have been based on their performance achieved in the 

various areas of image processing applications.  

In the objectives mentioned in the beginning, the transform domain techniques have been 

opted here due to their multiresolution capability for analysing images at different frequencies 

for several levels of resolutions. The different frequency sub-band images provide substantial 

information about the various objects of the images compared to the information obtained from 

spatial domain grayscale images.  

In, multiresolution feature extraction technique category, first approach has been design 

of the binary wavelet transform (BWT) based texture feature extraction techniques. By and large, 

the grayscale images have been utilized for extraction of texture features. It has been observed 

that the most significant bit (MSB), bit-plane (b7) of grayscale image contributes ample amount 

of information to the overall image. Thus, the BWT based LBP variants texture feature extraction 

techniques have been proposed to classify the hardwood species. The performance of BWT 

based LBP variants texture feature extraction technique has been found comparatively superior 

or at par with most of the state-of-the-art texture feature extraction techniques for hardwood 

species’ classification.  

The BWT based LBP variants have used only the MSB bit to extract the texture features 

of images; thus, the classification accuracy cannot be improved beyond a specific limit as the 

MSB bit does not correspond to 100% information about the image. To further enrich the quality 

of texture features, texture feature extraction techniques based on the Gaussian image pyramid 

(GP) model has been proposed. The selection of GP has been based on less computational 

efforts required in its implementation. Amongst, the GP based texture feature extraction 

techniques, the Gaussian image pyramid based local phase quantization (GPLQP) technique 

has produced the best classification accuracy, better than the techniques discussed in the 

preceding paragraphs. 

In addition, the discrete wavelet transform (DWT) based LBP (DWTLBP) variants texture 

feature extraction techniques have been chosen for hardwood species classification as DWT 

has the property to emphasize the directional information of the images. The texture features 
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obtained from these directional subimages further help to the enrichment of feature vector data; 

which in turn help in better discrimination of the hardwood species. Amongst the proposed DWT 

based LBP variants texture feature extraction techniques, the DWT based uniform completed 

local binary pattern (DWTCLBPu2) texture features processed by mRMR feature selection 

technique has yielded the best classification accuracy.  

Further, to improve the classification accuracy of hardwood species, DWT based hybrid 

texture feature extraction techniques have been proposed; where, DWT decomposed 

subimages have been profound to be used with LBP and first-order statistics (FOS) techniques 

to get the tentative features. Moreover, it is proposed to fuse the features obtained from LBP 

and FOS methods. This technique thereafter is investigated to extract the texture features of 

both, the grayscale and color (RGB) images. It is observed that the mRMR feature selection 

based texture features of discrete wavelet transform based first-order statistics and local binary 

pattern histogram Fourier features (DWTFOSLBP-HF) technique produces the best 

classification accuracy for both types of images. Also, the texture features acquired by 

DWTFOSLBP-HF texture feature extraction technique for hardwood species are of excellent 

quality and no significant information loss is observed when grayscale image is employed for 

the classification in place of RGB image. 

For the purpose of evaluating the performance of the proposed features extraction 

techniques with the help of classifiers, an open access database of hardwood species consisting 

of 75 different categories has been selected. These microscopic images of hardwood species 

are correctly labelled by the experts in the laboratory of wood anatomy at Federal University of 

Parana, Curitiba, Brazil. 

In addition to the above classification work, a platform independent tool based on simple 

digital image processing technique has been developed to quantify the vessel elements of 

hardwood species. A prototype model has been developed and has been tested on several 

microscopic images prepared at the Xylarium (DDw) of the Wood Anatomy Discipline of the 

Forest Research Institute, Dehradun. The analysis of the experimental work suggests that with 

the help of appropriate parameter selection, the vessel elements are being extracted for most 

of the images. Further, along with the extraction of vessel elements, the proposed model is 

capable of computing the hydraulic conductivity and lumen resistivity of the vessel elements, 

which in turn provides helping hand to the wood anatomist in characterizing the woods.  

In nutshell, the significant contribution of this thesis work can be summed up as the 

proposed multiresolution feature extraction techniques, which help in to extract the discernible 

features of the microscopic images of hardwood species and the improvement in the 

classification accuracy because of them. The determination of vessel elements while using 

segmentation approach can be considered as the further contribution. 



v 

 

ACKNOWLEDGEMENTS 

I owe my gratitude to all those people who have made this dissertation possible and because of 

whom my research experience has been one that I will cherish forever.  

I wish to express deep sense of gratitude and sincere thanks to my thesis supervisors, Dr. 

R. S. Anand, Professor and Dr. M. L. Dewal, Ex-Professor, Department of Electrical 

Engineering, Indian Institute of Technology Roorkee, Roorkee, & Dr. Sangeeta Gupta, Head-

Wood Anatomy Discipline, Botany Division, Forest Research Institute, Dehradun, for their 

invaluable inspiration, competent guidance, wholehearted cooperation, motivation and help in 

carrying out this research work.  

I would like to thank members of my examining committee, Dr. Vinod Kumar, Professor & 

Chairman DRC and Dr. Indra Gupta, Associate Professor, Department of Electrical Engineering 

& Dr. M. J. Nigam, Professor, Department of Electronics and Communication Engineering, 

Indian Institute of Technology Roorkee, Roorkee, for their vigilant examination of the work and 

instrumental suggestions. I also take this opportunity to thank Dr. Vinay Pant, Assistant 

Professor, Dr. P. Sumathi, Assistant Professor, Dr. G. N. Pillai, Professor, Dr. Pramod Agarwal, 

Professor & Dean Academics, and Dr. S. P. Srivastava, Head, Department of Electrical 

Engineering, IITR, Roorkee, for their continuous support.  

I would like to express earnest gratitude to Prof. Luiz Eduardo S. Oliveira, Federal 

University of Parana (UFPR), Department of Informatics, for providing microscopic images of 

hardwood species for academic research purpose. Further, I am grateful to the anonymous 

reviewers for providing valuable suggestions for improving the work. 

I am really thankful to Mr. Arun Balodi, Mr. Bhavik Patel, Mr. Yogesh Saria, Mr. Jayendra 

Kumar, Mr. Sachin Singh, Mr. Roshan Kumar, Mr. Milan Singh, Mr. Nagshettappa Biradar, Mr. 

Uday Joshi, Mr. Marmik Bhavsar, Ms. Nisha Shah, Mr. Ankit Srivastava, Ms. Nidhi Chauhan, 

Mr. Chandrasekhar shitole, Dr. Yantindra kumar and Dr. Divyang Pandya for their constant care 

and support during my entire research work. It is a pleasure to acknowledge the support 

extended by all the laboratory and administrative staff.  

I also take this opportunity to express my heartfelt gratitude to Dr. Jayesh Patel, President, 

Dr. Devanshu Patel, Vice Presiden, Parul University, and the Principal, Dr. Vilin Parekh, Parul 

Institute of Engineering and Technology, Waghodia, Vadodara, for sponsoring me for the 

doctoral research work at IIT Roorkee. I also thank and sincerely acknowledge the financial 

support and assistantship provided by the QIP Centre, Indian Institute of Technology, Roorkee, 

during the research work. 

I would like to thank to all my family members, especially my parents, who constantly 

encouraged and provided moral and social support during my research. Their sacrifice in difficult 

times not only boosted my morale but also provided motivation and enthusiasm in my research 



vi 

 

work. Very special thanks to my wife, Neelam for being a constant companion in my ups and 

downs at Roorkee. Piyush and Vaani owe a special mention as they sacrificed the time that 

rightfully belonged to them. Their smiling faces always kept me lively. Special thanks to Mr. 

Ashok Yadav and Mr. Rajan Yadav who have been continuous source of moral support to me 

during my research work. 

At the outset, I also thank almighty god for giving me strength, courage, health and wisdom 

helpful in completion of my research work. Last but not the least, I am thankful to all those who 

have helped me directly or indirectly in the successful completion of this thesis. 

 

(YADAV ARVINDKUMAR RAMREKHA) 

 



vii 

 

CONTENTS 

ABSTRACT  ......................................................................................................................... I 

ACKNOWLEDGEMENTS ........................................................................................................ V 

CONTENTS  ...................................................................................................................... VII 

LIST OF FIGURES ................................................................................................................ XIII 

LIST OF TABLES ................................................................................................................ XXI 

LIST OF ABBREVIATIONS .............................................................................................. XXVII 

CHAPTER 1. INTRODUCTION ............................................................................................. 1 

1.1 NEED OF WOOD IDENTIFICATION ............................................................................... 1 

1.2 WOOD IDENTIFICATION CHALLENGES ....................................................................... 2 

1.3 WOOD ANATOMY .......................................................................................................... 2 

1.4 MACRO CROSS-SECTION CHARACTERISTICS OF TREE-STEM ............................... 3 

 Vessel .................................................................................................................. 6 

 Vessel (Pore) Arrangements ................................................................................ 7 

 Fiber .................................................................................................................... 8 

 Ray ...................................................................................................................... 8 

 Parenchyma ........................................................................................................ 8 

1.5 WOOD IDENTIFICATION METHODS ............................................................................. 9 

 Traditional Methods ............................................................................................. 9 

 Drawbacks of Traditional Methods of Wood Identification .................................. 11 

 Machine Vision Based Wood Identification ........................................................ 11 

1.6 APPLICATIONS OF WOOD .......................................................................................... 12 

1.7 LITERATURE REVIEW ................................................................................................. 13 

1.8 RESEARCH OBJECTIVES OF THE PRESENT STUDY ............................................... 19 

1.9 ORGANIZATION OF THE THESIS ............................................................................... 20 

CHAPTER 2. STATE-OF-THE-ART TEXTURE FEATURE EXTRACTION TECHNIQUES . 23 

2.1 STATE-OF-THE-ART TEXTURE FEATURE EXTRACTION TECHNIQUES ................. 23 

 First-order Statistics (FOS) ................................................................................ 23 

 Gray Level Co-occurrence Matrix (GLCM) ......................................................... 24 

 Gray Level Run Length Matrix (GLRLM) ............................................................ 25 

 Gabor Filter ........................................................................................................ 25 

 Local Binary Pattern (LBP) ................................................................................ 26 

 Uniform Local Binary Pattern (LBPu2) ................................................................. 27 

 Rotation Invariant Local Binary Pattern (LBPri) ................................................... 27 

 Rotation Invariant Uniform Local Binary Pattern (LBPriu2) ................................... 27 

 Local Binary Pattern Histogram Fourier Features (LBP-HF)............................... 28 



viii 

 

 Adaptive Local Binary Pattern (ALBP) ................................................................ 28 

 Co-occurrence of Adjacent Local Binary Pattern (CoALBP) ............................... 29 

 Center-Symmetric Local Binary Pattern (CSLBP) ............................................... 29 

 Completed Local Binary Pattern (CLBP) ............................................................ 30 

 Dense Completed Local Binary Pattern (DenseCLBP) ....................................... 31 

 Local Directional Pattern (LDP) .......................................................................... 31 

 Local Ternary Pattern (LTP) ............................................................................... 32 

 Local Ternary Co-occurrence Pattern (LTCoP) .................................................. 33 

 Local Configuration Pattern (LCP) ...................................................................... 33 

 Local Phase Quantization (LPQ) ........................................................................ 34 

 Gradient Local Auto-correlation (GLAC) ............................................................. 35 

 Binary Gabor Pattern (BGP) ............................................................................... 35 

2.2 FEATURE DIMENSIONALITY REDUCTION ................................................................ 36 

 Principal Component Analysis (PCA) ................................................................. 36 

 Minimal Redundancy Maximal Relevance (mRMR) ............................................ 36 

2.3 CLASSIFIERS .............................................................................................................. 37 

 Linear Discriminant Analysis .............................................................................. 37 

 Random Forest .................................................................................................. 37 

 Support Vector Machine ..................................................................................... 37 

 Linear SVM ........................................................................................................ 38 

 Radial Basis Function Kernel SVM ..................................................................... 38 

2.4 MICROSCOPIC IMAGE DATABASE OF HARDWOOD SPECIES ............................... 38 

2.5 METHODOLOGY ......................................................................................................... 40 

 Procedural Steps ................................................................................................ 40 

 Approaches used for Performance Evaluation of Feature Extraction 

 Techniques ........................................................................................................ 41 

2.6 EXPERIMENTAL RESULTS AND DISCUSSION ......................................................... 41 

 Parameter Selection ........................................................................................... 42 

 Experimental Results ......................................................................................... 43 

 Performance Evaluation of State-of-the-art Texture Feature Extraction Techniques 

 using 10-fold Cross Validation Approach ............................................................ 43 

 Performance Evaluation of State-of-the-art Texture Feature Extraction Techniques 

 using Randomly Divided Database (RDD) .......................................................... 51 



ix 

 

2.7 SUMMARY .................................................................................................................... 65 

CHAPTER 3. BWT BASED TEXTURE FEATURE EXTRACTION TECHNIQUES .............. 67 

3.1 INTRODUCTION ........................................................................................................... 67 

3.2 BINARY WAVELET TRANSFORM (BWT) FOR GRAYSCALE IMAGE: A REVIEW ...... 68 

 One-dimensional BWT (1D-BWT) ...................................................................... 68 

 Two-dimensional BWT (2D-BWT) ...................................................................... 69 

3.3 PROPOSED METHODOLOGY ..................................................................................... 70 

 Procedural Steps ............................................................................................... 70 

 Approaches used for Performance Evaluation of Feature Extraction 

 Techniques ........................................................................................................ 72 

3.4 EXPERIMENTAL RESULTS AND DISCUSSION .......................................................... 72 

 Parameter Selection .......................................................................................... 72 

 Experimental Results ......................................................................................... 72 

 Performance Evaluation of BWT based LBP Variants Texture Feature Extraction 

 Techniques using 10-fold Cross Validation Approach ........................................ 72 

 Performance Evaluation of BWT based LBP Variants Texture Feature Extraction 

 Techniques using Randomly Divided Database (RDD) ...................................... 81 

3.5 SUMMARY .................................................................................................................... 96 

CHAPTER 4. GAUSSIAN IMAGE PYRAMID BASED TEXTURE FEATURE EXTRACTION 
TECHNIQUES  ...................................................................................................................... 99 

4.1 INTRODUCTION ........................................................................................................... 99 

4.2 PROPOSED METHODOLOGY ................................................................................... 100 

 Procedural Steps ............................................................................................. 100 

 Approaches used for Performance Evaluation of Feature Extraction 

 Techniques ...................................................................................................... 101 

4.3 EXPERIMENTAL RESULTS AND DISCUSSION ........................................................ 101 

 Parameter Selection ........................................................................................ 102 

 Experimental Results ....................................................................................... 102 

 Performance Evaluation of GP based Texture Feature Extraction Techniques 

 using 10-fold Cross Validation Approach ......................................................... 102 

 Performance Evaluation of GP based Texture Feature Extraction Techniques 

 using Randomly Divided Database (RDD) ....................................................... 111 



x 

 

4.4 SUMMARY ................................................................................................................. 127 

CHAPTER 5. DWT BASED TEXTURE FEATURE EXTRACTION TECHNIQUES ............ 129 

5.1 INTRODUCTION ........................................................................................................ 129 

5.2 PROPOSED METHODOLOGY .................................................................................. 130 

 Procedural Steps .............................................................................................. 130 

 Approaches used for Performance Evaluation of Feature Extraction 

 Techniques ...................................................................................................... 132 

5.3 EXPERIMENTAL RESULTS AND DISCUSSION ....................................................... 132 

 Parameter Selection ......................................................................................... 132 

 Experimental Results ....................................................................................... 132 

 Performance Evaluation of DWT based Texture Feature Extraction Techniques 

 using 10-fold Cross Validation Approach .......................................................... 133 

 Performance Evaluation of GP based Texture Feature Extraction Techniques 

 using Randomly Divided Database (RDD) ........................................................ 142 

5.4 SUMMARY ................................................................................................................. 159 

CHAPTER 6. DWT BASED HYBRID TEXTURE FEATURE EXTRACTION 
TECHNIQUES  .................................................................................................................... 161 

6.1 INTRODUCTION ........................................................................................................ 161 

6.2 PROPOSED METHODOLOGY .................................................................................. 161 

 Procedural Steps .............................................................................................. 161 

 Approaches used for Performance Evaluation of Feature Extraction 

 Techniques ...................................................................................................... 164 

6.3 EXPERIMENTAL RESULTS AND DISCUSSION ....................................................... 164 

 Parameter Selection ......................................................................................... 164 

 Experimental Results ....................................................................................... 164 

 Performance Evaluation of DWT based Hybrid Texture Feature Extraction 

 Techniques for Grayscale Images using 10-fold Cross Validation Approach .... 164 

 Performance Evaluation of DWT based Hybrid Texture Feature Extraction 

 Techniques for Grayscale Images using Randomly Divided Database (RDD) .. 173 

 Performance Evaluation of DWT based Hybrid Texture Feature Extraction 

 Techniques for RGB Images using 10-fold Cross Validation Approach ............ 185 

 Performance Evaluation of DWT based Hybrid Texture Feature Extraction 

 Techniques for RGB Images using Randomly Divided Database (RDD) .......... 193 



xi 

 

6.4 SUMMARY .................................................................................................................. 206 

CHAPTER 7. SEGMENTATION AND DETERMINATION OF VESSEL ELEMENTS ........ 209 

7.1 INTRODUCTION ......................................................................................................... 209 

7.2 IMAGE DATABASE .................................................................................................... 210 

7.3 METHODOLOGY ........................................................................................................ 211 

 RGB to Grayscale Conversion ......................................................................... 212 

 Image Enhancement ........................................................................................ 212 

 Image Gradient ................................................................................................ 212 

 Image Segmentation and Morphological Operations ........................................ 212 

 Measurement of Objects .................................................................................. 213 

 Vessel Elements and their Hydraulic Conductivity ........................................... 213 

7.4 EXPERIMENTAL RESULTS AND DISCUSSION ........................................................ 214 

7.5 SUMMARY .................................................................................................................. 224 

CHAPTER 8. CONCLUSIONS AND SCOPE FOR FUTURE WORK ................................ 225 

8.1 CONCLUSIONS .......................................................................................................... 225 

 Performance of State-of-the-art Texture Feature Extraction Techniques.......... 225 

 Performance of BWT based Texture Feature Extraction Techniques ............... 226 

 Performance of GP based Texture Feature Extraction Techniques .................. 227 

 Performance of DWT based Texture Feature Extraction Techniques ............... 227 

 Performance of DWT based Hybrid Texture Feature Extraction Techniques ... 228 

 Segmentation and Determination of Vessel Elements ...................................... 229 

8.2 SCOPE FOR THE FUTURE WORK ............................................................................ 230 

PUBLICATIONS FROM THE WORK ................................................................................... 231 

REFERENCES  .................................................................................................................... 233 

 



xii 

 

 



xiii 

 

LIST OF FIGURES 

Fig. 1.1  The three reference planes of wood  ...................................................................... 3 

Fig. 1.2  Microscopic structure of angiosperm wood (maple) ................................................ 3 

Fig. 1.3  Tree stem cross-section view ................................................................................. 4 

Fig. 1.4  Three-dimensional view of hardwood and Softwood species samples ................... 5 

Fig. 1.5  Cube of hardwood species showing three planes of section and arrangement of 

principle tissues of the xylem ................................................................................. 5 

Fig. 1.6  Microscopic structure of cells of hardwood specie .................................................. 6 

Fig. 1.7  Hardwood species a) Ring porous b) Semi-ring porous, and c) Diffuse porous ...... 6 

Fig. 1.8  Pore arrangements  ............................................................................................... 7 

Fig. 1.9  Parenchyma arrangements around hardwood pores  ............................................. 8 

Fig. 1.10  The dichotomous key  .......................................................................................... 10 

Fig. 2.1  Gabor filters (5 scales and and 8 orientations). ..................................................... 26 

Fig. 2.2  The LBP computation process a) 3 3 local window image, (b) thresholding, (c) 

weight and d) new center pixel value (decimal). ................................................... 26 

Fig. 2.3  CS-LBP features (considering neighbourhood size of 8 pixels). ........................... 30 

Fig. 2.4  (a) 3 3 block of image, (b) local difference ( p cg g ), (c) sign component, and (d) 

magnitude component. ......................................................................................... 30 

Fig. 2.5  Structure of CLBP ................................................................................................ 31 

Fig. 2.6  Kirsch masks in eight directions. .......................................................................... 32 

Fig. 2.7  Procedure to calculate LDP code for k=3. ............................................................ 32 

Fig. 2.8  LTP calculation process ....................................................................................... 32 

Fig. 2.9  Illustration of LTCoP computation. ....................................................................... 33 

Fig. 2.10  Hardwood species classification using state-of-the-art texture feature extraction 

technique. ............................................................................................................ 40 

Fig. 2.11  Classification accuracy achieved using FFVD. ..................................................... 45 

Fig. 2.12  Feature extraction time for single grayscale image. .............................................. 45 

Fig. 2.13  Error bar plot with SD using FFVD. ...................................................................... 46 

Fig. 2.14  Classification accuracy achieved using PCA reduced feature vector data. ........... 48 

Fig. 2.15  Error bar plot with SD using PCA reduced feature vector data. ............................ 48 

Fig. 2.16  Classification accuracy achieved using mRMR feature selection based reduced 

feature vector data. .............................................................................................. 50 

Fig. 2.17  Error bar plot with SD using mRMR feature selection based reduced feature vector 

data. ..................................................................................................................... 50 

Fig. 2.18  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. .................................................................................................................... 53 



xiv 

 

Fig. 2.19  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. ................................................................................................................... 53 

Fig. 2.20  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. ................................................................................................................... 54 

Fig. 2.21  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. ................................................................................................................... 54 

Fig. 2.22  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. ................................................................................................................... 59 

Fig. 2.23  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. ................................................................................................................... 59 

Fig. 2.24  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. ................................................................................................................... 60 

Fig. 2.25  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. ................................................................................................................... 60 

Fig. 2.26  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. ................................................................................................................... 64 

Fig. 2.27  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. ................................................................................................................... 64 

Fig. 2.28  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. ................................................................................................................... 65 

Fig. 2.29  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. ................................................................................................................... 65 

Fig. 3.1  In-place implementation of group 1 filter of 1D-BWT filter .................................... 69 

Fig. 3.2  Separable 2D-BWT implementation at the 1st scale/level for binary image .......... 69 

Fig. 3.3  The CLBPu2 texture descriptor images of b7 bit-plane of grayscale image generated 

by 2D-BWT image decomposition........................................................................ 70 

Fig. 3.4  Block diagram of 2D-BWT based LBP variants texture features for image 

classification ........................................................................................................ 71 

Fig. 3.5  Classification accuracy achieved using FFVD. .................................................... 74 

Fig. 3.6  Feature extraction time for single grayscale image. ............................................. 75 

Fig. 3.7  Error bar plot with SD using FFVD. ...................................................................... 75 

Fig. 3.8  Classification accuracy achieved using PCA reduced feature vector dataset. ...... 77 

Fig. 3.9  Error bar plot with SD using PCA reduced feature vector data. ............................ 78 

Fig. 3.10  Classification accuracy achieved using mRMR feature selection based reduced 

feature vector data. .............................................................................................. 80 

Fig. 3.11  Error bar plot with SD using mRMR feature selection based reduced feature vector 

data. .................................................................................................................... 80 



xv 

 

Fig. 3.12  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. .................................................................................................................... 83 

Fig. 3.13  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. .................................................................................................................... 83 

Fig. 3.14  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. .................................................................................................................... 84 

Fig. 3.15  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. .................................................................................................................... 84 

Fig. 3.16  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. .................................................................................................................... 89 

Fig. 3.17  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. .................................................................................................................... 89 

Fig. 3.18  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. .................................................................................................................... 90 

Fig. 3.19  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. .................................................................................................................... 90 

Fig. 3.20  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. .................................................................................................................... 94 

Fig. 3.21  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. .................................................................................................................... 94 

Fig. 3.22  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. .................................................................................................................... 95 

Fig. 3.23  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. .................................................................................................................... 95 

Fig. 4.1  Gaussian image pyramid of Guianensis species at 0G  to 6G  levels. .................... 99 

Fig. 4.2  Schematic for classification of hardwood species using Gaussian image pyramid 

based texture feature extraction techniques ....................................................... 100 

Fig. 4.3  Classification accuracy achieved using FFVD. ................................................... 104 

Fig. 4.4  Feature extraction time for single grayscale image. ............................................ 104 

Fig. 4.5  Error bar plot with SD using FFVD. .................................................................... 105 

Fig. 4.6  Classification accuracy achieved using PCA reduced feature vector data. ......... 107 

Fig. 4.7  Error bar plot with SD using PCA reduced feature vector data. .......................... 107 

Fig. 4.8  Classification accuracy achieved using mRMR feature selection based reduced 

feature vector data. ............................................................................................ 110 

Fig. 4.9  Error bar plot with SD using mRMR feature selection based reduced feature vector 

data. ................................................................................................................... 110 



xvi 

 

Fig. 4.10  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. ................................................................................................................. 113 

Fig. 4.11  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. ................................................................................................................. 113 

Fig. 4.12  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. ................................................................................................................. 114 

Fig. 4.13  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. ................................................................................................................. 114 

Fig. 4.14  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. ................................................................................................................. 119 

Fig. 4.15  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. ................................................................................................................. 119 

Fig. 4.16  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. ................................................................................................................. 120 

Fig. 4.17  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. ................................................................................................................. 120 

Fig. 4.18  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. ................................................................................................................. 125 

Fig. 4.19  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. ................................................................................................................. 125 

Fig. 4.20  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. ................................................................................................................. 126 

Fig. 4.21  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. ................................................................................................................. 126 

Fig. 5.1  The Aurantium species image at 3rd level of image decomposition by DWT, (a) 

CLBP_S texture image, and (b) CLBP_M texture image. ................................... 130 

Fig. 5.2  Block diagram of proposed multiresolution local binary pattern (MRLBP) variants 

based texture features for hardwood species classification................................ 131 

Fig. 5.3  Classification accuracy achieved using FFVD. .................................................. 135 

Fig. 5.4  Feature extraction time for single grayscale image. ........................................... 135 

Fig. 5.5  Error bar plot with SD using FFVD. .................................................................... 136 

Fig. 5.6  Classification accuracy achieved using PCA reduced feature vector data. ........ 138 

Fig. 5.7  Error bar plot with SD using PCA reduced feature vector data. .......................... 139 

Fig. 5.8  Classification accuracy achieved using mRMR feature selection based reduced 

feature vector data. ............................................................................................ 141 

Fig. 5.9  Error bar plot with SD using mRMR feature selection based reduced feature vector 

data. .................................................................................................................. 141 



xvii 

 

Fig. 5.10  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. .................................................................................................................. 144 

Fig. 5.11  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. .................................................................................................................. 144 

Fig. 5.12  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. .................................................................................................................. 145 

Fig. 5.13  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. .................................................................................................................. 145 

Fig. 5.14  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. .................................................................................................................. 150 

Fig. 5.15  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. .................................................................................................................. 150 

Fig. 5.16  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. .................................................................................................................. 151 

Fig. 5.17  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. .................................................................................................................. 151 

Fig. 5.18  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. .................................................................................................................. 156 

Fig. 5.19  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. .................................................................................................................. 156 

Fig. 5.20  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. .................................................................................................................. 157 

Fig. 5.21  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. .................................................................................................................. 157 

Fig. 5.22  The Aurantium species image, (a) Grayscale image, (b) LBP image, (c) LBPu2 

image, (d) LBP-HF image, (e) LBPri image, (f) LBPriu2 image, (g) CLBPu2_S image, 

and (h) CLBPu2_M image ................................................................................... 158 

Fig. 6.1  Block diagram of hardwood species classification using DWT based hybrid texture 

feature extraction techniques. ............................................................................ 162 

Fig. 6.2  (a) Color image of Pachycarpa specie (b) the Pachycarpa specie grayscale image 

obtained at the 5th level of image decomposition using DWT. ............................. 162 

Fig. 6.3  Classification accuracy achieved using FFVD. ................................................... 166 

Fig. 6.4  Feature extraction time for single grayscale image. ............................................ 167 

Fig. 6.5  Error bar plot with SD using FFVD. .................................................................... 167 

Fig. 6.6  Classification accuracy achieved using PCA reduced feature vector data. ......... 169 

Fig. 6.7  Error bar plot with SD using PCA reduced feature vector data. .......................... 169 



xviii 

 

Fig. 6.8  Classification accuracy achieved using mRMR feature selection based reduced 

feature vector data. ............................................................................................ 171 

Fig. 6.9  Error bar plot with SD using mRMR feature selection based reduced feature vector 

data. .................................................................................................................. 172 

Fig. 6.10  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. ................................................................................................................. 174 

Fig. 6.11  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. ................................................................................................................. 175 

Fig. 6.12  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. ................................................................................................................. 175 

Fig. 6.13  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. ................................................................................................................. 176 

Fig. 6.14  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. ................................................................................................................. 177 

Fig. 6.15  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. ................................................................................................................. 178 

Fig. 6.16  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. ................................................................................................................. 179 

Fig. 6.17  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. ................................................................................................................. 180 

Fig. 6.18  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. ................................................................................................................. 183 

Fig. 6.19  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. ................................................................................................................. 184 

Fig. 6.20  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. ................................................................................................................. 184 

Fig. 6.21  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. ................................................................................................................. 185 

Fig. 6.22  Classification accuracy achieved using FFVD ................................................... 187 

Fig. 6.23  Feature extraction time for single RGB image.................................................... 187 

Fig. 6.24  Error bar plot with SD using FFVD. .................................................................... 188 

Fig. 6.25  Classification accuracy achieved using PCA reduced feature vector data. ........ 190 

Fig. 6.26  Error bar plot with SD using PCA reduced feature vector data. .......................... 190 

Fig. 6.27  Classification accuracy achieved using mRMR feature selection based reduced 

feature vector data. ............................................................................................ 192 

Fig. 6.28  Error bar plot with SD using mRMR feature selection based reduced feature vector 

data. .................................................................................................................. 193 



xix 

 

Fig. 6.29  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. .................................................................................................................. 195 

Fig. 6.30  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. .................................................................................................................. 195 

Fig. 6.31  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. .................................................................................................................. 196 

Fig. 6.32  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. .................................................................................................................. 196 

Fig. 6.33  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. .................................................................................................................. 198 

Fig. 6.34  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. .................................................................................................................. 199 

Fig. 6.35  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. .................................................................................................................. 200 

Fig. 6.36  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. .................................................................................................................. 201 

Fig. 6.37  Classification accuracy achieved for 80/20 proportion of training and testing data of 

RDD. .................................................................................................................. 202 

Fig. 6.38  Classification accuracy achieved for 70/30 proportion of training and testing data of 

RDD. .................................................................................................................. 203 

Fig. 6.39  Classification accuracy achieved for 60/40 proportion of training and testing data of 

RDD. .................................................................................................................. 205 

Fig. 6.40  Classification accuracy achieved for 50/50 proportion of training and testing data of 

RDD. .................................................................................................................. 205 

Fig. 7.1  Flow chart to compute the hydraulic conductivity of the vessel elements ........... 211 

Fig. 7.2  (a) RGB image, b) grayscale image, (c),image enhancement using contrast 

adjustment, (d), gradient image obtained by application of Sobel mask to the 

enhanced grayscale image (e) complement of gradient image, and (f) binary image, 

for Tectona grandis specie image. ..................................................................... 216 

Fig. 7.3  (a) Binary image with hole filling, (b) extracted vessel elements, (c) image produced 

by multiplication of complement gradient image and extracted vessel elements 

objects, (d) wall width of vessel elements, and (e) vessel lumen area, for Tectona 

grandis specie image. ........................................................................................ 217 

Fig. 7.4  (a) RGB image, b) grayscale image, (c),image enhancement using contrast 

adjustment, (d), gradient image obtained by application of Sobel mask to the 

enhanced grayscale image (e) complement of gradient image, and (f) binary image, 

for Spathodea campanulata specie image ......................................................... 219 



xx 

 

Fig. 7.5  (a) Binary image with hole filling, (b) extracted vessel elements, (c) image produced 

by multiplication of complement gradient image and extracted vessel elements 

objects, (d) wall width of vessel elements, and (e) vessel lumen area, for Spathodea 

campanulata specie image. ............................................................................... 220 

Fig. 7.6  Column 1, 2, and 3 depicts RGB image, enhanced grayscale image and extracted 

vessel elements, respectively for microscopic images of a) Rubus ellipticus 

(DDw2367), b) Rosa lechenauitiana (DDw3801), c) Punica granatum (DDw4706), 

d) Ardisia humilis (DDw3463), and e) Embelia floribunda (DDw 3294) species. 221 

Fig. 7.7  Column 1, 2, and 3 depicts RGB image, enhanced grayscale image and extracted 

vessel elements, respectively for microscopic images of a) Stephania rotunda 

(DDw5367), b) Buddleja paniculata (DDw2882), c) Elaeagnus latifolia (DDw4454), 

d) Elaeagnus latifolia (DDw3804), and e) Haematoxylon campechianum (DDw4559) 

species. ............................................................................................................. 222 

Fig. 7.8  Column 1, 2, and 3 depicts RGB image, enhanced grayscale image and extracted 

vessel elements, respectively for microscopic images of a) Berberis lyceum 

(DDw3054), b) Senecio corymbosus (DDw3787), c) Carissa opaca (DDw3511), and 

d) Carissa opaca (DDw3518) species. ............................................................... 223 

 



xxi 

 

LIST OF TABLES 

Table 2.1  Second-order statistical texture features calculated from GLCM matrix. ............... 24 

Table 2.2  GLRLM statistical texture features ....................................................................... 25 

Table 2.3  List of hardwood species ...................................................................................... 39 

Table 2.4  Classification accuracy achieved using full feature vector data ............................ 44 

Table 2.5  Classification accuracy achieved using PCA based reduced feature vector data. 47 

Table 2.6  Classification accuracy achieved using mRMR feature selection based reduced 

feature vector data. .............................................................................................. 49 

Table 2.7  Classification accuracy achieved by full feature vector data for different proportions 

of training and testing data of RDD using three classifiers. ................................... 52 

Table 2.8  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using linear SVM classifier. ......... 55 

Table 2.9  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using RBF kernel SVM classifier. 56 

Table 2.10  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using RF classifier. ..................... 57 

Table 2.11  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using LDA classifier. ................... 58 

Table 2.12  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using linear 

SVM classifier. ..................................................................................................... 61 

Table 2.13  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using RBF 

kernel SVM classifier. ........................................................................................... 62 

Table 2.14  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using RF 

classifier. .............................................................................................................. 63 

Table 3.1  Filter groups of length-8 binary filters for BWT ..................................................... 68 

Table 3.2  Classification accuracy achieved using full feature vector data. ........................... 73 

Table 3.3  Classification accuracy achieved using PCA based reduced feature vector data. 76 

Table 3.4  Classification accuracy achieved using mRMR feature selection based reduced 

feature vector data. .............................................................................................. 79 

Table 3.5  Classification accuracy achieved by full feature vector data for different proportions 

of training and testing data of RDD using three classifiers. ................................... 82 

Table 3.6  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using linear SVM classifier. ......... 85 



xxii 

 

Table 3.7  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using RBF kernel SVM classifier. 86 

Table 3.8  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using LDA classifier. .................. 87 

Table 3.9  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using RF classifier. ..................... 88 

Table 3.10  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using linear 

SVM classifier. ..................................................................................................... 91 

Table 3.11  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using RBF 

kernel SVM classifier. .......................................................................................... 92 

Table 3.12  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using RF 

classifier. ............................................................................................................. 93 

Table 4.1  Classification accuracy achieved using full feature vector data. ......................... 103 

Table 4.2  Classification accuracy achieved using PCA based reduced feature vector data.

 .......................................................................................................................... 106 

Table 4.3 Classification accuracy achieved using mRMR feature selection based reduced 

feature vector data. ............................................................................................ 109 

Table 4.4  Classification accuracy achieved by full feature vector data for different proportions 

of training and testing data of RDD using three classifiers. ................................ 112 

Table 4.5  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using linear SVM classifier. ...... 115 

Table 4.6  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using RBF kernel SVM classifier.

 .......................................................................................................................... 116 

Table 4.7  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using LDA classifier. ................ 117 

Table 4.8  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using RF classifier. ................... 118 

Table 4.9  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using linear 

SVM classifier. ................................................................................................... 122 

Table 4.10  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using RBF 

kernel SVM classifier. ........................................................................................ 123 



xxiii 

 

Table 4.11  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using RF 

classifier. ............................................................................................................ 124 

Table 5.1  Classification accuracy achieved using full feature vector data. ......................... 134 

Table 5.2  Classification accuracy achieved using PCA based reduced feature vector data.

 ........................................................................................................................... 137 

Table 5.3  Classification accuracy achieved using mRMR feature selection based reduced 

feature vector data. ............................................................................................ 140 

Table 5.4  Classification accuracy achieved by full feature vector data for different proportions 

of training and testing data of RDD using three classifiers. ................................. 143 

Table 5.5  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using linear SVM classifier. ....... 146 

Table 5.6  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using RBF kernel SVM classifier.

 ........................................................................................................................... 147 

Table 5.7  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using RF classifier. ................... 148 

Table 5.8  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using LDA classifier. ................. 149 

Table 5.9  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using linear 

SVM classifier. ................................................................................................... 153 

Table 5.10  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using RBF 

kernel SVM classifier. ......................................................................................... 154 

Table 5.11  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using RF 

classifier. ............................................................................................................ 155 

Table 6.1  Classification accuracy achieved using full feature vector data. ......................... 165 

Table 6.2  Classification accuracy achieved using PCA based reduced feature vector data.

 ........................................................................................................................... 168 

Table 6.3  Classification accuracy achieved using mRMR feature selection based reduced 

feature vector data. ............................................................................................ 171 

Table 6.4  Classification accuracy achieved by full feature vector data for different proportions 

of training and testing data of RDD using three classifiers. ................................. 173 

Table 6.5  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using linear SVM classifier. ....... 177 



xxiv 

 

Table 6.6  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using RBF kernel SVM classifier.

 .......................................................................................................................... 178 

Table 6.7  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using RF classifier. ................... 179 

Table 6.8  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using LDA classifier. ................ 180 

Table 6.9  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using linear 

SVM classifier. ................................................................................................... 181 

Table 6.10  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using RBF 

kernel SVM classifier. ........................................................................................ 182 

Table 6.11  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using RF 

classifier. ........................................................................................................... 183 

Table 6.12  Classification accuracy achieved using full feature vector data. ......................... 186 

Table 6.13  Classification accuracy achieved using PCA based reduced feature vector data.

 .......................................................................................................................... 189 

Table 6.14  Classification accuracy achieved using mRMR feature selection based reduced 

feature vector data. ............................................................................................ 191 

Table 6.15  Classification accuracy achieved by full feature vector data for different proportions 

of training and testing data of RDD using three classifiers. ................................ 194 

Table 6.16  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using linear SVM classifier. ...... 197 

Table 6.17  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using RBF kernel SVM classifier.

 .......................................................................................................................... 198 

Table 6.18  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using RF classifier. ................... 199 

Table 6.19  Classification accuracy achieved by PCA reduced feature vector data for different 

proportions of training and testing data of RDD using LDA classifier. ................ 200 

Table 6.20  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using linear 

SVM classifier. ................................................................................................... 202 



xxv 

 

Table 6.21  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using RBF 

kernel SVM classifier. ......................................................................................... 203 

Table 6.22  Classification accuracy achieved by mRMR feature selection based reduced feature 

vector data for different proportions of training and testing data of RDD using RF 

classifier. ............................................................................................................ 204 

Table 7.1  List of the 14 hardwood species ......................................................................... 215 

Table 7.2  Parameters chosen for vessel elements extraction and the average hydraulic 

conductivity and lumen resistivity of the given specie image. ............................. 218 



xxvi 

 



xxvii 

 

LIST OF ABBREVIATIONS 

1D One dimensional 

2D Two dimensional 

ACA Ant clustering algorithm 

ALBP Adaptive local binary patterns 

ANN Artificial neural network 

ASM Active shape model 

BGLAM Basic gray level aura matrix 

BGP Binary gabor pattern 

BP Back-propagation 

BWT Binary wavelet transform 

BWTCLBPri Binary wavelet transform based rotation invariant completed local binary 
pattern 

BWTCLBPriu2 Binary wavelet transform based rotation invariant uniform completed local 
binary pattern 

BWTCLBPu2 Binary wavelet transform based uniform completed local binary pattern 

CA Classification accuracy 

CIELUV International Commission on Illumination 

CLBP Completed local binary pattern 

CLBPu2 Completed uniform local binary pattern 

CoALBP Co-occurrence among Adjacent LBP 

DenseCLBP Dense completed local binary pattern 

CSLBP Centre symmetric local binary pattern 

DLEP Directional local extrema patterns 

DWT Discrete wavelet Transform 

DWTCLBP Discrete wavelet transform based completed local binary patterns 

DWTCLBPu2 Discrete wavelet transform based completed  uniform local binary pattern 

DWTFOSLBP-HF Discrete wavelet transform based first-order statistics local binary pattern 
histogram Fourier features 

DWTFOSLBPri Discrete wavelet transform based first-order statistics rotation invariant 
local binary patterns 

DWTFOSLBPriu2 Discrete wavelet transform based first-order statistics- rotation invariant 
uniform local binary patterns 

DWTFOSLBPu2 Discrete wavelet transform based first-order statistics uniform local binary 
patterns 

DWTLBP Discrete wavelet transform based local binary patterns 

DWTLBP-HF Discrete wavelet transform based local binary patterns histogram Fourier 
features 

DWTLBPri Discrete wavelet transform based rotation invariant local binary pattern 

DWTLBPriu2 Discrete wavelet transform based rotation invariant uniform local binary 
patterns 

DWTLBPu2 Discrete wavelet transform based uniform local binary patterns 

FOS First-order statistics 

FFDV Full feature vector data 

FS Feature selection 

FVDN Feature vector data normalization 

GP Gaussian image pyramid 



xxviii 

 

GLAC Gradient local auto-correlation 

GLCM Gray level co-occurrence matrix 

GLRLM Gray level run length matrix 

GPLBPri Gaussian image pyramid based rotation invariant local binary pattern  

GPLBPriu2 Gaussian image pyramid based rotation invariant uniform local binary 
patterns  

GPLBPu2 Gaussian image pyramid based uniform local binary patterns  

GPLCPri Gaussian image pyramid based rotation invariant local configuration 
patterns 

GPLCPriu2 Gaussian image pyramid based rotation invariant uniform local 
configuration patterns 

GPLCPu2 Gaussian image pyramid based uniform local configuration patterns 

GPLPQ Gaussian image pyramid based local phase quantization 

GSVD Generalized singular value decomposition 

HSV Hue, saturation, and value 

IDL Image decomposition level 

KDA Kernel discriminant analysis 

KNN K nearest neighborhood 

LBP Local binary pattern 

LBP-HF Local binary pattern histogram Fourier features 

LBPri Rotation invariant local binary pattern 

LBPriu2 Rotation invariant uniform local binary pattern 

LBPu2 Uniform local binary pattern 

LCP Local configuration pattern 

LCPri Rotation invariant local configuration pattern 

LCPriu2 Rotation invariant uniform local configuration pattern 

LCPu2 Uniform local configuration pattern 

LDA Linear discriminant analysis 

LDP Local derivative patterns 

LPQ Local phase quantization 

LSB Least significant bit 

LTCoP Local ternary co-occurrence pattern 

LTP Local ternary pattern 

MLP Multilayer perceptron 

MLP-BP-ANN Multilayer perceptron back- propagation artificial neural network 

MMI Mask matching image 

MRLBP Multiresolution local binary pattern 

mRMR Minimal redundancy-maximal relevance 

MSB Most significant bit 

NN Nearest neighbourhood 

NoF Number of features 

PC Principal component 

PCA Principal component analysis 

RBF Radial basis function 

RDD Random divided database 

RF Random forest 

ROI Region of interest 

SD Standard deviation 

SPPD Statistical properties of pore distribution 



xxix 

 

SVM Support vector machine 

WT Wavelet transform 

%CA±SD Percentage classification accuracy plus/minus standard deviation 

 



xxx 

 



 

1 

 

CHAPTER 1. INTRODUCTION  

This chapter presents an overview of the research work carried out in this work. At the outset, 

the need of wood identification, challenges & motivation, wood anatomy and methods of wood 

identification are presented. Further, a comprehensive review of the work carried out for the 

classification of forest/wood species by employing feature extraction and machine learning 

techniques have been discussed. Based on the literature review the objectives of the present 

study have been formulated. The organisation of the thesis is given at the end of the chapter.  

 

Trees are considered to be friend of all living beings on this earth as they provide them life 

(oxygen), shelter (House), food, and fuel for good living. Wood is considered to be one of the 

nature’s supreme souvenirs for mankind. In India some trees are deified (sacred), as “Vriksha 

Devta” which are considered to be holy and the people ought to worship them. The Tulsi, Pipal, 

Banyan, Goolar, and Neem are the trees that are worshipped in India. India has rich forest 

resources, and not less than 1400 species of trees are commercially exploited for wood (timber) 

in different parts of India.  

1.1 NEED OF WOOD IDENTIFICATION 

Recognition (identification) of wood is an important and difficult issue to deal with because of its 

complex biological structure. Wood must satisfy certain prerequisites in order to be the most 

suitable and appropriate for the manufacturing of different products. For certain applications, 

physical properties of wood (i.e., density, hardness, durability, bending strength, and stability) 

are of utmost importance. Other applications may have specific requirement of texture pattern, 

grain and color (i.e., decorative objects). Hence, from industry perspective, identification of wood 

is essential as its characteristics vary widely [82]. Correct identification of wood species is crucial 

for many reasons as given below: 

1. Accurate recognition of wood species is essential for price fixation based on color, texture, 

scent, hardness, durability, availability and rational use of available resources. 

2. To check on fraud as some timber traders have tendency to amalgamate different types of 

wood so as to increase their profit margin. 

3. To strengthen the endeavour of wood trading countries to fight against the illegal logging 

and smuggling of precious woods (i.e., sandalwood), and protection of threatened plant and 

tree species at risk.  

4. Provide helping hand to custom officials in proper assessment of wood species and 

implementation of tariffs accordingly [217]. 
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1.2 WOOD IDENTIFICATION CHALLENGES  

The major challenge in wood identification is the non-availability of infrastructure (Xylarium, 

micro slides and literature for comparing the microstructure of unknown wood sample with the 

known) and the scarcity of highly skilled manpower with proven experience in the said field. 

Further, imparting training to human officers to attain an expertise in identification of wood is a 

time-consuming process. Nowadays, occupation as a wood certification officer is neither easy 

nor lucrative and likelihood of unfairness and oversight cannot be denied. Moreover, 

identification of large quantity of wood samples is not only time consuming, but erroneous and 

impractical to implement in real world applications. There is no systematic classification 

procedure for wood identification and, thus, a specie has to be identified based on the 

combination of its microstructure features. In tropical countries there is huge hardwood diversity. 

India alone has over 1200 hardwood species and, therefore, memorizing the microstructure of 

all the species is next to impossible. Thus, to effectively address the above said issues 

researchers are looking into the possibility of coming up with computer assisted forest 

species/hardwood species identification system. 

Most of the problems related to the identification of wood material are similar to those for 

any of the biological material [54, 127, 161, 162] such as insufficient foundation for comparison 

and reference base. Further, there is also incorrect interpretation of keys by the users due to 

lack of knowledge for wood identification. The limitations of the traditional techniques have 

opened the new way for wood identification which is machine vision based. This has been the 

first motivation for this task. The core goal of machine vision based identification system in the 

context of wood identification is to achieve quantifiable, repeatable and reliable pattern 

recognition results [217]. 

In order to understand the object of interest (wood), in the present work an effort has been 

made to introduce the basic wood anatomy which is discussed in brief in the following 

subsection.  

1.3 WOOD ANATOMY 

The surfaces of wood can be categorized into three classes as illustrated in Fig. 1.1; each of 

which speaks about the surface uncovered during the process of marking. 

1. Cross-section surface or Transverse plane: Parallel to the long axis of the stem, 

2. Radial surface: Perpendicular to growth rings and the long axis of the stem,  

3. Tangential surface: Tangent to the growth rings. 

The cross-sectional surface of wood images contain ample information necessary to 

discriminate the wood species. The microscopic structure of maple (angiosperm wood) in three 

different views are illustrated in Fig. 1.2. 
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Fig. 1.1 The three reference planes of wood [19]. 

 

Fig. 1.2 Microscopic structure of angiosperm wood (maple) [252]. 

1.4 MACRO CROSS-SECTION CHARACTERISTICS OF TREE-STEM 

The tree stem cross-section view is depicted in Fig. 1.3. Primary layers of wood tissue consist 

of bark, vascular cambium, sapwood, heartwood, growth ring, earlywood and latewood which 

are described as follows: 

 Bark: An outer, protective covering layer of tree, made up of non-functional pholem and 

corky tissues, contains oil and wax. Bark helps to moderate interior temperature, reduces 

water loss, and gives protection against external injury. Small openings that permit gas 

exchange is known as lenticels. It is further categorised into outer bark and inner bark. Outer 

bark is a non-functioning pholem, acts as insulation for tree, protects tree from insects, 

disease attacks, other injuries, fire, extreme heat and cold conditions. The inner bark is a 

soft, spongy, and functioning pholem that transports sugar from the foliage in the tree crown 

to other branches, stems and the roots. 
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 Vascular cambium: It is a layer of cells, found between the sapwood and the inner bark. 

The xylem and pholem cells are produced by vascular cambium, both contribute in the 

growth of the tree. The vascular cambium also helps in formation of annual ring inside the 

tree and new bark outside the tree.  

 Sapwood: It is a new and functioning xylem and has lighter color than heartwood as shown 

in Fig. 1.3. Main function of sapwood is transportation of water from roots to crown of the 

tree for photosynthesis. It also moves resin (pitch) through the tree for preventing any of the 

infections that take place due to the damage incurred by insects or animals. The inner 

portion of sapwood has dead cells, and the active cells are normally found in the outer 

portion. 

 

Fig. 1.3 Tree stem cross-section view. 

 Growth rings: Wood formation during a period of one year is known as growth ring of the 

tree. The wood material developed inside a growth ring is attributable to the changes that 

occur during the growing season, known as earlywood and latewood. Growth rings may 

vary in width as a result of different climatic conditions. The earlywood (springwood) 

formation in wood takes place during spring and early summer season at the beginning of 

the growing season when warm and wet conditions promote rapid growth. In hardwood, 

earlywood cells (vessels) have large diameters and thin cell walls. The formation of 

latewood (summerwood) takes place in the late summer and fall towards the end of the 

growing season, when dryer conditions slow down the development of new wood growth. 

Latewood occurs at the outer region of a growth ring and the vessels are either absent or 

have small size diameter with greatly thickened cell walls. 
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 Pith: Pith is made up of sapling cells and is found in the centre of the trunk. 

 Heartwood: Heartwood is an old and inactive xylem infiltrated by resins and gums; it has 

been once a sapwood and has darker shade due to a variety of chemicals. Its function is to 

provide support to the tree.  

 

Fig. 1.4 Three-dimensional view of hardwood and Softwood species samples [19]. 

In general, the wood species are classified as hardwood and softwood. The phrase 

hardwood and softwood are used only to reference the taxonomical distribution that separates 

a specie from the other specie and has little to do with the actual hardness or softness of the 

wood. A number of softwood species may not be soft and hardwood species may not be hard. 

The 3-dimensional view of hardwood and softwood species is shown in Fig. 1.4.  

 

Fig. 1.5 Cube of hardwood species showing three planes of section and arrangement of principle 

tissues of the xylem [246]. 
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Fig. 1.6 Microscopic structure of cells of hardwood specie [248]. 

Softwood (gymnosperm) trees are conifers and use cones for seed reproduction; consist 

of 90% - 95% of cells called longitudinal tracheid’s and have simple cellular structure. Softwoods 

don’t contain vessels elements, contain long fiber, are lighter in weight, straight grained, and 

relatively homogenous. The hardwood species (angiosperm) are leaf bearing trees, possess 

complex cellular structures. Hardwood species have four significant elements namely, vessels, 

fibres, parenchymas and rays that are useful in their identification. The arrangement of these 

elements in all the three views (transverse, tangential and radial) are depicted in Fig. 1.5; 

whereas Fig. 1.6 shows these elements in the cross-section view only. Concise description of 

these elements are as follows:  

 

Fig. 1.7 Hardwood species a) Ring porous b) Semi-ring porous, and c) Diffuse porous [254]. 

 Vessel 

Vessel elements known as pores in the cross-sectional view of the image vary greatly in size, 

shape, number and spacing from one specie to another in earlywood to latewood zone. Vessels 

have large diameter compared to any other cells in the hardwood structure. Using hand lens of 

10x power one can determine whether vessels elements are present or not. The hardwood 
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species are further categorised into ring, semi-ring and diffuse porous based on the arrangement 

of pores in a growth ring. The schematic representation of the same is given in Fig. 1.7. 

 Ring porous: Each growth ring of the hardwood species has a band of earlywood vessels 

(pores) of considerably large size; easily visible in the macroscopic image, and a band of 

latewood vessels of minor size that sometimes need use of magnifying lens for viewing  

(Fig. 1.7 (a)). 

 Semi ring porous: In each growth ring, the pores in the earlywood zone have larger diameter 

that progressively decreases in size as pores enter the latewood zone (Fig. 1.7 (b)). 

 Diffuse porous: Pores are of uniform size across the entire growth ring. All the pores are of 

considerably tiny size, which requires use of 10x lens to see them in the macroscopic 

images of hardwood species (Fig. 1.7 (c)). 

 Vessel (Pore) Arrangements 

 In cross-section view the relative position of pore with respect to each other is useful for 

describing vessel elements. Different species of hardwood have unique vessel arrangements, 

as depicted in Fig. 1.8. 

 

Fig. 1.8 Pore arrangements [251]. 

 Solitary pores: Solitary pores are single pores, which do not touch other pores and are 

evenly spaced across the cross-section (Fig. 1.8 (a)). 

 Pore multiples: In pore multiples, two to five pores appear grouped together. It usually occur 

in radial rows, but can take place in both radial and tangential directions (Fig. 1.8 (b)). 

 Pore chains: In Fig. 1.8 (c) an arrangement is shown where pore multiples appear in radial 

direction only. 

 Nested pores (clusters): More number of pores come in contact with each other in both 

radial and tangential directions as shown in Fig. 1.8 (d). 

 Wavy bands (ulmiform): As shown in Fig. 1.8 (e), the pores are arranged in irregular 

concentric bands. 
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 Fiber  

Fibres (technically called fibre tracheids) are abundant, long, round in cross section, needle-like 

cells having thickened walls as shown in Fig. 1.6. They provide mechanical support to the tree, 

and are heavily lignified xylem cells [19]. They are usually 0.5 to 1.5 mm long, 20-30 m 

diameter, 20%-75% by volume and 40%-90% by weight of wood.  

 Ray 

Rays are not easily visible with naked eye; these are characterized by the narrow stripe or lines, 

series of cells radiating from the centre towards the bark across the tree cookie as shown in Fig. 

1.6. Rays have perpendicular orientation to the main axis of the stem of the wood. The size and 

distribution of rays on the cross-section are quite unique for many species and used to separate 

groups of species. The functions of rays are to allow horizontal movement of sap and minerals 

in stem and storage of carbohydrate [19]. Rays can be used as key characteristic to identify the 

wood species in the radial or tangential surface. Rays vary not only in width, but also in height. 

The height of ray varies between species from barely small to several inches high and is best 

observed from the tangential surface. 

 Parenchyma 

The small, thin-walled, longitudinal cells that provide food storage, sparse in softwoods but are 

often quite significantly dense in hardwoods [19]. There are many species with visible and 

unique arrangements of parenchyma cells that offer a clear structural feature for decisive 

identification. They are categorised into 1) paratracheal, and 2) apotracheal parenchyma's. 

 

Fig. 1.9 Parenchyma arrangements around hardwood pores [19]. 

As shown in Fig. 1.9, the paratracheal parenchyma make contact with the vessels (pores) 

in cross-section view, whereas apotracheal parenchymas are separated from pores by fibres or 

rays. Paratracheal parenchyma appears in many forms, namely, scanty, vasicentric, aliform and 

confluent. Similarly, apotracheal parenchyma are categorised into diffuse, diffuse in aggregates, 

marginal and banded forms. 
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Identification of timber and tree becomes difficult when their fruit-lets and leaves are axed 

from its trunk. Therefore, in such cases, one has to rely on physical, macroscopic and 

microscopic features of wood for their identification. Sometimes, identification of wood is not 

easy as the biological deterioration, stains, and aging that can alter wood by transforming its 

look. Further, the wood elements/samples kept in outdoor conditions, are exposed to direct 

sunlight and rain may lead to changes in the characteristics of wood such as color and weight. 

Further, the wood elements can become darker due to application of oil, wax and polish 

treatment [71; 83]. In wood industry, one of the many ways to improve the quality is to identify 

and verify the wood before the process starts. Like humans, unique cellular structure of the wood 

species (which vary among the intra-species) acts as a blueprint for its identification [19]. 

1.5 WOOD IDENTIFICATION METHODS 

There are two methods normally used for wood identification: 

1. Traditional methods, and 

2. Machine vision based methods 

 Traditional Methods  

For many decades, traditional approaches have been instrumental in wood identification. Wood 

experts usually identify the wood species by examining surface of the wood specimen at two 

different stages, first with the naked eye, then with a magnifier. With the naked eyes, the wood 

expert can observe the weight, color, scent, feel, odour, hardness, and texture of the wood 

surface. This stage basically examines the physical characteristic that the wood species 

possess. A sharp pocket knife is used to unwrap (peel) the wood surface to acquire a clear and 

smooth cross-section. Using a magnifier (i.e., 10x hand lens), the wood expert will be able to 

observe the anatomical characteristics of the cross-sectional surface of the wood. The distinctive 

features of wood cross-section such as vessels and parenchymas are examined for hardwood 

species, whereas, in case of softwood species that do not possess vessels and has trivial 

(insignificant) parenchyma and rays. Therefore, for softwood species characteristics like, growth 

rings and resin canals, etc., are examined for the identification purpose [14]. However, for more 

reliable results, cross-sectional micro-structures of the wood samples are analysed in the 

laboratory and their features are compared with available samples of hardwood species for 

identification [12].  

The process of analysis of anatomical features is the most important aspect of wood 

species identification. The methods such as visual comparison, dichotomous key and multiple 

entry keys are employed for wood identification based on their characteristics observed under 

macroscopic view.  
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1.5.1.1 Visual comparison 

Recognizing wood species by comparing them, are popularly used for many types of living 

things. The majority of field guides will demonstrate similar species in the same section so that 

the user can use it to determine the species [111]. The wood anatomical characteristics are 

required to be compared with the information provided in the field guides. The disadvantage 

associated with visual comparison method is that the comparison between similar species might 

be tedious, when the differences are very small and difficult to be observed. Further, the other 

difficulty associated with looks-like (comparison) method is when looking at a wood specie one 

has never seen before and categorizing them to a particular category. One of the probable 

reason is that most of the wood species apt to give the impression of another wood specie [84]. 

1.5.1.2 Dichotomous key 

The dichotomous key is another popular method used in the identification of plants, wood, 

animals, etc. The dichotomous key presents a series of paired, contrasting options at any stage 

in the selection process [250, 253]. One option has to be selected at each branching point [40] 

that leads to another two options. Different keys lead to another pair of keys until the correct 

answer (one or more taxa is suggested) is found. Further, it is necessary to check the obtained 

results (taxa) against reliable reference materials. Dichotomous key is simple and 

comprehensible but at the same time tends to cause errors in case the keys have longer 

sequences. The Fig. 1.10 shows the part of dichotomous key to select conifer or broadleaf tree 

[250, 253]. The disadvantage of this method is, if incorrect decision is taken at an intermediate 

stage (branching point), then the end result will be affected and the correct identification will not 

be achieved. Also, if a particular genus or specie is not included/incorporated in the dichotomous 

keys, no match will be found [130]. 

 

Fig. 1.10 The dichotomous key [250, 253]. 

1.5.1.3 Multiple entry key 

The synoptical key is one of the most simple multiple entry key that lists for each diagnostic 

feature the taxa that have particular features, and the examples of such keys are given in [51, 

129, 130, 205]. The advantages of these keys are the sequence of characters employed in an 
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identification process that is motivated by the unidentified wood sample, as opposed to the 

author of the key. In fact, the primary application of multiple entry card was for wood identification 

[37, 163]. The multiple entry keys have one card per taxon. These cards have perforated edges, 

and the perforations are numbered sequentially. Each numbered perforation correspond to one 

feature. In case, if a wood has particular feature, the edge of the card will be notched to point 

out the existence of that particular feature. In order to identify an unknown wood sample, a 

pointer is passed through a stack of cards at a perforation corresponding to a feature perceived 

in the wood. The card of species that possess feature for a given wood sample is dropped, or 

else the card of species stay on the needle. The sorting process is repeated until a single or 

only a few cards remain. 

In these keys, only one feature is used at a time, and the observer has the flexibility to 

select the number of features and the sequence in which these features are used, which makes 

it useful for unknowns in which some features cannot be observed. Further, addition of new 

species to key is done by inserting a new entry to the computer database. Multiple entry keys 

are easily computerized, so this is no longer a limitation. The Princes Rodborough microscopic 

key to hardwoods is one of the most valuable multiple entry keys [20].  

 Drawbacks of Traditional Methods of Wood Identification 

Recognition of large volumes of wood species, employing traditional approach is prolonged, 

erroneous and unfeasible sometimes. Further, imparting training to wood identification officers 

to get an expertise in identification of wood is a time-consuming process. Only few certified and 

trained officers are available for identification of wood, because occupation as a wood 

certification officer is neither easy nor lucrative and the possibility of unfairness and oversight 

cannot be denied. Sometimes, the experienced officer gets promoted and may not be able to 

pass his experience to his juniors. Examining several trucks of wood log is tedious task for an 

individual and, manual assessment of the wood sample can be very subjective. At present, 

timber is examined by naked eye or sometimes with the aid of a magnifier, by comparing and 

analysing the main features of wood i.e. texture. It is not easy even for seasoned expert to 

identify woods by using microscopic images as it requires plenty of study and rich knowledge of 

wood microstructure, using traditional method of identification. Further, there might be chances 

of intentional or unintentional human error/biasness in the identification of wood by the expert.  

 Machine Vision Based Wood Identification  

To overcome the problems associated with the traditional methods of wood identification, 

machine vision technology was employed for wood identification. Machine vision technology of 

wood identification is analogous to human visual system. The most basic methodology is to use 

sensors to acquire wood image, pre-process, extract texture feature or segment the image, and 
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then compare the features or segmented image with the available database. If the same specie 

features/segmented image is available in the database, match will be found and the wood specie 

gets identified. The wood identification using machine vision technique works on the principle of 

obtaining certain statistical parameter of the wood species. Therefore, it is able to reduce the 

wood identification error, contrast to traditional method of wood identification, where 

identification is subjective to individual. 

Machine vision based technology has existed in the forest product industry since the early 

1980's. Several computer packages have been developed for wood identification and are being 

widely used [30, 70, 86, 216, 218, 247,255]. Most research has been made in the development 

of automatic visual inspection systems in the wood industry for the purpose of grading of 

hardwood lumber [39], trimming and edging based on the quality of the wood and the presence 

of defects. These machines used technologies and devices such as ultrasound, microwave, 

nuclear magnetic resonance, X-ray, laser ranging, cameras and spectrometers which are rather 

expensive [40, 44, 98, 195]. The machine vision techniques have given two-fold milling and 

sorting speeds and an increase of 10-20% in the productivity in wood industry has been 

reported. 

Researchers are showing interest in machine vision based automatic identification of 

wood because of the accuracy of identification. Further, for a given sample of wood, the 

recognition accuracy will be same if the identification process is repeated 1000 times, whereas, 

if the same sample of wood is shown to hundreds of people having expertise in wood 

identification, it is not guaranteed that the sample will be identified as same wood specie 

because of human constraints.  

The enormous computing power capacity of machines and several fold increase in the 

storage capacity has given rise to use of machine vision technology in the field of wood 

identification. The machine vision based systems outperform experienced officers when large 

volumes of wood species are to be identified repeatedly with utmost accuracy, without getting 

fatigued. Thus, machine vision based wood identification techniques have emerged as an 

alternative in overcoming deficiencies associated with traditional approaches.  

1.6  APPLICATIONS OF WOOD 

Some of the application of wood are as follows: 

1. Wood has drawn attention of forensic experts, archaeologists, art historians and 

palaeontologists, and all living things on this earth for centuries. Art historians use evidence 

from wooden frames and panels to establish the authenticity and provenance of an art work 

[79, 217]. 

2. Forensic value, e.g. determining whether wooden fragments at the scene of a crime match 

those taken from the clothing or a vehicle belonging to a suspect. 
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3. Different tree species and wood anatomies characterize different climates [19]. Therefore, 

identification of ancient woods helps to reconstruct ancient ecosystems and documentation 

of climate change. 

4. Palaeontologists are interested in knowing what trees were present when dinosaurs lived, 

and in what type of vegetation early primates and hominids evolved.  

5. Geologically ancient woods provide information helpful for explaining present-day 

distributions of plants, the history of particular families and genera, and the past distribution 

and diversity of woody plants. 

6. Woody remains provide significant information to the archaeologists useful for reconstructing 

trade routes. 

7. The unique characteristics and comparatively huge quantity of wood have made it a natural 

material of choice in construction industry. 

8. The wood is a useful raw material for furniture, railway sleepers, tools, shipping and process 

industry, saw mill, paper & pulp industry, etc.  

