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ABSTRACT 

Echocardiography is the most commonly used first-line imaging modality in the assessment 

of cardiac chamber and valvular abnormalities. The valvular abnormalities can be classified 

as regurgitation and stenosis. Aortic regurgitation (AR) is a valvular disorder due to the 

retrograde flow of blood from the aortic valve into the left ventricle during the diastole. The 

aetiologies and the consequences of AR are diagnosed using transthoracic 

echocardiographic (TTE) images acquired in parastrenal long axis (PLAX), parasternal short 

axis (PSAX), apical four chamber (A4C), apical two chamber (A2C) and apical five chamber 

(A5C) views. The Doppler imaging modalities such as continuous wave Doppler (CWD) and 

color Doppler echocardiography along with conventional B-Mode (brightness mode) and M-

Mode (motion mode) images are used hand-in-hand to detect the prevalence of 

regurgitation, better understanding of the mechanism of regurgitation and quantification of 

severity along with its repercussions. But the technical research is more concentrated on 

despeckling, and segmentation of good quality B-Mode images acquired in a particular view 

from healthy adults. Hence, it is necessary to study the applications of despeckling and 

segmentation techniques for TTE images acquired in multiple views from patients diagnosed 

with AR. Current research work attempts to overcome the existing caveats by integrated 

processing of B-Mode, CWD, and color Doppler echocardiography images. The work looks 

for the best denoising and segmentation techniques suitable for different modalities of 

echocardiographic imaging in multiple views.  

Based on the exhaustive technical and clinical literature review, the following research 

objectives have been framed: 1) To propose despeckling methods for the B-Mode TTE 

images of aortic valve and cardiac chambers acquired in multiple views using different 

windows. 2) Comparative analysis of state-of-the-art despeckling techniques and texture 

features for the B-Mode and CWD images. 3) To propose delineation techniques for tracing 

the outer spectrum of CWD images. 4) Comparative analysis of segmentation techniques 

using the TTE images acquired in multiple views and windows. These research objectives 

are accomplished in the following manner.  

Speckle noise present in cross sectional TTE images makes it difficult to consistently 

perform delineation of the cardiac structure. It is necessary to suppress noise and enhance 

contrast without altering the fine details present in the images. To address the issue of 

speckle noise, six despeckling techniques are proposed in this thesis. The first proposed 

technique is based on multiscale techniques. The multiscale techniques are employed for 

speckle noise in the logarithmic domain, considering the approximated additive noise model 

of despeckling. The transformation of images into the logarithmic domain, application of 

shrinkage techniques and bringing the image back into the original space are the three 

common steps for all multiscale techniques. Eight shrinkage techniques are analyzed for 
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despeckling of TTE images in multiple views. The performances of logarithmic multiscale 

techniques are compared with adaptive and diffusion based filtering techniques. The 

denoised images are enhanced using Butterworth filter. The integrated effects of denoising 

and enhancement are tested on active contour, region, watershed and edge based 

segmentation techniques. Further, to make use of the advantages of M-band wavelets, it is 

proposed to combine M-band ridgelet with neighborhood coefficient thresholding for the 

despeckling of TTE images. The thresholds of coefficients are computed using neighborhood 

coefficient thresholding technique and reconstructed to obtain the denoised images.  

The second proposed despeckling technique is known as the hybrid triangulation moving 

average (TMAV) fuzzy filter. The performance of TMAV filter is fine tuned for despeckling of 

TTE images by combining it with adaptive Wiener filter. Four fuzzy filters have been analyzed 

in the logarithmic domain for speckle noise reduction. The despeckling performances of all 

the four fuzzy filters are fine tuned by combining them individually with adaptive Wiener filter. 

The integrated fuzzy filter is the third proposed despeckling technique which is the improved 

version of hybrid TMAV fuzzy filter. It is based on the integration of geometric, Wiener and 

fuzzy filters. The hybrid homomorphic fuzzy (HHF) is the fourth proposed technique which is 

the combination of logarithmic fuzzy filter and anisotropic diffusion filter. The diffusion based 

methods are known for speckle noise suppression, and edge preservation capability but they 

do not perform well when the noise contamination in the images is high. The fuzzy filters 

have superior figure of merit in comparison to anisotropic diffusion filters. The advantages of 

anisotropic diffusion and fuzzy filters are integrated in the proposed HHF filter.  

The hybrid posterior sampling based Bayesian estimation (PSBE) is the fifth proposed 

technique for despeckling of TTE images. The performance of logarithmic PSBE technique 

degrades considerably for images contaminated with high amount of noise. To address this 

issue, an additional adaptive filter is embedded into logarithmic PSBE and is known as the 

hybrid PSBE technique. The contrast of output images are enhanced using Butterworth filter. 

The effects of denoising and enhancement on segmentation are studied using three basic 

techniques namely the edge, region and multistage watershed. The extreme total variation 

bilateral (ETVB) is the sixth proposed technique for denoising of TTE images of the cardiac 

structures. The regularizer term of the total variation (TV) filter is replaced with the bilateral 

(BL) term in the proposed ETVB filter. The true information is incorporated in the algorithm 

using Bayesian inference and probability density function. Applications of gradient projection 

based restoration methods have been analyzed for speckle noise reduction of TTE images. 

In an effort to define the best despeckling filter for the B-Mode, CWD and color Doppler 

images in multiple views, a comparative study is under taken in this thesis. The applications 

of 48 filters are analyzed for the B-Mode, CWD, MM, and color Doppler images where the 

performance analysis is in terms of sixteen image quality metrics, visual quality assessment 
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and clinical validation. Both, traditional and blind assessment parameters are computed for 

assessment of noise suppression, edge and structure preservation. The despeckling filters 

are grouped into eight type’s namely local statistics, fuzzy, Fourier, multiscale, nonlinear 

iterative, total variation, nonlocal mean and hybrid filters.  

It has been observed that the median filter and Gaussian low pass filter are more 

commonly used for reduction of noise in the CWD images. The applications of state-of-the-

art despeckling filters have not been extensively analyzed for the CWD images. Therefore, 

applications of despeckling filters analyzed for B-Mode images have also been analyzed for 

the CWD, pulse wave Doppler (PWD), M-Mode and color Doppler images. The despeckling 

performance of filters have also been compared in terms of 65 texture features computed 

from the denoised B-Mode, M-Mode, CWD, and color Doppler echocardiographic images. 

The set of features include five first order statistical (FOS), 26 spatial gray level dependence 

matrix (SGLDM), four gray level difference statistics (GLDS), four statistical feature matrix 

(SFM), six Laws texture energy measures (LTEM), four fractal dimension, two Fourier power 

spectrum and five neighborhood gray tone difference matrix features. All the texture features 

have been computed before and after the application of despeckling filters.  

The segmentation of original and the pre-processed B-Mode, CWD and color Doppler 

images is taken up as the next objective. This objective looks for the best delineation 

technique for each modality image in multiple views. Initially, synthetic images with different 

amount of intensity in-homogeneity have been delineated using segmentation techniques 

based on various variants of the edge, region, watershed, fuzzy, active contour and level set 

techniques. The applications of these techniques are analyzed for the contouring of 

synthetic, color Doppler, B-Mode and CWD images. The objective of segmenting the B-Mode 

images is to trace the inner boundaries of left ventricle (LV) and aortic valve (AV) along with 

the leaflets of AV and mitral valve (MV). The B-Mode images acquired in two parasternal and 

three apical windows are used for analysis of segmentation techniques. The color Doppler 

images in PLAX and A5C are segmented to trace the outer boundary of regurgitant jet area. 

The outer spectrum of the CWD images is traced using multiple segmentation techniques.   

To begin with, the edge, region and multi-stage watershed segmentation techniques are 

analysed. The performances of these techniques are improved by combining them with 

filters.  The existing techniques such as wavelet based scale multiplication edge detection 

(SMED) approach, intuitionistic fuzzy divergence (IFD) based edge detection, soft 

thresholding, topological derivative based delineation, Magagnin and Kiruthika method have 

been employed for tracing the outer boundaries of the images. Further, the techniques based 

on active contour and level set have been employed for tracing the boundaries in the 

presence of intensity in-homogeneity. This set of techniques includes methods such as 

reaction diffusion, region scalable fitting (RSF), global minimization of active contour 
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(GMAC), Laplacian fitting energy, statistical and variational multiphase level set (SVMLS) 

approach, active contour without edges, selective binary and Gaussian filtering regularized 

level set. The manually segmented B-Mode images are compared with results obtained on 

application of local region based active contour segmentation technique. The estimated 

parameters on manual segmentation are compared with those obtained on application of 

semi-automated segmentation.  

The analysis of segmentation techniques for CWD images is carried out using filtered 

as well original noisy images. The Gaussian and median filters used in Kiruthika method, 

Magagnin method and reaction diffusion (RD) based active contour method are replaced by 

the despeckling techniques in the proposed modifications for these three delineation 

techniques. These basic filters are replaced by ten despeckling filters such as DsFlsmv, 

DsFmedian, DsFhmedain, DsFad, DsFsrad, DsFlsminsc, DsFhomog, DsFWiener, 

DsFhomog and DsFgf4d.  Further, performances of the modified RD method with various 

despeckling filters are tested using low contrast images with higher intensity in-homogeneity. 

The boundaries traced show that embedding of despeckling filter as replacement for the 

Gaussian filter in the RD method can be employed in the delineation of CWD images even in 

the presence of intensity in-homogeneity. 
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CHAPTER 1: INTRODUCTION 

This chapter describes the cardiac structure, and the imaging modalities employed for the assessment of 

valvular abnormalities. The advantages and disadvantages of echocardiographic imaging along with the 

importance of acquiring images in multiple views using various acoustic windows are discussed. The 

need for pre-processing of transthoracic echocardiographic images, the state-of-the-art techniques 

employed for speckle noise reduction and segmentation are highlighted in the literature review presented. 

The major objectives of current research work are also being outlined.   

1.1 Motivation 

Medical imaging modalities provide effective mapping of different body tissues under 

pathological conditions resulting in different image patterns. These patterns reflect the status of 

the biological tissues through images that are employed in the routine clinical practice for the 

medical diagnosis and treatment planning. The computer-aided pre/post-processing and 

analysis of medical images encompass a number of potential areas such as image acquisition, 

noise reduction, enhancement, compression, automated/semi-automated delineation and image 

based visualization. The basic purpose of medical image analysis is to obtain scientific 

knowledge of various diseases and their impact on other anatomical structures to administer 

suitable treatment, intra-operative navigation and surgical planning [1-12].  

The sustained effort of researchers is reflected by various medical imaging modalities 

available for acquiring the exceptional views of various organs in multiple views. The imaging 

modalities such as X-ray, computed tomography (CT), ultrasound (US), and magnetic 

resonance imaging (MRI) are available for diagnosis [4, 5, 13-16]. Among the available medical 

imaging modalities, the images acquired from the US B-scans are widely used in diagnosis due 

to its cost effectiveness, portability, acceptability and safety it offers. Due to the ability to aid 

human visualization of human tissues without deleterious effect, the US B-scan imaging has 

been widely employed in imaging soft tissues such as that of heart, kidney, liver, lungs, 

prostate, spleen, uterus, kidney, carotid artery, and bone fractures. The US of heart is known as 

echocardiography. The technical advances due to extensive research in modern electronics and 

biomedical image processing have revolutionized state-of-the-art of the US based machines in 

the recent years [5, 7, 17-19]. The modernization has increased the computational power 

drastically enhancing the efficiency of the doctors in accurate disease diagnosis. These days 

the US machines are available in the doctors’ offices, emergency departments, ambulances and 

operation theatres. The US systems are used in cardiology, detection of renal disorders, breast 

cancer detection, prostate cancer detection, gynaecology complications, etc. [5, 7, 14, 20-28].  
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The echocardiographic images are affected by shadowing from the lungs, reflection of 

signal from the ribcage and respiration of the patient. Artifacts are often introduced due to the 

probe motion and incorrect gain settings. The low gain settings may eliminate certain structures 

and using high gain settings can mask structures which lead to significant wrong diagnosis.  A 

large number of images are obtained for better reconstruction but it lengthens the time of 

acquisition and introduces motion artifacts [22, 29-36]. It is operator-dependent and often 

significant training is required to acquire good quality and correct data. Manually analysis is a 

herculean task, it is quite laborious, time consuming with inter/intra-personal variations. The 

huge data is acquired during the diagnosis at various stages. It is difficult to manually analyse 

the acquired data due to the poor quality of images and drawbacks of the imaging modalities. It 

is quite challenging to derive the necessary information from the acquired data by the doctors 

and technicians.  Also, the manual analysis is a subjective methodology, it compromises on the 

accuracy of diagnosis and severity estimation. It is very difficult to reproduce quantitative 

measurements. All these reasons have made computer aided diagnosis all that important and 

have triggered requirement for software based techniques for automatic analysis of the medical 

images [12, 37-55].  

The B-Mode echocardiographic images have attracted the attention of many researchers 

for noise reduction, enhancement or automated segmentation compared to M-Mode, continuous 

wave Doppler, color Doppler, and pulse wave Doppler echocardiographic images. The research 

in this area is mostly being reported for echocardiographic images acquired from healthy 

individual in a particular view and window. The valve and chamber specific image processing 

and analysis techniques during various stages of valvular abnormalities are very few. Further, it 

is observed that no single Doppler based imaging scheme can provide all information necessary 

for precise assessment of prevailing abnormality in the heart. Hence, this research work is taken 

up to address issues pertaining to disease specific analysis of the images acquired in multiple 

acoustic windows employing various Doppler based echocardiographic modalities along with B-

Mode images [12, 13,17, 19, 56]. The basics of heart anatomy, imaging modalities and 

diagnosis of valvular abnormalities are introduced in this chapter along with a comprehensive 

literature review on denoising and segmentation of echocardiographic images.  

 
1.2 Introduction 

The heart is a specialized muscular structure that contracts regularly and continuously. It 

provides oxygenated blood to the entire human body. It is strongly protected through its 

placement in the ribcage between the right and left lungs. Normally age, physical size and the 
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prevailing abnormality dictate the heart size of that individual. The size of heart in a normal and 

healthy adult is the size of his clenched fist. The heart weighs between 200 to 425 grams. On an 

average, the heart beats of a healthy individual about 100,000 times every day. The pericardium 

surrounds the heart and it is a double layered structure. The heart’s major blood vessels are 

covered by the outer layer of the pericardium. These blood vessels are connected to various 

structures of the body. The pericardium’s inner layer is attached to the heart muscles. A fluid 

coating separates the layers of membrane, and allows the dynamic motion of the heart [3, 57]. 

 
1.3 Cardiac structure 

The heart as a structure consists of four chambers and four valves functioning synchronously. 

The left atrium and right atrium constitute the upper chambers whereas the lower chambers are 

known as left and right ventricles. Left and right chambers of the heart are separated by a wall 

of muscle called septum. The area of septum that divides the atria is called inter-atrial septum 

and the area that separate the ventricles is called the inter-ventricular septum. The four valves 

of heart synchronously regulate the flow of oxygenated and de-oxygenated blood. The tricuspid 

valve (TV) regulates flow of blood between the right atrium and the right ventricle whereas the 

pulmonary valve regulates blood flow from the right ventricle (RV) into the pulmonary arteries 

which carry blood to the lungs to pick up oxygen. The mitral valve (MV) allows oxygenated 

blood from the lungs, passing through the left atrium into the left ventricle. Lastly, the aortic 

valve (AV) allows the oxygenated blood from the left ventricle (LV) into the aorta, the body’s 

largest artery, where oxygenated blood is delivered to the rest of the body [3, 57]. 

 

Figure 1.1 Cardiac structure: a. direction of flow of blood across chambers and valves, b. parts of the 
cardiac structure (Image courtesy:  www.studyblue.com, en.wikipedia.org) 

In Figure 1.1, the arrow shows the direction of blood flow through the chambers and 

valves in the heart. The blood enters the right atrium (RA) of the heart from the superior and 
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inferior vena cava. From the RA, blood is pumped into the RV. From the RV, blood is pumped to 

the lungs through the pulmonary arteries. The oxygenated blood from the lungs passes through 

the pulmonary veins into the left atrium (LA). The LV pumps the blood to the rest of the body 

through the aorta. In order for the heart to function properly, the blood must flow only in one 

direction and that is controlled by the valves. The ventricles have inlet valve from the atria and 

outlet valve leading to the arteries. A normal valve opens and closes, in exact coordination with 

the pumping action of the atria and ventricles [3, 57]. 

Each atrio-ventricular valve consists of an irregular ring of membranous tissue those are 

attached to the heart wall over a ring-shaped region called the annulus as shown in Figure 1.2. 

Distinct lobes of this membranous tissue are referred to as leaflets. The free edges of the 

leaflets are tethered by thin tendons, the chordae tendineae and to the papillary muscles, which 

are specialized muscles on the inner side of the ventricle wall. The right atrio-ventricular valve is 

known as the tricuspid valve, with the name reflecting the three-leaflet structure. The left atrio-

ventricular valve is called the mitral valve because the two-leaflet structure resembles a miter, a 

type of headgear worn by catholic bishops.  

 

Figure 1.2 Major constituents of an atrio-ventricular valve: the leaflets, annulus, chordae tendineae and 
papillary muscles 

 
The semi-lunar valves consist of three half-moon-shaped leaflets that are attached to the 

walls of their respective outflow vessels as shown in Figure 1.3. The region at which two 

adjacent leaflets join and meet the vessel wall is called a commissure. The left semi-lunar valve 

is called the aortic valve, reflecting its location in the ascending aorta, and the right semi-lunar 

valve is called the pulmonary valve, taking its name from pulmo, the Latin word for the lung. 

1.4 The aortic valve  

The aortic valve (AV) is situated between the left ventricular outflow tract (LVOT) and the 

aorta as shown in Figure 1.4. It allows the LV to eject blood into the aorta during systole while 
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preventing regurgitation during diastole. It is a highly layered specialized complex structure 

functionally adaptive to the cells and the extra cellular matrix [3]. 

 
 
Figure 1.3 Semi-lunar valve: a. axial cutting of outflow vessel between leaflets and unrolling, b. top view 
of transverse section of outflow vessel distal to the open valve, and c. from top view of transverse section 
of outflow vessel distal to the closed valve 

 

 

Figure 1.4 Opening and closing of normal AV 
(Image courtesy: www.medicinenet.com) 

1.4.1 The AV cusp structure  

The AV cusps or leaflets are thin, flexible structures that come together and close the valve 

during diastole. The AV is composed of three cusps of roughly equal area. These cusps open 

against the aortic wall during systole to a triangular orifice as shown in Figure 1.4. During the 

diastole, they close rapidly and completely under minimal reverse pressure. The size of orifice 

area in a normal adult is 3.0 to 4.0 cm2.  The cell in the valve structure plays a crucial role in the 

durability and functioning.  

There are two broad categories of cells found in the AV: (i) endothelial cells on the 

surface of the cusps and (ii) interstitial cells that populate the body of the valve cups and form 

an integral network along with the extracellular matrix. The endothelial cells populate the 
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surface of the AV cusp and are responsible for maintaining a non-thrombogenic blood contact 

surface, as well as transmit nutrient, biochemical and mechanical signals to the interstitial cells. 

The endothelial cells form single cell mono-layers on both the cusp surfaces, and possess cell 

junctions similar to arterial endothelial cells.  

      

Figure 1.5 Anatomy of a cusp (Image courtesy: http:// heartlab.robarts.ca).         

 

Figure 1.6 Cross sectional view of a cusp (Image courtesy: http:// heartlab.robarts.ca) 

The interstitial cells are a heterogeneous and dynamic population of specific cell types that 

have several unique characteristics. These cells are responsible for constant renewal and 

turnover of the extracellular matrix “scaffold”. As these cusps cycle, there are substantial and 

repetitive changes in size and shape. In particular, the AV cusps have nearly 50% greater area 

in diastole than in systole. The curved base portion connects the cusp to the aortic wall.  

The sinuses of valsalva are three elliptical depressions behind each cusp, which together 

with the cusps form the functional unit of the aortic valve. The left and right sinuses contain 
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Ostia that lead into the left and right main coronary arteries. The third sinus does not feed a 

coronary artery and is named the non-coronary sinus. Figure 1.5 shows a single aortic valve 

cusp. At the top of the cusp is the free edge, the part of the cusp that is freely movable during 

the blood flow. Just in from the free edge along the upper portion of the cusp is the coaptation 

region, which is the portion that joins the neighbouring cusps. A cross-sectional view of an aortic 

valve cusp is shown in Figure 1.6. The inflow surface, known as ventricular is predominantly 

collagenous with radially aligned elastic fibers. The central region called as spongiosa is 

composed of loosely arranged collagen and glycosamaminoglycans. The outflow surface, 

commonly called as the fibrosa, is composed of the circumferentially aligned and densely 

packed collagen fibers. They are largely arranged parallel to the cusp free edge. 

   
1.5 Aortic valve diseases 

The AV diseases are common among the adult population and approximately two percent of the 

people suffer because of these valvular abnormalities [58]. The AV diseases can be grouped as 

genetic or completely epigenetic abnormalities. The genetic disorders are either inherited from 

parents or they occur during cardiogenesis. The valvular diseases may be acquired as a 

consequence of other pathologies also, such as renal failure. The degenerative AV disease may 

be characterized by the valvular structural changes such as increase in the thickness, stiffness 

and calcification of the leaflets resulting in the mal-functioning of the aortic valve complex (AVC) 

being manifested as either aortic stenosis, regurgitation or both. The exact reason of valvular 

disease vary depending on the various pathological conditions such as congenital heart defects, 

ventricular septal defects, herited disorders, acquired pathologies and epigenetic causes.  

The commonly observed congenital heart defects include the bicuspid aortic valve, 

ventricular septal defects, and coarctation of aorta. The ventricular septal defects result in the 

circulation shunts that severely impair the normal unidirectional blood flow. The heterogenic 

connective tissue disorders, improper valve tissue development and common connective tissue 

abnormalities fall under the category of heritable AV disorders. The acquired diseases may be 

due to the bacterial infections that cause lesions on the valve leaflets [58].   

The rheumatic heart disease (RHD) and the infective endocarditis (IE) are the two major 

acquired valvular diseases. The RHD commonly results as a consequence of the rheumatic 

fever which is known as post-streptococcal multisystem disease characterized by the chorea, 

migratory arthritis and subcutaneous nodules. Endocarditis can involve the heart muscle, heart 

valves, or lining of the heart. It is often reflected in the form of inflammation of these parts of the 

heart. The IE is a seditious-like reaction caused by the presence of a variety of bacterial 
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vegetations on valve leaflets. The majority of valvular diseases are not diagnosed in the 

childhood but may occur later with no apparent aetiology.  Late-onset of the valvular disease is 

blanket terms, which encompass a variety of symptoms, including the valvular stenosis, 

regurgitation, tissue calcification and degeneration. Aortic valve disease can be broadly 

categorized into two categories: (i) aortic stenosis and (ii) aortic regurgitation [58]. 

1.5.1 Aortic stenosis 

Aortic stenosis (AS) is an acquired or a congenital narrowing of the AV orifice which results in 

the obstruction of the LVOT with increase in the resistance to blood flow from the LV to the 

aorta. It occurs when the valve opening is reduced during systole resulting in a larger pressure 

gradient between the ventricle and the aorta. The LV has to generate an increased pressure in 

order to overcome the increased after-load caused by the stenotic valve and eject blood out of 

the ventricle at the same cardiac output. The valvular stenosis is characterized by the greater 

left ventricular pressure in comparison to the aortic pressure during left ventricular ejection.  The 

common causes of the AS are degeneration of aortic valve leaflets, congenital valve 

malformations and inflammation such as the rheumatic fever. The consequences of severe AS 

results are i) reduced ventricular stroke volume, ii) increased end-systolic volume, and iii) a 

compensatory increase in end-diastolic volume and pressure. Due to the increased pressures 

generated by the LV, the myocardium of the ventricle undergoes hypertrophy. This may be 

observed as thickening of the left ventricular walls [58]. 

 
1.5.2 Aortic regurgitation 

The second category of the AV disease is aortic regurgitation (AR) or aortic insufficiency (AI). 

The AR is the backflow of blood from the ascending aorta into the outflow tract of the LV during 

the diastole where the AV is completely closed and the MV is fully open. The phenomenon of 

regurgitation is because of incompetence of the AV or malfunctioning of the valvular apparatus 

(e.g., leaflets, annulus of the aorta) resulting in retrograde flow of blood into the left ventricular 

chamber. It occurs when the AV fails to close completely and blood flows back into the LV after 

ejection into the aorta is complete (after the heart sound S2) [3, 6, 9, 57-60].  

Normally, there is a brief period of isovolumic relaxation after the AV closes (the mitral 

valve is also closed at this point). However, when the AV is leaky, the ventricle begins to fill from 

the aorta after the incomplete closure of the AV. This leads to an increase in the ventricular 

volume prior to the opening of the MV and normal ventricular filling. As a result the blood leaves 

the aorta in two directions (back into the heart as well as down the aorta).The aortic diastolic 

pressure falls more rapidly thereby leading to a decrease in the arterial diastolic pressure. As 
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the ventricle fills from both the aorta and the LA, there is a large increase in left ventricular 

volume and pressure (increased preload) [3, 6, 57-60]. The increased preload causes the LV to 

contract more forcefully thereby increasing ventricular (and aortic) systolic pressure and 

increasing stroke volume to help compensate for the regurgitation.  The increase in ventricular 

end-diastolic pressure, however, also leads to an increase in left atrial pressure, which can 

result in pulmonary congestion and edema.  

Regurgitation coupled with enhanced LV stroke volume, results in a characteristic 

widening of the aortic pulse pressure [3, 6, 9, 57-60]. The prevalence of AR in the patients 

presenting for aortic valve replacement (AVR) suggests that the cusp prolapse is one of the 

common causes of AR. Regurgitation can be grouped into three types namely: 

Type I: Enlargement of the aortic root with normal cusps structure 

Type II: Cusp prolapse or fenestration  

Type III: Poor cusp tissue quality or quantity  

 

 

Figure 1.7 Radiologic characteristics of aortic regurgitation 
(Image courtesy: www.yale.edu/imaging/echo_atlas/entities/aortic_regurgitation.html) 

 

The estimated number of patients with the RHD in India was 734 million at risk and 0.06–

0.46 million cases reported in 2008. Adjusted to the entire US population, the data suggest that 

the prevalence of any valvular diseases was 2.5%. Within this sample, 0.4% of the patients had 

AS, 0.5% with AR, 0.1% had mitral stenosis and 1.7% had mitral regurgitation [1]. In the early 

stages of AR, there would be a large increase in the pressures across the LV and the LA. The 
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increase in the LV and LA volume, result in a large pressure rise. Over time, with long-standing 

regurgitation, the LA and the LV dilate so that the increased volume does not lead to steep 

increase in the pressure. Due to the extra effort, the LV has to go through, the blood slump 

leads to its dilation and hypertrophy. As with the AS, patients with severe AR may have to 

undergo valve replacement therapy or repair [9, 57, 59, 60]. The radiologic characteristics of the 

AR are shown in Figure 1.7. 

Aortic regurgitation is the leading cause of death. The earlier the regurgitation is detected, 

the better the treatment can be provided. However, early detection requires an accurate and 

reliable diagnosis which should also be able to distinguish normal and abnormal valve 

functioning. The valvular regurgitation can result in LV dysfunction in 25% of the AR patients 

with no symptoms of abnormality being exhibited [61]. Hence, assessment of the LV systolic 

and diastolic function using imaging modalities such as the conventional two dimensional (2D) 

B-Mode, cross sectional echocardiographic images and three Doppler echocardiography 

modalities, play a vital role in the management of regurgitation [61].  

The role of non-invasive imaging and, in particular, of echocardiography has been pivotal 

in understanding the complexity of the AV complex and measuring the severity of the valve 

lesion. The Doppler echocardiographic modalities such as the B-Mode, color Doppler, 

continuous wave Doppler and M-mode are used hand-in-hand for assessment of the aetiologies 

and consequences of aortic regurgitation. The poor US viewing windows make the task further 

challenging for the cardiologist in the case of patients with mild regurgitation and severe LV 

dysfunction [61]. A contrast enhancing dye is being injected to help better visualization of the 

cardiac chamber boundaries in the patients with poor acoustic viewing windows [62]. The 

contrast of images may be enhanced by combining the data acquired from various probe 

positions. But it is a cumbersome activity, and is still in the research stage, hence it is clinically 

not available [3, 6, 57, 59, 62]. There is also need for early identification of severity so that 

medical or surgical intervention can be offered before the functioning of cardiac structure 

becomes irreversible.  

 
1.5.2.1 Causes of aortic regurgitation 

The regurgitation across the AV can be because of the mal-coaptation of aortic leaflets, 

abnormalities associated with their supporting structures (aortic root and annulus) or both. The 

abnormalities that primarily affect the AV leaflets include the presence of two leaflets or four 

leaflets (i.e. bicuspid and quadricuspid aortic valves, respectively) in place of normal three 

leaflets, the congenital abnormalities, the RHD, the connective tissue or inflammatory diseases 
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and the usage of anorectic drugs. The dysfunction of the annulus or the aortic root can be due 

to the aortic root dilation, aortic dissection and various connective tissue diseases. The 

morphologies characterizing the aortic dilation may consist of enlargement of aortic root, 

ascending aorta and the proximal aortic arch or the root ascending and proximal aortic arch 

enlargement. This increase in the size might occur at more than one point. A bicuspid AV is 

commonly associated with dilation of the aortic root in addition to the congenital leaflet 

abnormality. Finally, chronic severe AR of any cause can lead to progressive enlargement of the 

aortic root and further worsening of AR over time [9, 57, 59, 60]. 

 
1.5.2.2 Physical signs and symptoms of aortic regurgitation 

Most often the progress of AR is quite gradual and cardiac structure attempts to compensate for 

this problem on its own. No major signs or symptoms are being presented or may be visible and 

observed for many years, and mostly the patient is unaware of this prevailing abnormal 

condition. But, as the severity of regurgitation progresses and increases, the signs and 

symptoms are visible. These may consist of weakness and fatigue, shortness of breath, pain in 

the chest accompanied with discomfort or tightness, giddiness, rapid or fluttering pulse and 

palpitations of heart and swelling of the ankles [6, 16, 58]. 

1.5.2.3 Physiology of AR  

In a normal healthy adult, the AV opens when the pressure in the LV is higher than pressure in 

the aorta, allowing the blood to be ejected from the LV into the aorta during ventricular systole. 

The amount of blood ejected is known to as the stroke volume (SV). Under the normal 

conditions, about 50 to 70% of the blood is ejected from the filled LV into the aorta which in turn 

is being used by the body. This is known as the 'ejection fraction'. At the end of ventricular 

systole, the pressure in the LV decreases as it relaxes and then begins to fill up with blood from 

the LA. This relaxation of the LV results in the fall of its pressure. When the pressure in the LV 

falls below the pressure in the aorta, the AV will close, preventing blood in the aorta from 

moving back into the LV [6, 16, 58]. 

1.5.2.4 Pathophysiology of AR  

The return of blood from the AV into the LV during the diastole results in the undesired 

hemodynamic changes and appearance of the heart. During regurgitation, when the pressure in 

the left ventricle falls below the pressure in the aorta, the AV may not be able to completely 

close. This results in leakage of the blood from the aorta into the LV. The amount of blood that 

flows back through the AV during regurgitation is referred to as the regurgitant fraction (RF). 
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The diastolic blood pressure in the aorta is decreased with an increase in the pulse pressure as 

a consequence of regurgitation.  

The LV size, function and the hemodynamic would be normal for the patients with mild 

AR. In acute severe AR, the equilibration of the LV and aortic pressures might be observed with 

the left atrial pressure being elevated and may also result in the pulmonary edema. But, in the 

case of chronic, severe and compensated AR, the LV dilatation might be observed with the EF 

maintained in the normal range. A systolic arterial hypertension and wide pulse pressure may 

also be observed. The filling pressures of the LV might be normal or higher by a fraction [6, 16, 

58]. 

  
1.6 Assessment of aortic regurgitation 

The imaging modalities such as cardiac auscultation, chest X-ray, electrocardiograms (ECG), 

magnetic resonance imaging (MRI) and echocardiography (B-Mode, M-Mode, CWD, PWD, and 

color Doppler), are used for assessment of aortic regurgitation [6, 16, 58]. Cardiac auscultation 

is the most commonly used screening test employed to determine the presence or the absence 

of AR. The classical auscultatory finding of AR is a blowing decrescendo diastolic murmur being 

heard best along the left sternal border. An isolated systolic murmur is common in the patients 

with moderate or mild AR. The murmur is best heard when the patient is comfortably seated and 

leans forward with breath held in expiration. The murmur would be soft and rarely shown 

excitement in investigating it thoroughly. The apex beat is normally down and left inclined. A 

chest X-ray can reveal the hypertrophy of the LV and dilatation of the aorta. An ECG can assist 

in the assessment of systolic dysfunction in chronic AR. The ECG contains reliable information 

about the structural and functional alterations of the ventricular myocardium in chronic AR. The 

cardiac chamber catheterization can also assist in locating the left ventricular dysfunction. 

The echocardiography is the most important imaging tool employed in the diagnosis of 

cardiac and valvular abnormalities. The images in echocardiography are constructed based on 

the concepts of Doppler shift exhibited by the US waves on passing through the heart. Each of 

the Doppler imaging modality employs a different mechanism in which the US signals are 

transmitted, received and images are reconstructed and displayed on the computer screen. An 

echocardiogram will assist the clinicians in the assessment of cardiac anatomy, detection of the 

presence and severity of valvular abnormalities, aetiologies and consequences of the valvular 

regurgitation, and the dynamic functioning of the heart in totality.  

The B-Mode echocardiographic images are used in analysing the consequences of 

valvular abnormalities by measuring the chamber and valvular dimensions, studying the 
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changes in the shape of constituents of cardiac structure, detection and localization of valvular 

vegetations, assessment of congenital abnormalities and demonstration of morphological 

changes in the valve due to abnormalities. The severity of AR may be determined by measuring 

the pressure half time (PHT) using CWD absed echocardiography. The pulse wave Doppler 

(PWD) echocardiography is employed in the measurement of flow velocity integral of the aortic 

outflow volume and mitral inflow volume. The Doppler color flow mapping is widely used in 

identification the severity of valvular regurgitation and stenosis [6, 16, 58].  

Doppler heart sounds (DHS) are one of the most important sounds produced by blood 

flow, valves motion and vibration of the other cardiovascular components. However, the factors 

such as calcification or obesity often result in a diagnostically unsatisfactory Doppler techniques 

assessment and, therefore, it is sometimes necessary to assess the spectrogram of the Doppler 

shift signals to elucidate the degree of the disease. Cardiac magnetic resonance imaging (MRI) 

provides highly accurate assessment of LV volumes, mass, and ejection fraction. It can also 

give an excellent visualization of the aortic root and the ascending aorta. But, the usefulness of 

the cardiac MRI is limited by the long acquisition times, patient access during scanning and the 

cost constraints. The exercise testing is useful as a measure of functional capacity when it is 

unclear whether symptoms are present. However, exercise LV ejection fraction is often 

abnormal in asymptomatic patients with severe AR and does not to provide any additional 

prognostic information when the LV size under the resting state and function are known. The AV 

morphology is evaluated using the parasternal short axis (PSAX) view images whereas the 

LVOT diameter and aortic annulus, sinus and sino-tubular junction (STJ) diameters are 

measured in the parasternal long axis (PLAX) view.  

No single method provides an entirely accurate quantitative assessment of the severity of 

valvular regurgitation, and the complex interaction of anatomic and hemodynamic variables can 

add to these potential difficulties. Although the echocardiographic images provide important 

clinical information necessary but the physician has to intelligently integrate and correlate data 

acquired from various echocardiographic modalities in different views using different acoustic 

windows. Combination of different parameters computed using different modality images are 

employed in quantifying the severity of AR because no single method provides the necessary 

quantitative information. Assessment of AR requires an integrated approach, acquiring of data 

through various acoustic windows and views, visualizing the cardiac structures at various points 

and positions, and making use of all available information and comparing them [12, 13, 19, 56, 

58, 63].  
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1.7 Ultrasound 

The term ultrasound (US) can encapsulate all acoustics of frequencies larger than the upper 

threshold which a human ear can intercept (f > 20 kHz). In clinical imaging, the US refers to 1-

20 MHz range [22]. The image obtained depends on the transmission of acoustic pulses into the 

human body and their interaction with the tissue medium. An US signal is transmitted into the 

body, these sound waves are reflected back and the machine decodes the reflected echo by 

interpreting its strength and timing. The amplitude of the signal is the strength of the sound 

wave transmitted and received back. The magnitude of the reflected US signal determines the 

brightness and the intensity displayed on the computer screen [3, 7, 14, 17, 64].  

The high reflectivity is observed across the bones and is displayed as white on the gray 

scale whereas the low reflectivity from the muscular tissues is shown as gray and no reflection 

is depicted as black. The image produced from the reflected US signal is dependent on the time 

lag between the transmitted signal and the received US signal. The propagation speed of the 

sound wave is the speed with which it travels in a given medium. The speed is computed 

depending on the medium density and stiffness. A list consisting of the propagation speed 

through various tissues is tabulated in Table 1.1. The average speed through soft tissue is 1540 

m/s. The acoustic impedance shows the amount of resistance offered to the travelling sound 

wave through the medium. The reflection of the US wave depends on the difference in the 

acoustic impedance of two tissues across a boundary [7]. 

Table 1.1 Propagation speed through various tissues 

Material 
Acoustic 

impedance(x10
6
) 

Velocity 
(m/s) 

Material 
Acoustic 

impedance(x10
6
) 

Velocity 
(m/s) 

Air 0.004 330 Lung 0.18 650 

Bone 7.80 4080 Soft tissue 1.58 1540 

Liver 1.69 1550 Fat 1.34 1459 

Muscle 1.68 1580 Blood 1.65 1575 

 

The difference in the acoustic impedance at various points on the boundary determines 

the amount of sound energy reflected and transmitted. As and when the wave finds a difference 

in the impedance some of the signals are transmitted and some may be reflected.  The amount 

of the wave reflected in dependent on difference in the impedance. The smaller variations result 

in a smaller amount of reflected energy, large differences will have a large amount of reflected 

energy and no reflections are observed when there is no difference in the impedance. The 

higher the difference in the acoustic impedance the greater will be the amount of energy 

reflected. The energy dispersion by the reflected sound wave results in a weaker transmitted 
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wave in comparison to the original wave and this reduction is known as attenuation. The 

frequency of the wave and the distance a pulse travels determine the amount of attenuation in 

that medium. Larger the distance a given pulse travels, the higher would be the amount of 

attenuation. The cause of attenuation can be the absorption, scattering or reflection. 

The quality of the image depends on the resolution. The spatial resolution is defined as 

the shortest distance between two discrete points where the object points can be clearly 

differentiated. The axial resolution is defined as the ability to make a clear distinction between 

closely spaced points along the axis of the beam and is estimated based on the pulse length. A 

transducer operating at high frequency gives a better axial resolution than low frequency 

transducers. The lateral resolution reflects the ability to distinguish between the closely placed 

points side by side. 

 Echocardiography has emerged as the most important imaging modality employed in the 

diagnosis of aortic regurgitation. The assessment of AR severity is accomplished by integrating 

information obtained by employing four Doppler echocardiography modalities in various acoustic 

windows and views. Two dimensional (2D) B-mode, M-mode, continuous wave Doppler (CWD), 

pulse wave Doppler (PWD) and color Doppler echocardiography images are being used hand-

in-hand for the diagnosis and assessment of AR [19].  

1.8 Viewing of the cardiac structure 

The echocardiography based studies and analysis are carried out using sophisticated 

ultrasound machines. In transthoracic echocardiography (TTE), the US signals of various 

frequencies are transmitted from the probe placed on the patient’s anterior chest wall.  The 

patient lies in the left lateral position and a jelly is applied on the transducer to ensure that the 

good quality images are acquired. The ECG (electrocardiograph) is simultaneously recorded 

along with B-Mode echocardiographic images. The echocardiographic examination may span 

for a period of 15-20 minutes.  

1.8.1 Echocardiographic windows and views 

The echocardiographic images are acquired in various views using different acoustic windows 

each view provides specific details which the other views fail to show. There are several 

standard positions on the chest wall for placing the probe, commonly known as echo windows, 

which allow the good penetration of the ultrasound signals without too much absorption and 

attenuation.  
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Figure 1.8 Echocardiographic windows: 1) Parasternal, 2) Apical, and 3) Subcostal window 
(Image courtesy: web.stanford.edu/group/ccm_echocardio/cgi-bin/mediawiki/index.php) 

 

 There are three major echocardiographic windows, which are used in the visualization of 

cardiac structure, namely: parasternal window, apical window and subcostal window. The 

subcostal window is also known as the subxyphoid window. The major windows are pictorially 

shown in Figure 1.8 for better understanding of the process of image acquisition. In the 

parasternal window, the images can be acquired either using long axis or in short axis.  In the 

short axis the image can be acquired at four levels namely: base of the cardiac structure (level 

of AV), level of MV, left ventricular papillary muscles and left ventricular apex.  

 In the apical window the images are acquired in apical 4 chamber (A4C) view, apical 2 

chamber (A2C) view and apical 5 chamber (A5C) view. In the subcostal window the images are 

viewed as subcostal 4 chamber view, subcostal short axis view and subcostal inferior vena cava 

view. The use of parasternal and apical window in viewing various parts of the cardiac structure, 

the position of the transducer during each view, the common abnormalities being diagnosed by 

measuring various parameters are tabulated in Table 1.2. 

1.8.2 Parasternal window 

The transducer is placed at the left sterna edge in the 2nd-4th intercostals space to acquire the 

image in the left parasternal window. The images are acquired in either the long axis view or 

short axis view where the ‘axis’ refers to the plane in which the US signal beam moves through 
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the heart. The images acquired using the parasternal window in the long axis and short axis are 

shown in Figure 1.9, and Figure 1.10, respectively. 

Table 1.2 Two dimensional echocardiographic windows 

Position of 
transducer 

Acronym 
Structure 

viewed 
Abnormalities viewed Measurements  

Parasternal window 

2
nd

 -4
th
 

intercostals 
space 

PLAXS 
PLAXD 

AV, Ao, RV, 
IVS, LV, 
AMVL, 
PMVL, 

Dilatation of aortic root, dissection of 
aorta, leaflet calcification  thickening 
of leaflets and septum, vegetation, 

mobility 

Diameter of aortic 
annulus, Sinus of 

Valsalva, STJ,AVA, 

2
nd

 -4
th
 

intercostals 
space(90

0
 

rotated) 

PSAXS 
PSAXD 

AV,RV,PA,L
A (AV level) 

Bicuspid/tricuspid AV, aneurysm of 
SOV, atrial septal defect, thickening 

of valve, calcification 

Number of cusps, 
aortic root 

dimension, LA 
diameter 

Apical window 

Cardiac apex 
A4CS 
A4CD 

LV,LA,RV,R
A,MV,TV, 
septum, 

LA,LV,RA,RV hypertrophy, wall 
motion abnormality, MV calcification, 

LVEDV,LVESV,  
MV annulus 

diameter 

Cardiac apex 
(angled) 

A5CS 
A5CD 

Ao, LV, LA, 
RA, RV 

Calcification of AV and MV, changes 
in LV,LVOT 

Aortic outflow 
velocity, SV,CO 

Cardiac apex 
(angled) 

A2CS 
A2CD 

LV,MV 
Chamber enlargement, thickening of 

IVS, 
LV EF, LV area, 
LVEDD, LVESD 

   

 
1.8.2.1 Parasternal long axis (PLAX) view  

The parasternal long axis (PLAX) view is useful for measuring the size and contractility of the 

right and the left ventricle, to study the functioning of aortic and mitral valve and to assess the 

morphological and structural changes. The PLAX view can also be used to observe the 

regurgitation mechanism and assesses the severity through the color Doppler 

echocardiography. While acquiring the images in PLAX view, the notch on the probe should be 

directed towards the sternum, at 9-10 o'clock position. The pictorial representation of an image 

in PLAX view is shown in Figure 1.9. The following parts of the cardiac structure are observed in 

PLAX. 

i) Inter-ventricular septum (IVS) and posterior wall (PW): The thickness and contractility of IVS 

and PW can be assessed. 

ii) Right ventricle (RV): The right ventricle is located on the top in PLAX view. The right ventricle 

outflow tract (RVOT) can also be seen in this view. 

iii) Left ventricle (LV): The LV is seen in this view below the inter-ventricular septum. The size 

along with wall thickness of the LV is best measured in the PLAX view. 

iv) Mitral valve (MV): The PLAX also happens to be the best view to observe the structure of the 

MV and study the dynamics of anterior and the posterior MV leaflets. 

v) Aortic valve (AV):  The openings of the aortic cusps are visually seen.  
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vi) Aortic root (AoR): The aortic annulus, dimensions of sinus of valsalva and aortic root can be 

measured.  

vii) Left atrium (LA): It should be the same diameter as that of the aortic root  

viii) Descending aorta: Desc Ao. 

ix) Pericardium: It is the most echoic structure which appears very bright. 

The images acquired in the apical window are useful in evaluating in LV and RV function, 

estimation of valvular regurgitation and stenosis, and measuring the LV diastolic function. 

 

Figure 1.9 Parasternal long axis (PLAX) view 
(Image courtesy: web.stanford.edu/group/ccm_echocardio/cgi-bin/mediawiki/index.php/) 

1.8.2.2 Parasternal short axis (PSAX) view 

The position of the transducer in PSAX view is at the same place as that of PLAX view except 

that the transducer is rotated by 90 degree where the marker dot points to the left shoulder. 

With the change in the angle of the transducer placed on the chest wall, many short axis view 

images can be acquired. However there are four standard levels used during the diagnosis of 

abnormalities and study of the cardiac structure. The angulations of probe at the base to the 

apex for acquiring of the PSAX view images are called as “bread loafing”. The image in the 

PSAX is pictorially shown in Figure 1.10. The opening and closing of the AV, tricuspid valve and 

the pulmonic valve can be visualized in the PSAX view along with the structural changes in the 

LA and RV. At the pulmonary artery level the pulmonary artery, pulmonary valve, right 

ventricular outflow tract (RVOT) are seen whereas at the aortic valve level the AV cusps, LA, 

inter-atrial septum, tricuspid valve and the RVOT can be observed. The MV orifice, MV leaflets 

and ventricular septum are visible in the mitral valve level whereas the antero-lateral papillary 
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muscle (PM), postero-medial PM, anterior wall, lateral wall, inferior wall and IV septum can be 

visually observed at the papillary muscle level in the PSAX view.   

 

Figure 1.10 Parasternal short axis (PSAX) view 
(Image courtesy: web.stanford.edu/group/ccm_echocardio/cgi-in/mediawiki/index.php/) 

 
1.8.3 Apical Window: 

The pictorial representation of images acquired using the apical window in four chamber view, 

five chamber and two chamber view are shown in Figure 1.11 and Figure 1.12, respectively.  

1.8.3.1 Apical 4 chamber (A4C) view 

The four chambers and two valves of the heart are visualized in apical 4 chamber (A4C) view. 

The images acquired in A4C view are useful in evaluating the LV and RV function, estimation of 

valvular regurgitation and stenosis and measuring the LV diastolic function. The images in this 

view are also employed for visually observing the apex of LV, studying the diastolic function and 

stenosis of the mitral valve and estimating the ejection fraction. The transducer is placed at the 

apex of the heart in this view. The marker dot direction points towards the left shoulder in the 

A4C view. The structures seen in A4C include left and right ventricle, left and right atrium, mitral 

valve, tricuspid valve, inter ventricular (IV) and inter-artial (IA) septum, LV apex, lateral wall LV, 

and free wall RV.  

1.8.3.2 Apical 5 chamber (A5C) view 

The images are acquired in apical 5 chamber by tilting the transducer in A4C view downward. 

The fifth chamber included in A5C is the AV and the ascending aorta. It is neither ventricular nor 

the artial chamber as the name suggests. The images in A5C will assist in the diagnosis of AS 

or AR. It addition to the structures seen in A4C, LVOT, AV and proximal aorta are seen in A5C. 

 

https://www.stanford.edu/group/ccm_echocardio/cgi-bin/mediawiki/index.php/4_chamber_view
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Figure 1.11 Apical 4 chamber view and apical five chamber view 
(Image courtesy: web.stanford.edu/group/ccm_echocardio/cgi-bin/mediawiki/index.php/) 

 
1.8.4 Subcostal window 

The images are acquired by placing the transducer under the xiphisternum with the marker dot 

position pointing towards the left shoulder. The position of the transducer is rotated by 90 

degree when compared to the apical views. This window is useful in the diagnosis of lung 

diseases, observing the inferior vena cava (IVC), interartial septum and the abdominal aorta. 

 

Figure 1.12 Apical two chamber view 
(Image courtesy:  web.stanford.edu/group/ccm_echocardio/cgi-bin/mediawiki/index.php/) 

1.9 Echocardiographic imaging techniques 

The three commonly used echocardiographic imaging techniques in the clinical practice are 1) 

2D or cross sectional B-Mode images, 2) Motion or M-Mode and 3) Doppler techniques such as 

a) Continuous wave Doppler (CWD), b) Pulsed wave Doppler (PWD) and c) Color Doppler. 

Each of the echocardiographic imaging modalities are briefly described below: 

 

https://www.stanford.edu/group/ccm_echocardio/cgi-bin/mediawiki/index.php/4_chamber_view
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1.9.1 2D Echocardiography  

The 2D echo provides the cross-sectional view of the tissues in time. The snapshots of the 

tissues in cross section are acquired in quick succession and are displayed on the TV screen. 

The 2D echocardiographic images can be acquired in various windows and views, to observe 

the real time functioning and dynamics of the cardiac chambers, cardiac valves, and various 

blood vessels. The ultrasound beam is swept across the area of interest to create a 2D image. 

The probe rotates the beam at certain angles to scan the area. The reflected US signals are 

combined to obtain the image from the desired area. The 2D echocardiographic images play an 

important role in the diagnosis of valvular abnormalities and cardiac structure based studies. 

Some of the important applications of the 2D echocardiography are: i) study of the heart 

anatomy and structural relationships, ii) study of valvular and cardiac chamber abnormalities, iii) 

study of dynamics of heart in real time in different acoustic windows, iv) computing the stroke 

volume, cardiac output, volume and ejection fraction, v) study of valvular architecture like 

number of leaflets, size of orifice, size of leaflets, vi) proper positioning of the M-Mode image 

and Doppler echo, vii) assist in image guided interventions and viii) diagnosis of intra-cardiac 

masses, and pericardial diseases.  

 

 

Figure 1.13 Measurement of aortic root diameters at aortic valve annulus (AV ann) level, sinuses of 
valsalva (Sinus Val) and sino-tubular junction (ST Jxn) from long axis view 

 
The aortic root and the proximal ascending aorta are visualized in the parasternal long 

axis acoustic window. The 2D TTE images of LVOT and aortic root are acquired in different 

views by varying the intercostals spaces and at various distances from left sternal border. The 

useful images are also acquired from the patients in the right parasternal views with right lateral 

decubitus position. Some of the important measurements are carried out at: 1) aortic valve 

annulus (the pivot point of the aortic leaflets), 2) the maximal diameter in the sinuses of valsalva 
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and 3) sino-tubular junction (the transition between the sinuses of valsalva and the tubular 

portion of the ascending aorta). The measurements performed using the PLAX views are shown 

in Figure 1.13 and Figure 1.14. 

 

 

Figure 1.14 Measurement of aortic root diameter at sinuses of valsava from 2D PLAX view 

 
The dimensions of aortic annulus are computed at the base of the AV leaflets. The AV 

annular diameter is estimated between the hinge points of the AV leaflets in the parasternal or 

apical long-axis views. The ascending aorta can also be observed in the long-axis. The short-

axis view of the ascending aorta may also convey useful information for the diagnosis. The 

amount of dilatation and the diameter of the aortic root at the sinuses of valsalva are heavily 

influenced by the age of the person and the body surface area. The dilatation of aortic root is a 

strong reflection of progress, presence and occurrence of the aortic insufficiency. 

1.9.2 Doppler techniques 

Other than the B-Mode TTE images, the Doppler images acquired using CWD, PWD, and color 

Doppler modalities are employed by the clinicians in routine clinical diagnosis, not as a 

substitution but as complementary task. A brief description of Doppler based imaging modalities 

and “Doppler effect” is provided in the next few paragraphs. 

1.9.2.1 Doppler effect 

The Doppler effect is observed and employed by human beings in everyday life such as train 

sounding the horn nearing to railway platforms. It is observed that the pitch of the horn 

increases (high frequency) when nearing the platform and decreases (low frequency) as it 

passes by. This shows that the fundamental nature of the sound wave depends on the relative 

motion of the listener and the sound source. The frequency change known as the Doppler shift 
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depends on the speed of the automobile and the frequency of the horn sound. The reflected US 

signal from a tissue interface provides the information regarding the depth and reflectivity of 

tissue. The concept of Doppler effect is being employed in the estimation of blood flow velocity 

where the change in reflected frequency occurs due to the motion of blood cells or tissue of the 

cardiac structure. A shift in the frequency occurs due to relative motion of the source, reflected 

and the received sound waves where the transducer used is the source and also the receiver 

with the red blood cells acting as the reflector. The Doppler shift in the frequencies is 

proportional to the ratio of the velocity of blood to the speed of the sound and to the original 

frequency. It is observed that maximum velocity information can be obtained when the US beam 

is aligned parallel to the direction of flow of blood.  

 A direct relationship exists between the peak velocity of blood flow and the pressure 

gradient measured across a stenotic valve. The velocity information computed using Doppler 

evaluations can act as complementary information to the data acquired using the standard 2D 

B-Mode (brightness) echocardiography and M-Mode (motion mode) echocardiography. The 

reflected US signal provides flow velocity information and also its direction. In the conventional 

practice, the velocities towards the transducer are shown above the baseline whereas the 

velocities away from the transducers are depicted below the baseline. The returned Doppler US 

signal is the spectral tracing of the velocity being displayed on time axis. The intensities of the 

Doppler signals are displayed on a gray-scale as darker shades of the gray. A large number of 

red blood cells moving at a particular velocity are displayed as dark shade on the Doppler 

spectrum whereas cells travelling at higher velocity are shown in light shade. 

The three Doppler modes commonly used in the clinical practice are continuous wave 

Doppler (CWD) echocardiography, pulse wave Doppler (PWD) echocardiography and color 

Doppler echocardiography. In CWD two piezoelectric crystals are employed, one each for 

transmission and reception without any time delay. The PWD echocardiography uses a single 

crystal for emitting a burst of US and then receives after a particular time gap. 

1.9.2.2 Continuous wave Doppler (CWD) echocardiography  

The conventional CWD imaging can record variations at very high velocities, but cannot 

precisely locate the jet in space. The CWD imaging modality is normally employed for 

computing the trans-valvular gradients based on peak velocity estimation. One or a group of 

elements are transmitted and another set receive continuously as shown in Figure 1.15 in CWD 

imaging. The velocities along the line are being detected and are used to measure high flow 

velocities during valvular regurgitation. The trans-valvular gradients can be quantified precisely 
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based on peak velocity estimation using the CWD imaging modality. A positive signal can be 

visualized at the start with the AV closure and a down slope is observed during diastole. The 

down slope is a measurement of the rate of pressure decay between aorta and the LV. A steep 

down slope is considered to be the reflection of severe regurgitation. 

  

    

Figure 1.15 Working of CWD based echocardiography 

1.9.2.3 Pulse wave Doppler (PWD) echocardiography 

The PWD imaging can be used to precisely locate the abnormal flows in the space, but due to 

the problem of aliasing, the true velocities cannot be recorded. The recording of peak velocities 

is almost not possible in most of the abnormal jets as the high velocities results which often 

results in aliasing. As a result, the PWD is commonly employed for identifying the location of 

turbulent jets but this test would be quite laborious and time consuming as tedious mapping is 

necessary for detecting the precise location and the size of an abnormal jet. In clinical practice, 

the pulse-wave method is used for detection of regurgitation in the LVOT. 

 

      

Figure 1.16 Working of PWD based echocardiography 

      A single or group of pulses are being used in the transmission and reception of PWD 

images as shown in Figure 1.16. The elements are transmitted and the machine waits to receive 

returning echoes and decode them. The time delay between transmission and reception of 
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sound waves directly relates to the depth of the targeted reflectors. The shift in the frequencies 

are converted into velocity and displayed as a strip on the output image. 

1.9.2.4 Color Doppler echocardiography 

In color Doppler based imaging modality, the real time blood flow is displayed as a color overlay 

over the 2D B-Mode image. Many range gates are employed along many color lines to estimate 

the frequency shift of blood flow and this is converted into velocity. The unique advantage of 

color Doppler imaging over the conventional PWD is its capability to display the normal or 

abnormal blood flow directly onto the echocardiographic images. The tedious mapping 

techniques used in the PWD imaging are not necessary in color Doppler imaging. But, the color 

Doppler based flow imaging also fails in accurately recording the high velocity information. In 

addition, aliasing occurs on similar lines as being observed using PWD imaging approach and 

the peak velocities cannot be precisely estimated in the diseased states. The color Doppler 

echocardiography is a sensitive technique employed in the diagnosis of valvular stenosis and 

regurgitation. This technique allows visualization of flow disturbance and its pattern into the LV. 

The aortic regurgitant jet appears as a mosaic flow because of aliasing and turbulence in the 

LVOT and this jet originates from the AV.  

The color Doppler flow imaging is employed for assessment of valvular regurgitation 

severity such as the AR, AS, mitral regurgitation (MR), mitral stenosis (MS), by measuring the 

size of the vena contracta (VC). The colors being displayed on the flow map image convey 

useful information regarding the direction of blood flow.  The red color is assigned for flow 

towards the transducer and blue for the blood moving away from the transducer. The 

combinations of colors are also employed to display the turbulent flow during regurgitation which 

allows the clinician to make discrimination between the normal and the abnormal flow.  

The effective regurgitant orifice area (EROA) can be computed in the apical long-axis 

view by making use of the maximal VC width (VCW) imaged in early diastole. The width of the 

VC is considered to be the smallest diameter of the narrowest portion of the region just distal to 

the orifice at the junction of the proximal flow–convergence region. The width of the vena 

contracta (VC-W) reflects the degree of valvular regurgitation. The exact size and shape of the 

VC are important parameters in the quantification of regurgitant lesions. The EROA is a marker 

of regurgitant lesion severity, less dependent on the hemodynamic variations than regurgitant 

volume and regurgitant fraction (RF). The EROA corresponds hydro-dynamically to the area of 

the VC, which is the smallest area of regurgitant flow through the valve, which is significantly 

smaller than jet size. Some of the reasons for erroneous overestimation of the EROAs are 
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imaging at low frequency, poor lateral resolution and reverberations induced by the chest wall 

[65]. Aortic regurgitant jet width (ARJW) is one of the reliable indicators for aortic regurgitation 

severity. The imaging modalities, their advantages, disadvantages, concept and parameter 

estimated, as discussed in the above paragraphs, are tabulated in Table 1.3 for quick reference. 

Table 1.3 Imaging modalities in 2D B-Mode echocardiography 

Parameter Method Concept Advantages Limitations 

Anatomic 

LV size 2D 
Dilation of LV due to volume 
overload 

Normal size excludes 
chronic significant AR 

Enlargement due to other 
causes 

Aortic leaflets 2D 
Thickening, vegetations and 
perforations of the leaflets 

Simple, abnormal in 
severe AR 

Poor accuracy, defect  
under estimation 

Doppler 

Jet width in 
LVOT 

Color 
Increased regurgitant flow 
reflected as a larger color signal 

Simple, sensitive and 
quick screening for AR 

Inaccurate with 
noncircular jets 

Jet width/LVOT 
Width (%) 

Color 
Cross sectional area of jet V/s  
LVOT width 

Simple, sensitive and 
quick to screen for AR 
 

Inaccurate with eccentric 
jets, assumes LVOT size 
to be normal 

CSA Jet/CSA 
LVOT (%) 

Color 
Cross sectional area of jet V/s  
cross  sectional area of the LVOT 

Vena contracta 
width (cm) 

Color 
The point of maximal flow 
convergence 

Simple, quantitative, 
feasible to measure 

Inaccurate for multiple, 
complex jets 

Jet density CW 
The more flow, the denser 
the Doppler signal 

Simple 
Qualitative; 
complementary data only 

Jet deceleration 
rate (PHT)  

CW 
Rate of equalization between 
diastolic pressure and LVDP 

Simple 
Not specific, influenced by 
other factors 

Diastolic flow 
reversal 

PW 
Regurgitation due to retrograde 
flow into the LV 

Simple 
Not specific, may be 
because of other factors 

PISA method Color 
Blood converging on regurgitant 
orifice forms hemispheric shells 

Provides both EROA 
and regurgitant volume 

Feasibility limited by far 
field imaging, multiple jet 

Flow quantification 

Regurgitant 
volume  

2D 
PW 

Difference between flow through 
regurgitant and a normal valve 

Quantitative method, 
valid for multiple lesion 

Multiple measurement,  
error in valve diameter 

 
1.9.3 Advantages of echocardiographic imaging  

The echocardiography, a US imaging technique is a real time, safe, secure, powerful, non-

invasive and portable, painless, no ionizing radiation, economical, concurrent, needing  no 

special environment and is clinically readily accessible technique, widely used in diagnosis of 

valvular diseases like aortic stenosis and insufficiency  because of its continuing improvements 

in the image quality. 

 
1.9.4 Disadvantages of echocardiographic imaging  

Echocardiography is an operator-dependent technique and thus the usefulness of imaging 

depends on the operating skills of the technician or cardiologist trying to visualize the condition 

of the patient’s heart. Therefore echocardiographic imaging requires rigorous training and 

experience. Even well-trained experts may have a high inter-observer and intra-observer 

variations during the diagnosis [62] as even till date manual racing is necessary to compute the 

phsical size of the chambers and valves.  
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Therefore, semi-automated and automatic detection would play a crucial role in the 

detection of cardiac chamber size and valvular abnormalities. The amount of penetration is also 

a major limitation in imaging using US signals. The images obtained fail to reflect the prevailing 

abnormalities at a greater depth in the cardiac chamber and valves. Further, the 

echocardiographic images are not complete tomographic slices which make analysis very 

difficult. The nonlinear characteristics of US, the low signal-to-noise ratio, reverberations, poor 

visibility, poor contrast and speckle noise make it extremely difficult to accurately and reliably 

assess the severity of AR. The limitations of color Doppler echocardiography include the 

following: operator dependency, patient morphological characteristics, and insufficient 

sonication window. 

1.10 Literature review 

The US based echocardiographic images suffer from the interference induced due to the 

fluctuating backscattered echoes of the randomly distributed scatters, known as the speckle. It 

is the fine grained texture-like pattern observed in the echocardiographic images in all cross-

sectional views and windows. The speckle is regarded as a multiplicative noise that results in 

obscuring of the fine image details. The speckle is common to all imaging systems using 

coherent waves for illumination, such as the synthetic aperture radar, and optical coherent 

tomography. In echocardiography, the speckle noise is prominent in all the cross-sectional 

views [66], and its effect is far more significant than additive noise sources such as sensor noise 

[33]. The basic description of speckle in the literature is based on the characterization of laser 

speckle by Goodman [67]. The granular echo is not because of any blood structure but arises 

due to fluctuation scattering from the randomly distributed blood cells [68]. The speckle pattern 

does not depend on the properties of the scattering medium [69].   

The speckle noise reduction techniques employed image enhancement can be broadly 

grouped into image averaging or compounding and image filtering methods [70]. The averaging 

filtering techniques suffer due to the loss of the spatial resolution. Compounding techniques 

combine two or more images of the same imaged area [71]. The filtering techniques can be 

either working in the spatial domain or the frequency domain. Severe blurring is being observed 

on application of linear spatial filters along with loss of the important diagnostically useful 

features [72].  

1.10.1 Adaptive and SAR filters  

A large number of nonlinear filtering techniques such as median filter, and adaptive weighted 

median filter (AWMF) had been advocated for noise reduction. The edges are preserved on 
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application of these filters but noisy pixels are retained along with loss of fine details. The 

AWMF was proposed for maximum speckle noise reduction in uniform areas and also preserve 

edges and features [73]. The other set of filters were based on the local statistical parameters 

such as the mean, maximum, minimum, and average values. The Wiener filter, proximity based 

filter [74], and order statistic filters were also tested noise reduction in the images. A directional 

median filter was proposed by Czerwinski et al. [75] for speckle noise reduction in the US image 

of pig muscle. The performance of this filter was reported to be superior in comparison to 

AWMF and block median filter [75].  

The multiplicative noise is also present in synthetic aperture radar (SAR) images. A local 

adaptive median filter (LAMF) based on the local statistics was proposed by Qiu et al. [76] for 

suppression of speckle noise in the SAR images. Performance of the LAMF was evaluated in 

terms of speckle suppression index (SSI), speckle image statistical analysis (SISA), edge 

enhancing index (EEI), feature preserving index (FPI), and image detail preserving coefficient 

(IDPC) [76]. The adaptive filters such as the Lee filter [77], Kaun et al. filter [78], Frost et al. filter 

[79] and their enhanced versions [80] were initially experimented using the SAR images. The 

working of the SAR filters has been based on the coefficient of variations unlike the median or 

the mean filters.  

The other aspect to be taken into account was the dependence of filter performance on 

the size and shape of the filtering window. These filters can preserve the edges but do not 

enhance them as required in most of the medical US based applications. They have also been 

analysed for speckle noise reduction of the US images of kidney, liver, carotid artery and heart. 

Lee advocated a minimum mean square error (MMSE) based local mean and variance filter for 

speckle noise suppression and contrast enhancement [77, 81] in the SAR images. The 

performance was analysed by artificially embedding additive and multiplicative noise in the 

standard test images [81]. Ozcan et al. [82] embedded a wavelet based filter with the Lee and 

Wiener filter for speckle noise reduction of optical computed tomography (OCT) images. The 

result analysis revealed the performance of hybrid filter was superior in terms of PSNR in 

comparison to the original Lee, wavelet and Wiener filter. The performance of SAR filters 

namely the Lee filter [77], Kaun et al. filter [78], Frost et al. filter [79] and their enhanced 

versions [80] were analysed by Finn et al. [22] for the TTE images acquired in one view. The 

performance of these filters can be analysed for the CWD, PWD, MM and CD images acquired 

in multiple views.   
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1.10.2 Diffusion based filters  

The concept of heat diffusion was employed in the design of anisotropic diffusion (AD) filters for 

suppression of noise in images. The AD filter is an iterative method for smoothing the image. It 

is a nonlinear, partial differential Equation (PDE) based filtering method that encourages 

diffusion in the homogeneous region while inhibiting diffusion at the edges [83]. In diffusion 

filtering, noise at the edges cannot be successfully eliminated. To overcome this problem, the 

concept of coherence-enhancing diffusion based on diffusion tensors models was in [84]. But 

the coherence-enhancing diffusion models are not commonly used for image denoising as 

undesired ripples might be induced in the filtered image. The nonlinear coherent diffusion (NCD) 

method of [85] was a tensor valued AD scheme for the removal of speckle noise.  

The noise suppression and edge enhancement based on instantaneous coefficient of 

variation was advocated by Yu and Acton [35]. This technique was based on modifications of 

AD filter [83] and was known as speckle reducing anisotropic diffusion (SRAD) filter. It 

preserved the edges by inhibiting diffusion across the edges and allowing diffusion on either 

side of each of the edge. The performance of the filter was reported in terms of figure of merit 

(FoM), mean preservation and variance reduction. Further the performance of the SRAD filter 

was compared with homomorphic AD filter, enhanced Frost, and enhanced Lee filter for the 

SAR images. The SRAD filter suppresses the noise but gives in the inverse diffusion at 

boundaries of the US images. Various modifications were suggested by various authors to 

improve the performance of the SRAD filter. One way of improving performance was to employ 

a larger number of neighbourhood pixels [23]. A detail preserving anisotropic diffusion (DPAD) 

method was proposed in [86] to estimate the equivalence between the threshold controlling 

level of diffusion and variation in noise coefficient by incorporating various modifications to the 

SRAD filter. This method was initially tested using the SAR images. An oriented speckle 

reducing anisotropic diffusion (OSRAD) was proposed in [87] for enhancing the capability of 

varying diffusion with direction to speckle adaptive diffusion filtering. The four neighbouring pixel 

template in the SRAD filter was replaced by a new template of larger size to compute the 

diffusion term [23].  

