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ABSTRACT 

 

Seismic tomography evolved as one of the most important tools for both quantitative 

and qualitative determination and investigation of the internal structure of Earth including 

subducted slabs, sources of hotspots, convection pattern in the mantle and detailed 

subsurface velocity structure. This tool has been extensively used by researchers and 

engineers for setting up parameters required in making different structures such as dams, 

reservoirs and buildings as well as, for search of ground water.  

Mathematically tomography is an inverse technique which combines the idea of 

forward computation as well as inverse computation. Therefore the basis of tomography can 

be defined in terms of basics of inverse theory such as parameter representation, forward 

problem, inverse problem and analysis of robustness of solution. 

 One of the most challenging problems that are exclusively related to tomography is 

accurate and fast solution of forward problem. The problem arises because of nonlinear 

relationship between velocity and ray path geometry. Many methods have been given in past 

to solve out different problems in this field. One of the major problems in the forward 

problem is computation of first arrivals as these phases are very crucial particularly for 

determination accurate velocity models and for resolving thin layers of a structural feature. 

Fast Marching Method (FMM) is a method that gives mathematical guarantee to solve this 

problem. Similar to other methods, the numerical problems are associated with this method. 

The source neighborhood errors cause a great problem in accuracy. Many authors in past 

have given several methods. Multi-Stencils Fast Marching (MSFM) Method is a method that 

mathematically address the problem more closely. However, this method solves the basic 

problems to some limited extent. In this thesis a new method called Multistencils 

Pseudoanisotropic Fast Marching Method (MPFMM), by extending the concept of MSFM 

method, has been developed and discussed. The developed method improves significantly 

the numerical errors associated with FMM and MSFM method. 

Conventional methods of ray path computations such as ray tracing are still used as 

these methods do not suffer from large numerical errors and provide better accuracy in 

computations. These are largely used in determination of preliminary 1D velocity models as 

well as 2D velocity models. One of the major problems associated with ray tracing is that 

this often fails to converge to true source-receiver ray paths and consumes time. This 

problem has been addressed in this thesis. A method has been developed for ray tracing 

which is parallel to shooting method of ray tracing. The method has been tied up with two 

techniques of ray path adjustments which have been named as Spiral Path Search Method 
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and Gradient Path Search method. Both these method works in series and computes ray path 

very efficiently. 

Simultaneous inversion for the determination of a set of related parameters is always 

better than the inversion which considers only one parameter. There are many methods for 

computation of velocity and hypocenters with origin time. Determination of layered structure 

of earth is an important aspect of research because these are related with the earth’s feature 

called discontinuities in velocity or quality factor. In that context inversion scheme and 

algorithms have been developed which simultaneously determine body wave velocities, 

hypocenters with origin times as well as layer interfaces. In that inversion scheme both P-and 

S-wave data are considered to increase the amount of information from data. This has been 

done because tomography problems often face one practical problem that is the problem of 

scarcity of data. To remove this to some extent both P-and S-wave are inverted 

simultaneously in the scheme. The developed method has been given the name 

multiparameter inversion method. The multiparameter inversion method has been used for 

determination of 1D velocity structures, hypocenter parameters beneath the Kumaon 

Himalaya. 

The proposed MPFMM has been used to develop 2D and 3D traveltime tomography 

methods which have been applied successfully for the data of Kumaon. To study the 

attenuation structure of the same region, a methodology of 3D attenuation tomography using 

grid type of parameterization has been developed and discussed. 

Data of the present study have been taken from strong motion network deployed in 

the Kumaon part of Himalaya. A total of 870 first arrival P- and S-phases from a total of 116 

earthquakes have been used in the study. The observation times of first arrival phases have 

been used as data for traveltime inversions. A total of 373 phases of first arrival P-waves 

have been used for determination of 2D P-wave velocity structure while a total of 497 first 

arrival S-phases have been used for determination of 2D S-wave velocity structure. In 

determination of 3D shear wave velocity structure, a total of 405 first arrival S-phases from a 

total of 98 earthquakes have been used. To study the 3D attenuation tomography a total of 

344 S-phase spectra recorded by 17 stations from a total of 82 events have been considered.  

The located earthquakes form a shape that is oriented along Himalayan belt. Most of 

the epicenters form a group that lies between MCT and NAT in the areas of Baluakot, 

Dharchula and Joljibi. The number of earthquakes along MCT is fewer than that along MT. 

Most of the earthquakes are found to occur at shallow depths. Some of the earthquakes 

occurs at sub moho depth which support the idea that upper mantle deforms by brittle 

processes.   
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One dimensional velocity model shows the Indian moho beneath the Kumaon 

Himalayan region. The depth to the moho is ~50 km from mean sea level. This when tied up 

with other studies gives moho plane which has strike and dip respectively, N27E and 4.6° 

northeastern direction. At depth ~10 km P-wave velocity changes from ~5.7 km/s to ~6.1 

km/s and S-wave velocity change from ~3.1 km/s to ~3.3 km/s. At depth ~50 km P-wave 

velocity changes from ~6.9 km/s to ~8.3 km/s and S-wave velocity change from ~4.1 km/s to 

~3.7 km/s.  

2D vertical body wave velocity images have been obtained from Lohaghat to 

northwestern side of Sobla, along a plane that strikes N26E. 2D Velocity models for body 

waves show the extensive disturbances of crust due to underthrusting of Indian plate beneath 

the Eurasian plate. The outcrops of crystalline complexes in Lesser Himalaya near Thal and 

Dharchula respectively are well resolved in 2D velocity sections especially in P-wave 

velocity section. The Conrad discontinuity lies around 12 km depth below mean sea level 

(msl). The P-wave velocity of upper crust in most of the portion in the section, vary from 4.2 

km/s to 5.6 km/s and the same in lower crust vary from 5.6 km/s to slightly more than 7.8 

km/s. The S-wave velocity in most of the upper crust in the section, vary from 2.9 km/s to 

3.3 km/s and the same in lower crust vary from 3.3 km/s to slightly more than 4.4 km/s.  

A 3D shear wave velocity structure up-to a depth of 33 km beneath the Kumaon 

region has been obtained using the data and developed methodology of tomography using 

MPFMM. The obtained velocity structure clearly resolves the outcrops of crystalline 

complexes present in the study region. Alternating zones of low and high velocities have 

been observed with increasing depth in the upper crust. This may be related to the 

overturning nature of the crustal layers beneath the Kumaon Himalaya. 

Site amplification for all the station locations have been obtained and found some 

important characteristics. Askot and Didihat are the two areas which show gradual increase 

in site amplifications with the increases of frequencies, and Bageshwar and Muwani are two 

areas which show gradual decrease of site amplifications with the increase of frequency. 

Berinag and Kamedi Devi are the two areas which show almost frequency independent site 

amplification characteristics. 

3D Attenuation tomography is performed up-to a depth of 33 km using the developed 

tomography method in the Kumaon Himalaya. The quality factor shows variation from near 

about 0 to 2300 beneath the study area. The crystalline complexes near Didihat and 

Dharchula are resolved and show quality factor (~650-700) against the background values of 

(~0-200). The variation of quality factor and wave velocity beneath the Kumaon Himalaya 
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favours that subsurface layers beneath this region are suffered from overturning and probably 

rotation. 
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1

INTRODUCTION 

1.1 MOTIVATION AND LITERATURES REVIEW

Seismic data are among the most common and valuable resources for investigating 

the internal structure of Earth. One of the first people to deduce the deep interior structure of 

Earth from seismic records was Richard Dixon Oldham. In 1906, he identified the separate 

arrivals of P-waves, S-waves and surface waves on seismograms and found the clear 

evidence of the presence of Earth’s core from the absence of direct P and S arrivals at source 

receiver distances beyond about 100°. In 1909, Andrija Mohorovičić, a Serbian seismologist 

observed two distinct traveltime curves from a regional earthquake. He concluded that one 

curve corresponded to a direct wave through the crust and other to a wave refracted by a 

discontinuity in elastic properties between crust and mantle. This worldwide discontinuity is 

now known as the Mohorovičić discontinuity or Moho in short. The method of Herglotz and 

Wiechart as described in Gubbins (1992) was used in a wide scale in 1910 to determine one 

dimensional whole earth model. The method uses relationship between ray parameter and 

angular distance to determine velocity as a function of radius within the earth. Rapid 

improvement of seismographs in the late 19
th 

and early 20
th

 century allow the scientist to 

construct travel time table (arrival times of seismic waves as a function of distance from the 

earthquakes) and the first widely used tables were produced by Zoeppritz in 1907. Beno 

Gutenberg reported the accurate estimate of depth of Earth’s core using the travel time tables 

published by him in 1914. Harold Jeffreys was the first to claim in 1926 that the material 

state of the Earth’s core is liquid. Later on in 1936, Inge Lehmann discovered that the earth 

has a solid inner core inside a molten outer core. 

Travel time curves were widely used in the early and mid 20
th

 century to determine 

Earth’s average velocity versus depth structure. In the beginning of 1960s, a new type of tool 
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called  seismological arrays helped to lower the detection threshold of global earthquakes 

and specially of nuclear explosions and provided a possibility of resolving the fine structure 

of the Earth’s interior (Birtill and Whiteway, 1965; Whiteway, 1966; Wright, 1972; 

Doornboos and Husebye, 1972; Weber et al., 1996). These seismological instruments consist 

of numerous seismometers placed at discrete points in a well-defined configuration (Husebye 

and Ruud, 1989). One of the best examples of earliest and largest array is NORSAR 

(Norwegian Seismic Array). This was initially established to provide data for research on 

seismological detection and classification problems, and to provide event monitoring 

functions in the possible advent of a comprehensive test ban treaty (Bungum et al., 1971). 

Later on, NORSAR has broadened its research activities which include subjects like 

earthquake hazard, risk assessment, micro-seismicity, and seismic modelling for the 

petroleum exploration purpose. 

Advancement of digital innovation in seismographs took place around 1970s and 

1980s. The digital seismographs have a wider range of frequencies and high level of signal to 

noise ratio. Recording with these instruments facilitates the study of miroearthquakes (Gupta 

et al., 1996; Paul et al., 2010). The array measurement techniques have been boosted up by 

these instruments. Many authors including Kuo et al. (2009) and Lin et al. (2009) have used 

recordings of microearthquakes from seismological array to study the subsurface features. 

Gibbons et al. (2007) have given an insight to the use of multichannel waveform correlation 

over network and array to improve the low magnitude event detection capabilities.  

Today, an abundance of methods is available for determination of Earth’s internal 

structure where different components of seismic records like traveltime, amplitude, 

waveform spectra, full waveform or entire wave-field may be used. The configurations of 

source-receiver array also differ. The array may be inline or cross line. Sources may be 

natural or artificial, location of sources may be close or distant to the receiver, and the scale 

of study may be tens of meters to the whole earth. 

Surface waves usually dominate the seismogram and show dispersive characteristics 

(frequency dependence of velocity). The use of surface waves for investigation of subsurface 

structure started in mid 20
th 

century when the early pioneering work of Van der Pol (1951), 

Jones (1955) lead to the birth of Continuous Surface Wave (CSW) method (Matthews et al., 

1996). Later on, other parallel methods like spectral analysis of surface waves (SASW) and 

multichannel analysis of surface waves (MASW) methods were developed. An approximate 

chronological order of historical developments of these methods can be found in Park and 

Ryden (2007).  
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The surface wave method makes use of dispersive property (frequency dependence of 

velocity) of Rayleigh and Love waves to derive shear wave velocity versus depth profile. 

Briefly, a Fast Fourier Transform (FFT) is applied to a time domain record to convert the 

same into frequency domain from which phase shifts of different frequencies are obtained. 

The phase shifts are then used to compute variation of phase velocity with frequency or time 

period. The phase velocity curves are then applied in an inversion scheme to obtain shear 

wave velocity model of subsurface (Mohan et al., 1992; Chauhan and Singh, 1996; Mohan et 

al., 1997; Singh et al., 1999; Xia et al., 1999; Rahimi et al., 2014). There are some other 

applications of surface wave dispersion method such as anomaly detection (Park et al., 1998; 

Phillips et al., 2004; Nasseri-Moghaddam, 2006) and soil damping evaluation (Rix and Lai, 

1998; Rix et al., 2001). 

An alternative method which is comparatively new for determination of subsurface 

velocity structure is one that uses receiver function. The receiver function technique was 

originally developed by Langston (1979) and was then improved by various authors 

including Ammon et al. (1990), Cassidy (1992), Shibutani et al. (1996), Sambridge (1999) 

and Park and Levin (2000), for different aspects such as spectral estimation, inversion etc. 

The receiver functions rely on teleseismic earthquakes which contain the information of the 

earth’s features along long travel paths. One can obtain the partial impulse response of the 

earth just beneath the station by removing the common feature from the source and most of 

the paths which are recorded on different components. The resultant estimated function is 

then inverted using some inversion schemes to obtain velocity-depth model in the vicinity of 

the station. The receiver function methods are very sensitive to the velocity discontinuities 

and hence these are useful to insight the earth’s heterogeneities beneath the stations. 

However, the information provided by this method is limited to a volume beneath a single 

station and the obtained velocities are insensitive to the absolute velocity unless surface 

waves are added. Further, limitations come from the simplified assumptions which cannot 

explain real earth features including dipping layers, anisotropy and two or three dimensional 

velocity distributions. Many authors in the recent past have used receiver function techniques 

to obtain the earth’s subsurface velocity structures. Some of them are Cruz-Atienza et al. 

(2001), Rai et al. (2006), Hazarika et al. (2013) and Kumar and Mohan (2014). 

The receiver functions are mostly sensitive to sharp velocity changes and relatively 

insensitive to the average velocity and smooth velocity changes whereas surface wave 

dispersion techniques are sensitive to average shear velocity and largely insensitive to sharp 

velocity contrasts (Lawrence and Wiens, 2004). Combining these complimentary tools in a 

single inversion scheme allows for more unique analyses of subsurface structure (Julia et al., 



4 
 

2000). Several workers (Last et al., 1997; Lawrence and Wiens, 2004) have combined 

successfully analyses of receiver functions and surface wave techniques to derive more 

unique solutions than either of the techniques in isolation. 

Besides the studies of Earth’s internal velocity structure, the studies of seismic 

attenuation play a very significant role in mapping the subsurface heterogeneities. The 

seismic attenuation is the decay of seismic wave energy due to spherical and inelastic 

propagation of seismic waves through the earth from the source. The attenuation is quantified 

using the inverse of a dimensionless quantity known as quality factor (Q ). The quality factor 

is sensitive to temperature, fluids, compositional differences, and other rock properties which 

are distinct from that provided by P and S wave velocities. Therefore, the study of seismic 

attenuation is very important for material identification, tectonic interpretation, quantification 

of ground motion (Hoshiba, 1993; Akinci et al., 1995; Del Pezzo et al., 1995; Bianco et al., 

1999, 2002), which are related to the estimation of seismic hazard of an area (Pulli, 1984; 

Herraiz and Espinosa, 1987; Havskov et al., 1989; Sato and Fehler, 1998; Paul et al., 2003; 

Mukhopadhyay and Tyagi, 2007; Allen et al., 2007). Most commonly, the attenuation is 

estimated either from body waves (Joshi, 2010), surface waves (Xia, 2014) or coda waves 

(Ma’hood et al., 2009, 2011).  

One of the most common and widely used methods to estimate quality factor is coda 

normalization method. In this method, the coda waves are used as a proxy for the source and 

remove it from the S wave spectrum as described by Aki (1980a, b), Yoshimoto et al. (1993). 

Least square fit is then made to the amplitude as a function of distance in small frequency 

band. The slop of the obtained fit function is related to the path attenuation 
1Q
 at central 

frequency of each band and hence it is converted to power-law Q model for each station. The 

estimation of quality factor using coda waves gives its volumetric average of value around 

the station network. 

So far the methods have been outlined which give depth wise variation of earth’s 

subsurface velocity or average estimation of quality factor. Recent developments in solid 

earth geophysics, such as plate tectonics, earthquake prediction, and exploration for 

geothermal energy demand increasingly detailed information about three dimensional (3D) 

earth’s internal structure. In that context, seismic tomography is a very important tool for 

imaging the earth’s internal structures using seismic data. It is not a single method rather a 

class of methods specially differing from each other by the type of data that are used in 

different methods. The data type may be traveltime when the method is called traveltime 

tomography, it may be amplitude when the method is called attenuation tomography or it 
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may be full waveform or a portion of spectra with their own nomenclatures. The word 

tomography literally means picture of a slice (from the Greek word tomos meaning slice). 

The terminology was first used in medical imaging to describe the process of imaging the 

internal density distribution of human body using X-ray (Lee and Pereyra, 1993). The term 

was later appropriated by the almost all branches of sciences including seismology. 

The first breakthrough two dimensional (2D) seismic tomographic regional map was 

produced by Aki and Lee (1976) using the data from NORSAR. The method implemented 

functional derivatives of seismic measurement with respect to structural model parameters 

(Backus and Gilbert, 1967; Fréchet, 1941; Woodhouse, 1974), which is most commonly 

known as Fréchet derivatives, Fréchet kernels or sensitivity kernels. Later on the use of the 

functional derivatives became so popular that these became backbone of subsequent 

tomography studies (Woodhouse, 1974, 1981; Dziewonski and Anderson, 1981; Woodhouse 

and Dziewonski, 1984). Soon after the publication of Preliminary Reference Earth Model 

(PREM, the first well-accepted one dimensional radially anisotropic model of the Earth) by 

Dziewonski and Anderson (1981), the seismic tomography officially opens a new era of 

global imaging. Their study includes observations of traveltimes, normal mode and 

attenuation and consideration of physical parameters such as Earth's mass and moment of 

inertia. The established reference frame has typical error less than 1% between predicted and 

observed traveltimes for teleseismic arrivals which became useful for 3D surveys. This 

seminal study eventually earned the two original authors well deserved Crawford Award (the 

Nobel Prize equivalence for all of geosciences). Many pioneering studies have been done in 

the field of tomography both in linear (Nakanishi and Anderson, 1982; Dziewonski, 1984; 

Woodhouse and Dziewonski, 1984) and non-linear (Tarantola and Valette, 1982; Snieder and 

Romanowicz, 1988) inversion schemes. Their studies have propelled the seismic tomography 

to the forefront of the earth sciences.  

The Kumaon region of Himalaya is tectonically active and prone to frequent 

earthquakes. The tectonic settings of this region are very complex as described in Célérier et 

al. (2009). In context of delineating subsurface structure and hazard mapping an accurate 

three dimensional velocity tomography is not available in this part. One of the reasons may 

be the scarcity of digital data in this complex terrain. Inspired from the applicability of 

seismic data and tomography methods, it was desired to obtain seismic structure beneath the 

Kumaon Himalaya.   

The three dimensional tomography require a precise estimation of 1D velocity as well 

as location of earthquakes. As the region is very complex therefore a method for joint 

inversion of P- and S-wave traveltimes to obtain body wave velocities, hypocenter 
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parameters and geometry of subsurface structures were imagined to formulate.  The method 

has been developed and presented in Chapter 5. 1D velocity models has been estimated in the 

Kumaon region using the same.  

Different types of waves including head waves and first arrival waves, and complex 

phenomenon such as ray triplications are common to aspect from a complex region. 

Therefore the forward problem of tomography as described in §1.2 is required to respect the 

above wave related phenomena. In this context several forward problems have been 

considered and it has been found that the Fast Marching Method (FMM) (§1.2.2.2.2) is one 

of the methods that respects the above wave related phenomena. However the FMM suffers 

from logical source neighborhood errors as described in Rawlinson (2003) and hence it is 

very difficult to use the same method in Local Earthquake Tomography (Rawlinson and 

Sambridge, 2003) without removal of the same. Working with the improvement of this 

method leads to the development of a parallel method presented in Chapter 4. The developed 

method has been combined with the inverse theory to further develop a tomography 

algorithm, which has been applied successfully to obtain the subsurface seismic structures of 

the Kumaon region. 

The study of attenuation combined with the velocity is very helpful in hazard 

estimation. Many studies have been done in context of average estimation of attenuation as 

described in §1.7.  Three dimensional attenuation tomography studies are rare in the Kumaon 

part of the Himalaya. An accurate three dimensional attenuation tomography requires proper 

velocity information. Inspired from the method of attenuation tomography given in Joshi et 

al. (2010), three dimensional attenuation tomography of the Kumaon region has been studied 

using the developed 3D velocity models of the Kumaon region.  

 

1.2 SEISMIC TOMOGRAPHY AS A METHOD OF INVERSION  

Though, tomography is a class of methods, at the roots of all methods it is basically 

an inversion technique based on inverse theory that is used to constrain 1D, 2D or 3D models 

of the earth’s subsurface-structures with various significant model parameters. The model 

parameters can be body wave velocities in traveltime tomography, quality factors in 

attenuation tomography, or can be some other parameters like coefficients defining surface 

of discontinuities separating two adjacent layers in media when the tomography can be 

termed as layered tomography. 

If some property of subsurface structure of the earth, such as velocity (or quality 

factor) is represented by a set of model parameters m , then a set of data d , traveltimes (or 

spectral acceleration) can be predicted for a given array of source and receiver by line 
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integration through the model. The functional relationship,  d g m  between model 

parameters and data is the basis of any tomography approach. For a given set of observed 

dataset od  and an initial model 0m , the difference between od  and  0g m  gives an 

indication about the fitness of current model to predict the observed data. The inverse 

problem is then to adjust the initial model in order to minimize the difference between 

observed and computed or predicted data. This may be subjected to any regularization that 

may be required. The final result after inversion will be a mathematical representation of true 

subsurface structure. The accuracy of final results will depend on various factors including 

how well the initial model satisfy the observed data, assumptions made in model 

parameterization, errors in observed data and accuracy of inversion schemes. The 

tomography method therefore relies on general governing principles of inverse theory as 

described by Tarantola (1987) and Menke (1989). 

As the seismic tomography is basically an inversion technique based on inverse 

theory, so the basic steps required to obtain a tomographic image can be defined as model 

parameterization, forward problem, inverse problem, and analysis of robustness of solution. 

In model parameterization, the seismic structure is defined in terms of a set of unknown 

model parameters. Tomography methods generally require an initial estimate of model 

parameter values to be specified. The next step after model parameterization is the forward 

problem, where the response of a model defined by suitable model parameters is obtained. 

The forward problem is called as the backbone of all tomographic approach, in which almost 

all of the accuracy and stability of tomography-methods depends. The inverse problem is 

defined as automated adjustment of model parameter values with the object of better 

matching the model data or computed data to the observed data subject to any regularization 

that may be required. Finally, the analysis of solution robustness is done by using the 

estimates of covariance and resolution (Tarantola, 1987) or by reconstructing the test models 

from synthetic data set. 

 

1.2.1 Model Parameterization 

Tomography is performed using data resulting from penetrating waves that originate 

at the source point and travel to the station point. Therefore, data or the responses of a 

medium are primarily dependent on the medium properties through which waves propagate. 

The data are required to be computed in the forward part of any tomography, therefore it is 

essential to quantify the medium properties in terms of some parameters. The type of 

parameters used in a particular problem depends on the type of a tomography; for example it 
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is velocity in traveltime tomography and the same is quality factor in attenuation 

tomography. To define the discontinuities in a medium, a set of interfaces whose geometry is 

constrained to satisfy data is often used.  

Seismic structures is defined by a set of surface functions representing interfaces or a 

set of rectangular blocks, each having constant medium properties or nodes with a suitable 

interpolation function or a suitable combination of these. The most appropriate choice will 

depend on the a priori information such as known faults or discontinuities, whether data 

indicates the presence of interfaces such as presence of reflection or mode conversion, 

whether data coverage is adequate to resolve more than one parameter, and finally the 

capabilities of inversion algorithms used. 

 

1.2.1.1 Velocity Parameterization 

When the variation of velocity is defined using a set of rectangular blocks, each 

having constant velocity then this parameterization is simply termed as Constant Velocity 

Blocks (CVB) or Constant Velocity Voxels (CVV) as shown in Figure 1.1(a). This type of 

parameterization is simple to define and results in linear ray paths within each block. On the 

other hand, this type of parameterization is not a natural choice for representing smooth 

velocity variation in subsurface structure because of velocity discontinuities between 

adjacent blocks. These artificial velocity discontinuities often cause unwanted ray triplication 

and shadow zones due to different critical angles presented by different block walls. 

However, if a large number of CVV are used and velocity changes between adjacent blocks 

are given restriction to a suitable degree, then a reasonable approximation to a continuous 

velocity field is possible.  

 

 

 

Figure 1.1: Different types of velocity parameterization: (a) constant velocity blocks, (b) a 

grid of velocity nodes, and (c) triangulated velocity grid (after White, 1989). 
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In teleseismic tomography, this type of parameterization has been used by many 

authors including Aki et al. (1977), Oncescu et al. (1984), Humphreys and Clayton (1988, 

1990), Benz et al. (1992), and Saltzer and Humphreys (1997). Hildebrand et al. (1989) and 

Zhu and Ebel (1994) used CVV in their 3D refraction traveltime tomography while 

Williamson (1990) and Blundell (1993) used CVV in their reflection traveltime tomography. 

In local earthquake tomography, this type of parameterization has been used by many authors 

including Aki and Lee (1976) and Nakanishi (1985). The CVVs are not as common in wide 

angle tomography and are often avoided when strong ray curvature is expected. 

An alternative to the above parameterization is to define the velocity at the nodes of a 

regular grid as shown in Figure 1.1(b), with a specified interpolation function. One of the 

first people to use this kind of parameterization is Thurber (1983). Thurber in his local 

earthquake tomography used a tri-linear interpolation function to describe the velocity at any 

point within a regular rectangular grid. The tri-linear function can be written as: 

    
2

, , 1 2 1 2 1 2 1

, , , , 1 1 1
ji k

i j k

i j k

y yx x z z
v x y z V x y z

x x y y z z

    
              
  (1.1) 

Where,  , ,i j kV x y z are velocity values of eight grid nodes surrounding point  , ,x y z . The 

Equation (1.1) represents a continuous velocity field with a discontinuous gradient. This type 

of parameterization has been used by many authors including Zhao et al. (1992), Scott et al. 

(1994) and Haslinger et al. (1999). Some ray tracing methods require velocity field to be 

continuous to some higher degree as described by Thomson and Gubbins (1982). In such 

case, a higher order interpolation function is required to be used in the parameterization. In 

this context, Cubic spline interpolation (Thomson and Gubbins, 1982; Lutter et al., 1990), 

Cubic B-splines (Farra and Madariaga, 1988; McCaughey and Singh, 1997) remained useful 

choices. 

White (1989) describes a different type of model parameterization which somewhat 

bridges the gap between block and grid approaches. He used rectangular grid of nodes to 

define triangular region of constant velocity gradient as shown in Figure 1.1(c). The velocity 

within each cell is defined by: 

      0 0 0, x yv x y v x x v y y v        (1.2) 

Where, 0v , xv  and yv  are determined at the nodes of the triangles such that 0 1v v , 

 2 1 /xv v v x    ,  2 1 /yv v v y     in cell 1 of Figure 1.1(c). The advantage of this 

parameterization is that the velocity remains continuous through the medium and because of 

this ray can be traced analytically within each cell. However, the gradient of velocity is 
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discontinuous in this approach and because of triangular shape source receiver ray tracing is 

difficult. This type of parameterization has also been used by Chapman and Drummond 

(1982). Cerveny (1987) used a similar approach but considered constant gradient of square of 

slowness instead of constant gradient of velocity. This method of parameterization can be 

extended to three dimensions by using tetrahedral cell and with a linear interpolation 

function described in terms of velocities of four vertices of the tetrahedron. It is important to 

note that these types of parameterization are used mainly for analytical ray tracing and for 

adequate approximation to the subsurface velocity distribution.  

 

1.2.1.2 Interface parameterization 

One of the most common structural features that are often required to include in the 

velocity model is the velocity discontinuities of subsurface structures having sub horizontal 

layers as shown in Figure 1.2. These layers or similar to these type artifacts are responsible 

for reflected and refracted phases respectively in the reflection sections and refraction 

sections of seismic data. The reflection and refraction sections of seismic data are used in 

reflection tomography and refraction tomography respectively. The reflection sections of 

seismic data image only the reflectors and the refractions sections of seismic data contain 

various phases associated with velocity discontinuities.  

 

 

Figure 1.2: Schematic representation of a typical layered velocity structure that is imaged in 

traveltime tomography. The velocity functions    , ; 1,4iv x z i  describe the velocity 

variations for different layers. 

 

The junction of two adjacent layers or interface can be imagined by piecewise 

continuous (Figure 1.3(a)) or continuous curves (Figure 1.3(b)) defined by appropriate 

functions in 2D parameterization. Zelt and Smith (1992) and Williamson (1990) used 

piecewise curves in their 2D tomography methods. The piecewise curves are useful to define 

complex multivalued interface. One the other hand the discontinuities given by such curves 
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may not be geologically realistic as the junction of two adjacent curve results in artificial 

shadow zones. However, this problem has been avoided by Zelt and Smith (1992) in their 2D 

wide angle traveltime tomography by using the technique of average filtering. The use of 

continuous curves will not create artificial shadow zones. On obvious problem with this type 

of curves is that it is very difficult to represent a complex surface using analytical function 

because of overturning nature of subsurface layers that may be associated with the structure.  

 

 

Figure 1.3: Types of interface parameterization used in 2D (a, b) and 3D (c, d) models. (a) 

Piecewise linear segments, (b) piecewise cubic B-spline curve, (c) surface defined by mosaic 

of triangular patches, (d) surface defined by mosaic of bicubic B-spline patches. 

 

 

The interface parameterization in 3D can be imagined by a continuous or piecewise 

continuous surface defined by appropriate functions. The use of continuous surfaces and 

piecewise continuous surfaces in the interface parameterization will result in similar 

advantages and disadvantages as that of given by continuous or a piecewise continuous 

curves in 2D case. In other words, it is easy to represent a complex multivalued surface using 

piecewise continuous surfaces. However, these may create unnecessary shadow zones due to 

discontinuous junction between two adjacent surfaces. On the other hand, the use of 

continuous surface will not create shadow zones however a multivalued complex surface is 

very difficult to define using this type of parameterization. Many authors including 

Sambridge (1990) and Guiziou et al. (1996) used triangulated piecewise surface defined by 

piecewise triangular area segments (Figure 1.3(c)) in their tomographic methods. 

Grid of depth nodes with appropriate interpolation functions can also be used to 

define interfaces. In 2D, conventional piecewise cubic spline functions with second degree 

continuity as shown in Figure 1.3(b) are often used in tomography (White, 1989; Rawlinson 

and Houseman, 1998). In 3D tomography, many authors including Gjøystdal et al. (1984) 

and Chiu et al. (1986) used smooth interfaces (Figure 1.3(d)) defined by appropriate 

functions. Cubic spline interpolation functions (Gjøystdal et al., 1984) and higher degree 

polynomials (Chiu et al., 1986; Davis, 1991; Kohler and Davis, 1997) remained good choices 

in that context. Davis (1991) used polynomial expansion to define the interfaces in his 
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teleseimic tomography and obtained the structure of lithosphere-asthenosphere boundary in 

East Africa. Kohler and Davis (1997) used a similar approach to determine two dimensional 

crustal thickness variations in California. There are other types of interface parameterization 

such as irregular parameterization, spectral parameterization which are beyond the scope of 

present study. A detailed description of such parameterizations can be found in Zelt and 

Smith (1992) and Wang and Houseman (1994). 

 

1.2.1.3 Quality Factor Parameterization 

Constant Quality Factor Blocks (CQFB) are the most common type of 

parameterization used in attenuation tomography. In this type of parameterization, the earth’s 

subsurface structure is divided into a set of rectangular blocks and within each block the 

value of quality factor is kept constant. Many authors including Joshi et al. (2010) have used 

this type of parameterization in their attenuation tomography. 

An alternative to the CQFB parameterization is to use of grid of nodes where quality 

factor is defined with suitable interpolation function. This is similar to velocity 

parameterization using grid of nodes. The other type of parameterization discussed in 

velocity parameterization can also be used in quality factor parameterization. However if the 

attenuation tomography is performed using the ray paths obtained in the traveltime 

tomography, then it is very essential to choose a parameterization which would give least 

amount of computational error in traveltime. This is because, the computation of attenuation 

is very sensitive to the traveltime error as described by Buske (1996). 

 

1.2.2 Traveltime Determination 

Determination of traveltime is the most crucial step in the traveltime inversion and 

this is done in the forward part of tomography. The equation governing the traveltime t  of 

seismic wave from source S to receiver R is given as: 

 
 
1

R

S

t dl
v

  x
 (1.3) 

Where, dl is the differential length of ray path, x  is the position vector and v  is the velocity. 

It is clear from Equation (1.3) that, for a given velocity distribution, ray path must be known 

before evaluating the integral for traveltime. The propagation of wavefronts in elastic media 

is described by the eikonal equation which is given as (Shearer, 2009):  

  T s  x  (1.4) 
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Where,T  is the traveltime of the propagating wavefront and s  is the local slowness. The 

Eikonal equation is subjected to the high frequency assumption; either, the wavelengths of 

seismic waves are considered to be much less than the length scale of velocity variations of 

the medium through which the waves pass. The equation for ray path is directly derived from 

eikonal equation and is given as (Aki and Richards, 1980):  

    
d d

s s
dl dl

 
  

 

x
x x  (1.5) 

This equation can be solved for ray path geometry for any given slowness field. The 

Equation (1.5) states that the ray path is time independent therefore it also describes the 

Fermat’s principle which says that among all ray paths true ray path is one which is 

stationary with respect to time.  

The traditional methods for computation of source-receiver traveltimes is ray tracing 

in which ray path is determined first then integration in Equation (1.3) is solved to obtain 

traveltime. An alternative way to obtain the traveltime is to solve the eikonal equation 

directly through the entire domain of computation which is achieved by using numerical 

schemes such as finite difference methods (Vidale, 1988, 1990; Qin et al., 1992). More 

recent methods in this context are Fast Marching Method (Sethian and Popovici, 1999) and 

its variants which use the property of entropy and viscosity in combination with numerical 

schemes to solve the eikonal equation directly. All such methods which aim to compute 

traveltime field in entire medium are termed as Wavefront Tracking. 

 

1.2.2.1 Ray Tracing 

Determination of a ray path between a source and receiver is a two point boundary 

value problem. To solve this problem there are two basic methods namely shooting and 

bending methods which are conventionally used. 

 

1.2.2.1.1 Shooting Method 

Under the shooting method of ray tracing, the Equation (1.5) is formulated as an 

initial value problem in which a known source coordinates and known initial ray direction is 

used to determine a complete ray path. The boundary value problem is solved by shooting 

rays from the source in the medium and adjusting the ray trajectories using the information 

from the computed paths, so that the rays more accurately target the receiver as shown in 

Figure 1.4. The ease with which the shooting method is solved depends on the model 

parameterization technique used. The velocity parameterization using constant velocity 
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blocks results in linear ray paths within every blocks. At the boundary of the blocks the ray 

trajectories are computed using Snell’s Law: 

 
sin sini r

i rv v

 
  (1.6) 

Where, i  and r  denote incident and refracted angles of the propagating ray relative to 

normal vector to the interface or cell boundary. iv and rv  are the velocities of adjacent blocks 

containing incident and refracted rays respectively. 

 

 

Figure 1.4: Principle of the shooting method. The initial take-off angle of ray 1 is iteratively 

adjusted until the final ray (4) passes sufficiently close to the receiver. 

 

Analytical ray tracing as described by Telford et al. (1976) is also possible using 

constant velocity gradient. However the analytical solution of the initial value problem is 

possible only with simple velocity functions. For velocity functions with arbitrary 

complexity the numerical solution is required. Zelt and Smith (1992) in their 2D wide angle 

tomography have solved the following pair of differential equations: 

 
cot

cot z xv vdz d

dx dx v





   (1.7) 

Or 

 
tan

tan z xv vdx d

dz dz v





   (1.8) 

Where,  is the incident angle relative to z axis and, xv and zv  are derivative of v  with 

respect to x  and z  respectively. Runge-Kutta method with error control is used to solve 

both system of equations. To solve the initial value problem in three dimensions, Sambridge 

and Kennet (1990) used the following equations: 
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Where, i  and j  denote respectively the incidence angle and azimuth of the ray trajectories. 

Establishing an initial value problem and obtaining its solution is the first step in 

determination of ray path. The next step is more difficult where two point boundary value 

problems are solved. In that context, Julian and Gubbins (1977) suggested two iterative 

methods. The one of these methods is the Newton’s method. The basic equation behind this 

method is given as: 
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 (1.10) 

Where, h , g  are computed horizontal coordinates of endpoint of ray, H ,G  are desired 

destination points of ray such as station point or receiver point and 0i , 0j are respectively the 

inclination and azimuth of the ray tangent at the source point. The n  value represents 

number of iteration. One obvious difficulty with this method is accurate computation of 

partial derivatives appeared in Equation (1.10). The second method involves fitting a plane to 

the points  ,h g  using three known ray paths. An improved estimate of 0i  and 0j  are those in 

which the computed plane contains the desired point  ,H G . This method is faster than 

Newton’s method at each iteration but it converges more slowly.  

Shooting a fan of rays from the source in a medium is an effective way for 

determination of nearby ray paths to all targets in two dimensional problems. Zelt and Smith 

(1992) used bisection method to confine the required phases that reflects back from a 

particular interface. The boundary value problem is then solved by shooting a fan of rays into 

each defined region and thereafter interpolating required rays between two closest rays that 

confine the receiver. A similar approach is used by Blundell (1993), Cassell (1982) and 

Langan et al. (1985) to determine 2D reflection arrivals. Shooting method in 2D has also 
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been applied by other authors including Farra and Madariaga (1988), White (1989), Lutter et 

al. (1990), Williamson (1990), McCaughey and Singh (1997). 

The use of Shooting method in 3D is not as common as 2D. The authors who have 

used this in their 3D local earthquake tomography are Benz and Smith (1984), Ankeny et al. 

(1986), Sambridge (1990). In 3D teleseismic tomography study Neel et al. (1993) and 

VanDecar et al. (1995) have used Shooting method of ray tracing. Shooting method can also 

be applied to layered media as describe by Rawlinson et al. (2001), where the analytical ray 

tracing is implemented and boundary value problem is solved by Newton’s method. The 

resultant ray paths are shown in Figure 1.4. 