1.7 LITERATURE REVIEW 

The machine vision based forest/hardwood species identification techniques were introduced 

by several researchers. These techniques have shown ability in performing the task with 

reasonable accuracy based on the statistical information (texture features) extracted from the 

images of various wood species. The different techniques proposed for wood identification till 

present have considered the macroscopic, microscopic and stereogram images. From the 

literature review, it is observed that texture features obtained in combination with classifiers have 

produced reasonably better classification accuracy for forest/hardwood species. A brief review 

of these developed are presented below:  

To begin with, Travis et al., [203], in year 1996 have introduced use of image processing 

techniques for the quantitative measurements of anatomical features of individual cells, their 

number and size with the help of image skeltonization and distance transform. These 

measurements were then used to classify cells into 7 categories with discriminant analysis using 

cross-validation approach. Modasia et al., [132] in year 2005 have made use of digital image 

processing (DIP) and artificial neural network (ANN) techniques, and they reported a 

classification accuracy of 75%, for microscopic images of wood. In the followed year 2006, Mu 

et al., [134] have proposed a non-destructive method of detection and classification of rotten 

knot and hollow heartwood defects. The position and size of wood defects were considered as 

the extracted features, and ANN as a classifier. The proposed technique in this case had 

requirement of extensive computation time. 

In the year 2008, Zhang et al., [237] proposed a technique for recognition of wood defects. 

They have used discrete wavelet transform (DWT), non-negative matrix factorization (NMF) and 
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dual tree complex wavelet transform (DTCWT) to extract features of wood images. A verification 

rate above 90% was reported with support vector machine (SVM) classifier.  

During the year 2007-2010, few researchers have used gray level co-occurrence matrix 

(GLCM) to extract number of texture features from wood images [200, 98, 22, 201, 208]. 

Subsequently, they have used different classifiers like multilayer perceptron back propagation 

artificial neural network (MLP-BP-ANN) [200], Pearson correlation [98], energy value [22], & 

SVM [201, 208] and achieved classification accuracy of 75% [200], 95% [98], high accuracy 

[22], 80% [201], & 91.70% [208], respectively. Tou et al., in the year 2009 [202] have done 

comparison of GLCM, Gabor filters and fusion of Gabor filters & GLCM feature extraction 

techniques for classification of six wood species of CAIRO wood database. They have reported 

the best classification accuracy of 85% for covariance matrix of Gabor filtered images of wood 

species. In the year 2009, You and Cai [228] have employed the principal component analysis 

(PCA), 2DPCA, (2D)2PCA and linear discriminant analysis (LDA) to extract texture features for 

the classification of wood species. The performance reported for LDA was a bit superior to PCA 

for cross-section images of wood, but inferior to 2DPCA and (2D)2PCA. 

Paula Filho et al., in year 2009 [166] have presented a database of 11 different species of 

the Brazilian flora. The feature vector data comprises 18 features extracted from CIELUV, HSV 

and RGB color models, and 24 features produced by GLCM matrix. A recognition accuracy of 

82% was reported using MLP classifier. Nasirzadeh et al., in year 2010 [145] used local binary 

pattern (LBP) variants for texture feature extraction and nearest neighbourhood (NN) as a 

classifier. The local binary patterns histogram Fourier features (LBP-HF) have reported 96.60% 

accuracy compared to 91% recognition accuracy obtained by the traditional rotation invariant 

local binary pattern (LBPri) method. In the same year, Yusof et al.,[234] have used collective 

features obtained by Gabor filter and GLCM techniques from macroscopic images of wood and 

attained a recognition rate of 90.33% for test data using MLP-ANN classifier. In the same year, 

Harjoko and Gasim [75] have used four feature extraction methods (binary image without 

threshold, binary image with threshold, edge detection, and RGB image) for wood identification, 

and reported a classification accuracy of 88% using ANN-BP classifier. In the year 2010, Piuri 

and Scotti [171] also have proposed a system to use fluorescence spectra for wood type 

classification. The input spectra was partitioned into different uniformly spaced bands. The 

energy of each band was used as input, and a classification error of 1.1±0.2 % was reported by 

SVM classifier for A-type dataset.  

In the year 2011, Khairuddin et al., [97] have introduced basic gray level aura matrix 

(BGLAM) and statistical properties of pore distribution (SPPD) methods to extract texture 

features of wood images. Successively, before applying these features to the final classification 

stage, pre-classification task was carried out by K-means clustering followed by dimensionality 

reduction using LDA and kernel discriminant analysis (KDA)/generalized singular value 
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decomposition (GSVD). This scheme has resulted into a classification accuracy of 96.15% using 

K-NN as classifier. This work has been followed by Khalid et al., [99, 100], who have employed 

BGLAM and SPPD to extract texture features, followed by a pre classification stage consisting 

of K-means clustering and KDA. Further, two classifiers, LDA and K nearest neighbourhood 

(KNN) have been used and an increase in the classification accuracy from 84% to 96.92% for 

LDA has been reported. Sun et al., [196] in the same year, have presented a clustering and 

sifting operations to emphasize the key points of Gabor features. To measure the distance 

between two signatures earth movers distance (EMD) method was used, and best classification 

accuracy of 97.50% was reported with NN classifier. 

Followed by the above work, Harjoko et al., [76] have extracted R, G, B, entropy, contrast, 

energy, correlation, homogeneity, gray level and standard deviation (SD) features of 15 

commercial woods. A recognition accuracy of 95% was recorded for testing dataset using ANN 

classifier. Also, Mallik et al., [122] have presented a scheme to classify wood species (scanning 

electron microscopy micrographs). The images are first enhanced and then segmented. 

Subsequently, five features namely rectangularity, circularity, average area, number of 

tracheid’s and distance between tracheid’s are extracted from segmented images. Amongst 

seven different classifiers used for classification KNN, SVM and neural networks have reported 

better classification accuracy.  

Wang et al., [211] in year 2012 have extracted statistical features namely, mean, standard 

deviation (SD), entropy and contrast from stereogram images of wood using a Gabor filter bank. 

Among different combinations, fusion of entropy, mean and SD features classified with NN 

classifier achieved a classification accuracy of 94.58%. In the same year, Martins et al., [126] 

have used local phase quantization (LPQ) and variants of LBP as textural descriptors and SVM 

as classifier. The classification accuracy reported by LPQ and LBP descriptors individually was 

79.82% and 76.16%, respectively. Further, the combination of LPQ and 
ri
8,2LBP descriptors 

feature vector data has produced the best result of 86.47%. Later, Pan and Kudo [160, 158] 

proposed two direction insensitive feature sets (nearest-pore pair and diameter-changes of pore 

elements) for feature extraction and C4.5, SVM and Naive Bayes as classifier. Naive Bayes 

classifier has given the best classification accuracy of 83.70% using diameter-changes feature. 

The only difficulty encountered was into discrimination between semi-ring porosity and other two 

kinds of porosity. Following above work, Ma and Wang [118] have employed higher-order local 

autocorrelation (HLAC) method to extract texture features from several blocks of wood images. 

A classification accuracy of 79% has been reported with SVM classifier. The classification 

accuracy obtained for blocked HLAC texture features was improved by about 21% compared to 

the original HLAC features.  
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In the year 2103, Yusof et al., [233] proposed a kernel genetic algorithm for selection of 

nonlinear features of macroscopic images of tropical wood species obtained by GLCM, BGLAM 

and SPPD techniques. This approach has not only brought in dimensionality reduction, also 

achieved better classification accuracy of 98.69% with LDA classifier. Subsequently, a pre-

classifier approach that uses fuzzy-logic concept was used by Yusof et al., [232] to cluster the 

database. The experimental outcome has reported classification accuracy of 93% compared to 

88.90% accuracy achieved without employing fuzzy-logic pre-classifier. In the same year, 

Ahmad and Yusof [2], employed ant clustering algorithm (ACA) to train and test the feature 

dataset obtained by BGLAM and SPPD techniques. They have reported a classification 

accuracy of 96.75% for the experimental work performed using 24 clusters. Wang et al., [213] 

in the same year, employed a mask matching image (MMI) feature extraction technique to obtain 

features of wood stereogram images. Further, KNN and SVM classifiers were examined and a 

classification accuracy of 86.53% was achieved for statistical features of MMI with SVM 

classifier. Similar type of work followed later.  

Martins et al., [125] have presented a database of microscopic images of 112 forest 

species (37 softwood and 75 hardwood). In addition, they obtained structural, GLCM and LBP 

features of these species, and a classification accuracy of 98.60% and 86% was reported for 

two-class and multi-class (112) classification using SVM classifier. Afterwards, Cavalin et al., 

[31] extracted GLCM, LBP, and LPQ features from the images obtained by quad-tree 

decomposition method. The combination of GLCM and LPQ features have achieved a 

recognition accuracy of 93.20% with SVM classifier. A binary particle swarm optimization 

technique was proposed by Hasan et al., [78] to optimize the parameters and feature selection 

process of GLCM and KNN method to enhance the classification accuracy. Zhao [240], 

proposed a system to acquire RGB image of wood species. The image is then converted to 

grayscale image and the histogram of the grayscale image was used as feature for wood species 

recognition. A snake model is first applied to the histogram of the standard specimen of the 

image, which is then applied to the test specimen. The initial and final snakes are then compared 

with the histogram of the test image. This scheme certainly discriminates the interspecific and 

intraspecific color variations. 

In the year 2013 itself, Wang et al., [212] presented an automatic recognition method for 

stereogram images of 24 wood species based on Gabor method. The grayscale images are 

convolved with 40 Gabor patterns and from these images mean and SD features were extracted 

using sub block partitioning approach. The use of sub block features extraction has given better 

results than several contemporary methods. Later, Gasim et al., [57] have proposed a wood 

identification system that extracts features of wood image by subdividing them into sub blocks. 

The entropy, SD and correlation (GLCM) features were then extracted from grayscale and edge 

detected images. A classification accuracy of 95% was achieved with ANN classifier. Later, 
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Gasim et al., [56, 77] have combined six and seven features extracted from edge detection and 

RGB images, respectively. They have achieved 100% accuracy for training data (2000 images) 

and 95% accuracy for testing data (500 images).  

Similarly, in same year Ahmad and Yusof [3] have obtained 157 features from the wood 

images using BGLAM (136 features) and SPPD (21 features) methods. Further, to improve the 

classification accuracy they employed Kohonen self organizing map (KSOM) to cluster and 

classify the tropical wood species data. In addition, Yusof et al., [231] have proposed another 

tropical wood species recognition system using pore count based fuzzy data management. The 

test data is first categorized into four groups based on their pore size. Later, each group data 

was separately classified using multilayer feed forward neural network (MLP-FF-NN). 

Followed after the above work, Kapp et al., [94] in the year 2014, have investigated the 

effectiveness of multiple feature sets (LBP and LPQ) for forest species (macroscopic and 

microscopic) recognition. The analysis of the results revealed that for microscopic images the 

classification accuracy of 74.58% was obtained using single feature vector. Further, an improved 

classification accuracy of about 95.68% has been achieved by multiple feature set approach 

with Gaussian kernel SVM classifier. 

Later, Paula Filho et al., [167] proposed a two level divide-and-conquer classification 

strategy to categorize the macroscopic images of 41 species with the help of SVM classifier. 

Feature set obtained by a combination of several feature extraction techniques were classified 

with 6 number of classifiers and reported best recognition accuracy of 97.77%. Taman et al., 

[197] have extracted features of wood knot images (CAIRO UTM database) using GLCM, and 

used binary gravitational search algorithm (BGSA) for feature selection. The proposed approach 

has reported good accuracy with KNN classifier. Since for automated wood classification, the 

classifier requires most of the resources and is computationally expensive. Thus, to accelerate 

the classifiers performance the hardware implementation of classifier is needed. Therefore, 

Kusuma et al., [107] in 2014 itself have proposed a floating-point to fixed-point conversion for 

hardware implementation of LDA classifier. This approach has witnessed lowest hardware cost 

compared to sequential search and Matlab fixed-point toolbox. Subsequently, the 32 bit fixed-

point implementation of LDA has achieved a classification accuracy of 94.82% compared to 

95% accomplished with original implementation for recognition of tropical wood species [106]. 

Later, Hafemann et al., [72] have introduced a deep learning approach known as convolutional 

neural networks (CNN), for classification of macroscopic and microscopic image of wood 

species. A classification accuracy of 95.77±0.27% and 97.32±0.21% were attained for 

macroscopic and microscopic images, respectively. For microscopic images the proposed 

method has attained higher classification accuracy, whereas in case of macroscopic images 

comparatively lower classification accuracy has been reported compared to the cotemporary 

techniques.  
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Followed by the above work of 2014, Zhao et al., [241] in same year have proposed a 

feature level fusion approach for wood species identification. They have designed a system to 

acquire the wood images. Subsequently, color, GLCM and spectral features were extracted. 

The fusion of these features classified with fuzzy BP neural network has resulted into a 

classification accuracy 95% for 5 wood species better than the accuracy obtained for 

combination of color and GLCM texture features. Further, Zhao et al., [242] have converted color 

wood surface image a V1V2I color-base image and obtained corresponding grey histograms for 

V1 and V2. The ASM was then employed to accomplish the curve deformation of standard 

specimen’s histogram curve, and then the same ASM was applied on the histogram curve of 

the test specimen. Comparison of the initial and final ASM with the histogram curve of the test 

specimen was performed to recognize the wood. The proposed approach has reported a mean 

recognition accuracy of 90% for 5 different wood species. 

In the year 2015, Martins et al., [124] have used 10 descriptors to extract features of forest 

species images. Further, they have used dynamic classifier selection and dissimilarity feature 

vector representation for wood species recognition. By incorporating probabilistic information in 

dynamic selection of classifier (DSC) technique based on multiple classifier behaviour, a 

recognition accuracy of 93.03% was reported.  

Further, for wood anatomist the anatomical parameters of wood species are of special 

interest as they are helpful in characterisation of wood. Therefore, the machine vision based 

methods have been developed for segmentation and extraction of wood elements. In the work 

reported by QI et al., [178] in year 2008, they proposed a method to identify hardwood species 

using only pore features obtained from cross-sectional images. The mathematical morphology 

was employed for automatic classification of the hardwood species into ring, semi-ring and 

diffuse porous wood based on the pore features (distribution of pores is described by calculation 

of their mean square error (MSE) extracted from hardwood species. Later, in the year 2009, 

Wang et al., [209, 210], have proposed an adaptive method (genetic algorithm) to obtain optimal 

threshold of closed region area for pore segmentation. Experimental outcome on images of 

hardwood species reveals that the threshold obtained by the genetic algorithm is much more 

efficient than the ordinary enumeration algorithm. Besides, majority of the pores were extracted 

barring some very small ones with the help of threshold obtained from proposed technique. 

In addition, Yu et al., [229] in the year 2009, have used computers to measure cellular 

tissue proportions of broad leaved (vessel, fibre and xylem ray) and coniferous (resin canal 

tracheid and ray) tree. The results obtained were compared with conventional methods 

(weighing and grid counting) and found to be accurate, efficient and time saving. Kennel et al., 

[95] in year 2010, proposed an automatic method of cell files recognition in light microscopic 

images of conifer wood. The method comprises watershed segmentation to extract anatomical 

structures of the image, followed by identification of cells using classification and regression tree 
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(CART) method, and then recognition of cell files. The results obtained on 10 different tree 

species were encouraging, and are yet to be adapted for hardwood species. Lei and Yan [109], 

in the same year observed that the physical properties of wood mainly depends on the 

characteristics of basic units of wood called cells. In the following year, Pan and Kudo [159], 

have used the radius of structuring element decided by the mathematical morphology with a 

variable structuring element, which has resulted into decent quality segmentation for 25 out of 

30 wood samples, whereas 5 samples were found to have conflicting radii. The only drawback 

noticeable was time required to execute the segmentation was considerably on the higher side.  

Scholz et al., [182], in the year 2013 have carried out an investigation on various methods 

useful for wood conduits quantification. Several hardware and image analysis tools useful in the 

quantification of wood have been reported for better understanding of wood anatomy. Later, 

Guang-Sheng and Peng, [63] have proposed a robust method of wood cell identification. The 

images were segmented by dual threshold method, of which the edge contours of the multiple 

cells are obtained by geodesic active contour (GAC). Subsequently, PCA was employed to get 

improved accuracy for wood cell recognition.  

1.8 RESEARCH OBJECTIVES OF THE PRESENT STUDY 

The microscopic images of wood provide sufficient information for accurate classification of 

variety of woods in contrast to macroscopic images that reveal only limited amount of information 

[160]. Taking into account the work reported by various researchers in the available literature on 

classification of wood images, it is understood that the recognition accuracy, can be improved by 

employing a suitable texture feature descriptor for acquiring significant texture information of an 

image. Softwood trees (Gymnosperms) have a simple cellular structure, and because of a 

limited number of cell types, it turns out to be difficult task to discriminate softwood species from 

one another [19]. Unlike their counterparts, hardwood species have a complex cellular structure 

and are easy to distinguish amongst the similar species. Vessels, fibers, parenchymas and rays 

are the four major elements useful in the identification of hardwood species. Vessels, also known 

as pores (in cross-section view) are the missing elements in softwood species. In the above 

perspective, in the present work, several multiresolution based texture feature extraction 

techniques for microscopic images of hardwood species have been proposed. The research 

objectives for hardwood species classification using their microscopic images are as follows 

1. The key objective of this proposal is to develop an "Automatic wood identification system 

using digital image processing tools" based on the microscopic images of wood. The 

hardwood species classification task has been divided into three key stages namely feature 

extraction, feature selection/dimensionality reduction and classification.  

2. Feature extraction: The effectiveness and efficiency of wood species identification primarily 

depend on the quality of the texture features extracted from the microscopic images of 
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hardwood species. Therefore, the emphasis in this work has been to propose efficient 

feature extraction techniques for classification of hardwood species which are listed below. 

 A survey on the performance of the state-of-the-art texture feature extraction techniques 

for grayscale images,  

 Binary wavelet transform (BWT) based texture feature extraction techniques for 

grayscale images,  

 Gaussian image pyramid (GP) based texture feature extraction techniques for grayscale 

images,  

 Discrete wavelet transform (DWT) based texture feature extraction techniques for 

grayscale images, and 

 Discrete wavelet transform (DWT) based hybrid texture feature extraction techniques for 

grayscale and color images. 

3. Feature selection: The proposed texture feature extraction techniques produce large 

complex features, and among them several features may not be significant for 

discrimination of the hardwood species. Thus, in order to reduce the feature vector data 

and improve the hardwood species classification accuracy a feature selection technique, 

minimal redundancy maximal relevance (mRMR) and feature dimensionality reduction 

technique, principal component analysis (PCA) have been investigated. 

4. Classification: The selection of classifier further enhances the efficiency of the classification 

system. Therefore, linear SVM, radial basis function (RBF) kernel SVM, random forest (RF) 

and LDA classifier have been investigated to get the optimum classification accuracy from 

the wood identification system. 

5. Segmentation and determination of vessel elements: The vessel elements are one of the 

most important features that is used for identification of hardwood species. Further, the 

number and size of vessels provide information about the hydraulic conductivity of the 

wood. Thus, this part of the proposed work deals with the measurement of the vessel 

elements and their hydraulic conductivity. 

1.9 ORGANIZATION OF THE THESIS 

The thesis contains eight chapters, out of that, the first chapter deals with the introduction, 

literature review and research objectives of the present study. The remaining part of the thesis 

is structured as follows: 

Chapter 2 presents brief theoretical background of the state-of-the-art texture feature extraction 

techniques, feature vector data normalisation, feature selection, feature dimensionality 

reduction and the four classifiers used in the wood identification task. Further, the effectiveness 

of the state-of-the-art texture feature extraction techniques for the classification of hardwood 

species is also evaluated. 
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Chapter 3, detailed description of one dimensional (1D) and two dimensional (2D) binary wavelet 

transform (BWT) is presented. The BWT based texture feature extraction technique for 

extraction of significant feature vector data from grayscale images of hardwood species is 

discussed which is followed by the investigation of the effectiveness of the said technique for 

the classification of hardwood species. 

A concise description of the Gaussian image pyramid (GP) approach for image decomposition 

is presented in Chapter 4. The GP based texture feature extraction techniques are presented to 

get the significant features of grayscale images of hardwood species. Finally, the efficiency of 

these techniques for the classification of hardwood species is presented.  

Chapter 5 presents detailed description of the DWT based texture feature extraction techniques 

to extract the feature vector data of grayscale images of hardwood species. The effectiveness 

of these techniques are also examined for the classification of hardwood species images. 

Chapter 6 presents description of the DWT based hybrid texture feature extraction techniques 

for grayscale and color images of hardwood species. The effectiveness of these techniques are 

then investigated for the classification of hardwood species. 

Chapter 7 presents an approach for segmentation and determination of vessel elements 

followed by computation of their hydraulic conductivity and lumen resistivity. 

The conclusions drawn from the exhaustive experimentation work carried out in the present 

research work are presented in Chapter 8. The chapter also presents the limitations of the 

present work emphasizing the scope for future research in this field. 



 

22 

 



 

23 

 

CHAPTER 2. STATE-OF-THE-ART TEXTURE FEATURE 
EXTRACTION TECHNIQUES 

This chapter investigates the state-of-the-art texture features in the classification of hardwood 

species. The chapter starts with concise description of the feature extraction techniques followed 

by the performance evaluation of these techniques by different classifiers. 

2.1 STATE-OF-THE-ART TEXTURE FEATURE EXTRACTION TECHNIQUES 

Texture features [18, 81, 85, 90, 101, 114, 164, 181, 227, 235] play very important role in the 

classification of image database. Here in this work some widely used texture feature descriptors 

[17, 18] are employed and their effectiveness for the classification of hardwood species 

database into 75 classes has been studied. The techniques are listed below. 

1 First-order statistics 12 Center-symmetric local binary pattern 

2 Gray level co-occurrence matrices 13 Completed local binary pattern 

3 Gray level run length matrices 14 Dense completed local binary pattern 

4 Gabor filter 15 Local directional pattern 

5 Local binary pattern 16 Local ternary pattern 

6 Uniform local binary pattern 17 Local ternary co-occurrence pattern 

7 Rotation invariant local binary pattern 18 Local configuration pattern 

8 Rotation invariant uniform local binary 

pattern 

19 

20 

Local phase quantization 

Gradient local auto-correlation 

9 Local binary pattern histogram Fourier 

features 

21 Binary Gabor pattern 

10 Adaptive local binary pattern   

11 Co-occurrence among adjacent local 

binary pattern 

  

The brief description of each of the techniques is presented in the following sub-sections: 

 First-order Statistics (FOS) 

The FOS is one of the simplest and computationally efficient technique for describing texture by 

using the intensity histogram of an image [103]. In FOS, the main features that are taken into 

consideration are mean  m , SD   , skewness  3 and kurtosis  4 . For a grayscale image, 

mean is a measure of the average intensity of pixels, while SD is a measure of contrast. 

Skewness is a measure of symmetry (it deals with the degree of histogram asymmetry around 

the mean) and kurtosis is the descriptor of the shape of probability distribution. The formula for 

each of the FOS feature descriptor is given by Eqs. (2.1 - 2.5) [60]: 
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where, z stands for image intensity and  ip z signifies corresponding histogram.  

 Gray Level Co-occurrence Matrix (GLCM) 

Haralick et al., [74] have introduced GLCM (also known as gray tone spatial dependence matrix: 

GTSDM) which has been extensively used to extract texture features of grayscale images. In 

this method, a statistical descriptor, co-occurrence matrix is generated, that is measure of how 

often different combination of pixel gray values with specified distance and orientations occur in 

an image. The GLCM [46] based features have advantage over the texture information 

computed using only histogram, as they don’t carry any information about the relative position 

of the pixels with respect to each other.  

Consider,   , ,0 1,0 1f f x y x M y N      , a M N  size image with L gray (intensity) 

levels. The GLCM matrix G is a square matrix of order L. Each  ,  
th

i j entry in G represents the 

number of times a pixel with gray level i is adjacent to a pixel with gray level j. Different spatial 

distance and 4 directions (i.e., 0°, 45°, 90° and 135°) are used to generate GLCM matrices. 

Thereafter, second order statistical texture features are computed from the GLCM matrices. The 

18 features of GLCM investigated here consist of 13 features proposed by Haralick et al. [74] 

and 5 features proposed by Soh and Tsatsoulis [191], which are listed in Table 2.1. The detailed 

mathematical description of these features is available in [74,136, 191]. 

Table 2.1 Second-order statistical texture features calculated from GLCM matrix. 

Sr. No. Features Sr. No. Features 

1 Angular second moment (f1) 10 Difference variance (f10) 

2 Contrast (f2) 11 Difference entropy (f11) 

3 Correlation (f3) 12 Information measure of correlation1 (f12) 

4 Sum of squares (variance) (f4) 13 Information measure of correlation2 (f13) 

5  Inverse difference moment (f5) 14 Autocorrelation 

6 Sum average (f6) 15 Dissimilarity 

7 Sum variance (f7) 16 Cluster shade 

8 Sum entropy (f8) 17 Cluster prominence 

9 Entropy (f9) 18 Maximum probability 
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 Gray Level Run Length Matrix (GLRLM) 

Galloway [55] proposed a higher-order statistical texture feature measure technique known as 

Gray level run length matrices. The GLRLM generates a 2D matrices having elementsL×R , 

where L stands for number of gray level; R is the longest run. Each element of GLRLM matrices 

has information about number of times the original image has run of length j of gray level 

intensity i, in the given direction. The higher-order statistical texture features computed from 

GLRLM matrices are listed in Table 2.2.  

Table 2.2 GLRLM statistical texture features 

Authors Sr. No. Features 

Galloway [55] 

1 Short runs emphasis (SRE) 

2 Long runs emphasis (LRE) 

3 Gray level non-uniformity (GLN) 

4 Run length non-uniformity (RLN) 

5 Run percentage (RP) 

Chu et al., [35] 
6 Low gray level runs emphasis (LGRE) 

7 High gray level runs emphasis(HGRE) 

Albregtsen [6] 

8 Short run low gray-level emphasis (SRLGE) 

9 Short run high gray-level emphasis (SRHGE) 

10 Long run low gray-level emphasis (LRLGE) 

11 Long run high gray-level emphasis (LRLGE) 

 Gabor Filter 

The Gabor wavelets (Gabor filters) with various orientations and frequencies, effectively mimic 

the human visual system [46]. It has been widely used for pattern analysis, texture feature 

extraction and classification due to their illumination, rotation, scale, and translation invariance 

properties [46, 62, 73, 104, 105, 179]. The Gabor filter expression in the spatial domain is given 

by [46]: 
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where,  : Wavelength of the cosine factor,   : Phase offset, 

 : Spatial aspect ratio,     : Sigma of the Gaussian envelope, and  

 : Orientation of the normal to parallel stripes of Gabor function.  

Each of the texture image is convolved with 40 Gabor filters (5 scales and and 8 

orientations; 45°, 90°, 135°, 180°, 225°, 270°, 315° and 360°) as shown in Fig. 2.1. Subsequently 

mean, standard deviation and entropy features are calculated from these images. 
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Fig. 2.1 Gabor filters (5 scales and and 8 orientations). 

 Local Binary Pattern (LBP) 

Ever since LBP's introduction by Ojala et al., 1994 [150, 151], it has been used as a dominant 

texture descriptor technique for image analysis due to its discriminative information 

representation capacity. Some of the areas where LBP has shown its potentials are face 

recognition, object identification, demographic classification, etc. This technique is considered 

to be an easy, yet computationally efficient [141, 142, 143, 151]. A circular neighbourhood of 

variable size was proposed in [152] to overcome the inadequacy of original LBP operator of 3 3  

neighbourhood size that cannot capture the dominant texture features in large-scale structures.  

 

Fig. 2.2 The LBP computation process a) 3 3 local window image, (b) thresholding, (c) weight and d) 

new center pixel value (decimal). 

The LBP label for a centre pixel coordinate  ,x y  of an image is given by [152]: 
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where, the gray value of the pixel of interest (central pixel) and p neighbours of the centre 

pixel is represented by cg  and pg , respectively. Also,  
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thresholding function. In , LBPP R  operator, P stands for number of sampling points on circular 
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neighbourhood, whereas R is the spatial resolution of the neighbourhood. Bilinear interpolation 

is applied to pixel values if the sampling points are not part of integer coordinates. The LBP 

operator produces 256-dimensional texture descriptor for a given image. The pictorial 

representation of calculation of new centre pixel value for LBP is shown in Fig. 2.2. 

 Uniform Local Binary Pattern (LBPu2) 

The LBP patterns are said to be uniform patterns, if at most 2 bit wise transition (1 to 0 or 0 to 

1) is reported in the circular binary pattern of LBP [152]. The 2LBPu histogram comprises 

separate bin for uniform patterns and only single bin is assigned to all the non-uniform patterns. 

For a given pattern of P bits,    1 3P P    output bins are produced. The reduction in non-

uniform patterns is due to the fact that in natural images the LBP patterns are mostly uniform. 

Further, uniform patterns of texture images account for about 90% of the entire pattern with      

(8, 1) neighbourhood and close to 70% for (16, 2) neighbourhood [169]. The 2LBPu  produces       

59-dimensional texture descriptors. 

 Rotation Invariant Local Binary Pattern (LBPri) 

The rotation of an image results into diverse LBP codes. To address the issue of the image 

rotation effect, LBPri has been proposed in [152, 119, 170]. Thus, to make all the versions of 

binary codes the same, the LBP codes are rotated back to reference pixel position to nullify the 

consequence of translation of a pixel location. The ,  LBPri
P R  is generated by circularly rotating the 

basic LBP code and considering the pattern which has a minimum value as given by [152, 119, 

170]:  

  , , LBP min , ri
P R P R

i
ROR LBP i  (2.10) 

where, 0, 1  ,  2,   ,   1i P   . The circular bit-by-bit right shift operation is performed on x  

(a P-bit number) for i times by the function  ,  ROR x i . The ,  LBPri
P R  descriptor produces overall 

36-bin histograms for each image due to 36 diverse, 8 bit rotation invariant codes [119, 170].  

 Rotation Invariant Uniform Local Binary Pattern (LBPriu2) 

To overcome the disadvantages associated with ,  LBPri
P R  (poor performance because of crude 

quantization of angular space at 45°) 
2

, LBPriu
P R  was proposed [119]. If a pattern has uniformity 

value 2U  , it is known as "uniform" pattern defined as follows [119]: 
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where, b stands for binary numbers. Given a binary number x, the circularly consecutive 

binary bits b are obtained by [119]: 
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     , , 2 1b
bF x i ROR x i    (2.12) 

 The bitwise logical operators "XOR" and "AND" are denoted by ' '  and ' '  (dot) 

operator, respectively and for a given bit sequence, i signifies the index of least significant bit 

(LSB). The rotation of uniform codes towards their minimum value generates  1P  patterns. 

Merely counting the number of one's in the "uniform" patterns, binary number generates     

2
, LBPriu

P R  pattern code. The other patterns are marked "miscellaneous" and grouped into a single 

value as given by [111]: 
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The 2
, LBPriu

P R  produces 10-bin histograms. 

 Local Binary Pattern Histogram Fourier Features (LBP-HF) 

A rotation invariant LBP-HF that retains the most discriminative characteristics, is obtained by 

taking the discrete Fourier transform (DFT) of 2
, LBPu

P R  [4, 238]. The LBP-HF is constructed 

globally for the entire image compared to other histogram based invariant texture descriptor 

methods which have normalization of rotation in the local region. The LBP-HF's are invariant to 

cyclic shifts along the rows of input histogram, and are said to be invariant to the rotary motion 

of an input image  ,  f x y  [4]. The DFT is used to construct the features as given by [4, 238]: 
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where,  ,H n u  corresponds to the DFT of the nth row of 2LBPu  histogram   ,I Ph U n r . 

It produces 38-bin histograms for a given texture image.  

 Adaptive Local Binary Pattern (ALBP) 

The LBP descriptor doesn't provide information about orientation. To compensate the local 

spatial structure changes, Guo et al., 2010 [68] have proposed an adaptive local binary pattern 

that enhances images classification efficiency by minimizing the variations of the oriented mean 

and standard deviation of absolute local difference c pg g . A weight parameter  pw  given 

in Eq. (2.15) is introduced to minimize the overall directional differences *c p pg w g  along 

diverse orientations. The objective function for ALBP is expressed by [68]: 
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where, N and M are the number of rows and columns of the image, respectively. For 

each of the orientations 2 /p P  of entire image, a weight factor pw  is approximated. The 

expression for ALBP is then given by Eq. (2.16) 
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 Co-occurrence of Adjacent Local Binary Pattern (CoALBP) 

Nosaka et al. [149] have proposed co-occurrence of adjacent local binary patterns to improve 

the performance of conventional LBP. The LBP does not consider the spatial relations among 

multiple LBPs, while in CoALBP the co-occurrence is measured among multiple LBPs and yet 

it retains the characteristics and robustness against deviation in illumination of LBP. The co-

occurrence of the entire permutation (combination) of LBPs is obtained with the help of 

autocorrelation matrices (computed from two measured LBPs). In this method to reduce the 

computational cost of calculating the centre pixel value two sparser configurations are taken into 

consideration. The LBP (+) configuration takes into account two horizontal and two vertical 

pixels; whereas LBP (×) configuration considers the four diagonal pixels as given by [149]: 
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Subsequently, the co-occurrence of LBPs is effectively computed by converting each 

LBP to vector 
 Np( )f R given by [149]:  

    i i,l b r
f r δ  (2.19) 

where, PN  stands for number of possible LBPs, ,δi j  is Kronecher’s delta and   ,i l b r  

is the label of  b r . The co-occurrence of LBP is computed by talking into account P PN N   

auto-correlation matrix given by [140]: 

( ) ( ) ( )T

r I

H a f r f r a


   (2.20) 

where, a is the displacement vector from the reference LBP to its neighbour LBP. Finally, 

these matrices are vectorised and combined to form a 
24 PN  dimensional feature vector data. 

 Center-Symmetric Local Binary Pattern (CSLBP) 

Heikkila et al., [80] proposed CSLBP descriptor to reduce long histogram produced by LBP 

descriptor. The new center pixel value in CSLBP (encompassing the advantageous 

characteristics of texture and gradient based features [243]) is produced by comparing center 
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symmetric pixels, contrary to comparing each of the neighborhood pixels with center pixels in 

LBP. The schematic representation for CSLBP descriptor is given in Fig. 2.3. 

 

Fig. 2.3 CS-LBP features (considering neighbourhood size of 8 pixels). 

 For 8 neighbors total 24 (16) binary patterns are produced by CSLBP whereas LBP 

produces 28 (256) binary patterns. Mathematically, CSLBP is expressed as [80]: 
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  (2.21) 

 In the above Eq. (2.21), pg  and 
2

N
p

g


 denote the gray values of center-symmetric pairs 

of P evenly spaced pixels on a circle of radius R. For flat image regions, the robustness of         

CS-LBP descriptor is enhanced by selecting small value of threshold  Th . 

 Completed Local Binary Pattern (CLBP) 

Guo et al. [67] have proposed completed local binary pattern (CLBP) to enhance the significant 

texture feature extraction capability of LBP. Fig. 2.4 (a) shows 3 3  block of an image having 

center pixel value 34. The local difference, sign component and magnitude components are 

illustrated in Fig. 2.4 (b), (c) and (d) respectively. 

 

Fig. 2.4  (a) 3 3 block of image, (b) local difference ( p cg g ) (c) sign component, and (d) magnitude 

component. 

The structure of CLBP is depicted in Fig. 2.5. In CLBP, two components namely local 

difference and centre gray level are obtained from the grayscale image. The sign (S) and 

magnitude (M) components of local difference is produced by employing local difference sign-

magnitude transform (LDSMT) as given by [67]: 
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where, pm  and
   1 , 0  

1, 0 

p

p

p

d
s
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are magnitude and sign of pd , respectively. The 

CLBP_Sign (CLBP_S) and CLBP_Magnitude (CLBP_M) operator characterizes the 

complementary components of image's local structure. Also, the CLBP_Center (CLBP_C) 

operator is produced by converting centre pixel into binary code employing global thresholding 

[238]. The CLBP is better texture feature descriptor than LBP [66]. Here, CLBP_S, and CLBP_M 

operator are concatenated to shape the CLBP histogram.  

 

Fig. 2.5 Structure of CLBP 

 Dense Completed Local Binary Pattern (DenseCLBP) 

Ylioinas et al., [225] have introduced dense sampling based LBP in order to improve the 

performance of conventional LBP technique (making it robust against the noise). The drawbacks 

associated with LBPs are overcome by incorporating the dense sampling encoding approach 

for calculating additional discriminative and stable LBP texture descriptors. In this method, small 

steps are taken into consideration for shifting the operator over the image, as opposed to shifting 

the operator along each center pixel position. Further, bilinear interpolation is used to calculate 

the samples that do not fall at the center pixel location. Each new pixel turn out to be permutation 

of its weighted neighbourhood compared to a single pixel as in the original image. Therefore, 

the new pixel has additional low frequency information (by and large gives basic structure of the 

original image). Further, the noise present in the high frequency content of the image gets 

covered up due to averaging of neighbourhood. The dense sampling concept is further applied 

to the CLBP technique for producing dense completed local binary pattern (DenseCLBP) 

descriptors. 

 Local Directional Pattern (LDP) 

Jabid et al., [87] have proposed LDP for face recognition application. In LDP, for each pixel 

position the edge response value is calculated in 8 directions using Kirsch mask in a local 3 3  

neighborhood region. The LDP descriptor works effectively in the presence of noise compared 

to LBP, because the edge gradients are relatively more stable than the pixel intensity value 

[244]. The Kirsch mask in all the eight directions are shown in Fig. 2.6. 
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Fig. 2.6 Kirsch masks in eight directions. 

 

Fig. 2.7 Procedure to calculate LDP code for k=3. 

Subsequently, the relative edge response for each pixel location produces the 8-bit LDP 

code. The top k response values are set to 1 whereas remaining values are set to 0. The 

complete procedure for calculating the LDP code for top 3 values for 3 3  neighbourhood image 

is presented in Fig. 2.7. In this example, the central pixel value at location cg  (38) is now 

replaced by LDP decimal code 25. 

 Local Ternary Pattern (LTP) 

Tan and Triggs [198] have proposed LTP (generalization of LBP), a discriminative texture 

descriptor which is robust against noise specially in near-uniform regions of image. Contrary to 

LBP which thresholds the neighbouring pixels to binary values (0, 1), the LTP uses three values 

(i.e., 1, 0 and -1). The schematic for LTP descriptor is illustrated in Fig. 2.8. 

 

Fig. 2.8 LTP calculation process 

The thresholding expression for LTP is given by: 
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where, p cx g g  , cg  is gray value of centre pixel, pg  gray value of neighbourhood pixel 

and th  is user specified threshold value. All the gray levels in the range of th  is quantized to 

zero. Further, gray levels above  cg th and below  cg th is quantized to +1 and -1, 

respectively. 

 Local Ternary Co-occurrence Pattern (LTCoP) 

The LTCoP feature descriptor was introduced by Murala and Jonathan [139] for image retrieval 

application.  

 

Fig. 2.9 Illustration of LTCoP computation. 

The gray level values of center pixels and its surrounding neighbors are used to compute 

the LTP edges. Thereafter, the LTCoP encodes the co-occurrence of similar LTP edges. The 

LTCoP has established its superiority for MRI and CT image retrieval, as it integrates the 

concept of LDP, LTP, and co-occurrence matrices. The LTCoP computation is depicted in Fig. 

2.9. The LTCoP is expressed by: 

    

    

    

1 1
, 1 , 1 1

1 1
, 2 , 1 2

1 1
, , 1

, ,       

LTCoP , , 

,  ,

P R P R

P R P R

P R p P R p

s I g I g

s I g I g

s I g I g







 
 
 

 
 
 
  

 (2.24) 

 

1     1

,  2     2

0               

if x y

s x y if x y

else

 


  



 (2.25) 

where,  1
,P R iI g  and  1

, 1P R iI g  represents ternary values [139]. The LTCoP generates 

ternary pattern that is subsequently converted into two binary patterns by using the concept of 

LTP. A feature vector of length 2P  is generated for a local pattern having P neighbourhoods. 

Although LTP gives comparatively better results but it is achieved at higher computational cost. 

 Local Configuration Pattern (LCP) 

Guo et al., [65] have proposed local configuration pattern descriptor appropriate for modeling 

the microscopic configuration of an image. The LCP descriptor is produced by means of local 
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structural and microscopic configuration information of the image. The local structural 

information is obtained by combining local variance information together with rotation invariant 

LBP descriptor. On the other hand, the microscopic configuration information employs image 

configuration and pixel-wise interaction. Modeling of microscopic configuration is given by: 

 
1
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p c i i
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E a a g a g


 



   (2.26) 

where, ig  and cg  are neighboring and central pixel intensity values, respectively. The 

 0    1ia i toP   is weighting factor associated with ig  and E  is reconstruction error in relation 

to ia . Reconstruction error for each pattern is minimized by the least squares estimation. The 

features generated so has both the magnitude and pixel-wise interaction information.  
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  (2.27) 

where,  LH k  and  LA i  are kth element of LH and thi element of LA , respectively. The 

magnitude part of LH  is expressed as,  

     0 ; 1 ; ; 1L L L LH H H H P   
 

 (2.28) 

The LCP feature is thus given by  

0 0 1 1 1 1LCP ; ; ; ; ; ;q qH O H O H O 
            

 (2.29) 

where, iH  is calculated by Eq. (2.28) with respect to thi  pattern of interest. Further, iO  is 

occurrence of the ith pattern of interest and q  is total number of patterns of interest. The detailed 

mathematical information of LCP is given in [65].  

 Local Phase Quantization (LPQ) 

The LPQ texture descriptor, which is insensitive to image blurring has been introduced by 

Ojansivu and Heikkil [153] originally for face recognition. In this approach, for a given image, at 

each pixel location over a local region (rectangular neighborhood) two dimensional short term 

Fourier transform (2D-STFT) is calculated to obtain the local phase information. This 

transformation is known as local phase quantization (LPQ) owing to phase quantization of 2D-

STFT information. The local frequency is calculated by using a STFT on a local region    

(rectangular M M neighborhoods xN ) at each pixel location of the image  f x is expressed by: 

( 2 )
uF(u,x) ( )

T

x

j u y T
x

y N

f x y e w f



   (2.30) 
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where, uw  is window function defining the neighborhood xN  at frequency u , while xf is a 

vector that has all 2N image samples from xN . In this method, local Fourier complex coefficients 

are calculated at four frequency points,  1u ,0
T

a ,  2u 0,
T

a ,  3u ,
T

a a and  4u ,
T

a a   

corresponding to 2D- frequencies, where a is scalar such that ( ) 0iH u  . 

         1 2 3 4, , , , , , ,F x F u x F u x F u x F u x     (2.31) 
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where jq  is thj  component of the vector  G x . The LPQ is expressed by: 

8
( 1)

LPQ
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  (2.34) 

The eight binary coefficients jq  are represented as integer values between 0-255 using 

Eq. (2.33). Finally the histogram of these values from all locations is composed and used as 

256-dimensional feature vector. The detailed mathematical description for LPQ is available in 

[145, 153, 154]. 

 Gradient Local Auto-correlation (GLAC) 

Kobayashi and Otsu [102] proposed GLAC, a shift-invariant image feature extraction technique. 

In contrast to the texture feature extraction techniques which are based on histogram, GLAC is 

a 2nd order statistics of gradient and hence extracts more discriminative and richer information 

of an image. As stated in [102] the GLAC makes use of "spatial and oriental auto-correlations 

of local image gradients". The GLAC inherit the advantageous properties of higher-order local 

autocorrelation (HLAC) and the image gradients are sparsely expressed with reference to their 

orientations and magnitudes.  

 Binary Gabor Pattern (BGP) 

Zhang et al., [236] have proposed a robust and efficient descriptors known as binary Gabor 

pattern (BGP) for texture classification. The BGP employs J Gabor filters ( 0g  to 1jg  ) with J 

different orientations. The texture image is convolved with these J Gabor filters. The radius of 

the filter mask is represented by R. For a circular image patch p having radius R is centered at 

location x on the image. Multiplying image patch p pixel-wise with J filters and later summing up 

all the elements produces a response vector    : | 0,1, , 1jr r j J    . A binary vector 

   : | 0,1, , 1jb b j J     is produced by binarizing r. The BGP is then expressed by: 
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   (2.35) 

For a given 2J  binary patterns (b has J elements), the BGP operator generates 2J  output 

values. The rotation invariant binary Gabor pattern (BGPri ) is defined by: 

  BGP max , | 0,1, ,ri ROR BGP j j J    (2.36) 

where,  ,ROR x j  performs circular bitwise right shift operation on x (J-bit number) for j 

number of times. 

2.2 FEATURE DIMENSIONALITY REDUCTION 

With the high-dimensional features, computational requirement of classifier increases and the 

classification accuracy may not be improved due to high-dimensional features. Therefore, a 

feature dimension reduction technique [27, 223] is required to transform the data from high-

dimensional space to low-dimensional space. The endeavour of feature dimensionality 

reduction is to retain the best subset of features of the full feature dataset [221, 222]. The 

dimension of feature vector data can be reduced by following two methods such as PCA (feature 

dimensionality reduction) and mRMR (feature selection).  

 Principal Component Analysis (PCA) 

The PCA is one of the widely used linear transformation technique [26]. The PCA reduces data 

dimensions by computing a few orthogonal linear combinations of the original dataset features 

with maximal variance. The PCA involves calculating the Eigen values and Eigen vectors of the 

covariance matrix of the original feature matrix. The eigenvectors characterized by largest Eigen 

value is known as first principal component (PC). The second PC is orthogonal to first PC with 

second largest variance, and so on. The first several PC's have most of the variance, which is 

sufficient to represent the original data without losing much of the information. 

 Minimal Redundancy Maximal Relevance (mRMR) 

The key objective of feature selection (FS) technique is to eliminate the irrelevant features, and 

retain a subset of features that efficiently describes the observed input data. The FS facilitates 

in reducing the effect of curse of dimensionality, gives better insight of data, and improves the 

performance of classifier by using a subset of features as input [32, 140]. The FS techniques 

are categorized into filter, wrapper and embedded methods in the context of classification [180]. 

The filter techniques are fast, computationally efficient and independent of classification 

algorithms. The mRMR feature selection technique based on mutual information quotient 

proposed by Peng et al. [168] is a multivariate filter technique that has been chosen in this work. 
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2.3 CLASSIFIERS 

Four classifiers, namely, linear discriminant analysis (LDA), random forest (RF) and two variants 

of SVM, viz., linear and radial basis function (RBF) kernel have been used here for hardwood 

species classification. These classifiers are briefly explained in the following subsections: 

 Linear Discriminant Analysis  

The LDA is a simple, powerful and mathematically robust classifier, which often constructs 

models with accuracy equivalent to other methods [113]. The need of low computational 

complexity and immunity to over fit, facilitated LDA classifier to be widely used in applications 

such as brain computer interface (BCI), face and object recognition [59, 113, 135, 199], image 

retrieval [224], bioinformatics and tropical wood species identification [233], etc. The LDA was 

originally proposed as Fisher's discriminant analysis [53] for binary class problem. It works on 

the concept of projecting data in high-dimensional feature space to low-dimensional features 

space. The LDA searches for a linear combination of variables (features) that is best to 

discriminate among the given classes. The LDA has been extended for multiclass problem using 

(p -1) discriminant function for p classes and is known as multiple discriminant analysis [113, 

199]. The LDA classifier has been investigated only for PCA reduced feature dataset. The LDA 

cannot be employed directly to high dimensional features and small sample size set [224], 

because of the fact that within class scatter matrix is always singular [15, 38]. 

 Random Forest  

The RF classifier is an ensemble machine learning technique, which builds several classification 

and regression trees by incorporating additional layer of randomness to bagging [21]. It has 

been widely used as a classifier in bioinformatics, geology and pattern recognition [42]. It is 

robust against over fitting, handles large dataset, computationally efficient, and easy to 

implement. 

 Support Vector Machine  

The SVM, an efficient and robust supervised classifier, gives excellent generalization 

performance and has been fruitfully applied to several pattern recognition problems in signal 

and image processing [34, 42, 96, 117, 120, 219, 220]. It was initially proposed as binary 

classifier [41, 88]. Let ( ), i ix y  for  1, 2, 3,..., ,i l represents a particular set of instance-label 

pairs, 
n

ix R ,    1,  1iy    , then the SVM binary classifier predicts a label y, in iy  for a given 

testing instance x. The optimization problem for binary classification is defined as follows [52]: 
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  1 0,T
i iy w x b i     (2.37) 

  where,  ; ,i iw x y is a loss function and C (nonnegative) is a penalty parameter (cost 

factor). The binary class SVM is extended for multiclass classification using approaches such 

as, "one against one", "one against all", and "directed acyclic graph" [172]. Further, a multiclass 

SVM classifier proposed by Crammer and Singer [43] involves solving single optimization 

problem only. The linear SVM and RBF kernel SVM (nonlinear) are briefly described here: 

 Linear SVM  

These days, linear classifier is method of choice as it works directly on the given input data 

space. The linear SVM classifier is ideal for a dataset having massive features, and is sparse in 

nature. It is considered to be efficient and enjoys faster training and testing procedure [16, 230]. 

The multi class SVM proposed by Crammer and Singer [43] has been used in linear SVM 

classifier, here. The decision function for p class is expressed by [52]: 

   1,2, ,
T

p P p if x argmax w x   (2.38) 

 Radial Basis Function Kernel SVM  

When the training set is inseparable in the original space, the original input data ix  are mapped 

into a high dimensional space  Φ ix , in which mapped data are linearly separable. The 

expression for decision rule is given as [33, 185]: 
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f x sgn y k x x b


 
   

 
  (2.39) 

where,  ,i jk x x  is a kernel function and  i signify the Lagrange multipliers (for dual 

optimization problems) which describes the optimal separating hyperplane. The radial basis 

function is one of the most popular kernel function and is given by [33]: 

   2

0,,
i jx x

i jK x x e



 

   (2.40) 

where,   is the kernel parameter.  

2.4 MICROSCOPIC IMAGE DATABASE OF HARDWOOD SPECIES 

In the present work, an open access database of hardwood species consisting of 75 different 

categories has been selected for investigation. Each of the seventy five hardwood species 

contain twenty samples (20). Thus, in all they form set of 1500 samples. These microscopic 

images of hardwood species are correctly labelled by the experts in the laboratory of wood 

anatomy at Federal University of Parana, Curitiba, Brazil [125]. The family, gender, and specie 

of each of the hardwood species are listed in Table 2.3. The image acquisition and sample 

preparation process is briefly described here for the sake of completeness. Initially, the wood 
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cube is boiled in order to soften it to get the samples. Then, a sliding microtome is incorporated 

to obtain wood samples of about 25 µm thickness. Thereafter, triple staining technique is used 

to color the veneer that is followed by dehydration process which makes use of rinsing the 

sample with an ascending alcohol series. Finally, Olympus Cx40 microscope with 100x zoom is 

employed to obtain the images from the sheet of wood which generates images of 1024 × 768 

pixel resolution. 

Table 2.3 List of hardwood species. 

Sr. 
No. 

Family Gender Species Sr. 
No. 

Family Gender Species 

1 Ephedraceae Ephedra Californica 39 Lauraceae Nectandra Sp 

2 Lecythidaceae Cariniana Estrellensis 40 Lauraceae Ocotea Porosa 

3 Lecythidaceae Couratari Sp 41 Lauraceae Persea Racemosa 

4 Lecythidaceae Eschweiler

a 

Matamata 42 Annonaceae Porcelia Macrocarp

a 5 Lecythidaceae Eschweleir

a 

Chartaceae 43 Magnoliaceae Magnolia Grandiflora 

6 Sapotaceae Chrysophy

llum 

Sp 44 Magnoliaceae Talauma Ovata 

7 Sapotaceae Micropholi

s 

Guianensis 45 Melastomatace

ae 

Tibouchiana Sellowiana 

8 Sapotaceae Pouteria Pachycarpa 46 Myristicaceae Virola Oleifera 

9 Fabaceae-Cae. Copaifera Trapezifolia 47 Myrtaceae Campomanesia Xanthocar

pa 10 Fabaceae-Cae. Eperua Falcata 48 Myrtaceae Eucalyptus Globulus 

11 Fabaceae-Cae. Hymenae

a 

Courbaril 49 Myrtaceae Eucalyptus Grandis 

12 Fabaceae-Cae. Hymenae

a 

Sp 50 Myrtaceae Eucalyptus Saligna 

13 Fabaceae-Cae. Schizolobi

um 

Parahyba 51 Myrtaceae Myrcia Racemulos

a 14 Fabaceae-Fab. Pterocarp

us 

Violaceus 52 Vochysiaceae Erisma Uncinatum 

15 Fabaceae-Mim. Acacia Tucunamensi

s 

53 Vochysiaceae Qualea Sp 

16 Fabaceae-Mim. Anadenan

thera 

Colubrina 54 Vochysiaceae Vochysia Laurifolia 

17 Fabaceae-Mim. Anadenan

thera 

Peregrina 55 Proteaceae Grevillea Robusta 

18 Fabaceae-Fab. Dalbergia Jacaranda 56 Proteaceae Grevillea Sp 

19 Fabaceae-Fab. Dalbergia Spruceana 57 Proteaceae Roupala Sp 

20 Fabaceae-Fab. Dalbergia Variabilis 58 Moraceae Bagassa Guianensis 

21 Fabaceae-Mim. Dinizia Excelsa 59 Moraceae Brosimum Alicastrum 

22 Fabaceae-Mim. Enterolobi

um 

Schomburgkii 60 Moraceae Ficus Gomelleira 

23 Fabaceae-Mim. Inga Sessilis 61 Rhamnaceae Hovenia Dulcis 

24 Fabaceae-Mim. Leucaena Leucocephala 62 Rhamnaceae Rhamnus Frangula 

25 Fabaceae-Fab. Lonchocar

pus 

Subglaucesce

ns 

63 Rosaceae Prunus Sellowii 

26 Fabaceae-Mim. Mimosa Bimucronata 64 Rosaceae Prunus Serotina 

27 Fabaceae-Mim. Mimosa Scabrella 65 Rubiaceae Faramea Occidentali

s 28 Fabaceae-Fab. Ormosia Excelsa 66 Meliaceae Cabralea Canjerana 

29 Fabaceae-Mim. Parapipta

denia 

Rigida 67 Meliaceae Carapa Guianensis 

30 Fabaceae-Mim. Parkia Multijuga 68 Meliaceae Cedrela Fissilis 

31 Fabaceae-Mim. Piptadenia Excelsa 69 Meliaceae Khaya Ivorensis 

32 Fabaceae-Mim. Pithecello

bium 

Jupunba 70 Meliaceae Melia Azedarach 

33 Rubiaceae Psychotria Carthagenens

is 

71 Meliaceae Swietenia Macrophyll

a 34 Rubiaceae Psychotria Longipes 72 Rutaceae Balfourodendro

n 

Riedelianu

m 35 Bignoniaceae Tabebuia 

rosea 

Alba 73 Rutaceae Citrus Aurantium 

36 Bignoniaceae Tabebuia Sp 74 Rutaceae Fagara Rhoifolia 

37 Oleaceae Ligustrum Lucidum 75 Simaroubaceae Simarouba Amara 

38 Lauraceae Nectandra Rigida     
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2.5  METHODOLOGY 

 Procedural Steps 

The complete procedural steps for the classification of microscopic images of hardwood species 

using state-of-the-art texture feature extraction techniques with the help of classifiers is shown 

in Fig. 2.10. 

 

Fig. 2.10 Hardwood species classification using state-of-the-art texture feature extraction technique.  

A brief description of these procedures are as described below: 

1. The microscopic images of hardwood species are added with color information to enhance 

certain anatomical features of hardwood species. Thus, the pre-processing step is involved 

to obtain grayscale image from color (RGB) image, resulting into significant reduction of 

computational time during texture feature extraction. The expression for RGB to grayscale 

conversion is given by [92]: 

luminanceG =0.2989 R + 0.5878 G + 0.1140 B    (2.41) 

where, luminanceG  represents grayscale image achieved by considering luminance 

information only and eliminating the hue and saturation information of color image. The R, 

G and B signify red, green and blue components of color image, respectively. 

2. Texture features of grayscale images are then extracted from state-of-the-art texture feature 

extraction techniques. 

3. The feature vector data produced so has been normalised in the range 0 to 1, thus rendering 

it in the form useful as an input to the classifier. The feature vector data is normalized using 

Eq. (2.42):  

min( )
F

max( ) min( )
Norm

F F

F F

 
  

 
 (2.42) 

where, FNorm : normalized feature vector data, and F: original feature vector data. 

4. The feature vector data is then given as input to different classifiers into three different  

manners (full feature vector data (FFVD), the PCA reduced feature vector data and the 
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mRMR feature selection based reduced feature vector data) for classifying the microscopic 

images of hardwood species database into 75 categories.  

5. The best combination of texture feature extraction technique and classifier is then identified 

on the basis of the superlative classification accuracy. 

 Approaches used for Performance Evaluation of Feature Extraction Techniques  

The performance of the feature extraction techniques for classification of hardwood species 

have been investigated employing two strategies: (1) 10-fold cross validation and (2) randomly 

dividing the database. These approaches are discussed in following subsections: 

2.5.2.1 10-fold cross validation  

In this approach, the classification task employs 10-fold cross validation [58] to produce the end 

result by dividing the whole feature dataset into 10 uniform folds. The primary reason for using 

10-fold cross validation is to ensure that the results remain unbiased to given partitioned data. 

Out of 10- folds, nine are considered as training data and remaining one is used as test data. 

Hence, 90% data is used for training and 10% data is used for test purpose. The process is then 

repeated 10 times so that each sample is used as test data. The final outcome is the average 

of all the 10 results. 

2.5.2.2 Randomly divided database (RDD) 

In this section total available dataset of microscopic image of hardwood specie is randomly 

divided [34] into fixed training and testing subsets for each individual species. The investigations 

have been carried out with four different proportions of training and testing datasets as given 

below: 

1. 80% data for training and 20% data for testing (80/20)  

2. 70% data for training and 30% data for testing (70/30)  

3. 60% data for training and 40% data for testing (60/40)  

4. 50% data for training and 50% data for testing (50/50) 

2.6 EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental work presented in this section investigates the efficacy of the state-of-the-art 

texture feature extraction techniques for the classification of microscopic images of hardwood 

species database into 75 classes with the help of classifiers. The four classifiers used in this 

work are linear SVM, RBF kernel SVM, LDA and RF classifiers. The linear and RBF kernel SVM 

classifiers have been examined by means of MATLAB implementations of LibLINEAR [52] and 

LIBSVM [33] tools, respectively. The LDA classifier has been implemented with the help of built-

in function available in MATLAB R2013a. Further, the RF classifier is performed using Matlab 

implementation of RF_MexStandalone-v0.02 tool [249]. 
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 Parameter Selection 

The GLCM technique generates 18 features in each direction for a given neighbourhood 

distance. The neighbourhood distance (d) in the range 1-10 has been investigated and d=9 has 

been selected as it yields best result. Further, these features are calculated in four directions       

(0°, 45°, 90° and 135°). 

In order to get Gabor texture features, the grayscale image is convolved with Gabor filters 

and produces 40 Gabor patterns for each grayscale image [73]. Subsequently, FOS texture 

features namely, mean, standard deviation (SD) and entropy are calculated from each of the 

Gabor pattern images. 

The P and R parameter values are considered as 8 and 1, respectively, for all the variants 

of LBP (LBP, LBPu2, LBPri, LBPriu2, LBP-HF, CLBPu2, ALBPu2, ALBPri and ALBPriu2) because 

these values have yielded fast and accurate feature extraction as represented by [7]. Further, 

for texture images, uniform patterns account for approximately 90% of all patterns when using 

the (8, 1) neighbourhood and these patterns account for around 70% in the (16, 2) 

neighbourhood. The use of LBPriu2 having P = 8 and R = 1 has also reported the best result 

compared to (P, R) pair values of (16, 2) and (24, 3) [152]. Furthermore, the R parameter is 

usually chosen small because the correlation between pixels decreases with distance, and a lot 

of the texture information can be obtained from local neighbourhoods [80].  

For the variants of LTP (viz., LTPu2, LTPri, LTPriu2) the threshold value, th = 5 has been 

chosen as it produces the best result [198]. For LCP variant the number of neighbouring sample 

have been fixed to 8 [65].To extract LPQ texture features the local window size has been chosen 

as 3 3 (default value). The STFT with Gaussian window (Gaussian quadrature filter pair) has 

been used for local frequency estimation and the coefficients are decorrelated [153], as the 

information is maximally conserved in scalar quantization when the samples to be quantized are 

statistically independent. 

For linear SVM classifier, the optimum value of C has been selected by searching in the 

range (10-4, 10-3,…, 10+5), whereas the optimum value of C and gamma   has been selected 

by using grid search method in the range (10-4,10-3,…,10+5) for RBF kernel SVM classifier [36]. 

The tolerance of termination criteria    value has been tested in the range (0.1, 0.01, 0.001, 

and 0.0001) and found that   = 0.01 gives the best trade-off between classification accuracy 

and computational time. Also, the bias (b) parameter value has been selected as 1 for SVM 

implementation.  

The LDA classifier has been investigated only for PCA reduced feature dataset.  The 

LDA cannot be employed directly to high dimensional features and small sample size set [224], 

because of the fact that the within class scatter matrix is always singular [15, 38].  
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The RF classifier needs to optimize number of trees  nTree  and number of randomly 

chosen features  mTry  for generating a prediction model. Typically, 500 to 2000 trees are 

grown and the results aggregated by averaging [173].  Here, nTree  values have been varied in 

the range of 100 to 1000 and it has been found that addition of number of trees beyond 450 to 

500 were not having significant improvement in the classification accuracy for our dataset. Thus, 

as a trade-off between classification accuracy and computational time, 𝑛𝑇𝑟𝑒𝑒  = 500 [5, 115] 

and  mTry floor number of features  [5, 49] has been selected in this experimentation.  

 Experimental Results 

The classification accuracy of the state-of-the-art texture feature extraction techniques has been 

computed using the earlier discussed classifiers, who have been selected on the basis of their 

general performance for pattern recognition and classification task. The classification accuracy 

has been computed under three different categories viz., full feature vector data (FFVD), PCA 

reduced feature vector data and mRMR feature selection based reduced feature vector data. 

To compute the performance of feature extraction techniques two approaches viz., 10- fold cross 

validation and randomly divided database (RDD) selection has been adapted. Then, the 

comprehensive results are presented under two subsections of 10-fold cross validation and RDD 

selection. Further, under the individual approaches the results have further been categorised 

under FFVD, PCA reduced feature vector data and minimal redundancy maximal relevance 

(mRMR) feature selection based reduced feature vector data. 

 Performance Evaluation of State-of-the-art Texture Feature Extraction Techniques 

using 10-fold Cross Validation Approach 

The classification accuracy obtained for full feature vector data, PCA reduced dimension feature 

vector data and mRMR feature selection based reduced feature vector data is discussed in the 

following subsections. 

2.6.3.1 Full feature vector data (FFVD) 

The classification accuracy achieved using FFVD of several state-of-the-art texture feature 

extraction techniques for grayscale image of hardwood species is presented in Table 2.4. The 

classification accuracy obtained with the texture features using three different classifiers is 

discussed below: 

Linear SVM classifier: The feature vector data of BGP texture feature extraction technique has 

achieved highest classification accuracy of 95.93±1.52% with 216-dimension features. The 

second best classification accuracy of 95.20±1.20% has been attained by COALBP48 texture 

features (1024). The feature vector data of FOS techniques has presented worst classification 

accuracy of 15.80 ± 2.59%, amongst the state-of-the-art texture feature extraction techniques. 
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RBF kernel SVM classifier: The best classification accuracy of 94.13±2.24% has been 

obtained using FFVD of BGP texture feature extraction technique. The FFVD of COALBP48 

texture feature extraction technique has achieved the second best classification accuracy of 

91.67±1.14%. Further, the least classification accuracy of 38.67±2.08% has been obtained with 

FFVD of FOS technique. 

RF classifier: The FFVD of BGP texture feature extraction technique has attained the best 

classification accuracy of 86.27±1.37%. The second best classification accuracy of 

85.00±1.89% has been obtained by FFVD of COALBP48 texture feature extraction technique. 

Similar to all other classifiers, in this case too, the lowest classification accuracy of 33.13±2.72% 

has been accomplished by FFVD of FOS technique. 

Table 2.4 Classification accuracy achieved using full feature vector data 

Technique Feature extraction  
time in seconds 

% CA±SD achieved by classifiers 

 
NoF Linear SVM  RBF kernel SVM RF 

GLCM 0.3468 72 80.47±3.32 73.67±3.25 53.93±2.74 
GLRLM 4.0733 44 75.20±3.13 68.67±4.30 47.20±4.12 
FOS 0.1694 4 15.80±2.59 38.67±2.08 33.13±2.72 
Gabor 9.3753 120 93.47±1.43 90.20±3.25 77.80±3.14 
LBP 0.1351 256 89.73±2.90 87.93±2.16 69.33±1.83 
LBPu2 0.2592 59 79.73±2.88 81.47±2.64 69.27±2.52 
LBPri 0.2621 36 77.33±2.86 79.07±3.31 53.47±2.98 
LBPriu2 0.2497 10 63.53±3.16 67.07±2.71 41.60±4.23 
LBP-HF 0.2594 38 71.60±1.51 71.40±1.49 65.47±3.20 
LPQ 0.2795 256 90.80±2.13 87.00±2.18 70.53±1.96 
GLAC 0.1407 105 83.53±2.98 74.80±4.28 51.00±3.60 
CSLBP 4.4766 16 43.33±3.84 50.13±4.20 38.53±4.60 
CLBPu2 0.3124 118 87.40±2.14 86.13±2.59 73.53±3.16 
LDP 0.4137 256 76.80±2.10 78.93±3.41 58.33±4.41 
LTPu2 0.3853 118 88.40±2.11 87.13±2.88 74.73±3.69 
LTPri 0.3865 72 86.46±1.77 85.86±2.32 61.40±4.61 
LTPriu2 0.4069 20 79.86±2.10 79.93±1.76 55.86±4.21 
ALBPu2 0.6445 59 80.33±3.02 81.40±2.58 69.06±4.01 
ALBPri 0.5911 36 75.53±1.72 78.13±3.15 56.07±4.18 
ALBPriu2 0.5823 10 62.00±3.29 67.87±4.42 43.80±2.51 
LCPu2 0.5200 81 81.53±3.01 84.33±2.93 75.27±2.57 
LCPri 0.6589 81 77.27±3.44 77.60±2.27 70.93±2.93 
LCPriu2 0.7185 81 82.80±3.24 82.13±2.52 73.20±3.79 
BGP 2.6857 216 95.93±1.52 94.13±2.24 86.27±1.37 
LTCoP 4.5533 256 90.93±1.81 86.33±1.57 68.27±3.17 
CoALBP12 0.2926 1024 94.06±1.55 90.93±2.13 79.87±2.17 
CoALBP24 0.3048 1024 94.53±1.28 91.60±0.78 83.20±1.62 
CoALBP48 0.3323 1024 95.20±1.20 91.67±1.14 85.00±1.89 
DenseCLBP 1.8823 118 89.67±1.37 86.60±2.16 75.93±3.02 

Amongst other LBP variants (i.e., LBP, LBPu2, LBPri, LBPriu2, LBP-HF, CLBPu2, ALBPu2, 

ALBPri, ALBPriu2), the LBP texture features have given the best classification accuracy results 

though it is poorer than the rest of the above discussed techniques. The classification accuracy 

results produced by rest of the state-of-the-art texture features extraction techniques by three 

classifiers are also listed in Table 2.4. The percentage classification accuracy results obtained 

by state-of-the-art texture feature extraction techniques are graphically illustrated as shown in 
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Fig. 2.11. The superiority of BGP and COALBP48 texture feature extraction techniques are 

clearly visible in Fig. 2.11. 