Liu and Liu [88] proposed a different approach for the construction of diffusion tensor 

using a four directional derivative based AD for noise reduction in the standard test image of 

Lena and a synthetic test image. A modified nonlinear complex diffusion filter was proposed by 

Saini et al. [89] by modifying the diffusion coefficient and time step size for speckle noise 

reduction in echocardiographic images acquired from patients diagnosed with mitral 

regurgitation (MR).  
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The nonlinear AD based filters can preserve the edges along with intra-region 

smoothing. These filters may result in incomplete noise suppression and blurring of weak edges 

if the time step considered is large for noise suppression in the US images. It might be 

necessary that the output image of the AD filter be post-processed using techniques such as 

viscous levelling to further improve the quality of the denoised image.      

1.10.3 Transform domain filters  

The image in the spatial domain is projected into frequency domain on application of transforms 

such as wavelet [24, 26, 90-93], M-Band ridgelet [94], curvelets, ripplet [95, 96] and others. The 

de-correlation, sparseness and multi-resolution properties of the wavelets play a vital role in 

despeckling techniques. The major advantages of the wavelets based techniques are the image 

can be decomposed and processed either at coarse or fine resolution levels, employ 

thresholding techniques to suppress or enhance the coefficients of interest, and coefficients can 

be processed independent of each other. The wavelet based thresholding techniques are 

commonly referred to as the shrinkage techniques. The hard and soft thresholding techniques 

[97, 98] are commonly employed either individually or combined with other techniques for 

speckle noise reduction. However, the other techniques such as probability based shrinkage 

(ProbShrink) [99], Bayesian shrink (BayesShrink), block thresholding (BlockShrink), multiscale 

product threshold (MPT) [100], stein’s unbiased risk estimation using linear expansion of 

threshold (SURELET) [101], interscale orthonormal wavelet thresholding (IOWT) [102], 

neighbourhood shrinkage combined with SURE (NeighShrinkSURE) [103], M-Band ridgelet [94], 

and nonlinear approximation based ripplet (RNLA) [95] which are the state-of-the art filters, 

which have not been extensively analysed for the echocardiographic images. Hence, these 

denoising techniques can be analysed for the TTE images using logarithmic transformations. 

The wavelet based shrinkage techniques use the logarithmic transformation to convert the 

multiplicative noise into approximated additive noise [104-106]. The logarithmic transformation 

of image helps in enhancing the weak backscatters along with decreasing the dynamic range in 

the US images [107].  The homomorphic filtering results in higher resolution of denoised images 

in comparison to linear filters [108]. Zong et al. [32, 33] proposed a homomorphic, soft and hard 

threshold based wavelet shrinkage technique for noise reduction and feature enhancement of 

echocardiographic images acquired in short axis [32, 33]. The performance of the technique 

was compared with median filter, homomorphic Wiener filter, wavelet shrinkage filter and 

discrete wavelet transform (DWT) based filter [32, 33].  
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The multiplicative noise was treated as additive white noise and various wavelet 

thresholding techniques be applied for the logarithmically transformed echocardiographic image 

[33]. The Bayesian error estimation was combined with wavelet thresholding for noise reduction. 

Achim et al. [34] integrated the Bayesian estimation, and wavelet decomposition as a 

homomorphic filter for speckle noise reduction in the US images of kidney and urinary bladder. 

The noise reduction was achieved using three major steps. The input image was subjected to 

logarithmic transformation and then decomposed at various scales using 2D wavelet transform. 

The image and noise at various scales were respectively modelled using the symmetric alpha-

stable and Gaussian processes. In the third step, Bayesian processors based on symmetric 

alpha-stable prior were constructed at each scale for speckle noise suppression and optimal 

feature extraction [34]. The performances of the median filter, homomorphic Wiener filter, soft 

thresholding, hard thresholding and minimization of Bayesian error based denoising were 

compared in terms of mean square error (MSE), signal to MSE (SMSE) and beta metric (β) [34].    

Badalyan and Bazulin [109] had demonstrated the importance of the homomorphic filter in 

improving the resolution and overall quality of non-destructive test (NDT) US images of weld 

joints [109].  Gupta et al. [110] employed soft thresholding of wavelets coefficients for noise 

reduction in the US image of kidney. The shrinkage method based on the Gaussian distribution 

model was applied to the sub-band wavelet coefficients. This technique was proposed as a 

variant of the BayesShrink based shrinkage method. Gupta et al. [110] compared the 

performance of their Bayesian based denoising technique with median filter and homomorphic 

filter in terms of SMSE, correlation coefficient (ρ) and beta metric (β).  Zhang, Li, and You [111] 

advocated a matched filter based on double-sided thresholding for the diagnoisis of proliferative 

diabetic in the retina of eyes. Multi-correlation based filtering was advocated by Zhang et al. 

[112] for diagnosis of red lesions in the retina. Michailovich and Tannenbaum [113] proposed a 

modified homomorphic technique for speckle noise reduction in the US images of human 

kidney, carotid artery and urinary bladder. The images were pre-processed before projecting 

them into the logarithmic space and subjecting to wavelet thresholding. The correlation between 

the image samples was reduced by subjecting the image to spectral equalization. The spectral 

equalized image was subjected to outliner-shrinkage process for suppression of spiky 

components of the additive noise.  

The performance of three filters in homomorphic domain namely, the total variation (TV) 

filter, the AD filter and wavelet filter were analysed by computing normalized mean square error 

(NMSE), speckle-SNR, and β in [113].  Several multiscale shrinkage functions were proposed 

by Rabbani et al. [105] based on local mixture of priors for modelling of the logarithmically 
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transformed US images of liver and carotid artery in the complex wavelet domain. Sudha et al. 

[114] proposed a weighted variance and multiscale product threshold (MPT) estimation for 

speckle noise reduction for the US images of obstetric sonography. The performance of filters 

such as Lee, Kaun et al., Forst et al., VisuShrink, and BayesShrink and the proposed method 

were analysed in terms of PSNR and MSE [114]. 

The combination of DWT and adaptive filter was proposed for speckle noise reduction in 

vitro B-scan image of pig heart [115]. The despeckling was performed by separating the input 

image into two parts employing an adaptive filter followed by transformation into wavelet domain 

and soft thresholding of the coefficients [115]. The Generalized likelihood method (GLM) using 

the wavelets was proposed for noise reduction in the US and the MRI images. The correlation 

among the features was employed for preliminary coefficient classification followed by 

thresholding [116]. The wavelet based technique was combined with anisotropic diffusion filter 

known as the nonlinear multiscale wavelet diffusion (NMWD), for speckle noise suppression as 

well as edge enhancement for the echocardiographic images in A4C and the US image of liver 

[36]. A directive filtering based on the modified Gabor functions employing 2D directive filter 

bank was proposed by Dantas and Costa [117] for speckle noise reduction in B-Mode images of 

breast. The performances of wavelet pyramid and Laplacian pyramid were compared in terms of 

contrast enhancement and speckle noise suppression in the US images [118]. The performance 

of wavelet pyramid was superior for speckle noise suppression whereas the Laplacian pyramid 

stood out for the X-ray and mammographic images [118]. 

 

1.10.4 Total variation and bilateral filter  

A maximum a posterior (MAP) estimator was employed for obtaining functional minimiser 

corresponding to the denoised image to be recovered [119]. This variational approach was used 

for reduction of multiplicative noise in the SAR images [119]. Gilboa et al. [120] proposed an 

adaptive fidelity based total variation (AFTV) filter resulting in better performance in comparison 

to anisotropic diffusion and total variation filter. A multi-grid nonlinear method based on TV 

regulation was employed for speckle noise suppression along with structure preservation in the 

echocardiographic images by Sheng et al. [121]. Tomasi and Manduchi [122] proposed a non-

iterative method for smoothing of the noisy images with the edges preserved by combining the 

nearby image values. Tang et al. [123] proposed a speckle reducing bilateral filter that could 

work well in both high and low intensity regions for the US images of cattle follicle. An improved 

bilateral filter (IBF) was advocated by Zhang et al. [124] by reducing the two parameters to one 

and increasing the contribution of adjacent pixels which were employed to approximate the 
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current pixel. The combination of bilateral filter and total variations filter may be analysed for the 

B-Mode TTE images acquired in the multiple views and modalities. The regularization term of 

the TV filter may be replaced with the bilateral term to improve filtering characteristics of the 

filters.  

 
1.10.5 Nonlocal mean (NLM) filters  

The nonlocal filters do not make any assumption on the location of pixels in the image during 

denoising a particular pixel. The weight assigned to a pixel in the restoration process does not 

depend on the distance between the current pixel and others. The nonlocal mean (NLM) 

algorithm, estimates each pixel value as a weighted average of other similar noisy pixels. 

However, the core problem with NLM is that it cannot exploit the smoothness of the edge 

contour that can separate the white from black regions [125].  Buades et al. [126] employed 

image patches to extract relevant features for additive noise reduction.  

The Bayesian framework was proposed by Coupe et al. [125] to derive a nonlocal mean 

filter for speckle noise reduction in the US images. An extension of the nonlocal mean filter was 

proposed by Deledalle et al. [127]. The noise reduction process was shown to be the “weighted 

maximum likelihood estimation” problem. The weights were derived using a data driven 

process. This probabilistic patch based filter was advocated for speckle noise reduction in the 

SAR images. Guo et al. [128] combined the maximum likelihood estimation and nonlocal filter in 

their proposed modified nonlocal (MNL) filter for speckle noise reduction in the 

echocardiographic images. As TTE images suffer from speckle noise, the NLM and PPB filters 

might find applications. Analysis of nonlocal filters might be taken up for the TTE images.  

    
1.10.6 Comparative analysis of despeckling filters 

Sheng and Xia [129] had compared the performances of seven filters using five performance 

parameters namely edge enhancing index (EEI), speckle suppression index (SSI), image detail 

preserving coefficient (IDPC), feature preserving index (FPI) and speckle image analysis. The 

applications of filters such as the mean, median, Lee-sigma, local region filter, Lee, Frost, and 

MAP filter have been analysed in [129]. A comparative analysis of ten despeckling filters for the 

US images of carotid artery was carried out by Loizou et al. [27, 130, 131]. The performance 

analysis of the filters was being reported in terms of image quality metrics (IQM), texture feature 

analysis and visual quality assessment. The filters analysed by Loizou et al. [27, 130, 131] were 

based on the wavelet denoising, median filtering, homomorphic filtering, anisotropic diffusion, 

local statistics, non-coherence diffusion, homogeneity of pixels and geometric filtering.  
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It was being pointed by Loizou et al. [27, 130, 131] that the filters employed by them for carotid 

artery images may find applications in despeckling of the TTE images.  

Mateo et al. [26] analysed the performances of median, adaptive median, Fourier ideal, 

Fourier Butterworth, wavelet and homomorphic filters for the US images of kidney in terms of 

MSE, SNR, PSNR and β. The authors have reflected in their paper that the research should 

move in the direction of fine tuning the existing filters, look for their variants which can result in 

better noise suppression and edge preservation. They have also pointed out that researchers 

should look in for the combination of different filters, either in series or parallel combination, 

which may result in better edge preserved denoised images [26]. The performance of Lee, 

Kaun, Frost, homomorphic anisotropic diffusion, homomorphic Wiener, SRAD and hybrid filter 

were comparatively analysed for the speckle noise reduction in holographic images by 

Srivastava et al. [132] in terms of nine parameters namely MSE, normalized MSE (NMSE), 

PSNR, speckle index (SI), SNR, effective number of looks (ENL), ρ, structural similarity index 

(SSIM) and execution time [132]. Tay et al. [133] compared the despeckling performance of 

filters such as the Lee filter, Wiener, SRAD, AWMF, wavelet and squeeze box filter (SBF) for B-

Mode cardiac US images in terms of despeckling assessment index and SSIM.  

The importance of despeckling filters was demonstrated using balloon force active contour 

(BFAC) based image segmentation. The US images were denoised using the filters such as the 

Lee filter, adaptive Wiener filter, SRAD filter and others. The pre-processed images were 

subjected to the BFAC based segmentation. The delineation results showed superior 

performance using denoised images in comparison to segmentation of unprocessed B-Mode 

US images [133]. Applications of fifteen despeckling filters based on wavelet denoising, local 

statistics and anisotropic diffusion were analysed for echocardiographic images in terms of 

computational complexity, preservation of edges, overall image quality and improvement in 

contrast by Finn et al. [22]. The IQM consisted of estimation of parameters such as FoM, SSIM 

and edge region MSE, contrast-to-noise ratio (CNR) and SNR [22]. The pre/post-processing 

techniques employed for reduction of various artifacts and enhancement techniques were 

comprehensively reviewed by Ortiz et al. [14].  

The applications of three despeckling techniques namely adaptive, AD and wavelets filters 

were analyzed in [14]. Elamvazuthi et al. [134] compared the performance of anisotropic 

diffusion, median, Wiener, average, wavelet and hybrid filters for the US images of bone 

fracture in terms of PSNR. A hybrid filter based on the combination of wavelet, anisotropic 

diffusion and Wiener, was also analyzed for the noise reduction in the US images of bone. The 

performance of hybrid filter was superior compared to other filters in terms of visual quality.  
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The comparative analysis of despeckling filters for the US images of breast was being 

reported by Zhang et al. [135]. The denoising characteristics of eleven filters such as the NLM 

filter, PPB filter, GLM filter, SRAD filter, Lee, Frost et al. filter, DPAD filter and four other filters 

were analysed in terms of PSNR, MSE, SSIM and FoM along with the visual quality. Hence, 

comparative analysis of despeckling filters for the B-Mode, CWD, and colour Doppler images 

can be taken up.   

   
1.11 Segmentation 

The computer-aided image segmentation plays a crucial role in accurate delineation and 

computing the size of various parts of heart during the diagnosis. It also plays a vital role in 

locating the pathology, and assists in the image-guided interventions [19, 37, 38, 136-140]. The 

segmentation approaches based on thresholding, edge, region, hybrid, texture, active contour, 

level set, clustering, active shape models, active appearance models and machine learning 

techniques have been proposed by various authors for automated, or semi-automated 

delineation of images [58, 93, 141]. In spite of advancement in image processing and analysis 

techniques even today assessment of severity of valvular abnormalities is carried out by 

manually tracing of images acquired in a particular view and region of interest.  

An overview of segmentation techniques employed for the B-Mode TTE images is 

shown in Table 1.4 highlighting the pre-processing filter employed, and window in which the 

images were acquired. The Table 1.4 reflects that methods based on region, edge, watershed, 

active contour, snakes, level set, fuzzy, clustering, and neural networks are commonly used in 

segmentation of images acquired in a particular view only. This shows that there is a scope for 

the analysis of segmentation techniques for images acquired in multiple views using various 

echocardiographic imaging modalities. A brief review of segmentation techniques proposed for 

the US images are presented in the next sub-sections.  

  
1.11.1 Snake 

The active contour based segmentation techniques are commonly employed for finding the 

boundaries of the LA and LV. The deformable models based on the energy optimization are 

referred to as balloons, snakes and active contour models. The snake algorithm is also 

extensively employed in segmentation of anatomical structures such as lungs, kidney, 

cerebrum, brain, liver and spine, acquired using various imaging modalities like the US, MRI, CT 

and X-ray.  
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Table 1.4 Overview of segmentation techniques used for B-Mode TTE images 

Year Ref. Delineation Technique Purpose Pre-processing 
Type of 
image 

1987 [203] 
Haralick’s method of edge 
detection 

Tracing of endocardial and 
epicardial borders 

Gaussian filter 
Phantom 

image 

1988 [142] Edge detection by thresholding Ventricular contour detection Mexican Hat filter 
PLAX, 
A4C 

1996 [136] 
Canny edge detection and active 
contour 

Tracing of endocardial and 
epicardial borders 

Gaussian filter PSAX 

1998 [204] 
Active contours guided optical 
flow estimates 

Tracking the boundaries of MV 
leaflets, AV and LV 

Kalman filter 
PLAX, 
A4C 

2000 [205] Multiscale Fuzzy-clustering Assessment of LV function AD filter 3D Echo 

2002 [206] 
K-means clustering algorithm and 
self-organizing maps 

Measurement of  fetal heart 
structures 

Median filter A4C 

2003 [43] Multiscale level set framework 
Segmentation of endocardial 
boundaries 

Gaussian filter A2C 

2004 [150] 
Multiscale directional edge map 
and snakes 

Boundary of the left ventricle Adaptive smoothing A4C 

2004 [207] 
Edge detection using Sobel 
compass gradient mask 

Generate contour line of 
endocardium border 

Median filtering PSAX 

2005 [45] 
Prior knowledge based Geodesic 
active contour 

Segmentation of cardiac valve 
structure 

-- A4C 

2006 [208] 
Fuzzy reasoning and Canny edge 
detection 

Determine the boundaries and 
edginess of each pixel 

SRAD A4C 

2005 [209] 
Shape based snake model 
combined with GHT 

Segmentation of left ventricle Gaussian filter A4C 

2006 [210] 
Deformable contour along with 
Otsu thresholding 

Segmentation: endocardial 
surface 

4 different filters 
PSAX, 
PLAX 

2006 [172] 
watershed and morphological 
operation along with snake 

Boundary detection of 
the left ventricle 

Adaptive Smoothing A4C 

2007 [211] 
Otsu thresholding, morphological 
operations 

Detection of myocardium 
infarction 

Median filtering A2C 

2007 [212] Deformable contour algorithm Segmentation of heart muscle Adaptive filtering A2C 

2008 [174] 
Localizing region based active 
contour 

Region based delineation 
achieved in a local way 

Particle filtering 
X-ray of 
LV 

2008 [47] 
Active contour embedded with 
temporal information 

Dropout and speckle noise 
reduction and delineation 

Gaussian filter PSAX 

2008 [48] Artificial neural network 
Delineation of boundaries of 
left ventricle 

Histogram 
equalization 

A4C 

2008 [177] 
Watershed/Region filter with 
temporal information 

Segmentation  of left ventricle High boost  filter A2C 

2009 [12] 
Active Contour , Hough 
transformation 

Segmentation  of left ventricle  
Gaussian and AD 
filter 

PSAX 

2009 [213] Neural Network Segmentation of heart cavities Median, average filter A4C 

2009 [214] 
Center-based approach, Fuzzy-
based technique 

LV boundary detection DWT soft thresholding PSAX 

2010 [156] Level set with preprocessing 
Automatic segmentation of  
four heart cavity 

Phase symmetry 
Morphological 

A4C 

2011 [54] Level set without edges Heart shape segmentation 
AD filter, edge 
enhancement 

A4C 

2011 [50] 
Phase symmetry approach: 
Comparative analysis 

Extract simultaneously all heart 
cavities 

Histogram 
equalization, AMF 

A4C 

2011 [52] Local phase based level set Capture LV boundaries Cauchy kernels A4C 

2011 [51] 
Weighted radial edge filtering with 
adaptive recovery 

Automatic segmentation of 
endocardial boundary 

Recursive adaptive 
filter 

PSAX 

2012 [215] Confidence maps US shadow detection Gaussian kernel A4C 

2012 [182] 
Geometrically constrained level-
set 

Segment whole myocardium -- 
A2C, 
PSAX 

 

The energy function consists of an external and an internal force component. The sum of 

these two forces known as the total force function is iteratively optimized during delineation 
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process. The external energy is computed using image gradient. This energy is said to be 

sensitive towards image degradations such as the speckle noise, dropouts and other artifacts.  

The speckle noise and dropout disrupt wall boundaries and lead to errors in detection. 

Various difficulties are encountered while using active contours for images with boundary 

concavities like those in TTE images. Initialization is important in active contour based 

segmentation but poor initialization results in premature convergence at some local energy 

minimum point and fails to capture the features of interest in the US images. The major 

drawback of simple initialization is the large number of iterations needed for convergence due to 

poor shape approximation. A poorly placed shape may never give in a right desired delineated 

boundary. It is therefore necessary to make active contour based techniques more versatile and 

robust to speckle noise, intensity in-homogeneity, low-contrast and other inherent artifacts 

present in the TTE images. Segmentation techniques were proposed for addressing the issue of 

intensity in-homogeneity in the MRI images during segmentation. These techniques may find 

applications for segmentation of the TTE image in multiple views. As observed in Table 1.4 the 

median and Gaussian filters are employed during boundary tracing process. Attempts can be 

made to replace the Gaussian and median filters with the despeckling filters as the performance 

of SRAD, hybrid median, adaptive Wiener and others are superior in comparison to the basic 

filters.     

Lamberti et al. [142] employed a Mexican hat filter for image smoothing prior to ventricular 

contour detection. The method consisted of image windowing, pre-smoothing, contour 

detection, and finally display of the delineated contour being superimposed on the original 

image. Xu and Prince [143] proposed the gradient vector flow (GVF) based active contour 

segmentation technique. It was shown that the GVF results in a larger capture range and could 

move the snakes into the boundary concavities. Some of the drawbacks of GVF field were high 

computational cost, parameter sensitivity, and noise sensitivity along with unclear relationship 

between the capture range and other parameters. Ghiachetti [144] used several levels of low-

pass filters for reduction of noise prior to model based constrained contour evolution. The snake 

algorithm and optical flow estimation along with filtering techniques were used for contour 

delineation of the echocardiographic images. Chen et al. [145] combined the early vision 

modelling with snake model for segmentation of the US images while suppressing the speckle 

noise. The early vision model was employed for estimating the distance map. This estimated 

map was used as an image force, to move the discrete snake elements for better noise 

suppression and accurate convergence of the delineated contour. Hamarneh and Gustavsson 

[146] embedded the prior knowledge of the LV shape into the active contour method for 
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segmenting the echocardiographic images. Jacob et al. [147] employed a shape space based 

active contour technique for segmentation of the LV and tracking the myocardial boundaries of 

the echocardiographic images. A temporal Kalman filter was employed for extraction of the 

periodic motions. The Kalman filter was employed by Abolmaesumi and Sirouspour [148] during 

the cavity boundary delineation of the US images. 

Hang et al. [149] embedded GVF in the geodesic active contour model for segmentation 

of the echocardiographic images. The images were pre-processed using a geometric filter prior 

to segmentation. It was considered that the deformable model with the GVF as an external force 

could capture both sides of the boundaries. Cheng et al. [150] presented a technique of adding 

morphological operations in the snake based segmentation for automatic LV boundary detection 

from a sequence of echocardiographic images. The automatic localization of ROI provided an 

initial contour for the snake deformation. A multi-scale directional edge map was employed for 

effective suppression of the speckle noise. A method for segmenting the MV leaflets in 

echocardiographic images was presented by S´ebastien Martin et al. [151]. The motion of the 

valve and the muscle were captured by employing two contours. The curve fitting techniques 

resulted in initial boundaries. The finer boundaries were obtained using snakes.  

Li and Acton [152] proposed vector field convolution (VFC) based active contour to 

address the issues such as noise sensitivity, limited capture range, and poor convergence of the 

concavities. The major drawback of the VFC based segmentation was that the weak edges 

were snowed under the strong edges along with the noise. Stoitsis et al. [153] employed Hough 

transform for the initialization of active contours. The contour estimation was achieved by 

deformation of the initial curve based on the gradient vector flow field. The performance of 

method which combined Hough transform and active contour was improved by adopting an 

optimal thresholding method for the gradient field. The thresholding parameters and the size of 

the morphological operator were shown to have a positive impact on the segmentation results.  

Fang et al. [47] incorporated temporal information into active contours to address issues of 

dropout and speckle noise encountered during segmentation in the TTE images. The ventricular 

boundaries of echocardiographic images were assumed to be made up of both strong and weak 

segments. Li and Acton [152] proposed the Poisson inverse gradient (PIG) based initialization 

approach for segmentation using the parametric active models. The energy was estimated 

using the external force field assisted in the computation of the initial contour. The PIG based 

segmentation fails when the maximum distance between the edges is larger than the minimum 

distance between the edges and noise/clutter. Marsousi et al. [155] combined external forces 

with adaptive node insertion and multi-resolution strategy for segmentation of endocardium in 
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the echocardiographic images. The localized parameter estimation was included for matching of 

the parameters of every point with the regional information. 

  
1.11.2 Level set 

The geodesic active contours with the level-set representation have become the basis of many 

boundary-driven segmentation techniques being advocated in the last decade. The gradient 

computed using the geodesic active contour model was sensitive to noise as the differentiation 

of gray levels tends to magnify noise [20, 156-158]. Many researchers have proposed various 

techniques and modifications to existing techniques for enhancement in the accuracy of 

segmentation methods and making them robust to noise, discontinuity and in-homogeneity. The 

idea of level set evolution (LSE) was proposed by Osher et al. [92, 159]. The velocity term of the 

LSE was based on the edges. It consisted of two components namely the regularity component 

and the edge detection component. The regularity component was employed for determining 

the shape of the contour whereas the edge detection component attracted the contour towards 

the edges. The delineation process was performed considering the zero level set of a scalar 

function. The gradient was used to stop the evolution process during the delineation using level 

set frame work.  

The region based models were advocated by Mumford et al. [160] which relied on the 

statistical information of the image intensity to minimize the energy function. The velocity 

function was restricted to be piecewise constant function by Chan and Vese [64, 161, 162] and 

this was a particular case of minimal partition problem. Chan and Vese [64] advocated an active 

contour based segmentation model based on the concepts of level set method and Mumford-

Shah [160] delineation technique. The curve evolution in the CV model was based on the 

concept of energy minimization in place of edge-function being employed to stop the evolving 

curve. The geometric models were initially proposed by Caselles et al. [163] and Malladi et al. 

[164]. The level sets techniques were in line with the energy-based deformable methods. 

Caselles et al. [163] introduced stopping function in level set allowing the contour to stop on 

edges. The geodesic active contour is an extension of geometric active contours. It allows 

tracing of a stable boundary when the image gradients suffer from large variations. The major 

advantage of level set based delineation was the ability to handle changes in shape and 

topology during evolution process [165, 166].  

Quite often the boundaries of echocardiographic images are discontinuous at more than 

one place, and with missing borders due to signal dropouts and smeared boundaries. In these 

situations it is challenging to identify the true boundaries accurately. The contour fitting process 
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is equivalent to determining the geodesics of the minimal distance curves using the minimization 

of intrinsic energy. The conventional level set segmentation technique with the arc length 

minimiser has often failed to reach the desired segmentation because it was difficult to control 

the regularization term in the presence of speckle noise and low contrast of echocardiographic 

images.  

Kotropoulos and Pitas [167] and Kotropoulos et al. [168] employed parallel segmentation 

and L2 mean based filtering approach for delineation of the US B-Mode images. Klinger et al. 

[169] used mathematical morphology based for segmentation of B-Mode echocardiographic 

images. The advantages of computer aided algorithms for segmentation of various anatomical 

structures were reviewed by Pham et al. [170] along with their drawbacks. The impact of 

intensity in-homogeneity and noise during delineation of medical images such as the MRI were 

also highlighted. The segmentation techniques like thresholding based, region growing, 

clustering and artificial neural networks were analyzed for MRI brain images, MRI image of the 

LV and digital mammographic images. Lin et al. [43] proposed a learned shape template based 

segmentation technique for boundary tracing of A4C TTE images. The boundaries extracted at 

the coarse level were used as initial contour for boundary delineation at finer scales. The 

method was advocated assuming closed contour for all A4C images but this may not be the 

case always; discontinuities may be present. The noise present in the TTE images was 

smoothed by increasing the Gaussian pyramid level. Shao et al. [171] have compared various 

methods which make use of filtered US images for delineation of prostate boundaries. The 

authors have reported that filtered images result in better and faster delineation in comparison 

to the unprocessed images. They have also reviewed the performances of edge based, texture 

based and model based segmentation techniques for ultrasonographic images of prostate. The 

edge based techniques were employed for delineation of pre-processed images. The noise was 

suppressed using maximum filter and other smoothing filters.  

Shang et al. [45] embedded region and shape prior of the cardiac valves into the geodesic 

active contour for segmentation of the MV leaflets. The segmentation technique was 

implemented using the level set framework. The region prior constrained the evolution of zero 

level set and the shape prior pulled the curve to the ideal contour. Cheng et al. [172] combined 

directional edge map, watershed transform, morphological operations and snake deformation to 

delineate the boundaries in A4C. The multi-scale directional edge map was employed for 

despeckling of echocardiographic images. Hough transform was employed on Gaussian filtered 

B-mode US images of carotid artery for arterial lumen segmentation.  
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The global threshold based on the histogram was used during the edge detection and 

morphological operations for merging smaller discontinuities. The images were subjected to 

Gaussian filter for removing the noise present in the image in [173]. Lankton and Tannenbaum 

[174] proposed the local region based active contour to meet the segmentation challenges 

posed by heterogeneity of objects and intensity in-homogeneity in the medical US images. The 

background and foreground were represented in terms of smaller local regions instead of global 

considerations. The segmentation technique was optimized by considering each individual point 

separately. This was followed by forward or backward movement based on minimum or 

maximum energy being computed at every point. But, the local region based delineation was 

sensitive to initialization. The number of iterations required was high compared to global region 

based techniques. Zhang et al. [175] proposed a mechanism for simultaneous bias correction 

and segmentation in the presence of intensity in-homogeneity. The method was based on the 

concept that intensities in-homogeneity in the local regions were separable which might have 

been inseparable considering the entire image. The K-means clustering and level set 

segmentation in variational framework were employed in the algorithm for segmentation of X-

ray, CT and MRI images with intensity in-homogeneity. Li et al. [154] proposed minimization of 

energy based on region scalable fitting (RSF) to deal with the problems encountered during 

segmentation due to the presence of intensity in-homogeneity. The data fitting energy was 

computed from the intensity information derived from two sides of the local regions by 

employing contours and two fitting functions. The computed energy was embedded into the 

variational level set framework for deriving energy minimization necessary in curve evolution.  

Sheng et al. [176] proposed a shape based snake model for segmentation of MV leaflet 

and the LV using images acquired in A4C. The generalized Hough transformation (GHT) and 

template matching techniques were embedded into the shape based segmentation model for 

delineation. The GHT was employed for computing the initial contour. The elastic deformation 

energy was used for deforming the contour based on the local minima estimation. The image 

processing techniques such as thresholding, filtering, watershed transforms and radial search 

were combined with temporal information for tracing the boundaries of the LV in 

echocardiographic images by Lacerda et al. [177]. Wu et al. [48] proposed an artificial neural 

network (ANN) based boundary detection technique for the echocardiographic image in the 

presence of speckle noise.  

The authors of [48] had also reviewed the performances of five techniques highlighting the 

pre-and post processing techniques employed by various authors. To reduce the processing 

time, the region of interest was manual selected and results obtained on application ANN were 
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compared with manually traced contours. Fernandez- Caballero and Vega-Riesco [12] analyzed 

the performances of segmentation methods based on Hough transform and active contour for 

automatic LV boundary tracing. The analysis was carried out using the TTE images acquired in 

the PLAX and PSAX. These images were pre-processed followed by gradient detection and 

gradient smoothing.  

Zheng et al. [178] proposed a delineation technique which was said to be robust to 

initialization with simultaneous segmentation and bias correction. The intensity distribution was 

modelled as Gaussian distribution by varying the mean and variance. The level set methods 

result in irregularities during curve evolution process which lead to numerical errors and destroy 

the stability of evolution. This issue has often been overcome using the concept of re-

initialization. But the re-initialization procedure gives rise to new questions such as when to 

apply, how to apply and perform. To address these issues Li et al. [179] proposed the concept 

of distance regularized level set evolution (DRLSE). The regularity of the level set function was 

intrinsically maintained during the level set evolution. The distance regularization effect 

eliminated the need for re-initialization avoiding induced numerical errors.  

The TTE images were pre-treated and then subjected to phase symmetry algorithm [50]. 

This was followed by application of the geometric deformable model for contouring the 

chambers of heart. The pre-processing step and the level set based segmentation were 

simultaneously used across four cardiac chambers. The performances of automated technique 

were compared with manually segmented image. The segmented image was post processed to 

remove the left over smaller regions in the delineated image. Skalski and Turcza [54] proposed 

an algorithm based on level set without edges for estimating the cardiac chamber shape in 

echocardiographic images. The ROI was computed automatically by employing Hough 

transform. The TTE images were pre-processed using the AD filter in order to improve the 

image quality prior to computing the ROI. Bansod et al. [51] proposed a weighted radial edge 

filtering based semiautomatic segmentation algorithm for delineation of endocardial contours in 

the PSAX view. The weighted radial edge filtering algorithm was employed in conjunction of 

adaptive dropout recovery for a semi-automatic tracing of the boundaries of heart chambers in 

the 2D TTE. Saini et al. [180] detected the boundaries of the LV and the LA using the Netwon- 

Raphson method. The speed of contour convergence was enhanced and the number of 

iterations reduced by incorporating Newton- Raphson method. Silverstre Silva et al. [181] 

proposed phase symmetry based automatic segmentation technique for paediatric 

echocardiographic images. A logarithmic based stopping function was employed in the level set 

evolution process.  
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Further, the authors of [181] compared the performances of phase symmetry technique 

with the methods such as the modified level set, and watershed technique, along with manual 

contours traced by two practicing cardiologist. Dietenbeck et al. [182] proposed a technique for 

tracing the inner and outer boundaries of myocardium in four views. The level set model was 

constrained by a shape formulation that could allow delineation of both contours. Belaid et al. 

[52] proposed a level set propagation based technique to capture the LV boundaries. A modified 

speed term based on local phase and local orientation was derived from the monogenic signal 

to make the algorithm robust to attenuation artifacts. The global minimization active contours 

(GMAC) methods were proposed by Bresson et al. [183] to eliminate re-initialization by 

combining the TV model with the CV model. The unification of the denoising and segmentation 

procedures resulted in the global minimization solution for the active contours subject to 

intensity homogeneity constraint. The GMAC may be applied to some variational LSF with 

specific forms like reaction diffusion (RD) [184]. A diffusion term is embedded into the 

conventional LSE Equation in the reaction diffusion based segmentation by Zhang et al. [184]. A 

solution of the RD Equation is piecewise constant with different phase fields and also happens 

to the solution of the LSE Equation. 

  
1.11.3 Comparative analysis of segmentation techniques 

Hammoude [37] reviewed techniques which were employed at various stages during the 

segmentation of endocardium boundaries. The paper reviewed the methods employed in data 

acquisition, pre-processing, segmentation, border identification, post processing, and evaluation 

methods. Noble et al. [185] compared segmentation techniques used in the medical US images 

such as echocardiography, intravascular US, transrectal US, US images acquired in 

gynaecology and obstetrics, and breast US. Further, highlighting the important role played by 

segmentation techniques in clinical decision making, Noble [5] had reviewed various tissue 

characterization and segmentation techniques available in the literature for the US images. 

Shrimali et al. [25] compared six segmentation techniques commonly used for delineation of the 

US images. The advantages and limitations of thresholding, edge based, region growing, region 

split and merge, hybrid, texture based and deformable model were highlighted by Shrimali et al. 

[25]. An overview of trends in the US image segmentation based on neural networks, statistical 

shape model, discrete region competition, level set, hybrid watershed, texture and shape prior, 

their advantages and limitations were also reported. Noble et al. [4] reviewed the state of the art 

techniques available for US image analysis, bringing out the significance of image despeckling, 

enhancement, segmentation and image registration in image guided interventions.  
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A comprehensive review of LV segmentation techniques for TTE images was carried out 

by Wu and Nicolosi [138]. The pre and post processing techniques employed by various were 

also documented. But the paper do not speak of experimental results obtained using various 

techniques for images acquired in various views. Das and Banerjee [186] had reviewed the 

applications of parametric contour model in delineation of the MV leaflets and the LV along with 

wide range of applications. 

 
1.12 CWD image denoising and segmentation 

The current US machines have inbuilt software which can provide accurate peak velocity, 

velocity time integral and gradients from a manually traced velocity envelope. The peak velocity 

estimated from the manually traced envelope can result in an error of approximately larger than 

25%, even by the most experienced clinicians [187]. The Doppler spectra exhibit large 

variations in the envelope shape and image appearance under various disease conditions and 

state of the cardiac valves. The automation of CW Doppler images may result in faster 

processing, uniformity in the results with increased objectivity, and more accurate estimation of 

valvular abnormalities.  

Mo et al. [31] studied the statistical properties of the CWD signals by making of the data 

acquired across the carotid artery. Based on their study, they had concluded that the granular 

structures observed in CWD spectrograms were similar to those of the US B-mode images. Hall 

et al. [188] proposed a model based image processing scheme for automatic estimation of the 

E-wave from velocity profiles acquired across the mitral valve. Gong et al. [189] proposed a 

multi-stage automated system for processing of the CWD spectrograms acquired at the AV and 

the MV. The automatic scheme consisted of pixel grouping, thresholding and the median filter, 

which generated the velocity profiles and reduced the background noise from spectrograms of 

aortic outflow and mitral inflow spectrograms. Thresholding was applied on the denoised images 

instead of direct application on the CWD images. Tschirren et al. [40] proposed an image 

processing based automated scheme for tracing the boundaries of the spectra and to determine 

the maximum blood velocity. A Gaussian low pass filter was used for suppression of noise and 

the horizontal details were detected by computing maximum gray level projection, taking into 

account all pixels with certain threshold value. A nonlinear Laplacian edge detector was used for 

detecting the edges; this edge detector was not very sensitive to the noise and was superior 

compared to the Sobel filter. Jansson et al. [190] highlighted the importance of speckle noise 

reduction in automated spectra boundary tracing. A model based on autocorrelation function 

was proposed for predicting the frequency separation among the uncorrelated speckle.  
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Krger and Evans [191] advocated a prototype for tracking the changes in the blood 

velocity. The returning Doppler profile signals were evaluated in terms of the SNR and total 

power. The need for proper steering of the US beam was studied to improve the SNR. The 

automatic tracking of Doppler signals resulted in doubling of the effective beam width of the 

transducer. Shechner et al. [192] proposed a scheme of integrating the Sobel operator, 

Laplacian edge detector, low pass filter, edge linking and curve fitting procedures for automatic 

tracing of the MV spectrograms. Greenspan et al. [193] employed a Gaussian kernel for noise 

reduction and the contrast stretching procedure for enhancing the visual outlook of CWD 

spectrogram acquired across the MV. The significance of reducing noise and edge detection in 

automatic delineation of CWD spectra was also highlighted [193].  

Doherty et al. [194] proposed a parametric method for computing envelope in Doppler 

umbilical US images with varying levels of SNR. The Doppler signal was assumed to be 

consisting of multidimensional time series components infected with noise for the estimation of 

velocity spectrum curve. The waveform fitting was performed through optimization of cross 

correlation of Doppler signal and a periodic reference function. Magagnin et al. [195] proposed a 

image processing based semi-automatic scheme for delineation of the pulsed Doppler spectrum 

acquired from the patients suffering of rheumatoid arthritis. A horizontal and a vertical Sobel 

filter were employed for the detection of the baseline and scale factor from the spectrograms, 

respectively. The CWD spectrograms were divided into overlapping regions followed by 

computation of the histograms and threshold automatically for each region. The outliers present 

in the processed image were removed using a median filter. The deformable structures in 

Doppler images were detected using a “probabilistic, hierarchical, and discriminant” i.e. the 

“PHD framework” by Zhou et al. [196]. Wang et al. [197] proposed a shape driven model for 

automatic outer boundaries tracing for pulsed Doppler images. A discrete Kalman filter was 

introduced for recursively estimating the velocity envelopes. The statistical shape model and 

Kalman filter were used for adaptive weight estimation and envelope tracing. Park et al. [198] 

employed a series of detector for locating objects and shape information to segment the MV 

inflow patterns [198]. Kiruthika et al. [199] proposed a method to trace the boundaries of the 

CWD images acquired from patients diagnosed with AR. The method consisted of median 

filtering, contrast enhancement, Gaussian filtering, morphological operations, intensity 

adjustment and Canny edge detection. An adaptive pulse coupled neural network (PCNN) with 

adaptive thresholding was employed by Li et al. [200] for removing speckle noise from Doppler 

blood flow spectrograms. They had concluded that removal of noise is essential and the 

preliminary step necessary in spectrogram automation [200].  
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Combinations of two median filters were employed for reduction of noise from the 

spectrum image by Kalinic et al. [201]. Syeda-Mahmood et al. [202] proposed a clinical decision 

support system for identification of spectrum shape patterns for various valvular diseases using 

content based image retrieval. An overview of automatic or semi-automatic segmentation 

techniques employed for extraction of cardiac structure boundaries are tabulated in Table 1.4 

highlighting the views in which the images were acquired, the filter employed, the concept and 

method of delineation. The Table 1.4 highlights that the research is concentrated on 

segmentation of images acquired in only one view either in PLAX, PSAX, or A4C. However, as 

pointed in the earlier section, the clinicians views the cardiac structure in more than one view, 

employing one or more acoustic windows in B-mode, M-mode, CWD, PWD, and color Doppler 

imaging modalities during the study and diagnosis of cardiac and valvular abnormalities.   

 

1.13 Clinical literature review  

Tribouilloy et al. [216] proposed a method for assessment of AR by measuring the width of vena 

contracta (VCW) and effective regurgitant orifice area (EROA). Shipton et al. [217] had 

concluded that the AR results from the disease affecting the aortic root or aortic leaflets, 

preventing their normal closure. Doppler echocardiography would provide information about the 

AV morphology and aortic root size, and a semi-quantitative estimate of the severity of AR 

[217]. Willett et al. [218] proposed assessment of AR by color Doppler imaging of the VC. The 

visual grading of valvular regurgitation by Doppler color flow mapping technique was inaccurate 

because various hydrodynamic variables and instrument settings affect color flow jet display. 

The VCW and area correlate well with regurgitant fraction (RF) and regurgitant volume [218]. 

Vinereanu, Ionescu and Fraser [219] proposed a scheme for assessment of AR using the 

images acquired in PLAX.  It was concluded that single plane area–length method would tend to 

overestimate the LV volumes and ejection fraction (EF) in asymptomatic patients with severe 

AR. Heidenreich et al. [220] had concluded that a systolic murmur could be a clue to the 

presence of AR and should be used in conjunction diastolic murmur in the diagnosis of valvular 

disorders.  

Sarano and Tajik [221] have described AR as a unique valvular disease resulting in both 

left ventricular volume overload and pressure overload. A simple and reliable measurement 

would be the VC, the width of the regurgitant flow at the orifice, and the size of the orifice [221]. 

Surenderanath et al. [222] reported that measuring the severity of AR was necessary due to the 

typical progression of aortic valve disease and intervention before deterioration of the LV 

function.  
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Further, they pointed to the sub-optimal acoustic windows present in the 

echocardiography imaging along with the need for Doppler alignment, and geometric 

assumptions [222]. Maganti et al. [223] had concluded that a single method would not be 

providing all the data necessary for accurate quantitative assessment of the valvular 

regurgitation, and the complex interaction of among the anatomic and hemodynamic variables.  

The combination of preload and after-load excess may lead to the progressive LV dilatation. 

The echocardiography images were used as a diagnostic tool for assessing the LV dimensions, 

volumes, and ejection fraction. It was also employed in the morphological assessment of the 

aortic valve, annulus, and root. The color flow and spectral Doppler echocardiography were then 

used to further the quantification of valvular regurgitation [223]. 

The morphology of the AV was analyzed in the PSAX view in [224]. The diameter of the 

LVOT, aortic annulus, the sinus and the STJ were determined in the PLAX view. The CWD 

recordings through the AV were obtained for estimating the peak and mean trans-aortic 

pressure gradients. Finally, the color Doppler echocardiography was employed for locating the 

presence of regurgitant valve [224]. This integrated study was employed for estimation of the 

valvular regurgitation being observed after transcatheter AV implantation (TVAI). Recke [225] 

from their studies had concluded in clinical practice the ECG and the echocardiographic imaging 

should complement each other to overcome inherent limitations pertaining to sensitivity of both 

methods. Based on their research Simpson and Miller [226] had recommended that 3D TTE 

should be regarded as a complementary tool to 2D TTE but not as a substitution.  

The literature review presented in the earlier paragraphs suggest the following: The 

recommendations by European Society of Echocardiography, American Society of 

Echocardiography, and British Society of Echocardiography suggest that the integrated 

processing of TTE images is necessary as images acquired in multiple views using different 

windows and US based imaging modalities are employed in the study of heart anatomy and 

various abnormalities of the cardiac structure. But, most of the research is concentrated on the 

images acquired in a particular view and modality. The B-Mode images assist in the study of 

anatomy of the heart and analyze of the consequences of the valvular abnormalities. The 

images in PLAX provide information of the AV, MV, RV and LVOT whereas the PSAX view 

show the all the three leaflets of AV. The images in A4C provide information on the structure of 

ventricles, and auricles along with the dynamic motion of the MV during diastole and systole. 

The AV can be visually seen in A5C which is not possible using the A4C and A2C views. The 

CWD spectrums are employed for computing the flow velocities whereas the color Doppler is 

useful in estimation of the regurgitant jet area and the VCW.  
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This again reflects that the information available in a particular view cannot represent all 

necessary information and anatomy of the cardiac structure. Hence, it would be mandatory for 

the clinicians to visually observe the cardiac structure in multiple views employing various 

echocardiographic imaging modalities, looking for the prevalence or absence of valvular and 

cardiac chamber abnormalities accurately. Hence, this research was taken up to study 

computer aided processing for the TTE images acquired in multiple views (PLAX, PSAX, A4C, 

A5C and A2C) and multiple echocardiographic imaging modalities (B-Mode, M-Mode, CWD, 

PWD, and color Doppler).  

The literature review of speckle noise reduction techniques point out the following: 1) 

There are many multiscale based techniques which are not extensively used for noise reduction 

with edge preservation in the TTE images of the AV and cardiac chambers. The wavelet based 

GLM filter and various shrinkage techniques can be analysed for noise reduction in the TTE 

images [2, 94, 99, 100, 116, 227]. 2) The posterior sampling based Bayesian estimation (PSBE) 

was employed for speckle noise reduction in OCT images [228]. This may find an application for 

noise suppression and enhancement in the TTE images. 3) The fuzzy triangulation filters are 

extensively used for suppression of additive noise. These filters may be analysed, with or 

without any modifications, for reduction of multiplicative noise in the echocardiographic images 

using approximated noise model [229]. 4) The duality based total variation filters have been 

proved to be effective in restoration of images [230]. These filters were not tested using the TTE 

images hence a work has been taken up to analyze performances in terms of noise suppression 

and edge preservation. 5) It is observed that the most recent review of filtering techniques for 

TTE images carried out by Finn et al. [22]. The filters such as the NLM, PPB, PSBE, TV, and 

fuzzy filters, were not included in the review of despeckling filters for the TTE images. Hence, a 

work has been taken up in this research to study the filtering characteristics of eight types of 

filters including those filters analyzed by Loizou et al. [27,130, 131] for the US images of carotid 

artery. 6) The performances of filters were analyzed using traditional image qulaity metrics. It is 

necessary to preserve the edges, and the images should be clinically accepted. The edge 

preservation in the preprocessed images are estimated in terms of beta metric, speckle 

suppression index, and other parameters in the current work along with clinical grading. The 

performances of despeckling filters are estimated in terms of 16 IQM along with clinical grading. 

7) The median and Guassian filters are commonly employed for the preprocessing of the CWD 

images. The applications of filters advocated for the B-Mode images are not extensively 

explored for CWD images. Hence, work has been taken up to study applications of despeckling 

filters for the CWD, PWD, and color Doppler images.  
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8) The texture features of B-Mode images acquired in PLAX, PSAX, A4C, A5C, and 

A2C, CWD images, and color Doppler images, would play a vital role in computing the severity 

of valvular regurgitation. The 65 texture features computed by Loizou et al. [27,130,131] for the 

US images of carotid artery are estimated for TTE images in multiple views using various 

echocardiography based imaging modalities. 

The segmentation of the TTE images is concentrated on the images acquired in only 

one view by most of the reseachers. But during clinical diagnosis, images acquired in multiple 

views, using different echocardiographic modalities, are manually segmented to compute 

various parameters from the traced ROI. It would be therefore necessary to study the 

applications of segmentation techniques for images in multiple views as each view presents a 

different set of challenges and hurdles during either semi-automatic or automated process of 

delineation. The TTE images are of low constrast and have intensity in-homogeneity. The 

current research studies applications of segmentation techniques in the presence of intensity in-

homogeneity for low contrast TTE images in five views using two acoustic windows. 

The boundaries of the CWD images are traced using the edge and region based 

techniques. The applications of active contour based techniques for boundary tracing of CWD 

spectrum is not fully explored and reported in the literature . The current research work studies 

the applications of watershed transform, texture filters and active contours in segmentation of 

CWD images. It is observed that Gaussian filters were being used for reduction of noise in the 

CWD images prior to the application of segmentation technique. But, despeckling filters are 

superior in comparison to the Guassian and median filters in terms of both noise suppression 

and edge preservation. Therefore, these filters may be replaced by despeckling filters, in the 

process of delineating the outer boundaries of CWD images, in the presence of intensity 

homogeneity. 

The color Doppler images are help in visualizing the process of regurgitation and 

estimating its severity. The severity is estimated by manual tracing of the regurgitant jet area 

observed in the LVOT. To overcome the disadvantages of manual segmentation it is proposed 

to trace the regurgitant jet area in the A5C and PLAX view, employing all the segmentation 

techniques being analysed for the B-Mode and CWD images.  

1.14 Objectives of present study 

Assimilating the discussions in the earlier paragraphs, taking into account the Literature review 

presented in the above background, and discussions with the clinicians, the major objectives of 

the present research work were framed and are enlisted below: 1) To propose denoising 
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techniques for B-Mode echocardiographic images of aortic valve and cardiac chambers 

acquired in multiple views using different windows. 2) Comparative analysis of state-of-the-art 

despeckling techniques for the B-Mode and CWD images. 3) To propose delineation techniques 

for tracing the outer spectrum of CWD images. 4) Comparative analysis of segmentation 

techniques using the TTE images acquired in multiple views and windows.  

1.15 Organization of the thesis 

The current thesis consists of six chapters. The first chapter introduces the basic concepts of 

echocardiographic imaging, different views and windows of acquiring images, the drawbacks of 

echocardiographic imaging, literature review of denoising and segmentation techniques, the 

scope for research, and the objectives of current research work. 

Chapter 2 speaks of six proposed despeckling techniques for B-Mode images acquired in 

multiple views. The implementation of multiscale in the logarithmic domain, hybrid posterior 

sampling based Bayesian estimation filter, hybrid triangulation median filter, integrated fuzzy 

filter, hybrid homomorphic fuzzy filter, and extreme total variation bilateral filter, are described 

followed by result analysis. The impact of denoising and enhancement of images during 

segmentation are also brought out in this chapter. 

Chapter 3 brings out a comparative analysis of eight types of despeckling filters for the B-Mode 

images. The performance of 48 despeckling filters are analysed in terms of sixteen image 

quality metrics, visual quality assessment and clinical validation.  

Chapter 4 describes the despeckling techniques for the CWD and color Doppler images. The 

texture features extracted from the despeckled B-Mode images in PLAX, PSAX, A4C, A5C, and 

A2C, CWD images and color Doppler are compared in this chapter.  

Chapter 5 deals with segmentation of B-Mode, CWD and color Doppler images. The delineation 

techniques are analysed for the images in multiple views and modalities. The boundaries of AV, 

LV, RV, AV leaflets, MV leaflets, outer spectrum of CWD and the regurgitant jet area in color 

Doppler images are segmented in the presence of low contrast and intensity in-homogeneity. 

Chapter 6 presents an assimilation of the proposed work highlighting the contributions put-in by 

the candidate and his supervisors. It also points out the way forward for the current research 

work on denoising and segmentation of TTE images in multiple views. 
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CHAPTER 2: DESPECKLING OF B-MODE ECHOCARDIOGRAPHIC IMAGES 

This chapter describes the proposed despeckling filters analysed for speckle noise reduction in B-mode 

transthoracic echocardiographic (TTE) images acquired in multiple view and windows. The chapter 

begins with introduction to the phenomenon of speckle formation in the ultrasound imaging, followed by 

noise modelling, image quality metrics (IQM), and image database employed in the analysis of filters 

performance for the TTE images in multiple views. The proposed despeckling techniques are described 

and analysed in terms of the IQM, visual quality assessment and clinical validation. This chapter 

describes multiscale techniques, hybrid posterior Bayesian estimation filter, hybrid fuzzy filter, integrated 

fuzzy filter, hybrid homomorphic fuzzy filter, and extreme total variation bilateral filter proposed for the 

noise reduction and edge preserved despeckling filters for the TTE images. 

  
2.1 Introduction 

The imaging modalities such as the transthoracic echocardiography (TTE) [22, 31, 32, 33, 37, 

54, 66] and optical coherence tomography (OCT) [82, 228, 232], employ the coherent waves for 

illumination; suffer due to the presence of speckle noise. Speckle is a fine grained textural 

pattern observed in B-mode TTE images acquired using various acoustic windows and views 

[22]. The multiplicative noise is prominent in all the cross-sectional views [22, 66] and its 

adverse impact is severe compared to additive noise [22, 33]. The despeckling filters are 

employed for reduction of speckle noise while retaining edges and structure of the cardiac 

structure. The suppression of speckle noise in the TTE images with edge and structure 

preservation is a herculean image pre-processing problem which is addressed by various 

researchers.  

The speckle noise omnipresent in the TTE images may introduce spurious ‘false-fine’ 

structures, camouflage the small gray level differences of the imaged medium leading to hazy 

boundaries, scale-down the contrast of the image and all these  abrogating the human 

interpretation [4, 7, 14, 22, 26, 32, 33, 231]. The processes of automatic segmentation are 

slowed down due to speckle noise [22, 23, 231]. All coherent systems are blessed with 

presence of speckle noise, which severely affects the system performance [22, 23, 228, 231, 

232]. The contrast of the TTE is very poor [4, 22, 36], hence endocardial trabeculae or papillary 

muscle are quite often treated as the left ventricular (LV) boundary leading to the under 

estimation of the LV volume and mass [8, 36]. Thus, there comes the necessity and need to 

despeckle and enhance [4, 14, 22, 23, 26, 29, 32, 33, 35, 36, 77, 83, 231] the TTE images for 

accurate location, diagnosis, analysis and interpretation of valvular abnormality accurately in 

real time. The cutback of speckle noise improves the overall image quality and also the 

boundary characterization [4, 22]. 



52 

 

This chapter presents the applications of various despeckling filtering for the TTE images 

acquired in two parasternal and three apical views. The chapter begins by speaking of speckle 

noise and evaluation parameters, followed by description of proposed despeckling techniques 

and analysis of results. This chapter presents six techniques proposed for despeckling of the 

TTE images acquired from the adult patient diagnosed with aortic regurgitation. Section 2.2 

deals with the brief description of eight multiscale techniques analysed in the logarithmic domain 

for despeckling of the TTE images. The performances of these filters are compared with two 

adaptive and four iterative despeckling techniques. The posterior sampling based Bayesian 

estimation (PSBE) is analysed for the TTE images along with proposed hybrid PSBE in Section 

2.3. The proposed hybrid triangulation moving average (TMAV) filter is analysed in Section 2.4 

followed by the proposed integrated fuzzy filter, which is the combination of fuzzy, geometric 

and Wiener filter, is described in Section 2.5. The hybrid homomorphic fuzzy (HHF) filters are 

analysed in Section 2.6. The regularization term of the total variation is replaced by the bilateral 

filter. This proposed filter is known as extreme total variation bilateral (ETVB) filter and is 

explained in Section 2.7. 

 
2.1.1 Modelling employed for denoising 

The modelling of multiplicative speckle noise is a tough task since it is the product of noisy and 

noise free components unlike the additive noise which is sum of these two components. The 

noise is modelled either as multiplicative or approximated as additive as in the case of most of 

the wavelet based despeckling filtering techniques. The speckle noise is modelled as  

( , ) ( , ) ( , )f x y g x y n x y     (2.1) 

where ( , )g x y is noise free image, ( , )f x y is the acquired image and ( , )n x y is the multiplicative 

noise, x  and y are the variables indicating the spatial locations [32]. The process of converting 

multiplicative noise to approximated additive noise is being met with by taking the logarithm of 

the input image as follows   

log[ ( , )] log[ ( , ) ( , )]

log[ ( , )] log[ ( , )]

f x y g x y n x y

g x y n x y
   (2.2) 

The above Equation 2.2 can be rewritten as 

 xy xy xyf g n      (2.3) 

where xyf = log[ ( , )]f x y , xyg = log[ ( , )]g x y  and xyn = log[ ( , )]n x y . The Equation 2.3 makes way 

for application of various denoising techniques developed for additive white Gaussian noise, to 
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be tested on TTE images inherent with multiplicative speckle noise. In these methods the input 

is logarithmically transformed, ( , ) log( ( , ))f x y f x y and denoised output is obtained by taking 

the exponential of the reconstructed image, ˆ( , ) exp( (log( ( , )))WSg x y T f x y , where 
WST  are 

thresholding methods. The discrete wavelet transform (DWT) of a noisy image f g n  can be 

represented as 
d d d

j j j
W f W g W n where 

d

j
W g  and 

d

j
W n are the DWT of original image and 

additive noise respectively. The denoising techniques studied and analyzed in this are briefly 

discussed in the following sections. 

The multiscale despeckling based on wavelet transforms can be classified into wavelet 

shrinkage, the Bayesian framework, or those based on the correlation between coefficients. The 

shrinkage technique suppresses the coefficients representing the noise while retaining the 

coefficients that likely to represent the required features. In wavelet based hard thresholding the 

coefficients greater than a defined threshold are retained while others are set to zero. The 

wavelet soft thresholding attempts to avoid the discontinuities. The adaptive thresholding try to 

improve the performance by adding additional local information of the images such as the edge 

identification into despeckling techniques. The Bayesian based thresholding were specifically 

designed for a particular type of noise and therefore they may not be suitable for other imaging 

modalities. The major disadvantage of wavelet despeckling in the Bayesian framework was the 

computation of the prior distributions of the noise-free image, but no noise free TTE images are 

available as the speckle noise is inherent in the US images. 

 
2.1.2 Evaluation of denoising techniques 

The performances of multiscale, iterative and adaptive denoising techniques are evaluated on 

both clinical TTE and standard images. In standard images, the denoised image is compared to 

reference noise free image. In clinical TTE images, no reference noise free image exists hence 

the performance metrics are measured using the original speckled image as the reference 

image. Thus the results obtained using synthetic images can be considered ideal ones whereas 

those of clinical images are relative to the noisy input. 

2.1.2.1 Image quality metrics for performance evaluation 

The performances of denoising techniques are evaluated using 16 image quality metrics. The 

performance evaluation is first carried out using the traditional parameters such as the signal to 

noise ratio (SNR) [26], peak signal to noise ratio (PSNR) [26], mean square error (MSE) [22, 

26], correlation coefficient (ρ), normalized correlation coefficient (NCC), root mean square error 

(RMSE), normalized mean square error (NMSE), Laplacian mean square error (LMSE), 
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normalized error summation (Err3,Err4)  and geometric average error (GAE). The edge 

preservation is estimated by calculating the Prat’s figure of merit (FoM) [22], beta metric (β) [26, 

113] and image quality index (IQI) [27]. The structural similarity is assessed using the structural 

similarity (SSIM) index [22].  The visual quality is estimated by looking all finer details and 

texture information in the denoised images in comparison to original images. Finally the clinical 

validation of the denoised images is carried out by analysis of the grades awarded by the 

clinicians for the processed images. The error measuring parameters are computed using two 

images. The details of these parameters are available in [27]. 

The SNR measures the performance using the original image 
orgf  and denoised image

denf

, and it indicates the amount of reduction in noise after denoising. The displacement of edge 

pixel between original image and the denoised image are measured using FoM. The SSIM is 

employed to quantify the preservation of structural content of original image after denoising. The 

value of SSIM equal to 1 indicates that the structural information is intact else there is a loss of 

information. Some of the parameters like PSNR, MSE, β, image quality index (IQI) are also 

important in evaluation and these are defined below 
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Where γ is the scalar multiplier being utilized as penalization factor with typical value 1/9, nd and 

nr are the number of pixels in original and processed images respectively, jd is the Euclidean 

distance, 
denf and orgf represent the filtered version of original and processed images, pixel 

mean intensities in the region
denf , orgf are represented by denf and orgf respectively, 

1c  and 

2c are constants,  
org denf f

and 2
org denf f

are the standard deviations and means of TTE images 

compared, 
org denf f

represents the covariance, c1,c2 ≤ 1 are the constants, Nden and Nref are the 

number of pixels in original and processed images respectively. 

2.1.2.2 Clinical TTE images 

The TTE images used in current research are acquired using Philips I33 machine with S5 probe 

at Echo Lab, Postgraduate Institute of Medical Education and Research (PGIMER), 

Chandigarh, India. In the present experimentations, the B-Mode images acquired in the PLAX, 

PSAX, A4C, A5C, and A2C are pre-processed and delineated using various despeckling and 

segmentation techniques. The causes of valvular abnormalities and their consequences are 

visually seen using different acoustic windows. The PLAX images are used to study the 

dynamics of leaflets, to look for any calcification, perforation, thickening, prolapse and dissection 

of the leaflets. The variations in the size and the shape of LV, LA, RV, and RA, due to valvular 

stenosis and regurgitation are observed in A4C, A2C and A5C views. The information acquired 

using the parasternal and apical windows are integrated by the cardiologist for assessment of 

aetiologies and the consequences of valvular abnormalities, to decide on the future course of 

treatment or medication [2, 3]. Experiments are conducted on 1000 B-Mode TTE images 

acquired in the PLAX, PSAX, A4C, A5C and A2C views.  

2.2 Multiscale techniques for despeckling of TTE images 

The concepts of hard and soft thresholding [97,98] are extensively being used in despeckling of 

the US images in the logarithmic domain. Guo et al. [233] proposed a wavelet based 
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thresholding method for reduction of the speckle noise in logarithmically transformed synthetic 

aperture RADAR (SAR) images. The discrete dyadic wavelet transform were used by Zong et 

al. [33]. The Daubechies wavelets of length four and soft thresholding were employed for 

suppression of noise. The wavelet hard and soft thresholding were together used by Zong et al. 

[32] for speckle noise reduction in logarithmic domain for TTE images in parasternal short axis 

(PSAX). The multiplicative noise was approximated as a Gaussian noise in the logarithmic 

domain. Saevarsson et al. [234] used hard thresholding in curvelet domain for suppression of 

multiplicative noise. It was reported that edges were preserved but despeckling in the singular 

and the smooth areas presented problems. Khare et al. [235] employed soft thresholding of 

wavelet coefficients for reduction of salt and pepper, speckle and Gaussian noise in medical 

images. The threshold was computed based on the median, standard deviation and mean of the 

image to be processed. Yue et al. [36] had integrated the wavelet and the AD filter concepts for 

speckle noise suppression and enhancement of the echocardiographic images in the A4C.  

It is observed that many of the wavelet based despeckling techniques employ hard 

thresholding, soft thresholding or their combination for noise suppression [32, 33, 233, 235]. The 

other combinations such as soft thresholding and the AD filter have also been experimented 

with aim of suppressing maximum amount of noise while preserving edges, structure and 

resolution of the images [36, 110, 236]. The results have shown that hard thresholding may 

cause oscillations during reconstruction and the soft thresholding may affect the accuracy of the 

denoised image [237].  

The multiscale techniques implemented in the logarithmic domain are based on additive 

noise model. The transformation of image using logarithmic operation, thresholding and 

projecting the image back to the spatial domain are the common steps observed in all wavelet 

shrinkage techniques using various thresholding methods. The use of logarithmic operation 

decouples the multiplicative components of the acquired signal into independent individual 

noise-free and noise components [26, 110]. The desired features are separated from noisy 

features using the logarithmic transformation [33]. The noisy components are treated as white 

Gaussian noise [34].  

In the quest, looking for best multiscale denoising technique, it is observed that 

applications of many shrinkage techniques are not exclusively analysed using the TTE images 

acquired in multiple views and windows [99, 101-103, 120, 227, 238, 239]. There are wavelet 

thresholding techniques which were proposed in the homomorphic domain for the US images 

[26, 32, 33, 110, 240].  Therefore, it is felt that various shrinkage techniques, not analysed for 

the TTE images, can be tapped in for suppression of speckle noise. It is proposed to analyse 
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the multiscale techniques, in the logarithmic domain, for the TTE images acquired in the two 

parasternal and three apical views. The logarithmic based shrinkage techniques are referred to 

as LMxE schemes, where ‘L’ represents the logarithmic projection of the input images, ‘Mx’ 

refers to the shrinkage technique, and ‘E’ stands for the exponential operation using which the 

images are brought back to the spatial domain.  

 

Figure 2.1 Methodologies for analysis of multiscale techniques in log domain 

 
The wavelet based shrinkage techniques analyzed in the logarithmic domain for the TTE 

images consists of : (i) ‘Stein’s unbiased risk estimation (SURE)’ embedded with the ‘linear 

expansion of threshold (LET)’ SURELET [101], (ii) neighbourhood shrinkage combined with the 

SURE, NeighShrinkSURE (NSS) [103], (iii) Block thresholding (BlockShrink) [239], (iv) 

multiscale product thresholding (MPT) [100,238], (v) probability based shrinkage (ProbShrink) 

[99], (vi) Bayesian shrinkage (BayesShrink) [227], (vii) inter-scale orthonormal wavelet 

thresholding (IOWT) [102], (viii) Bivariate thresholding using DWT (HDWT), (ix) Bivariate 

thresholding using dual tree discrete wavelet transform (HDTDWT) [241] and (x) Curvelet with 

hard thresholding [242].  
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The performances of the multiscale techniques were compared with (i) the AD filter 

proposed by Perona and Malik [83], (ii) speckle reducing anisotropic diffusion (SRAD) filter [35], 

(iii) adaptive fidelity term based total variation filter (AFTV) [120], (iv) adaptive Wiener filter [79], 

(v) detail preserving anisotropic diffusion (DPAD) filter [86], (vi) adaptive geometric filter [244], 

and (vii) Generalized likelihood ratio filtering method (GLM) based on wavelet transformation 

[116]. Most of the multiscale methods work in logarithmic domain for multiplicative noise 

reduction applications. But there are some methods such as generalized likelihood method 

(GLM) and M-band ridgelet which are based on multiplicative noise model. Methods based on 

both additive and multiplicative noise model are briefly explained in this section. The multiscale 

filtered images are further enhanced using the Butterworth filter as suggested in [245]. The 

integrated effect of denoising and enhancement during segmentation are studied using the 

edge, region, watershed, and active contour techniques. The proposed method of analyzing the 

multiscale techniques for noise reduction in the TTE images is shown using Figure 2.1. The 

multiscale techniques are briefly explained in the following sections. 

 
Table 2.1 Available on-line resources for denoising 

Ref. Method  Name of filter with available on-line resources  

[227] LM1E BayesShrink:http://my.fit.edu/~kozaitis/MATLAB/code/denoiseBayes2D.m 

[100] LM2E MPT: http://www4.comp.polyu.edu.hk/~cslzhang/code/MI.rar 

[99] LM3E ProbShrink: http://telin.ugent.be/~sanja/ 

[101] LM4E SURELET: http://www.laurent-duval.eu/Codes/Surelet_tlbx.zip 

[102] LM5E OWT: http://bigwww.epfl.ch/demo/suredenoising/MATLAB/OWT_SURELET.zip 

[239] LM6E 
BlockShrink:http://www.mathworks.in/MATLABcentral/fileexchange/24430-
blockshrink-denoising/content/DenoiseFun.m 

[103] LM7E 
NeighShrinkSURE:http://www.mathworks.in/MATLABcentral/fileexchange/20705-
neighshrinksure-denoising 

[120] M8 AFTV: http://visl.technion.ac.il/~gilboa/PDE-filt/tv_denoising.html 

[86] M13 
DPAD:http://www.mathworks.in/MATLABcentral/fileexchange/36906-detail-
preserving-anosotropic-diffusion-for-speckle-filtering--dpad- 

[241] HDWT Bivariate: http://eeweb.poly.edu/iselesni/WaveletSoftware/denoise2.html 

2.2.1 Bayes thresholding (M1)  

The sub-band adaptive, data driven wavelet shrinkage known as the Bayes thresholding, works 

in the Bayesian framework employing the general Gaussian distribution (GGD) based prior on 

the wavelet coefficients. The Bayes thresholding is commonly called as the BayesShrink [227], 

and it is referred as the method M1. The method in the logarithmic domain is represented as 

LM1E. The computation GGD depends on the standard deviation ( )X
and the shape parameter

( )  rendering sub-band adaptive threshold ( )B XT . 
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This is mathematically represented in Equation 2.13 [227]:  

, ( ) ( , )exp{ [ ( , ) ] }x x xGG x C x , , 0, 0xx  (2.13) 

where

1/ 2

1 (3/ )
( , )

(1/ )
x x

,
. ( , )

( , )
2 (1/ )

x
xC and 1

0
( ) u tt e u du  is gamma 

function. The soft threshold is estimated by minimizing the error function computed using the 

Bayesian risk estimation  

2 2

|
ˆ ˆ( ) ( ) ( )X Y Xr T E X X E E X X    (2.14) 

Where
,xX GG , 2ˆ ( ), | ~ ( , )TX Y Y X N x . On application of the DWT, the transformed 

images are Y X V , where Y Wf , X Wg  and V Wn ,W is the wavelet coefficient like 

the dyadic orthogonal wavelet, log( )f f , log( )g g and log( )n n . This phenomenon 

results in an estimate of denoised image 1 ˆˆ exp( )g W X , where ˆ ˆ( (log( ( , ))))BX T f x y . The 

sub-band dependent threshold are computed using the relation given below [227] 
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2 2ˆ ˆ ˆmax( ,0)X Y  with 
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ˆ

0.6745
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  and Yij Є wavelet subband HH1.  

