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ABSTRACT 

The heart is a vital organ in humans and animals which circulates blood through blood 

vessels in the whole body. The blood provides nutrients and oxygen to all cells, and removes 

wastes of metabolism. Heart disease is the main killer of men and women in the world; 

particularly in the United States, Canada, England, and Asian countries. The common 

diseases of the heart areheart attack (Myocardial Infarction), arrhythmias and sudden cardiac 

arrest. Therefore, early detection and accurate diagnosis are  important issues in clinical 

practice of cardiologists and physicians. 

The cardiologist or physician identifies heart diseases on the basis of ECG signals. The 

electrocardiogram (ECG) is a noninvasive method for detecting heart diseases. The ECG 

signal basically represents normal or abnormal functioning of heart activity. The normal ECG 

signal generally consists of P-wave, QRS-complex and T wave. The cardiologists and 

physicians have defined rules and definitions for visual ECG analysis, which may have 

subjectivity and are not uniform, so computer based interpretation is the need of this day. 

The ECG signal analysis and classification involve acquisition of ECG data, pre-processing 

of ECG signals, detection of ECG wave complexes such QRS complex, P & T-wave, etc. 

Next, their wave boundaries such as Ponset-Poffset, QRSonset-QRSoffset and Tend are found and 

then clinical relevant intervals, such as P duration, duration of QRS complexes, ST-T interval 

and QT interval along with morphologies of each wave are determined. On the basis of ECG 

wave complexes, amplitude and wave interval features are extracted for classification. The 

aim of the present work is to do ECG analysis using simple approaches and then improve 

diagnostic performance.  

Recorded ECG signals contain noises and artifacts such as power line noise, baseline 

wander, motion artifacts, etc. In this work, removal of baseline wander and motion artifacts 

has been implemented for detection of QRS complexes. The second stage is detection of 

QRS complexes and wave components. Here, QRS complex detection of single and 

multilead ECG signals has been done by proposing a new algorithm. The detection of P and 

T wave has also been implemented in multilead ECG signals. The clinical parameters in 

ECG signal are calculated on the basis of boundary marking of P-QRS-T complexes, so 

marking boundaries of ECG wave complexes required accurate and reliable method. This 

has been achieved by proposed new algorithm. Diagnosis and classification of ECG signal 

required accurate and reliable method. Here classification of Myocardial Infarction, 

Cardiomyopathy, and bundle branch block has been done using the detected diagnostic 

parameters.   

Description of research work: The acquired raw ECG signal contains noises and 

artifacts. In this work we have developed a two stage median filter to remove baseline 
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wander using window width size fs/2 and fs for stage first and second in terms of sampling 

frequency (fs).  

Single lead QRS detection: A simple and efficient new method for QRS detection in the 

ECG is proposed in this research work. The initial data is preprocessed using two stage 

median filter for removing baseline drift. The second stage, enhances the peaks of ECG 

wave components by using the sixth power of the signal. The next stage identifies the QRS 

complex by taking a variable window size. The performance of the new algorithm is 

evaluated against the CSE, MIT/BIH AD, ESC ST-T and QT databases. These four standard 

databases were used to perform QRS detection and 368 cases were considered which were, 

tested on 10,06,168 beats and achieved overall average sensitivity 99.52% and positive 

predictivity of 99.69%. The QRS detection was also performed on 12 datasets of noisy, full 

length signals (118e24 to 118e_06 and 119e24 to 119e_06) from MIT–BIH Noise Stress Test 

Database and obtained performance is higher and comparable to other algorithms in 

literature.  

Multilead QRS detection: QRS detection in 12-Lead Electrocardiogram (ECG) using 

composite lead and peak enhancement method is proposed in this thesis. Initially raw signals 

of 12-Lead electrocardiogram having a sampling frequency fs are pre-processed for baseline 

wander removal using a two stage median filter with window widths of fs/2 and fs respectively. 

The point by point average of the preprocessed signals corresponding to 12-Leads is taken 

to generate a composite lead. In order to obtain a variable size search window for QRS 

detection, the composite lead is enhanced by the sixth power of the signal and its mean 

value is determined. The maximum value of the search space defined by the search window 

was mapped on the composite lead and other 12 ECG leads of 12-lead ECG individually for 

QRS detection. The performance of the algorithm is evaluated against the CSE multilead 

measurement database and St. Petersburg Institute of Cardiological Technic’s 12-lead 

Arrhythmia Database and PTB Database. The overall performance of the proposed method, 

using different standard multilead databases, such as CSE, PTB and St-Petersburg multilead 

Arrhythmia with different cases and, total 2,55,925 beat was analyzed. The overall average 

sensitivity of 99.24% and positive predictivity of 99.90% was achieved considering all 

different standard databases. 

Boundary marking of ECG wave components and diagnostic parameter detection: 

Boundary point’s detection in simultaneously recorded 12-Lead ECG signal using a 

composite lead is proposed in this work. The complexes of the composite lead are better 

enhanced and noise free compared to others in any of the 12 lead signals. After detection of 

the QRS location of composite lead QRSonset and  QRSoffset were determined by using the 

standard deviation method. Detection of P-wave location and onset-offset was carried out by 

using the standard deviation method and similarly T wave location was determined, and Tend 
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was marked. The performance of the algorithm is evaluated against the CSE multilead 

database, the main boundary marking of Ponset, Poffset, QRSonset, QRSoffset and Tend estimated 

are within limits recommended by the CSE working party. In this software we obtained 

unbiased measurement within specified limits.  

For automatic ECG analysis and diagnosis system a dominant beat is required for 

measurements and classification. The onsets of P, QRS and offsets of P, QRS and T wave 

are detected on the composite beat and boundary values of the composite beat were 

mapped in all the average beats of 12-Leads. After determination of P duration, QRS 

complex duration, ST-T complex interval and QT interval, and other parameters such as 

peak to peak amplitude, area, mean, standard deviation, skewness and kurtosis of P 

duration, QRS duration and ST-T complex interval of all average beats of 12-lead ECG are 

calculated. In this work disease diagnosis and classification were performed using different 

ECG lead arrangements with SVM and ANN classifiers.  

Detection of myocardial infarction has been performed using composite lead 

parameters and all 12 lead parameters with SVM and ANN classifiers and it is observed that 

ANN classifier obtained maximum accuracy in composite lead and all 12 lead systems. Also, 

it is observed that after reduction in dimensionality using PCA, obtained classification 

accuracy is 100% in both lead systems. Thus, it can be concluded that the composite lead 

system performed comparable and significant MI detection.    

Detection of cardiomyopathy has been performed using twenty two features from 

composite lead and 220 features from all 12 lead with SVM and ANN classifier. In this case 

performance of cardiomyopathy detection is higher in ANN classifier for both composite lead 

and all 12 lead system and it is observed that after reduction of dimensionality using PCA, 

performance of SVM and ANN classifiers decreased in both lead systems. Thus, it can be 

finally concluded that cardiomyopathy detection using ANN classifier with a composite lead 

system performs better than SVM.  

Detection of bundle branch block has been performed using extracted features of 

composite lead and all 12 Lead systems with SVM and ANN classifiers. In this study ANN 

classifier (accuracy with PCA: 80%, accuracy without PCA: 100%) performed better than 

SVM (accuracy with PCA: 68.75%, accuracy without PCA: 68.75%) with all 12 lead systems. 

The Computer Assisted ECG Analysis and Classification system is designed for 

healthy, myocardial infarction, cardiomyopathy and bundle branch block with ANN classifier 

using composite lead and all 12 lead features. In this case, classification accuracy obtained 

is 100% with the composite lead system using PTB annotated database.  

Thus, it can be finally concluded that the composite lead system contributes 

significantly for ECG analysis and classification systems. The overall work done in this thesis 

may be considered a positive and significant contribution in this field. 
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CHAPTER 1: INTRODUCTION 

This chapter explains the research work carried out in this thesis. It introduces the 

heart anatomy, the electrical conduction system of the heart, electrocardiogram, lead system, 

noise & artifacts in the recorded ECG signal, heart diseases, motivation, objectives of the 

present study and organization of the thesis. 

1.1 Overview 

The electrocardiograms (ECGs) are biological signals that originate from the muscles 

of the heart. These biological signals are basically the electrical signature of performance of 

the heart muscles that are either functioning normal or abnormal. These ECGs signals depict 

the health condition of the human body. Each ECG beat is represented by P-wave, QRS-

complex and T-wave. On the basis of ECG signal observation and analytical thinking, 

experienced cardiologists or clinicians diagnose heart diseases. These diagnoses or marking 

of ECG signals become gold standards which are referenced for further analysis of other 

similar heart diseases.  In the world, human population is increasing day by day, Number of  

physicians or clinicians are not sufficient to handle increasing number of patients, so 

computer based diagnosis is the need of the day. In present scenario for helping physicians 

or clinicians for fast diagnosis of heart diseases, automatic (computerized) ECG analysis is a 

must. Computerized ECG is generally of two types: computer assisted diagnosis and 

computer based monitoring of cardiac activities such as arrhythmias and ST-T changes. The 

computer assisted diagnostic system and monitoring started in last six decades. In this 

duration, many computer assisted diagnostic methods have been developed on the basis of 

different logic and methodologies [1-11]. 

1.2 The Heart Anatomy 

Fig. 1.1 depicts the schematic structure of the heart. The human heart is a muscular 

organ which pumps blood through the circulatory system. The walls of the heart consist of 

the cardiac muscles, known as myocardium. The heart is composed of four chambers with 

two atria for collection of deoxygenated and oxygenated blood known as right and left atria, 

respectively, and two ventricles for pumping deoxygenated and oxygenated blood to the 

lungs and all body cells called right ventricle and left ventricle, respectively. The heart has 

four valves for the proper functioning of pumping process, the tricuspid valve between the 

right atrium and right ventricle, the mitral valve between the left atrium and left ventricle, the 

pulmonary valve between the right ventricle and the pulmonary artery, and aortic valve 

between the left ventricle and the aorta [12]. 
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Fig. 1.1 Schematic structure of the heart 

1.2.1 The Electrical Conduction System of the Heart 

The electrical conduction is the major activity of the heart. It controls the rhythmic 

contractile activity of the heart. The sinoatrial node (SA node) is located in the right atrium 

close to the superior vena cava. This node is a group of self excitatory cells, and known as 

pacemaker cells. The atrioventricular node (AV node) is situated between atria and 

ventricles. The SA node generates excitation waves at the rate of about 70 pulses per 

minute. These waves propagate through the atria and reach the atrioventricular node, and its 

frequency is approximately 50 pulses per minute. From AV node, these wave propagates to 

the ventricles through bundle of His. bundle of His further splits into left bundle branches, 

right bundle branches and Purkinje system [13]. 

1.2.2 Electrocardiogram wave and its various components 

The Electrocardiogram (ECG) is an electrical activity of the heart, and recording of the 

electric potential, on the body surface. The ECG wave is composed of three major waves, 

such as P wave, QRS complex, and the T wave, and two segments such as PR and ST 

segment. In ECG signal different wave intervals and segments are depicted in Fig. 1.2 and 

detailed descriptions are given below: 
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Fig. 1.2 Electrocardiogram and its various components 

P wave: The initial part of P wave represents the electrical activity due to right atrium; 

the middle part of the P wave represents the completion of right atrial activation and initiation 

of left atrial activation; and the latter portion is generated due to left atrium. Its normal 

amplitude is about 0.1 - 0.2 mV. 

P wave duration: It is the duration for the depolarization process of both atria, 

sequentially right and left atria, its duration is about 60 - 80 ms.  

PR interval: The PR interval measures the time required for the atrial depolarization, 

through the AV node, bundle of His, bundle of branches, and Purkinje fibers up to start of 

depolarization of the ventricles. With normal conduction, the duration of this interval ranges 

from 120  to 200ms. 

PR segment: PR segment represents the period from the end of P wave point to the 

onset of QRS complex; it is generally ISO-electric and, normally ranges from 40 to 160 ms.  

QRS complex: The QRS complex represents the spread of electrical activation 

through the ventricular myocardium. The sharp, pointed deflections are labeled as QRS 

complex  regardless of their sign (positive or negative). 

QRS duration: It is defining the depolarization of the intraventricular septum and both 

ventricles sequentially i.e. from right and left. Its normal duration is about 60 to 120 ms. 

T wave: The T wave represents electrical recovery of the ventricles and it goes from 

200 to 300 ms after the QRS complex. It is sometimes merged with a P wave, and as a 

result, it becomes difficult to determine the end point of T wave. Its normal amplitude is about 

0.1-0.3 mV. 

T wave duration: The T wave duration is generally included in QT interval and its 

normal duration is about 120-160 ms. 

ST segment: The ST segment represents the period when both ventricles are 

depolarized and the next stage of depolarization is started. Its normal duration ranges from 

100 to 102 ms. 
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ST-T interval: The ST-T interval measures from the QRS complex offset to T end 

point. 

QT- interval: It is measured from the QRS complex onset to T endpoint, and 

commonly there is a variation in the various leads. Its normal range is from 350 to 400 ms. 

U wave: It is a small wave and takes after the T wave which is mentioned in some 

ECG records of some people. The U wave is basically monophasic and observed in healthy 

persons [14]. 

 

1.3 Lead System 

In the ECG lead system, early researchers were divided into two groups - those who 

used simultaneously recorded XYZ leads and those who favoured the use of conventional 

12-lead system. Physicians,  mostly used 12-Lead ECG system. It consists of ECGs in 

groups of three leads simultaneously, such as I, II, III; aVR, aVL, aVF; V1, V2, V3; V4, V5, 

V6 or simultaneously recorded all 12-Leads [1]. The 12-Lead system arrangement is 

depicted in Fig. 1.3. The data recorded simultaneously by the 12-Leads is known as a 

multilead ECG data. 
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Fig. 1.3 12-Lead ECG arrangement system 

The 12-lead ECG system consists of 10 electrodes. The electrodes in the main consist 

of conductive gel and Ag/AgCl sensing elements with self adhesive pad. The electrodes RA, 

LA, RL and LL  are placed on the Right Arm, Left Arm, Right Leg, and Left Leg, respectively. 

These four electrode arrangements produce three bipolar limb leads - I, II, and III and three 
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unipolar augmented limb leads -  aVR, aVL, and aVF. All above six limb leads are used to 

calculate the ECG signal axis in the frontal plane. The remaining six electrodes known as 

precordial leads lie in the transverse (horizontal) plane. The six precardial leads are unipolar 

and they are denoted by lead V1, V2, V3, V4, V5,  and V6. All 12-leads represent twelve 

views of resultant vector of the heart as depicted in Fig. 1.3. 

1.4 Noise in the ECG Signal 

The recorded ECG signal is contaminated by various types of noise and artifacts such 

as 50/60 Hz noise from power line interference, baseline drift, electromyogram (EMG) noise, 

motion artifacts, and electrode contact noise [15]. The characteristics of several types of 

noises are as follows: 

Power line interference: Power supply of recording ECG machine relates to line 

frequency, such as 50 or 60 Hz. This line frequency induces noise in recorded ECG signals. 

According to power line frequency (50 or 60 Hz), the ECG signal’s amplitude is varied, up-to 

50% of full scale deflection (peak-to-peak ECG amplitude). 

Baseline wander : It is a low frequency activity in the ECG signal which is mostly from 

breathing with an amplitude of about 15% of peak-to-peak ECG amplitude and lies between 

0.15 to 0.3 Hz. 

Electromyogram (EMG) noise: It is due to muscle contraction activity, and in this, an 

artifactual millivolt-level potential is generated. Its typical parameters are: frequency content-

DC to 10 kHz, and duration up-to 50 ms. 

Motion artifacts: The slow movement of the electrode on body surface causes a 

change in voltage; it is due to vibration of the muscles of a patient’s body. The amplitude and 

duration of motion artifacts are variable such as duration from 100 to 500 ms, and amplitude 

up-to 500% of peak-to-peak ECG amplitude. 

Electrode contact noise: it is due to loss of contact between the electrode and the 

patient body surface. The loss of contact of electrode and body surface can be of short time 

duration or permanent, depending on body movements and vibrations. This is like a sudden 

switching action of recording of ECG. Therefore, duration of approximately one second may 

be skipped in maximum recorder outputs. 

1.5 The Heart Disease 

The heart disease describes the stage of heart that is in an abnormal condition. In the 

abnormal conditions heart suffers from coronary disease and heart rhythm problem. The 

heart disease is discovered by recording ECG signals, Echocardiography, Treadmill stress 

test, Cardiac catheterization, Cardiac magnetic resonance imagery (MRI), Cardiac 

computerized tomography (CT) scans, and pathological testing. The ECG is a non-invasive 

test and measure electrical impulses on body surface and reports changes in electrical 
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activity of heart and provides clinical information. In this thesis study, using ECG signal 

analysis, classification of heart diseases such as myocardial infarction, bundle branch block 

and Myocarditis is done. A brief description of these diseases is presented below: 

Myocardial Infarction: The heart muscle cells require regular blood supply for keeping 

them active and working through two coronary arteries. If arteries or sub-branches are 

blocked and blood supply is disturbed, then heart suffers from ischemia and after prolonged 

obstruction of blood supply, heart cells die and the condition is known as myocardial 

infarction (MI). The ECG testing provides information of ischemia or MI, if the patient has 

angina [14]. 

Cardiomyopathy: It is aspecial form of heart disease that reduces pumping ability of 

the heart and reduces blood flow. It is due to alterations in the heart muscles such as 

muscles becoming enlarged, rigid or thick. The heart becomes weak and people suffer from 

breathlessness when they are active or sometimes when they are at rest. These situations 

lead to irregular heartbeats or heart attack. Types of Cardiomyopathy (CM) are: dilated 

Cardiomyopathy, hypertrophic Cardiomyopathy, and restrictive Cardiomyopathy. The ECG 

provides prelim information of Cardiomyopathy if the patient exhibits symptoms of 

Cardiomyopathy [14]. 

Bundle branch block: In the heart sometimes bundle branch gets injured which may 

stop the conduction of electrical impulses. The electrical impulse cannot pass through the 

preferred pathway across the bundle branch, it may go through muscle fibers in a fashion 

that both slow down the electrical movement and changes the directional propagation of the 

impetus. As a consequence, there is a loss of ventricular synchrony, ventricular 

depolarization is prolonged and there may be a corresponding fall in cardiac output [16]. The 

type of bundle branch blocks depends on the emplacement of the shortcoming, which starts 

to bundle branch blocks (BBB) such as a right bundle branch block, left bundle branch block 

or complete both bundle branch block. The bundle branch block can be detected by taking 

ECG of a patient and measuring QRS complexes in different leads. 

1.6 Motivation 

The heart is the most important organ of the human body which pumps blood in the 

circulatory system through blood vessels. The cardiologist and physician defined rules and 

definitions for visual ECG analysis may have subjectivity and are not uniform, so computer 

based interpretation is the need of this day. The task of the  present work is to do ECG 

analysis using simple approaches and then improve diagnostic performance with available 

standard ECG databases such as CSE (Common Standards for Quantitative 

Electrocardiography), MIT-BIH (Massachusetts Institute of Technology/Beth Israel Hospital) 

Arrhythmia, European ST-T database and QT database, St.-Petersburg Institute of 

Cardiological Technics 12-lead Arrhythmia Database and PTB (Physikalisch-Technische 
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Bundesanstalt) database. In this thesis, we propose a simple new method for QRS detection 

using minimum preprocessing steps and simple decision rules, so there is no requirement of 

derivative, digital, band pass filter and no search back. This method is founded on the sixth 

power of ECG signal that intensifies the signal strength more as compared to noise and 

artifacts including P and T-waves. In this proposed method the signal is preprocessed by two 

stage median filter for removing baseline wanderThis method does not require any training, 

settings and estimation of model parameters. There is no requirement of filter to remove P 

and T-waves. This method is based on vertically differential change in slope rate by taking 

higher order multiplication of sample by sample in ECG signals. The average value of higher 

power signal is changed and attained some threshold level to discriminate amplitude of QRS 

complex from artifacts and, P and T-wave. In this method, the increment in the vitality of the 

QRS complex is much more as compared to noise artifacts or P and T waves. Now decision 

rules are employed to obtain high peak in QRS region, which is R or S location. This method 

is simple in computation, efficient and detects QRS in normal and abnormal ECGs and 

doesn’t require any arrangement for phase shifting and fringing effect reduction. Similarly 

multilead ECG QRS detection is performed using composite lead. In this method, all 12 leads 

are added and a composite lead is designed and applied for QRS detection (with same rules 

as in the case of single lead), which gives better results as compared to the single lead. 

Next, this composite lead is also used for boundaries marking. The boundaries in composite 

lead are clearly noticed by the observer and marked automatically by designing software and 

clinical parameters are obtained which are used for interpretation and classifications. 

1.7 Scope of Present Work 

The computer aided ECG analysis and classification in present scenario becomes 

necessary due to increasing population in the world. The number of heart patients increase 

day-by-day, and physicians or specialists are limited.The visual criteria for differentiating 

heart diseases are quite perplexing and highly dependent upon the cardiologist’s experience. 

It is difficult to provide accurate interpretation and diagnosis of heart diseases without 

computer based ECG systems. Thus, it is necessary to produce a simple and accurate 

automatic ECG analysis and diagnostic system. To ameliorate the performance of ECG 

system, important factors have been hashed out in this thesis such as: 

(1) There is a demand of detection of QRS complex using simple and accurate method. 

(2) There is a need for designing a composite lead to visualize the resultant waveform of 

ECG to view resultant changes in the ECG. This composite lead can be used to 

determine ECG wave complexes such as QRS complex, P and T-wave pattern. 

(3) There is a need for accurate boundaries marking and extraction of ECG parameters 

for more reliable effects. 
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(4) There is a need for monitoring of arrhythmia and ST segment measuring using a 

composite lead signal. 

(5) There is a need of detection of myocardial infarction, Cardiomyopathy and bundle 

branch block, which can be done using ANN and SVM classifiers. 

1.8 Objectivesof the Present Study 

The primary aim of the present work is to identify wave components, draw out features 

and classify the heart diseases from the ECG signals with the following aims. 

(A) Evaluation of methods for safer removal of baseline wander and motion 

artifacts in ECG signals 

Recorded ECG signals contain noises and artifacts such as power line noise, baseline 

wander, motion artifacts, etc. In this work, removal of baseline wander and motion artifacts 

has been carried out for detection of QRS complexes as the foremost target. 

(B) Detection of the QRS complexes and ECG wave components 

In this stage the QRS complex detection of single and multilead ECG signals has been 

answered by nominating a novel algorithm. Detection of P and T wave has also been 

implemented in multilead ECG. 

(C) Boundary marking of ECG wave components and diagnostic parameter 

detection 

The clinical parameters in ECG signal are calculated on the basis of boundary marking 

of P-QRS-T complexes, so marking boundaries of ECG wave complexes required accurate 

and authentic method. This has been served as the next target. 

(D) Disease diagnosis and classification. 

Diagnosis and classification of ECG signal required accurate and authentic method. 

Here classification of Myocardial Infarction, Cardiomyopathy, and Bundle Branch Block has 

been executed using the extracted diagnostic parameters. 

1.9 Organization of the Thesis 

The work presented in this thesis is based on the evaluation of ECG analysis and heart 

disease classification and is represented in the form of flowchat in Fig. 1.4. Several chapters 

of the thesis are organized as follows: 

Chapter 1 deals with the introduction of the human heart, ECG signals, lead system, and 

aims of the thesis. 

Chapter 2 deals with the brief literature review of ECG analysis and classification.  

Chapter 3 describes different ECG database details such as CSE, MIT/BIH Arrhythmia 

database, European ST-T Database, MIT/BIH Noise Stress Database, QT Database, St. -

Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database, and 

Physikalisch-Technische Bundesanstalt (PTB) Database. 
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Fig. 1.4 An overall flowchart of ECG analysis and heart disease classification 

 

Chapter 4 deals with the ECG signal processing and QRS detection. In this chapter, the 

procedure for single and multilead QRS detection is described and tests on various standard 

databases have been reported. 

Chapter 5 presents boundaries marking in multilead ECG using composite lead and feature 

extraction for all diagnostically important parameters.     

Chapter 6 presents computerized classification using SVM and ANN classifiers. In this 

chapter myocardial infarction detection performed using different lead arrangements, 

features with SVM and ANN classifiers, Cardiomyopathy and bundle branch block are 

depicted. 

Chapter 7 describes conclusions of the work presented in this thesis, with the major work 

contributions and scope for future work.  
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CHAPTER 2: LITERATURE REVIEW 

In the previous chapter,general introduction of the heart anatomy, ECG lead system 

and heart diseases has been described. This chapter introduces a broad literature review of 

automatic analysis of ECG, computer programs, signal preprocessing, feature detection 

methods and heart disease classification using different techniques.  

2.1 Overview 

The computerized ECG signal analysis and interpretation, over six decades ago, 

started in USA by Pipberger  and his group by using an orthogonal ECG lead system, and 

Caceres and his colleagues using 12-Lead ECG system. In the 12-Lead ECG system 10 

electrodes are used to record 12 ECG waveforms from 12 different angles and is acquired 

continuously for monitoring for absolute 10 seconds for analysis and interpretations. The 

initial automatic ECG computerized programs were mostly produced by university research 

groups. After that development of computerized ECG programs has been shifted to industry 

[17]. Computers can assist a cardiologist in the task of ECG monitoring and interpretation. In 

the hospitals, cardiac intensive care unit (CICU), ECGs of several patients must be 

monitored continuously to detect life threatening abnormality that may occur. Since 

cardiologists are unlikely to be available to monitor the ECGs of all the patients during 24 

hours, automated monitoring program to detect abnormality of heart is necessary. Over the 

past several years, the computerized ECG programs that provide complete 12-lead 

diagnostic quality ECG recording and interpretations have become common.  

2.2 Computerized ECG Programs 

There are various automatic ECG analysis and interpretation programs developed by 

researchers in the last six decades based on different approaches [17-18]. Pipberger et al 

developed AVA Program [2], Okajima et al developed Nagoya program [3], Bemmel et al 

developed MEANS program [4], Macfarlane et al developed Glasgow program [5], 

Rautaharju et al developed Dalhousie program [6], Zywietz et al developed Hannover 

program [7], Degani and Bortolan developed Padova program [8], Arnaud et al developed 

Lyon program [9], Brohet et al developed Louvain program [10] and Abreu-Lima and 

Marques de Sa’ developed Porto program [11]. In addition to these, Mehta et al [19], 

Maheshwari et al [20], Saxena et al [21] and Mitra et al [22] have also developed programs 

for automatic ECG analysis and interpretation. 

Pipberger et al [2] proposed Spatial velocity function for Frank lead X, Y and Z which 

was calculated by taking first derivatives of lead (voltage) with respect to time and then 

taking square root of the  sum of all derivatives. This spatial velocity function was used to 

determine all major points. The QRS complex detection was done by utilizing the  maximal 

spatial velocity function. The QRS location was determined as sequences of voltages which 
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exceed the medium maximal velocity and are followed by at least 60 ms of voltage below the 

median velocity. The onset and offset of QRS complexes are determined by best-fit 

comparisons to the templates of the spatial velocity of the hand derived wave endpoints. The 

Onset-offset of P-waves are determined by finding sequences of 12-16 ms of sustained 

spatial velocity exceeding a minimum value based on background noise level. Similarly, T-

wave end point is determined by best-fit comparison to a pattern of 30 ms of positive spatial 

velocity followed by 20 ms with near-zero velocity. In this program three to four type 

diagnostic interpretationsare performed such as arrhythmia, conduction defects, and 

abnormality of T wave morphologies using statistical analysis. Okajima et al [3] proposed for 

recognition of fiducial point and used second order differential equation for estimating the 

fiducial points using four leads I, II, V1 and V6. In this method ECG signal length used is 9.6 

or 24 seconds. In this method two data points with 16 ms interval are differentiated twice. 

The next step of the algorithm used contour classification method consisting with decision 

tree and perform R-ventricular hypertrophy (RVH), Left- ventricular hypertrophy (LVH), and 

Myocardial Infarction detection. Bemmel et al [4] proposed Modular ECG Analysis System 

(MEANS) using the spatial velocity function for ECGs and VCGs of the multilead CSE 

database. In this method lead selection purpose is spatial information of cardiac events for 

detection and typification. Only the P-QRS-T complexes of the four dependent leads (II, aVF, 

V2 and V6) are computed. In this algorithm QRS and P- wave detection and QRS typification 

procedure all work on signals that are in sampling rate reduced to 100 Hz. The QRS 

detection of MEANS is basically an off-line procedure. In case of on-line QRS detection a 

pseudo spatial velocity is computed from the quasi-orthogonal leads by taking the sum of the 

absolute values of the differentiated 100 Hz signals. This program was intended to be 

applied for clinic use and population screening. The MEANS used conventional criteria as 

well as Minnesota code for classification. Macfarlane et al [5] proposed Glasgow program for 

analysis of ECG which uses spatial velocity function for Frank lead and 12 Lead ECG 

record.In this method, the spatial velocity function is computed and determined at 

approximate location of all the QRS complexes. After that, QRS typing is performed 

according to their morphology. In this method normal sequence beat is selected to be used 

for averaging procedure. All beat in the same class are selected so as to have 12 beats, one 

from each lead. After that from these 12 averages beats, a single combined function is 

formed and provisional onset and termination are determined. The provisional onset and 

offset are then used to search for QRS onset and offset within each individual lead. Within 

the QRS complex the amplitude and duration of various waves, such as Q, R, and S are 

measured. ST segment, P and T waves are also determined. In this method interpretation of 

ECG was performed using P-QRS-T morphology. Rautaharju et al [6] designed Dalhousie 

Program for epidemiologic studies, health surveys and clinical trials. In this method, selective 
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averaging is used to determine average P-QRS-T cycle as output foe each set of 

simultaneously recoded ECG lead. This program was designed particularly for research 

applications and classification was performed by using Minnesota code.Zywietz et al [7]  

designed Hannover program for measurement and interpretation of resting and exercise 

ECGs. In the analysis part,the averaging strategy was used and calculation of spatial velocity 

function for Frank lead X, Y and Z or 12 lead ECG was done. The determination of onset-

offset of P QRS and T offset is performed for the average beats of all templates. This 

program used hybrid model with decision trees and scoring schemes, and with multivariate 

probabilistic tests  for classification. Degani and Bortolan [8] developed Padova program to 

use spatial velocity functions for ECG morphology recognition and measurement evaluation 

and classification was performed by fuzzy-set methodologies. Arnaud et al [9] developed a 

Lyon program, for diagnosis of the spatial QRS-T contour of VCGs. In this program heuristic 

type diagnostic strategy is used for each diagnosis. The Lyon system classifies diagnoses 

according to the number of non-satisfied criteria. Brohet et al [10] developed Louvain 

program for analysis and interpretation of Franck Orthogonal Electrocardiograms and Vector 

cardiograms (VCGs). This software performed the analysis of VCG to increase the clinical 

utility of ECG analysis. Spatial velocity function and template matching method with a mixture 

of threshold crossing was used for wave recognition. In this program heuristic approach was 

used for disease diagnosis. This program showed, on the average, satisfactory results, with 

a rather accurate delineation of the QRS complex and a larger variance for the P and T 

waves, and also, this program showed a good stability against noise. This program obtained 

satisfactory results in the detection of most common cardiac arrhythmias. Abreu-Lima and 

Marques de Sa’ [11] developed a Porto program for ECG analysis and interpretation. This 

program runs on a microcomputer and employs the three-lead Frank VCG and detection of 

QRS complexes is based on double threshold methods for the spatial velocity, amplitude and 

its time derivative. The fiducial points of all the ECG wave components are determined by 

exhaustive sequential search algorithms and the diagnostic part of the program uses 

decision-tree logic. The diagnostic accuracy reported 76% for four classes (normal, left and 

right ventricular hypertrophies and myocardial infarction).    