 

Fig. 2.11 Classification accuracy achieved using FFVD. 

 

Fig. 2.12 Feature extraction time for single grayscale image. 

In Fig. 2.12, time taken by each of the state-of-the art texture feature extraction techniques 

for single image is presented. It is evident that Gabor texture extraction technique takes 

maximum time (9.3753 second) to produce features of a single grayscale image. Similarly, 

CSLBP, BGP, LTCOP and DenseCLBP do need more time for texture feature extraction. In 

contrast to rest of the techniques, the LBP variants have taken minimum time for feature 

extraction as is evident from Fig. 2.12. 
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The error bar plot with standard deviation (SD) for classification accuracy achieved by 

texture feature extraction techniques is shown in Fig. 2.13. It is again observed that BGP texture 

feature extraction technique has produced best classification accuracy with minimum value of 

SD for all the three classifiers compared to rest of the texture feature extraction techniques. 

Another observation which needs to be emphasized is that the linear SVM classifier has 

achieved comparatively better classification accuracy compared to the RBF kernel SVM and RF 

classifier for most of the state-of-the-art texture feature extraction techniques. 

 

Fig. 2.13 Error bar plot with SD using FFVD. 

2.6.3.2 The PCA dimensionality reduced feature vector data 

In this section, the PCA is used to reduce the dimensionality of feature vector data. The 

classification accuracy results obtained by the PCA based reduced feature vector data of state-

of-the-art texture feature extraction techniques with different classifiers are presented in       

Table 2.5, and has been concisely discussed henceforth: 

Linear SVM classifier: The PCA reduced feature vector data of BGP feature extraction 

technique yields 95.20±1.50% classification accuracy, compared to 95.93±1.55% classification 

accuracy achieved by FFVD of BGP. Though, the achieved accuracy is relatively lower but it 

has been achieved with 175 features only in comparison to 216 features considered for FFVD. 

RBF kernel SVM classifier: Amongst the proposed feature extraction techniques, the PCA 

reduced feature vector data of BGP texture feature extraction technique has achieved a 

classification accuracy of 94.47±1.33% using 150 features only, which is better than the 

classification accuracy (94.13±2.24%) achieved for FFVD of BGP. 



 

47 

 

RF classifier: For PCA reduced feature vector data of BGP feature extraction techniques, the 

RF classifier has also obtained much better classification accuracy (91.47±2.22%) with 75 

features only compared to 86.27±1.37% classification accuracy produced by FFVD of BGP. 

LDA classifier: Further, the LDA classifier has also been investigated with PCA reduced feature 

vector data and it has achieved a classification accuracy of 96.33±1.14% with 225 features of 

CoALBP24 feature extraction techniques. Further, the PCA reduced feature vector data of BGP 

feature extraction techniques has also achieved a classification accuracy of 95.87±1.25% using 

210 features. 

Table 2.5 Classification accuracy achieved using PCA based reduced feature vector data. 

Technique %CA±SD achieved by classifiers 

NoF  Linear SVM NoF RBF kernel SVM NoF LDA NoF RF 

GLCM 50 79.40±2.91 40 70.93±3.77 65 82.80±2.53 60 82.87±2.04 

GLRLM 40 73.13±3.58 25 65.13±4.17 40 72.40±4.20 40 78.13±2.39 

FOS 4 18.53±2.07 4 36.33±4.21 4 29.00±2.52 4 34.73±4.57 

Gabor 115 93.33±1.63 115 90.22±3.11 110 94.20±1.14 115 93.93±1.73 

LBP 200 89.87±2.53 175 87.93±1.73 250 87.80±1.63 100 84.60±2.94 

LBPu2 55 79.27±1.95 55 81.40±2.64 50 81.00±1.81 50 83.33±1.72 

LBPri 35 77.07±3.45 30 78.93±3.33 35 76.00±3.47 30 77.40±1.49 

LBPriu2 8 58.80±3.51 8 66.00±2.81 8 56.47±4.55 9 68.60±3.78 

LBP-HF 35 70.13±1.96 35 71.53±1.51 35 78.87±2.04 35 76.47±3.28 

LPQ 125 90.27±2.31 200 87.13±2.33 105 89.93±3.29 75 88.33±3.67 

GLAC 75 81.40±2.62 25 70.93±2.88 100 83.60±2.07 75 86.60±2.89 

CSLBP 15 41.60±4.81 16 47.27±3.18 15 43.93±4.61 15 58.20±3.71 

CLBPu2 115 87.53±1.66 100 86.07±2.60 95 87.47±1.91 50 85.93±2.40 

LDP 100 76.53±3.40 75 77.93±4.59 35 72.60±2.46 75 76.93±3.52 

LTPu2 115 87.67±2.90 100 87.47±2.20 115 88.73±1.35 75 89.27±0.97 

LTPri 70 85.87±2.26 60 85.33±3.10 70 86.20±2.72 60 83.73±3.22 

LTPriu2 18 77.07±3.22 15 79.06±4.49 18 75.40±3.39 18 83.13±2.55 

ALBPu2 55 80.00±3.49 40 81.20±3.16 50 79.80±3.28 50 81.80±2.53 

ALBPri 35 74.00±2.75 30 78.80±2.55 35 74.33±2.48 35 76.27±3.11 

ALBPriu2 9 55.20±3.39 9 67.27±2.78 9 57.27±2.52 9 68.00±3.69 

LCPu2 50 81.33±3.06 75 85.93±2.07 50 82.27±3.08 50 80.40±3.57 

LCPri 60 78.46±3.57 50 77.33±2.47 50 83.67±2.10 60 80.06±1.95 

LCPriu2 60 82.80±2.81 75 82.13±2.45 50 86.27±2.07 60 85.33±2.79 

BGP 175 95.20±1.50 150 94.47±1.33 210 95.87±1.25 75 91.47±2.22 

LTCoP 200 90.53±2.22 175 86.47±2.09 125 89.73±1.10 50 87.00±1.81 

CoALBP12 250 93.53±1.78 250 91.47±3.26 175 95.73±1.78 150 91.73±1.38 

CoALBP24 300 94.67±1.75 225 91.53±3.00 225 96.33±1.14 125 93.60±2.36 

CoALBP48 250 95.13±1.18 250 91.80±3.14 225 95.53±0.83 125 92.60±2.48 

DenseCLBP 115 89.80±2.16 50 86.67±2.95 110 90.86±1.75 75 89.80±2.95 

The feature vector data of BGP texture feature extraction techniques has achieved best 

classification accuracy with all the classifiers, whereas the FOS techniques has presented 

lowest classification accuracies. The classification accuracy obtained by the other feature 

extraction techniques have also been listed in Table 2.5. The results obtained by PCA based 

reduced feature dataset is compared with the FFVD. It is also evident from Table 2.5 that the 

PCA based reduced feature vector data has obtained classification accuracy which is 
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comparable to the classification accuracy achieved with FFVD. The RF classifier has 

demonstrated maximum rise in the classification accuracy for PCA based reduced feature vector 

data for all the state-of-the-art texture feature extraction techniques in comparison to their FFVD. 

The comparison of classification accuracy achieved by four classifiers for state-of-the-

art texture feature extraction techniques using PCA reduced feature vector data is presented in 

Fig. 2.14. Further, error bar plot with SD for the classification accuracy achieved by all the texture 

feature extraction techniques discussed in this chapter are shown in Fig. 2.15. In this case, the 

CoALBP24 has produced best classification accuracy (96.33±1.14%) with smaller value of SD, 

whereas, the BGP has also achieved a classification accuracy of 95.87±1.25% with smaller 

value of SD by using LDA classifier. 

 

Fig. 2.14 Classification accuracy achieved using PCA reduced feature vector data. 

 

Fig. 2.15  Error bar plot with SD using PCA reduced feature vector data. 
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2.6.3.3 The mRMR feature selection based reduced feature vector data 

The Table 2.6 enlists the classification accuracy results obtained by the state-of-the-art texture 

feature extraction techniques using mRMR feature selection based feature vector data.  

Linear SVM classifier: Amongst the state-of-the-art texture feature extraction techniques, the 

best classification accuracy of 95.60±1.78% has been achieved with mRMR processed subset 

(200 features) of FFVD of BGP technique. This classification accuracy is slightly lesser than 

95.93±1.52% accuracy obtained by FFVD (216 features) of BGP technique. 

Table 2.6 Classification accuracy achieved using mRMR feature selection based reduced feature vector 
data. 

Technique 
% CA±SD achieved by classifiers 

NoF  Linear SVM NoF RBF kernel SVM NoF RF 

GLCM 60 80.80±3.45 60 73.47±3.05 70 55.27±4.30 

GLRLM 40 74.33±3.57 40 61.60±4.12 40 47.53±2.18 

FOS 4 16.73±1.79 4 36.20±2.93 4 34.47±3.81 

Gabor 100 93.67±1.64 100 91.07±2.39 75 79.93±2.36 

LBP 250 89.53±3.06 225 87.40±1.92 150 71.27±3.51 

LBPu2 55 76.93±3.31 55 79.73±2.54 55 69.07±3.59 

LBPri 35 76.33±2.51 35 78.53±3.01 30 54.26±4.36 

LBPriu2 9 59.80±3.76 9 64.67±2.96 9 42.67±4.23 

LBP-HF 37 71.80±2.37 37 71.13±1.89 37 64.40±5.28 

LPQ 255 90.67±1.94 175 86.87±2.11 175 72.53±2.72 

GLAC 100 83.27±3.09 100 66.27±3.80 100 52.47±5.81 

CSLBP 15 42.00±2.88 15 46.87±4.10 15 38.07±3.89 

CLBPu2 115 87.20±2.53 115 85.40±2.54 115 73.87±2.39 

LDP 75 76.80±2.10 125 78.33±3.52 175 59.80±4.09 

LTPu2 115 87.40±3.12 115 87.00±2.52 75 75.13±2.67 

LTPri 72 86.87±2.18 70 85.73±2.52 30 63.13±3.63 

LTPriu2 18 79.93±2.46 18 78.20±2.01 18 56.00±3.91 

ALBPu2 55 78.00±3.53 55 80.33±3.05 50 68.73±4.54 

ALBPri 35 75.00±2.02 35 77.07±2.27 35 55.87±4.56 

ALBPriu2 10 62.00±3.30 9 63.60±4.03 9 43.20±1.96 

LCPu2 75 79.93±3.33 70 83.47±3.17 60 75.60±2.07 

LCPri 50 79.47±2.84 50 80.87±3.39 50 71.27±3.49 

LCPriu2 70 82.27±2.60 25 83.60±2.65 60 74.80±2.88 

BGP 200 95.60±1.78 175 94.47±2.16 75 88.80±1.85 

LTCoP 225 90.40±2.11 200 86.33±2.16 125 69.27±3.56 

CoALBP12 400 92.93±2.18 300 90.47±2.09 225 82.73±3.36 

CoALBP24 450 94.80±1.43 300 91.33±1.51 175 85.13±3.03 

CoALBP48 400 94.47±1.00 300 92.20±0.83 150 87.07±1.84 

DenseCLBP 115 89.33±1.47 115 86.67±2.37 75 76.40±2.46 

RBF kernel SVM classifier: The mRMR selected feature subset (175 features) of BGP texture 

feature extraction technique has achieved the best classification accuracy of 94.47±2.16%, 

which is relatively better than 94.13±2.24% classification accuracy obtained by FFVD (216 

features) of BGP technique. 

RF classifier: The RF classifier has achieved the best classification accuracy of 88.80±1.85% 

for mRMR selected feature subset (75 features) of BGP texture feature extraction technique. 
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This accuracy is reasonably better than the highest classification accuracy (86.27±1.37%) 

obtained by the FFVD (216 features) of BGP technique. 

 

Fig. 2.16 Classification accuracy achieved using mRMR feature selection based reduced feature data. 

 

Fig. 2.17 Error bar plot with SD using mRMR feature selection based reduced feature vector data. 

The classification accuracy results achieved by other texture feature extraction 

techniques are listed in Table 2.6. The classification accuracy results achieved by mRMR 

feature selection based BGP texture features are much closer to the results obtained by FFVD 

and PCA based reduced feature vector data of BGP techniques using linear SVM and RBF 

kernel SVM classifiers. The RF classifier, on the other hand has produced relatively better 
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classification accuracy as compared to FFVD, and relatively lower classification accuracy 

compared to PCA based reduced feature vector data for BGP feature extraction technique.   

The graphical representation of state-of-the-art texture feature extraction techniques for 

mRMR feature selection based reduced feature vector data of state-of-the-art texture feature 

extraction techniques are illustrated in Fig. 2.16. The linear SVM classifier seems to be 

outperforming rest of the classifiers for all the feature extraction techniques. In Fig. 2.17, the 

error bar plot with SD using mRMR feature selection based reduced feature vector data has 

been presented. It is evident from Fig. 2.17 that for mRMR feature selection based reduced 

feature vector data, BGP has achieved lowest SD value. Further, BGP has marginally 

outperformed COALBP12, COALBP24, COALBP48, Gabor filter and LPQ techniques. 

 Performance Evaluation of State-of-the-art Texture Feature Extraction Techniques 

using Randomly Divided Database (RDD) 

2.6.4.1 Full feature vector data (FFVD) 

The classification accuracy achieved by state-of-the-art texture feature extraction techniques for 

different ratios of training and testing data is listed in Table 2.7.  

Linear SVM classifier: Amongst the studied texture feature extraction techniques, FFVD of 

BGP technique yields best classification accuracy of 94.33%, 88%, 85.33% and 82.40% for 

80/20, 70/30, 60/40 and 50/50 proportions of training and testing data of RDD, respectively. The 

2nd best classification accuracy has been attained by FFVD of COALBP48 technique, whereas 

FFVD of Gabor filter technique attains the 3rd best classification accuracy. Similar to above, the 

FFVD of FOS texture feature extraction technique has resulted into lowest classification 

accuracy. The classification accuracy achieved by other texture feature extraction techniques 

are also listed in Table 2.7 for comparison purpose.  

RBF kernel SVM classifier: The feature vector data produced by BGP texture feature 

extraction technique has obtained best classification accuracy of 88%, 87.33% and 83% for 

80/20, 70/30 and 60/40 proportions of training and testing data of RDD, respectively. Further, 

the feature vector data obtained by COALBP48 texture feature extraction technique has given 

the best classification accuracy of 79.33% for 50/50 proportions of training and testing data of 

RDD. The classification accuracy achieved by other texture feature extraction techniques are 

also listed in Table 2.7. 

RF classifier: In case of RF classifier, again the BGP texture features have achieved best 

classification accuracy of 82.33% and 79.33% for 80/20 and 70/30 training and testing ratios of 

RDD. The FFVD of COALBP48 technique, however has achieved maximum classification 

accuracy of 76.33% and 73.87% for 60/40 and 50/50 training and testing ratios of RDD, 

respectively, which is also listed in Table 2.7. 
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Table 2.7 Classification accuracy achieved by full feature vector data for different proportions of training 
and testing data of RDD using three classifiers.  

Technique 

% CA achieved by classifiers for different proportions of training and testing data 

LSVM RBF kernel SVM RF 

80/20  70/30 60/40 50/50 80/20  70/30 60/40 50/50 80/20  70/30 60/40 50/50 

GLCM 76.33 75.33 69.00 67.47 67.00 65.11 62.00 61.07 50.00 47.56 47.33 46.67 

GLRLM 70.67 64.44 60.17 59.47 61.67 54.89 52.17 50.80 42.67 39.56 38.67 37.07 

FOS 10.66 10.88 12.66 10.53 28.67 24.44 23.67 24.00 27.67 22.67 21.33 22.33 

Gabor 87.00 84.44 82.50 80.80 84.00 81.33 76.00 73.47 72.00 68.44 64.67 64.40 

LBP 83.67 80.22 75.83 70.67 78.33 72.67 68.33 65.60 60.33 54.44 53.67 52.13 

LBPu2 74.67 68.00 66.50 62.13 71.67 66.00 61.67 57.87 60.00 51.78 50.00 46.53 

LBPri 68.00 69.55 66.33 63.60 69.00 66.89 64.00 60.27 45.67 41.78 41.50 34.93 

LBPriu2 61.00 57.11 55.00 54.13 63.67 58.67 57.83 53.33 36.00 33.78 35.00 32.00 

LBP-HF 65.67 58.00 55.00 50.93 65.67 58.44 52.50 49.33 57.00 51.56 51.67 48.00 

LPQ 83.67 77.78 74.50 72.40 78.67 71.78 67.50 63.60 62.33 54.44 51.67 49.87 

GLAC 77.33 73.11 68.00 66.40 64.00 59.56 56.00 49.60 40.67 34.22 37.17 35.20 

CSLBP 33.00 32.22 31.33 29.33 35.67 34.44 34.16 31.60 27.67 24.89 25.33 22.53 

CLBPu2 79.00 74.89 72.50 68.53 76.00 70.67 67.17 63.60 61.67 57.33 57.50 55.60 

LDP 71.33 68.67 62.83 61.33 70.00 63.33 58.17 56.67 49.67 42.44 42.33 40.93 

LTPu2 83.00 79.56 75.17 74.40 79.33 72.67 68.00 67.60 66.67 62.00 60.17 57.60 

LTPri 83.67 80.89 79.00 76.13 80.00 75.77 73.67 70.40 59.67 54.22 50.83 46.53 

LTPriu2 74.67 71.78 70.00 67.33 72.67 72.00 69.17 65.60 49.00 47.33 46.50 42.93 

ALBPu2 74.00 68.44 66.00 61.33 74.67 65.56 60.50 58.00 60.33 51.78 50.67 47.87 

ALBPri 70.00 68.00 64.00 61.60 70.67 66.89 64.50 61.73 50.33 47.33 43.33 39.07 

ALBPriu2 53.33 50.67 50.83 50.13 59.67 52.22 52.33 50.13 49.67 47.11 42.33 40.27 

LCPu2 76.00 69.33 65.00 62.40 76.00 70.67 70.33 64.67 68.67 61.78 57.67 55.60 

LCPri 70.67 64.89 64.00 61.33 66.67 64.89 64.83 57.07 63.00 56.44 56.67 52.13 

LCPriu2 74.33 71.56 68.83 66.67 70.00 69.33 65.50 61.60 63.33 61.11 59.17 55.87 

BGP 94.33 88.00 85.33 82.40 88.00 87.33 83.00 78.80 82.33 79.33 75.50 71.73 

LTCoP 85.00 79.33 76.83 73.33 75.00 70.89 67.83 64.93 60.33 53.33 51.33 52.00 

CoALBP12 88.67 84.44 81.33 77.47 85.33 80.00 74.50 71.87 71.33 64.89 63.50 60.93 

CoALBP24 89.67 86.89 82.33 80.80 85.33 82.00 76.67 72.93 77.67 73.56 68.67 65.47 

CoALBP48 90.33 86.44 85.50 84.53 85.33 83.33 80.83 79.33 80.33 76.44 76.33 73.87 

DenseCLBP 84.33 79.78 75.50 72.40 82.00 74.89 69.50 68.27 68.67 64.67 60.17 59.87 

The graphical illustration for 80/20, 70/30, 60/40 and 50/50 training and testing data ratios 

of RDD is given in Fig. 2.18, Fig. 2.19, Fig. 2.20, and Fig. 2.21, respectively. It is clearly visible 

from these figures that the FFVD of BGP texture feature extraction techniques has established 

its superiority amongst other feature extraction techniques for RDD. 
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Fig. 2.18 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

 

 

 

 

Fig. 2.19 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 
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Fig. 2.20 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 
Fig. 2.21 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

2.6.4.2 The PCA dimensionality reduced feature vector data 

The classification accuracy results obtained by the PCA based reduced feature vector data by 

linear SVM, RBF kernel SVM, RF and LDA classifier has been listed in Table 2.8, Table 2.9, 

Table 2.10 and Table 2.11 respectively. 

Linear SVM classifier: The PCA reduced feature vector data of BGP technique has produced 

the best classification accuracy of 92.33% (125 features), 87.56% (175 features) and 85.50% 

(175 features) for 80/20, 70/30 and 60/40 training and testing ratios of RDD, respectively. In 

addition, the PCA reduced feature vector data of COALBP48 technique has achieved the best 
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classification accuracy of 84.40% (225 features) for 50/50 training and testing ratio of RDD 

(Table 2.8).  

Table 2.8 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using linear SVM classifier. 

Technique NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

GLCM 50 76.67 50 75.77 50 69.83 50 68.40 

GLRLM 35 70.33 30 65.78 35 61.17 40 59.47 

FOS 4 18.33 4 18.22 4 18.50 4 19.20 

Gabor 100 87.33 100 85.33 100 83.67 100 80.67 

LBP 150 84.00 175 79.33 150 75.67 200 70.93 

LBPu2 58 76.00 58 67.78 58 65.12 50 62.27 

LBPri 30 72.67 35 71.33 35 68.50 30 65.20 

LBPriu2 9 52.00 9 51.56 9 47.66 9 45.20 

LBP-HF 37 64.00 37 58.00 37 56.33 37 52.00 

LPQ 175 82.67 175 76.40 200 74.50 75 71.47 

GLAC 75 76.33 100 72.67 100 68.33 100 65.47 

CSLBP 16 31.33 12 30.22 12 30.50 12 28.93 

CLBPu2 110 82.00 110 76.00 115 73.67 115 69.87 

LDP 75 69.00 75 67.78 75 63.67 75 61.33 

LTPu2 75 83.67 50 77.78 115 74.83 115 73.20 

LTPri 65 80.00 70 78.89 65 79.33 65 75.60 

LTPriu2 18 74.33 18 72.00 18 69.83 18 66.13 

ALBPu2 50 74.33 40 68.44 55 67.17 55 62.53 

ALBPri 30 69.33 35 68.22 35 65.00 35 62.67 

ALBPriu2 9 54.67 9 53.78 9 52.33 9 49.47 

LCPu2 60 77.67 70 70.89 70 66.67 50 62.93 

LCPri 60 70.33 60 66.89 60 64.67 60 62.13 

LCPriu2 50 75.67 70 71.33 70 70.00 50 67.73 

BGP 125 92.33 175 87.56 175 85.50 100 82.80 

LTCoP 175 83.00 150 80.22 175 77.50 225 72.53 

CoALBP12 200 88.67 250 84.22 250 81.00 450 77.87 

CoALBP24 250 89.67 225 87.33 300 82.33 150 80.80 

CoALBP48 225 90.33 175 86.89 225 84.50 225 84.40 

DenseCLBP 100 84.67 110 79.33 110 75.33 100 72.27 

RBF kernel SVM classifier: The PCA reduced feature vector data of BGP technique has 

produced the best classification accuracy of 88.33% (100 features), 87.33% (200 features), and 

82.83% (125 features) for 80/20, 70/30 and 60/40 training and testing ratios of RDD, 

respectively. Further, PCA reduced feature vector data of COALBP48 technique has achieved 

the best classification accuracy of 79.60% (400 features), for 50/50 training and testing ratios of 

RDD (Table 2.9).  

 



 

56 

 

Table 2.9 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using RBF kernel SVM classifier. 

Technique NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

GLCM 70 67.67 50 66.44 50 62.17 60 60.93 

GLRLM 30 63.00 40 56.44 30 52.50 40 51.73 

FOS 3 29.67 3 27.77 3 27.83 3 26.00 

Gabor 100 84.33 118 81.78 110 75.67 100 73.47 

LBP 150 79.00 175 73.33 150 68.50 225 65.60 

LBPu2 50 72.00 58 66.44 58 61.33 58 58.13 

LBPri 20 71.00 35 68.22 30 65.33 35 61.46 

LBPriu2 9 65.33 9 56.89 9 55.67 9 51.60 

LBP-HF 37 66.33 30 58.67 37 52.17 37 49.33 

LPQ 125 79.00 100 71.78 150 67.17 100 63.47 

GLAC 75 63.67 100 60.44 50 55.67 100 49.87 

CSLBP 15 37.67 15 34.22 15 33.17 15 32.53 

CLBPu2 100 76.33 100 70.89 115 67.17 115 64.00 

LDP 125 70.67 200 63.33 250 58.00 225 56.80 

LTPu2 75 80.67 75 72.89 100 68.17 100 68.13 

LTPri 70 80.00 60 75.56 70 73.33 70 70.80 

LTPriu2 18 73.00 15 70.67 15 68.33 18 66.40 

ALBPu2 45 74.00 50 66.00 50 60.50 45 57.87 

ALBPri 35 72.00 35 68.44 25 65.00 35 62.53 

ALBPriu2 9 62.67 9 55.56 9 55.50 9 51.20 

LCPu2 60 76.33 70 70.44 50 70.33 50 65.20 

LCPri 70 68.33 50 65.56 50 64.67 70 58.27 

LCPriu2 60 71.00 50 70.00 50 66.50 50 61.87 

BGP 100 88.33 200 87.33 125 82.83 125 78.93 

LTCoP 75 77.67 100 71.78 150 67.83 200 64.93 

CoALBP12 250 85.67 250 80.00 200 74.67 400 72.40 

CoALBP24 75 86.00 150 82.22 400 74.67 300 73.20 

CoALBP48 125 86.33 100 83.55 250 80.67 400 79.60 

DenseCLBP 50 82.00 75 75.11 50 70.17 100 68.53 

RF classifier: The PCA reduced feature vector data of COALBP48 technique has produced the 

best classification accuracy of 88.33% (200 features), 84.44% (75 features), 83.17% (125 

features) and 82.27% (100 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios 

of RDD, respectively (Table 2.10).  

LDA classifier: The PCA reduced feature vector data of BGP technique has produced the best 

classification accuracy of 92.00% (210 features), 90.20% (125 features), 89% (75 features) and 

85.73% (100 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of randomly 

divided database, respectively (Table 2.11).  
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Table 2.10 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using RF classifier. 

Technique NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

GLCM 60 78.67 60 76.00 60 72.83 60 70.67 

GLRLM 35 75.00 30 67.33 40 66.00 40 64.80 

FOS 4 29.67 4 30.44 4 29.83 4 29.46 

Gabor 110 89.67 50 86.22 50 84.17 110 81.60 

LBP 50 79.00 100 71.11 50 68.33 75 66.27 

LBPu2 55 76.33 35 68.22 55 65.17 45 61.87 

LBPri 30 68.00 35 64.44 25 63.83 25 61.20 

LBPriu2 9 63.33 9 56.67 9 55.50 9 54.40 

LBP-HF 35 68.67 35 63.33 35 60.50 35 57.60 

LPQ 125 82.00 75 73.56 75 73.00 50 68.80 

GLAC 100 81.33 75 73.78 75 69.83 50 66.93 

CSLBP 15 43.00 15 44.44 15 42.83 15 39.47 

CLBPu2 50 79.33 50 73.11 75 69.83 75 65.47 

LDP 75 68.00 50 64.00 50 61.50 75 58.00 

LTPu2 75 81.67 110 75.78 110 71.00 50 68.93 

LTPri 50 76.00 50 74.89 25 72.50 25 68.67 

LTPriu2 18 76.33 15 72.44 18 70.67 18 67.60 

ALBPu2 55 74.00 50 68.89 45 62.33 35 61.47 

ALBPri 35 68.33 35 65.78 35 62.50 35 60.13 

ALBPriu2 9 61.67 9 55.11 9 55.00 9 52.93 

LCPu2 60 72.33 50 65.33 60 63.50 60 60.67 

LCPri 70 71.67 60 69.56 60 68.50 60 63.07 

LCPriu2 75 80.33 60 75.11 60 73.33 60 72.00 

BGP 50 86.00 100 82.89 50 81.17 100 80.40 

LTCoP 100 79.67 75 74.00 50 73.50 75 71.20 

CoALBP12 125 83.67 150 80.22 150 78.33 100 74.27 

CoALBP24 125 86.67 100 82.44 150 80.50 150 77.20 

CoALBP48 200 88.33 75 84.44 125 83.17 100 82.27 

DenseCLBP 115 82.67 75 78.44 100 74.33 75 72.53 

It is observed that in most of the cases, the PCA reduced feature vector data of BGP 

technique yields best classification accuracy amongst the state-of-the-art texture feature 

extraction techniques. The PCA reduced feature vector data of COALBP48 technique closely 

follows the results produced by BGP technique. The least classification accuracy has been 

reported for PCA reduced feature vector data of FOS technique amongst all the texture feature 

extraction techniques examined here, for hardwood species database classification. 

The graphical illustration for 80/20, 70/30, 60/40 and 50/50 training and testing data ratios 

of RDD is given in Fig. 2.22, Fig. 2.23, Fig. 2.24 and Fig. 2.25, respectively. It is clearly visible 

from these figures that the PCA reduced feature vector data of BGP texture feature extraction 

technique has established its superiority over other feature extraction techniques for RDD. It is 

worth noting that amongst all the four classifiers, the PCA reduced feature vector data has given 

better performance with linear SVM classifier for most of the texture feature extraction 
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techniques considered in this discussion. However, RF classifier yields relatively lower 

classification accuracy in comparison to other three classifiers. Though, PCA reduced feature 

vector data has achieved relatively lower classification accuracy compared to FFVD, but these 

accuracies were obtained using smaller number of feature vector data compared to full feature 

vector data, requiring less computation time in classification. 

Table 2.11 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using LDA classifier. 

Technique NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

GLCM 50 77.67 60 75.33 40 74.00 60 73.20 

GLRLM 35 69.67 35 65.33 44 65.67 40 64.80 

FOS 4 27.33 4 26.22 4 28.00 4 27.20 

Gabor 75 91.33 118 89.33 75 86.17 75 85.60 

LBP 125 81.33 200 76.89 100 75.00 100 74.40 

LBPu2 40 78.33 40 70.44 50 68.00 20 61.86 

LBPri 35 71.33 35 68.89 35 66.33 35 65.07 

LBPriu2 9 54.67 9 50.67 9 53.00 9 52.40 

LBP-HF 37 76.00 37 72.00 37 71.17 37 69.60 

LPQ 125 84.00 200 78.22 125 77.16 125 74.00 

GLAC 75 78.67 75 72.67 75 70.00 100 68.00 

CSLBP 15 35.67 15 33.33 15 30.00 10 28.67 

CLBPu2 75 83.33 75 79.11 75 75.50 75 71.33 

LDP 30 63.33 30 61.78 30 60.50 30 59.33 

LTPu2 75 84.33 115 80.00 50 77.17 50 74.00 

LTPri 40 80.00 50 78.00 60 77.67 60 76.40 

LTPriu2 15 72.00 15 67.56 15 66.50 15 64.67 

ALBPu2 50 75.33 55 69.56 55 68.00 40 64.67 

ALBPri 25 69.00 25 67.78 35 66.00 35 64.67 

ALBPriu2 9 55.33 9 51.78 9 52.00 9 51.33 

LCPu2 54 79.67 50 73.56 54 71.67 54 69.20 

LCPri 54 80.33 54 77.33 54 77.00 54 75.87 

LCPriu2 54 85.67 54 80.44 54 79.83 54 77.20 

BGP 210 92.00 125 90.22 75 89.00 100 85.73 

LTCoP 200 84.33 100 81.56 100 80.50 100 78.67 

CoALBP12 225 90.00 200 88.44 200 86.67 150 83.87 

CoALBP24 250 92.00 225 90.22 250 87.50 225 84.13 

CoALBP48 175 90.00 125 88.67 150 87.33 150 85.33 

DenseCLBP 75 85.33 50 80.89 50 78.17 50 76.27 
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Fig. 2.22 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

 

 

 

 

Fig. 2.23 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 
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Fig. 2.24 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 

 
Fig. 2.25 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

2.6.4.3 The mRMR feature selection based reduced feature vector data 

The classification accuracy results obtained by the mRMR feature selection based reduced 

feature vector data of RDD through linear SVM, RBF kernel SVM and RF classifiers has been 

presented in Table 2.12, Table 2.13 and Table 2.14, respectively.  

Linear SVM classifier: The mRMR feature selection based reduced feature vector data of BGP 

technique yields the best classification accuracy of 92.67% (200 features), 88.67% (150 

features), 86.67% (150 features) and 84% (150 features) for 80/20, 70/30, 60/40 and 50/50 

training and testing ratios of RDD, respectively (Table 2.12). The 2nd best classification accuracy 
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has been presented by mRMR feature selection based reduced feature vector data of 

CoALBP48 technique as listed in Table 2.12. 

RBF kernel SVM classifier: The mRMR feature selection based reduced feature vector data 

of BGP technique has yet again produced the best classification accuracy of 89% (150 features), 

87.11% (150 features) and 84.50% (150 features) for 80/20, 70/30 and 60/40 training and testing 

ratios of RDD, respectively. Further, the mRMR feature selection based reduced feature vector 

data of COALBP48 technique has achieved best classification accuracy of 81.47% (200 

features) for 50/50 training and testing ratios of randomly divided database (Table 2.13). 

Table 2.12 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using linear SVM classifier. 

Technique NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

GLCM 70 76.00 70 75.33 70 69.50 70 67.60 

GLRLM 30 57.00 40 52.89 35 51.83 35 49.47 

FOS 4 16.67 4 16.00 4 16.00 4 14.80 

Gabor 115 86.67 115 85.11 110 82.50 110 80.80 

LBP 250 83.33 250 80.44 250 76.17 250 71.33 

LBPu2 55 72.33 55 66.00 55 64.67 50 60.40 

LBPri 35 71.33 35 65.56 35 63.33 35 59.60 

LBPriu2 9 61.00 9 57.11 9 53.67 9 54.13 

LBP-HF 37 66.67 37 57.55 37 52.33 37 50.80 

LPQ 175 84.33 175 79.33 175 74.67 175 72.93 

GLAC 100 75.67 100 73.11 100 68.50 100 66.67 

CSLBP 15 33.00 15 32.89 15 31.50 15 30.93 

CLBPu2 75 79.67 115 75.78 100 73.13 100 69.07 

LDP 125 71.33 125 68.67 125 62.83 125 61.33 

LTPu2 100 83.67 100 79.33 100 76.17 115 73.33 

LTPri 70 82.33 70 79.78 70 78.33 70 76.00 

LTPriu2 18 75.00 18 71.33 18 69.33 18 66.00 

ALBPu2 55 72.00 55 67.33 55 65.67 55 60.93 

ALBPri 35 70.33 35 67.33 35 65.00 35 63.87 

ALBPriu2 9 50.00 9 50.22 9 48.50 9 48.27 

LCPu2 70 74.47 75 71.56 75 64.67 70 62.67 

LCPri 60 76.00 60 70.44 60 68.67 60 65.73 

LCPriu2 25 79.67 50 72.89 25 72.33 70 67.33 

BGP 200 92.67 150 88.67 150 86.67 150 84.00 

LTCoP 225 85.00 250 79.56 225 76.50 250 73.60 

CoALBP12 300 88.33 400 84.67 350 80.17 350 76.93 

CoALBP24 300 88.67 400 86.44 350 83.50 350 81.60 

CoALBP48 400 89.67 450 85.11 400 83.67 350 83.07 

DenseCLBP 110 84.33 110 79.56 110 75.83 110 72.13 
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Table 2.13 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using RBF kernel SVM classifier. 

Technique NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

GLCM 70 68.00 70 64.67 70 61.67 70 60.40 

GLRLM 30 57.00 40 52.89 35 51.83 35 49.47 

FOS 4 37.00 4 35.11 4 33.83 4 33.07 

Gabor 115 84.00 115 81.55 115 76.00 110 74.93 

LBP 150 78.33 250 72.89 250 68.50 175 65.47 

LBPu2 55 69.33 55 66.00 55 60.33 55 56.93 

LBPri 35 71.33 35 66.89 35 64.50 30 61.07 

LBPriu2 9 63.67 9 58.67 9 57.83 9 53.33 

LBP-HF 37 65.67 37 58.00 37 53.00 37 49.73 

LPQ 175 79.67 225 71.56 225 67.33 200 64.00 

GLAC 100 61.33 100 54.00 100 49.33 100 46.40 

CSLBP 15 36.33 16 34.44 15 33.83 15 33.00 

CLBPu2 100 76.33 100 71.11 100 67.00 115 63.87 

LDP 125 69.33 75 63.11 50 57.33 50 56.67 

LTPu2 100 80.67 110 73.11 75 69.33 100 68.13 

LTPri 50 79.33 70 76.00 70 73.33 70 70.40 

LTPriu2 18 73.00 18 70.44 18 66.83 18 65.20 

ALBPu2 40 69.67 55 64.00 50 59.50 55 57.60 

ALBPri 35 71.33 35 68.88 30 64.33 35 62.13 

ALBPriu2 9 58.67 9 52.89 9 51.67 9 48.53 

LCPu2 60 76.33 50 71.78 75 70.17 70 65.47 

LCPri 60 72.67 60 69.56 70 65.83 60 61.33 

LCPriu2 25 77.33 25 71.78 25 71.17 25 68.53 

BGP 150 89.00 150 87.11 150 84.50 150 80.53 

LTCoP 175 75.00 175 71.11 225 67.83 225 65.73 

CoALBP12 350 86.00 350 79.78 450 75.33 400 71.87 

CoALBP24 300 85.33 350 83.17 350 77.83 350 74.80 

CoALBP48 350 88.00 150 83.56 200 82.83 200 81.47 

DenseCLBP 75 83.33 115 75.11 100 70.00 115 68.53 

RF classifier: The mRMR feature selection based reduced feature vector data of BGP 

technique yields the best classification accuracy of 85.33% (150 features), 82.67% (75 features), 

80% (100 features) and 76.40% (50 features) for 80/20, 70/30, 60/40 and 50/50 training and 

testing ratios of RDD, respectively (Table 2.14). For RF classifier, the feature vector data of BGP 

technique has outperformed all other feature extraction techniques examined for the 

classification of hardwood species.  

The graphical illustration for 80/20, 70/30, 60/40 and 50/50 training and testing data 

ratios of RDD is given in Fig. 2.26, Fig. 2.27, Fig. 2.28 and Fig. 2.29, respectively. It is clearly 

visible from these figures that the mRMR feature selection based reduced feature vector data 

of BGP texture feature extraction techniques has established its superiority over other feature 

extraction techniques for RDD. It is worth noting that amongst all the classifiers, the mRMR 

feature selection based reduced feature vector data has given better performance with linear 
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SVM classifier for most of the texture feature extraction techniques considered in this discussion. 

The RF classifier yields relatively lower classification accuracy in comparison to other classifiers. 

Though, the mRMR feature selection based reduced feature vector has achieved relatively lower 

classification accuracy compared to FFVD, but these accuracies were obtained using smaller 

number of feature vector data compared to the full feature vector data. 

Table 2.14 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using RF classifier. 

Technique NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

GLCM 60 51.33 50 49.11 50 48.83 70 46.67 

GLRLM 30 41.00 30 38.00 35 37.83 35 46.53 

FOS 4 33.67 4 29.33 4 28.17 4 27.60 

Gabor 50 76.67 50 73.11 50 68.31 75 67.20 

LBP 100 64.67 175 56.44 175 55.00 125 53.47 

LBPu2 50 58.00 55 52.22 55 50.67 50 48.40 

LBPri 35 48.33 35 44.89 35 41.50 35 36.80 

LBPriu2 9 34.88 9 34.50 9 34.33 9 31.73 

LBP-HF 37 58.33 37 50.89 37 52.00 37 48.13 

LPQ 150 65.67 75 57.11 225 54.50 75 51.07 

GLAC 50 42.33 50 38.89 25 40.50 25 37.87 

CSLBP 15 29.67 15 25.78 15 28.83 15 25.07 

CLBPu2 75 64.00 75 59.78 100 57.83 100 56.33 

LDP 175 52.67 175 46.22 125 44.17 75 42.53 

LTPu2 75 67.33 110 63.33 100 61.00 110 58.13 

LTPri 50 58.33 50 56.22 50 52.33 50 47.87 

LTPriu2 15 50.33 18 49.11 15 46.83 15 44.40 

ALBPu2 50 59.00 50 51.78 50 50.50 55 49.33 

ALBPri 25 50.00 25 47.56 25 42.83 35 40.93 

ALBPriu2 9 35.00 9 33.11 9 31.33 9 29.07 

LCPu2 70 68.67 60 62.67 70 60.00 25 58.13 

LCPri 50 63.00 50 58.00 25 57.17 75 53.87 

LCPriu2 25 68.00 25 62.22 70 60.33 25 57.60 

BGP 150 85.33 75 82.67 100 80.00 50 76.40 

LTCoP 150 63.33 200 55.78 175 54.33 175 53.60 

CoALBP12 200 75.33 200 69.56 150 66.83 350 63.73 

CoALBP24 275 79.00 250 75.33 275 73.00 150 69.07 

CoALBP48 275 80.67 175 76.89 350 77.67 200 74.40 

DenseCLBP 100 71.33 100 66.22 110 62.67 50 61.47 
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Fig. 2.26 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

 

 

 

Fig. 2.27 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 
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Fig. 2.28 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 
Fig. 2.29 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

2.7 SUMMARY 

In this chapter, the efficacy of the state-of-the-art texture feature extraction techniques have 

been investigated for the classification of microscopic images of hardwood species into 75 

categories with the help of classifiers. The efficiency of the state-of-the-art texture feature 

extraction techniques have been tested using two different approaches, namely 1) 10-fold cross 

validation and 2) randomly divided database. Further, in both the approaches 3 cases are 
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discussed (viz., FFVD, PCA reduced feature vector data and mRMR feature selection based 

feature vector data). 

The best classification accuracy of 95.93±1.52% has been achieved by FFVD data of BGP 

texture feature extraction techniques using linear SVM classifier. The PCA reduced feature 

vector data of CoALBP24 texture feature extraction technique has attained maximum 

classification accuracy of 96.33±1.14% with the help of LDA classifier. Further, the mRMR 

feature selection based feature vector data of BGP texture feature extraction techniques has 

again produced the best classification accuracy of 95.60±1.78% when classified with linear SVM 

classifier. The CoALBP12, CoALBP24, CoALBP48, Gabor filter, LBP and LTCoP feature 

extraction techniques have also produced better results compared to rest of the state-of-the-art 

texture feature extraction techniques. It is to be emphasized that Gabor filter, LTCoP and BGP 

techniques took 9.3753, 4.5533 and 2.6857 seconds, respectively, to extract the texture features 

of individual image. The feature vector data of CoALBP48 and CoALBP24 texture feature 

extraction techniques have attained classification accuracies of 95.20±1.20% and 94.47±1.00% 

through FFVD and mRMR feature selection based feature vector data respectively with linear 

SVM classifier. In addition, a classification accuracy of 95.53±0.83% has been obtained for PCA 

reduced feature vector data of BGP texture feature extraction technique using LDA classifier. 

The feature vector data of FOS technique has obtained lowest classification accuracy amongst 

the techniques tested here. 

For RDD, four different proportions of training and testing ratios of the feature vector 

dataset has been investigated. In this case also, BGP texture feature extraction technique has 

achieved the best classification accuracy over other texture feature extraction techniques. The 

FFVD of BGP texture feature extraction technique with linear SVM classifier has produced the 

best classification accuracies of 94.33%, 88%, 85.33% and 82.40% for 80/20, 70/30, 60/40 and 

50/50 training and testing ratios of RDD, respectively. Further, the PCA reduced feature vector 

data of BGP technique has produced classification accuracy of 92.67% (RBF kernel SVM 

classifier) 90.22% (LDA classifier), 89 %( LDA classifier) and 85.73% (LDA classifier) for 80/20, 

70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively. 

The mRMR feature selection based reduced feature vector data of BGP technique yields 

the best classification accuracy of 92.67%, 88.67%, 86.67% and 84.00% for 80/20, 70/30, 60/40 

and 50/50  training and testing ratios of RDD, respectively, with linear SVM classifier. 

Thus, it is observed that the BGP technique outperforms the other state-of-the-art texture 

feature extraction techniques except one case where CoALBP48 produce better classification 

accuracy. The linear SVM, RBF kernel SVM and LDA classifier give better performance, 

whereas RF classifier gives poor performance, comparatively.
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CHAPTER 3. BWT BASED TEXTURE FEATURE EXTRACTION 
TECHNIQUES 

This chapter investigates the binary wavelet transform (BWT) based LBP variants texture 

features for classification of hardwood species. The chapter starts with concise description of 

the BWT, proposed hardwood species classification methodology, followed by assessment of 

effectiveness of proposed techniques with the help of different classifiers. 

3.1 INTRODUCTION 

Local texture pattern approaches have achieved best results for specific datasets. In reality, 

individual local descriptor technique have failed to produce better results for all the datasets. 

Thus, an opportunity of enhancing the texture descriptors do exist by bringing in together more 

descriptors or extracting texture features from transform domain images [61].  

The wavelet transforms (WT) are found in wide range of image processing applications 

for analysing images at several resolutions [165,186]. This analysis is analogous to the human 

visual perception system which evaluates the images simultaneously at several scales/levels of 

resolution [103, 239]. Further, WT has ability to efficiently represent most of the signal energy 

by small number of transformation coefficients.  

In order to effectively address the issue of texture classification [10,184], the problem is 

generally sub-divided into texture feature extraction and classification. Since, the primary goal 

is to enhance the classification accuracy, hence employing appropriate classification algorithm 

may accomplish the task of texture classification efficiently. Similarly, making use of a feature 

extractor that is capable of acquiring essential features too play a crucial role. If the significant 

features are utilized as input to the classifier then reasonably better classification accuracy can 

be achieved.  

By and large, the grayscale images have been utilized for extraction of texture features. 

In image compression applications, the bit-plane slicing approach has been used. The most 

significant bit (MSB), bit-plane (b7) of grayscale image contributes ample amount of information 

to the overall image. Thus, the aim of the present work is to investigate the impact of the MSB 

bit-plane for feature extraction and classification. Further, to get the time-frequency localization, 

2D-BWT is performed. The BWT has been used for biomedical image indexing and retrieval 

[138] and progressive medical image coding [93]. 

Thus, in view of the above discussion, this work presents an efficient texture feature 

extraction method that integrates BWT and LBP variants to obtain significant texture features of 

an image. Further to assess the effectiveness of the proposed texture feature approach four 

classifiers (Section 2.3) have been chosen.  
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3.2 BINARY WAVELET TRANSFORM (BWT) FOR GRAYSCALE IMAGE: A 

REVIEW  

A brief description of one-dimensional (1D) and two-dimensional (2D) BWT is presented in the 

following subsection.  

 One-dimensional BWT (1D-BWT) 

The realization of BWT on binary images is identical to implementation of real wavelet transform 

(RWT) on grayscale images [156]. For a given 1D signal x of length 1×N , TW  (BWT coefficient 

matrix) is given by Eq. (3.1) 

  
T

C DTW  (3.1) 

where,  0 2 4 2| ,   | , | , , |
T

s s s s NC c c c c      ,  0 2 4 2| ,   | , | , , |
T

s s s s ND d d d d      and |s kc   

describe a vector whose elements are circularly shifted sequence of c  by k. The   TC  is the 

transpose of C, and 

 0, 1, 1,,
T

Sc c c c    (3.2) 

 0, 1, 1,,
T

Sd d d d    (3.3) 

where, ic and id are the scaling (approximate) and wavelet (detail) filter coefficients, 

respectively, whereas S  correspond to number of scales. The expression for BWT is then given 

by: 

 y x TW  (3.4) 

An in-place implementation for realization of BWT has been proposed by Pan et al. [157]. 

The 32 different pairs of binary filters for filter lengths equal to 8 are categorized in four groups 

based on total number of "1" in the binary filters as listed in Table 3.1.  

Table 3.1 Filter groups of length-8 binary filters for BWT 

Group Low pass filter (LPF) High pass filter (HPF) 

1 {0,1,0,0,0,0,0,0} {1,1,0,0,0,0,0,0} 

2 {1,1,1,0,0,0,0,0} {1,1,0,0,0,0,0,0} 

3 {1,1,1,1,0,0,0,1} {1,1,0,0,0,0,0,0} 

4 {1,1,1,1,1,1,1,0} {1,1,0,0,0,0,0,0} 

The odd and even number samples of the signal x  are divided into two sequences to 

have an in-place implementation structure. Further, these sequences are updated in accordance 

with the filter coefficients produced by low pass filter (LPF) and the high pass filter (HPF). In 

order to produce the transformed output the LPF and HPF outputs are interleaved together. In 

this work, group 1 filter is used to implement BWT as illustrated in Fig. 3.1.  
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Fig. 3.1 In-place implementation of group 1 filter of 1D-BWT filter. 

The X(0) and X(7) are the LSB and MSB bit of sequence, respectively. In the given 

sequence X(0), X(2), X(4), and X(6) are odd-indexed numbers, whereas X(1), X(3), X(5) and 

X(7) are even-indexed numbers. The even-indexed numbers represent LPF output, while 

exclusive-OR (XOR) operation of odd-indexed number with subsequent even-indexed numbers 

produce HPF output.  

 Two-dimensional BWT (2D-BWT) 

Murala et al., [138] proposed a separable 2D-BWT by applying associated 1D filter bank on 

each row of the binary image followed by applying 1D filter bank on each of the column of the 

resultant coefficients (H and L) as pictorially represented in Fig. 3.2.  

 

Fig. 3.2 Separable 2D-BWT implementation at the 1st scale/level for binary image. 
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The binary image decomposition at 1st level/scale employing 2D-BWT generates one 

approximate (LL) subimage and three detail (LH, HL and HH) subimages. In order to generate 

higher level of decomposition, approximate subimage is further processed to produce four 

subimages. Further, the idea is applied on grayscale image by converting it to 8 binary bit-

planes; later each bit-plane is processed through 2D-BWT. An illustration of 2D-BWT grayscale 

image decomposition is shown in Fig. 3.3. The image is first divided into 8-binary images; each 

of the image is then processed by BWT that produces four (LL, LH, HL and HH) images. These 

images are later subjected to CLBPu2 texture descriptor method. The CLBP_Sign (CLBP_S) and 

CLBP_Magnitude (CLBP_M) image for 8th bit-plane is shown in Fig. 3.3. The original CLBP_S 

image is not visible clearly for LL_CLBP_S, therefore the improved CLBP_S images are also 

set aside next to the original CLBP_S images for illustration purpose only. 

 

Fig. 3.3 The CLBPu2 texture descriptor images of b7 bit-plane of grayscale image generated by 2D-BWT 

image decomposition. 

3.3 PROPOSED METHODOLOGY  

 Procedural Steps 

In the proposed framework, the task of image classification is divided into four different phases, 

namely, preprocessing, texture feature extraction, feature selection and classification. The block 

diagram of BWT based LBP variants texture feature extraction techniques for classification of 

hardwood species is illustrated in Fig. 3.4. 

A brief description of these procedures are as described below: 

1. The color (RGB) image is converted to grayscale image using Eq. (2.4.1).  

2. The significant texture features of the grayscale image are achieved by a 2D-DWT based 

texture feature extraction techniques, illustrated as dotted segment in Fig. 3.4. Initially, the 
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bit-plane slicing approach is used to transform grayscale image to binary image (b0 to b7). 

The b0 correspond to least significant bit (LSB) and b7 is most significant bit (MSB) plane. 

The higher-order bit-plane possess vital amount of visually significant information. 

Therefore, b7 bit-plane of each image is decomposed up to 5 different levels/scales (S1 to 

S5) with the help of 2D-BWT. The 2D-BWT decomposes the MSB bit plane (b7) into four 

(LL, LH, HL, and HH) equal-size subimages at the 1st level of image decomposition. The 

approximation (LL) coefficient of preceding level is further decomposed into four equal-size 

subimages at the subsequent level of image decomposition. Subsequently, LBP variants 

are employed to get texture features of each of the subimages up to 5 scales (S1 to S5). 

Further, at each scale of image decomposition, the histograms obtained by LBP variants 

from the four subimages are concatenated to form a feature vector data. For instance, the 

CLBPu2 texture descriptor produces 118-dimensional features for each image, therefore, 

472-dimensional feature vector data is produced at 1st level of image decomposition.  

 

Fig. 3.4 Block diagram of 2D-BWT based LBP variants texture features for image classification 

3. The feature vector data produced so has been normalized to accommodate the various 

values into a range 0 to 1 using Eq. (2.42), to give equal weightage to all the features. 

4. The feature vector data is then given as input to different classifiers into three different 

manners (FFVD, the PCA reduced feature vector data and the mRMR feature selection 

based reduced feature vector data) for classifying the microscopic images of hardwood 

species database into 75 categories.  

5. The best combination of BWT based LBP variants texture feature extraction technique and 

classifier is then identified on the basis of the superlative classification accuracy. Thus, on 

the basis of combination of BWT with different variants LBP texture feature descriptors, 

following texture feature extraction techniques are proposed here, and they are listed as 

below with their notations and variations.  

BWTLBP Binary wavelet transform based local binary pattern 

BWTLBPu2 Binary wavelet transform based uniform local binary pattern 

BWTLBPri Binary wavelet transform based uniform rotation invariant local binary pattern 

BWTLBPriu2 Binary wavelet transform based rotation invariant uniform local binary pattern 

BWTLBP-HF Binary wavelet transform based local binary pattern histogram Fourier features 
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BWTCLBPu2 Binary wavelet transform based uniform completed local binary pattern 

BWTCLBPri Binary wavelet transform based rotation invariant  completed local binary 
pattern 

BWTCLBPriu2 Binary wavelet transform based rotation invariant uniform completed local 
binary pattern 

 Approaches used for Performance Evaluation of Feature Extraction Techniques  

The performance of the BWT based LBP variants feature extraction techniques for classification 

of hardwood species have been investigated by employing two strategies: (1) 10-fold cross 

validation and (2) randomly dividing the database (Section 2.5.2) 

3.4 EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental work presented in this section investigates the effectiveness of the BWT 

based LBP variants texture feature extraction techniques for the classification of microscopic 

images of hardwood species database into 75 classes with the help of classifiers. The classifiers 

used for the investigation are linear SVM, RBF kernel SVM, LDA and RF classifiers (Section 

2.3).  

 Parameter Selection 

The selection of parameters for efficient implementation of LBP feature extraction techniques 

and classifiers have been discussed in detail in Section 2.6.1.  

 Experimental Results 

The classification accuracy of the BWT based LBP variants texture feature extraction techniques 

for microscopic images of hardwood species have been computed using four classifiers. As 

discussed in Section 2.6.2, analysis of the results here is also presented in the similar manner.  

 Performance Evaluation of BWT based LBP Variants Texture Feature Extraction 

Techniques using 10-fold Cross Validation Approach 

3.4.3.1 Full feature vector data (FFVD) 

The classification accuracy achieved by BWT based LBP variants texture features for grayscale 

image of hardwood species database is presented in Table 3.2. The classification accuracy 

obtained by the texture features using three different classifiers is discussed below: 

Linear SVM classifier: The FFVD of BWTCLBPri feature extraction technique has given the 

best classification accuracy of 95.47±1.75% using 864-dimensional feature vector data. Further, 

second best classification accuracy of 95.07±0.72% (1416 features) has been obtained by FFVD 

of BWTCLBPu2 texture feature extraction technique. Among the proposed feature extraction 

techniques, the least classification accuracy of 83.20±3.32% (456 features) has been attained 

for FFVD produced by BWTLBP-HF feature extraction technique. 
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Table 3.2 Classification accuracy achieved using full feature vector data. 

RBF kernel SVM classifier: Amongst the proposed feature extraction techniques, the best 

classification accuracy of 93.87±1.53% has been obtained for FFVD produced by BWTCLBPu2 

feature extraction technique. Further, the FFVD of BWTCLBPriu2 texture feature extraction 

technique has achieved slightly lower classification accuracy (93.73±2.58%) in comparison of 

BWTCLBPu2 technique. However, least classification accuracy of 84.73±2.23% has been 

achieved for FFVD of BWTLBP-HF texture feature extraction technique.  

 

Proposed 
techniques 

IDL 
Feature extraction  
time in seconds 

NoF  
% CA±SD achieved by classifiers 

 Linear SVM RBF kernel SVM RF 

 BWTLBP 

1 0.4160 1024 84.27±3.10 84.80±3.81 78.53±2.53 

2 0.4888 2048 89.47±2.63 87.87±2.81 83.47±2.47 

3 0.5105 3072 91.67±2.58 89.13±2.13 85.40±2.48 

4 0.5403 4096 90.33±2.21 86.93±2.60 84.67±2.41 
 5 0.5618 5120 89.20±2.17 85.07±2.44 84.67±2.43 
 

BWTLBPu2 

1 0.5159 236 85.60±1.99 86.67±3.69 75.93±3.49 

2 0.5967 472 89.93±2.34 91.20±1.85 84.27±2.61 

3 0.6211 708 91.40±2.36 92.53±1.96 87.53±2.18 

4 0.6321 944 90.40±2.18 90.73±2.23 87.93±2.32 

5 0.6400 1180 87.67±2.48 89.73±2.63 87.40±2.07 

BWTLBPri 

1 0.5172 144 77.00±3.15 81.00±2.16 70.60±2.14 

2 0.5925 288 87.67±3.00 86.80±2.33 80.60±2.02 

3 0.6129 432 89.40±2.25 89.13±3.12 84.60±2.46 

4 0.6230 576 86.73±2.05 86.67±3.43 84.20±2.79 

5 0.6361 720 84.93±1.97 84.47±1.69 83.67±2.50 

BWTLBPriu2 

1 0.5097 40 77.60±3.64 82.00±2.47 63.13±4.03 

2 0.5898 80 86.60±1.79 88.47±1.78 76.87±2.11 

3 0.6181 120 89.47±2.15 90.07±1.80 82.13±2.31 

4 0.6223 160 88.00±1.94 87.80±1.18 83.07±2.27 

5 0.6833 200 84.60±2.76 84.53±2.31 82.73±1.52 

 BWTLBP-HF 

1 0.5225 152 69.87±3.29 70.60±3.08 72.27±4.10 

2 0.6110 304 76.93±2.95 80.87±2.90 84.47±2.39 

3 0.6414 456 83.20±3.32 84.73±2.23 88.00±2.01 

4 0.6689 608 82.53±2.22 85.33±2.59 87.60±1.84 

5 0.6909 760 81.60±2.52 83.87±2.91 86.40±1.73 

 BWTCLBPu2 

1 0.5810 472 90.27±1.58  90.40±2.30 81.60±3.50 

2 0.6708 944 94.53±1.33 93.07±1.73 88.80±1.63 

3 0.7245 1416 95.07±0.72 93.87±1.53 91.27±0.97 

4 0.7498 1888 94.20±0.71 93.00±1.34 90.13±1.36 

5 1.2905 2360 92.53±1.43 91.40±1.46 90.27±1.45 

 BWTCLBPri 

1 0.5698 288 88.60±3.10 88.67±3.00 77.27±2.62 

2 0.6899 576 92.47±2.39 91.33±2.27 85.87±1.83 

3 0.6929 864 95.47±1.75 93.20±1.60 88.40±1.92 

4 0.6970 1152 93.47±1.75 90.67±1.99 88.07±2.62 

5 0.7049 1440 91.67±1.92 87.93±1.62 87.53±1.60 

 BWTCLBPriu2 

1 0.5435 80 87.00±2.74 89.20±1.66 75.53±2.79 

2 0.6446 160 91.53±1.78 92.20±1.04 83.80±2.31 

3 0.6578 240 94.13±2.28 93.73±2.58 89.27±2.28 

4 0.6631 320 93.67±1.41 93.27±1.79 88.67±2.55 

5 0.6764 400 91.13±2.06 90.73±1.87 88.80±2.08 
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RF classifier: This classifier has achieved the best classification accuracy of 91.27±0.97% for 

FFVD produced by BWTCLBPu2 texture feature extraction technique; whereas the FFVD of 

BWTCLBPriu2 technique has obtained the 2nd best classification accuracy of 89.27±2.28%. 

Further, the lowest classification accuracy of 83.07±2.27% has been attained for FFVD 

produced by BWTLBPriu2 feature extraction technique. 

It has been observed that the best classification accuracy has been achieved at the 3rd 

scale of image decomposition by most of the proposed feature extraction techniques using all 

the three classifiers. In addition, among all the three classifiers the best classification accuracy 

is achieved by linear SVM classifier; whereas, RF classifier has given comparatively lower 

classification accuracy. The classification accuracy achieved by the three classifiers have been 

compared and the same is illustrated in Fig. 3.5. The graphical representation reveals that 

BWTCLBPri feature extraction technique has given the best classification accuracy with linear 

SVM classifier.  

The time taken by the proposed texture feature extraction techniques for feature vector 

data generation of single image is also listed in Table 3.2. The BWTCLBPri feature extraction 

technique requires 0.6929 sec/image for extracting the texture features of given individual 

images as shown in Fig. 3.6  

The error bar plot with SD for BWT based LBP variants feature extraction techniques has 

been shown in Fig. 3.7. The observation on Fig. 3.7 suggests that the FFVD of BWTCLBPri 

feature extraction technique at the 3rd level of image decomposition yields best classification 

accuracy with lower value of standard deviation (95.47±1.75%).  

 

Fig. 3.5 Classification accuracy achieved using FFVD. 
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Fig. 3.6 Feature extraction time for single grayscale image. 

 

Fig. 3.7 Error bar plot with SD using FFVD. 

3.4.3.2 The PCA dimensionality reduced feature vector data 

Further to improve the classification accuracy of hardwood species classification the PCA has 

been employed to reduce the dimensionality of feature vector data. The performance of feature 

extraction techniques for different classifiers are listed in Table 3.3 and has been concisely 

discussed hereafter: 

Linear SVM classifier: The best classification accuracy of 94.93±1.18% has been achieved by 

the PCA reduced feature vector data of BWTCLBPu2 feature extraction technique (100 features). 

Compared to the classification accuracy obtained by FFVD (95.07±0.72%), the PCA reduced 
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feature vector data has given slightly lower classification accuracy but using much lower feature 

dimension (100 features) compared to FFVD (1416 features).  

Table 3.3 Classification accuracy achieved using PCA based reduced feature vector data. 

 

 

Proposed 
techniques 

IDL 
%CA±SD achieved by classifiers 

NoF  Linear SVM NoF  RBF kernel SVM NoF  LDA NoF  RF 

BWTLBP 

1 250 81.33±3.68 50 87.47±2.03 50 82.53±3.95 50 83.13±3.22 

2 50 87.60±2.36 50 92.87±1.91 100 89.67±1.81 50 89.80±2.72 

3 50 91.40±2.60 50 94.13±2.49 100 92.00±1.99 50 91.87±1.96 

4 100 90.07±3.02 50 94.53±1.96 50 92.07±1.95 50 89.80±2.95 

5 50 89.20±2.45 50 93.53±2.42 100 90.87±2.61 50 89.80±2.95 

BWTLBPu2 

1 225 85.20±2.37 100 87.47±3.26 100 83.60±1.81 50 82.47±3.61 

2 300 89.87±1.77 300 91.27±2.64 450 89.27±1.87 50 86.27±2.29 

3 50 90.80±2.41 50 93.13±0.95 50 90.07±1.67 50 89.60±1.84 

4 200 89.13±1.60 50 92.33±2.36 50 89.93±1.79 50 88.07±2.04 

5 50 86.93±2.71 50 91.33±1.81 50 89.20±1.43 50 86.67±2.35 

BWTLBPri 

1 135 76.20±3.16 100 81.27±3.55 140 84.73±2.28 144 71.53±3.14 

2 250 87.93±3.27 200 86.80±1.83 280 90.53±1.47 50 81.07±2.42 

3 300 87.93±2.30 50 90.60±2.58 400 90.93±1.73 50 85.47±2.43 

4 300 85.60±1.64 150 88.33±3.21 400 87.93±2.60 50 84.33±2.88 

5 300 81.20±2.17 50 85.93±2.12 400 84.20±3.03 50 81.33±1.51 

BWTLBPriu2 

1 35 76.60±2.28 30 80.86±2.86 36 80.20±2.88 35 77.13±1.22 

2 75 86.27±1.64 70 88.53±1.80 72 88.87±1.51 70 83.80±1.91 

3 110 88.40±1.97 100 89.80±3.57 108 92.33±1.19 110 84.00±1.86 

4 150 87.07±2.33 100 88.27±2.60 144 92.60±1.27 150 80.20±2.69 

5 175 83.33±3.03 175 84.40±1.94 180 93.00±1.81 180 74.73±3.26 

BWTLBP-HF 

1 140 69.27±3.29 125 70.60±3.51 148 87.27±1.73 148 68.40±1.55 

2 300 75.67±3.19 250 81.00±3.46 296 92.27±1.41 280 75.27±3.59 

3 300 80.33±2.87 300 84.40±2.80 444 93.40±1.42 50 78.80±2.15 

4 300 78.27±2.95 300 85.40±2.50 500 88.27±1.70 50 81.33±1.89 

5 300 76.27±2.83 250 84.53±2.77 50 83.13±1.48 50 80.13±2.17 

BWTCLBPu2 

1 250 90.67±1.57 150 90.07±1.62 400 90.33±2.60 50 87.53±2.90 

2 300 94.27±1.34 200 93.33±2.22 300 94.00±2.53 50 90.27±1.87 

3 100 94.93±1.18 250 94.80±2.15 200 94.33±1.14 50 91.80±1.67 

4 250 93.53±0.89 50 94.73±1.42 200 93.80±1.00 50 89.80±1.57 

5 50 91.87±1.83 50 93.60±1.51 200 92.67±1.51 50 89.20±1.21 

 BWTCLBPri 

1 250 88.00±2.88 200 88.40±2.27 200 90.47±1.72 100 82.33±2.21 

2 250 92.40±1.76 250 91.73±1.18 300 93.13±1.48 50 86.67±1.47 

3 250 93.40±2.07 100 93.93±1.92 300 93.67±1.38 50 89.53±2.22 

4 250 92.47±1.91 50 92.80±2.17 400 92.47±1.41 50 88.80±2.22 

5 250 90.00±1.37 150 92.33±2.54 250 90.67±1.22 50 86.20±1.81 

BWTCLBPriu2 

1 70 87.80±1.99 150 89.60±2.74 72 88.07±1.87 60 85.00±1.67 

2 125 91.47±2.03 150 92.13±2.17 144 93.33±1.30 50 88.40±1.94 

3 225 94.67±2.15 150 93.67±1.92 216 95.60±1.18 75 88.40±1.78 

4 300 93.60±0.84 200 93.00±2.09 288 95.73±0.84 50 86.07±1.59 

5 300 90.67±2.04 250 90.87±1.91 350 95.06±1.45 50 83.93±2.80 
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RBF kernel SVM classifier: Amongst the proposed feature extraction techniques, the PCA 

reduced feature vector data of BWTCLBPu2 texture feature extraction technique has attained 

slightly better classification accuracy of 94.80±2.15% (250 features) compared to 93.87±1.53% 

accuracy presented by FFVD. 