The variance of Y, 2

Y
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2
, 1

1 n
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i j

Y
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    (2.16) 

The steps employed in the implementation of the BayesShrink based denoising in the 

logarithmic domain are shown in Figure 2.2.  

 
2.2.2 Adaptive multiscale product thresholding (M2) 

The adjacent subbands are multiplied for the amplification of features of interest and abridging 

the noisy ones [100]. Wavelet coefficients are considered for further processing when the 

multiscale product is greater than the adaptive threshold value. Mathematically, the process of 

multiscale product thresholding (MPT) is represented as
d d d d

j j j j
Z P f W f .W f

1 , where d

jW are 

wavelet coefficients, d x, y , specifying the directions. The estimated product threshold would 

consists of two components represented as 
x x x

j j jP f ( x, y ) W f ( x, y ).W f ( x, y )
1 and

y y y

j j j
P f ( x, y ) W f ( x, y ).W f ( x, y )

1 , respectively in the horizontal and the vertical directions.  
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An appropriate adaptive threshold ( )d

pt j  can be computed and imposed on 
d

j
Z   for the 

elimination noise and estimating the significant image structures. The adaptive threshold are 

computed using Equation 2.17 

 d d d

p ε gt j μ j μ j     (2.17) 

where d d

ε gμ j μ j is the ratio of intensity of noise against signal in the multiscale product 

threshold with ( ) ( ) ( )d d d

g f nj j j , 1 1( ) . .d

n j j jj , is the correlation coefficient, and σ 

is the standard deviation. The estimation of noise free signals is based on ( ) [ ]d d

f jj E Z , 

estimation of noise ( ) [ ]d d

n jj E V with estimation of multiscale product 1( ) [ . ]d d d

g j jj E W gW g , 

d

jZ is multiscale product, d

jV is the scale product and d

jW is wavelet coefficients. The threshold 

of significant coefficient is estimated using the relation [100] 

, , ,
ˆ ,

0 ,

d d d

j j pd

j d d

j p

W f x y P f x y t j
W f x y

P f x y t j
       (2.18) 

where j=1,2,……..J; and d=x, y, ( , )d

jW f x y is the wavelet coefficient obtained.  

 

Figure 2.2 Steps in multiple multiscale denoising techniques 

A 2D dyadic wavelet transform is applied to the logarithmically transformed image. The 

MPT and adaptive thresholds are computed. The significant wavelet coefficients are identified 

by comparing the product thresholds with the adaptive thresholds. The wavelet transform 
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employed in the implementation behaves like a canny edge detector. The steps employed in the 

implementation of the MPT based denoising in logarithmic domain are shown in Figure 2.2. 

2.2.3 ProbShrink method of denoising (M3) 

The generalized Laplacian prior based probability evaluation is used for estimation of the noise 

free components in the signal and is represented as [99] 

( ) exp
1

2

p g g     (2.19) 

where ( )x  represents the Gamma function, 1

0
( ) x tx t e dt , 0 is known as scale factor and 

β presents the shape parameter. The wavelet coefficients are multiplied with estimated 

probability of the signal containing vital information of interest. Estimation of the probabilities 

alleviated the need for preliminary edge detection. Each of the coefficients is shrunk in the 

subband using adaptive function with the probability that they represented significant 

information. If the signal does not have “signal of interest”, it is represented by
0H . The “signal 

of interest” in the signal is labelled as
1H  with threshold T for log( )g g  and is defined as,

0 :H g T , 
1 :H g T . This method of denoising is known as the ProbShrink [99]. The 

probability based shrinkage is computed using the relation in Equation 2.20.  

 
1

ˆ ( ) ( 1 )g P H y y y    (2.20) 

where represented the likelihood ratio,
1 0( ) ( )P H P H ,

1 0( ) ( )p f H p f H  and 

log( )f f . The image in the logarithmic is decomposed into the subbands using DWT. All the 

specifications for subband adaptive shrinkage are incorporated in the designed estimator, and 

 is expressed as   

0

1

1
1 ( ) ,

( )

( ) 1
( ) ,

inc

inc

T
P H

P H
T

     (2.21) 

The expression in Equation 2.21 can be written as  

1 0( ) ( ) exp( ) 1 exp( )P H P H T T  for β =1  (2.22) 

These values are combined with 

0 0( | ) ( ; ) ( | )p f H f g f g H dg    (2.23) 
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1 1( | ) ( ; ) ( | )p f H f g f g H dg    (2.24) 

with zero mean Gaussian density of ( ; )f with standard deviation . The shape and the 

scale parameter for generalized Laplacian prior for noise-free wavelet coefficients are estimated 

from the noisy histogram. The probability density function (PDF) of coefficient magnitudes, 

averaged coefficients and probability of each coefficient in the subbands are calculated, 

followed by ProbShrink shrinkage. 

 
2.2.4 SURELET (M4) 

The clean image requirement for the estimation of the MSE is overcome using the SURELET 

[101]. This is employed for an efficient and fast denoising of the images. The optimization is 

performed in the image domain with the extension of boundaries leading to improvement in the 

PSNR. This technique is the combination of minimum risk estimation using SURE and linear 

expansion of thresholds (LET). The process of SURELET estimation can be represented in 

Equation 2.25  

 
1

F( ) F ( )
K

k k

k

f a f     (2.25) 

where 
ka are computed by minimization of loss (SURE). The loss is estimated using Equation 

2.26.  

                                 
2

2 21 2
F( ) div[F( )]f f f

N N
   (2.26) 

which is the unbiased estimation of the MSE and this is estimated by Equation 2.27 

21
( ) F( ) xf

N
      (2.27) 

for ( , ) log( ( , ))f x y f x y  and exp( (log( ( , )))denoised SLET orginalf T f x y , where 
SLETT  is SURELET 

based denoising. Filter bank based SURELET is analyzed with overlapping factor equal to 3, 

redundancy=3 and the down sampling factor N=4. The estimated coefficients 
ka  are the 

solution for linear set of Equations, the system is represented by  

,

T T 2

1
[M] [ ]

F ( ) F ( ) F ( ) - div{F ( )}

k l k

K

k l k k

t
c

f f f f f  for k =1,….,K  (2.28) 
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Let 
, ( , ) [1; ] [1; ]

D= i j i j L N
d represent decomposition and 

, ( , ) [1; ] [1; ]
R= i j i j N L

r leading to the ideal 

reconstruction DR =Id .The thresholding is represented as 
[1; ]i i i L

w w .The point-wise 

denoising technique is of the form ˆ F( ) R (D )fg f . Incorporating LET with SURE the 

algorithm can be rewritten as 

1
F ( )

F( ) R (D )

k

K

k k

k
f

f a f      (2.29) 

where (.)k
is point-wise thresholding. The denoising is performed point-wise using SURELET, 

and the threshold is calculated using the relation given below [101]:  

i,1 1 i,2 2( ) a ( ) a ( )i w t w t w , where 
1( )t w w  and 

8( )
3

2 ( ) (1 )
w

t w w e   (2.30) 

 
2.2.5 Interscale orthonormal wavelet thresholding (M5) 

The interscale orthonormal wavelet thresholding (IOWT) [102] is a parameterized denoising 

technique which alleviates the necessity of a statistical design model. This method uses the 

observation that no shift can be seen between the features of bandpass LHj and lowpass LLj 

subbands when the group delay is the same, else leading to some variations. To balance for the 

shift due to group delay, the lowpass subband is filtered in three bandpass directions using gain 

delay compensated (GDC) filters. The inter-scale and intra-scale correlations between various 

coefficients of different subbands with increased redundancy help in obtaining better denoising. 

No assumptions are being made on the existence of clean image. The MSE is estimated using 

SURE without any apriori information of noise free image. The goal is to find the denoising 

function that minimizes the MSE [102]                                         

2 2 2MSE ( ) ( ) 2 ( )f g f g f g   (2.31) 

The general form of denoising function is [102]  

1

( ) ( )
K

k k

k

f a f      (2.32)  

where  is the basis function. The basis function determines the shape of denoising and has 

properties like differentiability, anti-symmetric and linear behaviour for large coefficients. The 

point-wise function is being used as the denoising function given by [102] 
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2
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fK k
T

k

k
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A reliable statistical analysis is being ensured by preventing denoising in subbands where 

number of samples is below 256. The frequency responses of analysis and GDC filters are 

computed followed by 2D wavelet transformation of the gray scale, resized log transformed 

echo image. The image in the logarithmic domain is filtered using an adaptive filter followed by 

interscale prediction. The image is denoised using interscale SURELET.  

2.2.6 Block thresholding (BlockShrink) (M6) 

The risk estimation based on SURE does not take into consideration the neighbouring 

coefficients of the pixel during thresholding and hence it is considered to be less adaptive to the 

data [239]. Thresholding is applied to entire block in block thresholding, instead of each element 

at each level individually. Either all the wavelets coefficients within the block are retained or all 

are set to zero. The SureShrink based denoising does not take into consideration the 

neighboring coefficients of a pixel under consideration hence it can be said that it is less 

adaptive to data [239]. The major hurdles in block thresholding are the constant block size and 

at each resolution level correlation is not taken into consideration. The other issues are 

selection of wavelet type and resolution level.  

2.2.7 NeighShrinkSURE (M7) 

Major hurdles in block thresholding are a) constant block size and b) correlation is not taken into 

consideration at all levels. These difficulties are encountered by estimating the optimal threshold 

and block size by incorporating SURE with NeighShrink resulting in NeighShrinkSURE. 

Adaptive block size and threshold are estimated using Stein’s unbiased risk estimation. The 

threshold value is compared with sum of the squares of all the wavelet coefficients for each 

block (
2

bS ) [103,239]  

   2 2

1 1b iji ib j jb
S w      (2.34) 

where 
1 1 1{ : ( 1) 1 ,ib i b L i b L  

2 2 2{ : ( 1) 1 .jb j b L i b L  

If 2

bS  is less than or equal to the estimated threshold, the coefficients are laid to rest (discarded) 

with zero value or else a breather (enhanced) is added through the Equation 2.35 [103, 239]  

2

1, 2

ˆ 1ij ij

b b

w
S

      

(2.35) 

for 
1i ib ,

2j jb . The estimated total risk is represented as [103, 239]  

1 2

1 2

2 2
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b b

b b

SURE w L SURE w L    (2.36) 
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The greatest threshold 
s
and the block size 

sL  are acquired by minimizing 
2, ,SURE w L  

specifically by [103, 239]  

2

,

, arg min ( , , )s s

L

L SURE w L
    

(2.37) 

The coefficient to be denoised is placed at the centre of square neighbouring window. The 

optimal threshold is estimated using Stein’s loss estimation. The NeighShrink shrinkage [103, 

239] is computed using the relation 

 
ˆ wij ij ij      (2.38) 

where
2

2

1
ij

ijS
, 

2 2

,k l Bij klij
S w , is the threshold.  

The detail subbands are extracted and thresholding is reinforced. The optimal threshold, 

optimal neighbourhood size and thresholding of noisy subband are estimated using 

NeighShrink. A 2D wavelet with subband thresholding at various level of decomposition is used 

in the 'NeighShrinkSURE' filter. The results obtained with noise variance equal to 0.01 for 2 

level of wavelet decomposition are considered for comparisons with other denoising techniques. 

 
2.2.8 Curvelet based denoising 

The curvelet transform is a multi-scale transform with frame element indexed by the scale and 

the location parameter [13, 242, 247]. Unlike the wavelets, curvelets are well localized not only 

in position and scale but also in orientation. This transform is effective in noise reduction with 

edges well preserved along the curves since the curvelet pyramid consists of elements with high 

degree of directional specificity. Curvelet based denoising methods preserved the edges 

perfectly, however, these methods also generated some visual distortion and fuzzy edges in the 

homogeneous regions of the image [242]. They consist of the combinations of ridgelet and 

spatial bandpass filters. They have variable width, length and anisotropy. The image can be 

represented at different scales, permitting the removal of different amount of noise at different 

scales.  

The ridgelet are combined with spatial band pass filter for isolation at various scales.  The 

curvelet transform can be used for effective denoising as it can preserve the edges. The ridgelet 

transform is able to capture line-singularities of the image, but could not approach the curve-

singularities very effectively. The ridgelet posses a global length, so a variable width can be 

embedded in the curvelets along with a variable length resulting in the required variable 

anisotropy.  
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Candes et al. [247] had proposed fast discrete curvelet transform (FDCT) which is widely 

employed for image denoising applications. The curvelet based denoising technique can deliver 

edge preservation perfectly, but may also generate visual distortion and fuzzy edges in 

homogeneous regions of the denoised image. The steps used in the implementation of curvelet 

based denoising are a) application of forward curvelet transformations, b) thresholding of the 

coefficients and c) reconstruction using the inverse curvelet transformation. Denoising is 

performed in logarithmic domain using soft thresholding with five curvelet subbands and ridgelet 

scale L= [3 4 4 5] from fine level to coarse level. The minimum local window size of local ridgelet 

is taken as 16 [242]. 

 
2.2.9 Generalized likelihood method (GLM) of filtering 

GLM is a multiscale denoising technique based on the multiplicative model of speckle noise. It 

emphasizes on the visual outlook of the image whereas techniques like SRAD concentrate only 

on edge preservation [22, 116]. An initial classification of the coefficients is carried out based on 

the correlation among the prominent features across various resolution scales non-iteratively. 

This initial coefficient classification is employed for the estimation of statistical distribution of the 

features of interest and noise. The spatial adaptation is achieved using a local spatial activity 

indicator in the wavelet domain. It uses non-decimated wavelet transform, with equal number of 

coefficients at each resolution scale. 

 
2.2.10 Iterative denoising techniques 

Anisotropic diffusion filter is a nonlinear, partial differential Equation (PDE) based technique that 

promotes diffusion in homogeneous region while holds back at edges [22, 35, 83, 86]. The 

major advantage of nonlinear diffusion is speckle noise reduction can be carried out directionally 

by edge function and edges get enhanced. In order to get rid of limitations of the AD filter, Yu 

and Acton [35] proposed the SRAD filter. The diffusion function is controlled by instantaneous 

coefficient of variation (ICOV) and it is represented as ratio between standard deviation to 

mean. Detail preserving anisotropic diffusion (DPAD) method [86] estimates the equivalence 

between threshold, controlling the level of diffusion and the variation in noisy coefficient by 

incorporating various modifications to SRAD [22]. A larger neighbourhood for estimating the 

local statistical parameters are incorporated in DPAD calculations. Geometric filter [22, 27,130, 

131, 244] works on increasing or decreasing the values of neighbourhood pixels based on their 

relative values. It works on the principle that images are made up of valleys and narrow walls. 

This filter tears down the walls and fills up the valleys.  
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Thus, the weak edges to be preserved get smeared. The intensities of the pixels located 

at the centre of the 3×3 window are compared with eight neighbours. Depending on intensity 

values of neighbourhood pixels the value is either incremented or decreased so that the values 

stands out compared to others. The size of moving window in this study is set to 3×3 with 

number of iteration equal to 2.The visual quality of the image improves on application of 

geometric filter on noisy images but the same time image is smoothed considerably. Some of 

the edges and finer details are mostly lost on application of geometric filter. In this study the 

following parameters are considered for PMAD filter: number of iterations=10 to 60, diffusion 

constant=30, rate of diffusion=0.25 and spatial neighborhood of pixel=8. The coefficient of 

variation = 0.02 and number of iterations =30 are considered for analysis of SRAD. The SRAD 

filter, the adaptive Wiener filter, geometric, DPAD and the PMAD filters are represented by 

method numbers from M10 to M14, respectively. 

 
2.2.11 Adaptive fidelity based total variation (M8) 

The image texture provides lots of critical information but this is almost lost on application of 

denoising methods like the AD filter. To overcome such drawbacks, image denoising based on 

total variation with adaptive fidelity term is proposed by Gilboa, Zeevi and Sochen [120]. The 

adaptive fidelity term controls the amount of denoising by measuring local variance in the 

image. The denoising is performed in two phases. In the first phase the texture and the noise 

are isolated using scalar total variation with λ =1. During the second phase local power 

constraints estimated using the local variance are placed on the output of first phase. 

 
2.2.12 Enhancement 

The Butterworth filter is able to reduce noise with preservation of edge. No ringing effects are 

induced in the image due to the denoising process. The performance is superior compared to 

the median filter and average filter [245, 248]. A Butterworth filter is employed for enhancement 

of TTE images. The general form of an nth order Butterworth filter is defined in terms of transfer 

function as [245, 248] 

2

0

1
( , )

1 [ ( , ) / ] n
H u v

D u v D
    (2.39) 

where 
2 2 1/2( , ) [( / 2) ( / 2) ]D u v u P v Q with 2 1P M , 2 1Q N . 
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2.2.13 Proposed schemes of denoising using multiple multiscale techniques 

The multiscale techniques M1 to M7, DWT and DTDWT with hard and soft thresholding are 

experimented by projecting the input image in the logarithmic domain. Various steps 

incorporated in the study of multiscale techniques are in accordance to the description available 

in the respective reference papers. The proposed methodology of using the multiscale 

techniques for reduction of noise is shown in Figure 2.1. The resources available on the internet 

and those provided by various authors are tabulated in Table 2.1 for quick reference. The steps 

used in the implementation of multiscale techniques are shown in Figure 2.2. The proposed 

schemes of denoising using multiple multiscale techniques along with other techniques are 

briefly described below.  

 
2.2.13.1 Logarithmic BayesShrink (LM1E)  

In LM1E, the log transformed image is decomposed using a multilevel 2D wavelet transform. 

The data driven threshold are estimated followed by the soft thresholding. The image is 

reconstructed using inverse transformation. The LM1E method of denoising generated large 

threshold values for the TTE images. To address this issue the images are pre-processed 

before application of LM1E filter.  

 
2.2.13.2 Logarithmic MPT (LM2E)  

A 2D dyadic wavelet transform is applied to the image in the logarithmic domain. The multiscale 

product and adaptive thresholds are estimated by making use of steps shown in Figure 2.2. The 

significant wavelet coefficients are identified by comparing the product thresholds with adaptive 

thresholds. The inverse wavelet transformation is followed by the exponential operation.  

 
2.2.13.3 Logarithmic ProbShrink (LM3E) 

The logarithmic transformed image is decomposed into subbands using the DWT. The shape 

and the scale parameter for the generalized Laplacian prior and the noise-free wavelet 

coefficients are estimated from histogram. The probability density function (PDF) of coefficient 

magnitudes, averaged coefficients and probability of each coefficient in the subbands are 

calculated, then ProbShrink based wavelet shrinkage is being performed. These steps are 

followed by wavelet reconstruction.   

2.2.13.4 Logarithmic SURELET (LM4E)  

The loss estimation based on SURE (Stein’s unbiased risk estimation) combined with the LET is 

analysed in the logarithmic domain using the LM4E filter. The boundaries are extended followed 
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by wavelet transformation, before application of the LM4E filter. Point-wise thresholding is 

performed based on minimization of the SURE and the LET. The wavelet reconstruction is 

followed by the exponential operation. The steps employed in the implementation of LM4E are 

shown in Figure 2.2.  

2.2.13.5 Logarithmic IOWT (LM5E)  

A reliable statistical analysis may be ensured by preventing denoising in the subbands where 

number of samples is below 256. The essential number of iterations and number of dyadic 

scales for a given size of signal are to be computed. The frequency responses of analysis and 

gain delay compensated signals are computed. This is followed by the 2D wavelet 

transformation of the image which is converted into gray scale, resized, and projected into the 

logarithmic space. The image is denoised using interscale SURELET and reconstructed using 

inverse wavelet followed by exponential operation. 

2.2.13.6 Logarithmic BlockShrink (LM6E)  

The detail subbands are extracted and for each of the subblock the optimal threshold are 

estimated. The thresholded coefficients matrix is formed and the image is reconstructed. The 

exponential of the reconstructed image is taken to move the image into non-logarithmic domain. 

  
2.2.13.7 Logarithmic NeighShrinkSURE (LM7E) 

The detail subbands are extracted and subband thresholding is reinforced with calculation of the 

optimal threshold, optimal neighborhood size and thresholding of noisy subband using 

NeighShrink. The thresholded subbands are reconstructed and denoised image is obtained. 

The steps employed in the implementation of LM7E filter are shown in Figure 2.2. 

 
2.2.13.8 M-band Ridgelet (M9)  

The combination of M-band wavelet and Ridgelet known as M-Band Ridgelet (MBR) is 

proposed for analysis and classification of texture of standard natural test images [94]. Texture 

is preserved using MBR transformations. The bottleneck of 2D wavelet and ordinary ridgelet 

transforms are overcome using the MBR based filter. The issue of concern using the wavelets is 

the signal could be decomposed only with same bandwidth in the logarithmic scale. The MBR 

overcomes the disadvantages of the wavelet and ridgelet. In this thesis, it is proposed to use the 

MBR based filter with neighbor coefficient (NeighCoeff) thresholding [249] for speckle noise 

reduction in the TTE images. Before application of the MBR transforms the images are pre-

processed.  
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The steps used in the MBR based despeckling are as follows:  

Step 1: Load TTE image, resize and convert it into gray scale 

Step 2: Apply the 2D-FFT and partition into slices. 

Step 3: Apply the inverse 1D-FFT on each slice. 

Step 4: Apply the 1D M-band wavelets on each slice. 

Step 5: Get the M-band ridgelet responses. 

Step 6: Apply NeighCoeff thresholding algorithm on the M-band ridgelet responses. 

Step 7: Reconstruction of M-Band ridgelet to obtain the desired denoised image 

The NeighCoeff thresholding is performed taking into consideration a reference point and 

its neighbor for length L=3. The NeighCoeff thresholding takes into account the neighbouring 

MBR coefficients. In this method, size of the neighbor varies depending on the coefficients. 

2 2

, , 0;
N

i j i j m

m N

S MRT N N i     (2.40) 

Here j is the level in M-band decomposition and the size of neighbour is (2N+1). N0 can be 

selected based on the size of image and the support of M-band ridgelet coefficients: 
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else

    (2.41) 

where is given by 2log (m) and α adjusts the threshold value in the denoising process. 

  

Steps employed in the implementation of the MBR based despeckling  

Step 6.1: Apply M-Band ridgelet transform to the noisy image, obtain the scaling coefficients 

and M-band ridgelet coefficients. 

Step 6.2: Choose the threshold by employing Equation 2.40 and Equation 2.41 and apply 

thresholding to the MBR coefficients (leave the scaling coefficients alone). 

Step 6.3: Reconstruct scaling coefficients and the MBR coefficients and obtain the denoised 

image. 

The adaptive Wiener filter, represented as LM11E in this section, is implemented in 

logarithmic domain using MATLAB inbuilt function “Wiener2”. The size of window is set either as 

3×3, 5×5, 7×7, 9×9. The methods M8 to M10 and M12 to M14 are implemented considering the 

multiplicative noise model. The parameters and procedure incorporated in the implementation 

and analysis of these filters are according to the results discussed in [24, 26, 90-93, 99-103, 

227, 239, 242].  The algorithms and the MATLAB functions provided by the authors of methods 
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M1 to M7 are being used for studying the applications and analysis of multiscale techniques in 

the logarithmic domain for the TTE image denoising. The name of the shrinkage technique 

along with the references, acronyms used for addressing them and on-line link for available 

resources are tabulated in Table 2.1 for quick reference.  

 

2.2.14 Results and Discussion 

Experimental results obtained for noisy Barbara image using logarithmic multiscale techniques 

(LM1E to LM7E) are depicted in Figure 2.3 and visual quality comparisons are shown in Figure 

2.4. The performance of wavelet hard thresholding (WTHT), wavelet soft thresholding (WTST) 

and translation invariant wavelet transform with soft thresholding (TIWT) are compared with 

other logarithmic methods in Figure 2.3. The noise in Barbara image is effectively removed with 

structure well preserved using method LM7E as observed in Figure 2.4. Denoising performance 

of multiple multiscale techniques in the logarithmic domain (LM1E to LM7E, and LM11E) are 

initially studied and analyzed on 10 TTE images (I1-I10) where image I1 is the AV in PSAX, I2 is 

the AV in PLAX, I3 is the LV in A4C, I4 is the AV in A5C, I5 is LV in A2C during systole and I6 to 

I10 are images acquired during diastole. 

 

 

Figure 2.3 Comparison of IQM at various values of noise variance for Barbara image 
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Figure 2.4 Comparison of visual quality of Barbara image after denoising. a. Noisy image, b.LM1E, 
c.LM2E, d.LM3E, e.LM4E, f.LM5E, g.LM6E, h.LM7E, i.LM8E 

 

The results obtained for the TTE images using all logarithmic methods are depicted in Figure 

2.5. The performances of LM6E and LM7E are compared with M10, M12 to M14 in Figure 2.6. 

The performances of multiscale techniques for noisy Barbara image are tabulated in Table 2.2. 

The IQM obtained for all denoising techniques using 1000 TTE images are tabulated in Table 

2.3 and Table 2.4. Table 2.3 presents a comparison of edge preservation and other parameters 

in terms of mean and standard deviation (mean ± std) and Table 2.4 contains various error 

values in denoised TTE images specified in-terms of MSE, RMSE, LMSE, NAE, Err3, Err4 and 

MD. The denoised images obtained on application of multiscale techniques are depicted in 

Figure 2.7 (PSAX view), Figure 2.8 (PLAX view), Figure 2.9 (A4C view) and Figure 2.10 (A5C 
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view). The clinical validation of denoised images is shown in Table 2.5. The denoised images 

obtained on using the MBR based filter are shown in Figure 2.11. 

LM2E filter: The images are smoothed using the LM2E filter with partial loss of the texture 

information. It is observed that the PSNR stationed at 22.49 dB with σ≥0.7 for the Barbara 

image. The PSNR for LM2E filter is superior compared to despeckling techniques such as 

LM3E, LM5E, M8, M9, M12, M14, GLM and curvelet. It is observed that the FoM and the SSIM 

are greater than 0.9, indicating good edge preservation. The MSE for all TTE images I1-I10 are in 

the range 27 to 35. The visual quality assessment reveal that the images are over smoothed, 

with the structure intact but the finer details lost. The IQI is moderate for all TTE and standard 

test images on application of LM2E filter. The clinical validation reveals that the results of LM2E 

filter is not completely acceptable for them. The visual qualities of denoised TTE images in 

multiple views, on application of LM2E are shown in Figure 2.7 to Figure 2.10. 

LM3E: A window size of 3×3 is employed in the LM3E filter for experimentations at various 

noise levels with sym8 based dyadic wavelet transform at level 2. The values of PSNR, ρ, IQI, 

and FoM are better compared to the LM5E filter. The visual quality of denoised image is poor as 

noise is retained in the image. The values of β≤0.1 and IQI ≤0.3 speak of the poor quality of the 

denoised images. The edges are blurred, they are not preserved. But it is necessary to preserve 

the edges in the medical even after pre-processing for accurate diagnosis but this may not be 

possible using the LM3E filter. The visual qualities of denoised TTE images in multiple views, on 

application of LM3E are shown in Figure 2.7 to Figure 2.10. 

Table 2.2 Comparison of IQM for Barbara image using multiscale and other techniques 

Method BETA IQI FOM SSIM ρ PSNR SNR MSE RMSE LMSE GAE ERR3 

LM1E 0.743 0.715 0.893 0.916 0.997 28.41 45.05 93.72 9.68 0.475 0.059 12.30 

LM2E 0.629 0.671 0.894 0.912 0.996 27.15 42.52 125.42 11.20 0.607 0.059 15.67 

LM3E 0.086 0.527 0.757 0.816 0.992 23.61 35.45 282.98 16.82 0.992 0.089 22.67 

LM4E 0.931 0.802 0.934 0.955 0.999 32.69 53.60 35.03 5.92 0.136 0.037 7.41 

LM5E 0.857 0.770 0.930 0.946 0.998 30.53 49.29 57.52 7.58 0.274 0.046 9.63 

LM6E 0.856 0.719 0.911 0.935 0.998 30.17 48.56 62.58 7.91 0.275 0.050 9.76 

LM7E 0.920 0.793 0.934 0.953 0.999 31.56 51.34 45.44 6.74 0.195 0.041 8.54 

M8 0.725 0.684 0.706 0.888 0.996 27.32 42.9 120.5 10.98 0.687 0.071 13.1 

M9 0.070 0.513 0.693 0.808 0.990 23.03 34.29 323.51 17.99 0.995 0.095 24.32 

M10 0.798 0.725 0.873 0.921 0.997 28.09 44.4 100.98 10.05 0.372 0.067 12.1 

LM11E 0.785 0.704 0.889 0.918 0.997 28.79 45.8 85.86 9.266 0.383 0.056 11.7 

M12 0.406 0.546 0.739 0.794 0.991 20.42 29.1 590.8 24.31 1.102 0.146 31.8 

M13 0.828 0.761 0.865 0.931 0.998 29.55 47.3 72.10 8.491 0.361 0.054 10.4 

M14 0.754 0.704 0.88 0.896 0.996 26.46 41.1 147.03 12.13 0.531 0.073 15.6 

HDTDWT 0.910 0.767 0.927 0.944 0.999 31.53 51.28 45.74 6.76 0.179 0.041 8.59 

HDWT 0.866 0.749 0.916 0.933 0.998 30.39 49.00 59.49 7.71 0.252 0.047 9.87 

WTHT 0.678 0.651 0.748 0.881 0.995 25.91 40.04 166.85 12.92 1.187 0.086 15.10 

TIWT 0.842 0.625 0.804 0.879 0.996 26.41 41.04 48.72 12.20 0.443 0.072 15.58 

GLM 0.682 0.605 0.789 0.874 0.995 26.14 40.50 158.29 12.58 0.639 0.070 16.48 

Curvelet 0.676 0.650 0.750 0.882 0.995 25.92 40.06 166.52 12.90 1.196 0.086 15.08 
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Figure 2.5 Comparison of IQM for TTE images using multiscale techniques 

 
Figure 2.6 Comparison of multiscale and iterative techniques for TTE images 

 
LM4E: The performance of the LM4E filter is good when operated for very smaller values of 

noise variance. But for the higher values of σ, the threshold values generated are unwarrantedly 

very large, leading to the induction of spurious edges in the denoised image. At σ=0.001, 0.01, 

0.1, 0.2, the maximum pixel value in thresholded images are 253.3, 275.3, 487.7, and 3.3×103 

respectively. At higher noise level improvements are observed on combining LM4E filter with 

adaptive Wiener filter with 3×3 windows. 
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LM5E: The IQM for the LM5E filter are on similar lines of the LM4E filter. The visual qualities of 

denoised TTE images in multiple views, on application of LM4E and LM5E are shown in Figure 

2.7 to Figure 2.10.  

LM6E: The wavelet with symmlet 8 is used for wavelet transformation. The PSNR for the LM6E 

filter is highest among the multiple multiscale techniques. The MSE is least, and ρ almost equal 

to 1, β= 0.93, FoM=1 and SSIM=1. The LM6E filter operating at various values of σ resulted in 

good noise suppression and edge preservation. 

Table 2.3 Comparison of IQM for TTE images using multiscale techniques (mean ±std) 

Method BETA IQI FOM SSIM NCC PSNR(dB) SNR(dB) 

LM1E 0.54±0.01 0.88±0.01 0.91±0.01 0.94±0.01 0.87±0.05 25.50±0.30 23.29±4.09 

LM2E 0.87±0.01 0.62±0.02 0.93±0.02 0.99±0.01 0.97±0.01 33.08±0.52 37.47±1.16 

LM3E 0.049±0.02 0.307±0.03 0.774±0.03 0.899±0.01 0.851±0.06 23.365±0.36 19.023±3.92 

LM4E 0.85±0.04 0.39±0.04 0.99±0.01 1.00±0.00 0.99±0.03 35.53±1.57 41.86±3.99 

LM5E 0.497±0.05 0.402±0.05 0.913±0.04 0.980±0.01 1.02±0.01 26.16±1.44 24.61±4.50 

LM6E 0.986±0.01 0.422±0.05 0.985±0.01 0.998±0.00 0.996±0.01 42.542±2.33 57.377±0.94 

LM7E 0.964±0.01 0.510±0.05 0.97±0.01 0.99±0.00 0.99±0.03 37.08±0.79 45.46±0.87 

M8 0.78±0.02 0.67±0.03 0.67±0.06 0.90±0.01 0.93±0.03 28.53±0.12 29.11±4.32 

M9 0.16±0.01 0.67±0.02 0.80±0.02 0.90±0.01 0.84±0.05 23.55±0.32 17.95±2.15 

M10 0.95±0.00 0.61±0.02 0.97±0.01 1.00±0.00 0.98±0.00 36.35±0.29 43.48±1.53 

LM11E 0.97±0.01 0.87±0.01 0.95±0.01 0.99±0.01 0.99±0.01 40.02±0.81 51.35±0.98 

M12 0.99±0.01 0.95±0.00 0.96±0.01 1.00±0.00 1.00±0.00 46.96±0.83 65.41±1.11 

M13 1.00±0.00 0.71±0.02 1.00±0.00 1.00±0.00 1.00±0.00 52.07±2.63 74.92±3.24 

M14 0.86±0.01 0.52±0.02 0.64±0.04 0.93±0.01 0.96±0.01 30.53±0.36 31.85±1.50 

GLM 0.987±0.01 0.64±0.02 0.98±0.01 1.00±0.00 1.00±0.00 41.33±0.38 53.97±2.30 

 
Table 2.4 Comparison of error based IQM for TTE images using multiscale techniques 

Method MSE RMSE LMSE GAE ERR3 ERR4 MD 

LM1E 183.85±13.02 13.55±0.47 0.81±0.01 0.14±0.03 27.86±0.58 42.06±0.59 226.34±5.52 

LM2E 32.18±3.83 5.66±0.34 0.24±0.02 0.08±0.01 10.89±0.22 16.95±0.21 172.4±0.01 

LM3E 300.68±26.21 17.33±0.74 1.01±0.01 0.21±0.05 33.97±0.81 50.41±0.79 271.72±0.05 

LM4E 19.34±7.67 4.33±0.81 0.37±0.11 0.05±0.02 12.63±2.25 8.35±1.36 117.60±41.90 

LM5E 166.75±60.49 12.73±2.19 3.15±0.97 0.06±0.01 44.33±13.10 95.46±37.91 169.5±92.6 

LM6E 4.19±2.54 1.97±0.55 0.04±0.02 0.03±0.00 3.38±0.65 4.99±0.66 47.21±2.64 

LM7E 12.94±2.37 3.58±0.33 0.11±0.01 0.06±0.01 6.64±0.32 10.44±0.27 102.4±3.81 

M8 91.25±2.51 9.55±0.13 0.47±0.04 0.16±0.04 25.75±1.20 17.21±0.59 214.77±14.72 

M9 287.6±22.15 16.95±0.63 0.98±0.01 0.23±0.03 33.56±1 50.04±1.03 246.4±4.33 

M10 15.12±1.02 3.89±0.13 0.14±0.01 0.06±0.00 10.12±0.06 6.96±0.08 74.33±0.26 

LM11E 6.57±1.20 2.55±0.24 0.05±0.01 0.05±0.01 3.87±0.23 5.04±0.23 28.31±1.97 

M12 3.33±0.25 2.15±0.11 1.01±0.00 1.02±0.00 2.64±0.11 2.99±0.10 5.03±0.60 

M13 3.47±0.29 0.66±0.20 0.01±0.00 0.01±0.00 2.12±0.54 1.35±0.37 19.73±4.34 

M14 57.74±4.67 7.59±0.31 0.28±0.02 0.15±0.01 15.25±0.23 11.63±0.26 84.13±1.79 

GLM 4.80±0.46 2.19±0.10 0.01±0.01 0.02±0.01 5.40±0.15 8.95±0.20 62.3±0.17 
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Figure 2.7 Denoising of TTE images in PSAXD view using multiscale techniques. a. Original image, 
b.LM1E, c.LM2E, d.LM3E, e.LM4E, f.LM5E, g.LM6E, h.LM7E, i.M8 

LM7E: The wavelet decomposition is at level 2 with sym8 type of filter is employed during the 

analysis of LM7E filter. The performance of the LM7E filter is superior compared to other 

methods. The IQM such as the FoM, SSIM, ρ and β are all almost equal to one, which reflect 

superior performances compared to other methods.  The PSNR is higher than the non- 

homomorphic methods considered for comparison. The variation of β between LM7E and LM6E 

is about 0.01 with ρ and FoM quite similar but the values of MSE is lesser using the LM7E filter. 
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The PSNR is around 4dB higher, MSE is lesser by 17 for LM7E filter compared to M10, M12 

and M14. The values of β, ρ and FOM of LM7E filter are similar compared to the SRAD filter 

(fractionally around 0.04 higher using the LM7E filter). 

 

Figure 2.8 Denoising of TTE images in PLAXD using multiscale techniques. a. Original image, b.LM1E, 
c.LM2E, d.LM3E, e.LM4E, f.LM5E, g.LM6E, h.LM7E, i.M8 

 
M8: The performance analysis shows that the application of M8 filter results better edge 

preserved images with β≈0.8, FoM≈0.9, MSE≈40-63. Noise reduction specified using PSNR 
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values are greater for M8 filter compared to the GLM, M14, M12, M9 and curvelet based filters. 

The IQI and β value obtained using LM4E to LM7E filters are better compared to M8 filter. The 

visual qualities of denoised TTE images in multiple views, on application of M8 filter are shown 

in Figure 2.7 to Figure 2.10.  

 

Figure 2.9 Denoising of TTE images in A4C using multiscale techniques. a. Original image, b.LM1E, 
c.LM2E, d.LM3E, e.LM4E, f.LM5E, g.LM6E, h.LM7E, i.M8 
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Figure 2.10 Denoising of TTE images in A5C using multiscale techniques. a. Original image, b.LM1E, 
c.LM2E, d.LM3E, e.LM4E, f.LM5E, g.LM6E, h.LM7E, i.M8 

 

M9: The IQI obtained using the proposed M9 filter is superior in comparison to LM1E, LM3E, 

LM4E, LM5E, LM6E and non-homomorphic methods M10 and M12. The performance of LM9E 

filter is better compared to the M5 filter in terms of all IQM. But the SSIM is lesser than LM1E to 

LM8E except in the case of M5. The images are smoothed and the finer details in the TTE 

images are lost. The denoised images obtained on application of the MBR filter are shown in 
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Figure 2.11. The smoothing of TTE images is observed in second row of Figure 2.11 on 

application of the MBR filter. 

Clinical validation: The validation of denoised images is carried out by grading of images by 

four clinical practitioners at PGI, Chandigrah. The grading of images is based on visual 

perception and preservation of contents in the image.  

 

Figure 2.11 Visual qualities of TTE images on application of MBR filter 

Table 2.5 Grading of denoised images by clinicians 

Filter Name Grade Filter Name Grade 

LM2E, PMAD 4 LM6E, M8, Wiener filter 7 

LM1E, LM5E  5 LM7E, GLM, DPAD 8 

LM4E, SRAD 6 Geometric filter  9 

 

The team of evaluators consisted of a senior experienced clinical practitioner working as 

Professor in Department of Cardiology, and the other three are post-graduate students at PGI, 

Chandigrah. Grading is carried out by awarding values from 1 to 10; 1 signifies bad quality and 

10 for highest visual quality of the image. The average grades of each method are tabulated in 

Table 2.5. The grading reveals that LM6E, LM7E, LM11E, GLM, DPAD, geometric, and AFTV 

filters are acceptable while LM2E, LM1E and LM5E filters are not completely acceptable. 

Comparison of multiple multiscale techniques  

The values of PSNR obtained for standard test images at various noise levels show that the 

performance of LM4E filter and LM6E filter are superior compared to all multiscale schemes.   
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Figure 2.12 Visual qualities of denoised and enhanced images 

The visual quality of LM6E filter and LM7E filter are better superior compared to the LM4E filter 

in terms of finer details preservation. In case of the TTE images the edge preservation is better 

using LM7E filter compared to other techniques. The values of FoM, β, SSIM, and NCC are 

almost equal to one. This means that edges and structures are well preserved using LM7E filter. 

The values of FoM for M2, M4, M6, M7 and M8 filter are greater than 0.85 which show good 

edge preservation in these methods. The β for the LM2E, LM6E and LM7E filters are 0.87, 0.93 

and 0.93 respectively, representing high edge preservation. The MSE of denoised images for 

methods based on M6 and M7 filters are minimum compared to others. The IQI for LM1E, 
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LM2E, LM8E and LM9E filters are 0.9, 0.8, 0.9 and 0.7, respectively indicating that the 

correlation, luminance and contrast of the images are well maintained. Based on these 

observation it may be concluded that the overall performance of LM6E and LM7E filters are 

superior among the multiscale and iterative despeckling techniques. 

I1

I5 I6

I2

I7

I3

I8

I4

I9

PSAX(Systole) PLAX(Systole) A4C (Systole)

A5C (Systole) PSAX (Diastole) PLAX (Diastole)

A4C (Diastole) A5C (Diastole) A2C (Systole)
 

Figure 2.13 Visual qualities of TTE images using LM7E and Butterworth filters 
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Figure 2.14 Multilevel watershed, edge and region based segmentation, First column original images, 
second column denoised images and third column enhanced images 

 
Comparison of multiscale techniques with other denoising methods  

The values of β and FoM are better using LM7E filter compared to M8, M9, M10, M12 and M14 

filter for standard test images and the TTE images. Also the performance of LM7E filter is on-

par with DPAD and geometric filter in-terms of β and FoM value. The values of PSNR is 2.9 dB 

to 37.5 dB for filters such as the M7, M10, M11 and M12 filters compared to the values in the 

range (44.5dB to 46.2dB) for M6. The SSIM ≥ 0.98 for LM6E, LM7E, M10 and M11 filters, FOM 

≥ 0.96 for M6 and M7 filters while it is between 0.91 to 0.95 for M10 and M11 filters, and MSE < 

15 for LM6E and LM7E filters. The β is 0.92 to 0.94 for M6 and M7 filters and 0.89 to 0.91 for 

the M10 and M11 filter but it is 0.95 for the geometric filter. Based on these comparisons a 
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conclusion is made i.e. the performance of LM7E and LM6E filters are better compared to most 

of the non-wavelet based techniques. 

 

Figure 2.15 Active contour based segmentation, First column original images, second column denoised 
images and third column enhanced images 

 
The boundaries are delineated using region growing based segmentation method and 

tracing are acceptable. But seed and threshold selection are difficult for the low contrast images 
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like those of the TTE. The cardiac boundaries traced using multilevel watershed segmentation is 

better compared to other edge and region growing methods but this method at times leads to 

over segmentation. It is also observed that the boundaries are better traced and more complete 

in the enhanced images compared mere denoised images. The enhanced images are 

compared with the original and denoised images in Figure 2.12 and Figure 2.13. The effects of 

denoising and enhancement on boundary detection using multilevel watershed, region and edge 

based segmentation combined with morphological operations are shown in Figure 2.14 for A4C 

view. The application of active contour segmentation based on images acquired in parasternal 

and apical views are shown in Figure 2.15. 

The Chan-Vese model [64] of active contour segmentation with manual selection of initial 

contour is employed for delineation of the cardiac structures boundaries and the results are 

shown in Figure 2.15. The original images are shown in the first column, the second and third 

column contain the denoised and enhanced images, respectively. The denoised image is 

passed through another filter and the obtained enhanced images are shown as “enhanced” 

images in Figure 2.15. Careful observation reveals that enhancement of images helps in 

accurate inner and outer cardiac and valvular boundaries delineation which is visible in the 

denoised images. The enhancement of images seems to be resulting in complete contour 

based boundaries whereas discontinuities in the delineated contours are observed in multilevel 

watershed segmentation of denoised images. The performance of active contour based 

segmentation is better compared to region, edge and watershed transform based segmentation. 

The complete contours are traced using enhanced images in comparison to original and 

denoised images. 

2.3 Hybrid posterior sampling based Bayesian estimation Filter 

Various authors have employed Bayesian estimation in reduction of noise. Achim et al. [34] 

proposed Bayesian estimation in the homomorphic domain for reduction of speckle noise in the 

US images of kidney. Hua et al. [236] integrated wavelet Bayesian despeckling with 

regularization based on the Markov random field for reduction of noise in the SAR images. The 

local weighted average is computed using the Bayesian estimator, which assisted in computing 

the noise free component. An optimal threshold for wavelet shrinkage based on Bayesian 

formulation was proposed by Gupta et al. [110]. The sub-band wavelet coefficients were 

modelled using generalized Gaussian distribution (GGD). The optimum threshold is estimated 

by minimizing the Bayes’ risk function. The resultant threshold is computed as the ratio of sub-

band standard deviation to the noise variance multiplied by proportionality constant [110].  
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The optical coherence tomography (OCT) images like SAR and the US techniques are 

also affected by speckle noise [22, 82, 228, 232]. The logarithmic based posterior sampling 

Bayesian estimation (PSBE) was employed in cutback of speckle noise present in rodent retinal 

OCT images [228]. As stated earlier, the TTE images also suffer from ill effects of speckle 

noise. It is felt that the PSBE technique can be tapped in for noise reduction in the TTE images. 

It is also observed that the performance of PSBE technique degraded drastically for noisy TTE 

images. It was pointed out by Mateo et al. [26] that the sequential or parallel combinations of 

filters would fine tune the despeckling characteristics of filters. Taking into consideration the 

conclusions of Mateo et al. it is proposed to embed PSBE with Wiener filter. To address the 

issues, it is proposed to embed spatially adaptive Wiener filter at various stages like before 

transforming image into logarithmic space, or after logarithmic operation or both before and after 

logarithmic transformation, followed by PSBE and exponential operation in each of the cases. 

These techniques are known as hybrid PSBE filters. They are briefly described in this sub-

section. The complete details of the PSBE technique are available in [228, 232].  

 
2.3.1 Posterior sampling Bayesian estimation (PSBE) 

This method is based on the conditional posterior sampling approach with Bayesian estimation 

for the denoising of speckle noise present in the rodent retinal OCT images [228]. In this 

technique, the noise free details are computed using the Bayesian least square error 

computations using the conditional posterior sampling and then the average squared error is 

minimized. The unknown target distribution is anticipated employing an indirect scheme from a 

recognized preliminary likelihood distribution Q. Let a random position s in the initial site s  and 

it is computed depending upon the preliminary probability distribution ( | )Q s s  defined as [228] 

 
2 2( 2 )

( | ) 1 2 spatial

spatial

s s
Q s s e    (2.42) 

where 
2

s s is the Euclidean distance squared between s & s , and 
spatial

is the spatial 

variance. The preliminary probability has tendency of producing sites in the close proximity of 

initial site s. The new site s is taken into consideration with local mean ( )s and noise variance 

2
 if the condition brought out using Equation 2.43 [228] is satisfied.  This step is repeated to 

incorporate maximum number of sites in the neighborhood of the initial site s  

     ( ) ( ) 2s s     (2.43) 
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The weights at each site are computed using Equation 2.44 [228] 

                                                    2( | ) exp( ( ) ( ) 2 )iw s s s s                           (2.44)                             

A weighted histogram approach is employed for evaluation of the posterior distribution [228] 

with (.) as the Dirac delta function and Z is normalization term. The posterior evaluation is 

represented in Equation 2.45 as  

 ˆ( ( ) | ( )) ( | ) ( ( )) /l l k l l k

k

P g s f s w s s g f s Z     (2.45) 

The minimized Bayesian least square estimation is computed as [228]   

ˆ ( ) ( ( ) | ( )) ( ) ( )l l l l lg s p g s m s g s dg s    (2.46) 

The image is transformed into the logarithmic space in accordance to Equation 1.2 and a 

new site s is drawn based on Equation 2.42. The local mean ( )s confined to the 

neighbourhood with its centre at s  is estimated. A 7×7 region centred at s is utilized in 

computation of the local mean and variance in all the experimentations. The inclusion of the site 

s as the realization of posterior sampling is based on satisfactory realization of the conditional 

sampling proposed by Equation 2.43. It is assumed that the local mean provides the initial 

estimate of noise free data. This determines the enclosure of the site s as realization of the 

posterior distribution with conditional sampling. The procedure of conditional sampling is 

recursively performed, so that maximum number of sites could be incorporated in the 

computation of the image with zero noise. The weights for each site to be embedded in 

sampling are computed using Equation 2.44, which is based on Gibbs likelihood function. The 

weighted histogram estimation is followed by the normalization of the histogram bin. This 

estimation is utilized in posterior distribution and this is represented in Equation 2.45. The 

accumulated weights for each of the sites are those of the acquired information.  

The generalized Bayesian estimation using Equation 2.47 is performed followed by the 

exponential operation. Thus obtained denoised images are used for IQM estimation and 

analysis of the PSBE filter for the TTE images. Butterworth filter is employed for the 

enhancement of the TTE images [245, 249]. This filter is able to suppress the noise with 

preservation of edge. No ringing artifacts are induced in the image during enhancement 

process, and the performance is superior compared to the median filter and average filter. This 

Butterworth filter is also used for enhancement of the US images [245], hence in this thesis it is 

being employed for contrast enhancement of the TTE images of the aortic valve. 
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2.3.2 Proposed hybrid PSBE schemes (N1-N4) 

The performance of logarithmic based PSBE filter [228] is considerably degraded when the TTE 

images are very noisy or the images are embedded or simulated with high speckle noise. To 

overcome this problem a spatially adaptive Wiener filter is sequentially combined with PSBE 

filter. The Wiener filter is used for despeckling of the US images [80, 110, 116, 248]. The Wiener 

filter is very effective and optimum in denoising of additive noise and the performance of Wiener 

in homomorphic domain is on par with other denoising techniques [11, 32, 104-109, 113, 116]. 

This filter enhances the outskirt of the spectrum, and is the optimal filter for US images [11]. The 

Wiener filter is also known for its restoring characteristics [80, 248]. The performance of PSBE 

filter is superior in comparison to others methods. Hence, the PSBE filter and the adaptive 

Wiener filter are combined in the logarithmic domain and are referred to as hybrid PSBE filter. 

The proposed modifications incorporated in the PSBE filter are tabulated in Table 2.6. 

The image is projected into the logarithmic space, filtered using adaptive Wiener filter, and 

subjected to PSBE. This hybrid scheme is represented as method N1. This hybrid scheme is 

very effective at all noise levels. The performance of the filter improved, when the noisy image is 

pre-filtered using adaptive Wiener filter and subjected to PSBE in the logarithmic domain. This 

scheme is known as method N2. The edge preservation improved further when Wiener filter is 

embedded both before and after log transformation followed by the PSBE filter. This 

modification is represented as represented as N3. The modified method N3 introduces over-

smoothing at lower noise levels. The denoised images obtained using N3 method followed by 

adaptive Wiener filtering is represented as scheme N4. The edge preservation and reduce 

distortion are further enhanced in scheme N4. This scheme also leads to over-smoothing but 

most of the IQM improve in N4 scheme. In all the four modifications suggested, the 

implementation of the PSBE filter is on the similar lines as explained earlier.  

Table 2.6 Hybrid PSBE techniques for denoising of TTE images  
Method 

Author Name of the method Type Modification 

N [228] Wong, Mishra, Bizheva and Clausi [228] PSBE LSE 
Embed 
Wiener filter 

N1 
First proposed hybrid PBSE method: Logarithmic transformation+ adaptive Wiener filtering + PSBE 
+exponential 

N2 
Second proposed hybrid PBSE method: Adaptive Wiener filtering + Logarithmic transformation+ 
PSBE +exponential 

N3 Third proposed hybrid PBSE method: Adaptive Wiener filtering + N1 

N4 Fourth hybrid PBSE method:  N3+ Adaptive Wiener filtering 

 

The proposed modifications look similar but with exclusion or inclusion of Wiener filtering at a 

particular point as shown in Table 2.6. The denoised images are enhanced using Butterworth 

filter. The enhanced TTE images would aid automated process of tracing the boundaries.  
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2.3.3 Results 

The performances of hybrid PSBE schemes are compared with the PSBE filter. The methods 

are analyzed for denoising of TTE images of the AV and cardiac chambers in five views. As 

pointed out in the earlier sections, many researchers speak of noise reduction in terms of 

PSNR, SNR, and MSE, but not the edge preservation on application of filters. 

 
Table 2.7 Comparison of PSNR for PSBE and hybrid PSBE methods 

Echo 
image σ

2 
PSNR for PSBE at various values of spatial variance Proposed methods 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 N1 N2 N3 N4 

I1 

0.05 26.6 26.8 27.8 28.4 28.1 27.6 26.9 26.4 25.8 29.4 28.9 29.5 29.2 

0.1 23.8 24.1 25.2 26.2 26.4 26.4 26.0 25.6 25.2 27.3 26.9 27.5 27.4 

0.2 21.1 21.2 22.4 23.5 24.0 24.1 24.1 24.0 23.7 25.2 24.5 25.5 25.4 

0.3 19.5 19.6 20.8 21.6 22.0 22.1 22.1 22.0 22.0 23.5 22.2 23.7 23.5 

I2 

0.05 26.9 28.4 29.2 29.3 28.5 27.7 26.9 26.2 25.6 30.0 28.9 29.5 29.0 

0.1 25.3 25.5 26.5 27.2 27.2 26.6 26.1 25.5 25.1 27.9 26.9 27.7 27.4 

0.2 22.5 22.7 23.8 24.8 24.9 25.0 24.5 24.3 23.9 25.7 24.8 25.6 25.5 

0.3 20.9 21.1 22.0 22.9 23.1 23.0 23.0 22.8 22.5 24.0 22.9 24.0 24.0 

I3 

0.05 27.4 27.6 28.5 28.7 28.1 27.4 26.6 26.0 25.5 29.5 28.5 29.0 28.7 

0.1 24.5 24.7 25.8 26.7 26.5 26.2 25.8 25.3 24.9 27.4 26.6 27.3 27.2 

0.2 21.7 21.9 23.1 23.9 24.3 24.4 24.1 23.8 23.6 25.2 24.4 25.2 25.2 

0.3 20.1 20.3 21.4 22.1 22.4 22.5 22.4 22.1 22.1 23.6 22.3 23.5 23.7 

I4 

0.05 28.3 28.6 29.4 29.4 28.8 27.9 27.2 26.6 25.9 30.3 29.3 29.7 29.4 

0.1 25.5 25.8 26.8 27.4 27.6 26.9 26.4 25.9 25.4 28.1 27.3 28.0 27.8 

0.2 22.7 22.9 24.1 25.0 25.2 25.1 24.9 24.7 24.4 26.1 25.2 26.0 25.9 

0.3 21.0 21.3 22.3 23.0 23.5 23.5 23.3 23.1 23.0 24.6 23.6 24.7 24.6 

 
Table 2.8 Comparison of β for PSBE and hybrid PSBE filters 

Echo 
image σ

2 
Beta metric for PSBE at various spatial variance   Proposed methods 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 N1 N2 N3 N4 

I1 

0.05 0.51 0.52 0.54 0.59 0.62 0.62 0.58 0.52 0.45 0.66 0.81 0.83 0.84 

0.1 0.38 0.39 0.42 0.46 0.50 0.52 0.50 0.45 0.38 0.55 0.73 0.74 0.75 

0.2 0.28 0.27 0.30 0.33 0.37 0.38 0.39 0.34 0.30 0.43 0.55 0.54 0.55 

0.3 0.22 0.22 0.25 0.27 0.29 0.30 0.30 0.26 0.23 0.33 0.35 0.38 0.38 

I2 

0.05 0.63 0.60 0.62 0.67 0.69 0.67 0.63 0.56 0.48 0.72 0.82 0.84 0.84 

0.1 0.46 0.46 0.49 0.54 0.58 0.58 0.56 0.50 0.43 0.62 0.75 0.76 0.76 

0.2 0.33 0.34 0.36 0.41 0.44 0.46 0.44 0.40 0.35 0.50 0.61 0.59 0.61 

0.3 0.27 0.27 0.29 0.32 0.35 0.36 0.35 0.32 0.28 0.39 0.44 0.43 0.44 

I3 

0.05 0.56 0.57 0.60 0.64 0.66 0.66 0.61 0.54 0.47 0.71 0.82 0.83 0.84 

0.1 0.44 0.44 0.47 0.52 0.55 0.56 0.53 0.48 0.42 0.60 0.74 0.76 0.76 

0.2 0.31 0.32 0.35 0.38 0.41 0.43 0.42 0.38 0.33 0.47 0.61 0.57 0.58 

0.3 0.25 0.26 0.28 0.31 0.33 0.34 0.33 0.29 0.25 0.36 0.40 0.40 0.42 

I4 

0.05 0.59 0.59 0.63 0.66 0.68 0.67 0.62 0.55 0.47 0.73 0.83 0.83 0.83 

0.1 0.45 0.46 0.48 0.53 0.57 0.57 0.55 0.49 0.42 0.62 0.75 0.76 0.76 

0.2 0.33 0.33 0.36 0.40 0.42 0.44 0.43 0.39 0.34 0.49 0.59 0.58 0.59 

0.3 0.26 0.27 0.28 0.30 0.35 0.35 0.34 0.31 0.27 0.40 0.44 0.44 0.45 
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But it is necessary to speak of the edge preservation and distortion of the images as edges 

provide important details. The edge preservation and distortion can be measured using the 

FoM, β and SSIM [23, 35, 231]. The performance of PSBE filter and hybrid PSBE filters are first 

tested using standard gray scale test images. And later the performance is evaluated for the 

denoising of the TTE images of the AV and cardiac chamber. 

 

Figure 2.16 Comparison of IQM for TTE images using PSBE and hybrid PSBE filters with 
2

=0.05 and 

spatial
=0.1 

 

Table 2.9 Comparison of ρ for PSBE and hybrid PSBE filters 

Echo 
image 

σ
2
 

Correlation coefficient for PSBE at various spatial variance  Proposed methods 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 N1 N2 N3 N4 

I1 

0.05 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.97 0.97 0.95 0.99 0.99 0.99 0.99 

0.1 0.96 0.96 0.97 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.95 0.98 0.98 0.98 0.98 

0.2 0.92 0.92 0.94 0.95 0.96 0.96 0.97 0.97 0.96 0.96 0.95 0.97 0.97 0.98 0.98 

0.3 0.89 0.89 0.91 0.93 0.94 0.95 0.95 0.96 0.95 0.95 0.94 0.96 0.96 0.96 0.96 

I2 

0.05 0.97 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.96 0.96 0.93 0.99 0.98 0.99 0.98 

0.1 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.93 0.98 0.98 0.98 0.98 

0.2 0.92 0.92 0.94 0.95 0.96 0.96 0.96 0.96 0.95 0.95 0.92 0.97 0.97 0.97 0.97 

0.3 0.89 0.89 0.91 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.92 0.95 0.95 0.95 0.96 

I3 

0.05 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.94 0.99 0.99 0.99 0.99 

0.1 0.96 0.96 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.96 0.94 0.98 0.98 0.98 0.98 

0.2 0.92 0.92 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.94 0.97 0.97 0.97 0.97 

0.3 0.89 0.89 0.91 0.93 0.94 0.94 0.95 0.95 0.95 0.95 0.93 0.96 0.95 0.96 0.96 

I4 

0.05 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.97 0.96 0.96 0.93 0.99 0.98 0.99 0.98 

0.1 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.93 0.98 0.98 0.98 0.98 

0.2 0.92 0.92 0.94 0.95 0.96 0.96 0.96 0.96 0.95 0.95 0.92 0.97 0.96 0.97 0.97 

0.3 0.89 0.89 0.91 0.92 0.93 0.94 0.94 0.94 0.94 0.94 0.92 0.95 0.95 0.96 0.96 
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Figure 2.17 Comparison of IQM for PSBE and hybrid PSBE for at different values of noise variance 

 
Table 2.10 Comparison of SSIM for PSBE and hybrid PSBE filters 

Echo 
image 

σ
2
 

SSIM for PSBE at various spatial variance Proposed methods 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 N1 N2 N3 N4 

I1 

0.05 0.95 0.95 0.96 0.96 0.95 0.95 0.95 0.94 0.94 0.93 0.88 0.96 0.96 0.96 0.96 

0.1 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.92 0.92 0.92 0.87 0.94 0.94 0.95 0.94 

0.2 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.85 0.92 0.90 0.92 0.92 

0.3 0.86 0.86 0.87 0.86 0.86 0.86 0.85 0.85 0.85 0.85 0.82 0.89 0.86 0.89 0.89 

I2 

0.05 0.95 0.97 0.97 0.97 0.96 0.96 0.95 0.94 0.94 0.93 0.87 0.97 0.97 0.97 0.96 

0.1 0.95 0.95 0.95 0.95 0.95 0.94 0.93 0.93 0.93 0.92 0.87 0.96 0.95 0.96 0.95 

0.2 0.92 0.93 0.93 0.92 0.92 0.91 0.91 0.91 0.90 0.90 0.85 0.94 0.92 0.93 0.93 

0.3 0.90 0.91 0.90 0.90 0.89 0.88 0.88 0.88 0.87 0.87 0.83 0.91 0.88 0.91 0.92 

I3 

0.05 0.96 0.96 0.96 0.96 0.96 0.95 0.94 0.94 0.93 0.92 0.86 0.97 0.96 0.96 0.95 

0.1 0.94 0.94 0.94 0.94 0.94 0.93 0.93 0.92 0.92 0.91 0.85 0.95 0.94 0.95 0.94 

0.2 0.91 0.91 0.91 0.91 0.90 0.90 0.89 0.89 0.89 0.88 0.83 0.92 0.90 0.92 0.92 

0.3 0.88 0.88 0.88 0.87 0.87 0.86 0.86 0.85 0.85 0.85 0.81 0.90 0.86 0.90 0.90 

I4 

0.05 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.95 0.94 0.93 0.88 0.97 0.97 0.97 0.97 

0.1 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.88 0.96 0.95 0.96 0.95 

0.2 0.92 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.91 0.90 0.86 0.94 0.92 0.94 0.93 

0.3 0.90 0.90 0.90 0.89 0.89 0.89 0.88 0.88 0.87 0.87 0.84 0.91 0.89 0.92 0.92 

 

Comparison of hybrid PSBE filters and PSBE filter: The proposed experimentations are 

performed on the TTE images of the AV and LV. The images in A2C, A4C, A5C, PSAX, and 

PLAX, are represented as (I1 to I5) during diastole and (I6 to I10) in systole respectively during the 

analysis of the performance. The results are tabulated in Table 2.7 to Table 2.12 and plotted in 

Figure 2.16. The images were added with variable amount of speckle noise using MATLAB 

function “imnoise”. The spatially adaptive filtering is performed using the MATLAB function 
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“Wiener2”. The PSBE filter and hybrid PSBE filters are experimented for spatial sigma (0.1 to 1), 

window size (3×3, 7×7), and the number of samples as 70 to 150, sigma factor is ≥0.8. 

Table 2.11 Comparison of MSE for PSBE and hybrid PSBE filter 

Echo 
image 

σ
2
 

MSE for method N at various spatial variance Proposed 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 N1 

I1 

0.05 141.2 134.9 107.1 94.5 101.5 114.2 132.0 150.5 169.3 186.6 315.3 75.1 

0.1 271.2 255.9 194.7 156.6 148.4 150.6 164.6 180.6 197.9 211.7 335.9 121.4 

0.2 509.6 489.4 371.1 291.6 261.2 251.6 252.9 261.7 277.0 282.8 403.2 197.5 

0.3 734.7 708.0 546.9 452.6 411.1 397.0 396.5 407.8 408.0 418.1 524.0 290.1 

I2 

0.05 133.2 95.0 78.1 77.1 92.1 111.6 133.5 156.4 178.7 199.0 354.5 65.7 

0.1 190.5 181.3 144.9 124.0 126.5 141.2 161.4 183.1 200.9 219.4 372.7 106.1 

0.2 362.0 345.9 269.1 215.5 208.2 213.1 230.3 239.7 262.4 281.5 426.1 175.8 

0.3 529.9 508.3 407.9 336.3 320.8 322.9 333.6 344.1 363.3 373.5 514.9 261.4 

I3 

0.05 119.3 114.1 92.7 88.3 100.3 119.4 142.2 163.6 183.5 203.9 349.6 72.3 

0.1 231.0 218.2 169.5 140.4 144.1 155.2 171.9 192.5 212.7 229.2 372.9 118.5 

0.2 439.7 417.1 320.5 263.8 243.9 237.6 254.3 270.9 280.8 302.2 435.8 198.3 

0.3 638.2 603.4 473.5 399.1 376.9 367.5 376.9 397.7 405.3 423.0 538.9 282.8 

I4 

0.05 95.1 89.7 73.5 73.9 86.3 104.3 124.2 143.8 165.2 184.1 318.3 60.1 

0.1 183.9 172.2 134.6 117.5 119.1 131.3 149.3 168.9 185.5 204.7 334.5 100.5 

0.2 348.6 334.9 253.6 205.7 196.0 199.4 209.3 221.0 236.3 252.9 383.2 160.9 

0.3 510.6 480.5 381.5 323.1 292.2 294.6 306.3 318.3 328.4 343.9 459.7 223.7 

 
Table 2.12 Comparison of FoM for PSBE and hybrid PSBE filters 

Echo 
image 

σ
2
 

FoM for PSBE filter at various spatial variance Proposed methods 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 N1 N2 N3 N4 

I1 

0.05 0.75 0.76 0.78 0.80 0.84 0.86 0.90 0.88 0.83 0.86 0.80 0.88 0.90 0.91 0.88 

0.1 0.67 0.68 0.69 0.70 0.71 0.73 0.76 0.78 0.81 0.84 0.77 0.82 0.83 0.86 0.82 

0.2 0.65 0.64 0.66 0.67 0.67 0.68 0.69 0.72 0.73 0.75 0.77 0.73 0.73 0.80 0.84 

0.3 0.62 0.63 0.63 0.64 0.65 0.65 0.66 0.69 0.70 0.72 0.78 0.72 0.71 0.76 0.81 

I2 

0.05 0.77 0.69 0.70 0.71 0.73 0.75 0.77 0.78 0.82 0.82 0.77 0.80 0.82 0.91 0.88 

0.1 0.68 0.68 0.69 0.71 0.72 0.71 0.76 0.74 0.76 0.77 0.78 0.76 0.77 0.83 0.87 

0.2 0.65 0.64 0.66 0.67 0.68 0.69 0.70 0.72 0.74 0.75 0.80 0.74 0.74 0.81 0.81 

0.3 0.63 0.62 0.63 0.63 0.64 0.66 0.67 0.69 0.70 0.72 0.72 0.71 0.70 0.76 0.81 

I3 

0.05 0.74 0.74 0.77 0.80 0.85 0.85 0.90 0.91 0.90 0.88 0.73 0.90 0.93 0.86 0.81 

0.1 0.67 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.81 0.83 0.75 0.84 0.82 0.87 0.81 

0.2 0.65 0.66 0.67 0.68 0.70 0.70 0.70 0.71 0.75 0.75 0.76 0.75 0.74 0.81 0.81 

0.3 0.63 0.63 0.64 0.65 0.65 0.67 0.69 0.70 0.71 0.73 0.76 0.74 0.72 0.77 0.82 

I4 

0.05 0.66 0.66 0.68 0.70 0.71 0.73 0.75 0.77 0.81 0.84 0.79 0.81 0.80 0.92 0.89 

0.1 0.65 0.66 0.66 0.68 0.70 0.71 0.70 0.76 0.73 0.75 0.79 0.74 0.75 0.82 0.87 

0.2 0.62 0.62 0.62 0.64 0.65 0.67 0.69 0.69 0.72 0.73 0.79 0.72 0.71 0.78 0.84 

0.3 0.60 0.60 0.60 0.61 0.63 0.64 0.64 0.66 0.68 0.69 0.76 0.68 0.66 0.72 0.77 

 

The IQM such as the FoM, β, ρ, SSIM, PSNR and MSE are plotted in Figure 2.16, at 

noise variance σ2=0.05 with spatial sigma σspatial=0.1, Wiener filter size as 3×3. The analysis of 

performance parameters shown in Figure 2.16 reveal that the hybrid PSBE filter are more 

robust to noise in compared to PSBE filter. All the six IQM are superior for hybrid PSBE filter in 

comparison to PSBE filter. It is observed that the edges and structure are well preserved with 
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maximum noise suppression as reflected by the values of β, FOM, and SSIM are greater than 

0.8, MSE is quite small, with higher values of PSNR and SNR. 