Mehta et al [19] developed computer aided program for ECG analysis and 

interpretation. The program stages are preprocessing, feature extraction, parameter 

measurement, frontal plane axis calculation and diagnostics. In this program author reported 

QRS detection up to accuracy 99.83%, P and T wave detection accuracy up to 96%, and 

delineation of peaks with boundary marking up to 99.98% and point scoring scheme was 

used for left and right ventricular hypertrophy detection. Maheshwari et al [20] developed 

computer based multilead ECG analysis and interpretation. The ECG analysis part used 

spatial velocity function to detect QRS complexes and then P and T waves and more than 
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90% of fiducial location of various waves (onset and offset of P, QRS and offset of T wave) 

used all leads for QRS detection and fiducial location of ECG wave components applying 

spatial velocity achieved 90%. In this method diagnostic interpretation of IMI, AMI, LYH, RYH 

and Normal ECGs of CSE multilead database have been successfully done using a heuristic 

approach with the agreement of local medical experts. Saxena et al [21] designed a 

computer program for multilead ECG analysis with modified, combined wavelet transform 

using single lead ECG. In this program two wavelets are used, first quadratic spline wavelet 

(QSWT) for QRS detection and second Daubechies six coefficients (DU-6) wavelet for P and 

T wave detection. The computer program has been tested on a CSE DS-3 database and an 

MIT/BIH database for QRS detection and detection of P & T wave has also been carried out 

in 125 cases of CSE DS-3.The detection sensitivity of QRS complexes is 100% using the 

CSE DS-3 (artificial data) and 99.90% using the MIT/BIH database. In this program an 

overall accuracy of 90.25% is achieved for five waves fiducial. The development software 

used point scoring system for diagnosis of cardiac diseases such as tachycardia, 

bradycardia, left ventricular hypertrophy, and right  ventricular hypertrophy detection. Mitra et 

al [22] developed a rough-set based inference engine for ECG classification. In this method 

ECG features are detected in time domain and then applied rule-based rough-set decision 

system classifies heart disease such as normal, ischemia and myocardial infarction.   

In the above paragraphs available developed programs of ECG analysis and 

interpretation are briefly discussed.  These programs for analyzing ECG/VCG, generally 

used spatial velocity function and interpretation performed by heuristic or statistical 

approach. Pipberger et al reported that an automated ECG diagnosis could be no better than 

the accuracy of the waveform detection that provides its measurement values. Okajima et al 

reported that the automated ECG program still makes, many mistakes in boundary making or 

contour classification which is agreed upon unanimously. The modular ECG analysis system 

(MEANS) consists of modules for signal analysis and diagnostic classification. All modules 

underwent many changes as a function of experience, insight, and continually changing 

information technology. Macfarlane has also reported that there will be continuous 

enhancement of the system if more ECGs are interpreted on a particular system. The 

success of the reported techniques for processing ECG signals was demonstrated mostly 

through their processing on single lead or using the ECGs which do not belong to a standard 

database. Although the diagnostic accuracy of computer programs is tending to reach a 

plateau, thus there is no doubt that many years hence, it will still be possible to report on 

recent developments in the programs. In all programs, there is every possibility that the work 

will always be enhanced, modifications for improvements be made and the use of new 

techniques will be made for better results. The revisions and modifications of the programs 

are continuously in progress. 
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The computerized ECG program basically consists of two parts: one measurement part 

and  another classification part. In the measurement part ECG signal is analyzed such as 

detection of different waves, boundaries, and set of measurements is calculated to contain all 

necessary information for classification. The classification part of the computerized ECG 

program, a diagnostic interpretation is performed on the basis of features separation in 

particular groups by using strategies. The literature survey of computerized ECG signal 

processing, analysis and classificationis discussed in detail in the next section. 

2.3 ECG Signal Analysis 

The signal analysis in ECG interpretation is the second stage, which consist of the 

steps of data acquisition, data transformation, and feature selection. In ECG signal analysis, 

the data transformation stage is divided into different steps such as filtering and detection, 

typing and dominant beat selection, and waveform recognition. In ECG signal analysis, 

detection of the various waveforms is done after applying the proper filtering with some 

suitable detection function. In sixties - seventies, many detection functions have been 

performed for VCG/ECG  analysis [23]. There are several methods, some of which perform 

detection of ECG wave segments, such as P, QRS and T, while others perform detection of 

the QRS complexes. In the ECG analysis QRS detection is an important feature and on the 

basis of its accurate detection other features and parameters of the ECG signals are 

determined. A decent amount of research work has been done during the last six decades 

for the detection of QRS complex for single and multilead in the ECG signals. 

2.3.1 ECG signal processing 

In general, for ECG analysis QRS detection is an important task. The QRS detection is 

mainly divided into two parts: first part is noise removal, and the second part is QRS 

detection. Initially recorded ECG signal contains noise and artifacts. The ECG signal 

processing is necessary for analysis and classification of diseases. The best performance of 

an ECG processing system can be achieved, if the input data are free from noise. Artifacts in 

ECG can arise from different sources in a recording or monitoring system. During recording, 

the signal gets contaminated by the noise such as power line interference, wander baseline 

and other noises discussed in details in chapter 1, section 1.4. Their removal is important not 

only for computer processing, but also for visual examination of ECG waveform. There are 

many researches which developed noise reduction in the ECG signals specifically power line 

interference and wander baseline. There are various filters that are used for signal 

processing before ECG analysis, such as adaptive notch filter [24-25], digital filter [26-27], 

wavelet based filter [28], adaptive filter [29-31], threshold based [32], subtraction procedure 

method [33],median filter [34], mean-median filter [35], independent component analysis 

method [36], higher order statistics method [37-38]. 
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Dragošević and Stanković [25] presented an adaptive notch filter based on recursive 

prediction error and obtained results were highly efficient in practice. Levkov et al [34] 

reported removal of power-line interference from the ECG signal, and modificationsof the 

subtraction method have been used in the ECG signal successfully. Yunfeng, and 

Rangayyan [30] developed unbiased linear adaptive filter with the normalized coefficients for 

the removal of noise in ECG signals. It is a popular method for filtering ECG which denoises 

signal with overlapping spectra. Okada [27] developed a five step digital filter, which removes 

components other than those of QRS complex from the recorded ECG. The final step of the 

filter produces a square wave and its on-intervals correspond to the segments with QRS 

complexes in the original signal. Ahlstrom and Tompkins [26] developed  digital filters for real 

time ECG signal processing based on microprocessors. These filters obtained real time 

speeds by requiring only arithmetic. Sahambi et al [28] developed signal processing 

technique based on wavelet that used in ECG processing and 

performedsuccessfulmeasurement of QRS width in the presence of wanderingbaseline and 

power line interference. Poornchandra [39] developed wavelet-based denoising using 

subband adaptive technique for ECG signal, and perform better results than existing 

threshold methods. Yin et al [34] reported weighted median (WM) filter that belong to the 

class of nonlinear filters called stack filters, and WM filters capable of noise attenuation.  

2.3.2 Feature extraction 

In the computerized ECG analysis, the clinical measurement part determines the 

location and reference boundaries of QRS complex, P-wave, and T-wave. Mostly, ECG 

analysis is based on single lead and multilead signals. In a single lead ECG analysis 

generally lead II is preferred. In case of multilead ECG analysis, 12 lead at a time (Programs: 

Marquette, Glasgow and Padova), 6 leads (lead I to aVF and lead V1 toV6) at a time in 

program Hannover, 3 leads (II, V2 and V6) at a time in Modular program and 15 leads (12 

lead ECG and 3 XYZ leads) at a time  in Halifax program are used. Some programs (HP, 

IBM, NAGOYA and Telemed) select groups of leads at a time, such as lead group I-III, aVR-

aVF, V1-V3, V4-V6 [40]. 

 In QRS detection major problems are arising due to morphological variations of P-

QRS-T waveforms, position of waveforms and the change in cyclic intervals of the ECG 

waveforms of different patients and noises occurrence at acquiring data [15,41]. There are 

many single lead QRS detection and feature extraction methods developed by researchers in 

the previous decades based on above criteria using different approaches [42]. These are 

derivatives [43-44], digital filters [45-47], filter banks [48], wavelet-transform [21,49-54], 

neural networks [55], support vector machine (SVM) [56], k-means [57], mathematical 

morphology [58-59], combined threshold method [60], moving averaging method [61], phase 
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space method [62], Hilbert Transform method [63-64], Body sensor network based [65],  

empirical mode decomposition (EMD) [66] and first-order Gaussian differentiator [67-68]. 

Friesen et al [15] evaluated nine different QRS detection algorithms for noise 

sensitivity. The noise was electromyographic interference, 60 Hz power interference, 

baseline drift due to respiration, abrupt baseline shift, and a composite noise constructed 

from all other types of noises. None of the algorithms were able to detect all QRS complexes 

without any false positives with all types of noises at the highest level. Thakor et al [69] 

carried out power spectral analysis of ECG waveform, as well as of isolated QRS complexes 

and episodes of noise and artifacts. A band pass filter has been used to maximize the signal 

(QRS) to noise (T-wave, 60 Hz, EMG etc.) ratio to detect the QRS complex. Due to the 

inherent variability of ECG from different persons, as well as variability due to noise and 

artifacts, the filter design is suboptimal in specific solutions. Pan and Tompkins [45] have 

developed a real-time algorithm for detection of QRS complexes of ECG signals. It reliably 

recognizes QRS complexes based upon digital filters and analysis of slope, amplitude, and 

width. Hamilton and Tompkins [46] have investigated the quantitative effects of a number of 

common elements of QRS detection rules using the MIT/BIH arrhythmia database. Then they 

developed a progressively more complex decision process for QRS detection by adding new 

detection rules and optimized decision rule process. Chen et al [61] developed QRS detector 

based on moving average computing method and obtained QRS detection rate of 99.5% 

using MIT-BIH Arrhythmia Database. Christov [70] developed three algorithms for QRS 

detection based on Adaptive Thresholding using AHA database and obtained true detection 

1,64,942 for method 1, 1,65,204 for method 2, and 1,65,273 for method 3 out of 1,65,641. 

Escalona et al [71] developed a QRS complex alignment technique which is based on the 

accurate detection of a single fiducial point in the band pass filtered QRS segment. Ruha et 

al [72] developed QRS detector based on optimized prefiltering in conjunction with matched 

filter and dual edge threshold detection. In this method author obtained QRS detection error 

rate (ER) of 0.1 and 2.2% with records 103 and 105 respectively from MIT/BIH Arrhythmia 

database. Naima and Saxena [73-74] have developed two new approaches for feature 

extraction of the ECG signal analysis. The first method is based on mixed mathematical 

functions and the second one on spline functions. This method also identifies and separates 

P, Q, R, S, and T segments. Sornmo et al [59] have developed the mathematical model for 

the occurrence of pulse shaped waveforms corrupted with colored Gaussian noise. The 

number of waveforms, the arrival times, amplitudes and widths are regulated as unknown 

variables. Adaptivity of detector is gained by utilizing past as well as future properties of the 

signal in determining thresholds for QRS acceptance. Shaw and Savard [75] reported that 

the detection of subtle beat-to-beat variations in the morphology of the ECG are complicated 

by the effects of alignment errors and respiration. This method directly estimats the 
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alignment error from an ECG, derived by relating the variance to the squared slope of the 

averaged QRS complex. Author reported that, it was the effects of respiration that could be 

reduced by normalizing the amplitude of QRS complexes. Vijaya et al [55] developed QRS 

complexes detection based on artificial neural network (ANN) and it works on a high 

prediction error to indicate the occurrence of QRS complexes. Xue et al [76] have developed 

a QRS detector based on adaptive matched filter using artificial neural network. They 

obtaineda detection rate for a very noisy patient record (record number105) in MIT/BIH 

arrhythmia database equal to 99.5%. Sahambi et al [49] developed QRS detection and 

characteristic point detection using the modulus maxima of the wavelet  transform using 

multiresolution analysis. Li et al [77] reported QRS detection based on a multiscale feature of 

wavelet transform. Kadambe et al [78] reported QRS detector based on the dyadic wavelet 

transform which is robust to time-varying QRS complex morphology and noise. Saxena et al 

[21] reported QRS detection using new wavelets. The new wavelet coefficients in this work 

have been used for QRS and feature detection with each lead. The algorithm has been 

tested on a CSE DS-3 database and an MIT/BIH database for QRS detection and detection 

of P & T wave has been also carried out in 125 cases of CSE DS-3. The detection sensitivity 

of QRS complexes is 100% using the CSE DS-3 (artificial data) and 99.90% using the 

MIT/BIH database. In this program an overall accuracy of five waves fiducial is about 

90.25%. Pachori et al [66] developed a method for analysis of normal and diabetic subjects 

related to heart problems. In this method empirical mode decomposition is used to 

discriminate between diabetic and normal RR interval signals. 

In the past few decades, increasing application requires multilead monitoring for 

telemetry and ambulatory electrocardiography. There are reliable advantages of multilead 

monitoring for the detection and ambulatory electrocardiography. There are reliable 

advantages of multilead monitoring for the detection and positioning of acute ischemia in 

patients with coronary artery disease. These techniques are also important for the detection 

and accurate diagnosis of arrhythmias, because multilead ECG recordings provide important 

information of P wave, QRS complex morphology and T wave that cannot be determined 

from two or three lead recordings. These results in a measurable change in potential 

difference on the body surface of the subject. A Multilead ECG system for detection and 

analysis uses different approaches to the multilead QRS detection based on various 

concepts [20,79-82].  

Kors et al [79] proposed Modular analysis, ECG analysis System (MEANS)  using the 

spatial velocity function for ECGs and VCGs in the multilead CSE database. The 

performance of this method for different lead configurationis (i) 11,369 beat CSE 3 

simultaneous ECG lead used and find R peak 99.6%. (ii) 2847 beats CSE 3 simultaneous 

VCG lead used and find R peak 99.9%. (III) 2,889   beats CSE 3 simultaneous multi-lead 
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used and finds R peak 100%. Gritzali [83] proposed two methods for single lead and 

multilead QRS detection based on length transformation and energy transformation. The 

author that the reported QRS detection rate using CSE data set-1 for the length 

transformation of single and multichannel (i.e. 3-Lead) and energy transformation for 

multichannel are 90.66%, 99.87% and 99.13% respectively. Kyrkos et al [80] developed QRS 

detection for both three-Lead and single-Lead ECG signals using time recursive prediction 

techniques. Author reported a QRS detection accuracy of 99.00% with the CSE data set-1. 

Laguna et al [81] proposed multilead QRS detector on the basis of single-lead QRS detector 

[45], applying a multilead (15-lead) QRS detection rule considering  QRS in each lead whose 

position do not differ by more than 90 milliseconds from one lead to another and author 

reported wave boundaries in multilead ECG signals within range. The researchers performed 

multilead QRS detection using a differentiated and low pass filtered ECG signal with wave 

boundaries marking in each lead in all beats. In this method onsets and offsets of P, QRS 

and endpoint of T waves are determined. Maheshwari et al [20] reported spatial velocity 

approach for detection of the QRS complexes and then another component of waves which 

being more than 90% of the multilead CSE data set-3. Mehta and Lingayat [56] proposed the 

detection of QRS complexes in 12-Lead ECG using SVM and reported a QRS detection rate 

of 99.97% using CSE data set-3 (MO1_001 to MO1_125). Chritov and Simova [84] 

developed an automatic method for Q wave onset and end of T wave using standard PTB 

database and QT interval (Mean ± SD) 0.83 ±16.67. Mehta et al [56,82] reported single lead 

based and 12 lead based QRS detection with the SVM classifier using CSE data set-3 and 

QRS detection sensitivity 98.86 % for single lead & 99.75 % for 12 lead ECG is obtained. 

Sahambi et al [85-86] in 1998 and 2000 proposed ST segment analysis and QT interval 

analysis using wavelet transform. Jha and Kolekar [87] reported ECG data compression and 

transmission for telemedicine. In this method feature extracted using discrete wavelet 

transform and performance of method better and comparable to other methods. 

2.4 Classification 

 Basically, computerized ECG classification is the analysis based on the features of the 

ECG signals to classify one or more diagnostic categories. The disease classification being 

performed is based on single lead or multilead ECG analysis. The single lead ECG disease 

diagnosis is based on rhythm, and the rhythm is calculated by detection of QRS events. The 

variation in rhythm related diseases are different type of arrhythmias like tachycardia, 

bradycardia. The heart diseases are analyzed by some morphological measurements and it 

is R-R interval based [66, 88]. The single lead is mostly, used for heart rate variability (HRV). 

The HRV analysis is mostly used in the Incentive Care Unit (ICU) and Coronary Care Unit 

(CCU). Hence, HRV analysis is an attractive source of information [89, 95]. In the multilead 

ECG analysis, classification based on feature extraction of used multilead signals depends 
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on the lead selection. Several methods used for diagnostic classification of the ECG can be 

discerned as a heuristic [2, 4-6, 8-11], statistical [9-10, 17], KNN [96], SVM [97-103], ANN 

[92, 104-107], fuzzy and Neuro-fuzzy systems [104], Hidden Markov Method (HMM) [108-

110], and Linear Discriminant Analysis (LDA) [103, 111], rough-set based [22], wavelet 

transform based [112].  

Maglaveras et al [113] reported ANN has been used in the past as pattern recognition 

and classification with non-linear transformation. Murthy et al [114] reported homomorphic 

analysis and modeling of ECG signals. In this model the pole-zero pattern reveal clues to the 

classification of normal and abnormal signals. Silipo et al [106] developed ANN classifier for 

detection of arrhythmia, ischemia, and chronic diseases. In this method author used standard 

MIT/BIH arrhythmia data, ST-T European Society of Cardiology data, and CSE disease data. 

Prasad et al [115] proposed classification of arrhythmias using multi-resolution analysis  with 

neural network. Gurgen [116] study in medical diagnosis applying neural network approach 

for creating diagnostic rules, the author found that when trained with sufficient data, then the 

NN approach was found to we superior to the statistical methods.  

The researchers have developed various methods for MI detection using different lead 

groups and suitable features with different classifiers. Mitra et al [22] developed a rough-set 

based inference engine for ECG classification. In this method detection of ECG features in 

time domain and then applied rule-based rough-set decision system classifies heart disease 

such as normal, ischemia and myocardial infarction. Sharma et al [117] Proposed MI 

detection technique using multiscale energy and Eigen space features of  72 dimensional 

vectors of 12-Lead ECG with SVM and KNN classifiers and after reduction feature dimension 

used 60 feature vector to perform MI detection sensitivity 93%, specificity 99% and accuracy 

96%. Sun et al [118], used multiple instance learning technique for MI detection with 12 ECG 

leads and obtained 74 dimension feature space and applying SVM, NN & KNN classifier 

obtained a sensitivity of 91.43% and specificity of 79.29%.  In [108], Chang et al used four 

chest lead (V1, V2, V3, and V4) with HMM and Gaussian mixture. They achieved MI 

detection sensitivity 85.71%, specificity 79.82% and accuracy 82.50% statistically. 

Haraldssonet al [109], proposed MI detection in the 12-lead ECG using Hermite expansions 

with NN and obtained ROC area 0.83 of all 12 Leads. Arif et al [119] used 36 features of 12-

Lead ECG to detect MI with KNN and obtained sensitivity and specificity 99.97%  and 99.9% 

respectively. Reddy et al [120] used the 15 features of QRS measurements of chest lead V2- 

V4 and apply ANN classifier and obtained MI detection accuracy 79% and specificity 97%. 

Zheng et al [121] proposed MI detection through 192 lead body surface potential maps using 

SVM, Naïve Bayes and Random Forest classifiers and  performance of MI detection 

accuracies are 82.8%, 81.9% and 84.5% respectively.  Heden et al [122] perform MI 

detection based on ANN classifier and obtained sensitivity 95%, specificity 86.30%. 



 

21 

 

Jayachandran et al [123] proposed MI detection using discrete wavelet transform and 

obtained class accuracy 96%. 

Among all the classification techniques, ANN and SVM have received lots of attention 

due to their demonstrated performance. The ANN classifier approach has been employed by 

several investigators to characterize categorization. In addition to ANN, SVM has also 

emerged as a powerful tool for classification. SVMs are learning based system using 

statistical learning theory. The recognition ability of classifiers depends on the quality of the 

features used as well as, the amount of training data available to them.   

2.5 Conclusion 

In the literature survey of related studies of ECG signal processing, generally used 

tools are low pass filter, bandpass filter, digital filters, wavelet transform, adaptive notch 

filters for removing noise and artifacts. These filters also, remove signal information. 

Therefore, required filter that contains all information without removing signal part is the 

requirement. 

The QRS detection is the most important part in the ECG analysis and classification. 

So, QRS detection for long data in case of single lead and multilead requiresa fast detection 

rate. Thus, feature detection for 12 Lead ECG should be fast and accurate.Therefore, there 

is a need ofcomposite lead that is equivalent to all 12 leads and performs equal or higher 

analysis and provides betterclassification results.  
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CHAPTER 3: MATERIALS AND METHODOLOGY 

The previous chapter discussed literature review on ECG signal processing, QRS 

detection, feature extraction and classification. Collection of standard databases, used 

softwares, developed and used methodsfor achieving the objectives are briefly discussed in 

this chapter. 

3.1 Overview 

The research process requires a systematic structure and scientific proof. In this 

process standard databases and different operating software tools are required for 

development of algorithms. In this thesis work, different standard databases and softwares 

for development of algorithms are used to fulfil required research objectives, discussed in 

this chapter step by step.  

3.2 Standard ECG Databases 

The work performed and algorithms developed in this thesis for ECG analysis and 

heart disease classification has used single and multi-lead ECG databases. The ECG 

records have been taken from the CSE (Common Standards for Quantitative 

Electrocardiography), MIT-BIH (Massachusetts Institute of Technology/Beth Israel Hospital) 

Arrhythmia, MIT/BIH Noise Stress Database, European ST-T database and QT database, 

St.-Petersburg Institute of Cardiological Technics 12-lead Arrhythmia Database and PTB 

(Physikalisch-Technische Bundesanstalt) database libraries and an indigenous data library 

created by the ECG recordings in the laboratory.  

3.2.1 Common Standards for Quantitative Electrocardiography (CSE) Database 

The CSE database [124-125] contains three libraries; all cases have been sampled at 

500 Hz for 8–10 seconds duration. These are (i) CSE Three-lead measurement library, (ii) 

CSE Multi-Lead Measurement libraries and (iii) CSE Diagnostic Database. The 3-Lead CSE 

measurement data base consists of 250 original and 310 so-called artificial ECG recordings, 

which have been divided into two equal sets, i.e. data set-1: 125 original (EO1_001 to 

EO1_125) and 125 artificial (EA1_001 to EA1_155) and data set-2: 125 original (EO2_001 to 

EO2_125) and 125 artificial (EA2_001 to EA2_155). The multilead measurement database is 

also composed of 250 original and 250 so-called artificial ECG recordings (artificial data 

means one good real data beat repeated up to the full length of data). This data has been 

split into two equal sets i. e. data set-3 and data set-4. The data set 3 consists of 125 original 

(MO1_001 to MO1_125) and 125 artificial (MA1_001 to MA1_125) cases and data set-4 

contains 125 original (MO2_001 to MO2_125) and 125 artificial (MA2_001 to MA2_125) 

cases of standard CSE multilead data. The diagnostic database is known as a data set-5 and 

contains 1220 cases. All encoded data are stored on the CD-ROM in files with the extension 
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dot(.) CDD (coded). After decoding they are stored on hard disk as files with the extension 

dot (.) DCD (decoded).  

3.2.2 Massachusetts Institute of Technology/Beth Israel Hospital (MIT/BIH) 

Arrhythmia Database 

The MIT/BIH Arrhythmia database [126] consists of 48 records and each recording 

consists of two leads, one modified limb lead II and another one of the modified chest leads 

V1, V2, V3, V4, V5 or V6. The duration of each record is 30 minutes and sampled at 360 Hz. 

The MIT/BIH Arrhythmia database contains 75,052 Normal beats, 2,546 APC beats, 150 

Aberrated APC beats, 16 Atrial escape beats, 193 Blocked APC beats, 7,130 PVC beats, 

803 Fusion PVC beats, 472 Ventricular flutter beats, 106 Ventricular escape beats, 2 SVPC 

beats, 7,259 RBBB beats, 8,075 LBBB beats, 279 Junctional escape beats, 83 Junctional 

premature beats, 982 Pacemaker fusion beats, 7,028 Paced and 33 Unclassifiable beats and 

overall total approximately 1,10,159 beats. In this thesis work, MIT/BIH Arrhythmia database 

was used for QRS detection. The details of database are given in Table 3.1.  

Table 3.1 MIT/BIH Arrhythmia Database details 

Record 

No. 

Record 

names 

Leads 

names 

Total  

beats  

in each 

record 

Record 

No. 

Record 

names 

Leads 

names 

Total  

beats 

in each 

record 

Record 

No. 

Record 

names 

Leads 

names 

Total 

beats  

in each  

record 

1 100 MLII, V5 2273 17 117 MLII V2 1535 33 212 MLII V1 2748 

2 101 MLII, V1 1865 18 118 MLII V1 2288 34 213 MLII V1 3251 

3 102 V5, V2 2187 19 119 MLII V1 1987 35 214 MLII V1 2262 

4 103 MLII, V2 2084 20 121 MLII V1 1863 36 215 MLII V1 3363 

5 104 V5, V2 2229 21 122 MLII V1 2476 37 217 MLII V1 2208 

6 105 MLII, V1 2572 22 123 MLII V5 1518 38 219 MLII V1 2287 

7 106 MLII, V1 2027 23 124 MLII V4 1619 39 220 MLII V1 2048 

8 107 MLII, V1 2137 24 200 MLII V1 2601 40 221 MLII V1 2427 

9 108 MLII, V1 1774 25 201 MLII V1 2000 41 222 MLII V1 2483 

10 109 MLII, V1 2532 26 202 MLII V1 2136 42 223 MLII V1 2605 

11 111 MLII V1 2124 27 203 MLII V1 2980 43 228 MLII V1 2053 

12 112 MLII V1 2539 28 205 MLII V1 2656 44 230 MLII V1 2256 

13 113 MLII V1 1795 29 207 MLII V1 2332 45 231 MLII V1 1573 

14 114 V5,MLII 1879 30 208 MLII V1 2955 46 232 MLII V1 1780 

15 115 MLII V1 1953 31 209 MLII V1 3005 47 233 MLII V1 3079 

16 116 MLII V1 2412 32 210 MLII V1 2650 48 234 MLII V1 2753 

Overall Total beats 110159 

 

 

3.2.3 MIT/BIH Noise Stress Database 

The MIT/BIH Noise Stress database [127] contains 12 half-hour ECG recordings and 

3 half-hour recordings of noise typical in ambulatory ECG recordings. The noise recordings 
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were made using physically active volunteers and standard ECG recorders, leads, and 

electrodes; the electrodes were placed on the limbs in positions in which the subjects' ECGs 

were not visible. The three noise records were assembled from the recordings by selecting 

intervals that contained predominantly baseline wander (in record ‘bw’), muscle artifact (in 

record ‘ma’), and electrode motion artifact (in record ‘em’). The Electrode motion artifact is 

generally considered the most troublesome, since it can mimic the appearance of ectopic 

beats and cannot be removed easily by simple filters, as can noise of other types. The ECG 

recordings were created by the script nstdbgen- using two clean recordings (118 and 119) 

from the MIT-BIH Arrhythmia Database, to which calibrated amounts of noise from record 

'em' were added using nst. The process of making such records is now simpler; the 

simplified script nstdbgen can be used with current versions of the WFDB software 

package to recreate these records. Noise was added beginning after the first 5 minutes of 

each record, during two-minute segments alternating with two-minute clean segments. The 

signal-to-noise ratios (SNRs) during the noisy segments of these records are depicted in 

Table 3.2.  

Table 3.2 MIT/BIH Noise Stress Database details 

Records SNR (dB) Total beats  

in each case 
Records SNR (dB) Total beats  

in each case 

118e24 24 2278 119e24 24 1987 

118e18 18 2278 119e18 18 1987 

118e12 12 2278 119e12 12 1987 

118e06 06 2278 119e06 06 1987 

118e00 00 2278 119e00 00 1987 

118e_6 -6 2278 119e_6 -6 1987 

Total 13668 Total 11922 

 

 

3.2.4 European ST-T Database 

 The European ST-T Database [128] contains each two hours, two channel worth of 

ambulatory ECG recordings, and annotated beat-by-beat. This database consists of 90 

annotated excerpts of ambulatory ECG recordings. The duration of each record is 120 

minutes and sampled at 250 Hz. This database contains approximately normal beats 

7,84,633; premature ventricular contraction (PVC) beats 44,677, Supraventricular premature 

or ectopic beat (SVPB) 1093, Unclassifiable beat (Q) 11, Fusion of ventricular and normal 

beat (F) 1 and overall approximate 7,90,559 beat labels. The details of database are given in 

Table 3.3. 
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Table 3.3 European ST-T database details 

Record 

No. 

Record 

names 

Leads 

names 

Total 

beats 

in each 

record 

Record 

No. 

Record 

names 

Leads 

names 

Total 

beats 

in each 

record 

Record 

No. 