 

1.2.2.1.2 Bending Method 

Bending method, as the name implies, is the method in which a ray path between 

source and receiver is bended or adjusted until it becomes a true ray path that satisfies 

Fermat’s principle (Figure 1.5). This was originally proposed by Julian and Gubbins (1977) 

for a continuous 3D velocity medium. Their method uses the first order differential equations 

for determination of ray path and associated traveltime. They described the ray path 

parametrically as  qx x with the parameter q l L , in which L  is the total length of ray 

path between source and receiver and l  is the length segment of ray path which is limited as

0 l L  .The Euler-Lagrange equations as given by Julian and Gubbins (1977) are: 
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 (1.11) 

Where, s  is slowness and expression for F  is: 

 2 2 2dl
F x y z

dq
     (1.12) 

In Equation (1.12) the derivatives x , y  and z  are taken with respect to q . The boundary 

conditions are set such as  0 Sx x  and  1 Rx x  where Sx and Rx  are the coordinates of 

source and receiver point. The equation set (1.11) is non-linear and cannot be solved directly. 

However, if it is assumed that  0x q  passes through source and receiver then an improved 

estimate is given by: 

      1 0 0

pq q q x x x  (1.13) 
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Where,
0

px  denotes perturbation to the initial ray path. If Equation (1.13) is substituted in the 

Equation set (1.11) then resulting equation can be linearised in terms of 
0

px  and can be 

solved which gives 1
x  from Equation (1.13) as described by Julian and Gubbins (1977). This 

process is repeated until the solutions converge. Once the ray path is determined the 

following equation is used to compute traveltime (Julian and Gubbins, 1977): 

 
R

S

q

q

sFdq    (1.14) 

 

 

 

Figure 1.5: Principle of the bending method. The initial ray path (ray 1) is adjusted until it 

satisfies Fermat’s principle (ray 4). 

 

Pereyra et al. (1980) extended the concept of the method given by Julian and Gubbins 

(1977) to include interfaces in media. For a medium with different velocity variations 

separated by interfaces, the bending method is solved by using separate system of differential 

equations in each region. Thereafter, the condition of discontinuity at each interface that is 

traversed by computed ray can be imposed to couple the separate systems. The disadvantage 

with this method is that the order of the interfaces traversed by ray path is required to be 

known in advance. 

A method similar to bending method is pseudo-bending method developed by Um 

and Thurber (1987) for solving two point boundary value problems in 3D continuous media. 

Their method uses a perturbation scheme in which the step size of integration is 

progressively halved. This can be explained using Figure 1.6. In the beginning, the initial 

path is linearly interpolated using three points including source, receiver and expected one 

point in the medium. To properly relocate this expected point, it is iteratively perturbed using 

geometric interpretation of equation of ray path to obtain a point at which the ray equation is 

approximately satisfied and the traveltime extremum converges within a specified limit. 

Once the relocation of expected point is done, the path segments are doubled and the three-
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point perturbation technique is repeated from both the endpoints to the middle or relocated 

point. The total number of three-point perturbation steps is now becomes three. Segments are 

again divided to make them double in number and the procedure is repeated until the step 

change in traveltime between two successive iteration satisfies a suitable convergence 

criterion. Pseudo-bending method is much faster than earlier methods as described by Um 

and Thurber (1987). 

 

 

 

Figure 1.6: Principle of the pseudo-bending method of Um and Thurber (1987). An initial 

guess ray path defined by three points is provided. The center point is perturbed to best 

satisfy the ray equation. Then the number of segments is doubled and the process is repeated.  

 

Bending methods of ray tracing have been implemented by many authors including 

Thomson and Gubbins (1982), Zhao et al. (1994, 1996) and Steck et al. (1998) in their 

teleseimic data. Chiu et al. (1986) used bending method in their inversion of 3D reflection 

data while Zhao et al. (1992) used pseudo bending method in their tomography to obtain 2D 

crustal structure. Many authors including Eberhart-Phillips (1990), Zhao et al. (1992), Scott 

et al. (1994), Eberhart-Phillips and Reyners (1997) and Graeber and Asch (1999) have used 

the bending methods in their works in tomography. Julian and Gubbins have suggested that, 

in media with continuous velocity variations, the bending method is faster than the shooting 

method by a factor of 10 or more. However, when discontinuities are present this method 

become very complex. Therefore, shooting method is preferred in media with complex 

velocity variation and bending method in comparatively less complex media (Červený, 

1987). 

Ray tracing methods are simple and provide high degree of accuracy in ray path 

computation. However, there are some disadvantages. In velocity models defined CVV 

parameterization, the ray tracing often fail to converge the final ray point to its destination. 

This happen frequently in complex velocity media and sometime even in simple 
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heterogeneous media. Failure of convergence of final ray path to its destination occurs 

because each contrasting block in CVV has its own critical angle with respect to normal to 

the block wall. When a ray strike on the wall at an angle greater than the critical angle 

provided by the wall, then it gets reflected and deviated from its actual path predicted. 

First arrival phases are widely used in tomography methods because these are easy to 

identify in seismograms with high degree of confident comparative to others arrivals. First 

arrivals ray paths are also used for determination of earthquake hypocenters and precise 1D 

velocity models. One of the major disadvantages of ray tracing is that it does not give 

guarantee to the first arrivals.  

 

1.2.2.2 Wavefront Tracking 

Computation of ray paths and then solving integration for traveltimes lead to several 

problems as described in §1.2.2.1.2. An alternative way is to determine traveltimes to all 

defined points in a medium by solving the eikonal equation directly. This is called wavefront 

tracking and most commonly done using finite difference schemes described below.  

 

1.2.2.2.1 Finite Difference Schemes 

Vidale (1988) proposed a 2D finite difference scheme that computes traveltimes to all 

grid points in a 2D grid, from the source along an expanding square. The eikonal equation 

(Equation 1.4) in 2D can be written as: 

  
22

2 ,
T T

s x y
x y

   
   

    
 (1.15) 

Where,  ,s x y  is the slowness and  ,T x y  is the traveltime of any phase of a propagating 

wave. Formulation of Vidale’s method is based on square grid of velocity nodes. Consider 

grid points as shown in Figure 1.7(a) in which source grid point A  is surrounded 8 

neighboring grid points. Considering traveltime to point A  is 0T  the traveltime to the points 

 ; 1,4iB i   are given by: 

  0
2i iB B A

h
T T s s    (1.16) 

Where, h  is the grid spacing and As and
iBs  are the slowness at the nodes A  and iB  

respectively. To compute traveltime to corner points; for example 1C , consider the finite 

difference schemes as: 
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 (1.17) 

This set of derivatives, when substituted in Equation (1.15), gives: 

    
1 1 2 1 2 1

2 2

2C A AB B C B BT T hs T T     (1.18) 

Where,
1 2 1AB B Cs  is the average velocity of all four points A  , 1B  , 2B  and 1C  which are under 

consideration for the evaluation of traveltime to point 1C . This procedure can be used to 

calculate traveltimes to all iC . The next computation is done on an expanded square as 

shown in Figure 1.7(b). The computation of traveltime on this new square is not arbitrary 

rather a scheme as given by Vidale (1988) is required to make the traveltimes in order, which 

will only be the valid seismic traveltimes. 

 

                          

                          (a)                                                                                        (b) 

Figure 1.7: The procedure of finite difference method (a) and expanding square method (b) 

to obtain traveltime field as introduced by Vidale (1988). Traveltimes to the filled circles are 

calculated from the open circles. The filled square is the source. 

 

Vidale’s method does not track any wavefronts truly, rather it represents a precursor 

to the class of scheme that do so. Vidale (1988) also proposed a scheme that gives locally 

circular wavefronts which are useful for the evaluation of strongly curved wavefronts. Vidale 

(1990) extended his methodology from 2D to 3D. 

The wavefront tracking methods do not explicitly find source receiver ray path 

directly. However, the ray paths from a receiver to source can be tracked by following the 

negative direction given by gradient of traveltime field. Unlike ray tracing method, the 

wavefront tracking methods do not show convergence problems as these methods do not 
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compute ray paths directly. The problem of obtaining first arrivals are solved to some extent 

by this method, however the same may be failed in a zone of large velocity contrasts as 

described in Figure 1.8. Path 1 in Figure 1.8 corresponds to one determined by expanding 

square method whereas path 2 is the least traveltime path by virtue of the high velocity zone. 

This happens because the way expanding square method progressively computes traveltimes 

field does not simulate actual geometry of a propagating wavefront. A number of authors 

including van Trier and Symes (1991), Podvin and Lecomte (1991) and Qin et al. (1992) 

have used the basic idea of Vidale (1988) to develop their own schemes. However the 

problems for determination of first arrivals with certainty survived.  

 

 

Figure 1.8: Schematic illustration showing how the expanding square method can fail to find 

first arrival ray path (after Rawlinson and Sambridge, 2003). The traveltime along path 1 is 

determined by the expanding square but path 2 has a shorter traveltime due to the high 

velocity zone. 

 

1.2.2.2.2 Fast Marching Method  

One of the major problems with eikonal grid based methods (Vidale, 1988, 1990; Qin 

et al., 1992) arises when the true wavefront is not differentiable. In other words, first arrival 

wavefront contains kinks or discontinuities in gradient. This is particularly the case in 

complex velocity media in which multi-pathing (wavefront crossing itself) is common 

phenomena. This problem can be addressed by searching weak solution to proceed through 

these discontinuities. A weak solution to a differential equation is entropy-satisfying 

viscosity solutions that is not differentiable everywhere but the same satisfies the integral 

equation formed from the differential equation. One of the major advantages of this is that 

more general solution is permitted as the demand of differentiability of the original equation 

vanishes. These types of solutions have been analysed by Sethian (1982, 1987) in his initial 

work which lead to the birth of level set method (Osher and Sethian, 1988)) and finally to 
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Fast Marching Method (Sethian, 1996; Sethian and Popovici, 1999). The basic equation of 

this method in 3D grid can be written in its simplest form as: 
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 (1.19) 

Where, D  denotes differential operator notation which are given as: 

 
   x

T x x T x
D T

x






 

  (1.20) 
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T x T x x
D T

x






 

  (1.21) 

The parameter ijks  is the local slowness at the grid point (i, j, k). Equation (1.19) is non-

linear and quadratic. Out of two solutions, the larger is always correct value. The exact 

procedure to obtain solution is described in detail in Chapter 3. 

The Fast Marching Method is the first unconditionally stable scheme to solve eikonal 

equation. This is highly efficient and accurate technique that deals with the problem of 

evolution of interfaces in heterogeneous media. The algorithm based on this method 

accurately and robustly deals with the heterogeneity of a medium with the formation of cusp, 

corner and topological changes in the propagating interfaces. The condition of entropy 

controls the solutions to give first arrivals and the condition of viscosity makes the algorithm 

stable in a medium with steep velocity gradients. Further the application of narrow band 

makes the algorithms very fast in computation. 

The error in FMM is of two types: one is pure numerical error and another is mapping 

error and both those error originate due to finite size of grid spacing. Mapping error is related 

to the fact that how well the grid nodes map the strong curvature in the neighbourhood of 

source. 

 

1.2.2.3 Review on Improved Fast Marching Methods 

Many authors in the recent past have documented various methods to improve the 

basic fast marching method. Some of these are discussed below. 

 

1.2.2.3.1 The Shifted Grid Fast Marching Method 

The SGFM technique introduced by Danielsson and Lin (2003) improved the 

accuracy of the FMM to a limited degree. The central idea of the technique is to define the 
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objective function at half-grid positions; therefore, the objective is dependent on marching 

direction. The strategy for updating or computing arrival time in the neighborhood of a 

known grid point under the scheme is inferred from optimal control theory in a fashion 

similar to Tsitsiklis (1995). Therefore, the solution is restricted to take advantage of higher 

order finite difference schemes. In SGFM method, two solution models based on whether the 

method uses 4-connected neighbor or 8-connected neighbors are proposed in 2D scheme. 

The scheme with 4-connected neighbor has no advantages over FMM, whereas the scheme 

with 8-connected neighbors is better than FMM (Hassouna and Farag, 2007). In both the 

schemes the idea is same. The scheme with 4-connected neighbor divides the 2D space 

around the unknown grid point into quadrants and obtains a maximum of four solutions from 

the available known points whereas the scheme with 8-connected neighbor divides the 2D 

space around the unknown grid point into octants and obtains a maximum of eight solutions 

from the available known points. Out of all the solutions the minimum solution is assigned to 

the unknown point. The advantage of SGFM method is limited to 2D only as in 3D no 

improvements over FMM has been reported. 

 

1.2.2.3.2 The Group Marching Method (GMM) 

The GMM is a modified FMM where a group of points simultaneously advances 

unlike a single point from the narrow band as in FMM. The new procedure reduces the 

computational complexity from  logO n n  to  logO n , where n is the total number of grid 

nodes, while maintaining the same accuracy. The scheme works as follows: a group of 

points, G is selected from the narrow band and traveltime is recomputed to the neighboring 

points to the G and then registered the updated traveltime in the narrow band and finally G is 

tagged as known point. 

 

1.2.2.3.3 The FMM on Spherical Domain 

FMM on Cartesian coordinate system gives minimum error along the axial direction 

and maximum error along the diagonal direction in constant velocity medium. This is 

because the gradient term in the Eikonal equation is precisely computed along the axial 

direction whereas the same is most inaccurately computed along the diagonal direction, 

particularly in the source neighborhood due to high wavefront curvature. Alkhalifah and 

Fomel (2001) remove the biasness of directivity in the computational domain by introducing 

the spherical grid centered on source point. The new method completely reduces the error to 

zero in constant velocity media but in complex velocity models as the errors are aligned 
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randomly in the Cartesian domain so the use of spherical domain does not offer any 

advantages to Cartesian.  

 

1.2.2.3.4 The FMM Based on Source Neighborhood Refinement 

Kim and cook (1999) admit the grid refinement strategy in their methodology. In 

their technique the grid spacing increases progressively away from the source. This 

technique allows the better mapping of high wavefront curvature in the source neighborhood. 

Rawlinson and Sambridge (2004) proposed a parallel technique where they have used a 

single level of grid refinement in the neighborhood of source instead of variable grid. Both 

the methods reduce the errors except at the cost of CPU time which is huge in 3D 

computational space. 

 

1.2.2.3.5 The Untidy Fast Marching Method (UFMM) 

Yatziv et al. (2006) proposed this method to reduce the run-time of FMM from 

 nO n  to  O n by introducing a dynamic circular array in the narrow band. The dynamic 

circular array maintains a special data structure called untidy priority queue whose 

maintenance cost is  1O . In this method each computed traveltime is quantized and the 

same quantization is used to place the grid point in the priority queue, whereas actual 

traveltime is used to solve the eikonal equation for a selected grid point. Therefore, the errors 

in this method originate due to wrong selection order. Authors have shown that the 

magnitude of error due to wrong selection is of same order as that of FMM. 

 

1.2.3 Determination of Spectral Acceleration 

The forward problem in attenuation tomography is to compute spectral acceleration 

for a given distribution of quality factor. This problem can be solved by incorporating the 

quality factor into the transport equation (Shearer, 2009) and solving the same as described 

in Shearer (2009). The transport equation contains second derivative of traveltime and its 

evaluation lead to high degree of numerical error as described by Buske (1996). Therefore 

solution of forward problem using transport equation is almost impractical to use in real 

earth. 

An alternative method to solve the forward problem is to use an observed empirical 

relationship between spectral acceleration and quality factor. Some of the useful relationships 

are those given by Boore (1983), Boore and Atkinson (1987), Beresnev and Atkinson (1997), 
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and Chopra et al. (2011, 2013b). A modified version of these relationships which can be used 

in block type of model parameterization is given by Hashida and Shimazaki (1984) as: 

     1

, ,

exp ijk ijk

i j k

A f S f Gg f T Q 
 

  
 

  (1.22) 

In Equation (1.22),  A f  and  S f  represent observed spectral value and source spectral 

value at frequency f .G is the geometrical factor which is assumed to be inverse of 

hypocentral distance between source and observation point. g is a factor accounting for 

amplifying effects at the surface at observation point. The parameter ijkQ  and ijkT  denote 

quality factor and time spent in i
th

, j
th

 and k
th

 block in CVV type of parameterization. 

The basic form of the attenuation as a function of distance is (modified after Shearer, 

2009): 

    0 exp
fx

A x A
cQ


  (1.23) 

 

Where, 0A and  A x are the amplitudes of seismic waves at the position of source and at x  

distance away from source. The parameter c  represents velocity of seismic waves. The form 

of relationship given in Equation (1.22) can be derived from Equation (1.23). Consider a 

block 1, in which a seismic ray enters and assume the quality factor to be 1Q . Since velocity 

does not alter within a CVV, therefore quantity / cx  can be replaced with total traveltime 

spent 1T by seismic ray in that block. Since, quality factor does not vary in a block, so the 

only variable is frequency f . Hence, elementary attenuation 1A within a block can be written 

as:  

    1

1 0 1 1expA f A fTQ    (1.24) 

Where, 0A  is the initial amplitude of seismic wave. Consider a second block 2, adjacent to 

the first one where the ray enters after emerging from first block. For the block 2 the 

attenuated amplitude from the block 1 will be the initial amplitude, then applying the 

Equation (1.24), the total attenuation in amplitude of a wave in the two blocks can be written 

as: 

  
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2 0

1

exp i i

i

A f A f TQ 



 
  

 
  (1.25) 

Applying the above procedure total attenuation through all the blocks through which the ray 

passes can be written as: 
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Equation (1.26) can be extended to three dimensions as follows: 

   1

0 exp ijk ijk
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A f A f T Q 
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Where, all the parameters in parenthesis in Equation (1.27) are same as those in the 

parenthesis of Equation (1.22). Equation (1.27) is derived assuming only inelastic 

attenuation. To account for loss of amplitude due to spherical divergence along the path, the 

hypocentral distance between source and observation point is generally used in accordance 

with the analytical formula (Shearer, 2009) of amplitude in spherical domain. Further, to 

account for surface amplification effects, an empirical factor is added to the formula. When 

these are considered Equation (1.27) readily takes the form of Equation (1.22). It is to be 

noted that, all the relationships between quality factor and spectral acceleration require the 

knowledge of ray paths. Therefore ray paths for a given source-receiver array is required be 

computed in advance. 

 

1.2.4 The Inverse Step of Tomography 

The inverse step of tomography automatically adjusts the model parameter values to 

minimize the difference between observed data od and computed data  g m , under some 

regularization norms. In most of the cases in seismic tomography the functional g  is 

nonlinear and a suitable non-linear scheme accounts for this nonlinearity. There exist many 

methods of inversion; however we are restricted our study to gradient method and damped 

least square method only.  

 

1.2.4.1 Objective Function of an Inverse Problem 

The inverse problem is formulated by defining an objective function that consists of 

data residual term and few regularization terms. The misfit between observed data and 

predicted data is the essential component of an objective function. If the error in relationship 

 o trued g m  is of Gaussian type, then least square or 2L  measure is used to quantify the 

misfit as (Rawlinson and Sambridge, 2003): 

    
2

o m g m d  (1.28) 

To give more weight to the accurate data against the data with high uncertainty, the 

Equation (1.28) is written statistically as (Rawlinson and Sambridge, 2003): 
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        1T

o d o

  m g m d C g m d  (1.29) 

Where, dC  is a data covariance matrix consisting of weights of data. If errors are uncorrelated 

the  
2

j

d ij d  
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C  where
j

d  is uncertainty of j
th

 data. One of the major problems with this 

definition of data misfit is that the 2L  measure is sensitive to outliers. This means that the 

component of data having spurious values will have a significant effect on the size of   

since each residual is squared in 2L  norm. Therefore, sometime solution produced by this 

norm is less reliable compared to 1L  norm (Claerbout and Muir, 1973; Menke, 1989). 

Despite this weakness, most inversion schemes adopt 2L  norm under Gaussian statistics. 

In most of the geophysical problems, the inverse problem are either under-determined 

or mixed-determined. These constraints are not addressed into the model parameters by data 

alone. Therefore a regularization term  m  is included in the objective function to reduce 

the non-uniqueness of the problems. The function  m  is generally defined as (Rawlinson 

and Sambridge, 2003): 

      1T

o m o

  m m m C m m  (1.30) 

Where, mC  is an a priori model covariance matrix (Tarantola, 2005). If the model parameters 

are uncorrelated then  
2

j

m ij m  
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C where 
j

m  is uncertainty associated with j
th

 model 

parameters. The values considered in mC  are usually taken from prior information. The 

effect of the model covariance matrix is to encourage the solution models that are more 

nearer to the initial reference model om .  

One more regularization term often considered in inversion problem is one that 

attempts to find an acceptable trade-off between predicted data satisfying the observed data 

and computed model with minimum structural variations (Constable et al., 1987). This 

regularization term is introduced in the objective function by defining the same as 

(Sambridge, 1990): 

   T Tm m D Dm  (1.31) 

Where, Dm  is matrix of finite difference estimate of a specified special derivative 

(Sambridge, 1990). Combining  m ,  m  and  m  the objective function is written 

as (Rawlinson and Sambridge, 2003): 
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        
1

2
     S m m m m    (1.32) 

Where,  is referred to as the damping factor and   as the smoothing factor. The values of 

  and   govern the trade-off between how well the solution model estm  will satisfy the 

observed data od , how closely estm  is to om   and the degree of smoothness of estm . There 

are several means for selecting appropriate values of   and  . One approach is to inspect 

the trade-off curves between model perturbation (or roughness) for different values of   (

). For different non-zero values of   and   the combine contour plot of model perturbation 

versus model roughness could be used. This process requires considerable computational 

efforts. An alternative ways of doing this is to perform a synthetic reconstruction of synthetic 

model using the real source receiver geometry. The appropriate values of   and   would be 

those that provide most accurate reconstruction of synthetic model. Many authors (Oncescu 

et al., 1984; White, 1989; Steck et al., 1998; Rawlinson et al., 2001) uses semi-quantitative 

approach to choose the values of   and  . In a Bayesian formulation of inversion, the 

knowledge of a priori information is of paramount importance. To properly respect this 

approach the smoothing term is required to be ignored which is done by setting 0  . Under 

this setting, the covariance matrix would reflect the actual statistical properties of data. Since 

in this formulation, a priori model covariance matrix reflect the uncertainty associated with 

the a priori information. Minimizing the objective function results in an a posteriori model 

distribution in which associated uncertainty would be less than the prior uncertainty. This is 

the desired outcome and depends upon the quality of data that how good data are. The major 

difficulty with this method is that it is very difficult in practical scenario to obtain 

meaningful a priori information concerning the data and model errors. Nevertheless, the 

Bayesian formulation has been used by a number of authors including Aki et al. (1977), 

Lutter and Nowack (1990), Scales and Snieder (1997). 

Gradient based method use the derivative of objective function  S m  at a specific 

point in model space (Tarantola, 2005). One basic assumption that is shared by all gradient 

based method is that the objective function is sufficiently smooth such that it allows a local 

quadratic approximation about some current model as (Rawlinson and Sambridge, 2003): 

    
1 ˆˆ
2

T  S m + m S m m m H m     (1.33) 
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Where, m  is a perturbation to the current model and ˆ /  S m  and 
2 2ˆ /  H S m  are 

the gradient vector and the Hessian matrix respectively. These partial derivatives are given 

as: 
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0
ˆ T T
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Where, /  G g m  is the Frechet matrix of partial derivatives which are computed during 

the solution step of forward problem. The computation of Ĥ  is a time consuming process 

and is practically avoided particularly in the situation where   og m d  is small or if the 

functional g  is quasi linear in which term 
T

m G  can be neglected (Tarantola, 1987). Both 

the matrices do not lie in the model space, but in the dual of model space (Tarantola, 1987). 

Since g  in most of the cases is non-linear, the minimization of objective function (Equation 

1.33) requires an iterative approach: 

 1n n n  m m m  (1.36) 

Where, 0m  is the initial model. The objective function is minimized for the current estimated 

ray paths at each step to obtain 1nm  , after which new ray paths are calculated for the next 

iteration. The iteration procedure cease when either the observed data are satisfied by the 

predicted data or the change in  S m  with increasing iteration gets sufficiently small. 

 

1.2.4.2 Gauss-Newton Method and Damped Least Square Method 

The Gauss-Newton method aims to locate the updated model 1nm  by computing the 

minimum of the tangent paraboloid to  S m  at nm . At the minimum value of S  , gradient 

of it with respect to m  will vanish, therefore: 

      1 1

0 0T T

d o m         F m G C g m d C m m D Dm  (1.37) 

Where,   ˆF m   . For a new model 1nm , the functional  F m  can be expanded using 

Taylor series around an old model nm  as (Rawlinson and Sambridge, 2003): 
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In Equation (1.38), M  indicate number of model parameters and iF  is component of the 

matrix F . Equation (1.38) is written as (Rawlinson and Sambridge, 2003): 
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Where,  
n

 S / m  is the gradient vector and 
2 2

n
   S / m  is the Hessian matrix. 

Substitution of derivatives from Equation (1.34, 1.35) gives Gauss-Newton solution as 

(Rawlinson and Sambridge, 2003):  
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In quasi Newton method, the Hessian matrix is ignored as mentioned earlier, therefore quasi 

Newton form is (Rawlinson and Sambridge, 2003):  
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An alternative formulation is commonly obtained when the functional g  is linearizable as: 

    0 0o   d g m G m m  (1.42) 

Writing  0o  d d g m  and 0  m m m  , the Equation (1.42) becomes: 

  d G m  (1.43) 

One step solution is obtained by writing the objective function as (Rawlinson and Sambridge, 

2003): 
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The functional in this case is (Rawlinson and Sambridge, 2003): 

    1 1 0T T

d m          F m G C G m d C m D D m  (1.45) 

Direct solution from Equation (1.45) can be written as (Rawlinson and Sambridge, 2003): 
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If smoothing term  is neglected then Equation (1.46) becomes: 

 
1 1 1T T

d m d       m G C G C G C d  (1.47) 

The model solution in Equation (1.47) represents the maximum likelihood solution to the 

inverse problem or the stochastic inverse solution (Aki et al., 1977). When 0   , the 

expressions in Equations (1.41) and (1.47) are called as damped least square solution to the 

inverse problem. To obtain the model solution using Equation (1.38), it is essential to have 

an a priori knowledge of dC
 
and mC  . An alternative expression for linearizable inverse 
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problem was given by Levenberg (1944) which do not require knowledge of dC  and mC in 

advance. The solution is given as (modified after Joshi et al., 2010; Mohan and Rai, 1995): 

 
T T     m G G I G d  (1.48) 

Applying simple algebraic operation, it can be shown that both the Equations (1.47) and 

(1.48) are similar if data and model parameters are not correlated. The DLS method is the 

solution technique which is most commonly used in seismic tomography. Many authors have 

used this technique. Some of those are Aki et al. (1977), Thurber (1983), Zhao et al. (1994), 

Steck et al. (1998) and Joshi et al. (2010). 

 

1.2.5 Analysis of Solution Quality 

The whole process of tomography is incomplete unless some estimate of solution 

quality or robustness is made. It is inadequate to obtain the solution by simply minimizing 

objective function without any knowledge of resolution. In most of the cases in seismic 

tomography, generally two approaches are used to estimate solution robustness. First 

approach uses local linearity to obtain resolution and model covariance. Second approach 

uses tests of resolution of artificial synthetic models with realistic source receiver geometry. 

 

1.2.5.1 Resolution and Covariance matrices 

To derive the resolution and covariance matrices generally the smoothing parameter

  is set to zero. This is because it is more common and straightforward to consider 

resolution and covariance matrices in Bayesian formulation where error statistics associated 

with the data and a priori model information are assumed to be well known. The true 

statistical knowledge of error then combines to produce a more accurate posterior model 

distribution. Under such circumstance   is also set to zero to respect true a priori model 

covariance. In Bayesian formulation the resolution matrix R and a posteriori covariance 

matrix MC  are given as (Tarantola, 1987): 
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The relationship between R  and MC  is given by (Tarantola, 1987): 

 
1

M m

 R I C C  (1.51) 

If parameter   is kept to be variable, then the above relationships for R  and MC  becomes 

(Rawlinson and Sambridge, 2003): 
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In Levenberg (1944) formulation these relationship becomes: 
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Where,
2

ii ( 1,2,3..i  ) indicate the diagonal elements of model covariance matrix. The 

diagonal elements represent the standard deviation of the model parameters. If the resolution 

matrix R  is close to the identity, the posterior covariance matrix is close to zero then the 

solution model is more close to the real earth (Tarantola, 1987). The resolution and 

covariance matrices have been used by numerous authors to qualify their solution. Some of 

those authors are Aki et al. (1977), Steck et al. (1998), Hole (1992), Zelt and Smith (1992), 

Graeber and Asch (1999), Zhang and Toksӧz (1998) and Joshi et al. (2010). 

 

1.2.5.2 Synthetic Tests 

Parameterization with continuous field of model parameter such as velocity field 

often requires reconstruction of a synthetic model using the realistic source receiver 

geometry. The principle idea behind this approach is that if solution model recovers some 

known structure with similar length scales using similar ray paths, then the solution model is 

considered to be reliable. To perform this, the synthetic model is divided into alternating 

regions of high and low model parameters with length scale equal to or greater than the 

smallest wavelength structure recoverable in the solution model. This technique is commonly 

called as checkerboard test. The initial model used for the checkerboard test is same as that 

used for the real inversion. Regions in which the checkerboard pattern is recovered well are 

those regions in which structures within the solution model is considered to be well resolved. 

Lévêque et al. (1993) suggests that this approach is not necessarily as reliable as it appears. It 

is possible in the checkerboard test that some small structures are well resolved while large 

structures are poorly resolved. This is because a checkerboard reconstruction can account for 

the non-linearity of the data dependence on the checkerboard structure but the same cannot 

account for the non-linearity of the data dependence on the true structure. Therefore, it 

appears to be much better to use the ray paths produced by the inversion of the real data 

instead of performing iterative inversion of checkerboard structure. Seismic tomography 

studies that have used checkerboard resolution tests include Seber et al. (1996), Graeber and 

Asch (1999), Zelt et al. (1999, 2001), Day et al. (2001) and Mukhopadhyay et al. (2008). 
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1.3 A BRIEF REVIEW OF TOMOGRAPHY METHODS IN PRACTICES 

The tomography method depends upon the class of data such as reflection, wide 

angle, teleseismic and local earthquake. Normal incident reflection data contain reflected 

phases so interfaces are required to include in the parameterization whereas teleseismic data 

do not contain useful reflected phases so model parameter representation is required to be 

continuous. Therefore different types of data types resolve different aspects of the earth 

structures. The seismic reflection tomography methods have been presented by various 

authors including Bishop et al. (1985), Chiu et al. (1986), Farra and Madariaga (1988), 

Williamson (1990) and Kosloff et al. (1996). Bishop et al. (1985) presented method for 

simultaneous determination of velocity and interfaces by defining the interfaces with cubic 

spline. The forward problem is solved by shooting method and the inverse problem is solved 

by Gauss-Newton method. Farra and Madariaga (1988) presented a method of reflection 

tomography in which layer parameterization is adopted where interfaces and lateral velocity 

variation within the layers are defined by cubic B-spline. Shooting method in forward 

problem and DLS method in inverse problem have been implemented in their method. 

Wide angle data contain both refracted as well as reflected phases. One of the first 

methods for wide angle tomography is given by Zelt and Smith (1992). In their method the 

model parameterization is done using irregular blocks. Refractions, reflections and head 

waves are traced through the model by numerical method to solve initial value problem 

formulated in terms of a pair of first order ordinary differential equations. DLS method has 

been used for inversion. The method of Zelt and Smith (1992) has been adopted by several 

authors including Kanasewich et al. (1994), Staples et al. (1997) and Navin et al. (1998). 

Teleseismic tomography has been used extensively to map the structure of the 

lithosphere and crust. The scale of study varies from 10s of km (Rawlinson and Houseman, 

1998; Steck et al., 1998) to 100s of km (Mohan and Rai, 1995; Dorbath and Paul, 1996). One 

of the first papers that describe a method of seismic tomography using teleseismic data was 

that of Aki et al. (1977). In their method lithosphere is represented by layers of constant 

velocity blocks. The wavefronts that incident on the surface of model are considered to be 

planer. The task of ray tracing is straightforward. The inversion step is solved using DLS 

method.  

Local earthquake tomography (LET) is a common tool to obtain structure in 

seismically active areas. Many studies have been carried out in different parts of the world 

including California (Aki and Lee, 1976; Thurber, 1983; Scott et al., 1994), Taiwan (Kao and 

Rau, 1999), Japan (Zhao et al., 1992), Mediterranean (Papazachos and Nolet, 1997; 



34 
 

Haslinger et al., 1999), India (Singh et al., 2011). Compared to other types of tomography 

one of the distinguishing features of LET is that the earthquake hypocenters (origin time and 

spatial location) need to be located as a part of image reconstruction. 

One of the original studies was documented by Aki and Lee (1976). In their study, 

3D crustal structure is parameterized by constant slowness blocks. The initial model was 

homogeneous and considered DLS inversion was linear, therefore rays consist of straight line 

paths connecting sources and receivers. The method was implemented to the data collected 

from a network of 60 stations in Bear Valley, California, from 32 local earthquakes. The 

robustness of the solution model was analysed using resolution and covariance matrices. The 

final obtained solution model contains a feature of narrow low velocity zone oriented along 

the San Andreas Fault zone.  

The concept of Aki and Lee (1976) has been refined by many authors including 

Thurber (1983) and Eberhart-Phillips (1990). Thurber (1983) used velocity nodes of uniform 

grid and implemented linear interpolation to obtain continuous velocity field. Thereafter, he 

used approximate 3D ray tracing in his method. Eberhart-Phillips (1990) presented a pseudo 

bending scheme to more accurately locate the ray paths obtained from method of Thurber 

(1983). These kinds of refinements are common in most of the implementations of LET 

including the computer package SIMULPS12 (Evans et al., 1994) in recent times. 

 

1.4 REGIONAL GEOLOGICAL SETUP 

Surrounding to the north by Tibetan Plateau, to the south by Indo-Gangetic Plain, to 

the east by the Indian state of Assam, Arunachal Pradesh and to the west by the Karakoram, 

Hindu Kush ranges, the earth is occupied by its greatest and most spectacular mountain 

ranges, the Himalayas. These mountain ranges themselves stretch to form a 250 km wide and 

2500 km long arc like shape from west to east between Nanga Parbat and Namcha Barwa 

which mark, respectively the western anchor and eastern anchor of Himalayas. The 

Himalayan arc is home of many of the highest peaks on Earth, including the highest, Mount 

Everest.  

The immense mountain ranges, the Himalayas came into existence around 50 million 

years ago when the Indian plate, driven by plate-tectonic forces, collided with Eurasian plate. 

The two large landmasses being of equal density cannot under-thrust one completely below 

other and hence the huge tectonic forces force the upper layers of crustal parts of two 

landmasses in and around the collision zone skyward and thus formed the visible parts of the 

Himalayas. To the internal structure, it has been found out by several geophysical 

investigations that the Indian lithosphere is actually under-thrusting Eurasian lithosphere 
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along a gently northward dipping plane which is called as detachment plane. Many sub 

branches of this plane were also found. 

The motion of one plate against other, just after the collision, does not come into rest 

as the studies say that the Indian plate is still moving northward. The relative movement of 

the two plates results into continuous development of stress in the collision zone which 

further results into frequent slips and faults in the form of earthquakes, mostly along the 

detachment plane and its sub branches. The high seismic activity has been reported along the 

strike of this plane (Monsalve et al., 2006). 

The relative motion between the convergent plates produced a series of thrusts. 

Among these the major thrusts divide the Himalayan arc into four lithotectonic subdivision. 

These units from north to south are Tethyan Himalayan Sequence, Higher (Greater) 

Himalayan Sequence, Lesser (Lower) Himalayan Sequence, Siwalik Himalayan Sequence. 

Gently dipping major thrusts near the collision zone further divided the uplifting crust into 

two divisions which are: Indus Suture Zone and Trans-Himalayan batholiths. These two units 

lie to the north of Tethyan Himalayan sequence. The extent and composition of these units 

are not same in all parts of the Himalayan region. The geology and tectonic settings of the 

Himalayan belt is shown in Figure 1.9(a) and the area of interest (study) is magnified and 

shown in Figure 1.9(b). A brief geological description of different tectonic units as shown in 

Figure 1.9 is given below: 

Trans-Himalayan Batholith: It is a complex plutonic unit partly covered by rocks of 

forearc and continental molasse. The complex is derived from upliftment of magmatic rocks 

followed by subsequent erosion. The major igneous rocks are gabbros, diorites, and granites. 

The formation of this complex is thought to have occurred in several phases of cooling of 

magmas resulted from partial melting of a subducting Neo-Tethyan slab beneath the Asian 

plate (Sorkhabi, 1999). The tectonic environment is not same along east west direction. The 

western igneous rocks in the Kohistan-Ladakh region represent an island arc environement 

whereas eastern igneous rocks represent an Andean-type environment as described by 

Windley (1995). 

Indus-Tsangpo Suture Zone (ITSZ): It is the zone along which the Tethys Ocean 

was consumed by subduction processes. This zone includes areas of collision between the 

Indian plate and the Tibetan Lhasa block in the eastern Himalaya and the Kohistan-Ladakh 

arc in the western Himalayas as described by Windley (1995). This zone can be traced for 

more than 2000 km (Searle, 1991) and host various types of rocks from which a bit of 

formation history can be traced. The presence of complete successions of ophiolites 

containing diamonds suggests high pressure and rapid extrusion during subduction along this 
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zone. In the Ladakh region of Himalaya, the Spongtang Ophiolite consists of crustal rocks of 

oceanic floor and rocks of upper mantle. These rocks were obducted onto the northern 

passive continental margin of India during the Late Cretaceous (Pedersen et al., 2001).  In the 

northwestern India, Olistoliths consist of sedimentary deposits of abyssal tubidite origin 

found in reefs and continental slopes. The major rocks include solified lavas of mafic to 

felsic types as well as dunites, cherts, serpentinites. Red sandstones and limestones are 

associated with Tethys Ocean sediments and can be seen in Ladakh region (Windley, 1995). 

Tethyan Himalayan Sequence (THS): Located to the south of ITSZ, it consists of 

10-17 km thick marine sediments which were deposited before the collision on the shelf and 

slope of the Indian continent. These sediments are largely unmetamorphosed and occur in 

synclinorium-type basins. These also formed the house of excellent preservation of fossils 

due to unmetamorphosed nature. The age fossiliferous rocks rang from Late Precambrian to 

Cretaceous and some even Eocene age (Sinha, 1989). The sedimentary rocks are also inter-

bedded with volcanic rocks of Paleozoic to Mesozoic origin (Brookfield, 1993; Steck et al., 

1993; Critelli and Garzanti, 1994). Miller et al. (2001) used Rb-Sr dating method to obtain 

the age of mylonitic orthogenesis unit in the Kullu-Larji-Rampur Window and found to be 

~1840 Ma. This Window is the part of Tethyan Himalayan Sequence (THS). 