RF classifier: The PCA reduced feature vector data of BWTCLBPu2 texture feature extraction 

technique has obtained the best classification accuracy of 91.80±1.67% using 50-dimensional 

feature vector data which is slightly better than the FFVD (91.27±0.97%) with 1416-dimenisonal 

feature vector data. The BWTLBP has obtained a classification accuracy of 91.87±1.96% using 

50-dimensional feature vector data better than the 86.40±3.03% accuracy presented by FFVD 

of BWTLBP feature extraction techniques. 

LDA classifier: This classifier has achieved the best classification accuracy of 95.73±0.84% for 

PCA reduced feature vector data of BWTCLBPriu2 texture feature extraction technique using 288-

dimemnsional feature vector data. The classification accuracy obtained by the other feature 

extraction techniques have also been better than the rest of the three classifiers in this segment 

of PCA reduced dimensionality feature vector data. 

 

Fig. 3.8 Classification accuracy achieved using PCA reduced feature vector data. 

The classification accuracy has not been improved by large margin with PCA reduced 

feature vector data but comparable classification accuracy has been obtained with lower 

dimensional feature vector data. In this segment, the LDA classifier has produced maximum 

classification accuracy for the feature vector data produced by BWTCLBPriu2 texture feature 

extraction techniques at the 3rd level of image decomposition. The graph depicting the 

comparison of the classification accuracy obtained by four different classifiers is shown in Fig. 

3.8. Further, the error bar plot representation of the same is given in Fig. 3.9, which suggests 

that PCA reduced feature vector data of BWTCLBPriu2 texture feature extraction technique has 
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achieved the best classification accuracy with lower SD value using LDA classifier. 

 

Fig. 3.9 Error bar plot with SD using PCA reduced feature vector data. 

3.4.3.3 The mRMR feature selection based reduced feature vector data 

The subset of feature vector data obtained by mRMR feature selection method has been 

investigated here to see their effect on the classification accuracy produced for hardwood 

species classification. The classification accuracy results achieved by three different classifiers 

are listed in Table 3.4. The performance of texture feature extraction techniques by different 

classifiers are as follows: 

Linear SVM classifier: Amongst the proposed feature extraction techniques, the highest 

classification accuracy of 96.20±1.41% has been achieved by mRMR processed subset (300 

features) of FFVD of BWTCLBPri technique at the 4th level of image decomposition. This 

classification accuracy is comparatively better than 95.47±1.75% accuracy obtained by FFVD 

of BWTCLBPri technique (864-dimensional feature) at the 3rd level of image decomposition. 

RBF kernel SVM classifier: The mRMR selected feature subset (200 features) of FFVD 

produced by BWTCLBPri texture feature extraction technique at the 4th level of image 

decomposition has achieved the best classification accuracy of 96.87±1.18%. This classification 

accuracy is far better than 93.20±1.60% accuracy obtained by FFVD of BWTCLBPri technique 

(864 features).  

RF classifier: The RF classifier has achieved the best classification accuracy of 92.80±1.88% 

for mRMR selected feature subset (150 features) of FFVD produced by BWTCLBPu2 texture 

feature extraction technique at the 4th level of image decomposition. This classification accuracy 

has been relatively better than the highest classification accuracy (91.27±0.97%) produced by 

FFVD of BWTCLBPu2 texture feature extraction technique. 
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Table 3.4 Classification accuracy achieved using mRMR feature selection based reduced feature vector 
data. 

Proposed 
techniques 

IDL 
% CA±SD achieved by classifiers 

NoF   Linear SVM NoF    RBF kernel SVM NoF    RF 

 BWTLBP 

1 300 85.07±1.92 300 87.60±1.58 300 81.33±2.89 

2 300 92.60±1.95 300 93.13±1.18 300 85.27±2.99 

3 300 92.60±1.52 300 93.33±1.04 300 86.40±3.03 

4 300 92.60±1.71 300 93.67±1.23 200 86.53±2.33 

5 300 92.67±1.60 300 93.60±1.23 200 86.73±1.82 

 BWTLBPu2 

1 225 85.07±2.33 200 87.00±3.57 150 77.00±3.70 

2 200 90.53±1.77 200 92.07±2.44 250 85.67±1.87 

3 250 92.53±2.01 300 94.13±1.88 250 89.53±1.72 

4 250 92.80±1.93 300 94.00±2.15 300 89.67±2.11 

5 300 93.00±1.81 300 94.07±2.12 300 89.60±2.31 

 BWTLBPri 

1 125 74.80±3.06 125 78.87±3.27 75 69.27±3.21 

2 250 87.33±2.20 100 88.13±2.68 150 81.73±1.92 

3 150 90.33±1.97 200 91.13±1.91 100 86.67±1.22 

4 200 91.33±1.91 100 92.60±2.30 200 86.93±1.26 

5 200 91.33±1.78 150 91.93±2.34 300 86.80±2.46 

BWTLBPriu2 

1 40 77.60±3.64 35 79.60±3.02 30 62.40±2.31 

2 80 86.67±1.72 70 87.47±2.74 60 77.07±2.45 

3 120 89.47±2.14 100 89.27±2.19 110 83.13±2.93 

4 150 85.93±2.42 150 88.33±2.04 150 82.73±1.62 

5 150 84.07±1.92 50 85.47±0.98 50 82.60±2.28 

 BWTLBP-HF 

1 50 79.00±2.88 50 82.13±2.89 50 78.13±4.26 

2 150 87.80±2.35 100 90.47±1.14 150 85.87±1.85 

3 150 93.60±0.95 150 94.13±2.13 200 89.27±1.62 

4 200 93.20±1.66 100 93.87±1.13 200 89.27±2.54 

5 200 93.07±2.69 100 93.67±2.36 200 89.00±1.34 

 BWTCLBPu2 

1 300 91.00±1.64 200 90.80±2.17 300 82.67±2.91 

2 300 94.87±1.41 150 95.40±0.73 150 89.53±1.89 

3 300 95.73±1.55 150 96.27±0.95 300 91.93±1.82 

4 300 95.80±1.22 250 96.47±1.34 150 92.80±1.88 

5 300 95.87±1.12 150 96.40±1.48 150 92.40±1.70 

 BWTCLBPri 

1 250 88.07±3.05 250 88.67±2.74 100 80.13±2.75 

2 150 93.27±1.84 150 94.13±1.72 100 87.87±2.22 

3 150 95.93±1.62 150 96.00±1.41 150 91.07±1.14 

4 300 96.20±1.41 200 96.87±1.18 150 91.80±1.57 

5 300 95.87±1.03 300 96.47±0.89 200 91.27±2.28 

BWTCLBPriu2 

1 70 88.73±1.52 70 88.33±1.73 50 76.13±2.81 

2 125 92.53±1.83 100 92.40±2.07 50 85.93±1.73 

3 200 93.80±1.91 200 93.80±2.59 100 89.40±1.73 

4 100 93.20±1.17 100 94.47±1.00 150 89.87±0.61 

5 100 93.47±1.25 100 94.80±0.76 200 89.53±1.60 
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Fig. 3.10 Classification accuracy achieved using mRMR feature selection based reduced feature vector 
data. 

 

Fig. 3.11 Error bar plot with SD using mRMR feature selection based reduced feature vector data. 

The classification accuracy results are plotted in Fig. 3.10. Further, the error bar plot with 

SD for the same has been illustrated in Fig. 3.11. These figures depict that BWTCLBPri technique 

has produced best classification accuracy at the 4th level of image decomposition that too with 

lower value of SD. 

The analysis of Table 3.2 suggests that as the level of image decomposition increases, 

the length of the feature vector data also increases. The classification accuracy results for FFVD 

of BWT based LBP variants texture feature extraction techniques using different classifiers 

increased up to 3rd level of image decomposition and thereafter either it remains same or 
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decreases a little bit. It is noticeable that the increase in the classification accuracy has been 

attained at the cost of additional computation time. Therefore, the texture descriptors beyond 5th 

level of image decomposition have not been investigated.  

Further, employing PCA (dimensionality reduction) and mRMR (feature selection) 

techniques have not only reduced the computational time for classification algorithms but also 

shown considerable improvement in the classification accuracy for hardwood species 

classification into seventy five categories. It is also observed from Table 3.2, Table 3.3 and Table 

3.4 that the proposed feature extraction techniques have produced better classification accuracy 

compared to the original LBP variants as discussed in Chapter 2.  

 Performance Evaluation of BWT based LBP Variants Texture Feature Extraction 

Techniques using Randomly Divided Database (RDD)  

3.4.4.1 Full feature vector data (FFVD) 

The classification accuracy achieved by BWT based LBP variants texture feature extraction 

techniques for different ratios of training and testing data has been listed in Table 3.5.  

Linear SVM classifier: Amongst the proposed texture feature extraction techniques, the 

BWTCLBPriu2 technique has produced significant feature vector data which yields best 

classification accuracy of 92.33%, 90.89%, 89.50% and 87.07% for 80/20, 70/30, 60/40 and 

50/50 training and testing ratios of RDD, respectively. Further, the BWTCLBPu2 technique has 

achieved the 2nd best classification accuracy of 91.67%, 90.22%, 88.50% and 86.80% for 80/20, 

70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively. Both of these 

classification accuracies are achieved by the texture feature vector data obtained at the 3rd level 

of image decomposition. 

RBF kernel SVM classifier: The classification accuracy results using RBF kernel SVM classifier 

for proposed texture extraction techniques is also presented in Table 3.5. Here, the best 

classification accuracy of 91%, 88.67%, 85.33% and 84.13% has been achieved for 80/20, 

70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively, for BWTLBPri 

techniques’ feature vector data. The BWTLBP technique has achieved the 2nd best classification 

accuracy as listed in Table 3.5. 

RF classifier: As given in Table 3.5, the feature vector data produced by BWTCLBPu2 feature 

extraction technique has given the best classification accuracy for different proportions of 

training and testing data of RDD, respectively amongst the proposed techniques using RF 

classifier. The BWTCLBPu2 features have achieved classification accuracy of 89.33%, 85.56%, 

84% and 81.33% for 80/20, 70/30, 60/40 and 50/50 training and testing ratios, respectively, at 

the 4th level of image decomposition. 
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Table 3.5 Classification accuracy achieved by full feature vector data for different proportions of training 
and testing data of RDD using three classifiers. 

Proposed 
technique 

IDL 

% CA achieved by classifiers for different proportions of training and testing data 

LSVM RBF kernel SVM RF 

80/20 70/30 60/40 50/50 80/20 70/30 60/40 50/50 80/20 70/30 60/40 50/50 

BWTLBP 

1 77.67 75.11 72.17 70.53 84.67 82.44 77.83 74.53 72.67 68.67 65.17 62.27 

2 84.33 82.44 80.00 77.87 89.00 86.89 83.83 81.60 78.67 76.67 74.83 70.13 

3 85.67 83.78 82.67 80.40 90.67 89.11 86.33 83.33 81.00 78.89 76.17 72.67 

4 83.00 81.11 81.83 80.00 90.33 87.11 84.33 82.80 81.00 78.89 74.67 71.73 

5 81.67 80.89 80.83 78.93 89.33 84.89 83.17 80.93 81.00 77.78 76.67 72.27 

BWTLBPu2 

1 81.67 78.22 75.50 72.67 84.67 79.33 77.17 75.20 70.00 64.00 60.17 60.40 

2 85.00 85.33 83.17 78.80 87.33 84.67 82.67 78.40 82.67 75.33 74.33 70.67 

3 86.33 86.44 84.50 81.60 87.33 86.44 84.50 81.87 86.00 80.67 79.67 75.47 

4 86.67 85.78 85.33 82.27 86.00 83.33 81.83 79.33 88.33 84.44 79.50 75.20 

5 83.00 81.56 81.00 79.20 84.67 81.56 80.17 78.00 86.33 82.44 79.33 76.67 

BWTLBPri 

1 74.33 70.44 67.50 65.33 85.00 81.33 80.00 76.53 62.33 63.33 58.83 56.27 

2 81.67 80.67 77.67 76.40 88.00 86.89 83.83 82.93 81.00 75.11 71.33 66.93 

3 87.67 84.22 81.67 81.33 91.00 88.67 85.33 84.13 84.00 80.00 77.33 73.20 

4 83.67 80.44 78.67 76.00 89.67 87.78 85.83 83.73 84.67 80.00 77.00 75.07 

5 82.33 77.56 74.83 72.13 88.67 84.67 83.83 81.87 82.67 80.22 77.00 73.33 

BWTLBPriu2 

1 76.00 70.40 68.33 65.47 80.00 74.89 70.33 67.20 58.67 54.67 53.83 49.73 

2 83.00 81.11 79.50 78.27 83.33 80.67 78.17 72.80 76.33 71.77 67.17 64.27 

3 84.00 82.44 82.17 79.20 83.67 81.33 79.83 76.27 80.00 76.67 72.00 70.53 

4 85.33 82.89 80.17 78.40 82.67 78.89 77.33 75.07 79.67 75.33 73.33 72.13 

5 82.33 78.67 76.50 73.60 79.67 77.33 75.83 72.27 79.67 76.00 74.50 71.33 

 BWTLBP-HF 

1 59.00 54.44 53.50 50.53 81.67 78.89 73.83 70.93 72.00 67.11 64.83 62.80 

2 74.33 68.22 67.00 63.20 89.00 83.78 80.33 76.40 84.67 77.33 75.83 73.73 

3 78.67 74.67 73.67 69.47 89.33 87.11 83.17 79.87 85.67 81.11 80.33 77.87 

4 80.33 75.11 73.67 71.60 88.67 85.56 82.50 80.13 87.33 81.11 81.00 77.60 

5 79.67 74.00 71.33 68.53 87.67 82.44 80.00 78.13 85.33 82.22 81.17 78.27 

 BWTCLBPu2 

1 88.00 85.56 83.67 79.73 77.00 71.11 68.00 64.53 77.33 71.56 69.17 65.60 

2 90.67 88.67 88.50 84.67 84.00 82.00 77.50 73.20 85.67 81.78 82.00 77.07 

3 91.33 90.22 89.00 85.73 87.33 82.89 81.17 77.20 88.33 86.22 83.17 80.67 

4 91.93 90.00 88.67 86.13 83.67 78.89 77.17 72.93 89.33 85.56 84.00 81.33 

5 91.93 88.00 87.67 85.73 82.00 78.22 74.83 71.73 89.00 85.56 83.17 80.80 

 BWTCLBPri 

1 84.00 82.44 80.00 76.13 78.00 74.89 73.17 69.87 72.33 67.33 66.00 64.27 

2 89.33 88.44 86.83 83.33 83.67 83.56 79.83 77.33 83.67 78.67 77.00 73.47 

3 91.67 90.22 88.50 86.80 88.33 84.22 80.50 78.80 88.00 82.22 81.17 78.53 

4 90.67 88.00 86.17 84.67 86.00 82.67 80.00 78.27 88.33 84.22 82.17 78.27 

5 89.67 85.33 83.67 82.40 82.33 78.22 77.00 73.73 86.33 82.89 81.00 78.40 

 BWTCLBPriu2 

1 84.33 82.22 79.17 77.47 63.67 61.33 59.17 55.73 70.33 64.00 65.00 61.60 

2 90.00 88.44 86.17 84.27 80.00 73.33 71.67 67.20 85.33 78.89 76.50 72.80 

3 92.33 90.89 89.50 87.07 82.00 79.78 76.67 73.07 86.67 83.33 81.67 79.07 

4 91.33 90.00 88.57 86.67 82.33 78.22 76.67 74.00 87.67 84.44 81.83 79.73 

5 89.00 87.33 85.67 82.93 81.00 77.11 74.17 72.00 87.67 83.33 81.83 79.73 

The classification accuracies obtained by the three different classifiers are compared for 

each of the four (80/20, 70/30, 60/40 and 50/50) training and testing ratios, and are graphically 
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illustrated in Fig. 3.12, Fig. 3.13, Fig. 3.14 and Fig. 3.15, respectively. It is evident from these 

figures that texture feature vector data produced by most of the proposed feature extraction 

techniques yield best classification accuracy with linear SVM classifier; whereas, the least 

classification accuracy has been achieved using RF classifier. 

 

Fig. 3.12 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD.  

 

 

Fig. 3.13 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 
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Fig. 3.14 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 

Fig. 3.15 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

3.4.4.2 The PCA dimensionality reduced feature vector data 

The classification accuracy results obtained by the PCA based reduced feature vector data 

using linear SVM, RBF kernel SVM, LDA and RF classifier has been listed in Table 3.6, Table 

3.7, Table 3.8, and Table 3.9, respectively. 

Linear SVM classifier: The PCA dimensionality reduced feature vector data of the 

BWTCLBPriu2 technique has yielded the best classification accuracy of 92.67% (200 features), 

91.33% (250 features), 89.33% (250 features) and 86.80% (300 feature) for 80/20, 70/30, 60/40 

and 50/50 training and testing ratios of RDD, respectively. The aforesaid classification accuracy 

is obtained for feature vector data produced at the 4th level of image decomposition. This 
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classification accuracy is better than the FFVD produced by the BWTCLBPriu2 technique with 

high-dimensional features (Table 3.6).  

Table 3.6 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using linear SVM classifier. 

Technique IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

 BWTLBP 

1 250 77.33 300 74.44 150 70.83 250 68.00 

2 50 86.67 50 81.78 50 81.00 100 78.27 

3 50 88.00 50 86.00 50 84.00 100 81.60 

4 50 88.67 50 86.44 100 82.33 50 80.40 

5 100 84.00 50 82.44 100 79.83 50 78.53 

BWTLBPu2 

1 200 81.33 225 76.89 225 73.83 225 72.00 

2 50 85.33 200 85.33 250 82.33 250 79.07 

3 50 89.33 50 86.00 250 83.50 300 81.33 

4 50 86.33 50 84.67 250 83.50 150 81.33 

5 50 82.67 50 82.22 50 80.00 200 78.13 

BWTLBPri 

1 125 72.00 125 69.56 125 64.83 125 62.53 

2 250 83.67 275 82.22 275 78.50 275 76.27 

3 250 87.67 300 84.67 300 81.00 300 80.00 

4 300 81.33 50 78.89 300 75.67 50 74.53 

5 300 77.33 300 75.78 50 71.83 50 70.40 

BWTLBPriu2 

1 35 76.33 30 69.78 35 68.50 30 64.13 

2 70 83.67 70 81.33 70 79.00 60 76.67 

3 100 85.67 100 83.56 100 82.17 110 80.27 

4 125 85.67 125 82.44 150 80.33 125 77.33 

5 150 80.67 175 78.44 175 75.50 150 71.60 

 BWTLBP-HF 

1 125 60.00 125 55.78 100 54.83 125 51.60 

2 250 75.00 250 68.67 250 67.17 250 63.33 

3 300 78.00 300 74.89 300 72.67 300 66.80 

4 250 75.67 50 72.67 200 70.33 50 67.60 

5 250 76.00 50 70.22 250 69.00 300 65.87 

 BWTCLBPu2 

1 100 87.33 100 84.44 250 82.83 300 79.07 

2 100 90.00 250 90.00 250 87.50 250 84.13 

3 150 92.33 300 90.67 300 88.50 150 86.27 

4 200 92.67 100 89.56 250 89.00 300 85.73 

5 100 90.33 300 88.89 100 86.67 50 85.60 

 BWTCLBPri 

1 200 83.33 250 82.22 275 79.50 275 75.47 

2 200 89.33 200 88.67 250 87.00 250 83.73 

3 200 91.00 300 90.20 200 88.83 300 86.13 

4 300 90.33 100 88.89 100 85.50 300 84.67 

5 100 86.00 250 84.89 200 82.67 50 82.13 

 BWTCLBPriu2 

1 60 83.67 60 82.20 70 79.33 70 77.20 

2 150 89.00 100 88.22 125 86.33 125 84.67 

3 225 92.00 200 90.67 200 89.33 200 87.33 

4 200 92.67 250 91.33 250 89.33 300 86.80 

5 250 89.67 300 86.89 250 85.00 250 82.67 

RBF kernel SVM classifier: A classification accuracy of 91.67% (250 features, 4th IDL), 89.33% 

(200 features, 4th IDL), 86.83% (200 features, 3rd IDL) and 84% (200 features, 5th IDL) has been 

obtained for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively. 

These results have been achieved by PCA based dimensionality reduced feature vector data of 
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the BWTCLBPu2 technique. These classification accuracy results are slightly lower than the 

accuracy presented by the FFVD of BWTCLBPu2 technique (Table 3.7).  

Table 3.7 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using RBF kernel SVM classifier.  

Technique IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

 BWTLBP 

1 150 84.00 50 79.78 100 73.17 50 71.20 

2 100 88.33 50 87.56 100 83.17 50 78.67 

3 50 90.67 50 89.11 50 86.00 50 83.60 

4 50 90.00 50 89.56 50 85.50 50 84.00 

5 50 88.67 50 86.44 100 84.67 50 82.00 

BWTLBPu2 

1 100 81.67 100 79.11 225 78.83 150 71.20 

2 50 89.00 50 86.00 50 80.50 200 76.93 

3 50 92.00 50 89.11 50 84.17 100 81.87 

4 50 91.33 100 87.11 50 84.17 50 83.20 

5 50 91.00 50 86.67 50 83.67 50 81.73 

BWTLBPri 

1 125 77.00 100 71.78 100 68.33 50 64.93 

2 200 83.67 250 82.00 250 77.50 275 73.87 

3 250 87.33 50 86.67 50 82.17 50 78.40 

4 100 84.67 100 81.33 50 78.67 50 76.13 

5 50 85.00 50 81.11 50 77.83 50 75.33 

BWTLBPriu2 

1 35 78.00 35 74.89 35 73.00 35 69.20 

2 70 84.67 75 84.22 50 79.83 60 77.33 

3 100 88.33 100 84.67 100 81.00 100 79.87 

4 100 85.67 150 82.67 150 80.50 100 78.27 

5 150 82.67 175 78.44 150 77.17 150 73.73 

 BWTLBP-HF 

1 125 63.67 125 61.11 125 59.33 125 55.47 

2 250 80.00 250 73.78 250 72.00 300 67.33 

3 50 82.67 300 79.33 300 76.00 250 73.73 

4 100 81.67 100 78.89 50 76.67 300 74.00 

5 200 83.33 300 76.89 200 75.33 200 72.53 

 BWTCLBPu2 

1 50 85.67 50 83.57 200 77.67 100 75.60 

2 100 90.00 150 88.67 300 84.17 150 82.27 

3 300 90.67 200 89.33 200 86.83 200 83.73 

4 250 91.67 100 89.11 50 85.33 60 83.60 

5 100 91.67 300 87.78 50 86.00 50 84.00 

 BWTCLBPri 

1 275 84.00 150 80.22 150 78.17 200 75.60 

2 150 87.33 50 84.89 150 82.17 150 79.07 

3 50 89.00 150 87.56 200 84.50 150 82.40 

4 100 88.67 100 87.11 100 84.00 100 81.47 

5 150 87.00 50 84.67 50 82.83 150 80.40 

 BWTCLBPriu2 

1 50 85.33 60 81.56 70 80.33 60 76.80 

2 50 89.00 50 86.44 50 83.67 150 82.93 

3 150 91.00 225 88.89 200 85.33 200 84.13 

4 150 90.33 150 87.56 200 86.00 200 83.60 

5 300 88.67 200 84.89 200 83.67 250 82.13 

LDA classifier: Amongst the proposed feature extraction techniques, the PCA based 

dimensionality reduced feature vector data of the BWTCLBPriu2 technique has attained the 

highest classification accuracy at the 4th level of image decomposition. The obtained 

classification accuracy results are 93% (200 features), 92% (250 features), 90% (250 features) 

and 87.87% (250 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, 
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respectively (Table 3.8). The classification accuracy results produced by LDA classifier has been 

much better than the classification accuracy obtained by other classifiers. 

Table 3.8 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using LDA classifier. 

Technique IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

BWTLBP 

1 150 76.00 50 75.57 50 75.17 50 71.20 

2 50 87.67 50 85.77 50 83.00 50 80.67 

3 50 89.00 50 87.78 50 87.33 50 84.53 

4 50 91.33 50 88.44 50 88.00 50 84.13 

5 50 89.33 100 86.00 50 84.50 50 82.27 

BWTLBPu2 

1 200 81.33 100 74.67 50 73.17 100 70.00 

2 300 85.33 100 84.44 100 83.00 50 79.60 

3 50 90.00 50 86.67 50 87.00 50 82.67 

4 50 88.33 100 87.33 50 86.00 50 84.13 

5 50 88.33 50 87.11 50 85.67 50 83.60 

BWTLBPri 

1 135 81.00 135 76.00 135 74.17 135 69.20 

2 250 87.67 250 85.33 275 80.83 275 76.67 

3 150 87.00 300 86.00 50 82.17 50 80.27 

4 50 83.67 50 80.67 50 78.67 50 78.93 

5 50 82.33 50 80.67 50 79.83 50 77.33 

BWTLBPriu2 

1 35 76.67 35 72.89 35 72.33 35 70.13 

2 72 85.67 72 83.56 72 82.67 72 81.33 

3 100 87.00 104 86.22 104 85.67 104 83.73 

4 144 89.67 125 86.22 144 86.33 144 84.67 

5 172 87.33 150 85.56 172 84.33 172 82.80 

BWTLBP-HF 

1 125 83.67 144 79.11 144 77.50 144 74.13 

2 250 88.33 275 84.89 275 81.83 275 78.40 

3 300 84.67 300 81.78 300 77.33 50 73.47 

4 50 85.00 50 81.11 50 80.50 50 75.47 

5 100 83.67 50 80.22 50 79.16 50 75.73 

BWTCLBPu2 

1 250 86.67 50 82.00 100 82.67 50 78.40 

2 300 90.33 300 90.22 200 87.67 150 84.67 

3 250 91.33 200 90.44 50 89.00 50 86.80 

4 150 92.67 100 90.44 50 89.50 50 87.60 

5 250 92.00 100 90.00 200 88.50 50 85.47 

BWTCLBPri 

1 200 89.00 272 85.56 150 83.00 150 78.53 

2 250 92.00 250 90.22 300 88.50 250 84.40 

3 200 91.67 200 89.33 50 88.17 50 86.27 

4 100 90.00 100 88.67 100 88.00 100 86.27 

5 150 89.00 150 86.44 150 86.33 50 83.60 

BWTCLBPriu2 

1 72 84.67 72 81.78 72 82.00 72 79.87 

2 125 90.67 144 88.89 125 89.00 125 86.27 

3 216 91.67 216 90.89 200 90.00 216 87.73 

4 200 93.00 250 92.00 250 90.00 250 87.87 

5 250 90.33 250 88.44 300 87.67 200 84.67 
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Table 3.9 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using RF classifier.  

Technique IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

BWTLBP 

1 50 81.67 50 73.78 50 71.17 50 68.53 

2 50 85.67 100 83.11 50 78.50 50 75.33 

3 50 88.67 50 86.00 50 83.17 50 80.67 

4 50 89.33 50 84.89 50 82.33 50 78.80 

5 50 87.00 50 84.22 50 83.17 50 79.87 

BWTLBPu2 

1 50 78.00 50 73.33 50 69.50 100 66.13 

2 50 79.73 100 77.11 50 73.67 50 70.13 

3 50 85.67 100 79.56 50 78.33 50 76.00 

4 50 86.67 50 82.00 50 78.17 50 76.27 

5 50 87.00 50 80.00 50 77.50 50 76.40 

BWTLBPri 

1 50 66.67 50 62.89 50 59.33 50 56.53 

2 100 75.00 100 74.89 50 71.67 50 67.60 

3 50 80.67 50 78.44 50 76.17 50 73.47 

4 50 80.67 50 77.33 50 77.00 50 74.40 

5 100 79.33 50 76.22 50 74.00 50 71.87 

BWTLBPriu2 

1 35 72.33 35 65.33 35 64.83 35 62.00 

2 70 81.67 75 75.33 75 73.33 75 69.60 

3 115 83.33 115 77.56 100 76.50 115 72.67 

4 150 80.00 150 74.22 100 72.00 150 67.73 

5 50 71.33 150 67.56 50 63.83 175 61.47 

BWTLBP-HF 

1 125 58.00 125 55.56 125 55.67 125 48.93 

2 250 67.33 50 64.67 50 60.17 250 60.00 

3 50 76.33 100 71.78 50 73.67 50 69.60 

4 50 79.67 50 75.33 50 73.67 50 69.60 

5 100 78.00 50 74.22 50 73.50 50 70.00 

BWTCLBPu2 

1 50 85.67 150 76.22 50 74.83 50 71.20 

2 50 86.33 50 82.22 50 80.67 100 76.67 

3 50 88.67 50 84.89 50 84.50 100 80.67 

4 50 88.00 50 83.56 50 82.50 50 80.27 

5 50 85.67 50 82.44 50 83.00 50 80.93 

BWTCLBPri 

1 50 79.67 100 75.78 100 73.00 50 69.87 

2 50 84.00 50 81.11 50 77.67 50 76.53 

3 50 86.33 50 84.22 50 80.33 50 79.73 

4 50 86.33 50 82.00 50 81.67 50 78.93 

5 100 83.00 50 80.22 50 77.83 50 77.60 

BWTCLBPriu2 

1 60 82.33 60 78.22 70 76.00 50 71.60 

2 50 86.00 50 80.22 150 79.33 50 77.20 

3 100 85.67 50 82.22 100 81.17 50 78.13 

4 50 83.67 50 81.33 50 80.83 50 78.27 

5 50 82.33 50 78.22 50 75.67 50 74.00 

RF classifier: In this case the classification accuracy results of 89.33% (50 features, 4th IDL), 

86% (50 features, 3rd IDL), 83.17% (50 features, 5th IDL) and 80.67% (50 features, 3rd IDL) for 

80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively, has been 

obtained by PCA dimensionality reduced feature vector data of BWTLBP technique (Table 3.9). 
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The said classification accuracy results are poor than results obtained with the help of other 

classifiers. 

 

Fig. 3.16 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

 

Fig. 3.17 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 

The classification accuracies obtained by four different classifiers are compared for each 

of the four (80/20, 70/30, 60/40 and 50/50) training and testing data ratios of RDD, and are 

illustrated in Fig. 3.16, Fig. 3.17, Fig. 3.18 and Fig. 3.19, respectively. It has been observed from 

the analysis of the PCA based dimensionality reduced feature vector data that amongst the 4 

classifiers, the LDA classifier yields the best classification accuracy for BWTCLBPriu2 feature 

extraction technique. The LDA classifier has not only given the best classification accuracy 

results, but also requires minimum time to complete the classification task, compared to other 
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three classifiers. The linear SVM classifier has given the 2nd best classification accuracy; 

whereas the RF classifier has presented lowest classification accuracy results. Thus, it can be 

said that incorporating PCA for feature dimensionality reduction has improved the performance 

of proposed feature extraction techniques for hardwood species classification with low-

dimensionality features. 

 

Fig. 3.18 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 

Fig. 3.19 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

3.4.4.3 The mRMR feature selection based reduced feature vector data 

The classification accuracy results achieved by the mRMR feature selection based reduced 

feature vector data of propose feature extraction techniques with three different classifiers have 
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been presented in Table 3.10, Table 3.11 and Table 3.12, respectively. The classification 

accuracy results obtained by each of the classifiers are as follows: 

Table 3.10 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using linear SVM classifier. 

Technique IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

BWTLBP 

1 150 79.67 150 76.89 150 74.67 250 70.13 

2 250 88.00 250 85.78 250 84.67 300 82.80 

3 250 87.67 300 86.67 300 85.00 300 83.87 

4 250 88.33 250 87.11 300 86.00 300 84.67 

5 300 88.33 300 87.56 300 85.83 300 84.40 

BWTLBPu2 

1 150 82.33 150 78.00 200 75.17 225 72.93 

2 250 87.33 250 86.44 250 84.33 250 80.13 

3 200 87.33 200 88.89 200 86.33 250 83.73 

4 150 89.33 200 88.67 200 87.00 250 85.60 

5 300 89.67 250 88.67 250 87.67 250 85.87 

BWTLBPri 

1 125 71.67 125 67.11 125 62.67 125 61.07 

2 100 86.00 100 82.22 100 78.83 275 76.13 

3 300 87.67 300 86.00 300 84.00 300 82.27 

4 300 89.33 250 86.67 200 85.33 150 83.33 

5 300 90.33 300 88.44 300 85.00 150 83.47 

BWTLBPriu2 

1 35 76.00 35 69.11 35 67.00 35 62.80 

2 75 83.67 70 80.89 70 79.00 70 77.87 

3 110 85.33 110 82.89 110 82.50 110 79.60 

4 125 83.67 125 80.67 150 80.17 150 78.67 

5 150 82.33 175 77.78 150 77.17 150 74.67 

BWTLBP-HF 

1 50 77.00 50 73.33 50 73.50 50 68.13 

2 100 85.67 100 82.67 100 80.50 100 78.27 

3 100 89.33 50 88.22 50 87.67 50 85.20 

4 150 91.33 150 89.78 150 88.50 150 86.27 

5 100 90.67 250 88.67 200 87.50 200 85.60 

BWTCLBPu2 

1 300 88.67 200 86.67 250 83.83 250 85.60 

2 200 92.00 200 90.22 200 88.33 200 85.73 

3 250 93.00 250 92.67 250 91.50 300 89.20 

4 250 93.33 250 93.11 150 90.83 150 89.33 

5 150 93.00 250 92.89 300 90.67 300 90.13 

BWTCLBPri 

1 275 85.67 250 82.44 250 79.50 250 76.00 

2 100 92.33 100 90.00 100 88.50 250 85.07 

3 250 93.33 250 92.67 250 90.83 200 89.07 

4 200 94.33 150 93.78 150 90.83 150 89.87 

5 250 95.67 150 93.78 250 91.50 250 90.53 

BWTCLBPriu2 

1 70 83.67 75 81.56 70 78.67 70 77.87 

2 125 90.00 50 88.67 100 86.33 150 83.73 

3 225 92.00 225 91.11 200 89.00 225 87.07 

4 300 92.00 300 90.89 300 88.33 300 86.44 

5 50 91.67 150 89.33 100 88.67 100 86.80 

Linear SVM classifier: The subset of feature vector data of BWTCLBPri technique produced by 

mRMR feature selection technique yields the best classification accuracy of 95.67% (250 

features), 93.78% (150 features), 91.50% (250 features) and 90.53% (250 features) for 80/20, 

70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively (Table 3.10).  
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Table 3.11 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using RBF kernel SVM classifier.  

Technique IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

BWTLBP 

1 150 84.33 150 80.22 250 76.00 150 71.47 

2 200 87.67 300 86.67 300 85.83 300 80.80 

3 300 89.67 300 88.67 300 86.17 250 83.47 

4 300 89.67 300 88.00 300 86.67 300 84.13 

5 300 89.33 300 88.00 300 86.17 250 83.33 

BWTLBPu2 

1 150 83.00 150 80.44 100 47.33 200 71.07 

2 250 90.67 250 86.89 200 83.50 150 80.13 

3 150 90.33 200 90.44 200 87.83 200 85.60 

4 250 91.33 250 91.56 250 88.67 300 86.00 

5 150 91.00 300 90.67 300 88.67 200 85.87 

BWTLBPri 

1 125 77.67 125 71.56 125 66.67 125 63.73 

2 150 85.00 150 82.22 275 77.67 200 74.00 

3 100 88.33 150 86.22 100 84.50 150 82.53 

4 100 89.33 100 87.33 150 85.50 150 84.53 

5 200 89.00 200 87.78 200 85.67 150 84.67 

BWTLBPriu2 

1 35 78.67 35 73.11 35 70.00 35 66.80 

2 60 85.00 70 82.67 75 79.50 75 76.93 

3 115 87.67 115 84.00 115 80.50 115 79.33 

4 150 85.67 150 81.78 150 79.33 150 77.33 

5 50 84.33 50 80.44 50 77.83 50 78.27 

BWTLBP-HF 

1 50 78.33 50 74.89 50 72.17 50 70.27 

2 100 88.33 50 84.89 50 81.50 50 78.53 

3 50 89.33 100 89.11 100 85.67 100 83.87 

4 100 90.67 100 88.44 150 86.17 200 84.40 

5 50 91.33 50 89.33 150 86.33 150 84.53 

BWTCLBPu2 

1 150 87.33 200 83.56 200 79.67 150 76.53 

2 150 92.00 150 90.00 150 87.17 200 85.20 

3 100 92.33 250 92.44 250 90.17 250 87.87 

4 200 93.67 150 91.78 100 90.00 200 88.93 

5 250 94.00 300 92.00 300 90.33 200 88.93 

BWTCLBPri 

1 275 84.33 150 80.89 250 78.50 275 76.13 

2 150 91.67 100 88.44 100 86.00 100 83.47 

3 150 92.33 150 90.89 150 89.17 100 88.00 

4 150 93.33 150 92.00 150 90.33 100 89.07 

5 200 94.33 200 92.22 200 90.50 100 89.47 

BWTCLBPriu2 

1 75 85.00 60 81.56 75 79.67 70 76.93 

2 125 89.67 125 87.11 100 85.67 50 83.60 

3 50 90.67 150 89.78 100 87.33 50 85.87 

4 100 90.67 100 90.22 100 88.67 100 86.93 

5 100 90.33 150 89.33 100 88.50 100 87.07 

RBF kernel SVM classifier: In this case, also the subset of feature vector data of BWTCLBPri 

technique processed through mRMR feature selection technique yields the best classification 

accuracy of 94.33% (200 features), 92.22% (200 features), 90.50% (200 features) and 89.07% 

(100 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively 

(Table 3.11).  
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Table 3.12 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using RF classifier. 

Technique IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

BWTLBP 

1 100 72.67 300 71.33 300 68.50 300 66.13 

2 300 79.67 250 77.78 300 76.17 300 72.80 

3 100 82.67 150 80.00 150 78.17 250 76.40 

4 100 83.67 200 80.44 200 80.33 200 76.13 

5 150 82.00 150 79.56 200 78.67 250 75.60 

BWTLBPu2 

1 100 71.33 150 66.67 150 63.83 100 61.87 

2 150 83.67 100 79.11 200 77.67 150 73.87 

3 100 88.67 150 87.56 250 85.33 150 81.20 

4 200 89.67 150 86.44 150 84.83 200 81.60 

5 250 89.33 150 86.22 250 85.50 150 82.27 

BWTLBPri 

1 50 69.33 100 63.78 100 60.33 125 57.60 

2 100 83.67 50 79.56 50 77.17 50 72.80 

3 150 87.33 100 84.44 50 83.17 50 80.40 

4 150 89.00 100 85.11 200 83.67 50 80.00 

5 250 87.33 150 85.33 100 82.33 100 80.80 

BWTLBPriu2 

1 30 59.00 30 55.11 30 52.00 30 49.73 

2 50 77.00 70 72.67 50 69.83 50 65.20 

3 110 83.00 110 78.00 100 76.00 100 72.13 

4 50 81.33 50 78.89 50 76.83 50 73.20 

5 50 84.00 50 79.11 50 77.83 50 74.80 

BWTLBP-HF 

1 50 73.67 50 69.56 50 69.67 50 64.40 

2 200 85.67 100 81.33 200 78.83 50 76.53 

3 300 88.33 50 86.00 150 84.16 50 81.87 

4 300 89.33 150 85.11 150 85.67 100 81.73 

5 250 87.33 100 85.78 150 84.16 100 81.87 

BWTCLBPu2 

1 250 78.33 150 74.89 50 71.50 250 69.07 

2 200 88.33 200 84.89 200 83.17 300 79.60 

3 200 90.00 300 88.44 250 86.50 250 84.00 

4 100 90.33 200 88.89 200 87.00 250 84.93 

5 250 90.67 300 89.33 300 87.17 250 85.33 

BWTCLBPri 

1 100 77.33 50 72.00 50 69.50 50 67.20 

2 300 87.00 150 83.78 100 82.50 100 80.13 

3 300 90.00 100 89.11 100 87.67 150 85.20 

4 100 90.33 150 87.55 100 87.33 150 86.40 

5 100 89.67 100 88.67 100 87.83 150 85.87 

BWTCLBPriu2 

1 50 73.00 40 69.11 50 67.67 40 64.27 

2 50 86.00 50 83.11 50 80.17 50 77.20 

3 150 88.67 200 86.00 150 85.00 50 81.33 

4 150 88.67 150 87.33 100 86.50 100 83.47 

5 200 88.33 100 86.89 100 86.33 100 83.73 

RF classifier: The mRMR feature selection based feature vector data of BWTCLBPu2 technique 

yields the best classification accuracy result of 90.67% (250 features), 89.33% (300 features), 

87.17% (300 features) and 84.93% (250 features) for 80/20, 70/30, 60/40 and 50/50  training 

and testing ratios of RDD, respectively (Table 3.12). 

Interestingly, all the three classifiers have achieved the best classification accuracies by 

the feature vector data produced by the BWT based LBP variants at the 5th level of image 

decomposition (IDL). Further, employing mRMR feature selection technique for reducing the 



 

94 

 

number of features has paid off with better classification accuracy compared to FFVD along with 

requirement of lower classification time due to low-dimensional features. 

 

Fig. 3.20 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

 

Fig. 3.21 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 

The classification accuracies obtained by three different classifiers are compared for each 

of the four (80/20, 70/30, 60/40 and 50/50) training and testing ratios of RDD, and are illustrated 

in Fig. 3.20, Fig. 3.21, Fig. 3.22 and Fig. 3.23, respectively. The analysis of  these graphs 

advocates that BWT based LBP variants (BWTCLBPri) texture features have given the best 

classification accuracy with linear SVM classifier; whereas comparatively lower classification 

accuracy has been produced by RF classifier.  
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Fig. 3.22 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 

Fig. 3.23 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

Thus, employing feature dimensionality reduction/feature selection technique has not only 

reduced the computational time of classifiers but also shown considerable improvement in the 

classification accuracy for hardwood species classification into seventy five categories. It is also 

observed that the performance of variants of LBP texture feature extraction techniques have 

been improved by including grayscale image transformation with gray-level slicing, and BWT 

transform followed by extraction of texture features from these transformed images.  

The performance of BWT based texture feature extraction techniques has been 

comparatively superior/at par with most of the state-of-the-art texture feature extraction 

techniques possibly because of the following reasons: the texture descriptors produced by the 
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state-of-the-art texture feature extraction techniques are based on spatial interactions over a 

fixed neighborhood size on single scale image, which is appropriate for micro-texture analysis 

only. The microscopic images of hardwood species have four key elements namely vessels, 

rays, parenchyma and fibers, that too of varied shapes and sizes. In order to identify these 

images efficiently, it must be analyzed at several scales of resolution. The smaller objects are 

to be examined at higher resolutions; whereas large size objects need to be examined at coarse 

view (lower) resolutions. For this reason, the images are decomposed by BWT wherein each of 

the subimages’ coefficients contain varied and valuable information. In addition, to extract 

features from several level/scale images, LBP variants are preferred due to the most prominent 

and simple computational requirement. Though, distinguishing features are obtained from low 

resolution subimages but alone they are not capable enough to discriminate amongst the 

hardwood species. Therefore, the texture descriptors of several scale resolution images are 

combined to get more significant feature vector data to discriminate the hardwood species 

database. 

3.5 SUMMARY 

The effectiveness of the BWT based LBP variants texture feature extraction techniques have 

been investigated for the classification of microscopic images of hardwood species into 75 

categories with the help of classifiers. Two different approaches, namely 1) 10-fold cross 

validation and 2) randomly divided database (RDD) have been chosen to test the efficiency of 

the proposed techniques. Further, three case studies are discussed (viz., FFVD, PCA 

dimensionality reduced feature vector data and mRMR feature selection based reduced feature 

vector data) in both the approaches. 

In case of 10-fold cross validation approach, the FFVD (864 features) produced by 

BWTCLBPri feature extraction technique at the 3rd level of image decomposition yields best 

classification accuracy with lower value of SD (95.47±1.75%) using linear SVM classifier. 

Further, the LDA classifier yields the best classification accuracy result of 95.73±0.84% for PCA 

reduced feature vector data of BWTCLBPriu2 texture feature extraction technique (288 features). 

The mRMR selected feature subset (200 features) of BWTCLBPri texture feature extraction 

technique (at the 4th level of image decomposition) has achieved the best classification accuracy 

of 96.87±1.18% using RBF kernel SVM classifier. 

 The aforesaid classification accuracy (96.87±1.18%) produced by BWTCLBPri texture 

feature extraction technique is comparatively better than the classification accuracy 

(96.33±1.14%) achieved by the PCA reduced feature vector data of CoALBP24 texture feature 

extraction technique (Chapter 2). Further, it is worthwhile to point out that only MSB bit-plane of 

gray scale image used by BWT based LBP variants texture feature extraction technique has 
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achieved slightly better classification accuracy compared to 8-bit plane image (grayscale image) 

used by CoALBP24 texture feature extraction technique. 

Further, in 2nd approach, four different proportions of training and testing ratios of randomly 

divided database have been studied. Amongst the proposed texture feature extraction 

techniques, FFVD of BWTCLBPriu2 technique has achieved the best classification accuracy of 

92.33%, 90.89%, 89.50% and 87.07% for 80/20, 70/30, 60/40 and 50/50 training and testing 

ratios of RDD, respectively, using linear SVM classifier. 

The PCA dimensionality reduced feature vector data of BWTCLBPriu2 technique has 

obtained the best classification accuracy results of 93% (200 features), 92% (250 features), 90% 

(250 features) and 87.87% (250 features) for 80/20, 70/30, 60/40 and 50/50 training and testing  

ratios of RDD, respectively, with LDA classifier. 

The subset of feature vector data of BWTCLBPri technique selected by mRMR feature 

selection technique yields the best classification accuracy of 95.67% (250 features), 93.78% 

(150 features), 91.50% (250 features) and 90.53% (250 features) for 80/20, 70/30, 60/40 and 

50/50 training and testing ratios of RDD, respectively, with linear SVM classifier. The 

aforementioned classification accuracies are much better than the classification accuracy 

produced by BGP (state-of-the-art) feature extraction technique (94.33%, 88%, 85.33% and 

82.40% for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively), using 

linear SVM classifier. 

Thus, it is summarised that the performance of LBP variants texture feature extraction 

techniques have been significantly improved by incorporating grayscale image transformation 

with gray-level slicing and BWT transform followed by extraction of texture features from these 

transformed images. The MSB bit of grayscale image has significant information which can be 

used to deliver comparatively good classification accuracy using BWT transform. Further, the 

performance of BWT based LBP variants technique have been found comparatively superior or 

at par with most of the state-of-the-art texture feature extraction techniques for hardwood 

species classification.
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CHAPTER 4. GAUSSIAN IMAGE PYRAMID BASED TEXTURE 
FEATURE EXTRACTION TECHNIQUES 

This chapter explores the effectiveness of Gaussian image pyramid (GP) based texture feature 

extraction techniques for classification of hardwood species. The chapter starts with concise 

description of the GP, proposed (GP based texture features) methodology for hardwood species 

classification and subsequently assessment of effectiveness of the proposed feature extraction 

techniques using different classifiers. 

4.1 INTRODUCTION 

Multi-resolution texture feature extraction techniques have been widely used to extract the 

significant features of the image that is difficult to obtain from the original image (single resolution 

image). Although a number of multi-resolution approaches are available, Gaussian image 

pyramid (GP) has been preferred here because it requires less computational efforts. Image 

pyramid is useful for illustrating images at several resolutions [1, 25] and has been used for 

texture analysis [108] due to local averages at various scales [24]. In GP, moving from bottom 

to top of the pyramid, produces images of reduced size and resolution. The base image of the 

pyramid has high resolution, while the top (apex) of the pyramid has low resolution. The original 

image 0G  is convolved with Gaussian kernel function (low pass filter) and sub-sampled to 

generate next level of pyramid image 1G . In order to generate the next higher level of image     

2G , the 1G  image is convolved with Gaussian kernel and sub-sampled. This process of image 

convolution and sub-sampling is repeated for the N (desired) level of image pyramid. The 

formula for the GP [24] for original (base) image  ,f x y  is given by Eq. (4.1), 

   0 , ,G x y f x y  (4.1) 

2 2

( -1)

-2 -2

( , ) ( , ) (2 ,2 ),0l l

m n

G x y w m n G x m y n l N
 

       (4.2) 

 

Fig. 4.1 Gaussian image pyramid of Guianensis species at 0G  to 6G  levels. 
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In Eq. (4.1),  0 ,G x y  is first level image (viz., base image) produced by GP. In Eq. (4.2), 

( , )lG x y  is the thl  level image produced by GP, and ( , )w m n is a weighting function (generating 

kernels). The generating kernel ( , )w m n  approximates a Gaussian function (Gaussian pyramid). 

These kernels are identical at all levels, symmetric and separable. As a special case, the GIP 

for Guianensis species [125] of Sapotaceae family is shown at 0G  to 6G  levels in Fig. 4.1. 

4.2 PROPOSED METHODOLOGY 

 Procedural Steps 

The procedural steps involved in present work used for classification of microscopic images of 

hardwood species is represented in the form of block schematic and is shown in Fig. 4.2.  

 

Fig. 4.2 Schematic for classification of hardwood species using Gaussian image pyramid based texture 
feature extraction techniques. 

The complete classification process consists of three stages: pre-processing, feature 

extraction and classification.  

1. In pre-processing, microscopic images are converted to grayscale model from RGB 

model using Eq. (2.41).  

2. In the second stage, these images are transformed to multiresolution images by means 

of GP. The GP model at 0G  to 6G  levels has been achieved by convolving grayscale 

images with the Gaussian kernel (low pass filter). From each GP decomposed images, 

texture features are extracted using different texture descriptors like LBP, LCP and LPQ. 

The texture features produced by these feature extraction techniques produces a wide 

range of numerical values.  

3. A normalization process is thus considered necessary to make the feature vector data 

suitable for directly applying it to the classifier. The feature vector data has been 

normalised in the range 0 to 1 using Eq. (2.42). 

4. Each and every level of multiresolution image has significantly distinctive information 

about the original image. Therefore, combining them together produces efficient feature 
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vector data useful in the categorization of hardwood species. The normalized texture 

feature vectors are combined cumulatively to form level 1 to level 7 feature vectors as 

given by Eq. (4.3). 

1

l L

L l

l

F G





 

(4.3) 

where, LF stands for feature vector data obtained at level L and, lG signifies the texture 

features obtained by LBP or LCP or LPQ feature extraction technique from the thl  level 

of Gaussian processed grayscale image. 

5. The PCA and mRMR techniques are employed in the third stage to reduce the 

dimensions of feature vector data. 

6. In the final stage, four classifiers have been employed to classify the hardwood species 

into 75 categories using GP based texture feature vector data. Consequently, the best 

combination of texture feature technique with classifier is obtained to classify the 

hardwood species decided on the basis of the best classification accuracy. Thus, on the 

basis of combination of GP with different variants of texture feature descriptors, following 

texture feature extraction techniques are proposed here, and they are listed as below 

with their notations and variations.  

GPLBPu2 Gaussian image pyramid based uniform local binary pattern  

GPLBPri Gaussian image pyramid based rotation invariant local binary pattern  

GPLBPriu2 Gaussian image pyramid based rotation invariant uniform local binary pattern  

GPLCPu2 Gaussian image pyramid based uniform local configuration pattern 

GPLCPri Gaussian image pyramid based rotation invariant local configuration pattern 

GPLCPriu2 Gaussian image pyramid based rotation invariant uniform local configuration pattern 

GPLPQ Gaussian image pyramid based local phase quantization 

 Approaches used for Performance Evaluation of Feature Extraction Techniques  

The performance of the GP based feature extraction techniques for classification of hardwood 

species have been investigated employing two strategies: (1) 10-fold cross validation and (2) 

randomly dividing the database (Section 2.5.2). 

4.3 EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental work presented in this section investigates the effectiveness of the GP based 

texture feature extraction techniques for the classification of microscopic images of hardwood 

species database into 75 classes with the help of classifiers. The four classifiers used for the 

investigation are linear SVM, RBF kernel SVM, LDA and RF classifiers (Section 2.3). 
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 Parameter Selection 

The selection of parameters for efficient implementation of various feature extraction techniques 

 (LBP, LCP and LPQ) and classifiers have been discussed in detail in Section 2.6.1. 

 Experimental Results 

The classification accuracy obtained by the GP based texture feature extraction techniques for 

microscopic images of hardwood species have been computed using four classifiers. Similar to 

presentation of results in Chapter 3, here also results have been presented for different 

categories, and different sets of feature vector data (Section 2.6.2). 

 Performance Evaluation of GP based Texture Feature Extraction Techniques 

using 10-fold Cross Validation Approach 

4.3.3.1 Full feature vector data (FFVD) 

The percentage classification accuracy attained by the GP based texture features for grayscale 

image of hardwood species database is presented in Table 4.1. The classification accuracy 

obtained by the proposed texture features using three different classifiers is discussed below: 

Linear SVM classifier: The FFVD of GPLPQ feature extraction technique has given the best 

classification accuracy of 98.20±1.04% with feature vector dimension of 1024. Further, the 2nd 

best classification accuracy of 95.73±2.39% (236 features) has been achieved by FFVD 

produced by GPLBPu2 texture feature extraction technique. The FFVD produced by GPLBPriu2 

feature extraction technique has given a classification accuracy of 91.20±1.53% (50 features), 

which is lowest among the proposed feature extraction techniques. 

RBF kernel SVM classifier: Using this classifier the best classification accuracy of 

97.67±1.05% has been attained with FFVD (1024 features) produced by GPLPQ feature 

extraction technique, which is the best among the proposed feature extraction techniques. The 

FFVD of GPLBPu2 texture feature extraction technique has obtained the 2nd best classification 

accuracy of 95.40±1.23% with 295-dimensional feature vector data. On the other hand, least 

classification accuracy of 91.00±2.13% (40 features) has been achieved by feature vector data 

of GPLBPriu2 texture feature extraction technique.  

RF classifier: This classifier has given the best classification accuracy of 94.27±1.76% for 

FFVD (1280 features) produced by GPLPQ texture feature extraction technique. Further, the 

FFVD produced by GPLCPriu2 technique has obtained the 2nd best classification accuracy of 

93.13±2.06% for 486-dimensional feature vector data. In addition, among the proposed feature 

extraction techniques, the least classification accuracy of 85.33±2.47% has been achieved by 

FFVD of GPLBPriu2 feature extraction technique. 
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Table 4.1 Classification accuracy achieved using full feature vector data. 

Proposed 
techniques 

IDL 
Feature extraction 
time in seconds 

NoF  
% CA±SD achieved by classifiers 

Linear SVM RBF kernel SVM RF 

GPLBPu2 

1 0.2920 59 79.20±2.96 81.40±2.64 69.27±2.52 

2 0.3164 118 91.53±1.43 90.47±1.69 81.60±2.73 

3 0.3320 177 93.60±1.83 94.00±1.63 85.60±3.07 

4 0.3410 236 95.73±2.39 95.07±1.48 89.27±1.35 

5 0.3462 295 95.07±1.18 95.40±1.23 90.33±2.07 

6 0.3536 354 94.07±2.21 95.13±1.25 90.67±2.80 

7 0.3648 413 93.40±2.64 94.00±1.29 90.87±2.37 

GPLBPri 

1 0.3039 36 77.33±2.86 78.80±2.57 53.93±2.78 

2 0.3139 72 88.53±1.43 87.07±1.96 73.33±1.99 

3 0.3290 108 91.86±3.23 91.00±1.86 82.60±2.89 

4 0.3335 144 91.53±2.51 91.87±2.17 84.93±2.58 

5 0.3364 180 91.93±1.84 92.67±1.96 86.93±2.14 

6 0.3427 216 91.07±2.04 92.67±1.67 87.80±1.51 

7 0.3475 252 89.80±2.47 90.47±2.47 86.73±2.05 

GPLBPriu2 

1 0.2868 10 63.53±3.15 66.00±2.96 41.87±3.69 

2 0.3139 20 81.60±2.45 83.20±2.03 64.93±2.07 

3 0.3208 30 88.40±1.69 89.06±1.69 74.93±2.97 

4 0.3217 40 90.00±1.44 91.00±2.13 80.07±3.21 

5 0.3301 50 91.20±1.53 89.40±1.48 84.00±3.93 

6 0.3341 60 88.60±1.67 90.00±1.50 85.33±2.47 

7 0.3355 70 87.80±1.66 88.30±0.84 84.73±1.92 

GPLCPu2 

1 0.5367 81 65.33±5.03 71.73±3.43 65.40±2.75 

2 0.6647 162 83.33±2.33 84.33±3.33 77.80±2.11 

3 0.6673 243 89.00±1.81 90.53±1.36 84.07±1.97 

4 0.6907 324 91.73±1.41 92.80±1.74 88.40±2.42 

5 0.7033 405 92.13±1.71 92.86±1.63 88.80±1.03 

6 0.7333 486 92.60±2.21 93.40±1.55 89.27±1.19 

7 0.7473 567 92.47±1.96 93.80±1.60 90.07±1.52 

GPLCPri 

1 0.6363 81 67.13±2.36 63.07±4.55 63.47±4.03 

2 0.6849 162 79.93±2.74 80.33±3.44 76.13±2.17 

3 0.7771 243 87.47±2.60 88.20±2.33 87.07±1.81 

4 0.8190 324 89.20±1.90 91.20±1.71 90.27±1.67 

5 0.8257 405 90.67±1.80 92.27±1.57 92.13±1.21 

6 0.8341 486 91.87±1.90 92.67±1.40 92.53±1.40 

7 0.8392 567 90.93±1.75 92.07±1.34 92.67±1.83 

GPLCPriu2 

1 0.7553 81 73.67±2.93 71.13±5.31 69.00±4.51 

2 0.9360 162 85.40±2.72 84.93±2.72 81.53±1.69 

3 0.9760 243 89.60±1.89 91.07±2.18 88.73±2.00 

4 0.9633 324 92.33±2.11 92.67±1.50 92.40±1.76 

5 0.9733 405 94.07±1.73 93.67±1.44 92.80±1.88 

6 0.9640 486 93.80±1.13 94.13±1.85 93.13±2.06 

7 1.0247 567 93.13±1.57 93.67±1.37 92.93±2.07 

GPLPQ 

1 0.2979 256 93.20±1.83 89.06±1.69 78.07±2.25 

2 0.3120 512 96.67±0.94 94.33±1.01 87.33±2.33 

3 0.3275 768 97.33±1.30 97.13±1.13 93.00±1.58 

4 0.3498 1024 98.20±1.04 97.67±1.05 93.80±2.11 

5 0.3679 1280 97.80±1.37 97.47±1.17 94.27±1.76 

6 0.3919 1536 97.33±1.47 97.07±1.26 94.20±2.14 

7 0.3960 1792 96.87±1.78 96.73±1.39 93.87±1.96 
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Fig. 4.3 Classification accuracy achieved using FFVD. 

 

Fig. 4.4 Feature extraction time for single grayscale image. 

Here, it has been observed that the best classification accuracy has been achieved at the 

4th level of image decomposition by most of the GP based texture feature extraction techniques 

using all the three classifiers. In addition, among all the three classifiers the best classification 

accuracy is achieved by linear SVM classifier; whereas, RF classifier yields comparatively lower 

classification accuracy. The classification accuracy obtained by all the three classifiers have 

been compared and the same is illustrated in Fig. 4.3. The graphical illustration reveals that 

GPLPQ texture feature extraction technique has given the best classification accuracy with 

linear SVM classifier.  
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Further, the time required by the proposed texture feature extraction techniques for single 

image is also listed in Table 4.1. The GPLPQ feature extraction technique requires 0.3498 

seconds/image for extracting the texture features of given individual images as shown in Fig. 

4.4. This feature extraction time is much less than the BWTCLBPri feature extraction technique 

which takes 0.6929 seconds/image. The error bar plot for FFVD is shown in Fig. 4.5. The 

assessment of Fig. 4.5 suggests that the FFVD produced by GPLPQ feature extraction 

technique at the 4th level of image decomposition yields best classification accuracy of 

98.20±1.04% with lower SD value. The GPLPQ feature extraction technique have achieved 

slightly lower classification accuracy (97.67±1.05%) with RBF kernel SVM classifier, while the 

RF classifier has given lowest classification accuracy (94.27±1.76%). 

 

Fig. 4.5 Error bar plot with SD using FFVD. 

4.3.3.2 The PCA dimensionality reduced feature vector data 

In order to improve the classification accuracy of hardwood species classification, the PCA has 

been employed to reduce the dimensionality of full feature vector data. The performance of 

feature extraction techniques with PCA using different classifiers has been listed in Table 4.2 

and are succinctly discussed henceforth: 

Linear SVM classifier: Here, the PCA reduced feature vector data of GPLPQ feature extraction 

technique yields the best classification accuracy of 98.20±1.04%, which is similar to the 

classification accuracy achieved by FFVD; but has been achieved using only 350-dimensional 

feature vector data compared to 1024-dimensional feature vector data at the 4th level of image 

decomposition.  
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Table 4.2 Classification accuracy achieved using PCA based reduced feature vector data. 

Proposed 
techniques 

IDL 
%CA±SD achieved by classifiers 

 NoF  Linear SVM NoF  RBF kernel SVM NoF  RF NoF  LDA 

GPLBPu2 

1 50 78.93±2.02 55 81.40±2.64 40 83.20±2.43 50 81.00±1.81 

2 110 90.73±2.38 100 90.53±1.65 110 90.07±1.90 100 91.33±1.18 

3 170 93.53±1.66 150 94.07±1.15 50 90.00±1.78 170 95.67±1.14 

4 200 95.27±1.20 225 95.13±1.41 100 90.73±1.90 232 97.33±1.41 

5 275 95.13±1.81 275 95.40±1.24 50 90.53±1.63 290 97.67±1.34 

6 325 93.87±2.33 250 95.20±1.25 100 88.93±2.67 348 97.80±1.57 

7 350 92.33±2.62 250 94.00±1.30 200 84.20±3.08 348 97.80±1.57 

GPLBPri 
 

1 35 77.07±3.45 30 78.93±3.33 35 76.87±1.69 35 76.00±3.47 

2 65 88.13±1.96 65 87.07±1.86 50 84.73±2.44 70 89.80±1.48 

3 100 91.33±2.69 75 91.33±1.83 75 87.87±3.14 105 94.47±1.51 

4 125 91.20±2.59 100 92.00±2.55 125 87.60±1.26 140 96.00±1.13 

5 170 91.53±1.51 170 92.67±2.01 170 84.93±2.07 175 96.80±1.50 

6 200 90.87±2.01 200 92.67±1.66 200 84.13±2.96 208 96.67±1.04 

7 200 89.40±2.42 225 90.47±2.48 225 81.53±1.89 208 96.67±1.04 

GPLBPriu2 

1 8 58.53±3.40 8 66.00±2.81 8 67.40±3.70 9 58.40±3.95 

2 15 79.47±2.41 15 83.00±2.33 15 84.20±2.67 18 81.00±2.04 

3 25 87.60±1.78 25 88.60±1.31 25 89.67±2.58 27 89.67±1.92 

4 35 89.93±1.62 35 91.33±2.04 35 90.73±0.97 36 92.60±1.87 

5 45 90.80±1.29 40 89.47±1.43 45 91.00±1.84 45 93.60±1.45 

6 50 88.93±1.78 40 89.93±1.39 55 91.00±1.55 54 94.40±1.51 

7 50 88.20±1.91 50 88.40±0.95 60 89.67±3.03 54 94.40±1.51 

GPLCPu2 

1 50 69.20±3.61 50 72.00±3.20 60 66.73±3.58 54 75.53±3.81 

2 100 83.40±2.78 125 84.67±3.22 100 76.33±2.76 108 88.20±2.29 

3 150 89.60±2.11 200 90.60±1.35 200 81.07±3.69 162 93.86±1.17 

4 200 91.27±1.52 300 92.80±1.74 200 82.87±3.81 216 95.67±0.96 

5 250 91.53±2.06 200 92.80±1.72 50 82.47±2.79 250 95.47±0.88 

6 300 92.20±2.27 250 93.40±1.55 50 83.20±3.20 300 95.60±1.18 

7 300 92.27±2.25 500 93.93±1.68 50 84.00±3.05 314 95.53±1.09 

GPLCPri 

1 50 68.13±3.28 50 63.87±4.75 60 75.47±3.92 54 82.80±2.61 

2 125 79.60±3.18 125 80.53±3.38 150 81.73±4.28 108 93.67±1.92 

3 200 86.93±2.76 150 88.33±2.31 150 84.33±2.16 162 96.33±1.01 

4 250 89.80±1.94 200 91.20±1.72 200 85.27±1.79 216 97.20±0.93 

5 300 90.47±1.78 200 92.33±1.67 200 85.20±2.22 270 97.07±0.84 

6 250 91.73±2.00 250 92.80±1.36 300 85.40±3.36 305 96.60±0.86 

7 300 90.87±1.94 200 92.33±1.05 200 83.87±2.82 305 96.60±0.86 

GPLCPriu2 

1 60 73.93±2.84 50 71.33±4.88 70 83.07±3.13 54 85.67±2.15 

2 100 85.07±2.90 125 85.07±2.63 100 86.80±2.82 100 94.00±1.30 

3 150 90.07±1.92 150 91.13±2.25 200 88.40±1.41 162 97.20±1.21 

4 250 92.53±1.50 200 92.80±1.60 150 86.67±1.89 200 98.13±0.82 

5 250 93.60±1.78 200 93.67±1.45 250 86.93±1.78 270 98.13±0.69 

6 300 94.20±0.94 350 94.20±1.69 250 86.60±1.59 324 97.87±0.76 

7 300 92.80±1.63 300 93.80±1.34 350 85.93±2.40 324 97.87±0.76 

GPLPQ 

1 150 93.27±1.62 150 89.40±1.39 150 88.20±1.57 150 91.93±2.56 

2 300 96.40±1.23 250 94.53±1.17 150 93.73±1.86 300 96.53±0.69 

3 200 97.53±1.14 200 97.47±0.93 100 94.27±1.84 450 98.33±1.10 

4 350 98.20±1.04 250 97.87±1.08 100 94.33±1.76 500 98.73±1.15 

5 350 98.00±1.22 150 97.67±1.01 150 94.20±2.04 450 98.53±0.82 

6 500 97.07±1.38 150 97.73±1.10 50 93.47±2.13 500 98.13±1.08 

7 550 96.93±1.00 100 97.73±1.23 50 92.87±2.65 550 97.47±0.82 
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RBF kernel SVM classifier: Amongst the proposed feature extraction techniques, the PCA 

reduced feature vector data of GPLPQ texture feature extraction technique has attained slightly 

better classification accuracy of 97.87±1.08% (250 features) compared to 97.67±1.05% (1024 

features) classification accuracy presented by FFVD of GPLPQ technique. 