 

 

Figure 2.18 Denoising of TTE images by PSBE and hybrid PSBE filters (N1 and N2) 

 

The values of IQM at various noise levels are shown in Figure 2.17. The comparisons in Figure 

2.17 show improvement in denoising performance using the hybrid techniques. The IQM values 

for each hybrid filter are tabulated in Table 2.7 to Table 2.12. These IQM were estimated at 

various values of noise variance with spatial sigma varied in steps of 0.1. The performance of 
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filter is best for spatial sigma between 0.3-0.6 at all levels of noise. It is observed that the 

performance of the hybrid PSBE filters is superior in comparison to PSBE filter. 

 

 

Figure 2.19 Denoising of TEE images by PSBE and hybrid PSBE filters (N3 and N4) 

 

The visual quality of the TTE images stood out using PSBE filters as shown in Figure 

2.18 to Figure 2.20. The edges and structure of TTE images are well preserved. Further, it is 

noticed that the texture is well preserved in the proposed hybrid PSBE schemes like N1 and N2 

filter whereas smoothing is observed in N3 and N4 schemes. The overall image structure is well 
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preserved using all PSBE schemes. The denoised images are enhanced using a Butterworth 

filter. The hybrid PSBE filter of N1 scheme works well at all noise levels. Improvements are 

observed in the values of MSE, PSNR, , , and SSIM, using filter N1 in comparison to PSBE 

filter but no improvement are seen in the FoM. All these observations are based on the bold 

face values in the Table 2.7 to Table 2.12. The visual quality comparisons show improvement in 

the visual outlook with texture and structure of the images well preserved. 

 
 

Figure 2.20 Denoising of TTE images of AV in PSAX by PSBE and hybrid PSBE 

The IQM such as , FoM and SSIM are superior for N2 filtering scheme compared to N and N1 

filters but with decreased PSNR, and . It is observed that the values of PSNR,  and FoM are 

superior for N3 filter in comparison to N2, N1 and N4 filter but with marginal decrease in . The 

values of β and FOM are superior for N4 filter but over smoothing are observed. The denoised 

TTE images on application of PSBE and hybrid PSBE filters are shown in Figure 2.18. 
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Figure 2.21 Denoising, Enhancement and Segmentation of TTE images of AV in PSAX 
 

 

Figure 2.22 Denoising, Enhancement and Segmentation of LV in A4C view 
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The results of hybrid filter N1 and N2 are shown in Figure 2.18 and N3 and those of N4 

filters shown in Figure 2.19. The visual quality of the hybrid filter N2 is superior in comparison to 

hybrid filter N1 and PSBE filter. Further, the performance of N4 is superior in comparison to N3, 

N2, N1 and PSBE filter at higher levels of noise. But, at lower noise levels the performance of 

PSBE filter is superior compared to the hybrid PSBE filters. The performance of PSBE and 

hybrid PSBE filters at various noise levels are shown in Figure 2.20. This Figure 2.20 reveals 

that the performance of PSBE filter is superior in comparison to hybrid PSBE filters at lower 

noise levels. But, at higher noise levels, additional filter being added is justified as the 

performance of hybrid filter is better compared to the PSBE filter. 

The effect of PSBE filter and Butterworth filter in segmentation of TTE images are shown 

in Figure 2.21 and Figure 2.22. The impact of denoising and enhancement on the edge, region 

and watershed based segmentation of TTE images shown in Figure 2.21 and Figure 2.22. The 

enhanced images result better in cardiac and valvular boundaries tracing compared with the 

original and denoised images alone. The Figure 2.21 shows segmentation of PLAX images 

whereas the results in Figure 2.22 are images in A4C view. The performance of multistage 

watershed segmentation is better in comparison to boundary tracing using the edge and region 

based delineation. 

2.4 Hybrid fuzzy filters 

The fuzzy filters based on the concepts of moving average and median are proven to be 

effective in reducing various types of noise [229, 250] but they are not extensively explored for 

multiplicative noise reduction in TTE images. The performance of these filters were reported 

only in-terms of the MSE and number of looks (ENL) in [229, 250], but in medical imaging 

applications it would be necessary to preserve the edges [26]. To address the issue of speckle 

noise reduction in TTE images in general and fine tune the characteristics of fuzzy filter in 

particular, a despeckling technique based on the sequential combination of triangulation moving 

average (TMAV) filter with adaptive Wiener filter in logarithmic domain is proposed, and 

analyzed. The median filter can effectively suppress the speckle noise but the edges get blurred 

and they are not preserved across the image boundaries [229, 250]. The triangulation fuzzy 

filters with moving average center can preserve image sharpness. The block diagram of the 

proposed scheme for hybridization of fuzzy filter is shown in Figure 2.23. 
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Figure 2.23 Denoising using hybrid TMAV filter 

 

The median value for the fuzzy triangulation with median center (TMED) filter [229, 250] are 

defined by Equation 2.47 and Equation 2.48 

( , ) ( , )
1 , ( , ) ( , ) ( , )

[ ( , ) ( , )

1,

med

med mm

mm

mm

f i r j s f i j
for f i r j s f i j f i j

F f i r j s f i j

for f o
          

(2.47) 

max min
( , ) max[ ( , ) ( , ), ( , ) ( , )]

mm med med
f i j f i j f i j f i j f i j           (2.48) 

The maximum, minimum, median and moving average values are respectively represented by

max ( , )f i j , 
min ( , )f i j , ( , )medf i j  and ( , )mavf i j with ,s r A , the window at indices ( , )i j .  

The output of the fuzzy filters is estimated using Equation 2.49 [229, 250] given below: 

( , )
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[ ( , )]. ( , )

( , )
[ ( , )]

r s A

r s A

F f i r j s f i r j s

y i j
F f i r j s

  

(2.49) 

where [ ( , )]F f i j  is the window function defined in terms of fuzzy membership functions and “A” 

is area. The asymmetrical triangulation median (ATMED) filter with median center (ATMED) 

[229, 250] is defined by Equation 2.50 below:  
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max
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for f i j f i j or f
ax

( , ) ( , ) 0
med

i j f i j

 (2.50) 

The details of the TMAV filter and ATMAV filter based on symmetrical and asymmetrical moving 

average center respectively are available in [229, 250]. 

 
2.4.1 Proposed hybrid TMAV filter 

The block diagram of proposed hybrid triangulation moving average fuzzy filter is shown in 

Figure 2.23 and each step is described below: 
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Step 1: Consider a standard noise free image, resize it to 512×512, convert to gray scale and 

induce speckle noise (only for standard images). 

Step 2: Project image into the logarithmic space according to Equation 1.2. This step would be 

represented as f=log (double (f) +1); where f is a noisy image. 

Step 3: The median value are estimated using fuzzy triangulation membership function with 

moving average center (TMAV) defined by Equation 2.51 and Equation 2.52 with different 

window and padding size. 

mav

mv

mav mv

mv

f ( i r , j s ) f ( i, j )
,

f ( i, j )

F f ( i r, j s ) for f ( i r , j s ) f ( i, j ) f ( i, j )

, for f o

1

1
         (2.51) 

max

min

( , ) max[ ( , ) ( , ),

( , ) ( , )]

mv mav

mav

f i j f i j f i j

f i j f i j
                       (2.52) 

The maximum, minimum and moving average values are represented by
max ( , )f i j ,

min ( , )f i j  

and ( , )mavf i j respectively, with ,s r A , the window at indices ( , )i j . 

Step 4: The output of the fuzzy TMAV filter is computed using Equation 2.49. 

Step 5: Output of filter is passed through adaptive Wiener filter with different window size. 

Step 6: The output of fuzzy filter is projected back to the spatial domain using exponential 

operation which is represented by Ydenoised=exp(y)-1. 

Step 7: The IQM are computed followed by analysis of the results.  

The above steps were repeated for different noise levels, images and window size. The 

window size considered for experimentations included 3×3, 5×5, 7×7 and 9×9. All 

experimentations are performed using standard test images of Lena, Mandrill, Cameraman, 

Barbara, Monarch, Woman dark hair and House of size 512×512 [127]. The synthetic noise is 

embedded to each of these images using MATLAB inbuilt function “imnoise”. 

 
2.4.2 Results  

The SSIM and FoM of the proposed hybrid TMAV filter are compared with fuzzy TMAV filter and 

Wiener filter in Table 2.13. The analysis of results tabulated in Table 2.13 and Table 2.14 

reveals that the adaptive Wiener filter in logarithmic domain is superior compared to the TMAV 

filter in terms of SNR and PSNR.  
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Figure 2.24 Denoising using fuzzy and hybrid fuzzy filters 

 

Figure 2.25 Denoising using fuzzy and hybrid fuzzy filters 
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Figure 2.26 Denoising using fuzzy and hybrid fuzzy filters 

 

The performance of fuzzy filter is superior in-terms of IQI, SSIM and FoM. It is also 

observed that performance of the proposed hybrid TMAV filter is superior in comparison to the 

fuzzy filter and Wiener filter in terms of both edge preservation and noise reduction. The values 

of SSIM, FoM, IQI and ρ are enhanced on integration of fuzzy filter with the Wiener filter. The 

denoising results obtained for noise variance equal to 0.1 are compared in Table 2.13 and Table 

2.14. The IQM obtained at various values of noise variance for proposed hybrid TMAV filter are 

shown in Figure 2.24 and Figure 2.25. The improvements in the IQM are observed for proposed 

hybrid TMAV filter.  
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Table 2.13 Comparison of values of SSIM and FoM for hybrid TMAV filter 

Metric SSIM FoM 

Image Lena Monarch House Dark Hair Lena Monarch House Dark Hair 

Noisy Image 0.5733 0.6742 0.4569 0.6173 0.3833 0.4440 0.3393 0.3792 

Geometric Filter  
(GF)  

0.6451 0.7527 0.5412 0.7506 0.3943 0.4848 0.3556 0.3982 

Wiener Filter (WF) 0.7394 0.8192 0.6512 0.7978 0.4913 0.5517 0.3896 0.4285 

HF 
filters 

HF1 (TMED) 0.7407 0.8073 0.7101 0.8325 0.5600 0.6417 0.4317 0.4903 

HF2 
(ATMED) 

0.7618 0.8427 0.7086 0.8415 0.5936 0.6903 0.4607 0.5301 

HF3 (TMAV) 0.8356 0.8855 0.8238 0.9126 0.8219 0.8536 0.5101 0.6259 

HF4 
(ATMAV) 

0.7985 0.8680 0.7506 0.8701 0.6152 0.7771 0.4970 0.5561 

HFW 
filters 

HF1W 0.7787 0.8318 0.7583 0.8614 0.6173 0.7560 0.4933 0.5346 

HF2W 0.7895 0.8571 0.7425 0.8681 0.6136 0.7800 0.5049 0.5692 

HF3W 0.8576 0.8862 0.8445 0.9206 0.8338 0.8547 0.5727 0.7481 

HF4W 0.8175 0.8753 0.7885 0.8860 0.6945 0.8531 0.5151 0.5921 

 
Table 2.14 Comparison of values of SNR and MSE for hybrid TMAV filter 

Metric SNR MSE 

Image Lena Monarch House Dark Hair Lena Monarch House Dark Hair 

Noisy Image 26.37 26.46 26.29 27.25 849.08 738.90 1024.86 669.94 

Geometric Filter  (GF)  31.44 31.64 31.21 32.80 473.44 406.80 581.95 353.56 

Wiener Filter (WF) 41.99 42.41 43.26 42.34 140.63 117.80 145.30 117.84 

HF 
filters 

HF1 (TMED) 34.91 32.69 39.04 35.04 317.74 360.56 236.12 273.02 

HF2 (ATMED) 41.25 40.32 45.66 43.20 153.17 149.71 110.21 106.75 

HF3 (TMAV) 39.20 37.25 44.83 41.63 193.78 213.31 121.30 127.85 

HF4 (ATMAV) 41.19 39.83 45.79 41.81 154.23 158.46 108.54 125.28 

HFW 
filters 

HF1W 35.73 33.10 39.85 35.49 289.02 343.88 215.08 259.23 

HF2W 41.89 39.66 46.57 44.18 145.45 161.67 99.26 95.41 

HF3W 39.33 36.69 44.96 41.64 190.86 227.51 119.44 127.79 

HF4W 41.97 39.02 46.51 42.04 154.46 173.99 99.91 122.01 

 

Over smoothing is observed at the lower noise levels in comparison to higher levels. The FoM 

and IQI obtained are two times of the noisy image. The value of ρ≥0.99 for all the images shows 

that the input and output values are highly correlated. Based on the analysis of results in Table 

2.13 and Table 2.14, it can be concluded that embedding of Wiener filter and the TMAV filter, 

edge preservation and structural similarity can be enhanced. The visual quality of denoised 

image using TMAV filter and proposed filters are compared in Figure 2.26 for noise variance 

equal to 0.1. Large amount of noise is retained in the denoised images. The noise reduction is 

more pronounced using the proposed hybrid TMAV filter as clearly observed from Figure 2.26. 

The IQM of the hybrid TMAV filter is compared with denoising techniques in Table 2.13 and 

Table 2.14. 

2.5 Integrated fuzzy filters 

The applications of the filters such as median, adaptive weighted median (AWM), and moving 

average (MAV) filters are known for removing the additive noise but their application on the US 

images are less explored [26,229, 250]. The working of AWM filter depends on the window size 
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and weight adjustment [26, 73, 228]. It operates normally using a fixed window size thereby 

restricting the enhancement phenomenon. It can result in the smeared image boundaries. The 

geometric filter [244] based on the image morphology preserves the edges which is not 

observed using the TMAV filter. But the issue of concern using the geometric filter is the noise 

retained in the filtered image.  

The Wiener filter based on the minimization of MSE is also employed in the additive 

noise reduction applications. It is used for speckle noise reduction in the logarithmic domain and 

has become reference technique for many researchers for comparison of results obtained by 

their respective methods or modifications [116, 134]. According to psychophysics, the human 

eye may not function as minimum MSE estimator, in fact allows noise leading to sharp intensity 

changes. The applications of fuzzy filters along with geometric, Wiener, the combination of 

geometric-Wiener, the combination of geometric-fuzzy, and the proposed integrated fuzzy (i.e. 

geometric-Wiener-fuzzy) filter are analysed in this sub-section.  

2.5.1 Proposed integrated fuzzy filters 

The fuzzy filters can be employed to suppress noise in the logarithmic domain. But the edges 

were not fully preserved. The geometric filter is known for edge preservation when employed for 

speckle noise reduction. Therefore, it is proposed to combine the edge preservation capabilities 

of geometric filter and noise reduction capabilities of Wiener filter into the fuzzy filters. During 

the implementation of fuzzy filters such as TMED, ATMED, TMAV and ATMAV, as shown in 

Figure 2.27, the output of geometric-Wiener filtered image is logarithmically transformed, and 

passed through TMAV or TMED fuzzy filter. The output of fuzzy filter is transformed to the non-

logarithmic domain using the exponential operation. 

Initially, experiments are conducted to study the applications of geometric filter (GF), 

Wiener filter (WF) and combination of the GF and WF resulting in GW filter. Analysis of the GF, 

WF and GW filter is followed by the study of fuzzy filters in the logarithmic domain. The TMED, 

ATMED, TMAV and ATMAV fuzzy filters are numbered as F1, F2, F3 and F4, respectively. The 

sequential combination of geometric filter and fuzzy filter are represented as GF1, GF2, GF3 

and GF4. The combination of geometric-Wiener filters with fuzzy filters, known as integrated 

fuzzy filters, are represented as GWF1, GWF2, GWF3 and GWF4 where F1 to F4 are fuzzy 

filters and W represents the Wiener filter. The geometric filter is used for denoising of the TTE 

images with different number of iterations. The Wiener filter is used at the end of iteration during 

the integration of geometric and Wiener filters. The geometric filter is embedded with the fuzzy 
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filters in the second set of experiments. Finally, the geometric-Wiener filter is combined with the 

fuzzy filters as shown in Figure 2.27 and the steps are explained below. 

 

Figure 2.27 Block diagram of the proposed integrated fuzzy filter 

The steps incorporated for the implementation of integrated fuzzy filters are  

Step 1: Consider a standard noise free image, resize it to 512x512, convert it to gray scale and 

embed speckle noise. In case of the TTE images, no artificial noise is added as they inherit 

speckle noise. 

Step 2: The images are denoised using GW filter with different number of iterations. During 

iterative process, the output of geometric filter image is subjected to Wiener filtering.   

Step 3: The noise filtered image is projected into the logarithmic domain. 

Step 4: Image in the logarithmic domain is filtered using the fuzzy filter. The output of the fuzzy 

filter is estimated using Equation 2.50.  

Step 5: The output of fuzzy filter is projected back to the non-logarithmic space.  

Step 6: Computation of the IQM, visual quality assessment and clinical validation.  

The inbuilt function “Wiener2” is employed for implementation of Wiener filter. The 

window size of Wiener filter is considered as 3×3. The above steps are being repeated for 

different levels of noise artificially added to the noise free images and for different window size 

of fuzzy and Wiener filters varying in the range 3×3, 5×5, 7×7 and 9×9. Further, all the steps are 

repeated using the TMED, ATMED, TMAV and ATMAV filters. In each of the experiments, the 

step 4 is different. Each of the fuzzy filters is based on different membership function.  

2.5.2 Results 

All experimentations are performed using several standard test images such as Lena, Mandrill, 

Cameraman, Barbara, Monarch, Woman dark hair and House of size 512×512 [127]. The 

applications of the geometric filter, Wiener filter, and combination of geometric-Wiener, 

combination of geometric-fuzzy and integrated fuzzy filters are analyzed for the TTE images. 

The performance of the geometric, Wiener, the geometric-Wiener, fuzzy, geometric-fuzzy and 
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geometric-Wiener-fuzzy filters are analyzed in terms of the IQM followed by visual quality 

assessment.  

Table 2.15 Comparison of IQM for fuzzy, geometric-fuzzy and integrated fuzzy filters 

Noise Method FoM SSIM IQI β ρ SNR PSNR MSE 

 
 
 
 

0.01 
 
 
 
 
 
 
 
 

F1 0.7514 0.8659 0.4917 0.0755 0.9966 43.25 27.28 121.56 

GF1 0.8259 0.8697 0.4947 0.0931 0.9966 43.38 27.34 119.84 

GWF1 0.8671 0.8905 0.5431 0.1518 0.9968 43.82 27.57 113.81 

F2 0.7590 0.8750 0.5530 0.3016 0.9984 49.94 30.62 56.31 

GF2 0.7932 0.8835 0.5652 0.3284 0.9985 50.57 30.94 52.35 

GWF2 0.8819 0.9202 0.6163 0.4552 0.9988 52.16 31.73 43.62 

F3 0.9066 0.9221 0.6002 0.0807 0.9982 48.62 29.97 65.51 

GF3 0.9099 0.9228 0.6002 0.0701 0.9982 48.87 30.09 63.66 

GWF3 0.8689 0.9106 0.5918 0.0675 0.9980 47.86 29.59 71.50 

 
 
 
 

0.05 
 
 
 
 
 
 
 
 

F1 0.4435 0.6930 0.3646 0.0080 0.9931 35.16 23.24 308.48 

GF1 0.4563 0.6993 0.3665 0.0001 0.9933 36.00 23.65 280.30 

GWF1 0.5597 0.7816 0.4293 0.0284 0.9956 41.01 26.16 157.29 

F2 0.4023 0.6781 0.3990 0.1315 0.9946 39.24 25.28 192.90 

GF2 0.4239 0.6845 0.4049 0.1374 0.9950 39.96 25.64 177.63 

GWF2 0.5149 0.7707 0.4755 0.2384 0.9970 44.35 27.83 107.16 

F3 0.5465 0.7950 0.4647 0.0888 0.9968 41.18 26.25 154.31 

GF3 0.5383 0.8021 0.4704 0.0878 0.9969 42.46 26.89 133.17 

GWF3 0.5990 0.8032 0.4762 0.0910 0.9969 44.26 27.79 108.27 

 
 
 
 

0.1 
 
 
 
 
 
 
 
 

F1 0.3627 0.5671 0.2869 0.0230 0.9864 27.36 19.34 757.23 

GF1 0.3659 0.5757 0.2924 0.0152 0.9869 28.34 19.83 676.50 

GWF1 0.4419 0.6865 0.3661 -0.0003 0.9932 36.92 24.12 252.01 

F2 0.3693 0.5691 0.3265 0.0854 0.9898 33.53 22.42 372.49 

GF2 0.3660 0.5776 0.3341 0.0860 0.9904 34.32 22.81 340.12 

GWF2 0.4535 0.6728 0.4067 0.1670 0.9948 39.73 25.52 182.38 

F3 0.4040 0.6821 0.3833 0.0764 0.9940 33.35 22.33 380.09 

GF3 0.4020 0.6927 0.3903 0.0732 0.9943 34.75 23.03 323.62 

GWF3 0.4634 0.7163 0.4148 0.0868 0.9953 40.22 25.77 172.35 

 
 
 
 

0.2 
 
 
 
 
 
 
 
 

F1 0.3164 0.3917 0.1851 0.0174 0.9626 17.42 14.36 2380.26 

GF1 0.3141 0.4038 0.1932 0.0176 0.9654 18.41 14.86 2124.11 

GWF1 0.3750 0.5611 0.2952 0.0180 0.9872 30.73 21.02 513.91 

F2 0.3283 0.4495 0.2518 0.0582 0.9794 27.09 19.20 781.68 

GF2 0.3294 0.4549 0.2564 0.0552 0.9802 27.79 19.55 721.01 

GWF2 0.3798 0.5643 0.3381 0.1162 0.9906 34.49 22.90 333.25 

F3 0.3399 0.5072 0.2695 0.0474 0.9833 22.78 17.05 1283.26 

GF3 0.3479 0.5172 0.2752 0.0486 0.9847 24.04 17.67 1110.79 

GWF3 0.3845 0.5952 0.3376 0.0725 0.9912 34.04 22.67 351.27 

 

The performance of these filters at various noise levels are tabulated in Table 2.15. The results 

in Table 2.15 reveal that performance of the GF filters are superior compared to the fuzzy filters. 

These results are further improved in case of proposed integrated fuzzy filter in comparison to 

results of the fuzzy and geometric-fuzzy filters. The IQM such as the FoM, SSIM, IQI, β, ρ, SNR 

and PSNR values are highest for the GWF filters in-comparison to the fuzzy and geometric-

fuzzy filters. The SNR and PSNR are higher by 2dB, for the GWF2 compared to GF2 filter at all 

noise levels. 
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Table 2.16 Comparison of IQM for different images with noise variance equal to 0.01 

Methods 
FoM ρ 

Lena Darkhair Blonde Peppers Mandrill Barbara Lena Darkhair Blonde Peppers Mandrill 

GF 0.7382 0.5140 0.7329 0.6516 0.9020 0.7529 0.9964 0.9966 0.9964 0.9964 0.9962 

WF 0.7380 0.5894 0.8024 0.9513 0.9208 0.8481 0.9987 0.9986 0.9985 0.9987 0.9961 

GW 0.7705 0.6128 0.8370 0.8373 0.9363 0.8723 0.9988 0.9988 0.9986 0.9991 0.9978 

GF1 0.8495 0.6000 0.9045 0.8303 0.9000 0.8239 0.9968 0.9986 0.9944 0.9824 0.9904 

GF2 0.7576 0.5736 0.9193 0.9085 0.9077 0.8444 0.9985 0.9991 0.9979 0.9979 0.9945 

GF3 0.8639 0.6972 0.9123 0.8927 0.8956 0.8824 0.9980 0.9993 0.9968 0.9922 0.9933 

GWF1 0.8596 0.7679 0.8416 0.8661 0.8457 0.8043 0.9968 0.9990 0.9947 0.9838 0.9906 

GWF2 0.8874 0.7108 0.9004 0.9087 0.8954 0.8279 0.9988 0.9994 0.9982 0.9981 0.9940 

GWF3 0.8727 0.7510 0.8647 0.8806 0.8509 0.8957 0.9980 0.9993 0.9967 0.9925 0.9925 

 
Methods 

IQI SSIM 

Lena Darkhair Blonde Peppers Mandrill Barbara Lena Darkhair Blonde Peppers Mandrill 

GF 0.5079 0.4683 0.5108 0.4718 0.7405 0.6825 0.8331 0.8793 0.8287 0.8393 0.9146 

WF 0.5885 0.5816 0.6017 0.7470 0.7458 0.7019 0.8998 0.9190 0.8972 0.8622 0.7598 

GW 0.6001 0.6107 0.6103 0.6683 0.8326 0.7048 0.9065 0.9281 0.9028 0.9139 0.9259 

GF1 0.5412 0.5514 0.5973 0.5776 0.5439 0.4920 0.8898 0.9248 0.6942 0.6859 0.5551 

GF2 0.5667 0.5912 0.6826 0.7031 0.6677 0.5919 0.8847 0.9213 0.7902 0.8174 0.6834 

GF3 0.5900 0.6471 0.7137 0.7002 0.6406 0.5891 0.9108 0.9550 0.8094 0.8105 0.6527 

GF4 0.6130 0.6482 0.7355 0.7429 0.6738 0.5900 0.9191 0.9710 0.8425 0.8605 0.6886 

GWF1 0.5429 0.6177 0.6356 0.6357 0.4984 0.4949 0.8899 0.9458 0.7463 0.7510 0.5239 

GWF2 0.6157 0.6448 0.7396 0.7558 0.6348 0.5821 0.9205 0.9440 0.8477 0.8720 0.6560 

GWF3 0.5908 0.6520 0.6917 0.6972 0.5638 0.5890 0.9109 0.9530 0.8032 0.8171 0.5884 

GWF4 0.6128 0.6488 0.7339 0.7486 0.6241 0.7503 0.9186 0.9463 0.8412 0.8624 0.6452 

 
Methods 

MSE RMSE 

Lena Darkhair Blonde Peppers Mandrill Barbara Lena Darkhair Blonde Peppers Mandrill 

GF 131.76 106.06 150.66 132.06 141.35 131.60 11.48 10.30 12.27 11.49 11.89 

WF 45.99 42.07 58.53 49.31 139.63 86.45 6.78 6.49 7.65 7.02 11.82 

GW 44.57 36.35 57.37 34.60 79.17 90.04 6.68 6.03 7.57 5.88 8.90 

GF1 113.90 46.09 226.43 627.27 347.98 351.54 10.67 6.79 15.05 25.05 18.65 

GF2 52.21 29.51 83.38 76.40 198.78 217.05 7.23 5.43 9.13 8.74 14.10 

GF3 71.33 21.59 128.04 279.79 242.21 248.31 8.45 4.65 11.32 16.73 15.56 

GF4 47.88 21.75 84.00 112.34 198.04 248.41 6.92 4.78 9.17 10.60 14.07 

GWF1 114.28 31.75 210.18 577.60 335.33 355.50 10.69 5.63 14.50 24.03 18.31 

GWF2 43.69 20.26 73.73 69.65 213.93 221.41 6.61 4.50 8.59 8.35 14.63 

GWF3 71.29 21.01 132.31 269.16 267.95 254.04 8.44 4.58 11.50 16.41 16.37 

GWF4 48.03 19.74 84.27 110.90 222.33 106.03 6.93 4.44 9.18 10.53 14.91 

 
Methods 

ERR3 ERR4 

Lena Darkhair Blonde Peppers Mandrill Barbara Lena Darkhair Blonde Peppers Mandrill 

GF 13.30 12.73 13.93 13.41 13.48 13.50 14.80 14.72 15.24 14.96 14.77 

WF 8.26 8.50 9.29 8.76 14.25 11.73 9.63 10.27 10.85 10.46 16.44 

GW 8.09 7.83 9.22 7.25 10.84 11.94 9.41 9.41 10.77 8.52 12.66 

GF1 16.09 9.24 21.85 41.96 23.19 25.72 21.78 12.03 28.88 57.94 27.39 

GF2 8.98 6.88 12.12 12.22 17.57 20.67 10.87 8.19 15.65 16.89 20.89 

GF3 12.07 6.23 16.67 29.40 19.31 21.77 15.97 8.04 22.41 42.65 22.76 

GF4 9.18 6.34 12.72 16.29 17.52 21.96 11.60 8.02 16.46 22.78 20.78 

GWF1 16.09 8.15 21.27 40.47 22.78 25.96 21.73 11.33 27.99 55.96 26.79 

GWF2 8.61 5.73 11.82 12.05 18.14 20.89 10.78 6.88 15.33 16.67 21.36 

GWF3 12.04 6.17 16.36 27.95 20.17 22.16 15.89 8.00 21.39 40.22 23.55 

GWF4 9.22 5.68 12.71 16.03 18.42 13.44 11.67 6.88 16.40 22.15 21.60 
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Table 2.17 Comparison of parameters for different images with noise variance equal to 0.01 

Methods 
LMSE β 

Lena Darkhair Blonde Peppers Mandrill Barbara Lena Darkhair Blonde Peppers 

GF 6.410 22.745 2.419 11.595 3.321 0.882 0.326 0.167 0.484 0.197 

WF 1.255 5.895 0.615 0.287 0.654 0.384 0.412 0.141 0.603 0.783 

GW 1.101 4.585 0.581 1.267 0.603 0.390 0.431 0.143 0.618 0.442 

GF1 1.967 4.289 2.891 6.751 1.462 1.323 0.150 0.012 -0.203 -0.526 

GF2 1.059 2.076 0.910 0.478 0.929 0.983 0.330 0.121 0.358 0.626 

GF3 1.137 1.664 1.545 3.038 1.074 1.033 0.067 0.083 -0.056 -0.269 

GF4 0.833 1.754 0.894 0.766 0.925 1.056 0.411 0.092 0.364 0.487 

GWF1 1.971 2.432 2.297 5.948 1.241 1.322 -0.15 -0.002 -0.28 -0.57 

GWF2 0.794 1.178 0.763 0.408 0.881 0.998 0.455 0.202 0.489 0.713 

GWF3 1.136 1.283 1.355 2.726 1.022 1.034 0.067 0.103 -0.068 -0.289 

GWF4 0.837 1.061 0.896 0.775 0.900 0.906 0.406 0.214 0.369 0.487 

Methods 
SNR(dB) PSNR(dB) 

Lena Darkhair Blonde Peppers Mandrill Barbara Lena Darkhair Blonde Peppers 

GF 42.55 43.26 42.48 42.67 42.15 42.10 26.93 27.88 26.35 26.92 

WF 51.97 52.56 50.86 54.30 47.18 45.40 31.64 32.53 30.54 32.74 

GW 43.82 50.50 38.91 29.15 34.26 33.57 27.57 31.49 24.58 20.16 

GF1 43.79 53.73 39.55 29.86 34.58 33.47 27.55 33.11 24.90 20.51 

GF2 50.59 54.37 47.58 47.43 39.13 37.76 30.95 33.43 28.92 29.30 

GF3 52.14 57.64 48.65 48.24 38.49 37.58 31.73 35.06 29.45 29.70 

GF4 47.88 57.08 43.86 36.16 37.41 36.59 29.60 34.79 27.06 23.66 

GWF1 47.89 57.32 43.57 36.50 36.53 36.39 29.60 34.91 26.91 23.83 

GWF2 51.35 57.67 47.52 44.08 39.16 36.45 31.33 35.02 28.89 27.63 

GWF3 51.32 57.86 47.49 44.20 38.15 43.87 31.32 35.18 28.87 27.68 

GWF4 51.70 51.29 50.69 51.24 42.19 45.75 31.50 31.89 30.46 31.20 

 

The following are the highlights of the results tabulated in Table 2.15: 1) the performance 

of F3, GF3 and GWF3 filters are superior in terms of edge preservation compared to filtering 

based on F1 and F2. The IQM values of FoM, SSIM, IQI, and β are higher for these filters 

suggesting better edge preservation. 2) The noise reducing capabilities of F2 based filters are 

better compared to the F1 and F2 filters. The higher values of SNR and PSNR with lesser MSE 

reveal this point suggesting better noise reduction using the F2, GF2 and GWF2 filter. 3) 

Improvement in the IQM is observed using the integration of geometric with fuzzy and 

geometric-Wiener-fuzzy filters. Enhancement is observed in performance of the GF filters 

compared to the fuzzy filters, and the GWF filters in comparison to the GF filters. The results 

suggest that proposed methods are superior compared to others. 

The analysis of the results tabulated in Table 2.16 and Table 2.17 reveal that the 

performances of fuzzy filters are on the similar lines as discussed earlier. The IQM obtained for 

noise variance equal to 0.01 are tabulated in Table 2.16. The results in terms of the FoM, ρ, IQI, 

SSIM, MSE, RMSE, ERR3 and ERR4 are tabulated in Table 2.16. The IQM such as LMSE, β, 

SNR and PSNR are shown in Table 2.17. It is observed that the performances of geometric-
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Wiener filter are superior in comparison to the geometric filter. The values of FoM ≥ 0.75, ρ ≥ 

0.99 and SSIM ≥ 0.9 for the GWF filters indicate superior edge and structure preservation. 

 

 

Figure 2.28 Denoised TTE images: a) Original image, b) geometric filter, c) geometric-Wiener filter, F1 to 
F4: TMED, ATMED, TMAV, ATMAV, and GF1 to GF4: geometric fuzzy filters, GWF1 to GWF4: 
Geometric-Wiener-Fuzzy filters 

 
The values of IQI are enhanced using the GWF filters as observed in Table 2.16. The 

performance of geometric-Wiener filter is best in terms of SSIM. The value of SSIM is higher 

compared to SSIM for all fuzzy, GF and GWF filters. The MSE is reduced by more than two 

times using GW and GWF filters for all images at noise variance equal to 0.01. The RMSE, 

LMSE, ERR3 and ERR4 are also reduced using the GW and the GWF filters. The values of β 

are greater than 0.7 using Wiener and GWF2 filter whereas all other methods the value is less 

than 0.5. The improvement in value of β is observed using the GW, GF and GWF filters. The 

values for SNR and PSNR tabulated in Table 2.17 reveal that the performance of GF1 is 

enhanced by more than 2dB in the GWF1 filter. The performance of GF4 filter is enhanced by 

more than 4dB using proposed GWF4 filter. The overall result analysis reveals that the 

performances of proposed integrated filters are superior in terms of edges and structure 

preservation with maximum noise suppression. 
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Figure 2.29 Visual quality comparison of denoised Lena image for noise level equal to 0.01: a) Original 
noise free image, b) Noisy image c) Geometric filter, d) Geometric-Wiener filter, e) to h) :F1 to F4 filter, i) 
to l): GF1 to GF4 filter, m) to p): GWF1 to GWF4 filter 

 
The visual qualities of denoised TTE images and standard test image are shown in Figure 

2.28 and Figure 2.29, respectively. The visual quality of denoised images obtained using the 

GWF filters are compared to the fuzzy filters (F1 to F4), and Geometric-fuzzy (GF1 to GF4) 

filters. It is observed that large amount of noise is retained in fuzzy filters. Noise reduction is 

more pronounced using GW and GWF filters. The clinical validation of denoised images is 
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carried out as already discussed for the multiscale techniques and TMAV fuzzy filter. Denoised 

images based on GF, GWF and GW filters are acceptable for the doctors whereas the denoised 

images obtained using TMED filter and GF1 filters were not appreciated. 

2.6 Hybrid homomorphic fuzzy filters 

The performances of hybrid TMAV filter and integrated fuzzy filters are further improved by 

sequential combination of the homomorphic fuzzy (HF) filter with the AD filter. The idea of 

sequential combination of filters is advocated by Mateo et al. during the analysis of basic filters 

for the US images of kidney. The proposed sequential combination of the HF filter and the AD 

filter is called as hybrid homomorphic fuzzy (HHF) filter. Further the performance of the HHF 

filter is compared with seventeen denoising techniques. The Out of the seventeen techniques, 

ten methods is experimented in the logarithmic domain, and seven other methods in non-

homomorphic domain. The nonlinear fuzzy filters are defined using different membership 

functions. The fuzzy membership points out to the degree of similarity and belongingness of 

each element to the defined fuzzy set. Three fuzzy filters based on the concepts of median and 

MAV filters are analyzed in the homomorphic domain and represented as the HF filters. As 

pointed out in the earlier sections the weighted median filter (WMF) can effectively suppress the 

speckle noise but the edges are not well preserved [229, 250], whereas the fuzzy filters can 

preserve the image sharpness when employed for denoising. The triangulation median filter 

(TMED), asymmetrical TMED (ATMED) filter and triangulation moving average filter (TMAV) are 

formulated in using the equations described below [229, 250] 
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where the maximum, minimum, median value and moving average value are respectively 

represented by
max ( , )f i j ,

min ( , )f i j  ( , )medf i j  and ( , )mavf i j with ,s r A , the window at indices 

( , )i j . The output of the fuzzy filter is computed using Equation 2.50 [229, 250].  

2.6.1 Proposed hybrid homomorphic fuzzy filter 

The performances of the fuzzy filter in the homomorphic domain are fine tuned by sequentially 

adding a SRAD filter, thus embedding advantages of both filters in the new one. The proposed 

hybrid homomorphic fuzzy (HHF) filter along with all other homomorphic and non-homomorphic 

filtering methods are shown in Figure 2.30. The basic steps incorporated during the 

implementation are shown in Figure 2.30.  

 

 

Figure 2.30 Homomorphic and Non-homomorphic despeckling techniques 

 

The input TTE image is transformed into the logarithmic domain and moving average are 

computed using TMAV membership functions defined by Equation 2.56 and Equation 2.57. The 

output of fuzzy filter is computed using Equation 2.50. The exponential operation brings the 

image to the spatial domain. The output of the HF filter using TMAV membership function is 

taken as input to the AD filter resulting in the fine tuned despeckled image. 

 
2.6.2 Results 

The performances of the TMED, ATMED and TMAV filters are analyzed using the standard test 

images of size of 512×512 each. Speckle noise is added into the standard test images. The 

results are obtained in-terms of PSNR, SSIM and FoM which are tabulated in Table 2.18.  
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Table 2.18 Performance parameters comparison for standard test images 

Im
a

g
e
 

σ
2 

PSNR(dB) SSIM FOM 

ATMED TMED TMAV ATMED TMED TMAV ATMED TMED TMAV 

L
e
n
a
 

0.01 30.66 27.28 29.98 0.8756 0.8657 0.9217 0.7349 0.7252 0.9102 

0.05 25.28 23.25 26.25 0.6787 0.6928 0.7947 0.4199 0.4166 0.5338 

0.1 22.51 19.30 22.34 0.5685 0.5666 0.6856 0.3685 0.3573 0.4082 

0.2 19.19 14.36 17.00 0.4488 0.3915 0.5048 0.3295 0.3133 0.3448 

0.3 16.75 10.84 12.96 0.3702 0.2328 0.3252 0.3100 0.2951 0.3074 

M
a

n
d
ri
ll 

0.01 28.10 25.12 27.29 0.9064 0.8736 0.9168 0.9362 0.9238 0.9244 

0.05 24.38 22.39 24.87 0.7765 0.7577 0.8399 0.7837 0.7956 0.8611 

0.1 21.92 19.22 21.86 0.6724 0.6436 0.7528 0.7057 0.6938 0.7706 

0.2 18.90 14.48 16.92 0.5348 0.4409 0.5698 0.6488 0.6176 0.6653 

0.3 16.60 10.82 12.89 0.4289 0.2404 0.3583 0.6223 0.6006 0.6185 

C
a
m

e
ra

m
a

n
 0.01 31.10 27.31 30.15 0.8536 0.8587 0.9175 0.5777 0.6882 0.9217 

0.05 25.36 23.27 26.30 0.6558 0.6742 0.7707 0.4092 0.4081 0.5110 

0.1 22.48 19.60 22.57 0.5668 0.5720 0.6667 0.3904 0.3932 0.4338 

0.2 19.25 14.50 17.15 0.4799 0.4318 0.5194 0.3734 0.3620 0.3878 

0.3 16.83 10.82 12.96 0.4215 0.3050 0.3820 0.3624 0.3454 0.3552 

B
a
rb

a
ra

 

0.01 24.73 22.76 24.19 0.8468 0.8010 0.8612 0.8370 0.8276 0.8989 

0.05 22.69 20.95 22.76 0.7180 0.6955 0.7810 0.5577 0.5898 0.6995 

0.1 20.92 18.39 20.62 0.6295 0.5972 0.7015 0.4903 0.4814 0.5580 

0.2 18.44 14.17 16.54 0.5163 0.4377 0.5534 0.4466 0.4158 0.4567 

0.3 16.41 10.91 12.90 0.4331 0.2742 0.3740 0.4148 0.3928 0.4066 

M
o

n
a
rc

h
 

0.01 27.79 20.63 23.55 0.8499 0.6737 0.8163 0.9424 0.9014 0.9166 

0.05 26.15 23.80 27.01 0.7747 0.7886 0.8640 0.4747 0.5103 0.6586 

0.1 23.09 19.70 22.75 0.6800 0.6758 0.7757 0.4070 0.3848 0.4908 

0.2 19.64 14.72 17.39 0.5612 0.4927 0.6094 0.3322 0.3061 0.3566 

0.3 17.27 11.26 13.39 0.4785 0.2977 0.4139 0.3110 0.2683 0.2938 

 

The results show that the performance of HF filter based on ATMED was superior in 

comparison to other techniques in terms of the IQM such as the PSNR, MSE and SNR. It is also 

observed that the SSIM and FoM for the HF filter based on TMAV is superior in comparison to 

the HF filter based on TMED and ATMED. The high values of SSIM and FoM indicate lesser 

distortion and higher edge preservation using the HF filter with TMAV. Hence, the HF filter with 

TMAV is considered in the further experimentations and it is fine tuned using the SRAD filter. 

Similar experiments were carried out for the TTE images but no noise is added to these images. 

It is observed that the results are similar to those discussed in earlier for the standard test 

images. 

Results obtained using the proposed HHF filter are compared with the HF filter using the 

TMAV and SRAD filter in terms of the IQM in Figure 2.31 and Figure 2.32 and visual quality 

comparisons in Figure 2.33. The IQM such as the PSNR, MSE, SNR and ρ, for HFF filter are 

superior in comparison to the HF filter and the SRAD filter. The average PSNR for the HHF filter 
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is higher by 3.7 dB compared to the SRAD filter and 9.3 dB for the HF filter. The MSE is 8 times 

lesser for the HHF filter compared to the HF filter and 3.6 times lesser compared to the AD filter. 

 

Figure 2.31 IQM for the TTE images in PSAX using HF, SRAD and proposed HHF filter 

The value of ρ is on an average 0.04 and 0.01 times higher compared to the HF filter 

and the SRAD filter, respectively. The SNR is 1.7 times and 2.5 times higher compared to the 

SRAD filter and HF filter, respectively. Observing the value of β in Figure 2.31 reveals that 

β<0.2 for the HF filter and β>0.92 for the HHF filter which reveals that β value is increased by 9 

times using HHF filter in comparison to HF filter and 1.14 times higher compared to SRAD filter.  
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Figure 2.32 IQM for the TTE images in multiple views using HF, SRAD and proposed HHF filter 

 

Figure 2.33 Visual quality of TTE images on application of fuzzy and hybrid fuzzy 
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The visual quality assessments are reported using Figure 2.33 and Figure 2.34. It is observed 

that the overall structure of the images are well preserved using the proposed HHF filter. The 

IQM such as β, FoM, SSIM, ρ, PSNR, MSE and SNR are superior using the proposed HHF filter 

in comparison to the TMAV filter and SRAD filter. 

 

Figure 2.34 Visual qualities of TTE images in multiple views using fuzzy and hybrid fuzzy 

2.7 Extreme total variation bilateral filter 

Various despeckling techniques based on the principles such as the multiscale [22, 26, 90-93, 

116, 130-135], diffusion [22, 35, 83, 86, 131, 135], nonlocal mean (NLM) [125-127,135], total 

variation (TV) [119-121, 230, 252-254], bilateral [122, 255-261] and fuzzy techniques [229, 250] 

are available for noise reduction. The despeckling applications of the TV are not extensively 

reported for the TTE images in multiple views. The recent review papers on the US images [22, 

26, 27, 130, 131, 134, 135] have not brought out the applications of TV based despeckling 
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methods. Hence, work is taken up to study on the applications of TV based noise reduction 

methods integrated with bilateral filter and prior information for despeckling of the TTE images 

acquired in various views. 

The concept of total variation can be employed in applications such as the image 

denoising, deblurring, inpainting and others, ever since the idea proposed by Rudin, Osher and 

Fatemi (ROF) [119-121, 178, 230, 251-255, 259]. The issues of concern, during usage of the TV 

in noise reduction are loss of contrast, loss of geometry and the staircase effects, under various 

situations [253-255, 259]. To address these issues, modified versions of the TV filter and 

various new techniques have come into existence such as anisotropic total variation (ATV), 

isotropic total variation (ITV) [251], adaptive fidelity total variation (AFTV) [120], duality based 

gradient projection algorithms [230], the TV as a local filter [253], replacement of 
2L norm with 

1L norm in the fidelity term [259], and others. Zhu et al. [230] had studied the applications of the 

duality based gradient projection (GP) restoration algorithms including the Barzilai–Boorwein 

(BB) methods. The performances of these filters were analyzed in terms of tolerance, number of 

iterations and the CPU time. The applications of all methods analysed in [230] are employed for 

speckle noise reduction in this thesis. Ertas et al. [258] combined denoising features of the TV 

and NLM for reduction of artifacts in 3D iterative image reconstruction. The TV is employed for 

suppression of background noise while the NLM filter for reduction of out-of-focus blur. The 

performances of filters were analyzed using SSIM, RMSE and SNR. The concept of edge and 

texture preservation is not addressed in [258]. 

The objective in this section is analyze the performances of the TV filter [252] and its 

variants such as the AFTV [120], ATV, ITV [251] filters along with the proposed extreme total 

variation bilateral (ETVB) filter, the duality based gradient projection methods [230], DsF [27, 

130, 131], Fourier filters [26], NLM filters [125-127] and fast bilateral filter [256] in terms of the 

IQM. The intensity variations within a tissue or an organ are not as prominent as at their 

boundaries. The rapid variations are noticed at the boundary walls of the tissues and organs. 

Therefore, minimization of the TV might significantly improve the image quality, edge 

preservation and noise reduction [258]. The TV based denoising is effective in suppression of 

noise but fails to preserve finer details [258]. To address this issue, the extreme total variation 

bilateral (ETVB) filter is proposed and analysed in this thesis.  

 
2.7.1 Bilateral filter 

The bilateral filter is known for smoothing of images with preservation of the edges. The 

applications of bilateral filter have drastically increased ever since its naming as Bilateral by 
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Tomasi Manduchi [122-124, 255-257, 260, 261]. One of the basic and most important 

applications of the bilateral filter is image denoising. It can also be used in applications such as 

the tone mapping, contrast enhancement, image fusion, compression of artifacts, mesh 

smoothing, image interpolation, optical flow mapping, depth map estimation, medical imaging 

and video enhancement. The popularity of bilateral filters can be attributed to 1) simplicity in 

formulation, 2) efficiency dictated by selection of only two parameters and 3) high computational 

speed [256, 261]. It works by estimating the weighted average of the neighboring pixels. The 

basic theme is a pixel will have influence on another pixel if it is located in its nearby vicinity and 

had similar value [257, 260]. The bilateral filter [122] is defined as 

1
[ ] (|| ||) (|| ||)p σ σ p q ps r

q S
p

BL f G p q G f f f
W

, where 
pW is the normalization factor and 

it is computed as (|| ||) (|| ||)p σ σ p qs r
W G p q G f f .  

The parameters 
sσ and 

rσ  along with window size dictate the amount of denoising which 

can be achieved using Bilateral filter [122]. The weighted average can be computed based on 

the range and distance of the Gaussian kernels with 
σr

G as the range Gaussian and 
σs

G is the 

spatial Gaussian. The spatial Gaussian decreases the influence of distant pixels whereas the 

range Gaussian helps in reducing the influence, when the intensity values are different. The 

final weight is product of temporal (spatial) and distant weights [122, 257, 260]. Kornprobst et al. 

[260] and Paris et al. [255] have recommended a linear dependence defined as 
rσ = 1.95

nσ , 

where 
nσ represents the local noise level [255, 260]. The optimal value of 

sσ is relatively 

insensitive to noise present compared to
rσ . The kernels are normalized, the sum of coefficients 

is 1, and centre pixel value of the kernel would be largest and kernel might be of any form.  

The input image is used for the estimation of spatial and range weights, followed by 

multiplication of these values resulting in edge preservation and smoothing. Initially, texture map 

and block discontinuity maps are generated. The distant component is estimated using the 

texture map and the range components are estimated using block discontinuity maps. Each of 

the pixel value is substituted by weighted average of its neighbor. Each pixel is penalized by two 

components i.e. spatial component penalized the distant pixel and range component penalizes 

the pixel with different intensity values. Integration of the range and the spatial components 

ensure that only similar pixels in the neighborhood contribute towards the final pixel values. 

Thus, the bilateral filter delivers a despeckled image with contours and edges all well preserved.  
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2.7.2 Duality based algorithms for total variation  

The denoising applications of the following algorithms are analyzed along with the proposed 

ETVB filtering scheme: Chambolle algorithm, Chan-Golub-Mulet (CGM) algorithm, gradient 

projection with constant length (GPCL), GP with backtracking line search (GPLS), sequential 

quadratic programming with spectral BB(SQPBB), primal-dual hybrid gradient (PDHG), GP with 

BB (GPBB), GP with cyclic BB (GPCBB), GPPB with safeguarding (GPPBsafe), GPPB with 

monotone version of BB step length (GPPBNM), GP with adaptive BB (GPABB) and GPBB, 

SQPBB, GPABB with different number of cycles such as M2 for two cycles, M3 for three cycles. 

The values of various parameters in implementation of duality based GP algorithms are based 

on the analysis and discussion in [230], constant fidelity term is 0.045, fixed step length is 0.248, 

and maximum number of iterations is 5 in all the implementations. The complete details of 

duality based GP algorithms are available in [230] and the MATLAB code provided by authors of  

[230] are being used. 

2.7.3 Proposed extreme total variation bilateral filter 

Total variation based denoising results in better edge preservation and reduction of noise. But 

the smaller and finer details may be lost on application of the TV regularizer [230, 259]. The 

noisy pixels in the flat regions may be presumed as edge pixels, resulting in false noisy edges. It 

would be desirable that the regularization term is adaptive to achieve better denoising 

characteristics with edges and structure well preserved [261]. The regularization term of the TV 

filter is replaced by bilateral term to overcome the drawbacks of total variation. The reasons for 

selection of bilateral filter as TV regularization term are: 1) TV itself cannot preserve the feature 

information and smooth them while denoising, so a term is to be used in order to preserve the 

edges while denoising and bilateral fulfils this requirement. 2) Also, the regularizer term in TV 

gives a unique solution, same is the case with the bilateral term, which also results in a unique 

solution. The proposed algorithm is explained in this section. The Equation 1.2 can be rewritten 

as 

 xy xy xyf T      (2.58) 

Where 
xyf is a noisy image, 

xyT is the true information, which is considered as the prior 

knowledge and used by extreme total variation bilateral (ETVB). Here ETVB is replacing the 

regularizer term of total variation method with the Bilateral filtering term and incorporate the prior 

term in order to denoise the noisy image. The total variational technique [253] removes the 

noise in the image according to the following Equation 2.59 
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2

Ω Ω

arg min ( ) | |
den u

u u f dx λ u dx    (2.59) 

where denu , f  and λ  are denoised, input image and smoothing factor, respectively. Solving 

Equation 2.29 using Euler- Lagrange and gradient descent method [252]  

2

( )
0

fu

f u u
λ div

σ u
     (2.60) 

fu
σ  is the factor which defines the Gaussian range of f  in which u  can lie, where 

u
div

u
 is 

the regularizer term and on replacing it with the bilateral filtering term ( )u k defined in Equation 

2.61, substituting it in Equation 2.60 results in Equation 2.62, which are given as follows: 

( )

( )

(|| ||) (|| ( ) ( ) ||) ( )
( )

(|| ||) (|| ( ) ( ) ||)

c sp N k

c sp N k

G p k G u p u k u p
u k

G p k G u p u k
 (2.61) 

Where ||)(|| kpGc  is the closeness smoothing function 

2

22

x

σce  and ||))()((|| kupuGs  is the 

feature preserving weighing function 

2

22

x

σse  which penalize the large variations in intensities, 

)(kN is neighborhood of k, for every kth pixel in the noisy image. Substituting Equation 2.61 in 

Equation 2.60 results in the following modified method of denoising 

2

( )
( ) 0

fu

f u
λ u k

σ
                                                (2.62)                                 

The concept of prior knowledge is introduced in the traditional TV method, where the prior 

refers to say generalized information about an object. The usage of prior knowledge is 

considered to be an inverse problem of obtaining the noise free image from the noisy data. 

There can be many different ways using which the estimated image can be computed from the 

noisy image (i.e. having the wide range of possibilities). So, more the given prior knowledge 

about the object, the more we can constrain the possibilities and better the prediction can be 

made. Here the prior information (t) is incorporated by using the Bayesian inference and 

probability density function (PDF).  PDF make use of the Directed Acyclic Graph (DAG) based 

upon the Markov property. The graph is interpreted as, given the parent having two children, 

good or bad, and when the evil is taken off from the bad then it leads to the good and 

enlightenment. Similarly, removal of noise from the noisy image leads to the estimated results 

and both the input and denoised image depends exclusively upon the true knowledge. Given 
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the true and input information, the probability of the possible output denoised image is defined 

as 

                                                
)(

)(*)/(
)/(

tfP

uPutfP
tfuP




  (2.63) 

When the dependencies of true knowledge are incorporated then Equation 2.63 can be 

rewritten as: 

                                        )(*)/(*)/()/,( uPutPutfPtfutP   (2.64) 

This is called as the A-posterior and aim is to maximize this estimation i.e. the maximization of 

u, defined in Equation 2.65, is likely to be both f and t   

                                     )/,(maxarg tfutPu u                                                 (2.65) 

which is the Maximum  A-posterior Probability (MAP), and the energy of this function is given 

as: Energy=negative log of A-posterior: which is to be minimized and this leads to Equation 2.66 

2 2

12 21 1 1

( ) ( )
( ) min | |

2 2

n n n
i i i i i

u i ii i i

ft tu

f t u t u
E u λ u u

σ σ
 (2.66) 

When solved using the E-L and optimization method leads to the following Equation 2.67 which 

is referred to as extreme total variation bilateral (ETVB) filtering scheme. 

( )

2 2

( )

(|| ||) (|| ( ) ( ) ||) ( )( ) ( )
0 .

(|| ||) (|| ( ) ( ) ||)

c sp N k

ft tu c sp N k

G p k G u p u k u pf t u t u
λ

σ σ G p k G u p u k
    (2.67) 

 

 

Figure 2.35 Block diagram of ETVB filtering scheme 
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The proposed method of denoising is shown in Figure 2.35. The noise free image is 

embedded with speckle noise. The noise free image and noisy image are subjected to extreme 

total variation bilateral filter with prior knowledge of noise free image. The regularization term of 

total variation are replaced with bilateral filter. The prior information of input image is embedded 

into total variation based denoising.  

2.7.4 Results 

The image quality metrics and visual quality based results are presented in this section. 

Denoising performances in terms of edge preservation are tabulated in Table 2.19 and using 

traditional parameters in Table 2.20, for total variation based techniques. The results in Table 

2.19 are of Barbara image artificially embedded with speckle noise of variance 0.01, 0.05 and 

0.1, using imnoise. The traditional image quality metrics for Barbara image, with noise variance 

0.01, are shown in Table 2.20. The results obtained using replacement of TV term with BL term 

without taking into account the prior information are represented as “TV+BL” and “TV+BL+True”  

considers true information, results are named as “ETVB”. 

Table 2.19 Comparison of TV based filters in terms of edge preservation 

Metrics IQI SSIM BETA FoM 

Variance 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 

ROF[253] 0.672 0.441 0.332 0.886 0.701 0.593 0.703 0.397 0.285 0.736 0.495 0.459 

AFTV[120] 0.680 0.450 0.341 0.887 0.703 0.592 0.717 0.401 0.292 0.718 0.523 0.454 

GPPB_M2F[230] 0.584 0.539 0.480 0.852 0.793 0.717 0.527 0.455 0.344 0.794 0.721 0.581 

GPPB_M3F[230] 0.580 0.539 0.482 0.848 0.793 0.715 0.454 0.436 0.341 0.787 0.725 0.573 

CGM[230] 0.541 0.520 0.470 0.845 0.806 0.727 0.573 0.461 0.347 0.763 0.773 0.594 

Chambolle [230] 0.644 0.556 0.484 0.883 0.794 0.705 0.710 0.495 0.359 0.845 0.668 0.552 

GPCL[230] 0.559 0.521 0.467 0.853 0.799 0.720 0.371 0.386 0.324 0.786 0.747 0.578 

GPLS[230] 0.554 0.523 0.458 0.852 0.799 0.722 0.350 0.395 0.316 0.777 0.736 0.588 

PDHG[230] 0.563 0.527 0.476 0.844 0.796 0.718 0.525 0.437 0.335 0.759 0.733 0.590 

SQPBB_M2[230] 0.594 0.539 0.484 0.857 0.794 0.720 0.581 0.466 0.343 0.778 0.702 0.590 

SQPBB_M[230] 0.594 0.537 0.483 0.857 0.793 0.717 0.577 0.459 0.345 0.770 0.716 0.582 

SQPBB_NM2[230] 0.578 0.540 0.482 0.851 0.798 0.716 0.571 0.467 0.347 0.794 0.751 0.573 

SQPBB_NM[230] 0.575 0.537 0.479 0.849 0.794 0.715 0.569 0.464 0.346 0.782 0.719 0.580 

GPBBsafe[230] 0.559 0.530 0.478 0.843 0.795 0.718 0.508 0.446 0.337 0.768 0.733 0.574 

GPABB[230] 0.586 0.538 0.480 0.853 0.794 0.717 0.527 0.455 0.341 0.775 0.734 0.591 

GPBB_N3alt[230] 0.561 0.526 0.476 0.844 0.794 0.719 0.491 0.436 0.344 0.764 0.740 0.589 

GPBB_N2alt[230] 0.558 0.533 0.479 0.843 0.798 0.719 0.500 0.450 0.344 0.754 0.757 0.593 

GPBB_Nalt[230] 0.549 0.528 0.475 0.841 0.793 0.715 0.493 0.454 0.341 0.771 0.716 0.583 

GPBB_NM[230] 0.559 0.527 0.477 0.843 0.793 0.717 0.499 0.448 0.339 0.779 0.748 0.599 

GPBB_M[230] 0.565 0.526 0.476 0.851 0.797 0.717 0.438 0.428 0.336 0.771 0.753 0.592 

GPBB_M3[230] 0.558 0.517 0.468 0.850 0.799 0.721 0.409 0.400 0.329 0.784 0.765 0.580 

ATV[252] 0.654 0.539 0.450 0.904 0.783 0.682 0.734 0.467 0.328 0.877 0.591 0.491 

ITV [252] 0.684 0.539 0.439 0.916 0.774 0.669 0.773 0.458 0.322 0.906 0.566 0.482 

TV+BL 0.951 0.855 0.788 1.000 1.000 1.000 0.982 0.914 0.834 0.961 0.953 0.891 

ETVB 0.967 0.895 0.839 1.000 1.000 1.000 0.989 0.949 0.898 0.963 0.959 0.946 
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Table 2.20 Traditional parameters for Barbara image using TV based filters 

 Methods SNR PSNR MSE RMSE ERR3 ERR4 MD LMSE NAE SC NK 

ROF[253] 41.48 26.63 141.33 11.89 14.01 15.75 74.48 0.910 0.079 0.994 0.9989 

AFTV[120] 42.24 27.01 129.46 11.38 13.48 15.24 77.40 0.780 0.074 0.997 0.9978 

GPPB_M2F 38.49 25.13 199.36 14.12 18.68 22.49 80.39 0.798 0.077 1.021 0.9838 

GPPB_M3F 38.24 25.01 205.25 14.33 18.96 22.81 88.67 0.822 0.077 1.021 0.9838 

CGM 38.73 25.25 193.97 13.93 18.34 22.06 79.71 0.756 0.077 1.024 0.9826 

Chambole 40.61 26.19 156.22 12.50 16.58 20.07 76.02 0.657 0.069 1.018 0.9863 

GPCL 38.45 25.11 200.49 14.16 18.62 22.38 84.30 0.863 0.078 1.021 0.9837 

GPLS 38.37 25.07 202.18 14.22 18.69 22.45 80.56 0.879 0.079 1.021 0.9835 

PDHG 38.49 25.13 199.38 14.12 18.60 22.34 87.18 0.780 0.077 1.022 0.9835 

SQPBB_M2 38.75 25.26 193.58 13.91 18.46 22.27 84.21 0.776 0.075 1.021 0.9839 

SQPBB_M 38.78 25.28 192.81 13.89 18.42 22.21 80.54 0.775 0.075 1.020 0.9842 

SQPBB_NM2 38.60 25.19 196.96 14.03 18.56 22.35 79.54 0.780 0.076 1.021 0.9837 

SQPBB_NM 38.56 25.17 197.90 14.07 18.60 22.39 80.78 0.781 0.077 1.021 0.9838 

GPBBsafe 38.24 25.01 205.33 14.33 18.89 22.69 85.43 0.808 0.078 1.021 0.9834 

GPABB 38.50 25.14 199.30 14.12 18.69 22.52 83.81 0.800 0.077 1.021 0.9837 

GPBB_N3alt 38.29 25.03 204.05 14.28 18.82 22.62 84.70 0.806 0.078 1.022 0.9830 

GPBB_N2alt 38.19 24.98 206.42 14.37 18.95 22.78 85.58 0.813 0.078 1.022 0.9831 

GPBB_Nalt 38.14 24.96 207.67 14.41 18.98 22.80 87.46 0.818 0.079 1.021 0.9836 

GPBB_NM 38.21 24.99 206.08 14.36 18.94 22.76 84.99 0.813 0.078 1.022 0.9833 

GPBB_M 38.39 25.08 201.79 14.21 18.75 22.56 81.28 0.829 0.078 1.021 0.9835 

GPBB_M3 38.35 25.06 202.76 14.24 18.77 22.57 81.71 0.842 0.078 1.021 0.9837 

ATV[252] 43.23 27.50 115.63 10.75 14.00 16.86 68.76 0.506 0.062 1.016 0.9885 

ITV [252] 44.86 28.32 95.78 9.79 12.63 15.19 63.20 0.427 0.058 1.013 0.9906 

TV+BL 62.17 85.11 0.001 0.01 0.02 0.02 0.06 0.036 0.026 0.992 1.0038 

ETVB 65.35 86.70 0.001 0.01 0.01 0.02 0.05 0.022 0.021 0.991 1.0042 

 
Table 2.21 Image quality metrics for proposed method ETVB 

 IQM Lena Woman Dark hair Woman Blonde Mandrill 

 Noise 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 

IQI 0.946 0.817 0.722 0.955 0.882 0.826 0.952 0.837 0.739 0.981 0.924 0.867 

SSIM 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

BETA 0.949 0.786 0.639 0.871 0.577 0.425 0.971 0.869 0.766 0.955 0.804 0.675 

FoM 0.945 0.937 0.944 0.881 0.897 0.882 0.971 0.901 0.846 0.963 0.965 0.949 

MSE 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.001 

SNR 66.12 58.70 52.55 73.21 61.76 55.08 72.66 61.51 55.21 58.69 56.80 51.50 

RMSE 0.011 0.017 0.024 0.006 0.012 0.018 0.011 0.020 0.029 0.020 0.023 0.031 

PSNR 87.21 83.50 80.42 92.02 86.30 82.96 87.55 81.97 78.82 81.98 81.04 78.38 

ERR3 0.013 0.020 0.028 0.008 0.016 0.023 0.013 0.023 0.033 0.023 0.026 0.035 

ERR4 0.015 0.023 0.032 0.010 0.018 0.027 0.014 0.026 0.037 0.025 0.029 0.038 

AD 0.004 0.003 0.004 0.000 0.000 0.001 0.003 0.002 0.001 0.014 0.006 0.004 

SC 0.976 0.978 0.975 0.994 0.997 1.001 0.992 0.996 1.005 0.948 0.976 0.980 

NCC 1.012 1.011 1.012 1.003 1.001 0.999 1.004 1.001 0.997 1.027 1.012 1.009 

MD 0.059 0.073 0.094 0.047 0.065 0.085 0.061 0.081 0.101 0.063 0.073 0.090 

LMSE 0.100 0.534 1.259 0.249 1.453 3.362 0.053 0.254 0.544 0.091 0.497 1.085 

GAE 0.019 0.029 0.042 0.014 0.026 0.036 0.013 0.025 0.036 0.029 0.032 0.045 
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Figure 2.36 Despeckling of Lena image using various TV based methods 

The gradient projection based TV methods have IQI less than 0.6 whereas methods 

such as ROFTV, AFTV, Chambolle, ATV and ITV have IQI greater than 0.65. The performance 

of TV+BL and ETVB are superior in comparison to all total variation based methods tabulated in 

Table 2.19 with IQI ≥ 0.95. Structural similarity index, (SSIM)ATV, ITV ≥ 0.9 whereas (SSIM)TV+BL 

and (SSIM)ETVB are equal to one. Edge preservation parameter β is 0.989 and 0.982 using 

ETVB and TV+BL, respectively. The methods such as ROFTV, AFTV, ATV and ITV have the β 
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value less than 0.77 and gradients projection filters less than 0.6. The performance of TV+BL 

and ETVB are superior in terms of IQI, SSIM, β and FoM compared to all TV methods tabulated 

in Table 2.19. These results reveal better edge preservation obtained employing the proposed 

method. Table 2.20 reveals that traditional image quality metrics are enhanced many fold 

compared to performances of other total variation based methods. The enhancement in 

traditional parameters in Table 2.20 show superior noise reduction capabilities of proposed 

integration of bilateral filter and prior information into total variation based denoising technique. 