Greater Himalayan Crystalline (GHC) Complex: The higher or greater Himalayan 

crystalline complex lies on the lesser Himalayan sequence as a thrust sheet. It is also known 

as Central Crystalline Zone. It generally consists of high grade deformed metamorphic rocks 

of Paleoproterozoic to Ordovician age (1800-480 Ma). It forms a continuous belt to the south 

of THS and marks the existence of orogenic belt. The thrusting of HHC started around 20-23 

Ma with the development of Main Central Thrust that brings the higher Himalaya on the top 

of lower Himalaya (Hubbard and Harrison, 1989). HHC also occur as isolated patches in the 

Zanskar and Tso-Morari strata of NW Himalaya where it is surrounded by THS (Honegger et 

al., 1982; Steck et al., 1998; DiPietro and Pogue, 2004). 

Lesser Himalaya Sequence (LHS): This consists of sediments and low grade 

metasediments together with volcanic and granitic components. These may be shale, 

sandstone, conglomerate, slate, phyllite, schist, quartzite, limestone and dolomite. The age of 

these rocks ranges from Precambrian –Lower Paleozoic and Tertiary. Lithologically, the 

metasedimentary, metavolcanic and augen gneiss rocks are in the age group of 1870-1850 

Ma (Yin, 2006) and these rocks are primarily from Indian origin. Low grade 

metasedimentary rocks are non-fossiliferous (Gansser, 1964; LeForte, 1975) and are overlain 

by Precambrian to cretaceous sequence. The geology is complicated due to folding, faulting 

and thrusting. Tectonically, the entire Lesser Himalayas consists of two sequences of rocks: 
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allochthonous and autochthonous-paraautochthonous units with various nappes, klippes and 

tectonic windows. The para-autochthonous crystalline rocks are made up of low- to medium 

grade rocks. These lower Proterozoic clastic rocks (Parrish and Hodges, 1996) are 

subdivided into two groups. Argillo-arenaceous rocks dominate the lower half of the 

succession, whereas the upper half consists of both carbonate and siliciclastic rocks (Hagen, 

1969; Le Forte, 1975; Stöcklin, 1980). 

 

 

 

Figure 1.9: Figure showing the geology and tectonic settings of Himalayan belt (a) and of a 

magnified portion of the study area (b), modified after Valdiya (1980). 
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Valdiya (1978) is of the opinion that the metasedimentary sequence of the southern 

limb of the Almora synform is constituted of two thrust sheets, the upper one is called the 

Almora Nappe and the lower the Ramgarh Nappe (Pandey, 1950) overlying the Outer 

Sedimentary Belt.  The Ramgarh Nappe is composed of mildly metamorphosed flyschoid 

rocks.  The delimiting Ramgarh Thrust is not discernible in the northern flank, being 

overlapped by the rocks of the Almora Nappe with which the Ramgarh Nappe forms an 

imbricating pair.  However, Raina and Dungrakoti (1975) deny the existence of the Raingarh 

Thrust. 

Outer Himalayan Sequence: The outer or Siwalik Himalaya include the low altitude 

Siwalik Hills with flat-floored structural valleys. These valleys consist of 9500 m thick pile 

of Cenozoic sedimentary rocks characterized by folds and faults (Thakur, 1992). The basin 

comprised of eroded and denudated thick deposition of terrigeneous sequence of Miocene 

age, which were produced by the upliftment, subsequent erosion of the Himalaya and 

deposition by rivers. Rock types are Siwalik Molasse conglomerates that extend southward 

to Gangatic basin. These rocks belong to Neogene Siwalik and Paleogene-early Miocene 

strata (Yin, 2006). The sedimentary basin has a good aspect of petroleum. Compared to 

Lesser Himalaya, the Outer Himalaya is wider in the western Himalaya. 

The present study region covers in and around the Pithoragarh district which falls in 

the Lesser Himalaya zone. This region exposes extensive sedimentary belt which include the 

outer Krol Belt and inner Tejam-Pithoragarh Belt and few crystalline thrust sheets. In 

Pithoragarh, thick pile of argillo-calcareous and arenaceous sediments which constitutes the 

Garhwal Supergroup is exposed. This Supergroup is divisible into three groups namely: 

lower argilo-calcareous Tejam Group, middle predominantly arenaceous Berinag Group and 

the upper metamorphites of Didihat Group. 

 

1.5 REGIONAL TECTONIC SETTINGS AND SEISMICITY OF STUDY REGION 

The cross section of the Himalayan belt is divided into the South Tibetan Detachment 

(STD) and three principal thrusts, namely, the Main Central Thrust (MCT), the Main 

Boundary Thrust (MBT) and the Himalayan Frontal Thrust (HFT) (Thakur, 2004). A typical 

cross section of the Himalaya through Kumaon region is shown in Figure 1.10. The STD and 

principle thrusts are discussed below: 

The South Tibetan Detachment (STD): This is defined by large scale, low angle, 

ductile shear zone-normal fault that bounds the top of GHC metamorphic sequence along the 

Higher Himalaya (Searle and Godin, 2003). This Detachment is also known as North 

Himalayan Normal Fault (Herren, 1987; Buchfiel et al., 1992). The system of STD separates 
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THS from GHS. In the region of Kumaon and Garhwal, this is also known as Dar-Martoli 

fault (MF). 

The Main Central Thrust (MCT): it is the one of the major tectonic boundaries 

which divides two contrasting structures of GHC to the north and LHS to the south. The 

relative motion of the blocks across MCT has caused the development of buckles in which 

palaeogene and Neogene sediments were deposited. In the Kumaon and Garhwal Himalaya 

some researches also describe the MCT as Munsiari thrust which can be traced up to Kullu-

Larji-Rampur window (Heim and Gansser, 1939), beyond which MCT is mission and 

replaced by Panjal Thrust (PT). The PT is described by many publications as MCT (Gansser, 

1981). In the Kumaon region around Sobla, the MCT and STD are closer compared to their 

position in the western side. The MCT is largely inactive except in some reactivated 

segments showing lateral strike-slip movement as found in Central Nepal (Nakata, 1989). 

 

 

 

Figure 1.10: Schematic cross section through the Kumaun Himalaya modified after Célérier 

et al. (2009). 

 

The Main Boundary Thrust (MBT): it is the one of the major tectonic boundaries 

between LHS to the north and Outer Himalayan foreland basin to its south (Gansser, 1964; 

Meigs et al., 1995; Decelles et al., 2001). Majorities of the earthquakes in the NW Himalaya 

are concentrated in the Lesser Himalayan zone confined between MCT and MBT and have 

shallow focus depths. The evolutionary history of Himalaya suggests MBT is younger than 

MCT and is more active currently (Le Forte, 1975). However, both these boundary have 

been treated as contemporaneous features in the steady state model of Seeber and Armbruster 

(1981).  
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The Himalayan Frontal Thrust (HFT): The HFT represents a zone of active 

deformation between the Outer Himalayan Sequence to the north and the Indian plain to the 

south. Compared to others this is the youngest, most active and have shallow depth. Some 

segments of HFT shows active faulting and neotectonic activity (Thakur, 2004). It currently 

demarcates tectonic displacement zone between the Himalaya and stable Indian continent 

with a convergence rate of 10–15 mm/yr (Thakur, 2004). 

The model of Seeber and Armbruster (1981) suggests that all the above 

discontinuities converge with the plane of detachment which marks the interface between the 

subducting Indian slab beneath the Eurasian plate in the northern side and overlying 

sedimentary wedge in the southern side. The Kumaon Himalaya exposes all the above major 

discontinuities along with the thrust system found in the Almora Crystalline zone as 

discussed below. 

The base of Almora Neppe demarcates tectonic base of Lesser Himalayan 

allockthonous unit which is characterized by two regional thrust systems (Heim and Gansser, 

1939 and Valdiya, 1980). These thrusts are called as the North Almora Thrust (NAT) and 

South Almora Thrust (SAT). The rocks of the Almora Crystallines along with other 

lithologically correlatable units of the Baijnath, Askote, Chiplakot and Satpuli units, have 

been studied by many workers, including some pioneers in Himalayan geology, which 

suggests that the thrust sheets or nappes pushed over the younger rocks from the north with 

their roots in the Central Crystallines of the Higher Himalaya (Heim and Gansser, 1939 and 

Gansser, 1964). The NAT is an important fault system between the Inner and Outer Lesser 

Himalayas and with respect to Indian craton to the south, the former is more proximal than 

the latter (Valdiya, 1980; Srivastava and Mitra, 1994 and Célérier et al., 2009). 

The South Almora Thrust is a very low dipping thrust. The overlying and underlying 

formations converges and are made up of almost similar lithological units which has made its 

(SAT)quite difficult. Some workers including Saxena and Rao (1975) deny its very 

existence. Some detailed studies by Vashi and Merh (1974) and other workers have 

conclusively established the existence of the South Almora Thrust. They suggest that SAT 

joins up with the NAT at the northwestern closure of the vast plunging syncline in the 

western Nayar valley to the west of Dudhatoli massif. 

The meizoseismal area of the 1905 Kangra earthquake extended well to the Garhwal 

Himalaya from the west (Khattri et al., 1989). The portion of Garhwal Himalayas 

immediately east of this is a part of nearly 700 km long seismic gap where earthquakes of 

magnitude 8 or greater have not happened in recorded history (Seeber and Armbruster, 1981; 

Khattri and Tyagi, 1983; Khattri, 1987). However the Garhwal Himalaya in the recent past 
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was rocked by two damaging earthquakes; the 20 October, 1991Uttarkashi earthquake (mb 

6.6) and the 28 March, 1999 Chamoli earthquake (mb 6.3). The Kumaon Lesser Himalaya 

falls in the seismic gap region in seismic zone IV and V of seismic zoning map of India. This 

region is prone to micro earthquakes to moderate earthquakes frequently. Most of the 

earthquakes in this region occur at shallow depths. The seismicity of the western Himalaya 

has been studied by several authors including Paul (2010), Paul et al. (2010) and Kumar 

(2012). One of the main characteristics is the trends of the location of hypocenters are along 

the Himalayan belt (Monsalve et al., 2006). This happens because most of the stress in the 

collision zone is released through seismic slip along the detachment plane. 

 

1.6 A BRIEF REVIEW ON UNDERLYING VELOCITY STRUCTURE OF THE 

HIMALAYAN TERRAIN 

An absolute and comparative study of structure and characteristics of lithosphere 

inferred from previous studies in and around the region concerned in the study area is very 

essential for setting up the problem of finding variation of velocity. This is because most of 

the geophysical problems are underdetermined and hence a prior knowledge of different 

parameter such as seismic velocities, crustal structure including depth to Moho is essential. 

This is not only to set up the problem, but it is also required to correlate same parameter from 

two different region and hence to give an effective trend of structure particularly those of 

same tectonic history such as different regions in the Himalayan arc system.  In context of 

this I have studied the above works documented by the different authors and presented in this 

section in both absolute and comparative ways.    

A number of authors (Kamble et al., 1974; Chander et al., 1986; Rai et al., 2006; 

Kumar et al., 2007; Oreshin et al., 2008; Caldwell et al., 2008, 2009; Mukhopadhyay and 

Sharma, 2010a; Kanaujia et al., 2012; Mahesh et al., 2013) have documented their studies 

related to design 1D velocity model of Western Himalaya using seismograms recorded from 

local and teleseismic earthquakes. In order to study the crustal structure beneath NW 

Himalaya, Rai et al. (2006) obtain several 1D shear wave velocity models using receiver 

function analysis of seismograms that were obtained from 15 broadband seismographs 

operated in a linear profile across NW Himalaya, from Gangetic plain in the north to the 

southwestern flank of the Karakoram in Ladakh. The study was primarily focused on the 

estimation of depth of Moho, which was reported to be progressively deepening, from ~40 

km beneath Delhi in the south to ~75 km depth at Karakoram fault in the north. Kumar et al. 

(2007) obtained 1D velocity model using the 22 Hindu Kush earthquake data and reported 

upper mantle velocity along the north-west Himalaya to be 8.1 km/s. Oreshin et al. (2008) 
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performed integrated analysis of teleseismic body wave recordings to obtain several 1D 

velocity models for P and S waves in NW Himalaya including Ladakh and Western Tibet. 

The recordings were taken from a linear array of 16 portable broadband seismographs along 

an array running through the Himalaya to the Karakoram. The study shows low velocity mid 

crust only at stations around Indus Zangbo Suture. Caldwell et al. (2008) performed surface 

wave dispersion tomography to obtain 1D crustal shear wave velocity model using 15 

broadband seismographs in a 500 km long NS array deployed in the NW Himalaya from the 

Indian plain in the south to Karakoram in the north through Tsangpo Suture and the Tso 

Morari Dome.  The model suggests a low velocity zone in the crust at a depth of 25-40 km 

that may be an indicative of fluid or partial melts. The same study was extended by Caldwell 

et al. (2009), but with 16 broadband seismometers along their previous profile and obtain 

several 1d velocity models that indicate again the partial melts in the mid crust in NW 

Himalaya.  

Using the data from 42 stations in Garhwal and some part of Kumaon Himalaya, 

Mukhopadhyay and Sharma (2010) obtained both 1D and 2D velocity models of the area. 

They observed the P and S wave velocities that increase from ~5.47 km/s and ~3.05 km/s at 

the near surface to ~8.21 km/s and ~4.75 km/s at the moho depth, respectively. In the 

Garhwal Himalaya, Kanaujia et al. (2012) obtain 1D velocity model along with relocation of 

earthquakes that were recorded by 12-station seismological network deployed in the Garhwal 

Himalaya. The study reported four-layer velocity model and does not shows any low velocity 

layer in the crust. With the help of 50 digital broadband stations in the western Himalaya, 

Mahesh et al. (2013) obtained 1D velocity model to locate the local earthquakes. They 

reported that majority of the earthquakes are confined to the upper 20 km of the crust 

forming an ~10‐km‐wide band along the surface trace of the Munsiari Thrust.  

As compared to number of studies for 1D velocity variation, the number of studies 

for 2D and 3D velocity variation in western Himalayas is fewer, with some of the notable 

studies are those contributed by Mukhopadhyay and Kayal (2003) and Malik (2009), 

Mukhopadhyay and Sharma (2010a), Hazarika et al. (2013). Using aftershock data of 1999 

Chamoli earthquake (mb 6.3), from 28 closely spaced temporary and permanent seismic 

stations, Mukhopadhyay and Kayal (2003) were successfully estimated 3-D seismic velocity 

variation in a 80 km × 60 km ×15 km crustal volume. As their study remains limited up to a 

depth of 15 km and could not include the zone due north of MCT, the fact that crustal level 

folding and faulting involving the role of basement for deformation remains unclear 

(Mukhopadhyay and Sharma, 2010a). Mukhopadhyay and Sharma (2010a) show in their 

studies that shallow subsurface rocks indicate lower velocity in Tethys Sedimentary Zone, 
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Lesser Himalayas and in the sub-Himalayas whereas metamorphic rocks of Higher 

Himalayas indicate higher velocity. The moho depth was not resolved in their studies; 

however they noted that vp/vs ratio for most of the crust remain less than 1.78, indicating the 

poison solid. The distribution of hypocenter shows that most of the earthquakes occur along 

the tectonic trend of Western Himalaya, leaving a small seismic gap orienting NE–SW 

between 78.5°E and 79°E longitudes. The crustal level folding and faulting are shown in 

their results but the depth of moho remain unresolved. The observed 2D section of velocity 

do not show any northward dipping detachment plane as suggested by (Seeber and 

Armbruster, 1981; Baranowski et al., 1984; Ni and Barazangi, 1984; Molnar, 1990), that 

decouples upper crustal highly folded and faulted formations from underlying relatively 

deformation free basement of Indian crustal material. Using the data from 16 broadband 

stations, Hazarika et al. (2013) estimated the depth to moho in Western Himalaya and 

Ladakh using receiver function analysis. They have reported that depth to Indian Moho at 

this zone increases from ~50 km beneath the lesser and higher Himalaya to ~80 km beneath 

eastern Ladakh. They further notice the continuity of Indian Moho across across the Indus 

Tsangpo Suture zone, which suggest underthrusting Indian plate goes beyond the colison 

zone of India and Asia. They found that Poisson’s ratio is comparatively high (0.280-0.303) 

beneath eastern Ladakh; intermediate (0.269-0.273) beneath the Tethyan Himalaya; and low 

(0.249-0.253) beneath the Lesser and Higher Himalaya. 

Investigation of velocity variation of lithosphere in the Central part and Estern part of 

Himalayan belt has also been done by many authors (Monsalve et al., 2006, 2008; Li et al., 

2008; Priestley et al., 2008; Acton et al., 2010; Kim et al., 2012). Using data from the 

HIMNT (Himalaya Nepal Tibet Seismic Experiment) broadband seismic station network, 

Monsalve et al. (2006) performed simultaneous inversion for hypocenter and velocity by 

applying the program VELEST as outlined by Kissling et al. (1994) to obtain 1D velocity 

models of eastern Nepal and the southern Tibetan Plateau. They found that accumulation of 

earthquakes occur along the Himalayan arc with a gap between longitude 87.3°E and 87.7°E. 

The vertical distribution of earthquakes shows bimodal depth distribution in the Himalayas 

of eastern Nepal and the southern Tibetan Plateau. They have also reported that some of the 

earthquakes occur at the upper mantle depths and from there they have reported the 

conclusion that the continental upper mantle deforms by brittle processes. The velocity 

profile shows the Moho depth of 55 km in the region of Nepal while the same is 70 km in the 

region of Tibet. Kim et al. (2012) also obtained a detailed 1D velocity model in the same 

region using the data from the same seismic station network as used by Monsalve et al. 
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(2006). They found contrasting low velocity zone between 50 km and 60 km beneath the 

High Himalaya. 

Though numerous authors documented works on underlying velocity structure in the 

region of Himalayan belt, however the detailed 3D velocity structure are rare in that region. 

Some of the studies are those given by Mukhopadhyay and Kayal (2003), Li et al. (2008) and 

Malik (2009). One of the main reasons may be due to lack of seismic data in this terrain.  

 

1.7 A BRIEF REVIEW ON UNDERLYING ATTENUATION STRUCTURE OF THE 

HIMALAYAN TERRAIN 

Extensive works have been carried out in the recent past in the Himalayan belt to 

characterize the Himalayan lithosphere. In the Garhwal part of Himalaya, some of the studies 

are those documented by Gupta et al. (1995, 1996), Gupta and Kumar (1998), Mandal et al. 

(2001), Nath et al. (2008), Mukhopadhyay et al. (2008),  Sharma et al. (2009),  

Mukhopadhyay and Sharma (2010b), Tripathi et al. (2014), Negi et al. (2015) and Kumar et 

al. (2015). In the adjoining southwestern part of Garhwal Himalaya, Gupta et al. (1995) 

analyzed the coda waves recorded from seven local earthquakes using single back scattering 

model in 30-60 sec windows. The results have shown the frequency dependence of coda cQ

as 
0.95126cQ f . This relationship says that the average attenuation in the Garhwal Himalaya 

is less pronounced at higher frequencies. Mandal et al. (2001) obtained a frequency 

dependent relation   1.21 0.0330 0.8cQ f    by analyzing coda wave in the window range 30-

80 sec using data from Chamoli aftershocks recorded by National Geophysical Research 

Centre (NGRI). Nath et al. (2008) also obtained a frequency dependent shear wave 

attenuation relation as    0.74 0.09
78.38 19.2sQ f


   using weak motion near field data 

recorded from Chamoli Mukhopadhyay et al. (2008) used the Chamoli aftershocks data 

recorded by Geological Survey of India (GSI) to estimate different cQ  relations for separate 

window lengths. The estimated cQ  relationships are    1.17 0.03
33 2cQ f


  , 

   1.16 0.05
55 6cQ f


  ,     1.12 0.08

78 15cQ f


  ,    1.07 0.08
93 18cQ f


   and 

   0.98 0.07
122 20cQ f


   for window lengths respectively 10, 20, 30, 40 and 50 sec. These 

results have shown that the value of cQ  systematically increase with the increasing value of 

window lengths. As with increasing window lengths deeper region show up, therefore it can 

be said that cQ  increase with increasing depths. Since, the cQ  is inversely proportional to 

attenuation, it means attenuation decrease with increasing depth. This facts states that 
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lithosphere becomes more homogenous with increasing depths (Mukhopadyay et al., 2008). 

At greater depths and at higher frequencies the value of cQ  becomes almost constant, which 

may be due to the decaying nature of turbidity with depth in the crust and transparent nature 

of mantle in this region (Gusev, 1995; Mukhopadyay et al., 2008). More or less similar 

conclusions have been drawn by Mukhopadhyay and Sharma (2010b) in their study. Sharma 

et al. (2009) have also investigated the Chamoli region using the aftershock data of the same 

1999 Chamoli earthquake (M6.4). They have used 25 aftershocks from recorded by five 

stations to obtain P-wave and S-wave quality factors in the frequency range 1.5-24 Hz. They 

have estimated the relations    0.82 0.04
44 1pQ f


   and    0.71 0.03

87 3SQ f


   for P-wave 

and S-wave respectively. A comparison of this study with that of Mandal et al. (2001) shows 

clearly that c SQ Q  for higher frequencies (>8 Hz) in that region. 

Tripathi et al. (2014) studied attenuation characteristics using coda normalization 

method in the Garhwal Himalayan region. The data used were taken from portable 

broadband seismometers deployed at three locations namely New Tehri Town, Srikot and 

Narendra nagar of Garhwal Himalaya. The study reports strongly frequency dependent 
1

PQ
 

and 
1

SQ
 values that decrease from 

3(15.86 0.90) 10   and 
3(5.35 0.51) 10   at 1.5Hz to 

3(0.54 0.11) 10   and 
3(0.34 0.06) 10   at 24 Hz, respectively following the power-law

        1.162 0.057 0.932 0.0451 3 1 3(27.432 3.149) 10 , (8.051 0.737) 10P SQ f f Q f f
           

 showing P-wave attenuation is stronger than that for S-wave, suggesting high degree of 

heterogeneity in the crust of Garhwal Himalaya. They added further that such variation 

corresponds to seismically active region with tectonic complexity. Negi et al. (2015) also 

investigated the P-wave and S-wave attenuation characteristics in the Garhwal Himalaya 

using data recorded by eight stations operated by Wadia Institute of Himalayan Geology, 

Dehradun, India, from 2007 to 2012. They have estimated frequency dependent relations 

   0.91 0.002
56  8  PQ f


   and    0.84 0.002

151  8  SQ f


  . Both the relations indicate strong 

attenuating crust of Garhwal Himalaya. Using strong motion data and single backscattering 

method, Kumar et al. (2015) have estimated the coda Q  in Garhwal and Kumaon Himalaya 

as    1.07 0.04
65  2.4  cQ f


   and    1.06 0.04

96  6.9  cQ f


  . 

Compared to the number of studies in Garhwal Himalaya fewer studies have been 

done in Kumaon Himalaya. Some of those are Paul et al. (2003), Joshi (2006), Joshi et al. 

(2008, 2010), Paul et al. (2003) studied the attenuation of high frequency (1-25 Hz) seismic 

waves in the Kumaon part of Himalaya using single backscattering model given by Aki and 
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Chouet (1975). They have used the coda waves of 30 sec window length and obtained a 

frequency f  dependent relationship for quality factor as    1.07 0.023
92 4.73cQ f


  . They 

have attributed the low value of coda Q  to the high tectonic activity of this region compared 

to stable region where coda Q  is high. Joshi et al. (2006) studied the frequency dependent 

shear wave attenuation in the Pithoragarh region of Kumaon Himalaya using data from 

strong motion accelerographs deployed in the region. They have applied a inversion 

algorithm in their work and reported the frequency dependent variation of shear wave quality 

factor as 
1.4530SQ f . The low value of SQ  supports the high level of tectonic activity in 

this region. Joshi et al. (2010) obtained three dimensional shear wave attenuation structures 

SQ  in the Pithoragarh region of Kumaon Himalaya using a modified version of attenuation 

tomography given by Hashida and Shimazaki (1984) using data from eight strong motion 

accelerographs deployed in this region. The study have reported the high value of SQ  in 

various places like Pithoragarh, Dharchula and Sobla, which indicates lesser attenuating 

subsurface and higher seismic hazard compared to other places like Thal and Didihat. Singh 

et al. (2015) have also estimated attenuation relations for P-wave and S-wave as 

   1.35 0.04
22 5PQ f


   and    1.3 0.03

104 10SQ f


   from 23 local earthquakes records. Both 

the relations indicate strong attenuating behavior of Kumaon Crust (Singh et al., 2015). 

In the western part of Himalaya, several authors including Verma et al. (1998), 

Kumar et al. (2005), Mukhopadhyay et al. (2006),  Mukhopadhyay and Tyagi (2007, 2008), 

Kumar (2010) and Parvez et al. (2012) have documented their works on attenuation 

quantification and characterization of the subsurface structures. Mukhopadhyay et al. (2006) 

obtained inverse of frequency dependent cQ  as    1.01 0.051 113 7cQ f
    using data from 9 

stations and 11 local earthquakes in the NW Himalaya. The stations were the part of 17 

station northwestern Himalayan seismic network operated in the period July 2002-October 

2003 (Rai et al., 2006). Their study has shown that the region is tectonically active and 

highly heterogenous. Mukhopadhyay and Tyagi (2008) have performed a similar study and 

have concluded that the both coda and intrinsic attenuation decreases with depth. Kumar 

(2010) estimated the frequency independent shear wave attenuation in the NW Himalaya in 

the upper 15 km of the crust in this region. The estimated SQ  is 218 56  which correspond 

to the seismically active region. Parvez et al. (2012) have reported the frequency dependent 

characteristics of P-wave and S-wave attenuation in the upper crust of NW Himalaya for a 

frequency range 1.5 Hz to 18 Hz. They have estimated the quality factors PQ  and SQ  as 
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   1.06 0.06
97 3PQ f


   and    0.96 0.06

127 6SQ f


   respectively indicating strong frequency 

dependency. They have concluded from their results that the seismic energy of high 

frequency attenuates more in the upper lithosphere than in the lower lithosphere.   

In the eastern part of Himalaya some of the studies are those give by Hazarika et al. 

(2009), Padhy and Subhadra (2010), Kumar et al. (2014). Hazarika et al. (2009) performed 

coda wave attenuation study in the northeastern India using 45 local earthquakes records. 

They have used single scattering model to analyze eight different time window durations (20, 

30, 40, 50, 60, 70, 80, and 90 s) at ten frequency bands ranging from 1.0 to 18 Hz. They have 

obtained an average attenuation relation for this region as 
 1.32 0.036

52.315 1.07cQ f


   . 

The attenuation studies presented above have shown that the quality factor in the 

entire Himalayan belt can be defined to be the proportional of some power raised to 

frequency. Though entire belt is tectonically active, the cQ  value for Kumaon is higher than 

the Garhwal as described by Kumar et al. (2015). High level of heterogeneity in the upper 

part of crust compared to the lower part (Mukhopadhyay et al., 2008) has been reported. 

Although a plenty of studies were documented on the quantitative estimation of 

attenuation in Western Himalaya to infer the seismic constraints on the behavior of the 

regional lithosphere; however, most of those were carried out either using coda wave 

normalization method or slop analysis of attenuation relation given by Aki and Richard 

(1980). These methods give average estimation of quality factor and do not provide any 

insight to the spatial variation in attenuation characteristics within the lithosphere. The 

detailed 3D estimation of quality factors were documented by Joshi et al. (2010) in the 

Kumaon part of Himalaya. The reason behind fewer studies on 2D or 3D attenuation 

characteristic may be attributed to the complex Himalayan terrain and lack of sufficient data 

required to perform 2D or 3D studies.  

 

1.8 SYNTHESIS OF THE PROBLEMS AND OBJECTIVES THE PRESENT WORK 

The roots of a seismic tomography method essentially consist of forward problem and 

inverse problem. There exist independent fields of research in both the problems. The 

forward problem has been considered in the present work as a subject of theoretical research 

whereas the study of inverse problem has been limited to the DLS method only. Reviews on 

the studies of forward problem in seismic traveltime tomography is given in §1.2.2 and 

§1.2.3, where the genesis of different methods have been discussed. We analyzed the 

following points before selecting a method of forward problem. 
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1) An accurate computation of true source-receiver ray paths in presence of lateral 

variation of wavespeed is always required in almost all tomography application. The ray 

paths are straight in a homogeneous medium or piecewise straight in a layered medium, but 

the same are complex in complex velocity zone where due to presence of sharp anomalous 

body ray triplication may occur. 

2) Determination of first arrivals of seismic phases is very important particularly for 

precise estimation of the earth’s velocity field and earthquake hypocenters.  

3) The head waves dominate in the complex region or in the region of active orogeny 

like Himalayan belt. The computation of head waves is paramount importance for the 

structural evaluation of thin layers and low velocity zones. A method which does not 

properly respect the first arrivals will fail to compute the heads waves. 

4) The fast computation is always required in practical application of a forward 

method. However, there always exists a trade-off between computation time and accuracy in 

numerical computation. A method is generally considered to be better which would permit a 

single step change in any of the two parameters subject to the requirements in practical 

applications.  

All the above steps are fulfilled by the class of Fast Marching Methods only as these 

only give guarantee for the computation of first arrivals. The FMM is accurate and very fast 

as described in §1.2.2.2.2. Like other method it also has disadvantages that in the source 

neighborhood due to strong curvature of wavefronts, a numerical grid system with finite 

spacing fail to map the wavefronts properly, which produce an error that propagate 

throughout the medium. The maximum error is located in the neighborhood of source and 

gradually decreases away from the source. Many authors in the recent past have analyzed the 

problems and given several methods without changing the basis of FMM to remove the 

source neighborhood error. Multistencils Fast Marching (MSFM) method as described in 

Hassouna and Farag (2007) is comparatively new in the series of FMM which address the 

above issue without violating the general principle of the entropy concept imposed in the 

FMM. The method of MSFM is the only method which respects computation of traveltime to 

a grid node from all the surrounding nodes in a 2D or 3D Cartesian domain. Therefore it 

removes the concept of axial direction directions and the source neighborhood error. The 

computation is of superior quality in the homogeneous or nearly homogeneous media with 

isotropic or nearly isotropic grid system. However, the computation error increases with the 

increases with the increase of anisotropy of grid system regardless of the medium. 

The conventional ray tracings are still the important methods for the determination of 

earthquake hypocenters and preliminary velocity models of a region. For a little change in 
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take-off angle at source in a complex medium, both shooting and bending method suffers 

from high degree of fluctuation of ray paths, due to which convergence of final ray point to 

its destination become sometime difficult and time consuming. 

The computation of interface geometry between two adjacent contrasting rock units is 

very important in proper structural evaluation. In reflection tomography many authors 

considered interfaces in their methods. However, in the refraction tomography the 

introduction of interfaces is rare. One of the major difficulties is that, due to minor change in 

the orientation or geometry of interfaces the ray paths changes to a greater degree, therefore 

computation of interface is required to include the computation of hypocenters as well as 

velocity simultaneously. 

Besides the theoretical problems, the practical problem with the study region is that a 

proper velocity model is not available in this region. The region falls in the complex zone 

and the quantity of data is limited. Based on all the above problems, the objectives were 

divided into two folds as: 

 

1) Theoretical aspects: 

a) To develop an algorithm parallel to shooting method, to speed up and to code the 

same.   

b) To study algorithm of FMM and to code the same and perform extensive 

numerical tests to analyze the derived results. 

c) To develop a method and algorithm that improves the results of MSFM method. 

d) To develop a multi-parameter inversion method and algorithm that performs 

simultaneous inversion of P and S waves to obtain hypocenters, origin times, body 

wave velocities, interface representing discontinuities. 

e) To develop a 3D traveltime tomography algorithm and code based on derived and 

improved MSFM method. 

f) To write an algorithm for 3D attenuation tomography using parameterization of 

grid types. 

2) Practical aspects: 

a) To study 1D, 2D, 3D velocity models and seismicity in the part of the Kumaon 

Lesser Himalaya using the developed algorithms and codes. 

b) To study 3D attenuation structure of the study region using a develop algorithm. 

 

 

 



50 
 

1.9 THE WORKS PRESENTED IN THE THESIS 

To fulfill the objectives considered in §1.8, the forward problems are considered first. 

One ray tracing method and algorithm parallel to shooting method is developed first. One 

fast scanning method named as spiral search method is developed and implemented in the 

algorithm to compute two points ray paths. Later on, gradient method to automatically adjust 

the ray path is formulated and implemented in series with spiral search method. In the final 

algorithm, the spiral search method locates the ray path approximately where as gradient 

method gives the final location of the ray path between source and receiver. The self 

reflection within layers is considered so that the method would be useful even in complex 

geometry of interfaces that define discontinuities of a medium.   

The marching equation is solved and algorithm is presented using binary tree for fast 

computation of traveltime field. The traveltime fields are tested for its validation using 

numerical models. The utility of traveltimes contours have also been discussed. To remove 

the source neighborhood error in FMM, a method is proposed in the direction of MSFM 

method. The algorithm to the method uses angular interpolation of directional derivatives 

from all possible direction and hence the biasness due to anisotropic grid system that appears 

in MSFM method is removed. Several numerical experiments have been performed, which 

have shown better results than the FMM and MSFM method. 

To obtain simultaneously hypocenters, origin times, body wave velocities, interface 

representing discontinuities a multiparameter inversion method has been proposed and its 

algorithms are developed. The forward problem considering is solved by the use of 

developed ray tracing method and the inverse problem is solved using DLS method. The 

algorithm works both in 1D and 2D domain of computations. This algorithm has been used 

to obtain 1D, 2D velocity of the Kumaon Lesser Himalaya as well as to study the seismicity 

of the study region. The 3D velocity structure of Kumaon Himalaya is obtain by developing 

an tomography algorithm using developed MPFMM as a tool to solve forward problem and 

DLS method as a tool to solve inverse method. 

A method of attenuation tomography is given by modifying the relation of spectral 

acceleration with quality factorQ to use the same in continuous field ofQ . Data were 

processed and frequency shear wave dependent site amplification factors at all the stations 

were obtained using the method given in Joshi et al. (2010). Using the processed acceleration 

spectra, relocated hypocenters, computed velocity models and ray paths from traveltime 

inversion, frequency dependent shear wave attenuation models were obtained and discussed. 
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1.10 OVERVIEW OF THE THESIS 

The whole work of the present thesis is organized into 8 chapters including Chapter 

1. This Chapter is devoted to the introduction and survey of literature relevant to the 

investigation compiled in the later chapters. Chapter 1 begins with the importance of seismic 

data which have been used from the very beginning in the field of seismology by different 

workers to investigate the internal structure of the earth using various methodologies 

including tomography. The seismic tomography method is then discussed in terms of inverse 

theory. Basic steps of tomography together with literature reviews have been presented. Later 

on, in this Chapter tectonic regional tectonic settings as well as seismicity of the Himalaya 

with special focus to the region which is considered in the thesis is discussed. Literature 

reviews related to velocity and attenuation structure of the study region are presented. The 

problems in tomography methods and the objective of this thesis are then discussed. The 

works presented in this thesis and organizations of this thesis are then given at the end of this 

Chapter. 

In Chapter 2, the forward problem of tomography is considered using ray tracing 

similar to shooting method but with the help of spiral search technique. In the beginning of 

this Chapter, mathematical formulation of the Snell’s law using simple vector algebra is 

given. For a given take off angle from a given source point in a medium, the same 

formulation is utilized to develop an algorithm to trace a ray path without destination (one 

point boundary value problem) using rectangular type of parameterization. This algorithm is 

presented in this Chapter. The one point boundary value problem is then converted into two 

point boundary value problem (complete ray tracing) with the help of spiral search technique. 

The spiral search technique was developed to complete the ray tracing as well as to speed up 

the algorithm. The mathematical basis of spiral search technique and complete mathematics 

of ray tracing is given later on. At the end, several numerical experiments which have been 

conducted to examine the algorithm are presented 

In Chapter 3, the forward problem of tomography is considered using Fast Marching 

Method (FMM). The algorithm to the method was given with the help of binary tree for fast 

computation and then it was coded in FORTRAN and various numerical tests on numerical 

models have been done. This Chapter includes the algorithms and several numerical tests. 

The purpose of this Chapter was two ways: first, to tests the algorithm for common 

governing rules of wave propagation and second, to utilize the algorithm for analysis of 

traveltime contours of different geological structures of the earth.. 
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In Chapter 4, an improved method of FMM is presented which removes significantly 

the source neighborhood problem encountered in FMM. The method is compared with other 

methods with the help of numerical experiments. 

In Chapter 5, a multiparameter inversion method is developed, that allows to perform 

simultaneous inversion of P and S waves to obtain hypocenters, origin times, body wave 

velocities and interfaces representing discontinuities. Detailed mathematical formulations as 

well as developed algorithms are presented in parts. 

In Chapter 6, the practical aspect of multiparameter inversion is presented. The study 

region with strong motion network is given. The seismicity is described in this region by 

locating several earthquakes using the developed algorithm. The known events were then 

utilized to obtain precise 1D velocity model as well as to improve the accuracy of event 

location with the help of same inversion algorithm. Both 1D velocity model as well as 

relocated events in terms of seismicity is discussed. Later on this Chapter, mathematical 

basis of 2D and 3D tomography using FMM is described. The obtained 1D velocity model 

has been utilized to obtain 2D velocity model of the region using the developed 2D 

tomography method. The same method with minor changes has been used to obtain 3D 

tomography of the study region. The results of tomography are then discussed with the help 

of resolution matrix.    

In Chapter 7, 3D attenuation tomography is considered. An algorithm is presented for 

the attenuation tomography, which has been developed using the modified version of relation 

for spectral acceleration and quality factor. The method for computation of site amplification 

factor is also given. This has been utilized to obtain the site amplification at all the stations in 

the study region. The site amplification factor and the algorithm for 3D attenuation 

tomography are then utilized to obtain 3D attenuation structure of the study region. The 

obtained site amplifications at various stations and attenuation structures beneath the study 

region are discussed at the end. 