 

Fig. 4.6 Classification accuracy achieved using PCA reduced feature dataset. 

 

Fig. 4.7 Error bar plot with SD using PCA reduced feature vector data. 

RF classifier: The PCA reduced feature vector data of GPLPQ texture feature extraction 

technique has obtained the best classification accuracy of 94.33±1.76% using 100-dimensional 

feature vector data only, which is slightly better than the accuracy yielded by the FFVD 

(94.27±1.76%) of GPLPQ with 1280-dimenisonal feature vector data.  

LDA classifier: This classifier has given the best classification accuracy of 98.73±1.15% for 

PCA reduced feature vector data of GPLPQ texture feature extraction techniques with 500-

dimemnsional feature vector data. The classification accuracy obtained by the other feature 
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extraction techniques have also been better than the rest of the three classifiers used in this 

experimental work with PCA reduced dimensionality feature vector data. 

The classification accuracy achieved with PCA reduced dimensional feature vector data 

are at par with the FFVD, but has been obtained using low-dimensional feature vector data. The 

LDA classifier has obtained maximum classification accuracy for the feature vector data 

produced by GPLPQ texture feature extraction techniques at the 4th level of image 

decomposition. The graph depicting the comparison of the classification accuracy obtained by 

four different classifiers is shown in Fig. 4.6. Further, the error bar plot representation of the 

same is given in Fig. 4.7. The graphical illustration also supports the statement that GPLPQ 

texture features classified with LDA classifier present the best classification accuracy results. 

4.3.3.3 The mRMR feature selection based reduced feature vector data 

The subset of feature vector data obtained by mRMR feature selection method has been 

investigated to see their effect on the classification accuracy produced for hardwood species 

classification. The classification accuracy results achieved by three different classifiers are listed 

in Table 4.3. The performance of texture feature extraction techniques with different classifiers 

are as follows: 

Linear SVM classifier: Amongst the proposed feature extraction techniques, the highest 

classification accuracy of 98.13±0.93% has been achieved by mRMR processed subset (550 

features) of FFVD produced by GPLPQ technique at the 6th and 7th level of image decomposition. 

This classification accuracy is slightly lesser than 98.20±1.04% accuracy obtained by FFVD of 

GPLPQ technique (1024 features) at the 4th level of image decomposition. 

RBF kernel SVM classifier: The mRMR selected feature subset (200 features) of GPLPQ 

texture feature extraction technique (FFVD produced at the 6th and 7th level of image 

decomposition) has achieved the best classification accuracy of 98.13±1.08%. This 

classification accuracy is relatively better than 97.67±1.05% accuracy obtained by FFVD of 

GPLPQ technique (1024 features) at the 4th level of image decomposition.  

RF classifier: The RF classifier has achieved a classification accuracy of 94.53±1.69% for 

mRMR selected feature subset (300 features) of FFVD produced by GPLPQ texture feature 

extraction technique at the 5th level of image decomposition. This classification accuracy has 

been relatively better than the highest classification accuracy (94.27±1.76%) produced by 

GPLPQ texture feature extraction technique for FFVD (1280-dimensional feature) at the 5th level 

of image decomposition. 

The classification accuracy results are plotted in Fig. 4.8, and the error bar plot for the 

same has been illustrated in Fig. 4.9. These figures depict that GPLPQ texture feature extraction 

techniques have produced best classification accuracy at the 6th and 7th level of image 

decomposition that too with lower value of SD using linear SVM classifier. 
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Table 4.3 Classification accuracy achieved using mRMR feature selection based reduced feature vector 
data. 

Proposed 
techniques 

IDL 
% CA±SD achieved by classifiers 

NoF  
 

Linear SVM NoF  
 

RBF kernel SVM NoF  
 

RF 

GPLBPu2 

1 55 76.93±3.31 55 79.73±2.54 55 69.93±4.60 

2 110 91.07±1.78 115 90.33±1.78 115 81.73±2.14 

3 170 93.47±1.83 170 93.87±1.36 100 86.13±3.37 

4 225 95.47±2.15 225 95.07±1.38 225 89.47±1.29 

5 250 95.33±1.86 275 95.47±1.60 150 90.53±2.68 

6 200 94.80±1.57 300 95.47±1.17 250 91.40±1.46 

7 250 95.13±1.81 250 94.80±1.12 350 91.00±1.67 

GPLBPri 

1 35 76.33±2.52 35 78.53±3.01 35 54.87±2.95 

2 65 87.53±1.54 65 87.27±1.73 65 75.60±3.71 

3 100 91.53±2.98 100 91.13±2.01 50 84.20±2.37 

4 75 91.00±1.45 75 91.80±2.52 75 87.13±2.69 

5 170 91.67±2.02 100 93.27±1.49 50 88.80±2.89 

6 100 92.60±1.35 100 92.73±1.15 100 89.07±2.29 

7 150 91.73±2.37 150 92.87±2.33 225 88.60±2.21 

GPLBPriu2 

1 8 54.13±3.57 8 61.40±3.80 8 67.40±3.70 

2 15 79.00±2.78 15 81.20±2.08 15 84.20±2.67 

3 25 87.00±2.29 25 88.33±1.34 25 89.67±2.58 

4 35 88.93±2.02 35 90.80±1.74 35 90.73±0.97 

5 45 89.20±1.60 45 88.93±1.38 45 91.00±1.84 

6 55 88.00±1.63 55 88.87±1.54 55 91.00±1.55 

7 65 87.47±1.80 50 88.47±0.83 60 89.67±3.03 

GPLCPu2 

1 75 69.87±3.16 50 71.80±3.27 60 66.33±2.02 

2 150 82.40±2.42 150 84.00±3.43 150 78.33±3.02 

3 100 89.13±2.42 200 91.13±1.60 150 85.47±1.72 

4 200 92.93±1.51 200 94.13±1.57 100 90.00±1.63 

5 150 93.47±1.69 150 94.87±1.22 150 91.40±1.46 

6 150 93.60±1.48 150 94.87±1.41 150 92.13±1.69 

7 150 93.73±1.70 250 94.80±2.06 100 91.73±1.34 

GPLCPri 

1 60 67.87±3.04 70 64.80±4.81 70 64.33±4.15 

2 100 82.13±1.93 50 82.20±2.70 50 77.80±2.83 

3 100 90.07±2.50 100 90.80±2.51 200 88.20±2.65 

4 100 93.40±1.68 50 95.00±1.27 100 92.07±1.87 

5 100 94.33±1.34 100 95.13±1.72 50 93.27±1.68 

6 150 94.47±1.34 100 95.40±1.59 100 93.40±1.62 

7 100 94.20±1.63 150 95.00±1.58 150 94.00±1.18 

GPLCPriu2 

1 60 76.53±2.63 50 72.40±4.59 75 68.87±4.00 

2 50 87.00±2.38 50 86.20±2.20 50 81.53±3.30 

3 100 92.87±1.63 100 94.47±1.37 50 89.33±1.37 

4 100 95.07±1.38 100 95.87±1.63 250 93.33±1.18 

5 100 96.40±1.10 100 97.67±1.26 100 94.33±1.67 

6 200 96.07±1.31 100 96.73±1.02 50 94.47±1.04 

7 100 96.67±1.54 100 96.67±1.44 250 94.33±0.79 

GPLPQ 

1 200 93.27±1.55 200 88.87±1.54 150 78.33±1.55 

2 450 96.60±1.06 250 94.80±1.25 300 88.67±2.90 

3 500 97.80±1.30 300 97.00±1.19 250 93.47±1.43 

4 550 97.93±1.15 400 98.07±1.52 250 94.47±1.60 

5 400 98.07±1.11 350 98.07±1.27 300 94.53±1.69 

6 550 98.13±0.93 200 98.13±1.08 200 94.33±1.45 

7 550 98.13±0.93 200 98.13±1.08 200 94.47±1.14 
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Fig. 4.8 Classification accuracy achieved using mRMR feature selection based reduced feature vector 
data. 

 

Fig. 4.9 Error bar plot with SD using mRMR feature selection based reduced feature vector data. 

It is observed from Table 4.1 that the length of the feature vector data increases as the 

level of image decomposition increases. The classification accuracy results for full feature vector 

data of GP based texture feature extraction techniques using three different classifiers have 

gone up in the range of 4th to 6th level of image decomposition and thereafter either it remains 

same or decreases a little bit. Further, in case of feature vector data of GPLCPu2 feature 

extraction technique, the increase in the classification accuracy has been observed for both, 

RBF kernel SVM and RF classifiers. It is noticeable that the increase in the classification 

accuracy has been attained at the cost of additional computation time. Therefore, the texture 

descriptors beyond 7th level of image decomposition has not been investigated.  
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Further, employing PCA (dimensionality reduction) and mRMR (feature selection) 

technique has not only reduced the computational time but also shown considerable 

improvement in the classification accuracy for hardwood species’ classification. It is also 

observed from Table 4.1, Table 4.2 and Table 4.3 that the GP based feature extraction 

techniques have achieved better classification accuracy compared to the original LBP variants 

and BWT based LBP variants feature extraction techniques as discussed in Chapter 2 and 

Chapter 3.  

 Performance Evaluation of GP based Texture Feature Extraction Techniques 

using Randomly Divided Database (RDD)  

4.3.4.1 Full feature vector data (FFVD) 

The classification accuracy achieved by GP based texture feature extraction techniques for 

different ratios of training and testing data has been listed in Table 4.4.  

Linear SVM classifier: Amongst the proposed texture feature extraction techniques, the FFVD 

produced by GPLPQ technique has produced significant feature vector data which yields best 

classification accuracy of 95.33% (at 4th IDL), 93.78% (at 4th IDL), 91% (at 4th IDL) and 89.07% 

(at 5th IDL) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively. 

RBF kernel SVM classifier: Using RBF kernel SVM classifier, the best classification accuracy 

of 93.33% (at 5th IDL), 91.78% (at 5th IDL), 88.17% (at 5th IDL) and 84.53% (at 4th IDL) has been 

achieved for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively. 

These classification accuracies have been achieved for FFVD produced by GPLPQ texture 

feature extraction technique (Table 4.4). 

RF classifier: As listed in Table 4.4 the FFVD produced by GPLPQ feature extraction technique 

has given the best classification accuracy for different proportions of training and testing data of 

RDD, amongst the proposed techniques using RF classifier. The GPLPQ features have 

achieved classification accuracy of 89.33% (at 5th IDL), 87.56% (at 6th IDL), 86.17% (at 7th IDL) 

and 81.60% (at 5th IDL) for 80/20, 70/30, 60/40 and 50/50 proportions of training and testing 

data, respectively. 

The classification accuracies obtained by the three different classifiers are compared for 

each of the four (80/20, 70/30, 60/40 and 50/50) training and testing ratios, and are graphically 

illustrated in Fig. 4.10, Fig. 4.11, Fig. 4.12 and Fig. 4.13, respectively. It is clear from these 

figures that texture feature vector data produced by most of the GP based texture feature 

extraction techniques yielded the best classification accuracy with linear SVM classifier. 

Whereas, the least classification accuracy for the GP based texture feature extraction 

techniques has been achieved with RF classifier. 
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Table 4.4 Classification accuracy achieved by full feature vector data for different proportions of training 
and testing data of RDD using three classifiers.  

Proposed 
techniques 

IDL 

% CA achieved by  classifiers for different proportions of training and testing data 

Linear SVM RBF kernel SVM RF 

80/20 70/30 60/40 50/50 80/20 70/30 60/40 50/50 80/20 70/30 60/40 50/50 

GPLBPu2 

1 74.67 68.00 66.33 62.13 70.33 66.00 61.67 57.87 59.33 53.11 51.00 47.60 

2 85.00 81.33 78.33 76.67 84.67 81.11 75.33 73.33 76.33 69.78 67.00 64.80 

3 87.33 85.56 83.17 80.40 89.00 84.89 81.50 78.40 80.33 78.00 73.17 70.80 

4 92.00 87.87 85.83 84.13 90.00 87.56 85.83 82.67 87.33 81.56 78.67 75.87 

5 90.67 88.00 87.67 83.33 90.67 87.78 85.83 82.67 86.00 83.56 81.83 78.40 

6 91.00 88.22 86.00 83.73 90.33 89.11 86.00 82.93 87.00 83.56 81.83 79.07 

7 89.67 86.67 83.67 82.80 89.00 87.11 84.50 81.87 87.33 83.56 81.50 79.33 

GPLBPri 

1 68.00 69.56 66.33 63.60 69.00 66.89 64.00 60.27 47.00 42.22 40.17 37.20 

2 85.67 82.44 81.50 77.07 82.67 78.89 74.33 71.47 71.67 67.33 63.17 62.13 

3 87.67 87.11 84.00 80.53 86.00 85.56 81.67 77.60 80.33 76.67 74.67 70.53 

4 89.67 86.89 85.83 82.40 88.67 88.22 84.33 80.13 83.33 81.78 78.83 75.33 

5 86.33 84.89 84.67 83.20 88.00 86.44 84.50 81.07 85.00 82.44 82.67 78.80 

6 86.67 85.11 86.00 82.00 88.33 86.44 84.83 81.07 85.00 82.89 82.83 79.33 

7 86.00 84.22 83.50 78.80 86.67 82.89 81.33 78.93 85.67 83.56 81.17 79.73 

GPLBPriu2 

1 61.00 57.11 57.67 54.13 63.67 58.67 57.83 53.33 34.67 34.44 35.00 30.93 

2 79.00 75.33 75.33 71.47 80.00 76.67 70.50 67.60 61.00 59.33 54.83 52.93 

3 86.67 83.56 81.17 78.53 86.00 82.89 80.00 77.47 76.33 69.33 67.67 64.40 

4 88.67 84.22 83.67 82.93 87.67 84.44 81.83 78.27 77.67 75.78 73.33 71.60 

5 87.00 85.56 85.50 83.73 86.33 84.44 84.33 79.87 81.33 79.33 80.00 75.87 

6 86.00 84.22 82.50 82.53 85.67 84.00 82.67 81.20 82.33 80.89 79.83 76.67 

7 85.67 81.33 81.50 81.07 84.00 81.78 79.33 79.07 82.67 78.44 78.50 76.27 

GPLCPu2 

1 61.33 57.78 50.67 52.40 64.00 58.44 53.50 52.67 56.33 51.11 48.83 47.87 

2 78.33 71.78 69.17 64.40 80.00 74.22 69.00 65.73 71.00 66.22 61.33 59.33 

3 83.67 80.67 76.17 73.07 83.67 80.89 76.17 74.67 78.33 74.00 72.83 70.40 

4 86.33 83.11 81.50 79.07 85.33 83.11 80.67 79.47 83.00 80.44 78.50 76.27 

5 86.33 83.33 82.00 80.27 87.00 85.11 82.83 80.40 84.67 82.67 82.17 79.07 

6 86.33 85.11 83.33 80.40 87.00 84.67 83.33 82.00 83.67 81.33 80.83 78.67 

7 87.00 85.56 83.83 79.73 86.33 84.67 83.33 82.00 84.00 81.33 81.33 77.20 

GPLCPri 

1 57.33 50.89 49.17 46.00 53.00 45.56 46.67 43.87 51.67 46.89 45.67 45.87 

2 72.33 67.56 64.83 62.00 71.67 66.67 63.67 60.40 68.00 61.11 59.83 58.40 

3 80.33 77.33 75.83 74.40 82.67 78.22 75.17 73.07 82.00 80.44 78.00 76.40 

4 84.00 79.56 79.50 78.27 87.00 84.67 79.83 78.40 85.67 86.22 84.50 80.80 

5 86.33 84.22 81.00 79.07 87.33 83.11 84.00 80.40 87.67 87.56 85.67 83.20 

6 87.00 83.56 83.00 79.47 85.67 84.44 83.33 80.80 88.00 87.56 86.00 84.00 

7 87.33 83.33 81.67 79.47 87.33 83.56 83.00 81.47 87.67 87.33 87.00 84.27 

GPLCPriu2 

1 66.67 60.22 57.67 51.73 62.33 56.22 52.83 50.53 58.00 51.11 53.00 48.80 

2 78.67 75.11 71.50 68.93 76.67 73.56 71.17 66.93 73.67 72.44 67.50 65.73 

3 85.33 82.22 79.00 78.00 85.33 81.56 78.83 76.27 84.67 82.22 80.17 78.27 

4 86.67 85.33 83.00 80.67 87.67 85.78 81.67 80.27 88.33 86.89 87.83 82.13 

5 89.00 86.44 84.50 81.60 90.00 87.33 83.83 81.73 90.00 88.22 88.50 84.40 

6 90.67 87.56 84.83 83.33 89.67 88.89 85.67 83.20 89.67 89.11 89.17 86.13 

7 90.00 86.00 85.00 82.67 89.33 88.67 85.00 83.07 88.67 88.89 89.67 84.00 

GPLPQ 

1 87.33 81.11 77.67 75.20 82.67 75.33 69.17 68.00 72.67 64.44 60.50 57.47 

2 92.67 88.67 85.83 83.07 89.67 84.67 79.83 76.93 84.67 77.56 76.17 71.60 

3 95.00 92.22 90.33 86.80 92.67 90.44 84.67 82.13 88.67 84.44 82.00 79.07 

4 95.33 93.78 91.00 88.93 92.33 91.33 87.50 85.33 89.00 86.67 84.67 80.93 

5 93.33 92.67 90.00 89.07 93.33 91.78 88.17 84.53 89.33 85.78 84.83 81.73 

6 91.67 90.89 89.33 87.73 92.67 91.33 87.67 84.17 88.00 87.56 85.83 81.60 

7 94.33 90.44 89.00 87.73 92.33 90.00 86.83 84.40 89.33 87.11 86.17 81.47 
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Fig. 4.10 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

 

 

 

Fig. 4.11 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 
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Fig. 4.12 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 

Fig. 4.13 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

4.3.4.2 The PCA dimensionality reduced feature vector data 

The classification accuracy results obtained by the PCA based reduced feature vector data 

using linear SVM, RBF kernel SVM, LDA and RF classifier has been listed in Table 4.5, Table 

4.6, Table 4.7 and Table 4.8, respectively. 

Linear SVM classifier: The PCA dimensionality reduced feature vector data of the GPLPQ 

technique yields the best classification accuracy of 95% (150 features, at 4th IDL), 93.56% (200 
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features, at 3rd IDL), 91.33% (450 features, at 4th IDL) and 88.67% (500 features, at 4th IDL) for 

80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively. This classification 

accuracy is marginally lower than the accuracy achieved for FFVD of GPLPQ technique with 

high-dimensional features (Table 4.5).  

Table 4.5 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using linear SVM classifier. 

Techniques 

 

IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

GPLBPu2 

1 50 76.33 55 68.00 55 65.17 50 62.27 
2 110 84.67 100 80.67 110 77.83 110 76.13 
3 100 86.00 170 85.33 170 82.33 150 79.47 
4 200 90.67 150 88.00 225 86.67 150 84.27 
5 150 90.00 100 87.11 150 86.83 275 83.47 
6 200 89.33 200 88.22 250 85.67 250 82.93 
7 200 88.67 350 86.67 250 83.33 250 81.73 

GPLBPri 

1 30 72.67 35 71.33 35 68.50 30 65.20 
2 65 85.67 60 81.56 60 81.50 60 77.07 
3 100 86.67 100 85.56 75 83.67 75 80.27 
4 125 87.67 125 84.89 125 85.17 125 81.87 
5 170 87.67 170 84.89 170 84.50 170 82.40 
6 200 85.67 200 84.67 200 83.67 200 79.87 
7 225 82.00 150 82.22 200 82.33 200 77.87 

GPLBPriu2 

1 8 55.33 8 53.33 8 51.50 8 49.73 
2 15 75.33 15 72.89 15 71.67 15 70.67 
3 25 83.33 25 80.67 25 80.00 25 77.33 
4 30 87.00 35 84.00 35 83.17 65 81.07 
5 45 86.33 45 85.78 45 83.83 45 83.60 
6 55 85.00 55 83.33 50 82.00 55 81.47 
7 60 84.33 60 82.67 60 80.17 60 79.73 

GPLCPu2 

1 60 64.00 60 57.33 60 51.83 60 51.20 
2 100 79.00 100 73.11 125 67.50 100 66.13 
3 150 84.00 150 79.78 200 76.33 200 74.53 
4 250 87.00 200 83.33 200 81.17 250 78.80 
5 250 85.67 250 82.67 250 82.00 250 79.33 
6 250 87.00 300 84.89 250 82.50 300 80.40 
7 300 86.33 300 84.44 300 82.83 300 79.20 

GPLCPri 

1 60 58.67 60 53.33 60 49.50 60 46.40 
2 100 73.00 100 68.89 100 66.00 125 62.67 
3 150 80.67 200 77.78 150 75.83 150 75.33 
4 200 83.00 150 79.78 150 80.00 200 78.27 
5 250 86.67 250 84.00 300 81.50 200 79.33 
6 250 87.33 250 85.11 300 82.17 250 80.27 
7 250 87.67 250 85.11 250 81.83 250 80.40 

GPLCPriu2 

1 50 68.00 50 60.22 50 58.33 50 50.44 
2 100 78.00 100 74.00 100 71.67 100 67.87 
3 150 85.00 150 80.22 150 78.33 150 77.47 
4 150 86.00 200 84.22 200 83.67 150 79.73 
5 200 88.33 250 84.44 200 84.33 200 82.53 
6 300 90.33 250 86.67 250 85.83 300 83.20 
7 200 88.67 250 85.33 300 84.50 200 82.67 

GPLPQ 

1 100 86.00 100 82.00 200 77.50 200 74.40 
2 200 92.00 150 89.33 350 85.83 300 81.73 
3 250 95.00 200 93.56 250 90.17 350 86.40 
4 150 95.00 100 93.33 450 91.33 500 88.67 
5 250 94.00 450 92.67 400 89.83 450 88.67 
6 150 91.67 200 91.56 200 90.00 200 88.40 
7 350 94.33 150 91.78 300 90.00 150 87.60 
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Table 4.6 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using RBF kernel SVM classifier. 

Techniques 

 

IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

GPLBPu2 

1 50 72.00 50 66.22 55 61.33 40 58.00 

2 100 85.33 100 80.89 50 76.33 100 73.60 

3 170 89.33 150 84.67 100 81.67 150 78.67 

4 150 90.00 200 88.22 225 85.83 225 82.53 

5 50 92.00 150 88.00 100 86.00 100 82.93 

6 150 90.33 100 89.33 300 86.17 150 83.33 

7 250 89.67 150 87.33 300 84.83 350 82.00 

GPLBPri 

1 20 71.00 35 68.22 30 65.33 35 61.87 

2 50 82.67 65 78.89 65 74.50 60 71.47 

3 50 86.33 50 85.33 75 82.00 75 77.33 

4 100 89.00 100 88.00 75 84.17 125 79.60 

5 150 88.33 150 86.44 150 84.67 170 81.67 

6 200 88.67 150 86.44 200 84.83 200 81.20 

7 200 87.00 150 83.11 150 81.17 150 78.93 

GPLBPriu2 

1 8 64.00 8 57.11 8 56.67 8 53.20 

2 15 79.33 15 75.11 15 70.17 15 66.27 

3 25 86.33 25 82.89 25 80.00 20 77.07 

4 35 87.67 30 84.44 35 82.67 35 78.40 

5 40 86.00 45 84.44 45 84.33 45 80.00 

6 55 85.33 55 83.56 55 82.67 50 81.33 

7 50 83.33 60 81.56 65 79.83 65 79.07 

GPLCPu2 

1 70 63.00 75 57.78 70 54.17 70 52.13 

2 100 79.67 150 74.00 150 69.17 150 66.80 

3 100 86.00 100 83.33 100 77.50 100 72.67 

4 150 88.00 100 85.56 100 82.67 150 82.00 

5 50 90.00 50 86.89 200 84.17 150 83.60 

6 50 89.33 100 86.22 150 84.17 150 84.00 

7 50 90.00 50 86.67 150 84.83 150 84.00 

GPLCPri 

1 50 53.33 50 46.89 50 47.67 60 44.80 

2 100 71.67 100 67.78 100 65.00 100 61.07 

3 150 82.67 150 78.00 150 75.67 150 72.93 

4 100 87.00 150 84.67 150 79.83 200 78.13 

5 200 88.00 200 83.56 250 83.83 300 80.53 

6 200 86.33 200 84.44 250 83.33 200 80.93 

7 200 87.33 200 84.00 200 83.17 250 81.73 

GPLCPriu2 

1 50 64.00 50 55.78 100 54.67 150 50.13 

2 100 76.67 100 74.67 100 72.00 100 67.20 

3 100 85.67 100 81.78 200 78.67 200 76.53 

4 150 88.00 200 86.00 200 82.00 150 80.67 

5 300 90.33 150 87.11 200 84.00 250 81.47 

6 250 89.67 200 88.89 200 85.83 250 83.20 

7 200 89.33 250 88.67 200 84.83 250 83.07 

GPLPQ 

1 200 82.33 200 74.89 150 69.33 150 67.87 

2 150 89.67 200 85.56 150 80.50 200 77.33 

3 50 92.67 200 90.67 300 85.67 300 82.40 

4 50 92.33 100 92.00 200 88.00 100 86.00 

5 150 94.33 150 92.67 150 89.00 200 86.40 

6 50 94.00 50 92.89 200 88.67 50 86.00 

7 50 94.67 50 92.67 50 88.17 50 86.00 
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Table 4.7 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using LDA classifier. 

Techniques 

 

IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

GPLBPu2 

1 40 78.33 40 70.44 40 68.00 30 65.87 

2 100 86.33 100 81.78 100 81.83 50 77.20 

3 170 90.67 150 89.33 150 86.83 170 83.07 

4 225 94.00 225 92.67 225 89.67 100 86.93 

5 150 93.33 250 92.89 275 91.00 150 88.13 

6 300 93.00 325 93.56 150 90.33 200 88.00 

7 300 93.00 325 93.56 150 90.33 250 88.00 

GPLBPri 

1 35 71.33 35 68.89 35 66.33 35 65.07 

2 70 87.33 70 84.22 70 83.33 70 82.53 

3 105 93.00 105 90.44 105 88.67 105 87.20 

4 140 94.67 140 92.67 140 90.33 140 89.33 

5 175 95.00 175 93.11 175 91.50 175 89.73 

6 208 95.00 208 93.78 208 92.00 208 89.47 

7 208 95.00 208 93.78 208 92.00 208 89.47 

GPLBPriu2 

1 9 54.67 9 50.67 9 53.00 9 52.40 

2 18 79.67 18 74.44 18 74.83 18 73.33 

3 27 86.67 27 84.00 27 85.33 27 83.33 

4 36 89.73 35 87.56 35 88.33 35 86.53 

5 45 90.33 45 89.11 45 90.33 45 88.13 

6 54 90.33 54 90.00 54 91.00 54 89.33 

7 54 90.33 54 90.00 54 91.00 54 89.33 

GPLCPu2 

1 50 71.33 50 64.22 54 62.17 54 60.40 

2 100 84.00 100 80.44 108 78.33 108 75.87 

3 162 89.67 162 88.22 162 87.50 162 83.87 

4 216 92.67 216 90.67 216 88.33 216 85.20 

5 270 92.67 270 91.11 270 88.83 270 85.47 

6 314 93.00 314 89.56 314 88.00 300 83.33 

7 314 93.00 314 89.56 314 88.00 300 83.60 

GPLCPri 

1 54 75.67 50 72.67 54 71.67 54 68.00 

2 108 91.00 100 85.78 108 86.33 108 83.20 

3 162 94.00 162 91.33 150 90.17 162 89.07 

4 216 94.67 216 94.22 216 92.33 200 90.13 

5 250 94.67 270 93.78 200 92.00 200 91.20 

6 300 94.33 300 93.78 305 91.67 300 89.07 

7 300 94.33 300 93.78 305 91.67 300 89.20 

GPLCPriu2 

1 54 80.00 54 76.44 54 76.83 54 74.53 

2 108 92.33 100 89.56 100 89.67 100 85.87 

3 150 94.33 150 94.00 150 92.83 150 90.80 

4 200 95.67 250 95.33 300 94.67 250 92.80 

5 250 96.33 250 96.22 250 94.33 250 93.73 

6 300 95.33 300 94.44 324 93.83 300 92.67 

7 300 95.33 300 94.22 324 93.83 300 92.53 

GPLPQ 

1 255 87.33 200 82.89 200 81.17 200 78.93 

2 150 91.67 300 90.22 100 89.17 100 85.47 

3 350 94.67 250 93.78 450 91.50 200 88.80 

4 250 95.00 100 94.44 250 91.83 100 90.00 

5 200 95.00 150 93.56 350 91.83 100 90.93 

6 100 94.67 200 93.78 200 91.67 200 89.33 

7 300 94.33 200 92.44 150 91.33 50 88.67 
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Table 4.8 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using RF classifier. 

Techniques 

 

IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

GPLBPu2 

1 40 75.67 30 67.56 50 64.33 50 62.67 

2 100 84.00 50 78.22 50 74.67 50 72.00 

3 170 85.67 100 82.22 50 79.17 50 76.93 

4 50 85.33 150 83.33 50 81.00 50 78.53 

5 50 85.33 100 82.67 50 83.00 50 78.93 

6 150 82.33 150 81.11 50 78.83 50 75.33 

7 50 80.00 50 77.33 50 77.00 100 72.13 

GPLBPri 

1 35 68.33 35 64.00 20 63.33 35 62.53 

2 50 79.67 65 74.89 65 74.50 65 70.00 

3 75 82.67 100 78.89 75 77.50 75 76.00 

4 100 81.67 100 80.44 100 79.33 100 76.27 

5 150 81.67 100 78.67 150 75.83 150 74.13 

6 150 79.00 100 78.89 50 76.67 50 73.20 

7 200 76.00 150 76.00 150 76.67 150 70.80 

GPLBPriu2 

1 8 60.00 8 54.22 8 54.33 8 54.67 

2 15 81.33 15 72.67 15 71.50 15 68.80 

3 25 85.33 25 80.89 25 79.83 25 78.93 

4 35 86.33 30 82.67 35 83.00 35 79.47 

5 45 88.00 45 85.56 45 83.83 45 81.60 

6 55 85.33 55 86.67 50 85.00 50 82.13 

7 65 84.33 65 83.78 60 82.83 60 80.80 

GPLCPu2 

1 60 56.33 70 51.33 60 49.50 60 47.73 

2 100 68.33 125 62.89 100 61.50 125 56.80 

3 243 76.00 100 68.89 100 67.83 100 63.73 

4 50 78.67 100 73.56 150 71.00 150 67.87 

5 50 79.00 50 74.00 100 72.33 100 68.53 

6 250 78.00 50 75.56 50 74.67 50 72.80 

7 150 78.33 50 75.78 50 74.00 50 71.33 

GPLCPri 

1 60 66.67 70 60.67 50 59.00 50 56.13 

2 150 75.33 100 70.44 100 66.83 100 63.07 

3 150 77.00 150 71.11 150 71.00 150 66.67 

4 200 79.67 200 76.00 150 74.67 200 68.27 

5 150 81.33 150 76.44 150 74.67 150 70.40 

6 250 81.33 50 76.22 300 74.33 20 72.27 

7 300 78.33 300 75.33 50 73.17 250 70.80 

GPLCPriu2 

1 60 75.67 50 69.56 60 68.00 60 64.80 

2 125 79.67 150 76.44 100 74.67 100 70.53 

3 200 79.67 200 75.56 150 74.83 200 69.33 

4 150 83.00 200 78.22 150 76.00 150 72.80 

5 150 78.00 200 75.56 150 73.17 250 71.33 

6 300 83.33 300 78.44 300 75.50 300 72.13 

7 50 81.33 350 79.33 350 75.50 300 71.60 

GPLPQ 

1 50 82.33 100 79.11 50 76.00 50 70.67 

2 250 87.67 150 84.89 100 82.00 150 77.47 

3 100 89.67 150 86.44 50 84.00 100 80.80 

4 100 90.00 50 87.33 50 85.83 150 83.33 

5 150 90.67 100 88.89 50 85.67 150 84.00 

6 300 89.00 50 86.89 250 85.33 100 83.33 

7 50 89.67 50 87.56 50 85.67 50 82.40 
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RBF kernel SVM classifier: A classification accuracy of 94.33% (150 features, at 5th IDL), 

92.89% (50 features, at 6th IDL), 89% (150 features, at 5th IDL) and 86.40% (200 features, at 5th 

IDL) has been obtained for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, 

respectively. The classification accuracy has been achieved by PCA dimensionality reduced 

feature vector data of GPLPQ technique; found to be reasonably better than the accuracy 

presented by FFVD of GPLPQ technique (Table 4.6).  

 

 

Fig. 4.14 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

 

Fig. 4.15 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 
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Fig. 4.16 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 

Fig. 4.17 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

LDA classifier: Amongst the proposed feature extraction techniques, the PCA dimensionality 

reduced feature vector data of the GPLCPriu2 technique has attained the highest classification 

accuracy. The obtained classification accuracy results are 96.33% (250 features, at 5th IDL), 

96.22% (250 features, at 5th IDL), 94.67% (300 features, at 4th IDL) and 93.73% (250 features, 

at 5th IDL) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively 

(Table 4.7). Further, the PCA dimensionality reduced feature vector data of the GPLPQ 

technique has attained the 2nd best classification accuracy. The obtained classification accuracy 

results are 95% (250 features, at 4th IDL), 94.44% (100 features, at 4th IDL), 91.83% (250 
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features, at 4th IDL) and 90.93% (100 features, at 5th IDL) for 80/20, 70/30, 60/40 and 50/50 

training and testing ratios of RDD, respectively (Table 4.7). 

RF classifier: In this case the classification accuracy results of 90.67% (150 features, at 5th 

IDL), 88.89% (100 features, at 5th IDL), 85.83% (50 features, at 4th IDL) and 84% (150 features, 

at 5th IDL) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively, has 

been obtained by GPLPQ technique with PCA dimensionality reduced feature vector data (Table 

4.8). 

The graphical illustration of PCA reduced feature vector data of GP based texture feature 

extraction techniques are shown in Fig. 4.14, Fig. 4.15, Fig. 4.16 and Fig. 4.17 for 80/20, 70/30, 

60/40 and 50/50 training and testing ratios of RDD, respectively. It is clearly visible that the PCA 

reduced feature vector data has achieved the best classification accuracy with LDA classifier, 

whereas RF classifier has given the lowest classification accuracy among the four different 

classifiers. Thus, it can be said that incorporating PCA for feature dimensionality reduction has 

improved the performance of GP based texture feature extraction techniques for hardwood 

species classification with low-dimensional feature vector data. 

4.3.4.3 The mRMR feature selection based reduced feature vector data 

The classification accuracy results achieved by the mRMR feature selection based reduced 

feature vector data of GP based texture feature extraction techniques with three different 

classifiers have been presented in Table 4.9, Table 4.10 and Table 4.11, respectively. The 

classification accuracy results obtained by each of the classifiers are as follows: 

Linear SVM classifier: The subset of feature vector data of GPLPQ technique produced by 

mRMR feature selection technique yields the best classification accuracy of 95.67% (450 

features, at 5th IDL), 93.56% (550 features, at 4th IDL), 90.67% (550 features, at 5th IDL) and 

89.60% (450 features, at 6th IDL) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of 

RDD, respectively (Table 4.9).  

RBF kernel SVM classifier: In this case, also, the subset of feature vector data of GPLPQ 

technique processed through mRMR feature selection technique yields the best classification 

accuracy of 94.67% (250 features, at 5th IDL), 92.89% (200 features, at 5th IDL), 91% (200 

features, at 6th IDL) and 88.40% (200 features, at 6th IDL) for 80/20, 70/30, 60/40 and  50/50  

training and testing ratios of randomly divided database, respectively (Table 4.10).  

RF classifier: The mRMR feature selection based feature vector data of GPLPQ technique yield 

the best classification accuracy result of 90.33% (200 features, at 5th IDL), 89.56% (150 features, 

at 5th IDL), 87.83% (300 features, at 6th IDL) and 85.23% (100 features, at 6th IDL) for 80/20, 

70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively (Table 4.11). 

Interestingly, all the three classifiers have achieved the best classification accuracies for 

feature vector data produced by the GP based texture features at the 5th and 6th level of image 
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decomposition. Also, employing mRMR feature selection technique for reducing the number of 

features, has given marginally lower classification accuracy compared to FFVD, but with lesser 

number of features. 

Table 4.9 Classification accuracy achieved by mRMR feature selection based reduced feature vector data 
for different proportions of training and testing data of RDD using linear SVM classifier. 

Technique IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

GPLBPu2 

1 55 72.33 55 66.00 55 64.67 55 65.13 
2 110 84.33 110 81.33 100 78.00 115 76.00 
3 170 87.67 150 85.33 170 82.50 170 79.73 
4 225 92.00 200 87.53 200 86.33 200 83.73 
5 100 92.33 200 88.22 200 87.17 250 83.33 
6 250 92.00 200 88.44 300 87.50 250 84.13 
7 250 92.00 200 88.67 300 86.50 300 84.27 

GPLBPri 

1 30 68.33 30 68.22 30 67.67 30 64.80 
2 60 84.67 60 81.78 65 81.33 65 77.47 
3 100 88.33 100 86.67 100 84.67 75 81.20 
4 75 89.00 75 86.67 100 85.67 75 82.27 
5 100 89.33 100 87.56 150 84.83 170 83.20 
6 100 88.00 100 86.22 150 85.67 100 83.47 
7 100 88.00 100 85.78 100 85.17 150 82.40 

GPLBPriu2 

1 8 55.33 80 79.33 8 48.33 8 47.87 
2 15 75.67 15 72.22 15 69.33 15 68.40 
3 25 85.00 25 83.33 25 80.33 25 76.80 
4 35 87.67 35 84.22 35 82.17 35 82.27 
5 45 86.67 45 84.00 45 83.50 45 83.47 
6 55 84.67 55 82.00 55 80.67 55 79.87 
7 50 84.67 50 81.11 65 80.50 65 79.20 

GPLCPu2 

1 50 64.33 70 57.78 50 53.83 50 52.40 
2 150 78.67 150 72.44 150 67.50 150 64.93 
3 100 85.00 100 82.22 225 76.83 100 73.87 
4 150 89.67 200 87.33 150 83.00 200 82.00 
5 200 89.00 150 87.33 200 84.17 200 82.40 
6 150 88.67 150 86.22 200 84.00 200 82.53 
7 200 88.33 200 85.78 250 84.50 200 82.13 

GPLCPri 

1 75 63.33 60 54.67 60 51.67 60 48.93 
2 50 75.33 100 71.33 100 67.00 100 65.47 
3 50 86.00 100 82.00 50 79.83 100 78.13 
4 100 89.33 100 87.56 50 84.17 100 83.87 
5 50 92.00 50 81.11 100 89.17 100 87.47 
6 100 91.67 100 90.89 100 88.67 100 87.20 
7 100 91.33 100 89.33 100 87.83 100 87.20 

GPLCPriu2 

1 50 67.67 60 63.33 60 58.67 50 54.53 
2 100 81.33 100 76.22 100 74.17 50 72.93 
3 150 88.67 150 87.11 150 84.17 150 81.20 
4 100 92.00 100 91.78 100 89.17 100 87.73 
5 150 93.33 150 92.44 150 91.33 100 88.00 
6 150 93.00 150 92.89 150 90.17 150 88.27 
7 150 94.00 150 92.00 150 90.50 150 89.07 

GPLPQ 

1 100 86.00 200 80.89 200 78.17 200 75.47 
2 250 93.00 400 90.00 350 86.33 450 84.00 
3 400 95.33 450 92.22 450 89.50 400 86.67 
4 250 95.00 350 93.56 350 90.50 200 89.47 
5 450 95.67 550 92.89 550 90.67 400 89.20 
6 550 95.67 300 92.44 450 90.00 450 89.60 
7 550 95.67 300 92.44 450 90.00 450 89.60 
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Table 4.10 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using RBF kernel SVM classifier. 

Technique IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

GPLBPu2 

1 55 69.33 55 66.00 55 60.33 55 56.93 

2 115 85.00 115 80.67 100 75.67 115 73.07 

3 170 89.33 170 85.33 170 82.17 170 78.40 

4 225 90.00 225 87.33 225 85.50 150 82.40 

5 275 91.67 275 88.00 275 86.67 250 83.33 

6 200 91.00 300 88.44 150 86.67 150 84.27 

7 150 91.00 350 87.78 200 86.17 150 84.00 

GPLBPri 

1 35 70.00 35 66.89 35 65.00 30 61.07 

2 60 82.33 60 78.44 60 75.00 60 71.33 

3 50 88.33 75 86.00 50 83.00 75 79.20 

4 75 88.67 75 87.56 75 85.50 75 83.07 

5 100 88.00 100 87.56 100 86.00 100 83.73 

6 100 88.67 100 87.78 200 85.67 100 84.40 

7 100 87.67 100 86.67 100 85.00 100 83.20 

GPLBPriu2 

1 8 57.00 8 49.33 8 51.50 8 48.53 

2 15 76.00 15 72.44 15 68.83 15 66.40 

3 25 84.67 25 82.00 25 78.33 25 76.27 

4 35 88.00 35 84.44 35 82.17 35 78.80 

5 45 86.67 40 85.11 45 83.67 45 80.00 

6 50 84.33 50 83.11 50 82.33 55 81.73 

7 60 84.00 65 83.11 50 82.33 50 80.40 

GPLCPu2 

1 70 63.00 75 57.78 70 54.17 50 52.53 

2 100 79.67 150 74.00 150 69.17 150 66.80 

3 150 86.33 100 83.33 100 77.50 150 76.40 

4 200 88.00 150 85.11 100 82.67 100 81.47 

5 50 90.00 50 86.89 250 85.00 150 83.60 

6 50 89.33 100 86.22 250 84.67 150 84.00 

7 50 90.00 50 86.67 150 84.83 150 84.00 

GPLCPri 

1 50 58.67 50 51.11 50 46.83 60 45.87 

2 50 76.67 50 72.44 50 68.33 50 65.47 

3 100 88.00 50 83.33 50 81.00 50 77.60 

4 100 91.33 100 88.44 100 87.17 100 83.20 

5 50 91.33 50 90.44 50 89.00 50 86.40 

6 200 91.67 100 90.00 100 88.67 100 86.27 

7 200 91.67 100 89.33 100 88.00 100 86.40 

GPLCPriu2 

1 70 65.00 50 58.89 50 56.17 50 52.00 

2 50 79.67 50 76.89 50 73.83 50 71.87 

3 50 90.00 50 87.33 50 84.00 100 82.53 

4 100 92.33 50 91.78 100 88.67 100 86.40 

5 150 94.33 150 92.00 50 89.17 100 89.20 

6 100 93.33 150 92.22 200 89.50 150 89.07 

7 200 92.67 100 91.56 150 90.00 150 88.40 

GPLPQ 

1 100 82.33 200 74.67 150 71.00 150 69.20 

2 250 90.67 200 85.78 200 82.33 150 79.47 

3 300 92.33 150 90.67 200 87.50 200 84.27 

4 200 93.67 150 92.44 150 90.33 150 87.73 

5 250 94.67 200 92.89 200 90.83 200 88.00 

6 200 94.00 200 92.89 200 91.00 200 88.40 

7 200 94.00 200 92.89 200 91.00 200 88.40 
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Table 4.11 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using RF classifier. 

Technique IDL NOF 80/20 NOF 70/30 NOF 60/40 NOF 50/50 

GPLBPu2 

1 55 59.07 55 52.00 55 51.17 50 48.53 

2 100 74.67 110 71.11 50 67.67 100 66.00 

3 100 80.33 150 77.78 150 74.50 150 72.53 

4 225 85.33 225 81.78 200 80.00 200 77.33 

5 275 87.33 200 84.67 275 82.00 250 79.60 

6 200 88.33 150 84.22 150 83.63 100 80.80 

7 150 87.00 250 84.67 150 82.67 150 80.27 

GPLBPri 

1 35 49.00 30 44.44 35 42.00 30 36.80 

2 50 72.67 60 67.78 50 64.33 65 62.67 

3 50 82.00 50 77.78 50 77.33 50 73.60 

4 50 85.67 50 81.33 75 81.00 75 78.40 

5 100 88.00 100 84.00 100 85.33 100 81.20 

6 100 87.33 100 84.44 100 84.83 100 82.00 

7 150 88.00 150 84.44 100 83.67 100 80.80 

GPLBPriu2 

1 8 35.00 8 33.78 8 33.50 8 31.60 

2 15 62.67 15 58.22 15 55.00 15 51.87 

3 20 76.67 25 70.67 20 67.67 20 64.13 

4 25 80.00 35 76.89 30 74.67 30 72.53 

5 40 82.67 30 80.22 40 79.83 40 77.20 

6 50 83.33 50 81.33 50 80.33 50 78.27 

7 60 82.33 60 79.78 50 80.33 65 77.47 

GPLCPu2 

1 75 57.67 60 52.67 70 49.50 70 48.27 

2 125 72.67 150 66.22 150 63.33 125 60.67 

3 50 79.67 50 75.56 100 73.33 150 72.27 

4 100 85.33 100 82.44 100 82.83 100 78.93 

5 50 86.00 150 85.33 50 83.17 150 80.53 

6 200 86.33 100 86.44 50 83.83 150 80.93 

7 100 87.33 50 85.33 150 83.83 100 80.67 

GPLCPri 

1 70 52.67 75 49.56 50 48.83 50 45.73 

2 100 72.00 50 65.33 50 64.33 50 62.40 

3 100 84.00 150 80.89 50 79.33 100 76.27 

4 50 89.00 100 87.33 100 87.00 100 83.73 

5 50 90.00 100 89.11 100 88.83 100 86.13 

6 150 90.33 250 89.56 100 89.00 200 85.47 

7 150 89.33 50 88.67 150 88.00 150 86.27 

GPLCPriu2 

1 50 58.67 50 53.11 50 52.67 50 49.73 

2 50 78.67 50 74.00 50 70.17 50 67.87 

3 100 87.67 50 84.44 50 81.67 50 79.47 

4 50 90.00 100 89.56 50 87.33 100 84.80 

5 100 91.33 100 89.56 200 89.33 100 86.80 

6 150 91.67 150 90.22 300 89.33 150 87.20 

7 150 91.67 150 91.56 300 89.50 150 86.80 

GPLPQ 

1 50 72.00 50 63.78 100 63.33 100 58.53 

2 150 85.00 450 80.22 350 76.83 100 72.53 

3 100 88.33 150 86.67 150 85.00 100 80.80 

4 200 90.00 250 88.89 200 86.67 350 84.93 

5 200 90.33 150 89.56 200 87.67 200 84.93 

6 250 90.00 200 88.89 300 87.83 100 85.20 

7 200 90.00 200 89.78 300 87.33 100 85.20 
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Fig. 4.18 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

 

Fig. 4.19 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 

The classification accuracies obtained by three different classifiers are compared for each 

of the four (80/20, 70/30, 60/40 and 50/50) training and testing ratios, and are illustrated in Fig. 

4.18, Fig. 4.19, Fig. 4.20 and Fig. 4.21, respectively. The analysis of these graphs advocates 

that GP based texture feature extraction technique (GPLPQ) has given the best classification 

accuracy with linear SVM classifier; whereas comparatively lower classification accuracy has 

been reported by RF classifier. 

Thus, employing feature dimensionality reduction/feature selection technique has not only 

reduced the computational time but also shown considerable improvement in the classification 

accuracy for hardwood species classification. It is also observed that the performance of variants 
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of LBP, LCP and LPQ texture feature extraction techniques have been improved by involving 

Gaussian image pyramid approach followed by extraction of texture features from these 

transformed images.  

 

Fig. 4.20 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 

 

Fig. 4.21 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

The performance of GP based texture feature extraction technique has been 

comparatively superior/at par with most of the state-of-the-art texture feature extraction 

techniques possibly because of the following reasons:  
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As discussed in Chapter 3, the microscopic images of hardwood species are required to 

be analyzed at several scale of resolutions for better discrimination among the wood species. 

For this reason, the images are decomposed by GP wherein each of the subimages coefficients 

contain varied and valuable information. In addition, to extract features from several level 

images, LBP, LCP and LPQ are preferred due to their simple computational requirement. 

Though, distinguishing features are obtained from low resolution subimages but alone they are 

not sufficient to discriminate amongst the hardwood species. Therefore, the texture descriptors 

of several scale resolution images are combined to get more significant feature vector data to 

discriminate among the hardwood species. 

4.4 SUMMARY 

The efficiency of the GP based texture feature extraction techniques for the classification of 

microscopic images of hardwood species into 75 categories have been examined with the help 

of classifiers. Two different approaches, 10-fold cross validation and randomly divided database 

(RDD) has been chosen to test the efficiency of proposed techniques. Further, for both the 

approaches, three different case studies are discussed (viz., FFVD, PCA reduced feature vector 

data and mRMR feature selection based feature vector data). 

In case of 10-fold cross validation approach, the FFVD (1024 features) of GPLPQ feature 

extraction technique at the 4th level of image decomposition yields best classification accuracy 

with lower value of standard deviation (98.20±1.04%), using linear SVM classifier. The LDA 

classifier yields the best classification accuracy of 98.73±1.15% for PCA reduced feature vector 

data of GPLPQ texture feature extraction technique (500 features). The mRMR selected feature 

subset (550 features) of GPLPQ technique has achieved the best classification accuracy of 

98.13±0.93% using linear SVM classifier.  

In case of RDD, amongst the proposed texture feature extraction techniques, the FFVD  

of GPLPQ technique has achieved the best classification accuracies of 95.33%, 93.78%, 91% 

and 88.93% for  80/20, 70/30, 60/40 and 50/50 training and testing  ratios of RDD, respectively, 

with linear SVM classifier. The PCA dimensionality reduced feature vector data of GPLCPriu2 

technique has obtained the best classification accuracy results of 96.33% (250 features), 

96.22% (250 features), 94.67% (300 features) and 93.73% (250 features) for 80/20, 70/30, 

60/40 and 50/50 training and testing ratios of RDD, respectively, using LDA classifier. The 

subset of feature vector data of GPLPQ technique selected by mRMR feature selection 

technique yields the best classification accuracies of 95.67% (450 features), 92.89% (550 

features), 90.67% (550 features) and 89.20% (400 features) for 80/20, 70/30, 60/40 and 50/50 

training and testing ratios of RDD, respectively, using linear SVM classifier. 

Thus, it is concluded that the performance of variants of LBP, LCP and LPQ texture feature 

extraction techniques have been significantly improved by incorporating Gaussian image 



 

128 

 

processing based image decomposition, followed by extraction of texture features from these 

transformed images. Further, the performance of GP based texture feature extraction 

techniques have been comparatively superior compared to the state-of-the-art and BWT based 

texture feature extraction techniques for hardwood species classification. The time taken by the 

proposed techniques for feature extraction is much lower than the BWT based texture feature 

extraction techniques (Chapter 3).
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CHAPTER 5. DWT BASED TEXTURE FEATURE EXTRACTION 
TECHNIQUES 

This chapter explores the effectiveness of discrete wavelet transform (DWT) based local binary 

pattern (LBP) variants texture feature extraction techniques for classification of hardwood 

species. The chapter starts with concise description of the DWT, proposed DWT based texture 

feature extraction techniques for hardwood species classification and subsequently evaluation 

of the effectiveness of these techniques using different classifiers. 

5.1 INTRODUCTION 

A mathematical tool employed in the hierarchical decomposition of a signal/image is known as 

discrete wavelet transform (DWT). Ever since its introduction, due to its multi-resolution 

capability, DWT [8, 91, 23, 103, 121, 176, 177, 183, 188, 189, 226] has been efficiently explored 

in a wide range of applications like image analysis, object recognition [9], denoising, 

segmentation, compression, biomedical imaging, fingerprint anti-spoofing [146] and texture 

feature extraction, etc. The DWT has gained popularity in image processing applications for 

efficiently providing spatial-frequency information [48, 69, 116, 137, 147, 148, 187]. The 

significant elements of 2D-DWT includes four critical elements, one scaling function  ,x y , 

and three wavelet functions (    ,H x y ,    ,V x y  and    ,D x y ), which are product of two one 

dimensional (1D) functions. The H , V and D wavelets are useful in the measurement of gray 

level variations in the horizontal, vertical and diagonal directions, respectively. The scaled   and 

translated   basis functions are defined as follows [60]: 

   /2
,  ,   , 2 2 ,2j j j
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In above equation 0j is an arbitrary starting scale. The  0,  ,W j r c coefficients produce 

approximation of image  ,f x y  at 0j  scale and ( , , )iW j r c   coefficients provide diagonal, vertical 

and horizontal details at scale 0j j .  

A compactly supported orthogonal wavelet having pre-assigned degree of smoothness 

was designed by Ingrid Daubechies [194]. It has been used in several image processing 

applications [214]. Daubechies wavelet family is characterized by time invariance, produces real 
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number coefficients, asymmetrical and has a sharp filter transition band that is useful in 

minimizing the edge effects between the frequency bands. The fractal like self-symmetry 

property facilitates fast wavelet transform in computation, also for a given support it offers the 

highest number of vanishing moments [194].  

The requirement for the significant texture features is based on the following facts. It is 

known that the microscopic images of hardwood species contain four key elements namely, 

vessels, rays, parenchyma and fibres. These elements are of numerous sizes and shapes. As 

the visual perception evaluates images on various levels of resolution at the same time, the 

multiresolution analysis capability of DWT is helpful in detecting features at a unique resolution 

which is undetectable at any other resolution. Further, the LBP variants are well-known for their 

ability of extracting significant features of images. Thus, the features obtained by combining 

DWT and LBP variants at several level of image decomposition extracts distinctive features. 

Furthermore, combining these features together at several level of image decomposition 

improves discrimination capability of classifier for hardwood species. 

As an visual illustration, the DWTCLBPu2 (CLBP_Sign + CLBP_Magnitude) texture images 

obtained up to the 3rd level of image decomposition for grayscale image of Aurantium species is 

shown in Fig. 5.1. It is noticed that each level of subimages of CLBP_Sign and CLBP_Magnitude 

have significant information which is combined together to get the discriminative texture 

features. 

 

Fig. 5.1 The Aurantium species image at 3rd level of image decomposition by DWT, (a) CLBP_S texture 
image, and (b) CLBP_M texture image. 

5.2 PROPOSED METHODOLOGY  

 Procedural Steps 

The algorithmic steps for the classification of microscopic images of hardwood species is shown 

in Fig. 5.2. The four key steps involved to accomplish hardwood species classification task are 

pre-processing, texture feature extraction, feature dimension reduction and classification.  
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Fig. 5.2 Block diagram of proposed multiresolution local binary pattern (MRLBP) variants based texture 
features for hardwood species classification. 

1. The pre-processing step is involved to obtain grayscale image from color (RGB) image 

using Eq. (2.41). 

2. In the second step (texture feature extraction), these grayscale images are first 

decomposed by DWT to seven different levels/scales (L1 to L7) incorporating Daubechies 

wavelet (db2) as decomposition filter. The transformation is carried out to obtain significant 

features of the image at unique resolution that are unnoticeable at any other resolution. The 

decomposition process divides grayscale image into four identical quarter-size subimages, 

viz., approximation (LL1), horizontal (LH1), vertical (HL1) and diagonal (HH1) components 

at the 1st level of image decomposition. Subsequently, the LL1 component is decomposed 

into four equal quarter-size subimages (LL2, LH2, HL2 and HH2) at the 2nd level of image 

decomposition. This procedure of subdividing the approximation component is repeated till 

defined level of image decomposition is reached. Thereafter, texture features are extracted 

from each of the subimages at different levels (L1 to L7) of image decomposition. To extract 

significant features of the image, six texture descriptors namely LBP, LBPu2, LBPri, LBPriu2, 

LBP-HF and CLBPu2 are used. Thus, on the basis of combination of DWT with different 

variants of LBP following multiresolution local binary pattern variants (MRLBP) variants 

based texture feature extraction techniques are proposed here and they are listed below. 

DWTLBP Discrete wavelet transform based local binary pattern 

DWTLBPu2 Discrete wavelet transform based uniform local binary pattern  
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DWTLBPri Discrete wavelet transform based rotation invariant local binary pattern  

DWTLBPriu2 Discrete wavelet transform based rotation invariant uniform local binary pattern  

DWTLBP-HF Discrete wavelet transform based local binary pattern histogram Fourier 

features  

DWTCLBPu2 Discrete wavelet transform based uniform completed local binary pattern 

3. Further, these texture feature vectors containing various range of values are normalized in 

the range of 0 to 1, thus rendering it in the form useful as an input to the classifier. The 

feature vector data is normalized using Eq. (2.42).  

4. The proposed texture descriptors produce large complex features, and among them several 

features may not be significant for discrimination of the hardwood species. Thus, in order 

to reduce the feature dimensions, PCA (feature dimension reduction technique) and mRMR 

(feature selection technique) is employed in the third step.  

5. In the final step, four different machine learning algorithms have been employed to classify 

the given hardwood species into 75 different classes using these texture features. Further, 

the effectiveness of the MRLBP variants based texture feature extraction techniques has 

been observed on the basis of the classification accuracy obtained through the classifiers. 

Consequently, the best combination of texture descriptor and classifier is identified on the 

basis of the best classification accuracy.  

 Approaches used for Performance Evaluation of Feature Extraction Techniques  

The performance of the DWT based texture feature extraction techniques for classification of 

hardwood species have been investigated employing two strategies: (1) 10-fold cross validation 

and (2) randomly dividing the database (Section 2.5.2). 

5.3 EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental work presented in this section investigates the efficiency of the MRLBP 

variants based texture feature extraction techniques for the classification of microscopic images 

of hardwood species database into 75 classes with the help of classifiers. The classifiers used 

for the investigation are linear SVM, RBF kernel SVM, LDA and RF classifiers (Section 2.3). 

 Parameter Selection 

The selection of parameters for efficient implementation of various feature extraction techniques 

and classifiers have been discussed in detail in Section 2.6.1. 

 Experimental Results 

The classification accuracy obtained by the DWT (MRLBP variants) based texture feature 

extraction techniques for microscopic images of hardwood species have been computed using 
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four classifiers. As discussed in Section 2.6.2 analysis of the results here is also presented in 

the similar manner. 

 Performance Evaluation of DWT based Texture Feature Extraction Techniques 

using 10-fold Cross Validation Approach 

5.3.3.1 Full feature vector data (FFVD) 

The percentage classification accuracy attained by the DWT based texture feature extraction 

techniques for grayscale image of hardwood species database is presented in Table 5.1. The 

classification accuracy obtained by the proposed texture features using three different classifiers 

are discussed below: 

Linear SVM classifier: The texture feature vector data of DWTCLBPu2 feature extraction 

technique has given the best classification accuracy of 97.40±1.06% with texture feature vector 

dimension of 1416. In addition, the second best classification accuracy of 96.27±1.73% (3072 

features) has been achieved by texture feature vector data produced by DWTLBP texture 

feature extraction technique. The least classification accuracy of 93.60±1.81% (120 features) 

has been achieved by using texture feature vector data produced by DWTLBPriu2, among the 

proposed feature extraction techniques. All these classification accuracies are reported for 

texture feature vector data generated at the 3rd level of image decomposition. 

RBF kernel SVM classifier: With this classifier, the best classification accuracy of 97.00±1.10% 

has been attained using feature vector data (2360 features) produced by DWTCLBPu2 feature 

extraction technique, which is the best among the proposed feature extraction techniques. The 

feature vector data of DWTLBPu2 texture feature extraction technique has obtained the second 

best classification accuracy of 96.07±1.24% with 1180-dimensional feature vector data. These 

classification accuracies are achieved for texture feature vector data produced at the 5th level of 

image decomposition. On the other hand, the least classification accuracy of 93.80±2.18% (160 

features) has been achieved by feature vector data of DWTLBPriu2 texture feature extraction 

technique at the 4th level of image decomposition.  

RF classifier: This classifier has given the best classification accuracy of 93.67±1.38% for 

texture feature vector data (2360 features) produced by DWTCLBPu2 texture feature extraction 

technique. The texture feature vector data produced by of DWTLBP-HF technique has obtained 

the second best classification accuracy of 92.07±1.24% for 760-dimensional feature vector data. 

In addition, among the proposed feature extraction techniques, the least classification accuracy 

of 88.60±1.15% (200 features) has been attained by using FFVD produced by DWTLBPriu2 

feature extraction technique. These classification accuracies are obtained for FFVD produced 

at the 5th level of image decomposition.  
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Table 5.1 Classification accuracy achieved using full feature vector data. 

Proposed 
techniques 

IDL 
Feature extraction 
time in seconds 

NoF 
% CA±SD achieved by classifiers 

Linear SVM  RBF kernel SVM RF 

DWTLBP 

1 0.1753 1024 92.40±2.11 90.47±1.37 79.73±2.63 

2 0.2133 2048 95.53±1.34 93.73±1.84 87.13±2.92 

3 0.2291 3072 96.27±1.73 94.87±1.86 89.53±1.78 

4 0.2431 4096 96.00±1.83 95.13±2.06 89.60±1.58 

5 0.2556 5120 95.73±1.38 94.07±2.00 89.47±1.69 

6 0.2681 6144 94.73±1.49 93.67±1.94 90.00±2.06 

7 0.2802 7168 94.60±1.90 93.40±1.76 89.93±2.00 

DWTLBPu2 

1 0.2692 236 90.00±1.86 89.60±2.16 78.53±2.22 

2 0.3161 472 94.87±1.69 94.00±1.81 85.93±2.00 

3 0.3398 708 95.67±1.45 96.00±1.91 90.00±1.69 

4 0.3525 944 95.80±1.34 95.87±1.72 91.60±1.30 

5 0.3617 1180 95.80±2.09 96.07±1.24 91.93±1.46 

6 0.3681 1416 94.60±2.10 94.73±0.86 91.60±1.45 

7 0.3752 1652 94.47±1.44 94.53±1.33 91.07±1.86 

DWTLBPri 

1 0.2738 144 83.13±3.11 85.87±2.51 74.53±2.86 

2 0.3272 288 91.87±2.13 91.87±2.13 83.27±1.68 

3 0.3523 432 94.33±1.55 94.13±1.25 87.67±1.34 

4 0.3718 576 94.73±1.35 94.67±1.94 88.93±1.34 

5 0.3881 720 93.80±2.13 94.13±1.66 88.27±1.51 

6 0.4026 864 92.40±2.31 93.87±1.50 88.73±1.55 

7 0.4182 1008 91.53±1.69 92.53±1.72 89.13±1.04 

DWTLBPriu2 

1 0.2631 40 81.07±2.31 82.87±2.55 67.33±2.93 

2 0.3073 80 90.73±1.71 91.73±1.70 79.80±1.72 

3 0.3321 120 93.60±1.81 92.40±2.04 84.93±1.92 

4 0.3406 160 92.87±1.30 93.80±2.18 88.33±1.45 

5 0.3455 200 92.20±1.83 93.07±1.67 88.60±1.15 

6 0.3494 240 90.87±1.22 92.87±1.83 88.27±1.48 

7 0.3538 280 88.53±1.96 91.20±1.80 88.27±1.47 

DWTLBP-HF 

1 0.2785 152 79.40±2.71 80.67±2.93 78.13±1.72 

2 0.3339 304 89.00±2.44 90.13±2.72 86.00±1.94 

3 0.3611 456 91.40±2.14 93.27±2.10 90.40±1.23 

4 0.3817 608 92.80±1.63 94.07±1.82 91.00±1.14 

5 0.3985 760 93.80±1.54 94.40±0.95 92.07±1.24 

6 0.4299 912 93.40±1.06 93.93±1.06 91.67±1.41 

7 0.4486 1064 92.00±1.47 93.47±1.88 92.00±1.63 

DWTCLBPu2 

1 0.3160 472 93.33±1.94 91.73±2.85 84.00±2.04 

2 0.3847 944 96.40±1.30 95.13±1.86 89.80±1.94 

3 0.4070 1416 97.40±1.06 96.80±1.74 92.87±1.34 

4 0.4162 1888 97.00±1.41 96.93±1.05 93.20±1.66 

5 0.4380 2360 96.80±1.03 97.00±1.10 93.67±1.38 

6 0.4435 2832 96.40±0.84 95.93±0.97 93.13±1.51 

7 0.4480 3304 96.13±1.29 95.47±0.98 93.13±1.41 
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Fig. 5.3 Classification accuracy achieved using FFVD. 