Table 2.22 Image quality metrics of denoised TTE images 

TV+BL 

Image IQI SSIM BETA NK FoM SNR RMSE LMSE NAE MD 

PSAX(S) 0.7399 1.00 0.9955 0.9951 0.9666 64.05 0.0055 0.0090 0.0239 0.0519 

PLAX(S) 0.7215 1.00 0.9958 0.9941 0.9613 63.34 0.0049 0.0083 0.0262 0.0519 

A4C(S) 0.7720 1.00 0.9955 0.9941 0.9818 63.04 0.0054 0.0090 0.0275 0.0519 

A5C(S) 0.7899 1.00 0.9959 0.9929 0.9733 62.54 0.0049 0.0082 0.0262 0.0519 

A2C(S) 0.7657 1.00 0.9953 1.0000 0.9340 63.51 0.0055 0.0093 0.0275 0.0520 

PSAX(D) 0.7376 1.00 0.9955 0.9953 0.9565 64.36 0.0054 0.0090 0.0237 0.0519 

PLAX(D) 0.7043 1.00 0.9958 0.9940 0.9637 63.44 0.0050 0.0084 0.0251 0.0519 

A4C(D) 0.6882 1.00 0.9962 0.9932 0.9596 62.58 0.0049 0.0075 0.0270 0.0530 

A5C(D) 0.7029 1.00 0.9963 0.9912 0.9721 60.73 0.0046 0.0074 0.0289 0.0519 

Extreme total variation bilateral (ETVB) 

Image IQI SSIM BETA NCC FoM SNR RMSE LMSE NAE MD 

PSAX(S) 0.7469 1.00 0.9966 0.9957 0.9720 66.51 0.0048 0.0068 0.0207 0.0453 

PLAX(S) 0.6972 1.00 0.9969 0.9949 0.9662 65.80 0.0042 0.0063 0.0228 0.0453 

A4C(S) 0.7497 1.00 0.9966 0.9948 0.9699 65.48 0.0047 0.0068 0.0239 0.0453 

A5C(S) 0.7410 1.00 0.9969 0.9939 0.9772 65.00 0.0042 0.0062 0.0228 0.0453 

A2C(S) 0.7558 1.00 0.9965 0.9999 0.9439 65.98 0.0047 0.0070 0.0239 0.0452 

PSAX(D) 0.7449 1.00 0.9966 0.9959 0.9630 66.81 0.0047 0.0068 0.0206 0.0453 

PLAX(D) 0.7395 1.00 0.9968 0.9948 0.9690 65.90 0.0043 0.0063 0.0218 0.0453 

A4C(D) 0.6953 1.00 0.9972 0.9941 0.9667 65.05 0.0043 0.0057 0.0234 0.0460 

A5C(D) 0.7350 1.00 0.9970 0.9942 0.9772 65.35 0.0042 0.0060 0.0224 0.0453 

 

The performance of ETVB technique for images such as Lena, Woman Dark hair, 

Woman Blonde, and mandrill are tabulated in Table 2.21 at various noise levels. The 

performance of proposed methods is on similar lines as discussed for Barbara image in earlier 

paragraphs. High values of IQI, SSIM, and β themselves speak of superiority of the proposed 

techniques in terms of edge preservation. LMSE, MSE, RMSE, and MD are all less than 1 and 

drastically reduced in comparison to all techniques tabulated in Table 2.22. The performances 

of ETVB method are compared with other state-of-art technique in Table 2.23. 
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Table 2.23 Comparison with proposed technique with other state-of-art technique 

Method IQI SSIM β ρ FoM MD LMSE MSE SNR RMSE PSNR 

DsFlsminsc  0.518 0.818 0.073 0.991 0.811 128.0 1.114 286 35.36 16.91 23.57 

DsFlsmv 0.724 0.913 0.813 0.997 0.889 66.04 0.405 94.5 44.98 9.72 28.38 

DsFWiener 0.714 0.918 0.781 0.997 0.852 62.33 0.393 86.2 45.78 9.29 28.78 

DsFgf4d 0.546 0.794 0.407 0.991 0.778 170.0 1.103 594 29.01 24.38 20.39 

DsFad 0.493 0.803 0.475 0.994 0.663 98.77 0.802 241 36.82 15.54 24.30 

DsFsrad [131] 0.704 0.903 0.794 1.000 0.874 76.80 0.544 125 42.51 11.20 27.14 

DsFhmedia 0.626 0.868 0.486 0.995 0.848 113.1 0.813 166 40.05 12.91 25.91 

DsFhomog 0.597 0.852 0.298 0.993 0.805 104.2 0.944 230 37.23 15.18 24.50 

DsFmedian 0.566 0.834 0.173 0.993 0.769 181.2 1.062 234 37.10 15.30 24.44 

FBL [257] 0.751 0.951 0.962 0.999 0.888 30.43 0.093 32.4
5 

54.29 5.69 33.03 

FBF [26] 0.705 0.891 0.771 0.997 0.719 61.01 0.453 99.5
6 

44.53 9.97 28.15 

FIF[26] 0.671 0.881 0.761 0.996 0.709 67.12 0.634 130 42.21 11.40 26.99 

GLM[116] 0.754 0.924 0.781 0.997 0.885 86.32 0.445 84.1
2 

45.99 9.17 28.88 

OBNLM [125] 0.784 0.962 0.924 0.998 0.934 56.21 0.165 81.9 46.22 9.05 29.00 

PPB [127] 0.743 0.954 0.918 0.999 0.910 83.54 0.164 40.8 52.27 6.39 32.02 

TV+BL 0.951 1.000 0.982 1.000 0.961 0.063 0.036 0.00 62.17 0.01 85.11 

ETVB 0.967 1.000 0.989 1.000 0.963 0.054 0.022 0.00 65.35 0.01 86.70 

 

 

Figure 2.37 Despeckling of Lena image using TV, GPCL, GPLS and ETVB filters 
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Figure 2.38 Despeckling of Barbara image using various TV based filters 

 

The performance of proposed ETVB technique for TTE images are tabulated in Table 

2.22. IQI≥0.7, SSIM≈1, BETA≥0.99, and FoM≥0.9 show that the edges and structure are 

preserved. The error in the denoised images in terms of parameters such as RMSE, LMSE, 

NAE and MD are less than 1, which indicates superior noise reduction in the denoised images. 

The visual qualities of the denoised images are displayed in Figure 2.36, to Figure 2.38. The 

texture of denoised image is compared in Figure 2.38 using zoomed version of Barbara image 
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on application of various despeckling techniques. It is noticed that GP based methods lead into 

suppression of finer details. Speckle noise is removed but the edge and texture information is 

lost in the due process. 

 

 

Figure 2.39 Despeckling of TTE image in multiple views using various TVBL filter 

The ROF TV method results in loss of texture accompanied with retention of noise in 

textured and smooth parts of the image respectively. The NLM based filter performance is 

visually superior compared to TV based methods but on certain instances it also leads to over-

smoothing and noise retention. The analysis of images depicted in Figure 2.36 shows the visual 

quality of Lena image is enhanced on application of proposed filter. The contrast of images is 

reduced using TV based methods and this is evident on observing all images shown in Figure 

2.36. A small amount of noise is retained in most of the TV based methods such as AFTV, 

ROFTV, ATV, ITV, and gradient projection TV methods. Almost all noise is removed using the 

proposed methods.  

The texture of image is retained using proposed methods as evident from Figure 2.38. A 

part of Barbara image is shown in Figure 2.38, where texture of the image is different from the 

homogenous regions. The texture of the image is lost using CGM, FIF, Chambolle and DsFad, 
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gradient projection based TV partly preserve the texture. Texture of the images are fully 

preserved on application of methods such as NLM, PPB, DsFlsmv, and proposed ETVB 

method. ROF TV results in loss of texture information in parts such as scarf, chair and trouser. 

A small amount of noise is retained in smooth regions such as cheek and chin. The NLM based 

filter leads in over-smoothing in certain parts such as upper part of the arm. This particular effect 

is observed when the patch size is large and over-smoothing is reduced in cases of smaller 

patches. The drawbacks of ROF TV, NLM and PPB filters are overcome using ETVB filtering 

scheme. The visual qualities of denoised TTE images are analyzed using images shown in 

Figure 2.39. It is observed that the required finer details retained in the despeckled TTE images 

and the quality of image is acceptable for the clinicians. 

 
2.8 Summary 

The TTE images acquired in multiple views were despeckled using the proposed techniques. 

The first proposed technique is based on the logarithmic multiscale techniques. Eight multiscale 

techniques were analysed in the logarithmic domain. The analysis revealed that the 

NeighshrinkSURE (NSS) represented as LM7E stood out among the multiscale techniques in 

terms of noise suppression and edge preservation. The implementation of PSBE filter and its 

improved version, known as hybrid PSBE filter is the second proposed scheme. The third 

proposed technique is based on combining the TMAV filter with Wiener filter to fine tune the 

performance of fuzzy filter. The performance of hybrid TMAV filter was further improved by 

integrating fuzzy, Wiener and the geometric filter. This technique is called as integrated fuzzy 

filter whose performance is superior in comparison to geometric, Wiener and four fuzzy filters. 

The advantages of anisotropic diffusion and fuzzy filters are combined in the fifth proposed filter 

known as hybrid homomorphic fuzzy filters. The performance of HHF filter is analysed for the 

images acquired in two parasternal and three apical views.    
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CHAPTER 3: COMPARATIVE ANALYSIS OF DESPECKLING TECHNIQUES  

In this chapter a comparative analysis of despeckling techniques for the B-mode transthoracic 

echocardiographic images is being presented in terms of image quality metrics, visual quality assessment 

and clinical validation. The thrust areas of analysis were speckle noise suppression with edge and 

structure preservations. The performance of 48 filters, grouped into eight types are analysed in terms of 

traditional and blind-source IQMs for the TTE images. The objective of comparative analysis is to identify 

best within class and inter-class filter in terms of noise suppression and clinical acceptance.  

 

3.1 Introduction 

Transthoracic echocardiography (TTE) is a non-invasive, clinically preferred technique and quite 

popular because of low cost, and portability [3-10, 22]. The visual qualities of the TTE images in 

the multiple views and windows play an important role in the study of aetiologies and the impact 

of valvular abnormalities. But, as pointed earlier, the visual interpretation and automated 

computer aided analysis are hindered by the poor quality of the images [5, 12, 14, 17-20, 39-

47]. The shadowing, low contrast, reverberations and speckle noise make it fuzzy in locating the 

abnormalities and consistent measurement [4, 5, 54, 58, 180,182, 201]. The TTE images 

acquired using the cross sectional windows and views have higher amount of noise in them 

[22]. An overview of despeckling methods employed for noise reduction in the US images of 

breast [135], kidney [26], bone [96, 134], heart [22] and carotid artery [27, 131] is available in 

Table 3.2 with all abbreviations in Table 3.1. The concept, merits and demerits of each filter are 

brought out in Table 3.3. 

Many researchers analysed and compared the performance of despeckling techniques 

[22, 26, 27, 80, 130, 131, 134, 135, 263, 264] for various types of US images. Mateo et al. [26] 

compared image quality metrics (IQM) of median filter, adaptive median filter, homomorphic 

wavelet filter with soft thresholding, Fourier Ideal Filter (FIF) and Fourier Butterworth Filter (FBF) 

for the US images of kidney. Finn et al. [22] compared 15 despeckling filters based on local 

statistics, wavelet, synthetic aperture radar (SAR) filters and image geometry on the TTE 

images. Elamvazuthi et al. [134] analyzed filters such as the Wiener, average, median, 

anisotropic diffusion (AD), wavelet and the combination of wavelet filter with Wiener filter for 

suppression of speckle noise in the US images of bone fracture. Zhang, Wang and Cheng [135] 

had compared the performances of nonlocal mean (NLM) filters with local adaptive, anisotropic, 

hybrid and multiscale techniques on the US images of breast. Loizou et al. [27,130, 131] had 

compared applications of 10 denoising filters for reduction of speckle noise in carotid artery.  
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Table 3.1 List of abbreviations used in Chapter 3 
Acronym Full form Acronym Full form Acronym Full form 

ATV Anisotropic total variation  DsFsrad Speckle reducing anisotropic diffusion NSS Neighborhood  shrinkage using SURE 

AFTV Adaptive fidelity total variation  DsFWiener Wiener filter OCT Optical coherence tomography 

BShrink Bayes shrink DPAD Detail preserving anisotropic diffusion OBNLM Optimized Bayesian nonlocal Mean 

BT Block thresholding FBL Fast bilateral  PPB Probabilistic patch based 

BPFA Beta process factor analysis FIF Fourier ideal filter PShrink Probability shrinkage 

CED Coherence enhancing diffusion  FBF Fourier Butterworth filter PSBE Posterior sampling based estimation 

DsF Despeckling filter GLM Generalized likelihood method PLOW Patch based locally optimal Wiener 

DsFhomog Maximum homogeneity  HTMAV Hybrid triangulation moving average RNLA Ripplet using nonlinear approximation 

DsFad Anisotropic diffusion HTMED Hybrid triangulation median SURE Stein’s unbiased risk estimation  

DsFhomo Homomorphic IOWT Interscale orthogonal wavelet threshold TMED Triangulation median  

DsFlsminsc Minimum speckle index MPT Multiscale product threshold TMAV Triangulation moving average 

DsFlsmv Local statistics mean variance MBR M-Band ridgelet TTE Transthoracic echocardiography 

DsFhmedian Hybrid median MRI Magnetic resonance imaging US Ultrasound 

 
Table 3.2 An overview of despeckling filters 

Method name Reference and type of image Method name Reference and type of image 

Local statistics based techniques Nonlinear techniques 

Lee [77, 81], Kaun [78], Frost [79, 265] 

[22]-TTE image in PLAX and 
PSAX, [77- 79, 265]-SAR images, 
[135]- US Breast [27, 131]- US 
Carotid artery 

CED[84] [84]-CT bone, [131]- Carotid artery 

DsFad [83] [27, 131]- US  Carotid artery, [22]- TTE 

DsFsrad [35], DsFhmedian [27, 131] [27, 131]- US Carotid artery, [22]- TTE  

DsFlsminsc, DsFlsmv [27, 130, 131] [27, 131]- US image of Carotid 
artery 

DPAD[86], Level set diffusion [266] [135]-US image of Breast 

DsFWiener [27, 130, 131] 
[27, 131]- Carotid artery, [134]- 
Bone fracture 

DsFgf4d [27, 131], DsFhomo [135]- Breast, [22]-TTE, [27, 131]- Carotid  

BL [256] [135]- Breast US DsFhomog [27, 131],  DsFmedian [27, 131] [27, 131]- Carotid artery 

Fuzzy filtering techniques Multiscale techniques 

TMED,TMAV,ATMED,ATMAV [229, 250]  [229, 250]-Synthetic BayesShrink [227], OWT [102] [100-103, 227]-Synthetic images  
[100]-MRI image of liver 
 

Fourier Filters[26] ProbShrink [99], NSS [103] 

FBF,FIF,HFBF, HFIF [26] [26]- US image of Kidney SURELET [101], MPT [100] 

Total variation  GLM [116] [135]-US Breast, [22]- TTE , [116]- MRI  

AFTV [120], ROF [120, 252], ATV [251] [120, 253]-Standard , [252]-MRI MBR [94] [267]- US  bone fracture 

Aujol et al. [119]  [119]-Synthetic and SAR images RNLA [95] [96]- US bone fracture 

Shock filter [268]  [268]- Standard images PSBE [228] [228]- OCT image of rat retina 

Nonlocal mean techniques Hybrid techniques 

OBNLM [125, 126], PPB[127] [135]-US image of Breast HTMAV, HATMV,HTMED, GW  [251]- Standard images  

Sparse & dictionary learning [269,277] BPFA [269], Sparse[277] Synthetic images [270]  
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Table 3.3: Concept, merits and demerits of despeckling filters 

 Method Concept Merits Demerits 

Lee [22, 77]  
Estimating central pixel intensity based on the average 
pixel intensity and coefficient of variation with 
minimization of the mean square error 

Spatially adaptive filters, visual 
enhancement, structure of the image 
well preserved 

Allow noisy edges to persist, sharp 
features not retained, limited noise 
reduction, induce blocky effect 

Kaun et al. [22, 78] 
Similar to the Lee filter but based on the different 
weighing function 

Structure well preserved, spatially 
adaptive filters, enhancement 

Poor noise reduction, over-smoothing, 
details are lost, blurring of  edges, poor 
performance in homogeneous regions 

Frost et al. [22, 79, 
270] 

Noise free image is computed by convolving noisy 
image with a defined mask 

Adaptive least squares estimation, 
better noise suppression, Texture is 
preserved 

Sharp features are not retained, 
significant loss in image detail, blurring 
of image at boundaries 

Local statistics mean 
variance [27, 130,131] 

Use the first order statistics like mean and variance of 
each pixel neighborhood 

Image quality enhanced, mean and 
median values preserved, texture 
feature well preserved 

Computational time depends on  size 
and shape of the window and number of 
iterations, 

Wiener [27, 131] 
Pixel-wise adaptive Wiener technique, restoration of 
image based on mean square error 

Superior noise suppression, enhance 
the optical sensitivity evaluation 

Smoothing of the texture information, 
not suitable for statistical analysis 

Minimum speckle 
index [27, 131] 

Estimate the most homogeneous area around 
neighborhood of each pixel , centre pixel in  window is 
replaced by smallest speckle index in a sub-mask 

May be employed in improving the 
classification accuracy and outcome of 
statistical analysis 

Edges not well preserved, reduction in 
the image quality, over-smoothing of the 
image, finer details lost 

Fast bilateral [256] 
Works based on the spatial locations and similarity of 
pixel values and its neighbors, each pixel value is 
replaced by weighted average of its neighboring pixels. 

Feature preserving filter, Smoothing 
with edge preservation, Simple in its 
formulation 

Not designed to deal with textured 
regions, undesired “staircasing effect”, 
computational cost is high 

Triangulation median 
[229] 

Median value is computed using symmetrical triangular 
fuzzy filter 

Simple, edges are well preserved 
Output is noisy, texture is lost , edges 
are partially preserved 

Asymmetrical 
triangulation median 
[229,250] 

Median value is computed using asymmetrical 
triangular fuzzy filter 

Edges and structures are well 
preserved 

Texture is partially preserved but with 
some loss of details, further degradation 
at high noise level 

Triangulation moving 
average [229,250] 

Moving average value is estimated using symmetrical 
triangular fuzzy filter 

Higher noise suppression compared to 
TMED filter 

Reduction in the contrast, Sensitive to 
size of the window and padding 

Fourier ideal filter[26] 
Suppresses all frequencies higher than the cut-off 
frequency 

High noise suppression 
Image blurring, texture lost, sensitive to 
cut-off frequency, finer details lost 

Fourier Butterworth 
filter[26] 

Fourier transformation, Butterworth filtering, 
transforming the image back to the spatial domain 

Significant reduction in speckle, 
eliminates Gibbs effects, low 
computational complexity 

Smaller details are lost, Sensitive to cut-
off frequency and order of the filter 

Homomorphic fourier 
Butterworth filter [26] 

Logarithmic transformation based Fourier Butterworth 
filter 

Increase in contrast, attenuating low 
frequencies enhances the edges 

Texture is not preserved, image 
blurring, sensitive to cut-off frequency 
and order of the filter 

Homomorphic Fourier 
ideal filter[26] 

Logarithmic transformation based Fourier ideal filter High noise suppression 
image blurring, texture lost, sensitive to 
cut-off frequency 

Probability based 
shrinkage[99] 

Estimating the probability of noiseless subband data 
based on the Laplacian prior 

Alleviates the need for preliminary 
edge detection 

Generation of large coefficients in the 
edgy regions 
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Posterior sampling 
based Bayesian 
estimation [228] 

Conditional posterior sampling approach is employed 
for estimation of posterior distribution of noise free pixel 

Noise is suppressed with structure 
preservation, dynamic learning of noise 
distribution, contrast enhanced 

Homogeneous regions are blurred, 
higher execution time 

Block thresholding 
[239] 

Divide subband into equal square blocks and estimate 
block size and threshold based on the loss estimation 

Neighboring coefficients of the pixel 
are taken into account 

Fixed block size and threshold 

NeighShrinkSURE 
[103] 

Estimation of optimal threshold and window size in 
every subband using Stein’s unbiased risk estimation. 

Effective noise suppression, edge 
preservation in logarithmic domain 

Smoothing of finer details, reduction in 
the contrast 

Generalized likelihood 
ratio method [22, 116] 

Initial coefficient classification is used for estimating the 
statistical distribution of the features of interest. 

Improved noise suppression with 
details well preserved 

Small amount of noise retained, 
generate wavelet related  artifacts 

Orthonormal wavelet 
thresholding [102] 

Denoising process is parameterized as sum of 
nonlinear unknown weights followed by SURE. 

Alleviating the necessity for the design 
of a statistical model 

Introduce visual artifacts, generate large 
coefficients in edgy regions 

Ripplet with nonlinear 
approximation [95, 96]  

Generalization of curvelet transforms by incorporating 
addition support and degree parameters 

Avoiding the artifacts of ringing nature, 
representing shape of object 

Texture of the not preserved, sensitive 
to the number of coefficients to be 
retained, reduction in contrast the 
image 

SURELET[101] 
Loss estimation based on Stein’s unbiased risk 
estimation (SURE) integrated with linear expansion of 
threshold (LET) 

Requirement of the clean image for the 
estimation of MSE is overcome 

Generates spurious values at higher 
levels of speckle noise 

Multiscale product 
thresholding [100] 

Adjacent subbands are multiplied to exploit interscale 
dependencies. 

Significant edges are well preserved, 
and enhanced 

Redundancy present in the image not 
considered, over-smoothing 

M-band ridgelet [94, 
267] with thresholding 

Based on the combination of m-band wavelet and 
ridgelet known as m-band ridgelet. 

Better energy compaction, performs 
better than wavelets, enlarging high 
frequency components 

Smoothing of the images, selection of 
optimal threshold 

Optimized Bayesian 
nonlocal mean [125, 
135] 

Make use of redundancy, attempt to identify features to 
be retained and noise to be eliminated by averaging, 
metrics governed by patches surrounding each pixel 

Feature preserving filter, Performance 
better than spatial image denoising 
algorithms 

Ringing artifacts around the edges, 
regions are over-smoothed due to patch 
jittering effect, time consuming 

Probabilistic patch 
based [127, 135] 

Generalization of Euclidean distance used in NLM , 
incorporating ‘weighted maximum likelihood estimation 

Better balance is being achieved 
between point-wise estimator accuracy 
and error 

Higher computational time, over-
smoothing of the homogeneous regions 

Patch based locally 
optimal Wiener [271] 

Patches are compared looking for photometric and 
geometric similarity, exploiting redundancy present 

Visual outlook enhanced, edges and 
structures well preserved 

Fractional loss of textural information 
along with smoothing of images  

BPFA [269] 
Non-parametric Bayesian dictionary based method 
employing the truncated beta-Bernoulli technique 

High noise suppression and edge 
preservation 

Computational time very high, reduction 
in the brightness of the image 

Hybrid TMED  Integration of Wiener and Fuzzy filter based on TMED 
Edges are preserved, improvement in 
noise reduction compared to TMED 

Sensitive to the size and shape of the 
window and amount of padding 

Hybrid ATMED   Integration of Wiener and Fuzzy filter based on ATMED 
Improves noise reduction capabilities 
of ATMED 

Noise is retained in the denoised 
images 

Hybrid TMAV  Integration of Wiener and Fuzzy filter based on TMAV 
Noise suppression improved, quality of 
images superior compared to TMAV 

Noise removal takes place but with 
some blurring and loss of  texture 

Geometric Wiener  Combination of geometric and Wiener filter High noise suppression 
Smoothing of the edges near the 
boundaries 
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Adaptive fidelity total 
variation [120] 

The amount of denoising in a particular region is 
controlled using fidelity term, acts according to the 
contents of region. 

Image denoising with texture 
preservation 

Texture information are excluded, 
smaller details lost, restoration is not 
uniform 

Rudin, Osher and 
Fatemi total variation 
[120, 253] 

Regularizer allows discontinuities whereas oscillations 
are not allowed to creep-in, uses L

1
 norm of the 

gradient 

Edges preserved, smooth regions are 
effectively reconstructed 

Loss of geometry, inability to handle 
texture dta, “staircasing effect”, texture 
data systematically “washed out”, 

Anisotropic total 
variation [251] 

Preferential direction of edge detection to boost them 
during reconstruction, anisotropic version of ROF TV 
model 

Efficient , small amount of data 
required for the reconstruction of the 
image 

Not simple to compute variation, 
inability to deal with textured data 

Aujol et al. [119] 
Maximum-A posteriori regularizer based estimator is 
employed for estimating the functional minimizer 
reflecting the denoised image 

Edge and structure are largely 
preserved while suppressing noise 

Poor visual outlook of the image 

Shock filter [269] 
Application of dilation or erosion operations depending 
on the pixel belonging to minimum or maximum zone 

High noise suppression, structure of 
the image well preserved 

Poor edge preservation and visual 
outlook 

Median filtering [26, 
27, 131]  

Pixels replaced by the median value in the window 
Retains sharp edges, increase the 
intensity of the images, exploits 
contribution of all pixels 

Extra computational burden, edge 
blurring, thin lines and sharp corners 
lost 

Hybrid median [26, 27, 
131]  

Estimate the median outputs obtained using median 
filtering with three different windows 

Edges are preserved with improvement 
in the visual outlook of the image 

Smoothing of the images, 
computational burden 

Maximum 
homogeneity[26, 27, 
131] 

Maximum homogeneity around  a pixel in the 
neighborhood 

No tuning of the thresholds required, 
assists in automatic interpretation of 
pixels 

Smoothing of the images, smaller 
details lost 

Homomorphic [26, 27, 
131] 

Image logarithmically transformed, FFT is computed, 
denoised followed by IFFT and exponential operation 

Sharpening of features and 
suppression of noise 

Certain details are lost, texture not fully 
preserved 

Geometric filter [27, 
131, 244] 

Image geometry using complementary hulling principle, 
centre pixel is incremented or decreased based on the 
neighboring pixel values 

Effective speckle noise suppression 
and edge preservation 

Small amount of speckle noise is 
retained 

Speckle reducing 
anisotropic diffusion 
[22, 27, 35, 131] 

Inhibit diffusion across edges, allow diffusion on either 
side of the edge , diffusion controlled by instantaneous 
coefficient of variation (ICOV) 

Intra-region smoothing is combined 
with edge preservation 

Low contrast edges smeared, speckle 
pattern  improperly retained in bright 
regions 

Level set diffusion 
[267]  

The  coefficient of variation is combined with the 
geodesic snake for denoising of multiplicative noise 

High noise Suppression with edge 
preservation 

Reduction in the brightness of the 
image with loss of texture features  

Anisotropic diffusion 
[22, 27, 35, 83, 131]  

Encourages diffusion in the homogeneous region while 
inhibits diffusion at edges 

Intra-region smoothing and edge 
preservation, impressive for  non-
textured images 

Dependent on the shape of the energy 
function, noise at edges are retained, 
degrades contrast, obscure edges 

Detail preserving 
anisotropic diffusion 
[86, 135]  

Estimating the equivalence between threshold 
controlling level of diffusion and variation in noise 
coefficient, diffusion function is modification of Kaun et 
al. filter 

Requires lesser computational time 
compared to SRAD, strong speckle 
suppression 

Low contrast edges are smeared, 
Retaining subtle features is quite 
difficult 

Coherence enhancing 
diffusion [22, 84] 

Based on the concept of embedding diffusion tensors 
into diffusion models 

Simultaneously enhance edges while 
smoothing images 

Undesired ripples introduced 
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The authors in [27, 130, 131] have pointed out that the despeckling filters considered 

by them may find applications for the TTE image despeckling. Therefore, in the current study 

the applications of despeckling techniques analyzed by Loizou et al. [131], Mateo et al. [26], 

along with other types of filters are explored. The despeckling performances are compared in 

terms of noise reduction and edge preservation for the TTE images. An overview of the 

despeckling filters tabulated in Table 3.2 shows that applications of many techniques are not 

explored for the TTE images. The filters such as the bilateral [122-124, 255-257, 260, 261, 

273], detail preserving anisotropic diffusion (DPAD) [86, 135], fuzzy [158, 229, 274], local 

statistics (LS) [27, 130,131, 265, 270, 275], M-band ridgelet (MBR) [94, 267], NLM [125,126, 

135], probabilistic patch based (PPB) [127, 135, 271], total variation (TV) [252-254, 259], 

ripplet [95, 96], sparse representation [269, 272, 277] and wavelet shrinkage [90, 92, 99, 

101-103, 278-280, 299], were not included in the most recent review of despeckling methods 

for the TTE images by Finn et al. [22].  

This thesis presents analysis of 48 despeckling filters. These filters are grouped into 

eight types. The analysis is in terms of 16 IQM along with the visual quality assessment and 

clinical grading. The edge and structure preservation are discussed at length taking the 

clinicians perspective into consideration. All the despeckling techniques are briefly described 

in next few sections followed by the analysis of their performances for the TTE images in 

multiple views. An overview of various despeckling filters analysed are tabulated in Table 3.2 

with suitable reference which will provide overall picture of all filters in analysed in this 

chapter. It would be quite difficult to provide all details of 48 filters hence it is being attempted 

to present only the most required details in this chapter. The complete details of all filters are 

available in the references mentioned against each filter in Table 3.2 and Table 3.3. 

 
3.2 Types of despeckling techniques 

Eight types of despeckling techniques are analysed for the TTE images acquired in two 

parasternal and three apical views. A total of 48 filters are analysed for both standard noisy 

images and the TTE images acquired from adult patients diagnosed with aortic regurgitation. 

In clinical practice, the TTE images are visually seen in PLAX, PSAX, A4C, A5C and A2C 

during study of the aetiologies and consequences of aortic regurgitation. The eight types of 

filters are tabulated in Table 3.2 for quick overview. The Table 3.2 includes the 48 filters 

analysed in this chapter for the B-mode TTE images of aortic valve and cardiac chambers. 

The concept of each of the filters with their merits and demerits along with references are 

tabulated in Table 3.3. Some of the details of these filters are provided in the next sub-

section. The eight types of filters namely 1) local statistics, 2) fuzzy, 3) Fourier, 4) total 

variation, 5) nonlocal mean, 6) nonlinear iterative, 7) multiscale and 8) hybrid filters are 

briefly described in following sub-sections from 3.2.1 to 3.2.8. The results are analysed in 

section 3.3.  
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3.2.1 Local statistics based filters 

This class of filter includes the adaptive SAR filters (Lee filter, Kaun et al. filter and Frost et 

al. filter) [22, 76-82] the despeckling filter (DsFlsmv, DsFlsminsc, and DsFWiener) [27, 130, 

131] and bilateral filter [122-124]. The local statistics filters (Kuan et al. filter, Frost et al. filter, 

and Lee filter) are known for speckle noise suppression, but the sharp features are not well 

preserved. The general form of first order local statistics based filters [27, 131]   is given by  

( )
denoised x ,y x ,y x ,y x ,y

f g W g g      (3.1) 

where 
x ,y

g is the noisy pixel value, 
x ,y

g is local mean value,
denoised

f are the estimated denoised 

pixel values in the window, 
x ,y

W is the weighing factor where [ ]W ,0 1 and x,y are co-

ordinates of the pixel. 

 
3.2.1.1 SAR despeckling filters 

The despeckling techniques such as the Lee filter, Kaun et al. filter, Frost et al. filter, 

minimum speckle index filter, and Wiener filters are briefly introduced in this sub-section. The 

Lee filter is an adaptive noise reduction technique based on the multiplicative noise model. 

The working of SAR filters such as the Lee filter [22, 77, 135] are based on an assumption 

that the mean and variance of pixels would be equal to local mean and the variance of all 

pixels within the processing window. The output image would be obtained by computing the 

central pixel intensity based on the average pixel intensity and the coefficient of variation in 

the filter window. The general formulation of Kaun et al. filter [22, 78, 135] is same as the Lee 

filter but has different weighting function. In Frost et al. filter, the noise free image was 

obtained by convolving the original noisy image with a mask [22, 265]. 

 
3.2.1.2 Despeckling based on local statistics (DsFlsmv, DsFlsminsc, DsFWiener) 

The despeckling filter (DsFlsmv) is based on local statistical parameters such as the mean 

and the variance of the neighborhood [27, 131]. The filter functions on the additive noise 

model. The output of the DsFlsmv filter is computed using the weighing factor [27, 131] 

defined as in Equation 3.2 

(1 )

( )
x ,y

n

g σ
W

σ σ

2 2

2 2
                   (3.2) 

where σ
2
 and 

n
σ 2  are the variance of the moving window and the entire image, respectively 

[27, 131]. The value of 
n

σ 2  is computed as 
1

p

n p p
x

σ σ g2 2 where
p

σ 2 , and 
p

g  are the variance 

and the mean of noise in the selected window, respectively and p represents index of all the 

windows in the entire image [27, 131]. The noise variance is computed using the 

logarithmically compressed image. This was based on the computation of the average noise 
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variance for various windows with dimensions considerably higher than the processing filter 

window [27, 131]. The despeckling filter based on minimum speckle index is known as 

homogenous mask area filtering and is abbreviated as DsFlsminsc (despeckling filter-local 

statistics minimum speckle index) [27, 131].  It works by looking for the most homogeneous 

area in a 5×5 neighborhood around each pixel using a 3×3 subset window. The average gray 

value of the 3×3 mask with smallest speckle index C is taken as a substitution for the centre 

pixel of the 5×5 neighborhood and C is computed as  

s s
C σ g2       (3.3) 

where 
s

g and 
s

σ 2 are the mean and the variance of the 3×3 window. The smallest speckle 

index in the window represents the most homogenous sub-window. The Wiener filter is 

abbreviated as DsFWiener and is based on mean square error [27, 131].The weighing factor 

of adaptive Wiener filter can be estimated using the Equation 3.4 

( )
x ,y n

W σ σ σ2 2 2
     (3.4) 

where σ 2
 and 

n
σ 2  are the variance of the moving window and the entire image, respectively 

[27, 131]. 

 
3.2.1.3 Bilateral filter 

Bilateral filters not only preserve the edges, but also smooth the images when used as a 

noise reduction technique [96, 255-257, 261, 273]. They are comprised of range and domain 

filters. The nonlinear characteristic of range filters increases the computations. To overcome 

this problem, modifications have been proposed by various researchers such as the new 

class of bilateral filters known as constant time bilateral. The constant time filters make use 

of polynomial range kernels. Further improvements are achieved using raised cosine kernel 

as proposed by Chaudary et al. [256]. The general form of the bilateral filter based on raised 

cosine kernel is given by 

( ) ( )
( )

( ) ( )

n M n n

n M n n

d x g x
f̂ x

d x h x
    (3.5) 

where ( ( ))
n

h ( x ) exp jnγf x , ( ) ( ) ( )
n n

g x f x h x are the auxiliary images, ( )f x  is the image to 

be processed, 
2

πγ
T

with T representing the range, ( ) ( ( ))
n n

d x c exp jnγf x ,  

( ) ( )
n

n M

Φ s c exp jnγs , ( ( ) ( )) ( ) ( ( ))
n

n M

Φ f x y f x d x exp jnγf x y , with range kernel, 
n

c are 

the coefficients of trigonometric function and M is the kernel degree. The coefficients and 

auxiliary images are obtained from input image. The raised cosine kernel based constant 

time bilateral filter is employed for averaging each of the auxiliary images [256]. 
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3.2.2 Fuzzy filter 

The weighted median filter effectively suppresses the speckle noise but the edges are not 

well preserved [229, 250]. The fuzzy filters preserve image sharpness and the edges. Fuzzy 

filters such as fuzzy filter based on triangular function with median (TMED) center, 

asymmetrical triangular function with median (ATMED), triangular moving average (TMAV) 

center and asymmetrical triangular moving average (ATMAV), are analyzed in the 

logarithmic domain. 

  
3.2.3 Fourier filtering 

The filters of this category are based on the Fourier transformation. Here the images are 

transformed from the spatial domain into the frequency domain and vice versa. The lower 

frequencies represent the slowly changing regions whereas the higher frequencies represent 

the fast changing regions (the edges). A low pass Fourier ideal filter (FIF) is defined as a 

filter which passes all frequencies within the cut-off frequency without any attenuation and 

completely attenuates frequencies above cut-off value. The Fourier Butterworth filter (FBF) 

reduces noise with the edges preserved [26, 245, 248]. The homomorphic FIF (HFIF) and 

homomorphic FBF (HFBF) are implemented using the following steps. The input image is 

projected into logarithmic domain and subjected to fast Fourier transform (FFTs). The image 

in the Fourier domain is filtered using ideal or Butterworth filter, followed by inverse FFT 

transforms (IFFT). Finally, the image is projected back into the non-logarithmic space. 

 
3.2.4 Multiscale techniques 

The maintenance of spatial relation among the pixels, reduced computational burden, 

excellent localization characteristics and simplicity in application are the key features of 

wavelet transforms (WT). But, the major disadvantages of the WT are the oscillations, the 

shift variance, aliasing and the lack of directionality. The wavelet coefficients have the 

tendency to oscillate around singularities making singularity extraction difficult. Any wavelet 

coefficient processing (filtering, and thresholding) may spoil the delicate balance between the 

forward and the inverse transform, leading to artifacts in the reconstructed image. The lack of 

directional selectivity may pose complication in modelling and processing of the image 

features like ridges and edges. The time complexity is on the move in usage of wavelet-

based despeckling techniques due to the DWT and IDWT operations to be performed.   

Multiscale techniques are being effectively used for additive and multiplicative noise 

reduction [90, 92, 99,101-103, 278-280, 299]. These techniques are popularly called as 

thresholding or wavelet shrinkage. Most of the wavelet based noise reduction methods work 

in logarithmic domain. Each input is projected into logarithmic space, subjected to denoising 

and projected back to the non-logarithmic space. The wavelet shrinkage techniques 

implemented in the logarithmic domain were very extensively discussed in Chapter 2. 
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3.2.4.1 Logarithmic wavelet shrinkage techniques  

The following techniques are analysed in this category of filters using the log and exponential 

operations along with various thresholding techniques. The Bayes thresholding is 

experimented in the logarithmic domain for suppression of speckle noise in the standard test 

images and clinical TTE images. This technique is referred to as BayesShrink [227]. The 

multiscale product thresholding, known as the MPT filter, based on multiplication of the DWT 

at adjacent scales, is analysed for reduction of noise in the TTE images [100]. In the 

probability based shrinkage, known as the ProbShrink, the wavelet coefficients are multiplied 

with the probability of signal containing information of interest [99]. The combination of loss 

estimation using Stein’s unbiased risk estimation (SURE) and linear expansion of threshold 

(LET), known as SURELET [101] is also analysed for reducing speckle noise using the 

approximated additive noise model. The interscale orthonormal wavelet thresholding (IOWT) 

[102], and block thresholding are also analysed in the logarithmic domain. The combination 

of neighbourhood shrinkage and SURE, known as the NSS filter [103] is studied in the 

logarithmic domain. 

  

3.2.4.2 M-Band Ridgelet (MBR)  

The combination of M-Band wavelet and ridgelet is known as M-Band Ridgelet (MBR) [94, 

267]. The MBR is embedded with NeighCoeff thresholding [250] for speckle noise reduction. 

The ridgelet transform have been employed in applications such as denoising of images, 

extraction of features and classification based on texture features. This transform overcomes 

the limitations of the wavelets. But, two band wavelet transformations have to be performed 

in the randon domain to obtain the ridgelet transform. These transform are capable of 

analysing only the low frequency signals, they fail at higher frequencies [94, 267]. In this 

thesis, M-Band ridgelet transform is employed for despeckling of the TTE images using the 

M-Band wavelet decomposition in the randon domain. The M-Band wavelet decomposition 

assists in enlargement of high frequency components. 

  

3.2.4.3 Generalized likelihood ratio filtering method (GLM) 

The generalized likelihood method (GLM) for filtering was proposed by Pizurica et al. [116]. It 

is a multiscale denoising technique based on the multiplicative model of speckle noise. An 

initial classification of the coefficients is carried out based on correlation among the 

prominent features across various resolution scales non-iteratively. This initial coefficient 

classification is employed for the estimation of statistical distribution of the features of 

interest. The spatial adaptation is achieved using a local spatial activity indicator in the 
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wavelet domain. It uses non-decimated wavelet transform, with equal number of coefficients 

at each resolution scale. 

 
3.2.4.4 Posterior sampling Bayesian estimation (PSBE)  

The posterior sampling Bayesian estimation was employed for speckle noise reduction in the 

OCT images [228]. In logarithmic PSBE, noise free image details are estimated using 

Bayesian least square error calculations using conditional posterior sampling and then the 

average squared error was minimized. The unknown destination distribution is anticipated by 

sampling a recognized preliminary probability distribution. The posterior distribution is 

computed by means of a weighted histogram approach [228]. 

  
3.2.4.5 Ripplet with nonlinear approximation (RNLA)  

The generalization of the curvelet transform at higher dimension is known as ripplet 

transform. This transform is embedded with support and degree parameters [95, 96]. These 

transforms were advocated for efficient representations of the images or 2D signals at 

various scales and directions. The Fourier transforms are efficient in representing only 

smooth images but fail to perfectly represent images containing edges. The ripplet transform 

provide an efficient representation of the edges in the 2D images. The ripplet transform can 

be employed in various image processing applications such as image restoration, image 

compression and image denoising. The wide range of applications of ripplet transform is 

because of its characteristics such as anisotropy, fast coefficient decay, high directionality, 

good localization and multi-resolution [95, 96]. The extracted ripplet coefficients are arranged 

in the descending order followed by approximation of the signal by the largest coefficient and 

measurement of reconstruction error. The Ripplet forward transformation in the discrete 

domain is of the form as represented in Equation 3.6 

1 2 1 2
=01 2=0

( ) ( )
M N

j ,k ,l j ,k ,l
n n

R f n ,n ρ n ,n
1 1

   (3.6) 

where j ,k ,l
ρ is the mother wavelet function, 

1 2
( )f n ,n  is the image to be processed and the 

Ripplet coefficients are represented by 
j ,k ,l

R . 

3.2.5 Total variation  

The total variation (TV) based denoising is based on the concept that the integral of absolute 

gradient of the noisy image would be high, resulting in high total variation. The images with 

smaller variation are considered to be better denoised with high detail preservation [251-

253]. The denoised image 
denoised

f  obtained by minimizing the quadratic term with the TV 

regularization is given by Equation 3.7  

( )
denoised u Ω Ω

f arg min f u dx λ f dx2   (3.7) 
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where the quadratic data term ( )
Ω

f u dx2
 fits f in u according to the least square fit, 

Ω
f dx is the regularization term (denoising function) and λ is the weighting parameter 

which is the measure of smoothness. The parameter λ  plays an important role in the 

effectiveness of denoising. No denoising is observed when the value of λ   is equal to zero, 

the input and output are the same. The effectiveness increases with increase in value of λ  

and as it tends one. 

  
3.2.5.1 Adaptive fidelity total variation (AFTV)  

The image textures provide lot of critical information but are lost on application of methods 

like PMAD. To overcome such drawbacks, image denoising using TV with adaptive fidelity 

term was proposed by Gilboa, Zeevi and Sochen [120]. Adaptive fidelity term controls the 

amount of denoising by measuring the local variance in the image. The denoising is 

performed in two phases. In the first phase the texture and the noise are isolated using 

scalar total variation method of denoising with λ =1. During the second phase the local 

power constraints estimated using local variance are placed on the output of first phase. 

  
3.2.5.2 Anisotropic total variation (ATV)   

The anisotropic filtering and total variation are known for their ability to identify and preserve 

the edges in the denoised image [251]. The edges are preserved at the cost of induction of 

additional structure due to noise in the anisotropic filter. The total variation based filter results 

in stair-casing effects, leading to gradual changes in the contrast of the homogeneous 

regions structures, especially across the corners and the edges. To overcome these 

drawbacks, AD and TV filters are combined resulting filter known as the anisotropic total 

variation (ATV) filter. The ATV based on the split Bregman algorithm is analysed for speckle 

noise reduction with edges preserved in the TTE images. The Bergman iterations are 

employed during denoising process because it quickly converges, needs to solve lesser 

number of unconstrained problems, λ remains constant and avoids numerical instabilities 

[252]. 

  

3.2.6  Nonlinear iterative filters 

The qualities of denoised images depend on number of iterations and nonlinear technique in 

this class of filters. The following filters are considered in nonlinear iterative filters category 

for performance analysis: DsFgf4d, DsFad, DsFsrad, DsFhomog, DsFmedian [27, 131], CED 

[22, 84, 131] and DPAD [86, 135] filters. The DsFgf4d [22, 27,130, 131, 244] filter works 

either by increasing or decreasing the values of neighborhood pixels depending on their 

relative values. It is based on the assumption that the images are made up of valleys and 

narrow walls. The intensity of pixel located at the center of a 3×3 window is compared with 
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eight neighbors. Depending on intensity values of the neighborhood pixels the value is either 

incremented or decremented so that the values stand out compared to others. 

  
3.2.6.1 Diffusion based despeckling techniques (DsFad, DsFsrad, CED, and DPAD) 

The anisotropic diffusion filter is a nonlinear partial differential Equation (PDE) based filtering 

technique which promotes diffusion in the homogeneous regions while it holds back at edges 

[22, 27, 35, 83, 130, 131, 264]. In DsFad filter [22, 83, 131] it is not important to know the 

power spectrum or the noise pattern, it can automatically remove the noise. The diffusion 

function employed to control image smoothing in the AD filter is based on the image gradient, 

and may not be unsuitable to despeckling of images with multiplicative speckle noise. In 

diffusion based filtering, the noise at edges could not be successfully removed. In order to 

overcome this issue, the concept of diffusion tensors into the diffusion models was 

advocated, and this class of diffusion is referred to as the coherence enhancing diffusion 

(CED) models. The diffusion tensor is based on the gradients in x and y directions. The 

Gaussian filter is employed for removing the variations due to the presence of noise. The 

CED can simultaneously enhance edges and smoothen given image. Therefore, CED based 

techniques can be employed for image enhancement. But it may result in undesired ripples 

in the filtered image [22, 84, 131].  

The concept of coherence during diffusion is expressed in terms of eigenvalues and 

eigenvectors. In DsFsrad [22, 35, 131] the gradient based edge discriminator is replaced with 

a discriminator better suited for speckle. The diffusion function is controlled by instantaneous 

coefficient of variation (ICOV) and this is the ratio between standard deviation to the mean 

[22, 35, 131] defined as: 

{ ( ; )}
( ; )

( ; )

std f x, y t
q x, y t

f x, y t
    (3.8) 

where statistical values are estimated using a nearest four neighbor window. Diffusion 

function utilized is of the form represented in Equation 3.9 [22, 35] 

2 2 2 2 1

0 0 0[ ( , ; ), ( )] (1 (( ( , , ) ( )) / ( , , )(1 ( )))c q x y t q t q x y t q t q x y t q t  (3.9) 

where 
0q represents the ‘speckle scale function’.  

The detail preserving anisotropic diffusion (DPAD) filter was proposed in [86] to 

estimate the equivalence between threshold controlling level of diffusion and variation in the 

noise coefficient [22, 35]. A larger neighborhood for estimating the local statistical 

parameters was incorporated in the DPAD filter for accurate computations. 

 

3.2.6.2 Nonlinear despeckling filters (DsFhomog and DsFmedian) 

The filter based on estimation of maximum homogeneity over a pixel neighborhood is known 

as DsFhomog filter [27, 131]. This filter estimates homogeneous neighborhood around every 
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pixel by taking into account the pixels belonging to processed neighborhood. Median filter 

(DsFmedian-Despeckling median filter) is a nonlinear filtering technique [27, 131]. The noisy 

pixel is replaced by the median value without taking into account the local image features like 

the presence of an edge. 

 
3.2.7 Nonlocal mean filter (OBNLM, PPB) 

The nonlocal means (NLM) algorithm by Buades et al. [126] estimates each pixel value as a 

weighted average of other, similar noisy pixels. As in the bilateral filter, NLM estimates each 

pixel value using a weighted average of other pixel values in the image. It uses a similarity 

based on the resemblance of the pixels’ neighborhoods in high-dimensional space. 

Furthermore, in contrast to the bilateral filter, in which only the vicinity of each pixel 

contributes to the estimate, in NLM all pixels may contribute. The basic idea behind nonlocal 

means is creation of metric governed by patches around each pixel [125-127, 135]. The 

features of interest are selected by comparing image patches. The patterns surrounding 

each pixel are compared instead of intensity of each pixel.  

The redundancy present in the image is put to use in optimized Bayesian nonlocal 

means (OBNLM) based image denoising [125, 135]. The value of each pixel in NLM is 

estimated by calculating the weighted average of all other pixels in the entire image based on 

the similarity resemblance criteria of all the neighboring pixels, leading to superior denoising 

performance in comparison to local statistics based denoising [125]. The search window 

size, similarity window size and h-parameter responsible for control of filter size, dictate the 

performance of the NLM filter. The core issue concerning the NLM filter like wavelet 

thresholding is that it cannot fully exploit the smoothness of the edge contour which can 

separate the white and the black regions. Therefore, there is scope for improvement in its 

performance. The most prominent feature of the NLM is the weighted averaging of pixels 

based on the neighborhoods which produced a decay rate that was superior to those linear 

filters. The NLM based estimators are local and do not exploit the global similarities. 

 
3.2.7.1 Probabilistic patch based (PPB) filter 

The patch based filters are the state-of-art noise reduction methods employed in the US 

image pre-processing [127, 135]. In denoising based on the NLM filter, the Euclidean 

distance is computed between the patches. The generalization of this distance was proposed 

in [127] using probabilistic patch-based (PPB) method incorporating ‘weighted maximum 

likelihood estimation (WMLE)’. The weight ( , )w s t in the PPB filter, between patch s and 

patch t with i iterations is defined as in Equation 3.10 [127, 135] 

1 1

1 1

2 1 1
log

i i

s ,k t ,ks ,k t ,k

i i
k

t ,k s ,k s ,k t ,k

ˆ ˆf ff fL
w( s,t ) exp

ˆ ˆh f f T f f

2

                          (3.10) 
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where trade-off between noise suppression and fidelity estimation is achieved through 

parameters h and T, 
t ,k

f and 
s ,k

f  are the kth pixel amplitude, where their previous values are 

1i

t ,k
f̂  and 1i

s ,k
f̂  for patch t and s respectively. 

  
3.2.8 Hybrid filters 

The hybrid median filter is abbreviated as DsFhmedian (despeckling filter-hybrid median) 

filter. It is an extension of the DsFmedian (despeckling filter-median). The median values are 

calculated using three different window shapes namely normal shape, x-shape and cross 

shape [27, 131]. All four fuzzy filters namely TMED, ATMED, TMAV, and ATMAV filters in 

are combined with Wiener filter and these filters are known as hybrid fuzzy filters [229, 250]. 

The performance of geometric filter is improved by combining it with Wiener filter. During 

iterative processing, the output of the geometric filter is subjected to Wiener filtering for 

removal of noise retained. 

Table 3.4 Overview Image Quality Metrics 

Metrics Name of Metrics Reference Concept/Significance 

SNR Signal to noise ratio [22, 131] 
Computing of the level of speckle before and faster 
processing 

PSNR Peak signal to noise ratio 
[26, 27, 131, 134, 
135] 

Measurement of objective difference between two 
images 

MSE Mean square error [22, 26, 131, 267] 
Mean difference between original and despeckled 
image 

ρ Correlation coefficient [267] 
Measurement of closeness between original and 
processed image 

RMSE Root mean square error [27, 131] Square root of squared error average over a window 

AD Average difference [27, 131] Mean difference divided by the size of the image 

SC Structural content [27, 131] 
Measurement of similarity, for identical images the 
value should be 1 

LMSE Laplacian mean square error [27, 131] Obtain the edge features of the image 

MD Maximum difference [27, 131] 
Maximum difference between original and 
processed image 

Err3 Normalized error summation [27, 131] Error summation using the Minkowski metric, norm 
of dissimilarity between original and despeckle 
image Err4 Normalized error summation [27, 131] 

NAE Normalized average error [27, 131] Measure of error prediction accuracy 

NCC Normalized cross correlation [27, 131] 
Measurement of alignment before and after 
despeckling 

SSIM Structural similarity index 
[22, 131, 135, 267, 
268]  

Similarity between original and denoised image 

FoM Figure of merit [22, 135] 
Measurement of edge displacements between the 
processed and the original image 

β Beta metric [26, 96, 113] Objective criteria for measuring edge preservation 

IQI Image quality index   [27, 131] 
Models distortion as combination of luminance of 
distortion, loss of correlation, and contrast distortion 

 

3.3 Results  

The performances of 48 despeckling filters are analyzed in terms of IQM, visual quality and 

clinical grading. The selections of input parameters for each filter are based on the 

discussions in various research papers [94-103, 130, 131, 134, 135, 267]. The combination 

of input parameters which resulted in the best despeckling, i.e., noise suppression (high 

PSNR and SNR, low MSE, RMSE, LMSE, MD, and AD), edge preservation (IQI, β, and FoM 
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≈1), structural similarity (SSIM≈1) and clinical grading (maximum value on the scale of 10, 

good ≥ 7 else clinically not acceptable) are considered. The significance of each IQM is 

highlighted in Table 3.4 along with reference and expansion of the acronym. The list of input 

parameters employed in the analysis of filter performance are Tabulated in Table 3.5 for 

quick reference. All other combinations of input parameters were also tested on the standard 

noisy images. Some of the important parameters used for implementation of each filter are 

tabulated in Table 3.5. The visual qualities of despeckled standard test images are shown in 

Figure 3.1 to Figure 3.6 and their TTE counterparts in Figure 3.7 to Figure 3.12. The 

quantitative performance parameters for noisy standard images are tabulated in Table 3.6 to 

Table 3.12 and for TTE images in Table 3.13 to Table 3.15. The MATLAB code provided by 

the authors of the following papers [27, 86, 95, 99-103, 116,119, 120, 125, 127, 130, 131, 

256] are used in testing of despeckling filters with suitable selection of parameters for 

standard and TTE images. 

 
Table 3.5 Input parameters for despeckling techniques 

Reference 
Method Parameters 

[22, 77, 79, 81] Lee, Kaun et al., Frost et al. Window size=5х5 

[21, 27,131] 

DsFlsminsc Window size =5х5, iterations=2 , also with 3х3, 7х7,and 9х9 

DsFlsmv Window size=5х5, iterations=2, also with 3х3, 7х7,and 9х9 

DsFWiener Window size=5х5, iterations=1, also with 3х3, 7х7,and 9х9 

[256] FBL 
Width of spatial Gaussian=10, width of range 
Gaussian=20,tol=0.01 

[229, 250] Fuzzy filter Window size=3х3, padding, also with 5×5, 7×7,and 9x9 

[26] 
FIF/HFIF  fc =500, also with fc =100, 1000 

FBF/HFBF Order=2, fc =500, also with fc =100, 1000 

[227] BayesShrink haar  wavelet, level =2 

[99] ProbShrink Window size=3х3, level=2, sym8 wavelet 

[101] SURELET Down sampling N=4, overlap factor K=3, redundancy =3 

[103] NSS Level =3, wtype = sym8 

[100] MPT Scale number =2, C=12 

[22, 116] GLM window size=3×3, level=2, K=3 

[94] MBR m-band M=3, alpha=5000 

[95] RNLA Support c=1,degree d=3 

[228] PSBE Sigma spatial=0.01, window size=21x21, samples=100 

[120] AFTV Iterations=3, λ=0, time step =0.2 

[252] ROF Time step= 0.25, Number of iterations = 5 

[251] ATV Iterations=2, λ=1 , time step=0.2, 

 [22, 83, 131] DsFad Diffusion constant =30, rate of diffusion=0.25,iterations=20 

[22, 35] DsFsrad Iterations=30,time step=0.02, rho=1 

[22] CED Iterations=20,time step=0.02, Diffusion constant =20 

[86] DPAD Iterations=30,time step=0.02, Cu noise estimation 

[21, 27, 131] 

DsFgf4d Window=3х3, iterations=2 

DsFhomog Window=3х3 

DsFmedian Window=5х5,iterations=3 

[125, 135] OBNLM 
Search area=23x23,block size=15x15,smoothing parameter 
h=0.4 

[127, 135] PPB Iterations=4, α=0.8, T=2, search area=23x23, patch size=7×7 

[21, 27, 131] DsFhmedian Window=5х5,iterations=2 

[27, 131]. Hybid Fuzzy Fuzzy and Wiener window size=3х3 

 

Local statistics filters: The visual qualities of the denoised images on applications of local 

statistics and SAR based filters such as Lee, Kaun et al., Frost et al., DsFlsmv, DsFWiener, 

DsFlsminsc and FBL filters, are shown in Figure 3.1 and Figure 3.7 respectively for standard 
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and TTE images. The values of IQM obtained using these filters are tabulated in Table 3.6, 

Table 3.12, Table 3.13 and Table 3.14. The performance parameters tabulated in Table 3.6 

were obtained at various noise levels (σ2=0.01, 0.05, and 0.1) for Lena and Barbara image. 

The output of Kaun et al. and Lee filter induce visual artifacts. The application of Frost et al. 

filter results in the loss of texture information and over-smoothing.  

 
Table 3.6 Comparison of IQM using local statistics filters 

  

 Methods 
  

MSE SNR 

Lena Barbara Lena Barbara 

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 

Lee 51.27 129.4 234.9 262.1 295.1 432.9 50.75 42.71 37.53 36.12 35.09 31.76 

Kaun 48.01 137.6 254.4 160.2 263.3 404.5 51.32 42.18 36.84 40.39 36.08 32.35 

Frost 92.26 106.0 130.9 288.8 298.9 322.3 45.65 44.44 42.61 35.27 34.97 34.32 

DsFlsmv 37.47 169.6 435.0 117.2 220.9 438.0 53.47 40.36 32.18 43.10 37.60 31.66 

DsFWiener 45.92 207.4 390.9 86.68 261.8 456.1 51.71 38.61 33.11 45.73 36.13 31.30 

DsFlsminsc 85.39 127.7 186.5 286.0 328.6 388.5 46.32 42.82 39.53 35.36 34.15 32.70 

FBL 57.86 424.0 1060 92.17 446.2 1030 49.70 32.40 24.44 45.19 31.50 24.22 

  IQI SSIM 

Lee 0.511 0.425 0.358 0.474 0.458 0.401 0.911 0.826 0.741 0.763 0.767 0.714 

Kaun 0.544 0.434 0.363 0.550 0.505 0.439 0.917 0.801 0.705 0.845 0.797 0.726 

Frost 0.526 0.468 0.431 0.493 0.463 0.438 0.888 0.837 0.782 0.794 0.768 0.737 

DsFlsmv 0.639 0.424 0.313 0.691 0.563 0.446 0.934 0.770 0.631 0.903 0.821 0.724 

DsFWiener 0.590 0.421 0.350 0.702 0.539 0.453 0.901 0.708 0.600 0.916 0.774 0.684 

DsFlsminsc 0.553 0.450 0.393 0.517 0.447 0.400 0.903 0.802 0.719 0.816 0.756 0.700 

FBL 0.545 0.332 0.251 0.668 0.492 0.385 0.908 0.679 0.540 0.913 0.767 0.655 

  Beta Metric FoM 

Lee 0.409 0.208 0.118 0.471 0.373 0.222 0.874 0.792 0.603 0.685 0.736 0.689 

Kaun 0.419 0.204 0.130 0.603 0.413 0.270 0.892 0.613 0.492 0.897 0.801 0.656 

Frost 0.269 0.223 0.211 0.304 0.275 0.273 0.778 0.805 0.688 0.731 0.752 0.771 

DsFlsmv 0.510 0.207 0.132 0.785 0.471 0.323 0.883 0.550 0.424 0.865 0.675 0.550 

DsFWiener 0.407 0.151 0.101 0.782 0.460 0.306 0.728 0.430 0.383 0.878 0.584 0.514 

DsFlsminsc 0.195 0.152 0.114 0.071 0.054 0.039 0.844 0.639 0.506 0.834 0.749 0.680 

Fast BL 0.416 0.143 0.098 0.768 0.395 0.276 0.776 0.447 0.354 0.829 0.572 0.484 

  Time RMSE 

Lee 32.54 32.64 32.59 32.62 32.62 32.59 7.160 11.37 15.32 16.18 17.17 20.80 

Kaun 32.90 32.62 32.57 33.08 34.14 34.09 6.929 11.73 15.95 12.65 16.22 20.11 

Frost 26.27 26.19 27.35 26.26 27.55 27.47 9.605 10.29 11.44 16.99 17.29 17.95 

DsFlsmv 0.536 0.526 0.525 0.515 0.518 0.516 6.121 13.02 20.85 10.83 14.86 20.92 

DsFWiener 0.065 0.040 0.039 0.040 0.041 0.040 6.776 14.40 19.77 9.310 16.18 21.35 

DsFlsminsc 20.13 19.69 19.96 19.65 19.73 19.65 9.240 11.30 13.65 16.91 18.12 19.71 

Fast BL 2.003 1.857 2.041 1.993 2.002 2.002 7.606 20.59 32.56 9.601 21.12 32.10 

  PSNR NCC 

Lee 31.03 27.01 24.42 23.95 23.43 21.76 0.996 0.99 0.981 0.987 0.979 0.968 

Kaun 31.32 26.74 24.07 26.08 23.92 22.06 0.997 0.992 0.983 0.991 0.982 0.972 

Frost 28.48 27.88 26.96 23.52 23.37 23.04 0.991 0.988 0.98 0.978 0.974 0.964 

DsFlsmv 32.39 25.84 21.74 27.44 24.69 21.71 0.995 0.993 0.984 0.987 0.983 0.975 

DsFWiener 31.51 24.96 22.20 28.75 23.95 21.53 0.998 0.994 0.986 0.993 0.987 0.976 

DsFlsminsc 28.82 27.07 25.42 23.57 22.96 22.23 0.996 0.992 0.983 0.983 0.976 0.966 

Fast BL 30.51 21.86 17.87 28.48 21.64 18 0.993 0.99 0.985 0.989 0.984 0.978 

 

Denoising is accompanied with check box effects in the Lee and Kaun et al. filters. As 

the kernel size is increased, output image appeared to blurry using the DsFls and 

DsFlsminsc filters, the texture information is not preserved. Smoothing of the background is 

observed using Lee, Kaun et al., Frost et al., and DsFlsminsc filters. The noise is effectively 
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suppressed using the DsFlsmv, DsFWiener and FBL filters with the structures and edges 

well preserved. Lee filter output showed high noise suppression but output appeared to be 

somewhat blurred.  

 

Figure 3.1 Visual quality comparisons for local statistics filters at σ=0.1: (a) Original image, (b) Noisy 
image [40.06, 0.652, 12.09], (c) Lee [36.12, 0.512, 16.19], (d) Kaun et al. [40.39, 0.4933, 12.659], (e) 
Frost et al. [35.27, 0.499, 16.99], (f) DsFlsmv [43.10, 0.692, 10.83], (g) DsFWiener [45.73, 0.7028,  
9.31], (h) DsFlsminsc [35.36, 0.517, 16.912], (i) FBL [45.19, 0.668, 9.61] 

 

The visual quality in Figure 3.1 and values of IQM in Table 3.6 show that the 

performance of filters such as DsFlsmv, DsFWiener and FBL were superior in comparison to 

adaptive SAR filters. Further, it is observed that the performances of the local statistics filters 

are inferior for the textured images. Also, the performances of these filters drastically 

degraded on increase of noise levels. The performance of DsFlsmv filter in terms of IQI 

(0.6919), β (0.7858), FoM (0.8657) is superior compared to Lee, Kaun et al., Frost et al., and 

DsFlsminsc filters. DsFWiener filter had better SNR (45.73dB), SSIM (0.9169), LMSE (0.39), 

MSE (86.68), RMSE (9.31) and ERR3 (11.72) in comparison to other local statistics based 

filters. This analysis indicates that the edge and structure are better preserved using the 
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DsFlsmv filter, and the noise reduction is better using the DsFWiener filter. In case of the 

TTE images the IQM such as the IQI, FoM, SSIM and SC are almost the same for DsFlsmv 

and DsFWiener filters, but the visual quality obtained using the DsFlsmv filter is better 

compared with DsFWiener filter. Note: The values in square brackets against each filter in 

Figure 3.1 to Figure 3.6 represent the values of SNR, IQI and RMSE at noise variance equal 

to 0.01. 

Table 3.7 Comparison of IQM using fuzzy and Fourier filters 

 Method
s 

MSE SNR 

Lena Barbara Lena Barbara 

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 

TMED 121.8 307.3 761.99 357.0 526.0 941.93 43.23 35.20 27.31 33.43 30.07 25.01 

ATMed 56.52 192.4 368.89 221.4 350.5 526.61 49.90 39.26 33.61 37.58 33.59 30.06 

TMAV 66.00 154.6 375.2 254.5 344.4 563.94 48.56 41.16 33.46 36.37 33.74 29.46 

FIF 134.1 636.2 1217 130.7 597.6 1126 42.40 28.88 23.24 42.20 28.97 23.45 

FBF 94.26 444.1 856.8 99.62 427.8 805.2 45.46 32.00 26.29 44.52 31.86 26.37 

HFBF 51.75 166.1 317.6 115.2 240.9 404.3 50.67 40.54 34.91 43.25 36.85 32.35 

  IQI SSIM 

TMED 0.492 0.361 0.288 0.495 0.392 0.323 0.864 0.691 0.569 0.799 0.691 0.595 

ATMed 0.549 0.398 0.329 0.581 0.451 0.379 0.874 0.678 0.571 0.848 0.719 0.630 

TMAV 0.598 0.463 0.385 0.590 0.496 0.423 0.921 0.794 0.684 0.857 0.780 0.699 

FIF 0.495 0.304 0.229 0.671 0.455 0.354 0.808 0.574 0.467 0.881 0.695 0.590 

FBF 0.536 0.345 0.267 0.705 0.498 0.396 0.828 0.602 0.494 0.892 0.715 0.608 

HFBF 0.607 0.444 0.370 0.690 0.546 0.462 0.908 0.719 0.608 0.910 0.779 0.683 

  Beta Metric FoM 

TMED 0.078 0.008 0.024 0.015 0.027 0.031 0.747 0.440 0.358 0.817 0.575 0.474 

ATMed 0.298 0.128 0.090 0.184 0.109 0.074 0.663 0.413 0.368 0.842 0.575 0.496 

TMAV 0.075 0.088 0.077 0.085 0.088 0.073 0.905 0.521 0.425 0.879 0.712 0.562 

FIF 0.357 0.176 0.124 0.760 0.487 0.368 0.666 0.382 0.334 0.735 0.501 0.441 

FBF 0.403 0.201 0.140 0.770 0.487 0.368 0.691 0.383 0.347 0.751 0.509 0.450 

HFBF 0.450 0.230 0.155 0.743 0.512 0.363 0.880 0.437 0.382 0.904 0.586 0.496 

  Time RMSE 

TMED 8.44 8.45 8.44 8.56 8.53 8.57 11.04 17.53 27.60 18.89 22.94 30.69 

ATMed 10.24 10.11 10.17 10.18 10.20 10.13 7.52 13.87 19.21 14.88 18.72 22.95 

TMAV 31.18 31.19 31.27 31.10 31.23 31.18 8.12 12.44 19.37 15.95 18.56 23.75 

FIF 0.656 0.202 0.200 0.205 0.211 0.204 11.58 25.22 34.89 11.40 24.43 33.56 

FBF 0.325 0.313 0.316 0.330 0.314 0.317 9.71 21.08 29.27 9.98 20.68 28.38 

HFBF 0.403 0.405 0.399 0.452 0.401 0.408 7.19 12.89 17.82 10.74 15.52 20.11 

  PSNR NCC 

TMED 27.27 23.25 19.31 22.60 20.92 18.39 0.980 0.926 0.848 0.956 0.910 0.837 

ATMed 30.60 25.28 22.46 24.67 22.68 20.91 0.992 0.975 0.952 0.977 0.956 0.931 

TMAV 29.93 26.23 22.38 24.07 22.75 20.61 0.984 0.945 0.892 0.963 0.927 0.875 

FIF 26.85 20.09 17.27 26.98 20.37 17.61 0.999 0.995 0.990 0.999 0.994 0.984 

FBF 28.38 21.65 18.80 28.14 21.81 19.07 0.999 0.996 0.988 0.996 0.990 0.981 

HFBF 30.99 25.92 23.11 27.51 24.31 22.06 0.991 0.987 0.969 0.992 0.976 0.956 

 
Fuzzy and Fourier filters 

The visual qualities of despeckled images on applications of Fuzzy and Fourier filters such 

as TMED, ATMED, TMAV, FIF, FBF, and HFBF filters, are shown in Figure 3.2 and Figure 

3.8 respectively for noisy Barbara image and TTE image of AV in PSAX. The values of IQM 
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obtained using these filters are tabulated in Table 3.7. The logarithmic fuzzy filters such as 

the TMED, ATMED, and TMAV filters retain noise. The visual quality is improved (IQI≈0.6) 

using TMAV and ATMED filter. The output is smoothed on increasing the window size.  

 

Figure 3.2 Visual quality comparisons for fuzzy and Fourier filters at σ=0.1: (a) TMED [33.43, 0.492, 
11.04], (b) ATMED [37.58, 0.549, 7.52], (c) TMAV [36.37, 0.598, 8.12], (d) FIF [42.2, 0.495, 11.58], (e) 
FBF [44.52, 0.536, 9.71], (f) HFBF [43.25, 0.607, 7.19], whereas the noisy image has [40.06, 0.652, 
12.09] 

 

The IQM values tabulated in Table 3.7, Table 3.12, and Table 3.13 reveal that the 

fuzzy filters have poor β, reflecting poor edge preservation. The edges are well preserved 

using the TMAV filter. The IQM of Fourier filters are superior in comparison to the fuzzy filters 

in terms of β, IQI and SNR indicating superior edge preservation and noise suppression. The 

texture is not preserved using the Fourier based filters. Blurring is observed using FIF, and 

HFIF filters. All the Fourier filters have moderate IQI, and high SSIM, FoM and β values. The 

background of Barbara image is smoothed using TMAV whereas noise is retained using the 

TMED filter. Based on the results shown in Figure 3.2, it can be observed that the texture 

present in the Barbara image is only partially preserved using the TMED and ATMED filters. 