In Chapter 8, overall conclusions and future direction of the works are given. 
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                                2 

RAY TRACING 

2.1 INTRODUCTION 

Geometrical ray tracing between source and receiver has remained one of the most 

successful methods of forward problems in seismology to obtain hypocenters of earthquakes 

and preliminary subsurface structures of the earth. Since a source-receiver ray path in a 

medium depends on the velocity of the medium, therefore for a given take off angle from 

initial point (source location) if the ray path is traced through the medium then there is no 

guarantee that the ray will pass through the other destination point (station or receiver 

location). Therefore the basic problem of two point (complete ray) tracing is divided into two 

steps. The first step is to solve one point ray tracing for a given velocity model and for a 

given position of source. The next step is to consider destination point (receiver or station 

location) and to find a true take off angle at source position such that the ray passes though 

the destination point. First in this chapter, the model parameterization is considered by 

dividing a model into rectangular boxes and then defining the velocity in each box. One point 

ray tracing is then solved by developing an algorithm using vector algebra in three 

dimensions. The second step of ray tracing is solved by a method which has been called as 

spiral path search method. The spiral path search method when joined with gradient path 

search method gives fastest possible results. However, the gradient method and its joint 

working with spiral search method are discussed in Chapter 5. To include the interfaces, a 

model parameterization is also considered in the algorithm , where the horizontal envelops of 

planes formed by different rectangular boxes are replaced by 3D surfaces to obtain a natural 

model parameterization that represents 3D layer geometry with 3D velocity variation. The 

natural model parameterization helps to solve the ray tracing in its most general form in three 

dimensions as it includes the reflected rays bounded by natural surfaces. The last part this 

chapter presents several numerical experiments using the developed algorithm. 
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2.2 MODEL PARAMETERIZATION: TYPE-A AND TYPE-B 

The model parameterization is the platform of computational domain to solve the 

forward problem. It is decided based on the objective as well as scale of study of the forward 

problem. As for example, if the objective of forward problem is to know the effect of 1D 

variation of properties of the earth on wave propagation in small scale study then simple 

stack of rectangular boxes, each having separate physical properties (e.g. velocity or 

attenuation) are sufficient to define the model but if the same objective is oriented for large 

scale study then concentric spherical layers each having separate physical properties as used 

in the development of PREM (Dziewonski and Anderson, 1981) are to be considered. In the 

present work, two types of model parameterization namely Type-A and Type-B are 

considered. Under Type-A model parameterization, a medium is divided into rectangular 

boxes, as shown in Figure 2.1(a), and in each box the model parameter is defined separately. 

This type of model parameterization is known as called Constant Velocity Voxel (CVV) 

when the model parameter is velocity alone. This type of model parameter is simple to define 

3D variation of medium properties and help to solve many of the tomographic problems.  

 

                         (a)                                                                  (b) 

Figure 2.1: Model parameterization; Type-A, (a); Type-B, (b) 

 

Although, Type–A parameterization is good to define straight layers of earth’s 

subsurface; it does not define the natural layer boundary found inside the earth in the form of 

discontinuities, which may have 3D geometry. To consider the effect of such layers Type–B 

model parameterization is considered as shown in Figure 2.1(b). In type-B model 

parameterization the vertical definition is same as that of Type-A while the horizontal layers 

are replaced by 3D surfaces representing the discontinuity (interfaces) of the medium. Ray 

tracing algorithms are developed on the basis of both the types of model definition. The 
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Type-A model parameterization is implemented in Chapter 5 in the development of 

conventional tomographic algorithm which is used to solve the problem of earthquake 

location with origin time, and to find the body wave velocity structure of earth. The Type-B 

parameterization is implemented in the same tomographic algorithm which is used to find 

velocity structure, earthquake location with origin times as well as the natural 3D layer 

structure of earth. 

 

2.3 VECTOR EQUATIONS FROM SNELL’S LAW 

This section presents two basic vector equations which are derived using Snell’s law. 

The first is for vector equation of refracted ray and second is for vector equation of reflected 

ray, for a given incident ray on a given plane. To obtain the geometry of refracted and 

reflected ray path, an elementary area of an arbitrary surface is considered and a ray is 

imagined to incident at a point where the surface has normal vector n  as shown in Figure 

2.2. The vector equations for refracted and reflected ray are derived using vector algebra 

which are presented in § 3.2.1 and § 3.2.2. Later on in section 3.2.2 the basic vector equation 

for intersection of a straight line and plane is presented to make it use in the development of 

ray tracing algorithm. 

 

 

Figure 2.2: Geometry of refracted ray and reflected ray for a incident ray on a plane having 

normal vector, n . In the diagram i  , r  and l  are respectively incident angle, refracted 

angle and reflected angle. 

 

2.3.1 THE EQUATION OF A REFRACTED RAY FOR A GIVEN INCIDENT RAY 

ON A GIVEN SURFACE 

According to the Snell’s first law, the incident ray, refracted ray and the normal to the 

plane lie in a single plane, so the Figure 2.2 can be redrawn as shown in Figure 2.3 in two 
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dimensions for refracted ray. Two types of cases are possible, depending upon velocity of 

two adjacent media as shown in Figure 2.3(a) and 2.3(b). In the Figure 2.3(a), KM is the 

incident ray and MT is the corresponding refracted ray and MN is the normal vector to the 

plane. 
i  and 

r are the incident and refracted angles respectively. 
iV  and 

rV  are the 

velocities of the media in which incident ray and refracted ray lie respectively. In this case, 

the velocity of the medium containing refracted ray is lower than the velocity of the medium 

containing incident ray. The figure for opposite case is shown in Figure 2.3(b). Ray vectors 

parallel to the refracted ray have been drawn in both the cases which met the incident ray at 

K (in case 1) and at A (in case 2). These rays cut the normal vector at N (in case 1) and at D 

(in case 2). A plane parallel to the boundary plane was considered which passes through K 

(in case 1) and A (in case 2). This plane meets the normal at L (in case 1) and at B (in case 

2). The aim is to find KN and AE vectors. For this case 1 has been considered first. The joint 

bold characters used in the equation are vectors and others are scalars.            

 

 

                                           (a) r iV V                                (b) r iV V  

Figure 2.3: Geometry of refracted ray paths, for case 1, (a) and case 2, (b), redrawn from 

Figure 2.2 in two dimensions. 

 

 Since vector MT is parallel to the vector KN so, 

 
 



KN KM MN

= KM MN n
 (2.1) 

From Figure 2.3(a), 
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Where, KMI is the unit vector in the direction of KM. Again from Figure 2.3(a) one can write: 

 
MN LN LM

LN

 

  KM.n
 (2.3) 

 

Substituting the value of LN from Equation (2.2) in Equation (2.3), MN can be written as: 
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Substituting the expression of MN from Equation (2.4) in Equation (2.1), the vector KN can 

be written as: 
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If 1KM , either if the incident vector is unit vector then Equation (2.5) becomes: 
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Consider case 2 as shown in Figure 2.3(b), where we can write 

 

 CD AD AC n  (2.7) 

 
CD BC BD

BD

 

 AC n
 (2.8) 

The expression for BD can be derived similar to LN as, 
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Where, ACI  is unit vector parallel to incident ray AC. The expression for vector AD in 

Equation (2.7), with the help of Equations (2.8) and (2.9) can be written as, 
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If 1AC , either if the incident vector is unit vector then Equation (2.10) becomes: 
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It is clear from Equation (2.6) and (2.11) that refracted ray follows a similar expression for 

both the cases described through Figure 2.2. Therefore, if iI is an unit vector parallel to 

incident ray on a plane having normal n , then the unit vector rI  parallel to refracted ray can 

be written as: 
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Where,  is a scalar quantity. The value of   is derived by taking modulus of Equation 2.12 

from both sides, which is given as: 

 r

i

V

V
   (2.13) 

Therefore, Equation (2.12) becomes 
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Equation (2.14) is the resultant expression for the unit vector, 
rI  parallel to refracted ray for 

a unit vector, iI   parallel to a given incident ray on a given plane having normal vector, n  at 

the point of incident. 

 

2.3.2 THE EQUATION OF A REFLECTED RAY FOR A GIVEN INCIDENT RAY 

ON A GIVEN SURFACE 

According to the Snell’s first law, the incident ray, reflected ray and the normal to the 

plane lie in a single plane, so the Figure 2.2 can be redrawn as shown in Figure 2.4 in two 

dimensions for reflected ray. Let the ray in the direction of MB is incident at point B on a 

plane whose normal is n. let the reflected ray is directed towards BN as shown in Figure 2.4. 

Lines MB, BN and DB parallel to normal vector must lie in a single plane due to Snell’s first 

law, therefore a line is drawn parallel to BN which meets incident ray MB at A and normal 

line at D. A line parallel to MA is also drawn which meets reflected ray at C and normal line 

at D.   

 

Figure 2.4: Geometry of reflected ray paths redrawn from Figure 2.2 in two dimensions. 

 

Using the Snell’s second law we have 

 ABD DBC   (2.15) 

Therefore,  

AB DC BC AD    
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BD

  

 

BC AD AB BD

AB n
 (2.16) 

 2BD  AB n  (2.17) 

  2 BC AB AB n n  (2.18) 

 2i i
AB

 
BC

I I n n  

AB BC  

  2l i i  I I I n n  (2.19) 

 

Where, 
iI unit is vector parallel to incident ray and 

lI  is unit vector parallel to reflected ray. 

Equation (2.19) is the resultant equation of a reflected ray for a given incident ray on a given 

surface with normal vector n  . 

 

2.3.3 THE INTERSECTION POINT OF A PLANE AND A LINE 

The vector equation of a plane in terms of a given normal vector, n to the plane and a 

given point, 𝑷𝒐 on the plane is written as; 

 . 0d P n  (2.20) 

Where, 𝑑 = −𝑷𝒐. 𝒏 and P is any point in the plane. 

The vector equation of a straight line parallel to a given line segment, M and passing through 

a point, 𝑰𝒐 is written as; 

 t 
o

I I M  (2.21) 

Where, t is a scalar having real value. Intersection occur when I=P so, from Equations (2.20) 

and (2.21), the value of t can be derived as; 
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Intersection is possible only when 0n . For this case, the point of intersection is given by 

substituting the value of t from Equation (2.22) into Equation (2.21) as: 
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2.4 BASIC ALGORITHM OF RAY TRACING USING TYPE-A 

PARAMETERIZATION 

For a given incident ray on one face of the voxel; the ray path across that voxel can 

be obtained only when two intersection points intersected by the ray in two faces out of six 

faces is known. The ray segment connecting these two intersection points will be the incident 

ray direction for the next adjacent voxel. So the main problem is to derive an iterative 

formula that can give the incident ray path for a voxel when the incident ray path for 

previous voxel is known. A voxel or box is made up of six faces. And hence there is huge 

number of faces even for a small number of voxels or boxes. If they are not define with 

respect to a single point it is very difficult to find out the intersection points between the ray 

and the faces which in turn because of difficulty in locating the faces and finding out their 

orientation. To handle this problem voxels parameterization has been imagined by 

considering three families of planes in all three X, Y, and Z direction. All the planes along an 

axis are perpendicular to the axis and hence these are parallel and the spacing between all the 

adjacent planes is constant. The intersections of such family of planes form the desired 

boxes. The spacing between the two adjacent planes defines the box size. In this way the all 

the faces of all the boxes have been located only by three families of planes mutually 

perpendicular to each other. 

If a given line intersects a given plane out of three families of planes at a certain point 

then this line can be considered as incident ray on a face of the box whose other five faces 

are formed by a plane adjacent to the given plane in the direction of incident ray and four 

perpendicular planes closest to the intersection point. These planes can easily be defined with 

respect to the origin by appropriate spacing value between the two adjacent parallel planes. 

The refracted ray governed by Equation (2.14) will propagate within the box and finally it 

will intersect at one point on a particular face out of five faces or five planes adjacent to the 

initial face. To know that on which plane out of five planes ray intersects before emerging 

out from the box one plane has to be select out. It is not required to check all the five planes; 

only three planes lying in the direction of refracted ray is sufficient because the ray will 

intersects only on a plane out of three planes whose normal vectors lie in a particular 

quadrant decided by source and station position. This is because the curvature of refracted 

ray path through a medium is of first order therefore it is sufficient to obtain solution in a 

quadrant in which source and station lie. For checking the intersection between a ray and 

these three planes, the basic algorithm was defined as: 
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1) Select a plane and find out dot product between the refracted ray within the box and 

the normal to the selected plane. 

 

2) If the dot product is zero then the intersection will not occur between the plane and 

the refracted vector, if this dot product is not zero then move to the next step. 

 

3) Determine the intersection point and the length of the segment of the refracted vector 

lying between this intersection point and the previous intersection point and save 

these values. Until all planes are checked out go to step 1 again. 

 

4) Find out the shortest line segment and save it as dist. The refracted ray will intersect 

the plane for which the length of this line segment is smallest. 

 

Based on the above ideas, the detailed algorithm is developed as shown in Figure 2.5. 

 

 

Figure 2.5: An algorithm to find intersection point between a straight line formed by a given 

vector point, pso and a given tangent, m and a plane out of three planes with weight, w . 
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The input to the algorithm in Figure 2.5 is a vector point, pso , vector tangent, m  and 

an three point array, w  that defines the weight of the three planes with respect to 

corresponding axes. These parameters can be defined as: 

 

 
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The value n in the algorithm defines the intersected plane as for example its 1 or 2 or 3 value 

indicates x or y or z planes in a Cartesian domain. The output of the above algorithm is 

intersected point represented by vector, psn  where caps  is vector that store psn  

temporarily. Similar to Equation (2.24) these can be defined as: 
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(1), psn(2), psn(3)

caps(1), (2), (3)

psn

caps caps

 


 

psn
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 (2.25) 

All other parameters in the algorithm are variable. The intersection point is calculated using 

Equation (2.23). The above unit of algorithm is named for further reference as 

‘INTEGRATED ALGORITHM A’ abbreviated as IL-A.  

Since  a face of a box is common for two adjacent boxes so the refracted ray will be 

the incident ray for next adjacent box and the calculated intersection point will be the point 

on one face of the new box where the ray incidence take place. Now the same procedure can 

be applied to find out the refracted ray within this current box and the point of intersection on 

another face from which the ray will emerge out from the current box. In this way all the 

intersection point can be determined. The above ideas have been used to develop a basic unit 

of an algorithm called as IL-B and is shown in Figure 2.6 to solve two point ray tracing 

problem. This is called basic unit as it is basically do one point ray tracing, in other words for 

a given trial take off angle the ray is traced through the model. The algorithm perform two 

point (source and station) ray tracing under the condition that out of a number of trial take off 

angle which requires as input at least one take off angle must be the such angle that give 

acceptable error which measure the distance between final intersection point and station 

location. Once the final intersection point is determined on the outer boundary of a model 

surface for a given takeoff angle, the actual takeoff angle by which the ray comes to the 

station is determined by the following way after setting an error term having some low 

admissible value. 
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Figure 2.6: The basic ray tracing algorithm. All the shapes in the Figure have standard 

meanings. 

 

The unit algorithm IL-B has two different types of output for two different values of 

switch. The switch with value 0 is run to obtain error series and number series, each of length 

l whereas the same switch with value 1 is required to obtain point series and block series of 

length int. The error here is defined as the distance between final intersected point and 

destination point, therefore for N trial angle there exists a maximum of N different values of 
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error which are stored in an array called as error series. The parameter er can be defined as 

an acceptable error. For each value of error the corresponding n value indicating n
th

 trial 

angle is stored in number series. The parameter point series store all the intersected points of 

true ray path or final ray path that intersects different unit cells (boxes) of the model. The 

number series parameter store sequentially the identity of all the unit cells through which the 

final (true) ray pass. The process path with switch value 0 is through ABCDEFGHI whereas 

the process path with switch value 1 is through ACDJ. 

 

2.5 ALGORITHM OF RAY TRACING USING TYPE-B PARAMETERIZATION 

This section presents ray tracing algorithm which is based on Type-B 

parameterization. The geometry of ray path in this model definition may show self reflection 

phenomenon because of bending of layers in Type-B model definition, therefore unlike IL-B, 

reflection cannot be neglected here. The first basic integrated algorithm, the IL-A is therefore 

modified to incorporate the reflection phenomenon and the modified version is shown in 

Figure 2.7(a) which is marked as MIL-A. All the basic steps are same as that of IL-A except 

initial input and one sub-process marked by shape A and final output. Two extra parameters 

nlp and scf are used in the input box which defined respectively interface number and 

interface coefficients. The output box has two extra parameters, rf and sn. If the value of n is 

neither 1 nor 2 then rf having value 1 indicate the phenomenon of refraction else reflection. 

The sn is a vector representing normal to the layer surface at the point of intersection, when 

the value of n is neither 1 nor 2. 

The sub-process A is designed to perform the change in IL-A. This is aimed to check 

intersection with the interface above (when refraction takes place) and below (when self 

reflection takes place), bounding a unit voxel. After deciding intersection the lengths of line 

segments between intersected points and pso are determined and corresponding to shortest 

length segment refraction or reflection is chosen temporarily. The shortest line segment 

within the unit cell is then compare with dist and shortest of these two is chosen final dist. 

Corresponding to that dist either refraction or reflection with above or below interfaces is 

chosen with n value 3 or with vertical wall with n value 1 or 2. The last step of this sub-

process is to find the unit normal vector at the point of refraction or reflection if these 

phenomenon are chosen to occur. Therefore the general steps of sub-process A can be 

summarized as: 

1. Compute intersection point between an interface (nlp) defined by coefficients (scfnlp) 

and a line given by tangent m passing through point pso and save it as intersected 

point, p1. 
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2. Compute intersection point between an interface (nlp-1) defined by coefficients (scfnlp-

1) and a line given by tangent m passing through point pso and save it as intersected 

point, p2. 

3. Compute two lengths as mod of pso-p1 and pso-p2 and select the minimum of these 

and dist. 

4. Reflection occur only when the mod of pso-p2 is smallest and for which set rf=0 else 

refraction occur and set rf=1. 

5. If rf=1 and dist is smallest then intersected point lies on the vertical wall of unit cell. 

For this case go to next adjacent process in the MIL-A. 

6. If rf=1 and mod of pso-p1 is smallest then intersected point lies on the interface 

segment bounding unit cell. For this case compute the normal vector sn at the point of 

intersection on the interface. 

Once the MIL-A is defined a minor change is done in the IL-B between box B and C 

in Figure 2.6, as shown in Figure 2.7(b). The box B is split into two parts and this helps to 

update the unit vector for reflection using Equation 2.19. 

 

                                   (a)                                                                           (b) 

Figure 2.7: The replacement units of IL-B to convert the same into IL-C. The sub-process A 

is added in IL-A to convert the same into MIL-A (a) which is added in IL-B to convert the 

same into IL-C (b).  
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2.6 THE SPIRAL PATH SEARCH METHOD (SPSM) 

The spiral search method is designed to find quickly the true unit take off vector in 

the IL-B or IL-C sub-process to complete the two point ray tracing. In the beginning, a 

circular search area is oriented at the position of destination point (receiver) of ray tracing in 

such a way that a normal to that area, passing through centre of the area pass through the 

origin at source. Continuous equispaced nodes are then created along the perimeter of a 

spiral constructed on the circular area with centre at the centre of circular area. All such 

nodes together with origin makes the trial takes off vectors. If switch is kept zero in the 

beginning in IL-B or IL-C, then the output of ILB or IL-C is error series measuring the 

distance of final intersected point and destination point for each take off unit vector. These 

set of takeoff vectors are analysed in a special fashion to create next set of take-off vectors 

which are used in next iteration of IL-B or IL-C. The complete mathematical theory is given 

in § 3.5.1 and § 3.5.2. 

 

2.6.1 EQUATION OF SPIRAL 

Consider the spiral motion of a point L
1
 around a point L in such a way that the locus 

of the point L
1
 is defined by a variable radius sr and an angle . Radius sr  measure the 

distance between points L and L
1
 and angle is the angle made by radius sr at point L with 

respect to a reference axis. Further assume that one round of point L
1
 around point L makes 

an increase of radius sr  by l , which leads to relate these parameters as: 
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
   (2.26) 

The perimeter C of the spiral is given by: 
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Using Equation (2.26), the Equation (2.27) becomes: 
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Consider that there exists equispaced n  discrete points all through the perimeter and spacing 

between two adjacent point is l , then 
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From Equations (2.26) and (2.30), it is possible to write: 

 2 n   (2.31) 

 

Equation (2.31) describe the equation of spiral motion of a point L
1
 in terms of discrete 

number n  and step length l . Equispaced discrete points along the perimeter of spiral are 

shown in Figure 2.8. This equation is used to define the initial take-off vector at the position 

of source.  

 

Figure 2.8: Equispaced discrete points on a spiral. 

 

2.6.2 EQUATION OF DISCRETE TAKE OFF VECTOR 

Consider a spherical coordinate system keeping the source at the centre, O and a 

spiral around a station A in such a way that a perpendicular through the point, A of spiral 

pass through the origin O of the coordinate system as shown in the Figure 2.9. Two 

perpendicular axes, CC and BB are drawn on the plane of spiral in such a way that BB lies in 

the xz plane and CC lies in the OAA plane. Let P is a trial point on the spiral, with radius sr , 

then to find out the position P, two perpendicular lines from p are drawn on BB  and CC as 

PM and PL. For simplicity of understanding the image of points M, A and axis CC are drawn 

on xy plane as M
1
, A

1
 and M

1
A

1
respectively. 

It is clear from the geometry of Figure 2.9 that the approximate position P can be 

written as: 
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Where,  
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Figure 2.9:  Geometry of spiral and its location with respect to source position at origin O. 

 

Substitution of Equations (2.30) and (2.31) in set of Equations (2.33) gives: 
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 (2.34) 

 

Equations (2.34) and (2.32) are utilized to determine an initial takeoff angle required in the 

algorithm IL-B. The initial take off angle corresponding to a particular value of n  are chosen 

to be one that gives minimum error between observed and computed traveltime. Let mn  is 

the node in the spiral, corresponding to m , m  and mR  that give minimum traveltime error. 

The next step is to shift the position of centre of spiral to this position and search by 

decreasing the value of step length l by some appropriate amount. 

The new area of search is selected based on the fact that the new maximum radius of 

spiral must connect the grid point corresponding to least error and a grid point sn

corresponding to second least error. 
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Figure 2.10: Geometry of nine nodes used to define parameters for next iteration in spiral 

search. Grid point mn  and 8 corresponds to the first and second least errors respectively in 

first iteration.  

 

To determine sn , 8 grid points are considered around mn  as shown in Figure 2.10. 

Grid point 1 and 2 are adjacent to mn . Grid point 4 and 7 are the grid points which are 

respectively almost one turn lesser and one turn higher than the number of turn 

corresponding to mn  grid point. These grid points are computed as: 
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O1 and O2 represent error as excluding these right hand side is integer multiple of 4 while 

left hand side is fixed by mn  due to Equation (2.31), therefore  
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The point 3 and 5 are adjacent to point 4 and points 6 and 8 are adjacent to point 7. The trial 

take off angle corresponding to all these 8 grid points are computed and l-errors associated 

with these angles are registered during the computation of mn . Here, l-error is the measure of 

distance between final intersected point and station location. Let us suppose that the second 

least l-error after what is given by mn grid is determined to point 8 as shown in Figure 2.10, 
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and then it is sufficient to consider the maximum spiral area of second search with slightly 

larger than the radius which is a length of line segment connecting grid point 
mn  and 8. 

 

2.7 AN ALGORITHM TO COMPUTE TWO POINT RAY TRACING 

This section describes a complete two point ray tracing algorithm. In the preceding 

section, the algorithm solve the two point ray tracing only when a takeoff angle out of a 

number of trail takeoff angles given in form of unit vector gives minimum acceptable length 

error (l-error) measured in terms of length between final intersection point and destination 

point in the model. The problem of finding one true take off angle is solved using spiral path 

search method described in section 3.5. Therefore the condition of algorithm IL-B is 

removed by joining spiral search method as shown in Figure 2.11.  The IL-C sub-process can 

also be used in place of IL-B sub-process. 

The algorithm requires a circular search area lying perpendicular to a line passing 

through the origin of coordinate system in the model. This area with step size, l  decides the 

maximum number of trail take off angles or unit vectors or maximum number of steps, N-

step that is required to solve two point ray tracing. The N-step is given with the help of 

Equation (2.30) as: 

 
2

maxr
N step

l


   (2.37) 

  

Where, maxr  is the maximum radius of search area. The parameters R ,   and defines the 

initial position of spiral search area and are set initially using the coordinates of destination 

point (station) with respect to origin at initial point (source). The parameter iter is for 

iteration number and N-iter for maximum number of iteration. Setting switch=0 in the 

beginning, the operation begins with ‘block A’ which generate N step  unit take off vectors 

using Equations (2.33) and (2.35). As the parameter switch is set to zero in the beginning so 

the sub-process IL-B generates error series with nodes of the spiral that is checked in the 

further process to decide next iteration whether to begin. 

After completion of sub-process IL-B, the node at which l-error is minimum is 

searched out by scanning the error series and it is termed as first minimum l-error node. The 

spiral is repositioned on the takeoff vector along the first minimum l-error node in the spiral. 

This operation is performed by block C. After operation block C l-error corresponding to 

first minimum l-error node is compared with acceptable error, N-error. At this position iterr 

is also compared with N-iter. After operation by block C followed by No decision, two nodes 
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in the spiral are obtained from the error series using Equation (2.37). Further extra six nodes 

are also selected which are adjacent to the previously selected nodes and lie along the 

perimeter of spiral. Out of 8 extra nodes selected one node is selected that have minimum 

error and called as second minimum l-error. The distance of this node from first minimum l-

error node in spiral is the radius of search area for next iteration. The next iteration step l  is 

set in block D by dividing the radius of search of next iteration by N-step. 

 

 

Figure 2.11: A two point ray tracing algorithm is shown.  

 

2.8 NUMERICAL EXPERIMENTS 

          This section presents six numerical experiments that have been carried out using the 

developed algorithms to justify the snell’s law and validity of wave propagation. 

 

2.8.1 EEPERIMENT 1     

This experiment is performed  to show that ray path is straight in a uniform velocity 

medium. A three dimensional homogeneous model as shown in Figure 2.12 has been 
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considered. A point source has been placed at the bottom of the model and a station has been 

located at the surface of the model. The parameters for model, source and station co-

ordinates are tabulated in Table 2.1. 

 

 

 

 

 

 

 

 

 

                                                                 X axis 

Figure 2.12: A model of uniform velocity medium. 

 

Table 2.1: The parameters taken for the model in Figure 2.12 

Parameters Values 

Model dimension (100×10×100) km 

Voxel size (2.0×2.0×2.0) km 

No of Voxels 50×5×50 

Source co-ordinate (0,0,0) km 

Station co-ordinate (80,0,100) km 

Velocity 5 km/s 

 

 

Figure 2.13: Ray path obtained for the model considered in Figure 2.12. 

V= 5.0 km/s 

Z axis 

 

Y axis 

 

 

 (0,0,0) 

V= 5.0 km/s 
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The ray path has been traced out and the result is shown in Figure 2.13. From the 

same figure it is clear that the ray path is a straight line joining source and station. 

 

2.8.2 EXPERIMENT 2 

This experiment is performed to show the validity of Snell’s law. To show the 

validity of Snell’s law by the solution, a model with two different velocities as shown in 

Figure 2.14 has been considered. The boundary separating two media is a plane at Z=50.0 

km. The source has been placed at the bottom of the model and the station at the top of the 

model. The parameters for model, source and station co-ordinates are tabulated in Table 2.2. 

 

 

Figure 2.14: A model with two media having different velocities. 

 

Table 2.2: The parameters taken for the model in Figure 2.14 

Parameters Values 

Model dimension (100×10×100) km 

Voxel size (2.0×2.0×2.0) km 

No of Voxels 50×5×50 

Source co-ordinate (0,0,0) km 

Station co-ordinate (80,0,100) km 

Velocities 4.8 km/s (upper medium) 

6.0 km/s (lower medium) 

Boundary plane  At Z=50.0 km 
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The solution was obtained and the result is shown in Figure 2.15. 

 

 

Figure 2.15: Ray path obtained for the model considered in Figure 2.14. 

 

Since the ray covers a distance of 47 km up to the boundary so the incident angle 𝜃𝑖 at the 

lower boundary is given by 

𝜃𝑖 = tan−1 (
47

50
) = 43.2285𝑜 

 

And the corresponding refracted angle 𝜃𝑟 is given by 

𝜃𝑟 = tan−1 (
80 − 47

50
) = 33.4248𝑜 

 

From the Snell’s law we have 

sin 𝜃𝑟
sin 𝜃𝑖

= 0.8 =
𝑉2
𝑉1

 

Where, the ratio 
𝑉2

𝑉1
  is the ratio of velocity of upper medium and that of lower medium and 

since this is also 0.80 so the Snell’s law is justified. 

 

2.8.3 EXPERIMENT 3 

This experiment is performed to show that the solutions give the first arrivals in few 

cases. To show this a three dimensional uniform velocity model was considered and a high 

velocity rectangular body was kept inside the model as shown in the Figure 2.16. The 

parameters for source and station and model are given in Table 2.3. 

V=4.8 km/s 

V=6.0 km/s 
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Figure 2.16: A model of uniform high velocity burried body in a uniform medium. 

 

Table 2.3: Parameters taken for the model in Figure 2.16 

PARAMETERS VALUE 

Model dimension (300×20×300) km 

Voxel size (2.0×2.0×2.0) km 

No of Voxels 150×10×150 

Source co-ordinate (0,0,0) km 

Station co-ordinate (150,0,300) km 

Velocities 8.0 km/s (buried rectangular body ) 

4.0 km/s (medium) 

Size of the buried  body (100×20×175) km 

Location of the buried body At X=100 km at the bottom of the model 

 

 

Figure 2.17: Ray path obtained for the model considered in Figure 2.16. 
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The solution was obtained which is shown in Figure 2.17. The red ray path is the 

solution obtained. The black ray path was drawn to show that it would have been the actual 

path if there were no high velocity buried body. The arrival time of black ray is more than 

the arrival time of red ray, so it justifies that the solution give the first arrivals.     

 

2.8.4 EXPERIMENT 4 

Experiment 4 is performed to show that if velocity in a medium increases 

continuously then the ray path becomes a curvature. To show this a three dimensional model 

as shown in Figure 2.18 was considered. The velocity of the medium was allowed to increase 

continuously along the positive Z axis only. The parameters for source, station and model are 

given in Table 2.4. 

 

Table 2.4: parameters taken for the model in Figure 2.18 

Parameters Values 

Model dimension (100×10×100) km 

Voxel size (2.0×2.0×2.0) km 

No of Voxels 50×5×50 

Source co-ordinate (0,0,0) km 

Station co-ordinate (70,0,100) and (80,0,100) km 

Velocity function 3.0+0.04Z km/s 

 

 

Figure 2.18:  A Model having constant gradient of velocity along Z axis. 
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The solution was obtained for two station locations at the top surface of the model, 

one at X=70 km, Y=0 km and other at X=80, Y=0 km which is shown in Figure 2.19. The 

ray path is completely a curve with constant gradient. Further, it can be observed that as the 

station offset along X axis increases the pattern of the ray path does not changes which can 

be explained by Snell’s law. 

 

 

 

Figure 2.19: Ray paths obtained for two station locations for the model considered in Figure 

2.18. 

 

2.8.5 EXPERIMENT 5 

Experiment 5 is performed to show that if velocity decreases in a medium 

continuously along a direction then the shape of the curvature for the ray path, for a 

particular source and station location, remains the same as that of when velocity increases 

continuously along that direction but the curve convexity align in opposite direction. Further 

to show that if velocity is allowed to increases along the perpendicular direction too then the 

gradient of the entire curve of ray path increases. To show this a three dimensional model 

shown in Figure 2.20 has been considered. First velocity allowed decreasing along positive Z 

axis and result was obtained and then velocity was allowed to increase along positive X axis, 

along with decrease along positive z axis. The model parameters and the source and station 

location are given in Table 2.5.  
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Figure 2.20: A model whose velocity varies in two directions according to the velocity 

function shown in the same figure. 

 

Table 2.5: parameters taken for the model in Figure 2.20 

Parameters Values 

Model dimension (100×10×100) km 

Voxel size (2.0×2.0×2.0) km 

No of Voxels 50×5×50 

Source co-ordinate (0,0,0) km 

Station co-ordinate (80,0,100) km 

Velocity function 6.0+0.04X-0.04Z km/s 

 

The solutions were obtained and are shown in Figure 2.21. The black curve in the 

Figure 2.21 is the solution for ray path when velocity decreases along only positive Z axis 

and green curve was obtained when velocity was allowed to increase along positive X axis 

along with decrease along positive Z axis. It is clear that the convexity of curve of the ray 

path align towards bottom-right side which is opposite alignment of the convexity with 

respect to the curves in Figure 2.19 of model shown in Figure 2.18, when velocity was 

allowed to increase along positive Z axis. Further, from the figure it is clear that the 

convexity of the ray path increases when velocity was allowed to increase in positive X axis 

along with decrease in positive z axis.  
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Figure 2.21: Ray paths for two type of velocity function for the model considered in Figure 

2.20. Red ray path is obtained for the velocity function shown in the model but black ray 

path is obtained when the variation of velocity along z axis is not allowed. 

 

2.8.6 EXPERIMENT 6 

This experiment is performed to show that if velocity of a heterogeneous medium 

increases or decreases continuously along two mutually perpendicular direction then the ray 

path becomes symmetrical with respect to these two direction. 

First a three dimensional homogeneous model was considered with dimension given 

in Table 2.6. Then velocity is allowed to increase continuously along positive X and Y axis 

and to decrease along positive Z axis with a function given in Table 2.6. The parameters for 

this model, source and station are also given in Table 2.6. 

 

Table 2.6: Parameters for the model considered in Figure 2.22 

Parameters Values 

Model dimension (100×100×100) km 

Voxel size (2.0×2.0×2.0) km 

No of Voxels 50×50×50 

Source co-ordinate (5,5,0) km 

Station co-ordinate (80,80,100) km 

Velocity function 𝑉 = 6.0 + 0.04𝑥 + 0.04𝑦 − 0.04𝑧 km/s 
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Figure 2.22: The ray path in three dimensions for a model having same positive constant 

velocity gradient along X and Y axis but along the Z axis gradient is constant but negative.  

 

The resultant ray path is shown in the same Figure 2.22. It is clear from the same 

figure that the ray path is concave towards upward direction which is due to increment of 

velocity along downward direction. It is further observed that the ray path is symmetrical 

along a plane through the major diagonal of bottom and upper surface of the model. This is 

because of uniform velocity increment along positive X and Y direction. 

 

2.9 CONCLUSIONS 

Two types of model parameterizations are considered. In one type, model 

parameterization using Constant Velocity Voxels (CVV) is considered. This type of model 

parameterization is simple to define and solves many problems in tomography. Though CVV 

is simple it does not address smoothly 3D layer geometry of real earth. In that context, 3D 

interfaces defining discontinuities of media are incorporated in CVV parameterization to 

define smooth 3D layers of Earth. Appropriate vector equations for refracted, reflected rays 

and point of intersection between a line and a plane are derived. These are used in 

developing algorithm for one point (considering source without receiver) ray tracing using 

both types of parameterization considered. The phenomenon of self reflection that may take 

place in a 3D layer is also considered in the algorithm. Two point ray tracing (complete ray 

Station 

location 

Source 

location 
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tracing using source and receiver) is considered using a method which is called as spiral path 

search method. The formulation of spiral path search method and its use in the algorithm are 

discussed. The developed algorithm for two point ray tracing is tested using several 

numerical experiments which satisfy the normal wave propagation theory numerically.  
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3

 

NUMERICAL EXPERIMENTS ON FAST MARCHING METHOD 

 

 

 

 

 

3.1 INTRODUCTION 

Prediction of seismic ray paths between two points in a medium with lateral velocity 

variation is required in many application of seismology including body wave tomography, 

earthquake relocation and migration of reflection data. Accurate prediction of seismic ray 

paths between two points in heterogeneous media is one of the challenging problems in 

seismology. The difficulty of computing such ray paths arises from the non-linear 

relationship between velocity and ray path geometry. 

Over the past few decades, the growing demand of accurate and fast computation of 

seismic ray paths has spawned a number of ray based and grid based techniques. The 

conventional method of predicting the source receiver ray path has been ray tracing as given 

by Julian and Gubbins (1977), Ćervený (1987, 2001), Virieux and Farra (1991). In this 

method trajectory of ray paths between two points are directly computed. This approach is 

highly accurate and efficient in homogeneous or mildly heterogeneous. However in a 

heterogeneous medium the ray tracing method often fail to converge to a true ray path and 

does not give guarantee as to whether ray path is for first arrival seismic energy or for 

multiples. 

A number of methods based on grid base numerical techniques developed addressing 

the same problems in the early 90s. Some of these are three dimensional finite difference 

methods as given by Vidale (1990), two dimensional explicit finite difference method as 

given by Van Trier and Symes (1991), three dimensional explicit finite difference methods as 

given by Popovici (1991). Popovici showed the problem of instability in his method. 

Schneider (1995) reduces the problem of instability and devised a three dimensional robust 

finite difference technique, Podvin and Lecomte (1991) extended the work of Vidale’s 

algorithm. However the use of finite difference methods solves the problem of locating ray 

paths for first arrival seismic energy often in heterogeneous media but again there is no 

guarantee that the solutions give the first arrivals in a medium with steep velocity gradients 
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as shown by Rawlinson and Sambridge (2004). Aside from the problem of computing first 

arrivals, the problem of stability of algorithms based on simple numerical schemes in highly 

heterogeneous media becomes a question as shown by Sethian (1996). 

The problem of locating the first arrival seismic ray path is equivalent to tracking an 

interface propagating with a velocity normal to itself.  Fast Marching Method originally 

developed in the field of computational mathematics is highly efficient and accurate 

technique that deals with the problem of evolution of interfaces in heterogeneous media. 

Initially the work of Sethian (1982, 1987) lead to the development of level set method as 

given by Osher and Sethian (1988), and finally to Fast Marching Method by Sethian (1996). 

This method is based on construction of entropy- satisfying viscosity solutions of appropriate 

partial differential equations by using numerical schemes. The algorithm based on this 

method accurately and robustly deals with the heterogeneity of a medium with the formation 

of cusp, corner and topological changes in the propagating interfaces. The condition of 

entropy controls the solutions to give first arrivals and the condition of viscosity makes the 

algorithm stable in a medium with steep velocity gradients. Further the application of narrow 

band makes the algorithms very fast in computation. 

The knowledge of approximate model close to the actual model of subsurface of a 

region is a key to perform a precise seismic tomography of subsurface of that region. 

Choosing such model of subsurface of a region, particularly in a new region where no work 

related to subsurface structure has been done is another problem in field of seismic 

tomography. This Chapter presents the basics of Fast Marching Method and its utilization to 

obtain the traveltime responses of various numerical models simulating different geological 

models and their studies. It is possible to obtain the contours of traveltime from the data 

recorded in a network of seismographs installed in a region of earth. The contours of 

different artificial model then can be utilised to check for matching with that of observed 

responses. The matching of the observed response with the possible responses of different 

models may serves as a good idea to choose the approximate model of subsurface of a 

region. 