Record 

names 

Leads 

names 

Total 

beats 

in each 

record 

1 e0103 V4,MLIII  7296 31 e0155 MLIII, V4  8125 61 e0411 V5, MLI 9934 

2 e0104 MLII,V4 7696 32 e0159 MLIII, V4  9196 62 e0413 V2, V5 8149 

3 e0105 MLIII,V4 6629 33 e0161 V4,MLIII  8858 63 e0415 V2, V5 11407 

4 e0106 MLIII,V3 7152 34 e0162 MLIII, V4  10616 64 e0417 V5,MLI 9253 

5 e0107 D3, V4 7029 35 e0163 MLIII, V4  7616 65 e0418 V5,MLI 11706 

6 e0108 V4, MLIII 6597 36 e0166 V4, MLIII 6399 66 e0501 V2,V5 7758 

7 e0110 V3, MLIII 6971 37 e0170 V4, MLIII 8824 67 e0509 V2,V4 8091 

8 e0111 MLIII,V4 7535 38 e0202 V5, MLI 9855 68 e0515 V2,V5 10694 

9 e0112 MLIII,V4 5506 39 e0203 V5, MLI 10165 69 e0601 V5,MLIII 8769 

10 e0113 MLIII, V4 8946 40 e0204 V5, MLI 11472 70 e0602 V5,MLIII 11128 

11 e0114 MLIII,V4 5543 41 e0205 V5, MLI 11807 71 e0603 V5,V2 7930 

12 e0115 V5, MLII 11313 42 e0206 V5, MLI 10916 72 e0604 V2,MLIII 7815 

13 e0116 V4, MLIII 4494 43 e0207 V5, MLI 7197 73 e0605 V5,MLIII 11386 

14 e0118 V4, MLIII 7080 44 e0208 V5, MLI 8695 74 e0606 V5,MLIII 9624 

15 e0118 MLLII, V4 7718 45 e0210 V5, MLI 8739 75 e0607 V5,V4 10266 

16 e0121 V4, MLIII 10629 46 e0211 V5, MLI 14970 76 e0609 V5,MLIII 9321 

17 e0122 V4, MLIII 11363 47 e0212 V5, MLI 10829 77 e0610 V5,MLIII 7999 

18 e0123 V4, MLIII 9175 48 e0213 V5, MLI 11070 78 e0611 V5,MLIII 5812 

19 e0124 V4, MLIII 9213 49 e0302 V3, V5 10340 79 e0612 V5,MLIII 6887 

20 e0125 V4, MLIII 9066 50 e0303 V2 V5 8874 80 e0613 V5,MLIII 7726 

21 e0126 V4, MLIII 8291 51 e0304 V3, V5 8358 81 e0614 V5,V1 11107 

22 e0127 V4, MLIII 9391 52 e0305 V2, V5 9417 82 e0615 V5,MLIII 7192 

23 e0129 MLIII, V3  5568 53 e0306 V2, V5 7903 83 e0704 V5,V1 9718 

24 e0133 MLIII, V3  6570 54 e0403 V5, V1 9297 84 e0801 V1,V5 9388 

25 e0136 MLIII, V4  7044 55 e0404 V5, MLI 6940 85 e0808 V5,V1 11075 

26 e0139 MLIII, V4  10631 56 e0405 V5, V1 11091 86 e0817 V5,V1 7554 

27 e0147 MLIII, V4  6374 57 e0406 V5, MLI 8945 87 e0818 V5,V1 10129 

28 e0148 MLIII, V4  6676 58 e0408 V5, MLI 9037 88 e1301 V1,V5 8740 

29 e0151 V3, MLIII 7546 59 e0409 V5, MLI 12885 89 e1302 V1,V5 8350 

30 e0154 MLIII, V4  6782 60 e0410 V5, MLI 7527 90 e1304 V1,V5 7864 

Overall Total beats 790559 

 

 

3.2.5 The QT Database 

The QT Database contains ECGs which were selected to represent a wide variety of 

QRS and ST-T morphologies, in order to challenge QT detection algorithms with real-word 

variability [129]. The records were selected primarily from among existing ECG databases, 

including MIT-BIH Arrhythmia Database, the European Society of Cardiology ST-T 

Database, and several other ECG databases collected at Boston’s Beth Israel Deaconess 
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Medical Center. The QT database contains 105 cases sampled at 250 Hz. This database 

contains approximately 87,679 beat labels as depicted in Table 3.4. 
 

Table 3.4 QT Database details 

Record 

No. 

Record 

names 

Total 

beats 

in each 

record 

Record 

No. 

Record names Total 

beats 

in each 

record 

Record 

No. 

Record 

names 

Total 

beats 

in each 

record 

1 sel100 1135 36 sel16272 851 71 sele0603 870 

2 sel102 1088 37 sel16273 1112 72 sele0604 1031 

3 sel103 1048 38 sel16420 1063 73 sele0606 1442 

4 sel104 1109 39 sel16483 1087 74 sele0607 1184 

5 sel114 862 40 sel16539 922 75 sele0609 1127 

6 sel116 1185 41 sel16773 1008 76 sele0612 751 

7 sel117 766 42 sel16786 925 77 sele0704 1094 

8 sel123 756 43 sel16795 761 78 sel30 30 

9 sel213 1642 44 sel17453 1047 79 sel31 30 

10 sel221 1247 45 sele0104 804 80 sel32 30 

11 sel223 1302 46 sele0106 896 81 sel33 30 

12 sel230 1077 47 sele0107 812 82 sel34 30 

13 sel231 732 48 sele0110 871 83 sel35 31 

14 sel232 865 49 sele0111 907 84 sel36 31 

15 sel233 1533 50 sele0112 684 85 sel37 50 

16 sel301 1351 51 sele0114 699 86 sel38 30 

17 sel302 1500 52 sele0116 558 87 sel39 30 

18 sel306 1040 53 sele0121 1436 88 sel40 30 

19 sel307 853 54 sele0122 1415 89 sel41 30 

20 sel308 1282 55 sele0124 1121 90 sel42 30 

21 sel310 2012 56 sele0126 945 91 sel43 30 

22 sel803 1026 57 sele0129 670 92 sel44 30 

23 sel808 903 58 sele0133 840 93 sel45 30 

24 sel811 704 59 sele0136 809 94 sel46 30 

25 sel820 1159 60 sele0166 813 95 sel47 30 

26 sel821 1555 61 sele0170 897 96 sel48 30 

27 sel840 1180 62 sele0203 1246 97 sel49 30 

28 sel847 801 63 sele0210 1063 98 sel50 32 

29 sel853 1111 64 sele0211 1575 99 sel51 30 

30 sel871 917 65 sele0303 1045 100 sel52 30 

31 sel872 991 66 sele0405 1216 101 sel17152 1628 

32 sel873 852 67 sele0406 959 102 sel14046 1260 

33 sel883 892 68 sele0409 1737 103 sel14157 1081 

34 sel891 1267 69 sele0411 1202 104 sel14172 663 

35 sel16265 1031 70 sele0509 1028 105 sel15814 1036 

Overall Total beats 87679 
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3.2.6 St. Petersburg 12-lead Arrhythmia Database 

This database consists of 75 annotated recordings extracted from 32 Holter records. 

Each record is 30 minutes long and contains 12 standard leads, each sampled at 257 Hz, 

with gains varying from 250 to 1100 analog-to-digital converter units per milli volt. The 

reference annotation files contain over 1,75,000 beats annotations in all. The original records 

were collected from patients undergoing tests for coronary artery disease. None of the 

patients had pacemakers; most had ventricular ectopic beats. In selecting records to be 

included in the database, preference was given to subjects with ECGs consistent with 

ischemia, coronary artery disease, conduction abnormalities, and arrhythmias [130]. Table 

3.5 depicts details of records. 

Table 3.5 St. Petersburg 12-lead Arrhythmia Database 

S. No. Record 

names 

Patient 

No. 

Total 

beats 

in each 

record 

S. No. Record 

names 

Patient 

No. 

Total 

beats 

in each 

record 

S. No. Record 

names 

Patient 

No. 

Total 

beats 

in each 

record 

1 I01 1 2757 26 I26 12 1509 51 I51 23 2777 

2 I02 1 2674 27 I27 13 2605 52 I52 23 1747 

3 I03 2 2451 28 I28 13 1717 53 I53 23 2262 

4 I04 2 2423 29 I29 14 2621 54 I54 24 2363 

5 I05 2 1776 30 I30 14 2462 55 I55 24 2166 

6 I06 3 2493 31 I31 14 3210 56 I56 24 1705 

7 I07 3 2706 32 I32 14 1619 57 I57 25 2867 

8 I08 4 2131 33 I33 15 1837 58 I58 25 2325 

9 I09 5 2997 34 I34 15 1965 59 I59 26 2148 

10 I10 5 3682 35 I35 16 3675 60 I60 26 2475 

11 I11 5 2106 36 I36 16 3911 61 I61 26 1454 

12 I12 6 2809 37 I37 16 2461 62 I62 27 2269 

13 I13 6 2023 38 I38 17 2699 63 I63 27 1994 

14 I14 6 1866 39 I39 17 1775 64 I64 27 1913 

15 I15 7 2635 40 I40 18 2666 65 I65 28 2664 

16 I16 8 1522 41 I41 18 1630 66 I66 28 2340 

17 I17 8 1672 42 I42 19 3109 67 I67 28 2974 

18 I18 9 3084 43 I43 19 2209 68 I68 29 2644 

19 I19 9 2063 44 I44 20 2494 69 I69 29 2169 

20 I20 10 2652 45 I45 20 1928 70 I70 30 1666 

21 I21 10 2184 46 I46 20 2658 71 I71 30 1670 

22 I22 10 3126 47 I47 21 1953 72 I72 31 2269 

23 I23 11 2205 48 I48 21 2357 73 I73 31 1992 

24 I24 11 2571 49 I49 22 2147 74 I74 32 2404 

25 I25 12 1712 50 I50 22 2998 75 I75 32 2103 

Overall Total beats 175895 
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3.2.7 Physikalisch-Technische Bundesanstalt (PTB) Database 

This database contains 549 records from 290 subjects. Each subject is represented by 

one to five records. There are no subjects numbered 124, 132, 134, or 161. Each record 

includes 15 simultaneously measured signals: the conventional 12 leads (I, II, III, aVR, aVL, 

aVF, V1, V2, V3, V4, V5, V6) together with the 3 Frank leads ECGs (VX, VY, VZ). Each 

signal is digitized at 1000 samples per second, with 16 bit resolution over a range of ± 

16.384 mV. This is diagnostic data containing Healthy controls and different diseases such 

as Myocardial infarction, Cardiomyopathy/Heart failure, Bundle branch block, Dysrhythmia, 

Myocardial hypertrophy, Valvular heart disease, Myocarditis [131]. The clinical summary of 

PTB data subject wise is given in following Table 3.6. 

Table 3.6 Different Heart Diseases PTB Database 

S. No.  Diagnostic class No. of 

subjects 

Cases Remarks 

1 Bundle branch block 15 17  

2 Cardiomyopathy 15 17  

3 Dysrhythmia 14 16  

4 Healthy Control 52 80  

5 Heart failure 3 3  

6 Myocardial Hypertrophy 7 7  

7 Myocardial Infarction  148 368  

8 Myocarditis 4 4  

9 n/a Clinical summary not available  22 27  

10 Palpitation 1 1 Miscellaneous 

11 Stable angina  2 2 Miscellaneous 

12 Unstable angina 1 1 Miscellaneous 

13 Valvular heart disease 6 6  

Total 13 290 549  

 

 

3.2.8 Lab recorded database 

Biopac-150 was used with Fluke for candidate data recording. Different types of data, 

selecting proper ranges for ST elevation and depression (positive 0.8mv to negative 0.8mv). 

Similarly, different sinus arrhythmias data were recorded from 30BPM to 300BPM, and 

different PVCS such as 6, 12 and 24. Atria 6100 ECG machine was used for recording 

different subjects such as students, security persons, staff members and some medical 

shivers. All data were recorded at 500 samples per second.       

3.3 Methodology 

 The research methodology is a thought process, which performs a structured 

research to understand scientifically by holding all its steps together. It represents an 

overview of the set paths that are needed to be followed to achieve research targets. An 

appropriate research steps are designed for this study to carry out the experiments, and 
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evaluate the performance in a proper sequence. The description of experiments carried out 

in the present research work mainly divided in two parts, ECG analysis and classification. 

3.3.1 ECG analysis 

The ECG signal analysis is an important part in computer assisted ECG diagnostic 

system, various steps for ECG signal analysis are briefly discussed as follows. 

Preprocessing: The recorded data contains noise and artifacts such as power line 

interference, baseline wander, EMG and electrode contact noise. In this proposed method 

the signal is preprocessed by two stage median filter for removing baseline wander using 

sampling frequency fs. In the first step, sliding window size fs/2 is used and median values 

are determined and stored in an array and in the second step, window size fs is used and 

median values are determined and stored in another array. Subtracting these median values 

from original signal gives drift free signal. In this method, only baseline wander is removed. 

QRS detection: In the ECG signals, Q, R and S waves are high frequency, sharp 

waves whereas P and T waves are low frequency and less sharp waves. The data of Q, R 

and S waves are having linear slope variation. The proposed QRS detection method 

employs a simple two stage median filter for removing baseline drift by using two window 

widths related to the sampling frequency of recorded data. After that, the baseline drift free 

signal is further enhanced by point to point six times data multiplication where the sharp 

peaks such as Q, R, S are more enhanced than artifacts and P & T waves.  For automatic 

QRS detection, a threshold value is required to distinguish between the QRS complex and 

other ECG wave components such as P and T waves. This threshold value is related to the  

amplitude of the peak value of the QRS complex. In this proposed method, mean value of 

enhanced signal works as threshold of separation of QRS from other waves. The above 

criterion is used for QRS detection in single lead and multilead ECG. 

 Single lead QRS detection: A simple and efficient new method for QRS detection in 

Electrocardiogram is proposed in this research work. The initial data is preprocessed using 

two stage median filter for removing baseline drift. The second stage enhances the peaks of 

ECG wave components by using the sixth power of a signal. The next stage identifies the 

QRS complex by taking a variable window size. The performance of the new algorithm is 

evaluated against the standard databases. The QRS detection was also performed on 12 

datasetsnoisy, full lengths (118e24 to 118e_06 and 119e24 to 119_06) from MIT–BIH Noise 

Stress Test Database and obtained performance is higher or comparable to other algorithms 

in literature.  

Multilead QRS detection: QRS detection in 12-Lead Electrocardiogram (ECG) using 

composite lead and peak enhancement method is proposed in this thesis. Initially raw signals 

of 12-Lead electrocardiogram having sampled frequency fs are pre-processed for baseline 

wander removal using a two stage median filter with window widths of fs/2 and fs respectively. 
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The point by point average of the preprocessed signals corresponding to 12-Leeds is taken 

to generate a composite lead. In order to obtain a variable size search window for QRS 

detection, the composite lead is enhanced by the sixth power of the signal and its mean 

value is determined. The maximum value in the search space defined by the search window 

was mapped on the composite lead and other 12 ECG leads of 12-lead ECG individually for 

QRS detection. The performance of the algorithm is evaluated against CSE (Common 

Standards for Quantitative Electrocardiography) multilead measurement database, St. 

Petersburg Institute of Cardiological Technic’s 12-lead Arrhythmia Database and PTB 

Database  Boundary marking of ECG wave components and diagnostic parameter detection 

Boundary marking of ECG wave components and diagnostic parameter 

detection: Boundary point’s detection in 12-Lead ECG simultaneously recorded, using 

composite lead is proposed in this work. The complexes of this composite lead are better 

enhanced and noise free than others in any of the 12 leads. The initially raw signal is 

preprocessed by two stage median filters to remove baseline drift using sliding window fs/2 

and fs respectively. In the second stage, the composite lead is generated by the combination 

of all 12-leads. The morphology of composite lead is similar to other 12-leads, but with more 

enhanced wave complexes and intervals with reduction of noise.  The third stage enhances 

the complexes of composite signal by using the sixth power of this signal, using the mean 

value of this enhanced signal as a threshold to determine the high peak of QRS of composite 

signal and individual leads at variable window size. After detection of the QRS location of 

composite lead, QRSonset and QRSoffset are determined by using the standard deviation 

method. After detection of P-wave location, Ponset and Poffset are determined by using the 

standard deviation method and similarly T wave location is detected and Tend is marked.  

For automatic ECG analysis and diagnosis system a dominant beat is required for 

measurements and classification. Here it is proposed to determine average beat in 10 

second recoded ECG signal. All beats are aligned about high peak (R or S wave) position as 

a center location and each beat lying in the range from Ponset -100 msec to Tend+100 msec in 

2000  ms window size and then average beat of composite lead and all the leads of 12 lead 

ECG is determined. The onsets of P, QRS and offsets of P, QRS and T wave are detected 

on the composite beat (average beat) and mapped on boundary values of composite beat in 

all the average beats of 12-leads. After determination of P duration, QRS complex duration, 

ST-T complex interval and QT interval, other parameters such as peak to peak amplitude, 

area, mean, standard deviation, skewness and kurtosis of QRS duration and ST-T complex 

interval of all average beats of 12-lead ECG are calculated. 

3.3.2 Feature Dimension Reduction Technique 

The general problem in data processing is that large amount of data are expensive to 

store, transmit and process. For storing large storage space, for transmitting required to have 
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high bandwidth and for processing, required fast computing system to reduce the large 

processing time. To reduce the amount of data would mean a reduction in expenses. But 

simply throwing away part of the data would result in a loss of information, which could be 

important. In so called random data, such as signals, images and other samples, there is 

however a difference in how important each part of data is to the information which is stored 

in the data. By leaving out the part of data which is the least valuable to the information to the 

information, we reach a reduction of the amount of data. The main purpose of the feature 

space dimensionality reduction is to avoid curse of dimensionality, reduce amount of time 

and memory size required by data mining algorithms and achieve higher accuracy. In the 

present work, the principal component analysis (PCA) has been used to obtain optimal 

features for classification task. 

Principal component analysis is a statistical method that generates a new set of 

variables known as principal components.  Principal component analysis has been used 

successfully in the various field such as face recognition, image compression, EEG analysis, 

diagnosis of diseases of cotton leaves and as well as ECG analysis [99, 100, 103-139]. PCA 

is defined as orthogonal linear transformation, that transforms the data to a new  coordinate 

system such that the first greatest variance by some projection data comes to lie in the first 

coordinate, the second greatest variance on the second coordinate, and so on [140-142]. In 

this study PCA is used for parameter dimensionality reduction and optimize the number of 

principal components (PCs) to perform heart disease classification. 

3.3.3 Classification Method 

In computerized ECG diagnosis system classification part is the second part, in which 

extracted features are used for classifications. In this section briefly described method for 

detection of myocardial infarction, cardiomyopathy and bundle branch block using SVM and 

ANN classifier.  

3.3.3.1 Support Vector Machine based Classifier 

The SVM is a most suitable technique for data classification. The classification task in 

this technique mostly uses separating data (numeric values) into training and testing sets by 

building an optimized hyper plane, using kernel functions with suitable conditions. The main 

aim of this classifier is to produce a model on the basis of training data, which shows the 

target values of the test data. In this study, we apply LibSVM for MI classification. The 

calculated features are applied as SVM format such as numeric values. To avoid numerical 

difficulties and large numerical differences in attributes, we used Min-Max method for 

rescaling of attributes in the range [-1, +1]. According to LibSVM guide, we considered the 

kernel function radial bias function (RBF) with tenfold cross-validation to find best parameter 

C ε {2-4, 2-3,…… 215} and γ ε {2-15, 2-14, 2-13,…… 25,}  to train the whole training data set [97, 
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102, 143]. The SVM has been used successfully in the various field such as face recognition 

image compression, health diagnosis and other fields [144]. 

3.3.3.2 Artificial Neural Network based Classifier 

The Artificial Neural Network (ANN) consist of simple nodes and operating in parallel. 

Its processing units analogous to neurons in the brain. Each node has a node function, 

associated with it which, along with a set of local parameters determines the output of the 

node, given an input. Artificial Neural Network thus is an information processing system. In 

this information processing system, the nodes called neurons, process the information. The 

signals are transmitted by means of connected links. The link possesses an associated 

weight, which is multiplied along with the incoming net input (signal) for any neural net. The 

output signal is obtained by applying activations of the net input. Thus, ANN represents the 

major extension to computation. The ANN performs the operation similar to the human brain. 

Therefore, ANN are very flexible and powerful tool in medical diagnosis and classification.    

 The ANN is a massively parallel distributed processor made up of simple processing 

units that has a natural tendency for storing experimental knowledge to design the model to 

perform a particular classification problem. The data regarding the categorization problem 

are passed around through its weights and their associations.  The learning algorithm used in 

neural network changes the weights of the net in the manner to gain a desired design 

objective. Once it is successfully trained, it can give an estimated class to previously unseen 

pattern vector. These approximated outputs are used in the decision process to classify that 

pattern.The ANNshave been used successfully in the various field such as face recognition, 

image compression, health diagnosis and other fields [145-150]. 

 In this work, an ANN classifier tool used various primary steps: to collect features of 

data, create networks, configure the network, initialize the weights and biases, training the 

network, validation the validation the network, and use the network (testing) for classification. 

To avoid numerical difficulties and large numerical differences in attributes, we used Min-Max 

method for rescaling of attributes in the range [-1, +1]. In the next section briefly described 

method for detection of myocardial infarction, cardiomyopathy and bundle branch block using 

SVM and ANN classifier.  
 

3.4 Conclusion 

The material and methodology described in this chapter is to accomplish the research 

objectives of the present work on ECG analysis and classification. In the first section, 

overview of standard ECG databases such as CSE, MIT/BIH arrhythmia data, MIT/BIH Noise 

Stress Database, European ST-T Database and QT Database, St.-Petersburg Institute of 

Cardiological Technics 12-lead Arrhythmia Database, PTB Database libraries and also 
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indigenous data library created by the ECG recording in the laboratory, is presented. Second 

and section briefly explains about QRS detection, boundaries marking, feature extraction, 

and classification are briefly discussed which are described in more detail in subsequent 

chapters. 
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CHAPTER 4: ECG SIGFNAL PROCESSING AND QRS DETECTION 

 

In the previous chapter various types standard databases, methods developed for 

signal processing, QRS detection, boundary marking and classification of diseases have 

been discussed. In this chapter signal processing and QRS detection for both type single 

Lead and 12 Lead ECG signal have been discussed in detail.  

4.1 Overview 

The Electrocardiogram (ECG) is the most suitable technology for recording of 

electrical activity generated by myocardial contraction. The pattern of electrical propagation 

is not random, but spreads over the structure of the heart in a coordinated manner. This 

results in a measurable change in potential difference on the body surface of the subject. Fig. 

2.1 shows the characteristic shape, segments and time intervals of ECG signals. The QRS 

complex is the most important waveform known as the reference waveform for analysis of 

ECG signals. Cardiologist or Clinician diagnoses cardiac abnormalities by observing ECG. 

The performance of an automatic ECG analyzing system depends mostly upon the accurate 

and reliable detection of the QRS complex. Once the location of The QRS complex is 

determined, then another wave component of ECG signal such as P & T waves, PR interval, 

QRS interval, QT intervals and PQ & ST segments is determined with respect to the position 

of the QRS complex. Therefore, detection of accurate QRS complex is the most important 

objective in automatic ECG signal analysis. In the present work I have developed two 

methods for QRS detection: (1) Single lead based QRS detection and (2) Multilead (12-lead 

ECG) QRS detection. Detail steps of single lead and multilead based QRS detection method 

are described in this chapter.  

4.2 ECG Signal Processing 

Various methods have been used for removing noise and artifacts in the literature  

discussed in chapter 2, such as notch filter, adaptive filter, band-pass filter, digital filters, 

wavelet based and median filter. In this work I have developed a two stage median filter to 

remove baseline wander using window width size fs/2 and fs for stage first and second in 

terms of sampling frequency (fs), detail steps discussed in QRS detection section. Median 

filter is a nonlinear filter which is simple to operate with high speed.  

The proposed QRS detection method employs a simple two stage median filter for 

removing baseline drift by using two window widths related to the sampling frequency of 

recorded data. So, two stage median filter is to remove baseline wander and motion artifact 

both belong to low frequency range. After that, the baseline drift free signal is further 

enhanced by point to point six times data multiplication where the sharp peaks such as Q, R, 

and S are more enhanced than artifacts and P&T waves. Hence other filters are not required 
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in the proposed QRS detection method. Detail steps of preprocessing and QRS detection are 

explained in the next section. 

4.3 QRS Detection 

In QRS detection for single lead ECG, major problems are arising due to morphological 

variations of P-QRS-T waveforms, position of waveforms and the change in cyclic intervals of 

the ECG waveforms of different patients and noises occurrence in acquiring data [15, 41]. 

Therefore, most of QRS detectors described in the literature [42] can be divided into two 

parts: the preprocessor and decision rules. There are many QRS detection methods 

developed by researchers in the last three decades based on above criteria using different 

approaches. These are derivatives [43-44], digital filters [45-47], wavelet-transform [21, 49-

54], neural networks [55], support vector machine (SVM) [56], k-means [57], mathematical 

morphology [58], combined threshold method [60], moving average method [61, phase space 

method [62], Hilbert Transform method [63] and Body sensor network based method [65].  

These existing derivative and digital filter based algorithms determine QRS complex 

assuming a noise free ECG and without P & T waves removed by using a low pass filter, 

high pass filter or band pass filter. Similarly, in wavelet transform a preselected frequency 

band is assumed in which QRS complex energies exist using a combination of low and high 

pass filter. In wavelet transform method QRS complex energies decrease, if the scale is 

larger than 24  and the energies of artifacts increase for scales greater than 25  [49]. In 

wavelet based methods there are no general rules for selecting a wavelet for a particular 

application. Selection criteria of wavelet for a particular application depend on trial method. In 

wavelet methods, fringing effects occur at both the ends of the signal and phase shift 

problems also occur. So in order to overcome these effects some operations are needed. 

Methods based on ANN and SVM require exhaustive training, settings and estimation of 

model parameters. Most of these techniques for QRS detection are computationally complex 

because of using more preprocessing steps.  

In this work, a simple new method is proposed for QRS detection using minimum 

preprocessing steps and simple decision rules. There are no requirements of derivative, 

digital, band pass filters and no search back. This method is based on the sixth power of 

ECG signal that intensifies the signal strength more as compared to noise and artifacts 

including P and T-waves. In this proposed method the signal is preprocessed by two stage 

median filter for removing baseline wander using sampling frequency fs. This method does 

not need any training, settings and estimation of model parameters. There is no requirement 

of filter to remove P and T-waves. This method is based on vertically differential change in 

slope rate by taking higher order multiplication of sample by sample in ECG signals. The 

average value of higher power signal is changed and attained some threshold level to 

discriminate amplitude of QRS complex from artifacts and, P & T-wave. In this method, the 
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increase in the energy of the QRS complex is much more as compared to noise artifacts or P 

and T waves. Now decision rules are applied to find high peak in QRS region, which is R or 

S location. This method is simple in computation, efficient and detects QRS in normal and 

abnormal ECGs and doesn’t require any arrangement for phase shifting and fringing effect 

reduction. The proposed single and multilead QRS detection method has been tested on a 

large scale using many standard ECG databases such as CSE, MIT/BIH AD, ESC ST-T and 

QT, PTB database and also tested noise performance on MIT/BIH Nose Stress Database. 

So both method are useful for ST segment analysis, arrhythmia analysis and different heart 

disease analyses.  

4.3.1 Methodology for QRS Detection 

In general, the QRS detection is mainly divided in two parts: first part is noise 

removal, and second is QRS detection. Recorded ECG signal has noises such as 50/60 Hz 

power line interference due to power line, electromyogram noise due to muscle tremor which 

belongs to high frequency noise, baseline wander due to sudden patient movement or 

breathing and motion artifact due to bad electrode. Baseline wander and motion artifact 

belong to low frequency in which the baseline wander frequency is lower than 1 Hz. In this 

study, we considered only baseline wander as removable and QRS is detected in the 

presence of other noises. The various methods used for this purpose in the literature are 

band-pass filter [45], wavelet based [61] and median filter [34]. In this study for removing 

baseline wander drift, we considered two stage median filter using window widths fs/2 and fs. 

Median filter is a nonlinear filter which is simple to operate with high speed. The proposed 

QRS detection method employs a simple two stage median filter for removing baseline drift 

by using two window widths related to the sampling frequency of recorded data. After that, 

the baseline drift free signal is further enhanced by point to point six times data multiplication 

where the sharp peaks such as Q, R, S are more enhanced than artifacts and P & T waves.   

In the ECG signals, Q, R and S waves are high frequency, sharp waves whereas P 

and T waves are low frequency and less sharp waves. The data of Q, R and S waves have 

linear slope variation. If squaring or higher power of the  signal is done than data becomes 

nonlinear. In this case ratio of slope rate of sharp waves with respect to less sharp or slow 

waves will increase and will discriminate the QRS complex with respect to P & T waves. 

For automatic QRS detection, a threshold value is required to distinguish between the 

QRS complex and other ECG wave components such as P and T waves. This threshold 

value is related to the amplitude of the peak value of the QRS complex. In this proposed 

method, mean value of enhanced signal works as the thresholdof separation of QRS from 

other waves, as shown in Fig. 4.1. In the first step, when the signal is without multiplication, 

the mean value of signal crosses all peaks, as shown in Fig 4.1 (a). In the second step when 

the signal is squared, the mean value of signal crosses all peaks, but with an upward shift 
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which is more than that in the first step as shown in Fig. 4.1 (b). Similarly, mean of third and 

fourth steps is shifted upwards, which is clearly higher than artifacts and some waves as 

shown in Fig. 4.1 (c) and 4.1 (d). Now in the fifth step when a power of the signal is fifth, the 

mean value ‘a’ of the signal becomes higher than all artifacts and P and T- waves with a 

possibility of touching T-wave as shown in Fig. 4.1 (e). In the sixth step when a power of the 

signal is sixth, the mean value ‘a’ of signal is clearly above all waves except QRS complex 

waves as shown in Fig. 4.1 (f). In this step,  ‘R’ or ‘S’ wave peaks are clearly distinguished 

from the peaks of P & T waves. So the sixth power of the signal and mean value ‘a’ has 

been used to detect ‘R’ peaks in this work. A variable window width has been selected by 

choosing mean value ‘a’ of sixth power of the signal as a threshold to determine exact 

location of either ‘R’ or ‘S’ peak (on the mapping of the time window in enhanced signal or 

filtered signal or original signal) which is higher than the threshold value in magnitude. After 

that, other waves are determined such as ‘Q’ & ‘S’ or ‘Q’ & ‘R’.  

 



 

39 

 

 
 

  

  

 

Fig. 4.1 Mean value position variation with higher power: (a) Original data. (b) Second power. 
(c) Third power. (d) Fourth power. (e) Fifth power. (f) Sixth power 
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4.3.2 QRS Detection in Single Lead System 

 A schematic block diagram of the proposed method for the single lead QRS 

detecting system is as shown in Fig. 4.2 and detailed steps with, results are described in the 

next section.   
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Fig. 4.2 Schematic diagram of QRS detection method in single lead 
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4.3.2.1 Steps for QRS detection in single lead system 

1. Load ECG data (single or multi channel) having sampled frequency sf , given by  
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where ][1 ny , . , ][ny p
 represent channel data for ‘p’ number of channels and

][11 nx , .., ][1 nx m  represent data values of respective channel. 

2. The filtered output of data step by step shown in Fig. 4.3. Select any one channel of 

ECG data say, having total samples N, as shown in Fig. 4.3 (a) for N=5000. 

3. Removing baseline drift, apply two stage median filter  

(A) First stage median filter: using window width fs/2. 

(a) Input data ][nyi  having total samples ‘N’ and sampling frequency fs. 

(b) In this stage, the median values of input data ][nyi  are  to be determined and 

stored in an array ][1 nxm  from 1 to 4/sf  points, using a variable window size of

4/sf  to 2/sf . 

(c) In next stage, median values of input data ][nyi  are to be determined and stored 

in an array ][1 nxm  from 14/ sf  to 4/sfN   points, using a moving window 

size 2/sf . 