Multiscale techniques: The visual qualities on application of multiscale despeckling 

filters such as ProbShrink, BayesShrink, PSBE, BlockShrink, NSS, GLM, OWT, RNLA, 

SURELET, MPT, MBR, and Bivariate filters, are shown in Figure 3.3 and Figure 3.9 

respectively for noisy Barbara image and AV in PSAX. The values of IQM obtained using 

these filters are tabulated in Table 3.8 and Table 3.9.  
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Table 3.8 Comparison of IQM using multiscale filters 

Methods  
Beta Metric FoM 

Lena Barbara Lena Barbara 

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 

ProbShrink 0.244 0.244 0.197 0.089 0.080 0.071 0.852 0.860 0.525 0.779 0.800 0.664 

Bivariate 0.599 0.339 0.206 0.863 0.655 0.489 0.831 0.522 0.445 0.893 0.684 0.599 

BayesShrink 0.418 0.165 0.105 0.741 0.435 0.233 0.835 0.569 0.521 0.883 0.704 0.645 

PSBE 0.420 0.235 0.173 0.635 0.447 0.331 0.773 0.469 0.376 0.888 0.610 0.504 

BlockShrink 0.612 0.156 0.108 0.893 0.423 0.426 0.896 0.390 0.340 0.929 0.521 0.519 

Curvelets 0.316 0.147 0.105 0.678 0.383 0.280 0.688 0.377 0.336 0.707 0.487 0.442 

NSS 0.634 0.159 0.108 0.899 0.423 0.291 0.912 0.391 0.331 0.930 0.525 0.448 

GLM 0.392 0.160 0.105 0.795 0.453 0.272 0.833 0.490 0.422 0.863 0.756 0.737 

HThreshold 0.366 0.185 0.090 0.611 0.506 0.285 0.772 0.699 0.386 0.827 0.732 0.497 

SThreshold 0.489 0.189 0.108 0.759 0.533 0.326 0.758 0.656 0.430 0.787 0.828 0.546 

OWT 0.313 0.149 0.106 0.678 0.383 0.281 0.685 0.376 0.330 0.719 0.485 0.448 

RNLA 0.274 0.078 0.044 0.705 0.447 0.276 0.804 0.546 0.448 0.834 0.683 0.573 

SURELET 0.423 0.235 0.169 0.634 0.448 0.334 0.788 0.458 0.388 0.896 0.605 0.519 

MPT 0.534 0.215 0.130 0.626 0.422 0.301 0.871 0.423 0.315 0.880 0.569 0.465 

MBR 0.168 0.159 0.142 0.067 0.063 0.053 0.784 0.722 0.584 0.696 0.727 0.749 

  Time RMSE 

ProbShrink 2.16 2.11 2.11 2.11 2.023 2.086 71.07 70.47 66.48 74.85 72.43 75.30 

Bivariate 0.134 0.15 0.14 0.17 0.144 0.137 5.681 10.42 14.96 7.70 13.82 18.61 

BayesShrink 0.594 0.53 0.61 0.62 0.615 0.611 7.14 11.81 15.58 9.71 16.11 20.42 

PSBE 30.69 30.90 30.9 30.72 31.33 31.84 6.61 11.88 17.27 12.06 15.95 20.29 

BlockShrink 6.83 8.35 8.41 6.82 8.216 8.198 5.447 24.21 37.10 6.99 23.83 23.72 

Curvelets 257.0 257.2 257 256.6 256.7 257.2 13.31 29.16 40.37 12.89 28.14 38.80 

NSS 10.87 11.03 11.0 10.61 10.95 10.91 5.18 24.55 37.35 6.75 24.04 35.99 

GLM 5.45 5.53 5.57 5.38 5.036 5.032 7.10 14.07 18.76 8.883 15.23 17.27 

HThreshold 0.12 0.12 0.14 0.12 0.1240 0.125 8.827 12.49 27.67 14.14 17.10 28.85 

SThreshold 0.14 0.14 0.13 0.14 0.1390 0.143 8.837 12.56 21.28 13.04 15.59 22.49 

OWT 0.90 0.91 0.90 0.91 0.9150 0.940 13.21 29.13 40.34 12.85 28.14 38.82 

RNLA 1.05 0.81 0.94 0.85 0.8012 0.813 8.153 14.85 19.84 12.58 17.23 21.99 

SURELET 14.35 14.45 14.5 14.48 14.39 14.3 6.57 11.91 17.13 12.07 15.91 20.33 

MPT 2.71 3.30 3.60 2.76 3.36 3.05 5.60 16.87 30.06 11.22 19.11 30.15 

MBR 10.32 10.35 10.3 10.11 10.41 10.3 11.34 12.18 13.24 17.98 18.53 19.22 

 
PSNR NCC 

ProbShrink 11.09 11.17 11.67 10.64 10.93 10.59 0.975 0.975 0.974 0.963 0.963 0.963 

Bivariate 33.04 27.76 24.63 30.39 25.31 22.73 0.993 0.970 0.938 0.990 0.961 0.925 

BayesShrink 31.04 26.68 24.27 28.37 23.98 21.92 0.992 0.964 0.930 0.986 0.951 0.913 

PSBE 31.72 26.63 23.38 26.50 24.07 21.98 0.990 0.969 0.939 0.976 0.955 0.925 

BlockShrink 33.40 20.45 16.74 31.24 20.58 20.62 0.993 0.988 0.980 0.991 0.984 0.985 

Curvelets 25.64 18.83 16.00 25.92 19.14 16.35 0.998 0.996 0.988 0.999 0.994 0.985 

NSS 33.83 20.32 16.68 31.53 20.51 17.02 0.993 0.987 0.981 0.992 0.986 0.977 

GLM 31.10 25.15 22.66 29.15 24.47 23.38 0.998 0.993 0.985 0.995 0.977 0.965 

H.Threshold 29.21 26.19 19.28 25.19 23.46 18.92 0.989 0.969 0.954 0.979 0.961 0.948 

SThreshold 29.20 26.14 21.57 25.81 24.27 21.09 0.978 0.958 0.935 0.965 0.946 0.923 

OWT 25.71 18.84 16.01 25.94 19.14 16.31 0.999 0.996 0.989 0.999 0.994 0.985 

RNLA 29.90 24.69 22.17 26.13 23.40 21.28 0.996 0.991 0.982 0.990 0.982 0.969 

SURELET 31.77 26.60 23.45 26.49 24.09 21.96 0.990 0.969 0.940 0.977 0.954 0.924 

MPT 33.16 23.58 18.58 27.12 22.50 18.54 0.992 0.980 0.968 0.983 0.973 0.960 

MBR 27.03 26.41 25.69 23.03 22.77 22.45 0.986 0.983 0.979 0.977 0.972 0.966 
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The texture is well preserved on application of multiscale techniques except for the 

ProbShrink, MPT and MBR filters. Smoothing of noisy background is observed using the 

MBR and MPT filters. The shrinkage techniques result in better denoising in the homogenous 

regions where the performance is degraded in the edgy regions due to the generation of 

large coefficients. At higher values of the noise variance, SURELET and OWT filters 

generate large thresholds which were not suitable in denoising of TTE images. Spurious 

values were generated on application of the ProbShrink filter in the logarithmic domain. The 

performance of GLM, NSS, BlockShrink, and Bivariate stand out in terms of SSIM≥0.9, β≥0.8 

and FoM≥0.9 whereas some of other methods lag in terms of one or more values like 

BayesShrink, and PSBE have smaller value of β. The performances of these filters are on-

par to each other in terms of PSNR, RMSE, LMSE, Err3 and Err4. 

 

Table 3.9 Comparison of performance parameters using multiscale filters 

 Methods 

MSE SNR 

Lena Barbara Lena Barbara 

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 

Probshrink 5052 4966 4419 5603 5246 5670 10.88 11.03 12.04 9.52 10.09 9.41 

Bivariate 32.55 113.95 233.82 59.96 193.12 349.58 54.70 43.81 37.57 48.93 38.77 33.62 

BayesShrink 51.08 139.66 242.84 94.45 259.87 417.87 50.78 42.05 37.24 44.98 36.19 32.07 

PSBE 43.69 141.24 298.28 145.57 254.43 411.82 52.14 41.95 35.46 41.23 36.38 32.19 

BlockShrink 29.67 586.16 1376.7 48.86 568.06 562.84 55.50 29.59 22.17 50.71 29.40 29.48 

Curvelets 177.27 850.73 1630.3 166.30 792.10 1505.8 39.98 26.35 20.70 40.07 26.51 20.93 

NSS 26.86 603.05 1395.2 45.65 578.17 1295.8 56.37 29.34 22.06 51.30 29.25 22.24 

GLM 50.45 198.22 352.15 78.91 232.10 298.45 50.89 39.01 34.01 46.54 37.17 34.99 

HThreshold 77.91 156.11 765.75 200.08 292.47 832.40 47.12 41.08 27.27 38.46 35.17 26.08 

SThreshold 78.10 157.91 452.90 170.27 243.20 505.89 47.10 40.98 31.83 39.86 36.77 30.41 

OWT 174.50 848.95 1627.6 165.28 792.35 1507.5 40.11 26.37 20.72 40.12 26.51 20.92 

RNLA 66.47 220.72 393.69 158.26 297.01 483.58 48.50 38.07 33.05 40.50 35.03 30.80 

SURELET 43.17 142.07 293.63 145.77 253.39 413.41 52.24 41.90 35.59 41.21 36.41 32.16 

MPT 31.38 284.64 900.36 126.08 365.38 909.54 55.02 35.86 25.86 42.47 33.23 25.31 

MBR 128.69 148.38 175.37 323.28 343.37 369.61 42.76 41.52 40.07 34.30 33.77 33.13 

  IQI SSIM 

ProbShrink 0.4235 0.4234 0.3275 0.3764 0.3366 0.3083 0.752 0.753 0.660 0.630 0.604 0.569 

Bivariate 0.6234 0.4717 0.3919 0.7485 0.5815 0.4822 0.915 0.764 0.659 0.932 0.808 0.713 

BayesShrink 0.5844 0.4319 0.3606 0.7138 0.5194 0.4093 0.879 0.757 0.697 0.916 0.790 0.708 

PSBE 0.5928 0.4470 0.3700 0.6560 0.5308 0.4561 0.906 0.740 0.624 0.891 0.775 0.689 

BlockShrink 0.6514 0.3108 0.2188 0.7853 0.4606 0.4615 0.941 0.620 0.486 0.950 0.732 0.730 

Curvelets 0.4699 0.2779 0.2046 0.6508 0.4222 0.3183 0.806 0.573 0.466 0.882 0.695 0.588 

NSS 0.6605 0.3077 0.2174 0.7943 0.4591 0.3355 0.945 0.614 0.486 0.952 0.731 0.604 

GLM 0.5809 0.4200 0.3560 0.7090 0.5092 0.4513 0.912 0.752 0.662 0.927 0.807 0.756 

HThreshold 0.4905 0.4194 0.2469 0.5529 0.5116 0.3526 0.875 0.791 0.536 0.831 0.782 0.625 

SThreshold 0.5129 0.4179 0.2984 0.5919 0.5399 0.4223 0.891 0.805 0.640 0.855 0.816 0.711 

OWT 0.4709 0.2782 0.2047 0.6514 0.4223 0.3181 0.807 0.574 0.466 0.881 0.695 0.587 

RNLA 0.5107 0.3491 0.2816 0.5770 0.4566 0.3769 0.887 0.733 0.634 0.843 0.749 0.667 

SURELET 0.5944 0.4453 0.3703 0.6548 0.5324 0.4563 0.907 0.738 0.626 0.891 0.778 0.689 

MPT 0.6110 0.3768 0.2626 0.6703 0.4993 0.3755 0.949 0.658 0.467 0.911 0.729 0.575 

MBR 0.556 0.476 0.431 0.511 0.464 0.431 0.90 0.83 0.77 0.80 0.76 0.73 
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Figure 3.3 Visual quality comparison for multiscale filters: (a) ProbShrink [9.52, 0.37, 74.85], (b) 
BayesShrink [44.98, 0.52, 9.72], (c) PSBE [41.23, 0.53, 12.06], (d) BlockShrink [50.71, 0.46, 6.99], (e) 
NSS [51.3,0.46, 6.75], (f)GLM [46.54, 0.51,8.88], (g) OWT [40.12, 0.65, 12.86], (h) RNLA [40.5, 
0.5,12.58], (i) SURELET [41.21, 0.657, 12.07], (j) MPT [42.47,0.64, 11.22], (k) MBR 
[34.30,0.51,17.98], (l) Bivariate [48.93, 0.58,7.07], noisy image [40.06, 0.652, 12.09] 
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Table 3.10 Comparison of IQM using NLM, sparse representation and hybrid filters 

  

MSE SNR 

Lena Barbara Lena Barbara 

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 

NLM 220.7 346.8 615.8 76.21 268.9 527.1 38.07 34.15 29.16 46.85 35.89 30.05 

PPB 27.13 381.5 700.7 46.23 386.7 934.8 56.28 33.32 24.94 51.19 32.74 25.07 

PLOW 51.94 200.0 296.7 50.44 215.6 405.0 50.63 38.92 35.49 50.32 37.70 32.22 

BPFA 0.001 0.003 0.006 0.001 0.007 0.014 53.75 38.75 33.70 47.93 31.08 25.33 

HTMED 89.79 216.5 609.1 312.4 431.4 807.5 45.88 38.24 29.25 34.59 31.79 26.34 

HATMed 55.69 127.0 242.4 239.0 313.2 433.4 50.03 42.87 37.26 36.92 34.57 31.75 

HTMAV 68.07 134.7 331.5 266.8 338.9 536.0 48.29 42.36 34.54 35.96 33.89 29.90 

GW 44.15 199.3 373.5 90.13 253.9 439.1 52.05 38.96 33.50 45.39 36.39 31.64 

  IQI SSIM 

NLM 0.631 0.403 0.310 0.776 0.588 0.478 0.935 0.752 0.623 0.958 0.836 0.740 

PPB 0.627 0.330 0.238 0.764 0.496 0.373 0.952 0.690 0.522 0.957 0.785 0.646 

PLOW 0.712 0.524 0.462 0.819 0.653 0.564 0.847 0.614 0.540 0.872 0.688 0.591 

BPFA 0.610 0.422 0.352 0.732 0.522 0.424 1.000 1.000 0.999 1.000 0.999 0.999 

HTMED 0.580 0.454 0.376 0.545 0.463 0.393 0.897 0.773 0.665 0.811 0.735 0.654 

HATMed 0.587 0.451 0.388 0.577 0.472 0.416 0.897 0.740 0.640 0.834 0.744 0.601 

HTMAV 0.629 0.516 0.440 0.588 0.515 0.453 0.924 0.840 0.750 0.840 0.788 0.728 

GW 0.597 0.427 0.356 0.704 0.546 0.460 0.907 0.713 0.609 0.916 0.779 0.690 

  Beta Metric FoM 

NLM 0.584 0.192 0.125 0.907 0.608 0.429 0.894 0.642 0.440 0.917 0.711 0.549 

PPB 0.597 0.161 0.102 0.890 0.495 0.328 0.856 0.484 0.355 0.924 0.640 0.494 

PLOW 0.711 0.301 0.218 0.734 0.360 0.234 0.912 0.814 0.667 0.935 0.807 0.689 

BPFA 0.448 0.145 0.091 0.832 0.447 0.318 0.848 0.559 0.472 0.845 0.564 0.48 

HTMED 0.099 0.110 0.110 0.081 0.095 0.082 0.875 0.518 0.417 0.844 0.666 0.560 

HATMed 0.450 0.279 0.1956 0.320 0.199 0.143 0.874 0.489 0.398 0.823 0.624 0.566 

HTMAV 0.330 0.255 0.209 0.236 0.191 0.153 0.867 0.677 0.487 0.847 0.819 0.643 

GW 0.432 0.152 0.101 0.786 0.457 0.308 0.778 0.463 0.393 0.891 0.576 0.522 

  Time RMSE 

NLM 272.6 264.6 260.2 258.5 258.0 252.1 14.85 18.62 24.81 8.730 16.40 22.96 

PPB 172.85 173.17 173.26 181.69 176.10 178.0 5.208 19.53 31.63 6.799 19.66 30.57 

PLOW 71.68 63.90 61.05 67.01 64.14 62.28 7.207 14.144 17.227 7.102 14.683 20.126 

BPFA 23.01 20.01 18.47 24.21 29.90 28.99 0.024 0.056 0.075 0.032 0.085 0.118 

HTMED 8.62 8.65 8.60 8.55 8.53 8.51 9.476 14.717 24.680 17.675 20.772 28.418 

HATMed 10.14 10.18 10.24 10.18 10.32 10.20 7.463 11.271 15.571 15.461 17.699 20.819 

HTMAV 31.22 31.24 31.38 31.31 31.22 31.30 8.251 11.607 18.208 16.334 18.410 23.152 

GW 03.64 03.60 03.67 03.62 03.61 03.60 6.644 14.117 19.327 9.494 15.934 20.955 

  PSNR NCC 

NLM 24.69 22.73 20.24 29.31 23.83 20.91 0.9187 0.9329 0.9373 0.9633 0.9556 0.9501 

PPB 33.80 22.32 18.13 31.48 22.26 18.42 0.9993 0.9897 0.9733 0.9986 0.9889 0.9735 

PLOW 30.98 25.12 23.41 31.10 24.79 22.06 0.9940 0.9791 0.9720 0.9945 0.9811 0.9638 

BPFA 80.66 73.16 70.64 77.98 69.56 66.68 0.9987 0.9941 0.9852 0.9983 0.9913 0.9814 

HTMED 28.60 24.77 20.28 23.18 21.78 19.06 0.9763 0.9208 0.8403 0.9516 0.9032 0.8254 

HATMED 30.67 27.09 24.28 24.35 23.17 21.76 0.9886 0.9712 0.9447 0.9718 0.9503 0.9212 

HTMAV 29.80 26.84 22.93 23.87 22.83 20.84 0.9812 0.9425 0.8867 0.9597 0.9226 0.8683 

GW 31.68 25.14 22.41 28.58 24.08 21.70 0.9988 0.9945 0.9895 0.9973 0.9925 0.9869 

 
 

Nonlocal mean filter: The values of IQM obtained using the NLM, sparse representation 

and hybrid filters are depicted in Table 3.10 for Barbara and Lena image at various noise 
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levels. The visual qualities of images on application of these filters are compared in Figure 

3.4. The NLM filters results in an effective noise reduction and texture preservation. The high 

values β, FoM and SSIM reflect superior edge preservation using patch based filters ((FoM, 

SSIM and β) ≥0.9 and IQI≥0.75). The IQI for NLM filter is superior compared to that of PPB 

filter whereas the other parameters were better using latter filter. The performance of PLOW 

filter is superior in comparison to the NLM and PPB filters in terms of IQM such as the IQI, 

FoM, and computation time. The performance of BPFA filter stood out among the NLM, 

sparse and hybrid filters in terms of SSIM, RMSE, PSNR, MSE and SNR showing superior 

noise suppression qualities. But, observing the values of IQI, β, and FoM shows poor edge 

preservation in BPFA filter in comparison to NLM, PPB and PLOW filters. The performances 

of hybrid fuzzy filters were superior in comparison to fuzzy filters. Among hybrid filters, the 

performance of GW filter is superior in comparison to HTMED, HATMED and HTMAV filters. 

 
Figure 3.4 Visual quality comparison for NLM, sparse representation and hybrid filters: (a) NLM [46.85, 
0.78, 14.85], (b) PPB [51.19, 0.77, 5.21], (c) PLOW [50.32, 0.82, 7.21], (d) BPFA[47.93, 0.73, 0.03], 
(e) HTMED [34.59, 0.54, 9.48], (f) HATMED [36.92, 0.57, 7.46], (g) HTMAV[35.96,0.59,8.25], 
(h)GW[45.39, 0.71, 6.64] whereas noisy image [40.06, 0.652, 12.09] 



 

154 

 

Table 3.11 Comparison of IQM using variational and nonlinear filters 

Methods  
MSE SNR 

Lena Barbara Lena Barbara 

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 

AFTV 143.9 759.7 1495 141.8 713.3 1391 41.79 27.34 21.45 41.45 27.42 21.62 

ROF 61.62 480.5 1073 85.32 477.2 1018 49.15 31.31 24.33 45.87 30.91 24.33 

ATV 38.15 192.9 533.1 115.8 262.2 564.3 53.32 39.24 30.41 43.21 36.11 29.46 

Aujol 1803 1805 1811 2320 2323 2329 19.83 19.82 19.79 17.18 17.16 17.14 

Shock 96.47 127.7 169.7 280.6 308.7 350.8 45.26 42.82 40.35 35.53 34.69 33.59 

Median 74.63 170.1 279.2 335.2 407.1 507.8 47.49 40.33 36.03 33.98 32.29 30.37 

DsFhmedian 71.80 277.9 529.5 166.7 369.7 603.6 47.83 36.07 30.47 40.05 33.13 28.87 

DsFhomog 61.15 103.1 160.2 225.0 278.7 332.1 49.22 44.68 40.85 37.44 35.58 34.06 

DsFhomo 80.55 141.4 214.7 284.8 345.8 415.0 46.83 41.94 38.31 35.40 33.71 32.12 

DsFgf4d 323.5 1114 1932 594.7 1336 2081.2 34.75 24.01 19.23 29.00 21.97 18.12 

DsFsrad 177.3 544.2 1132 116.4 549.4 1159 39.97 30.23 23.87 43.16 29.69 23.20 

DsFad 139.7 153.1 221.1 239.6 257.4 333.7 42.04 41.25 38.06 36.91 36.27 34.02 

DPAD 44.46 173.3 391.3 69.6 262.1 489.2 51.99 40.17 33.10 47.63 36.12 30.70 

CED 93.27 179.6 279.1 260.5 316.2 386.3 45.55 39.86 36.03 36.16 34.49 32.75 

Level Set 213.6 835.7 1559 403.6 979.4 1621 38.45 26.87 21.68 32.45 24.98 20.79 

  IQI SSIM 

AFTV 0.494 0.293 0.214 0.672 0.439 0.330 0.815 0.580 0.471 0.886 0.701 0.590 

ROF 0.580 0.355 0.261 0.721 0.505 0.386 0.879 0.632 0.510 0.914 0.738 0.627 

ATV 0.583 0.415 0.323 0.651 0.537 0.448 0.930 0.723 0.579 0.903 0.782 0.679 

Aujol 0.092 0.090 0.09 0.096 0.095 0.095 0.532 0.531 0.531 0.394 0.394 0.394 

Shock 0.593 0.489 0.430 0.563 0.495 0.452 0.913 0.816 0.737 0.833 0.776 0.727 

Median 0.511 0.387 0.331 0.461 0.380 0.331 0.870 0.709 0.611 0.773 0.683 0.615 

DsFhmedian 0.531 0.361 0.288 0.625 0.458 0.372 0.864 0.663 0.554 0.867 0.721 0.629 

DsFhomog 0.609 0.487 0.422 0.602 0.505 0.460 0.915 0.793 0.699 0.855 0.773 0.711 

DsFhomo 0.526 0.413 0.357 0.497 0.425 0.376 0.882 0.762 0.670 0.797 0.727 0.667 

DsFgf4d 0.476 0.331 0.267 0.547 0.408 0.340 0.809 0.610 0.511 0.793 0.655 0.578 

DsFsrad 0.593 0.367 0.286 0.726 0.506 0.390 0.904 0.638 0.520 0.912 0.732 0.623 

DsFad 0.622 0.469 0.403 0.660 0.543 0.476 0.903 0.746 0.652 0.876 0.778 0.702 

DPAD 0.638 0.432 0.326 0.768 0.555 0.443 0.929 0.736 0.596 0.941 0.790 0.680 

CED 0.561 0.450 0.397 0.543 0.471 0.428 0.858 0.727 0.655 0.809 0.740 0.688 

Level Set 0.387 0.267 0.218 0.399 0.280 0.231 0.801 0.644 0.575 0.762 0.652 0.596 

  Beta Metric FoM 

AFTV 0.333 0.152 0.110 0.701 0.394 0.287 0.677 0.375 0.339 0.726 0.492 0.452 

ROF 0.415 0.163 0.113 0.770 0.424 0.298 0.728 0.416 0.346 0.794 0.537 0.455 

ATV 0.502 0.206 0.122 0.733 0.464 0.325 0.874 0.457 0.371 0.870 0.580 0.490 

Aujol 0.518 0.390 0.310 0.525 0.393 0.316 0.706 0.725 0.719 0.665 0.685 0.701 

Shock 0.308 0.261 0.220 0.251 0.216 0.188 0.812 0.628 0.504 0.740 0.776 0.699 

Median 0.25 0.093 0.050 0.194 0.115 0.080 0.783 0.503 0.436 0.813 0.690 0.581 

DsFhmedian 0.292 0.117 0.074 0.488 0.231 0.161 0.668 0.414 0.386 0.866 0.590 0.506 

DsFhomog 0.397 0.292 0.235 0.353 0.239 0.262 0.891 0.598 0.439 0.841 0.696 0.577 

DsFhomo 0.296 0.165 0.098 0.127 0.071 0.048 0.795 0.592 0.507 0.772 0.763 0.705 

DsFgf4d 0.281 0.162 0.123 0.408 0.290 0.246 0.750 0.476 0.407 0.797 0.594 0.518 

DsFsrad 0.472 0.151 0.106 0.796 0.428 0.300 0.870 0.432 0.347 0.863 0.517 0.459 

DsFad 0.471 0.280 0.211 0.681 0.483 0.375 0.883 0.528 0.416 0.868 0.647 0.544 

DPAD 0.540 0.302 0.199 0.825 0.569 0.421 0.822 0.464 0.363 0.868 0.631 0.529 

CED 0.181 0.088 0.066 0.345 0.205 0.153 0.785 0.447 0.406 0.767 0.699 0.644 

Level Set 0.175 0.121 0.109 0.192 0.131 0.116 0.793 0.697 0.782 0.765 0.741 0.785 

 

Total variation and bilateral filters: The visual qualities on application of variational and 

nonlinear filters are shown in Figure 3.5 and Figure 3.11 respectively for noisy Barbara 
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image and AV in PSAX. The values of IQM obtained using these filters are tabulated in Table 

3.11. The performance of FBL filter stands out in comparison to the AFTV and ATV filters in 

terms of IQM. The edge preservation qualities of the FBL filter are moderately acceptable as 

the values of SSIM, β, FoM were ≥ 0.85 with IQI≥0.75. The texture of the image is well 

preserved using FBL filter. These observations hold good for both standard as well as TTE 

images. In case of noisy Barbara image, the PSNR is 9 dB higher in comparison to the TV 

based filters as well as the MSE is two times lesser when compared with others. 

 

   

Figure 3.5 Visual quality comparison for variational and nonlinear filters: (a) AFTV [41.45,0.67, 11.71], 
(b) ROF [45.87, 0.72, 9.24], (c) ATV [43.21, 0.65, 10.76], (d) Aujol et al. [17.18, 0.1, 48.16], (e) Shock 
[35.53,0.56, 16.75], (f) Median [33.98,0.46, 18.30], (g) DsFhmedian [40.05, 0.63,12.91], (h) DsFhomog 
[37.44,0.6, 15.0], (i) DsFhomo [35.4, 0.49, 16.87 ] whereas the noisy image [40.06, 0.652, 12.09] 

 
Nonlinear filters: The visual qualities on application of nonlinear iterative filters are shown in 

Figure 3.6 and Figure 3.12 respectively for noisy Barbara image and AV in PSAX. The 

values of IQM obtained using these filters are tabulated in Table 3.11. The AD filter results in 
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blurring of the images. Suppression of noise in the Dsfsrad and DPAD filters is quite strong. 

The nonlinear filters such as the DsFsrad and DsFgf4d filter preserve the texture whereas 

DsFmedian, and DsFad filters result in the loss of textural information. The amount of 

smoothing increases with increase in the number of iterations but also results in loss of finer 

details. The output of DsFgf4d filter contain smaller amount of noise retained in them. CED 

filter induces some sort of artifacts due to the enhancement of speckle pattern contours. 

Parameter-wise comparison between the DPAD and DsFgf4d filter showed that (β, FoM, and 

PSNR)DPAD ≥ (β, FoM, and PSNR)gf4d, (MSE, RMSE, Err4, and NAE)DPAD≤(MSE, RMSE, Err4, 

and NAE)gf4d for standard test images. The texture details were lost on application of filters 

such as the Aujol, and DsFhomo filters. 

 

 
Figure 3.6 Visual quality comparison for iterative nonlinear filters: (a) DsFgf4d [29.02, 0.547, 24.38], 
(b) DsFsrad [43.16, 0.73, 10.79], (c) DsFad [36.91, 0.66, 15.47], (d) DPAD [47.63, 0.76, 8.34], (e) 
CED [36.16, 0.54, 16.14], (f) Level set [32.45, 0.39, 20.01] whereas the noisy image [40.06, 0.652, 
12.09] 

 
The performance parameters estimated using 1000 TTE images are presented in 

Table 3.13 and Table 3.14 as a combination of mean ± standard deviation for all IQM values. 

The visual qualities of despeckled TTE images in PSAX during diastole are compared in 

Figure 3.7 to Figure 3.12. The performance analysis for TTE images using the PLOW, BPFA, 

Aujol and Shock filters is on similar lines as that of standard test images. In case of TTE 

images, the IQI, FoM, SSIM and SC are almost the same for DsFlsmv and DsFWiener filter, 

but the visual quality obtained using the DsFlsmv is better compared with Wiener filter, as 

already stated in earlier paragraphs. The GLM based despeckling filter results in superior 
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visual quality and edge preservation for the TTE images among multiscale techniques but it 

has inferior IQIGLM=0.64 compared to IQIPSBE=0.92.  

 
Table 3.12 Comparison of IQM for various types of filters 

 Method ρ AD SC MD LMSE NAE ERR3 ERR4 

ATMAV 0.994 1.68 1.04 150.7 0.98 0.07 20.75 26.35 

ATMED 0.993 1.24 1.03 139.5 1.00 0.07 20.92 26.79 

HATMAV 0.993 2.01 1.05 116.1 0.94 0.081 21.39 26.47 

HATMED 0.993 1.57 1.04 122.2 0.93 0.081 21.22 26.30 

HTMAV 0.992 3.04 1.07 119.9 0.96 0.083 22.46 27.93 

HTMED 0.991 4.00 1.08 138.6 1.00 0.091 24.59 30.84 

TMAV 0.993 2.73 1.06 128.2 1.03 0.082 22.15 27.85 

TMED 0.990 3.56 1.07 148.1 1.32 0.100 26.00 32.62 

HDTDWT 0.998 0.74 1.01 55.3 0.19 0.04 9.42 11.17 

HDWT 0.998 0.61 1.01 58.6 0.29 0.054 10.72 12.68 

BayesShrink 0.997 1.00 1.02 65.3 0.48 0.059 12.33 14.79 

NSS 0.998 1.02 1.02 64.5 0.30 0.053 11.43 13.82 

GLM 0.997 0.05 1.00 86.3 0.44 0.057 11.41 13.61 

OWT 1.000 0.90 1.02 70.33 0.31 0.05 10.59 12.93 

SURELET 1.000 0.03 0.99 41.04 1.18 0.09 15.02 16.79 

Curvelet 0.995 2.04 1.02 44.00 1.19 0.088 15.27 17.08 

PSBE 0.995 0.01 0.99 41.00 1.19 0.086 15.10 16.87 

MPT 0.993 2.07 1.05 115.9 0.88 0.080 20.42 25.22 

ProbShrink 0.992 1.79 1.04 121.2 0.99 0.08 22.70 27.80 

MBR 0.986 -7.62 0.89 220.7 1.00 0.14 33.12 44.22 

FBL 0.999 0.026 1.01 30.4 0.09 0.03 6.91 7.99 

ROF 0.997 0.026 1.00 48.2 0.44 0.059 11.28 13.08 

AFTV 0.997 0.166 1.01 73.3 0.46 0.061 12.64 15.12 

ATV 0.997 0.006 1.02 67.1 0.51 0.062 14.01 16.88 

FBF 0.997 0.045 1.00 61.0 0.45 0.065 11.92 13.65 

FIF 0.996 0.033 0.99 67.1 0.63 0.074 13.70 15.72 

HFBF 0.997 -0.22 1.00 99.3 0.61 0.068 13.52 16.65 

HFIF 0.996 -0.821 0.98 80.1 0.73 0.07 14.48 16.81 

FROST 0.994 0.024 1.02 103.7 0.85 0.073 18.85 23.55 

KAUN 0.995 0.256 1.01 121.6 0.92 0.078 15.99 19.33 

LEE 0.995 0.312 1.01 117.6 0.98 0.080 16.53 20.03 

DsFlsminsc 0.991 0.193 0.31 128.0 1.11 0.090 22.57 27.36 

DsFlsmv 0.997 0.196 1.01 66.0 0.40 0.057 12.74 15.54 

DsFWiener 0.997 0.002 1.01 62.3 0.39 0.056 11.72 13.91 

DsFgf4d 0.991 0.151 1.01 170.0 1.10 0.147 31.93 39.24 

DsFad 0.99 0.082 1.02 98.77 0.80 0.09 19.93 23.69 

DsFsrad 1.00 0. 013 1.08 76.80 0.54 0.06 14.93 18.29 

DPAD 1.00 0.012 1.00 42.49 0.56 0.07 11.80 13.35 

EED 1.00 0.002 1.01 91.65 0.56 0.06 14.64 18.13 

CED 1.00 0.002 0.99 62.16 0.95 0.08 14.22 16.07 

OBNLM 0.998 6.482 1.08 56.21 0.16 0.07 10.31 11.56 

PPB 0.999 1.522 0.99 83.5 0.16 0.039 8.25 10.19 

DsFhmedia 0.995 0.711 1.02 113.0 0.81 0.075 17.28 21.64 

DsFhomog 0.993 0.352 1.02 104.0 0.94 0.079 20.63 25.36 

DsFmedian 0.993 0.695 1.02 181.0 1.06 0.082 21.46 27.62 
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Table 3.13 Comparison of image quality metrics for TTE images (Mean±STD) 

 
Method MSE RMSE ERR3 ERR4 NAE LMSE MD 

Lee 21.49±4.70 4.61±0.48 7.32±0.65 9.76±0.68 0.078±0.01 0.366±0.104 44.42±0.69 

Kaun 202.9±2.16 14.23±0.072 22.26±0.32 28.78±1.12 0.173±0.02 0.038±0.07 240.8±2.53 

Frost 314.4±4.81 17.73±0.13 23.15±0.06 26.14±0.10 0.325±0.03 0.73±0.04 163.5±30.34 

DsFlsmv 90.92±4.52 9.53±0.23 18.79±0.3 28.08±0.32 0.12±0.01 0.85±0.01 171.4±5.01 

DsFWiener 6.57±1.20 2.55±0.24 3.87±0.23 5.04±0.23 0.049±0.01 0.05±0.01 28.31±1.97 

DsFlsminsc 201.34±15.21 14.18±0.52 27.14±0.69 40.31±0.80 0.19±0.02 1.24±0.03 234.8±2.77 

FBL 11.11±1.66 3.33±0.25 6.51±0.17 4.97±0.23 0.07±0.00 0.05±0.00 54.40±13.39 

TMED 309.74±11.5 17.60±0.33 50.91±0.33 34.42±0.34 0.22±0.03 1.54±0.02 250.03±0.56 

ATMED 103.7±3.1 10.18±0.15 22.65±0.21 35.48±0.23 0.1±0.01 0.80±0.01 212.9±0.00 

TMAV 215.50±8.29 14.68±0.28 45.75±0.33 30.23±0.32 0.17±0.02 1.00±0.01 240.19±0.83 

FIF 3.24±0.17 1.80±0.05 3.44±0.05 5.27±0.06 0.04±0.01 0.10±0.01 41.7±5.12 

FBF 4.89±0.22 2.21±0.05 4.57±0.06 7.06±0.06 0.026±0.01 0.09±0.01 64.0±0.01 

HFBF 11.44±0.22 3.38±0.03 7.36±0.07 11.98±0.11 0.07±0.01 0.17±0.01 131.2±0.34 

ProbShrink 300.67±26.2 17.32±0.74 33.96±0.81 50.42±0.79 0.21±0.05 1.007±0.01 271.79±2.1 

BayesShrink 183.8±13.12 13.55±0.47 27.86±0.58 42.06±0.59 0.14±0.03 0.81±0.01 226.34±5.52 

PSBE 8.38±0.36 2.89±0.06 6.64±0.11 10.66±0.19 0.03±0.01 0.06±0.01 90.3±14.83 

BlockShrink 4.18±2.54 1.97±0.55 3.38±0.65 4.89±0.66 0.028±0.00 0.045±0.02 47.29±2.64 

NSS 12.94±2.37 3.58±0.33 6.64±0.32 10.44±0.27 0.054±0.01 0.11±0.01 102.4±3.81 

GLM 4.80±0.46 2.19±0.10 5.40±0.15 8.95±0.20 0.018±0.01 0.01±0.01 62.3±0.17 

OWT 166.7±60.49 12.73±2.19 44.33±13.10 95.46±37.91 0.06±0.01 3.15±0.97 615±25.6 

RNLA 43.06±7.29 6.54±0.54 9.45±0.6 12.53±0.71 0.17±0.01 0.31±0.02 108.8±11.76 

SURELET 19.34±7.67 4.33±0.81 12.63±2.25 8.35±1.36 0.05±0.02 0.37±0.11 117.60±41.90 

MPT 32.18±3.83 5.66±0.34 10.89±0.22 16.95±0.21 0.076±0.01 0.24±0.02 172.4±0.01 

MBR 287.6±22.15 16.95±0.63 33.56±1 50.04±1.03 0.23±0.03 0.98±0.01 246.4±4.33 

Bivariate 15.44±2.13 3.92±0.27 5.83±0.28 7.53±0.29 0.076±0.014 0.07±0.01 41.65±3.89 

NLM 18.20±1.09 4.26±0.13 15.85±0.78 9.47±0.31 0.05±0.01 0.18±0.01 187.36±13.46 

PPB 6.85±0.93 2.61±0.17 5.38±0.22 9.14±0.33 0.06±0.01 0.11±0.01 96.8±0.39 

PLOW 2.47±0.41 1.56±0.13 2.44±0.17 3.23±0.19 0.027±0.01 0.036±0.01 13.10±0.36 

BPFA 0.0±0.0 0.01±0.0 0.01±0.0 0.012±0.0 0.031±0.001 0.034±0.003 0.083±0.004 

HTMED 301.9±11.4 17.37±0.33 34.21±0.38 50.85±0.40 0.205±0.019 1.21±0.009 249.73±0.46 

HATMED 123.77±4.96 11.12±0.22 23.53±0.39 36.35±0.34 0.120±0.010 0.804±0.01 212.29±0.05 

HTMAV 231.53±9.05 15.24±0.29 30.94±0.35 46.62±0.37 0.170±0.015 0.959±0.01 239.91±0.78 

GW 10.57±1.14 3.24±0.17 4.69±0.17 5.94±0.17 0.065±0.004 0.071±0.01 30.74±1.74 

AFTV 91.25±2.51 9.55±0.13 25.75±1.20 17.21±0.59 0.16±0.04 0.47±0.04 214.77±14.72 

ROF 19.15±1.39 4.37±0.16 9.74±0.09 7.11±0.11 0.08±0.01 0.14±0.01 49.37±0.41 

ATV 19.8±2.94 4.44±0.33 6.98±0.25 9.35±0.18 0.08±0.01 0.13±0.01 45.7±0.51 

Aujol 569.7±94.01 23.78±2.20 38.96±2.57 51.43±2.66 0.33±0.01 0.57±0.01 168.16±0.34 

Shock 196.21±7.84 14.05±0.28 25.67±0.33 37.57±0.39 0.207±0.019 0.970±0.001 219.6±12.8 

DsFmedian 90.92±4.08 9.53±0.21 21.58±0.33 34.02±0.34 0.08±0.01 0.86±0.02 211.0±0 

DsFhmedian 60.39±2.41 7.77±0.15 18.29±0.27 29.85±0.39 0.06±0.01 0.50±0.01 214.7±5.68 

DsFhomog 0.03±0.00 0.17±0.00 0.34±0.01 0.50±0.01 0.002±0.00 0.00±0.00 4.0±0.02 

DsFhomo 229.6±13.42 15.15±0.43 31.36±0.58 47.70±0.64 0.16±0.02 0.98 254.3±0.49 

DsFgf4d 1.33±0.25 1.15±0.11 1.64±0.11 1.991±0.10 0.021±0.00 0.01±0.00 4.00±0.00 

DsFsrad 15.12±1.02 3.89±0.13 10.12±0.06 6.96±0.08 0.06±0.00 0.14±0.01 74.33±0.26 

DsFad 57.74±4.67 7.59±0.31 15.25±0.23 11.63±0.26 0.15±0.01 0.28±0.02 84.13±1.79 

DPAD 0.47±0.29 0.66±0.20 2.12±0.54 1.35±0.37 0.01±0.00 0.01±0.00 19.73±4.34 

CED 5.24±0.45 2.29±0.10 9.16±0.09 5.38±0.08 0.02±0.00 0.05±0.00 91.65±0.99 

Level Set 138.89±3.39 11.78±0.14 26.69±0.26 42.57±0.36 0.123±0.02 0.778±0.07 256.82±0.12 
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Table 3.14 Comparison of parameters for TTE images 

 
Methods IQI β FOM SSIM PSNR SNR SC 

Lee 0.913±0.01 0.853±0.03 0.971±0.01 0.992±0.01 34.89±0.88 41.58±1.7 0.999±0.01 

Kaun 0.924±0.01 0.982±0.01 0.952±0.01 0.936±0.01 25.06±0.04 21.92±1.4 1.088±0.02 

Frsot 0.803±0.02 0.625±0.02 0.835±0.03 0.890±0.01 23.15±0.06 18.11±1.3 1.246±0.05 

DsFlsmv 0.85±0.02 0.60±0.01 0.94±0.02 0.98±0.02 28.55±0.21 28.40±1.8 1.09±0.02 

DsFWiener 0.87±0.01 0.97±0.01 0.95±0.01 0.99±0.01 40.02±0.81 51.35±0.9 1.02±0.01 

DsFlsminsc 0.74±0.01 0.10±0.01 0.88±0.02 0.93±0.01 25.10±0.31 21.51±1.9 1.12±0.03 

FBL 0.78±0.02 0.97±0.00 0.82±0.04 0.98±0.01 37.72±0.64 46.22±1.0 1.03±0.01 

TMED 0.75±0.02 0.06±0.01 0.87±0.01 0.92±0.01 23.22±0.16 17.41±2.2 1.26±0.07 

ATMED 0.88±0.01 0.44±0.01 0.95±0.01 0.97±0.02 27.98±0.13 27.01±1.8 1.13±0.03 

TMAV 0.81±0.01 0.19±0.02 0.90±0.01 0.94±0.00 24.80±0.17 20.56±2.2 1.25±0.07 

FIF 0.39±0.06 0.95±0.01 1.00±0.00 1.00±0.01 43.03±0.23 57.35±1.8 1.00±0.01 

FBF 0.41±0.06 0.97±0.02 1.00±0.00 1.00±0.01 41.24±0.19 53.78±1.9 1.01±0.00 

HFBF 0.38±0.06 0.92±0.02 0.97±0.01 0.93±0.01 37.55±0.08 46.40±2.0 1.00±0.02 

ProbShrink 0.31±0.3 0.049±0.01 0.77±0.03 0.899±0.01 23.36±0.36 19.02±3.9 1.22±0.12 

BayesShrink 0.88±0.01 0.54±0.01 0.91±0.01 0.94±0.01 25.50±0.30 23.29±4.0 1.23±0.12 

PSBE 0.92±0.01 0.98±0.01 0.99±0.01 0.99±0.01 38.90±0.19 49.11±2.0 1.04±0.01 

BlockShrink 0.42±0.05 0.977±0.01 0.985±0.01 0.998±0.01 42.54±2.33 57.37±0.9 1.01±0.01 

NSS 0.40±0.05 0.94±0.01 0.97±0.01 0.99±0.00 37.08±0.79 45.46±0.8 1.02±0.01 

GLM 0.64±0.02 1.00±0.01 0.98±0.01 1.00±0.00 41.33±0.38 53.97±2.30 0.99±0.01 

OWT 0.402±0.05 0.497±0.05 0.913±0.04 0.981±0.01 26.16±1.44 24.61±4.50 0.91±0.04 

RNLA 0.25±0.03 0.84±0.01 0.71±0.1 0.88±0.01 31.84±0.70 34.99±1.24 1.02±0.00 

SURELET 0.39±0.04 0.85±0.04 0.99±0.01 1.00±0.00 35.53±1.57 41.86±3.99 1.01±0.07 

MPT 0.62±0.02 0.87±0.01 0.93±0.02 0.99±0.01 33.08±0.52 37.47±1.16 1.05±0.01 

MBR 0.67±0.02 0.16±0.01 0.80±0.02 0.90±0.01 23.55±0.32 17.95±2.15 1.25±0.11 

Bivariate 0.348±0.03 0.965±0.01 0.866±0.03 0.977±0.01 36.28±0.63 44.36±0.56 1.03±0.01 

NLM 0.64±0.02 0.92±0.00 0.92±0.03 0.99±0.00 35.54±0.25 41.87±2.09 1.04±0.01 

PPB 0.39±0.06 0.95±0.01 0.98±0.01 0.93±0.01 39.81±0.55 51.54±2.01 0.99±0.00 

PLOW 0.493±0.04 0.982±0.01 0.991±0.01 0.996±0.01 44.25±0.73 59.91±0.06 0.999±0.01 

BPFA 0.397±0.04 0.983±0.01 0.984±0.01 1.00±0.00 92.976±0.57 61.15±0.41 1.00±0.01 

HTMED 0.755±0.02 0.012±0.01 0.848±0.015 0.910±0.006 23.33±0.16 18.46±1.48 1.28±0.054 

HATMED 0.843±0.01 0.45±0.01 0.914±0.017 0.961±0.003 27.29±0.17 26.27±1.44 1.162±0.030 

HTMAV 0.81±0.01 0.22±0.02 0.883±0.019 0.925±0.005 24.48±0.17 20.77±1.44 1.261±0.049 

GW 0.83±0.01 0.966±0.01 0.923±0.023 0.988±0.002 37.91±0.47 47.62±0.74 0.993±0.002 

AFTV 0.67±0.03 0.78±0.02 0.67±0.06 0.90±0.011 28.53±0.12 29.11±4.32 1.12±0.05 

ROF 0.80±0.01 0.95±0.00 0.92±0.01 0.99±0.001 35.32±0.31 41.43±1.56 1.05±0.01 

ATV 0.29±0.04 0.94±0.01 0.84±0.03 0.96±0.01 35.21±0.63 41.72±1.17 1.05±0.01 

Aujol 0.35±0.04 0.79±0.005 0.930±0.015 0.907±0.011 20.69±0.81 13.08±0.28 2.93±0.096 

Shock 0.32±0.02 0.24±0.004 0.779±0.036 0.920±0.007 25.27±0.17 22.21±1.41 1.17±0.032 

DsFmedian 0.93±0.02 0.42±0.01 0.95±0.01 0.98±0 28.55±0.19 28.40±1.97 1.08±0.02 

DsFhmedian 0.95±0.01 0.71±0.01 0.94±0.01 0.98±0 30.32±0.17 31.95±1.93 1.07±0.02 

DsFhomog 0.90±0.01 1.00±0.01 1.00±0.02 1.00±0.01 63.54±0.23 98.39±1.97 1.00±0.02 

DsFhomo 0.81±0.02 0.17±0.01 0.83±0.02 0.91±0.01 24.53±0.24 20.36±1.88 1.20±0.05 

DsFgf4d 0.95±0.00 0.99±0.01 0.96±0.01 1.00±0.00 46.96±0.83 65.41±1.11 1.00±0.00 

DsFsrad 0.61±0.02 0.95±0.02 0.97±0.01 1.00±0.00 36.35±0.29 43.48±1.53 1.04±0.01 

DsFad 0.52±0.02 0.86±0.01 0.64±0.04 0.93±0.01 30.53±0.36 31.85±1.50 1.07±0.01 

DPAD 0.71±0.02 1.00±0.01 1.00±0.00 1.00±0.00 52.07±2.63 74.92±3.24 1.00±0.00 

CED 0.70±0.02 0.98±0.01 0.99±0.01 1.00±0.00 40.95±0.37 52.70±2.11 1.02±0.00 

Level Set 0.79±0.01 0.486±0.006 0.866±0.009 0.970±0.003 26.76±0.14 24.84±1.50 1.10±0.02 

 
The GLM filter outputs also contain a small amount of noise retained in them and appear 

slightly blurred. These observations holds good for all TTE and noisy standard images. The 

IQI of hybrid median filter is superior compared to filters such as the DsFWiener, DsFlsmv, 
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FBL, PSBE and DPAD filters, which normally result in good quality of denoised images, also 

the (β)DsFhmedian is superior compared to that of DsFlsmv and DsFlsminsc filters. 

 

 
Figure 3.7 Visual qualities of TTE images using local statistics filters: (a) original TTE image in PSAX 
during diastole, (b) Lee, (c) Kaun et al., (d) Frost et al., (e) DsFlsmv, (f) DsFWiener, (g) DsFlsminsc, 
(h) FBL. The Frost et al. results in loss of finers details, while DsFlsminsc to blocky effects. In other 
filters the structure and other fine details are retained. 

 
Clinical validation: The validation of denoised images has been carried out by grading of 

images by four clinical practitioners at PGI, Chandigrah. The grading of images is based on 

visual perception and preservation of contents in the image. The average grades of each 

method are tabulated in Table 3.15. The analysis reveals that despeckling methods such as 

the DsFlsmv, GLM, PSBE, PPB, DsFgf4d, DsFhomog, BPFA, PLOW and NLM filters are 

acceptable whereas the DsFca, fuzzy TMED, and RNLA filtered images are unacceptable in 

the clinical practice. 
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Figure 3.8 Visual qualities of TTE images on applications of fuzzy and Fourier filters: (a) TMED, (b) 
ATMED, (c) TMAV, (d) FIF, (e) FBF, and (f) HFBF. The Fourier filters (FIF and FBF) result in 
enhancement of contrast of TTE images while TMED results in blocky structures in the denoised 
images.  

 
Table 3.15 Grading of despeckled images by doctors 

Filter Name Grade Filter Name Grade 

DsFca, TMED, RNLA 4 DsFWiener, DsFhmedian, 
SURELET, DPAD  

7 

DsFad, DsFhomo, HFBF, MBR, 
MPT, ROF, TMAV  

5 DsFlsmv, GLM, PSBE, PPB, 
PLOW 

8 

DsFsrad, FBF,FIF,NSS,ATMED, 
AFTV, ATV, Aujol et al. filter 

6 DsFgf4d, DsFhomog, NLM, BPFA 9 

 
The objective of result analysis for 48 filters is to look for the suppression of speckle 

noise while preserving the edges and structural information, so as to make the images more 

easily readable for the clinicians. It is felt, as proved in Chapter 2, the despeckling might 

boost up the process of automatic boundary tracing, and computer aided texture analysis, 

compression and classification. Based on their analysis of despeckling filters for US images 

of carotid artery, Loizou et al. [131] had concluded that the DsFhmedian and DsFlsmv filters 

would improve the US image quality. Similar results are observed through the analysis 

presented for the standard images and the TTE images in this thesis. The performance of 

DsFlsmv and DsFhmedian were known for high image quality index and edge preservation. 

The noise suppression qualities of the DsFWiener filter can be taken into account along with 

DsFlsmv and DsFhmedian filters. Elamvazuthi et al. [134] based on analysis of six 

despeckling filters had concluded that the hybrid combination of Wiener, wavelet and 

anisotropic diffusion filter would improve the quality of the US images of bone. It is observed 
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that the hybrid integration of fuzzy and Wiener filter improve noise suppression but with loss 

of texture information. Based on the analysis of 15 despeckling techniques, Finn et al. [22] 

had concluded that the performance of the DsFgf4d, DsFsrad and oriented speckle reducing 

AD techniques are successful in suppression of speckle noise from the TTE images. 

 
Figure 3.9 Visual quality of TTE on application of multiscale filters: (a) ProbShrink, (b) BayesShrink, (c) 
PSBE, (d) BlockShrink, (e) NSS, (f)GLM, (g) OWT, (h) RNLA, (i) SURELET, (j) MPT, (k) MBR, (l) 
Bivariate. The ProbShrink, RNLA and MBR result in reduction of contrast of the images. Spurious 
edges and artifacts are induced using OWT and SURELET. 



 

163 

 

 
Figure 3.10 Visual quality of TTE images on application of NLM, sparse representation and hybrid 
filters: (a) NLM, (b) PPB, (c) PLOW, (d) BPFA, (e) HTMED, (f) HATMED, (g) HTMAV, (h) GW, (i) GHP. 
Blocky effects are observed in images being denoised using HTMED and gradient histogram 
projection (GHP) technique. 

 
The performance of DPAD filter is superior in comparison to the DsFsrad, DsFad and 

DsFgf4d filters in terms of FoM, β and SSIM whereas the IQI of DsFgf4d is superior in 

comparison to the diffusion based despeckling techniques. Mateo et al. [26] compared the 

image quality metrics of six filters employed for the denoising of US images of kidney. It was 

pointed out that median filter, wavelet filters, Fourier filtering and their homomorphic 

counterparts are not extensively experimented on US images. Based on the analysis of 

these filters in this thesis, it is observed that median filter preserves the edges but noise is 

retained in the images. Texture is well preserved using many of the multiscale techniques. 

Zhang, Wang and Cheng [135] have concluded that the performance of PPB filter was 

superior compared to three local adaptive, two anisotropic, three multiscale techniques and a 

hybrid technique for reduction of noise in US image of breast.  
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Figure 3.11 Visual quality of TTE images on applications of variational and nonlinear filters: (a) AFTV, 
(b) ROF, (c) ATV, (d) Aujol, (e) Shock, (f) Median, (g) DsFhmedian, (h) DsFhomog, (i) DsFhomo. The 
images are over-smoothed with loss of finer details using filters such as AFTV, Shock and DsFhomo 
filters. Blocky effects are observed in ATV and median based despeckled images. 

 
This thesis compares the application of seven local statistics, three fuzzy, three 

Fourier, 12 multiscale, five variational, 10 nonlinear, three patch based, a sparse 

representation based dictionary and four hybrid filtering techniques. The performances of 

despeckling filters such as the GLM, DsFlsmv, DPAD, DsFhomog, FBL, PLOW, BPFA and 

PPB filters are superior among the 48 denoising techniques analyzed in terms of 16 

performance parameters along with the visual quality assessment and grading by the 

cardiologists. Each of these filters present a set of merits and demerits tabulated in Table 

3.3. 

Some of the general observations based on the results in Figure 3.7 to Figure 3.12 are  

the visual quality of the image improves on pre-processing using the DsFgf4d filter but at the 
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same time, the image is considerably smoothed with noise retained. The suppression of 

noise using median filter is fractionally superior compared to the Lee filter in the 

homogeneous regions. However, the major threats with this filter are the extra computational 

cost needed for sorting the intensity values, blurring of the edges and loss of smaller details 

present in the image. The influence of median filtering is also seen on clean pixel values 

leading to blurring of edges. Some of the edges and finer details are lost using DsFgf4d filter. 

Many unwanted ripples prevailed in the CED denoised image. 

 

 

Figure 3.12 Visual quality of TTE images on application of iterative nonlinear filters: (a) DsFgf4d, (b) 
DsFsrad, (c) DsFad, (d) DPAD, (e) CED, (f) Level set  

 
 The DsFsrad filter is able to suppress the noise significantly but at the cost of 

excessive smoothing of details and higher computational time. It is also observed that it 

successfully eliminates noise in the background also but blurs the edges. The DPAD based 

filter took lesser amount of execution time in comparison to the DsFsrad filter. The issue of 

concern in NLM denoising is the sub-optimality in dealing with sharp edges. It failed to exploit 

smoothness of edge contour which can distinguish the white and black regions. The edges 

are well preserved using the DsFhmedian filter with increase in the visual quality of the 

denoised image. As no tuning of thresholds or parameters is required in DsFhomog filter, in a 

sense helps automatic interpretation. The sparse representation based BPFA filter results in 

high noise suppression but needs very high computational time. The edges are not well 

preserved using BPFA filter. 
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3.4 Performance analysis using blind quality parameters  

Most of the researchers have employed standard full reference based metrics for evaluating 

the filter performance. The despeckling techniques and performance parameters used by 

various researchers are tabulated in Table 3.16. The full reference parameters such as the 

PSNR, MSE, SSIM, CNR, and RMSE, are computed to analyze the performances of 

despeckling filters. These parameters evaluate performance considering output processed 

and standard noise free image. But unfortunately noise free reference TTE images are not 

available. The traditional parameters such as the PSNR and MSE may not reflect the true 

performance in case of the clinical images. The possible solution to this problem would be to 

use parameters such as speckle suppression index (SSI) [129, 282], speckle suppression 

and mean preservation index (SMPI) [129, 282], and β [26]. These parameters do not require 

noise free image as reference for computing the performance. Mateo et al. [26] had 

employed β for evaluating edge preservation. Iqbal et al. [282] had used SSI and SMPI for 

measuring speckle suppression and the EPI for estimating edge preservation. 

 
Table 3.16 IQM used in analysis of filters by various authors 

Ref. 
Types of filters 

No.  
filters 

Performance parameters Type of image 
β/ 

SMPI/ 
SSI ? 

22 WLT , SAR, AD , GEO  15 FoM, SSIM, MSE, CNR, SNR Heart US No 

134 LA, AD, MR, NLM, HYB 11 PSNR, MSE, SSIM, FoM  Breast US No 

27 
DsF filters based on LS, WNR, MED, 
AD, GEO, HYBMED 

10 
MSE, SNR, PSNR, RMSE, QI, 
SSIM, AD, SC,NCC, MD, LMSE, 
NAE, Err 

Carotid Artery 
US 

No 

134 MED, AD, WLT, WNR, AVG, HYB 7 PSNR Bone fracture No 

128 WLT, AMED, AD, MAP, FF, LLS  7 SNR,ENL, CNR, EKI, CPU time OCT Retina No 

171 AMED, WNR, LS, MBR,  AD, BS 17 
PSNR, SNR, SSIM, FoM, EKI, 
MVR 

Prostate US No 

26 MED, AMED, FIF, FBF, WLT, HFIF 10 β, MSE, SNR, PSNR  Kidney US β 

76 MED, Le-Sig, LR, Lee, Frost, MAP 07 SSI, EEI, FPI, IDPC SAR image β ,SSI 

129 Lee, Frost, MAP, WLT, BM3D, PPB 07 ENL, SSI, SMPI, CoC, ESI,  SAR image Yes 

 
Table 3.17 Comparison of speckle noise suppression for multiscale despeckling filters 

Methods 
β SMPI SSI 

Soft 
threshold 

β SMPI SSI 

MPT 0.8601 2.806 0.9868 RBIO4.4 0.0084 58.59 0.9719 

RNLA 0.8428 2.976 0.9627 DB2 0.0226 58.95 0.9672 

OWT 0.4477 3.070 1.0409 DB4 0.0129 58.74 0.9638 

MBR 0.2312 2.538 0.9341 DB8 0.0253 59.91 0.9481 

NSS 0.4259 0.962 0.6904 DB45 0.0091 54.38 0.9152 

BSHRINK 0.9996 2.589 0.9999 COIF1 0.0302 59.17 0.9650 

SURELET 0.8958 3.967 0.9887 COIF5 0.0029 58.71 0.9454 

GLM 0.9866 2.238 0.9963 SYM2 0.0226 58.95 0.9672 

PSBE 0.9805 2.504 0.9960 SYM8 0.0177 55.92 0.9750 

PS(DB2) 0.1939 27.61 0.7266 DMEY 0.0072 52.73 0.9293 

PS(DB4) 0.1530 20.55 0.7281 BIOR1.1 0.2762 59.52 0.9588 

PS(DB8) 0.1350 17.44 0.7287 BIOR1.5 0.0019 58.54 0.9754 

PS(SYM2) 0.1939 27.61 0.7266 BIOR6.8 0.0136 57.11 0.9692 

PS(SYM4) 0.1530 20.55 0.7281 RBIO1.1 0.2762 59.52 0.9588 

PS(SYM8) 0.1350 17.44 0.7287 RBIO2.2 0.0359 58.73 0.9581 
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The analysis of SMPI in Table 3.17 reveals that the performance of NSS filter is best 

among multiscale techniques with effective noise suppression. The SMPI obtained for the 

NSS filter is three times more effective compared to the GLM filter and it is multi-fold higher 

in comparison to the ProbShrink filter also. The NSS filter and the ProbShrink filter gave best 

values of SSI among the multiscale techniques. The IOWT filter had SSI ≥1.1 suggesting that 

the noise is not suppressed. The logarithmic probShrink results in high value of SMPI which 

is not suitable for TTE images. All the multiscale techniques have FoM value greater than 

0.8. The multiscale techniques such as the MBR, RNLA, PSBE, and GLM filter perform well 

compared to most of the shrinkage techniques. The GLM filter is effective in the noise 

suppression and the edge preservation as reflected by IQI (0.7), β (0.9), FoM (0.9), SMPI 

(2.5) and SSI (0.99). The PSBE and MPT filters results in effective noise suppression and 

edge preservation, similar to the GLM filter. It is also observed that the SMPI values for 

PSBE, GLM, RNLA, and MBR filters are superior in comparison to ProbShrink filter. The 

PSBE, GLM and BShrink result in β to be approximately equal to one. The other techniques 

such as MPT and RNLA filters are also on par with others with β ≤ 0.8.The issue of concern 

with the NSS, OWT, MBR and ProbShrink filters is β≤0.5.  

The performance of the DsFlsmv, DsFWiener, DsFmedian and DsFsrad filter 

performance are similar in terms of IQI, FoM, SMPI and SSI as observed in Table 3.18. The 

SMPI of the DsFgf4d is double that of the DsFWiener, DsFmedian and DsFsrad filter, which 

reflects its inferiority in terms of speckle suppression. The SSI of all the DsFs (except 

DsFhomog) is less than one and the DsFls filter has the lowest values. The DsFls and 

DsFhomog had FoM which is less than 0.7 whereas all other despeckling filters has FoM 

which is greater than 0.8. The edges are not preserved using the DsFlsminsc and DsFhomo 

filter whereas the DsFlsmv, DsFWiener and DsFwaveltc filters preserved the edges as 

reflected in by β ≥ 0.9.  The DsFmedian, DsFhomog, and DsFad filters have β ≥ 0.6.  

 
Table 3.18 Comparison of speckle suppression by despeckling and SAR filters 

 Methods β SMPI SSI  Methods β SMPI SSI 

DsFlsmv 0.9301 2.364 0.9810 FIF 0.9511 2.587 0.9994 

DsFWiener 0.9744 2.292 0.9884 FBF 0.9747 2.575 0.9934 

DsFmedian 0.7116 2.922 0.9899 HFIF 0.8045 3.733 0.9756 

DsFlsminsi 0.1045 2.960 0.9781 HFBF 0.9205 3.381 0.9645 

DsFls 0.4583 4.364 0.8695 CED 0.8964 2.516 0.9803 

DsFhomog 0.6839 5.849 1.0749 LEE 0.9906 6.201 1.1604 

DsFhomo 0.1698 3.597 0.9886 FROST 0.6164 6.019 1.1044 

DsFgf4d 0.5519 7.308 0.9645 KAUN 0.9829 6.399 1.1704 

DsFwaveltc 1.0000 2.588 1.0000 DPAD 0.9837 2.325 0.9966 

DsFsrad 0.9848 2.663 0.9955 FBL 0.9714 2.292 0.9927 

DsFlecasort 0.5258 4.002 0.9941 PPB 0.9409 2.931 0.9701 

DsFca 0.5899 3.154 0.9261 NLM 0.8891 2.367 0.9853 

DsFad 0.8111 3.358 0.9608 Med 0.0460 3.378 0.9884 
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Table 3.19 Comparison of speckle suppression for TV and Fuzzy filters 

Method β SMPI SSI Method β SMPI SSI 

CGM 0.9218 2.113 0.9614 TMED 0.0666 3.790 1.0001 

GPBB 0.8516 2.126 0.9643 ATMED 0.4438 2.881 0.9865 

GPCL 0.9077 2.136 0.9658 TMAV 0.1681 3.767 0.9999 

GPLS 0.7110 2.129 0.9652 HTMED 0.0074 4.015 0.9974 

GPABB 0.8999 2.129 0.9647 HATMED 0.4467 3.082 0.9834 

PDHG 0.9123 2.132 0.9657 HTMAV 0.2127 3.905 0.9978 

SQPBBNM 0.9219 2.128 0.9646 GWF 0.9634 2.831 0.9804 

AFTV 0.6672 2.044 0.9583 GWF1 0.1349 2.804 0.9675 

TV 0.4390 3.085 0.9462 GWF2 0.4145 2.234 0.9682 

ATV 0.9433 2.162 0.9766 GWF3 0.1249 2.755 0.9655 

 

Fourier filters 

The performance of the HFIF and the HFBF are superior in comparison to the FIF and FBF 

filters in terms of SSI as shown in Table 3.18. These results in terms of SMPI values which 

are superior by a factor of two compared to the SAR filters. The high value FoM suggests 

better denoising performance. The issue of concern using Fourier a based technique is 

smaller IQI. Observations revealed that the IQI is less than 0.4 using the FIF and FBF filters.  

 

SAR filters 

The SAR filters such as Frost et al., Lee, and Kaun et al., over-smooth the texture in the TTE 

images. The values of SSI are greater than one using these filters as shown in Table 3.18 

indicating poor noise suppression. The performance of SAR filters is poor in terms of SMPI; 

the values are almost double of the FBL, DPAD, FIF and FBF filters. The FoM is less than 

0.8 using these filters. The SAR filters such as Kaun et al. and Lee had β≥0.95. IQI is greater 

than 0.8 using Lee, Kaun et al., and Frost et al., filters. 

  

Fuzzy filters 

The fuzzy filters perform well in terms of IQI, FoM and SSI but with higher SMPI (≤4) and 

small β. The fuzzy filters such as the TMED, ATMED, TMAV, GWF1, and GWF2 based 

denoising result in β ≤ 0.4. The GW filter results in least SSI value among all the fuzzy based 

filters. The values of SMPI and SSI for fuzzy filters are tabulated in Table 3.19. The hybrid 

fuzzy filters have smaller SMPI compared to fuzzy filters. All fuzzy and hybrid fuzzy filters 

have FoM are greater than 0.8. The modified geometric filter preserves the edges as 

exhibited by the β ≥ 0.9. All fuzzy based filters result in IQI≥ 0.75. 

 

Total variation based denoising 

The performance of gradient based TV denoising is moderate in terms of IQI and SMPI. The 

analysis based on β, FoM and SSI show the better side of these filters. The AFTV and ATV 

filters result in poor IQI (≤0.3), moderate β, FoM, and SMPI. These filters had SSI<1. The 
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values of SMPI were similar for all gradient TV, AFTV and ATV filters as shown in Table 

3.19. Gradient TV methods have SMPI which is less than the SMPI of all fuzzy, DsF, and 

ProbShrink filter. All the variational filters have FoM are greater than 0.8 except the AFTV 

filter. The filters such as CGM, GPBB, GPCL, GPABB, GPPBsafe, PDHG, SQPBB, and ATV 

result in β≥0.9. Filters such as GPLS, AFTV, and TV have β ≤ 0.5. The CGM, AFTV and ATV 

have IQI less than 0.3 whereas all other TV based techniques have values in the range 0.7 

to 0.85. 

    

Diffusion and Nonlocal means filters 

The output images on application of PPB and NLM filters result in the SSI ≤1. The DPAD, 

FBL, NLM and PPB filters have SMPI far less compared to SAR filters proving their superior 

speckle suppression capabilities. The FoM using the DPAD, and PPB filters is almost equal 

to one and far superior compared to the SAR and OBNLM filters. The edges are well 

preserved using the FBL, PPB, NLM and DPAD filters with beta metric approximately equal 

to one. The IQI is comparatively less using the PPB (0.4), NLM (0.6), and DPAD (0.6) filters 

whereas FBL (0.7) is fractionally higher. 