 

3.2 GENERAL SOLUTION OF UPWIND DIFFERENCE SCHEME 

The general solution of the marching Equation (1.19) in Cartesian co-ordinates with 

regular grids can be obtained by considering all the eight quadrants with respect to a grid 

point (unknown grid point) where the value is desired to be computed. The first order general 

solution to that grid point for traveltime in any quadrant can be written as: 
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In the above equation xC , yC , zC  and xT , yT , zT  are respectively the coefficients of 

traveltimes and traveltimes, to the adjacent grid points in x, y, and z directions separated by 

x , y  and z  with respect to the unknown grid point. The value of coefficients to any of 

the surrounding grid points will be one; if and only if the propagating wavefront has already 

passed through that point. Since there will be one traveltime value for the unknown grid 

point computed from one quadrant and there can be a maximum of eight quadrants so there 

will be a maximum of eight possible solutions for traveltime to the unknown grid point. Out 

of all possible solutions the smallest one would be the correct solution. 

 

3.3 IMPLEMENTATION OF NARROW BAND TECHNIQUE 

The upwind difference Equation (1.19) has the property of direction of flow of 

information or the property of entropy that it always computes the traveltime from smaller 

value to larger value and never from larger to smaller. To explain this two dimensional 

schematic diagram of grid points is shown in Figure 3.1, where at certain time of 

computation the position of wavefront is shown with red and black grid points. All the grid 

points in the wavefronts are called Close points, all the grid points (white grey points) 

through which wavefront has passed are called Alive points and all the grid points (white grid 

points) where traveltime has not been computed are called Far points. The narrow band 

evolved in downwind fashion by finding the Close point with minimum traveltime (which is 

true first-arrival traveltime), tagging it as Alive, updating any adjacent Close points and 

computing for the first time any adjacent Far points using Equation (3.1). If Far point is 

computed it is tagged as Close. Using this technique the shape of narrow band approximates 

the shape of first arrival wavefront. Choosing the Close point with minimum traveltime 

means that causality is satisfied. Use of binary mini heap sorting to locate the global 

minimum within narrow band decreases the computation time significantly and makes this 

method very fast. If there are N total grid points in the grids and NB is the maximum number 
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of points in the narrow band, then using the mini heap sorting the scheme solves the problem 

in N log(NB) steps as shown by Sethian and Popovici (1999). A simplified algorithm for 

computation of traveltimes to a set of grid points is given in Figure 3.2. 

 

 

Figure 3.1: Narrow band or wavefront evolution technique. Gray points are the Alive points, 

black points and red point are Close points in which red point is having minimum traveltime 

and white points are Far points. The upwind side contains all the Alive grid points and 

downwind side contains all the Far grid points. 

 

 

 

Figure 3.2: An algorithm to compute traveltimes to a set of grid points. 

 



87 
 

3.4 INCORPORATION OF HEAP SORTING IN NARROW BAND 

The key to an efficient version of the above technique lies in the fast way of locating 

the grid point in the narrow band with the smallest value for T. For this three types of 

different priority mini-heap have been constructed.  

A heap is a complete binary tree that can support the two operation (select or delete) 

efficiently in  logO n time, where n is a set of elements in the binary tree. Selecting the 

minimum element from the heap takes  1O time and deleting the minimum element from 

the heap takes  logO n time. A binary tree has a root at the topmost level. Each node has 

zero, one or two children. A binary tree can be complete or incomplete both are shown in 

Figure 3.3. A complete binary has exactly two children in every internal node. 

 

          

                               (a)                                                                           (b) 

Figure 3.3: Schematic diagram showing two types of binary tree; a complete binary tree (a) 

and an incomplete binary tree (b). 

 

The value stored at a node is smaller than or equal to the values stored at its children. 

A heap possessing this property is referred to as a min-heap. The property of a mini heap is 

that if any node value is changed, or a data is added at the bottommost node or if the root is 

removed then the tree restores its mini heap property again. The mini heap is implemented in 

the algorithm respecting the priority and value of data. A data value which is less than parent 

always moves towards the root but never if the data value is greater. A data value which has 

gone through maximum number of updating process is always assigned to higher number of 

priority. Depending upon the value of data and its priority in the algorithm how data flow 

takes place are given below: 

1) When a far point value is newly computed then this value is added to the bottom and 

this data moves towards the root only when the value of this data is smaller than the 
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data value stored at its parent. That means if both the value are equal even then the 

newly computed value is not permitted to move towards parents. This is because of 

priority that the data value which is added is new but data value of parent might have 

gone through the process of updating or re-computing. 

2) When a close point is updated that means at certain node of the binary tree the value 

is changing. To restore the mini-heap property respecting the priority this data value 

moves towards the root when its value is less than or equal to the value stored at its 

parents. Here even if two values are equal the updated value is permitted to move 

towards root because it might have gone through maximum number of updating 

process than the parent. If the updated data value is greater than its parent’s data 

value then the updated value will move towards bottommost level comparing with its 

own children’s data values, so that mini heap property restores back. 

3) When the minimum value is deleted from the root to make it live point then the 

bottommost data value takes its position. This data moves towards bottom if the value 

of this data is equal to or greater than the data value of its own children. Even if the 

data value equals to any of (both) the data values of children this data moves toward 

the branches because it has less number of priority which in turn because it has come 

from the bottommost level where the newly computed data value is added. 

 

The result of applying the above concepts in algorithm makes the algorithm much 

faster than the linear operation. If there are N total points in the grid and NB is the maximum 

number of points in the narrow band, then the scheme solves the marching equation in 

 logO N NB  steps. When the maximum number of points in the narrow band is unknown, 

the upper bound is  logO N N  steps. 

 

3.5 NUMERICAL CASE STUDIES 

The Fast marching method has been used in a variety of numerical models to 

compute the traveltime responses. The traveltime contours for these models are plotted 

correspondingly to study their patterns.For the sake of discussion, only two dimensional 

sections have been shown but whenever need of three dimensional view comes into picture, 

that has been respected. 
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3.5.1 EXPERIMENT 1 

The aim of this numerical experiment was to justify a general statement that in a 

homogeneous medium wavefronts travel equal distance at equal interval of time. To obtain 

the behaviour of wavefronts in a homogenous medium a three dimensional homogenous 

model, as shown in Figure 3.4 was considered and a source was placed inside the model. The 

model was practically simulated by gridding parameterization. The parameters for source 

coordinates and model are shown in Table 3.1.   

 

 

Figure 3.4:  Schematic diagram showing three dimensional homogenous model. 

 

Table 3.1: Parameters for the model considered in Figure 3.4 

PARAMETERS  VALUE 

Model dimension (300×300×300) km 

No. of grid (151×151×151) 

Grid spacing (2×2×2) km 

Source position (50×50×50) km 

Medium velocity 6.0 km/s 

 

With these parameters the FMM was imposed and depth slice or two dimensional 

contours across the source at a depth of 50 km were obtained and are shown in Figure 3.5. 

The time slices or the three dimensional wavefronts at 20 s, 30 s, and 45 s were also obtained 

and are shown in Figure 3.6, 3.7 and 3.8 respectively. 
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Figure 3.5: A depth slice of the wavefronts through source, showing that at equal interval of 

time wavefronts propagate equal distance in a homogenous medium (the results obtained for 

model in Figure 3.4). The time interval between two successive wavefronts is two seconds, 

which is also shown on the colour scale for the contour. 

 

     From the Figure 3.5, it is clear that contour lines are equally spaced and since the 

contour interval is constant so it justifies that at equal interval of time wavefronts propagate 

equal distance in a homogenous medium. The velocity, time and distance relation can be 

verified mathematically if for a given S second contour line, the contour line crosses the X, Y 

axis at an offset given by: 

       2 2
6 50 50offset XorY S km

 
  
  

 (3.3) 
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Figure 3.6: Position of the wavefront above the source or Z=50 km at 20 s within the model 

in Figure 2.1 (After plotting the results obtained for model in Figure 3.4) (A) A view from 

above (0,0,0) coordinates (B) a view from above (300,300,0) coordinates.  

. 

(B) 

(A) 
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Figure 3.7: Position of the wavefront above the source or Z=50 km at 30 s within the model 

in Figure 3.4 (After plotting the results obtained for model in Figure 3.4) (A) A view from 

above (0,0,0) coordinates (B) a view from above (300,300,0) coordinates.  

 

(A) 

(B) 
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Figure 3.8: Position of the wavefront above the source or Z=50 km at 45 s within the model 

in Figure 3.4 (After plotting the results obtained for model in Figure 3.4) (A) A view from 

above (0,0,0) coordinates (B) a view from above (300,300,0) coordinates.  

 

(A) 

(B) 
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It can be easily shown that for any contour line the velocity, distance and time 

relation is satisfied.  It is also observed that the contour lines are circular except the contour 

lines very close to the source. The reason for this has been discussed in the theoretical part of 

this paper. Since the contours are circular in nature so it can be stated that velocity, time 

distance relation is satisfied in a horizontal plane (X-Y plane). 

The complete wavefront at 20 s are shown in Figure 3.6. From the relation (3.3), the 

X and Y offset should be 159 km which clear from the Figure 3.6. The Z offset can be 

obtained from the relation given below. 

    2 2 26 50 50offset Z S km   
  

 (3.4) 

For 20 s wavefront this is 97 km which is clear from the figure. Hence from these 

analyses it is found that wavefront satisfies the distance, time and velocity relationship in all 

three axes. From the back view of all figures it is clear that the wavefronts are spherical. 

Hence it can be justified that for all the wavefronts the distance, time and velocity relation 

are satisfied in any direction. 

 

3.5.2 EXPERIMENT 2 

In this numerical experiment it has been justified that solutions obey the Snell’s law. 

For this a model as shown in Figure 3.9 was considered and a source was placed inside the 

model. The model was practically simulated by gridding parameterization. The parameters 

for source and model are shown in table 3.2. 

 

 

Figure 3.9: A three dimensional model having two media of different velocities (After 

sketching). The velocity of upper medium is 4.0 km/s and that of lower is 7.0 km/s. 
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Table 3.2: Parameters for the model considered in Figure 3.9 

PARAMETERS  VALUE 

Model dimension (500×20×800) km 

No. of grid (251×11×401) 

Grid spacing (2×2×2) km 

Source position (20×10×800) km 

Medium velocities 4 km/s (upper medium) and 7 km/s (lower medium)  

 

With these parameters the FMM was imposed and the results were obtained. The 

vertical section of the wavefronts through the source, from Z=100 km to Z=500 km, are 

shown in Figure 3.10.  

 

 

Figure 3.10: A portion of vertical slice of the wavefronts through the source, illustrating the 

Snell’s law (After plotting the results obtained for model in Figure 3.6). A ray path (red line 

in the above figure) has been drawn for offset verification by Snell’s law. The offsets at the 

boundary and at Z=100 km along the X axis travelled by the sketched ray obey the Snell’s 

law of refraction. The blue line shows the critical offset along the X axis beyond which head 

waves starts generating. The yellow line shows a normal at the boundary at which refraction 

of red line (red ray) takes place. The time interval between two successive wavefronts is 5 

seconds. 
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To prove the Snell’s law it is sufficient to prove that if a ray incident at the boundary 

separated by two medium at a distance X=A along X axis then the distance X=B along the X 

axis at the bottom of the model covered by refracted ray should be (as predicted by Snell’s 

law): 

 
1 1 1 12 1

1

tan tan sin sin sin sin tan tan
V A X

B A C
V S C

   
     

      
     

 (3.5) 

Where, C is the distance of boundary along Z axis from the bottom of the model, S is the 

distance of point source along Z axis from bottom of the model and 1V , 2V  are the velocities 

of upper and lower medium. If the bottom of the model is not given then the distance 1B  

travelled by the refracted ray along the X axis, 1Z  above the model, is given by: 

    1 1 1 12 1
1 1 1

1

C tan C tan sin sin sin sin tan tan
V A X

B A Z Z
V S C

   
     

        
     

 (3.6) 

Where, 1X is the offset of point source along X axis. 

One ray has been considered that strike at the boundary at a distance of 260 km along 

X axis the refracted ray when traced was found to strike at a distance of 291 km along the X 

axis, 100 km above the bottom of the model. This value is predicted by the above formula. 

So the Snell’s law is justified. The critical offset along the X axis is shown by blue line 

which is approximately 368 km. It is further clear from the figure that above the critical 

offset there are no complementary wave fronts in the second medium for any wavefronts in 

the first medium; this proves that there is no refracted wave in the in the second medium for 

any incident wave in the first medium beyond the critical offset. This again proves the 

validity of Snell’s law. It can further be observed that head wave starts generating beyond the 

critical offset whose propagation will be discussed in forgoing discussion. 

 

3.5.3 EXPERIMENT 3 

The aim of this numerical experiment was to show that beyond the crossover distance 

the first arrivals are critically refracted head waves and hence to justify that the solutions 

give the first arrival waves. For this a similar model as that of in Figure 3.6 was taken but 

with different model parameter as shown in Table 3.3. 
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Table 3.3: Modified parameters for the model considered in Figure 3.9 

PARAMETERS  VALUE 

Model dimension (500×20×350) km 

No. of grid (251×11×176) 

Grid spacing (2×2×2) km 

Source position (20×10×350) km 

Medium velocities 4 km/s in upper medium and 7 km/s in lower medium  

 

With these parameters the FMM was imposed and the results were obtained. A 

portion of vertical section of the wavefronts through the source is shown in Figure 3.11. 

 

 

Figure 3.11: A portion of vertical slice of the wavefronts through the source; illustrating that 

beyond the crossover distance it is the critically refracted head waves that are the first 

arrivals (After plotting the results obtained for model parameter in Table 3.3). The red lines 

in the figure are the ray paths for critically refracted head waves. The white line indicates the 

boundary separating two media and the yellow lines are normals at the boundary at different 

position shown in the figure. The longest yellow line marks the critical offset along X axis. 

The time interval between two successive wavefronts is three seconds. 

 

From the model parameters, the critical offset is 54.82 km which is marked by yellow 

line. It can be observed that beyond the critical offset head waves starts generating. The 

crossover distance from the model parameters is 211.5 km. From the figure it is clear that it 

is the first offset where the head waves come first. It can also be observed that beyond this 

distance all are head waves which are coming to the surface. This is possible only when the 

algorithm gives first arrival solution. This statement is further supported by the fact that all 

the head waves are parallel and their angle with vertical axis is critical angle which in turn 

means that, among all the head waves, the critically refracted head waves are coming to the 

surface. As we know that critically refracted head waves are the first wave among any other 

head waves so it again justifies that the solution gives first arrivals. 
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3.5.4 EXPERIMENT 4  

      In this numerical experiment it has been shown that if a uniform high velocity 

slab is placed in the path of waves propagating in a uniform low velocity medium then the 

wavefronts after crossing the slab remains parallel to the wavefronts what would have 

existed if the slab were absent. For this a model as shown in Figure 3.12 was considered and 

a source was placed inside the model. The model was practically simulated by gridding 

parameterization. The parameters for source and model are shown in Table 3.4. 

 

 

 

Figure 3.12: A three dimensional model showing a high velocity vertical slab parallel to Y-Z 

plane of the model; cutting a three dimensional homogeneous medium (After drawing).  

 

 

Table 3.4: Parameters for the model considered in Figure 3.9 

PARAMETERS  VALUE 

Model dimension (250×200×250) km 

No. of grid (126×101×126) 

Grid spacing (2×2×2) km 

Source position (20×11×20) km 

Medium velocities 6 km/s for medium and 7 km/s for slab 
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Figure 3.13: A vertical section of the wavefronts through the source showing that the 

disturbance of wavefronts propagating in a uniform low velocity medium by a high velocity 

uniform slab happens in such a way that the wavefronts after crossing the slab remains 

parallel to the wavefronts what would have existed if the slab were not present (After 

plotting the results obtained for model in Figure 3.9). The blue line marks, at the surface of 

the slab, the critical offset along Z axis. The ray path (yellow line) after crossing the 

boundary makes an offset from its original path indicated by white line. The velocities are 

shown on the colour scale on the right side of the figure. The time interval between two 

successive wavefronts is two seconds. 

 

The FMM was imposed and the results were obtained and a vertical section of the 

wavefronts through the source is shown in Figure 3.13. From the figure it is clear that slab 

disturbs the wave and all the wavefronts after crossing the surface remains equally spaced 

and parallel to the wavefronts what would have observed if there were no slab. The shift in 

the ray path as shown in the Figure 3.13 by separation of blue line and white line is given by 

the formula: 

 𝑆ℎ𝑖𝑓𝑡 = 𝑍
sin(𝜃𝑟 − 𝜃𝑖)

cos 𝜃𝑖
 

Where, Z is the thickness of the slab, 𝜃𝑟 is the angle of refraction and 𝜃𝑖 is the angle of 

incidence at the surface of the slab. 

0 20 40 60 80 100 120 140 160 180 200 220 240

X axis in km

0

20

40

60

80

100

120

140

160

180

200

220

240

Z
 a

x
is

 i
n

 k
m

6 km/s

6.5 km/s

7 km/s



100 
 

 

 

 

 

Figure 3.14: A three dimensional view of the wavefront within the model at 36 s and above 

the source or Z=20 km (After plotting the results obtained for model in Figure 3.12). (A) A 

view from above (0,0,0) coordinates; (B) a view from above (250,200,20) coordinates. 

 

(A) 

(B) 
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3.5.5 EXPERIMENT 5 

  The aim of this experiment is to show that in a heterogeneous medium the spacing 

between two wavefronts shrink as velocity decreases and separation increases as velocity 

increases. For this experiment a three dimensional model as shown in Figure 3.15 was 

considered and a source was placed inside the model. The model was practically simulated 

by gridding parameterization. The parameters for source and model are shown in Table 3.5. 

 

 

Figure 3.15: A three dimensional heterogeneous model whose velocity function is given in 

the Table 3.5. 

 

Table 3.5: Parameters for the model considered in Figure 3.15 

PARAMETERS  VALUE 

Model dimension (300×20×300) km 

No. of grid (151×11×151) 

Grid spacing (2×2×2) km 

Source position (50×10×50) km 

Medium velocity function V=7.0+0.015X-0.015Z km/s 

 

The velocity continuously increases from the top left corner to bottom right corner of 

the model and there is no change of velocity along the Y axis. The FMM was imposed and 

the results were obtained and the vertical section of the wavefronts through the source is 

shown in Figure 3.16. From this Figure 3.16 it is clear that the separation between the two 

wavefronts increases from top left corner to the bottom right corner which is due to increase 

of velocity. 
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Figure 3.16:  A vertical slice of the wavefronts through the source; showing how the spacing 

between two consecutive wavefronts depends upon time and position of the wavefronts 

(After plotting the results obtained for the model in Figure 3.12). The time interval between 

two successive wavefronts is two seconds. The velocities of the medium are shown on the 

colour scale on the right side of the figure and the red star indicates the source position.  

 

3.5.6 EXPERIMENT 6 

In this numerical experiment it has been shown that the solutions are logical in highly 

heterogeneous media. For this the same model as in Figure 3.15 was considered and a 

heterogeneous high velocity square body was kept within the model. The velocity of this 

body is 0.3 times more than the velocities of surrounding medium. This case simulates a 

heterogeneous buried body in a heterogeneous medium. 

The block size is (38×38×38) km and it was placed exactly in the middle of the 

model. The FMM was imposed and the results were obtained. The vertical section of the 

wavefronts through the source is shown in Figure 3.18. 
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Figure 3.17: A three dimensional model showing a heterogeneous buried body within a 

heterogeneous medium. 

 

 

Figure 3.18: A vertical slice of the wavefronts through the source; showing the behaviour of 

the wavefronts within the heterogeneous model (After plotting the results obtained for model 

the in Figure 3.14). The deep green line shows the path along which there is no change of 

velocity (except within the buried body where it becomes 0.3 times more than the 

surrounding medium) and hence along this direction at any point the relation of distance, 

time and velocity can be easily verified. The yellow lines are drawn for verification of the 

latter statement. The time interval between two successive wavefronts is two seconds. The 

velocities of the medium are shown on the colour scale on the right side of the figure and the 

red star indicates the source position.  
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From the Figure 3.18 the effect of buried body is clear. Since along the bottom left 

corner to top right corner the velocity remains constant except within the body where the 

velocity increases by 0.3 times, the velocity, time and distance relation can easily be shown 

to be satisfied along this direction. For this a wavefront beyond the buried body at 30 s was 

considered and offset along X direction and along Z direction are marked by yellow line. 

This offset is 205 km. It can be shown that this offset satisfy the wave propagation theory. In 

other direction similar way the velocity time and distance relation can be shown to be 

satisfied but with numerous calculations as the velocity does not remain constant along these 

arbitrary directions. 

 

3.5.7 EXPERIMENT 7 

A subducted plate model as shown in Figure 3.19 was considered. The model and 

source parameters are given in Table 3.6. 

 

 

Figure 3.19: A simplistic three dimensional subduction model (After drawing). 

 

Table 3.6: parameters for the model considered in Figure 3.16 

PARAMETERS  VALUE 

Model dimension (800×50×90) km 

No. of grid (401×26×90) 

Grid spacing (2×2×2) km 

Source position (320×25×82) km 

Medium velocities As shown in the model 
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Figure 3.20: A portion of vertical section of the wavefronts through the source; showing that 

only head waves are first arrivals on the exposed surface of subducted plate for the model 

under consideration (After plotting the results obtained for the model in Figure 3.19). The 

time interval between two successive wavefronts is one second. The velocities of different 

plates are shown on colour scale below the figure and the red star indicates the source 

position. 

 

The FMM was imposed and solution was obtained. A strip of vertical section of the 

wavefronts through the source is shown in Figure 3.20. From this figure it is clear that only 

head waves will be the first arrivals on the exposed surface of subducted plate for the model 

and source position considered.  

 

3.5.8 EXPERIMENT 8 

      In Figure 3.21 a simplistic model of a plumbing system of a volcano was shown 

together with waves generated for two locations of sources. In both the figure the position of 

the source is marked by red star. It is clear from the figure that the wavefronts get slower 

through the plums due to their low velocities and this effect keeps on propagating towards 

the surface. 
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                                                               (A) 

 

                                                               (B)        

Figure 3.21: A vertical section of the wavefronts through the source; showing the behaviour 

of waves through the plumbing system (After plotting the results for the model considered in 

section 3.21). The medium velocities and the velocities of the plumes are shown on the 

colour scale on right side of the figure. (A) A vertical section for the source position at 

(150,10,10) km; (B) a vertical section for the source position at (10,10,100) km. The time 

interval between two successive wavefronts is two seconds and the source position are 

indicated by red star.  

 

3.4.9 EXPERIMENT 9 

In this case the traveltime contours for anticline and syncline folds are discussed. The 

parameters of model considered are given in Table 3.7. The traveltime contours for the 

numerical model defined in Table 3.7 for source positions at (50,50,1) km and (100,50,1) km 

are obtained using Fast Marching Method for the same model with and without applying dip 

in the Y-direction which is the direction of strike. The contours are shown in Figure 3.23 (a, 

b, c and d). 
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Table 3.7: Parameters of a model to study anticline and syncline 

Parameters Values 

Model Dimension (150,100,25) km 

Number of grid points (151,101,26) 

Grid Spacing (1,1,1) km 

Source Position (50,50,1) km and (100,50,1) km 

Medium Velocity As shown in Figure 3.22 

 

 

 

Figure 3.22: Anticline and syncline model; in one case the Y-direction is considered without 

dip and in another case the Y-direction is considered with a dip of 6.7°. Direction of strike is 

along Y-axis in the model. 

 

Figure 3.23(a) and Figure 3.23(b) are obtained without applying dip in the Y-

direction in the model. Figure 3.23(a) is obtained when the source is at (50,50,1) km; either 

when source lies below the anticline structure. Figure 3.23(b) is obtained when the source is 

at (100,50,1) km; either when source lies below the syncline structure. From the observation 

of these two it is clear that contours are elliptical in shape with major axis along strike 

direction in case of anticline structure and along dip direction in case of syncline structure. 

Further it can be observed that the spacing between adjacent contours increases in the dip 

direction in case of anticline structure and decreases in the same direction in case of syncline 

structure. Thus it is observed that the shape of traveltime contours is different for anticline 

and syncline fold.  

Figure 3.23(c) and Figure 3.23(d) are obtained when a dip of amount 6.7° is applied 

in the Y-direction of the model. Figure 3.23(c) is for anticline structure and Figure 3.23(d) is 

for syncline structure. It is observed from both the figures that due to application of dip in the 

direction of positive Y-axis the spacing between adjacent contours decreases in the same 

direction for anticline and syncline structures. Thus it is observed that due to change of 

understructure the traveltime contours change symmetrically for anticline and syncline folds. 
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Figure 3.23: The computed traveltime contours; (a) when source is at (50,50,1) km and (b) 

when source is at (100,50,1) km obtained using the model in Figure. 3.22 without applying 

dip in the Y-direction. The computed traveltime contours; (c) when source is at (50,50,1) km 

and (d) when source is at (100,50,1) km obtained using the model in Figure. 3.22 after 

applying dip of 6.7
o
 in the Y-direction 

 

3.5.10 EXPERIMENT 10 

In this section, we present a numerical study of two types of faults, a normal fault and 

a Graben-Horst type of faults. The model parameters for model dimensions, number of grid 

points and grid spacing for both types of faults are same as given in Table 3.7. The vertical 

section of velocity structure for both normal fault and Graben and Horst types of faults are 

shown in Figure 3.24(a) and in Figure 3.24(c) respectively. Traveltime responses for both 

types of fault are obtained using Fast Marching Method keeping the source at (100, 3.240, 1) 

km in case of normal fault and at (73.24, 3.240, 1) km in case of Graben-Horst type of fault, 

as shown in Figure 3.24(b) and Figure 3.24(d) respectively. Contours of traveltimes in Figure 

3.24(b) for both normal fault and in Figure 3.24(d) for Graben-Horst type of fault clearly 

simulate the position of faults considered in the models; hence these kinds of approaches can 

be utilized to identify the position of real fault of actual earth. 
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Figure 3.24: Vertical section of the normal fault model in the X-Z plane, with X-axis as dip 

direction, (a); Contours of traveltime for the normal fault considered in case study, (b); 

Vertical section of Horst and Graben type of fault model in the X-Z plane, (c); Contours of 

traveltime for Gaben and Horst type fault considered in case study, (d). 

 

3.6 CONCLUSIONS 

The first marching method is an efficient tool to obtain accurate traveltime response 

of heterogeneous media. The efficiency lies in the fact that it gives guarantee to the first 

arrival; it is stable because it approximates the discontinuity with weak solution; and it is fast 

because it utilizes the narrow band technique with heap sorting. 

The identification of nature of geological structure of a region is essential in 

tomography problems in seismology. This study gives the comprehensive idea about 

traveltime contours associated with different numerical and geological models. The 

traveltime of different geological models can be compared with the traveltime responses 

derived from traveltime record from a seismic network in a region of earth to understand the 

approximate nature of geological structure of that region. The head waves which are 

extremely useful for locating of thin layer are handled by this method which is one of the 

biggest advantages of this method. 
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                         4 

MULTISTENCILS PSEUDOANISOTROPIC FAST MARCHING 

METHOD 

4.1 INTRODUCTION 

One of the most important characteristics of Fast Marching Method (FMM) as 

described in Chapter 3 is that, during the propagation of fronts, it always makes a distinction 

between grid points with known solution and the grid points with unknown solution by the 

propagating front itself which is in actually constitutes a dynamic narrow band in 

computational domain that simulates the wave propagation. Monotonic evolution of fronts 

are essential in many applications where order of information is important such as robotic 

path planning (Hassouna, 2005), image impainting (Telea, 2004) and computing the fast 

arrival phases in seismology (Rawlinson, 2006). 

It has been observed that major errors in the solutions of FMM in homogeneous 

media using Cartesian coordinate system orient along the diagonal directions of Cartesian 

domain (Sethain, 1997). These errors can be removed to a greater degree by solving the 

FMM in spherical domain but changing the domain of computation from Cartesian to 

Spherical helps to improve the method only in homogeneous media. In inhomogeneous 

media the diagonal errors are distributed randomly in all directions and hence changing the 

computational domain will not decrease the computational error (Sethian, 1997). In spite of 

its several advantages as discussed in Chapter 3, the associated error in FMM limits its 

optimal applicability. 

Many authors (§1.2.2.3) in the recent past have documented a number of approaches 

to reduce the numerical error associated with FMM and to improve the method for it to be 

either computationally efficient (Kim, 2001; Yatziv et al., 2006) or more accurate (Sethian, 

1999; Danielsson and Lin, 2003). All these methods except what proposed by Danielsson 

and Lin (2003) ignore the information provided by diagonal grid points and hence suffer 

from large numerical error along diagonal direction.  
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One of the most recent methods in which diagonal information of grid points is 

considered is Multistencils Fast Marching (MSFM) Method as introduced by Hassouna and 

Farag (2007). The MSFM Method invokes the concept of several stencils on Cartesian 

domains to dilute the diagonal effect in the solution of FMM. Unfortunately, the method 

works well in isotropic or nearly isotropic grid only. In a strongly anisotropic Cartesian grid, 

as the grid spacing is strongly different in different dimensions, the computational error of 

MSFM Method is higher (§5.3) compared with FMM and hence the use of the method does 

not help to improve the basic FMM.  

This chapter presents a novel methodology which has been called as Multistencils 

Pseudo-anisotropic Fast Marching Method (MPFMM) where the concept of pseudo-

anisotropic gradient in computational field, and angular weighted approximation in pseudo-

anisotropic gradient to interpolate directional derivatives in desired directions, have been 

introduced. The use of these concepts in the method opens the possibility to construct desired 

hypothetical stencils in the computational domain to solve the upwind equation without 

depending on natural stencil provided by a given grid system. Since the method gives us 

freedom to construct any shape of stencil; therefore, all possible symmetric stencils in a 

Cartesian grid have been considered to dilute the anisotropic effect of natural stencil in 

computation. The entire methodology improves FMM and MSFM Method to a much higher 

degree.  

 

4.2 MULTISTENCILS FAST MARCHING (MSFM) METHOD 

          The MSFM Method basically uses the information of axial as well as diagonal grid 

point to solve the gradient term in the eikonal equation. It computes the solution at each grid 

point by solving the eikonal equation on several stencils that cover its entire neighbouring 

points and then picks the solutions that satisfy the upwind condition. The solution for those 

stencils which are not aligned with the natural coordinate system, the eikonal equation is 

simplified using directional derivatives and then solved using higher order finite difference 

schemes. The two stencils in 2D and six stencils in 3D are used in this method respectively. 

 

4.3 CONCEPT OF PSEUDOANISOTROPIC GRADIENT 

          Consider a field,  , ,T x y z  with its gradient as  , ,T x y z . Directional derivative,

 , ,rU x y z  of  , ,T x y z  along a unit vector, r  is then given as: 

    , , . , ,rU x y z T x y z r  (4.1) 
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The relationship between T  and rU  in Equation (4.1) is valid if T  is defined in the 

medium using some analytical function which in turn means that if T  is defined to be 

analytical and differentiable at least upto first degree. Consider the situation where both T   

and T  are to be evaluated in numerical domain where numerical error cannot be neglected. 

In numerical domain, T  at different grid point must be represented in terms of directional 

derivatives which further computed numerically using different value of T  at different grid 

points. The vector T  will still satisfy the relation given in Equation (4.1) if the directional 

derivative rU  along unit vector r  is used in representation of T . Consider now a 

directional derivative rU   along unit vector, r  which do not contribute in representation of 

T  then the directional derivative along this unit vector cannot be represented by simply 

replacing r  by r  in Equation (4.1), either: 

    , , . , ,rU x y z T x y z
 r  (4.2) 

This can be written as: 

    , , . , ,rU x y z T x y z w
 = r  (4.3) 

The term w  in Equation (4.3) appears because rU   is represented by T  which itself is 

represented by different directional derivatives which have no role in the evaluation of T . 

In other words, one directional derivate is represented in terms of other directional 

derivatives in numerical field and as we know that all directional derivatives in numerical 

domain have some associated numerical error therefore Equation (4.1) cannot be used to 

define a general directional derivative in any direction. Since T  depends upon direction 

from which it is computed so the term pseudo-anisotropy is introduced because actual 

gradient is not anisotropic instead it comes because of numerical error. The term w in 

Equation (4.3) also depends upon direction and hence it is also termed as pseudo-anisotropic 

adjustment term. 

 

4.4 ANGULAR WEIGHTED INTERPOLATION  

An interpolation technique is required to be used in FMM which does not dilute the 

concept of singularity in traveltime field as well as which would be easy to use under the 

condition that the parameters responsible for solution of the eikonal equation are real time 

variables. Consider a physical quantity, P  on 2D space whose value depends on the angle of 

measurements. Further, suppose that the value of P  is known along at least two directions, 

1r  and 2r  as 1P  and 2P
 
respectively. Then, the value of P  along an arbitrary direction, s  as 

shown in Figure 4.1(a) is given by using weighted interpolation as: 
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   

   
1 2 2 1

1 2

. .

. .
s

P P
P






r s r s

r s r s
 (4.4) 

       

                                      (a)                                                 (b) 

Figure 4.1: Schematic diagram showing angular interpolation in 2D (a) and 3D (b). 

 

Similarly in 3D if P  is known in three directions then along a direction s  (Figure 4.1(b)) its 

value, sP   is given as: 

 
        

        
1 2 3 2 3 1 1 2 3

1 2 2 3 3 1

. . . . . .

. . . . . .
s

P P P
P

 


 

r s r s r s r s r s r s

r s r s r s r s r s r s
 (4.5) 

The Equation (4.5) can be generalize to obtain the value of P  as sP  along a unit vector s , 

given the values of P   along m number of unit vector, ir ,  1,i m , as: 

 

 

1

1

.

1

.

m
i

i i

s m

i i

P

P




 
 
 





r s

r s

 (4.6) 

 

Two of the most important properties of weighted interpolation techniques are: first, 

it does not dilute the singularity in the traveltime field and second it is easy to use in a 

situation where the known parameters in the interpolation are real time variable. Since FMM 

handle the singularity of traveltime field so the first statement is important with regard to 

FMM. The parameter which is responsible to solve upwind equation (1.19) is real time 

variable. The second statement can be made realistic if a parameter G  is introduced to 

indicate the availability of information along a suitable direction. Suppose 1 2, ,... mG G G  

indicate the availability of information along 1 2, ,... mr r r  directions then Equation (4.6) can be 

modified to write as: 
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 (4.7) 

Equation (4.7) represents the angular interpolation of physical quantity P  along a 

direction s  for a given set of values of P as iP  ;  1,i m  along different directions ir  ;

 1,i m  respectively. The parameter iG  can take either 1 or 0 value, depending on 

availability or unavailability of information (quantity iP ) along direction ir .  

 

4.5 MULTISTENCILS PSEUDOANISOTROPIC FAST MARCHING METHOD 

All the related methods of FMM (§1.2.2.3) except MSFM method (§4.2) ignore the 

information provided by diagonal points and hence suffer from large numerical error. MSFM 

method considers the information of diagonal points in solution of the eikonal equation and 

solves the same using the directional derivatives from eight neighboring grid points in 2D 

and 26 neighboring grid points in 3D. However, MSFM method neither differentiates the 

solutions computed using different sets of directional derivatives in different stencils nor it 

considers the role of different grid sizes in the Cartesian domain. This leads to suffer from 

large numerical error particularly in anisotropic grid structure in an inhomogeneous media. 

In the proposed method, MPFMM the first problem is addressed by the introduction of 

pseudo anisotropic gradient (§4.3) whereas the second problem is removed by proper 

respecting the grid spacing in the formulation of MPFMM. 

 

4.5.1 2D MULTISTENCILS PSEUDOANISOTROPIC FAST MARCHING METHOD 

In 2D MPFMM weighted angular interpolation is carried out in 2D followed by the 

solution of basic upwind equation given in Chapter 1 (Equation 1.19). 

 

4.5.1.1 INTERPOLATION OF DIRECTIONAL DERIVATIVES IN 2D STENCILS 

Consider a grid of 9 adjacent grid points, pu ,  0,8u  in 2D Cartesian domain in 

which a stencil, Sv intersects the diagonal grid points p5,p6,p7 and p8 as shown in Figure 4.2. 

Consider a traveltime field  ,T x y  which is a function of  ,x y . Let  1 2,
T

v v vr rr ,  1,8v  

be unit vectors along p0pv and vU  be the directional derivatives of traveltime along vr  which 

are given as: 

    . , , 1,8v vU T x y v  r  (4.8) 
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Where,  ,T x y  is the gradient of traveltime field  ,T x y  as a function of  ,x y . Let 5U  

and 7U  are known directional derivatives in the stencil then from Equation (4.8) these can be 

written as: 

 
 

 

5 5 51 52

7 7 71 72

. ,

. ,

x y

x y

U T x y r T r T

U T x y r T r T

    


    

r

r
 (4.9) 
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Figure 4.2: The stencil vS centered at point  ,x y  that intersects the 2D lattice at diagonal 

grid points p5, p6, p7 and p8. The natural stencil intersects the 2D lattice at grid points p1, p2, 

p3 and p4, q5 and q7 are two hypothetical grid points. 

 

The equation set (4.9) can be written in terms of matrix form as: 

 
5 51 52

71 727

x

y

TU r r

Tr rU

    
     
    

 (4.10) 

Thus, 

  ,U R T x y   (4.11) 

   1,T x y R U   (4.12) 

Where, matrix representation of vectors is used as: 

5

7

U
U

U

 
  
 

, 
51 52

71 72

r r
R

r r

 
  
 

 and  ,
x

y

T
T x y

T

 
   

 
 . 