(d) In last stage, median values of input data ][nyi  are to be determined and stored in 

an array ][1 nxm  from 14/  sfN  to N  points, using a variable window size of 

2/sf to 4/sf . Fig. 4.3 (b) shows the plot of median values ][1 nxm . 

(B) Second stage median filter: using window width sf  

(a) Take first stage data ][1 nxm  having total samples ‘N’. 

(b) In this stage, the median values of data ][1 nxm  are to be determined and stored in 

an array ][2 nxm from 1 to 2/sf  points, using a variable window size of 2/sf  to sf . 

(c) Onthe next stage, the median values of data ][1 nxm  are to be determined and 

stored in an array ][2 nxm from 12/ sf  to 2/sfN   points, using a moving 

window size sf . 
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(d) In the last stage, the median values of input data ][1 nxm  are to be determined and 

stored an array ][2 nxm  from 12/  sfN to N  points, using a variable window 

size of sf to 2/sf  . Fig. 4.3 (c) shows the plot of median values ][2 nxm . 

(e) To remove baseline drift from the signal ][nx f
, subtract second stage median 

filter output ][2 nxm  from input data ][nyi , as shown in Fig.  4.3 (d). 

][][][ 2 nxnynx mif                                                                                         (4.2) 

 

Fig. 4.3 Outputs of median filter: (a) Original signal (MO1_015, Lead I) ][nyi , (b) First stage 

median filter output ][1 nxm , (c) Second stage median filter output ][2 nxm  and, (d) Baseline 

wander signal ][nx f
 

 

4. An enhancement of various peaks such as P, QRS, T waves is done by using the 

sixth power of filtered data ][nx f
and is shown in Fig. 4.4.  Data ][nxd  with enhanced 

peaks are 

 6
][][ nxnx fd                                                                                                          (4.3) 
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Fig. 4.4 Enhanced peaks in signal (MO1_015, Lead I):  (a) Baseline wander free signal 

][nx f
 and, (b) Data with enhanced peaks ][nxd  

 

5. Mean value of peaks enhanced data ][nxd  of length 1 to 2fs is taken as threshold 

value ‘a’ for starting peak. 

6. Steps to determine the variable window width ( 2k - 1k ) as depicted in Fig. 4.5: 

(A) To determine starting point 1k  of first peak: Since the first peak, compare ][nxd  to 

the threshold value ‘a’, if it is greater than the threshold value, then mark point 1k , 

as shown in Fig. 4.5 (a). 

(B) To determine ending point 2k  of first peak: For first peak, compare ][nxd  from 1k  

onwards to the threshold value ‘a’, if this value is less, and then mark point 2k , as 

shown in Fig. 4.5 (a) 

7. Determine end point ‘K’ of current ECG cycle: Select window (k2:(k2+fs/2)) in 

enhanced data, determine the standard deviation of enhanced data as follows: 

(a) First 8 samples of standard deviation of input data are determined using a 

variable window of size 8 to 16. Similarly the last 8 samples are determined 

using a window size of 16 to 8. 

(b) The remaining samples in between are obtained by the standard deviation of 

input data with fixed size of 16. All standard deviation samples are stored in 

an array, and then the minima of this standard deviation is found, which is the 

end point k of current cycle or starting point of the next cycle of ECG wave as 

shown in Fig. 4.5 (b). 
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Fig. 4.5 (a) Detection of variable window point k1 & k2 and (b) detection of end point ‘k’ or 

starting point ‘k’ of the next cycle in the enhanced signal ][nxd  

 

8. Detection of QRS  

(A) Detection of QRS high peak: 

The window ( 1k : 2k ) when mapped in original or filtered data has absolute 

maxima or high peaks marked by the symbol (^) as shown in Fig. 4.6. If detected 

peak is positive, then it is ‘R’ otherwise 'S' wave. 

 

 

Fig. 4.6 Detection of peak in the filtered signal (MO1_015, Lead I), here R-wave peak is 
marked as (^) 

 

(B) If ‘R’ wave peak is detected, then find other waves such as ‘Q’ and 'S': 

(a)To determine ‘Q’ wave – search left side from ‘R’ wave up to 60 ms to 

find first minima. 

(b) To determine 'S' wave – search right side from ‘R’ wave up to 60 ms to 

find first minima. 
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(C) If detected peak is 'S' wave, then find other waves such as ‘R’ and ‘Q’: 

(a)To determine ‘R’ wave – search left side of 'S' wave up to 80 ms to find first 

maxima. 

(b) To determine ‘Q’ wave – search left side of 'S' wave up to 80 ms to find first 

minima. The marking of ‘Q’, ‘R’, and ‘S’ waves are by the symbol ‘*’, ‘^’ and ‘o’ as 

shown in Fig. 4.7. 

9. Adaptive threshold: After first peak detection using threshold ‘a’ (a=mean (1:2 times 

fs)), determine adaptive threshold ‘a’ (a=mean (enhanced data (end point of current 

cycle: end point of current cycle + 1.5 times fs))). 

10. From next peak to last peak find starting point 1k  using adaptive threshold ‘a’, starting 

from endpoint of previous cycles and following step 6 (A) and for ending point 2k , 

follow step 6 (B). Skipped period (automatically determined) is used to eliminate false 

peak detection due to abnormal ‘T’ wave. 

 

 

 

Fig. 4.7 Detection of QRS peaks in the filtered signal (MO1_015, Lead I), here Q, R, S peakis 
marked as ‘*’, '^’ and ‘o’ respectively 

4.3.2.2 Experimental results and discussion 

The evaluation of this proposed new method was done with various standard ECG 

databases, such as CSE data set-3 (MO1_001 to MO1_125), MIT/BIH Arrhythmia Database, 

ESC ST-T Database and QT Database. The performance of the proposed method is 

evaluated in terms of Sensitivity (Se) and Positive predictivity (+P) [42] given in equations 

(4.4) and (4.5). 

)(%)( FNTPTPSeSensitivty                                                                                              (4.4) 

)(%)( FPTPTPPyredictivitPPositive                    (4.5) 

where TP-True Positive, is being identified as correctly detected QRS, FN-False 

Negative being identified when the QRS is present and detector does not detect it, FP-False 

Positive, means QRS is not present, but detector detects QRS location. In this section, five 

experiments are described performing our algorithm with different types of standard 

databases. Kohler et al [42]. Suggested computational load as low, medium and high 
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according to the generation of the feature signals and complexity of techniques used, so the 

computational load is also considered here and performance of other detectors is then 

compared with the proposed method. 

Experiment 1: In this experiment, CSE data set-3 original 125 cases (MO1_001 – 

MO1_125) only considered, and perform 12 standard lead ECG QRS detection. This 

database contains normal, abnormal and many heart diseases. Fig. 4.8 shows QRS 

detection in CSE data base record MO1_016 (Lead I). In this record variation in baseline drift 

is large and the proposed method is able to correctly detect all QRS locations. A summary of 

all 125 original cases is presented in Table 4.1. In this Table, for all 12 lead ECG used to 

evaluate QRS detection, and it is observed that the proposed new method detected total 55 

false positives and 88 false negatives resulting in overall QRS detection sensitivity (Se) and 

positive predictivity (+P) of MO1 series as 99.51% and 99.69%, respectively. The false 

positive detection was found mainly in the ECG signals where ‘P’ and ‘T’ waves were peakier 

than QRS complexes. In this case, Lead I and II show more false positive and false negative 

than other leads due to more peaky ‘P’ waves and heavy noisy signals. In literature for QRS 

detection, Saxena et al [21] and Vijiaya et al [55] used CSE database data set-3 using 

artificial data, which is a single good beat of original signal repeated for ten seconds. 

Researcher Mehta et al [56-58] have also performed QRS detection of original CSE 

database data set-3. In the algorithm comparison shown in Table 4.2 with the original data 

set-3, performance of the proposed method is comparable and higher. 

 

Table 4.1 Results of the QRS detection Algorithm for the CSE database data set-3 
(125 original cases full length) 

 

Lead 

Name 

Total 

QRS 

 TP  FP FN Se % +P % Lead 

Name 

Total 

QRS 

TP  FP FN Se % +P % 

I 1497 1478 13 19 98.73 99.13 V1 1497 1494 3 3 99.80 99.80 

II 1497 1476 22 21 98.60 98.53 V2 1497 1489 0 8 99.47 100.00 

III 1497 1493 0 4 99.73 100.00 V3 1497 1492 0 5 99.67 100.00 

aVR 1497 1493 2 4 99.73 99.87 V4 1497 1495 0 2 99.87 100.00 

aVL 1497 1489 15 8 99.47 99.00 V5 1497 1492 0 5 99.67 100.00 

aVF 1497 1491 0 6 99.60 100.00 V6 1497 1494 0 3 99.80 100.00 

       Total 17964 17876 55 88 99.51 99.69 
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Fig. 4.8 QRS detection in MO1_016 Lead-I (a) Original data, (b) Baseline drift free signal (c) 
Enhanced peaks (d) Detection of maxima value of  R wave (e) Marking of QRS waves as 

(‘*’,’^’and ‘o’) 

  

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

M
ic

ro
 V

ol
t

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-500

0

500

M
ic

ro
 V

ol
t

(b)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

2

4

6
x 10

14

M
icr

o 
Vo

lt

(c)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

M
ic

ro
 V

ol
t

(d)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

Samples

M
ic

ro
 V

ol
t

(e)



 

48 

 

Table 4.2 Comparison of QRS detection with another algorithm using a CSE database data 
set-3 (MO1_001-MO1_125) 

Sl. 

No. 

QRS 

Detector 

Data Cases Using 

beats 

TP FP FN Se % +P % Computational 

Load [42] 

1. S.S. 

Mehta 

et.al [56] 

DS3 125 

(12_lead) 

17856 17616 204 240 98.66 98.86 High 

2. Proposed 

Algorithm 

DS3 125 

(12_lead) 

17964 17876 55 88 99.51 99.69 Low 

 

Experiment 2: In this experiment, MIT/ BIH arrhythmia data were considered, which 

mostly contains normal, RBBB, LBBB, APC, PVC with baseline wander and artifacts. In this 

study, our algorithm performs QRS detection with 48 records in full length, without power 

noise and artifacts removing, only baseline wander removed. Some records having different 

diseases shown in figures from Fig. 4.9 to Fig. 4.13. MIT/BIH arrhythmia data record 103 

highly baseline drifts, with noises, which is clearly detected as shown in Fig. 4.9. Fig. 4.10 

depicts QRS detection performance for record 106 MIT/BIH arrhythmia data. In this data, 

variation of morphological, high PVC, change in amplitude and sudden change in RR interval 

are correctly detected. Fig. 4.11 shows record 109 where LBBB beats are clearly detected. 

Fig. 4.12 describes the QRS detection in record 119 MIT/BIH arrhythmia data, which has 

wide PVCs and variation in RR interval.  Fig. 4.13 represents the QRS detection in record 

212 MIT/BIH arrhythmia data, which has RBBB beats clearly detected. 

 

Fig. 4.9 QRS detection in MIT/BIH 103 first lead (ML-II) 

 

Fig. 4.10 QRS detection in MIT/BIH 106 first lead (ML-II) 
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Fig. 4.11 QRS detection in MIT/BIH 109 LBBB first lead (ML-II) 

 

 

Fig. 4.12 QRS detection in MIT/BIH 119 first lead (ML-II) 

 

 

Fig. 4.13 QRS detection in MIT/BIH 212 RBBB first lead (ML-II) 

 

In the given literature many researchers developed QRS detector where they mostly 

evaluated the performance of method by using MIT/BIH arrhythmia database. In literature 

almost all researchers used single first annotated lead data for QRS detection. In Table 4.3 

we observe that performance of all 48 records of first lead is good and within the limit of 

required QRS detection. The proposed new method detected total 728 false positives and 

870 false negatives resulting in overall QRS detection sensitivity (Se%) and positive 

predictivity (+P%) of MIT/BIH A D as 99.21% and 99.34%, respectively, which is higher and 

comparable to other methods. 
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Table 4.3 Comparison of QRS detection with other algorithms using MIT/BIH AD 

database 

 

S. 

No. 

QRS Detector Cases Using 

beats 

TP FP FN Se  

% 

+P 

% 

Computational 

Load [42] 

1 Yeh et al [43] 48 109809* 109643 58 166 99.85 99.95 Low 

2 Pan and Tompkins [45] 48 109809* 109208 507 277 99.75 99.54 High 

3 Hamilton & Tompkins [46] 48 109267 108927 248 340 99.69 99.77 Medium 

4 Adnane et al [47] 48 109494 109241 393 253 99.77 99.64 Low 

5 Saxena et al [21] 48 103763 103664 102 99 99.90 99.90 Medium 

7 Ghaffari et al [51] 48 110159 109837 322 120 99.89 99.71 High 

8 Ghaffari et al [52] 48 109428 109327 129 101 99.91 99.88 High 

9 Chouakri et al[54] 48 109488 108043 3068 1446 98.68 97.24 High 

10 Zhang et al [58] 48 109510 109297 204 213 99.81 99.81 Medium 

11 Christov [60] Alg-I 48 110050 109548 215 294 99.69 99.69 Medium 

12 Christov [60] Alg-II 48 110050 109615 239 240 99.74 99.65 Medium 

 13 Chen et al  [61] 48 110050 109615 239 24 99.78 99.78 Medium 

 14 Proposed  method 48 109966 109096 728 870 99.21 99.34 Low 

 

* Values computed according to the record-record tables in the referred works since there is a 

discrepancy between total values and the sum of the individual ones. 

Experiment 3: In this experiment, ESC ST-T database was used and QRS detection 

was performed on 90 ECG records. This database contains normal, abnormal and variation 

in ST-T interval and T wave morphology. Fig. 4.14 shows QRS detection in record e0105 

(MLIII), in which variation in T wave is larger than R peak. In this experiment proposed 

method is able to correctly detect QRS locations. Summary of all 90 cases is represented in 

Table 4.4. In this Table, all cases used first lead to evaluate QRS detection and we observe 

that the proposed new method detected total 2,190 false positives and 3,679 false negatives 

resulting in overall QRS detection sensitivity (Se) and positive predictivity (+P) of ESC ST-T 

as 99.53% and 99.72% respectively, which is comparable and higher than other methods. 

 

 

Fig. 4.14 QRS detection in data e0105 (MLIII) 
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Table 4.4 Comparison of QRS detection with another algorithm using ESC-ST-T database 

 

S. 

No. 

QRS Detector Data Cases Using 

beats 

TP FP FN Se  

% 

+P  

% 

Computational 

Load [42] 

1 Martinez et al [50] ESC ST-T 90 787103 784059 4077 3044 99.61 99.48 High 

2 Ghaffari et al [52] ESC ST-T 90 787103 784210 3554 2893 99.63 99.55 High 

3 Proposed method ESCST-T 90 790559 774180 2190 3679 99.53 99.72 Low 

 

  Experiment 4: In this experiment, QT database was used and QRS detection was 

performed on 105 ECG records. This database contains normal, abnormal and variation in 

the QRS, ST-T interval and T wave morphology. Table 4.5 depicts the overall performance of 

the proposed method which  detected total 41 false positives and 107 false negatives 

resulting in overall QRS detection sensitivity (Se) and positive predictivity (+P) of QT 

database as 99.87% and 99.95%, respectively, which is higher and comparable to other 

methods. 

Table 4.5 Comparison of QRS detection with another algorithm using the QT database 

S. 

No. 

QRS Detector Data Cases Using 

beats 

TP FP FN Se  

% 

+P  

% 

Computational 

Load [42] 

1 Martinez et al [50] QT 105 86892 86824 107 68 99.92 99.88 High 

2 Ghaffari et al [52] QT 105 86892 86845 79 47 99.94 99.91 High 

3 Proposed method QT 105 87679 87572 41 107 99.87 99.95 Low 

 

 

 The comparison of QRS detection performance of the proposed method with other 

methods using standard database of CSE, MIT/BIH and CSE_ST-T database is shown in 

Table 4.2, Table 4.3, Table 4.4 and Table 4.5 respectively. Table 4.6 represents the overall 

performance of the proposed method, using four different standard databases, with 368 

cases and total 10,06,168 beats analysis. The overall average sensitivity of 99.52% and 

positive predictivity of 99.69% was achieved considering all four standard databases. 

The new method was implemented by using MATLAB 7.8.0 (2009a) Software on a 

PC with Intel Core 2 Duo 2.67 GHz processor.  The average computational times for CSE, 

MIT/BIH AD and ESC ST-T full length data are 0.5-0.8s, 80-85s and 230-250s respectively. 
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Table 4.6 Results summary of the QRS detection for the CSE, MIT/BIH AD, ESC-ST-T and 
QT database 

S. No.  Data Cases Using 

beats 

TP FP FN Se % +P % 

1 CSE DS-3 125 17964 17876 55 88 99.51 99.69 

2 MIT/BIH 48 109966 109096 728 870 99.21 99.34 

3  ESC ST-T 90 790559 774180 2190 3679 99.53 99.72 

4 QT 105 87679 87572 41 107 99.87 99.95 

Total  368 1006168 988724 3935 4892 99.52 99.69 

 

 

 Experiment 5: In this section two example performances related to noise handling 

problems are presented, in order to understand how the SNR affects the performance of the 

QRS detector. One example was performed using zero mean, white Gaussian noise with 

variance, to find QRS detection rate [61] by selecting the varying SNR values from 0 – 15dB. 

Table 4.7 depicts the experimental performance of the proposed algorithm with varying SNR 

of record 119 of MIT/BIH arrhythmia database. Comparison of QRS detection rate 

performance with another algorithm is represented in Table 4.8. Observing the results in 

Table 4.7 & Table 4.8, we find that a QRS detection rate of 100% could be achieved at SNR 

11dB by proposing algorithm which is comparable to other algorithms [61]. Fig. 4.15 shows 

the QRS detection algorithm for a data record 119 at different level of SNR. 
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Table 4.7 SNR versus QRS detection rate Algorithm for the record 119 MIT/BIH AD 

SNR(dB) Total 

QRS 

TP FP FN Se (%) +P (%) Min (Se+P) 

[61] 

0 22 3 41 19 13.64 6.82 6.82 

1 22 5 38 17 22.73 11.63 11.63 

2 22 5 37 17 22.73 11.90 11.90 

3 22 6 32 16 27.27 15.79 15.79 

4 22 9 28 13 40.91 24.32 24.32 

5 22 10 22 12 45.45 31.25 31.25 

6 22 13 20 9 59.09 39.39 39.39 

7 22 13 19 9 59.09 40.63 40.63 

8 22 15 13 7 68.18 53.57 53.57 

9 22 19 5 3 86.36 79.17 79.17 

10 22 19 5 3 86.36 79.17 79.17 

11 22 22 0 0 100.00 100.00 100.00 

12 22 22 0 0 100.00 100.00 100.00 

13 22 22 0 0 100.00 100.00 100.00 

14 22 22 0 0 100.00 100.00 100.00 

15 22 22 0 0 100.00 100.00 100.00 
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Table 4.8 Comparison of QRS detection rate with other algorithm using varying SNR for the record 

119 MIT/BIH AD 

 Proposed algorithm Chen et al [61] 

SNR(dB) Se (%) +P (%) Min 

(Se+P) [61] 

Se (%) +P(%) Min (Se+P) 

[61] 

0 13.64 6.82 6.82 93.85 92.82 92.82 

1 22.73 11.63 11.63 97.21 95.87 95.87 

2 22.73 11.90 11.90 97.77 99.15 97.77 

3 27.27 15.79 15.79 99.16 99.16 99.16 

4 40.91 24.32 24.32 99.72 99.17 99.17 

5 45.45 31.25 31.25 100.00 98.9 98.9 

6 59.09 39.39 39.39 100.00 99.44 99.44 

7 59.09 40.63 40.63 100.00 99.44 99.44 

8 68.18 53.57 53.57 100.00 99.72 99.72 

9 86.36 79.17 79.17 100.00 99.72 99.72 

10 86.36 79.17 79.17 100.00 99.72 99.72 

11 100.00 100.00 100.00 100.00 99.72 99.72 

12 100.00 100.00 100.00 100.00 99.72 99.72 

13 100.00 100.00 100.00 100.00 99.72 99.72 

14 100.00 100.00 100.00 100.00 99.72 99.72 

15 100.00 100.00 100.00 100.00 100.00 100.00 
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Fig. 4.15 QRS detection of record 119 (MLIII) MIT/BIH arrhythmia database at different level 
of SNR: (Top) QRS detection of the original data without adding noise, (Middle) QRS 

detection at SNR 11dB, and (Bottom) QRS detection at SNR 12dB 

 

In this section another example of QRS detection was performed on 12 datasetsnoisy, 

full lengths (118e24 to 118e_06 and 119e24 to 119_06) from MIT-BIH Noise Stress Test 

Database. Experimental results of QRS detection performance of the proposed algorithm are 

depicted in Table 4.9, in which sensitivity of data record 118 varies from 99.69% to 72.43% 

for SNR 24 dB to -6 dB. Similarly, sensitivity of data record 119 varies from 100.00% to 

72.62% for SNR 24 dB to -6 dB. This performance is higher [62] and comparable [63,65] to 

other algorithms shown in Table 4.10.  
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Table 4.9 Algorithm performance for the record MIT/BIH Noise stress database 118 and 119 

 

Data 

Name 

Total 

QRS 

 TP FP FN Se % +P % Data 

Name 

Total 

QRS 

TP  FP FN Se % +P % 

118e24 2278 2271 7 7 99.69 99.69 119e24 1987 1987 1 0 100.00 99.95 

118e18 2278 2216 66 62 97.28 97.11 119e18 1987 1980 7 7 99.65 99.65 

118e12 2278 2149 138 129 94.33 93.96 119e12 1987 1907 95 80 95.97 99.25 

118e06 2278 1941 278 337 85.21 87.47 119e06 1987 1952 268 253 88.17 86.73 

118e00 2278 1732 440 546 76.03 79.74 119e00 1987 1531 453 456 77.05 77.73 

118e_6 2278 1650 508 628 72.43 76.45 119e_6 1987 1443 545 544 72.62 72.56 

 

 

Table 4.10 Comparison of QRS detection performance with other algorithms using MIT/BIH 
Noise stress Database 

 

Data 

Name 

Total 

QRS 

Proposed method 

 

Plesnik et al 

[62] 

 Benitez et al. 

[63] 

H. Li and J. Tan [65]  

Algorithm-I             Algorithm-II 

  Se % +P % Se % +P % Se % +P % Se % +P % Se % +P % 

118e24 2278 99.69 99.69 98.46 100.00 100.00 100.00 99.32 99.79 100.00 99.64 

118e18 2278 97.28 97.11 97.76 99.96 99.96 99.82 98.49 99.00 100.00 99.46 

118e12 2278 94.33 93.96 88.98 96.99 98.81 97.28 96.66 97.78 99.90 89.32 

118e06 2278 85.21 87.47 68.70 84.96 94.69 91.13 91.23 81.11 99.63 73.34 

118e00 2278 76.03 79.74 43.59 61.56 84.15 82.66 77.30 71.34 99.53 57.68 

118e_6 2278 72.43 76.45 25.37 54.37 78.45 77.16 63.47 72.04 89.93 52.01 

119e24 1987 100.00 99.95 99.85 99.95 100.00 99.95 100.00 98.17 100.00 99.58 

119e18 1987 99.65 99.65 99.80 99.95 99.95 99.80 99.28 98.04 99.88 98.99 

119e12 1987 95.97 99.25 96.28 99.07 99.14 95.12 98.25 97.37 99.28 88.52 

119e06 1987 88.17 86.73 81.03 89.54 95.87 88.85 96.33 89.99 99.63 70.24 

119e00 1987 77.05 77.73 41.92 58.74 89.73 81.34 89.58 75.38 99.28 53.38 

119e_6 1987 72.62 72.56 23.65 44.76 81.08 74.17 78.09 66.27 98.01 49.14 

 

 

4.3.2.3 Conclusion of single lead QRS detection 

An effective and reliable QRS detection method based on peak enhancements by the 

sixth powerof the signal and variable window width has been presented here. This proposed 

new method was tested on various standard databases such as CSE, MIT/BIH, ESC ST-T 

and QT database and obtained good results & statistical indices are higher or comparable to 
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those cited in the literature. The proposed method is very simple, fast and reliable to 

determine QRS at different sampling frequency rates without using any denoising software. 

In this study, we used only baseline wander by using two stage median filters, and signal 

enhanced by the sixth power of a signal. In case of even noisy signal, QRS detection was 

achieved, which was verified at various SNR values. The algorithm was tested on different 

SNR values with 12 data of the MIT-BIH Noise Stress Test Database. The QRS detection 

performance achieved was higher and comparable to other algorithms. In this method I 

observed that QRS detector works accurately even at different sampling frequencies. This 

method is applicable for designing composite heart disease analyzer, such as ST segment 

and arrhythmia monitoring.  

4.3.3 QRS detection in Multilead (12-Lead ECG) 

 In the past few decades, increasing application has been forced on the use of 

multilead monitoring for telemetry and ambulatory electrocardiography. There are reliable 

advantages of multilead monitoring for the detection and positioning of acute ischemia in 

patients with coronary artery disease. These techniques are also important for the detection 

and accurate diagnosis of arrhythmias, because multilead ECG recordings provide important 

information of P wave and QRS complex morphology that cannot be determined from two or 

three lead recordings. This results in a measurable change in potential difference on the 

body surface of the subject. Multilead (12-lead) ECG recording represents a powerful signal 

acquisition method that can be used for patient monitoring, ambulatory recording or 

telemetry, for exercise testing electrocardiography. In ischemia, 12-lead ECG monitoring 

provides increased sensitivity for the ST segment elevation pattern that occur with acute 

coronary syndromes such as myocardial infarctions. Multilead also can enhance the 

sensitivity of ECG for the ST segment pattern of subendocardial ischemia found during 

ambulatory recording and during exercise testing. Similarly with respect arrhythmias, 12-lead  

ECG recordings can recognize "typical" from "atypical" atrial flutter. These multilead ECG 

recording improve the morphological characterization of ventricular tachycardia. Multilead 

ECGs a are necessary for quantification of the temporal variability of QT dispersion, and 

redundant information can often clarity artifacts that appear in individual leads. Fig. 4.16 

depict 12-lead ECG data, in this recording each lead represents cardiac function in different 

angles. 
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Fig. 4.16 12 Lead ECG data presentation 

In the multilead ECG analysis, the simultaneous leads are transformed into a detection 

function. The transformation of ECG signal brings out only QRS complexes amongst the 

other signal, and increase QRS detection rate. Generally, transformation is used in spatial 

velocity functions for VCG or 12-lead ECG. Mostly, the spatial velocity function has been 

computed by combining the derivatives of all VCG or ECG leads. In the CSE pilot study 

different methods are used by researchers for various VCG and ECG programs. Once a 

spatial velocity function of the QRS complex is detected, after that, most algorithms apply 

further rules for QRS complex detection.  

The multilead QRS detection is mostly divided in two parts: preprocessing stage and 

decision rules stages. The pre-processing stage using linear, nonlinear filters and some 

denoising techniques [24, 27, 29, 31] for removing noise and artifacts from the ECG signal, 

for enhancement of QRS region. After that decision rules identifies QRS and non QRS 

regions, and then locates the position of QRS.  

 Only a few researchers of these ECG computer programs have published detailed 

evaluation results of their detection methods. Bemmel et al [4, 23] published detailed 

evaluation results of their detection methods for  multilead QRS detection. The author 

presents simultaneous ECG lead, VCG lead and simultaneous multilead ECG to find R peak 

using CSE database. In summary detection of R peaks results are (i) 11369 beat CSE 3 

simultaneous ECG lead used and find R 99.6%. (ii) 2847 beats CSE 3 simultaneous VCG 

lead used and find R 99.9%. (III) 2889   beats CSE 3 simultaneous multi-lead lead used and 
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find R  100%. Kohler, et al [42] presents study of different methods of QRS detection. In this 

study mostly single lead QRS detector based on high-pass filters, band pass filters, and 

wavelet transforms, artificial neural networks, genetic algorithm and mathematical 

morphology has been used. Only length and energy transform method is used in both single 

and multilead QRS detection. Gritzali [83] proposed two methods for single lead and 

multilead QRS detection based on length transformation and energy transformation. The 

author reported QRS detection rate using CSE data set-1 for the length transformation of 

single and multichannel (i.e. 3-Lead) and energy transformation for multichannel are 90.66%, 

99.87% and 99.13% respectively.  Kyrkos et al  [80] developed QRS detection for both three-

Lead and single-Lead ECG signals using time recursive prediction techniques. Author 

reported QRS detection accuracy 99.00% with the CSE data set-1. Laguna et al [81] 

proposed multilead QRS detector on the basis of single-lead QRS detector [21], applying a 

multilead (15-lead) QRS detection rule to consider QRS in each lead whose position do not 

differ by more than 90 milliseconds from one lead to another and author reported wave 

boundaries in multilead ECG signals within range. Maheshwari et al. [20] reported a spatial 

velocity approach for detection of the QRS complexes and other component waves. Mehta 

and Lingayat [82] proposed the detection of QRS complexes in 12-Lead ECG using SVM 

and reported a QRS detection rate of 99.97% using CSE data set-3 (MO1_001 to MO1_125). 

These existing algorithms determine QRS complex assuming a noise free ECG signal and 

suppression of P & T waves by using filters based on differentiation principle. Method [56, 

82] requires filtering and exhaustive training, settings, and estimation of model parameters. 

Most of these techniques for QRS detection are complicated as they are computationally 

complex and time consuming.  

4.3.3.1 QRS detection method in 12-Lead ECG 

Basically, QRS detection process consists of two steps: (1) filtering of signal and (2) 

identifying the QRS region. The Raw ECG signal has noises due to the interference of 50/60 

Hz to power line and due to muscle tremor (electromyogram noise), both of which belong to 

high frequency noise. In addition, there are low frequency noises due to sudden patient 

movement or breathing and due to bad electrode, in which baseline wander frequency is 

lower than 1 Hz. In this study for removing baseline wander for all 12 Lead ECG, we 

considered two stage median filter using window widths fs/2 and fs. Median filter is a 

nonlinear filter which is simple to operate with high speed. The proposed QRS detection 

method employs a simple two stage median filter for removing baseline drift by using two 

window widths related to the sampling frequency of recorded all 12 Lead ECG data. In this 

method all 12 ECG signal added and averaged according to sample value positions, so that 

we can obtain composite lead signal (average signal of 12-leads).  The ECG signals when 

contaminated by noise, have revealed better performance using coherent averaging. The 
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composite signal is smoothened by adding all lead at the same sample position and 

averaging the signal. Therefore, in this method other filter is not required to remove 

interference of 50/60 Hz to he power line. The obtained composite lead signal is now 

smoother and enhanced than other 12-leads ECG as depicted in Fig. 4.17. Detection criteria 

for complex localization are according to composite lead and peak amplitudes in order to 

avoid the false positive detection of tall P and T waves. After that, baseline drift and artifacts 

free smooth composite lead signal is further enhanced by point to point six times data 

multiplication where the sharp peaks such as Q, R, S are more enhanced than artifacts and 

P & T waves. Detail steps of preprocessing are explained in the next section.  