 
3.5 Summary 

The performances forty eight filters, grouped into eight types, were analysed for despeckling 

of the TTE images. The thrust areas of analysis were noise suppression, edge and structure 

preservation, visual quality assessment and clinical grading. The performances of each filter 

is analysed within its own type of despeckling and also with other types of filters. The eight 

types of filters analysed were fuzzy filters, Fourier filters, logarithmic multiscale techniques, 

local statistics filters, nonlocal mean filters, variational filters, nonlinear techniques and 

iterative techniques. The image quality metrics consisted of traditional parameters, along with 

parameters which were useful in measuring edge preservation, and speckle noise 

suppression. Initially, the performance is analysed using traditional and edge preservation 

parameters along with the visual quality assessment and clinical grading. In the last part of 

the chapter 3 the analysis is based on the blind parameters such as SSI, SMPI and β for 

estimating the speckle noise suppression and edge preservation. 

 The performance of NSS filter in the logarithmic domain stood along with GLM filter in 

terms of superior noise suppression and edge preservation using the multiscale techniques. 

The performance of DsFlsmv, FBL and DsFWiener filters were better in the local statistics 

based filters both in terms noise suppression and structure preservation. The hybrid fuzzy 

filters performed better in comparison to the fuzzy filters in the logarithmic domain. The 

performance of BPFA filter stood out among the NLM, sparse and hybrid filters in terms of 

SSIM, RMSE, PSNR, MSE and SNR showing superior noise suppression qualities. But, 

observing the values of IQI, β, and FoM shows poor edge preservation in BPFA filter in 
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comparison to NLM, PPB and PLOW filters. The performance of FBL filter stands out in 

comparison to the AFTV and ATV filters in terms of IQM. The nonlinear filters such as the 

DsFsrad and DsFgf4d filter preserve the texture whereas DsFmedian, and DsFad filters 

result in the loss of textural information.  

The clinical grading with experienced clinicians revealed that despeckling methods such as 

the DsFlsmv, GLM, PSBE, PPB, DsFgf4d, DsFhomog, BPFA, PLOW and NLM filters were 

acceptable whereas the DsFca, fuzzy TMED, and RNLA filtered images are unacceptable in 

the clinical practice. 
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CHAPTER 4: DENOISING OF CWD IMAGES 

This chapter describes the applications of despeckling filters for the CWD, M-Mode, and color Doppler 

echocardiographic images. The performance of the despeckling are analysed in terms of texture 

features, image quality metrics and visual quality assessment. The analysis attempts to bring out the 

characteristics of despeckling filters for images acquired in multiple views and imaging modalities 

through the texture features also. The texture features of the original images are compared with those 

obtained from the despeckled images.  

4.1 Introduction 

The Doppler ultrasound (US) modalities such as the continuous wave Doppler (CWD), pulse 

wave Doppler (PWD), and color Doppler along with B-mode echocardiographic images are 

employed for assessment of valvular abnormalities. Each modality has its own importance in 

the diagnosis of different types of abnormalities of the heart. The importance of each 

modality is brought out in the introductory chapter. These modalities are employed in 

integrated fashion in the clinical practice. The information acquired using each of the 

modalities is visually and intelligently combined by clinicians for making correct diagnosis. 

One of the important applications of the CWD echocardiographic imaging is measuring high 

blood flow velocities across regurgitant and stenotic valves orifices [59, 198, 282-284].  This 

modality is commonly used in estimation of pressure half time (PHT) and deceleration slope 

by manual tracing of the CWD spectrum. During the acquisition of data for measurement of 

the PHT it is necessary to align the Doppler sound beam as parallel as possible to the flow 

direction. This parallel orientation can be achieved by taking into account the qualities of 2D 

images and Doppler recording [10, 282, 283]. Further, as per the American Society of 

Echocardiography (ASE) recommendations, good quality and well defined envelopes of 

CWD should be employed for estimating the velocities and pressure gradients across the 

regurgitant and stenotic valve orifices [10].  

The manual delineation of the spectrum and the presence of artifacts are the two major 

problems of concern in CWD spectra analysis. The manual tracing of the CWD spectrum 

depends on the experience of the delineator, the visual quality of the spectrum, and the 

acoustic viewing window employed for acquiring image [189, 191-195, 282]. Manual tracing 

is a time consuming task combined with inter/intra-personal variations. Most of the clinical 

decisions depend on the parameters derived from the manually traced spectrum [40, 189, 

190-199, 201, 282]. The artifacts such as the speckle noise are also observed in the CWD 

images [40, 187, 190, 197, 200, 201] which need to be pre-processed as steps taken up for 

the B-Mode TTE images. The presence of speckle noise may lead to large variations in 

Doppler measurements such as the Doppler power. The peak velocity can be estimated from 

the Doppler spectrum using various heuristic thresholding techniques, but they are strongly 

influenced and prone to noise. Hence, the estimated peak power can be inaccurate [187]. 
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Therefore, it would be desirable to suppress noise present in the CWD images with edges 

and the structures well preserved in the denoised image.  

The problems due to the presence of noise, low contrast, and other artifacts in CWD 

images are identical to the issues prevailing in the B-mode TTE images [190]. The granular 

structures found in the CWD spectrum of gray scale are similar to those seen in B-Mode TTE 

images [31]. The median filter and the Gaussian low pass filter are more commonly used for 

reduction of noise in the CWD images [40, 189, 192, 193, 201]. Gong et al. [189] employed a 

median filter for reduction of the background noise in the CWD images. Thresholding was 

applied on the pre-processed image instead of direct application on the original CWD 

images. A Gaussian-shaped low pass filter (LPF) was employed for suppression of noise by 

Tschirren et al. [40]. Shechner et al. [192] used the combination of Sobel operator with a 

Laplacian edge detector along with the LPF, edge linking and curve fitting for automatic 

tracing of the mitral valve (MV) spectrograms. The essence of noise reduction and edge 

detection in automatic image analysis in the Doppler velocity spectrum was highlighted by 

Greenspan et al. [193] for the MV. The images were pre-processed using Gaussian kernel 

for noise reduction, and enhanced by application of contrast stretching [193]. 

  

 

Figure 4.1 Manual tracing of the CWD images 

 A semi-automatic method of delineation for the PWD images of patients suffering 

rheumatoid arthritis was proposed by Magagnin et al. [195]. The outliers in the thresholded 

images were removed using a median filter [195]. Wang et al. [197] employed a Kalman filter 

for reduction of speckle noise in the PWD images. An adaptive pulse coupled neural network 

(PCNN) with adaptive thresholding was advocated by Li et al. [200] for removing the speckle 

noise from the Doppler blood flow spectrograms. They had concluded that removal of noise 

was essential and preliminary step in the spectrogram automation [200]. A combination of 
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two median filters was used for noise reduction from the spectrum image by Kalinic et al. 

[201].  

Vilkomerson et al. [187] had observed that the peak velocity estimated using methods 

based on thresholding were strongly prone to the noise. Baba et al. [283] spoke regarding 

two noise sources in the cardiac Doppler US system: one, due to interaction of the signal 

generated across a strong cardiac wall with low velocity and second, flow signal and strong 

high velocity signal across the valve. The effect of second case was very high compared to 

the first [283]. The presence of speckle noise in the background and the aliasing effects were 

addressed by Zolgharni et al. [282] by incorporating an adaptive thresholding based on 

histogram analysis. Initially, the noise in the Doppler images was filtered using a first order 

Butterworth filter. It was said that even on performing all the said steps, some noisy spike 

prevailed in the extracted profiles. 

Finn et al. [22] had compared applications of 15 denoising techniques for the B-mode 

echocardiographic images. The techniques considered included four types of filters such as 

six techniques based on anisotropic diffusion, three wavelet and five on synthetic aperture 

radar (SAR) techniques [22]. Zhang, Wang and Cheng [135] had compared the 

performances of nonlocal mean (NLM), wavelet and diffusion based techniques on the US 

images of breast [135]. Loizou et al. [131] had advocated a despeckling filter (DsF) software 

toolbox using MATLAB for despeckling of the US images of common carotid artery [131]. 

Elamvazuthi, Muhd Zain and Begam [134] had studied the applications of filters based on 

wavelets, median, Wiener, average, anisotropic diffusion, and combination of Daubechies–

Wiener on the US images of bone. Wong et al. [228] compared performance of methods 

such as anisotropic diffusion, wavelet-domain, adaptive median, linear least square 

estimation, maximum a posteriori (MAP) estimation with posterior Bayesian estimation for 

reduction of speckle in optical coherence tomographic (OCT) images [228]. Mateo et al. [26] 

and Fernández-Caballero [12] had studied denoising applications of median filter, adaptive 

weighted median filter, Fourier and wavelet transform based filters and homomorphic filters 

for reduction of noise for the US images of kidney. 

The exhaustive literature review reveals that filters based on techniques such as 

diffusion [22, 35, 83, 86], total variation [120, 135, 251, 252], nonlocal means [125, 127], 

local statistics [27, 130, 131], wavelet [94, 242, 95, 99-103, 116, 118, 135, 227, 239], bilateral 

[135, 256], and fuzzy [229, 250] concepts were not thoroughly being investigated and studied 

on the CWD images. The reason could be that impact of speckle noise is high on the B-

Mode images in clinical analysis compared to its adverse impact on the CWD images. The 

literature review reveals that no exhaustive analysis of despeckling technique is reported for 

the CWD images in terms of image quality metrics (IQM) and visual analysis. This thesis 



 

174 

 

presents an exhaustive analysis of despeckling characteristics of eight type’s filters for the 

CWD images in terms of visual quality and IQM and clinical validation.  

The despeckling techniques are compared for the B-Mode images in Chapter 3 and 

these filters also employed for speckle noise reduction in CWD images in this chapter. An 

overview of despeckling filters is tabulated in Table 3.1. The concepts, merits and demerits of 

various filters are tabulated in Table 3.3. Each CWD image is observed after pre-processing 

to verify if the finer details necessary for diagnosis are retained or taken off.  

 
4.2 Feature extraction 

The texture present in an image is considered to be an affluent source of visual information 

perceived by humans in appreciating the visual outlook of that image [284-286]. The textures 

are often complex visual patterns made up of different entities, or sub-patterns characterized 

in terms of brightness, color, slope, size, and others. Thus the texture can be considered as 

a similarity grouping in an image [284]. The sub-pattern present in the local region may bring 

out the perceived uniformity, lightness, roughness, density, linearity, regularity, directionality, 

frequency, coarseness, phase, fineness, randomness, granulation, and smoothness, of the 

texture altogether [285]. The texture present in the image provides information on the spatial 

arrangement of intensities. The spatial arrangements and interrelationships of image pixels 

visually seen are reflected as intensity variations in the intensity patterns or gray tones. The 

ability of human in recognition of texture is commendable compared to the ability of digital 

computers. The texture of an image would be a vital characteristic in analysis of the image. 

The texture characteristic plays important role in analysis of images acquired in remote 

sensing and medical imaging.    

There are numerous approaches for feature extraction from an image. The feature 

and feature extraction techniques would be important in the successful classification, and 

segmentation of images. Various methods have been advocated for extraction of texture 

descriptor. Some of texture extraction techniques employed in this thesis are first order 

statistics, gray level difference matrix (GLDM), gray level difference statistics (GLDS), 

statistical feature matrix, Laws textures energy measure (Laws TEM) and fractal dimension 

texture analysis. The texture features employed by Liozou et al. [27, 130, 131] for analysis of 

despeckling filters are employed for analysis filter performance for the TTE images in this 

thesis. The performance analysis of despeckling filters for the US images of carotid artery 

was presented in terms of texture features by [27, 130, 131]. Sixty one texture features and 

ten image quality metrics were computed to bring out the performance of ten despeckling 

filters by Liozou et al. [27, 130, 131] whereas in this thesis performance analysis is extended 

to 48 filters. In this thesis this particular exercise is carried out for the B-Mode, M-Mode, 

CWD, and PWD based echocardiographic images. The B-Mode images are acquired in 

multiple views such as A4C, A2C, A5C, PLAX and PSAX.  
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The first order statistics features computed for specifying the performance of 

despeckling filters are mean, median, standard deviation, skewness and kurtosis.  The 

spatial gray level dependence matrices (SGLDM) were advocated by Haralick et al. [286]. 

These features were based on the computation of second order conditional probability 

density functions. Based on the probability density functions the following features are 

estimated:  the angular second moment, correlation, entropy, difference entropy, inverse 

difference moment, contrast, variance, sum average, sum entropy, difference variance, sum 

variance and information measures of correlation. For any assumed distance d ( the value of 

d is set to one using a 3×3 matrices) at angles 
0 0 0 0=(0 ,45 ,90 135 )θ and four values were 

estimated for all texture measures.  

 
The gray level difference statistics (GDLS) technique use the first order statistics 

based on the absolute difference between pair of gray levels using the local property, with an 

objective to determine the texture measures such as entropy, angular second moment, 

contrast and mean. The GDLS based texture features are estimated for the displacement δ = 

(0, 1) (1, 1), (1, 0), (1, -1), with ( , )δ x y , and their mean values are taken into 

consideration. The visual properties of the texture in the image were employed in the 

extraction of the neighborhood gray tone difference matrix (NGTDM) based features. 

NGTDM based features consists of the following features: contrast, complexity, coarseness, 

strength and busyness. The statistical properties, at several distances for a pair of pixel pair 

for an image were taken into account while estimating features based on statistical feature 

matrix (SFM). The SFM class of features consisted of contrast, roughness, periodicity, and 

coarseness. The values of constants which estimate the inter-sample distance are set as Lr = 

Lc = 4.  

 The Laws texture energy measures (Laws TEM) employed convolution between the 

image and its statistics with defined masks for extraction of texture features from the image. 

The Laws TEM were used to describe the texture information present in the image. The 

extraction vectors with length l=4, L = (1, 6, 15, 20, 15, 6, 1), E = (-1, -4, -5, 0, 5, 4, 1) and S 

= (-1, -2, 1, 4, 1, -2, -1) were employed, where local averaging was performed which will 

behave as an edge detector and spot detector. The texture features extracted using various 

kernels are as follows: LL stands for texture energy from LL kernel, EE—texture energy from 

EE kernel, SS—texture energy from SS kernel, LE—average texture energy from LE and EL 

kernels, ES—average texture energy from ES and SE kernels and LS—average texture 

energy from LS and SL kernels. The fractional Brownian motion model is employed in the 

extraction of fractal dimension texture analysis. 
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4.3 Results: 

The results tabulated in Table 4.1 reflect the moderate edge preservation and high structural 

similarity on application of wavelet shrinkage techniques. The applications of shrinkage 

techniques for the echocardiographic images result in spurious thresholds, which are tackled 

by embedding a Wiener filter sequentially. The size of the mask in the Wiener filter is set to 

be 3×3. The performances of Fourier filters for noisy Barbara image are shown in Figure 4.2. 

The performances of the Fourier filters namely Fourier Ideal filter, Fourier Butterworth filter 

(FBF), homomorphic FIF and homomorphic FBF, are superior at cut-off frequency equal to 

500. The values of β and IQI are quite small at cut-off frequency equal to 100, but the values 

improved at cut-off frequency equal to 500. The values of these parameters are less than 0.7 

which show that the edges are partially preserved.  

 
 Table 4.1 Performance of wavelet filtering techniques  

Methods IQI SSIM NCC β FoM PSNR SNR MSE LMSE ERR3 RMSE 

Wavelet 

threshol

ding 

OWT 0.6515 0.8812 0.9997 0.6786 0.7488 25.95 40.12 165.3 1.17 15.03 12.86 

SURELET 0.6511 0.8829 0.9995 0.6759 0.7087 25.93 40.10 165.8 1.18 15.05 12.88 

BayesShrink 0.7140 0.9120 0.9868 0.7413 0.9074 28.38 44.99 94.3 0.47 12.33 9.72 

BlockShrink 0.7851 0.9502 0.9916 0.8930 0.9261 31.22 50.67 49.6 0.29 8.85 7.00 

Wavelet 

[24, 26] 

 HL 0.5840 0.8823 0.9925 0.4130 0.7388 24.15 36.53 250.4 1.53 19.87 15.81 

LH 0.6531 0.8815 0.9979 0.6559 0.7259 26.19 40.60 156.4 1.15 15.09 12.51 

HH 0.6552 0.8814 0.9978 0.6470 0.7182 26.22 40.66 155.3 0.93 15.15 12.46 

LH-HH 0.6631 0.8831 0.9963 0.6250 0.8127 26.54 41.31 144.2 0.87 14.82 12.01 

Homom

orphic 

wavelet 

 HL  0.5830 0.8818 0.9942 0.4082 0.7440 24.05 36.33 255.8 1.57 20.30 15.99 

 LH 0.6515 0.8810 0.9961 0.6533 0.7890 26.07 40.36 160.8 1.13 15.44 12.68 

HH 0.6544 0.8817 0.9971 0.6427 0.7020 26.12 40.47 158.8 0.96 15.42 12.60 

LH-HH 0.6616 0.8813 0.9988 0.6263 0.7670 26.51 41.25 145.1 0.87 14.85 12.05 

 

The performances of the filters namely the probabilistic patch based (PPB) filter, NLM 

filter, anisotropic total variation (ATV) filter, fast bilateral (FBL) filter, posterior Bayesian 

estimation (PSBE), generalized likelihood method (GLM), NeighshrinkSURE (NSS), 

multiscale product thresholding (MPT) and M-Band ridgelet (MBR) filter, are shown in Figure 

4.3. The details of each filter are discussed in Chapter 2 and Chapter 3. It is observed from 

Figure 4.3 that the edge preservation specified using β is greater than 0.9 for PPB, NLM and 

FBL filters, indicating good edge preservation using these filters. The images are over-

smoothed using the MBR filter and the MPT filter as reflected by the values of β which is less 

than 0.2. The values of IQM such as FoM, SSIM, NCC, and β are greater than 0.85 on 

application of the PPB, NLM, and FBL filters indicating superior edge preservation, structural 

preservation and lesser distortion induced. 

The performance of wavelet thresholding techniques such as the orthogonal wavelet 

thresholding (OWT), SURE with linear estimation of thresholds (SURELET), BayesShrink,  

BlockShrink, wavelet soft thresholding and homomorphic wavelet thresholding using various 
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sub-bands are tabulated in Table 4.1. The performance of BlockShrink based filter stands out 

compared to all techniques in Table 4.1. 

 

Figure 4.2 Performance of Fourier filters at various cut-off frequencies 

  

 

Figure 4.3 Performance of PPB, NLM, ATV, FBL, PSBE, GLM, NSS, MPT, MBR filters 
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Table 4.2 Performance of despeckling filters using masks of various sizes 

Metrics 
Mask 
size 

DsF 
med 

TMAV ATMAV 
DsF 
lsmv 

DsF 
Wiener 

DsF 
ls 

DsF 
homog 

DsF 
gf4d 

MSE 

3×3 234.20 253.6 219.46 94.51 86.21 282.32 230.57 596.37 

5×5 334.96 351.2 320.06 117.55 116.98 409.66 307.51 598.12 

7×7 317.48 417.97 219.46 119.64 138.04 531.44 354.77 594.28 

SNR(dB) 

3×3 37.10 36.40 37.66 44.98 45.78 35.47 37.23 28.98 

5×5 33.99 33.57 34.38 43.08 43.12 32.24 34.73 28.95 

7×7 34.45 32.06 37.66 42.93 41.69 29.98 33.49 29.01 

PSNR(dB) 

3×3 24.44 24.09 24.72 28.38 28.78 23.62 24.50 20.38 

5×5 22.88 22.67 23.08 27.43 27.45 22.01 23.25 20.36 

7×7 23.11 21.92 24.72 27.35 26.73 20.88 22.63 20.39 

RMSE 

3×3 15.30 15.93 14.81 9.72 9.29 16.80 15.18 24.42 

5×5 18.30 18.74 17.89 10.84 10.82 20.24 17.54 24.46 

7×7 17.82 20.44 14.81 10.94 11.75 23.05 18.84 24.38 

ERR3 

3×3 21.46 22.15 20.75 12.74 11.72 22.80 20.63 31.99 

5×5 25.28 25.25 24.45 14.12 13.67 26.37 23.10 32.01 

7×7 24.05 26.89 20.75 14.05 14.67 29.23 24.27 31.93 

ERR4 

3×3 27.62 27.85 26.35 15.54 13.91 28.25 25.36 39.31 

5×5 31.44 30.99 30.20 16.98 16.10 32.07 27.80 39.34 

7×7 29.56 32.53 26.35 16.77 17.16 35.00 28.88 39.24 

LMSE 

3×3 1.06 1.03 0.98 0.40 0.39 0.94 0.94 1.11 

5×5 1.18 1.06 1.09 0.45 0.44 1.01 1.01 1.10 

7×7 1.01 1.01 0.98 0.43 0.47 0.99 0.98 1.10 

NAE 

3×3 0.0824 0.0820 0.0773 0.0565 0.0565 0.0882 0.0794 0.1462 

5×5 0.0941 0.0989 0.0928 0.0618 0.0641 0.1140 0.0950 0.1466 

7×7 0.0942 0.1120 0.0773 0.0635 0.0706 0.1368 0.1063 0.1460 

IQI 

3×3 0.5657 0.5929 0.5949 0.7240 0.7037 0.5779 0.5965 0.5447 

5×5 0.4614 0.4877 0.4893 0.6932 0.6378 0.4468 0.4996 0.5463 

7×7 0.4554 0.4171 0.5949 0.6837 0.5950 0.3530 0.4354 0.5460 

SSIM 

3×3 0.8343 0.8576 0.8595 0.9133 0.9181 0.8371 0.8515 0.7938 

5×5 0.7744 0.7868 0.7947 0.9046 0.8921 0.7465 0.7957 0.7931 

7×7 0.7737 0.7270 0.8595 0.8995 0.8654 0.6622 0.7507 0.7935 

NCC 

3×3 0.9821 0.9640 0.9734 0.9903 0.9932 0.9848 0.9812 1.1135 

5×5 0.9736 0.9504 0.9618 0.9872 0.9887 0.9788 0.9742 1.1138 

7×7 0.9700 0.9399 0.9734 0.9848 0.9857 0.9728 0.9683 1.1131 

BETA 

3×3 0.1734 0.0878 0.1890 0.8132 0.7811 0.2506 0.2976 0.4052 

5×5 0.1954 0.1233 0.2442 0.7857 0.7533 0.1579 0.0385 0.4074 

7×7 0.0631 0.0192 0.1890 0.7890 0.7403 0.1214 0.1434 0.4074 

FoM 

3×3 0.7693 0.8870 0.8900 0.8889 0.8525 0.7753 0.8053 0.7714 

5×5 0.7796 0.7778 0.8071 0.8227 0.7909 0.6212 0.6854 0.7781 

7×7 0.6893 0.6339 0.8900 0.7861 0.7520 0.6541 0.5939 0.7632 

 

Initially, the performance of ten despeckling filters namely DsFWiener, DsFlsmv, 

DsFhmedian, DsFlsminsc, DsFhomog, DsFgf4d, DsFsrad, DsFad, DsFhomo, and 

DsFmedian are analysed for the CWD images. These ten filters were analysed by Loizou et 

al. [131] for the US images of carotid artery. The CWD images are embedded with speckle 

noise to show the impact of these despeckling filters. The speckle noise is artificially added 

to the images using the MATLAB inbuilt “imnoise” to highlight the importance of pre-

processing the noisy images. It is to be noted that artificial noise added only during this study 

of ten filters in this section. The performances of these filters are also analysed without 

adding any noise to the CWD images. The region of interest (ROI) is selected and noise is 

added to this ROI. The noisy ROIs are despeckled using ten despeckling filters. The results 

obtained for these noisy images using ten despeckling filters are shown in Figure 4.4. The 
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visual of despeckled images are shown in Figure 4.5. The IQM are computed using the 

original and despeckled ROI. 

 

Figure 4.4 Comparison of IQM using ten despeckling filters 

 

Figure 4.5 Visual qualities of CWD images on application of despeckling filters 

 

The performance of the DsFsrad filter is superior compared to the DsFgf4d filter, 

DsFhomog filter, DsFlsminsc, DsFhmedian and DsFad filter in terms of IQM such as Err3, 

Err4, LMSE and NAE. The visual quality of despeckled images obtained using the DsFlsmv, 

DsFWiener, DsFad and DsFsrad are able to retain structure and edge details. The outer 

boundaries are blurred on application of the DsFhomo and DsFlsminsc filters. The 

performances of window based filters such as the DsFmed, TMAV, ATMAV, DsFlsmv, 
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DsFWiener, DsFhomog, and DsFgf4d filters are analyzed with the window size as 3×3, 5×5 

and 7×7.  The IQM of these filters are tabulated in Table 4.2. Analysis of results shown in 

Table 4.2 reveals that the performances of the DsFlsmv and DsFWiener filter stand out in 

comparison to all other techniques. The values of SNR, PSNR, IQI, SSIM, NCC, β and FoM 

are highest for these two filters which indicate better edge and structure preservation 

accompanied with noise reduction. The MSE of Wiener filter with 3×3 windows is less 

compared to all other filters in Table 4.2 also with highest SNR (dB). 

 

 

Figure 4.6 Comparison of IQM for despeckling filters with mask size of 3×3 and 5×5 
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Figure 4.7 Comparison of IQM for wavelet-domain, Fourier, RNLA, DsFhmedian, SQPBBM, PPB, 
FBL, DsFad, CED, DsFsrad, DPAD, GLM 

 

The FoM obtained using the fuzzy filters such as the TMAV and ATMAV filter along 

with the DsFlsmv filter are high (>0.89) and superior compared to all other filters. The values 

of β for most of the filters tabulated in Table 4.2 are quite small except for the DsFlsmv and 

DsFWiener filters. Also, the values of NCC are also higher for these two filters. The issue of 

concern using filters such as the TMAV, ATMAV, DsFmed filters and others is poor value of 

β whereas the other parameters are moderate, in the middle range. With the increase in the 

window size, the values of IQM such as SNR, PSNR, IQI, SSIM, and FoM decrease, 

whereas the values of parameters like MSE, LMSE, ERR3 and ERR4 show an increase. The 
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results obtained for the CWD images are shown in Figure 4.6 to Figure 4.13, and Table 4.3 

to Table 4.5. The results tabulated in Table 4.3 to Table 4.5 are in terms of mean and 

standard deviation obtained using 200 CW Doppler images whereas the results shown in 

Figure 4.6 to Figure 4.13 are for one image using various types of filters. The performances 

of the DsFlsmv and DsFWiener filter are superior compared to filters such as the DsFgf4d, 

DsFhomog filters and others, as observed in Figure 4.6, for various window sizes. The 

drawbacks of the filters such as the DsFlsminsc, DsFmed, DsFhomog, DsFca and DsFgf4d 

filter are poor β and IQI. It is also observed that the values of IQI for the DsFlsmv filter is 

superior compared to the DsFWiener filter.  

 

Figure 4.8 Visual qualities using filters such as DsFlsmv, DsFmed, DsFWiener, Frost et al., and Lee 
filter with mask size 3×3, 5×5, 7×7 
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Figure 4.9 Visual qualities on application of Fourier, GLM, and RNLA based filters 

The performance analysis of Doppler images is similar to the noisy standard test 

images as described in the earlier paragraphs. The values of the LMSE, RMSE, Err3 and 

Err4 are the least for the DsFlsmv and DsFWiener filters compared to other filter shown in 

Figure 4.6. The performances of the wavelet based filters, Fourier filters, Ripplet based filter, 

gradient projection filters, hybrid median, diffusion based filter, GLM and PPB filter are shown 

in Figure 4.7. The wavelet and Fourier filters resulted in FoM> 0.85, which shows lesser 

distortion induced in images during pre-processing. The error estimation like the LMSE and 

NAE are quite small for the Fourier filter in comparison to wavelet based noise reduction, but 
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the IQI is the same for both types of filters. The IQI for hybrid median filter is superior 

compared to RNLA, PPB, CED, DsFsrad, and other filters. 

 

Figure 4.10 Comparison of visual quality of CWD image on application of filters such as DsFhmedian, 
DsFhomo, DsFca, DsFgf4d, and DsFad filters at various numbers of iterations 

 

The performance of GLM filter is superior in terms of all parameters except IQI. The 

performances of the DsFsrad, DPAD and GLM filter are superior compared to filters such as 

the RNLA, DsFhmedian, SQPBBM, PPB, FBL and DsFad in terms of parameters like Err3, 

Err4, LMSE, and NAE. The visual quality of denoised images employing three different 

window sizes are compared in Figure 4.8 and Figure 4.9. The first, second, and third 
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columns show the denoised images obtained using window size of 3×3, 5×5 and 7×7, 

respectively. The despeckled images obtained using the Dsflsmv, DsFmed, Frost et al., and 

Lee filter are shown in Figure 4.8. The results of filters such as DsFlsminsc, DsFls, 

DsFhomog, and DsFWiener filter are shown in Figure 4.9. 

 

 

Figure 4.11 Visual qualities on application of DPAD, DsFsrad, CED and FBF filters 

 

The first image in Figure 4.10 is the original image used in all the figures also. The 

visual outlook of results obtained using hybrid median filter and DsFhomo filter are shown in 

the first row of Figure 4.10. The results for DsFgf4d and Dsfad filter with different number of 
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iterations are shown in second and third row of Figure 4.10, respectively. The despeckled 

images obtained using DPAD filter, DsFsrad, CED and FBF are shown in Figure 4.11. The 

structure and finer details are mostly preserved using the DsFlsmv, DsFWiener, DsFmed, 

and DsFhmedian filters. The denoised images become smoother on increase of window size 

for most of the filters. The performance of filters such as the DsFlsminsc filter with window 

size 3×3 and 7×7 are not acceptable as all necessary details are completely lost. 

 

 

Figure 4.12 Comparison of visual quality on application of wavelets based filters 
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The contrast of images is considerably reduced on application of filters with window 

size 3×3 and 7×7 window size, respectively. Similarly, the performances of filters such as 

DsFls (5×5, 7×7), and DsFhomog (7×7) filter are also not acceptable for the practicing 

clinician. The visual outlook of images on application of methods such as the DsFgf4d, 

DsFad, DsFsrad, CED, and PPB filter are shown in Figure 4.10 are acceptable except the 

DPAD filter. The denoising applications of various wavelet-domain filters are depicted in 

Figure 4.12. The results of gradient projection based methods in terms of visual quality are 

shown in Figure 4.13. The visual quality obtained using wavelet (Bior 3.1), wavelet (db45), 

SQPBB, Frost (7×7) filters are not acceptable to the doctors.  

 

  

Figure 4.13 Comparison of visual quality using Fourier, GLM, and RNLA based filters 



 

188 

 

 
            Table 4.3 Comparison of LMSE and other parameters for CWD images (Mean±STD) 

 Methods LMSE MD NCC SC ERR4 ERR3 RMSE 

DsFad 0.34±0.03 117.5±0.52 0.963±0.01 1.06±0.01 22.42±0.88 16.38±0.9 9.72±0.80 

DsFgf4d 0.11±0.01 4.02±1.78 0.997±0.02 1.00±0.03 1.86±0.06 1.53±0.07 1.10±0.07 

DsFhmed 0.49±0.02 238.4±0.5 0.954±0.02 1.07±0.03 38.26±1.73 25.28±1.63 12.22±1.23 

DsFhomo 0.99±0.01 255.0±2.53 0.874±0.04 1.18±0.07 62.10±2.28 44.57±2.30 24.86±1.96 

DsFhomog 0.02±0.02 5.89±2.16 0.994±0.01 1.00±0.03 0.68±0.02 0.50±0.03 0.30±0.02 

DsFlsminsc 1.09±0.02 245.3±3.08 0.894±0.03 1.14±0.05 52.17±1.86 37.95±1.85 22.28±1.55 

DsFlsmv 0.89±0.05 95.25±0.29 0.984±0.02 1.09±0.03 36.88±1.44 26.96±1.48 15.97±1.29 

DsFmed 0.91±0.01 224.2±2.14 0.943±0.02 1.08±0.03 45.09±1.69 30.93±1.73 15.88±1.45 

DsFsrad 0.80±0.01 93.63±2.71 0.876±0.03 1.23±0.07 30.79±2.11 25.99±2.12 9.88±1.74 

DsFWiener 0.06±0.05 26.36±3.11 0.992±0.02 1.02±0.02 7.77±0.67 6.11±0.59 4.25±0.50 

Methods FoM β SSIM IQI PSNR SNR MSE 

DsFad 0.96±0.01 0.74±0.04 0.99±0.05 0.75±0.03 28.41±0.71 35.47±2.54 95.02±15.6 

DsFgf4d 0.99±0.01 1.00±0.04 1.00±0.03 0.91±0.02 47.29±0.57 53.23±2.26 10.22±0.1 

DsFhmed 0.93±0.01 0.72±0.01 0.96±0.01 0.87±0.02 26.43±0.86 31.51±2.87 150.8±30.7 

DsFhomo 0.77±0.02 0.16±0.03 0.83±0.03 0.57±0.05 20.25±0.68 19.15±2.63 621.6±98.5 

DsFhomog 0.98±0.01 1.00±0.03 1.00±0.01 0.90±0.01 58.76±0.72 56.18±2.61 20.09±0.01 

DsFlsminsc 0.76±0.01 0.15±0.01 0.88±0.01 0.59±0.03 21.19±060 21.04±2.42 498.4±69.0 

DsFlsmv 0.97±0.02 0.44±0.01 0.97±0.01 0.84±0.02 24.09±0.70 46.84±0.57 16.52±1.77 

DsFmed 0.94±0.01 0.38±0.01 0.96±0.01 0.82±0.02 24.15±0.79 26.95±2.77 254.1±46.7 

DsFsrad 0.90±0.01 0.52±0.01 0.90±0.02 0.67±0.08 22.19±0.75 33.04±2.66 398.2±70.2 

DsFWiener 0.95±0.02 0.97±0.01 0.99±0.07 0.81±0.02 35.63±0.99 49.91±2.10 18.27±4.5 

             

Table 4.4 Comparison of FoM and other parameters for CWD images (Mean±STD) 

Methods FoM Beta SSIM IQI PSNR SNR MSE 

DsFad 0.96±0.01 0.74±0.04 0.99±0.05 0.75±0.03 28.41±0.71 35.47±2.54 95.02±15.6 

ATMED 0.94±0.03 0.38±0.01 0.95±0.02 0.73±0.02 23.45±0.81 25.13±1.82 299.5±58.2 

ATV 0.91±0.02 0.97±0.02 0.97±0.04 0.39±0.04 33.11±0.75 44.49±1.72 12.33±5.94 

DsFcasort 0.92±0.03 0.98±0.03 0.99±0.01 0.65±0.04 36.75±0.85 42.15±1.67 14.00±2.84 

FBF 0.97±0.04 0.98±0.05 1.00±0.06 0.62±0.06 36.88±0.72 42.41±2.63 13.52±2.27 

FIF 0.96±0.03 0.96±0.03 1.00±0.04 0.59±0.06 39.05±0.78 46.76±2.75 11.21±1.5 

DsFgf4d 0.99±0.01 1.00±0.04 1.00±0.03 0.91±0.02 47.29±0.57 53.23±2.26 10.22±0.15 

GLM 0.99±0.03 1.00±0.06 1.00±0.05 0.58±0.05 40.14±0.63 58.94±2.68 6.35±0.83 

HFBF 0.98±0.02 0.91±0.03 0.95±0.01 0.59±0.07 32.78±0.65 44.22±2.54 14.61±5.03 

HFIF 0.99±0.03 0.81±0.02 0.95±0.01 0.58±0.07 29.22±0.80 37.09±2.71 79.07±14.2 

DsFhmed 0.93±0.01 0.72±0.01 0.96±0.01 0.87±0.02 26.43±0.86 31.51±2.87 150.8±30.7 

DsFhomo 0.77±0.02 0.16±0.03 0.83±0.03 0.57±0.05 20.25±0.68 19.15±2.63 621.69±98.5 

DsFhomog 0.98±0.01 1.00±0.03 1.00±0.01 0.90±0.01 58.76±0.72 56.18±2.61 20.09±0.01 

DsFls 0.83±0.04 0.58±0.01 0.90±0.02 0.63±0.03 22.18±0.67 23.01±2.51 398.5±62.2 

DsFlsminsc 0.76±0.01 0.15±0.01 0.88±0.01 0.59±0.03 21.19±060 21.04±2.42 498.4±69.0 

DsFlsmv 0.97±0.02 0.44±0.01 0.97±0.01 0.84±0.02 24.09±0.70 46.84±0.57 16.50±1.77 

MBR 0.76±0.03 0.14±0.01 0.80±0.03 0.46±0.06 19.32±0.64 17.29±2.36 768.92±112.38 

DsFmed 0.94±0.01 0.38±0.01 0.96±0.01 0.82±0.02 24.15±0.79 26.95±2.77 254.18±46.75 

MPT 0.84±0.05 0.88±0.05 0.97±0.01 0.63±0.04 29.25±0.60 37.16±2.17 77.94±11.26 

NSS 0.92±0.04 0.96±0.01 0.98±0.01 0.59±0.06 34.28±0.68 47.22±1.31 24.54±4.01 

PPB 0.96±0.02 0.97±0.01 0.96±0.01 0.60±0.06 37.37±0.62 53.29±1.25 12.05±1.82 

PSBE 0.99±0.01 0.98±0.08 0.99±0.06 0.94±0.01 34.04±0.65 46.74±2.55 35.91±3.88 

RNLA 0.74±0.06 0.73±0.03 0.73±0.03 0.28±0.02 25.91±1.17 30.24±2.74 172.77±49.24 

DsFsrad 0.90±0.01 0.52±0.01 0.90±0.02 0.67±0.08 22.19±0.75 33.04±2.66 398.21±70.26 

DsFwlt2 0.94±0.04 0.84±0.07 0.97±0.02 0.44±0.02 36.89±24.36 32.43±7.47 80.18±93.85 

DsFWiener 0.95±0.02 0.97±0.01 0.99±0.07 0.81±0.02 35.63±0.99 49.91±2.10 18.27±4.54 

 

The results obtained using PPB, GLM and RNLA are shown in Figure 4.13. The visual quality 

of denoised images on application of FIF, FBF, HFIF and HFBF are shown in Figure 4.13. 

The results obtained for FIF, FBF, HFBF and HFIF at 500Hz are acceptable along with the 



 

189 

 

GLM, and PSBE filters. The visual qualities obtained using FIF, HFBF and HFIF are not 

acceptable as the finer details. The images are over-smoothed using Fast Bilateral filter, FBF 

(100), FIF (100), RNLA and HFBF (100). The contrast and brightness of images are reduced 

using HFIF at all frequencies, RNLA and FIF (100) filters. 

Table 4.5 Comparison of LMSE and other parameters for CWD images (Mean ± STD) 

  LMSE MD NCC SC ERR4 ERR3 RMSE 

DsFad 0.34±0.03 117.5±0.51 0.963±0.01 1.00±0.05 22.42±0.88 16.38±0.9 9.72±0.80 

DsFcasort 0.14±0.01 30.61±1.76 0.985±0.01 1.00±0.04 6.66±0.41 5.29±0.4 3.72±0.37 

FBF 0.18±0.03 56.55±0.01 0.998±0.02 1.00±0.03 9.18±0.35 6.46±0.35 3.66±0.31 

FIF 0.19±0.02 68.75±6.28 0.998±0.03 1.00±0.02 7.04±0.20 4.82±0.25 2.85±0.26 

DsFgf4d 0.11±0.01 4.01±1.78 0.997±0.02 1.00±0.03 1.86±0.06 1.53±0.07 1.10±0.07 

GLM 0.02±0.01 62.75±0.17 0.987±0.01 1.00±0.04 9.69±0.40 5.95±0.30 2.51±0.17 

HFBF 0.19±0.02 133.4±4.25 0.996±0.02 1.00±0.01 17.05±0.57 11.33±0.55 5.87±0.43 

HFIF 0.71±0.03 441.5±13.1 0.997±0.03 0.95±0.01 37.52±1.63 21.37±1.20 8.86±0.81 

DsFhmed 0.49±0.02 238.4±0.5 0.954±0.02 1.00±0.03 38.26±1.73 25.28±1.63 12.22±1.23 

DsFhomo 0.99±0.01 255.0±2.5 0.874±0.04 1.00±0.07 62.10±2.28 44.57±2.30 24.86±1.96 

DsFhomog 0.02±0.02 5.89±2.16 0.994±0.01 1.00±0.03 0.68±0.02 0.50±0.03 0.30±0.02 

DsFls 0.77±0.01 178.6±22.7 0.923±0.02 1.00±0.02 39.13±1.48 30.37±1.60 19.91±1.55 

DsFlsminsc 1.09±0.02 245.3±3.08 0.894±0.03 1.04±0.05 52.17±1.86 37.95±1.85 22.28±1.55 

DsFlsmv 0.89±0.05 95.25±0.29 0.984±0.02 1.00±0.03 36.88±1.44 26.96±1.48 15.97±1.29 

MBR 0.99±0.05 248.5±0.18 0.835±0.04 1.00±0.06 65.92±2.43 48.03±2.45 27.66±2.02 

DsFmed 0.91±0.01 224.4±2.14 0.943±0.02 1.00±0.03 45.09±1.69 30.93±1.73 15.88±1.45 

MPT 0.23±0.03 196.2±11.1 0.974±0.01 1.00±0.01 23.59±0.88 15.92±0.80 8.81±0.62 

NSS 0.08±0.01 108.5±2.95 0.993±0.02 1.00±0.02 11.95±0.37 8.25±0.39 4.94±0.39 

PSBE 0.07±0.02 98.43±6.15 0.975±0.01 1.00±0.02 14.48±0.44 9.88±0.45 5.08±0.38 

RNLA 0.48±0.05 178.5±16.8 0.963±0.01 1.00±0.01 25.13±3.20 18.91±2.52 13.03±1.80 

DsFsrad 0.80±0.01 93.63±2.71 0.876±0.03 1.00±0.07 30.79±2.11 25.99±2.12 9.88±1.74 

Wavelet 0.14±0.15 65.43±48.9 0.935±0.04 1.00±0.09 43.73±9.07 30.80±6.97 17.65±4.78 

DsFWiener 0.06±0.05 26.36±3.11 0.992±0.02 1.02±0.02 7.77±0.67 6.11±0.59 4.25±0.50 

DsFwlt2 1.31±0.04 542.28±11.22 0.864±0.07 0.28±0.02 147.64±7.31 121.38±8.0 89.68±8.31 

DsFca 1.07±0.05 176.91±25.03 0.403±0.15 6.72±2.25 79.49±10.91 67.04±8.48 49.78±6.52 

 

The values in the parenthesis indicate the cut-off frequency employed in these filters. 

The IQM reflecting the edge and structure preservation along with noise reduction for the 

CWD images are tabulated in Table 4.3, Table 4.4 and Table 4.5. The following observations 

are made based on results tabulated. The LMSE of the CWD images is less than 0.1±0.01 

using filters such as FBF, FIF, DsFgf4d, DsFhomog, NSS, PSBE and DsFWiener filter. The 

mean difference (MD) for the DsFgf4d and DsFhomog filters is less than 6 and all other 

methods greater than 30. The NCC value is least for the MBR and DsFlsminsc filters. The 

filters such as Fourier, DsFgf4d, GLM, DsFhomog, NSS, DsFlsmv and DsFWiener are better 

in terms of Err3, Err4 and RMSE.  

            The filters such as the DsFWiener, PPB, DsFlsmv, DsFhomog, DsFgf4d, FIF, and 

FBF has smaller MSE along with higher SNR and PSNR compared to other techniques. It 

reveals that considerable amount of noise is taken off from the image using these filters.  

Based on the analysis of results tabulated in Table 4.3 and Table 4.4, the IQI of denoised 
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images on application of filters like DsFgf4d, PSBE, DsFhmedian, DsFhomog and 

DsFWiener filter is greater than 0.8, which implies that the image quality are well retained. 

The issue of concern in application of filters such as DsFsrad, DsFmed, MBR, DsFlsmv, 

DsFlsminsc, DsFhomo and ATMED filter is poor value of β.  The filters such as ATV, Fourier 

filters, DsFgf4d, GLM, PPB, NSS, PPB, PSBE, and DsFWiener result in β ≥ 0.9 showing 

better edge preservation.  

The analysis reveals the following with regard to denoising applications of eight types of 

filters for the CWD images.  

i. The issues to be addressed using Fourier based filters is to improve IQI and MD.  

ii. The filters such as the DsFmed, DsFhomo, DsFhmedian, ATMED and TMAV filters 

retain certain amount of noise in despeckled images. This observation is based on 

the high values of MSE, Err3, Err4, MD and poor SNR, PSNR, and β.  

iii. The performance of local statistics filters such as the DsFls and DsFlsminsc filers are 

inferior in terms of β, and IQI showing that edges are not well preserved. These filters 

also retain noise in the denoised images as the SNR and PSNR are far less 

compared to other filters with high values of MSE, Err3, Err4, and RMSE. 

iv. The versatile wavelet filter based on GLM delivers good results in terms of β, SSIM, 

and others but point of concern with this filter is poor IQI. All the wavelet domain 

filters experimented in this paper have this problem of low IQI along with high Err3, 

Err4 and MD. 

v. The hybrid median filter (DsFhmedian) retains noise as reflected by high values of 

MSE, MD, Err3 and Err4 with poor value of β, SNR and PSNR.  

vi. The nonlinear iterative denoising technique such as DsFad, DsFsrad have drawbacks 

such as poor β, IQI, along with high values of MD and MSE. The performance of 

techniques like DsFgf4d, DsFhomog are acceptable in terms of both IQM and visual 

quality.  

vii. The anisotropic total variation filter and nonlocal means based PPB filters have poor 

IQI. The performances of these two filters are acceptable in terms of visual and image 

quality metrics except have fractionally inferior IQI.  

viii. Denoising application of nonlinear approximation based Ripplet transformations are 

hampred by poor FoM, SSIM, IQI and β. The IQM, visual quality and clinical 

validation reveal that the performances of filters such as DsFWiener, PSBE, 

DsFhomog and DsFgf4d are acceptable.  

 

The texture features are extracted from B-Mode TTE images acquired in five views 

using two windows. The texture of B-Mode images are compared with texture features 

extracted using the CWD, color Doppler (CD) and M-Mode images. The images are pre-
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processed using various despeckling filters. The texture features of the despeckled images 

are compared with the original images. The features are extracted by converting all images 

to gray scale. All texture features of the original B-Mode, M-Mode, CWD and CD, are 

compared with features obtained from the denoised images. 

Table 4.6 Comparison of FOS features for B-Mode, CD, CWD and MM modality  

Mean PSAX PLAX A4C A5C A2C CD CWD MM 

Original 25.5±11.4 25.1±7.6 19.24±3.4 19.28±2.8 24.49±4.5 26.2±5.6 36.8±7.0 37.09±8.8 

DsFlsmv 25.4±11.3 25.6±7.6 19.17±3.4 19.22±2.8 24.49±5.1 26.3±5.6 37.2±7.1 36.9±8.8 

DsFgf4d 29.1±12.5 28.9±8.3 22.43±3.8 22.50±3.2 28.39±4.8 30.9±6.2 41.2±7.2 45.4±9.3 

DsFWiener 25.6±11.3 25.307.6 19.40±3.4 19.44±2.8 24.73±5.1 26.7±5.6 37.5±7.0 37.7±8.8 

NLM 25.4±11.4 25.1±7.7 19.22±3.4 19.27±2.8 24.45±4.4 26.3±5.6 37.0±7.0 37.1±8.8 

PSBE 23.8±11.3 23.3±7.5 17.54±3.4 17.66±2.7 22.82±4.9 23.4±5.6 33.2±6.9 32.0±8.7 

ATV 25.6±11.3 25.2±7.6 19.3±3.4 19.4±2.8 24.68±4.9 26.6±5.6 37.4±7.0 37.5±8.8 

Skewness PSAX PLAX A4C A2C A5C CD CW MM 

Original 2.59±0.71 2.8±0.45 2.99±0.34 2.92±0.22 2.66±0.26 2.4±0.35 1.8±0.33 1.6±0.30 

DsFlsmv 2.45±0.61 2.4±0.41 2.84±0.30 2.75±0.17 2.55±0.25 2.2±0.29 1.7±0.31 1.2±0.26 

DsFgf4d 2.40±0.70 2.3±0.43 2.77±0.32 2.70±0.23 2.43±0.24 2.1±0.33 1.6±0.31 1.3±0.26 

DsFWiener 2.61±0.74 2.5±0.45 2.99±0.34 2.92±0.24 2.67±0.27 2.4±0.37 1.8±0.33 1.6±0.31 

NLM 2.59±0.72 2.5±0.45 2.99±0.34 2.92±0.23 2.67±0.26 2.4±0.36 1.8±0.33 1.6±0.30 

PSBE 2.47±0.51 2.5±0.43 2.96±0.33 2.80±0.13 2.65±0.25 2.4±0.27 1.9±0.34 1.7±0.27 

TV 2.58±0.71 2.5±0.45 2.97±0.34 2.90±0.22 2.65±0.26 2.9±0.36 1.8±0.33 1.6±0.30 

Variance PSAX PLAX A4C A5C A2C CD CW MM 

Original 46.9±12.8 48.3±8.8 41.50±3.6 40.27±4.2 43.93±4.8 49.3±6.6 62.6±6.3 56.6±7.3 

DsFlsmv 45.8±12.9 47.8±8.8 40.2±3.6 39.06±4.2 42.84±5.2 47.9±6.7 61.2±6.3 54.3±7.5 

DsFgf4d 51.6±12.7 53.5±8.5 46.45±3.5 45.22±4.2 48.54±4.6 55.0±6.6 67.0±5.7 63.9±7.1 

DsFWiener 46.8±12.7 48.2±8.7 41.4±3.56 40.2±4.14 43.8±5.28 49.6±6.5 62.8±6.1 55.9±7.3 

NLM 46.9±12.8 48.3±8.8 41.50±3.6 40.25±4.2 43.86±4.7 49.4±6.6 62.9±6.3 56.6±7.4 

PSBE 43.1±13.8 44.4±9.3 37.17±4.1 35.95±4.5 40.06±5.5 43.5±7.6 57.4±7.1 48.9±8.7 

TV 46.7±12.8 48.1±8.7 41.3±3.59 40.1±4.18 43.7±5.15 49.5±6.5 62.9±6.2 56.3±7.3 

Kurtosis PSAX PLAX A4C A5C A2C CD CW MM 

Original 11.03±5.8 9.98±2.9 12.89±2.6 12.69±2.0 11.05±1.9 8.81±2.4 5.47±1.5 4.98±1.2 

DsFlsmv 9.84±4.54 9.33±2.5 11.74±2.2 11.34±1.4 10.36±1.7 7.88±1.8 5.13±1.3 4.44±0.9 

DsFgf4d 9.52±5.12 8.52±2.4 10.98±2.1 10.84±1.7 9.32±1.57 7.21±1.8 4.77±1.2 3.84±0.8 

DsFWiener 11.20±6.1 9.99±2.9 12.91±2.6 12.79±2.1 11.16±2.0 8.84±2.5 5.38±1.4 5.00±1.2 

NLM 11.02±5.8 9.97±2.9 12.87±2.6 12.69±2.0 11.09±1.9 8.81±2.4 5.45±1.5 5.00±1.2 

PPB 10.95±5.9 9.89±2.9 12.73±2.6 12.55±2.0 10.96±1.9 8.70±2.4 5.37±1.4 4.91±1.2 

PSBE 10.05±3.8 10.2±2.9 12.97±2.6 12.03±1.3 11.44±1.9 9.08±1.9 6.16±1.7 5.36±1.2 

TV 10.92±5.8 9.87±2.8 12.70±2.5 12.52±2.0 11.00±1.9 8.73±2.4 5.37±1.4 4.97±1.2 

 

 The statistical features such as mean, skewness, and variance are tabulated in 

Table 4.6 for the B-Mode images in PSAX, PLAX, A4C, A5C, and A2C views along with CD, 

CWD and MM imaging modality images. The mean values of the original TTE images in 

multiple views are same on application of despeckling filters such as the DsFlsmv filter, 

DsFWiener filter, and ATV filters whereas filters like DsFgf4d result in larger variations as 

observed in Table 4.6. The mean values are higher for the CWD and M-mode images when 

compared to the images acquired in A4C and A5C. Large variations are also observed 

between images in A4C and A5C when compared with A2C. Clear distinction is observed 

between images acquired using B-Mode, M-Mode and CWD based echocardiographic 

imaging. The difference between FOS parameters is small for images acquired in A4C 
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compared with A5C, PSAX compared with PLAX whereas large variations are observed 

between A4C compared with A2C, PLAX compared with A4C and A5C views. 

           The SGLDM features for TTE images in B-Mode, M-Mode, CWD and CD are depicted 

in Table 4.7. The values of f1 are least for CWD images whereas A4C and A5C are highest. 

There is huge gap between the values of f1 between A4C and A5C when compared with 

A2C, similarly PLAX and PSAX compared with CWD images. The analysis of f1 multi mode 

view images holds good for the other SGLDM features such as f2, f3 and f5 also.  The 

texture features based on GLDS are compared in Table 4.8. The energy values of A4C and 

A5C are quite distinct compared to A2C, similarly, PLAX and PSAX compared with A4C and 

A5C. 

          
Table 4.7 Comparison of SGLDM features for B-Mode, CD, CWD and MM modality 

f1 PSAX PLAX A4C A5C A2C CD CW MM 

Original 0.35±0.06 0.35±0.07 0.40±0.07 0.41±0.04 0.26±0.04 0.34±0.05 0.18±0.06 0.23±0.03 

DsFlsmv 0.34±0.06 0.33±0.07 0.39±0.07 0.39±0.04 0.25±0.04 0.32±0.05 0.16±0.06 0.21±0.03 

DsFgf4d 0.33±0.06 0.32±0.07 0.38±0.07 0.39±0.04 0.25±0.04 0.31±0.05 0.16±0.06 0.19±0.03 

DsFWiener 0.34±0.06 0.33±0.07 0.39±0.07 0.39±0.04 0.25±0.04 0.32±0.05 0.16±0.06 0.20±0.03 

NLM 0.35±0.07 0.35±0.08 0.41±0.08 0.41±0.04 0.27±0.04 0.34±0.05 0.18±0.06 0.23±0.03 

PSBE 0.34±0.06 0.34±0.07 0.39±0.07 0.40±0.04 0.26±0.04 0.32±0.05 0.16±0.06 0.20±0.03 

TV 0.32±0.06 0.32±0.07 0.37±0.07 0.38±0.04 0.25±0.04 0.30±0.05 0.15±0.06 0.18±0.03 

f2 PSAX PLAX A4C A5C A2C CD CW MM 

Original 301.6±27.2 306.3±27.5 298.3±14.4 289.6±19.5 299.9±15.2 555.2±31.6 729±127 892±192.7 

DsFlsmv 167.1±11.6 167.9±13.3 165.7±7.2 162.8±9.2 171.4±11.8 314.6±14.4 389±66.1 489±106.3 

DsFgf4d 281.2±22.4 286.2±24.4 280.3±13.6 271.03±18.2 277.6±18.4 525.6±29.5 705±131.3 843±200.6 

DsFWiener 277.8±18.9 282.3±20.43 279.1±11.8 270.63±15.2 275.64±13.10 522.4±24.7 663.3±91.9 711.8±136.7 

NLM 289.7±25.5 293.3±26.7 285.1±13.5 276.35±18.3 283.40±19.13 542.9±30.4 716±121.6 843±184.1 

PSBE 52.4±12.5 59.1±10.03 52.6±4.11 50.54±4.92 57.08±21.19 74.79±8.99 96.8±12.8 130.4±25.3 

TV 259.3±21.8 263.9±22.5 258.8±11.7 250.73±16.3 257.47±18.03 506.3±26.5 669±106.4 769±164.9 

f3 PSAX PLAX A4C A5C A2C CD CW MM 

original 0.92±0.04 0.93±0.02 0.91±0.02 0.91±0.02 0.92±0.01 0.88±0.03 0.90±0.02 0.86±0.04 

DsFlsmv 0.95±0.03 0.96±0.01 0.95±0.01 0.95±0.01 0.95±0.01 0.93±0.02 0.95±0.01 0.91±0.03 

DsFgf4d 0.94±0.03 0.95±0.01 0.93±0.01 0.93±0.01 0.94±0.01 0.91±0.02 0.92±0.02 0.89±0.03 

DsFWiener 0.92±0.04 0.94±0.02 0.92±0.02 0.91±0.01 0.93±0.01 0.89±0.03 0.91±0.02 0.88±0.03 

NLM 0.92±0.04 0.93±0.02 0.92±0.02 0.91±0.01 0.92±0.01 0.88±0.03 0.91±0.02 0.86±0.04 

PSBE 0.98±0.01 0.98±0.00 0.98±0.00 0.98±0.00 0.98±0.00 0.98±0.01 0.98±0.00 0.97±0.01 

TV 0.93±0.03 0.94±0.01 0.92±0.01 0.92±0.01 0.93±0.01 0.89±0.03 0.91±0.02 0.88±0.04 

f5 PSAX PLAX A4C A5C A2C CD CW MM 

original 0.73±0.05 0.73±0.05 0.77±0.05 0.77±0.03 0.67±0.05 0.72±0.04 0.62±0.04 0.61±0.03 

DsFlsmv 0.74±0.05 0.73±0.05 0.77±0.04 0.77±0.03 0.68±0.05 0.71±0.04 0.66±0.04 0.61±0.03 

DsFgf4d 0.75±0.04 0.75±0.04 0.78±0.04 0.79±0.02 0.70±0.05 0.74±0.03 0.65±0.04 0.64±0.02 

DsFWiener 0.73±0.05 0.73±0.05 0.77±0.04 0.77±0.03 0.68±0.05 0.71±0.04 0.66±0.04 0.61±0.03 

NLM 0.74±0.05 0.74±0.05 0.78±0.05 0.78±0.03 0.68±0.05 0.72±0.04 0.68±0.04 0.62±0.03 

PSBE 0.74±0.05 0.74±0.05 0.78±0.04 0.78±0.03 0.69±0.05 0.72±0.04 0.67±0.04 0.62±0.03 

TV 0.75±0.05 0.74±0.05 0.78±0.04 0.78±0.02 0.69±0.05 0.73±0.04 0.69±0.04 0.62±0.03 

  

The features based on NGTDM and SFM are being tabulated in Table 4.9 and Table 4.11, 

respectively. The contrast and coarseness are abbreviated as “CONTR” and “COARS” in 

Table 4.9. The results show that the values of CONTR are quite high for the M-Mode and 

CWD images in comparison to the B-Mode images in multiple views. The values of CONTR 

are higher for PLAX and PSAX images in comparison to images acquired in the apical 
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windows. The value of coarseness is higher for B-Mode images in comparison to the CD, 

MM and CWD images. The texture features based on FDTA are tabulated in Table 4.10. The 

results shows that the Hoarest coefficient is fractionally higher for the images acquired in B-

mode compared to the M-Mode images. In other images this parameter is almost the same. 

The Fourier power spectrum features are shown in Table 4.12. The values of fr and fa are 

higher for the CWD and M-Mode images in comparison to the images in the apical and 

parasternal windows. 

Table 4.8 Comparison of GLDS features for B-Mode, CD, CWD and MM modality 

Contrast PSAX PLAX A4C A5C A2C CD CW MM 

original 301±27.2 306.3±27.5 298.2±14.4 289.5±19.5 299±15.2 555±31.6 729±127.6 892±192.4 

DsFlsmv 167±11.7 167.8±13.3 165.6±7.2 162.8±9.2 171±11.8 314±14.4 388±66.1 489±106.6 

DsFgf4d 281±22.6 286.1±24.4 280.2±13.6 270.9±18.2 277±18.4 525±29.5 705±131.2 843±200.4 

DsFWiener 277±18.9 281.9±20.4 279.1±11.8 270.5±15.2 275±13.1 522±24.7 663±91.3 711±136.7 

NLM 289±25.5 293.3±26.7 285 ±13.5 276±18.3 283±19.1 542±30.4 716±121.6 843±184.9 

PSBE 52.4±12.5 59.9±10.3 52.5±4.1 50.5±4.9 57.1±21.1 74.7±8.9 96±12.8 130±25.3 

TV 258±21.2 263±22.5 258±11.7 250±16.3 257±18.1 506±26.5 669±106.3 769±164.8 

Energy PSAX PLAX A4C A5C A2C CD CW MM 

original 0.49±0.07 0.49±0.08 0.55±0.08 0.55±0.04 0.40±0.05 0.46±0.06 0.32±0.06 0.33±0.03 

DsFlsmv 0.49±0.07 0.48±0.08 0.54±0.07 0.54±0.04 0.40±0.05 0.46±0.05 0.36±0.05 0.33±0.03 

DsFgf4d 0.52±0.06 0.52±0.07 0.57±0.07 0.58±0.04 0.44±0.05 0.49±0.05 0.35±0.06 0.37±0.03 

DsFWiener 0.49±0.07 0.48±0.08 0.54±0.07 0.54±0.04 0.40±0.05 0.46±0.05 0.36±0.05 0.32±0.03 

NLM 0.50±0.07 0.50±0.08 0.56±0.08 0.56±0.04 0.41±0.05 0.47±0.06 0.39±0.06 0.35±0.03 

PSBE 0.49±0.07 0.49±0.08 0.55±0.07 0.55±0.04 0.41±0.05 0.46±0.05 0.37±0.05 0.33±0.03 

TV 0.49±0.07 0.49±0.07 0.54±0.07 0.55±0.04 0.41±0.05 0.46±0.05 0.39±0.05 0.32±0.03 

Entropy PSAX PLAX A4C A5C A2C CD CW MM 

original 1.66±0.24 1.68±0.24 1.50±0.23 1.50±0.13 1.93±0.17 1.80±0.18 2.21±0.20 2.42±0.15 

DsFlsmv 1.58±0.21 1.61±0.22 1.44±0.19 1.44±0.11 1.80±0.14 1.75±0.16 2.00±0.17 2.29±0.15 

DsFgf4d 1.54±0.20 1.57±0.20 1.42±0.19 1.41±0.11 1.79±0.16 1.69±0.16 2.11±0.20 2.26±0.14 

DsFWiener 1.59±0.21 1.61±0.21 1.45±0.19 1.45±0.11 1.80±0.14 1.76±0.16 2.01±0.18 2.32±0.16 

NLM 1.61±0.24 1.63±0.24 1.44±0.22 1.46±0.13 1.87±0.16 1.77±0.18 2.02±0.21 2.35±0.16 

PSBE 1.50±0.21 1.52±0.21 1.35±0.18 1.36±0.11 1.70±0.16 1.65±0.16 1.86±0.16 2.12±0.14 

TV 1.56±0.22 1.58±0.21 1.41±0.18 1.42±0.11 1.77±0.15 1.73±0.16 1.91±0.18 2.32±0.16 

 
Table 4.9 Comparison of NGTDM features for B-Mode, CD, CWD and MM modality 

Coarseness PSAX PLAX A4C A5C A2C CD CW MM 

Original 6.71±0.80 6.80±0.55 6.27±0.86 6.61±0.70 8.61±2.15 2.69±0.26 2.71±0.35 2.14±0.54 

DsFlsmv 67.86±14.04 67.55±8.69 62.23±8.54 71.61±5.97 72.07±6.86 33.36±3.42 24.73±4.25 23.13±5.67 

DsFgf4d 13.82±1.75 14.09±1.38 12.72±1.48 13.48±0.92 16.67±2.99 5.28±0.59 5.10±0.76 3.67±1.11 

DsFWiener 58.86±11.13 58.66±6.74 54.58±8.32 62.98±6.07 66.12±7.24 28.30±2.44 23.16±1.95 17.74±4.43 

NLM 8.54±1.02 8.71±0.74 8.20±1.20 8.50±0.87 10.84±2.50 3.12±0.30 3.63±0.53 2.81±0.74 

PSBE 98.50±19.66 98.35±12.95 90.22±14.28 103.75±8.6 108.39±10.7 68.48±6.70 49.85±7.94 47.56±9.09 

TV 82.44±11.93 81.94±8.37 77.74±8.99 89.64±5.71 80.51±6.25 48.14±4.47 22.86±6.75 28.87±7.28 

Contrast PSAX PLAX A4C A5C A2C CD CW MM 

Original 0.21±0.16 0.21±0.12 0.14±0.04 0.13±0.04 0.18±0.06 0.30±0.10 0.63±0.18 0.73±0.29 

DsFlsmv 0.13±0.09 0.14±0.07 0.09±0.02 0.08±0.02 0.11±0.03 0.22±0.07 0.43±0.11 0.46±0.17 

DsFgf4d 0.22±0.14 0.23±0.11 0.15±0.04 0.14±0.04 0.19±0.05 0.33±0.10 0.69±0.19 0.83±0.30 

DsFWiener 0.17±0.11 0.17±0.09 0.12±0.03 0.11±0.03 0.14±0.04 0.30±0.09 0.58±0.14 0.56±0.21 

NLM 0.20±0.14 0.20±0.11 0.13±0.03 0.12±0.03 0.16±0.05 0.30±0.10 0.63±0.18 0.68±0.27 

PSBE 0.07±0.06 0.07±0.05 0.04±0.01 0.04±0.01 0.06±0.03 0.08±0.04 0.17±0.05 0.18±0.08 

TV 0.18±0.12 0.18±0.10 0.12±0.03 0.11±0.03 0.15±0.06 0.31±0.09 0.63±0.15 0.66±0.25 
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Table 4.10 Comparison of FDTA features for B-Mode, CD, CWD and MM modality 
h1 PSAX PLAX A4C A5C A2C CD CW MM 

Original 0.39±0.01 0.40±0.01 0.39±0.01 0.39±0.01 0.40±0.01 0.37±0.01 0.33±0.01 0.33±0.01 

DsFlsmv 0.48±0.02 0.49±0.01 0.48±0.01 0.48±0.01 0.49±0.01 0.46±0.01 0.45±0.02 0.45±0.01 

DsFgf4d 0.49±0.01 0.50±0.01 0.49±0.01 0.49±0.01 0.49±0.01 0.46±0.01 0.38±0.01 0.44±0.01 

DsFWiener 0.44±0.02 0.45±0.01 0.44±0.01 0.44±0.01 0.45±0.01 0.41±0.01 0.40±0.02 0.42±0.01 

NLM 0.41±0.02 0.42±0.01 0.41±0.01 0.41±0.01 0.42±0.01 0.39±0.01 0.35±0.01 0.36±0.01 

PSBE 0.52±0.01 0.53±0.00 0.53±0.01 0.52±0.01 0.53±0.00 0.51±0.01 0.49±0.01 0.49±0.01 

TV 0.45±0.02 0.46±0.01 0.45±0.01 0.45±0.01 0.46±0.01 0.42±0.01 0.40±0.02 0.40±0.01 

 

Table 4.11 Comparison of SFM features for B-Mode, CD, CWD and MM modality 

Coardness PSAX PLAX A4C A5C A2C CD CW MM 

Original 12.35±2.37 11.64±1.65 12.87±1.37 12.97±1.26 10.91±0.77 8.77±0.90 7.39±0.91 5.50±0.88 

DsFlsmv 14.19±2.54 13.33±1.83 14.60±1.42 14.79±1.39 12.63±0.95 9.85±0.97 8.44±0.96 6.42±1.02 

DsFgf4d 11.69±1.98 11.02±1.39 11.88±1.00 12.08±1.11 10.48±0.62 8.11±0.71 6.98±0.92 5.18±0.94 

DsFWiener 13.34±2.36 12.52±1.62 13.62±1.22 13.85±1.27 12.00±0.89 9.07±0.85 7.70±0.86 6.06±0.96 

NLM 12.70±2.41 11.98±1.70 13.24±1.36 13.38±1.29 11.31±0.78 8.87±0.90 7.52±0.94 5.66±0.92 

PSBE 18.97±4.54 17.15±2.74 19.40±2.47 19.54±2.23 16.23±1.55 14.76±2.18 12.52±1.41 9.50±1.32 

TV 13.50±2.52 12.66±1.69 13.83±1.29 14.04±1.34 12.14±1.00 9.11±0.89 7.70±0.90 5.87±0.97 

Contrast PSAX PLAX A4C A5C A2C CD CW MM 

Original 24.54±1.10 24.73±1.08 24.42±0.59 24.06±0.79 24.48±0.65 33.31±0.95 38.06±3.31 42.00±4.84 

DsFlsmv 18.27±0.64 18.31±0.72 18.20±0.40 18.04±0.50 18.51±0.59 25.08±0.57 27.80±2.34 31.11±3.63 

DsFgf4d 23.70±0.94 23.91±1.00 23.67±0.57 23.27±0.76 23.55±0.86 32.41±0.91 37.42±3.45 40.78±5.25 

DsFWiener 23.56±0.80 23.74±0.84 23.62±0.50 23.26±0.64 23.47±0.54 32.31±0.76 36.34±2.51 37.56±3.84 

NLM 24.03±1.06 24.20±1.08 23.87±0.56 23.50±0.76 23.79±0.88 32.94±0.92 37.73±3.19 40.82±4.77 

PSBE 10.18±1.19 10.84±0.88 10.25±0.41 10.04±0.48 10.59±1.41 12.21±0.74 13.89±0.92 16.06±1.58 

TV 22.74±0.93 22.96±0.96 22.75±0.51 22.38±0.71 22.68±0.74 31.81±0.83 36.48±2.89 39.01±4.47 

Periodicity PSAX PLAX A4C A5C A2C CD CW MM 

Original 0.56±0.02 0.57±0.02 0.56±0.01 0.55±0.01 0.54±0.01 0.54±0.01 0.62±0.03 0.53±0.02 

DsFlsmv 0.63±0.02 0.64±0.02 0.63±0.01 0.62±0.01 0.62±0.01 0.61±0.01 0.64±0.02 0.62±0.03 

DsFgf4d 0.69±0.01 0.69±0.01 0.71±0.01 0.71±0.01 0.71±0.01 0.68±0.01 0.73±0.02 0.68±0.01 

DsFWiener 0.60±0.01 0.61±0.02 0.61±0.01 0.60±0.01 0.61±0.01 0.58±0.01 0.62±0.02 0.59±0.02 

NLM 0.58±0.02 0.59±0.02 0.58±0.01 0.57±0.01 0.56±0.02 0.55±0.01 0.63±0.03 0.56±0.03 

PSBE 0.67±0.01 0.68±0.01 0.66±0.01 0.65±0.01 0.65±0.01 0.66±0.01 0.66±0.02 0.69±0.02 

TV 0.61±0.01 0.61±0.02 0.61±0.01 0.60±0.01 0.61±0.01 0.58±0.01 0.63±0.02 0.58±0.03 

 

Table 4.12 Comparison of FPS features for B-Mode, CD, CWD and MM modality 

fa  (x10
3
) PSAX PLAX A4C A5C A2C CD CW MM 

original 16.88±7.2 17.85±4.7 14.86±2.0 13.76±2.2 16.08±1.4 16.39±3.08 21.71±2.93 19.51±2.96 

DsFlsmv 17.12±7.2 18.08±4.7 15.17±2.0 14.08±2.2 16.34±1.7 17.58±3.63 24.10±3.49 18.76±4.75 

DsFgf4d 18.11±7.5 19.28±4.9 16.24±2.2 15.01±2.3 17.34±1.4 18.21±3.16 22.79±2.87 22.01±2.84 

DsFWiener 17.48±7.1 18.44±4.6 15.59±1.9 14.50±2.2 16.70±1.7 18.18±3.55 24.64±3.44 19.32±4.72 

NLM 17.05±7.3 18.04±4.7 15.11±2.4 13.98±2.2 16.25±1.6 16.92±3.19 22.84±3.22 19.28±3.42 

PPB 16.94±7.3 17.95±4.7 15.02±2.6 13.90±2.3 16.19±1.6 16.76±3.29 23.08±3.14 19.50±3.66 

PSBE 16.12±7.5 17.12±4.8 14.06±2.5 12.93±2.3 15.29±1.4 16.02±3.91 22.80±3.64 16.89±4.96 

TV 17.43±7.2 18.41±4.6 15.53±1.9 14.43±2.2 16.62±1.3 18.19±3.58 24.81±3.436 19.49±4.73 

fr (x10
3
) PSAX PLAX A4C A5C A2C CD CW MM 

original 20.14±5.0 20.14±3.5 16.53±1.4 16.80±1.3 18.22±1.8 18.44±2.89 22.94±2.90 23.44±2.75 

DsFlsmv 20.68±4.8 20.55±3.5 17.06±1.4 17.27±1.3 18.88±1.7 21.69±2.58 27.29±2.99 27.95±3.29 

DsFgf4d 22.29±4.9 22.22±3.4 18.49±1.4 18.95±1.3 20.30±1.9 20.77±2.89 24.47±2.77 27.03±2.67 

DsFWiener 21.05±4.7 20.92±3.4 17.49±1.3 17.68±1.2 19.26±1.7 22.30±2.50 27.92±2.91 28.62±3.19 

NLM 20.46±4.9 20.39±3.5 16.86±1.4 17.08±1.3 18.62±1.8 19.53±2.78 24.46±3.21 24.75±2.91 

PPB 20.60±5.1 20.57±3.6 17.01±1.5 17.20±1.4 18.86±1.8 19.53±2.90 24.55±3.25 24.78±3.81 

PSBE 19.40±4.9 19.32±3.5 15.66±1.4 15.90±1.3 17.45±1.8 19.56±2.91 25.08±3.19 24.75±3.12 

TV 21.00±3.5 20.88±2.9 17.43±1.5 17.62±1.2 19.08±1.7 22.32±2.73 28.08±2.40 28.72±3.10 
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4.4 Summary 

The performance of the despeckling techniques are analysed for the CWD images in terms 

of image quality metrics, visual quality assessment and clinical validation. The objective of 

despeckling is suppression of noise with retention of edge and structural information 

necessary in the clinical validation. The performance analysis of despeckling is carried at 

various mask size and number of iterations with suitable combination of the input parameters 

for each of the filter. The performance of the DsFsrad filter are superior compared to the 

DsFgf4d filter, DsFhomog filter, DsFlsminsc, DsFhmedian and DsFad filter in terms of IQM 

such as Err3, Err4, LMSE and NAE. The visual quality of despeckled images obtained using 

the DsFlsmv, DsFWiener, DsFad and dsFsrad are able to retain structure and edge details. 