In absence of numerical errors in traveltime, the above traveltime gradient defines directional 

derivatives 1 2,U U and 3U as: 

 
 

 

1 1

3 3

. ,

. ,

U T x y

U T x y

  


  

r

r
 (4.13) 

On the other hand, in presence of numerical errors 1U  and 3U  do not satisfy the above 

relationship; either, 
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r

r
 (4.14) 

Consider a variable parameter w corresponding to directional derivatives along p1, p3, p5 and 

p7such as: 

 

 
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 (4.15) 

Thus 

 
 

 

1 1 1

3 3 3

. ,

. ,

U T x y w

U T x y w

   


   

r

r
 (4.16) 

To remove the effect of rectangular shape of stencil in computation of traveltime 

consider two hypothetical grid points q5 and q7 as shown in Figure 4.2 such that the 

directions along p0q5 and p0q7 are mutually perpendicular and given by unit vectors

 5 51 52,
T

s ss  and  7 71 72,
T

s ss respectively. To remove the effect of rectangular shape of 

the stencil, solution of traveltime is required to be obtained from these two directions. The 

directional derivatives 5sU  and 7sU
 
along unit vectors 5s

 
and 7s , using the analogy of 

Equation 4.16, can be written as: 

 
 
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
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s

s
 (4.17) 

Where, 5w  and 7w  are the parameter w  along unit vectors 5s  and 7s .The parameter 5w  and 

7w are obtained using angular weighted interpolation as: 
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 (4.18) 

Using Equations (4.16) and (4.18), 5sU  and 7sU  in Equation (4.17) become: 

 
 
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 (4.19) 

Where, 
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 (4.20) 

Using Equation (4.12), gradient of T multiplied by vectors  5 3 3

T
Ks r  can be written in 

terms of linear combination directional derivatives as: 

 
    1

5 3 5 5 3 5

5 51 5 52 7

. .
T T

K T K R U

U L U L U

   

  

s r s r

L
 (4.21) 

Where, 

     1

5 51 52 5 3 5

T
L L K R  L s r  (4.22) 

Similar to above the quantity  7 3 7 .
T

K T s r  can be written as: 

  7 3 7 71 5 72 7.
T

K T L U L U   s r  (4.23) 

Where, 

     1

7 71 72 7 3 7

T
L L K R  L s r  (4.24) 

Therefore using Equations (4.21) and (4.23) in the set of Expressions (4.19), it becomes 

 
5 51 5 52 7 5 3

7 71 5 72 7 7 3

s

s

U L U L U K U

U L U L U K U

   


   
 (4.25) 

Similarly, interpolated directional derivatives along the unit vectors 6 5 s s   and 8 7 s s  

can be written as: 

 
6 61 6 62 8 6 4

8 81 6 82 8 8 4

s

s

U L U L U K U

U L U L U K U

   


   
 (4.26) 

Where, 

 

   

   

 

   

 

   

1

6 61 62 6 4 6

1

8 81 82 8 4 8

6 6

6

6 4 6 6

8 8

8

8 4 8 8

.

. .

.

. .

T

T

s

s s

s

s s

L L K R

L L K R

K

K





  

  




 


 

L s r

L s r

r r

r r r r

r r

r r r r

 (4.27) 

Therefore in general, interpolated directional derivatives along the defined directions can be 

written as: 

 
8

3

; 5,6,7,8sg gm m

m

U A U g


   (4.28) 
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Where,    , 5,8 ; 3,8gmA g m   for different values of g  and m  are given as: 

 

53 5A K
 63 0A 

 73 7A K
 83 0A 

 

54 0A 
 64 6A K

 74 0A 
 84 8A K

 

55 51A L
 65 0A 

 75 71A L
 85 0A 

 

56 0A 
 66 61A L

 76 0A 
 86 81A L

 

57 52A L
 67 0A 

 77 72A L
 87 0A 

 

58 0A 
 68 62A L

 78 0A 
 88 82A L

 

 

4.5.1.2 THE UPWIND EQUATION 

Using Equation (1.19), the following upwind scheme in 2D is given as: 

    
2 2 2

5 6 7 8max , ,0 max , ,0S S S S ijU U U U s   (4.29) 

Where, 
ijs  is slowness value at the grid point  ,i j  where 

ijT  is to be evaluated. Let 

 5 6,su s sU U U  and  7 8,sv s sU U U  such that 0suU   and 0svU   then the upwind 

Equation (4.29) reduces to 

 
2 2 2

su sv ijU U s   (4.30) 

Writing 
m m ij mU a T b   and squaring both sides of Equation (4.28), following equation can 

be written: 

 
2

2 2sg g ij g ij gU u T v T w    (4.31) 

Where, 

  

8

, 3

8

, 3

8

, 3

1

2

g gm gn m n

m n

g gm gn m n n m

m n

g gm gn m n

m n

u A A a a

v A A a b a b

w A A b b








 




  



 








 (4.32) 

Using Equations (4.31) the quadratic Equation (4.30) can be simplified to: 

 
2 2 0ij ijuT vT w    (4.33) 

Where, following parameters have been used: 
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 

 
2

ij

u u u

v v v

w w w s

 

 

 

 

 

  

 (4.34) 

If the conditions 0suU   and 0svU   are not satisfied and assume that we have 0suU   and 

0svU  . Under this situation the solution to the upwind Equation (4.29) is given as: 

 

8

3

8

3

min , 5,6
ij um m

m
ij

um m

m

s A a

T u

A b





 
 

  
 
 
 




 (4.35) 

To compute an unbiased solution in a anisotropic grid structure we have selected unit vectors 

5s  and 7s  in perfect diagonal directional of a square, either: 

 

5

7

2

2

 
 


  



i j
s

i j
s

 (4.36) 

Two stencils, one natural which is aligned along coordinate axes and other diagonal 

as shown in Figure 4.2, are used in the computation of 
ijT  from either Equation (4.33) or 

(4.35), therefore two solution comes from these. The final solution is obtained giving the 

proper weight of the grid spacing, to these solutions. The exact computations of the weights 

are very difficult, therefore application of proportional weight factor is considered. The 

maximum error from natural stencil is proportional to h  and the same from diagonal stencil 

is 2h , therefore if aT  and bT  are two solutions computed from natural and diagonal stencil 

then final solution 
ijT   is given as: 

 
2

1 2

a b
ij

T T
T





 (4.37) 

 

4.5.1.3 UPWIND CONDITION 

Solving the quadratic Equation (4.33) results in two solutions. The minimum is 

rejected because it does not maximize the Equation (4.29). Since the solution has to satisfy 

the causality relationship and as the value of T  is not known in advance, the computed 

solution must be checked to see if it is higher than the traveltime values of two adjacent 

neighboring grid points that participate in the solution. If the check is true then the solution is 

accepted otherwise solution is given by Equation (4.35). When the solution is obtained using 

Equation (4.37), solution still has to satisfy the causality relationship and hence it must be 
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checked if it is higher than the traveltime values of neighboring grid points that participate in 

the solution aT  and bT  . 

 

4.5.2 3D MULTISTENCILS PSEUDOANISOTROPIC FAST MARCHING METHOD 

In 3d MPFMM weighted angular interpolation is carried out in 3D followed by the 

solution of basic upwind equation given in Chapter 4 (Equation 1.19). 

 

4.5.2.1 INTERPOLATION OF DIRECTIONAL DERIVATIVES IN 3D STENCILS 

The concept of weighted interpolation of directional derivatives from 2D to 3D can 

be extended. To simplify the discussion a 3D lattice is shown in Figure 4.3 in which center 

grid point 0p  is shown to be covered by all its 26 neighboring grid points  , 1,26iP i . 

Consider a 3D stencil which intersects the 3D lattice at the grid points 11 12 19 20 21, , , ,p p p p p

and 22p  in which 0 19p p , 0 21p p  and 0 11p p  are assumed to be principal rotated x, y and z axes. 

Let  1 11 12 13, ,
T

r r rr ,  2 21 22 23, ,
T

r r rr  and  3 31 32 33, ,
T

r r rr  be three unit vectors along 

0 19p p , 0 21p p  and 0 11p p  respectively and 1rU , 2rU  and 3rU  be directional derivatives of 

traveltime field along vector 1r , 2r  and 3r .  

 

 

Figure 4.3: Stencil wS  centered at point  , ,x y z that intersects the 3D lattice at the grid 

points 11 12 19 20 21, , , ,p p p p p  and 22p . OA, OB and OC are three straight line depicting 

direction along which interpolation scheme is applied. 
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Consider further three defined directions: from centered grid point to A, B and C in 

Figure 4.3 along which interpolation of the derivatives are to be carried out. To perform this 

let  1 11 12 13, ,
T

s s ss ,  2 21 22 23, ,
T

s s ss  and  3 31 32 33, ,
T

s s ss be three unit vectors along the 

directions from centered grid point towards A, B and C and 1sU , 2sU  and 3sU   be three 

directional derivatives along vectors 1s , 2s  and 3s . It can be seen that when an interpolation 

is to be carried out in the diagonal direction such as centered grid point to A and B, a 

maximum of four non-stencil grid points participate in the interpolation such as 3p , 7p , 13p ,

19p  points for the direction from centered grid point towards A and 3p , 9p , 13p , 21p  points 

for the direction from centered grid point towards B. If the line from centered grid to C lies 

in the plane formed by 0 3p p  and 0 11p p  then a maximum of two grid points such as 3p  and 

11p helps in the interpolation. Therefore it is concluded that a maximum of four grid point 

will help to construct 1sU , 2sU  and 3sU .  

Let  1 2 3, ,nm nm nm nma a aa ;  1,2,3 ; 1,2,3,4n m  be the unit vectors along the 

point of intersection corresponding to ns . Let 1rU , 2rU  and 3rU  be directional derivatives 

along 1r , 2r  and 3r ; 1tnmU , 2tnmU  and 3tnmU  the directional derivatives along 1 2,nm nma a  and 

3nma  respectively. The directional derivatives along 1r , 2r  and 3r  can be written in matrix 

form as: 

 

1 11 12 13

2 21 22 23

3 31 32 33

r x

r y

r z

U r r r T

U r r r T

U r r r T

    
    

     
         

 (4.38) 

Or,  ,U R T x y   (4.39) 

Where, 

Tx

y

z

T
T T T

T
x y z

T

 
    

        
 

,  1 2 3, ,
T

r r rU U U U , 

11 12 13

21 22 23

31 32 33

r r r

R r r r

r r r

 
 


 
  

,  , ,
T

x y zT T T T  . 

Similar to Equation set (4.16) it is possible to write the directional derivatives along unit 

vector nma  as: 

  . , , 1,2,3 ; 1,2,3,4tnm nm nmU T x y w n m    r  (4.40) 

The directional derivatives along unit vectors 1s , 2s  and 3s can be interpolated as: 

  . , , 1,2,3sn n nU T x y w n   r  (4.41) 
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Where, the interpolated Pseudo-anisotropic adjustment term nw  is given as: 

 
 

4

1 .

nm nm
n

m n nm

G w
w

s a

  (4.42) 

The value of parameter nmG  is either 1 or 0 depending upon the availability and 

unavailability of grid point information along unit vector nma . Using Equations (4.40) and 

(4.42), Equation (4.41) can be written as: 

  
 

 

4

1

.
. ,

.

nm tnm nm

sn n

m n nm

G U T
U T x y

s a

 
  

r
r  (4.43) 

Equation (4.43) can further be written as: 

    
4

1

. ,sn n nm nm nm tnm

m

U K T x y K U


   r r  (4.44) 

Where, 

 
 .

nm
nm

n nm

G
K 

s a
 (4.45) 

Consider the multiplication of two vectors in matrix representation as: 

     1 1 2 2 3 3. ,
T

n nm nm nm r nm r nm rK T x y L U L U L U    r r  (4.46) 

In which: 

     1

1 2 3

T

nm nm nm nm n nm nmL L L K R  L r r  (4.47) 

snU in Equation (4.44) becomes: 

 
3 4

1 1

sn nmi ri nm tnm

i m

U L U K U
 

    (4.48) 

Equation (4.48) represents the interpolated directional derivatives along the unit vectors 1s ,

2s  and 3s  in terms of linear combination of unit vectors along 1r , 2r , 3r and nma . 

 

4.5.2.2 THE UPWIND EQUATION 

The upwind Equation in Chapter 1 (Equation 1.19) in 3D can be written as: 

      
2 2 2 2

1 1 2 2 3 3max , ,0 max , ,0 max , ,0s s s s s s ijkV V V V V V s      (4.49) 

Where 
ijks  is slowness value at the grid point  , ,i j k where 

ijkT  is to be evaluated. 1sV , 2sV , 3sV

, 1sV , 2sV and 3sV  are the directional derivatives of traveltime along unit vectors 1s , 2s , 3s ,

1s , 2s  and 3s respectively. Let  1 1, ,su s sV V V  2 2,sv s sV V V and  3 3,sw s sV V V  such 

that 0suV  , 0svV  and 0swV   then the upwind Equation (4.49) reduces to 
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2 2 2 2

su sv sw ijkV V V s    (4.50) 

The directional derivatives riU  and tnmU in Equation (4.48) can together be written by a 

common symbol lV ;  1,26l ; that describe the directional derivatives along all 26 

directions 0 lp p ;  1,26l .Using this new variable Equation (4.48) can be written as: 

 
26

1

; 1,2,3sn nl l

l

U B V n


   (4.51) 

Where, different values of coefficients nlB  are obtained by comparing Equation (4.51) with 

Equation (4.48). Writing directional derivatives generally as 
l l ijk lV a T b   and squaring both 

sides of Equation (4.51) it is possible to write: 

 
2 2 2sn n ijk n ijk nU u T v T w    (4.52) 

Where, 
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26

, 1

26

, 1

26

, 1

1

2

n nj ni j i

j i

n nj ni j i i j

j i

n nj ni j i

j i

u B B a a

v B B a b a b

w B B b b








 




  



 








 (4.53) 

Using Equation (4.52), the quadratic Equation (4.50) can be simplified to: 

 
2 2 0ijk ijkuT vT w    (4.54) 

Where, following parameters have been used: 

 

 

 

1 2 3

1 2 3

2

1 2 3 ijk

u u u u

v v v v

w w w w s

  

  

   

 (4.55) 

In other conditions the solution of the upwind equation is given by Equation (4.55) where the 

expression of u , v  and w  is replaced by: 

 

 

 

1 1 2 2 3 3

1 1 2 2 3 3

2

1 1 2 2 3 3 ijk

u c u c u c u

v c v c v c v

w c w c w c w s

  

  

   

 (4.56) 

Where, 1c , 2c  and 3c  are coefficients depending upon the values of availability of information 

from grid point 19p , 21p  and 11p .  
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(a) (b) (c)

d) (e) (f)

g) (h) (i)  

(j)  

Figure 4.4: The proposed stencils for the 3D Cartesian domain. 1T  , 2T  and 3T  are minimum 

traveltime along each arm of the stencil. (a) 1S . (b) 2S .(c) 3S .(d) 4S .(e) 5S .(f) 6S .(g) 7S .(h) 

8S .(i) 9S .(j) 10S . 

 

The solution of the upwind equation in other quadrant of the stencil can be obtained 

by simply replacing the unit vector that participates in the Expression (4.44) by appropriate 
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unit vectors in the quadrants. The final solution of the quadratic Equation (4.54) is taken by 

applying upwind condition. 

A total of ten stencils wS ;  1,10w are used to compute the traveltime 
ijkT . All ten 

stencils are shown in Figure 4.4. Ten symmetric sets of unit vectors given in Table 4.1 have 

been proposed, where each set of vector corresponds to a particular stencil. There may be a 

maximum of ten possible solutions of traveltime from these 10 stencils. The selection of final 

solution is subjected to the upwind condition described in §4.5.2.30. Let wT , 1,2,...10w   

represents the solution from ten stencils wS ,then to respect more weight to the solution 

obtained from stencil having lower grid spacing compared to the solution obtained from 

stencil having higher grid spacing, an weighted solution can be given by: 

 

10

1

10

1

1

w

w w

ijk

w w

T

C
T

C





 
 
 




 

Where,                           1 2 3 41, 2, 3; 5,6,..10jC C C C C j       

However, this type of solution is also subjected to the upwind condition described below. 

 

Table 4.1: Proposed Unit Vectors 

Stencil First unit vector Second unit vector Third unit vector 

1S  i  j  k  

2S  i    2j k    2 j k  

3S  j    2 i k    2i k  

4S  k
   2i j    2 i j  

5S    2 j k   2 2 i j k   2 2  i j k  

6S    2j k   2 2  i j k   2 2 i j k  

7S    2i k   2 2  i j k   2 2  i j k  

8S    2 i k   2 2 i j k   2 2 i j k  

9S    2i j   2 2  i j k
  2 2 i j k  

10S    2 i j   2 2  i j k   2 2 i j k  
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4.5.2.3 UPWIND CONDITION 

Solving the quadratic Equation (4.54) results in two solution solutions. The minimum 

solution is rejected because it does not maximize the upwind equation (4.49). It is required to 

make sure that the traveltime solution from each stencil is higher than the traveltimes 1T , 2T  

and 3T  of the adjacent three grid points that participate in the solution. If this check is true 

then the solution is accepted. Otherwise, grid point with odd traveltime value contributing in 

the solution to make it lesser is rejected by making its coefficient zero and the solution is 

obtained using the same equation. There will be ten solutions from ten stencils, therefore 

there will be a maximum of 10 solutions for traveltime solution. Either least solution is 

accepted or to give the proper respect of grid spacing the weighted average solution is 

determined as described in §4.5.2.2.  

 

4.6 COMPUTAIONAL COMPLEXITIES 

FMM computes traveltime always in the neighborhood of narrow band which means 

the computational region always includes both known grid points and unknown grid points, 

which in terns means that the gradient term in any quadrant of any stencils may not be 

defined completely by the solution procedure. Consider the gradient of T  defined by 

directional derivatives along 1r , 2r  and 3r  which are not mutually perpendicular to each 

other. Consider the situation when 1r a directional derivative is unknown. An ideal gradient 

must then lies in the plane formed by 2r  
and 3r . By making directional derivative along 1r  to 

be zero, the Equation (4.39) does not give the true gradient relationship, rather it will give 

gradient that will lie in the direction having some offset depending upon intercept angle 

between 1r , 2r  and 3r . To obtain the true gradient in plane given by 2r  and 3r , it is essential 

to consider zero directional derivatives perpendicular to 2r  and 3r  and the gradient is 

required to be represent in terms of 2r  and 3r  only. 

 

4.7 NUMERICAL EXPERIMENTS 

In order to study the accuracy and effect of use of multiple stencils in the solution of 

the proposed method in both 2D and 3D Cartesian domains, several numerical experiments 

have been conducted. The results of the experiments are compared with the results of FMM 

and MSFM method (MSFMM). 
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4.7.1 ACCURACY 

          The exact analytical solution of the eikonal equation for a particular slowness model is 

assumed to be gold standard. Since the exact analytical solution is hard to find at least for a 

complex slowness models, I began a continuous and differentiable traveltime functions 

 ,aT x y  and then computed the traveltime  ,T x y  by each method using the slowness 

derived from the eikonal equation: 

 a as T   (4.57) 

The computed traveltime  ,T x y  is then compared with analytical function aT  using 

different error norms. This kind of tests have been described by Danielsson and Lin (2003), 

and Hassouna and Farag (2007). The selected different form of functions  ,aT x y ,  1,6a

have been listed in Table 4.2.  

 

Table 4.2: Traveltime Functions for both 2D and 3D Cartesian Domains 

aT  Closed Form Traveltime Functions 

1T     
2 2

0 0d x x y y     

2T  
   

2 2

0 0
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The contours of these traveltime functions are shown in Figure 4.5. Three types of error 

norms which were considered are given as (Hassouna and Farag, 2007): 
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Using the above ideology of test the following experiments compare the accuracy of the 

proposed MPFMM with FMM and MSFM method.  

 

          

              (a)                              (b)                                 (c)                                (d) 

Figure 4.5: Contours of 1T , (a); 2T , (b); 3T , (c) and 4T , (d). 

 

4.7.1.1 EXPERIMENT 1 

This experiment compares the accuracy of the proposed method MPFMM against 

FMM and MSFMM in 2D space under traveltime function, 1T . The test grid is isotropic and 

size of the test grid is 81 81  points, with 0.5x y    . The traveltime function 

corresponds to a moving front from the point  0 0,x y with unit slowness. The computed 

traveltime in this case correspond to Euclidean distance field, which is of interest in many 

scientific applications. The test was performed two times from two source points: one at the 

center of the grid to test the high-curvature solution and other at the corner of the grid to test 

the smooth solution. To measure the numerical error 1 2,L L  and L  norms described by 

Equation (4.58) were employed. The numerical errors of this experiment are listed in Table 

4.3. Figure 4.6(a) and 4.6(b) shows the contours of error curves when solving for 1T  using 

FMM and MPFMM, respectively. It is seen that the errors are small along the axial 

directions and increase rapidly in the region around 45 degree when using FMM as shown in 

Figure 4.6(a). However, when using proposed method, the errors are small along the axial as 

well as diagonal directions as shown in Figure 4.6(b).  

It is clear from the Table 4.3 that the improvement of the solution quality provided by 

proposed method against FMM is much better; however improvement against MSFM 

method is very minor. The reason is obvious as the grid type used is isotropic; therefore, 

0 5 10 15
0

5

10

15

20

25

30

0 4 8 12 16
0

4

8

12

16

20

24

28

32

0 4 8 12 16
0

4

8

12

16

20

24

28

32

0 4 8 12 16
0

4

8

12

16

20

24

28

32



130 

 

effect of interpolation is almost negligible but due to higher numbers of stencil in the 

proposed method it gives better results compared to MSFMM. 

 

     

                                      (a)                                                                    (b) 

      

                                     (c)                                                                     (d) 

Figure 4.6: Contours of error norm 1L computed from FMM (a,c) and MPFMM (b,d) using 

grids of size 81 81  and isotropic spacing 0.5 0.5  (a,b) and anisotropic spacing0.4 0.8  

(c,d). The source position in all the cases is at the center of the grid structure.   

 

To test the effect of interpolation used in the proposed method, the same experiment 

was performed two times by changing the source positions similar to above in a grid of the 

same size but with anisotropic spacing of 0.4 0.8 . The results are shown in Table 4.4. It is 

clear from the table that proposed method gives much better results compared to that 

provided by FMM and MSFMM. It is seen that because of lack of proper care grid spacing 

and biased evaluation of gradient, MSFMM fails to improve the results provided by basic 
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FMM in a homogeneous medium with highly anisotropic grid structure. The contours of 

error curves obtained from the FMM and the proposed method are shown in Figure 4.6(c) 

and 4.6(d), respectively. It is clear from the figures that the proposed method gives better 

results compared to that provided by FMM. It is to be noted that higher errors (Figure 4.6(c)) 

in the solutions provided by FMM unlike previous tests under this experiment are not aligned 

along diagonal directions rather the alignment of the errors makes an offset against diagonal 

due to different grid spacing in the grid type used.  

 

Table 4.3: Error Norms of the Computed 1T  from Different Source Points in an Isotropic 

Grid of Size 81 81  and Grid Spacing 0.5 0.5  

TimeT  
1T  

Source point 41 41  1 1  
Method/Error 

1L  2L  L  1L  2L  L  

FMM 0.351 0.154 0.621 0.415 0.219 0.735 

MSFMM 0.151 0.029 0.286 0.186 0.045 0.362 

MPFMM 0.149 0.029 0.286 0.169 0.040 0.359 

 

Table 4.4: Error Norms of the Computed 1T  from Different Source Points in an anisotropic 

Grid of Size 81 81  and Grid Spacing 0.4 0.8  

TimeT  
1T  

Source point 41 41  1 1  
Method/Error 

1L  2L  L  1L  2L  L  

FMM 0.354 0.162 0.667 0.417  0.230 0.799 

MSFMM 1.055 2.336 4.624 2.408 13.322 11.699 

MPFMM 0.127 0.023 0.360 0.174 0.043 0.477 

 

4.7.1.2 EXPERIMENT 2 

This experiment compares the accuracy of the proposed MPFMM against FMM and 

MSFMM in 2D space under traveltime field, 2T . The field is inhomogeneous and its contours 

show angular asymmetric (Figure 4.5(b)). The slowness of this traveltime field is also 

inhomogeneous and angular asymmetric, which is given as (Equation 4.57): 

 
   

2 2

0 0

2 2
,

10 20

x x y y
s x y

 
   

Two tests, one by considering the source at the center and second by considering the source 

at the corner of the grid, were performed using all three methods; either, FMM, MSFMM and 

the proposed one, in an isotropic grid of size 81 81  and grid spacing 0.5 0.5 .The results of 

these tests are given in Table 4.5. It is clear from the table that the accuracy provided by 
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proposed method is much better than that provided by FMM. The improvement of accuracy 

against MSFMM is minor because of isotropic grid spacing and symmetry of contours of 2T

as shown in Figure 4.5(b). When the same tests were performed using same grid size but 

with anisotropic spacing 0.4 0.8 , the improvement in the solution quality provided by 

proposed method is found to be much better compared to both FMM and MSFMM as shown 

in Table 4.6. The higher improvement of results against MSFMM in this case is mainly 

because of the effect of interpolation scheme used in the proposed method. 

 

Table 4.5: Error Norms of the Computed 2T  from Different Source Points in an Isotropic 

Grid of Size 81 81  and Grid Spacing 0.5 0.5  

TimeT  
2T  

Source point 41 41  1 1  
Method/Error 

1L  2L  L  1L  2L  L  

FMM 0.108 0.015 0.240 0.223 0.064 0.486 

MSFMM 0.042 0.003 0.125 0.110 0.016 0.282 

MPFMM 0.031 0.002 0.103 0.091 0.011 0.222 

 

Table 4.6: Error Norms of the Computed 2T  from Different Source Points in an anisotropic 

Grid of Size 81 81  and Grid Spacing 0.4 0.8  

TimeT  
2T  

Source point 41 41  1 1  
Method/Error 

1L  2L  L  1L  2L  L  

FMM 0.232 0.063 0.458 0.444 0.234 0.888 

MSFMM 0.136 0.061 1.268 0.368 0.536 4.062 

MPFMM 0.081 0.013 0.469 0.363 0.331 2.298 

 

4.7.1.3 EXPERIMENT 3 

This experiment compares the accuracy of the proposed method MPFMM against 

FMM and MSFMM in 2D space under traveltime function, 3T . The slowness of this 

traveltime field is radially inhomogeneous which is given as (Equation 4.57): 

       2 2

0 0

4
, 2 sin

25
s x y x x y y

 
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 
 (4.59) 

Similar to previous experiments, two tests were performed: one by considering the source at 

the center and other by considering it in the corner, in an isotropic grid of size 71 71  and 

grid spacing 0.5 0.5  using the proposed method, MSFMM and FMM and the results of 

these tests are summarized in Table 4.7. It is clear from the table that MPFMM gives better 

results compared to FMM and MSFMM. The improvement of MPFMM against MSFMM is 
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minor because of use of isotropic grid structure where the interpolation scheme used in 

MPFMM affects very little. However, when the same tests were repeated in a grid of same 

size but with different anisotropic spacing 0.4 0.8  the improvements in accuracy provided 

by the proposed method is found to be much higher than the MSFM method. The results of 

these two tests are given in Table 4.8. It is clear that MSFMM fails again in these tests as it 

do not improves the results of basic FMM but the overall better results can be seen by the 

proposed method. 

 

Table 4.7: Error Norms of the Computed 3T  from Different Source Points in an Isotropic 

Grid of Size 71 71  and Grid Spacing 0.5 0.5  

TimeT  
3T  

Source point 36 36  1 1  

Method/Error 
1L  2L  L  1L  2L  L  

FMM 0.445 0.258 0.865 0.554 0.393 0.957 

MSFMM 0.162 0.036 0.358 0.264 0.124 1.072 

MPFMM 0.155 0.021 0.342 0.211 0.061 0.613 

 

Table 4.8: Error Norms of the Computed 3T  from Different Source Points in an anisotropic 

Grid of Size 71 71  and Grid Spacing 0.4 0.8  

TimeT  
3T  

Source point 36 36  1 1  

Method/Error 
1L  2L  L  1L  2L  L  

FMM 0.497 0.329 1.099 0.592 0.463 1.496 

MSFMM 0.930 1.269 2.648 1.738 4.244 4.034 

MPFMM 0.386 0.252 1.467 0.899 1.210 2.292 

 

4.7.1.4 EXPERIMENT 4 

Under this experiments, the proposed method is tested against FMM and MSFMM 

using a slightly more complex traveltime field, 4T . The slowness of this field is given as 

(Equation 4.57): 

  
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Where,  
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 (4.61) 

Two tests were performed similar to previous experiments where the source is 

considered at the center and then at the corner in a different grid of size 51 51  and spacing

0.4 0.4 . The results of these tests are given in Table 4.9. It is clear from the table that 

improvement of accuracy by MSFMM is very little over the results provided by FMM as 

opposed to our proposed method which shows a much better improvements in accuracy over 

that of FMM. These two tests were again repeated using the same grid size but with different 

grid spacing 0.4 0.6 and the results are presented in Table 4.10. It is noted again that the all 

the error norms given by the proposed method show significant improvement over both the 

FMM and MSFMM.  

 

Table 4.9: Error Norms of the Computed 4T  from Different Source Points in an Isotropic 

Grid of Size 51 51  and Grid Spacing 0.4 0.4  

TimeT  
4T  

Source point 26 26  1 1  

Method/Error 
1L  2L  L  1L  2L  L  

FMM 4.816 28.398 10.000 7.058 86.348 20.000 

MSFMM 4.753 27.663 9.777 7.065 86.424 18.003 

MPFMM 3.179 18.570 6.667 4.707 57.599 16.000 

 

Table 4.10: Error Norms of the Computed 1T  from Different Source Points in an anisotropic 

Grid of Size 51 51  and Grid Spacing 0.4 0.6  

TimeT  
4T  

Source point 26 26  1 1  

Method/Error 
1L  2L  L  1L  2L  L  

FMM 7.604 67.611 10.684 5.443 63.766 20.000 

MSFMM 7.340 62.710 10.399 5.417 63.839 18.656 

MPFMM 4.953 42.887 6.933 3.608 42.551 16.010 
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4.7.1.5 EXPERIMENT 5 

This experiment compares the accuracy of the proposed MPFMM against FMM and 

MSFMM in 3D space under traveltime function, 5T  which has unit slowness. The size of the 

test grid is 41 41 41   with isotropic grid spacing 0.5 0.5 0.5  . Two tests were performed 

by considering a source at the center and at the corner of the grid to test the curvature and the 

smooth solutions respectively. The error norms 1L , 2L  and L  were computed in these tests 

and are summarized in Table 4.11. It is clear from the table that the proposed method in both 

the source positions provides better results compared to MSFMM which in turn improves 

FMM to some degree. A cross section of the contours of computed 5T  by FMM and 

MPFMM is given in Figure 4.7. It is to be noted that the curvature provided by MPFMM is 

better than that given by FMM. 

To make a comprehensive test of the methods, the two tests of this experiment is 

repeated again in a grid of same size but with anisotropic spacing 0.4 0.8 0.6  . The results 

of these tests are given in Table 4.12. It can be noted from the table that similar to the 

experiments in the case of 2D in §4.7.1.1, the MSFMM fail to improve the accuracy 

provided by the basic FMM; however the proposed method because of use of symmetric 

vectors in the scheme of interpolation of directional derivatives and because of proper care of 

grid spacing into the solution, provide much better results against basic FMM.  

 

Table 4.11: Error Norms of the Computed 5T  from Different Source Points in an Isotropic 

Grid of Size 41 41 41   and Grid Spacing 0.5 0.5 0.5   

TimeT  
5T  

Source point 21 21 21   1 1 1   
Method/Error 

1L  2L  L  1L  2L  L  

FMM 0.469 0.250 0.824 0.469 0.250 0.824 

MSFMM 0.233 0.062 0.421 0.233 0.063 0.421 

MPFMM 0.166 0.034 0.333 0.166 3.441 0.333 

 

Table 4.12: Error Norms of the Computed 5T  from Different Source Points in an Isotropic 

Grid of Size 41 41 41   and Grid Spacing 0.4 0.8 0.6   

TimeT  
5T  

Source point 21 21 21   1 1 1   
Method/Error 

1L  2L  L  1L  2L  L  

FMM 0.609 0.413 1.002 0.719 0.583 1.181 

MSFMM 0.880 1.502 4.494 1.874 6.959 9.299 

MPFMM 0.253 0.071 0.457 0.263 0.083 0.547 
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4.7.1.6 EXPERIMENT 6 

This experiment were conducted to tests the proposed method against FMM and 

MSFMM in a inhomogeneous 3D medium of traveltime field 6T . The slowness of this field 

is given by (Equation 4.57): 

  
     

2 2 2

0 0 0
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, ,
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s x y z
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The size of the test grid was51 51 31   and grid spacing was 0.5 0.5 0.5  . Two tests 

similar to previous experiments were performed here also from two source position: one at 

the center of the grid and other at the corner of the grid. All the three error norms were 

computed under these tests using the FMM, MSFMM and the proposed method MPFMM. 

The results are summarized in Table 4.13. It is clear from the table that the results provided 

by the proposed method are much better against the FMM and MSFMM. It is to be noted that 

the improvement in accuracy by the proposed method is much higher in this case. The higher 

improvement of results is due to proper care of grid spacing in the MPFMM. These two tests 

were again repeated in the grid of same size but with different spacing 0.4 0.5 0.6  . The 

results of this experiment are provided in Table 4.14. It is obvious from the table that the 

accuracy provided by the proposed method is again much better than the same provided by 

FMM and MSFMM.   

 

Table 4.13: Error Norms of the Computed 6T  from Different Source Points in an Isotropic 

Grid of Size 51 51 31   and Grid Spacing 0.5 0.5 0.5   

TimeT  
6T  

Source point 26 26 16   7 7 7   

Method/Error 
1L  2L  L  1L  2L  L  

FMM 0.115 0.016 0.258 0.237 0.068 0.522 

MSFMM 0.047 0.003 0.157 0.133 0.023 0.351 

MPFMM 0.021 0.001 0.079 0.060 0.007 0.320 

 

Table 4.14: Error Norms of the Computed 6T  from Different Source Points in an anisotropic 

Grid of Size 51 51 31   and Grid Spacing 0.4 0.5 0.6   

TimeT  
6T  

Source point 26 26 16   7 7 7   

Method/Error 
1L  2L  L  1L  2L  L  

FMM 0.098 0.011 0.214 0.199 0.047 0.434 

MSFMM 0.050 0.003 0.144 0.127 0.021 0.340 

MPFMM 0.020 0.001 0.075 0.060 0.006 0.256 
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4.7.2 EFFECTS OF MULTISTENCILS IN ACCURACY 

To study the effects of multistencils considered in the proposed method MPFMM, the 

3D method were tested under traveltime field 1T  using different combination of stencils in a 

same grid structure. A grid of size 51 51 31   with spacing 0.4 0.8 0.6   was considered 

and at first test was performed using natural stencil  1S  and the results were noticed, after 

which second test were performed using combine first and second stencils, third test by 

combine first, second and third stencil and continuing in this way the test using 10 stencils 

were performed. The results of all these tests under this experiment are given in Table 4.15. 

It is clear from the table that with gradual increase in the number of stencils in the proposed 

method the results becomes better and better. 

 

Table 4.15: Error Norms of the Computed 1T  for different set of stencils incorporated in 

MSFM and MPFMM 

Method 3D MPFMM 

Stencil (Sm )/Error 1L  2L  L  

1m   0.609 0.413 1.002 

1,2m   0.452 0.229 0.770 

1,2,3m   0.412 0.191 0.726 

1,2,3,4m   0.337 0.127 0.545 

1,2,...5m   0.304 0.103 0.545 

1,2,...6m   0.275 0.084 0.476 

1,2,...7m   0.269 0.080 0.475 

1,2,...8m   0.264 0.077 0.466 

1,2,...9m   0.258 0.074 0.466 

1,2,...10m   0.253 0.071 0.457 

 

 

(a)                             (b) 

Figure 4.7: Cross sections in the traveltime field of a 3D unit speed wave that propagate 

from the center of a coarse grid of size 81 81 25   and spacing 0.4 0.8 0.5   using (a) FMM 

and (b) the proposed MPFMM. It is seen that the proposed MPFMM provides better high-

curvature solution that the FMM. 
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4.8 CONCLUSIONS 

This Chapter introduces a method called as Multistencil Pseudoanisotropic Fast 

Marching Method (MPFMM) which is a highly accurate version of isotropic FMM for 

solving the eikonal equation in both 2D and 3D Cartesian domains. The MPFMM solves the 

eikonal equation at each grid points that covers the entire nearest neighbours of the point and 

then picks the solution that satisfies the upwind condition. To invoke the information of the 

nearest neighbours into the solution, the method interpolates the available the directional 

derivatives along the defined symmetric directions and then solves the upwind equation 

respecting the grid spacing. Since the method utilizes symmetrically defined stencils to solve 

the eikonal equation, the obtained solutions always hold directional symmetry regardless of 

the degree of grid anisotropy. To maintain the stencil-symmetry versus computation 

symmetry, the method uses a maximum of 10 stencils to cover 26-neighbours of a single grid 

point in 3D space whereas in 2D space it uses 2 stencils to cover 8-neighbours of a single 

grid point. 

The accuracy of the proposed method has been tested against FMM and MSFM 

method by several numerical experiments in 2D and 3D using isotropic and anisotropic grid 

structures. In all cases, it has been found that the proposed MPFMM gives much better 

results than FMM and MSFM method. 
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5 

 

SEISMIC TOMOGRAPHY OF NATURAL LATERED EARTH: 

MULTIPARAMETER INVERSION  

 

 

 

 

5.1 INTRODUCTION 

Since the birth of modern seismic tomography by Keiiti Aki in 1976 (Thurber, 2003), 

the problems of determining the velocity structures of model earths for a given set of 

hypocenters have long been tackled by my authors (Meier et al., 2004; Hazler et al., 2001). 

With the advancement of solid earth geophysics, the requirements of precise model of earth 

structures become very common. The solution to any tomographic approaches become more 

precise when the velocity and hypocenters both are considered to be variables in the same 

tomographic problem and up-gradation is simultaneously carried out in the associated 

inversion process. This is because in majority of problem hypocenters of earthquakes are 

computed using horizontal layered model of earth in which velocity of each layer is suitably 

defined and therefore, with the change of velocity it becomes reasonable to change the 

hypocenters to get an overall precise model of the earth (Tian and Chen, 2006; Mao and 

Suhadolc, 1992). 

          The definition of horizontal layer model of earth has solved many of the tomographic 

problems at smaller scale where the fluctuation of layers can be neglected. At large scale 

study both the curvature of earth as well as fluctuation of layers play a significant role in 

wave propagation. Although the curvature of earth can be handled in tomography by solving 

it in spherical domain rather than Cartesian but the solution of tomographic inversion in 

spherical domain is more complicated compared to the same in Cartesian. Further, the 

problem of natural variation of layers in three dimensions remains in the same order as in 

Cartesian. 

          At its core it becomes essential to define natural layered earth model where boundary 

(interfaces) of each layers have variation in three dimensions, and then to consider the 

parameters associated with 3D variation of layers in the formulation of tomography.  

This chapter introduces a method of tomographic inversion to simultaneously invert P 

and S phases to obtain body-wave velocities, hypocenters with origin times and interface or 
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layer parameters in a naturally defined layered earth model. As it is associated with inversion 

of more than three types of parameters, so it may be called as Multiparameter Inversion. 