Preprocessing: The recorded ECG signal contains (a) 50 or 60Hz line interference 

due to power line, (b) electromyogram noise due to muscle tremor which belongs to high 

frequency noise, (c) baseline wander due to sudden patient movement or breathing and (d) 

motion artifact due to the motion of the electrode, raw signals being depicted in Fig. 4.17 (a). 

baseline wander and motion artifact belong to low frequency in which the wander baseline 

drift frequency is lower than 1 Hz. In this proposed method for removing baseline wander for 

each ECG signal, we considered two stage median filter using window widths fs/2 and fs and 

filtered each ECG signal shown in Fig. 4.17 (b). Median filter is a nonlinear filter which is 

simple to operate with high speed [151].  

Composite lead signal generation: In this method all filtered 12 lead ECG signals are 

added sample by sample and divided by 12 to generate composite lead signal. This 

generated new ECG signal reduces noise and is more enhanced than other 12 ECG signals 

and also contains all ECG wave components such as P- wave, QRS complex and T-wave in 

enhanced shape as shown in Fig. 4.17 (c). The morphology of composite lead signal 

consists of all ECG complexes such as P, QRS and T wave, similar to 12-Lead ECG system. 

The ECG wave complexes in composite lead signal are noise free and more enhanced in 

comparison to all 12 leads [152].  
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Fig. 4.17 Top to bottom (a) Raw 12 lead ECG signal, (b) baseline wander free signal (c) 
Composite lead signal 

A schematic block diagram of the proposed method for QRS detection and boundary 

marking in 12-Lead ECG systems is depicted in Fig. 4.18, which consists of two stage 

median filters, composite lead generation, Enhancement of composite lead, determination of 

variable window size by using the mean of enhanced composite lead and determines the 

location of high peak value in the complex region.  
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Fig. 4.18 Block diagram of multilead QRS detection method. 
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4.3.3.2 Steps for QRS detection in 12-Lead ECG lead system 

The QRS detection, detailed steps are described as follows: 

1. Load 12-Lead ECG data, as shown in Fig. 4.18 having sampled frequency sf  and 

number of total samples N of each data given by  
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Where ][1 ny , ][2 ny . . , ][12 ny  represent 12-Lead ECG data and ][1,1 nx , .., ][,1 nx N
 

represent respective data values. 

2. Select a channel of ECG data say ][nyi . 

3. Apply two stage median filter to remove baseline drift  

(A) First stage median filter: using window width 2/sf  

(a) Input data ][nyi  having total samples ‘N’ and sampling frequency  sf  

(b) In this stage median value of input data ][nyi  to be determined and stored in an 

array ][1 nx im  from 1 to 4/sf  points using a variable window size from 4/sf  to

2/sf  by increasing one by one sample. 

(c) In next stage median values of input data ][nyi  to be determined and stored in an 

array ][1 nx im  from 14/ sf  to 4/sfN   points using a moving window size 2/sf

. 

(d) In last stage median values of input data ][nyi  to be determined and stored in an 

array ][1 nx im  from 14/  sfN  to N  points, using a variable window size from 

2/sf to 4/sf . 

(B) Second stage median filter: using window width sf  

(a) Take first stage data ][1 nx im  having total samples ‘N’. 

(b) In this stage median value of data ][1 nx im  to be determined and stored in an array 

][2 nx im  from 1 to 2/sf  points using a variable window size of 2/sf  to sf . 

(c) In next stage median values of data ][1 nx im  to be determined and stored in an 

array ][2 nx im  from 12/ sf  to 2/sfN   points using a moving window size sf . 
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(d) In last stage median values of input data ][1 nx im  to be determined and stored in 

an array ][2 nx im  from 12/  sfN to N  points using a variable window size of 

sf  to 2/sf  .  

(e) To remove baseline drift from signal ][nx fi  subtract second stage median filter 

output ][2 nx im  from input data ][nyi .  

][][][ 2 nxnynx imifi                                                                                       (4.7) 

Similarly find other remaining lead data. All 12-Lead ECG filtered data are shown in 

Fig. 4.18.
 

4. Generation of composite (complex) lead data: 

(a) All 12-Lead ECG filtered data are given by 
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                                                       (4.8) 

(b) To determine the simultaneous space average )(kAv of the composite (complex) 

lead signal taking average of all lead data at each sample position and take the 

simultaneous space average value )(kAv of all lead data at 
thk position given by  
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Composite (complex) lead signal CLA  given by 

 )()..(..)2()1( NAkAAAA vvvvCL                                                                       (4.10) 

This composite lead signal is similar to other 12-Lead ECG system and consists of all 

complexes such as P, QRS and T waves. In this signal QRS complex region more enhanced 

than P and T waves in other 12-Leads ECG system. P and T wave region also smoothed. 

Composite Lead wave form and morphology is approximately same as other 12-Leads. 

5. Again enhancement of various peaks such as P, QRS, T waves is done by taking 

the sixth power of composite signal CLA . The enhanced composite signal signal is 

given by  
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 )()..(..)2()1( 6666 NAkAAAA vvvvCLE                                                                           (4.11) 

6. Mean value ‘a’ of enhanced composite signal ACLE  of length 1 to 2fs is given by
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1

                                                                   (4.12)                                       

where N= 2fs
 

7. Steps to determine the variable window width: 

(A) To determine starting point k1 of first peak: compare CLEA  to the threshold value 

‘a’, if it is greater than threshold value, and then marks point as k1. 

(B) To determine ending point k2  of first peak: compare CLEA  from k1 onwards to the 

threshold value ‘a’, if this value is less, then marks point as k2. 

8. Determine end point ‘k’ of current ECG cycle: Select window (k2:(k2 + fs/2)) in 

enhanced data, determine the standard deviation of enhanced data as follows: 

(a) First 8 samples of standard deviation of input data are determined using a 

variable window of size 8 to 16. Similarly the last 8 samples are determined 

using a window size of 16 to 8. 

(b) The remaining in between samples is obtained by the standard deviation of input 

data with fixed size of 16. All standard deviation samples are stored in an array, 

and then the minima of this standard deviation is found, which is the end 

point ‘k' of current cycle or starting point of next cycle of ECG wave. 

 

9. Detection of QRS: The variable window is mapped in composite lead and filtered data 

of individual leads and maxima is found with high peak (pki) marked by the symbol (^) 

as shown in Fig. 4.19 which represents the location of QRS of composite lead. If 

detected peak is positive, then it is ‘R’ or otherwise 'S' wave.  

10. Adaptive threshold: After first peak detection using threshold ‘a’ (a = mean (1:2 

times fs)), determine adaptive threshold ‘a’ (a = mean (enhanced data (end point of 

current cycle: end point of current cycle + 1.5 times fs))). 
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11. From next peak to last peak find starting point k1 using adaptive threshold ‘a’, starting 

from endpoint of previous cycles and following step 7 (A) and for ending point k2, 

follow step 7 (B). Skipped period (automatically determined) is used to eliminate false 

peak detection due to abnormal ‘T’ wave. 

12. All above calculated values are mapped on composite lead and individual leads on 

each beat as shown in Fig. 4.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.19 QRS detection and QRS marking by (^) on filtered 12-Lead ECG and composite 
lead 

4.3.3.3 Results and Discussion 

The evaluation of this new proposed method is done using standard CSE multilead 

measurement data set-3, data set-4, PTB database and St.-Petersburg Institute of 

Cardiological Techniques 12-lead Arrhythmia Database. In order to evaluate the 

performance of the proposed method, we calculated two parameters, i.e. Sensitivity (Se) and 

Positive predictivity (+P) and performed three experiments with different databases. 
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Experiment 1 

In this experiment, multilead CSE data set-3 and data set-4 are considered and QRS 

detection is performed in composite lead and in all 12 ECG leads. Fig. 4.20 shows QRS 

detection in record MO1_002. This record contains power noise and abnormal P & T waves 

in different leads. The proposed method is able to correctly detect all QRS locations in each 

of the 12 ECG leads and composite lead. The composite lead consists of all ECG wave 

components which are normalized, reduced artifacts and other noises and segment 

parameters are also improved with respect to baseline wander.  

Fig. 4.21 depicts the QRS detection in record MA1_012. In this record lead I and aVL 

contains heavy P-wave that is peaky and noisy, and all leads have baseline drift. In this 

problem, we observe that composite lead contains less noise than other leads.  It is actually 

enhanced and denoised, so this helps in the determination of all QRS locations clearly in all 

leads.   

Fig. 4.22 shows original CSE record MO2_089, which contains large variation in 

baseline drift, power noise and large variation in beat intervals. In this problem we observe 

that composite lead contains less noise than other leads. It is actually enhanced and 

denoised, so this helps in the determination of all QRS locations clearly in all leads. 
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Fig. 4.20 QRS detection of record MO1_002 data (a) Raw 12-Lead ECG data (b) QRS 
marking by (^) on filtered 12-Lead ECG and composite lead 
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Fig. 4.21 QRS detection of record MA1_012 data (a) Raw 12-Lead ECG data (b) QRS 
marking by (^) on filtered 12-Lead ECG and composite lead 
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Fig. 4.22 QRS detection of record MO2_089 data (a) Raw 12-Lead ECG data (b) QRS 
marking by (^) on filtered 12-Lead ECG and composite lead 

 

 

0 1000 2000 3000 4000 5000
-500

0

500

0 1000 2000 3000 4000 5000
-1000

0

1000

0 1000 2000 3000 4000 5000
-1000

0

1000

0 1000 2000 3000 4000 5000
-2000

0

2000

0 1000 2000 3000 4000 5000
-1000

0

1000

0 1000 2000 3000 4000 5000
-2000

0

2000

0 1000 2000 3000 4000 5000
-500

0

500

0 1000 2000 3000 4000 5000
-2000

0

2000

0 1000 2000 3000 4000 5000
-1000

0

1000

0 1000 2000 3000 4000 5000
-2000

0

2000

0 1000 2000 3000 4000 5000
-1000

0

1000

Samples

A
m

p
lit

u
d
e

0 1000 2000 3000 4000 5000
-1000

0

1000

Samples

A
m

p
lit

u
d
e

(a)

I

II

III

aVR

aVL

aVF

V1

V2

V3

V4

V5

V6

0 1000 2000 3000 4000 5000
-500

0

500

0 1000 2000 3000 4000 5000
-1000

0

1000

0 1000 2000 3000 4000 5000
-1000

0

1000

0 1000 2000 3000 4000 5000
-5000

0

5000

0 1000 2000 3000 4000 5000
-1000

0

1000

0 1000 2000 3000 4000 5000
-2000

0

2000

0 1000 2000 3000 4000 5000
-1000

0

1000

0 1000 2000 3000 4000 5000
-2000

0

2000

0 1000 2000 3000 4000 5000
-500

0

500

0 1000 2000 3000 4000 5000
-2000

0

2000

0 1000 2000 3000 4000 5000
-1000

0

1000

0 1000 2000 3000 4000 5000
-2000

0

2000

Samples

A
m

p
lit

u
d
e

0 1000 2000 3000 4000 5000
-500

0

500

Samples

A
m

p
lit

u
d
e

I

II

III

aVR

aVF

aVL

Composite

Lead

V1

V3

V4

V2

V5

V6

(b)



 

71 

 

Evaluation of data set-3 containing original cases 125 (MO1_001 to MO1_125) 

depicted in Table 4.11. In this evaluation, we observe zero total false positives and two false 

negatives, resulting in overall QRS detection sensitivity (Se) and positive predictivity  (+P) of 

the original 125 cases (MO1_001 to MO1_125) as 99.86% and 100% respectively. Similarly, 

data set-3 containing 125 artificial (MA1_001 to MA1_125) cases the proposed method has 

clearly detected all QRS. In these cases zero false positive and zero false negative have 

been detected, resulting in overall QRS detection sensitivity (Se) and positive predictivity 

(+P) of artificial 125 cases (MA1_001 to MA1_125) as 100% and 100% respectively.   

Evaluation of data set 4 containing original cases 125 (MO2_001 to MO2_125) is depicted in 

Table 4.11. In this Evaluation, we observe eight total false positives and three false 

negatives, resulting in overall QRS detection sensitivity (Se) and positive predictivity (+P) of 

the original 125 cases (MO2_001 to MO2_125) as 99.80% and 99.49% respectively. Artificial 

cases of data set 4 (MA2_001 to MA2_125) are evaluated and given in Table 4.11. In this 

table, we observe zero false positives and zero false negatives, resulting in overall QRS 

detection sensitivity (Se) and positive predictivity (+P) of artificial 125 cases (MA2_001 to 

MA2_125) as 100% and 100% respectively. 

 

Table 4.11 Summary of QRS detection in CSE multilead measurement complete database 
(data set-3 & data set-4) 

S. No. Database Using No. of 

beats 

TP FP FN Se % +P  % 

1 CSE data set-3 

(MO1_001 to MO1_125) 

1498 1496 0 2 99.86 100 

2 CSE data set-3 

(MA1_001 to MA1_125) 

1504 1504 0 0 100 100 

3 CSE data set-4 

(MO2_001 to MO2_125) 

1552 1549 8 3 99.8 99.49 

4 CSE data set-4 

(MA2_001 to MA2_125) 

1584 1584 0 0 100 100 

 Total 6138 6133 8 5 99.92 99.87 

 

TP for true positives; FP for false positives and FN for false negative detections. 

 

Experiment 2 

In this experiment, multilead PTB database having different diseases and different data 

length from 32.0 seconds to 120.012 seconds was to be used for QRS detection by a 

composite load method in all 12 ECG leads. This database contains 549 records from 290 

subjects. Each subject is represented by one to five records. Each record includes 15 
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simultaneously measured signals: the conventional 12 leads (I, II, III, aVR, aVL, aVF, V1, V2, 

V3, V4, V5, V6) together with the 3 Frank leads (VX, VY, VZ). Each signal is digitized at 1000 

samples per second, with 16 bit resolution over a range of ± 16.384 mV. This is diagnostic 

data containing Healthy controls and different diseases such as Myocardial infarction, 

Cardiomyopathy/Heart failure, Bundle branch block, Dysrhythmia, Myocardial hypertrophy, 

Valvular heart disease, and Myocarditis. The QRS detection performance of the proposed 

method is depicted in Table 4.12, which shows  58 false positives and 2 false negatives, 

resulting in overall QRS detection sensitivity (Se%) and positive predictivity (+P) of the PTB 

Database as 99.90% and 100% respectively, for all 12 leads and composite lead. 

 

Table 4.12 Summary of QRS detection in Physikalisch-Technische Bundesanstalt (PTB) 
complete database 

S. 

No. 

PTB Database Using No. of 

beats 

TP FP FN Se % +P  % 

1 P_001 to P_549 73892 73890 58 2 99.90 100 

 

TP for true positives; FP for false positives and FN for false negative detections 

Experiment 3 

 In this experiment, multilead St.-Petersburg Institute of Cardiological Techniques 12-

lead Arrhythmia Database was considered and QRS detection in composite lead and all 12 

ECG leads in full length was performed. This noisy database contains various diseases such 

as Acute MI, Transient ischemic attack (angina pectoris), Prior MI, Coronary artery disease 

with hypertension, Sinus node dysfunction, Supra ventricular ectopy, atrial fibrillation or 

SVTA, AV block and Bundle branch block. In this database each record is 30 minutes long 

(4,62,600 samples) and contains 12 standard leads sampled at 257 Hz, with gains varying 

from 250 to 1100 analog-to-digital converter units per milli volt. This database contains over 

1,75,000 beats including approximately 20,000 PVC beats annotations in all. Fig.4.23 depicts 

record I25 with large wanderbaseline variation with heavy noise with artifacts. In the 

proposed method, only median filter is applied to remove wanderbaseline and all QRS 

positions of all 12 leads are determined.  In this experiment all 75 records (I01 to I75) were 

used and QRS detection was performed in all 12 leads and composite lead with variation in 

QRS morphologies due to large PVCs (over 20,000) in approximate 17,50,000 beats. The 

QRS detection performance of the proposed method is depicted in Table 4.13, which shows  

129 false positive and 8,771 false negative, resulting overall QRS detection sensitivity (Se%) 

and positive predictivity (+P) of St. Petersburg Institute of Cardiological Techniques 12-lead 

Arrhythmia Database as 95.86% and 99.91% respectively, for all 12 leads and composite 
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lead. In this result, thirty data records show sensitivity as 100%, average sensitivity of 40 

data records 99.95%, average sensitivity of 50 data records 99.72%, average sensitivity of 

60 data records 99.15%, average sensitivity of 70 data records 97.77%, and overall all 75 

data records average sensitivity being 95.82%. 

 

 

 

 

Fig. 4.23 QRS detection of record I25 data (a) Raw 12-Lead ECG data (b) QRS marking by 
(^) on filtered 12-Lead ECG and composite lead 
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Table 4.13 Summary of QRS detection in St. Petersburg 12-Lead Arrhythmia full-length  

(30 minutes long) database 

 

Record 

Name 

Total 

QRS 

 TP FP FN Se % +P % Record 

Name 

Total 

QRS 

TP  FP FN Se % +P % 

I01 2757 2510 0 247 91.04 100.00 I39 1775 1573 0 202 88.62 100.00 

I02 2674 2491 0 183 93.16 100.00 I40 2666 2666 1 0 100.00 99.96 

I03 2451 2451 5 0 100.00 99.80 I41 1630 1630 1 0 100.00 99.94 

I04 2423 2411 0 12 99.50 100.00 I42 3109 2819 0 290 90.67 100.00 

I05 1776 1773 0 3 99.83 100.00 I43 2209 2178 0 31 98.60 100.00 

I06 2493 2493 1 0 100.00 99.96 I44 2494 2453 0 41 98.36 100.00 

I07 2706 2705 0 1 99.96 100.00 I45 1928 1928 2 0 100.00 99.90 

I08 2131 2042 0 89 95.82 100.00 I46 2658 2638 0 20 99.25 100.00 

I09 2997 2957 0 40 98.67 100.00 I47 1953 1908 0 45 97.70 100.00 

I10 3682 3565 0 117 96.82 100.00 I48 2357 2269 0 88 96.27 100.00 

I11 2106 2106 3 0 100.00 99.86 I49 2147 2147 2 0 100.00 99.91 

I12 2809 2806 0 3 99.89 100.00 I50 2998 2998 2 0 100.00 99.93 

I13 2023 2023 1 0 100.00 99.95 I51 2777 2626 0 151 94.56 100.00 

I14 1866 1866 3 0 100.00 99.84 I52 1747 1747 3 0 100.00 99.83 

I15 2635 2635 5 0 100.00 99.81 I53 2262 2262 0 0 100.00 100.00 

I16 1522 1522 5 0 100.00 99.67 I54 2363 2363 25 0 100.00 98.95 

I17 1672 1672 3 0 100.00 99.82 I55 2166 2166 2 0 100.00 99.91 

I18 3084 2994 0 90 97.08 100.00 I56 1705 1704 0 1 99.94 100.00 

I19 2063 2063 3 0 100.00 99.85 I57 2867 2807 0 60 97.91 100.00 

I20 2652 2540 0 112 95.78 100.00 I58 2325 2321 0 4 99.83 100.00 

I21 2184 2184 3 0 100.00 99.86 I59 2148 2147 0 1 99.95 100.00 

I22 3126 2835 0 291 90.69 100.00 I60 2475 2475 2 0 100.00 99.92 

I23 2205 2201 0 4 99.82 100.00 I61 1454 1454 4 0 100.00 99.73 

I24 2571 2571 2 0 100.00 99.92 I62 2269 2235 0 34 98.50 100.00 

I25 1712 1712 25 0 100.00 98.56 I63 1994 1926 0 68 96.59 100.00 

I26 1509 1509 9 0 100.00 99.41 I64 1913 1913 2 0 100.00 99.90 

I27 2605 1706 0 899 65.49 100.00 I65 2664 2533 0 131 95.08 100.00 

I28 1717 1716 0 1 99.94 100.00 I66 2340 2262 0 78 96.67 100.00 

I29 2621 1889 0 732 72.07 100.00 I67 2974 2841 0 133 95.53 100.00 

I30 2462 1817 0 645 73.80 100.00 I68 2644 2644 10 0 100.00 99.62 

I31 3210 1833 0 1377 57.10 100.00 I69 2169 2169 1 0 100.00 99.95 

I32 1619 1599 0 20 98.76 100.00 I70 1666 1666 1 0 100.00 99.94 

I33 1837 1837 1 0 100.00 99.95 I71 1670 1660 0 10 99.40 100.00 

I34 1965 1950 0 15 99.24 100.00 I72 2269 2010 0 259 88.59 100.00 

I35 3675 3212 0 463 87.40 100.00 I73 1992 1980 0 12 99.40 100.00 

I36 3911 2886 0 1025 73.79 100.00 I74 2404 2389 0 15 99.38 100.00 

I37 2461 2461 2 0 100.00 99.92 I75 2103 1812 0 291 86.16 100.00 

I38 2699 2257 0 442 83.62 100.00 Total 175895 167124 129 8771 95.86 99.91 

 

TP for true positives; FP for false positives and FN for false negative detection 

 

 Table 4.14 represents the overall performance of proposed method, using different 

standard databases, such as CSE, PTB and St-Petersburg multilead Arrhythmia with 
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different cases and total 2,55,925 beats analysis. The overall average sensitivity of 99.24% 

and positive predictivity of 99.90% was achieved considering all different standard 

databases. 

 

Table 4.14 Summary of QRS detection in different multilead ECG database 

S. No. Database Using No. of 

beats 

TP FP FN Se % +P  % 

1 CSE data set-3 

(MO1_001 to MO1_125) 

1498 1496 0 2 99.86 100 

2 CSE data set-3 

(MA1_001 to MA1_125) 

1504 1504 0 0 100 100 

3 CSE data set-4 

(MO2_001 to MO2_125) 

1552 1549 8 3 99.8 99.49 

4 CSE data set-4 

(MA2_001 to MA2_125) 

1584 1584 0 0 100 100 

5 PTB 

P_001 to P_549 

73892 73890 58 2 99.90 100 

6 St-Petsberg multilead 

Arrhythmia I01 to I75 

175895 167124 129 8771 95.86 99.91 

 Total 255925 247147 195 8778 99.24 99.90 

 

 

In Multilead QRS detection, researcher Gritzali [83] used three channel data to 

perform QRS detection in CSE database data set-1 and obtained QRS detection rate 

99.87%. Author Saxena et al [21] proposed multilead QRS detector on the basis of single-

lead QRS detector and performance evaluated using multilead measurement CSE. Another 

researcher Mehta et al [82] used twelve channel data using data set-3 (MO1_001-MO1_125) 

to perform QRS detection with a detection rate of 99.75%. Table 4.15 depicts QRS detection 

performance by various methods using CSE databases. The proposed algorithm performs 

QRS detection comparable and higher than other methods for CSE data sets. Proposed 

method tested on all CSE databases and long length databases like PTB of 540 cases and 

St. Petersburg Institute of Cardiological Techniques 12-lead Arrhythmia of 75 cases. 

Multilead QRS detection for long data was not used by any author, so proposed method 

could be used for multilead ECG analysis.  

The new method was implemented by using MATLAB 7.8.0 (2009a) Software in a P. 

C. with Intel Core 2 Duo 2.67 GHz. The performance of the proposed method is higher or 

comparable with other methods. The average computational time for QRS detection of the 

new proposed algorithm is approximately 5.20 to 5.50 seconds for composite lead and 12-

Lead ECG records of CSE data set-3 & data set-4. The average computational times for St.-
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Petersburg Institute of Cardiological Techniques 12-lead Arrhythmia Database is 

approximately 8.6 minutes for 30 minutes each 12 lead with a composite lead. 

 

 

Table 4.15 Comparison of QRS detection with another algorithm using CSE database 

S. 

No. 

QRS Detector Method Data set Detection 

 rate % 

1 Bemmel et al [23] Spatial velocity function ( 3 simul. ECG) CSE DS1 99.6 

  Spatial velocity function ( 3 simul.VCG) CSE DS1 99.9 

  Spatial velocity function (multi-lead) CSE DS3 100 

2 Gritzali [83] Length transformation(Three Channel ) CSE DS1  99.87 
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Kyrkoy et al [80] 

Energy transformation(Three Channel) CSE DS1  99.13 

Time recursive prediction technique CSE DS2  99.00 

4 Mehta et al [82] Support vector machine(Twelve Channel) CSE DS3  99.75 

5  Proposed method(Twelve Channel) CSE DS3 (MO1_001 -125) 99.86 

  Proposed method(Twelve Channel) CSE DS3 (MA1_001 -125) 100.00 

  Proposed method(Twelve Channel) CSE DS4 (MO2_001 -125) 99.80 

  Proposed method(Twelve Channel) CSE DS4 (MA2_001 -125) 100.00 

 

TP for true positives; FP for false positives and FN for false negative detections 

 

4.3.3.4 Conclusions of 12-Lead ECG QRS detection 
 

 

 

An effective and reliable multilead QRS detection method based on generation of 

composite lead using point by point averaging of preprocessed 12 lead ECG signals has 

been proposed in this work. The proposed methodology effectively reduces the search space 

for QRS detection by obtaining a variable search window by enhancement of composite lead 

using the sixth power of a signal.  The variable search window is mapped on all the individual 

ECG leads for QRS detection. The advantage of the proposed methodology is the use of 

single variable size search window for simultaneous QRS detection on all 12 ECG leads. 

However, the other related researches have used different thresholds for all 12 ECG leads. 

This proposed new method was tested on standard CSE multilead measurement complete 

database, PTB database and St.-Petersburg Institute of Cardiological Techniques 12-lead 

Arrhythmia Database and obtained good results & statistical indices are higher or 
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comparable to other related research in the scientific literature. This simple, fast and reliable 

method for simultaneous detection of QRS locations of composite lead as well as all 12 ECG 

leads can be used for myocardial infarction and arrhythmia monitoring. The clinical 

information presented in the composite lead can assist the cardiologist for ECG signal 

interpretation and analysis, including the clinical distinction of aberrant conduction from 

ventricular premature complexes. 

4.4 Summary 

In this chapter, two QRS detection method based on single lead and multilead ECG 

has been presented.A simple and efficient new method for QRS detection in 

Electrocardiogram is proposed in this research work. The initial data is preprocessed using 

two stage median filter for removing baseline drift. The second stage enhances the peaks of 

ECG wave components by using the sixth power of a signal. The next stage identifies the 

QRS complex by taking a variable window size. The performance of the new algorithm is 

evaluated against the standard databases. The detection sensitivity (Se) and positive 

predictivity (+P) of CSE, MIT/BIH AD, ESC ST-T and QT databases are Se 99.51 &+P 

99.69%, Se 99.21&+P 99.34%, Se 99.53&+P 99.72% and Se 99.87&+P 99.95% 

respectively. These four standard databases (CSE, MIT/BIH AD, ESC ST-T and QT 

databases) used to perform QRS detection consider 368 cases, tested on 1006168 beats 

and achieved overall average sensitivity 99.52% and positive predictivity 99.69%. The QRS 

detection was also performed on 12 datasetsnoisy, full lengths (118e24 to 118e_06 and 

119e24 to 119_06) from MIT–BIH Noise Stress Test Database and obtained performance is 

higher and or comparable to other algorithms in literature.  

 QRS detection in 12-Lead Electrocardiogram (ECG) using composite lead and peak 

enhancement method is proposed in this thesis. Initially raw signals of 12-Lead 

electrocardiogram having sampled frequency fs are pre-processed for baseline wander 

removal using a two stage median filter with window widths of fs/2 and fs respectively. The 

point by point average of the preprocessed signals corresponding to 12-leads is taken to 

generate a composite lead. In order to obtain a variable size search window for QRS 

detection, the composite lead is enhanced by the sixth power of the signal and its mean 

value is determined. The maximum value of the search space defined by the search window 

mapped on the composite lead and other 12 ECG leads of 12-lead ECG individually for QRS 

detection. The performance of the multilead algorithm is evaluated against the CSE multilead 

measurement database, PTB Database, and St. Petersburg Institute of Cardiological 

Technic’s 12-lead Arrhythmia Database. The overall average sensitivity 99.24% and positive 

predictivity of 99.90% was achieved considering all different standard multilead databases 

(CSE, PTB and St-Petersburg multilead Arrhythmia with different cases and total 2,55,925 

beats analysis). 
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 The composite lead signal contains similar morphology of P-QRS-T with same 

interval and duration. The variation is only in amplitudes; hence it is more enhanced lead 

because it is the resultant of all 12 leads. This lead is suitable for all possible measurements 

and rhythm analysis. The ECG wave complexes in composite lead are noise free and 

enhanced in comparison to all 12 leads. The proposed composite lead yields higher 

sensitivity and positive predictivity on standard benchmark datasets (short and long) which 

indicate its usefulness for ECG signal to mark & identify various wave components and 

rhythm analysis in a clinical environment in order to assist cardiologists for different diseases. 

The both algorithms’ have been tested on standard databases and results are very 

satisfactory. 
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CHAPTER 5: MULTILEAD ECG ANALYSIS AND FEATURE EXTRACTION 

 

The previous chapter explains the methods of QRS detection for single Lead and 12 

Lead ECG signal. The QRS is the main feature of ECG signals, after that detection of other 

features such as interval, duration, and amplitude for diagnosis purpose are advanced. 

Therefore, have methodsbeen proposed here in this chapter for boundaries marking in 12 

Lead ECG signal, and also calculations of other features in the ECG signal. 

5.1 Overview 

Cardiologists diagnose heart disorders by analysis of ECG recordings based on their 

knowledge and expertise. They analyze ECG patterns by determining variations in clinical 

relevant intervals, amplitudes and polarities of different wave forms such as P-wave, QRS-

complex and T wave. Generally, computer analysis, ECG programs consist of two parts: the 

clinical measurements and diagnostic interpretation. In the computerized ECG analysis, the 

clinical measurement part, determines the location and reference boundaries of QRS 

complex, P-wave, and T-wave. Mostly, ECG analysis is based on single lead and multilead 

signals. In a single lead ECG analysis generally lead II is preferred. In case of multilead ECG 

analysis, 12 lead at a time (Programs: Marquette, Glasgow and Padova), 6 leads (lead I to 

aVF and lead V1 toV6) at a time in program Hannover, 3 leads (II, V2 and V6) at a time in 

Modular program and 15 leads (12 lead ECG and 3 XYZ leads) at a time in Halifax program 

are used.Some programs (HP, IBM, NAGOYA and Telemed) select groups of leads at a 

time, such as lead group I-III, aVR-aVF, V1-V3, V4-V6 [40]. 