The issues of concern in despeckling of CWD images using various filters are discussed at 

length highlighted in this chapter.  

The texture features of the B-Mode, M-Mode, CWD, and CD based echocardiographic 

modality images are extracted using sixty one texture features along with sixteen image 

quality metrics for analysis of despeckling filter performances. The features are extracted for 

B-Mode images acquired in two parasternal and three apical views. Features extracted using 

the despeckled images showed marked difference in images acquired in A4C and A5C in 

comparison to A2C, and A4C compared with PLAX view images. Similarly, the features of 

CWD, M-Mode, color Doppler and B-Mode images are quite distinct. The features extracted 

can be employed in classification of severity of the valvular diseases.   
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CHAPTER 5: SEGMENTATION OF ECHOCARDIGRAPHIC IMAGES 

This chapter describes segmentation of B-Mode, continuous wave Doppler (CWD), color Doppler (CD) 

images and synthetic test images with intensity in-homogeneity. The segmentation techniques 

employed are based on concepts edge, region, watershed, fuzzy and active contour. The Gaussian 

and median filters used in the methods such as the Kiruthika, Magagnin and reaction diffusion based 

active contour are replaced by the despeckling filters. The manually segmented B-Mode images are 

compared with images delineated using the local region based active contour. The images acquired in 

two parasternal and three apical views along with CWD and color Doppler images are used in the 

analysis of segmentation techniques to high the importance of integrated analysis multi-view images.              

5.1 Introduction 

Echocardiographic images are acquired in B-Mode (brightness-Mode), and M-Mode (motion 

mode) along with Doppler based modalities namely continuous wave Doppler (CWD), pulse 

wave Doppler (PWD) and color Doppler (CD). The B-Mode images are visually observed 

using windows such as apical, parasternal or sub-costal [3, 6, 8, 9, 10, 12, 16, 18]. As stated 

in the earlier chapters each modality and view provides specific information, each acts as an 

additional tool to the other but not as a substitute [3, 62, 65, 66, 68, 216-226]. In this thesis, 

the images acquired from patients diagnosed with aortic regurgitation (AR) are employed for 

analysis of despeckling filter performances. All of them are also used for performance 

analysis of segmentation techniques. The B-Mode images are viewed in apical four chamber 

(A4C), apical five chamber (A5C), apical two chamber (A2C), parasternal long axis (PLAX) 

and parasternal short axis (PSAX) during the diagnosis of AR. The B-Mode, M-Mode, CWD, 

PWD and CD images are together used in the study of anatomy and diagnosis of AR. 

Chapter 2, Chapter 3 and Chapter 4 addressed the issues of despeckling TTE images in 

multiple views and modalities. This chapter presents an analysis of segmentation techniques 

for the CWD, B-Mode and CD images acquired in various views. The chapter begins with 

looking for segmentation techniques for the CWD images followed by B-Mode and CD 

images. 

An overview of segmentation techniques analysed for the CWD, B-Mode, and color 

Doppler images are tabulated in Table 5.1. These methods are employed in delineation of 

various types of images as highlighted in Table 5.1. In the available literature it is highlighted 

that the methods in Table 5.1 can be used to delineate images with intensity in-homogeneity 

and low contrast. The applications of these methods are analysed for different 

echocardiography modality images. The methods are implemented by making use of the 

procedure and codes provided by the authors specified in the references in Table 5.1. In 

addition to these implementations, certain modifications are incorporated in methods such as 

reaction diffusion based active contour [184], Magagnin [195] and Kirtuthika [199] method of 

segmentation.  
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In addition to these, texture based segmentation is proposed and analysed for the 

echocardiographic images. The usefulness of denoising and enhancement in edge, region, 

multi-stage watershed [25, 170, 296, 297] and Chan-Vese [64,161] based segmentation was 

brought out in Chapter 2. This chapter describes segmentation of CWD, B-Mode and color 

Doppler images. The segmentation techniques are first analysed for the CWD images 

followed by B-Mode images and color Doppler images. The steps employed in the 

implementations of ten methods are shown in Figure 5.1 and Figure 5.2. 

 
5.2 CWD image segmentation         

Continuous wave Doppler (CWD) echocardiography is employed for measuring the high 

blood flow velocities across regurgitant and stenotic valves orifices [59, 197-201, 282]. The 

measured velocities are converted into pressure gradients using simplified version of 

Bernoulli equation. It is necessary to align the Doppler sound beam as parallel as possible to 

the flow direction for accurate measurements. The parallel orientation is achieved by taking 

into account the qualities of 2D image and Doppler recording. An angular deviation of 20 

degrees or less can result in less than 10% errors in velocity measurements. But these 

smaller errors in velocity measurement reflect in huge variations in pressure gradients due to 

the quadratic relationship between velocity and pressure gradients [10, 282]. The outer 

boundaries of CWD image reflect the fast moving blood cells and hence all measurements 

are made taking into account the outer boundary [10].  

The current US machines have inbuilt software which can provide accurate peak 

velocity, velocity time integral and gradients from a manually traced velocity envelope [10, 

198]. The manual tracing is the major issue of concern in the CW spectra analysis because 

tracing depends on the experience of the operator, visual quality of the spectrum, and the 

viewing acoustic window [189, 190, 192-201, 282]. It is a time consuming activity embedded 

with inter- and intra-personal variations. The clinical outcome depends on the conclusions 

derived from the manual tracing of the spectrum [40, 189, 190, 192, 200, 282]. The peak 

velocity estimated from the manually traced envelope can result in an error of approximately 

larger than 25%, even by the most experienced clinicians [187]. The Doppler spectra exhibit 

large variations in the envelope shape and image appearance under various disease 

conditions and state of the cardiac valves. The automation of CW Doppler images would 

result in faster processing, uniformity in results with increased objectivity, and more accurate 

estimation of valvular abnormalities [40, 189, 192, 282].  

The peak velocity was estimated from the Doppler spectrum using various thresholding 

techniques, but these techniques are strongly influenced by noise, hence the estimated peak 

value would be inaccurate [187]. Therefore, it would be desirable to suppress noise with the 

edges and the structures well preserved. The CW Doppler images inherit speckle noise 

having an adverse impact on automatic segmentation process. This problem of CW Doppler 
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images is identical to the issues prevailing in the B-Mode images [190]. The impact of 

despeckling filters on various segmentation techniques for automatic envelope extraction of 

CW Doppler images is being presented.    

Gong et al. [189] had compared fuzzy based adaptive thresholding with Ostu’s 

thresholding. Thresholding was applied on the denoised CWD images. Doherty et al.  [194] 

used the Doppler signal as components of multidimensional time series infected with noise 

for estimation of velocity spectrum curve. Greenspan et al. [193] have proposed a method for 

automatic image analysis of Doppler velocity spectrum and it included the following steps 

such as enhancement of images, edge detection, extraction of envelope, linking of edges 

and parameter extraction. The images are enhanced using contrast stretching followed by 

the detection of thresholds [193].  

Table 5.1 Overview of segmentation techniques for B-Mode, CWD and color Doppler images 

Ref. Year Type Abbreviation Method Application of the method 

[195] 2006 Edge Magagnin Histogram and thresholding Pulsed Doppler images 

[287]
h 

2005 Edge SMED Scale multiplication Synthetic and natural  

[288] 2008 Fuzzy IFD Intuitionistic fuzzy divergence CT and standard images 

[289]
b 

2010 Fuzzy FTS Fuzzy soft thresholding Head MRI, X-ray, TTE 

[46, 
289]

a 
2005 Topological 

derivative 
DTD Discrete topological derivative CT angiography, head MRI 

[199] 2006 Edge Kiruthika Edge based segmentation CW Doppler images 

[184]
c 

2013 Level set RD Reaction diffusion Synthetic and MRI image 

[184]
c 

2013 Level set GDRLSE1 Generalized distance regularized 
level set evolution 

Synthetic and MRI image 

[184]
c 

2013 Level set GDRLSE2 Synthetic and MRI image 

[184]
c 

2013 Level set GDRLSE3 Synthetic and MRI image 

[154]
d 

2008 Level set RSF Region scalable fitting Brain MR, Vessel image 

[304]
c 

2010 Active contour LIF Local image fitting energy Synthetic and MRI image 

[292]
d 

2011 Level set LSEBFE Intensity inhomogeneities CT image of Vessel 

[293]
e 

2010 Active contour IVC Regularized level set MRI 

[183]
f 

2007 Active contour GMAC Global minimization of active 
contour 

Synthetic images 

[294]
9 

2009 Active contour LFE Laplacian fitting energy synthetic images 

[175]
d 

2010 Level set SVMLS Multiphase level set MRI image 

[295] 2007 Clustering FCM Fuzzy C-means US Carotid artery 

[25, 
296, 
297] 

2009, 
2011 

Region Region Region growing 

Ultrasound images, weld 
images 

Edge Adaptive 
canny 

Canny edge detection 

Watershed Multiwater Multistage watershed 

 

a.http://www.mathworks.in/MATLABcentral/fileexchange/14224-image-segmentation-via-topological- derivative 

b.http://www.mathworks.in/MATLABcentral/fileexchange/36918-soft-thresholding-for-image-segmentation 

c. http://www4.comp.polyu.edu.hk/~cslzhang/ 

d. http://www.engr.uconn.edu/~cmli/ 

e. http://www4.comp.polyu.edu.hk/~cslzhang/RD/IVC_webpage/ 

f. https://9d5b76582b7871444743f5d0bbd439c802a638d7.googledrive.com/host/ 

  0B3BTLeCYLunCc1o4YzV1Ui1SeVE/codes.html 

g. http://smart.nuist.edu.cn/People/khzhang/khzhang.html 

h.http://www.mathworks.in/MATLABcentral/fileexchange/44141-Canny-edge-detection-enhancement-by- scale-

multiplication 

 
Magagnin et al. [195] had proposed a semi-automatic method for the tracing of pulsed 

Doppler spectrum images. The baseline and scale factor were determined using a Sobel 
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horizontal and vertical filters, respectively. The Doppler images were segmented using a 

“probabilistic, hierarchical, and discriminant” i.e. the PHD framework by Zhou et al. [196]. 

Park et al. [198] employed a series of detector for locating objects and shape information to 

segment the mitral valve inflow patterns. Syeda-Mahmood et al. [202] proposed a clinical 

decision support system for identification of spectrum shape patterns for various valvular 

diseases using content based image retrieval. Kalinic et al. [201] proposed a model-based 

segmentation scheme incorporating prior knowledge for extraction of spectrum envelope of 

Doppler images acquired at the AV during systole. The method consisted of detection of 

base line, maximal velocity line, and selection of threshold along with fitting of velocity curve.  

Vilkomerson et al. [187] observed that peak velocity estimated using methods based on 

thresholding are strongly prone to noise. An automatic method for tracing for the outer 

borders of the PWD echocardiographic velocity spectrum images acquired at the aortic valve 

was proposed by Zolgharni et al. [282]. The envelope of the filtered image was obtained 

using biggest-gap method followed by superimposing it on the original image. The methods 

depicted in Figure 5.1 and Figure 5.2, employed for delineation of the outer boundaries of 

CWD spectrum, are described in the next few sub-sections.  

 

 

Figure 5.1 Segmentation techniques for B-Mode, CWD and CD images- Method 1 to Method 5 

5.2.1 Magagnin method  

Magagnin et al. [195] had proposed a semi-automatic method for segmentation of coronary 

flow Doppler images. This method is employed for segmentation of CWD, B-Mode, and color 

Doppler images to study their applications and suitability. The technique employed 
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combination of histogram, thresholding and median filter for tracing the boundaries. The 

steps employed in the implementation of the Magagnin’s method are shown in Figure 5.1 

and the method is referred to as “Method-1”. The overlapping regions can be manually 

selected. The histogram and thresholds of each overlapping region are estimated. The 

thresholded images are filtered using a median filter with 7×7 windows. The image regions 

and holes were filled using function “imfill”. The isolated pixels and smaller objects were 

removed using the function “bwmorph” and “bwareaopen”. The edges in the resultant image 

are computed using the canny edge detection. The details of this approach are available in 

Magagnin et al. [195]. Prior to application of steps shown in Figure 5.1, the images were 

converted to gray scale and resized to 512×512. These steps were employed in all the ten 

methods shown in Figure 5.1 and Figure 5.2. 

    
5.2.2 Scale multiplication edge detection (SMED)  

A wavelet based scale multiplication edge detection (SMED) method was advocated by Bao 

et al. [287] for improving accuracy of edge detection. The location accuracy of edge detection 

was improved by incorporating the SMED technique [287]. The technique was analysed 

using the noisy synthetic, house and flower images. In this thesis the SMED method is 

employed for outer boundary detection in the TTE images. The fundamental steps of this 

technique are shown in Figure 5.1 as “Method-2”. The approach includes estimation of 

threshold at each scale and wavelet transforms of the input image. The steps employed 

consist of computing the thresholds and estimating the correlation between the pixels. The 

correlations between pixels row-wise and column-wise are estimated on application of 

wavelet transform. Before estimating correlation, the wavelet coefficients are thresholded. 

This is followed by construction of modulus matrix and direction estimation. The estimated 

pixels in various directions are subjected to non-maximum suppression. The resultant image 

is filtered for suppression of noise. The boundaries are traced and superimposed on the 

original image. Details of the SMED method and its implementation steps are brought out in 

[287]. 

  

5.2.3 Intuitionistic fuzzy divergence (IFD)  

Charia and Ray [288] proposed a distance measure called as “intuitionistic fuzzy divergence” 

(IFD) for edge detection in “Brain” image, “Rice” image, “Lung” image, “Aorta” image, 

“Pepper” image, and “cameraman” images. The IFD was based on hesitation degree, non-

membership degree and membership degree. The IFD based edge detection approach is 

employed for tracing the boundaries of the CWD images. The approach consists of formation 

of sixteen templates, initialization, finding the hesitation degree, estimation of the maximum 

divergence, transforming fuzzy domain image to pixel domain, thresholding and 

morphological operations [173, 274, 288]. All the steps are shown in Figure 5.1. The 



 

202 

 

stepwise details of this approach were provided by Chaira and Ray in [289]. This method is 

referred to as Method-3 in Figure 5.1. The major steps of IFD techniques are: i) formation of 

edge-detected templates, ii) application of edge templates over the image, iii) computation of 

IFD between each element of every template and the image window, iv) selection of 

maximum of templates among the minimum IFD values, v) positioning of the maximum 

value, vi) selection and positioning of max-min value, vii) construction of new divergence 

matrix and viii) thresholding of divergence matrix and obtain edge detected image. 

 
5.2.4 Fuzzy soft thresholding based segmentation 

The fuzzy soft thresholding approach based on fuzzy aggregation methods were proposed 

for the medical images by Aja-Fernandez et al. [289]. The core idea of soft thresholding was 

to relate each pixel of the image with other in terms of fuzzy membership functions. This 

membership function was derived from the histograms of various regions in the image. Each 

of the pixels would thus belong to various regions with different membership functions. Thus 

the pixels are segregated from the noisy ones easily in any given noisy image. These 

aggregation methods are employed for segmentation of the CWD images. The steps used in 

the implementation of this method are shown in Figure 5.1. Every pixel is correlated to other 

pixels in various parts of the image using fuzzy membership functions instead of hard 

decisions like wavelet based thresholding. The fuzzy C-means (FCM) clustering is employed 

for sorting the pixels followed by computation of the pseudo trapezoidal shaped membership 

functions. Various aggregration approaches such as maximum median, recursive average, 

average aggregration, median maximum aggregration and absolute maximum aggregration 

are employed in the experimentations. This method is referred to as Method-4 in Figure 5.1. 

5.2.5 Topological derivative based segmentation 

The topological sensitivity provides information of the edges in the image and derivative 

speaks about the incremental changes in the topology. Larrabide et al. [46, 290] had 

advocated this technique to overcome iterative processing of the images. The technique was 

employed for segmentation of computed tomographic and magnetic resonance images. The 

topological derivative based segmentation is currently employed for tracing the outer 

boundaries of the CWD spectrum acquired from patient diagnosed with AR. The major steps 

of the topological derivative based segmentation are shown in Figure 5.1. The images are 

normalized and an initial guess is made regarding the class of the image. The total variation 

of the initial guess is computed followed by application of fixed point algorithm. The pixels 

with negative topological derivative are traced. A class is formed with smaller values for each 

of the pixel. The class is optimized resulting in the required segmented image. The total 

variation for the segmented image is estimated and the original intensities are restored. This 

method is referred to as Method-5 in Figure 5.1. 
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Figure 5.2 Segmentation techniques for B-Mode, CWD and CD images - Method 6 to Method 10 

    

5.2.6 Segmentation using histogram equalization 

The histogram equalization enhances the contrast of image by redistributing the gray values 

equally over the entire image. It enhances the contrast for the values close to histogram 

maxima and decreases contrast near minima [299, 300]. The histogram equalization, 

homomorphic filter and canny edge detection are employed for tracing the outer boundaries 

of the CWD images. The brightness levels of the image are equally distributed for full scale 

by using MATLAB function “histeq”. The enhanced images are filtered using the 

homomorphic filter. On application of filtering the contrast of the image reduced and to 

compensate for this, adaptive contrast enhancement is performed. The enhancement is 

based on the difference between each pixel value and its deviation. The enhanced images 

are filtered using median filter with window size 7×7. The edges in the images are detected 

using canny edge detection. The obtained boundaries had discontinuities and unwanted 

objects connected to the boundary which are addressed using the morphological operations 

such as dilation and erosion. The resultant image is superimposed on the enhanced image. 

The steps incorporated in the algorithm are shown in Figure 5.2 for quick reference and 

better understanding. This method is referred to as Method-6 in Figure 5.2. 

5.2.7 Multistage watershed transform based segmentation 

The watershed transform comes under the family of region-based segmentation. It is based 
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on mathematical morphology. This technique combines concepts such as the shareholding, 

detection of discontinuities and region processing. The advantage of using watershed is, 

when employed at on another level will assist in forging the fragmented regions [25, 296, 

297]. The images are converted to gray scale and resized to 512х512. These images are 

pre-processed using adaptive Wiener filter employing MATLAB inbuilt function “Wiener2”. 

The pre-processed image is employed for computing the gradient where various gradient 

operators such as the Sobel, Prewitt, Roberts or Gaussian derivative are employed. The 

gradient image is sub-divided into initial regions employing gradient magnitude. The obtained 

edges are grouped to form a contour. The initial watershed may results in many smaller 

regions, often reflecting over segmentation or generating undesired smaller regions. The 

boundaries traced at this stage may not have same weights. The boundaries within the 

homogeneous regions are weaker. The neighborhood relation is employed to compare these 

boundaries. The neighborhood relation is in terms of the connectivity graph from the mosaic 

image. 

The mosaic image is further thresholded by using the Otsu’s thresholding approach. 

The thresholded image is converted into a binary image. The morphological operations and 

watershed top hat transformation are employed to compute the bright objects present in the 

image. The peak values which significantly differ from the local background are estimated. 

The partially overlapping regions are separated using the Watershed. The smaller objects 

are weeded out using morphological operations. The Euclidean distance map (EDM) is 

computed for the resultant image. At the point of overlap in the resultant binary image, the 

inverse EDM has a ridge with the overlapping of two catchment objects. Hence, every basin 

is labelled uniquely and ridge separating them as watershed. The resultant labelled image is 

eroded to match the content and background borders. This also overcomes the false 

separation of the overlapping segments. The marked region provided the shape of ROI with 

the boundaries marked. The smaller regions with some homogenous intensity characteristics 

are merged. Thus, the multistage watershed transform based segmentation provided better 

tracing in comparison to the edge and region growing based delineation. 

 
5.2.8 Segmentation using texture filters 

The texture based filters play important role in the boundary detection of the images [300, 

301]. The three texture filters available in MATLAB namely “stdfilt”, “rangefilt” and 

“entropyfilt”, are employed for CWD image segmentation. The steps employed in 

implementation of texture filter based segmentation are shown in Figure 5.2 as Method-8. 

This method is implemented in two stages. The bottom and top textures are extracted in two 

stages using the texture filters like the range filter, standard deviation filter and entropy filters. 

The resized, gray scale input image is filtered using one of the texture filters and then image 

is rescaled followed by thresholding.  
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A rough mask for the bottom texture is created and the rescaled image is thresholded. The 

extracted bottom texture is morphologically processed using the MATLAB function “imopen”. 

The rough mask is employed to segment the top texture using one the texture filters. Various 

combination of the texture filters such as “rangefilt + rangefilt”, “stdfilt + stdfilt”, “entropyfilt + 

entropyfilt”, “rangefilt + stdfilt”, “entropyfilt + rangefilt” and other combinations are used in the 

experimentation to find which combination results in the best results.  

5.2.9 Segmentation using adaptive and maximum filter 

The combination of maximum filter, adaptive Wiener and canny edge detection are employed 

for segmentation of the CWD images. The CWD images are denoised using the combination 

of maximum and adaptive Wiener filter. Implementation steps of this approach are shown in 

Figure 5.2 as Method-9. The despeckled images are subjected to canny edge detection and 

morphological operations for tracing the outer boundaries. The other edge detection 

techniques such as Sobel, Prewitt and Roberts are also tested. It is observed that 

performance using canny edge is better; hence results based on this are presented. The 

results of sequential combination of adaptive Wiener and maximum filter followed by canny 

edge detection stood out. The morphological operations are performed for the reasons 

already discussed in watershed based segmentation.   

5.2.10 Kiruthika method of segmentation 

Kiruthika et al. [199] had proposed a method for tracing outer boundaries of the CWD images 

during AR. This method employed the combination of median filter, contrast enhancement, 

Gaussian filter, morphological operations, intensity adjustment and canny edge detection for 

tracing the outer boundaries of CWD spectrum. The performance of adaptive Wiener filter is 

superior compared to Gaussian filter in terms of speckle noise suppression and edge 

preservation. The necessities of Gaussian filter after contrast enhancement is overcome in 

this thesis. The images are initially filtered using a median filter followed by the Wiener filter. 

The images are processed using the morphological closing operation and then the intensities 

are adjusted using inbuilt function “imadjust” and “imfill” operations. The edges in the 

resultant image are obtained using canny edge detection combined with morphological 

opening operation. Finally the output image is superimposed on the enhanced image. The 

steps employed in implementation of modified Kiruthika’s method are shown in are shown 

Figure 5.2 as Method-10. 

5.3 Proposed delineation techniques for CWD images 

The performances of three methods namely Kiruthika et al. [199], Magagnin et al. [195], and 

reaction diffusion (RD) [184] are improved by replacing the Gaussian filter with despeckling 
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filters. The major steps employed in implementation of these techniques [195], [199], [184] 

are shown in Figure 5.3 to Figure 5.5 highlighting the changes incorporated.        

5.3.1 Modified Magagnin method 

The semi-automatic method advocated by Magagnin et al. [195] consisted of dividing the 

image into overlapping regions and these regions are manually selected. The histogram and 

threshold of each overlapping region are being computed. The thresholded images are 

filtered using a 7×7 window based median filter. Further, the image regions and holes are 

filled followed by removing the isolated pixels and smaller objects. The edges in the resultant 

image are computed using the canny edge detection. The boundaries of CWD images are 

not fully traced using the Magagnin’s [195] method. The median filter preserves the texture 

while retaining the noise. To improve the performance of this method, the median filter is 

sequentially combined despeckling techniques as shown in Figure 5.3. The noise retained in 

the median filtered image is suppressed using the despeckling techniques discussed in the 

earlier section. 

 

 

Figure 5.3 Modified Magagnin’s method for delineation of CWD images 

 

Figure 5.4 Modified Kiruthika’s method for delineation of CWD images 

5.3.2 Modified Kiruthika method 

Kiruthika et al. [199] had proposed an automatic method for delineation of the boundaries of 

CWD images during aortic regurgitation. This method is modified and proposed modifications 

are shown in Figure 5.4 where the output is further refined using despeckling filters in-place 

of median filter. This step can be visualized in Fig.3. The need of Gaussian filter is overcome 

in the modified Kiruthika’s method. The images are processed using the morphological 

operations and then the intensities are adjusted. The edges in the resultant image are 
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obtained using the Canny edge detection combined with morphological opening operation. 

Finally the boundary traced is superimposed on the original image.           

            The active contours are commonly used in the segmentation of medical images [184, 

291, 303]. The computational burden of re-initialization was overcome by embedding 

diffusion term in the level set evolution process by Zhang et al. [184]. The reaction-diffusion 

(RD) based active contour technique is free from re-initialization and can be employed for 

delineation of images in the presence of intensity in-homogeneity. The need for re-

initialization is overcome using the RD based segmentation technique. A diffusion based 

term was introduced into the level set evolution. The solution is a piecewise constant. A two 

step splitting method is employed in estimation of stable solution of the RD based LSE. The 

two steps are iterating the level set evolution, solving the diffusion equation, and regularizing 

the level set function to ensure stability. The CWD images have intensity in-homogeneity and 

poor contrast. Therefore, it is proposed to analyze the application of RD based active contour 

for segmentation of CWD images. The only modification is usage of despeckling techniques 

in place of the Gaussian convolution filter. All the steps are on similar lines as advocated by 

the authors in [184] and the MATLAB code provided by the authors are being used in 

implementations. 

5.4 Segmentation in the presence of intensity in-homogeneity 

5.4.1 Local image fitting (LIF) energy 

An active contour based segmentation technique was proposed by Zhang, Song and Zhang 

[304] to smooth the level set function (LSF), overcome re-initialization, and reduce 

computational burden in the presence of intensity in-homogeneity. The technique embedded 

the local information of the image into region based active contour. A local image fitting 

energy function was introduced for extraction of local image information. The Gaussian 

filtering was embedded in the technique for smoothening of the LSF. The major steps 

incorporated in the implantation of the technique were initialization of the LSF to be binary 

function, evolution of the LSF, regularization of the LSF using Gaussian filtering, and 

verification whether the evolution is stationary. If the evolution is not stationary the steps are 

repeated. This technique was analysed by Zhang, Song and Zhang [304] for the hand 

phantom, synthetic and brain MR images in the presence of intensity in-homogeneity. 

5.4.2 Level set evolution and bias field estimation (LSE-BFE) 

Li et al. [292] proposed a level set method for segmentation of images with intensity in-

homogeneities. A region based level set method was advocated for segmentation of images 

and corrections in the intensity in-homogeneity. The method had advocated a clustering 

objective function for handling the image intensity in-homogeneities in neighbourhood around 



 

208 

 

every point, and this function was integrated over the entire domain. This was incorporated in 

a variational level set formulation. A local intensity clustering property is derived taking into 

account the intensities of neighbourhood of every pixel. The energy function is defined based 

on the local clustering criterion integrated over neighbourhood center. The energy function is 

transformed into the level set framework. The minimization of energy is achieved by the 

interleaving procedure of the LSE and bias field estimation (BFE). The method is analysed 

by using the synthetic images, and Doppler images. This technique was employed for MRI 

and synthetic images segmentation by Li et al. [292]. In this thesis, B-Mode, CWD and color 

Doppler images are used to study the applications and suitability of LSE-BFE.  

5.4.3 Image Laplacian fitting (ILF) 

A variational level set formulation for segmentation of noisy synthetic and real vessel images, 

in the presence of intensity in-homogeneity was advocated by Zhang et al. [294]. The image 

Laplacian was employed in constructing the energy functional. The zero crossing of the 

image Laplacian was considered as the desired boundary of the object segmented. To 

further improve the performance in the presence of noise total variation for the image 

Laplacian was integrated into the delineation process.  

5.4.4 Statistical and variational multiphase level set (SVLMS)  

A variational level set based on simultaneous segmentation and bias correction was put-forth 

by Zhang, Zhang and Zhang [175] for the MR images. The technique was considered to be 

robust to initialization. The technique was based on the concept of simultaneous 

segmentation and bias correction. The intensity distribution in an image was modelled as the 

Gaussian distribution with varying mean and the variance. The image transformations to 

another domain with overlapping distribution are significantly curtailed. A maximum likelihood 

objective function is defined for each point in the transformed domain. The integration of this 

function defined the variational level set function. 

5.4.5 Two phase locally statistical method (2phaseLSM) 

A statistical active contour model was advocated by Zhang et al. [305] for segmentation of 

images in the presence of intensity in-homogeneity. The in-homogeneous objects were 

modelled in the algorithm as Gaussian distributions of different mean and variance. A moving 

window was being employed to project the image into another domain. The intensities in the 

projected domain exhibited Gaussian characteristics but were better segregated also. The 

mean of Gaussian distribution in the transformed space is estimated as the product of bias 

field and the original values in the window. The energy function of each region is defined 

based on the combination of bias field, level function and constant approximation of true 

values. 
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5.5 Region based active contour 

5.5.1 Selective Binary and Gaussian filtering level set  

The image segmentation is an important computer vision problem. The geodesic active 

contours employ the image gradients in construction of edge stopping function to stop the 

contour evolution process. Some of the active contour techniques employ a balloon force 

term for shrinkage and expansion of the contour. But, it is quite difficult to construct a balloon 

force. The placement of initial contour, size of the balloon and local minima estimation decide 

how accurately the inner and outer boundaries are traced. To overcome drawbacks of these 

methods, region based active contours were proposed and analysed by various authors. The 

Chan-Vese method can detect all the objects in the image. The geodesic active contour 

(GAC) can be employed for extraction of objects when the initial contour surrounds the 

boundary. Hence, it fails to detect the interior contours without setting the initial one side of 

the object. Zhang et al. [293] had proposed a region based active contour method using 

selectively penalization and Gaussian filtering to regularize the LSF. Both inner and outer 

boundaries of the region of interest and all other objects were delineated. The signed 

pressure force (SPF) function was constructed by using statistical information of the contour, 

both inside and outside. The SPF was employed for contouring the direction of evolution. 

This technique avoids computing signed distance function and re-initialization. It employs 

selective step in penalizing the level set function to be binary and employ Gaussian filter to 

regularize it. The Gaussian filter was employed for smoothening of level set evolution and 

making evolution stable. This technique is also known as IVC in this thesis.  

5.5.2 Local region based active contour 

The region based active contour method was reformulated in local way by Lankton and 

Tannenbaum [174] for segmentation of synthetic and MR images. An initial mask is defined. 

The local variables were computed by filtering operations instead of iterative procedures. A 

square window is being used for localization. The initializations were represented by a binary 

image. The coefficients necessary for balancing the image fidelity and curvature 

regularization are estimated. The assumed framework for segmentation took into account 

both foreground and background instead of the global region models. This allowed the 

analysis of smaller local regions, removing assumption of global representation using the 

global statistics.  

5.5.3 Global minimization of active contour model (GMAC) 

The major issue of local minima in the active contour energy in the variational framework was 

addressed by Bresson et al. [183] through global minimization of active contour model 

(GMAC). This method is the integration of image denoising and segmentation approaches in 
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a global minimization framework. It was the unification of snake model, total variation 

denoising and Mumford-Shah segmentation. It was observed that the snakes are highly 

sensitive to initialization. A good initial condition was related to non-convexity of the energy 

function to be minimized and the prevalence of local minima. The presence of local minima 

prevents meaningful segmentation. To address these issues the global minimization of active 

contour models are advocated. The unification of denoising with segmentation results in the 

global minimization solution in the presence of intensity in-homogeneity. The traditional issue 

of contour propagation was resolved using the dual formulation of total variation norm. The 

distance function was computed as a solution of the LSF that does not remain stationary 

during evolution process. The GAC model was unified with the active contour in the global 

minimization framework for detection of same time object edges. The method is fast, easy to 

implement, independent of initialization and behaves as an improved version of the Chan 

and Vese (CV) model. 

5.5.4 Active contour without edges 

The CV model is regarded as the special case of the Mumford-Shah model based on 

minimum partition problem. The model is based on attempting to separate the image into 

various regions based on the intensities. The active contour is sensitive to the initial 

positions. It is useful to determine the LSF not for the whole image domain but in a narrow 

band near the contour. The cartoon version of the MS model is the Chan-Vese model, where 

image intensities are assumed to be piece-wise constant. It is a region based geometric 

active contour based method of image segmentation. As the snakes are highly dependent on 

the image gradient they perform poorly on the smooth images. The CV model does not 

depend on the edges. It divides the image into two regions namely the region inside the 

curve and region outside the curve. The curve is said to be at the boundary of the object if no 

differences are observed between the curve inside and outside. The CV method divides the 

image into the regions and each region is represented as piecewise constant. The CV seeks 

the desired segmentation as best piecewise constant approximated to the given image. The 

good performance of the CV model is because of its ability to obtain a larger convergence 

range and handle topologically changes naturally. The built in masks such as the “small”, 

“medium”, “whole”, and “whole + small” are used in experimentations.  

5.5.5 Level set evolution without (LSW) re-initialization  

Li et al. [306] advocated a level set evolution (LSE) technique without re-initialization. This 

was based on variational formulation using the geometric active contours. The level set 

function was brought very close to the signed distance function. The method consisted of 

internal and external energy terms. The internal energy term was employed for penalizing the 

deviation of the level set function from the signed distance function. The external energy term 
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drives the zero level set towards the desired features in the image. The method is referred to 

as “LSW” in the result analysis. The LSW technique was employed for segmentation of 

synthetic and the US carotid artery images. This technique is employed for segmentation of 

CWD, MM, CD and B-Mode images acquired in multi-views. 

5.6 Results 

The TTE images acquired using B-Mode, color Doppler and CWD imaging modalities are 

used in the comparative analysis of segmentation techniques. The basic objective of this 

exercise is to study the suitability of various segmentation techniques in tracing the 

boundaries of images acquired in multiple views. 

 

 

Figure 5.5 Segmentation of synthetic images using GDRLSE techniques 
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The performances of texture filter based segmentation, modified Kiruthika’s method, modified 

Magagnin’s method and modified RD based methods are proposed and analysed for the 

TTE images in this thesis. The results obtained for the synthetic images with different amount 

of intensity in-homogeneity are shown in Figure 5.5 to Figure 5.11. These images consisted 

of increasing amount of intensity in-homogeneity starting with full homogeneous image. The 

objective of segmenting the CD images is to effectively trace the regurgitant area in the left 

ventricle out flow tract. 

 

 

Figure 5.6 Segmentation of synthetic images using RD and other techniques 
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 The effective regurgitant orifice area reflects the severity of regurgitation. The results 

obtained by employing the methods are shown in Table 5.1 for the CD images are shown in 

Figure 5.12 to Figure 5.16. The color Doppler images acquired in the apical five chamber 

(A5C) and parasternal long axis (PLAX) are employed for analysis of the segmentation 

techniques. The B-Mode images acquired in two parasternal and three apical windows are 

employed in the analysis of segmentation techniques. The objective of segmenting the 

images acquired in apical window namely A4C, A5C and A2C is to trace the inner boundary 

of the left ventricle. The left ventricle gets dilated during AR. The PLAX images are 

segmented to trace the boundaries of aortic and mitral valve leaflets. The inner and outer 

boundaries of aortic valve, which will aid in computing the aortic valve area, are traced using 

the images acquired in the PSAX. 

 

 

Figure 5.7 Segmentation of synthetic images using ILF and other techniques 
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Figure 5.8 Segmentation of synthetic images using CV techniques 

 

The results obtained on application of various segmentation techniques on B-Mode 

TTE images are shown in Figure 5.17 to Figure 5.25. The manually traced images are 

compared with boundaries delineated using the local region active contour technique in 

Figure 5.26 and Figure 5.27. The clinicians are requested to trace the boundaries using the 

MATLAB free hand tool. The clinical manually traced images are compared with boundaries 

of images on application of region based active contour and reaction diffusion based 

segmentation. The CWD images acquired from the adult patients diagnosed with AR are 

used for the applications of segmentation techniques on Doppler images. The results 

obtained using various segmentation techniques for the CWD images are shown in Figure 

5.28 to Figure 5.33.   
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Figure 5.9 Segmentation of synthetic images using region based and other techniques 

 

The performance of segmentation technique based on the combination of texture 

filters for CWD images are presented in Figure 5.34 and Figure 5.35. The results of modified 

Magagnin and modified Kiruthika method are shown in Figure 5.36 to Figure 5.38. The 

performances of modified RD method using various despeckling methods are shown in 

Figure 5.39 to Figure 5.40. The results obtained for synthetic images using GDRLSE, and 

LSW techniques are shown in Figure 5.5. The performance of GDRLSE technique is superior 

in comparison to the LSW techniques.  
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Figure 5.10 Segmentation of synthetic images using topological derivative and other techniques 
 
 

Complete boundaries are traced even in the presence of intensity in-homogeneity. 

The segmentation results for RD, LIF, IVC and LSEBFE technique are shown in Figure 5.6. 

The performance of RD and LSEBFE technique are better in comparison to LIF and IVC 

techniques. The performance of LSEBFE and RD is degraded when the intensity in-

homogeneity is high as observed in segmented images shown in third and fourth column of 

Figure 5.6.  
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Figure 5.11 Segmentation of synthetic images using SMED and other techniques 

 

The segmentation results on application of ILF, 2phaseLSM and GMAC techniques 

are depicted in Figure 5.7 for synthetic images with various amount of intensity in-

homogeneity. The performances of these techniques are superior for the images with 

homogeneous intensity. The performance is drastically degraded as observed in third and 

fourth column of Figure 5.7 due to the intensity in-homogeneity. The boundaries traced using 

the ILF technique are slightly away from the actual image boundaries as observed in the 
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second row of Figure 5.7. The results of CV technique using inbuilt and manual selected 

mask are shown in Figure 5.8. The technique fails to trace the boundaries in the images with 

intensity in-homogeneity. The boundaries of the homogenous ROI are fully traced as seen in 

the first column of Figure 5.8. It fails in the presence of intensity in-homogeneity as observed 

in last three columns of Figure 5.8. 

 

 

Figure 5.12 Segmentation of color Doppler images using ILF and other techniques 

The application of region based, edge based, watershed and adaptive edge detection are 

shown in Figure 5.9. A seed is manually passed on the region based technique. Canny edge 
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detection and morphological operations are used in the edge based techniques. The results 

of watershed transform with Sobel edge detection are shown in fourth row of Figure 5.9. The 

adaptive edge detection which combines histogram equalization and median filtering are 

shown in last row of Figure 5.9. The boundaries traced using the adaptive edge detection is 

superior in comparison to all techniques in Figure 5.9. 

 

Figure 5.13 Segmentation of color Doppler images using IVC and other techniques 

 

The performances of techniques such as topological derivative, IFD edge detection, local 

region active contour and region scale fitting techniques are shown in Figure 5.10. The 
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results reveal that these techniques fail to trace complete boundaries in the images with non-

uniform intensities. It is further observed that the local region based active contour can trace 

complete boundaries but the number of iterations and computational time required is quite 

high. The performance of the techniques such as the SMED, texture based, and soft 

thresholding using fuzzy aggregation are shown in Figure 5.11 for the synthetic test images. 

The borders traced are complete in the first and second column of figure 5.11. These 

techniques cannot be used when the intensity variations are non-homogeneous. 

 

 

Figure 5.14 Segmentation of color Doppler images using CV and other techniques 
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Figure 5.15 Segmentation of color Doppler images using topological derivative and other techniques 
 

During AR there is leakage of blood in the reverse direction from the aortic valve into the left 

ventricle. The severity of leakage is assessed by measuring the extent of flow in backward 

directions. The regurgitant area is traced from the images in PLAX and A5C and the results 

are shown in Figure 5.12 to Figure 5.16. The results of GDRLSE, LSW, RD and LIF are 

shown in Figure 5.12. The outer boundary of the regurgitant area and LV are traced using 

the GDRLSE and RD techniques.  
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Figure 5.16 Segmentation of color Doppler images using SVLMS and other techniques 

 

If only regurgitant region is to be traced then these techniques fail. The performance of IVC, 

LSEBSE, ILF, GMAC, 2phaseLSM and LSR techniques are shown in Figure 5.13. The IVC 

and GMAC techniques are able to trace the regurgitant area better and completely in 

comparison to techniques shown in Figure 5.13. The performance of CV and other 

techniques are shown in Figure 5.14. The region based technique with one seed and CV with 

manual mask selection are able to trace the region of interest better compared to other 
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techniques. The regurgitant area traced using the local region based active contour (LRAC) 

is the best result observed in Figure 5.15. 

 

 

Figure 5.17 Segmentation of B-Mode images using SMED and other techniques 

 
 The 

performance of LRCA stands out in comparison to the topological derivative, IFD edge 

detection, RSF, SMED and texture filter based segmentation techniques shown in Figure 

5.15. The results shown in Figure 5.16 reveal that the methods such as entropyfilt, soft 

thresholding, SVLMS, PIG, Kiruthika and Magagnin, all fail in tracing the regurgitant area. 

The performance of SMED, texture filter and soft thresholding in segmenting the B-Mode 

images in PLAX, A4C and A5C, are shown in Figure 5.17. The MV and AV leaflets are traced 

using the soft thresholding based segmentation. 
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Figure 5.18 Segmentation of B-Mode images using RD and other techniques 

 

However, this technique fails in tracing the complete inner boundaries of the left ventricle. 

The techniques such as SMED and texture filters fail to trace the boundaries of MV and AV 

leaflets and LV boundaries. The performance of RD based technique traces the inner and 
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outer boundaries of LV, traces the leaflets of MV and AV but these boundaries contain 

discontinuities. The methods such as the LIF, IVC, and LSEBFE fail to segment the region of 

interest. The placement of an initial mask for RD method is shown in the first row of Figure 

5.18. It is noticed that irrespective of selection of any type and size of the mask, no change in 

the boundaries tracing is observed. This reflects that this technique is not dependent on the 

initial mask selection. Irrespective of initial mask size and shape, the contour traced is 

identical using the RD segmentation.  

 

Figure 5.19 Segmentation of B-Mode images using LSR and other techniques 
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Figure 5.20 Segmentation of B-Mode images using Region and other techniques 

 

The performance of LSR, LSW, and GDRLSE based segmentation are shown in Figure 5.19 

for B-Mode images in multiple views. The placements of initial mask are shown to show the 

importance of initial mask in these methods. These techniques produced same results 
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irrespective of mask placements. The LSW technique shows that the noise present in the 

image hampers the boundary tracing. Boundaries traced using the method shown in Figure 

5.19 have discontinues. 

 

Figure 5.21 Segmentation of B-Mode images using discrete topological derivative and other 
techniques 
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Figure 5.22 Segmentation of B-Mode images using ILF and other techniques 

  
 The results obtained on application of techniques namely region based, Wiener filter 

embedded in region based method, adaptive edge detection, and watershed based 

segmentation are shown in Figure 5.20. All the techniques result in incomplete boundaries 

and are prone to noise. The boundary tracing shown in Figure 5.21 reveal that the local 

region based segmentation results in complete boundary tracing of the LV and RV. The only 

issue with this technique is the higher amount of computational time required. The other 

methods shown in Figure 5.21 fail in delineation of LV and leaflet boundaries. The results in 

Figure 5.22 show that the 2phaseLSM technique is prone to noise and also result complete 

boundary tracing. The GMAC technique fails to trace LV and leaflet boundaries in the 

presence of intensity in-homogeneity. The basic snake based method whose results shown 
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in Figure 5.23, result in complete boundary tracing but proper selection of initialization is 

necessary.  

 

 

Figure 5.23 Segmentation of B-Mode images using Snakes and other techniques 

Table 5.2 Comparison of manual and LRAC based segmentation for A4C, A5C, A2C 

Parameter 
A4C A5C A2C 

LRAC  Manual 1 Manual 2 LRAC  Manual 1 Manual 2 LRAC  Manual 1 Manual 2 

Area 26270 26973 27053 14520 15001 15560 28746 32205 29488 

Major axis 229.62  252.69 254.69  193.88 191.35  193.78  239.51  275.38  256.739  

Minor axis 151.13  139.57 138.75  101.24 104.92  109.06  155.96  150.55 147.78  

Eccentricity  0.7528 0.8336 0.8386 0.8528 0.8362 0.8265 0.7589 0.8373 0.8177 

Convex area 27871 27697 27947 16733 17065 17226 29937 32653 29857 

Filled area 26288 26973 27053 14520 15001 15560 28746 32205 28488 

Solidity 0.9426 0.9739 0.968 0.8677 0.8791 0.9091 0.9602 0.9863 0.9876 

Extent 0.7725 0.7805 0.8096 0.6796 0.7022 0.7754 0.8046 0.7812 0.7867 

Perimeter 722.27 648.12  677.61  562.02  566.96  560.81  707.36  733.87  691.62  
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Figure 5.24 Segmentation of B-Mode images using Canny and other techniques 

 

The results shown in Figure 5.24 reveal that the methods like Canny edge detection, 

Magagnin and Kiruthika do not find applications in delineation of the B-Mode images 

whereas these techniques are suitable in tracing the outer boundary of the CWD spectrum. It 

is attempted to improve the performance of some techniques such as IFD edge detection, 

LRAC, GMAC, 2phaseLSM and Magagnin methods by embedding Wiener filter prior to 

segmentation. The results obtained on combining Wiener filter with segmentation techniques 

are shown in Figure 5.25. The results reveal that the performance improves on combining 

despeckling with segmentation. The boundaries traced using the LRAC technique are 

compared with manual traced in Figure 5.26 and Figure 5.27 and the results show complete 

boundary tracing using this technique. The parameters computed using the MATLAB inbuilt 

functions are tabulated in Table 5.2 and Table 5.3.  
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Figure 5.25 Segmentation of B-Mode images using IFD and other techniques 

 

 



 

232 

 

 

 

Figure 5.26 Comparison of manual tracing with LRAC based segmentation 

 

The parameters such as area are in terms of number of pixels in these two tables. The 

analysis of results reveals that the results of both manual delineation and LRAC method are 

almost identical with fractional variations in terms of area and other parameters in terms of 

centimetres. The segmentation techniques analysed using the synthetic, color Doppler and 
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B-Mode images are also experimented using the CWD images. The results for the CWD 

images are shown in Figure 5.28 to 5.33. The performances of the techniques such as 

GDRLSE, IVC, CV, RSF, edge, region, watershed, local region, IFD edge detection and 

adaptive edge detection are improved on using a pre-processed image in-place of the 

original image. 

  

Table 5.3 Comparison of manual and LRAC based segmentation for PLAX and CD 

Parameter 
PLAX CD 

LRAC Manual 1 Manual 2 LRAC Manual 1 Manual 2 

Area 14715 14971 14968 5074 5113 5168 

Major axis 178.76  186.84  182.23  142.07 147.37  136.62  

Minor axis 106.48  105.48  104.65  46.98 47.69  44.79 

Eccentricity  0.8035 0.8475 0.8487 0.9437 0.9462 0.9447 

Convex area 15232 16366 15765 5554 5718 5341 

Filled area 14715 15974 15068 5074 5214 4568 

Solidity 0.9661 0.9759 0.9558 0.9136 0.9117 0.8553 

Extent 0.783 0.7891 0.7485 0.6712 0.6712 0.5893 

Perimeter 500.47  531.32  526.35 341.72  341.73  365.81  

 

The results for all the methods are presented for the original and pre-processed images 

using the Wiener and median filters. The boundaries of the CWD image are completely and 

accurately traced using the methods namely IVC, region, watershed, adaptive edge and 

GDRLSE based methods. The methods such as the GDRLSE, LSW, IFL, and GMAC are 

prone to noise. The methods like IFL, 2phaseLSM, GMAC and topological derivative fail to 

trace the complete boundaries. In next paragraphs results of the modified methods are 

discussed using the CWD images. 

The simulation results are initially analyzed for modified versions of delineation methods. All 

the simulations based experiments are being performed using MATLAB environment. The 

first case is Magagnin's method. The outliers resulting from the thresholded images are 

removed using median filter and the filter is implemented using the MATLAB inbuilt function 

“medfilt” with window size of 3х3, and 5х5. The results are optimal for 5х5 mask. The next 

experiment is modified Kiruthika's method. The performance of adaptive Wiener filter is 

better in comparison to Gaussian filter hence it is used as replacement. The filter is 

implemented using the function “Wiener2”. Three texture filters and the Wiener filter are used 

in combination for segmenting bottom and top texture separately. 

 The performances are evaluated by visually inspecting the traced boundary. The traced 

boundary using different combinations of texture filters are shown in Figure 5.34 and Figure 

5.35. The results of all the three methods are compared in Figure 5.36. The results 

presented in Figure 5.34 and Figure 5.35 reveal that the combination of “entorpyflt”, “rangeflt” 

and “stdflt” with both “rangeflt” and “stdflt” fail in tracing the outer boundaries of CWD images.  
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Figure 5.27 Segmentation of B-Mode images using RD and other techniques 
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Figure 5.28 Segmentation of CWD images using GDRLSE and other techniques 

 
The combination of “rangeflt” and “stdflt” with Wiener filter result in complete contouring of 

the outer boundaries but fail when the contrast is low. The fourth column and first row of 

Figure 5.34 and Figure 5.35 reveal that the usage of “entropyflt” for delineation of both top 

and bottom texture results in over-segmentation. Similarly, using “stdflt” and “rangeflt” for 

delineation of both top and bottom texture also result in incomplete boundary tracing. Hence, 

the use of same filter for top and bottom texture delineation fails in the CWD images. The 

combination of “rangeflt” and “stdflt” with “entropyflt” result in accurate and complete 

boundary contouring. In order to show adaptabilty and versatality of these techniques, the 

results are shown for both good and low contrast images in Figure 5.34 and Figure 5.35, 

respectively.  
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Figure 5.29 Segmentation of CWD images using RD and other techniques 

 

The boundaries traced by the proposed method are compared with Magagnin's and modified 

Kiruthika's method in Figure 5.36. The top texture is not completely traced in Magagnin's 

method. The modified Kiruthika method also fails when contrast is low as evident from the 
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second row and second column image compared with the third image in the second row. The 

median and Wiener filters in the Kiruthika, Magagnin and RD methods are replaced by 

despeckling filters namely DsFlsmv, DsFad, DsFsrad, DsFlsminsc, DsFWiener, DsFhomog, 

DsFhmedian, and DsFgf4d filters. The boundaries delineated using modified Kiruthika’s 

method are shown in Figure 5.38. 

 

 

Figure 5.30 Segmentation of CWD images using ILF and other techniques 

 

The boundaries are completely contoured when images are less contaminated. But the 

method failed for noisy images. The first row of Figure 5.38 shows the need for additional 

filtering in the Kiruthika’s method [199]. The second and third rows of Figure 5.38 are results 

obtained for noisy CWD images (noise variance=0.1). The noise in the background is 

successfully taken off by sequentially combining the median filter with either DsFsrad or 

DsFWiener filter. Noise is retained in the background in all cases shown in Figure 5.38 

expect for the DsFsrad and the DsFWiener filter. The results of modified Magagnin’s scheme 

are shown in Figure 5.37. The results are similar to those of modified Kiruthika’s method. The 

major drawback of the Magagnin’s method is incomplete boundary tracing. Noise is fully 

removed on sequential integration of the median filter and the despeckling filters in Magagnin 

method but the technique fails in the presence of intensity in-homogeneity as seen in Figure 



 

238 

 

5.37. The results in second row of Figure 5.37 are for images embedded with Gaussian 

noise of zero mean and 0.1 variance.  

  

 

Figure 5.31 Segmentation of CWD images using GDRLSE and other techniques 
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Figure 5.32 Segmentation of CWD images using Topological derivative and other techniques 

 
The results obtained using RD method with Gaussian convolution filter and other filters is 

shown in Figure 5.39. The outer boundaries are traced using modified Kiruthika’s method. 

But for segmenting the region of interest in a CWD image it is necessary to crop image in 

modified Kiruthika’s method. This issue of cropping image is overcome in RD based 

segmentation. The boundaries are traced by placing a square mask as the region of interest. 

The number of iterations required in contouring CWD images is reduced on use of 

despeckling filters in-place of the Gaussian filter. The number of iteration required for using 

various filters are specified in parenthesis in Figure 5.39. The boundaries traced using the 

RD methods with DsFsrad are smooth, complete and accurate in comparison to all other 

combinations in Figure 5.39.  
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Figure 5.33 Segmentation of CWD images using Texture filters and other techniques 

 

Figure 5.34 Delineation of CWD images using proposed combination of texture filters: column-wise-

first-Rangeflt, second- stdflt, third-Wiener and fourth-entroplyflt 
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Figure 5.35 Delineation of CWD images using proposed combination of texture filters: column-wise-
first-Rangeflt, second- stdflt, third-Wiener and fourth-entropyflt for second image 

 

 

Figure 5.36 Comparison of proposed delineation technique with modified Kiruthika and Magagnin 
method 

 

Figure 5.37 Delineation of CWD image using modified Magagnin method 
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Figure 5.38 Delineation of CWD image using modified Kiruthika method 

 

Figure 5.39 Delineation of CWD image using modified RD method  

 

Boundary leakages are observed when the RD method is combined with the 

DsFmedian filter. The points to be observed are highlighted using an arrow head pointer in 

Figure 5.39. Further, performances of the modified RD method with various despeckling 

filters are tested using low contrast images with higher amount of intensity in-homogeneity in 
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Figure 5.40. The boundaries traced in Figure 5.40 show that embedding of despeckling filter 

as replacement for the Gaussian filter in the RD method can be employed in the delineation 

of CWD images even in the presence of intensity in-homogeneity. 

 

 

Figure 5.40 Delineation of low contrast CWD image using modified RD method where AR-1 to AR-3 
are the three patient’s 

 

5.7 Summary 

The CWD, CD, and B-Mode are segmented using techniques based on edge, region, 

watershed, fuzzy and active contour. The images acquired in multiple views are delineated in 

the presence of intensity in-homogeneity. The synthetic images with homogenous region 

throughout and with varying amount intensity in-homogeneity are first segmented prior to 

segmentation of multi-modality echocardiographic images. The original and pre-processed 

images are used in the analysis of segmentation of techniques.  

The segmentation techniques are analysed to test their suitability in tracing the 

regurgitant jet area in the LVOT from the CD images. The study revealed that the techniques 

such as local region based active contour (LRAC), GMAC, and IVC techniques can be used 

for segmenting the regurgitant jet area. The leaflets of the AV and the MV in the parasternal 

long axis can be traced using soft thresholding, RD, GDRLSE and 2phaseLSM based 

segmentation techniques. The techniques such as RD, GMAC and LRAC can be employed 

for segmenting the images in A4C, A2C and A5C for tracing the inner boundaries of the LV. 

The inner boundaries of RV in PLAX view can be traced using the techniques like snakes, 

SVLMS, 2phaseLSM and LRAC.  

The outer boundaries of CWD images are completely traced using GDRLSE, IVC, 

region based, CV, FCM and SVLMS using the original CWD images. The performance of 
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techniques such as edge, watershed, adaptive edge, IFD edge detection, LRAC and RSF 

techniques are improved on embedding the median and Wiener filters. These techniques 

also resulted in complete boundary tracing. The performance of Kiruthika method, Magagnin 

method and RD based delineation improved on replacing the Gaussian filter and median 

filter with despeckling filters such as the DsFsrad and DsFlsmv filters, also resulting in 

complete boundary delineation. 
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CHAPTER 6: CONCLUSION AND FUTURE SCOPE 

6.1 Conclusions   

The echocardiographic images acquired in multiple views and windows are employed in the 

analysis of valvular abnormalities in the heart. The aetiologies and consequences are studied 

by integrated visualization of B-Mode, continuous wave Doppler (CWD), pulse wave Doppler 

(PWD) and color Doppler (CD) images. Each of the modality provides a particular piece of 

information necessary in accurate diagnosis of the diseases. The images acquired in apical 

and parasternal view help in observing various parts of the cardiac structure better than the 

other. The cross sectional images acquired in multiple views aid in precise location of the 

abnormality in the valvular and chambers of the heart but they are prone to noise.  

The computer aided visualization and analysis are critical portion of the clinical 

diagnosis. The quality of the image is crucial in arriving at a concrete decision of a critical 

state of abnormality in the heart. The transthoracic echocardiographic (TTE) images are 

known to be of low contrast and also suffer due to shadowing, reverberations, and speckle 

noise. Many researchers are putting in efforts to improve the quality of the TTE images and 

computer aided diagnosis by advocating despeckling, enhancement and segmentation 

techniques. The research is more concentrated on the images acquired in one view using B-

Mode echocardiography. But it is necessary to process the images acquired in multiple views 

and modalities as they are used hand-in-hand, not as a substitute for each other. Hence, this 

current research work is taken up to despeckle and segment images acquired in multiple 

views using the B-Mode, CWD, and color Doppler images. The TTE images acquired from 

the adult patients diagnosed with AR are used in analysis of 48 despeckling and twenty five 

segmentation techniques in this thesis. Aortic regurgitation is the backward flow of blood 

from the aortic valve into the left ventricle during the diastole. The aetiologies and 

consequences of AR are diagnosed by visually observing the B-Mode images in parasternal 

long axis (PLAX), parasternal short axis (PSAX), apical four chamber (A4C), apical five 

chamber (A5C) and apical two chamber (A2C) along with CD, CWD, and PWD images.  

In an attempt to address the issue of speckle noise in the clinical TTE images, six 

despeckling filters were proposed. The first set of techniques consisted of multiple multiscale 

methods implemented in the logarithmic domain for edge preserved despeckling; the 

performance analysis was in terms of image quality metrics, visual quality assessment and 

clinical validation. The performances of multiscale techniques are compared with two 

adaptive and four iterative techniques. It is concluded that the neighbourhood shrinkage 

combined with SURE known as NeighShrinkSURE, represented as LM7E stands out among 

multiscale techniques along with the GLM based filter. The posterior sampling based 

Bayesian estimation (PSBE) was combined with adaptive Wiener filter in the second 

proposed method. The performance of the PSBE filter was enhanced by integrating Wiener 



 

246 

 

filter for despeckling of noisy TTE images. It is concluded that the combination of PSBE filter 

with Wiener filter improves despeckling when the amount of noise present in the images is 

high otherwise PSBE alone will be sufficient. The triangulation moving average (TMAV) fuzzy 

filter was employed in the logarithmic domain for speckle noise reduction. The noise 

suppression and edge preservation of TMAV filter were fine tuned by combining it with the 

adaptive Wiener filter. The fourth proposed scheme was based on integration of geometric, 

fuzzy and the adaptive Wiener filter. The performance of fuzzy filter was further refined with 

higher noise suppression and edge preservation using the integrated fuzzy filters. The fifth 

method advocated was the hybrid homomorphic fuzzy (HHF) filter, which is the sequential 

integration of fuzzy and speckle reducing anisotropic diffusion filter. The performance is 

analysed using the standard test images and TTE images in multiple views. The fuzzy filters 

implemented go to show that the fuzzy filter will find their applications for speckle noise which 

is multiplicative in nature. Earlier the fuzzy filters were proven to be effective in additive noise 

reduction. The final proposed despeckling technique was based on the replacement of the 

regularization term of the total variation filter with the bilateral term. This technique was 

known as the extreme total variation bilateral (ETVB) filter. Along with these techniques the 

duality based denoising techniques were also analysed for the TTE images. 

A comparative analysis of 48 filters is carried out for the B-Mode, CWD and color 

Doppler images. These filters were grouped into eight types namely the local statistics, fuzzy, 

Fourier, multiscale, nonlocal mean, total variation, nonlinear iterative and hybrid filters. The 

performance analysis was in terms of speckle noise suppression, visual quality and clinical 

validation. The analysis was also in terms of blind assessment parameters along with the 

traditional parameters. The merits, demerits and concepts of 48 filters are studied for the 

quality improvement of the TTE images. It work shows that the performance of despeckling 

filters such as the GLM, DsFlsmv, DPAD, DsFhomog, FBL, PLOW, BPFA and PPB filters are 

superior among the 48 denoising techniques analyzed in terms of 16 performance 

parameters along with the visual quality assessment and grading by the cardiologists. It is 

concluded that these filters can be employed for noise reduction in the TTE images. The 

performances of the despeckling techniques were analysed for the CWD images. The 

performance of the DsFsrad filter is superior in comparison to the DsFgf4d, DsFhomog, 

DsFlsminsc, DsFhmedian and DsFad filter in terms of IQM such as Err3, Err4, LMSE and 

NAE. The visual quality of despeckled images obtained using the DsFlsmv, DsFWiener, 

DsFad and dsFsrad are able to retain structure and edge details. The texture features of the 

B-Mode, M-mode, CWD and CD based echocardiographic modality images are extracted. 

Features extracted from despeckled images showed marked difference for images acquired 

using A4C and A5C in comparison to A2C, and A4C compared with PLAX view images. 
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Similarly, the features of CWD, M-Mode, Color Doppler and B-mode images were quite 

distinct. 

The CWD, CD and B-Mode were segmented using techniques based on edge, 

region, watershed, fuzzy, and active contour. The images acquired in multiple views were 

delineated in the presence of intensity in-homogeneity. The segmentation techniques were 

analysed to test their suitability in tracing the regurgitant jet area in the LVOT from the CD 

images. The study has revealed that the techniques such as local region based active 

contour (LRAC), GMAC and IVC techniques can be employed for segmenting the regurgitant 

jet area. The leaflets of the AV and the MV in the parasternal long axis can be traced using 

soft thresholding, RD, GDRLSE and 2phaseLSM based segmentation techniques. The 

techniques such as RD, GMAC and LRAC are suitable for segmenting the LV in A4C, A2C 

and A5C. The boundaries of RV in PLAX view can be traced using snakes, SVLMS, 

2phaseLSM and LRAC.  It is concluded that among the twenty segmentation techniques 

analysed the LRAC is the most suitable technique for tracing the boundaries in the B-Mode 

TTE images.  

The outer boundaries of CWD images can be delineated using GDRLSE, IVC, region 

based, CV, FCM and SVLMS using the original CWD images. The performance of 

techniques such as the watershed, adaptive edge, IFD edge detection, LRAC and RSF 

techniques can be improved on embedding the median and Wiener filters. The performance 

of Kiruthika method, Magagnin method and RD based delineation are improved on replacing 

the Gaussian filter and median filter with despeckling filters such as the DsFsrad and 

DsFlsmv filters, also resulting in complete boundary delineation. 

 

6.2 Future scope 

The limitation of the current research work is that the pre-processed and segmented images 

were not employed for AR severity classification. The thesis concentrated for despeckling 

and segmentation of the TTE images in multiple views. The second limitation is the texture 

features were employed in specifying the filter performance whereas the texture features 

might be used in classification of severity of the valvular regurgitation and stenosis. These 

two limitations reflect the possible scope of the current research topic. As a future scope: 

1) Analysis of the despeckling techniques for 3D TTE images shall be taken up in multiple 

views after the collection of 3D data from various sources. 

2) The texture features extracted from the images in multiple views and modalities should be 

analysed for classification of AR severity. This shall overcome the need for manual or 

automatic delineation of cardiac structure for deciding on the severity of diseases based on 

parameters estimated.  
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3) Efforts should be made to reduce the computation time required in execution of local 

region based active contour segmentation for the TTE images acquired in multiple view and 

modalities. 

4) The segmentation techniques can be used for segmentation and analysis of the right 

ventricle, mitral valve and other parts of the cardiac structure acquired from patients suffering 

from aortic stenosis, mitral stenosis and mitral regurgitation.  

5) Disease specific analysis such as mitral regurgitation, aortic stenosis and other valvular 

diseases can also be taken up. Integration of images acquired in different views would be 

necessary in each case. 
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