Damped Least Square (DLS) method has been considered as a tool of inversion to compute 

model parameters. The gradient path search algorithm introduced in Chapter 2, to solve the 

forward problem is discussed in §5.8.The joint working of spiral path search method and 

gradient path search method is also discussed at the end of this Chapter. 

 

5.2 MODEL CONSIDERATION 

Consider a layered earth model in which layers may have 3D characteristics under the 

following constraints: 

1) Different layers may have different velocities for p-waves and s-waves but within a layers 

velocity remains constant both for P-wave and S-wave. 

2) The surfaces bounding the layers are continuous and differentiable at least up to second 

degree. 

3) The two adjacent surfaces bounding the layers may come very close but never touch each 

other. 

A typical schematic simplified form of model is shown in Figure 5.1, where 

1,2,... ,... Lq N on the model are layer numbers and the same outside the model are number of 

surfaces of discontinuity, with LN  being the total number of layers or the surfaces and 

1,2,.... Lq N .  

 

 

Figure 5.1: A schematic 3D layered structural model where q  indicate layer number as well 

as upper discontinuity-surface bounding the same layer. LN  is the total number of layers 

considered in the model. 
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The importance of the above definition of model, as shown in Figure 5.1 in its 

simplified form, is worthwhile as it is more close to the real earth. When the layers are 

straight and horizontal, the assumption 1 gives a stratified earth model in which P-wave and 

S-wave velocities are constants. Such stratified model earth cannot be used to precisely 

define a large subsurface structure of the earth due to the spherical nature of real earth and 

curved layers of the subsurface structure. Such problem can be removed by considering the 

model in spherical domain rather than Cartesian domain, but defining minor variation of 

layer geometry in spherical domain is often difficult compared to that in Cartesian domain. 

Although proposed definition of model does not put any restriction to use shape of layers 

having three or more order of variation under different situation, however only bicubic 

interfaces have been considered in the present work to define the interfaces and layers. A 

definition of more precise model which is close to the actual earth is possible when the 

lateral variation of velocity is considered but that is beyond the scope of present study and 

has been considered using a different method in Chapter 6. 

The assumption 2 is essential for smooth variation of discontinuity between adjacent 

layers. The assumption 3 is very interesting as it says in other words that layers can be as thin 

as one can imagine but two layers cannot cross each other. In a mathematical sense a layer 

can be vanished by considering it ultrathin. Such definition is very useful to define a 

geological scenario as shown in Figure 5.2. In Figure 5.2, three layers are shown in which the 

left portion of middle thin bed in Figure 5.2(a) is removed to achieve realistic two bed 

structure in the left portion as shown in Figure 5.2(b). 

 

 

Figure 5.2: A special configuration of three adjacent layers in the model in Figure 5.1 in 

which the left side of middle layer of upper figure is very thin and can be approximated to a 

realistic situation shown in lower figure, where middle layer have sharp end. 

 

5.3 REPRESENTATION OF MODEL VECTOR AND DATA VECTOR 

The discontinuity-surfaces (interfaces) in Figure 5.1 can be defined by a B-cubic 

spline interpolation function or simply a bicubic polynomial interpolation function as given 

by Prenter (1975). These functions can be represented in general as: 

(a) 

(b) 
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  , ,q q qz x y  (5.1) 

With, ,q qg   and 0,1,2,....  

In Equation (5.1), qz  represent z coordinate of the q
th

 surface corresponding to coordinates x ,

y  and q  is a set of coefficients, ,qg coefficients which define the characteristic of q
th

 

surface function, q is function which must be differentiable upto second degree as required 

by assumption 2. One such function is given as (Lekien and Marsden, 2005): 

 
 

3

, ,
, 0

i j

q q i j
i j

z g x y


   (5.2) 

The function given in Equation 5.2 is defined on 16 nodes as shown in Figure 5.3(a), 

therefore the maximum value of  is 16. The 16 ,qg  unknown coefficients can be 

computed in 16 known value of z on 16 nodes. A typical surface described by Equation (5.2) 

is shown in Figure 5.3(b). A detailed description on polynomial interpolation can be found in 

Lekienand Marsden (2005) and Prenter (1975). 

      

                                       (a)                                                                   (b) 

Figure 5.3: Schematic diagrams showing 16 nodes of a bicubic Surface (a) and a typical 

bicubic surface (b) given by 16 nodes.  

 

The surface coefficients are termed as layer parameters as these define the interfaces 

that provide shape to the layers. These parameters serve as the one type of model parameters 

of the present inverse problem and can altogether be represented by model vector, 1m  as: 

11 12 13 1 21 22 23 2

31 32 33 3 1 2

1

3

, , ,... , , , ,... ,

, , ,... ,... , , ,...

LP LP

LP L L L L LP

N N

N N N N N N

T
g g g g g g g g

g g g g g g g g

 
  
 
 

m  (5.3) 

Where, LPN is total number of layer parameters, either the maximum value of and T  

indicates transpose. The vector in Equation (5.3) can be written in more compact form as: 

  21 1 3, , ... ...
PN N

T

    m  (5.4) 

Where,   1 21 21 LP
N N NN N N

g 
 

   with 1 1,2,3... LN N  and 2 1,2,3... LPN N  
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The model considered in Figure 5.1 can be well described seismically by body-wave 

velocities of different layers. Therefore P-wave and S-wave velocities are another type of 

model parameters which are included in the present inverse problem. If 
p

qs  and 
s

qs  represent 

P-wave and S-wave slowness of q
th

 layer, then these model parameters for all the layers in 

model in Figure 5.1 can be written as model vector 2m  as: 

  1 2 32 1 2 3, , .... , , , ....
L L

p p p p s
T

s s s

N Ns s s s s s s sm  (5.5) 

As the hypocenters with origin times of earthquakes are also included into the 

inversion problem, so the hypocenters, origin time also serve as the typical model 

parameters. If 0  represent origin time and 1 2 3, ,    represent three ordinates of the 

Cartesian domain, then introducing second subscripts to these parameters, for event number, 

these altogether can be written with model vector 3m  as: 

 01 21 31 02 22 32 03 23 333 11 1 1 1 22 0 33, , , , , , , , , , , ,... , , ,
E E EEN

T

N N N               m  (5.6) 

Where, EN  is total number of events or earthquakes. Therefore, with reference to Figure 5.1, 

the effective model parameters for all the LN  layers can be written by a single model vector, 

m  as: 

  3 2 1, ,
T

T T Tm m m m  (5.7) 

Or, 

11 1201 21 31 02 22 32 03 23 33 0 2 3

1 2 3 1 2 3 1 2 3

13 1, , , , , , , , , , , ,... , , , ,

, , .... , , , .... , , , ...

E EEE

L L P

N

T

N N N

p p p p s s s s

N N Ns s s s s s s s

               

   

 
  
 
 

m  (5.8) 

The data of the present inverse problem are source-receiver traveltimes of first arrival 

phases of body-waves of seismograms recorded at different receivers (stations) on the 

surface. For each earthquake (event) there will be a set of traveltimes of P-waves observed at 

a set of station positions. Therefore, for a number of earthquakes there will be a number of 

sets of traveltimes for P-waves observed at different stations. All such sets of observed 

traveltimes constitute the P-phase data vector which can be written as:  

 

  1 2 3, , ,... ,...
E

T
p pT pT pT pT pT

m N       (5.9) 

Where,  

   
 

1 2 3, , ,... ,...

1,2,3,... ; 1,2,3,...

E S

T
p p p p p p

m m m m mn N N m

E Sm N n N m

    

 


 (5.10) 
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In the above equations superscript, p  denotes P-phase and EN  is total number of earthquakes 

considered. As number of stations recorded different earthquakes may not be the same, 

therefore a functional integer  SPN m  is introduced to represent the number of stations that 

recorded first arrival P-phases from m
th

 earthquake. As S-phases are also considered in the 

problem therefore replacing superscript, p  by s  in Equations (5.9), (5.10) an S-phase data 

vector constituting the first arrivals of S-phases recorded at different stations can be 

represented similar to above as: 

  1 2 3, , ,... ,...
E

T
s sT sT sT sT sT

m N       (5.11) 

Where,  

   
 

1 2 3, , ,... ,...

1,2,3,... ; 1,2,3,...

E S

T
s s s s s s

m m m m mn N N m

E SSm N n N m

     

 

 (5.12) 

And similar to above  SSN m  is introduced to represent the number of stations that recorded 

first arrival S-phases from m
th

 earthquake. Combining p  and s  the total data vector can be 

written as: 

  ,
T

pT sT     (5.13) 

 

5.4 FORMULATION OF THE INVERSE PROBLEM 

The time of travel or the traveltime of seismic waves from a source to a station in a 

medium is primarily depends upon the path in the medium through which seismic energy 

travel from the source to the station. Although there many parameters which affect source-

receiver ray paths of seismic waves, however for the present problem the medium velocities 

for P-waves and S-waves, the coefficients of interfaces, hypocenters with origin times and 

the stations are sufficient controlling parameters to approximate the exact ray paths in the 

considered model. Out of five parameters the last one is supposed to be known and the 

former are unknowns and are of special interest for seismotectonic investigation of structural 

features of the earth. Let us suppose that the receiver (station) coordinates are perfectly 

known and slowness, coefficients for interfaces and hypocenter with origin times are four 

typical parameters that control the source receiver ray paths. 

Let us suppose that source-receiver traveltime of P-wave is related to all these four 

unknown types of model parameters by an arbitrary nonlinear function, pf ; then with 

reference to Figure 5.1 for a trial source-receiver ray path it is possible to write: 
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  0 2 3 1 2 3 1 2 31, , , , , , .... , , , ...
L P

p p p p p p

N Nf s s s s          (5.14) 

In the Equation (5.14), 0  is origin time, 21 3, ,    the three ordinates of a trial source with  

 0 2 3 31, , ,    m  and rest of the parameters in the parenthesis are defined through 

Equations (5.4) and (5.5). The total differential of traveltime governed by the Equation (5.14) 

can be written as: 

 
0

1 1

3

1

L PN Np p p
p p

i j kp

i j ki j k

f f f
d d d ds d

s
   

   

  
   

  
    (5.15) 

 

The Equation (5.15) describes that for infinitesimal change in model parameter the change in 

traveltime for the trial ray-path. To use the Equation (5.15) in practical tomography it is 

approximated as: 

 0

1 1

3

1

L PN Np p p
p p

i j kp

i j ki j k

f f f
s

s
   

   

  
        

  
    (5.16) 

Where,  is standard difference operator. The Equation (5.16) describes that for a finite 

change in model parameters the approximate finite change in traveltime. In computational 

tomography the difference operator,  on the left hand side is identified as the difference 

between observed and computed values of a traveltimes, and on the right hand side it 

indicates the discrepancy of computed model parameters with respect to apriori model 

parameters, therefore excluding the superscript we represent in general as: 

 
observed computed

aprioi computed

  

  

  

  
 (5.17) 

Where,   is a general component of model vector, m . As the equation is valid for a trial 

ray-path therefore associating the subscripts m and n with 
pf ,

p , 0 1 2, ,   , and 3 to assign 

the same equation for a ray path connecting m
th 

earthquake and n
th

 station we write: 

 
0

1 1

3

1

L PN

i j k

Np p p
p p pmn mn mn
mn m i j kP

im j k

f f f
s

s
   

   

  
        

  
    (5.18) 

With,  1,2,3,... ; 1,2,3,...E SPm N n N m   

In Equation (5.18), p

mnf  is the function which maps model parameters affecting propagation 

of P-wave from m
th

 earthquake to n
th

 station, into corresponding traveltime, p

mn . The set of 

hypocenter parameters  0 1 2 3, , ,m m m m    belongs to m
th

 earthquake and is defined in 

Equation (5.6).Replacing the superscripts p in Equation (5.18) by superscripts s  a similar 

expression can be written with reference to S-wave as: 
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1

L PN

i j k

Ns s s
s m p Smn mn mn
mn i j km s

i j k

f f f
s

s
   

   

  
        
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    (5.19) 

Where,  1,2,3,... ; 1,2,3,... .E SSm N n N m   s

mnf  is a function similar to p

mnf  that maps 

model parameters, affecting propagation S-waves from m
th

 earthquake to n
th

 station, into S-

wave traveltime, s

mn .The finite differential Equations (5.18) and (5.19) for all the stations 

either for all value of n  can be organized into a matrix form as:  

 
2

1

0

0

mp p p p

m m m m

s s s s

m m m m

P
P Q S
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P Q S

m

 
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            

 (5.20) 

Inserting a common letter w  for superscripts p  and s  in Equation (5.20), we define: 
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 (5.21) 
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 (5.24) 

Extending Equation (5.20) to include all the recorded earthquakes, it becomes: 

   m   (5.25) 

In which, 
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And   
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Equation (5.25) is linearized expression that connects model vector to the data vector. 

This difference operator on the left hand side is identified as the difference between observed 

traveltime vector and computed traveltime vector. The difference operator on the right hand 

side is the difference between apriori model vector and computed model vector. These with 

the help of Equation (5.17) can be written as: 

 

 
observed computed

apriori computed

  

  

  

m m m
 (5.28) 

 

The matrix   in Equation (5.25) is consisted of derivative of functions governing source-

receiver ray path and traveltimes with respect to model parameters that controls the ray-

paths. In inverse theory such derivatives are called Fréchet derivatives. To obtain a solution 

of model using Equation (5.25), it is required that these derivatives must be expressed in 
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terms of known model parameters and data, therefore we presents detailed derivation of these 

derivatives in §5.5.  

 

5.5 DERIVATION OF FRÉCHET DERIVATIVES 

The interfaces or discontinuity surfaces considered in the model in Figure 5.1 vary in 

three dimensions, therefore a phenomenon of self intersection of ray paths and theses 

surfaces may occur as shown in Figure 5.4. 

 

 

Figure 5.4: Phenomena of internal reflection by discontinuity surface by a segment of 

arbitrary ray path. The numbering of elementary points, starting from r
th

 point is shown. The 

layer number between r and r+1 is r. The false layer or pseudo layer, r+1 lies between 

elementary point r+1 and r+2 in the figure. 

 

In Figure 5.4, ABCD is an arbitrary ray path segment consisted of incident ray path 

sub segment, AB, refracted ray path sub segment, BC, the reflected ray path sub segment CD 

and refracted ray path sub segment, DE. The reflection phenomena similar to ray path 

segment ABCD may occur for an arbitrary ray path within the model given in Figure 5.1, due 

to 3D nature of discontinuity surfaces. Therefore the phenomenon of reflection has to be 

considered in combination with refraction in the formulation of Fréchet derivatives. As the 

point (C in Figure 5.4) of reflection and the point (B and D in Figure 5.4) of refraction are 

unknown for an arbitrary ray path therefore it is very difficult to establish an exclusive 

mathematical formulation of the derivatives using the layers and discontinuity surfaces of the 

model.  

          A ray path contains the points of refraction and the points of reflection and for an 

arbitrary ray path in model in Figure 5.1, these are the elementary points because these points 

are sufficient to reconstruct the entire ray path as the ray path segment between two such 

adjacent points are straight. The elementary points of ray paths are essentially the 
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intersection points between the ray paths intersected by discontinuity surfaces of the model. 

The coordinates of these points are computed in the forward problem hence these are known. 

The numbering of these elementary points is illustrated in Figure 5.4. These elementary 

points can be used to obtain the Fréchet derivatives if we relate these points with the number 

of discontinuity surfaces using a function,   as: 

  q r  (5.29) 

With, 1,2,3,... ; 1,2,3,...C Lr N q N   

The value of q in Equation (5.29) denotes layer number or interface number as suggested in 

model description in §5.2, whereas r  denotes the intersection points (elementary points) 

between ray-paths and discontinuity-surfaces with CN  being the total number of elementary 

points in a ray path. The value of r  also denotes the number of pseudo-layer bounding 

pseudo surfaces (as layer r+1 in Figure 5.4) in the same way as q does for actual layer, except 

r=1 where it indicates position of hypocenter. This definition of function,  says that two 

pseudo-layers may indicate a single actual layers but the inverse is not true. It is also clear 

that if the phenomenon of reflection is not considered into the problem then each pseudo-

layer denotes a single unique actual layer in the model. The value of q in the above function 

for each value of r is obtained during the solution of forward problem; in other words it is 

computed during the computation of ray-path and traveltime in forward problem. 

It is useful to define here a general set of model parameters that is common to both P-

wave and S-wave; therefore we define a set   as: 

  0 2 3 1 2 3 31 1 2, , , , , , .... , , , ...
L PN Ns s s s         (5.30) 

Where, 0 is, as before, the origin time of an earthquake and 1 2 3, ,    are three ordinates of 

hypocenter of the earthquake. The parameters 1 2 3, , ....
LNs s s s are the slownesses of either P-

wave or S-wave in layers 1,2,3,... LN  with LN  being the total number of layers as before. 

The 4
th

 type of parameters in the parenthesis of Equation (5.30) is defined in §5.3. 

The ray paths for P-wave or S-wave in any layer are straight lines as the velocities for 

both P and S-waves at different points within any layer are same due to assumption 1. In 

other words the function appeared in §5.4 can be written as: 

 
1

CN

r r

r

f l s


  (5.31) 

With the definition of length segment, rl of ray path between two adjacent intersections with 

the surfaces as: 
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      
2 2 2

1,1 1,2 1,3 31 2r r r rr r rl x x x x x x         (5.32) 

 

The value of CN  in Equation (5.31) as earlier indicates the total number of 

elementary points of a ray path and in Equation (5.32), 1rx , 2rx  and 3rx  denote three 

ordinates of r
th 

elementary point. The following derivatives can be written using Equation 

(5.31) and (5.32);  
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 (5.33) 

With,      1,2,3,... ,1,2,3 , 1,2,3,...L Pi k Nj N   

It is clear from the above equation that the derivatives of function f  with respect to 

model parameters can be computed if the derivative of rl with respect model parameters is 

given. Consider a parameter   such that: 

    (5.34) 

Differentiating Equation (5.32) with respect to   we have 

1,1 1,2 31 1,2 31 r r rr r r
r r

r

r

r

x x xxl x x
x y z

l      

             
            

            
 (5.35) 

 

The problem of computation of derivative of function, f  in Equation (5.33) is reduced to the 

problem of computing derivatives of different position vector with respect to the model 

parameter . 

Let rs  and 1rs   be the body wave slownesses of r
th

 and (r+1)
th

 layers then, for a given 

unit incident vector ray-path, rl from r
th

 layer on a r
th 

surface separating adjacent(r+1)
th

 layer, 

the unit refraction and unit reflection vector ray-paths, respectively 1

fr

rl  and 1

fl

rl can be 

written as (Equations 3.14 and 3.19):  

  1

1

1

fr

rr
r

rr

r

s
Q

s




 l l n  (5.36) 

 1 1 12( . )fl

r r r r r   l l l n n  (5.37) 
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Where, 
1rn is the unit normal vector on (r+1)

th
 surface at the point of ray incident and the 

scalar quantity 
rQ  is given by:   

  

1
2 2

21
1 11 . .r

r r r r r

r

s
Q

s


 

   
     

   

l n l n  (5.38) 

Removing the superscript in Equations (5.36) and (5.37) and considering the phenomena of 

reflection and refraction as two mutually exclusive events, the generalized unit vector ray-

path segment in any two adjacent layers can be written recursively as: 

     1 11

1

11 2( . )r
rr r r r r

r

r rr r

s
F Q F

s
 



    l l n l l n n  (5.39) 

With, 

 
1;

0;

r

r

F for refraction

F for reflection

 


 
 (5.40) 

In Equation (5.39) rl  represent the same incident unit vector ray-path but 1rl  represents unit 

vector ray-path segment after the event of reflection or reflection. Differentiating the vector 

Equation (5.39) from both sides with respect to the parameter  and applying some algebraic 

operation, we come to:  

 1
1 1.

r r r
r r r r rI 
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

 

   
   
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l l l
n n J  (5.41) 

Where,  
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s s

s s
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n n
J n l   (5.44) 

With, 

  1

1

2(1 ) .r
r r r r r r

r

s
F Q F

s
 



   l n  (5.45) 
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1 1
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  (5.46) 



153 

 

Writing  1 2 3, ,r r r ra a al ,  1 2 3, ,r r r rn n nn  and  1 2 3, ,r r r rJ J JJ , the unit vector 1rl  

from Equation (5.41) can be split in its three components as:  

 
3

1,

,3 ,

1

; 1,2,3
r j rj j

r k j r

k

a a
B J j

 







 
  
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  (5.47) 

 

2

41 1,1 51 1,1 1,2 61 1,1 1,3

2

42 21 52 1,2 62 1,2 1,3

2

43 31 53 32 63 1,3

; ;

; ;

; ;
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
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 (5.48) 

To split the unit vector rJ  in its components, it is essential to express the unit vector n  in 

terms of surface variables. The unit normal vector, n  at point  1 2,r rx x  on the surface 

represented by the Equation (5.1) is given by: 

  1 2
1 2 3

2 2 2 2 2 2

1 2 1 2 1 2

1
, ,

1 1 1
, , r r

r r r

r r r r r r

n n n
 
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 
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 

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

n  (5.49) 

Where, 1 2,r rn n  and 3rn are components of n  along ,x y and z directions in Cartesian domain 

and    
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 (5.50) 

The derivatives of the components of n  with respect to arbitrary parameter   can be written 

in terms of derivatives of 1rx  and 2rx  with respect to the same arbitrary parameter,  as:  
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 (5.51) 

In Equation (5.51) the parameters 1 2 3 1 2 3 1 2, , , , , , ,r r r r r r r r         and 3r are defined 

as below: 
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With the help of set of Equations (5.51) the components rjJ  of vector rJ  can be expressed 

as: 
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 (5.54) 

The functions rju  and  rg   are defined as 
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Equation (5.47) using the results of sets of Equations (5.53), (5.54) can be written as: 
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With, 1,2,3.j   
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The differential expressions for components of unit vector in set of Equation (5.57) show 

recursive characteristic and these are possible to solve only when we have another set of 

recursive relations. However, a second set of equations result from the interaction of ray-

paths and surfaces of discontinuities. As the ray-path segments in any layer are straight lines 

so they are governed by the following equations: 

 1,1 1 1,2 2 1,3 3

1 2 3

r r r r r r

r r r

x x x x x x

a a a

    
   (5.58) 

And because of Equation (5.1) 

 1,3 1 1, 1,1 1,2( , , )r r r r rx g x x      (5.59) 

Using the expressions (5.58) and (5.59) following relations result: 

 3 3 2 2
1,1 1 3 1 1, 1,1 1,1 1 2

1 1 1 1

, ,r r r r
r r r r r r r r r

r r r r

a a a a
x x x g x x x x

a a a a
    

 
     

 
 (5.60) 

 3 3 1 1
1,2 2 3 1 1, 1,2 2 3 2

2 2 2 2

, ,r r r r
r r r r r r r r r

r r r r

a a a a
x x x g x x x x

a a a a
   

 
     

 
 (5.61) 

Differentiating the equations (5.60), (5.61) and (5.59) with respect to parameter   and 

applying some algebraic operation following set of recursive relation can be written: 
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With, 1,2,3j   and coefficients are given in Table 5.1. 

 

Table 5.1: Coefficients in Equation set (5.62) 

 11 2 /r r r r rC y z t   

21 2 /r r r rC x t    

31 /r r rC x t   

41 11r r rC R C  

51 21r r rC R C  

61 31r r rC R C  

71 3 /r r r rC x t    

12 1 /r r r rC y t    

 22 1 /r r r r rC x z t   

32 /r r rC y t   

42 12r r rC R C  

52 22r r rC R C  

62 32r r rC R C  

72 3 /r r r rC y t    

13 1 /r r r rC z t    

23 2 /r r r rC z t    

 33 1 2 /r r r r r rC x y t     

43 13r r rC R C  

53 23r r rC R C  

63 33r r rC R C  

73 3 /r r r rC z t    

 

In the above table 
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 (5.63) 

With the help of equation (5.62), the set of relations (5.57) can further be simplified as 

 
3 3
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Where, 
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



  (5.65) 

The Equation set (5.62) defines the derivative of ordinates of elementary points of a 

ray path and Equation set (5.64) defines the derivative of unit vector parallel to ray path at 

those elementary points, in terms of known coefficients which are defined using ray path, 

function  and parameter  . To solve the Equation (5.62) and (5.64) exclusively for such 

derivatives, it is essential to reduce the Equation (5.62) in r. To do this objective we define 

an equation similar to Equation (5.62) but with different notation of coefficients as: 
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Where, 

 ; 1,2,..6; 1,2,3rij rijU C i j    (5.67) 

Equation (5.66) can be reduced using Equation (5.62) and (5.64) as: 
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Where, it can be proved with minor algebraic operation that 
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 (5.69) 
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Equation (5.68) and recurrence relation set (5.69) form the basis of reduction of Equation 

(5.62) and Equation (5.64) in terms of r. Equation (5.68) using Equation (5.69) can be 

reduced from the point of station to the point of hypocenter where we have 

 
1, 1311 12

1,4, 1,5, 1,6,0cN j

j j j j

x aa a
U U U W

   

  
    

   
 (5.70) 
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   

  



 (5.71) 

The left hand side of Equation (5.70) holds to be true as the station coordinates in the present 

problem are well known and fixed. The value of parameter jW  in Equation (5.71) is exactly 

known at the point of hypocenters because: 

 

1
1

0

j

j

j

j

x
when

when

 


 
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 (5.72) 

Equation set (5.70) can be solved for 
1 ja






 as there are three unknown and three known 

parameters. In other words it is always possible to know 
1 j

j

x






 and 

1 ja






 for all three value of 

j. Once for a ray path 
1 j

j

x






 and 

1 ja






 for three values of j are known, all the derivatives in 

recursive Equations (5.62) and (5.64) can be solved. The ordinate derivatives are then used to 

obtain length derivatives in Equation (5.35) which help ultimately to solve all the derivatives 

in Equation (5.33) for a ray path. 

 

5.6 ALGORITHM TO COMPUTE FRÉCHET DERIVATIVES 

We present an algorithm in this section to solve Fréchet derivatives for a single ray 

path between source and station using surface function given in Equation (5.2). The 

algorithm consists of three basic units namely, TOF, COF and DEVL which respectively 

compute coefficients in Equation set (5.64), (5.62) and solve Equation (5.33) for the required 

derivatives. Algorithm of the unit TOF is shown in Figure 5.5. 

The variable integer, ind in the algorithm is used to decide the type of model 

parameter with which the derivatives are required. Its 1, 2, 3 value correspond to hypocenter 

ordinates 1 2 3, ,   , 4 value correspond to model parameter slowness, s and 5 value 

correspond to layer parameters, g. Variable integer in is an array of dimension three where 
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(1), (2)in in  correspond to ,i j  respectively and (3)in  indicate q in Equation (5.2). Variable 

intpt is an array of dimension 2 and it stores the coordinates of all the elementary points of a 

ray path. Variable npt is total number of elementary points, CN   in the ray path. Variable cf  

is an array of dimension three which defines g in Equation (5.2) with r being the first 

dimension, i  and j  respectively second and third dimension. Variable ink is a one 

dimension array that store value of function . Variable rf  is an array of one dimension that 

carries the value of rF  and variable s is an array of one dimension that store slowness of all 

the layers in the model. The output of this algorithm is all the coefficients, rkjB  in Equation 

(5.57). 

 

 

 

Figure 5.5: A unit of algorithm to compute coefficients B  in Equation (5.57) for a source 

station ray path. 
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The unit COF which computes all the coefficients, rkjC  in Equation (5.62) is shown 

below in Figure 5.6. Once the coefficients, rkjB  and rkjC  are computed using sub processes 

TOF and COF, the rest of the operations to obtain derivatives in Equation (5.33) can be 

combined into a single sub process DEVL, which compute length derivative either rl






 in 

Equation (5.33). This DEVL is shown in Figure 5.7. 

 

 

 

Figure 5.6: A unit of algorithm to compute coefficients C  in Equation (5.64) for a source 

station ray path. 

 

The unit DEVL performs operations: conversion of rkjB  to rkjC  using Equation 

(5.65), conversion of rkjC  to rkjU  using Equation (5.69), reduction of rkjU  to 1, ,k jU  using 

equation (5.68), computation of  1311 12, ,
aa a

  

 

  
 using 1311 12, ,

xx x

  

 

  
 and Equation (5.70), 

solution for 
rjx






 and 

rja






 using Equations (5.62) and (5.64) and finally the length 

derivatives, rl






 appeared in Equation (5.33) using relation in Equation (5.32). The variable 

real array, d  and ld  used in DEVL are respectively of two dimensions and one dimension 

and help to sum up the whole sub process. The real variable array len is of one dimension 

and store all rl  in Equation (5.32). 
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Figure 5.7: A unit of algorithm, DEVL to compute length derivatives in Equation (5.33). 

 

The unit TOF, COF and DEVL are combined using three switches SW1, SW2 and 

SW3 to construct an algorithm, IL-P to compute desired types of Fréchet derivatives. When 

switch SW1 is 1 the algorithm IL-P gives derivatives, ldx of traveltime with respect to 

hypocenters. When switch SW2 is 1 the algorithm gives derivatives, lds of traveltime with 

respect to body wave slowness, s  and when switch SW3 is 1 the same algorithm gives 

derivatives, ldh of traveltime with respect to layer parameters, g  which can be converted to 

the derivative with respect to modified layer parameter,   using relation given in §5.3. The 

real variable arrays ldx , lds  and ldh  are of one dimension. The new integer variable nsp 

carries the layer number in which the source lies.  
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Figure 5.8: Integrated algorithm to compute Fréchet derivatives for a source-station ray path. 

 

5.7 ALGORITHM TO INVERSION 

An algorithm to tomographic inversion using Damped Least Square method given in 

Chapter 1 is presented in Figure 5.9. There are five basic sub processes which are integrated 

as in Figure 5.9 to solve the tomographic inversion. These sub processes for simplicity of 

discussion are named as follows: 

1) Traveltime Computation: It computes total traveltime of a ray-path connecting a 

source and a station. The forward problem discussed in Chapter 2 gives the idea to 

obtain the elementary points of ray-paths. Once the elementary points of a ray path 

are determined, the elementary traveltimes for the same ray-path is determined by 

multiplying the length segments between two adjacent elementary points with the 
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slowness of the layer between those two points. The outputs of this sub-process are 

elementary points and total traveltimes of all source-station ray paths as well as the 

refraction coefficient, F and function   in Equation (5.39) and Equation (5.29) 

respectively. The refraction coefficient, F  and function, are computed during the 

solution of forward problem. 

2) Fréchet Derivatives: It computes the whole matrix,   in Equation (5.25) for all ray-

paths for a given number of source and station, using algorithm given in §5.8. It also 

computes T   from  . 

3) Maximum Eigen value: it computes the maximum Eigen value using a standard 

method. 

4) DLS Inversion: It inverses T

l    I  using a standard matrix inversion method 

such as inversion using Gauss Seidel Iteration Method with complete pivoting 

(Xavier, 2006). 

5) Model Update: A new model is created using
1

T T

new old l


        m m I . 

 

Variable S, P, C, T and IT are of integer types, where IT represents number of 

iteration in the inversion process and rest variables are self defined in the algorithm. The 

Eigen value, l  in T

l    I  is determined iteratively by choosing the least root mean 

square error in traveltimes between observed and computed after temporarily updating the 

model, M. In the beginning the eigen value is chosen to be the maximum Eigen value of 

T   and in each iteration the eigen value is reduces by half to perform next iteration. 

During the process of iteration the switch S remain in zero state. The maximum number of 

iteration allowed is N. Since, every single iteration to update the model, the process for eigen 

value computation requires N number of iteration, therefore for a total of ITM number of 

iteration, the total iteration is N×ITM  which is sometimes become very large and hence the 

computation process becomes slower. To remove this problem we have used three integer 

variables P, C and T as controlling parameters in the algorithm. Here, once an eigen value is 

iteratively determined, it continues to update the model 2 times and then it reduces by half. 

This process continues unless the value of parameters P becomes 10 or root mean square 

(rms) traveltime error, E   exceed the rms traveltime error, pE  computed one step earlier.   
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Figure 5.9: The work flow tomographic inversion using DLS inversion. 

 

5.8 GRADIENT PATH SEARCH METHOD (GPSM) 

Equations (5.62), (5.64) and (5.68) are used to obtain the derivative of ray path with 

respect to source position in terms of change in ordinates of elementary points of ray path 

and change in unit vector parallel to ray path segments connecting two adjacent elementary 

points when a small change in source position is made. The same equations can be used to 

obtain derivative of position coordinates of any station on the surface of model, with respect 

to take off vector. Here the final intersection point between ray path and model surface is 

variable and the hypocenter is fixed so it is a one point boundary problem and is solved in the 

following way. 

Consider  ,1 ,2 ,3, ,
C C CN N Nx x x  where CN  indicate elementary point corresponding to 

station. As the hypocenter is fixed therefore from Equation (5.71) 

1311 12 0
xx x

  

 
  

  
 and 1,7, ; 1,2,3j jW U j   

Using these results the Equation (5.70) becomes 
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Which can be written in matrix form as: 
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Which further can be written as: 
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Consider the following: 
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Using Equation (5.75) and (5.76) the derivatives of takeoff vector can exclusively be written 

as: 

        1
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x
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


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
 (5.77) 

Where, 1,2,3j  , 1,2,3k   and   is delta Dirac function defined as: 

 
 , 1;

0 ;

j k j k

j k

   

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 (5.78) 

As we can see in Equation (5.77) that the change in any ordinate of elementary points of a 

ray path is associated with the change in all three components of takeoff vectors, the inverse 

is also true; either the change in any one take off vector at hypocenter is associated with the 

change in all three component of basis vectors of ray path. This statement is not only true at 

hypocenter rather it is true for all the points in the basis of ray path and corresponding take 

off vectors (Equation 5.62 and 5.64). Therefore the total derivative of takeoff vector at 

hypocenters can be written as: 
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 (5.79) 

 

Equation (5.79) describe the total change in unit take off vector corresponding to a change in 

final ray point and hence this forms the basic equation to obtain the true takeoff vector at 

hypocenter position in other word an initial takeoff vector that position the ray such as the 

final point nearly or completely math with the station position. An algorithm to the whole 

process is given below in Figure 5.10.  

Variable array W in the algorithm is of three dimensions which store the discrepancies 

between ordinates of CN th
 elementary point and station and is defined as: 

   , , ; 1,2,3
Cstation j N jW j x x j    (5.80) 

Variable array ota and nta correspond to old and new take off vector at hypocenter, either 

these are 1 ; 1,2,3ja j   and rest of the variables used in the algorithm is defined in §5.6. 

 

 

Figure 5.10: An algorithm (IL-Q) to update the takeoff vector at the position of a hypocenter 

using GPSM. 

 

5.9 JOINT WORKING OF GPSM AND SPSM 

An incomplete algorithm without input variables, using integrated algorithms IL-A 

(described in Chapter 3 in Figure 3.6) and IL-Qis shown below in Figure 5.11. It computes 
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point series and block series defined in Chapter 3, only if an initial W  (in Equation 5.80) is 

supplied. Variable integer IN2 is maximum number of iteration required by this algorithm to 

get a true take off vector for a ray path under admissible error, gme; which is considerable 

value defined as: 

      
2 2 2

1 2 3gme W W W    (5.81) 

The value of gme , in every iteration, is compared with minimum error of a ray path, supplied 

by integrated algorithm IL-A.  

 

Figure 5.11: A part of an algorithm to solve forward problem using Gradient Path Search 

Method. 

 

           As one of the outputs of IL-C is W , therefore, a new complete algorithm joining 

GPSM and SPSM can be given if the round node of incomplete algorithm in Figure 5.11 is 

connected to point, T  in IL-C. As IL-C is primarily a scanning process so it is essential to 

assign a small value to IN1 in IL-C so as to make it faster. The small value of IN1 may not 

give the true ray path with admissible error, gme however combine working of incomplete 

algorithm (Figure 5.11) give nearly the true ray path in just 7 to 8 iteration. In other words 

the resultant algorithm gives faster result. The scanning process in SPSM search true take off 

vectors at hypocenter in a particular constant step and hence the possible degree of accuracy 

in a given number of iteration is less compared to GPSM as it is based on inverse theory and 

do not search takeoff angle in a constant step. Although the combined operation of GPSM 

and SPSM is expected to give faster and accurate results, however the optimal values for IN1 
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and IN2 are subjected to the complexity of a particular problem and hence to a faster results 

in forward computation these constants (IN1 and IN2) must be determined by numerical 

tests.  

 

5.10 CONCLUSIONS 

A Multiparameter Inversion method is presented in this chapter. This method 

simultaneously inverts P-phase and S-phase to compute body wave velocities, layer 

parameter and hypocenter with origin time. These model parameters can be determined 

individually or separately with the help of three switches, SW1, SW2 and SW3 which are 

discussed in §5.6. As compared to straight layer model of earth, the model used to derive the 

formulation is more close to the real earth and hence can be used to resolve the discontinuity 

present in the subsurface structure. Because of the 3D nature of the discontinuity surfaces the 

refraction is considered along with reflection to compute the proper first arrival ray path 

rather than false one. An algorithm of tomography using damped least square method is 

given in §5.7. The speed of the total processes is increased by the introduction of integer 

variable C, P and T. The Gradient Path Search Method (GPSM) and the combined working 

GPSM and Spiral Path Search Method in forward computation are also discussed later in this 

Chapter. As the GPSM is based on inverse theory, therefore unlike Spiral Path Search 

Method (SPSM), the GPSM do not search take off vector in a constant steps, which increase 

the chance of getting more accurate source station ray path. The SPSM is primarily a 

scanning method and hence the time take to achieve an admissible error in ray path 

computation is more compared to GPSM. As the GPSM need some initial value of 

discrepancy between station ordinates and elementary point of ray path close the station, 

therefore we consider the working of SPSM followed by GPSM. 
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6 

 

SEISMICITY AND SUBSURFACE STRUCTURES OF THE KUMAON 

HIMALAYA 

 

 

 

 

 

 

 

 

 

6.1 INTRODUCTION 

The body wave velocity of a homogeneous and isotropic medium is related to 

elasticity and density of that medium. As the different layers of earth have different elasticity 

and density, therefore, accurate knowledge of body wave velocities of the earth has remained 

one of the most important keys from the beginning of seismology to investigate the internal 

structure of the earth (§1.1) both for research and exploration purpose. Besides, the study of 

Earth’s internal structural, the knowledge of subsurface velocity is important to locate 

earthquake, to study seismicity, to generate synthetic seismogram, to obtain attenuation and 

hazard map (Shapiro et al., 2000) which help to determine several crucial parameters in 

building and damp construction.  