 There are various automatic ECG analysis and interpretation programs developed by 

researchers in the last six decades based on different approaches. These are spatial velocity 

function [2, 4-7, 8, 9, 20], differentiation [3], template-matching [10-11]. Derivative based [22], 

Wavelet based [49, 77, 78]. In the multilead ECG analysis, the simultaneous leads are 

transformed into a detection function. The transformation of ECG signal brings out only QRS 

complexes amongst the other signal, and increase QRS detection rate. Generally, 

transformation is used in spatial velocity functions for VCG or 12-lead ECG. Mostly, the 

spatial velocity function has been computed by combining the derivatives of all VCG or ECG 

leads. Once a spatial velocity function of the QRS complex is detected, after that, most 

algorithms apply further rules for QRS complex detection. In the derivative and differentiation 

based algorithms determination of boundary marking assuming a noise free by removing low 

pass or high pass filter. Similarly, in wavelet transform a preselected frequency band is 

assumed in which QRS complexes or other ECG wave component energies exist using a 

combination of low and high pass filter.  In wavelet transform method QRS complex energies 

decrease, if the scale is larger than 24 and the energies of artifacts increase for scales 

greater than 25 [49]. In wavelet based methods there  are no general rules for selecting a 
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wavelet for a particular application [50]. Selection criteria of wavelet for a particular 

application depend on trial method. In wavelet methods, fringing effects occur at both the 

ends of the signal and phase shift problems also occur. So in order to overcome these 

effects some operations are needed. Methods based on ANN and SVM require exhaustive 

training, settings and estimation of model parameters. Most of these techniques for QRS 

detection are computationally complex because of using more preprocessing steps. 

 In the literature, other several boundaries marking methods working on the single or 

multilead system are compared with annotations marked by cardiologists [40, 153]. However, 

the marking of boundaries is sometimes a difficult task for expert cardiologist, particularly 

onset-offset from P-wave and the end of the T-wave. In the manual measurementof QT 

intervals, in case of missing ECG wave components in lead II, the referees were instructed to 

mark the T-wave end in other waves [153]. In the CSE pilot study different methods are used 

by researchers for various VCG and ECG programs. In the CSE  study, referees analyzed 

ECG with modified protocol and used every fifth case of the selected beats from artificial 

library. The referees marked onsets and offsets of P wave, QRS complex and end of T wave. 

In this process referees received noise free (50 or 60 Hz interference filtered) and an 

enlarged copy of all leads, after that they marked boundaries with the help of translucent 

ruler using same beat position in all leads. These measurements again review and then final 

considered  [40]. Actually, in my opinion, this phenomenon is called a visual average 

concept. The same concept, I used for manually boundary marking in multilead ECG by 

obtaining composite (average) lead and, also used in automatic boundary marking. This 

composite lead similar to other leads and more enhanced in wave complexes such as P, 

QRS and T waves. 

5.2 Multilead ECG Analysis Method 

In the proposed method, I have designed composite signal based on average of the 12 

lead ECG signal. In this method, I create a new signal from the combination of all 12 lead 

ECG. This signal is more suitable for visual analysis and automatic boundaries marking in 

multilead ECG signal, because averaging of 12 lead ECG reduces noise times and 

composite signal is more enhanced than other 12 lead ECG signals [152]. Fig. 5.1 depicted 

12-Lead ECG data signals with different noises and composite Lead.   
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Fig. 5.1 Top to bottom (a) Raw 12 lead ECG signal, (b) Baseline wander free signal (c) 
Composite lead signal 

In the present work, an enhanced composite ECG lead is used for detection of ECG 

wave components and boundaries marking of all ECG wave components. Therefore, I used 

composite lead for QRS detection and measurement of boundaries of ECG signals. This 

study proposes a simple and reliable method for QRS detection in the 12-Lead 

simultaneously recorded ECG data. In this method raw ECG data are pre-processed with two 

stage median filters for removing base line drift of signals and added. Then all 12-Lead ECG 

data are averaged at each point and a composite lead signal is obtained by arranging all 

averaged values in an array. This composite lead is more enhanced in P wave, QRS 

complex and T wave region, minimizing power noise, high frequency noise, including high 

peak abnormality of P and T waves as depicted in Fig. 5.1. After that QRS complex of 

composite lead signal is enhanced, using the sixth power of composite signal that intensifies 

the signal strength more as compared to noise and artifacts including P and T-waves [151]. 

This method does not need any filter to remove P and T-waves. The average value of higher 

power composite signal is changed and attained some threshold level to discriminate 

amplitude of QRS complex from artifacts and, P & T-waves. This method is simple in 

computation, efficient and detects QRS in all 12 leads in 12 Lead ECG systems using single 

threshold. So here I observe that there is no requirement of threshold for each lead. This 

method determined variable window mapped on selected point and determined exact QRS 

locations in specified section without any more processing. After detection of QRS location in 
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composite lead signal, other clinical wave components such as P and T-waves locations and 

their boundaries are determined using standard deviation concepts. 

A schematic block diagram of the proposed method for ECG wave components 

detection and boundary marking in 12-Lead ECG systems is depicted in Fig. 5.2 which 

consists of two stage median filters, composite lead generation, Enhancement of composite 

lead, determination of variable window size by using the mean of enhanced composite lead 

and determines the location of high peak value in the complex region.  
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Load 12-Lead ECG data

First stage 

Median filter with window fs/2

Second stage

Median filter with widow fs

Tow stage median filter

 Removal of base-line drift 
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 Composite Signal  
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Determine window starting point k1 

for ACLE >a and 

end point k2 for ACLE <a  

  

At window (k1 :k2 ) Maxima of abs enhanced signal 

represents location of R or S in composite lead

Detection of QRS Ref. level and QRS-onset –select a window pki -

110msec or pki-110msec for R or S wave respectively and determine SD 

using 8 msec moving window and then find diff of SD and find maxima 

and then define threshold ThQ1=mxqon1*0.1 

Detection of QRS-offset –select a window pki +110msec or pki+110msec 

for R or S respectively and determine SD using 8msec moving window 

and then find diff of SD and find maxima and then define threshold 

ThQ2=mxqoff1*0.01

Determine P-wave position Ppki by using window size QRS-onset to left 

200ms and find maxima.

Ponset :determine SD using 20msece moving window and then  find diff 

of SD and find maxima and then define threshold ThP1= mxpon1*.155 

for Ponset

Poffset :determine SD using 20msece moving window and then  find diff 

of SD and find maxima and then define threshold ThP2= maxpoff1*.05 

for Poffset

Determine T-wave position by using window size QRSoffset to 

QRSoffset+360 msec and. find maxima and then find  T-end and 

determine SD using 40msec moving window and find diff of SD and find 

maxima and then define threshold ThT1= toff1*.1 for Tend

Composite beat generation and measurements.  Details given in text    
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Fig. 5.2 Schematic diagram for QRS detection and boundaries marking in 12-lead ECG 

  



 

84 

 

5.2.1 Steps for wave components detection and boundary marking 

 

The QRS detection, detailed steps are described as follows: 

1. Load 12-Lead ECG data, having sampled frequency sf  and number of total 

samples N of each data given by  

 

 

   

   























































nxnxnx

nxnxnx

nxnxnx

ny

ny

ny

Nk

Nikii

Nk

i

,12,121,12

,,1,

,1,11,1

12

1

][

][][][

][

][                                                               (5.1) 

Where ][1 ny , ][2 ny . . , ][12 ny  represent 12-Lead ECG data and ][1,1 nx , .., ][,1 nx N
 

represent respective data values. 

2. Select a channel of ECG data say ][nyi . 

3. Apply two stage median filter to remove baseline drift  

(A) First stage median filter: using window width 2/sf  

(a) Input data ][nyi  having total samples ‘N’ and sampling frequency  sf  

(b) In this stage median value of the input data ][nyi to be determined and stored in 

an array ][1 nx im  from 1 to 4/sf  points using a variable window size from 4/sf  to

2/sf  by increasing one by one sample. 

(c) In next stage median values of input data ][nyi  to be determined and stored in an 

array ][1 nx im  from 14/ sf  to 4/sfN   points using a moving window size 

2/sf . 

(d) In last stage median values of input data ][nyi to be determined and stored in an 

array ][1 nx im  from 14/  sfN  to N  points, using a variable window size from 

2/sf to 4/sf . 

 

(B) Second stage median filter:-using window width sf  

(a) Take first stage data ][1 nx im  having total samples ‘N’. 

(b) In this stage median value of data ][1 nx im  to be determined and stored in an array 

][2 nx im  from 1 to 2/sf  points using a variable window size of 2/sf  to sf . 
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(c) In next stage median values of data ][1 nx im  to be determined and stored in an 

array ][2 nx im  from 12/ sf  to 2/sfN   points using a moving window size sf . 

(d) In last stage median values of input data ][1 nx im  to be determined and stored in 

an array ][2 nx im  from 12/  sfN to N  points using a variable window size of 

sf  to 2/sf  .  

(e) To remove baseline drift from signal ][nx fi
 subtract second stage median filter 

output ][2 nx im  from input data ][nyi .  

][][][ 2 nxnynx imifi                                                                                      (5.2) 

 Similarly find other remaining lead data. All 12-Lead ECG filtered data obtained 

calculated composite lead data.  

4. Generation of composite (complex) lead data: 

 

(a) All 12-Lead ECG filtered data are given by 
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(b) To determine the simultaneous space average )(kAv of the composite (complex) 

lead signal taking average of all lead data at each sample position and take the 

simultaneous space average value )(kAv of all lead data at 
thk position given by  
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Composite (complex) lead signal CLA  given by 

 )()..(..)2()1( NAkAAAA vvvvCL                                                                      (5.5) 

This composite lead signal is similar to other 12-Lead ECG system and consists of all 

complexes such as P, QRS and T waves. In this signal QRS complex region more enhanced 

than P and T waves in other 12-Leads ECG system. P and T wave region also smoothed. 

Composite Lead wave form and morphology is approximately same as other 12-Leads. 
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5. Again enhancement of various peaks such as P, QRS, T waves is done by taking 

the sixth power of composite signals CLA . The enhanced composite signal CLEA  is 

given by  

 )()..(..)2()1( 6666 NAkAAAA vvvvCLE                                                                       (5.6) 

6. Mean value ‘a’ of enhanced composite signal ACLE  of length 1 to 2fs is given by 
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                                                                     (5.7) 

where N= 2fs
 7. Steps to determine the variable window width: 

(A) To determine starting point k1 of first peak: compare CLEA  to the threshold value 

‘a’, if it is greater than threshold value, and then marks point as k1. 

(B) To determine ending point k2 of first peak: compare CLEA  from k1 onwards to the 

threshold value ‘a’, if this value is less, then marks point as k2. 

8. Determine end point ‘k’ of current ECG cycle: Select window (k2:(k2 + fs/2)) in 

enhanced data, determine the standard deviation of enhanced data as follows: 

(a) First 8 samples of standard deviation of input data are determined using a 

variable window of size 8 to 16. Similarly the last 8 samples are determined 

using a window size of 16 to 8. 

(b) The remaining in between samples is obtained by the standard deviation of input 

data with fixed size of 16. All standard deviation samples are stored in an array, 

and then the minima of this standard deviation is found, which is the end 

point ‘k' of current cycle or starting point of the next cycle of ECG wave. 

9. Detection of QRS: The variable window is mapped in composite lead and filtered data 

of individual leads and maxima is found with high peak (pki) marked by the symbol (^) 

as shown in Fig. 5.3 which represents the location of QRS of composite lead. If 

detected peak is positive, then it is ‘R’ or otherwise 'S' wave.  

(a) Detection of QRS Reference level or QRSonset: Select a window size pki-110 ms 

to pki or pki-120 ms to pki in the composite lead for R or S wave respectively, and 

determine standard deviation using 8 msec moving window and then find 

difference of standard deviation and find maxima (mxqon1). Then define threshold 

ThQ1=mxqon1*0.1 or ThQ1=mxqon1*0.06 for R or S respectively, and find 

QRSonset  in specified standard deviation differences crossing threshold ThQ1. 

(b) Detection of QRSoffset: Select a window pki:pki+120 ms or pki:pki+110 ms for R or 

S respectively, and determine standard deviation using 8 ms moving window and 

then find differences of standard deviation and find maxima (mxqoff1) and then 

define threshold ThQ2=mxqoff1*0.01 or ThQ2=mxqoff1*0.1 for R or S 
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respectively and find QRSoffset in specified standard deviation differences crossing 

threshold ThQ2. 

10. Detection of P-wave location and onset-offset: Determine P-wave position (Ppki) by 

using window size QRSonset to left 200 ms and find absolute maxima (Ppki). 

(a) Ponset: Select a window Ppki:Ppki-110 ms, determine standard deviation using 20 

ms moving window and then  find differences of standard deviation and find 

maxima (mxpon1) and then define threshold ThP1= mxpon1*0.155 and find 

Ponsetin specified standard deviation differences crossing threshold ThP1. 

(b) Poffset: Select a window Ppki:Ppki+110 ms, determine standard deviation using 20 

ms moving window and then find differences of standard deviation and find 

maxima (mxpoff1) and then define threshold ThP2= mxpoff1*. 05 and find Poffset in 

specified standard deviation differences crossing threshold ThP2. 

11. Detection of T-wave location and T-end: Determine T-wave position by using window 

size QRSoffset to QRSoffset+360 msec and find absolute maxima (Tpki) 

 To determine Tend : Select window size Tpki:Tpki+180 ms, determine standard 

deviation using 40 ms moving window,  find difference of standard deviation, find 

maxima (toff1), define threshold ThT1= toff1*.1 and then comparethreshold THT1 

with standard deviation difference and find Tend.  

12. Adaptive threshold: After first peak detection using threshold ‘a’ (a = mean (1:2 

times fs)), determine adaptive threshold ‘a’ (a = mean (enhanced data (end point of 

current cycle: end point of current cycle + 1.5 times fs))). 

13. From next peak to last peak find starting point k1 using adaptive threshold ‘a’, starting 

from endpoint of previous cycles and following step 7 (A) and for ending point k2, 

follow step 7 (B). Skipped period (automatically determined) is used to eliminate false 

peak detection due to abnormal ‘T’ wave. All above calculated values such as peaks 

and boundaries are mapped on composite lead and on each beat as shown in Fig. 

5.3.  
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Fig. 5.3 Peaks and boundaries (*ponset &Poffset *QRSonset& QRSoffset *Tend,   P-Peak 
   Rpeak      Speak and     Tpeak)  marking in composite signal 

 

5.2.2 Results and Discussion 
 

 This section explainsthe results of five wave boundaries such as Ponset, Poffset, 

QRSonset, QRSoffset, and Tend with the developed software. To validate developed software, 

CSE data set-3 was used. In the CSE study a data set-3 of 125 electrocardiogramswith 

selected abnormalities was analyzed by a group of five referee cardiologists and twenty 

(thirteen different 12 lead and seven XYZ lead) computer programs as mentioned in CSE 

result. In CSE data set-3, five referee group evaluated 25 records such as record number 1, 

6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91. 96. 101, 106, 111, 116, 

and 121 for estimation of five wave boundaries (Ponset, Poffset, QRSonset, QRSoffset,  and Tend). 

Table 5.1 depicts the results of developed software and referee median results. The results 

evaluation has been performed in terms of differences of mean and standard deviation in 

referee values and developed a program [40]. For Ponset and Poffset analysis, mean differences 

are calculated and mean error is determined as -4.28 and 1.4 with the standard deviation 

values equal to 4.42 and 6.02 respectively. Similarly, for QRSonset, QRSoffset, and Tend  mean 

error values are 1.2, -0.76 & -1.92 and standard deviation values being 2.5, 4.30 and 11.39 

respectively. In this software we obtained unbiased measurement within specified limits.  

 Also, compared performance of developing program verses and CSE study 

developed different twenty programs (thirteen ECG programs and seven VCG programs) 

with mean and standard deviation differences with respect mean of referee and mean of 

twenty programs.  The comparative performance of developing a program depicted in Table 

5.2 and Table 5.3 which shows the performance of boundaries marking higher and 

comparable to standard CSE  developed programs.  
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Table 5.1 Boundary marking of CSE multilead dataset-3 

  
    P-onset P-offset QRS-onset QRS-offset T-end 

S. 

No

.  

Record 

No. RE ME 

ME-

RE RE ME 

ME-

RE RE ME 

ME-

RE RE ME 

ME-

RE RE ME 

ME-

RE 

1 1 22 19 -3 87 90 3 139 139 0 202 205 3 370 371 1 

2 6 22 19 -3 74 76 2 87 87 0 129 130 1 270 269 -1 

3 11 22 18 -4 77 82 5 97 95 -2 145 145 0 281 290 9 

4 16 35 32 -3 86 84 -2 102 99 -3 144 144 0 283 289 6 

5 21 105 96 -9 164 172 8 181 180 -1 233 236 3 420 421 1 

6 26 40 39 -1 99 104 5 141 143 2 225 227 2 365 367 2 

7 31 38 33 -5 100 105 5 124 129 5 173 170 -3 311 318 7 

8 36 53 49 -4 106 108 2 124 120 -4 185 183 -2 320 325 5 

9 41 56 49 -7 106 93 -13 127 128 1 193 181 -12 340 350 10 

10 46 26 33 7 80 70 -10 104 105 1 172 174 2 340 330 -10 

11 51 13 9 -4 68 70 2 90 89 -1 135 136 1 246 228 -18 

12 56 77 77 0 132 138 6 170 168 -2 218 219 1 391 406 15 

13 61 53 56 3 123 126 3 165 168 3 210 207 -3 366 372 6 

14 66 63 52 -11 120 120 0 137 140 3 190 188 -2 353 340 -13 

15 71 44 36 -8 97 97 0 119 116 -3 161 163 2 302 298 -4 

16 76 35 27 -8 99 88 -11 124 122 -2 199 190 -9 320 327 7 

17 81 40 35 -5 100 105 5 122 121 -1 180 179 -1 326 327 1 

18 86 38 25 -13 94 104 10 120 121 1 186 189 3 370 376 6 

19 91 36 25 -11 96 99 3 116 119 3 175 171 -4 331 312 -19 

20 96 21 18 -3 79 77 -2 142 144 2 201 196 -5 340 352 12 

21 101 24 18 -6 76 85 9 93 91 -2 134 135 1 268 239 -29 

22 106 65 63 -2 120 124 4 130 133 3 177 176 -1 346 353 7 

23 111 .. 51 0 …. 93 0 96 100 4 145 138 -7 245 180 -65 

24 116 50 46 -4 109 116 7 120 119 -1 163 166 3 314 322 8 

25 121 25 22 -3 85 79 -6 124 121 -3 182 190 8 325 333 8 

  Mean 

  

-4.28 

  

1.4 

  

0.12 

  

-0.76 

  

-1.92 

  SD     4.42     6.0208     2.5053     4.3039     11.398 

  

Reference 

limit in 

samples      6     6     4     6     15 

Note: All measurements in samples 

RE: CSE reference value, ME: program measure value, ME-RE: difference between 
measure value and reference value, SD: standard deviation 
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Table 5.2 Comparison of boundaries performances of ME-REcse with CSE study programs 
for 25 cases 

 

ECG  Ponset Poffset QRSonset QRSoffset Tend 

Programs Mean STD Mean STD Mean STD Mean STD Mean STD 

  

Mean 

diffR 

Std 

diffR 

Mean 

diffR 

Std 

diffR 

Mean 

diffR 

Std 

diffR 

Mean 

diffR 

Std 

diffR 

Mean 

diffR 

Std 

diffR 

ECG1 -20.92 15.81 -16.40 1.04 -6.54 -9.03 -11.46 -1.19 -40.38 -3.15 

ECG2 -10.54 9.60 -8.40 -2.47 -1.15 -11.14 -6.54 -1.46 -21.23 -8.37 

ECG3 -6.08 6.37 -5.36 -1.36 1.31 -11.75 -5.31 -1.48 -17.00 -8.09 

ECG4 -3.58 5.53 -2.20 -1.40 3.08 -11.50 -4.08 -1.04 -14.00 -7.83 

ECG5 -1.67 6.20 -0.48 -1.07 4.31 -11.54 -2.69 -1.13 -27.62 51.25 

ECG6 -0.17 5.75 1.36 0.01 5.46 -11.25 -1.31 -0.81 -6.85 -6.62 

ECG7 1.58 5.44 3.56 2.49 6.31 -11.24 -0.08 -0.31 -4.46 -7.36 

ECG8 4.33 11.17 5.44 3.12 7.31 -11.08 2.46 1.52 -23.08 49.58 

ECG9 8.58 26.58 4.50 -0.98 8.08 -11.24 4.38 1.58 1.69 -6.40 

ECG10 6.52 5.47 6.58 -0.41 8.77 -11.47 6.08 0.89 5.15 -5.18 

ECG11 8.96 6.55 12.33 7.51 10.23 -11.27 9.46 1.75 11.20 -5.63 

ECG12 17.05 12.60 22.36 20.52 12.31 -11.20 17.69 3.98 27.30 -6.53 

ECG13 -10.96 15.84 -6.83 2.78 1.92 -11.74 -6.08 -1.13 -0.04 5.66 

VCG1 -6.00 15.58 -14.24 11.61 4.92 -11.07 -3.46 -0.46 -19.85 -4.17 

VCG2 -2.42 12.51 -7.96 1.57 7.08 -11.10 -1.54 -0.37 -15.23 -5.80 

VCG3 1.17 7.32 -3.44 -2.87 8.08 -10.96 -0.46 -0.23 -10.62 -6.84 

VCG4 5.33 6.12 1.04 1.94 10.00 -11.05 1.00 0.53 -5.69 -5.68 

VCG5 8.00 4.49 0.61 -1.95 12.00 -11.05 5.08 1.99 3.92 4.80 

VCG6 15.45 14.42 5.00 -1.34 13.23 -10.68 10.38 4.77 -3.38 61.31 

VCG7 * * * * * * * * * * 

Pro-ECG -8.56 9.21  2.8  12.04  0.24  5.01   -1.52 8.60  -3.84  22.78  

Tol.Limit  12ms  12ms  8ms  12ms  30ms 

 

Note: -ECG1 to ECG13 and VCG1 to VCG7 are Programs developed by CSE, Pro-ECG 

program developed by the author. All measurements are in milli seconds (ms). 

Mean diffR: differences between the mean value of 25 CSE reference data measured by 
ECG1-13, VCG1-7, and Pro-ECG program and mean value of 25 reference data measured 
by referees   

Std diffP: differences between the standard deviation value of 25 CSE reference data 
measured by ECG1-13, VCG1-7, & Pro-ECG program and standard deviation value of of 25 
reference data measured by referees   

. 
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Table 5.3 Comparison of boundaries performances of CSE study programs with developed  
program for 25 CSE reference records 

 

 ECG  Ponset Poffset QRSonset QRSoffset Tend 

Programs Mean STD Mean STD Mean STD Mean STD Mean STD 

  

Mean 

diffP 

Std 

diffP 

Mean 

diffP 

Std 

diffP 

Mean 

diffP 

Std 

diffP 

Mean 

diffP 

Std 

diffP 

Mean 

diffP 

Std 

diffP 

ECG1 -22 11 -15 -6 -13 2 -10 0 -23 -22 

ECG2 -12 4 -7 -1 -7 0 -6 -1 -4 -27 

ECG3 -7 1 -4 -9 -5 -1 -4 -1 0 -27 

ECG4 -5 0 -1 1 -3 0 -3 0 3 -26 

ECG5 -3 1 1 -8 -2 0 -2 0 -11 33 

ECG6 -1 1 2 2 -1 0 0 0 10 -25 

ECG7 0 0 5 -5 0 0 1 0 13 -26 

ECG8 3 6 6 5 1 0 3 2 -6 31 

ECG9 7 21 6 -8 2 0 5 2 19 -25 

ECG10 5 0 8 2 3 0 7 2 22 -24 

ECG11 8 1 13 0 4 0 10 3 28 -24 

ECG12 16 7 23 22 6 0 19 5 44 -25 

ECG13 -12 11 -16 -5 -4 -1 -5 0 -23 -13 

VCG1 -7 10 -13 14 -1 0 -2 0 -3 -23 

VCG2 -4 7 -7 -6 1 0 -1 0 2 -24 

VCG3 0 2 -2 -1 2 0 1 1 6 -25 

VCG4 4 1 2 -5 4 0 2 1 11 -24 

VCG5 7 -1 2 0 6 0 6 3 21 -14 

VCG6 14 9 6 -9 7 0 11 6 14 43 

VCG7 * * * * * * * * * * 

Pro-ECG -8.56 9.21  2.8  12.04  0.24  5.01   -1.52 8.60  -3.84  22.78  

Tol. Limit  12ms  12ms  8ms  12ms  30ms 

 

Note: -ECG1 to ECG13 and VCG1 to VCG7 are Programs developed by CSE, Pro-ECG 

program developed by the author. All measurements are in milli seconds (ms). 

Mean diffP: differences between the mean value of 25 CSE reference data measured by 
ECG1-1, VCG1-7, and Pro-ECG program and mean value of twenty standard programs 
(ECG1 to ECG13 and VCG1 to VCG) developed by CSE. 

Std diffP: differences between the standard deviation value of 25 CSE reference data 
measured by ECG1-13, VCG1-7, & Pro-ECG program and standard deviation value of 
twenty standard programs (ECG1 to ECG13 and VCG1 to VCG) developed by CSE. 
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5.3 Feature Extraction 

Feature extraction is an important part in automated ECG analysis and classification of 

particular diseases. At rest ECG analysis cardiologists used particular beat manual 

measurements and, analysis with averaging concepts. Similarly, automated ECG analysis 

program measured features used in the rest ECG in particular beat. The main task in the 

ECG analysis is to find the exact location of the major reference points such as onsets and 

offsets of P, QRS, and T waves. In the proposed method, for automatic measurement of 

features like amplitudes, durations of wave segments and intervals and determination of 

parameters such as area, mean, standard deviation, skewness, and kurtosis, composite 

beats are used; detailed steps of the method being shown in the following sections.  
 

5.3.1 Composite Beat (Average beat) Generation 

In the automatic ECG analysis and diagnosis, system measurement of a dominant beat 

is required for measurements and interpretation. In this method, initially QRS detection 

performed in composite lead and all 12-Lead ECG as discussed in previous chapter 4 and 

after that and boundary marking is performed in Composite lead as discussed in section 5.2 

in this chapter. An average beat of composite lead and all 12 lead of 12-Lead ECGs are 

determined in 10 seconds. All beats are aligned at the high peak pike position as a center 

location and each beat Pon -100 ms to Tend +100 ms in 2000 ms window size is considered 

and then average beat of composite lead is determined. The onsets of P, QRS and offsets of 

P, QRS and T wave are detected on the average beat of composite lead using boundary 

making procedure in section 5.2 and these boundaries marking mapped on all 12 lead 

ECGs. The boundary marking figures step by step used to depict in Fig. 5.4 and onsets of P, 

QRS and offsets of P, QRS and T waves are mapped on boundary values of average beat in 

all the average beats of 12-leads, as depicted in Fig. 5.5. 
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(a)

(b)

(c)

(d)

  

 

Fig. 5.4 Boundary marking step by step:(a) QRS marking of all beats of composite lead.,(b) 

Alignment of all beats of composite lead,(c) Average beat of composite lead, (d) Boundaries 

marking in the composite beat of composite lead 



 

94 

 

 

0 500 1000 1500 2000
-1

0

1

0 500 1000 1500 2000
-1

0

1

0 500 1000 1500 2000
-2

0

2

0 500 1000 1500 2000
-2

0

2

0 500 1000 1500 2000
-0.2

0

0.2

0 500 1000 1500 2000
-2

0

2

0 500 1000 1500 2000
-1

0

1

0 500 1000 1500 2000
-2

0

2

0 500 1000 1500 2000
-1

0

1

0 500 1000 1500 2000
-2

0

2

0 500 1000 1500 2000
-1

0

1

0 500 1000 1500 2000
-2

0

2

0 500 1000 1500 2000
-0.5

0

0.5
Composite 

Lead

I

II

III

aVR

aVL

aVF

V1

V2

V3

V4

V5

V6

 

Fig. 5.5 The onsets of P, QRS and offsets of P, QRS and T wave are mapped on boundary 
values of average beat in all 

5.3.2 Interval Calculation 

After boundaries marking, four features related to wave duration and intervals are 

determined as depicted in Table 5.4. 

 

Table 5.4 Interval description 

S. No.  Parameters Descriptions 

1 P duration  Average duration between Ponset and Poffset, 

2 QRS complex duration Average duration between QRSonset and QRSoffset,  

3 ST-T complex interval The average interval between QRSoffset and Tend, and 

4 QT interval The average interval between QRSonset and Tend. 
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In the P duration, QRS complex duration, and ST-T complex interval of average beats 

of composite lead and all 12-lead ECG; determine peak to peak amplitude, area, mean, 

standard deviation, skewness and kurtosis of average beats ofcomposite lead and all 12-lead 

ECG uses MatLab functions. After determination of intervals and segments of all average 

beat of all 12 Lead ECG and Composite Lead. Table 5.5 depicts using formula for calculation 

of area, mean value, standard deviation, skewness, and kurtosis. These features are used 

for automated ECG classification. 
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Table 5.5 Calculation of area, mean value, standard deviation, skewness, and kurtosis 

S. No.  Parameters Descriptions 
 

1 Amplitude Peak to peak 
 

2 Area An area graph displays elements in Y as one or more curves 
and fills the area beneath each curve. When Y is a matrix, the 
curves are stacked showing the relative contribution of each row 
element to the total height of the curve at each x interval. 

3 Mean 
𝑥𝑎𝑣 =

1

𝑛
 𝑥𝑖

𝑛

𝑖=1

 

Where  
n-number of samples 
i-index (i=1.....n) 
xi-values of points of curve 

 

4 Standard deviation Standard deviation computes the standard deviation value of 
the data samples between the endpoints of the selected area. 
The formula used to compute standard deviation is: 

𝑆 =  
1

𝑛
  𝑥𝑖 − 𝑥𝑎𝑣  

2

𝑛

𝑖=1

 

1

2

 

Where  
n-number of samples, 
i-index (i=1.....n), 
xi-values of points of curve and, 

𝑥𝑎𝑣 =
1

𝑛
 𝑥𝑖

𝑛

𝑖=1

 

5 Skewness Skewness is a statistical measure of the degree of asymmetry in 
a distribution (away from normal Gaussian distribution), e.g. if 
the distribution is weighted evenly or trends toward an edge. 
• A normal distribution has a skew of 0. 
• A distribution with a prominent left tail has a negative skew. 
• A distribution with a prominent right tail has a positive skew 
The following formula is used to extract skew: 
 

𝑆𝑘𝑒𝑤 =

1

𝑛
  𝑥𝑖 − 𝑥𝑎𝑣  

3𝑛
𝑖=1

  
1

𝑛
  𝑥𝑖 − 𝑥𝑎𝑣  

2𝑛
𝑖=1  

3 

 
6 Kurtosis Kurtosis indicates the degree of peakedness in a distribution, 

e.g. the size of the “tails” of the distribution. Distributions that 
have sharp peaks in their center have positive kurtosis; flatter 
distributions have negative kurtosis. A normal distribution has a 
kurtosis of 0. The following formula is used to extract kurtosis 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1

𝑛
  𝑥𝑖 − 𝑥𝑎𝑣  

4𝑛
𝑖=1

 
1

𝑛
  𝑥𝑖 − 𝑥𝑎𝑣  

2𝑛
𝑖=1  

2 
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5.3.3 Conclusion 

The most important aim of the automatic ECG analysis is the disease diagnosis. In 

general, the automatic heart disease diagnosis is being carried out by determining ECG 

parameters in specified limit and applying different classifier approaches. Therefore, the 

trustworthiness of the disease diagnosis mostly depends on accuracy of the ECG parameter 

estimations. As 12-Lead ECG characteristics point detection based on composite lead signal 

has been presented here. This proposed method was tested on standard CSE data set-3 

and obtain good results. This method determines all five boundaries for each beat of 

composite lead signal and all 12-Leads. So each beat can be analyzed using a composite 

lead signal. This composite lead signal contains similar morphology of P-QRS-T with same  

interval and duration. The variation is only  in amplitudes, hence it is more enhanced lead 

because it is the resultant of all 12 leads. This lead is suitable for all possible measurements 

and rhythm analysis. The ECG wave complexes in composite lead are noise free and 

enhanced in comparison to all 12 leads. The proposed composite lead method yields higher 

QRS detection sensitivity and positive predictivity on standard benchmark datasets which 

indicate its usefulness for ECG signal to mark & identify various wave components and 

rhythm analysis in a clinical environment in order to assist cardiologists. In this method the 

boundary marking is continuing in long data for each beat.  
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CHAPTER 6: HEART DISEASE CLASSIFICATION 

In the previous chapter, wave boundaries of P-QRS-T complexes in each beat of 

Composite Lead has been given. Marking of ECG wave boundaries such as onsets-offset of 

P, QRS and end of the T wave have also been discussed.Then determine the duration and 

intervals of P, QRS, and T wave. On the basis of interval and duration determine other 

feature such as amplitude, area, mean, standard deviation, skewness and kurtosis. In this 

chapterthese features are used for heart disease classification with SVM and ANN classifier 

using different lead configuration.  