 

Fig. 5.4 Feature extraction time for single grayscale image. 

Here, it has been observed that the best classification accuracy has been achieved by 

most of the MRLBP variants based texture features obtained between the 3rd to 5th levels of 

image decomposition with all the classifiers. In addition, among the three classifiers the 

superlative classification accuracy is achieved with linear SVM classifier; whereas, RF classifier 

yields comparatively lower classification accuracy. The classification accuracy obtained by the 

three classifiers have been compared and the same is illustrated in Fig. 5.3. The graphical 

illustration also reveals that DWTCLBPu2 texture feature extraction technique has given the best 

classification accuracy with linear SVM classifier.  
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Fig. 5.5 Error bar plot with SD using FFVD. 

Further, the time required by the proposed texture feature extraction techniques for feature 

vector data generation for single image is also listed in Table 5.1. The DWTCLBPu2 feature 

extraction technique has achieved best classification accuracy of 97.40±1.06% at the 3rd level 

of image decomposition, which requires 0.4070 seconds for extracting the texture features of 

given individual images as shown in Fig. 5.4; which is much better than the time taken by the 

BWTCLBPri feature extraction technique (0.6929 seconds/image). The assessment of the error 

bar plot with SD for FFVD is shown in Fig. 5.5, reveals that the feature vector data achieved by 

DWTCLBPu2 feature extraction technique at the 3rd level of image decomposition yields the best 

classification accuracy of 97.40±1.06% with lesser value of SD. The DWTCLBPu2 feature 

extraction technique has achieved slightly lower classification accuracy (97.00±1.10%) with RBF 

kernel SVM classifier, while the RF classifier has given lowest classification accuracy 

(93.67±1.38%). 

5.3.3.2 The PCA dimensionality reduced feature vector data 

In order to improve the classification accuracy of hardwood species classification the PCA has 

been employed to reduce the dimensionality of full feature vector data. The performance of 

feature extraction techniques with PCA using different classifiers are listed in Table 5.2 and has 

been succinctly discussed henceforth: 

Linear SVM classifier: Here, the PCA reduced feature vector data of DWTCLBPu2 feature 

extraction technique yields the best classification accuracy of 97.60±1.05%, which is slightly 

better than the FFVD of DWTCLBPu2 feature extraction technique (97.40±1.04%). Further, the 

classification accuracy has been achieved using only 75-dimensional feature vector data 

generated at the 5th level of image decomposition compared to 1416-dimensional features of 
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FFVD produced at the 3rd level of image decomposition.  

Table 5.2 Classification accuracy achieved using PCA based reduced feature vector data. 

Proposed 
techniques 

IDL 
%CA±SD achieved by classifiers 

 NoF Linear SVM  NoF RBF kernel SVM NoF LDA NoF RF 

DWTLBP 

1 150 92.67±1.57 250 91.13±1.44 100 91.67±1.81 50 88.67±2.31 

2 375 96.00±1.54 300 94.80±1.93 300 95.67±1.92 50 92.87±2.01 

3 325 96.73±1.35 200 96.73±1.73 125 96.80±1.43 50 94.07±1.31 

4 100 97.13±1.18 175 97.07±1.51 125 96.67±1.47 150 94.13±1.88 

5 100 97.40±1.35 150 97.00±1.01 150 95.67±1.45 50 94.60±1.65 

6 100 96.93±0.90 125 96.60±1.06 75 95.80±1.48 50 93.80±1.81 

7 75 96.60±0.97 175 96.47±1.22 150 96.00±1.22 50 94.07±1.90 

DWTLBPu2 

1 200 88.93±1.76 100 90.00±2.13 225 89.27±1.73 50 86.47±1.99 

2 425 94.40±2.18 150 93.80±2.31 200 94.27±1.30 50 89.73±1.67 

3 275 95.60±1.48 200 96.13±1.74 500 95.87±1.17 50 92.73±1.76 

4 600 95.80±1.41 550 96.20±1.54 150 95.73±1.58 50 92.27±1.30 

5 525 95.80±1.69 350 96.40±1.10 350 95.27±2.21 50 92.80±1.50 

6 550 94.27±1.94 50 96.20±0.95 125 94.33±1.31 50 93.00±1.45 

7 350 94.07±1.46 100 95.67±1.45 125 94.93±1.45 50 92.40±1.14 

DWTLBPri 

1 125 81.87±2.75 125 85.80±2.52 125 86.13±2.89 100 74.07±4.29 

2 275 91.67±2.07 150 92.20±1.99 275 94.13±1.36 100 84.93±2.60 

3 375 94.27±1.67 300 94.20±1.34 400 95.33±1.22 50 89.40±1.46 

4 475 94.40±1.05 50 94.80±1.03 525 94.60±1.95 50 89.67±2.25 

5 425 93.60±1.94 300 94.40±1.51 450 93.47±1.29 50 88.67±1.37 

6 350 92.20±2.11 500 93.93±1.49 225 93.07±1.48 50 89.13±1.48 

7 525 91.53±1.83 175 93.47±1.69 50 91.53±0.63 50 87.00±1.84 

DWTLBPriu2 

1 35 80.47±2.76 25 82.67±2.74 35 82.27±2.11 35 81.53±2.35 

2 65 90.93±1.76 75 91.73±1.70 72 91.80±0.95 50 86.20±1.22 

3 105 93.33±2.22 85 92.87±2.01 105 94.60±1.15 100 89.33±2.18 

4 135 93.00±1.34 155 94.33±1.64 125 95.73±1.26 155 88.40±2.18 

5 125 92.47±1.78 95 93.13±2.09 180 95.67±0.96 175 86.20±2.44 

6 225 90.80±1.60 175 92.93±1.89 195 96.00±1.09 225 83.80±2.31 

7 245 88.53±2.22 225 91.13±1.69 235 95.60±1.23 250 82.27±2.61 

DWTLBP-HF 

1 150 76.93±2.65 125 80.73±2.77 125 88.13±2.74 125 73.30±2.63 

2 300 88.47±2.48 250 90.13±2.79 275 94.47±1.37 250 79.53±3.76 

3 350 91.47±1.83 350 93.27±2.10 425 95.87±1.43 50 85.60±3.19 

4 500 92.53±1.74 450 94.00±1.13 550 96.40±1.26 50 87.93±1.76 

5 475 93.47±1.43 450 94.60±0.91 575 94.80±2.01 50 85.93±1.79 

6 550 93.33±1.04 250 94.33±1.45 525 92.93±1.64 50 87.73±1.84 

7 575 92.00±1.72 550 93.67±2.04 500 92.33±2.04 50 84.73±2.05 

DWTCLBPu2 

1 200 93.33±1.54 250 91.73±2.78 125 94.00±1.75 150 90.07±2.82 

2 375 96.40±1.64 250 95.27±1.73 200 96.60±0.91 150 91.87±1.50 

3 575 97.40±1.31 350 97.00±1.38 325 97.87±0.82 100 94.80±1.91 

4 275 97.40±1.19 75 97.40±1.35 250 97.53±0.95 100 94.33±1.97 

5 75 97.60±1.05 100 97.60±1.23 350 97.13±1.22 50 95.20±1.29 

6 100 97.00±1.34 250 97.07±1.00 325 96.87±1.22 50 95.40±1.31 

7 100 96.60±1.46 175 97.07±1.23 175 96.67±1.22 50 94.53±2.24 
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RBF kernel SVM classifier: Amongst the proposed feature extraction techniques, the PCA 

reduced feature vector data of DWTCLBPu2 techniques has attained slightly better classification 

accuracy of 97.60±1.23% (100 features) compared to 97.00±1.10% (2360 features) presented 

by full feature vector data. In addition, the aforesaid feature vector data are obtained at the 5th 

level of image decomposition. 

RF classifier: The PCA reduced feature vector data of DWTCLBPu2 texture feature extraction 

technique has achieved the best classification accuracy of 95.40±1.31% using 325-dimensional 

feature vector data only. This is slightly better than the classification accuracy (93.67±1.38%) 

yielded by the FFVD of DWTCLBPu2 texture feature extraction technique (2360 features). 

LDA classifier: This classifier has given the best classification accuracy of 97.87±0.82% for 

PCA reduced feature vector data of DWTCLBPu2 texture feature extraction technique (325 

features). The said classification accuracy has been achieved for the feature vector data 

produced at the 3rd level of image decomposition. 

The classification accuracy achieved with PCA reduced dimensional feature vector data 

is at par/superior than their FFVD, but has been obtained using lower-dimensional features. 

Among the classifiers, the LDA classifier has obtained maximum classification accuracy for the 

feature vector data produced at the 3rd level of image decomposition by DWTCLBPu2 texture 

feature extraction technique. The graph depicting the comparison of the classification accuracy 

obtained by four different classifiers is shown in Fig. 5.6. Further, the error bar plot 

representation of the same is given in Fig. 5.7. The graphical illustration also supports the 

statement that DWTCLBPu2 texture features classified with LDA classifier presents the superior 

classification accuracy amongst the proposed techniques with different classifiers.  

 

Fig. 5.6 Classification accuracy achieved using PCA reduced feature vector data. 
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Fig. 5.7 Error bar plot with SD using PCA reduced feature vector data. 

5.3.3.3 The mRMR feature selection based reduced feature vector data 

The subset of feature vector data obtained by mRMR feature selection method has been 

investigated to see their effect on the classification accuracy produced for hardwood species 

classification. The classification accuracy results achieved by three different classifiers are listed 

in Table 5.3. The classification accuracy results are plotted in Fig. 5.8. Further, the error bar plot 

for the same has been illustrated in Fig. 5.9. The performance of texture feature extraction 

techniques with different classifiers are as follows: 

Linear SVM classifier: Amongst the proposed feature extraction techniques, the highest 

classification accuracy of 98.33±0.72% has been achieved by mRMR processed subset (550 

features) of FFVD of DWTCLBPu2 technique, at the 6th and 7th level of image decomposition. 

This classification accuracy is comparably better than 97.40±1.06% accuracy obtained by FFVD 

of DWTCLBPu2 technique (1416 features) at the 3rd level of image decomposition. 

RBF kernel SVM classifier: The mRMR selected feature subset (550 features) of DWTCLBPu2 

texture feature extraction technique (feature vector data produced at the 4th level of image 

decomposition) has achieved the best classification accuracy of 98.40±1.00%. This 

classification accuracy is relatively better than 97.00±1.10% accuracy obtained by FFVD of 

DWTCLBPu2 technique (2360 features) at the 5th level of image decomposition. 

RF classifier:  The RF classifier has achieved a classification accuracy of 95.40±1.31% for 

mRMR selected feature subset (50 features) of DWTCLBPu2 texture feature extraction technique 

(at the 6th level of image decomposition). This accuracy is reasonably better than the highest 

classification accuracy (93.67±1.38%) obtained by the FFVD (2360 features) of DWTCLBPu2 

texture feature extraction technique, at the 5th level of image decomposition. 
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Table 5.3 Classification accuracy achieved using mRMR feature selection based reduced feature vector 
data. 

Technique IDL 
% CA±SD achieved by classifiers 

NoF Linear SVM  NoF RBF kernel SVM NoF RF 

DWTLBP 

1 550  93.33±1.91 350  92.13±1.98 200  83.20±3.45 

2 550  96.27±1.64 500  95.67±1.23 300  89.93±1.52 

3 600  97.47±1.21 450  97.27±0.97 300  92.00±2.81 

4 550  97.67±1.41 450  97.80±1.00 300  93.27±2.66 

5 550  97.87±1.57 450  97.87±1.17 150  93.47±2.33 

6 500  97.73±1.55 500  97.67±0.90 500  93.53±1.83 

7 500  97.73±1.55 500  97.67±0.90 350  93.20±0.93 

 DWTLBPu2 
 

1 200  89.33±1.18 150  90.60±2.91 150  79.67±3.85 

2 300  95.13±1.22 250  94.40±1.78 300  87.53±2.22 

3 400  96.20±1.14 350  96.67±1.54 300  91.93±2.56 

4 300  96.87±1.44 200  97.20±0.82 300  92.93±1.84 

5 400  97.33±1.33 200  97.47±0.97 300  93.53±1.51 

6 300  97.47±1.03 200  97.60±0.90 250  93.47±2.49 

7 400  97.60±1.38 200  97.60±0.95 300  93.40±2.12 

DWTLBPri 

1 140  83.00±3.10 125  85.93±2.07 125  74.20±4.09 

2 200  92.93±0.95 200  91.93±1.35 100  85.07±2.42 

3 400  94.87±1.18 300  95.13±1.22 100  88.67±2.55 

4 250  96.13±0.88 150  95.80±1.60 150  90.73±2.44 

5 300  96.13±0.82 100  96.13±0.88 100  90.67±1.54 

6 300  96.67±0.94 150  96.60±1.35 150  90.73±2.68 

7 300  96.80±0.98 150  96.67±1.35 150  91.53±2.85 

DWTLBPriu2 

1 35  79.87±2.45 35  82.60±1.84 30  66.80±4.28 

2 50  91.00±1.27 50  91.67±1.94 50  80.40±2.11 

3 100  93.33±1.81 100  92.93±1.76 150  86.47±2.29 

4 125  93.20±1.43 150  93.93±1.39 150  88.33±2.40 

5 150  93.60±2.04 100  93.00±1.55 150  89.13±2.72 

6 150  94.13±1.83 150  93.87±1.17 150  89.47±2.84 

7 150  93.67±1.76 150  93.60±1.51 250  88.93±1.14 

DWTLBP-HF 

1 200  89.33±1.18 50  83.53±2.88 125  73.30±2.63 

2 300  95.13±1.22 50  92.20±2.16 250  79.53±3.76 

3 400  96.20±1.14 100  95.73±1.51 50  85.60±3.19 

4 300  96.87±1.44 50  97.27±1.45 50  85.93±1.79 

5 400  97.33±1.33 150  97.67±1.01 50  87.93±1.76 

6 300  97.47±1.03 150  97.47±1.29 50  87.73±1.84 

7 400  97.60±1.38 150  97.53±1.37 50  84.73±2.05 

DWTCLBPu2 

1 250  93.87±1.29 300  92.93±2.56 150  90.07±2.82 

2 450  96.73±1.11 250  96.40±1.73 150  91.87±1.50 

3 500  98.07±0.97 400  98.07±0.91 100  94.80±1.91 

4 500  98.27±0.90 550  98.40±1.00 100  94.33±1.97 

5 350  98.33±1.14 300  98.33±0.65 50  95.20±1.29 

6 550  98.33±0.72 450  98.60±0.91 50  95.40±1.31 

7 550  98.33±0.72 450  98.60±0.80 50  94.53±2.24 
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Fig. 5.8 Classification accuracy achieved using mRMR feature selection based reduced feature vector 
data. 

 

Fig. 5.9 Error bar plot with SD using mRMR feature selection based reduced feature vector data. 

The analysis of Table 5.3 suggests that among the proposed texture feature extraction 

techniques, the mRMR selected feature subset of DWTCLBPu2 technique has achieved the best 

classification accuracy of 98.40±1.00% with RBF kernel SVM classifier.  
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It is observed from Table 5.1 that as the level of image decomposition increases, the length 

of the feature vector data also increases. The classification accuracy results for the FFVD of 

DWT based texture feature extraction techniques using different classifiers have grown up in 

the range of 3rd to 5th level of image decomposition and thereafter either it remains same or 

decreases a little bit. It is noticeable that the increase in the classification accuracy has been 

attained at the cost of additional computation time. Therefore, the DWT based texture 

descriptors beyond 7th level of image decomposition has not been investigated.  

Further, employing PCA (dimensionality reduction) and mRMR (feature selection) 

technique has not only reduced the computational time but at the same time has shown 

considerable improvement in the classification accuracy of hardwood species. It is also 

observed from Table 5.1, Table 5.2 and Table 5.3 that the DWT based LBP variants texture 

feature extraction techniques have achieved better classification accuracy compared to the 

original LBP variants feature extraction techniques as given in Chapter 2.  

 Performance Evaluation of GP based Texture Feature Extraction Techniques 

using Randomly Divided Database (RDD)  

5.3.4.1 Full feature vector data (FFVD) 

The classification accuracy achieved by DWT (MRLBP variants) based texture feature extraction 

techniques for different ratios of training and testing data is listed in Table 5.4.  

Linear SVM classifier: Amongst the proposed texture feature extraction techniques, 

DWTCLBPu2 has produced significant feature vector data that yields best classification accuracy 

of 94.33% ( at 4th IDL), 93%( at 3rd IDL), 92.17% ( at 4th IDL) and 90.93% ( at 4th IDL) for 80/20, 

70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively (Table 5.4). 

RBF kernel SVM classifier: Using RBF kernel SVM classifier, the best classification accuracy 

of 92% (at 4th IDL), 92% (at 5th IDL), 90.33% (at 5th IDL) and 88.67% (at 5th IDL) has been 

achieved for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively as 

listed in Table 5.4 . 

RF classifier: As given in Table 5.4, the feature vector data produced by DWTCLBPu2 feature 

extraction technique has given the best classification accuracy for different proportions of 

training and testing data of RDD, amongst the proposed techniques using RF classifier. The 

DWTCLBPu2 features (at the 5th level of image decomposition) have achieved classification 

accuracy of 88.67% (at 6th IDL), 87.56% (at 5th IDL), 87.83% (at 5th IDL) and 85.33% (at 5th IDL) 

for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively.  

The classification accuracies obtained by the three different classifiers are compared for 

each of the four (80/20, 70/30, 60/40 and 50/50) training and testing ratios, and are graphically 

illustrated in Fig. 5.10, Fig. 5.11,Fig. 5.12 and Fig. 5.13, respectively.  
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Table 5.4 Classification accuracy achieved by full feature vector data for different proportions of training 
and testing data of RDD using three classifiers.  

Technique IDL 

% CA achieved by classifiers for different proportions of training and testing data 

LSVM RBF kernel SVM RF 

80/20  70/30 60/40 50/50 80/20  70/30 60/40 50/50 80/20  70/30 60/40 50/50 

DWTLBP 

1 88.00 84.22 81.00 75.73 83.67 82.44 76.33 72.13 73.67 68.67 69.67 63.73 

2 91.33 89.56 87.33 83.47 87.00 85.78 82.50 77.73 81.67 79.78 77.50 75.33 

3 93.67 91.78 90.00 87.60 89.00 87.56 85.33 81.07 82.67 82.22 80.83 78.93 

4 92.67 91.33 91.17 87.87 87.00 88.22 87.00 82.93 85.33 83.33 83.00 80.80 

5 92.33 90.67 90.33 88.27 86.67 86.44 87.17 83.47 84.67 83.11 82.67 80.13 

6 91.33 90.00 90.33 88.00 86.00 86.00 85.83 82.83 84.67 83.11 81.83 81.47 

7 92.00 89.11 89.83 87.33 85.00 84.67 85.00 81.73 83.67 82.89 82.67 81.73 

DWTLBPu2 

1 81.33 78.67 76.83 73.87 81.67 78.67 73.50 71.20 68.67 65.78 64.83 63.33 

2 87.33 86.00 82.83 81.47 87.00 84.89 82.67 79.07 80.00 77.11 77.16 72.93 

3 90.00 89.56 89.00 86.53 88.67 88.00 84.83 82.13 84.67 83.56 81.83 78.93 

4 90.67 89.56 88.83 88.53 90.33 89.11 87.67 84.93 85.67 84.22 84.67 83.07 

5 91.33 90.44 90.17 87.60 88.67 89.33 88.00 85.47 87.00 84.44 84.00 82.40 

6 90.33 89.78 89.33 87.47 88.67 89.11 87.33 84.40 87.00 83.11 84.67 81.73 

7 89.00 89.56 88.33 86.27 87.33 89.11 87.67 83.73 86.33 84.89 84.33 81.47 

DWTLBPri 

1 77.67 71.33 70.50 67.47 79.00 73.78 70.83 68.53 68.00 61.56 60.17 59.47 

2 89.00 85.33 83.83 79.60 87.00 83.78 82.33 77.33 82.33 76.89 75.67 70.00 

3 89.00 86.89 86.00 84.67 89.00 87.78 85.83 82.27 83.33 81.33 81.00 76.40 

4 89.67 89.78 87.83 85.73 87.33 88.00 85.83 82.53 85.67 83.56 82.33 78.93 

5 89.00 87.56 87.50 85.60 88.33 86.00 85.67 82.53 85.33 82.44 82.67 79.60 

6 88.33 88.00 86.83 84.13 89.00 86.22 86.33 82.27 84.00 84.44 84.83 80.27 

7 86.33 84.67 85.00 82.93 86.33 86.00 85.67 81.87 84.00 82.67 83.00 80.53 

DWTLBPriu2 

1 77.00 72.89 71.67 69.47 74.33 71.33 69.17 65.20 55.67 52.22 52.50 50.40 

2 88.33 86.22 84.17 81.60 87.67 83.11 82.00 77.73 80.00 74.44 71.00 68.13 

3 90.33 90.44 87.83 84.93 88.67 87.78 85.17 82.40 79.33 77.78 77.33 75.33 

4 89.33 90.00 87.33 86.80 89.00 89.11 87.17 86.00 83.33 82.44 81.67 78.40 

5 88.33 88.22 86.50 85.07 88.33 88.22 85.83 84.80 85.33 82.89 81.17 79.33 

6 87.67 86.67 84.83 82.40 88.67 88.00 84.67 82.93 85.00 83.77 82.83 79.87 

7 85.00 84.00 81.50 80.40 86.67 86.22 84.33 81.33 84.33 82.67 81.83 79.73 

DWTLBP-HF 

1 72.00 68.44 65.50 62.00 70.67 67.33 66.17 62.53 70.33 68.00 64.17 63.47 

2 86.00 82.00 79.33 75.87 85.00 81.11 80.83 75.47 82.67 78.89 76.83 75.47 

3 89.67 86.00 84.17 82.13 89.67 87.33 83.83 81.33 87.00 82.89 83.00 81.33 

4 89.67 88.00 86.83 84.00 89.00 87.78 87.17 83.33 89.00 85.56 85.17 82.93 

5 89.67 88.89 88.17 84.17 88.67 89.11 88.50 84.93 87.33 87.56 85.83 84.00 

6 90.67 90.22 87.50 83.87 89.00 88.44 86.83 84.53 88.33 85.77 86.00 83.20 

7 87.67 88.22 86.00 83.87 87.67 88.00 86.83 83.73 87.67 87.33 86.33 84.00 

DWTCLBPu2 

1 88.67 84.22 83.17 80.00 85.33 82.67 79.33 76.00 76.33 71.56 69.83 68.13 

2 91..67 90.00 88.00 84.53 90.00 87.78 84.50 81.47 85.67 82.00 79.50 79.47 

3 92.33 93.00 89.83 88.27 90.00 89.56 86.33 83.87 86.67 85.11 85.83 83.33 

4 94.33 92.67 92.17 90.93 92.00 90.67 89.33 87.73 88.00 86.67 86.33 84.80 

5 94.00 92.44 91.83 90.80 91.33 92.00 90.33 88.67 88.00 87.56 87.83 85.33 

6 93.33 92.44 92.00 90.93 91.00 91.33 89.67 87.60 88.67 86.67 87.67 85.20 

7 92.33 91.56 91.33 90.13 90.67 90.89 89.50 87.47 87.67 86.89 88.00 84.13 
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It is apparent from these figures that texture feature vector data produced by most of the 

DWT (MRLBP variants) based texture feature extraction techniques yield best classification 

accuracy with linear SVM classifier; whereas, the least classification accuracy has been 

achieved with RF classifier. Further, the classification accuracy obtained by other MRLBP 

variants texture feature extraction techniques have obtained better classification accuracy 

results compared to the classification accuracy achieved by state-of-the-art LBP variants texture 

feature extraction techniques. 

 

Fig. 5.10 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

 

Fig. 5.11 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 

 



 

145 

 

 

Fig. 5.12 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 

Fig. 5.13 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

5.3.4.2 The PCA dimensionality reduced feature vector data 

The classification accuracy results obtained by the PCA reduced feature vector data using four 

different classifiers are concisely discussed here forth:  

Linear SVM classifier: The PCA dimensionality reduced feature vector data of the DWTCLBPu2 

technique yields the best classification accuracy of 94.67% (450 features, at 4th IDL), 93.56% 

(450 features, at 5th IDL), 92.50% (450 features, at 6th IDL) and 90.67% (350 features, at 6th IDL) 
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for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively. This 

classification accuracy is comparable to the accuracy achieved with FFVD of DWTCLBPu2 

technique with high-dimensional features (Table 5.5).  

Table 5.5 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using linear SVM classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTLBP 

1 150 87.33 600 84.00 100 81.00 550 77.07 

2 150 92.33 350 91.78 300 88.17 500 83.73 

3 300 94.33 100 93.11 550 91.17 450 88.67 

4 100 93.67 150 92.67 100 91.67 150 89.87 

5 100 94.00 100 93.33 100 91.33 100 88.93 

6 150 93.67 100 92.67 400 91.00 100 88.53 

7 100 94.33 150 92.67 150 91.00 150 88.67 

DWTLBPu2 

1 225 82.67 100 78.67 200 76.67 200 73.20 

2 250 87.33 150 86.00 300 83.67 250 80.67 

3 50 90.33 50 90.22 300 88.50 400 86.40 

4 50 90.67 50 91.56 300 89.50 400 87.87 

5 50 91.33 100 91.78 350 89.83 350 87.33 

6 100 91.00 200 90.44 300 89.00 50 86.13 

7 100 89.00 50 88.67 300 88.00 400 85.73 

DWTLBPri 

1 125 76.67 125 72.00 125 70.67 125 68.13 

2 250 88.33 250 84.89 200 83.33 250 79.87 

3 350 89.00 300 87.33 150 86.00 250 84.53 

4 150 89.67 450 89.11 300 87.00 400 85.73 

5 300 88.67 500 88.00 450 86.83 250 85.07 

6 450 88.67 150 86.67 350 86.00 500 84.53 

7 500 85.33 450 84.00 500 84.00 450 82.53 

DWTLBPriu2 

1 35 74.33 30 72.22 30 72.33 30 67.87 

2 70 88.33 70 85.11 75 83.83 70 81.33 

3 100 91.33 100 90.22 100 88.17 100 85.33 

4 100 89.67 125 90.00 125 87.83 125 86.67 

5 200 88.33 150 88.22 150 87.33 175 85.20 

6 200 87.67 150 86.44 200 84.17 225 81.73 

7 200 83.00 250 84.00 250 81.33 250 80.53 

DWTLBP-HF 

1 150 72.33 150 67.78 150 65.50 125 62.00 

2 200 88.33 250 82.22 250 79.00 300 76.13 

3 300 89.00 350 86.44 350 83.33 300 81.20 

4 400 90.33 350 88.00 450 86.00 450 84.00 

5 400 90.67 550 89.78 550 88.50 550 84.67 

6 350 91.00 350 90.44 500 87.00 550 83.20 

7 450 87.33 500 88.00 400 86.00 550 82.27 

DWTCLBPu2 

1 200 88.67 200 84.00 200 83.50 350 80.27 

2 250 91.00 150 90.44 450 87.17 300 84.67 

3 400 92.67 150 92.00 250 90.33 300 88.80 

4 450 94.67 200 93.33 150 91.33 550 90.67 

5 350 94.00 450 93.56 250 92.00 100 90.53 

6 450 94.00 600 93.11 450 92.50 350 90.67 

7 600 93.33 50 92.89 150 91.50 150 90.53 

RBF kernel SVM classifier: A classification accuracy of 93.33% (50 features, at 6th IDL), 

93.33% (150 features, at 7th IDL), 91.50% (150 features, at 6th IDL) and 89.87% (50 features, at 

5th IDL) has been obtained for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, 
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respectively. These results have been achieved by PCA dimensionality reduced feature vector 

data of the DWTCLBPu2 technique, and are reasonably better than the accuracy presented by 

the FFVD of DWTCLBPu2 technique (Table 5.6).  

Table 5.6 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using RBF kernel SVM classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTLBP 

1 100 84.33 450 82.44 250 77.50 250 74.13 

2 200 88.67 200 87.33 300 83.50 100 79.60 

3 150 91.00 200 90.67 200 87.17 150 83.87 

4 300 91.33 250 91.33 200 89.83 150 86.80 

5 200 92.67 100 92.00 150 89.67 100 87.07 

6 150 92.33 100 92.00 150 90.33 150 87.47 

7 150 91.33 150 92.89 300 90.00 100 87.07 

DWTLBPu2 

1 150 82.67 150 79.33 100 74.67 100 71.73 

2 100 87.00 150 85.56 150 82.67 300 79.07 

3 50 90.00 50 89.56 100 86.83 100 83.60 

4 100 90.33 100 90.22 100 88.17 150 86.00 

5 150 90.00 50 90.22 150 89.67 50 86.53 

6 50 89.67 50 91.11 100 90.00 100 87.33 

7 100 89.67 100 90.22 150 89.00 150 86.67 

DWTLBPri 

1 125 79.67 100 74.00 125 71.33 100 69.07 

2 150 86.67 100 83.56 250 82.17 250 77.47 

3 300 89.33 20 88.89 200 85.67 200 82.80 

4 50 89.67 50 88.67 200 86.33 50 84.67 

5 50 89.00 50 86.89 50 86.17 50 83.73 

6 50 87.67 150 87.56 150 86.67 50 84.53 

7 150 88.00 100 86.44 50 85.50 50 83.87 

DWTLBPriu2 

1 30 75.33 35 70.89 35 69.83 35 65.73 

2 50 87.67 50 83.33 50 82.00 60 77.33 

3 50 89.67 100 88.00 50 85.83 100 82.53 

4 100 89.67 100 89.56 100 87.50 150 85.87 

5 175 89.00 150 88.22 100 86.00 150 84.93 

6 200 88.67 200 87.78 200 84.50 225 83.07 

7 200 86.67 250 86.44 200 84.17 250 81.47 

DWTLBP-HF 

1 100 70.67 100 67.56 125 66.33 150 62.80 

2 150 85.00 200 81.33 200 80.50 300 75.60 

3 150 89.67 150 87.33 300 83.67 400 81.47 

4 100 89.67 150 88.44 400 87.67 450 83.60 

5 100 90.33 150 89.33 500 88.33 50 86.67 

6 250 91.33 100 90.00 250 87.67 50 87.07 

7 50 88.00 150 88.00 350 87.67 50 84.27 

DWTCLBPu2 

1 200 85.67 150 82.89 100 80.17 400 76.13 

2 300 90.00 400 88.22 250 85.17 300 82.13 

3 150 91.33 150 90.00 300 86.67 300 85.20 

4 500 92.67 200 92.67 150 90.83 100 88.80 

5 250 93.00 250 92.89 250 91.50 50 89.87 

6 50 93.33 200 92.89 150 91.50 100 89.73 

7 100 93.33 150 93.33 100 90.83 150 89.47 

RF classifier: In this case, the classification accuracy results of 91.33% (150 features, at 6th 

IDL), 89.78% (100 features, at 5th IDL), 89.33% (100 features, at 6th IDL) and 87.60% (50 

features, at 6th IDL) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, 
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respectively, has been obtained by DWTCLBPu2 technique with PCA dimensionality reduced 

feature vector data (Table 5.7). 

Table 5.7 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using RF classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTLBP 

1 50 83.33 100 78.44 100 76.50 50 73.87 

2 50 87.67 150 84.89 50 84.50 100 79.20 

3 100 89.33 100 88.00 100 88.33 100 85.73 

4 50 90.67 50 90.44 150 90.00 50 86.67 

5 100 89.67 100 88.67 50 88.17 100 85.33 

6 100 90.33 50 87.56 50 87.50 150 85.87 

7 100 89.00 50 87.78 100 87.67 50 85.87 

DWTLBPu2 

1 50 79.67 50 72.00 50 71.83 50 66.80 

2 50 83.67 50 79.78 50 77.83 100 73.87 

3 100 86.67 50 85.33 50 84.50 50 80.80 

4 150 87.00 100 86.67 100 86.33 50 84.27 

5 150 86.67 50 86.44 50 86.33 50 85.33 

6 100 86.67 50 87.56 50 86.50 50 85.20 

7 250 85.33 50 86.00 50 84.83 50 83.67 

DWTLBPri 

1 50 72.67 50 64.89 50 61.50 100 61.60 

2 50 80.67 50 76.89 50 76.17 50 72.00 

3 50 85.67 50 84.00 200 81.67 50 79.20 

4 50 84.00 50 83.33 50 83.33 50 82.13 

5 50 85.33 50 84.22 50 83.83 50 81.73 

6 50 85.67 50 84.67 50 82.67 50 82.13 

7 150 83.67 50 82.22 50 82.67 50 80.40 

DWTLBPriu2 

1 30 78.00 35 73.78 35 69.33 35 69.73 

2 50 80.00 60 79.33 60 78.83 60 76.00 

3 110 85.67 100 85.56 100 82.50 110 80.93 

4 150 85.33 100 86.00 100 83.67 100 82.27 

5 175 83.33 100 80.00 175 79.83 100 76.80 

6 225 81.00 225 79.56 200 78.17 150 75.87 

7 250 78.33 150 76.89 50 75.33 50 74.00 

DWTLBP-HF 

1 150 69.00 150 62.89 150 58.67 150 58.53 

2 250 76.00 150 68.22 200 66.33 100 66.00 

3 200 81.67 50 78.00 50 75.67 50 73.07 

4 100 82.67 100 80.22 50 79.67 50 77.07 

5 50 85.67 50 82.22 150 80.67 50 78.67 

6 50 85.33 50 83.33 50 81.83 50 78.67 

7 50 82.67 50 81.56 50 78.33 50 76.13 

DWTCLBPu2 

1 100 84.00 100 80.67 50 77.00 50 74.13 

2 100 87.00 50 84.44 150 81.33 250 76.40 

3 50 89.00 350 88.00 100 87.33 100 85.20 

4 150 90.00 50 89.33 50 88.67 50 87.20 

5 100 91.00 50 89.78 150 88.50 50 87.33 

6 150 91.33 100 89.33 100 89.33 50 87.60 

7 50 89.33 50 89.78 50 88.33 50 87.60 
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Table 5.8 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using LDA classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTLBP 

1 150 87.33 150 82.89 100 83.50 50 81.87 

2 300 92.00 200 91.11 50 89.00 50 86.53 

3 300 93.33 100 93.33 100 92.67 100 90.00 

4 200 92.67 150 93.11 150 92.33 100 90.53 

5 200 93.33 150 93.33 50 92.67 50 90.40 

6 200 94.67 200 92.89 50 92.67 50 90.53 

7 150 94.67 100 93.33 100 93.17 50 90.93 

DWTLBPu2 

1 100 84.33 100 80.00 100 78.67 50 76.80 

2 250 89.33 200 88.00 200 86.67 150 82.67 

3 100 91.00 300 91.11 150 89.83 100 88.00 

4 100 92.33 150 91.11 100 91.17 50 88.80 

5 50 91.33 50 91.11 50 90.33 50 88.80 

6 150 91.67 50 91.56 50 90.50 50 87.87 

7 50 90.33 50 90.67 50 89.50 50 87.60 

DWTLBPri 

1 140 83.67 140 79.56 140 78.50 140 75.73 

2 280 90.67 280 88.67 250 88.17 280 83.07 

3 400 92.33 420 90.22 350 89.00 300 86.13 

4 350 91.33 250 89.56 250 88.17 150 85.47 

5 450 91.00 200 88.89 100 88.00 100 86.13 

6 400 89.67 150 88.67 50 88.17 50 87.60 

7 150 88.67 50 87.11 50 88.17 50 87.33 

DWTLBPriu2 

1 35 78.67 35 74.22 36 75.50 36 75.87 

2 50 88.00 50 86.67 50 87.83 60 86.00 

3 100 91.67 108 92.22 100 91.67 108 89.47 

4 125 93.67 144 92.67 144 92.33 125 90.13 

5 150 93.33 175 92.67 180 91.83 175 89.33 

6 200 93.00 200 92.44 200 91.67 200 89.73 

7 225 93.33 225 91.33 225 91.17 225 89.87 

DWTLBP-HF 

1 148 85.67 148 80.44 148 79.67 148 77.07 

2 250 90.67 275 88.67 296 88.33 296 83.87 

3 444 92.00 444 90.22 444 90.00 400 84.67 

4 350 90.67 150 88.89 200 89.00 200 85.60 

5 300 91.00 150 89.11 100 88.00 100 84.80 

6 200 90.33 200 89.33 50 88.33 50 86.00 

7 50 89.33 50 88.67 50 87.50 50 85.73 

DWTCLBPu2 

1 100 91.00 100 86.89 100 87.50 100 84.13 

2 450 93.00 100 90.89 250 89.67 150 86.27 

3 100 93.33 100 93.33 100 91.83 100 91.47 

4 200 94.33 200 94.22 200 93.00 200 91.47 

5 450 95.33 200 94.22 250 92.67 100 92.00 

6 350 95.67 350 94.00 50 91.83 150 91.20 

7 100 94.67 200 94.00 50 92.33 100 90.67 

LDA classifier: Amongst the proposed feature extraction techniques, the PCA dimensionality 

reduced feature vector data of the DWTCLBPu2 technique has achieved classification accuracy 
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of 95.67% (350 features, at 6th IDL), 94.22% (200 features, at 4th IDL), 93% (200 features, at 4th 

IDL) and 92% (100 features, at 5th IDL) for 80/20, 70/30, 60/40 and 50/50 training and testing 

ratios of randomly divided database, respectively (Table 5.8).  

 

Fig. 5.14 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

 

 

Fig. 5.15 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 
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Fig. 5.16 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 

 

Fig. 5.17 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

The graphical illustration of PCA reduced feature vector data of MRLBP variants based 

texture feature extraction techniques are shown in Fig. 5.14, Fig. 5.15, Fig. 5.16 and Fig. 5.17 

for 80/20, 70/30, 60/40 and 50/50 training and testing  ratios of randomly divided database, 
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respectively. It is clearly visible that the PCA reduced feature vector data has given the best 

classification accuracy with LDA classifier, whereas RF classifier has achieved the lowest 

classification accuracy among the classifiers. Thus, it is understood that incorporating PCA for 

feature dimensionality reduction has improved the performance of MRLBP variants based 

texture feature extraction techniques for hardwood species classification with low-dimensional 

feature vector data. 

5.3.4.3 The mRMR feature selection based reduced feature vector data 

The classification accuracy results achieved by the mRMR feature selection based reduced 

feature vector data of proposed texture feature extraction techniques with three different 

classifiers have been presented in Table 5.9, Table 5.10 and Table 5.11, respectively. The 

classification accuracy results obtained by each of the classifiers for MRLBP variants based 

texture feature extraction techniques are discussed below: 

Linear SVM classifier: The subset of feature vector data of DWTCLBPu2 texture feature 

extraction technique, produced by mRMR feature selection technique, yields the best 

classification accuracy of 97.33% (300 features), 96.67% (350 features), 94.33% (400 features) 

and 93.60% (350 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, 

respectively (Table 5.9).  

RBF kernel SVM classifier: Here, also the subset of feature vector data of DWTCLBPu2 

technique processed through mRMR feature selection technique yields the best classification 

accuracy of 96% (200 features), 95.56% (250 features), 93.83% (300 features) and 92.80% 

(300 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively 

(Table 5.10).  

RF classifier: The mRMR feature selection based feature vector data of DWTCLBPu2 technique 

yields the best classification accuracy of 92.67% (200 features, at 4th IDL), 91.56% (200 

features, at 7th IDL), 90.33% (100 features, at 6th IDL) and 88.27% (450 features, at 6th IDL) for 

80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively (Table 5.11). 

Interestingly, the linear SVM and RBF kernel SVM classifiers have achieved the best 

classification accuracies for feature vector data produced by the DWTCLBPu2 texture features 

at the 7th level of image decomposition. Further, other MRLBP variants based texture feature 

extraction techniques have improved the classification accuracy in comparison to the state-of-

the-art LBP variants texture feature extraction techniques. Also, employing mRMR feature 

selection technique for reducing the number of features has given much better classification 

accuracy compared to the full feature vector data, that too with lower-dimensional feature vector 

data. 
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Table 5.9 Classification accuracy achieved by mRMR feature selection based reduced feature vector data 
for different proportions of training and testing data of RDD using linear SVM classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTLBP 

1 400 89.67 350 85.56 500 82.00 350 77.60 

2 550 93.33 550 92.22 550 88.33 500 84.53 

3 350 95.00 400 93.78 500 91.50 400 89.07 

4 400 95.33 400 94.22 500 92.00 400 90.67 

5 700 95.33 300 93.78 300 92.50 400 90.80 

6 500 95.00 300 94.00 300 92.17 350 90.93 

7 500 95.00 300 94.00 350 92.17 400 90.80 

DWTLBPu2 

1 100 83.00 200 80.22 200 76.67 225 74.00 

2 300 89.33 250 87.33 300 85.33 250 82.67 

3 200 92.00 350 90.89 500 89.33 400 87.60 

4 250 94.33 300 93.11 500 92.17 450 90.67 

5 200 94.00 200 94.00 500 92.33 450 90.67 

6 150 94.33 200 94.00 250 91.67 250 90.53 

7 200 94.67 150 94.00 500 92.17 450 90.40 

DWTLBPri 

1 125 77.00 125 71.56 125 71.17 125 66.93 

2 250 89.00 250 86.22 250 84.50 250 80.13 

3 200 91.00 250 88.22 250 87.33 200 85.87 

4 100 92.67 250 91.33 350 86.67 200 87.47 

5 500 94.33 100 92.44 250 90.50 450 87.87 

6 250 92.67 200 92.67 200 90.17 500 88.67 

7 200 93.33 200 93.11 200 90.67 500 89.47 

DWTLBPriu2 

1 35 77.33 35 74.67 35 73.17 35 69.87 

2 75 86.67 70 84.67 70 83.83 60 80.67 

3 100 91.33 115 90.22 115 88.00 110 85.47 

4 150 89.67 150 89.33 125 87.50 150 87.20 

5 175 88.67 175 88.67 175 87.33 100 87.33 

6 100 90.33 100 89.33 150 87.33 100 86.67 

7 150 89.33 100 88.89 100 88.33 100 87.47 

DWTLBP-HF 

1 50 72.33 50 70.44 50 69.17 50 65.73 

2 150 88.67 50 86.22 100 84.67 100 81.60 

3 100 93.00 100 91.56 100 90.33 150 88.67 

4 100 93.67 100 92.89 300 91.00 200 90.40 

5 50 93.33 200 93.33 350 92.33 200 91.47 

6 50 94.00 200 93.33 250 91.83 200 91.20 

7 150 94.00 200 93.57 350 92.50 100 92.40 

DWTCLBPu2 

1 250 89.00 200 85.56 450 83.50 200 79.87 

2 200 92.00 500 91.56 250 88.83 150 86.80 

3 250 95.33 200 94.89 300 92.00 200 90.80 

4 200 97.00 350 95.11 300 93.33 400 92.40 

5 300 96.33 300 95.33 400 94.00 450 93.20 

6 300 97.33 400 96.22 350 94.17 350 93.60 

7 350 97.33 350 96.67 400 94.33 350 93.60 
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Table 5.10 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using RBF kernel SVM classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTLBP 

1 150 87.33 250 83.78 200 78.67 250 76.00 

2 400 90.00 250 90.00 450 87.17 450 84.13 

3 300 93.33 300 92.89 350 90.67 150 87.47 

4 150 94.00 150 93.33 150 91.67 200 89.73 

5 200 94.00 300 93.56 400 91.83 450 90.00 

6 200 94.00 200 93.56 500 92.00 450 90.13 

7 200 94.00 200 93.56 500 92.00 400 92.00 

DWTLBPu2 

1 150 84.00 150 80.44 150 74.67 150 72.53 

2 150 87.67 250 86.22 100 85.33 100 81.07 

3 150 90.67 150 89.78 250 88.50 150 86.67 

4 350 92.00 100 91.56 200 91.17 350 89.60 

5 100 92.67 150 92.44 450 92.00 300 90.53 

6 100 92.67 100 93.11 200 92.00 300 90.80 

7 100 93.67 100 93.33 250 92.00 250 90.80 

DWTLBPri 

1 100 80.33 125 74.89 125 71.67 125 68.93 

2 200 88.33 100 84.89 150 82.83 100 79.60 

3 150 90.67 200 89.78 200 87.00 100 85.07 

4 100 92.00 250 92.00 250 89.50 100 88.53 

5 200 92.33 250 92.22 200 90.50 100 89.47 

6 100 92.67 300 92.22 200 91.00 100 89.47 

7 250 92.33 200 92.22 150 90.00 100 89.07 

DWTLBPriu2 

1 30 76.00 35 71.78 35 70.33 30 66.67 

2 50 88.33 50 84.89 50 83.33 60 78.13 

3 50 89.67 100 88.00 110 85.83 50 84.00 

4 100 90.00 100 90.00 100 87.67 100 86.67 

5 150 89.67 100 89.11 100 88.17 100 86.80 

6 150 90.33 150 89.78 150 87.86 150 87.20 

7 150 89.67 150 90.00 150 88.33 100 87.33 

DWTLBP-HF 

1 50 75.00 50 74.00 50 71.17 50 68.53 

2 100 89.00 100 86.67 100 85.33 100 82.27 

3 100 92.00 150 90.44 100 89.33 100 87.33 

4 150 93.33 250 92.44 150 91.17 150 89.60 

5 100 94.00 250 93.33 150 92.33 100 90.67 

6 150 93.00 150 93.78 100 92.50 150 91.73 

7 100 93.00 150 94.22 200 92.83 200 91.73 

DWTCLBPu2 

1 100 89.33 250 85.33 250 80.50 300 77.20 

2 150 90.67 150 89.33 100 88.17 150 85.73 

3 300 95.00 300 94.00 200 91.67 200 90.53 

4 200 95.33 150 94.67 250 93.67 350 91.87 

5 150 95.67 150 95.33 250 93.67 250 92.40 

6 200 95.67 200 95.33 250 93.50 400 92.27 

7 200 96.00 250 95.56 300 93.83 300 92.80 
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Table 5.11 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using RF classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTLBP 

1 100 78.67 150 73.56 250 71.33 100 70.80 

2 450 85.67 400 83.78 250 82.83 200 80.13 

3 200 88.67 100 88.89 100 86.50 400 84.67 

4 250 89.00 150 89.11 250 87.83 300 86.00 

5 550 90.00 150 89.11 200 88.67 350 86.67 

6 150 90.00 350 89.78 150 88.38 300 86.13 

7 350 89.67 300 89.11 250 88.16 250 86.53 

DWTLBPu2 

1 100 74.00 50 68.00 100 66.83 150 64.93 

2 250 83.67 200 80.89 200 78.50 200 76.53 

3 150 88.67 100 85.56 350 84.67 150 81.60 

4 150 89.33 50 87.56 100 86.33 150 84.00 

5 200 89.67 50 87.78 350 86.83 250 85.07 

6 200 90.33 150 88.22 350 87.17 50 85.47 

7 100 89.67 100 88.00 150 88.00 150 85.20 

DWTLBPri 

1 100 68.00 100 63.78 100 62.33 100 59.73 

2 100 83.67 150 78.89 100 78.67 200 74.53 

3 50 86.33 300 82.89 150 82.33 300 79.33 

4 50 88.67 100 86.22 50 85.11 100 82.13 

5 250 88.00 200 86.67 100 86.17 50 84.13 

6 200 89.67 300 87.33 100 86.00 150 83.33 

7 50 89.00 100 87.11 150 85.83 100 84.00 

DWTLBPriu2 

1 30 57.67 20 54.89 20 53.83 20 51.73 

2 50 81.67 75 76.00 50 73.17 50 68.17 

3 115 82.33 50 80.22 100 79.00 100 76.40 

4 50 84.33 100 83.56 50 83.30 50 79.56 

5 175 86.33 100 84.22 100 83.33 50 81.73 

6 50 86.33 100 85.11 100 84.50 50 82.40 

7 150 87.67 50 85.11 150 84.00 150 81.87 

DWTLBP-HF 

1 50 74.67 50 72.00 50 67.83 50 67.07 

2 150 83.67 250 79.78 100 79.00 50 77.33 

3 250 88.67 200 86.00 100 85.17 50 82.13 

4 200 90.00 100 89.11 100 87.17 100 85.07 

5 50 90.00 100 89.33 100 88.33 100 86.40 

6 50 91.00 50 89.56 150 89.17 150 86.27 

7 50 91.00 50 89.56 100 87.83 100 86.40 

DWTCLBPu2 

1 100 80.67 100 77.56 150 74.33 150 71.73 

2 150 86.33 100 83.33 100 83.67 100 81.20 

3 150 92.00 300 88.67 50 88.17 300 85.60 

4 200 92.67 150 90.44 150 89.17 300 87.60 

5 250 91.33 350 89.56 250 89.33 350 87.73 

6 200 91.67 150 90.89 100 90.33 450 88.27 

7 200 92.00 200 91.56 150 89.83 100 88.13 
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Fig. 5.18 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

 

 

Fig. 5.19 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 

The classification accuracies obtained by three different classifiers are compared for each 

of the four (80/20, 70/30, 60/40 and 50/50) training and testing ratios, and are illustrated in Fig. 

5.18, Fig. 5.19, Fig. 5.20 and Fig. 5.21, respectively. The analysis of these graphs advocates 

that among the MRLBP variants based texture feature extraction techniques, the DWTCLBPu2 

has obtained the best classification accuracy with linear SVM classifier; whereas comparatively 

lower classification accuracy has been reported by RF classifier.  
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Fig. 5.20 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 

 

Fig. 5.21 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

Thus, employing feature dimensionality reduction/feature selection technique has not only 

reduced the computational time but also shown considerable improvement in the classification 

accuracy for hardwood species classification. It is also observed that the performance of variants 

of LBP texture features have been improved by involving DWT for analysing images at 

multiresolution followed by extraction of texture features from these transformed images.  
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The above analysis suggests that MRLBP variants based texture feature extraction 

techniques do acquire significant texture features of the images and have performed well for 

both 10-fold cross validation and RDD. An important observation which is worth to be noted is 

that incorporating DWT with LBP variants for extracting texture features have improved the 

significant texture features of individual LBP variants which in turn have produced better 

classification accuracy for hardwood species.  

It is worth pointing out that amongst the variants of MRLBP techniques, the DWTCLBPu2 

has given the best classification accuracy for hardwood species classification and validate the 

superiority of CLBPu2 compared to other LBP variants as discussed in Chapter 2. The gray scale 

image of Aurantium species has been processed with LBP variants and is depicted in Fig. 5.22. 

The comparison of the processed images reveals that CLBPu2 (CLBPu2_S and CLBPu2_M) 

image has more information compared to other LBP variants as it combines the CLBP_S and 

CLBP_M information together which is evident from Fig. 5.22(g) and Fig. 5.22(h). 

 

Fig. 5.22 The Aurantium species image, (a) Grayscale image, (b) LBP image, (c) LBPu2 image, (d) LBP-
HF image, (e) LBPri image, (f) LBPriu2 image, (g) CLBPu2_S image, and (h) CLBPu2_M image 

Further, the performance of other MRLBP techniques are also comparable with 

DWTCLBPu2 technique. The performance of individual LBP variants have been significantly 

improved by MRLBP techniques for hardwood species classification. The FFVD obtained by 

most of the variants of MRLBP techniques beyond 3rd to 5th level of image decomposition could 

not improve the classification accuracy significantly rather produced the same or the lower 

classification accuracy. The obvious reason is that the subimages obtained beyond the 3rd level 

of image decomposition do not have qualitative visible information (though statistically significant 

features do exist). Thus, additional higher level of image decompositions have not been 

investigated. 

The possible reasons for MRLBP techniques exhibiting comparatively better performance 

are as follows: As it is known, that the images of hardwood species have numerous objects that 



 

159 

 

too of different sizes and shapes. Thus, to recognize the information contents of such images 

effectively, it must be analyzed at various resolutions. The large size objects are better to be 

examined at coarse view (lower) resolutions while smaller objects are the candidates to be 

examined at higher resolutions. Therefore, hardwood species image is decomposed by DWT to 

represent it into a set of frequency channels that carry the information of the grayscale image at 

various scales and orientations. The results of the DWT transformation contain more valuable 

information, and the DWT coefficients of each level are different for the same characterization 

of the signal. Further, to extract features from several scale images, LBP (most prominent and 

established texture descriptors) variants are preferred due to the simple computational 

requirement. Though, distinctive features are obtained from low resolution subimages but alone 

they are not capable enough to discriminate the hardwood species. Thus the features (obtained 

by LBP variants) of several resolution images are combined to get more significant feature 

vector data to discriminate among the hardwood species database. 

5.4 SUMMARY 

In this chapter, the MRLBP variants texture feature extraction techniques have been proposed 

to enhance the classification accuracy of microscopic images of hardwood species. In the 

proposed techniques, the DWT has been employed to decompose the image up to 7 different 

levels, followed by texture feature extraction with LBP variants. The resultant DWT subimages 

coefficients obtained using proposed methodology are distinct at each level and contain valuable 

information. Extracting texture features by variants of LBP from several level (L1 - L7) 

resolutions subimages have increased the number of significant features. Combining the texture 

features of several levels (L1 - L7) generate significant feature vector useful in discrimination 

among the hardwood species. Further, four classifiers namely, linear SVM, RBF kernel SVM, 

LDA and RF have been used for assessing the performance of the proposed texture features 

obtained at 7 different levels of image decomposition by DWT.  

Critical analysis of the results obtained with 10-fold cross validation approach revealed 

that among all the proposed techniques, DWTCLBPu2 generates the most discriminative texture 

features. The best classification accuracy of 97.40±1.06% is obtained for DWTCLBPu2 texture 

features at the 3rd level of image decomposition (1416 features) using linear SVM classifier. 

Further, reduction in feature dimensions is obtained using PCA and it is observed that the 

DWTCLBPu2 texture features have achieved superlative classification accuracy of 97.87±0.82% 

at the 3rd level of image decomposition (325 features) with LDA classifier. Furthermore, 

incorporating the mRMR feature selection based subset of full feature vector data, the 

DWTCLBPu2 texture features have again obtained the best classification accuracy of 

98.40±1.00% at the 4th level of image decomposition (550 features) with RBF kernel SVM 

classifier. The accuracy thus, achieved by MRLBP based texture features are better than the 
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state-of-the-art texture features for hardwood species. It is important to note that the higher level 

of image decomposition by DWT produce low resolution images that do not carry qualitative 

visual information. Therefore, most of the MRLBP techniques have shown decrement in 

classification accuracy beyond the 3rd level of image decomposition (using full feature vector 

data).  

In addition, the classification accuracy obtained using randomly divided database into 

fixed training and testing ratio of hardwood species by DWTCLBPu2 texture features have also 

established the superiority of MRLBP techniques. Amongst the proposed texture feature 

extraction techniques, the FFVD of DWTCLBPu2 technique achieved the best classification 

accuracy of 94.33%, 92.67%, 92.17% and 90.93% for 80/20, 70/30, 60/40 and 50/50 training 

and testing ratios of RDD, respectively, using linear SVM classifier. The PCA dimensionality 

reduced feature vector data of DWTCLBPu2 technique has obtained the best classification 

accuracy results of 95.67% (350 features), 94.22% (200 features), 92.67% (250 features) and 

92% (100 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, 

respectively, using LDA classifier. The subset of feature vector data of DWTCLBPu2 technique 

selected by mRMR feature selection technique yields the best classification accuracy of 97.33% 

(350 features), 96.67% (350 features), 94.33% (400 features) and 93.60% (350 features) for 

80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively, using linear SVM 

classifier. Hence, it can be concluded that the texture features extracted by the MRLBP variants 

based texture feature extraction techniques for hardwood species are of excellent quality, as is 

evident from the classification accuracy obtained by all the classifiers. 
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CHAPTER 6. DWT BASED HYBRID TEXTURE FEATURE 
EXTRACTION TECHNIQUES 

This chapter explores the effectiveness of discrete wavelet transform (DWT) based hybrid 

texture feature extraction techniques for classification of hardwood species. Here, the texture 

features of grayscale and RGB images are obtained and investigated for the classification of 

hardwood species. The chapter starts with concise introduction of the DWT technique, proposed 

DWT based hybrid texture features methodology and subsequently evaluation of effectiveness 

of these techniques for classification of hardwood species using different classifiers. 

6.1 INTRODUCTION 

The DWT has been used here due to its multiresolution capability for analyzing images at 

different frequencies for several levels of resolutions [121,133] and is detailed in Section 5.1. 

Further, the Daubechies wavelet family designed by Ingrid Daubechies has been chosen as a 

decomposition filter in 2D-DWT [194]. The db3 wavelet of Daubechies family has been widely 

used in image analysis applications like face recognition [214]. The reason for selecting db3 as 

decomposition filter are its properties such as compact support, orthogonal, symmetrical 

behaviour and use of overlapping windows to show changes between all the pixel intensities 

[89]. Further, the FOS is one of the simplest and computationally efficient technique for 

describing texture by using the intensity histogram of an image [103]. In FOS, the features that 

are taken into consideration are mean, SD, kurtosis and skewness. Thus, the effort has been 

made to combine the FOS and LBP variants features obtained from the DWT images. In the 

light of the above reasoning, the DWT based hybrid texture feature extraction technique capable 

of acquiring significant features of hardwood species have been proposed here. 

6.2 PROPOSED METHODOLOGY 

 Procedural Steps 

The hardwood species classification using DWT based hybrid texture feature extraction 

technique is illustrated in Fig. 6.1. The classification procedure is implemented in four major 

steps, namely, pre-processing, texture feature extraction, feature dimensionality reduction/ 

selection and classification. The individual blocks are concisely described as follows: 

1. The pre-processing step is employed to acquire grayscale images from color (RGB) images 

using Eq. (2.41). This transformation facilitates significant reduction in computational time 

during feature extraction process. 

2. Initially, the grayscale images are decomposed up to the seven (1 to 7) levels/scales by 

DWT using Daubechies (db3) wavelet as decomposition filter. At the 1st level of image 

decomposition by DWT, the grayscale image is subdivided into four identical, quarter-size 
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subimages, namely, approximation (LL1), horizontal (LH1), vertical (HL1) and diagonal 

(HH1) components. Thereafter, the LL1 component is decomposed into four equal quarter-

size subimages (LL2, LH2, HL2 and HH2) at the 2nd level of image decomposition. The 

process of partitioning the approximation component is repeated till the required level of 

image decomposition has been reached. As an illustration, the color image of Pachycarpa 

specie is shown in Fig. 6.2(a), whereas DWT based 5th level image decomposition of the 

grayscale image of Pachycarpa specie is shown in Fig. 6.2(b). It is evident that each scale 

subimages have distinctive information.  

 

Fig. 6.1 Block diagram of hardwood species classification using DWT based hybrid texture feature 
extraction techniques. 

 

Fig. 6.2 (a) Color image of Pachycarpa specie (b) the Pachycarpa specie grayscale image obtained at 
the 5th level of image decomposition using DWT. 

Subsequently, five texture descriptors are employed to extract distinct features from 

each of the subimages at different (1 to 7) levels of image decomposition. The texture 
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feature descriptors used in this work are, FOS and four variants of LBP (LBPu2, LBPri, LBPriu2 

and LBP-HF). The FOS features are chosen as they reveal the global features of image. 

The LBP variants are selected to depict the local texture descriptors of the image. Further, 

at each level of image decomposition the FOS features are concatenated with LBP variants 

features to construct feature vector data. The expression for obtaining DWTFOSLBP 

feature vector data for each image at the thL level of image decomposition is given by Eq. 

(6.1): 
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  (6.1) 

where, L stands for number of image decomposition levels and , LBPP R  represents 

one of the LBP variants (i.e., LBPu2, LBPri, LBPriu2 and LBP-HF) features. The, m ,  , 3  

and 4  represents mean, SD, kurtosis and skewness features of FOS, respectively. Thus, 

on the basis of integration of DWT with FOS and LBP variants, following four hybrid texture 

feature extraction techniques have been proposed:  

DWTFOSLBPu2 Discrete wavelet transform based first-order statistics and uniform local 

binary pattern 

DWTFOSLBPri Discrete wavelet transform based first-order statistics and rotation invariant 

local binary pattern 

DWTFOSLBPriu2 Discrete wavelet transform based first-order statistics and rotation invariant 

uniform  local binary pattern 

DWTFOSLBP-HF Discrete wavelet transform based first-order statistics and local binary 

pattern histogram Fourier features 

3. The feature vector dataset produced by these techniques have different range of values, 

which is normalized in the range 0 to 1 using Eq. (2.42), thus rendering it in the form useful 

as an input to the classifier.  

4. The PCA and mRMR techniques are employed in the third stage to reduce the dimensions 

of feature vector data. 

5. The fourth stage employs, LDA, RF, linear SVM and RBF kernel SVM classifiers for the 

classification of hardwood species into 75 categories. The effectiveness of the DWT based 

hybrid texture feature extraction techniques has been observed on the basis of the 



 

164 

 

classification accuracy obtained through the classifiers. Consequently, the best combination 

of DWT based hybrid texture features and the classifier is identified on the basis of the best 

classification accuracy.  

 Approaches used for Performance Evaluation of Feature Extraction Techniques  

The performance of the DWT based hybrid texture feature extraction techniques for 

classification of hardwood species have been investigated employing two strategies: (1) 10-fold 

cross validation and (2) randomly dividing the database (Section 2.5.2). 

6.3 EXPERIMENTAL RESULTS AND DISCUSSION 

The experimental work presented in this section investigates the efficiency of the DWT based 

hybrid texture feature extraction techniques for the classification of microscopic images of 

hardwood species database into 75 classes with the help of four different classifiers.  

 Parameter Selection 

The selection of parameters for efficient implementation of various feature extraction techniques 

and classifiers have been discussed in detail in Section 2.6.1 and the same are used here also. 

The texture features of grayscale and RGB images are extracted with the help of DWT based 

hybrid texture feature extraction techniques. 

 Experimental Results 

The classification accuracy obtained by the DWT based hybrid texture feature extraction 

techniques (for both RGB and grayscale image) for microscopic images of hardwood species 

have been computed using four classifiers. Similar to presentation of results in previous 

chapters, here also results have been presented for different categories, and different sets of 

feature vector data (Section 2.6.2). 

 Performance Evaluation of DWT based Hybrid Texture Feature Extraction 

Techniques for Grayscale Images using 10-fold Cross Validation Approach  

6.3.3.1 Full feature vector data (FFVD)  

The percentage classification accuracy attained by the DWT based hybrid texture feature 

extraction techniques for grayscale image of hardwood species database is presented in Table 

6.1. The classification accuracy obtained with the proposed texture features using three different 

classifiers is discussed below: 

Linear SVM classifier: The feature vector data of DWTFOSLBPu2 texture feature extraction 

technique has achieved the best classification accuracy of 97.67±0.79% with feature vector 

dimension of 1008 (obtained at the 4th level of image decomposition). Further, the same 

classification accuracy (97.67±0.79%) has been achieved by FFVD produced by 
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DWTFOSLBPriu2 texture feature extraction technique, but using only 280-dimensional feature 

vector data (obtained at the 5th level of image decomposition). The least classification accuracy 

of 96.60±1.46% (1008 features) has been achieved by using FFVD of DWTFOSLBP-HF 

(obtained at the 5th level of image decomposition), among the proposed feature extraction 

techniques. 

RBF kernel SVM classifier: By means of this classifier, the best classification accuracy of 

97.67±1.14% has been attained using FFVD (1260 features) produced by DWTFOSLBPu2 

texture feature extraction technique, which is the best among the proposed feature extraction 

techniques. The FFVD of DWTFOSLBPriu2 texture feature extraction technique has achieved 

the second best classification accuracy of 97.53±0.83% using 280-dimensional feature vector 

data. On the other hand, the least classification accuracy of 96.47±1.69% (840 features) has 

been achieved by FFVD of DWTFOSLBP-HF texture feature extraction technique. All these 

classification accuracies are achieved for texture feature vector data produced at the 5th level of 

image decomposition. 

Table 6.1 Classification accuracy achieved using full feature vector data. 

Technique IDL 
Feature extraction 
time in seconds 

% CA±SD achieved by classifiers 

NoF Linear SVM  RBF kernel SVM RF 

DWTFOSLBPu2 

1 0.3468 252 90.67±1.81 
 

90.33±2.07 
 

82.60±3.05 
 2 0.4139 504 95.73±1.38 

 
94.33±1.55 88.93±2.54 

3 0.4428 756 97.13±1.51 
 

96.33±1.64 93.20±1.25 

4 0.4602 1008 97.67±0.79 
 

97.33±1.18 94.13±1.17 

5 0.4710 1260 97.33±1.09 
 

97.67±1.14 94.47±1.09 

6 0.4790 1512 97.07±1.00 
 

96.93±1.30 95.00±1.23 

7 0.4969 1764 96.73±1.24 
 

96.67±1.44 94.13±1.08 

DWTFOSLBPri 

1 0.3604 160 84.87±2.65 
 

87.07±2.40 
 

81.53±2.20 
 2 0.4438 320 92.73±2.05 

 
92.87±2.53 88.13±1.85 

3 0.4858 480 95.73±1.23 
 

95.73±1.78 92.27±1.18 

4 0.5065 640 96.73±1.24 
 

96.53±1.36 93.73±1.38 

5 0.5114 800 96.47±1.00 
 

96.33±1.48 94.13±1.47 

6 0.5209 960 96.07±1.49 
 

96.13±1.96 94.00±1.41 

7 0.5407 1120 95.40±1.46 
 

95.53±2.03 94.33±1.34 

DWTFOSLBPriu2 

1 0.3469 56 86.00±3.10 
 

87.20±1.88 
 

79.73±3.59 
 2 0.4165 112 92.87±1.94 

 
92.60±1.52 86.07±1.97 

3 0.4453 168 96.60±0.66 
 

96.07±1.02 91.00±1.81 

4 0.4540 224 97.53±0.71 
 

97.13±1.69 93.73±1.05 

5 0.4609 280 97.67±0.79 
 

97.53±0.83 94.67±1.47 

6 0.4706 336 97.40±1.11 
 

97.13±1.37 94.80±1.43 

7 0.4780 392 96.07±1.59 
 

96.73±1.46 94.67±1.47 

DWTFOSLBP-HF 

1 0.3652 168 84.53±2.41 
 

85.47±3.94 
 

82.87±3.14 
 2 0.4447 336 91.80±1.48 

 
92.33±1.64 89.20±1.60 

3 0.4851 504 95.87±1.36 
 

95.53±1.35 93.33±1.30 

4 0.4972 672 96.27±1.10 
 

96.20±1.04 94.07±1.55 

5 0.5131 840 96.47±1.60 
 

96.47±1.69 95.13±1.26 

6 0.5417 1008 96.60±1.46 
 

96.27±1.51 95.27±1.87 

7 0.5483 1176 95.40±1.73 
 

95.87±1.40 95.07±1.55 

RF classifier: This classifier has given the best classification accuracy of 95.27±1.87% for 
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FFVD (1008 features) produced by DWTFOSLBP-HF texture feature extraction technique. 