6.1 Overview 

In the world main causes of human death are heart disease. Heart disease cases are 

increasing day by day, but clinicians and cardiology expert are limited all over the world. 

Computer assisted medical diagnosis system can assist Clinicians or Cardiologists. The 

computer programs that perform diagnostic interpretation of ECG usually consist of a 

measurement part and classification part. In the measurement part ECG signals are 

analyzed and features extracted containing all necessary data for classification. On the 

classification part diagnostic interpretation is based on the features a classification procedure 

allocates the ECG to one or more diagnostic categories. The capability of a system to identify 

abnormalities is the detection and to characterize the detected abnormality is the 

classification. The detection and classification of heart diseases such as MI, CM and BB by 

cardiologists are based on the perspective of the human visual system. The human visual 

system normally faces difficulty in detection. In the present work, the ECG analysis and 

measurement part have been carried out through composite lead based various ECG wave 

components such as peak amplitude, duration, intervals and finally computation  of several 

ECG wave parameters in composite lead and all of diagnostic significance as explained in 

chapter 4 and 5 of this thesis.  

 There are various automatic ECG analysis and interpretation programs developed by 

researchers in the last six decades based on heuristic [3-6, 8-11] and statistical [2, 7]. More 

often than not, in the heuristic approach the cardiologist provides the knowledge based 

decision and in the statistical approach probability density criteria. The artificial intelligence 

(AI) methods are more suitable for the diagnosis and classification of heart diseases. These 

are various methods such as Support Vector Machine, Artificial Neural Network, Fuzzy Logic 

methods, Hidden Markov Model, Genetic Algorithm, and Self Organizing Map.  

In this work I used Support Vector Machine and Artificial Neural Network for heart 

disease classification. The heart disease Myocardial Infarction (MI), Cardiomyopathy (CM) 

and Bundle Branch Block (BBB or BB) diagnosis and classification experiment performed 
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based on Support Vector Machine (SVM) Classifier, and Artificial Neural Network (ANN) 

Classifier in this chapter.    

6.2 Detection of Myocardial Infarction 

 The heart muscle cells require regular blood supply for keeping themselves alive and 

functional through two coronary arteries. If arteries or sub-branches are blocked and blood 

supply is interrupted, then heart suffers from ischemia and after prolonged obstruction of 

blood supply, heart cells die and the condition is known as myocardial infarction. The ECG 

testing provides information of ischemia or MI, if the patient has angina. Mostly, it is easy 

ways to investigate within 10 minutes, if a person has suffered from myocardial infarction 

taken ECGs (Electrocardiograms). Initially, if patients non diagnostic MI, serial recording 

performed in 15-30 minute intervals or continuous, available computerized 12-lead ECG 

[154]. The ECG is one of the simplest widely used noninvasive technologies for recording of 

electrical activity performed by heart of muscles. Fig. 6.1 depicts the Healthy Control ECG 

and Myocardial Infarction ECG waveform, main diagnostic wave complexes and clinical 

intervals measurements in of ECG signal used for manual and automatic heart diseases 

determination. 
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Fig. 6.1 Twelve lead ECG signals (a) Healthy Control and (b) Myocardial Infarction 

 

Myocardial infarction is morphological disease, due to anatomical problems and 

produce change in the ECG waveform such as T-wave inversion, T-wave hypercute, ST 

elevation or depression and Q-wave variation and some studies silent Q-wave MI also 

associated with a significant mortality risk factor. Morphological analysis mainly based on 

wave shape of ECG signals. Clinician and Cardiologist easily diagnose cardiac abnormalities 

by visual inspection changes in ECG morphology. The morphological analysis of ECG 
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signals, mostly adapted for automatic classification. Computerized automatic ECG analysis 

represents better to visual interpretation. In order to variation in ECG MI criteria and their 

associations with the unrecognized myocardial infarction (UMI), ECG UMI validated by 

echocardiogram, magnetic resonance imaging suggested [155]. 

 In the case of myocardial infarction change in ST segment such as elevation or 

depression or T wave inversion and some cases non diagnostic ECG. In many cases MI 

develops a change in Q wave (Q waves MI) and sometime Q wave doesn't develop (non-Q 

MI) [154]. In the visual analysis variety of these features observe in some particular leads 

whereas variations are present in all leads. In the present study we, consider all 12-lead 

ECG with considering diagnostic parameters such wave P wave duration QRS-complex 

duration, ST-T complex interval, QT interval and other parameters such as amplitude peak-

peak, area, mean, standard deviation, skewness and kurtosis of QRS-complex duration and 

ST-T complex interval of the average beat of each 12-lead ECG.  In the visual base analysis 

other features such as area, mean, standard deviation, skewness and kurtosis of ECG signal 

not compare with gold standard values. So, these parameters considered and applied ANN 

and SVM classifier without PCA and with PCA to classify myocardial infarction and healthy 

control data using Composite Lead and all lead ECG as details given in the next section. 

6.2.1 Detection of Myocardial Infarction using a composite lead and all 12 Lead with 

SVM and ANN classifier 

 The Composite Lead as discussed in previous chapter 4 and 5 generated for HC and 

MI cases and determine features to classify HC and MI using SVM and ANN classifier. The 

completely developed SVM and ANN classifier system for myocardial infarction detection 

depicted in Fig. 6.2. 

 

 

 

 

 



 

103 

 

PTB ECG Dataset Description

Healthy Control (HC): 60, 

Myocardial Infarction (MI): 60 

Total data: 120

Classification
using Composite Lead 

parameters

FEATURE EXTRACTION

1-Apply two stage median filter to remove wander baseline drift on each lead

2-Add all filtered lead and compute Composite Lead 

3-Compute average beat of Composite Lead

4-Determine wave boundaries of average beat of Composite Lead 

Calculate Four Features :

 P duration, QRS duration, ST-T complex duration, and QT interval

SVM classifier

 Training set:

60 (30 HC and 30 MI)

Testing set:

60  (30 HC and 30 MI)

22 (4+18) features 

 for composite lead

14 features apply PCA

Classification 

accuracy 

  76.66% 

without 

reduces 

parameters

Classification 

accuracy   

80% with 

reduces 

parameters

ANN classifier
 Training 60%

Validation 20 %

Testing 20%

22 (4+18) features 

 for composite lead

14 features apply PCA

Classification 

accuracy   

95.80% 

without 

reduces 

parameters

Classification 

accuracy 

100% with 

reduces 

parameters

Calculate Eighteen Features:

 Amplitude, Area, Mean, Standard deviation, Skewness 

and Kurtosis of composite beat of composite lead for P, 

QRS duration and ST-T complex interval : 

Total features =18 (6x3)

Overall Total Feature : 22 (4+18)

Calculate Two Hundred Sixteen Features:

 Amplitude, Area, Mean, Standard deviation, Skewness 

and Kurtosis of composite beat of all lead ECG for P, 

QRS duration and ST-T complex interval : 

Total features =216 (6x3x12)

Overall Total Feature : 220 (4+216)

Classification
using all 12 Lead ECG 

parameters

SVM classifier
 Training set:

60 (30 HC and 30 MI)

Testing set:

60  (30 HC and 30 MI)

220 (4+18x12) features 

 for all 12 lead ECG

14 features apply PCA

Classification 

accuracy   

98.33% 

without 

reduces 

parameters

Classification 

accuracy   

96.66% with 

reduces 

parameters

ANN classifier
 Training 60%

Validation 20 %

Testing 20%

220 (4+18x12) features 

 for composite lead

14 features apply PCA

Classification 

accuracy 

  100% without 

reduces 

parameters

Classification 

accuracy 

100% with 

reduces 

parameters

 

Fig. 6.2 Myocardial Infarction detection using Composite Lead and all 12 Lead ECG 
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6.2.1.1 Feature extraction for HC and MI data using Composite Lead 

For HC and MI classification, four features carried out by calculation of intervals of P 

duration, QRS complex duration, ST-T complex interval, and QT interval for the average beat 

of Composite-Lead ECG. Eighteen features, such as amplitude peak-to-peak, area, mean, 

standard deviation, skewness and kurtosis of the composite beat of Composite-Lead ECG in 

P duration, QRS complex duration and ST-T complex interval. The total original features of 

Composite Lead ECGs are 22 (4+3×6). 

In this study PCA is, alsoused for parameter dimensionality reduction and optimize the 

number of principal components (PCs) to perform HC-MI classification. Therefore, (HC & MI) 

reduced 14 feature obtained from 22 original feature vector. In this work 22 original and 14 

reduced featurevector used to perform MI detection with SVM and ANN classifier.    

6.2.1.2 Feature extraction for HC and MI data using all 12 Lead ECG 

For HC and MI classification, four features carried out by calculation of intervals of P 

duration, QRS complex duration, ST-T complex interval, and QT interval for the average beat 

of all 12 Lead ECG by Composite beat of Composite Lead. Eighteen features for each lead, 

such as amplitude peak-to-peak, area, mean, standard deviation, skewness and kurtosis of 

the composite beat of all 12-lead ECG in P duration, QRS complex duration and ST-T 

complex interval. The total original features for a combination of all 12-lead ECG are 220 

(4+3×6×12). 

In this study PCA is, also used for parameter dimensionality reduction and optimize the 

number of principal components (PCs) to perform HC-MI classification. Therefore, (HC & MI) 

reduced 14 feature obtained from 220 feature vector. In this work 220 original and 14 

reduced featurevector used to perform MI detection with SVM and ANN classifier.    

6.2.1.3 Experimental results and discussion for MI detection performs with SVM 

classifier using Composite Lead 22 features 

 
 In this experiment, features extracted from the composite beat of composite lead are 

considered for HC-MI classification. Twenty two (4+3×6) features are used in this experiment 

for MI detection using binary support vector machine (SVM) classifier. In this experiment 

input features are normalized using min-max map scale range [-1, +1]. Here training set 

consists of 30 HC and 30 MI subjects and similarly another set of 30 HC and 30 MI subjects 

is used for testing.  The execution of this experiment was depicted in Table 6.1 by selecting 

best regularization parameter C and the kernel parameter γ. For this experiment, the best 

value of C and γ was 16,684 and 0.0039 respectively, the performance class accuracy was 

76.66% (58/60) and sensitivity and specificity of MI detection were 76.66% & 76% 



 

105 

 

respectively. The performance of MI detection using composite lead with original 22 features 

depicted in Table 6.1. 

6.2.1.4 Experimental results and discussion for MI detection performs with SVM 

classifier using Composite Lead 14 features 

 

 To reduce the computational complexity, feature dimension reduction is 

significant. Thus, proposed method applies Principal Component Analysis (PCA) 

reduction technique. In this experiment obtained 22 parameters are reduced to 14 

parameters, using these parameters MI detections achieved by SVM is: sensitivity 

83.33%, specificity 76.66% and accuracy 80%. The performance of MI detection 

using composite lead with reduces 14 features depicted in Table 6.1. 

 

Table 6.1 MI detection performances of 12 Lead ECG using Composite Lead feature with 
SVM classifier (without PCA and with PCA) 

 Experiment Experiment 

 Without PCA With PCA 

Features  22  14 

Best c  16384 16384 

Best  γ 0.1250 9.7656e-004 

Cross Validation Accuracy  100% 100% 

Mean squared error (regression) 0.666667 0.666667 

Squared correlation coefficient (regression) 0.935484 0.935484 

Confusion Matrix (CM)         MI   HC   

 MI  23   7 

        MI   HC   

 MI  25   5 

  
 HC  7  23  HC  7  23 

Sensitivity  76.66% 83.33% 

Specificity  76.66% 76.66% 

Accuracy (classification) 76.66% (46/60) 80% (48/60) 

 

 

6.2.1.5 Experimental results and discussion for MI detection performs with ANN 

classifier using Composite Lead 22 features 

 

 In this experiment, features extracted from the composite beat of composite lead are 

considered for HC-MI classification. Twenty two (4+18) features are used in this experiment 

for MI detection. In this experiment input features are normalized using min-max map scale 

range [-1, +1]. Detection of myocardial infarction using extracted features of composite lead 

with ANN classifier, here using above 22 features and selected data 120 (60 HC & 60 MI) 

randomly divided into 60% training, 20% validation and 20% testing. The accuracy of the 
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classifier (for Testing) is 95.80%, and sensitivity and specificity of MI detection 91.70% & 

100% respectively. The performance of MI detection completes depicted in Table 6.2. 

6.2.1.6 Experimental results and discussion for MI detection performs with ANN 

classifier using Composite Lead reduced 14 features 

 
 To reduce the computational complexity, feature dimension reduction is important. 

Therefore, proposed method applies Principal Component Analysis (PCA) reduction 

technique. In this experiment obtained 22 parameters are reduced to 14 parameters, using 

these parameters MI detection performance (for Testing) achieved by ANN is: sensitivity 

100%, specificity 100% and accuracy 100%. The performance of MI detection completes 

depicted in Table 6.2. 

 

Table 6.2 MI detection performances of 12 Lead ECG using Composite Lead feature with 
ANN classifier (without PCA and with PCA) 

 

Features 22   

Total data  120  

Training 60% 72  

Validation 20% 24  

Testing 20% 24  

Hidden Layer 10  

Without PCA Feature 22   

 Training CM Test CM 

Confusion Matrix (CM)         MI   HC   

 MI  34   4 

        MI   HC   

 MI  11   1 

  
 HC  3  31  HC  0  12 

Sensitivity  89.50% 91.70% 

Specificity  91.20% 100% 

Accuracy (classification) 90.30% (65/72) 95.80% (23/24) 

With PCA Feature 14   

 Training CM Test CM 

Confusion Matrix (CM)         MI   HC   

 MI  39   0 

        MI   HC   

 MI  12   0 

  
 HC  0  33  HC  0  12 

Sensitivity  100% 100% 

Specificity  100% 100% 

Accuracy (classification) 100% (72/72) 100% (24/24) 
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6.2.1.7 Experimental results and discussion for MI detection performs with SVM 

classifier using all 12 Lead ECG 220 features 

 
 In this experiment, features extracted from the composite beat of composite lead are 

considered for HC-MI classification. Two hundred twenty (4+3×6×12) features are used in 

this experiment for MI detection using binary support vector machine (SVM) classifier. In this 

experiment input features are normalized using min-max map scale range [-1, +1]. Here 

training set consists of 30 HC and 30 MI subjects and similarly another set of 30 HC and 30 

MI subjects is used for testing.  The performance of this experiment was depicted in Table 

6.3 by selecting best regularization parameter C and the kernel parameter γ. For this 

experiment, the best value of C and γ was 16684 and 9.7656e-004 respectively, the 

performance class accuracy was 98.33% (59/60) and sensitivity and specificity of MI 

detection were 96.66% & 100% respectively. MI detection performance using all 12 lead 

ECG original 220 features depicted in Table 6.3. 

6.2.1.8 Experimental results and discussion for MI detection performs with SVM 

classifier using all 12 Lead ECG reduced 14 features 

 
 To reduce the computational complexity, feature dimension reduction is important. 

Therefore, proposed method applies Principal Component Analysis (PCA) reduction 

technique. In this experiment obtained 220 parameters are reduced to 14 parameters, using 

these parameters MI detections achieved by SVM is: sensitivity 96.66%, specificity 96.66% 

and accuracy 96.66%. The performance of MI detection using all 12 lead ECG with reduced 

14 features depicted in Table 6.3. 

Table 6.3 MI detection performances of 12 Lead ECG using all 12 Lead ECG feature with 
SVM classifier (without PCA and with PCA) 

 Experiment Experiment 

 Without PCA With PCA 

Features  220  14 

Best c  16384 16384 

Best  γ 9.7656e-004 9.7656e-004 

Cross Validation Accuracy  100% 100% 

Mean squared error (regression) 0.666667 0.666667 

Squared correlation coefficient (regression) 0.935484 0.935484 

Confusion Matrix (CM)         MI   HC   

 MI  29   1 

        MI   HC   

 MI  29   1 

  
 HC  0  30  HC  1  29 

Sensitivity  96.66% 96.66% 

Specificity  100.00% 96.66% 

Accuracy (classification) 98.33% (59/60) 96.66% (58/60) 
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6.2.1.9 Experimental results and discussion for MI detection performs with ANN 

classifier using all 12 Lead ECG 220 features 

 In this experiment, composite lead is used to detect ECG wave components and 

clinical wave intervals in all the 12-lead of the ECG. The clinical wave parameters such as P 

duration QRS duration, ST-T complex interval and QT interval globally determined average 

beats of all the 12 Lead ECG. Then peak to peak amplitude, area, mean, standard deviation, 

skewness and kurtosis for all the 12-lead ECG beats are determined for P duration, QRS 

duration and ST-T complex. These 220 (4+3x6×18) parameters are used for myocardial 

infarction detection. In this experiment input features are normalized using min-max map 

scale range [-1, +1]. Detection of myocardial infarction using extracted features of composite 

lead with ANN classifier, here using above 220 features and selected data 120 (60 HC & 60 

MI) randomly divided into 60% training, 20% validation and 20% testing. The accuracy of the 

classifier (for Testing) is 100%, and sensitivity and specificity of MI detection 100% & 100% 

respectively. The performance of MI detection completes  depicted in Table 6.4. 
 

6.2.1.10 Experimental results and discussion for MI detection performs with ANN 

classifier using all 12 Lead ECG 14 features 

 To reduce the computational complexity, feature dimension reduction is important. 

Therefore, proposed method applies Principal Component Analysis (PCA) reduction 

technique. In this experiment obtained 220 parameters are reduced to 14 parameters, using 

these parameters MI detection performance (for Testing) achieved by ANN is: sensitivity 

100%, specificity 100% and accuracy 100%. The performance of MI detection completes 

depicted in Table 6.4. 
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Table 6.4 MI detection performances of 12 Lead ECG using all 12 Lead ECG feature with 
ANN classifier (without PCA and with PCA) 

Features 220  

Total data  120  

Training 60% 72  

Validation 20% 24  

Testing 20% 24  

Hidden Layer 10  

Without PCA Feature 220   

 Training CM Test CM 

Confusion Matrix (CM)         MI   HC   

 MI  36       0 

        MI   HC   

 MI  15       1 

  
 HC  1      35  HC  0        9 

Sensitivity  100% 100% 

Specificity  97.20% 100% 

Accuracy (classification) 98.60% (71/72) 100% (24/24) 

With PCA Feature 14   

 Training CM Test CM 

Confusion Matrix (CM)         MI   HC   

 MI  34      2 

        MI   HC   

 MI  15       0 

  
 HC  0     36  HC  0        9 

Sensitivity  94.40% 100% 

Specificity  100% 100% 

Accuracy (classification) 97.20% (70/72) 100% (24/24) 

 

 

 

The dimension reduction performances encourage cost reduction of the classifier. 

The performance of proposed simple method for MI detection is comparable and higher other 

researchers. The comparison of MI detection performance of the proposed method with other 

methods using a standard PTB diagnostic database is depicted in Table 6.5.  
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Table 6.5 Comparison of MI classification performance with other methods in 12-lead ECG 
system 

S. References Classifier Results 

  No.   Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

1 Sharma et al [117] SVM 93.00 99.00 96.00 

2 Sun et al [118] KNN ensemble 92. 3 88.1 NA 

3 Chang et al [108] HMM with GMM 85.71  79.82 82.50 

4 Haraldsson et al [109] Hermite with ANN NA NA 94.00 

5 Arif et al [119] KNN 99.97 99.9 NA 

6 Reddy et al [120] ANN 79 97 NA 

7  Zheng et al [121]  SVM, Naïve  77 88.1 NA 

8 Heden et al [122] ANN 95.00 86.30 NA 

9 Jayachandran et al [123] DWT NA NA 96% 

10 Lu et al [104] Fuzzy logic with ANN 84.60 90.00 NA 

11 Proposed  method (Comp. Lead) SVM 76.76  76.76 76.76 

12 Proposed  method (Comp. Lead) SVM with PCA 83.33  76.66 80.00 

13 Proposed  method (Comp. Lead) ANN 91.70  100 95.80 

14 Proposed  method (Comp. Lead) ANN with PCA 100  100 100 

15 Proposed  method (All 12 Lead) SVM 96.66  100 98.33 

16 Proposed  method (All 12 Lead) SVM with PCA 96.96  96.96 96.96 

17 Proposed  method (All 12 Lead) ANN 100  100 100 

18 Proposed  method (All 12 Lead) ANN with PCA 100  100 100 

 

 

6.3 Detection of Cardiomyopathy 

6.3.1 Detection of Cardiomyopathy using a composite lead and all 12 Lead ECG with 

SVM and ANN classifier 

 The Composite Lead used for HC and CM cases and determines features to classify 

HC and CM using SVM and ANN classifier. The completely developed SVM and ANN 

classifier system for Cardiomyopathy detection depicted in Fig.6.3 
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PTB ECG Dataset Description

Healthy Control (HC): 16, 

Cardiomyopathy (CM): 16 

Total data: 32

Classification
using Composite Lead 

parameters

FEATURE EXTRACTION

1-Apply two stage median filter to remove wander baseline drift on each lead

2-Add all filtered lead and compute Composite Lead 

3-Compute average beat of Composite Lead

4-Determine wave boundaries of average beat of Composite Lead 

Calculate Four Features :

 P duration, QRS duration, ST-T complex duration, and QT interval

SVM classifier

 Training set:

16 (08 HC and 08 CM)

Testing set:

16  (08 HC and 08 CM)

22 (4+18) features 

 for composite lead

14 features apply PCA

Classification 

accuracy 

  81.25% 

without 

reduces 

parameters

Classification 

accuracy   

81.25% with 

reduces 

parameters

ANN classifier
 Training 60%

Validation 20 %

Testing 20%

22 (4+18) features 

 for composite lead

14 features apply PCA

Classification 

accuracy   

83.30% 

without 

reduces 

parameters

Classification 

accuracy 60% 

with reduces 

parameters

Calculate Eighteen Features:

 Amplitude, Area, Mean, Standard deviation, Skewness 

and Kurtosis of composite beat of composite lead for P, 

QRS duration and ST-T complex interval : 

Total features =18 (6x3)

Overall Total Feature : 22 (4+18)

Calculate Two Hundred Sixteen Features:

 Amplitude, Area, Mean, Standard deviation, Skewness 

and Kurtosis of composite beat of all lead ECG for P, 

QRS duration and ST-T complex interval : 

Total features =216 (6x3x12)

Overall Total Feature : 220 (4+216)

Classification
using all 12 Lead ECG 

parameters

SVM classifier
 Training set:

16 (08 HC and 08 CM)

Testing set:

16  (08 HC and 08 CM)

220 (4+18x12) features 

 for all 12 lead ECG

14 features apply PCA

Classification 

accuracy   

68.75% 

without 

reduces 

parameters

Classification 

accuracy   

87.50% with 

reduces 

parameters

ANN classifier
 Training 60%

Validation 20 %

Testing 20%

220 (4+18x12) features 

 for composite lead

14 features apply PCA

Classification 

accuracy 

  83.3% 

without 

reduces 

parameters

Classification 

accuracy 

60% with 

reduces 

parameters

 

Fig. 6.3 Cardiomyopathy detection using Composite Lead and all 12 Lead ECG 
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6.3.1.1 Feature extraction for HC and CM for Composite Lead 

For HC and CM classification, four features carried out by calculation of intervals of P 

duration, QRS complex duration, ST-T complex interval, and QT interval for the average beat 

of Composite-Lead ECG. Eighteen features, such as amplitude peak-to-peak, area, mean, 

standard deviation, skewness and kurtosis of the composite beat of Composite-Lead ECG in 

P duration, QRS complex duration and ST-T complex interval. The total features for the 

combination of Composite-Lead ECG are 22 (4+3×6). 

 Principal component analysis is a statistical method that generates a new set of 

variables known as principal components. In this study PCA is used for parameter 

dimensionality reduction and optimize the number of principal components (PCs) to perform 

HC-CM classification. Therefore, ECG PTB (HC &CM) dataset was calculated 22 features 

vector. In this work 14 PCs obtained from 22 features to perform CM detection with SVM and 

ANN classifier.    

6.3.1.2 Feature extraction for HC and CM data using all 12 Lead ECG 

For HC and CM classification, four features carried out by calculation of intervals of P 

duration, QRS complex duration, ST-T complex interval, and QT interval for the average beat 

of all 12-lead ECG by Composite beat of Composite Lead. Eighteen features for each lead, 

such as amplitude peak-to-peak, area, mean, standard deviation, skewness and kurtosis of 

the composite beat of all 12-lead ECG in P duration, QRS complex duration and ST-T 

complex interval. The total original features for a combination of all 12-lead ECG are 220 

(4+3×6×12). 

Principal component analysis is a statistical method that generates a new set of 

variables known as principal components. In this study PCA is used for parameter 

dimensionality reduction and optimize the number of principal components (PCs) to perform 

HC-CM classification. Therefore, ECG PTB (HC &CM) dataset was calculated 220 features 

vector. In this work 14 PCs obtained from 220 features to perform CM detection with SVM 

and ANN classifier.    

6.3.1.3 Experimental results and discussion for CM detection performs with SVM 

classifier using Composite Lead 22 features 

 In this experiment, twenty two (4+3×6) features are used for CM detection with binary 

support vector machine (SVM) classifier. Here training set consists of 16 HC and 16CM 

subjects and similarly another set of 16 HC and 16 CM subjects is used for testing.  The 

execution of this experiment was depicted in Table 6.6 by selecting best regularization 

parameter C and the kernel parameter γ. For this experiment, the performance classification 

accuracy was 81.25% and sensitivity and specificity of CM detection were 62.50% &100% 



 

113 

 

respectively. The performance of CM detection using composite lead with original 22 

features depicted in Table6.6. 

6.3.1.4 Experimental results and discussionfor CM detection performs with SVM 

classifier using Composite Lead 14 features 

 

 To reduce the computational complexity, feature dimension reduction is 

significant. Thus, proposed method applies Principal Component Analysis (PCA) 

reduction technique. In this experiment obtained 22 parameters are reduced to 14 

parameters, using these parameters CM detections achieved by SVM is: sensitivity 

62.50%, specificity 100% and accuracy 81.25%. The performance of CM detection 

using composite lead with reduces 14 features depicted in Table 6.6. 

 

Table 6.6 CM detection performances of 12 Lead ECG using Composite Lead feature with 
SVM classifier (without PCA and with PCA) 

 

 Experiment Experiment 

 Without PCA With PCA 

Features  22  14 

Best c  16384 16384 

Best  γ 0.0039 9.7656e-004 

Cross Validation Accuracy  81.25% 100% 

Mean squared error (regression) 0.1875 0.666667 

Squared correlation coefficient (regression) 0.454545 0.935484 

Confusion Matrix (CM)         CM   HC   

 CM 8       0 

        CM   HC   

CM  8       0 

  
 HC  3       5  HC  3       5 

Sensitivity  62.50% 62.50% 

Specificity  100% 100% 

Accuracy (classification) 81.25% (13/16) 81.25% (13/16) 

 

 

6.3.1.5 Experimental results and discussion for CM detection performs with ANN 

classifier using Composite Lead 22 features 

 

 In this experiment, twenty two (4+18) features are used in this experiment for CM 

detection. Detection of myocardial infarction using extracted features of composite lead with 

ANN classifier, here using above 22 features and selected data 32 (16 HC &16 CM) 

randomly divided into 60% training, 20% validation and 20% testing. The accuracy of the 
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classifier is 83.30%, and sensitivity and specificity of CM detection 66.70% & 100% 

respectively. The performance of CM detection completes  depicted in Table 6.7. 

6.3.1.6 Experimental results and discussion for CM detection performs with ANN 

classifier using Composite Lead 14 features 

 
 To reduce the computational complexity, feature dimension reduction is important. 

Therefore, proposed method applies Principal Component Analysis (PCA) reduction 

technique. In this experiment obtained 22 parameters are reduced to 14 parameters, using 

these parameters CM detection performance (for Testing) achieved by ANN is: sensitivity 

71.40%, specificity 33.33% and accuracy 60%. The performance of CM detection completes  

depicted in Table 6.7. 

 

Table 6.7 CM detection performances of 12 Lead ECG using Composite Lead feature with 

ANN classifier (without PCA and with PCA) 

Features 22   

Total data  32  

Training 60% 20  

Validation 20% 6  

Testing 20% 6  

Hidden Layer 10  

Without PCA Feature 22   

 Training CM Test CM 

Confusion Matrix (CM)         CM   HC   

C M 10     0 

        CM   HC   

 CM  2      1 

  
 HC  0      10  HC  0       3 

Sensitivity  100% 66.7% 

Specificity  100% 100% 

Accuracy (classification) 100% (20/20) 83.30% (5/6) 

With PCA Feature 14   

 Training CM Test CM 

Confusion Matrix (CM)         CM  HC   

 CM  5      6 

        CM   HC   

 CM 5        2 

  
 HC  2       3  HC  2        1 

Sensitivity  45.5% 71.40% 

Specificity  60% 33.33% 

Accuracy (classification) 50% (8/16) 60% (6/10) 
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6.3.1.7 Experimental results and discussion for CM detection performs with SVM 

classifier using all 12 Lead ECG 220 features 

 In this experiment, two hundred twenty two (4+3×6×12) features are used for CM 

detection with binary support vector machine (SVM) classifier. Here training set consists of 

16 HC and 16CM subjects and similarly another set of 16 HC and 16CM subjects is used for 

testing.  The execution of this experiment was depicted in Table 6.8 by selecting best 

regularization parameter C and the kernel parameter γ. For this experiment, the performance 

class accuracy was 68.75% and sensitivity and specificity of CM detection were 37.50% 

&100% respectively. The performance of CM detection using composite lead with original 

220 features depicted in Table 6.8. 

6.3.1.8 Experimental results and discussionfor CM detection performs with SVM 

classifier using all 12 Lead ECG 14 features 

 

 To reduce the computational complexity, feature dimension reduction is 

significant. Thus, proposed method applies Principal Component Analysis (PCA) 

reduction technique. In this experiment obtained 220 parameters are reduced to 14 

parameters, using these parameters CM detections achieved by SVM is: sensitivity 

62.50%, specificity 100% and accuracy 81.25%. The performance of CM detection 

using composite lead with reduces 14 features depicted in Table 6.8. 

 

Table 6.8 CM detection performances of 12 Lead ECG using all 12 Lead ECG feature with 
SVM classifier (without PCA and with PCA) 

 

 Experiment Experiment 

 Without PCA With PCA 

Features  220  14 

Best c  16384 16384 

Best  γ 0.0039 9.7656e-004 

Cross Validation Accuracy  81.25% 100% 

Mean squared error (regression) 0.1875 0.666667 

Squared correlation coefficient (regression) 0.454545 0.935484 

Confusion Matrix (CM)         CM   HC   

 CM 5       3 

        CM   HC   

CM  8       0 

  
 HC  0       8  HC  2       6 

Sensitivity  37.50% 100% 

Specificity  100% 75% 

Accuracy (classification) 68.75% (13/16) 87.50% (14/16) 
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6.3.1.9 Experimental results and discussion for CM detection performs with ANN 

classifier using all 12 Lead 220 features 

 

 In this experiment, two hundred twenty two (4+18×12) features are used in this 

experiment for CM detection. Detection of myocardial infarction using extracted features of 

composite lead with ANN classifier, here using above 22 features and selected data 32 (16 

HC &16 CM) randomly divided into 60% training, 20% validation and 20% testing. The 

accuracy of the classifier (for Testing) is 83.30%, and sensitivity and specificity of CM 

detection 66.70% & 100% respectively. The performance of CM detection completes 

depicted in Table 6.9. 

6.3.1.10 Experimental results and discussion for CM detection performs with ANN 

classifier using all 12 Lead 14 features 

 To reduce the computational complexity, feature dimension reduction is important. 

Therefore, proposed method applies Principal Component Analysis (PCA) reduction 

technique. In this experiment obtained 220 parameters are reduced to 14 parameters, using 

these parameters CM detection performance (for Testing) achieved by ANN is: sensitivity 

60%, specificity 60% and accuracy 60%. The performance of CM detection completes  

depicted in Table 6.9. 
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Table 6.9 CM detection performances of 12 Lead ECG using Composite Lead feature with 
ANN classifier (without PCA and with PCA) 

Features 22 0  

Total data  32  

Training 60% 20  

Validation 20% 6  

Testing 20% 6  

Hidden Layer 10  

Without PCA Feature 220   

 Training CM Test CM 

Confusion Matrix (CM)         CM   HC   

C M 10     0 

        CM   HC   

 CM  2      1 

  
 HC  0      10  HC  0       3 

Sensitivity  100% 66.7% 

Specificity  100% 100% 

Accuracy (classification) 100% (20/20) 83.30% (5/6) 

With PCA Feature 14   

 Training CM Test CM 

Confusion Matrix (CM)         CM  HC   

 CM  6      4 

        CM   HC   

 CM 3        2 

  
 HC  1       5  HC  2        3 

Sensitivity  60% 60% 

Specificity  83.33% 60% 

Accuracy (classification) 68.8% (11/16) 60% (6/10) 

 

 

 

 

6.4 Detection of Bundle branch block 

6.4.1 Detection of Bundle branch block using a composite lead and all 12 Lead ECG 

with SVM and ANN classifier 

 The Composite Lead used for HC and BB cases and determines features to classify 

HC and BB using SVM and ANN classifier. The completely developed SVM and ANN 

classifier system for Bundle branch block detection depicted in Fig.6.4. 

6.4.1.1 Feature extraction for HC and BB for Composite Lead 

For HC and CM classification, four features carried out by calculation of intervals of P 

duration, QRS complex duration, ST-T complex interval, and QT interval for the average beat 

of Composite-Lead ECG. Eighteen features, such as amplitude peak-to-peak, area, mean, 

standard deviation, skewness and kurtosis of the composite beat of Composite Lead ECG in 
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P duration, QRS complex duration and ST-T complex interval. The total features for the 

combination of Composite-Lead ECG are 22 (4+3×6). 

 Principal component analysis is a statistical method that generates a new set of 

variables known as principal components. In this study PCA is used for parameter 

dimensionality reduction and optimize the number of principal components (PCs) to perform 

HC-BB classification. Therefore, ECG PTB (HC &BB) dataset was calculated 22 features 

vector. In this work 14 PCs obtained from 22 features to perform BB detection with SVM and 

ANN classifier.    

6.4.1.2 Feature extraction for HC and BB data using all 12 Lead ECG 

For HC and CM classification, four features carried out by calculation of intervals of P 

duration, QRS complex duration, ST-T complex interval, and QT interval for the average beat 

of all 12 Lead ECG by Composite beat of Composite Lead. Eighteen features for each lead, 

such as amplitude peak-to-peak, area, mean, standard deviation, skewness and kurtosis of 

the composite beat of all 12-lead ECG in P duration, QRS complex duration and ST-T 

complex interval. The total original features for a combination of all 12-lead ECG are 220 

(4+3×6×12). 

Principal component analysis is a statistical method that generates a new set of 

variables known as principal components. In this study PCA is used for parameter 

dimensionality reduction and optimize the number of principal components (PCs) to perform 

HC-BB classification. Therefore, ECG PTB (HC &BB) dataset was calculated 220 features 

vector. In this work 14 PCs obtatine from 220 features to perform BB detection with SVM and 

ANN classifier 



 

119 

 

PTB ECG Dataset Description

Healthy Control (HC): 16, 

Bundle Branch Block (BB): 16 

Total data: 32

Classification
using Composite Lead 

parameters

FEATURE EXTRACTION

1-Apply two stage median filter to remove wander baseline drift on each lead

2-Add all filtered lead and compute Composite Lead 

3-Compute average beat of Composite Lead

4-Determine wave boundaries of average beat of Composite Lead 

Calculate Four Features :

 P duration, QRS duration, ST-T complex duration, and QT interval

SVM classifier

 Training set:

16 (08 HC and 08 BB)

Testing set:

16  (08 HC and 08 BB)

22 (4+18) features 

 for composite lead

14 features apply PCA

Classification 

accuracy 

 75% without 

reduces 

parameters

Classification 

accuracy   

68.75% with 

reduces 

parameters

ANN classifier
 Training 60%

Validation 20 %

Testing 20%

22 (4+18) features 

 for composite lead

14 features apply PCA

Classification 

accuracy   

90% without 

reduces 

parameters

Classification 

accuracy 70% 

with reduces 

parameters

Calculate Eighteen Features:

 Amplitude, Area, Mean, Standard deviation, Skewness 

and Kurtosis of composite beat of composite lead for P, 

QRS duration and ST-T complex interval : 

Total features =18 (6x3)

Overall Total Feature : 22 (4+18)

Calculate Two Hundred Sixteen Features:

 Amplitude, Area, Mean, Standard deviation, Skewness 

and Kurtosis of composite beat of all lead ECG for P, 

QRS duration and ST-T complex interval : 

Total features =216 (6x3x12)

Overall Total Feature : 220 (4+216)

Classification
using all 12 Lead ECG 

parameters

SVM classifier
 Training set:

16 (08 HC and 08 BB)

Testing set:

16  (08 HC and 08 BB)

220 (4+18x12) features 

 for all 12 lead ECG

14 features apply PCA

Classification 

accuracy   

68.75% 

without 

reduces 

parameters

Classification 

accuracy   

68.75% with 

reduces 

parameters

ANN classifier
 Training 60%

Validation 20 %

Testing 20%

220 (4+18x12) features 

 for composite lead

14 features apply PCA

Classification 

accuracy 

 100% without 

reduces 

parameters

Classification 

accuracy 

80% with 

reduces 

parameters

 

Fig. 6.4 Bundle branch blockdetection using Composite Lead and all 12 Lead ECG 

 

 

 



 

120 

 

.    

6.4.1.3 Experimental results and discussion for BB detection performs with SVM 

classifier using Composite Lead 22 features 

 In this experiment, twenty two (4+3×6) features are used for BB detection with binary 

support vector machine (SVM) classifier. Here training set consists of 16 HC and 16 BB 

subjects and similarly another set of 16 HC and 16BB subjects is used for testing.  The 

execution of this experiment was depicted in Table 6.10 by selecting best regularization 

parameter C and the kernel parameter γ. For this experiment, the performance classification 

accuracy was 75% and sensitivity and specificity of BB detection were 50% &100% 

respectively. The performance of BB detection using composite lead with original 22 features 

depicted in Table 6.10. 

6.4.1.4 Experimental results and discussion for BB detection performs with SVM 

classifier using Composite Lead 14 features 

 
 To reduce the computational complexity, feature dimension reduction is significant. 

Thus, proposed method applies Principal Component Analysis (PCA) reduction technique. In 

this experiment obtained 22 parameters are reduced to 14 parameters, using these 

parameters BB detections achieved by SVM is: sensitivity 37.50%, specificity 100% and 

accuracy 68.75%. The performance of BB detection using composite lead with reduces 14 

features depicted in Table 6.10.  

Table 6.10 BB detection performances of 12 Lead ECG using Composite Lead feature with 

SVM classifier (without PCA and with PCA) 

 Experiment Experiment 

 Without PCA With PCA 

Features  22  14 

Best c  16384 16384 

Best  γ 0.0039 9.7656e-004 

Cross Validation Accuracy  81.25% 100% 

Mean squared error (regression) 0.1875 0.666667 

Squared correlation coefficient (regression) 0.454545 0.935484 

Confusion Matrix (CM)         BB   HC   

 BB  4       4 

        BB   HC   

 BB  3       5 

  
 HC  0       8  HC  0       8 

Sensitivity  50% 37.50% 

Specificity  100% 100% 

Accuracy (classification) 75% (13/16) 68.75% (13/16) 
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6.4.1.5 Experimental results and discussion for BB detection performs with ANN 

classifier using Composite Lead 22 features 

 

 In this experiment, twenty two (4+18) features are used in this experiment for BB 

detection. Detection of myocardial infarction using extracted features of composite lead with 

ANN classifier, here using above 22 features and selected data 32 (16 HC &16 BB) randomly 

divided into 60% training, 20% validation and 20% testing. The accuracy of the classifier (for 

Testing) is 90%, and sensitivity and specificity of BB detection 83.30% & 100% respectively. 

The performance of BB detection completes depicted in Table 6.11. 

6.4.1.6 Experimental results and discussion for BB detection performs with ANN 

classifier using Composite Lead 14 features 

 
 To reduce the computational complexity, feature dimension reduction is important. 

Therefore, proposed method applies Principal Component Analysis (PCA) reduction 

technique. In this experiment obtained 22 parameters are reduced to 14 parameters, using 

these parameters BB detection performance (for Testing) achieved by ANN is: sensitivity 

57.20%, specificity 100% and accuracy 70%. The performance of BB detection completes 

depicted in Table 6.11. 
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Table 6.11 BB detection performances of 12 Lead ECG using Composite Lead feature with 
ANN classifier (without PCA and with PCA) 

Features 22   

Total data  32  

Training 50% 16  

Validation 20% 6  

Testing 30% 10  

Hidden Layer 10  

Without PCA Feature 22   

 Training CM Test CM 

Confusion Matrix (CM)         BB   HC   

 BB  7       1 

        BB   HC   

 BB  5       1 

  
 HC  1       7  HC  0       4 

Sensitivity  87.50% 83.30% 

Specificity  87.50% 100% 

Accuracy (classification) 87.50% (14/16) 90% (9/10) 

With PCA Feature 14   

 Training CM Test CM 

Confusion Matrix (CM)         BB  HC   

 BB  7      3 

        BB   HC   

 BB  4        3 

  
 HC  1      5  HC  0        3 

Sensitivity  70% 57.10% 

Specificity  83..30% 100% 

Accuracy (classification) 75% (12/16) 70% (6/10) 

 

 

6.4.1.7 Experimental results and discussion for BB detection performs with SVM 

classifier using all 12 Lead ECG 220 features 

 In this experiment, two hundred twenty features are used for BB detection with binary 

support vector machine (SVM) classifier. Here training set consists of 16 HC and 16 BB 

subjects and similarly another set of 16 HC and 16 BB subjects is used for testing.  The 

execution of this experiment was depicted in Table 6.12 by selecting best regularization 

parameter C and the kernel parameter γ. For this experiment, the performance classification 

accuracy was 68.75% and sensitivity and specificity of BB detection were 62.50% &75% 

respectively. The performance of BB detection using composite lead with original 220 

features depicted in Table 6.12. 

6.4.1.8 Experimental results and discussionfor BB detection performs with SVM 

classifier using all 12 Lead ECG 14 features 

 
 To reduce the computational complexity, feature dimension reduction is significant. 

Thus, proposed method applies PCA reduction technique. In this experiment obtained 220 
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parameters are reduced to 14 parameters, using these parameters BB detections achieved 

by SVM is: sensitivity 62.50%, specificity 75% and accuracy 68.75%. The performance of BB 

detection using composite lead with reduces 14 features depicted in Table 6.12. 

 

Table 6.12 BB detection performances of 12 Lead ECG using all 12 Lead ECG feature with 
SVM classifier (without PCA and with PCA) 

 

 Experiment Experiment 

 Without PCA With PCA 

Features  220  14 

Best c  16384 16384 

Best  γ 0.0039 9.7656e-004 

Cross Validation Accuracy  81.25% 100% 

Mean squared error (regression) 0.1875 0.666667 

Squared correlation coefficient (regression) 0.454545 0.935484 

Confusion Matrix (CM)         BB   HC   

 BB 5       3 

        BB   HC   

 BB  5       3 

  
 HC  2       6  HC  2       6 

Sensitivity  62.50% 62.50% 

Specificity  75% 75% 

Accuracy (classification) 68.75% (11/16) 68.75% (11/16) 

 

 

6.4.1.9 Experimental results and discussion for BB detection performs with ANN 

classifier using all 12 Lead 220 features 

 

 In this experiment, two hundred twenty features are used in this experiment for BB 

detection. Detection of bundle branch block using extracted features of composite lead with 

ANN classifier, here using above 220 features and selected data 32 (16 HC &16 BB) 

randomly divided into 60% training, 20% validation and 20% testing. The accuracy of the 

classifier (for Testing) is 100%, and sensitivity and specificity of BB detection 100% & 100% 

respectively. The performance of BB detection completes  depicted in Table 6.13. 

6.4.1.10 Experimental results and discussion for BB detection performs with ANN 

classifier using all 12 Lead 14 features 

 To reduce the computational complexity, feature dimension reduction is important. 

Therefore, proposed method applies Principal Component Analysis (PCA) reduction 

technique. In this experiment obtained 22 parameters are reduced to 14 parameters, using 

these parameters BB detection performance (for Testing) achieved by ANN is: sensitivity 

80%, specificity 80% and accuracy 80%. The performance of BB detection completes  

depicted in Table 6.13. 
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Table 6.13 BB detection performances of 12 Lead ECG using Composite Lead feature with 
ANN classifier (without PCA and with PCA) 

Features 22 0  

Total data  32  

Training 50% 16  

Validation 20% 6  

Testing 30% 10  

Hidden Layer 10  

Without PCA Feature 220   

 Training CM Test CM 

Confusion Matrix (CM)         BB   HC   

BB   7      0 

        BB   HC   

 BB  8       0 

  
 HC  0      9  HC  0       2 

Sensitivity  100% 100% 

Specificity  100% 100% 

Accuracy (classification) 100% (16/16) 100% (10/10) 

With PCA Feature 14   

 Training CM Test CM 

Confusion Matrix (CM)         BB  HC   

 BB  6      2 

        BB   HC   

 BB   4        1 

  
 HC  0      8  HC  1        4 

Sensitivity  75% 80% 

Specificity  100% 80% 

Accuracy (classification) 87.50% (14/16) 80% (8/10) 

 

 
 

6.5 Design of Computer Assisted ECG Analysis and Classification (CA-ECG-AC) 

system for Healthy, Myocardial Infarction, Cardiomyopathy and Bundle branch 

block with ANN classifier 

The design of CA-ECG-AC system for classification of normal, myocardial infarction, 

cardiomyopathy and bundle branch block heart disease was carried out with 64 twelve lead 

ECG from PTB database, i.e., 16 healthy control, 16 myocardial infarction, 16 cardiomypathy 

and,16 bundle branch block. 

The proposed CA-ECG-AC system designed for Composite Lead and, 12 Lead ECG. 

The CA-ECG-AC system consisted of two parts: (a) feature extraction, and (b) classification. 

The detailed schematic diagram of classification ofnormal, myocardial infarction, 

cardiomyopathy and bundle branch block depicted in Fig. 6.5. 

6.5.1.1 Feature extraction for HC, MI, CM, and BB using Composite Lead 

For HC, MI,CM, and BB classification, four features carried out by calculation of 

intervals of P duration, QRS complex duration, ST-T complex interval, and QT interval for the 
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average beat of Composite Lead ECG. Eighteen features, such as amplitude peak-to-peak, 

area, mean, standard deviation, skewness and kurtosis of the composite beat of Composite 

Lead ECG in P duration, QRS complex duration and ST-T complex interval. The total 

features for the combination of Composite Lead ECG are 22 (4+3×6). In this work 22 original 

features to perform HC, MI, CM, and BB classification with ANN classifier.    

6.5.1.2 Feature extraction for HC, MI, CM, and BB using all 12 Lead ECG 

For HC, MI, CM, and BB classification, four features carried out by calculation of 

intervals of P duration, QRS complex duration, ST-T complex interval, and QT interval for the 

average beat of all 12-lead ECG by Composite beat of Composite Lead. Eighteen features 

for each lead, such as amplitude peak-to-peak, area, mean, standard deviation, skewness 

and kurtosis of the composite beat of all 12-lead ECG in P duration, QRS complex duration 

and ST-T complex interval. The total original features for a combination of all 12-lead ECG 

are 220 (4+3×6×12).In this work 220 original features to performHC, MI, CM, and BB 

classification with ANN classifier.    
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PTB ECG Dataset Description

Healthy Control (HC): 16, 

Myocardial Infarction (MI): 16 

Cardiomyopathy (CM): 16 

Bundl3 branch block (BB): 16 

Total data: 64

Classification
using Composite Lead parameters

FEATURE EXTRACTION

1-Apply two stage median filter to remove wander baseline drift on each lead

2-Add all filtered lead and compute Composite Lead 

3-Compute average beat of Composite Lead

4-Determine wave boundaries of average beat of Composite Lead 

Calculate Four Features :

 P duration, QRS duration, ST-T complex duration, and QT interval

ANN classifier
 Training 50%

Validation 20 %

Testing 30%

22 (4+18) features 

 for composite 

Classification accuracy  100% without reduces 

parameters

Calculate Eighteen Features:

 Amplitude, Area, Mean, Standard deviation, Skewness 

and Kurtosis of composite beat of composite lead for P, 

QRS duration and ST-T complex interval : 

Total features =18 (6x3)

Overall Total Feature : 22 (4+18)

Calculate Two Hundred Sixteen Features:

 Amplitude, Area, Mean, Standard deviation, Skewness 

and Kurtosis of composite beat of all lead ECG for P, 

QRS duration and ST-T complex interval : 

Total features =216 (6x3x12)

Overall Total Feature : 220 (4+216)

Classification
using all 12 Lead ECG parameters

ANN classifier
 Training 50%

Validation 20 %

Testing 30%

220 (4+18x12) features 

 for composite lead

Classification accuracy 

  84.20% without reduces parameters

 

Fig. 6.5 Computer Assisted ECG Analysis and Classification (CA-ECG-AC) systemfor HC, 
MI, CM and BB using Composite Lead and all 12 Lead ECG 
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6.5.1.3 Experimental results and discussion for HC, MI, CM, and BB classification 

performs with ANN classifier using Composite Lead 22 features 

 
In this experiment, features extracted from the composite beat of composite lead are 

considered for HC, MI, CM, and BB classification. Twenty two (4+3×6) features are used in 

this experiment for four class (HC, MI, CM, and BB) with ANN classifier. In this experiment 

input features are normalized using min-max map scale range [-1, +1]. Classification of four 

classes, i.e., HC, MI, CM, and BB uses extracted features of composite lead with ANN 

classifier, here using above 22 features and selected data 64 (16 HC, 16 MI, 16 CM & 16 

BB) randomly divided into 50% training, 20% validation and 30% testing. The overall 

accuracy of the classifier (for Testing) is 100%. In next other time, selected data randomly 

devided into 40% training, 25% validation and 35% testing. The overall accuracy of the 

classifier (for Testing) is 100%.The performance of classifier with composite datacompletes  

depicted in Table 6.14 and Fig. 6.6. 

 

Table 6.14 HC, MI, CM, and BB classification perform with ANN classifier using Composite 
Lead features 

Composite Lead Feature 22  

Total data  64 (16 HC, 16 MI, 16 CM, 16BB) 

Training 50% 32  

Validation 20% 13  

Testing 30% 19  

Hidden Layer 10  

 Training Testing 

Sensitivity  100% 100% 

Specificity  100% 100% 

Accuracy (classification) 100% (16/16) 100% (10/10) 
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Fig. 6.6 Confusion matrix for multiclass (1-HC, 2-MI, 3-CM, and 4-BB) classification using 
ANN classifier with Composite Lead 

6.5.1.4 Experimental results and discussion for HC, MI, CM, and BB classification 

performs with ANN classifier using all 12 Lead 220 features 

 
 In this experiment, features extracted from the composite beat of of all 12 lead are 

considered for HC, MI, CM, and BB classification. Two hundred twenty  (4+3×6x12) features 

are used in this experiment for HC, MI, CM, and BB uses four class ANN classifier. In this 

experiment input features are normalized using min-max map scale range [-1, +1]. 

Classification of four classes, i.e., HC, MI, CM, and BB use extracted features of composite 

lead with ANN classifier, here using above 220 features and selected data 64 (16 HC, 16 MI, 

16 CM & 16 BB) randomly divided into 50% training, 20% validation and 30% testing. The 

overall accuracy of the classifier (for Testing) is 84.20%. The performance of classifier with 

composite datacompletes  depicted in Table 6.15 and Fig. 6.7. 

1 2 3 4

1

2

3

4

9

28.1%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

8

25.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

9

28.1%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

6

18.8%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

Target Class

O
u

tp
u

t 
C

la
s

s

Training Confusion Matrix

1 2 3 4

1

2

3

4

3

23.1%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

1

7.7%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

5

38.5%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

4

30.8%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

Target Class

O
u

tp
u

t 
C

la
s

s

Validation Confusion Matrix

1 2 3 4

1

2

3

4

4

21.1%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

7

36.8%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

2

10.5%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

6

31.6%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

Target Class

O
u

tp
u

t 
C

la
s

s

Test Confusion Matrix

1 2 3 4

1

2

3

4

16

25.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

16

25.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

16

25.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

16

25.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

Target Class

O
u

tp
u

t 
C

la
s

s
All Confusion Matrix



 

129 

 

Table 6.15 HC, MI, CM, and BB classification perform with ANN classifier using all 12 lead 
features 

All 12 Lead Feature 220  

Total data  64 (16 HC, 16 MI, 16 CM, 16BB) 

Training 50% 32  

Validation 20% 13  

Testing 30% 19  

Hidden Layer 10  

 Training Testing 

Sensitivity  100% 100% 

Specificity  100% 100% 

Accuracy (classification) 100% (32/32) 84.20% (16/19) 

 

 

 

Fig. 6.7 Confusion matrix for multiclass (1-HC, 2-MI, 3-CM, and 4-BB) classification using 
ANN classifier with all Lead 
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6.6 Conclusion 

In this chapter multilead ECG analysis methods as discussed in previous chapters  4 

& 5 have been used for the detection of QRS complex and various ECG wave components 

for calculating the diagnostic features for Myocardial Infarction, Cardiomyopathy and Bundle 

branch block. In this workdisease diagnosis and classification were performed using 

different type ECG lead arrangements with SVM and ANN classifiers.  

1. Detection of myocardial infarction has been performed using composite lead parameters 

as well as all 12 lead parameters with SVM and ANN classifiers and it is observed that 

ANN classifier obtained maximum accuracy in composite lead and all 12 lead systems. 

Also, it is observed that after reduction in dimensionality using PCA, class accuracy of 

100% in both lead systems has been achieved. Thus, it can be concluded that the 

composite lead system performed comparable and significant MI detection.    

2. Detection of cardiomyopathy has been performed using twenty two features from 

composite lead and 220 features from all 12 lead with SVM and ANN classifier. In this 

case performance of cardiomyopathy detection is higher in ANN classifier for both 

composite lead and all 12 lead system and it is observed that after reduction of 

dimensionality using PCA, performance of SVM and ANN classifiers decreased in both 

lead systems. Thus, it can be finally concluded that cardiomyopathy detection by the 

ANN classifier with a composite lead system is better than SVM.  

3. Detection of bundle branch block has been performed using extracted features of 

composite lead and in all 12 lead systems with SVM and ANN classifiers. In this study 

ANN classifier performed better than SVM with all 12 lead systems.   

4. The Computer Assisted ECG Analysis and Classification system designed for healthy, 

myocardial infarction, cardiomyopathy and bundle branch block with ANN classifier 

using composite lead and as well as in all 12 lead system, classification accuracy is 

100% with the composite lead system and is higher than all 12 lead system. 

5. Thus, it can be finally concluded that the composite lead system contributes significantly 

for ECG analysis and classification systems.  
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CHAPTER 7: CONCLUSIONS 

7.1 Conclusions 

The work presented in this thesis significantly contributes to the ECG analysis and 

heart disease classification. This chapter summarizes the work presented in this thesis. 

Chapter 1 briefly gives the introduction of heart  anatomy and heart disease 

significances. Chapter 2 covers comprehensive literature review for completing research 

targets. Chapter 3 explains a collection of different standard ECG databases, softwares, and 

methodology used for performing developed algorithms in this research work.  

Chapter 4 define preprocessing method for ECG signals and QRS detection for single 

lead and 12 Lead ECG signal. In this work, ECG signal processing and QRS detection 

methods for single lead were implemented on all standard databases such as CSE, MIT/BIH 

arrhythmia, ESC ST-T, QT database, and MIT/BIH Noise Stress database. For single lead 

QRS detection was applied on 380 cases and overall QRS detection performance are: 

Sensitivity 99.52% and positive predictivity 99.69%. The methods developed for multilead 

QRS detection were applied on the CSE ECG database, St. Petersburg Institute of 

Cardiological Technics 12-lead Arrhythmia Database, PTB database. The performance of 

the algorithm is evaluated against CSE (Common Standards for Quantitative 

Electrocardiography) multilead measurement database and St. Petersburg Institute of 

Cardiological Technic’s 12-lead Arrhythmia Database. The detection sensitivity (Se) and 

positive predictivity (+P) of CSE multilead measurement data set-3 original & artificial, and 

data set-4 original & artificial are Se 99.87% & +P 100%, Se 100% & +P 100%, Se 99.49% 

& +P 99.80%, and Se 100% & +P 100% respectively. The QRS detection performance of 

the proposed method is depicted for PTB Database as 58 false positives and 2 false 

negatives, resulting in QRS detection sensitivity (Se%) and positive predictivity (+P) as 

99.90% and 100% respectively, for all 12 leads and the composite lead.The QRS detection 

performance on a Holter recording 12-Lead data using the St. Petersburg Institute of 

Cardiological Technics 12-lead Arrhythmia Database (30 minute data) determined the 

sensitivity and positive predictivity as 95.13% and 99.92% respectively. The overall 

performance of the proposed method, using different standard multilead databases, such as 

CSE, PTB and St. Petersburg multilead Arrhythmia with different cases and total 2,55,925 

beat analysis is average sensitivity of 99.24% and positive predictivity of 99.90%. 

In chapter 5 the boundary marking using composite lead in CSE measurement data 

set-3 for Ponset, Poffset, QRSonset, QRSoffset and Tend estimates are within limits as recommended 

by the CSE working party. The boundary marking measurements were compared with 

referee results and twenty CSE programs. The results of the proposed method for boundary 

marking are comparable and within CSE recommendations. For Ponset and Poffset analysis, 

mean differences are calculated and mean error is determined as -4.28 and 1.4 with the 
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standard deviation values equal to 4.42 and 6.02 respectively. Similarly, for QRSonset, 

QRSoffset, and Tend  mean error values are 0.12, -0.76 & -1.92 and standard deviation values 

being 2.5, 4.30 and 11.39 respectively. All measurements are in samples.  

In chapter 6, the above methods have been used for the detection of QRS complex 

and various ECG wave components for calculating the diagnostic features for Myocardial 

Infarction, Cardiomyopathy and Bundle branch block. Heredisease diagnosis and 

classification were performed using different ECG lead arrangements with SVM and ANN 

classifiers. Detection of myocardial infarction has been performed using composite lead 

parameters, all 12 lead parameters with SVM and ANN classifiers and it is observed that 

ANN classifier obtained maximum accuracy in composite lead and in all 12 lead systems. 

Also, it is observed that after reduction in dimensionality using PCA class accuracy obtained 

is 100% in both the lead systems. Thus, it can be concluded that the composite lead system 

performed comparable and significant MI detection.   Detection of cardiomyopathy has been 

performed using twenty two features from composite lead and 220 features from all 12 lead 

system with SVM and ANN classifier. In this case performance of cardiomyopathy detection 

is higher in ANN classifier for both composite lead and all 12 lead system and it is observed 

that after reduction in dimensionality using PCA performance of SVM and ANN classifiers 

decreased in both the lead systems. Thus, it can be finally concluded that cardiomyopathy 

detection with ANN classifier with a composite lead system better than SVM. Detection of 

bundle branch block has been performed using extracted features of composite lead and all 

12 lead systems with SVM and ANN classifiers. In this study ANN classifier performed better 

than SVM with all 12 lead systems. The Computer Assisted ECG Analysis and Classification 

system designed for healthy, myocardial infarction, cardiomyopathy and bundle branch block 

with ANN classifier using composite lead and all 12 lead featureshas  obtained class 

accuracy 100% with the composite lead system. Thus, it can be finally concluded that the 

composite lead system contributes significantly for ECG analysis and classification systems.  

7.2 Scope for future work 

1. In this study, the time domain features are used for normal, myocardial infarction, 

cardiomypathy and bundle branch block classification using composite lead and all 12 

lead ECG.  Features can be extracted from domain transform and can be used for 

disease classification. 

2. Patient history with morphological features can be added for better classification of 

heart diseases. 

3. Approach presented here can be extended for classification of more cardiac 

abnormalities that is arrhythmias, ischemia, etc.  
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