Further, the FFVD produced by of DWTFOSLBPu2 technique has obtained the 2nd best 

classification accuracy of 95.00±1.23% for 1512-dimensional feature vector data. In addition, 

among the proposed feature extraction techniques, the least classification accuracy of 

94.33±1.34% (1120 features) has been attained by using FFVD of DWTFOSLBPri feature 

extraction technique. These classification accuracies are obtained for FFVD produced at the 6th 

level (DWTFOSLBP-HF and DWTFOSLBPu2 techniques) and 7th level (DWTFOSLBPri 

techniques) of image decomposition. 

Here, it is observed that the best classification accuracy has been achieved by most of the 

DWT based hybrid texture features obtained between the 4th to 6th levels of image 

decomposition with all the three classifiers. In addition, the linear and RBF kernel SVM 

classifiers, both have presented excellent classification accuracy; whereas, RF classifier yields 

comparatively lower classification accuracy. The classification accuracy obtained by three 

classifiers have been compared and the same is illustrated in Fig. 6.3. The graphical illustration 

also reveals that DWTFOSLBPu2 texture feature extraction technique has given the best 

classification accuracy. 

 

Fig. 6.3 Classification accuracy achieved using FFVD. 

Further, the time required by the DWT based hybrid texture feature extraction techniques 

for FFVD generation for single image is also listed in Table 6.1. The DWTFOSLBPu2 feature 

extraction technique has achieved best classification accuracy of 97.67±0.79% at the 4th level 

of image decomposition, which requires 0.4602 second for extracting texture features of an 

individual image as shown in Fig. 6.4. This feature extraction time is relatively lesser than the 

BWTCLBPri feature extraction technique, which requires 0.6929 second for extracting the 
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texture features of given individual images. The error bar plot for FFVD is shown in Fig. 6.5. The 

assessment of Fig. 6.5 reveals that the FFVD of DWTFOSLBPu2 feature extraction technique at 

the 4th level of image decomposition yields the best classification accuracy of 97.67±0.79% with 

lower SD value. The DWTFOSLBPu2 feature extraction technique has also achieved the same 

classification accuracy (97.67±1.14%) but with slightly higher SD value with RBF kernel SVM 

classifier. 

 

Fig. 6.4 Feature extraction time for single grayscale image. 

 

Fig. 6.5 Error bar plot with SD using FFVD. 

6.3.3.2 The PCA dimensionality reduced feature vector data 

The performance evaluation of texture feature extraction techniques with PCA reduced feature 

vector data with different classifiers are listed in Table 6.2 and has been concisely discussed 

henceforth: 
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Linear SVM classifier: Here, the PCA reduced feature vector data of DWTFOSLBPriu2 feature 

extraction technique yields the best classification accuracy of 97.73±0.84%, which is slightly 

better than the FFVD (97.67±0.79%) of DWTFOSLBPriu2 technique. The classification accuracy 

has been achieved using only 200-dimensional feature vector data generated at the 5th level of 

image decomposition compared to 200-dimensional FFVD produced at the 5th level of image 

decomposition. Further, the PCA reduced feature vector data of DWTFOSLBPu2 feature 

extraction technique has achieved the same classification accuracy (97.73±0.95%, 300 

features) but with slightly higher SD value. This classification accuracy is again slightly better 

than the accuracy achieved by the FFVD of DWTFOSLBPu2 (97.67±0.79%, 1008 features). 

Table 6.2 Classification accuracy achieved using PCA based reduced feature vector data. 

Technique IDL % CA±SD achieved by classifiers 
NoF Linear SVM NoF RBF kernel SVM NoF RF NoF LDA 

DWTFOSLBPu2 

1 200 90.33±2.52 225 90.87±2.18 50 86.67±2.39 225 91.60±1.55 
2 400 95.13±1.83 150 94.87±1.30 50 90.53±2.13 300 95.60±1.73 
3 300 97.07±1.14 100 96.53±1.50 50 93.47±2.08 300 96.93±1.10 
4 400 97.60±0.72 250 97.60±1.41 50 94.27±1.18 250 97.07±1.14 
5 300 97.73±0.95 100 97.93±1.39 50 95.07±1.55 350 97.27±0.80 
6 550 97.00±1.01 100 97.60±1.23 50 95.00±1.52 300 96.67±0.83 
7 600 96.87±1.18 50 97.40±1.42 50 94.00±0.94 350 96.60±1.35 

DWTFOSLBPri 

1 150 84.67±2.11 150 87.00±2.46 50 79.07±2.52 150 90.27±1.86 
2 300 92.33±1.67 300 92.93±2.44 50 87.07±1.76 312 95.80±1.44 
3 250 95.53±1.30 350 95.87±1.77 50 92.00±1.33 450 97.13±1.30 
4 350 96.27±1.14 400 96.60±1.06 50 92.93±1.89 600 97.00±1.05 
5 400 96.47±1.26 50 96.87±1.66 50 92.93±1.78 600 96.40±0.78 
6 550 96.07±1.46 50 97.27±1.90 50 92.93±1.67 500 95.40±1.49 
7 400 94.67±1.09 200 96.13±1.57 50 91.67±1.23 100 94.80±1.96 

DWTFOSLBPriu2 

1 50 84.80±2.55 40 87.27±2.34 50 84.27±2.31 52 87.73±1.22 
2 100 92.60±2.02 100 92.80±1.69 100 90.33±2.42 104 94.80±1.60 
3 150 96.53±1.12 100 96.07±0.97 100 92.73±2.05 150 97.33±1.72 
4 150 97.67±0.90 200 97.27±1.59 100 93.40±1.71 200 98.00±1.09 
5 200 97.73±0.84 200 97.67±0.90 50 92.27±1.45 250 98.27±1.10 
6 200 97.27±1.15 200 97.13±1.51 50 90.87±2.33 300 98.20±1.14 
7 350 95.93±1.46 200 96.73±1.46 50 89.33±1.30 350 98.27±1.14 

DWTFOSLBP-HF 

1 150 83.93±2.70 150 85.47±4.39 125 76.07±4.01 164 91.67±1.01 
2 250 91.73±1.14 300 92.40±1.70 150 83.20±2.10 326 96.40±1.26 
3 400 96.00±1.78 350 95.60±1.41 50 89.47±1.74 492 97.87±1.43 
4 450 96.33±0.96 350 96.27±1.10 50 90.87±2.22 550 97.47±1.25 
5 600 96.33±1.31 450 96.60±1.56 50 92.27±1.38 500 96.53±1.61 
6 600 96.47±1.30 300 96.40±1.58 50 91.67±1.81 600 96.40±1.92 
7 500 95.40±1.68 350 95.87±1.60 50 91.27±2.25 600 95.73±1.55 

RBF kernel SVM classifier: Amongst the proposed feature extraction techniques, the PCA 

reduced feature vector data of DWTFOSLBPu2 technique, has attained slightly better 

classification accuracy of 97.93±1.39% (100 features) compared to 97.67±1.14% (1260 

features) presented by FFVD of DWTFOSLBPu2 technique. In addition, the aforesaid feature 

vector data are obtained at the 5th level of image decomposition. Further, the PCA reduced 

feature vector data of DWTFOSLBPriu2 techniques (at the 5th level of image decomposition) has 

achieved the 2nd best classification accuracy (97.67±0.90%), which is slightly better than 

97.53±0.83% (280 features) presented by FFVD of DWTFOSLBPriu2 technique. 
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Fig. 6.6 Classification accuracy achieved using PCA reduced feature vector data. 

 

Fig. 6.7 Error bar plot with SD using PCA reduced feature vector data. 

RF classifier: The PCA reduced feature vector data of DWTFOSLBPu2 texture feature 

extraction technique has achieved the best classification accuracy of 95.07±1.55% using 300-

dimensional feature vector data only, which is slightly better than the classification accuracy 

(95.00±1.23%) yielded by the FFVD of DWTFOSLBPu2 technique(1512 features). 

LDA classifier: This classifier has given the best classification accuracy of 98.27±1.10% for 

PCA reduced feature vector data of DWTFOSLBPriu2 texture feature extraction technique with 

250-dimemnsional feature vector data. The aforementioned classification accuracy has been 

achieved for the feature vector data produced at the 5th level of image decomposition. Further, 

the PCA reduced feature vector data of DWTFOSLBP-HF texture feature extraction technique 
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has obtained the 2nd best classification accuracy of 97.87±1.43% (492 features, produced at the 

3rd level of image decomposition). 

The classification accuracy achieved with PCA reduced dimensional feature vector data 

are at par/superior than the FFVD, but has been obtained using lower-dimensional features. 

Among the four classifiers, the LDA classifier has obtained maximum classification accuracy 

(98.27±1.10%) for the feature vector data produced at the 5th level of image decomposition by 

DWTFOSLBPriu2 texture feature extraction technique. The graph depicting the comparison of the 

classification accuracy obtained by four different classifiers is shown in Fig. 6.6. In addition, the 

error bar plot representation of the same is given in Fig. 6.7. The graphical illustration also 

supports the claim that DWTFOSLBPriu2 texture features classified with LDA classifier achieves 

the best/superlative classification accuracy amongst the proposed techniques with different 

classifiers.  

6.3.3.3 The mRMR feature selection based reduced feature vector data 

The subset of feature vector data obtained by mRMR feature selection method has been 

investigated here to see their effect on the classification accuracy produced for hardwood 

species classification. The classification accuracy results achieved by three different classifiers 

are listed in Table 6.3. These results are plotted in Fig. 6.8 and the error bar plot for the same 

has been illustrated in Fig. 6.9. The performance of texture feature extraction techniques with 

different classifiers are as follows: 

Linear SVM classifier: Amongst the proposed feature extraction techniques, the highest 

classification accuracy of 99.00±0.79% has been achieved by the mRMR processed subset 

(275 features) of FFVD produced by DWTFOSLBP-HF technique at the 5th level of image 

decomposition. This classification accuracy is comparatively better than 96.60±1.46% accuracy 

obtained by FFVD of DWTFOSLBP-HF technique (1008 features) at the 6th level of image 

decomposition. The 2nd best classification accuracy of 98.60±0.66% has been obtained by the 

mRMR processed subset (300 features) of FFVD of DWTFOSLBPu2 technique (obtained at the 

7th level of image decomposition). 

RBF kernel SVM classifier: The mRMR selected feature subset (275 features) of 

DWTFOSLBP-HF texture feature extraction technique (FFVD produced at the 7th level of image 

decomposition) has achieved the best classification accuracy of 98.80±0.69%, which is relatively 

better than 96.47±1.69% classification accuracy obtained by full feature vector data of 

DWTFOSLBP-HF technique (840 features) at the 5th level of image decomposition. The 

DWTFOSLBPu2 texture feature extraction techniques feature vector data processed with mRMR 

feature selection method has also produced 2nd best classification accuracy of 98.33±0.79% 

(300 features), better than 97.67±1.14% classification accuracy obtained with their full feature 

vector data (1260 features). 
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Table 6.3 Classification accuracy achieved using mRMR feature selection based reduced feature vector 
data. 

Technique IDL  % CA±SD achieved by classifiers 
NoF Linear SVM NoF RBF kernel SVM NoF RF 

DWTFOSLBPu2 

1 150 91.33±2.08 
 

150 91.87±2.01 
 

100 84.60±2.85 
 2 200 96.20±1.26 200 95.80±1.29 300 90.60±2.38 

3 300 97.73±0.72 300 97.53±1.51 300 93.67±1.45 
4 300 98.13±0.88 300 98.33±0.79 175 95.00±1.76 
5 275 98.40±0.84 300 98.27±0.47 150 95.47±1.21 
6 300 98.33±0.79 250 98.33±0.96 175 95.93±0.91 
7 300 98.60±0.66 250 98.33±0.79 175 95.80±1.04 

DWTFOSLBPri 

1 155 85.00±1.92 
 

155 87.13±2.37 
 

75 83.27±3.05 
 2 275 92.80±1.45 75 93.80±1.96 200 89.53±2.01 

3 150 96.87±1.37 225 97.00±0.72 175 93.53±1.63 
4 100 97.47±0.88 175 97.93±0.86 150 94.87±1.48 
5 200 98.20±1.09 175 98.13±0.76 125 95.93±1.57 
6 300 98.27±0.90 200 98.20±0.63 150 95.80±1.99 
7 150 98.33±0.79 200 98.27±0.78 150 95.93±1.52 

DWTFOSLBPriu2 

1 50 86.00±3.68 
 

55 86.93±2.29 
 

40 79.20±3.15 
 2 110 93.13±1.63 75 93.13±1.75 100 86.93±1.89 

3 160 96.73±0.86 100 96.67±0.89 165 91.40±1.31 
4 200 97.80±0.71 175 97.73±1.10 75 93.80±1.69 
5 150 98.13±0.76 150 97.80±0.55 175 94.73±1.11 
6 175 98.13±0.82 175 98.00±0.83 300 94.93±1.51 
7 175 98.13±0.53 175 98.13±0.69 175 94.87±1.63 

DWTFOSLBP-HF 

1 50 86.53±2.56 
 

100 86.07±3.83 
 

50 84.93±1.67 
 2 100 94.06±1.61 150 94.53±1.60 125 90.33±1.73 

3 175 97.67±1.38 150 97.53±0.63 175 94.20±1.81 
4 275 98.53±0.47 250 98.47±0.89 175 95.00±1.01 
5 275 99.00±0.79 225 98.60±0.49 175 95.93±1.52 
6 275 98.80±0.53 275 98.73±0.58 175 96.20±1.51 
7 200 98.73±0.38 275 98.80±0.69 175 95.93±1.55 

 

 

Fig. 6.8 Classification accuracy achieved using mRMR feature selection based reduced feature vector 
data. 
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Fig. 6.9 Error bar plot with SD using mRMR feature selection based reduced feature vector data. 

RF classifier: The RF classifier has achieved the best classification accuracy of 96.20±1.51% 

for mRMR selected feature subset (175 features) of DWTFOSLBP-HF texture feature extraction 

technique (at the 6th level of image decomposition). This accuracy is reasonably better than the 

highest classification accuracy (95.27±1.87%) obtained by the DWTFOSLBP-HF texture feature 

extraction technique for full feature vector dataset (1008 features) at the 6th level of image 

decomposition. 

The analysis of Table 6.3 suggests that among the proposed texture feature extraction 

techniques, the mRMR selected feature subset of DWTFOSLBP-HF technique has achieved 

the best classification accuracy of 99.00±0.79% with linear SVM classifier.  

Further, it is observed from Table 6.1 that as the level of image decomposition increases, 

the length of the feature vector data also increases. The classification accuracy results for FFVD 

of DWT based hybrid texture feature extraction techniques with different classifiers have gone 

up in the range of 4th to 6th level of image decomposition and after that either it remains same or 

decreases a little bit. It is noticeable that the increase in the classification accuracy has been 

attained at the cost of additional computation time. Therefore, the DWT based hybrid texture 

descriptors beyond 7th level of image decomposition has not been investigated.  

It is worth noting that employing PCA (dimensionality reduction) and mRMR (feature 

selection) technique has not only reduced the computational time during classification, but at 

the same time has shown considerable improvement in the classification accuracy of hardwood 

species. It is also observed from Table 6.1, Table 6.2 and Table 6.3, that the DWT based hybrid 

texture feature extraction techniques for grayscale images have achieved better classification 
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accuracy compared to the state-of-the-art LBP variants feature extraction techniques as given 

in Chapter 2.  

 Performance Evaluation of DWT based Hybrid Texture Feature Extraction 

Techniques for Grayscale Images using Randomly Divided Database (RDD)  

6.3.4.1 Full feature vector data (FFVD) 

The classification accuracy achieved by DWT based hybrid texture feature extraction techniques 

for different ratios of training and testing data is listed in Table 6.4.  

Table 6.4 Classification accuracy achieved by full feature vector data for different proportions of training 
and testing data of RDD using three classifiers. 

Technique IDL 
% CA achieved by classifiers for different proportions of training and testing 

data 
Linear SVM RBF kernel SVM RF 

80/20  70/30 60/40 50/50 80/20  70/30 60/40 50/50 80/20  70/30 60/40 50/50 

DWTFOSLBPu2 

1 86.00 83.33 80.00 78.67 84.33 80.67 75.83 73.60 75.33 71.56 69.50 68.13 
2 90.00 88.67 86.50 83.33 88.33 85.56 83.83 81.60 86.00 80.89 80.17 77.73 
3 92.67 92.00 90.00 88.67 90.00 88.67 87.50 85.20 90.33 85.78 86.50 83.60 
4 93.00 93.33 92.00 90.40 92.00 91.33 89.17 88.27 89.33 87.33 88.50 85.73 
5 93.33 93.33 92.33 90.80 91.33 91.33 90.67 88.93 91.00 88.22 90.53 87.47 
6 93.33 92.44 90.67 90.27 92.33 90.89 90.33 88.53 91.67 88.44 89.83 87.33 
7 93.00 90.67 90.67 89.87 91.00 90.44 89.83 88.67 90.33 89.11 89.50 87.20 

DWTFOSLBPri 

1 82.00 74.00 72.67 71.20 82.67 77.33 75.17 72.67 77.00 70.44 68.50 65.87 
2 87.67 87.33 84.33 81.60 86.67 85.11 83.00 80.93 86.00 83.56 80.67 77.20 
3 93.33 92.22 90.17 86.93 89.67 87.78 87.33 84.67 90.00 88.00 87.00 82.53 
4 95.00 92.89 91.50 87.73 93.33 91.56 89.50 86.93 92.00 89.11 88.17 84.67 
5 94.67 93.11 91.67 88.53 93.00 91.78 89.50 87.73 91.00 90.89 89.50 86.00 
6 95.33 93.56 91.33 88.40 93.33 92.00 89.67 87.87 91.67 89.56 88.33 88.00 
7 93.67 92.44 89.50 87.47 92.33 90.67 88.50 87.07 92.00 90.44 89.50 87.60 

DWTFOSLBPriu2 

1 82.67 77.33 72.67 72.93 80.33 76.89 74.17 73.60 76.33 68.44 64.17 65.60 
2 89.00 89.11 86.33 83.47 89.33 86.22 84.17 82.00 84.00 82.44 79.50 77.73 
3 92.67 92.44 90.50 87.87 90.67 89.56 86.50 86.00 87.00 85.78 84.83 81.73 
4 95.33 94.22 91.50 90.67 93.67 92.89 90.33 89.33 90.00 88.67 88.50 85.60 
5 94.33 94.00 92.83 91.73 93.33 92.89 90.50 90.27 90.67 90.00 89.50 87.07 
6 94.33 94.22 91.50 90.53 94.33 94.00 91.00 90.00 91.67 89.78 88.67 87.73 
7 94.00 92.00 89.33 88.67 93.67 93.78 91.00 88.80 91.33 90.00 89.17 88.00 

DWTFOSLBP-HF 

1 79.33 75.33 71.00 69.33 75.33 73.11 69.83 67.33 80.67 73.78 70.17 68.13 
2 86.67 85.33 82.33 79.47 87.67 86.22 83.67 81.20 86.00 83.33 81.50 79.87 
3 91.33 90.22 88.50 85.73 91.00 90.22 87.00 85.73 89.33 86.44 86.17 83.47 
4 93.67 93.33 90.50 88.80 93.33 91.56 89.67 87.60 89.67 89.56 89.00 86.93 
5 93.67 93.33 91.50 90.27 91.67 91.56 90.67 89.60 91.67 90.44 90.50 87.47 
6 93.33 92.44 90.83 89.60 92.33 92.00 90.17 89.07 92.33 91.56 89.83 89.33 
7 92.67 91.56 89.17 88.93 92.00 90.89 89.50 88.53 92.67 91.56 89.67 88.40 

Linear SVM classifier: Amongst the proposed texture feature extraction techniques, 

DWTFOSLBPriu2 has produced significant feature vector data that yields best classification 

accuracy of 95.33%, 94.22%, 92.83% and 91.73% for 80/20, 70/30, 60/40 and 50/50 training 

and testing ratios of RDD, respectively. These classification accuracies have been achieved for 

FFVD of the DWTFOSLBPriu2 feature extraction technique at the 4th level (80/20 and 70/30) and 

5th level (60/40 and 50/50) of image decomposition as listed in Table 6.4. 

RBF kernel SVM classifier: Using RBF kernel SVM classifier, the best classification accuracy 

of 94.33%, 94%, 91% and 90.27% has been achieved for 80/20, 70/30, 60/40 and 50/50 training 
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and testing ratios of RDD, respectively. The classification accuracies have been achieved for 

FFVD of DWTFOSLBPriu2 technique obtained at the 6th level (80/20, 70/30 and 60/40) and 5th 

level (50/50) of image decomposition as listed in Table 6.4. 

RF classifier: As listed in Table 6.4 the FFVD produced by DWTFOSLBP-HF feature extraction 

technique has given the best classification accuracy for different proportions of training and 

testing data of RDD, amongst the proposed techniques using RF classifier. The DWTFOSLBP-

HF features have achieved classification accuracy of 92.67%, 91.56%, 90.50% and 89.33% for 

80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively, at the 5th (60/40), 

6th (50/50) and 7th (80/20 and 70/30) levels of image decomposition. 

 

 

Fig. 6.10 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

The classification accuracies obtained by the three different classifiers are compared for 

each of the four (80/20, 70/30, 60/40 and 50/50) training and testing ratios, and are graphically 

illustrated in Fig. 6.10, Fig. 6.11, Fig. 6.12 and Fig. 6.13, respectively. It is apparent from these 

figures that texture feature vector data produced by most of the DWT based hybrid texture 

feature extraction techniques yields best classification accuracy with linear SVM classifier. 

Whereas, the least classification accuracy has been achieved with RF classifier. Further, the 

classification accuracy obtained by other DWT based hybrid texture feature extraction 

techniques have also achieved comparably better classification accuracy compared to the 

classification accuracy achieved by LBP variants (state-of-the-art) texture feature extraction 

techniques. 
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Fig. 6.11 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 

 

 

 

Fig. 6.12 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 
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Fig. 6.13 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

6.3.4.2 The PCA dimensionality reduced feature vector data 

The classification accuracy results obtained by the PCA reduced feature vector data using four 

different classifiers are concisely discussed below:  

Linear SVM classifier: The PCA dimensionality reduced feature vector data of the 

DWTFOSLBPriu2 technique has yielded the best classification accuracy of 95% (200 features), 

94.22% (200 features), 92.83% (200 features) and 90.67% (200 features) for 80/20, 70/30, 

60/40 and 50/50 training and testing ratios of RDD, respectively. The aforesaid classification 

accuracies are obtained for feature vector data produced at the 5th level of image decomposition. 

This classification accuracy is comparable to the accuracy achieved with FFVD of 

DWTFOSLBPriu2 technique with high-dimensional feature vector data (Table 6.5).  

RBF kernel SVM classifier: A classification accuracy of 94.67% (250 features), 94.22% (250 

features), 91.17% (250 features) and 90.27% (150 features) has been obtained for 80/20, 70/30, 

60/40 and 50/50 training and testing ratios of RDD, respectively. These results have been 

achieved by PCA dimensionality reduced feature vector data of the DWTFOSLBPriu2 technique 

at the 5th level (50/50) and 6th level (80/20, 70/30 & 60/40) of image decomposition. The 

classification accuracies are slightly better than the accuracy presented by the FFVD of the 

DWTFOSLBPriu2 technique (Table 6.6).  

RF classifier: In this case, the classification accuracy of 93% (50 features), 89.11% (100 

features), 88.50% (100 features) and 86.93% (50 features) for 80/20, 70/30, 60/40 and 50/50 

training and testing ratios of RDD, respectively, has been obtained by DWTFOSLBPri technique 

with PCA dimensionality reduced feature vector data. The said classification accuracy results 
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are obtained by the feature vector data produced at the 4th level (70/30) and 5th level (80/20, 

60/40 & 50/50) of image decomposition (Table 6.7). 

Table 6.5 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using linear SVM classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 100 85.67 100 82.89 150 79.67 225 78.53 
2 250 90.33 200 87.78 250 86.67 350 84.00 
3 350 92.33 200 91.78 300 90.17 300 88.93 
4 50 93.67 250 92.67 250 92.17 300 90.27 
5 350 94.00 350 93.33 350 92.33 350 90.67 
6 100 92.33 100 92.22 100 90.83 500 89.87 
7 50 93.00 100 92.22 200 91.17 100 90.27 

DWTFOSLBPri 

1 150 80.33 150 75.11 150 72.50 150 72.40 
2 250 88.00 300 88.00 300 85.50 300 81.33 
3 350 93.33 350 91.78 300 90.17 300 87.07 
4 450 94.33 450 92.67 550 91.83 450 88.67 
5 400 94.67 400 92.67 550 91.50 350 88.53 
6 450 94.00 400 93.11 400 90.33 550 88.53 
7 200 93.67 150 92.22 200 89.33 400 88.40 

DWTFOSLBPriu2 

1 50 82.00 50 76.22 50 73.67 40 72.80 
2 50 88.67 100 89.33 75 85.83 100 83.33 
3 100 93.00 100 92.22 150 90.67 100 88.40 
4 200 94.67 200 93.33 150 91.50 200 90.53 
5 200 95.00 200 94.22 200 92.83 200 90.67 
6 200 94.67 300 93.33 250 90.50 300 90.40 
7 150 94.00 250 91.33 350 90.17 300 88.53 

DWTFOSLBP-HF 

1 150 78.67 150 74.22 125 71.00 125 69.07 
2 200 84.33 200 84.44 300 81.17 250 78.93 
3 350 91.00 450 89.78 300 89.17 350 85.47 
4 350 93.33 400 93.11 400 90.50 500 88.67 
5 350 93.67 350 93.11 400 91.00 450 90.53 
6 200 93.33 250 92.67 550 90.50 450 88.93 
7 550 93.00 500 91.33 550 89.33 350 88.67 

 

 

Fig. 6.14 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 
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Table 6.6 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using RBF kernel SVM classifier. 

Technique IDL NoF 80/20 NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 50 85.00 100 81.56 200 76.50 150 73.87 
2 150 89.33 150 87.33 200 84.50 250 82.00 
3 100 91.33 150 89.78 150 88.17 200 85.60 
4 100 92.67 50 92.44 50 90.17 250 89.20 
5 200 93.00 50 92.89 50 91.17 200 89.87 
6 350 93.00 50 92.89 150 91.67 100 89.87 
7 50 93.67 100 93.11 100 92.50 50 90.27 

DWTFOSLBPri 

1 125 83.00 125 76.89 125 75.33 100 72.53 
2 200 87.00 250 85.11 100 83.33 150 81.33 
3 50 90.00 50 89.11 50 87.67 50 85.33 
4 100 94.33 100 92.00 50 90.17 100 88.67 
5 100 94.00 150 93.11 300 90.50 150 89.73 
6 200 94.00 50 93.11 150 90.33 200 88.80 
7 300 93.67 50 92.22 100 89.33 50 87.60 

DWTFOSLBPriu2 

1 30 80.00 40 76.67 50 74.33 40 74.00 
2 75 89.33 100 86.44 100 84.17 75 82.00 
3 150 91.67 150 90.00 150 87.00 100 86.00 
4 150 93.67 100 93.11 200 90.67 100 89.60 
5 100 93.33 100 92.89 150 90.67 150 90.27 
6 250 94.67 250 94.22 250 91.17 250 89.87 
7 100 94.33 250 93.56 250 91.00 300 88.93 

DWTFOSLBP-HF 

1 125 76.00 125 72.89 125 69.67 125 67.33 
2 200 87.67 250 86.44 250 83.50 300 80.93 
3 50 91.00 100 90.67 100 87.33 100 85.87 
4 300 93.33 150 91.78 100 90.17 300 87.87 
5 150 92.67 150 92.44 150 91.00 100 89.33 
6 150 93.33 100 93.11 100 90.83 100 89.20 
7 300 93.00 100 92.22 200 90.17 150 88.93 

 

 

Fig. 6.15 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 

LDA classifier: Amongst the proposed feature extraction techniques, the PCA dimensionality 

reduced feature vector data of the DWTFOSLBPriu2 technique has achieved the best 

classification accuracy of 96.33% (150 features), 95.56% (260 features), 94.17% (200 features) 
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and 93.73% (200 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, 

respectively. These classification accuracies are obtained for the feature vector data produced 

at the 4th level (60/40) and 5th level (80/20, 70/30 & 50/50) of image decomposition (Table 6.8).  

Table 6.7 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using RF classifier. 

Technique IDL NoF 80/20 NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 100 79.33 50 76.67 50 71.83 50 69.87 
2 50 84.67 200 83.33 50 82.83 50 79.20 
3 100 87.67 50 86.67 150 85.67 50 82.93 
4 100 89.67 150 88.00 100 86.67 50 84.93 
5 50 90.67 50 88.67 50 88.67 50 88.67 
6 100 92.00 100 89.33 50 88.83 50 88.40 
7 50 88.38 100 88.44 50 87.50 50 87.07 

DWTFOSLBPri 

1 125 72.67 50 69.11 50 65.83 50 65.07 
2 50 82.33 50 78.44 50 78.33 50 74.27 
3 50 86.33 50 86.89 50 84.33 50 83.73 
4 100 90.00 100 89.11 100 87.33 50 83.87 
5 50 93.00 50 88.67 100 88.50 50 86.93 
6 50 89.33 50 87.56 50 87.33 50 84.80 
7 100 89.00 50 87.73 100 87.50 100 84.53 

DWTFOSLBPriu2 

1 40 78.33 40 70.89 40 71.33 50 70.53 
2 75 82.00 100 80.89 100 80.67 75 78.13 
3 150 88.00 150 87.11 50 85.83 50 84.67 
4 50 89.00 50 88.00 150 87.50 100 87.33 
5 100 80.00 50 87.56 150 87.00 100 85.60 
6 250 87.00 50 84.67 100 84.17 50 83.07 
7 100 85.67 50 85.56 50 83.17 200 80.40 

DWTFOSLBP-HF 

1 125 66.00 150 64.89 125 62.67 150 59.33 
2 50 78.33 300 74.67 100 71.50 50 68.67 
3 50 86.00 100 83.56 50 83.00 100 80.27 
4 100 87.33 100 87.33 50 85.50 100 83.07 
5 100 88.67 150 88.22 50 86.50 50 84.53 
6 50 89.00 100 88.67 50 87.50 50 85.60 
7 50 88.67 50 87.56 50 85.50 50 83.33 

 

Fig. 6.16 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 
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Table 6.8 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using LDA classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 225 87.67 125 84.67 100 82.17 100 80.53 
2 300 92.33 250 90.67 200 89.17 50 86.40 
3 300 94.00 300 94.44 100 91.83 150 90.53 
4 200 93.67 400 94.44 100 92.00 50 91.60 
5 50 94.00 100 93.56 100 93.17 100 92.13 
6 100 93.00 100 92.89 100 92.33 100 91.33 
7 150 93.33 100 92.22 100 92.67 50 91.73 

DWTFOSLBPri 

1 150 85.67 150 84.22 150 82.17 150 81.07 
2 300 92.67 300 91.11 300 89.83 300 86.27 
3 50 94.00 50 92.00 50 91.67 50 88.80 
4 250 94.33 100 92.89 50 92.00 50 91.07 
5 50 95.33 50 92.89 50 91.17 50 90.80 
6 400 94.67 50 92.00 50 91.17 50 90.27 
7 300 94.33 50 91.56 50 91.50 100 90.80 

DWTFOSLBPriu2 

1 50 84.33 52 80.89 52 80.50 50 80.00 
2 100 92.33 104 91.56 104 90.50 104 89.33 
3 150 95.00 156 94.22 150 93.83 156 92.27 
4 100 95.33 200 94.89 200 94.17 200 93.33 
5 150 96.33 260 95.56 260 93.83 200 93.73 
6 200 96.33 312 95.56 250 93.50 312 92.80 
7 364 96.00 350 95.33 364 93.33 350 91.87 

DWTFOSLBP-HF 

1 150 87.67 150 84.22 150 84.33 164 82.00 
2 300 92.00 250 91.56 300 91.17 250 87.20 
3 492 93.67 450 93.56 250 92.50 350 89.87 
4 350 95.00 400 94.44 350 92.00 250 88.67 
5 350 94.33 450 93.56 150 92.00 150 89.60 
6 600 93.33 100 92.89 100 91.33 50 89.73 
7 100 94.00 150 91.78 100 91.00 100 89.87 

 

 

Fig. 6.17 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

The graphical illustration of PCA reduced feature vector data of DWT based hybrid texture 

feature extraction techniques for grayscale images are shown in Fig. 6.14, Fig. 6.15, Fig. 6.16 
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and Fig. 6.17 for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively. 

It is clearly visible that the PCA reduced feature vector data has obtained the best classification 

accuracy with LDA classifier, whereas RF classifier has achieved lowest classification accuracy 

among the four classifiers. Thus, incorporating PCA for feature dimensionality reduction has 

improved the performance of DWT based hybrid texture feature extraction techniques for 

hardwood species classification with low-dimensional feature vector data. 

6.3.4.3 The mRMR feature selection based reduced feature vector data 

The classification accuracy achieved by the mRMR feature selection based reduced feature 

vector data of DWT based hybrid texture feature extraction techniques with three different 

classifiers have been presented in Table 6.9, Table 6.10 and Table 6.11, respectively. The 

classification accuracy obtained by each of the classifiers for proposed texture feature extraction 

techniques are discussed below: 

Table 6.9 Classification accuracy achieved by mRMR feature selection based reduced feature vector data 
for different proportions of training and testing data of RDD using linear SVM classifier. 

Technique IDL NoF 80/20 NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 100 87.00 150 83.56 150 80.67 150 79.87 
2 200 91.67 200 89.78 200 87.83 300 85.07 
3 200 93.67 400 92.44 400 90.50 400 89.47 
4 500 95.00 350 94.67 350 93.17 400 92.67 
5 350 95.00 250 94.89 500 93.00 350 92.67 
6 450 95.67 350 94.89 500 93.17 400 93.07 
7 450 96.00 600 94.89 350 93.00 400 93.33 

DWTFOSLBPri 

1 125 81.67 125 74.89 100 73.00 150 71.47 
2 100 90.00 100 87.11 150 85.33 150 83.20 
3 100 94.33 150 92.89 150 90.17 150 89.47 
4 100 95.67 200 95.11 250 92.83 400 91.20 
5 300 95.00 100 94.89 250 93.67 300 91.87 
6 150 95.67 200 95.56 200 93.83 100 92.40 
7 150 95.33 150 95.11 300 93.67 350 92.27 

DWTFOSLBPriu2 

1 45 82.67 45 78.00 50 74.17 50 73.20 
2 100 89.00 100 88.89 100 86.00 50 83.73 
3 100 92.67 150 92.67 150 90.67 100 88.40 
4 200 95.67 200 94.22 150 92.33 150 91.33 
5 150 96.00 150 95.56 150 93.17 250 91.87 
6 150 95.33 250 95.11 150 92.50 100 91.20 
7 150 95.67 150 95.33 200 93.33 200 91.60 

DWTFOSLBP-HF 

1 50 84.00 50 80.44 50 76.50 50 76.13 
2 150 90.67 150 88.89 150 86.67 150 83.60 
3 50 93.33 100 92.22 200 91.67 200 90.67 
4 250 95.67 300 95.33 100 93.33 200 92.80 
5 500 95.67 200 95.33 350 93.50 150 93.47 
6 200 96.00 350 95.33 150 93.33 400 92.80 
7 200 96.33 200 95.56 200 94.00 150 93.47 

Linear SVM classifier: The subset of feature vector data of DWTFOSLBP-HF texture feature 

extraction technique, processed by mRMR feature selection technique, yields the best 

classification accuracy of 96.33% (200 features), 95.56% (200 features), 94% (200 features) 

and 93.47% (150 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, 
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respectively. The aforesaid classification accuracies have been achieved by the feature vector 

data of DWTFOSLBP-HF technique obtained at the 7th level of image decomposition (Table 6.9). 

RBF kernel SVM classifier: Here also the subset of feature vector data of DWTFOSLBP-HF 

texture feature extraction technique processed through mRMR feature selection technique has 

achieved the best classification accuracy of 96.33% (200 features), 95.11% (300 features), 

93.50% (250 features) and 93.07% (250 features) for 80/20, 70/30, 60/40 and 50/50 training 

and testing ratios of RDD, respectively (Table 6.10). The accuracy is reported for feature vector 

data obtained at the 6th level (80/20 & 70/30) and 7th level (60/40 & 50/50) of image 

decomposition. Further, relatively comparable classification accuracy 96.67% (300 features), 

95.56% (450 features), 93.17% (400 features) and 91.87% (350 features) for 80/20, 70/30, 

60/40 and 50/50 training and testing ratios of RDD, respectively, has been achieved for mRMR 

processed feature vector data of DWTFOSLBPri technique. The accuracy is reported for feature 

vector data obtained at the 5th level (60/40), 6th level (70/30) and 7th level (80/20 & 50/50) of 

image decomposition. 

Table 6.10 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using RBF kernel SVM classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 150 86.00 100 81.11 200 78.00 100 75.33 
2 100 90.33 200 88.44 150 85.67 200 83.60 
3 300 92.67 300 91.78 300 89.33 300 88.27 
4 200 95.00 200 93.78 150 92.17 200 92.13 
5 250 95.33 200 94.22 300 93.17 300 92.40 
6 300 95.33 200 94.67 250 93.00 150 92.53 
7 150 95.67 200 95.11 250 93.17 250 92.53 

DWTFOSLBPri 

1 125 82.00 125 76.44 150 75.33 150 72.93 
2 20 90.00 50 88.67 50 86.50 50 84.40 
3 100 94.67 150 93.11 150 90.83 150 89.07 
4 150 96.33 150 94.67 150 92.00 200 91.47 
5 100 96.00 250 95.11 400 93.17 250 91.47 
6 200 96.33 450 95.56 200 92.83 250 91.73 
7 300 96.67 300 95.33 350 92.83 350 91.87 

DWTFOSLBPriu2 

1 40 80.67 40 79.11 50 75.67 50 74.00 
2 50 88.67 50 86.67 100 84.67 75 83.73 
3 50 91.67 100 91.78 100 88.00 100 87.47 
4 100 94.67 100 93.78 100 91.67 150 91.60 
5 150 95.67 150 94.67 150 92.17 100 91.07 
6 200 95.33 325 94.67 150 92.50 100 91.20 
7 200 96.00 200 94.89 150 92.50 200 91.20 

DWTFOSLBP-HF 

1 50 84.33 50 79.11 50 76.50 50 76.27 
2 50 90.67 50 88.22 50 86.50 50 84.67 
3 100 93.00 250 92.67 150 90.83 150 90.13 
4 200 95.00 200 94.67 200 92.33 200 93.20 
5 100 95.67 300 94.22 350 93.00 100 92.80 
6 200 96.33 300 95.11 150 93.33 250 92.80 
7 200 95.67 250 94.89 250 93.50 250 93.07 

RF classifier: The mRMR feature selection based feature vector data of DWTFOSLBPri 

technique yields the best classification accuracy result of 93.67% (450 features), 92.22% (150 

features), 91.50% (150 features) and 90% (150 features) for 80/20, 70/30, 60/40 and 50/50 
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training and testing ratios of RDD, respectively (Table 6.11). The aforesaid classification 

accuracies have been achieved for the feature vector data of DWTFOSLBPri technique 

produced at the 6th level (70/30) and 7th level (80/20, 60/40 & 50/50) of image decomposition. 

Table 6.11 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using RF classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 125 81.67 50 75.33 50 72.00 100 70.00 
2 250 87.00 100 85.11 100 83.50 150 80.67 
3 50 90.33 400 87.78 350 87.50 450 85.60 
4 200 91.00 250 89.33 250 89.33 500 87.87 
5 200 93.00 550 91.56 450 90.67 150 89.47 
6 250 93.67 250 91.56 500 90.33 550 88.93 
7 250 92.67 550 90.89 350 90.33 300 89.20 

DWTFOSLBPri 

1 50 80.33 50 73.33 50 70.67 50 70.40 
2 100 88.33 100 86.00 200 83.17 100 80.13 
3 200 91.33 200 90.22 250 89.00 100 86.13 
4 300 92.00 300 91.33 300 90.50 150 88.53 
5 250 92.33 150 92.00 300 91.33 150 59.33 
6 150 93.33 150 92.22 150 91.17 200 89.60 
7 450 93.67 150 92.00 150 91.50 150 90.00 

DWTFOSLBPriu2 

1 30 77.00 30 70.22 40 66.50 30 65.33 
2 75 86.67 75 83.56 50 81.00 50 78.27 
3 160 89.33 150 86.67 100 85.67 100 83.47 
4 100 91.00 215 90.00 200 88.67 150 86.53 
5 150 92.00 200 90.67 200 89.67 150 88.40 
6 200 92.00 250 90.89 250 89.83 100 88.27 
7 200 92.33 350 91.11 200 89.50 250 88.80 

DWTFOSLBP-HF 

1 100 80.67 50 76.44 50 73.00 50 70.67 
2 150 87.33 150 85.11 100 83.17 100 82.27 
3 150 90.33 150 88.89 350 88.00 250 85.73 
4 450 91.67 250 90.67 300 90.50 350 83.40 
5 100 92.33 250 92.22 300 91.17 350 89.87 
6 150 92.33 250 90.89 150 90.50 250 89.07 
7 400 93.00 350 91.56 400 91.67 350 89.87 

 

 

Fig. 6.18 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 



 

184 

 

 

Fig. 6.19 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 

 

 

Fig. 6.20 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

Interestingly, all the three classifiers have achieved the best classification accuracies for 

feature vector data produced by the DWT based hybrid texture feature extraction techniques 

from 5th to 7th level of image decomposition. Also, employing mRMR feature selection technique 

for reducing the number of features has given much better classification accuracy compared to 

their FFVD, that too with lower-dimensional features. Further, other DWT based hybrid texture 

feature extraction techniques have also attained improved classification accuracy in comparison 

with the LBP variants (state-of-the-art) texture feature extraction techniques.  
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Fig. 6.21 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

 Performance Evaluation of DWT based Hybrid Texture Feature Extraction 

Techniques for RGB Images using 10-fold Cross Validation Approach 

6.3.5.1 Full feature vector data (FFVD)  

The percentage classification accuracy attained by the DWT based hybrid texture feature 

extraction techniques for RGB image [174, 175] of hardwood species database is presented in 

Table 6.12. The classification accuracy obtained by the proposed texture features using three 

different classifiers are discussed below: 

Linear SVM classifier: The FFVD produced by DWTFOSLBPu2 texture feature extraction 

technique has achieved the best classification accuracy of 98.40±0.64% using 1008 features 

obtained at the 4th level of image decomposition. Further, a classification accuracy of 

98.27±0.78% has been achieved by FFVD of DWTFOSLBPriu2 texture feature extraction 

technique using only 280 features (obtained at the 5th level of image decomposition). The least 

classification accuracy of 97.67±1.00% (672 features) has been achieved by using FFVD 

(obtained at the 4th level of image decomposition) produced by DWTFOSLBP-HF technique, 

among the proposed feature extraction techniques. 

RBF kernel SVM classifier: By means of this classifier, the best classification accuracy of 

98.13±0.75% has been attained using FFVD (336 features) produced by DWTFOSLBPriu2 

texture feature extraction technique (at the 6th level of image decomposition), which is the best 

among the proposed feature extraction techniques. The FFVD of DWTFOSLBPu2 texture feature 

extraction technique has achieved the 2nd best classification accuracy of 98.13±0.88% using 

1008-dimensional feature vector data produced at the 4th level of image decomposition. On the 

other hand, the least classification accuracy of 97.33±0.83% (640 features) has been achieved 



 

186 

 

by FFVD of DWTFOSLBPri texture feature extraction technique (at the 4th level of image 

decomposition).  

Table 6.12 Classification accuracy achieved using full feature vector data. 

Technique IDL 
Feature extraction 
time in seconds 

% CA±SD achieved by classifiers 
NoF Linear SVM RBF kernel SVM RF 

DWTFOSLBPu2 

1 1.0725 252 92.67±1.81 
 

91.60±1.76 
 

85.07±2.69 
 2 1.3157 504 96.47±1.86 95.20±1.69 92.40±2.23 

3 1.3437 756 97.73±1.05 97.00±1.64 95.13±1.26 
4 1.3889 1008 98.40±0.64 98.13±0.88 96.00±1.13 
5 1.4077 1260 97.73±1.14 97.67±1.41 96.33±1.23 
6 1.4237 1512 97.73±1.14 97.40±1.27 96.53±1.03 
7 1.4352 1764 97.87±1.29 97.73±1.00 96.27±1.26 

DWTFOSLBPri 

1 1.0935 160 88.93±1.81 
 

90.53±2.08 
 

84.73±2.71 
 2 1.3493 320 95.20±1.40 94.60±1.82 91.27±2.11 

3 1.3919 480 97.60±1.23 96.73±1.19 95.13±1.18 
4 1.4363 640 97.73±0.90 97.33±0.83 95.33±0.89 
5 1.4581 800 97.80±0.77 97.27±0.91 96.00±0.89 
6 1.4690 960 97.93±0.97 97.20±0.98 96.73±1.23 
7 1.4927 1120 97.67±0.85 96.80±1.43 96.13±0.98 

DWTFOSLBPriu2 

1 1.0645 56 87.07±2.74 
 

88.67±2.92 
 

83.00±2.63 
 2 1.2908 112 94.33±1.61 94.20±1.54 89.73±1.84 

3 1.3469 168 97.40±1.42 96.27±1.55 93.73±1.10 
4 1.3710 224 98.07±1.42 97.60±1.10 95.87±0.98 
5 1.3885 280 98.27±0.78 97.87±0.98 96.00±1.30 
6 1.3937 336 97.87±1.12 98.13±0.75 96.13±0.93 
7 1.4012 392 97.33±0.90 97.47±1.60 95.80±1.48 

DWTFOSLBP-HF 

1 1.0797 168 87.07±3.00 
 

88.07±2.32 
 

86.13±2.01 
 2 1.3200 336 93.93±2.10 94.20±1.55 91.53±1.63 

3 1.4195 504 96.20±0.90 96.73±1.35 95.13±1.21 
4 1.4415 672 97.67±1.00 97.60±1.05 96.13±1.21 
5 1.4615 840 97.47±0.82 97.73±1.48 96.53±0.69 
6 1.4804 1008 97.60±1.05 97.60±1.18 96.33±1.05 
7 1.4890 1176 97.27±1.11 97.47±1.21 96.60±1.19 

RF classifier: This classifier has given the best classification accuracy of 96.73±1.23% for 

FFVD (960 features) produced by DWTFOSLBPri texture feature extraction technique (at the 6th 

level of image decomposition). Further, the FFVD of DWTFOSLBP-HF technique (at the 7th level 

of image decomposition) has achieved the 2nd best classification accuracy of 96.60±1.19% for 

1176-dimensional feature vector data. In addition, among the proposed feature extraction 

techniques, the least classification accuracy of 96.13±0.93% (336 features) has been attained 

by using FFVD produced by DWTFOSLBPriu2 feature extraction technique (at the 6th level of 

image decomposition). 

Here, it has been observed that the better classification accuracy has been achieved by 

most of the DWT based hybrid texture features obtained between the 4th to 7th levels of image 

decomposition with all the three classifiers. In addition, the linear and RBF kernel SVM 

classifiers, both have presented the best classification accuracy; whereas, RF classifier yields 

comparatively lower classification accuracy. The classification accuracy obtained by the three 

classifiers have been compared and the same is illustrated in Fig. 6.22. The graphical illustration 

also reveals that DWTFOSLBPu2 texture feature extraction technique has given the best 
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classification accuracy with linear SVM classifier. 

 

Fig. 6.22 Classification accuracy achieved using FFVD 

 

Fig. 6.23 Feature extraction time for single RGB image. 

Further, the time required by the DWT based hybrid texture feature extraction techniques 

for feature vector data generation for single RGB image is also listed in Table 6.12. The 

DWTFOSLBPu2 feature extraction technique has achieved best classification accuracy of 

98.40±0.64% at the 4th level of image decomposition, which requires 1.3889 seconds for 

extracting the texture features of given individual image as shown in Fig. 6.24. This feature 

extraction time is almost thrice than the DWTFOSLBPu2 feature extraction technique (grayscale 

image) which requires 0.4602 second for extracting the texture features of given individual 
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grayscale image. The error bar plot with SD for FFVD is shown in Fig. 6.24. The assessment of 

Fig. 6.24 reveals that the feature vector data achieved by DWTFOSLBPu2 feature extraction 

technique at the 4th level of image decomposition yields the best classification accuracy of 

98.40±0.64% with lesser value of standard deviation. Also, the DWTFOSLBPriu2 feature 

extraction technique has achieved comparable classification accuracy (98.13±0.75%) with RBF 

kernel SVM classifier. 

 

Fig. 6.24 Error bar plot with SD using FFVD. 

6.3.5.2 The PCA dimensionality reduced feature vector data 

The performance evaluation of texture feature extraction techniques of RGB images with PCA 

reduced feature vector data with different classifiers are listed in Table 6.13 and has been 

concisely described henceforth: 

Linear SVM classifier: The PCA reduced feature vector data of DWTFOSLBPu2 feature 

extraction technique yields the best classification accuracy of 98.53±0.69%, which is slightly 

better than the FFVD (98.40±0.64%) of DWTFOSLBPu2 technique. The classification accuracy 

has been achieved using only 450 features produced at the 4th level of image decomposition, 

compared to FFVD (1008 features). Further, the PCA reduced feature vector data of 

DWTFOSLBPriu2 feature extraction technique has achieved marginally lower classification 

accuracy (97.93±1.49%) with 100 features only. This classification accuracy is slightly lower 

than the accuracy achieved by the FFVD of DWTFOSLBPriu2 (98.27±0.78%) with 280-

dimesional features. 

RBF kernel SVM classifier: Amongst the proposed feature extraction techniques, the PCA 

reduced feature vector data of DWTFOSLBPu2, has attained slightly better classification 

accuracy of 98.27±0.90% (350 features) compared to 98.13±0.88% (1008 features) presented 
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by FFVD of DWTFOSLBPu2 technique. In addition, the aforesaid feature vector data are obtained 

at the 4th level of image decomposition. Further, the PCA reduced feature vector data of 

DWTFOSLBPri techniques (at the 6th level of image decomposition) has achieved the 2nd best 

classification accuracy (98.13±0.61%, 50 features), slightly better than (97.93±0.97%, 960 

features) presented by FFVD of DWTFOSLBPri technique. 

Table 6.13 Classification accuracy achieved using PCA based reduced feature vector data. 

Technique IDL   % CA±SD achieved by classifiers 
NoF Linear SVM NoF RBF kernel SVM NoF RF NoF LDA 

DWTFOSLBPu2 

1 200 92.73±0.97 125 91.27±1.68 50 89.70±2.09 225 93.47±1.25 
2 200 96.13±1.57 150 95.20±1.57 50 93.00±1.73 350 96.93±0.95 
3 350 97.87±0.93 250 97.20±1.40 50 95.07±1.23 400 98.33±0.90 
4 450 98.53±0.69 350 98.27±0.90 50 96.33±1.55 200 98.20±1.22 
5 250 98.07±1.02 200 98.20±1.18 150 96.20±1.04 400 98.13±0.69 
6 250 98.07±1.09 50 98.13±1.08 100 95.33±1.09 300 98.07±1.24 
7 300 97.80±1.26 100 98.00±1.37 50 95.13±1.22 350 97.93±0.97 

DWTFOSLBPri 

1 150 88.60±2.10 100 90.60±2.12 100 84.20±1.86 150 92.00±2.04 
2 300 95.13±1.30 200 94.60±1.95 100 91.13±1.22 300 97.00±0.96 
3 300 97.33±1.22 150 96.87±1.48 50 93.87±1.63 450 98.13±1.43 
4 250 97.60±0.64 100 97.53±1.04 100 95.07±0.78 600 98.40±0.89 
5 250 97.40±0.73 100 97.87±0.82 100 94.87±1.26 500 97.80±0.83 
6 350 97.33±1.30 50 98.13±0.61 50 95.20±1.21 600 97.47±1.60 
7 500 97.13±1.09 100 97.67±0.72 50 94.27±1.10 200 97.33±1.09 

DWTFOSLBPriu2 

1 50 86.87±1.91 50 89.07±2.83 50 87.47±2.57 50 90.27±1.61 
2 100 94.00±1.04 75 94.33±1.31 75 91.87±2.06 100 96.00±0.63 
3 150 97.07±1.41 160 96.40±1.55 100 95.07±1.61 150 98.13±1.17 
4 100 97.93±1.49 150 97.67±1.14 100 96.40±1.55 175 98.33±1.05 
5 250 97.87±1.03 150 98.00±1.04 100 94.53±1.53 200 98.60±0.86 
6 325 97.67±1.34 200 98.13±0.76 100 94.40±1.58 300 98.73±0.86 
7 300 96.80±1.17 250 97.47±1.60 100 92.67±1.41 350 98.40±0.95 

DWTFOSLBP-HF 

1 150 87.80±2.01 150 88.07±2.32 150 81.47±2.89 150 92.47±1.86 
2 300 93.73±1.67 300 94.20±1.54 50 88.07±2.05 300 97.13±0.89 
3 400 96.20±1.41 400 96.80±1.36 50 91.27±2.02 450 98.20±0.95 
4 450 97.47±0.98 400 97.60±1.05 50 92.80±0.88 600 98.47±0.77 
5 550 97.53±0.63 300 97.80±1.60 50 93.73±1.38 500 97.87±0.98 
6 550 97.53±0.95 50 98.00±1.13 50 93.87±1.17 550 97.67±0.85 
7 550 97.47±1.33 100 97.87±1.50 50 93.07±1.14 200 97.00±1.45 

RF classifier: The PCA reduced feature vector data of DWTFOSLBPriu2 texture feature 

extraction technique has achieved the best classification accuracy of 96.40±1.55% using 100-

dimensional feature vector data only (at the 4th level of image decomposition), which is slightly 

better than the classification accuracy (96.13±0.93%) yielded by the FFVD of DWTFOSLBP riu2 

technique with 336-dimensional features (at the 6th level of image decomposition). 

LDA classifier: This classifier has given the best classification accuracy of 98.73±0.86% for 

PCA reduced feature vector data of DWTFOSLBPriu2 texture feature extraction technique with 

300-dimemnsional feature vector data. The afore-said classification accuracy has been 

achieved for the feature vector data produced at the 6th level of image decomposition. Further, 

the PCA reduced feature vector data of DWTFOSLBP-HF texture feature extraction technique 

has obtained the 2nd best classification accuracy of 98.47±0.77% (600 features) for feature 

vector data produced at the 4th level of image decomposition. 
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Fig. 6.25 Classification accuracy achieved using PCA reduced feature vector data. 

 

Fig. 6.26 Error bar plot with SD using PCA reduced feature vector data. 

The classification accuracy achieved with PCA reduced dimensional feature vector data 

are at par/superior than their FFVD, but has been obtained using lower-dimensional features. 

Among the four classifiers, the LDA classifier has obtained maximum classification accuracy 

(98.73±0.86%) for the feature vector data produced at the 6th level of image decomposition by 

DWTFOSLBPriu2 texture feature extraction technique. The graph depicting the comparison of the 

classification accuracy obtained by four different classifiers is shown in Fig. 6.25. In addition, 

the error bar plot of the same is shown in Fig. 6.26. The graphical illustration also supports the 

claim that DWTFOSLBPriu2 texture features classified with LDA classifier has achieved the 
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best/superlative classification accuracy amongst the proposed techniques with different 

classifiers.  

6.3.5.3 The mRMR feature selection based reduced feature vector data 

The subset of feature vector data obtained by mRMR feature selection method has been 

investigated here to see their effect on the classification accuracy produced for hardwood 

species classification. The classification accuracy achieved by three different classifiers are 

listed in Table 6.14. The classification accuracy results are plotted in Fig. 6.27, and error bar 

plot for the same has been illustrated in Fig. 6.28. The performance of texture feature extraction 

techniques with different classifiers are as follows: 

Table 6.14 Classification accuracy achieved using mRMR feature selection based reduced feature vector 
data. 

Technique IDL % CA±SD achieved by classifiers 
NoF 
 

Linear SVM NoF  
 
 

RBF kernel SVM 
 

NoF  
 

RF 

DWTFOSLBPu2 

1 175 93.13±1.81 
 

100 92.80±1.69 
 

50 87.87±2.21 
 2 300 96.93±1.64 225 96.73±1.31 125 93.00±1.67 

3 225 97.73±0.78 225 97.87±0.88 150 95.80±1.34 
4 225 98.53±0.82 225 98.67±0.70 125 96.47±1.14 
5 200 98.60±1.06 275 98.87±0.55 200 97.27±1.18 
6 225 98.80±0.82 250 98.93±0.56 175 96.93±1.18 
7 225 98.80±0.82 250 98.93±0.47 175 97.07±1.23 

DWTFOSLBPri 

1 150 89.53±1.48 
 

150 90.73±1.42 
 

50 86.33±2.02 
 2 250 95.27±1.29 125 96.07±1.42 200 92.27±1.61 

3 225 97.87±0.88 200 98.00±1.30 175 95.80±1.63 
4 175 98.47±0.77 225 98.67±0.44 175 96.73±1.06 
5 175 98.53±0.76 175 98.87±0.45 300 96.93±1.05 
6 300 98.80±0.76 225 99.13±0.45 150 97.13±1.44 
7 200 98.87±0.63 250 98.93±0.34 225 96.93±0.84 

DWTFOSLBPriu2 

1 55 87.07±1.51 
 

50 89.27±2.91 
 

55 82.73±2.25 
2 100 94.53±1.50 75 94.73±1.39 100 90.20±1.96 
3 150 97.87±0.93 125 97.06±1.26 165 94.47±1.81 
4 200 98.20±1.26 150 98.13±1.47 150 95.80±1.21 
5 150 98.40±0.84 175 98.40±0.78 200 96.27±1.05 
6 125 98.67±0.88 150 98.60±0.66 150 96.33±1.34 
7 125 98.87±0.77 125 98.60±0.73 75 96.40±1.45 

DWTFOSLBP-HF 

1 150 87.33±2.72 
 

125 88.47±2.01 
 

100 87.13±2.55 
 2 150 94.33±1.76 150 94.87±1.26 200 92.87±1.18 

3 200 98.20±1.00 175 97.87±1.25 150 95.33±1.66 
4 300 98.93±0.47 300 98.47±0.77 300 96.80±1.12 
5 300 99.07±0.47 250 98.87±0.55 300 97.07±1.26 
6 300 99.20±0.42 275 98.93±0.47 175 97.13±1.14 
7 300 99.13±0.55 250 99.07±0.47 300 97.33±0.94 

Linear SVM classifier: Amongst the proposed feature extraction techniques, the highest 

classification accuracy of 99.20±0.42% has been achieved by the mRMR processed subset 

(300 features) of FFVD of DWTFOSLBP-HF technique at the 6th level of image decomposition. 

This classification accuracy is comparably better than 97.67±1.00% accuracy obtained by the 

FFVD of DWTFOSLBP-HF technique (672 features, at the 4th level of image decomposition). 

The 2nd best classification accuracy of 98.87±0.63% has been obtained by the mRMR processed 
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subset (200 features) of FFVD of DWTFOSLBPri technique (at the 7th level of image 

decomposition). 

RBF kernel SVM classifier: The mRMR selected feature subset (225 features) of FFVD of 

DWTFOSLBPri texture feature extraction technique (produced at the 6th level of image 

decomposition) has achieved the best classification accuracy of 99.13±0.45%. This 

classification accuracy is relatively better than 97.33±0.83% accuracy obtained by the FFVD of 

DWTFOSLBPri technique (640 features, at the 4th level of image decomposition). Further, the 

DWTFOSLBP-HF texture feature extraction techniques feature vector data processed with 

mRMR feature selection method has also obtained 2nd best classification accuracy of 

99.07±0.47% (250 features), better than 97.73±1.48% classification accuracy achieved with 

their FFVD (840 features). 

RF classifier: The RF classifier has achieved the best classification accuracy of 97.33±0.94% 

for mRMR selected feature subset (300 features) of DWTFOSLBP-HF texture feature extraction 

technique (at the 7th level of image decomposition). This accuracy is reasonably better than the 

highest classification accuracy (96.60±1.19%) achieved by the DWTFOSLBP-HF texture feature 

extraction technique for their FFVD (1176 features, at the 7th level of image decomposition). 

 

Fig. 6.27 Classification accuracy achieved using mRMR feature selection based reduced feature vector 
data. 

The analysis of Table 6.14 suggests that among the proposed texture feature extraction 

techniques, the mRMR selected feature subset of DWTFOSLBP-HF technique has achieved 

the best classification accuracy of 99.20±0.42% with linear SVM classifier. Further, it is observed 

from Table 6.12 that as the level of image decomposition increases, the length of the feature 

vector data also increases. The classification accuracy results for FFVD of DWT based hybrid 
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texture feature extraction techniques with different classifiers have gone up in the range of 4th 

to 5th level of image decomposition for linear and RBF kernel SVM classifier, and after that either 

it remains same or decreases little bit. In case of RF classifier the rise in the classification 

accuracy has been witnessed in the range of 5th to 7th level of image decomposition and after 

that either it remains same or decreases little bit. It is noticeable that the increase in the 

classification accuracy has been attained at the cost of additional computation time. Therefore, 

the DWT based hybrid texture descriptors beyond 7th level of image decomposition have not 

been investigated.  

 

Fig. 6.28 Error bar plot with SD using mRMR feature selection based reduced feature vector data. 

It is worth noting that employing PCA and mRMR technique, has not only reduced the 

computational time of classifiers but at the same time has shown considerable improvement in 

the classification accuracy of hardwood species. It is also observed from Table 6.12, Table 6.13 

and Table 6.14, that DWT based hybrid texture feature extraction techniques for RGB images 

have achieved better classification accuracy compared to the LBP variants and DWT based 

hybrid texture feature extraction techniques for grayscale images. 

 Performance Evaluation of DWT based Hybrid Texture Feature Extraction 

Techniques for RGB Images using Randomly Divided Database (RDD) 

6.3.6.1 Full feature vector data (FFVD) 

The classification accuracy achieved by DWT based hybrid texture feature extraction techniques 

for different ratios of training and testing data is listed in Table 6.15.  

Linear SVM classifier: Amongst the proposed texture feature extraction techniques, 

DWTFOSLBPriu2 has produced significant feature vector data that yields best classification 



 

194 

 

accuracy of 96.67%, 96.44%, 93.83% and 92.27% for 80/20, 70/30, 60/40 and 50/50 training 

and testing ratios of RDD, respectively. These classification accuracies have been achieved for 

feature vector data produced by the DWTFOSLBPriu2 feature extraction technique at the 5th 

(70/30, 60/40 & 50/50) and 6th (80/20) levels of image decomposition (Table 6.15). 

RBF kernel SVM classifier: Using RBF kernel SVM classifier the best classification accuracy 

of 96.33%, 95.56%, 93.50% and 92.27% has been achieved for 80/20, 70/30, 60/40 and 50/50 

training and testing ratios of RDD, respectively. The classification accuracies have been 

achieved for feature vector data of DWTFOSLBPriu2 technique obtained at the 6th level of image 

decomposition (Table 6.15). 

Table 6.15 Classification accuracy achieved by full feature vector data for different proportions of training 
and testing data of RDD using three classifiers. 

Technique IDL 

% CA achieved by classifiers for different proportions of training and testing data 

Linear SVM RBF kernel SVM RF 

80/20  70/30 60/40 50/50 80/20  70/30 60/40 50/50 80/20  70/30 60/40 50/50 

DWTFOSLBPu2 

1 86.00 84.44 83.67 81.60 84.33 81.56 77.17 75.33 77.33 74.44 71.50 71.87 

2 91.67 90.22 87.00 85.33 88.67 86.44 85.17 82.27 86.00 85.56 83.17 81.33 

3 93.33 92.67 91.00 89.07 92.67 91.78 88.83 86.80 91.00 90.44 88.17 86.67 

4 94.33 94.89 93.50 91.47 94.00 93.56 91.00 89.60 91.67 92.44 91.50 90.13 

5 94.67 94.89 93.50 92.40 94.33 94.00 91.50 90.53 93.00 93.11 92.00 90.67 

6 95.00 94.00 93.50 92.27 94.00 93.56 91.83 90.13 93.00 93.56 92.50 90.93 

7 94.33 93.11 94.00 92.00 94.00 93.11 91.67 89.60 93.00 93.11 92.17 90.13 

DWTFOSLBPri 

1 87.67 81.33 78.33 76.67 81.33 79.78 78.33 74.80 79.00 74.89 71.33 69.20 

2 90.00 89.56 87.67 84.53 88.67 86.89 85.50 82.13 89.00 86.00 82.33 78.67 

3 94.67 94.00 92.50 89.60 93.00 92.22 90.50 87.47 92.67 92.00 89.33 86.13 

4 95.67 95.11 93.17 92.00 95.00 92.44 91.67 89.87 94.33 92.89 91.00 88.53 

5 95.33 95.11 93.83 92.53 96.00 93.56 92.00 90.67 93.33 92.67 91.67 89.47 

6 95.67 94.00 94.17 92.00 95.67 93.33 92.00 91.20 94.00 93.33 91.50 90.27 

7 96.33 94.22 93.17 91.33 95.67 92.44 92.00 89.47 94.00 92.67 91.67 89.60 

DWTFOSLBPriu2 

1 83.00 78.00 76.33 75.60 81.00 77.78 74.67 73.60 76.67 73.78 69.33 66.13 

2 91.33 90.67 88.17 86.27 89.67 86.67 85.67 83.20 87.67 85.33 81.83 78.67 

3 94.67 94.00 91.17 89.60 93.33 91.33 89.67 87.47 92.00 89.56 88.67 85.60 

4 96.00 95.78 92.83 92.13 95.00 94.89 92.17 91.07 93.67 91.78 91.00 89.33 

5 96.33 96.44 93.83 92.27 95.67 95.33 92.83 91.33 94.33 92.44 92.17 89.33 

6 96.67 95.78 93.33 92.27 96.33 95.56 93.50 92.27 94.33 93.33 91.50 90.40 

7 95.67 95.56 92.50 90.67 94.67 94.67 92.33 91.60 94.00 91.78 91.50 89.07 

DWTFOSLBP-HF 

1 83.00 78.22 74.83 72.27 81.67 76.00 74.67 71.73 81.33 76.89 73.00 71.07 

2 89.67 85.33 85.00 83.47 89.33 87.78 86.33 82.93 88.33 87.11 85.00 82.67 

3 92.67 90.67 89.33 88.27 92.67 91.33 90.17 87.73 91.00 91.33 88.83 86.27 

4 93.67 92.44 91.83 90.93 94.33 93.33 91.83 89.87 92.67 93.11 91.50 89.20 

5 93.67 92.89 92.67 91.07 94.67 93.56 92.83 92.83 94.00 93.11 92.00 91.20 

6 94.00 92.44 92.67 90.93 95.00 94.00 92.83 91.07 93.33 93.33 91.83 90.13 

7 94.67 92.67 92.17 90.13 95.33 93.78 92.33 90.53 95.00 93.33 92.33 90.67 

RF classifier: As listed in Table 6.15, the feature vector data produced by DWTFOSLBP-HF 

feature extraction technique has given the best classification accuracy for different proportions 

of training and testing data of RDD, amongst the proposed techniques using RF classifier. The 

DWTFOSLBP-HF features have achieved classification accuracy of 95% (at 7th IDL), 93.33% 
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(at 7th IDL), 92.33% (at 7th IDL) and 91.27% (at 5th IDL) for 80/20, 70/30, 60/40 and 50/50 training 

and testing ratios, respectively.  

The classification accuracies obtained by the three different classifiers are compared for 

each of the four (80/20, 70/30, 60/40 and 50/50) training and testing ratios, and are graphically 

illustrated in Fig. 6.29, Fig. 6.30, Fig. 6.31 and Fig. 6.32, respectively. It is apparent from these 

figures that texture feature vector data produced by most of the DWT based hybrid texture 

feature extraction techniques for RGB images yields the best classification accuracy with linear 

SVM classifier,whereas, the least classification accuracy has been achieved with RF classifier.  

 

Fig. 6.29 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

 

Fig. 6.30 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 
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Fig. 6.31 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 

Fig. 6.32 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

Further, the classification accuracy obtained by other DWT based hybrid texture feature 

extraction techniques for RGB images have achieved relatively better classification accuracy 

compared to the classification accuracy achieved by the DWT based hybrid texture feature 

extraction techniques for grayscale images. 

6.3.6.2 The PCA dimensionality reduced feature vector data 

The classification accuracy results obtained by the PCA reduced feature vector data using four 

different classifiers are concisely discussed below:  
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Linear SVM classifier: The PCA dimensionality reduced feature vector data of the 

DWTFOSLBPriu2 technique yields the best classification accuracy of 96.33% (150 features), 

96.22% (150 features), 93.67% (200 features) and 92.27% (150 features) for 80/20, 70/30, 

60/40 and 50/50 training and testing ratios of RDD, respectively. The aforesaid classification 

accuracy is obtained for feature vector data produced at the 5th level of image decomposition 

(Table 6.16). This classification accuracy is comparable to the accuracy achieved with FFVD of 

DWTFOSLBPriu2 technique with high-dimensional features.  

Table 6.16 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using linear SVM classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 100 86.00 225 85.11 225 83.00 200 80.53 

2 200 91.00 200 90.44 250 87.50 400 85.60 

3 100 93.00 150 92.44 100 91.33 200 89.20 

4 200 95.00 150 94.44 400 93.33 450 91.33 

5 100 95.00 250 95.11 250 93.83 350 92.00 

6 150 95.33 300 93.56 500 93.33 300 92.80 

7 350 95.33 300 92.27 250 92.50 600 92.00 

DWTFOSLBPri 

1 100 86.00 125 78.89 100 78.00 150 76.27 

2 250 89.00 200 88.89 200 87.50 200 84.40 

3 250 94.67 250 93.78 350 92.67 200 89.87 

4 300 94.33 250 94.44 300 93.33 300 91.87 

5 100 94.67 100 94.44 400 93.50 550 92.40 

6 150 95.33 150 94.00 550 93.83 350 92.40 

7 550 96.00 600 94.89 600 93.33 250 90.80 

DWTFOSLBPriu2 

1 40 82.00 40 77.56 40 77.17 50 74.93 

2 50 91.00 100 89.56 100 88.17 75 85.33 

3 100 92.67 100 92.44 100 90.83 150 89.33 

4 200 96.33 100 95.33 200 92.83 100 91.33 

5 150 96.33 150 96.22 200 93.67 150 92.27 

6 250 95.67 250 95.56 300 93.17 300 92.00 

7 200 95.00 200 94.89 250 93.17 350 90.67 

DWT FOSLBP-HF 

1 150 84.67 125 77.11 150 74.50 125 71.73 

2 250 89.33 250 85.78 300 85.33 250 82.93 

3 350 92.00 350 89.78 300 90.50 350 88.53 

4 300 93.67 500 92.44 450 91.67 500 90.40 

5 350 94.00 500 93.11 450 92.33 500 91.20 

6 250 94.00 500 92.67 450 92.33 600 91.20 

7 450 94.67 600 93.11 550 92.50 600 90.80 

RBF kernel SVM classifier: A classification accuracy of 96.67% (50 features), 95.33% (50 

features), 93% (250 features) and 92% (100 features) has been obtained for 80/20, 70/30, 60/40 

and 50/50 training and testing ratios of RDD, respectively. These results have been achieved 

by PCA dimensionality reduced feature vector data of the DWTFOSLBPri technique at the 6th 

(50/50) and 7th (80/20, 70/30 & 60/40) levels of image decomposition (Table 6.17). The 

classification accuracies are slightly better than the accuracy presented by the FFVD of 

DWTFOSLBPri technique.  
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Table 6.17 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using RBF kernel SVM classifier. 

Technique IDL NoF 80/20 NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 200 84.67 50 82.22 100 77.83 250 75.33 
2 50 89.00 50 88.00 100 85.67 250 83.07 
3 250 92.67 450 92.00 200 89.50 450 89.33 
4 400 94.67 150 94.22 100 92.17 200 90.67 
5 250 94.67 350 94.44 50 92.67 150 91.20 
6 350 95.00 100 94.44 100 93.33 250 91.20 
7 50 95.00 100 94.89 100 93.17 100 91.60 

DWTFOSLBPri 

1 100 82.33 150 80.22 100 79.00 50 75.20 
2 50 89.33 100 87.56 150 85.50 200 82.13 
3 200 92.67 250 92.22 200 90.67 450 87.60 
4 250 95.00 100 93.33 100 92.17 500 89.87 
5 500 96.00 150 94.89 200 92.67 200 91.07 
6 50 96.67 50 95.11 100 92.67 100 92.00 
7 50 96.67 50 95.33 250 93.00 50 91.20 

DWTFOSLBPriu2 

1 30 80.67 40 77.11 40 75.33 50 73.60 
2 50 90.67 50 87.11 50 85.50 100 83.07 
3 100 93.67 100 91.33 100 89.83 150 87.47 
4 100 96.00 100 94.89 150 92.17 100 91.07 
5 100 95.67 150 95.33 150 93.17 250 91.60 
6 250 95.67 200 95.56 200 93.00 250 92.13 
7 200 94.33 150 94.44 250 92.17 300 91.47 

DWT FOSLBP-HF 

1 100 82.00 150 75.78 150 74.33 150 71.87 
2 300 89.33 150 88.22 300 83.33 250 83.20 
3 200 92.67 150 91.56 150 90.17 250 87.87 
4 300 94.67 300 93.33 450 92.17 350 90.00 
5 50 95.33 50 94.89 50 93.00 50 91.07 
6 50 95.33 50 94.89 450 92.83 400 91.60 
7 250 96.00 50 94.89 50 92.83 50 92.00 

 

  
Fig. 6.33 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 

RF classifier: In this case, the classification accuracy results of 94.33% (100 features), 91.56% 

(50 features), 90.67% (50 features) and 89.07% (150 features) for 80/20, 70/30, 60/40 and 50/50 

training and testing ratios of RDD, respectively, has been obtained by DWTFOSLBPriu2 
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technique with PCA dimensionality reduced feature vector data. The said classification accuracy 

results are obtained by the feature vector data produced at the 4th level (80/20, 70/30 & 50/50) 

and 6th level (60/40) of image decomposition, respectively (Table 6.18). 

Table 6.18 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using RF classifier. 

Technique IDL NoF 80/20 NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 100 83.67 100 76.67 50 76.00 100 72.93 
2 50 89.00 50 86.44 50 84.17 100 80.93 
3 100 90.33 100 88.89 150 87.83 150 85.60 
4 50 92.67 100 91.33 100 89.83 150 88.80 
5 50 92.67 50 91.00 100 90.33 50 89.33 
6 200 92.00 50 90.78 50 89.33 100 89.60 
7 50 92.00 50 90.89 50 88.83 50 87.87 

DWTFOSLBPri 

1 150 80.33 50 74.22 100 73.33 50 70.13 
2 250 85.67 100 84.44 100 82.50 50 79.87 
3 50 89.33 50 87.56 100 86.67 100 85.20 
4 100 92.00 50 90.44 100 90.00 50 87.20 
5 150 91.67 50 90.67 50 90.17 100 88.13 
6 50 93.00 50 91.33 100 91.17 50 88.93 
7 50 90.00 150 89.78 50 88.33 50 88.13 

DWTFOSLBPriu2 

1 40 81.33 50 77.33 50 76.83 50 76.53 
2 50 87.67 50 83.33 75 82.67 100 81.73 
3 100 91.33 100 87.56 50 87.33 160 85.33 
4 100 94.33 50 91.56 100 89.33 150 89.07 
5 50 91.33 50 90.89 50 90.33 50 88.00 
6 50 91.33 50 90.89 50 90.67 100 87.60 
7 100 89.67 100 88.89 50 87.50 50 85.07 

DWT FOSLBP-HF 

1 150 72.67 150 71.56 125 67.67 125 63.07 
2 200 83.00 50 78.67 150 77.33 50 73.33 
3 50 88.67 50 87.11 100 85.17 50 82.00 
4 100 89.00 100 86.89 100 85.67 100 83.60 
5 50 89.67 50 87.78 100 87.17 50 85.87 
6 50 90.00 50 89.56 50 87.83 100 86.40 
7 50 92.33 50 89.33 50 88.33 50 85.33 

 

  
Fig. 6.34 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 
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Table 6.19 Classification accuracy achieved by PCA reduced feature vector data for different proportions 
of training and testing data of RDD using LDA classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 225 88.67 50 86.22 50 85.83 50 84.00 
2 200 92.33 300 92.00 100 90.83 100 89.07 
3 100 95.00 300 94.00 100 93.33 100 93.07 
4 100 95.67 300 95.78 100 95.00 100 94.00 
5 300 96.33 200 96.00 50 94.67 200 94.00 
6 300 96.67 200 96.00 150 94.67 200 94.40 
7 100 95.67 100 94.89 150 94.17 100 92.67 

DWTFOSLBPri 

1 125 86.67 150 84.89 150 84.00 125 82.13 
2 300 93.33 300 92.44 250 91.50 300 89.07 
3 450 96.33 350 95.11 250 93.33 200 92.00 
4 100 96.33 300 96.22 100 94.33 100 93.60 
5 100 96.67 200 96.00 250 95.17 100 94.13 
6 100 97.00 100 95.78 100 94.67 100 93.73 
7 200 97.33 200 95.33 50 94.50 50 92.53 

DWTFOSLBPriu2 

1 50 84.00 50 82.67 50 83.83 50 81.87 
2 100 92.33 100 90.67 75 90.17 75 89.87 
3 125 96.67 150 95.78 150 94.50 150 92.80 
4 200 97.33 200 96.89 200 95.33 175 94.00 
5 200 97.67 150 97.33 150 95.50 200 94.40 
6 312 97.33 300 97.33 300 95.33 300 94.27 
7 350 97.33 350 96.67 350 95.00 350 93.60 

DWT FOSLBP-HF 

1 150 88.00 150 86.22 125 85.83 150 85.20 
2 250 92.67 300 91.77 300 91.67 300 88.93 
3 400 95.33 400 95.11 350 93.83 250 92.67 
4 350 95.00 450 94.67 400 93.83 350 92.40 
5 450 95.33 200 94.67 200 93.33 200 92.13 
6 50 95.33 100 94.89 50 93.83 50 92.00 
7 50 96.00 100 94.89 50 94.33 100 92.00 

 

 

Fig. 6.35 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

LDA classifier: Amongst the proposed feature extraction techniques, the PCA dimensionality 

reduced feature vector data of the DWTFOSLBPriu2 technique has achieved classification 
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accuracy of 97.67% (200 features), 97.33% (150 features), 95.50% (150 features) and 94.40% 

(200 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively. 

These classification accuracies are obtained for PCA reduced feature vector data produced at 

the 5th level of image decomposition (Table 6.19). 

 

Fig. 6.36 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 

The graphical illustration of PCA reduced feature vector data of DWT based hybrid texture 

feature extraction techniques for RGB images are shown in Fig. 6.33, Fig. 6.34, Fig. 6.35 and 

Fig. 6.36 for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively. It is 

clearly visible that the PCA reduced feature vector data has given the best classification 

accuracy with LDA classifier, whereas RF classifier has achieved lowest classification accuracy 

among the four classifiers. Thus, incorporating PCA for feature dimensionality reduction has 

improved the performance of DWT based hybrid texture feature extraction techniques (RGB 

images) for hardwood species classification with low-dimensional feature vector data. 

6.3.6.3 The mRMR feature selection based reduced feature vector data 

The classification accuracy results achieved by the mRMR feature selection reduced feature 

vector data of DWT based hybrid texture feature extraction techniques with three different 

classifiers have been presented in Table 6.20, Table 6.21 and Table 6.22, respectively. The 

classification accuracy obtained by each of the classifiers for proposed texture feature extraction 

techniques are discussed below: 

Linear SVM classifier: The subset of feature vector data of DWTFOSLBPri texture feature 

extraction technique, chosen with mRMR feature selection method, yields the best classification 

accuracy of 97.33% (600 features), 97.33% (500 features), 94.67% (350 features) and 94% 
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(550 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively 

(Table 6.20). The aforesaid classification accuracies have been achieved by the feature vector 

data of DWTFOSLBPri technique at the 6th (50/50) and 7th (80/20, 70/30 & 60/40) levels of image 

decomposition. 

Table 6.20 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using linear SVM classifier. 

Technique IDL NoF 80/20 NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 100 86.00 200 85.56 200 84.00 225 81.33 
2 350 92.33 200 90.22 350 88.00 250 86.13 
3 200 94.33 400 93.33 400 91.00 350 91.07 
4 250 96.00 250 95.56 350 93.33 550 93.33 
5 450 97.00 250 96.00 250 93.50 350 93.47 
6 400 96.33 250 95.78 250 93.93 400 93.60 
7 450 97.00 350 96.22 300 93.67 300 93.33 

DWTFOSLBPri 

1 150 88.67 150 80.89 150 78.83 150 76.67 
2 250 91.00 300 89.56 250 87.50 150 86.27 
3 300 95.33 100 94.89 300 92.83 200 90.27 
4 600 96.00 100 96.00 450 93.83 400 92.40 
5 400 96.33 500 96.22 550 94.67 400 93.47 
6 500 97.33 150 97.11 500 94.67 550 94.00 
7 600 97.33 500 97.33 350 94.67 600 93.87 

DWTFOSLBPriu2 

1 50 83.67 40 79.33 40 78.17 40 77.20 
2 75 90.67 100 89.78 100 88.17 75 86.00 
3 100 94.33 100 93.56 150 91.67 150 90.27 
4 200 96.00 200 95.56 200 93.50 100 92.80 
5 250 96.33 150 96.00 200 93.83 250 92.27 
6 200 96.67 200 96.67 250 93.67 150 92.40 
7 150 96.67 200 96.67 300 94.00 150 92.93 

DWT FOSLBP-HF 

1 150 82.33 50 80.67 50 75.33 50 74.67 
2 150 91.00 100 89.33 100 88.33 50 85.60 
3 100 94.67 100 93.56 200 91.00 150 89.47 
4 200 97.00 150 95.56 200 93.33 200 92.33 
5 200 96.00 200 96.67 250 94.33 250 93.73 
6 550 96.33 400 96.00 200 94.50 200 93.33 
7 600 97.00 400 96.67 250 94.67 400 93.87 

 

  
Fig. 6.37 Classification accuracy achieved for 80/20 proportion of training and testing data of RDD. 
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Table 6.21 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using RBF kernel SVM classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 50 87.00 50 82.89 200 79.17 150 76.67 
2 150 91.33 100 91.78 150 87.83 150 86.40 
3 250 94.33 250 94.22 100 91.33 100 90.13 
4 150 96.00 150 95.78 200 93.33 200 92.93 
5 300 96.33 300 95.78 550 94.00 150 93.60 
6 400 96.00 300 96.00 250 94.17 300 93.20 
7 400 96.33 400 96.22 350 94.33 300 93.20 

DWTFOSLBPri 

1 50 83.67 50 81.11 50 78.67 50 75.20 
2 50 90.67 50 90.00 100 87.50 50 86.27 
3 100 95.67 50 94.67 200 92.50 150 90.83 
4 100 97.00 100 96.67 100 94.17 50 93.07 
5 450 97.33 450 96.89 350 94.17 300 93.47 
6 450 97.33 500 97.11 350 94.67 350 94.00 
7 500 97.33 500 97.11 400 94.67 400 94.13 

DWTFOSLBPriu2 

1 30 82.00 30 78.22 30 76.83 50 74.53 
2 50 90.33 50 89.33 50 87.33 50 85.20 
3 50 93.33 50 93.33 50 91.00 100 89.33 
4 150 96.00 100 95.33 150 93.67 50 92.40 
5 200 96.33 200 96.00 200 94.17 200 93.33 
6 200 96.67 150 96.22 250 94.17 150 93.33 
7 200 96.00 150 96.22 250 93.67 200 93.20 

DWT FOSLBP-HF 

1 50 86.00 50 81.56 50 77.17 50 74.67 
2 50 92.00 50 91.78 100 89.50 50 85.87 
3 150 94.67 150 94.44 200 92.17 200 90.53 
4 150 95.67 150 95.33 100 94.17 100 93.60 
5 250 96.67 200 96.44 200 94.67 150 94.00 
6 250 97.33 150 97.11 350 94.67 200 94.40 
7 500 97.33 200 97.11 350 95.00 200 94.93 

 

 

Fig. 6.38 Classification accuracy achieved for 70/30 proportion of training and testing data of RDD. 

RBF kernel SVM classifier: The subset of feature vector data of DWTFOSLBP-HF texture 

feature extraction technique processed through mRMR feature selection method has achieved 



 

204 

 

the best classification accuracy of 97.33% (500 features), 97.11% (200 features), 95% (350 

features) and 94.93% (200 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios 

of RDD, respectively. The accuracy is achieved for feature vector data obtained at the 7th level 

of image decomposition. Further, comparable classification accuracy of 97.33% (500 features), 

97.11% (500 features), 94.67% (400 features) and 94.13% (400 features) for 80/20, 70/30, 

60/40 and 50/50 training and testing ratios of RDD, respectively, has been achieved for mRMR 

processed feature vector data of DWTFOSLBPri technique at the 7th level of image 

decomposition (Table 6.21). 

Table 6.22 Classification accuracy achieved by mRMR feature selection based reduced feature vector 
data for different proportions of training and testing data of RDD using RF classifier. 

Technique IDL NoF 80/20  NoF 70/30 NoF 60/40 NoF 50/50 

DWTFOSLBPu2 

1 50 83.67 50 79.11 50 76.83 50 74.27 
2 350 90.00 100 88.22 150 86.50 150 84.93 
3 200 92.00 300 92.44 300 90.83 350 88.80 
4 400 94.33 400 94.00 350 93.00 200 91.20 
5 300 95.00 350 94.22 250 93.17 200 91.60 
6 350 95.00 450 94.22 400 93.00 400 91.60 
7 100 94.67 400 94.22 350 93.17 350 91.60 

DWTFOSLBPri 

1 50 82.67 50 78.67 50 76.17 50 73.87 
2 100 91.00 150 89.11 100 85.83 50 83.07 
3 150 95.00 150 92.67 100 90.83 200 88.80 
4 150 95.67 300 94.89 200 92.67 250 91.20 
5 400 96.00 200 94.67 250 93.67 50 91.33 
6 150 95.67 150 94.67 350 94.00 300 91.20 
7 250 96.00 400 95.33 400 93.33 250 91.47 

DWTFOSLBPriu2 

1 30 78.33 30 72.67 50 70.33 30 68.33 
2 50 88.33 50 87.78 75 84.50 50 80.67 
3 100 92.00 50 90.22 100 88.33 100 87.60 
4 150 94.33 100 92.67 150 92.83 150 90.27 
5 150 95.00 100 93.11 150 92.50 150 90.27 
6 150 94.67 200 93.56 150 92.67 100 90.13 
7 250 94.33 200 93.33 200 92.67 250 90.00 

DWT FOSLBP-HF 

1 100 85.67 50 80.89 50 78.17 50 76.80 
2 200 89.67 150 89.33 150 86.33 250 84.00 
3 100 91.67 200 91.56 200 89.67 200 88.53 
4 250 94.67 250 94.22 250 93.33 150 90.67 
5 300 96.00 400 94.67 150 93.00 300 91.60 
6 150 95.67 150 95.33 400 93.33 300 91.60 
7 550 95.67 400 94.44 250 93.67 400 91.47 

RF classifier: The mRMR feature selection based feature vector data of DWTFOSLBPri 

technique yields the best classification accuracy of 96% (250 features), 95.33% (400 features), 

94% (350 features) and 91.47% (250 features) for 80/20, 70/30, 60/40 and 50/50 training and 

testing ratios of RDD, respectively (Table 6.22). The aforesaid classification accuracies have 

been achieved for the feature vector data of DWTFOSLBPri technique at the 6th (60/40) and 7th 

(80/20, 70/30 & 50/50) levels of image decomposition. 

The graphical illustration of mRMR feature selection reduced feature vector data of DWT 

based hybrid texture feature extraction techniques for RGB images are shown in Fig. 6.37, Fig. 

6.38, Fig. 6.39 and Fig. 6.40 for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of 
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RDD, respectively. It is clearly visible that the mRMR feature selection reduced feature vector 

data has given the best classification accuracy with both linear SVM and RBF kernel SVM 

classifier, whereas RF classifier has achieved lowest classification accuracy among the three 

classifiers. Thus, incorporating mRMR method for feature selection has improved the 

performance of DWT based hybrid texture feature extraction techniques (RGB images) for 

hardwood species classification with low-dimensional feature vector data. 

 

 

Fig. 6.39 Classification accuracy achieved for 60/40 proportion of training and testing data of RDD. 

 

 

Fig. 6.40 Classification accuracy achieved for 50/50 proportion of training and testing data of RDD. 
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Further, other DWT based hybrid texture feature extraction techniques (RGB images) 

have improved the classification accuracy in comparison to the DWT based hybrid texture 

feature extraction techniques (grayscale images) and LBP variants texture feature extraction 

techniques. Also, employing mRMR feature selection technique for reducing the number of 

features has given much better classification accuracy results compared to the FFVD, that too 

with lower-dimensional feature vector data. The above analysis suggests that DWT based hybrid 

texture feature extraction techniques acquire significant features of the images and are well 

suited for the classification of hardwood species using both the 10-fold cross validation and RDD 

approaches.  

The FOS and variants of LBP techniques are simple yet computationally efficient feature 

extraction techniques. For a given image, the LBP variants produce local texture descriptors 

while the FOS is a global texture descriptor. Thus, an effort has been made here to combine 

these descriptors to get the significant features of images at multiresolution without involving 

large increase in the number of features. This is the reason why combination of FOS and 

variants of LBP at multiresolution have been chosen here.  

Furthermore, the FFVD produced by most of the variants of DWTFOSLBP techniques (for 

grayscale and RGB images) could not improve the classification accuracy significantly beyond 

the 4th to 6th levels of image decomposition, rather same or the lower classification accuracy 

have been reported as shown in Table 6.1 and Table 6.12. This happens because the 

subimages produced by DWT decomposition beyond the 4th/6th level of image decomposition 

do not encompass qualitative visible information (though statistically significant features do 

exist). In addition, inclusion of further levels of image decomposition gives rise to computation 

time without considerable improvement in the classification accuracy. Therefore, in this work up 

to 7 levels of image decomposition by DWT has been performed. An important observation 

which is worthy to be noted here is that incorporating DWT with FOS and LBP variants has 

extracted distinct texture features of hardwood species image. Further, combining FOS and LBP 

features together at different levels of image decomposition improves discrimination capability 

of a classifier for hardwood species. 

6.4 SUMMARY 

The proposed work demonstrated the effectiveness of four variants of LBP texture features for 

the classification of hardwood species into 75 different categories by using DWT based hybrid 

texture feature extraction techniques. These techniques integrate the multiresolution capability 

of DWT with FOS and variants of LBP. Initially, the images have been decomposed using DWT 

and then texture features are extracted from these images by FOS and LBP variants. The 

effectiveness of the proposed techniques has been investigated on an open access database 

of hardwood species consisting of 1500 microscopic images samples of 75 hardwood species 
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using 10-fold cross validation and RDD approach. The performance of the texture features 

obtained by the proposed techniques at 7 different levels of images decomposition is evaluated 

in terms of classification accuracy by using linear SVM, RBF kernel SVM, LDA and RF 

classifiers.  

The comprehensive analysis of the results produced by 10-fold cross validation approach 

shows that amongst the proposed texture feature extraction techniques the DWTFOSLBPu2 has 

obtained best classification accuracy of 97.67±0.79% and 98.40±0.64% for grayscale and RGB 

images, respectively. These accuracies are achieved for FFVD of DWTFOSLBPu2 using linear 

SVM classifier.  

Further, the PCA dimensionality reduced feature vector data of the DWTFOSLBPu2 texture 

feature extraction technique has achieved the best classification accuracy of 97.93±1.39% (100 

features) using RBF kernel SVM classifier (at the 5th level of image decomposition) for grayscale 

images; while a classification accuracy of 98.53±0.69% (450 features) has been achieved for 

the DWTFOSLBPu2 texture feature extraction technique (at the 4th level of image decomposition) 

for RGB images using linear SVM classifier.  

Furthermore, the reduction in feature vector data is achieved by mRMR feature selection 

method and it is seen that DWTFOSLBP-HF texture features using linear SVM classifier 

produces the best classification accuracy of 99.00±0.79% (275 features) and 99.20±0.42% (300 

features) at the 5th and 6th level of image decomposition for grayscale and RGB images, 

respectively. Also, texture features obtained by proposed techniques classified by RBF kernel 

SVM classifier has also delivered comparable classification accuracy for both RGB and 

grayscale images.  

In case of randomly dividing the database into fixed proportions (80/20, 70/30, 60/40 and 

50/50) of training and testing ratios, the usage of DWT based hybrid texture features have 

achieved superior results. Amongst the proposed texture feature extraction techniques the 

DWTFOSLBPriu2 has obtained the best classification accuracy of 95.33, 94.22, 92.83, 91.73 and 

96.67, 96.44, 93.83, 92.27 for grayscale and RGB images, respectively. These accuracies are 

achieved for FFVD of DWTFOSLBPriu2 technique at the 4th and 6th levels of image decomposition 

for grayscale and RGB images, respectively, using linear SVM classifier.  

Further, the PCA dimensionality reduced feature vector data of the DWTFOSLBPriu2 

texture feature extraction technique using LDA classifier has achieved the best classification 

accuracy of 96.33% (150 features), 95.56% (260 features), 94.17% (200 features), 93.73% (200 

features) and 97.67% (200 features), 97.33% (150 features), 95.50% (150 features) 94.40% 

(200 features) for grayscale and RGB images, respectively.  

Furthermore, the reduction in feature vector data is achieved by mRMR feature selection 

method and it is seen that DWTFOSLBP-HF texture features achieved the best classification 

accuracy of 96.33% (200 features), 95.56% (200 features), 94% (200 features), and 93.47% 
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(150 features) with linear SVM classifier for grayscale images. Further, DWTFOSLBP-HF 

texture features achieved the best classification accuracy of 97.33% (500 features), 97.11% 

(200 features), 95.00% (350 features) 94.93% (200 features) for RGB images using RBF kernel 

SVM classifier. 

The classification accuracy achieved by the features produced by the proposed 

techniques is based on the use of Daubechies wavelet (db3) for image decomposition. It worth 

pointing out that, the texture features acquired by DWT based hybrid texture feature extraction 

techniques for hardwood species are of excellent quality and no significant information loss is 

reported when features of grayscale image is employed for the classification. Further the slight 

improvement in the classification accuracy for the RGB images (99.20±0.42%) compared to 

grayscale images (99.00±0.79%) for mRMR based reduced feature dataset of DWTFOSLBP-

HF technique is achieved at the cost of almost thrice the computational time taken by RGB 

images to extract features from these images.
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CHAPTER 7. SEGMENTATION AND DETERMINATION OF VESSEL 
ELEMENTS  

This chapter observes the digital image processing methods used to extract the vessel elements 

of hardwood species images and measure the hydraulic conductivity of each of the vessels and 

thereby specifying the hydraulic conductivity of the hardwood trees. It starts with concise 

introduction of techniques used for accomplishing the task, the methodology of vessel elements 

determination and finding their hydraulic conductivity.  

7.1 INTRODUCTION 

There are lot of variations in the density [123] and strength of wood of different species. These 

variations are characterized by the size and density of vessel elements present in the secondary 

xylem. The heartwood of balsa (Ochroma pyramidale) possess large vessel elements, and is 

correspondingly light in density, while the heartwood of the Brazilian ironwood (Caesalpinia 

ferrea) has small vessel elements and are found to be very dense [256].  

The examination of vessel elements (especially secondary xylem vessel elements) 

provides significant information that may be quite useful to the wood anatomist. Some of the 

useful features are the wall size (thick or thin), diameter (narrow or wide), length of vessel 

elements and number of vessel elements per mm2. The part of the deviation in the vessel 

characters may be the outcome of functional adaptations to different climatic zones and 

environments, particularly with reference to conductive efficiency and safety [110]. The plants 

having thick-walled vessel elements are likely to be found in dry areas [13, 29] and these thick-

walled vessel elements might contribute to the strength of the wood.  

The large diameter vessel elements offer minimal friction and add in to greater conductive 

efficiency [11, 245]. However, the narrow vessel elements may not be considered as a form of 

conductive inefficiency. Further, the plants have various lengths of vessels. The long vessels 

characterize the wide earlywood vessels; vessels in latewood are shorter. The longer vessels 

endorse better conductive efficiency, whereas, shorter vessels advocate greater safety. 

The above discussion suggests that the study of wood anatomical structures may be 

helpful in describing the contribution of each of the elements of hardwood species. In this study, 

the work is confined to the extraction of vessel elements of hardwood species. The vessel 

elements have key contribution in the transportation of water from the roots to leaves of tree. 

Once, the vessel elements are delineated from other elements (rays, parenchyma and fibers) of 

hardwood species, the next task is to measure area and diameter of these elements. In addition, 

the hydraulic conductivity and lumen resistivity of each of the vessel elements are calculated.  

In the year 2013, Scholz et al., [182] have carried out an investigation on various 

techniques useful for the quantification of wood conduits. The study reports several image 
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analysis tools [50] for the quantification of wood; which are useful in better understanding of 

wood anatomy. The traditional techniques of vessel elements measurement (diameter, number 

of vessels per mm2) make use of light microscopy images. Since the definitions and 

methodology used to acquire the anatomical features amongst the anatomist vary considerably, 

the difficulty arises in achieving reliable and unbiased data. Several techniques of quantification 

of xylem conduits (vessels, tracheid) are available. These techniques have certain advantages 

and disadvantages associated with them [185].  

In the year 2009, Yu et al., [229] have suggested use of computers to measure the cellular 

tissue proportions of broad leaved (vessel, fiber and xylem ray) and coniferous (resin canal 

tracheid and ray) trees. The results attained with the machine vison based systems are found 

to be accurate, efficient and time saving compared to conventional methods (weighing and grid 

counting). Further, the pore (vessel elements present in cross-sectional view) features of 

hardwood species have been extracted using mathematical morphology by QI et al. [178]. An 

adaptive method (genetic algorithm) was employed by Wang et al. [209] to obtain optimal 

threshold of closed region area for pore segmentation.  

 Pan and Kudo [159] have used the radius of structuring element decided by the 

mathematical morphology with a variable structuring element, which has resulted into decent 

quality segmentation for 25 out of 30 wood samples, whereas 5 samples were found to have 

conflicting radii. The only shortcoming noticeable was, the time required to execute the 

segmentation task was considerably on the higher side. Though there are several machine 

vision based techniques proposed for wood quantification [128,182], but each of them have 

related drawbacks.  

Some other approaches of vessel elements extraction from the microscopic images have 

also been suggested by the researchers. The ROXAS is one such software available for 

segmentation and extraction of elements of hardwood species [206, 207, 215]. But, the ROXAS 

software only works with Image Pro Plus software. Thus, in this work an effort has been made 

to propose a platform independent tool based on simple digital image processing technique to 

quantify wood vessel elements and measure the hydraulic conductivity and lumen resistivity of 

the vessel elements. 

7.2 IMAGE DATABASE 

Wood samples were obtained from the Xylarium (DDw) of the Wood Anatomy Discipline of the 

Forest Research Institute, Dehradun. Small blocks of the authentic wood samples were boiled 

for softening and then cooled. Small wood blocks were taken out and cross, radial and tangential 

sections were prepared (sections were cut on a Reichert sliding microtome). These sections 

were stained in haematoxylin and then counter stained in safranin. Standard laboratory 

procedure was followed for mounting the sections after dehydrating them through the alcohol 
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series. Photomicrographs of cross, radial and tangential sections and other diagnostic features 

were prepared. The images are acquired at 5x zoom by Carl Zeiss Axio Scope.A1 polarized 

light microscope. These images have a resolution of 1044 1388 , and each pixel value 

corresponds to 1.2824 µm  

7.3 METHODOLOGY 

The procedure adapted to accomplish the task of vessel elements delineation out of the four 

key elements of hardwood species are illustrated in Fig. 7.1. A brief description of these 

procedures are presented below: 

 

Fig. 7.1 Flow chart to compute the hydraulic conductivity of the vessel elements 
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 RGB to Grayscale Conversion 

The RGB images acquired by light microscopes’ were converted to grayscale image with the 

help of Eq. (2.41) in order to reduce the computational burden of the system. 

 Image Enhancement 

The grayscale images are required to be processed in order to enhance the image quality. Thus, 

gray level enhancement techniques such as contrast stretching, histogram equalization and 

contrast-limited adaptive histogram equalization are investigated here. All the three techniques 

have given more or less comparable results. Therefore, in this work to enhance the quality of 

grayscale image the contrast of the image is increased by mapping the values of the input 

grayscale images to new values in such a way that 1% of the data is saturated at lower and 

higher intensity levels of the input data. 

 Image Gradient 

The visually enhanced grayscale images are processed by edge detection algorithms. Amongst 

the available basic edge detection algorithms, Sobel operator is a widely used algorithm (gives 

isotropic results for horizontal and vertical edges), which produces an image having emphasized 

edges and transitions [190]. The reason for selection of Sobel mask is its immunity to noise (an 

important concern to be dealt with derivatives) during the process of detection of edges. This 

operator uses two 3×3  kernels namely xg  and yg , which are convolved with the grayscale 

images to compute the derivatives in vertical and horizontal directions, respectively.  

 Image Segmentation and Morphological Operations 

The most important task of this method is to precisely segment the grayscale images in order to 

obtain the binary image. Though several techniques are available for image segmentation such 

as edge based, region based and now a days active contour based techniques are preferred. 

But the region based and contour based image segmentation methods have prior requirement 

of providing seed points and region of interest (ROI), respectively, for optimal image 

segmentation. The key problem that arises in the segmentation of microscopic images of 

hardwood specie is large number of object having different shapes and sizes. Therefore, the 

selection of seed points and ROI for region based and active contour based images 

segmentation techniques is a difficult issue to deal with. Therefore, out of the several widely 

used thresholding based image segmentation techniques, Otsu’s [131, 155] thresholding 

technique has been chosen. The Otsu’s thresholding algorithms has been widely used for 

grayscale image segmentation because of optimal thresholding and minimal computational time 

requirement [64]. The optimum threshold value produced by the thresholding technique is then 

used to binarize the images by setting value 1 (white) to pixels having intensity value greater 
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than optimum threshold values and all other pixel intensity values are set to 0 (black). Further, 

the morphological operator hole filling is employed to fill the smaller regions that give impression 

of background region, but in fact it is part of the object of interest. 

 Measurement of Objects 

The next important task has been to compute the area, major axis length, minor axis length, 

orientation and eccentricity of each of the objects detected in the binary images. This has been 

accomplished with the help of Matlab command “regionprops”, which returns measurements for 

the set of properties specified by properties for each of the connected components (object) in 

the binary image. The binary image of the hardwood species contains four key elements, 

namely, vessels, rays, parenchymas and fibers. It is observed that the vessel elements of the 

microscopic image have large variation in their size and shape (most of the time they have 

elliptical shape). Thus, there are chances of false recognition of vessel elements as the 

parenchyma elements are of similar shape but they differ in size (tiny elements) only. Thus, to 

differentiate the vessel elements from parenchymas, the size of the objects has been 

considered. Further, to differentiate vessel elements from ray and fiber elements, the orientation, 

eccentricity, major axis length and minor axis length of the objects has been taken into 

consideration.  

The traditional approach of computing the tangential diameter of the vessel element is to 

measure it along its widest tangential axis for a minimum number of randomly selected specified 

vessels and calculate the minimum, maximum and average values of it. Though, the approach 

is simple, it has a drawback that the shape and hydraulic conductance of the conduits (vessels) 

are not considered [28]. Also, the conduits are frequently elliptical and rarely found to have 

circular shape in the cross-sectional area, therefore, it is preferable to calculate the arithmetic 

diameter rather than the tangential diameter. The alternate solution is to calculate the equivalent 

circle diameter as suggested by [47, 112, 192, 193] and expressed as: 

4AD


  (7.1) 

where, A represents the conduit surface area and D is the equivalent circle diameter. 

 Vessel Elements and their Hydraulic Conductivity 

The size and shape of vessel elements vary among different species. Thus, here the vessel 

elements are separated from other three key elements based on defining the minimum diameter 

of the vessel as threshold parameter. These steps will retain only vessel elements in the image. 

Further, morphological operator namely erosion may be used to separate connectivity between 

the vessel and misleading objects connected to it. Further, these objects (vessel elements) have 

area which contains both wall width and lumen area. Therefore, to delineate the wall width and 

lumen area of the vessel elements, the image having vessel elements only are multiplied with 
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complement of the image gradient obtained by application of Sobel masks’ to the enhanced gray 

scale image. The resulting images emphasizes the wall width of the vessel elements. From the 

Sobel gradient images, the wall width of the vessel element is obtained by boundary extraction 

method. Then, from this image the separated vessel elements’ image have been subtracted to 

obtain the information about the lumen area of the vessel elements. Once the image containing 

vessel lumen area is produced, the diameter of each of the elements are calculated. Finally, the 

hydraulic conductivity ( hK ) [112] of the vessel elements are computed using Eq. (7.2) which is 

based on Hagen-Poiseuille law [204]: 

4
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  (7.2) 

where, D represents the equivalent circle diameter of the vessels as given by Eq. (7.1), 

and   ( 91.002 10 MPa at 20 C ) signifies the viscosity index of water. The unit of hK  is

4 -1 -1m MPa ×s . Also, the lumen resistivity ( LR ) is measured by Eq. (7.3), or lumen resistivity is 

reciprocal of hydraulic conductivity as given by Eq. (7.4), 
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The unit of LR is
-4m MPas .  

7.4 EXPERIMENTAL RESULTS AND DISCUSSION 

In this experimentation work, light microscopic images of 14 species have been used to examine 

the performance of proposed segmentation, vessel elements extraction and measurement of 

their hydraulic conductivity. The hardwood species used in the present work are listed in Table 

7.1. Here, Sr. No. 10 and 11 presents two different images of Elaeagnus latifolia specie, 

whereas, Sr. No. 15 and 16 presents different images of Carissa opaca species whose 

accession numbers are also listed in Table 7.1.  

The Tectona grandis specie image examined with the proposed technique has produced 

promising results which are illustrated in Fig. 7.2 and Fig. 7.3. The Fig. 7.2 (a) to (f) presents 

RGB image, grayscale image, grayscale image enhanced with contrast adjustment, Sobel mask 

based gradient image, complement of gradient image and the binary image obtained using 

Otsu’s thresholding algorithm. It has been observed that incorporating the image enhancement 

technique results in better image quality, which further improves the binary image conversion 

process. The Sobel mask based image gradient of the enhanced grayscale image is shown in 

Fig. 7.2 (d).To obtain the wall width region of the vessel elements complement of the gradient 

image has been implemented which is illustrated in Fig. 7.2 (e). Subsequently, the vessel 

elements are extracted by setting the following parameters, the structuring element of disk 

shape (d=1) has been used in the erosion process in order to separate two distinct objects 
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touching each other, equivalent diameter of the vessel (D=30), orientation (between 65° to 98°) 

and the ratio of major axis length to minor axis length. The need for ratio parameter arises 

because the vessel elements are not necessarily bound to have circular shapes; most of the 

time they have elliptical or tubular shape. 

Table 7.1 List of the 14 hardwood species  

Sr. No. Family Species Accession number 

1 Lamiaceae Tectona grandis DDw3714 

2 Bignoniaceae Spathodea campanulata DDw3975 

3 Rosaceae Rubus ellipticus DDw2367 

4 Rosaceae Rosa lechenauitiana DDw3801 

5 Punicaceae Punica granatum  DDw4706 

6 Asclepidaceae Ardisia humilis DDw3463 

7 Myrsinaceae Embelia floribunda DDw3294 

8 Menispermiaceae Stephania rotunda DDw5367 

9 Loganiaceae Buddleja paniculata DDw2882 

10 Elaeagnaceae Elaeagnus latifolia DDw4454 

11 Elaeagnaceae Elaeagnus latifolia DDw3804 

12 Gesneraceae Haematoxylon campechianum DDw4559 

13 Berberidaceae Berberis lyceum DDw3054 

14 Asteraceae Senecio corymbosus DDw3787 

15 Apocynaceae Carissa opaca DDw3511 

16 Apocynaceae Carissa opaca DDw3518 

 

Further, ray elements sometimes may have shape that matches with vessel elements, but 

since the rays mostly have vertical orientation (between 60° to 110°). Therefore, the orientation 

parameter has also been taken in to consideration to differentiate between vessel and ray 

elements. Using the above discussed parameters, it became possible to extract the vessels 

elements of the light microscopic image as shown in Fig. 7.3 (a). The multiplication of 

complement gradient image with extracted vessel elements are shown in Fig. 7.3(c), which 

emphasizes the information about the wall width of the vessel elements. Further, the vessel wall 

width area has been shown in Fig. 7.3 (d). Though, some openings are visible but it gives the 

overall idea about the width and shape of the wall. The lumen area of the vessel element is also 

illustrated in Fig. 7.3 (e). The visual comparison of Fig. 7.3 (b) and Fig. 7.3 (e) depicts that there 

is considerable difference between these two images. 
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Fig. 7.2 (a) RGB image, b) grayscale image, (c),image enhancement using contrast adjustment, (d), 
gradient image obtained by application of Sobel mask to the enhanced grayscale image (e) complement 

of gradient image, and (f) binary image, for Tectona grandis specie image. 
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Fig. 7.3 (a) binary image with hole filling, (b) extracted vessel elements, (c) image produced by 
multiplication of complement gradient image and extracted vessel elements objects, (d) wall width of 

vessel elements, and (e) vessel lumen area, for Tectona grandis specie image. 

Finally, the hydraulic conductivity ( hK ) and lumen resistivity ( LR ) of each of the vessel 

elements are calculated by considering the lumen area of the vessel elements. For Tectona 

grandis specie image the average value of hK  and LR  are found to be 8.87669E+15 and 

4.45321E-15, respectively.  
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Table 7.2 Parameters chosen for vessel elements extraction and the average hydraulic conductivity and 
lumen resistivity of the given specie image. 

Sr. 
No. 

Species Vessel 
segmentation 
parameters 

Hydraulic  

conductivity ( hK )

4 -1 -1m MPa ×s  

Lumen Resistivity ( LR ) 

-4m MPas  (E= 10) 

1 Tectona grandis d=1, D=30 8.87669E+15 4.45321E-15 

2 Spathodea campanulata d=3, D=25 1.08031E+15 2.98923E-15 

3 Rubus ellipticus d=1, D=15 1.29643E+14 5.12067E-14 

4 Rosa lechenauitiana d=4, D=20 1.0365E+15 1.67685E-14 

5 Punica granatum   d=4, D=8 6.6544E+13 9.50128E-14 

6 Ardisia humilis d=4, D=25 1.17369E+14 1.46358E-14 

7 Embelia floribunda d=4, D=20 3.79676E+15 5.96173E-15 

8 Stephania rotunda d=4, D=35 9.43799E+15 1.06875E-15 

9 Buddleja paniculata d=1, D=5 1.21167E+12 4.67416E-12 

10 Elaeagnus latifolia d=2, D=15 9.7993E+13 3.20037E-14 

11 Elaeagnus latifolia d=2, D=10 1.01237E+14 4.46697E-14 

12 Haematoxylon 

campechianum 

d=3, D=15 3.34495E+13 5.8297E-14 

13 Berberis lyceum d=3, D=8 4.9398E+12 4.44056E-13 

14 Senecio corymbosus d=4, D=8 2.89239E+13 1.00074E-13 

15 Carissa opaca d=2, D=4 1.22475E+12 1.75879E-12 

16 Carissa opaca d=1, D=4 1.35794E+12 3.4172E-12 

The Spathodea campanulata specie image has also been processed by using the 

proposed methodology and the obtained results are being illustrated in Fig. 7.4 (a) to (f) and Fig. 

7.5 (a) to (e). Using the selected set of parameters listed in Table 7.2, the vessel elements have 

been easily separable with the proposed approach. Further, the hydraulic conductivity and the 

lumen resistivity of the vessel elements have been computed and the average values of these 

parameters are listed in Table 7.2. 

The average value of hydraulic conductivity and lumen resistivity for rest of the specie 

images listed in Table 7.2 are also presented here to show that the proposed methodology has 

also performed well for variety of images. The results obtained for each of the specie images 

are illustrated in Fig. 7.6 (a) to (e), Fig. 7.7 (a) to (e), and Fig. 7.8 (a) to (d). In these figures, 

column 1, 2, and 3 depicts RGB image, enhanced grayscale image and extracted vessel 

elements, respectively. 
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Fig. 7.4 (a) RGB image, b) grayscale image, (c),image enhancement using contrast adjustment, (d), 
gradient image obtained by application of Sobel mask to the enhanced grayscale image (e) complement 

of gradient image, and (f) binary image, for Spathodea campanulata specie image 
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Fig. 7.5 (a) binary image with hole filling, (b) extracted vessel elements, (c) image produced by 
multiplication of complement gradient image and extracted vessel elements objects, (d) wall width of 

vessel elements, and (e) vessel lumen area, for Spathodea campanulata specie image. 
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Fig. 7.6 Column 1, 2, and 3 depicts RGB image, enhanced grayscale image and extracted vessel 
elements, respectively for microscopic images of a) Rubus ellipticus (DDw2367), b) Rosa 

lechenauitiana (DDw3801), c) Punica granatum (DDw4706), d) Ardisia humilis (DDw3463), and e) 
Embelia floribunda (DDw 3294) species. 
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Fig. 7.7 Column 1, 2, and 3 depicts RGB image, enhanced grayscale image and extracted vessel 
elements, respectively for microscopic images of a) Stephania rotunda (DDw5367), b) Buddleja 

paniculata (DDw2882), c) Elaeagnus latifolia (DDw4454), d) Elaeagnus latifolia (DDw3804), and e) 
Haematoxylon campechianum (DDw4559) species. 
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Fig. 7.8 Column 1, 2, and 3 depicts RGB image, enhanced grayscale image and extracted vessel 
elements, respectively for microscopic images of a) Berberis lyceum (DDw3054), b) Senecio 

corymbosus (DDw3787), c) Carissa opaca (DDw3511), and d) Carissa opaca (DDw3518) species. 

The analysis of the segmentation results suggests that the proposed approach has been 

able to extract the vessel elements clearly for most of the images. But in Fig. 7.7 (e) it is found 

that in 3rd column, one of the object extracted as vessel element is in fact combination of vessel 

and parenchyma elements which has been highlighted with red circle. This has happened 

because the RGB image of the same specie has blurred parenchyma section surrounding that 

particular vessel element. 
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7.5 SUMMARY 

This chapter presents an approach to segment the light microscopic images of hardwood 

species and then extract only the vessel elements of these images. In this work an effort has 

been made to propose a platform independent tool based on simple digital image processing 

technique to quantify wood conduits (especially vessel elements at present). A prototype model 

has been developed and has been tested on several microscopic images prepared at the 

Xylarium (DDw) of the Wood Anatomy Discipline of the Forest Research Institute, Dehradun. 

The analysis of the experimental work suggest that for most of the images, with the help of 

appropriate parameter selection, the vessel elements were being extracted. In one of the case 

the identified vessel element area was in fact the area of vessel element plus the surrounding 

parenchyma elements area. The close observation of the aforesaid object in original RGB image 

suggests that the parenchyma elements surrounding the vessel elements have higher intensity 

level compared to other parenchyma elements. Further, since the binarization process is 

accomplished by intensity based thresholding approach, which allows parenchyma elements to 

be treated as vessel elements. Further, along with the extraction of vessel elements the 

proposed model is capable of computing the hydraulic conductivity and lumen resistivity of the 

vessel elements. 
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CHAPTER 8. CONCLUSIONS AND SCOPE FOR FUTURE WORK 

8.1 CONCLUSIONS 

In this research work, the emphasis has been given to the design and development of some 

suitable texture feature extraction techniques for the classification of microscopic images of 

hardwood species into 75 categories. The effectiveness of the proposed techniques have been 

investigated on an open access database of hardwood species consisting of 1500 microscopic 

images samples of 75 hardwood species.  

To accomplish the classification task efficiently, a comparative study of several state-of-

the-art texture feature extraction techniques have been carried out to select the simple yet 

computationally efficient texture feature extraction techniques. Further, the performance of 

these techniques have been improved by extracting the texture features from multiresolution 

images and concatenating them to form a feature vector data. The feature vector data produced 

by these techniques have been normalized in the range 0 to 1, to give equal weightage to all 

the features, before applying it as input to the classifiers.  

The multiresolution feature extraction techniques have produced large number of complex 

features that may limit the classification accuracy. Therefore, PCA (as dimensionality reduction) 

and mRMR (feature selection) techniques have been employed to reduce the feature vector 

data dimension. Further, to enhance the classification accuracy, four widely used classification 

algorithms namely, linear SVM, RBF kernel SVM, LDA and RF classifiers have been employed. 

To evaluate the performance of the state-of-the-art and proposed multiresolution feature 

extraction techniques, two approaches, namely 10-fold cross validation and randomly divided 

database have been adopted. Also, in both the approaches three cases are discussed (viz., 

FFVD, PCA reduced and mRMR feature selection based feature vector data). The best 

combination of the multiresolution feature extraction technique and classification algorithm has 

been selected based upon the maximum classification accuracy presented by them.  

In addition, a prototype for determination of vessel elements and computation of their 

hydraulic conductivity for hardwood species have been carried out; which in turn would assist 

the wood anatomist to characterize the wood species. 

Based upon the experimental outcomes, distinct conclusions have been drawn at different 

phases of the present work, which are summarized in the following subsections: 

 Performance of State-of-the-art Texture Feature Extraction Techniques 

The experimental results accomplished for 10-fold cross validation approach suggest that the 

FFVD and mRMR feature selection based feature vector data of BGP texture feature extraction 

technique has achieved best classification accuracy of 95.93±1.52% and 95.60±1.78% with 

linear SVM classifier. Moreover, the best classification accuracy of 96.33±1.14% has been 
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obtained on the PCA reduced feature vector data using CoALBP24 texture feature extraction 

technique with the help of LDA classifier, amongst several techniques examined here. The 

CoALBP12, CoALBP24, CoALBP48, Gabor filter, LBP and LTCoP feature extraction techniques 

have also produced results better than the rest of the other state-of-the-art texture feature 

extraction techniques.  

In case of RDD, the BGP texture feature extraction technique has achieved classification 

accuracy better than rest of the feature extraction techniques in all the three cases. However, 

the FFVD of BGP texture feature extraction technique has attained the best classification 

accuracies of 94.33%, 88%, 85.33% and 82.40% for 80/20, 70/30, 60/40 and 50/50 training and 

testing ratios of RDD, respectively, using linear SVM classifier.  

It is to be emphasized that Gabor filter, LTCoP and BGP techniques took around 9.3753, 

4.5533 and 2.6857 seconds, respectively, to extract the texture features of individual image. In 

addition, feature vector data of FOS technique has obtained lowest classification accuracy 

amongst the techniques tested here. The linear SVM, RBF kernel SVM and LDA classifier give 

better performance, whereas RF classifier gives poor performance, comparatively. 

 Performance of BWT based Texture Feature Extraction Techniques  

In this case, the mRMR feature selection based feature subset (200 features) of BWTCLBPri 

feature extraction technique (among all the variants of BWT based feature extraction 

techniques) has obtained maximum classification accuracy (96.87±1.18%) using RBF kernel 

SVM classifier for 10-fold cross validation approach. Further, the FFVD produced by BWTCLBPri 

feature extraction technique at the 3rd level of image decomposition yields 95.47±1.75% 

classification accuracy using linear SVM classifier. However, the LDA classifier has produced a 

classification accuracy of 95.73±0.84% for PCA reduced feature vector data of BWTCLBPriu2 

texture feature extraction technique (288 features). Thus, classification accuracy achieved by 

BWTCLBPri texture feature extraction technique is relatively better than the classification 

accuracy achieved by CoALBP24 texture feature extraction technique.  

Further, in RDD approach, amongst the three cases, the subset of feature vector data of 

BWTCLBPri technique selected by mRMR feature selection technique yields the best 

classification accuracies of 95.67% (250 features), 93.78% (150 features), 91.50% (250 

features) and 90.53% (250 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios 

of RDD, respectively, with linear SVM classifier. The aforementioned classification accuracies 

are much better than the classification accuracy produced by BGP (state-of-the-art) feature 

extraction technique.  

Further, it is worthwhile to point out that only MSB bit-plane of the gray scale image used 

by BWT based LBP variants texture feature extraction technique has achieved slightly better 

classification accuracy compared to 8-bit plane (grayscale) image used by CoALBP24 texture 
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feature extraction technique. Thus, the performance of LBP variants texture feature extraction 

techniques have been significantly improved by incorporating grayscale image transformation 

with gray-level slicing and BWT, followed by extraction of texture features from these 

transformed images. The MSB bit of grayscale image has significant information which can be 

used to deliver comparatively good classification accuracy using BWT transform.  

 Performance of GP based Texture Feature Extraction Techniques  

For 10-fold cross validation approach, amongst the GP based texture feature extraction 

techniques, the PCA reduced feature vector data of GPLPQ technique (500 features) yields the 

best classification accuracy of 98.73±1.15% with LDA classifier. However, the FFVD (1024 

features), and mRMR selected feature subset (550 features) of GPLPQ techniques have 

achieved the best classification accuracy of 98.20±1.04%, and 98.13±0.93%, respectively, by 

linear SVM classifier.  

In case of RDD, amongst the proposed texture feature extraction techniques, the PCA 

dimensionality reduced feature vector data of GPLCPriu2 technique has obtained the best 

classification accuracies of 96.33% (250 features), 96.22% (250 features), 94.67% (300 

features) and 93.73% (250 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios 

of RDD, respectively, using LDA classifier. Moreover, subset of feature vector data of GPLPQ 

technique selected by mRMR feature selection method yields relatively lower classification 

accuracy ( 95.67% (450 features), 92.89% (550 features), 90.67% (550 features) and 89.20% 

(400 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios of RDD, respectively), 

using linear SVM classifier. 

The analysis of the GP based texture feature extraction techniques suggests that the 

performance of variants of LBP, LCP and LPQ techniques have been significantly improved by 

incorporating Gaussian image pyramid based image decomposition, followed by extraction of 

texture features from these transformed images.  

 Performance of DWT based Texture Feature Extraction Techniques  

Critical analysis of the results obtained with 10-fold cross validation approach revealed that 

among all the proposed techniques, DWTCLBPu2 generates most discriminative texture 

features. The best classification accuracy of 97.40±1.06% has been obtained for DWTCLBPu2 

texture features at the 3rd level of image decomposition (1416 features) using linear SVM 

classifier.  

Further, reduced by PCA approach, the DWTCLBPu2 texture features have achieved 

superlative classification accuracy of 97.87±0.82% (325 features) with LDA classifier. 

Furthermore, incorporating the mRMR feature selection based texture features of DWTCLBPu2 
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technique have again obtained the best classification accuracy having value of 98.40±1.00% 

(550 features) with RBF kernel SVM classifier.  

It is important to note that the higher level of image decomposition by DWT produce low 

resolution images that do not carry qualitative visual information. Therefore, most of these 

techniques have shown decrement in classification accuracy beyond the 3rd level of image 

decomposition using full feature vector data.  

Similarly for RDD aaproach, amongst the proposed texture feature extraction techniques, 

the subset of feature vector data of DWTCLBPu2 selected by mRMR feature selection technique 

yields the best classification accuracies of 97.33% (350 features), 96.67% (350 features), 

94.33% (400 features) and 93.60% (350 features) for 80/20, 70/30, 60/40 and 50/50 training 

and testing ratios of RDD, respectively, using linear SVM classifier. Further, the PCA 

dimensionality reduced feature vector data of DWTCLBPu2 technique has obtained the 

classification accuracies of 95.67% (350 features), 94.22% (200 features), 92.67% (250 

features) and 92% (100 features) for 80/20, 70/30, 60/40 and 50/50 training and testing ratios 

of RDD, respectively, using LDA classifier. Furthermore, the FFVD of DWTCLBPu2 technique 

achieved a classification accuracy of 94.33%, 92.67%, 92.17% and 90.93% for 80/20, 70/30, 

60/40 and 50/50 training and testing ratios of RDD, respectively, using linear SVM classifier.  

Hence, it can be concluded that the texture features extracted by the DWT based texture 

feature extraction techniques for hardwood species are also of excellent quality, as it is evident 

from the classification accuracy obtained by all the classifiers.  

 Performance of DWT based Hybrid Texture Feature Extraction Techniques  

The DWT based hybrid texture feature extraction techniques integrate the multiresolution 

capability of DWT with FOS and variants of LBP. The comprehensive analysis of the results 

produced by 10-fold cross validation approach shows that amongst the proposed texture feature 

extraction techniques the FFVD of DWTFOSLBPu2 has obtained classification accuracy of 

97.67±0.79% and 98.40±0.64% for grayscale and RGB images, respectively, using linear SVM 

classifier. Further, the PCA reduced feature vector data of the DWTFOSLBPu2 texture feature 

extraction technique has achieved 97.93±1.39% (100 features) classification accuracy using 

RBF kernel SVM classifier for grayscale images. While a classification accuracy of 98.53±0.69% 

(450 features) has been achieved for the DWTFOSLBPu2 texture feature extraction technique 

for RGB images using linear SVM classifier. Furthermore, the mRMR feature selection based 

subset of DWTFOSLBP-HF texture features produces the best classification accuracy of 

99.00±0.79% (275 features) and 99.20±0.42% (300 features) for grayscale and RGB images, 

respectively, using linear SVM classifier.  

In case of RDD, the FFVD of DWTFOSLBPriu2  technique has obtained the classification 

accuracies of 95.33%, 94.22%, 92.83%, 91.73% and 96.67%, 95.78%, 93.33%, 92.20%, 
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respectively for grayscale and RGB images (for 80/20, 70/30, 60/40 and 50/50 training and 

testing ratios). These accuracies are achieved at the 4th and 6th IDL for grayscale and RGB 

images, respectively, using linear SVM classifier. Further, the PCA reduced feature vector data 

of the DWTFOSLBPriu2 texture feature extraction technique using LDA classifier has achieved 

classification accuracies of 96.33% (150 features), 95.56% (260 features), 93.83% (260 

features), 93.73% (200 features), and 97.67% (200 features), 97.33% (150 features), 95.50% 

(150 features) 94.40% (200 features) for grayscale and RGB images, respectively. These 

accuracies are achieved for the feature vector data produced at the 5th IDL for grayscale and 

RGB images. Likewise, mRMR feature selection based subset of DWTFOSLBP-HF texture 

features achieved classification accuracies of 96.33% (200 features), 95.56% (200 features), 

94% (200 features), and 93.47% (150 features) with linear SVM classifier for grayscale images. 

Moreover, mRMR feature selection based subset of DWTFOSLBP-HF texture features achieved 

best classification accuracies of 97.33% (500 features), 97.11% (200 features), 95% (350 

features) 94.93% (200 features) for RGB images using RBF kernel SVM classifier. 

It is worth pointing out here that, in the case of texture features acquired by DWT based 

hybrid texture feature extraction techniques for hardwood species no significant information loss 

is observed when features of grayscale image is employed for the classification in place of RGB 

image. As it is seen that only a slight improvement (99.20±0.42% as compared to 99.00±0.79% 

for grayscale image) in the classification accuracy is achieved for the RGB images, at the cost 

of almost thrice the computational time taken by feature extraction techniques to extract texture 

features from grayscale image.  

 Segmentation and Determination of Vessel Elements 

In this section of work, an approach to segment the light microscopic images of hardwood 

species followed by vessel elements extraction has been proposed. A prototype model has been 

developed and has been tested on several microscopic images prepared at the Xylarium (DDw) 

of the Wood Anatomy Discipline of the Forest Research Institute, Dehradun. The analysis of the 

experimental work suggests that for most of the images, with the help of appropriate parameter 

selection, the vessel elements were being extracted. Moreover, in one of the case the identified 

vessel element area was in fact the area of vessel element plus the surrounding parenchyma 

elements area. The close observation of the aforesaid object in original RGB image suggests 

that the parenchyma elements surrounding the vessel elements have higher intensity level 

compared to other parenchyma elements. Besides, the extraction of vessel elements the 

proposed model is also capable of computing the hydraulic conductivity and lumen resistivity of 

the vessel elements.  

Finally, it is stated that the multiresolution feature extraction techniques proposed for the 

classification of microscopic images of hardwood species have extracted significant features of 
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the images. Further, employing the PCA and mRMR as feature dimensionality reduction and 

feature selection techniques have given value addition to the proposed approaches. Amongst 

all the proposed techniques the DWTFOSLBP-HF texture feature extraction technique has given 

the best classification accuracy. Another important finding of this work has been that texture 

features extracted from grayscale images do not suffer from information loss compared to 

texture features extracted from RGB images. 

8.2 SCOPE FOR THE FUTURE WORK 

Even though comprehensive experimental work has been done here, to improve the 

classification accuracy of hardwood species, following are some of the suggestions for 

implementation in future research work in this field: 

 The proposed approach has used selected mother wavelets to decompose the images by 

DWT. Several other mother wavelets may be investigated to see their effect on the feature 

extraction and classification of hardwood species. 

 In this study, the PCA (dimensionality reduction) and mRMR (features selection) techniques 

have been used to reduce the dimension of feature vector data. Some other techniques such 

as Kernel PCA (dimensionality reduction), genetic algorithm, and correlation based feature 

selection may be investigated to reduce the feature vector data. 

 Further, to get the multiresolution images, the BWT, GP and DWT have been employed. 

Several other multiresolution techniques, namely, fractional wavelet transform (FRWT) and 

dual tree complex wavelet transform (DTCWT) may be investigated to produce significant 

texture features  

 In this work, a prototype model has been proposed for the segmentation and determination 

of conduits of wood (especially vessel elements). This can further be extended to delineate 

the other key elements of hardwood species viz., parenchymas, rays and fibres. 

 A single enhancement technique may not be helpful in improving the quality of all the 

hardwood species images. Thus, other enhancements techniques may further be employed 

to improve the visual quality of the image. 

 Further, In order to extract the vessel elements, Otsu’s thresholding algorithm has been used 

in this work. Since the threshloding algorithm plays vital role in the segmentation of grayscale 

image to obtain binary image, the nature inspired algorithms namely artificial bee colony 

(ABC) and cuckoo search (CS) optimization algorithms may be investigated for determination 

of optimal thresholding value.  

 After compiling the ideas proposed in the present work, an expert system can also be 

designed and developed to assist the wood anatomist in characterising the key elements of 

hardwood species. 
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