There exists many methods for the determination of seismic velocity; however, its 

accurate determination is still challenging and most common problems both in earthquake 

and exploration seismology. The problem is less difficult for a known region, having simpler 

subsurface structures, where some studies related to subsurface velocity have already is 

available. However, the same problem becomes more difficult for a virgin region having 

complex terrain like the Himalayan belt. This problem is further complicated due to scarcity 

of data in complex terrain. This is the case with the Kumaon Himalaya in and surrounding 

region of Pithoragarh district, Uttarakhand. Due to scarcity of data in this region the in-depth 

knowledge of velocity is poor. 

One way of increasing the amount of information from the data is by considering 

more than one type of waves such as first arrival P- and S-phases. These phases contain 
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precious information of subsurface structure through which these propagate from the position 

of sources to the observation points. Therefore it is highly essential before looking for any 

detailed velocity structure that the positions of sources or the hypocenters must be located or 

relocated to their true positions.  

The raw data that is extracted from a seismograph in traveltime inversion are first 

arrival P- and S- phases in standard time units. To convert these standard time units to 

traveltime of phases it is essential to obtain the origin times in simultaneous with 

hypocenters. Preliminary locations of hypocenters and origin times of earthquakes (together 

called as hypocenter parameters) in a region are generally obtained using a 1D velocity 

model of that region. Once the preliminary locations of hypocenters and origin times are 

obtained, the simultaneous inversion is desired to improve velocity model as well as 

locations of hypocenters and origin times. This is required because velocity parameter of a 

model alone cannot be forced any how to satisfy the data due to various structural constraints 

of the model and due to its intimate relationship with the hypocenters (sources) as given in 

Equation (1.3). The simultaneous inversion for velocity and hypocenter parameters is done in 

1D, 2D or 3D study depending on the requirements. If a 1D velocity model and a set of 

hypocenter parameters are used as initial model parameters in 2D simultaneous inversion that 

results in 2D velocity and hypocenters parameters with insignificant change hypocenters 

distribution then it is sufficient to lock these before proceeding for 3D velocity study to avoid 

unnecessary computation. 

In the present study, both P- and S phases are considered for the study of hypocenters 

and velocity models. Hypocenters are located first by using 1D reference velocity model 

given by Mukhopadhyay (2008) and the developed algorithm presented in Chapter 5. The 

obtained hypocenters and 1D velocity model are then simultaneously recalculated using the 

same algorithm. The traveltime (data) residuals are analyzed before and after the inversion 

process. The resultant 1D velocity model and hypocenters are then used as initial parameters 

for development of 2D velocity model and for further improvement of hypocenters location. 

Once the 2D velocity model is obtained the location of hypocenters are locked and 3D 

velocity model are obtained using a tomography method that is presented in this Chapter. 

The relocated hypocenters are explained in terms of seismicity of the Kumaon Lesser 

Himalaya and compared with other zone of Himalayan belt. The velocity models are 

analyzed using resolution parameters and the same are discussed and compared with other 

study.  
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6.2 STRONG MOTION NETWORK AND DATA 

The presents study area come under Kumaon region of Lesser Himalaya including the 

districts of Pithoragarh, Bageswar and some portion of Champawat district. The region 

including Pithoragarh and Bageswar is bounded by the MCT in the north and North Almora 

Thrust (NAT) in the south. The only station which our study area covers in the districts of 

Champawat is Lohaghata. Under different projects of Ministry of Earth Sciences (MoES), a 

total of 15 mobile strong motion seismographs of Kinemetrics, USA have been installed in 

these areas in 18 locations in recent past. Table 6.1 summarizes the detailed position of the 

instrument with station height above Mean Sea Level (MSL). The station names are coded 

with four letters to figure the same in appropriate map. A map view of the station position is 

shown in the tectonic map covering study area in Figure 6.1; where solid triangles show the 

position of stations. Seismographs in this network from 2006 to 2012 have recorded several 

earthquakes in all three components. A total of 373 first arrival P phases and a total of497 

first arrival S phases from 116 earthquakes are picked up for arrival times with the help of 

QLWIN quick look software supplied by Kinemetrics Inc., which serves as data for the 

present study. 

 

Table 6.1: Strong Motion Network 

Sl. no. Station 

name 

Station 

code 

Longitude 

in degree 

Latitude 

in degree 

Station height 

in meter 

1 Askot ASKT 80.33 29.76 1258 

2 Baluakot BLKT 80.42 29.79 644 

3 Berinag BENG 80.05 29.77 1684 

4 Bageshwar BGSR 79.77 29.83 873 

5 Dharchula DRCL 80.53 29.84 935 

6 Didihat DDHT 80.25 29.80 1628 

7 Joljibi JLJB 80.38 29.75 612 

8 KamediDevi KMDD 79.96 29.84 1820 

9 Knalichina KNLC 80.27 29.67 1656 

10 Lohaghat LGHT 80.08 29.39 1630 

11 Mangti MNGT 80.71 30.00 1609 

12 Muwani MWNI 80.13 29.74 822 

13 Munsyari MNSR 80.25 30.06 2100 

14 Pithoragarh PTGR 80.21 29.58 1574 

15 Sobla SBLA 80.58 30.05 1628 

16 Tejam TJAM 80.12 29.95 968 

17 Thal THAL 80.14 29.82 783 

18 Kapkot KPKT 79.89 29.94 1133 
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Figure 6.1: Overview map with the topography and major tectonic settings of the Himalayan 

terrain covering the Kumaon Lesser Himalaya. The strong motion stations of local network 

are marked by red solid triangles. 

 

 

Figure 6.2: The geology and tectonic setting of the region after Dasgupta et al. (2000). The 

study region is marked by rectangle SPQR. Direction from A to B, marked by white line 

dividing the rectangle SPQR into two equal halves and making an angle of 26° with respect 

to north, is the direction along which vertical section of velocity structure is investigated. 

Locations of seismographs are denoted by solid black triangles. 
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For simplicity of discussion, the geological map showing the study region with major 

tectonic features and station locations is shown in Figure 6.2. The study region which has 

been considered for determination of 3D velocity structures is marked by rectangle SPQR. 

The direction of white line is 26°NE and it is the direction along which the two dimensions 

velocity structures have been investigated. 

 

6.3 SEISMICITY AND 1D VELOCITY MODELS OF KUMAON HIMALAYA 

Seismicity of a region are generally explained in terms of distribution of earthquakes 

occurred in that region in past. Velocity information is essential to obtain accurate 

earthquake location. The velocity and hypocenters are intimately related quantity (Equation 

1.3), therefore it is better to consider simultaneous computation of these parameters instead 

of computing any one of these at a time. This has been practically carried out for the data of 

Kumaon Himalaya and is described below. 

 

6.3.1 Practical consideration and Method 

The lithosphere of the study region up to a depth of 75 km (72 km below msl and 3 

km above msl) is divided into 25 horizontal straight layers each having equal thickness. 

Seismic velocity is defined with the help of an appropriate 1D velocity model. 1D velocity 

model strictly for the region under consideration is not available. However a regional 

velocity model can be considered in this case after testing the same for its error in the 

inversion scheme. Some of the important 1D velocity models are those given by 

Mukhopadhyay and Sharma (2010a), Yu et al. (1995) and Monsalve et al. (2006). These 

models are tabulated in Table 6.2, where Vp and Vs represent seismic velocity for P and S 

wave respectively.  

The algorithm for multiparameter inversion presented in Chapter 5 is considered to 

generate velocity model as well as to compute the locations of hypocenters. A sum of 870 

first arrival observation times of P and S phases have been considered as data. With the help 

of multiparameter inversion algorithm, three tests were performed using three given velocity 

models and the final results were checked in terms of root mean square errors (rms) 

computed between observed arrival times and computed arrival times corresponding to all 

the three models. It has been found that the 1D velocity model reported by Mukhopadhyay 

and Sharma (2010a) gives least rms error and hence this was selected as initial 1D velocity 

model for the study. With this 1D velocity model and observed arrival times of body wave 

phases, hypocenters of all the considered earthquakes were determined. The located 

hypocenters and 1D velocity model were then considered simultaneously in the 
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multiparameter inversion scheme to accurately compute these parameters. The computed 1D 

velocity model and refined hypocenters were later used in developing 2D and 3D velocity 

structures. 

 

Table 6.2: 1D Velocity Models in the Himalayan Terrain 

Garhwal-Kumaon  

(Mukhopadhyay and Sharma, 

2010a) 

Uttarkashi 

(Yu et al., 1995) 

North-East Nepal 

(Monsalve et al., 2006) 

Depth 

(km) 

Vp 

(km/s) 

Vs 

(km/s) 

Depth 

(km) 

Vp 

(km/s) 

Vs 

(km/s) 

Depth 

(km) 

Vp 

(km/s) 

Vs 

(km/s) 

00-10 

10-15 

15-20 

20-30 

30-50 

50-∞ 

5.47 

5.92 

5.98 

6.22 

6.64 

8.21 

3.05 

3.29 

3.51 

3.51 

3.84 

4.75 

0-0.4 

0.4-1.4 

1.4-16.4 

16.4-46.4 

46.4-∞ 

 

3.50 

5.00 

5.20 

6.00 

8.33 

2.00 

2.86 

2.97 

3.43 

4.83 

0-2.7 

2.7-23.2 

23.2-55 

55-∞ 

5.40 

5.64 

6.30 

8.11 

 

 

3.25 

3.25 

3.65 

4.54 

 

 

6.3.2 Results  

The results of this inversion have been presented in Figure 6.3, 6.4, 6.5 and Table 6.3. 

Figure 6.3(a) shows the epicenters of the located earthquakes. Major tectonics of the study 

area is shown by solid black lines and the located epicenters are marked by blue circles. 

Figure 6.3(b) shows a zoomed version of the same figure (Figure 6.3(a)) between latitude 

29.5-30.5° and longitude 80-81°. This shows that number of earthquakes along MT is greater 

than the same along MCT. Figure 6.3(c) shows the latitude versus depth section of the event 

locations whereas Figure 6.3(d) shows the longitude versus depth section of the event 

locations. In both these figures, the probable location of Indian moho is marked by 

discontinuous red lines. In Figure 6.3(c), the probable depth range of MHT is also marked by 

discontinuous red lines.   

Figure 6.3(e) shows the initial root mean square (rms) error for traveltime residuals, 

which were obtained in the beginning when the data were set to the initial velocity models. 

Figure 6.3(f) shows the same rms traveltime residuals after final iteration of inversion of the 

algorithm. The located events have also been given in a topographic map in Figure 6.4 in 

which yellow filled circles are located epicenters of events, red solid triangles are stations. 
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Figure 6.3: The above figures depict epicentral distribution of relocated earthquakes, (a); an 

enlarge view of figure (a), (b); depth wise distribution along constant longitudes, (c); depth 

wise distribution along constant latitudes, (d); initial rms traveltime residuals, (e); final rms 

traveltime residuals, (f). 

 

(a) 

(e) (f) 

(c) (d) 

(b) 
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Figure 6.4: Map showing the positions of relocated events. 
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Figure 6.5: The above figures show the 1D velocity models of the Himalayn terrain. With 

the obtained velocity models shown by red line plot, two other velocity models for P-waves 

and S-waves given by Mukhopadyay and Sharma (2010a) and Monsalve et al. (2006) are 

also shown to study the depth variation of Moho. 
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The obtained 1D velocity models (red plot) that were obtained in the inversion are 

shown in Figure 6.5 and also in Table 6.3. Table 6.3 summarizes depth-wise variation of 

body wave velocity with resolutions and absolute values of standard errors. The developed 

velocity models have been compared with the initial models (blue plot) given by 

Mukhopadhyay and Sharma (2010a). One more velocity model (black plot) by Monsalve et 

al. (2006) for eastern Nepal has been given for comparison purpose. 

 

Table 6.3: Obtained 1D velocity models 

Model 

type 
P-Wave velocity model S-Wave velocity model 

Depth 

range in 

km 

Velocity in 

km/s 
Resolution 

Absolute 

value of 

standard 

error in 

km/s 

Velocity in 

km/s 
Resolution 

Absolute 

value of 

standard 

error in 

km/s 

0-3 5.184 0.9912 0.010 3.074 0.9898 0.019 

3-6 5.184 0.9838 0.041 3.074 0.9848 0.046 

6-9 5.184 0.9824 0.047 3.124 0.9829 0.056 

9-12 5.737 0.9821 0.048 3.332 0.9831 0.055 

12-15 6.104 0.9855 0.035 3.443 0.9864 0.038 

15-18 6.104 0.9938 0.001 3.448 0.9909 0.012 

18-21 6.262 0.9820 0.048 3.448 0.9845 0.048 

21-24 6.273 0.9886 0.022 3.448 0.9823 0.059 

24-27 6.273 0.9814 0.050 3.517 0.9816 0.063 

27-30 6.530 0.9810 0.052 3.629 0.9839 0.051 

30-33 6.530 0.9991 0.001 3.704 0.9991 0.011 

33-36 6.649 0.9812 0.052 3.782 0.9838 0.052 

36-39 6.828 0.9831 0.044 3.782 0.9869 0.035 

39-42 6.838 0.9810 0.052 3.782 0.9802 0.070 

42-45 6.849 0.9813 0.051 3.782 0.9802 0.070 

45-48 6.849 0.9818 0.050 3.917 0.9800 0.071 

48-51 6.854 0.9818 0.049 4.099 0.9800 0.070 

51-54 8.257 0.9808 0.053 4.649 0.9969 0.021 

54-57 8.257 0.9873 0.027 4.737 0.9804 0.069 

57-60 8.257 0.9815 0.050 4.752 0.9957 0.019 

60-63 8.258 0.9800 0.056 4.753 0.9700 0.070 

63-66 8.269 0.9720 0.056 4.755 0.9627 0.070 

66-75 8.269 0.9613 0.056 4.755 0.9500 0.071 

 

 

6.4 2D AND 3D VELOCITY MODELS OF KUMAON LESSER HIMALAYA 

The proposed method, MPFMM has been considered in the forward part of 

tomography and DLS inversion method has been used in the inversion part. The formulation 

of the 2D and 3D tomography methods is given in this section. 
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6.4.1 Methodology 

Consider a three dimensional model with velocity v as type of model parameter that is 

defined at the nodes of a three dimensional Cartesian grid. Consider  , , ; , ,i j kv i j k R  be the 

velocity value defined at (i, j, k)
th 

node. To define the velocity inside the model, consider 

piece-wise tricubic interpolation function (Lekien and Marsden, 2005): 

    
3

, , , ,

, , 0

, , l m n

l m n i j k

l m n

v x y z c v x y z


   (6.1) 

Where,  , ,v x y z  is interpolated velocity at any point inside a unit cell of the grid. The 

parameter lmnc  is coefficients which are functions of defined velocity nodes.  

 

 

 

Figure 6.6: A cell of grid showing inversion and interpolated non-inversion nodes. The 

inversion nodes are shown with brown spheres and non-inversion nodes are shown by red 

stars. The primary velocities are figured. 

 

Equation (6.1) contain 64 unknown coefficients, therefore it requires 64 known 

parameters at the eight nodes constituting a unit cell to solve. Lekien and Marsden (2005) 

suggest that at each node of a unit cell following eight parameters (velocity and its 

derivatives): 

 
2 2 2 3

, , , , , , ,
v v v v v v v

v
x y z x y y z z x x y z

       
 

            
 (6.2) 

are sufficient to describe Equation (6.1). The coefficients obtained that provides smooth 

velocity variation within grid system. The nodes where velocity is defined are called as 
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inversion nodes or primary nodes to differentiate the same from other types of nodes called 

as non-inversion nodes or secondary nodes that are often required in forward computation 

only and do not take part in inversion process. The velocities associated with the inversion 

grid are called as primary velocity and the velocity associated with the non-inversion nodes 

are called as secondary velocities. 

To solve the forward problem very accurately the grid is refined as shown in Figure 

6.6 to create secondary nodes. The velocity values at all the secondary nodes are obtained 

using Equation (6.1). For a given source inside the model, traveltimes to all the nodes can be 

obtained using FMM or MPFMM. The elementary Frechet derivative (derivative of 

traveltime to a node with respect to its velocity) at each node is obtained directly from the 

eikonal equation during the computation of forward problem using FMM (Rawlinson, 2008) 

or MPFMM. These elementary Frechet derivatives can be associated to source-receiver ray 

paths to obtain complete Frechet derivatives for all the source-receiver ray paths. However 

this is a complex procedure. An alternative way of computing Frechet derivative for an 

arbitrary ray path connecting source S and receiver (station) R is to differentiate the ray 

equation directly as: 

 

R

SR

S

dl

v
    (6.3) 

Where, SR  is source receiver traveltime, dl  is the elementary path. Partial derivative of RS  

with respect to velocity of inversion node  , ,i j k  can be written as: 

 
2

R

ijk ijkSRS

dl v

v v v

    
           
  (6.4) 

Where, 
ijk

v

v




 can be determined from Equation (6.1) directly. Equation (6.4) gives the 

Frechet derivatives for ray path connecting source S and receiver R with respect to inversion 

node  , ,i j k .The total frechet derivative for the ray path RS can be obtained using the 

following formula: 

 
, ,

, , 1

N M L
SR

SR ijk

i j k ijk

d dv
v










  (6.5) 

Where, N , M and L  are the number of inversion nodes along x, y and z direction 

respectively. Equation (6.5) for a given number of source-receiver ray paths can be written 

in matrix form as: 

 GV  (6.6) 
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Where, 

 111 112 121 122 211 212 221 222

T

NMLdv dv dv dv dv dv dv dv dvV  (6.7) 

1 1 1 1 1 1 1 1 1

111 112 121 122 211 212 221 222

2 2 2 2 2 2 2 2 2

111 112 121 122 211 212 221 222

111 112 121 122

NML

NML

v v v v v v v v v

v v v v v v v v v

v v v v

        

        

   

        

        

        

        

   

   

G

211 212 221 222 NMLv v v v v

    

 
 
 
 
 
 
 
 

     
      

 (6.8) 

and 

  1 2

T
d d d    (6.9) 

Equation (6.6) is analogous to Equation (5.25) in Chapter 5 and can be solved using the same 

analogy with the help of DLS inversion algorithm (5.7) given in Chapter 5 to obtain velocity 

at different inversion nodes. 

 

6.4.2 2D Results  

The study region along A to B in Figure 6.2 is described using a grid of velocity 

nodes. The size of grid is 21 27 (horizontal, depth) and spacing 7 3 km. A total of 373 

phases of first arrival P waves have been used for determination of P wave velocity structure 

while a total of 497 first arrival S phases have been used for determination of S wave 

velocity structure. The methodology given in section 6.4.1 has been used as a tool of 

inversion to obtained 2D velocity structures. 

The obtained 2D solution for velocity structure in a vertical section along the white 

line AB shown in Figure 6.2 is plotted in Figure 6.7. Figure 6.7(a) and (b) describe 2D 

velocity variation along line AB (Figure 6.2) for P-wave and S-wave velocity structures 

respectively. Distributions of absolute values of standard errors are also shown for 2D P-

wave and S-wave velocity structures in Figure 6.7 (c) and (d) respectively. The solution 

described here clearly shows three of the common layers of continents: the upper crust, lower 

crust and mantle and together with the presence of some of the striking features that can be 

correlated with the geology feature of the concerned area. The low velocity zones are marked 

by letter K, L, M and N which are described later in discussions.  
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                                (a)                                                                        (b) 

 

 

       
                       (c)                                                                           (d)        

 

Figure 6.7: Vertical section of P-wave velocity structure (a) and S-wave velocity structure 

(b) of the Kumaon Himalaya along line AB in map (Figure 6.2). The distribution of absolute 

values of standard errors for P-wave and S-wave velocity structures are shown in (c) and (d) 

respectively. 

 

6.4.3 3D Results  

The lithosphere of the study region denoted by rectangle box in Figure 6.2 was 

defined in terms of velocity in grid system. The number of grid nodes in X, Y and Z direction 

has been considered as 7, 11 and 12 and grid spacing in the corresponding direction is 20 km, 

10 km and 3 km respectively. A total of 405 first arrival S phases from a total of 98 

earthquakes have been used to determine velocity structure. Using the method described in 

§6.4.1, tomography were performed and the results are shown in Figure 6.8 and Figure 6.9. 

Figure 6.8(a) describes 3D velocity variation and Figure 6.8(b) describes distribution of 

elements of resolution matrix. Figure 6.9 indicate the absolute values of standard errors for 

3D velocity variation. 

 

6.5 DISCUSSIONS 

Seismicity of the region is described in terms of locations of hypocenters and their 

trends in the Himalayan region. 1D, 2D and 3D velocity models obtained are discussed here. 
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Figure 6.8: Depth slices of velocity structure (a) and resolution matrix (b) at different depths 

from about 1.5 km above msl to 31.5 km below msl. The velocity structure is obtained 

beneath the Kumaon Himalaya in the region marked by SPQR in Figure 6.2. 
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Figure 6.9: Depth slices of absolute values of standard errors at different depths from about 

1.5 km above msl to 31.5 km below msl. Standard errors correspond to 3D velocity variation 

in Figure 6.8 (a). 

 

6.5.1 Seismicity 

Distribution of hypocenters given in surface view show (Figure 6.3(a), 6.3(b) and 6.4) 

a trend that are valid for this region as most of the earthquake of the Himalayan belt are 

oriented along this fashion (Monsalve et al., 2006). Most of the epicenters form a group that 

lies between MCT and NAT in the areas of Baluakot, Dharchula and Joljibi. Another group 

of epicenters lie along the Munsiary Thrust in the north western side of Sobla. The number of 

earthquakes along MCT is less than that along MT. This may be due to the fact that currently 

MT is more active compared to MCT. 

Vertical projection of hypocenters shows that most of the earthquakes in the Kumaon 

Lesser Himalaya occur at shallow depths (~20 km). This is supported several studies 

including Mukhopadhyay and Sharma (2010a) in the Garhwal and Kumaon Himalaya. The 

hypocenters are scattered in the lower crust and some of the earthquakes occur in the upper 

mantle. This may be due to the fact that the upper part of mantle is lesser ductile and 

fracturing is common (Monsalve et al., 2006). The vertical distribution of the earthquakes 

also show the probable rang of Indian moho (Figures 6.3(c) and 6.3(d)). The Main 

Himalayan Thrust (MHT) may be marked as shown in Figure 6.3(c). The traveltime residuals 
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are plotted in cumulative way and shown in Figure 6.3(e) and Figure 6.3(f). It is clear from 

the figures that traveltime residuals after the inversion show a significant improvement. The 

initial maximum traveltime residuals were 7.5 s whereas after inversion the same become 

less than 1.2 s.  

 

6.5.2 Velocity models 

The 1D velocity models for P-wave (Figure 6.5(a)) and for S-wave (Figure 6.5(b)) 

show Indian Moho near about 50 km depth from mean sea level. The obtained model are 

shown by red curve which has been compared with 1D velocity models given by 

Mukhopadhyay and Sharma (2010a) (blue curve) and Monsalve et al. (2006) (black curve). 

The position of study in the Himalayan belt in Mukhopadhyay and Sharma (2010a) was 

mainly in Garhwal whereas the Monsalve et al. (2006) documented their study on eastern 

Nepal and Tibet region of Himalayan belt which is approximately 700 km away eastward 

from the zone of present study region. Gradual increase in the depth of Moho can be seen 

easily from these models as the study of Mukhopadhyay and Sharma (2010a) show slightly 

lower than 50 km, the present study show near about 50 km and the study of Monsalve et al. 

(2006) show much higher than 50 km. This may be due to the fact that the strike of the MHT 

is not 90 degree with respect to North. The P-wave velocity increases from ~5.2 km/s at 

surface to ~5.7 km/s at ~9 km depth while the S-wave velocity show increases from ~3.1 

km/s to ~3.3 km/s. The body wave velocity gradually increases from 10 km depth to the 

depth of Indian Moho at ~50 km depth. At Moho velocity suddenly rises from ~6.85 km/s to 

~8.26 km/s for P-wave and from ~4.1 km/s to~4.65 km/s for S-wave.  

The plane depicting moho depth can be determined approximately using coordinates 

of three points lying in that plane. Two such points, one in the eastern Nepal and other in the 

southern Tibet have been determined using velocity model of Monsalve et al. (2006). The 

present study gives one point of moho depth. Using all these three point following equation 

represents plane of moho depth approximately. 

5065.4 9793.4 136099.12 6804956 0x y z     

The strike and dip of this plane are respectively N27E and 4.6° north-eastward. 

Computed resolution of 1D P-wave velocity variation lies between 0.99 and 0.96 and 

the same for S-wave velocity variation lies between 0.99 and 0.95. Dominant resolution 

values come near 0.98, which states that the body wave velocities are well resolved in the 

tomography problem. The higher resolution declares that the obtained results are more close 

to the actual earth. The absolute values of standard errors corresponding to P-wave velocity 

lie between 0.001 and 0.056 and the same for S-wave velocity lie between  0.011 and 0.071. 
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2D Velocity models for body waves show the extensive disturbances of crust due to 

underthrusting of Indian plate beneath the Eurasian plate. From the Figure 6.7(a) and 6.7(b), 

it is also clear that the crust is highly deformed towards the collision zone of Himalaya. The 

Conrad discontinuity that separates the upper crust from lower crust seems to lie around 12 

km depth below msl. The depth to the Moho in this region seems to lie at a depth of 50-52 

km below msl which complements similar founding using receiver function analysis in 

western Lesser Himalaya by Hazarika et al. (2013). Unlike the study documented by Kim et 

al. (2012) beneath the region of High Himalaya close to Nepal Tibet border, no low velocity 

layer close to the Moho is found. The P wave velocity of upper crust in most of the portion in 

the section, vary from 4.2 km/s to 5.6 km/s and the same in lower crust vary from 5.6 km/s to 

slightly more than 7.8 km/s. The S wave velocity of upper crust in most of the portion in the 

section, vary from 2.9 km/s to 3.3 km/s and the same in lower crust vary from 3.3 km/s to 

slightly more than 4.4 km/s.  

A total of four anomalous velocity zones marked by K, L, M and N can be seen in the 

Figure 6.7(a) along AB close to the msl. The anomalous low velocity zone, K, L, M and N 

may be due to the presence of older rocks with granitoids. The high velocity anomalous 

zones between L and M and between M and N may be due to the presence of crystalline 

complexes as outcrops in Lesser Himalaya near Thal and Dharchula respectively, as shown 

in Figure6.2. The shear wave velocity structure also show almost analogous upper surface 

anomalous zones, however the low velocity zone N is not resolved in this case. 

Down to the mantle at a horizontal distance around 68-78km, injection of magma like 

water droplets  can be traced upto depth around 17 km from MSL. This kind of injection is 

not uncommon in a region like Himalaya where one plates underthrusts the other plate. A 

more precise and highly resolved tomography is needed to actually observe the contribution 

such injection in disturbing the lithosphere. 

3D velocity sections in Figure 6.8(a) show S-wave velocity variation down to 31.5 

km depth below mean sea level. The velocity varies from 2.75 km/s to 3.85 km/s throughout 

the volume of study. Considering the location of point S in Figure 6.2 as origin and SP and 

SR as direction along X axis and Y axis the obtained velocity structure is explained as below. 

The best resolve part of the upper crust is 80 80  km from center point S in Figure 

6.8(b). Figure 6.8(a) clearly depicts alternating high and low velocity zones upto a depth 

slice of -10.5 km from msl. This may be due to alternate layers of deoban and mandhali, 

chakrata and rautgara berinag, ramagarh formation in the Kumaon Himalaya. High velocity 

zone at 80 km along SP from S, and 60 km along SR from S in the uppermost depth slice is 

due crystalline complex near Dharchula. High velocity zone at 60 km along SP from S, and 
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40 km along SR from S in the uppermost depth slice is due crystallinr complex near Didihat. 

The high velocity zone near 60 km along SP from S and 10 km along SR from S may be due 

to presence of crystalline complex in the Almora crystalline zone. 

Depth slices at +1.5 km, -1.5 km and -4.5 km show shear wave velocity variation 

from 2.75 km/s to 3.0 km/s, with few high velocity zones along north east direction. Depth 

slices at -7.5 km shows a trace of low velocity zone in between two high velocity zones 

along North-West and South-East direction, beneath the triangle SPR. The NW-SE trend of 

low velocity zone at depth +1.5 km seems to be rotated clockwise at depth -7.5 km. At 

depths -10.5 km, the low velocity zone around 40 60 km expanded at depth -13.5 km. 

Down to the depths below -13.5km resolution is poor (Figure 6.8(b)). At depths -16.5, -19.5 

and -22.5 km zones of low velocity ~3.4 km/s are common against the background velocity 

3.55 km/s (Figure 6.8(a)). The low velocity zones show a shift towards eastern side, with 

increasing depth from -16.5 km to -22.5 km. Down to the depth at -31.5 km and -28.5 km the 

resolution further becomes poor, however low velocity zones can still be observed near about 

a direction beneath PQ line. The change of velocity is steep from depth -7.5 km to depth -

13.5 km, which may be due to change of velocity from upper crust to lower crust around -10 

km depth. Standard errors (Figure 6.9) corresponding to unresolved or poorly resolved part 

of 3D velocity variation are higher compared with well resolved part of the same.  

 

6.6 CONCLUSIONS 

The trend of seismicity of the study region is similar to the other parts of the 

Himalayan terrain. The upper mantle having brittle nature fractures an idea that is supported 

by many investigator including Monsalve et al. (2006). The depth of Indian Moho falls in 

between the Moho reported by Mukhopadhyay and Sharma (2010a) and Monsalve et al. 

(2006). This can be concluded that the Moho depth almost linearly increases from west to 

east along the belt. The 2D velocity models show extensive disturbances of the crust of the 

Himalaya in this zone. Two outcrops of crystalline complexes can be seen in the high 

velocity contrasting zones. 3Dvelocity structure shows clearly the high velocity zones 

associated with the crystalline complexes near Dharchula, Didihat and Almora nappe. The 

upper crust shows alternating high and low velocity zones downward from mean sea level to 

a depth of -10.5 km which may be due to alternating layers of different formation in this 

region. 
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7 

 

3D ATTENUATION STRUCTURES OF THE KUMAON HIMALAYA 

 

 

 

 

 

7.1 Introduction 

Seismic attenuation is the loss of energy contained in propagating seismic waves. The 

energy loss happen both due to spherical divergence of seismic waves and anelastic nature of 

material medium. Spherical divergence is an inherent phenomenon related to any types of 

waves radiated from a point source. On the other hand the effect of anelasticity is caused due 

to fluid movement and grain boundary friction during the propagation of waves. As the 

seismic waves propagate the elastic energy associated with the waves gradually decreases 

due to attenuation and eventually ends up as heat energy because of anelastic attenuation.  

The study of anelastic attenuation is very important in earthquake seismology as it is 

dependent on the medium properties which shape the amplitude of seismic waves released 

during earthquakes; therefore estimation of anelastic attenuation is related to hazard 

estimation (Jean et al., 2006) of an area and accurate design of early warning system (Hsu et 

al., 2013). This is also essential for better simulation (Sørensen et al., 2007) of strong motion. 

As the anelasticity is associated with the frictional loss of energy, therefore the study of 

anelastic attenuation is a key to measure heterogeneity as well to estimate the effect of 

thermo-chemical properties of media. 

Three dimensional seismic attenuation studies are rare in the Himalayan belt. Most of 

the studies that have been carried out deal only with the estimation of frequency dependent 

coda  cQ f  (Mandal et al., 2001; Gupta et al., 1995; Paul et al., 2003). One of the reasons 

for few studies related to three dimensional attenuation properties of subsurface in this part 

of Himalaya is lack of sufficient digital data. Among those few studies, Joshi (2010) has 

reported three dimensional variation of quality factor for the Kumaon Himalaya.  

In the present study a method of attenuation tomography is developed using grid type 

of model parameterization. The strong motion data were taken from strong motion network 

deployed in Kumaon Lesser Himalaya. The site amplifications at the surface of earth at 

different station have been determined using the method discussed in Joshi et al. (2010). 



188 

 

These site amplification terms have been used for correcting the raw data to avoid the effects 

from near site soil amplifications. Using self developed software the tomography results have 

been obtained and discussed. 

 

7.2 TOMOGRAPHY METHOD 

Consider a model earth with grid type of parameterization in which the frequency 

dependent quality factor at different nodes are assigned to be  ijkQ f . In which, 1,2,...i N ; 

1,2,3,...j M ; 1,2,3,...k L  denote the nodes in the x, y and z directions respectively. 

Imagine a source S  and an observation point (receiver) R for which source-receiver ray path 

and traveltime is known. The spectral acceleration value at the surface of model at the 

receiver point is related to the quality factor distribution of the model. One such relationship 

is given by Hashida and Shimazaki (1984) which has been used successively by Joshi et al. 

(2010) in their tomography method using rectangular block type of parameterization to 

obtain 3D quality factor distribution of the Kumaon Himalaya. In the current study this 

relationship is modified in the exponential part to use the same in tomography using grid 

type of parameterization. The modified relationship is: 

 0

R

S

dt
f

Q
A A e

 
  (7.1) 

Where, f  denote frequency,  ,Q f x  is frequency dependent quality factor distribution 

within the model. dt is the elementary traveltime along the ray path between the source S  

and receiver R  and:  

 
 

0

S f g
A

R
  (7.2) 

In Equation (7.2),  S f  is the source spectral acceleration value at frequency f ; R is the 

hypocentral distance between source and receiver and g  denote amplifying effect at the 

surface of the earth. Total derivative of the Equation (7.1) can be written as: 

 0

2
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i iS

dAdA dt Q
f dQ

A A Q Q



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   

 
   (7.3) 

Which can further be written as: 

    0 2
1

log log
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i

i iS

dt Q
d A d A f dQ

Q Q




 
   

 
   (7.4) 

To use the Equation (7.4) in real earth, we approximate the total derivative by finite 

differential as: 



189 

 

 0 2
1

log log

RN

i

i iS

dt Q
A A f Q
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Introducing the suffices i  and j  for 
thi  source and 

thj  receiver we write Equation (7.5) as: 

 0 2
1

log log

RjN
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k kSi

dt Q
A A f Q

Q Q
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
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Let 
2

Rj

ijk

kSi

dt Q
f g

Q Q





 , logB A  and 0 0logB A then Equation (7.6) can be written in 

compact form as: 
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Which can be written as: 
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This Equation can be expanded for all sources as: 
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Which can be written as: 
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T

N iB B B B     M  (7.13) 

  1 2 3

T

ND D D D D  (7.14) 

Equation (7.11) is of standard form that relates model parameter vector  with data vector

D  with a kernel matrix W . Matrix Equation (7.11) can be solved for model vector using 

standard method of inversion such as DLS method.   

 

7.3 SITE AMPLIFICATION 

Acceleration spectra recorded on the surface of earth are often found to be strongly 

affected by amplification of the seismic wave near to the surface. The effect is called site 

effect or site amplification (Sørensen et al., 2006; Huang et al., 2007; Joshi et al., 2010; 

Chopra et al., 2013a). There are many methods for the determination of site amplification. 

One of the conventional methods is given by Borcherdt (1970). In this method, site effect at a 

station is obtained by dividing the acceleration spectra recorded at that site with the observed 

acceleration spectra recorded in some nearby site. For quantitative estimation of site effect 

one of the methods is proposed by Andrews (1986). This method was modified in Joshi et al. 

(2010) to account for anelastic attenuation, unknown source and site amplification. For 

quantitative estimation of site amplification the same method has been applied here. 

 

7.4 STUDY REGION, STRONG MOTION NETWORK AND DATA 

The area of study is same where velocity tomography is performed. Data of 

acceleration spectra were taken from the same strong motion network from where data for 

velocity analysis were considered. A total of 344 S phase spectra recorded by 17 stations 

from a total of 82 events are considered for the attenuation study. Station Lohaghat is 

excluded for 3D attenuation study however it is considered in site amplification study. All 

the spectra which were considered were processed for base line correction, filtering and 

scaling. The processed spectra were converted from time domain to frequency domain. Using 

a variable band of frequency that starts from first arrival S-wave to the end of its part, the 

acceleration spectra were extracted from the entire spectra. The final spectra denote the 

record of acceleration versus frequency within a limited band of interest. At those 

frequencies which are of research and engineering interest  such as from 1 Hz to 10 Hz the 

amplitudes of acceleration of all the processed shear wave band spectra were selected and 

saved for attenuation and site amplification study. 
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7.5 COMPUTATION OF SITE AMPLIFICATION AND RESULTS 

Using the method presented in Joshi (2010), site amplification factors at all the 18 

stations given in Table (6.1) were obtained at 10 different frequencies in the band 1-10 Hz. 

The results have been plotted in Figure 7.1. 

 

7.6 COMPUTATION OF ATTENUATION TOMOGRAPHY AND RESULTS 

The study region denoted by rectangle box in Figure 6.2 was defined in terms of 

quality factor in Cartesian grid. The number of grid nodes in X, Y and Z direction has been 

considered as 7, 11 and 12 and grid spacing in the corresponding direction is 20 km, 10 km 

and 3 km respectively. The method described in §7.2 has been used for determination of 

quality factor in these nodes. The initial quality factor at each node is given as summarized in 

Table 7.1. 

 

Table 7.1: Initial model of shear wave quality factor considered 

Depth in km Model of Q (Shear) 

0-6 200 

6-12 500 

12-20 750 

20-30 1000 

30-42 2000 

 

Using the method in §7.2, the initial model (Table 7.1) 3D tomography has been 

performed for determination of quality factor at different nodes. The results of the 

tomography are presented in Figure 7.2 and Figure 7.3. Figure 7.3 shows vertical sections 

along the white line in Figure 6.2 of study region. 

 

7.7 DISCUSSIONS 

The results of site amplification presented in Figure 7.1 and results of attenuation 

tomography presented in Figure 7.2 and 7.3 are discussed with respect to geology of the 

present study region. 

 

7.7.1 Site amplification 

Askot and Didihat (Figure 7.1(a) and (f)) are the two areas which show gradual 

increase in site amplifications with the increases of frequencies and Bageshwar and Muwani 

(Figure 7.1(d) and (l)) are two areas which show gradual decrease of site amplifications with 
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the increase of frequency. Knalichina, Lohaghat and Munsiary (Figure 7.1(i), (j) and (m)) 

show convex upward curves showing higher site amplification in middle of the frequency 

band. On the other hand Dharchula (Figure 7.1(e)) alone shows concave upward curve 

showing lower site amplification in the middle of the frequency band.  
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Figure 7.1: The obtained value of site amplification factors at each station (a-r) using strong 

motion data. The factors are shown in scatter plot by cross. The mean standard errors in 

computed factors for different stations are shown on right sides of station names in 

parentheses. 

 

The amplification curves for Pithoragarh and Thal (Figure 7.1(n) and (q)) show 

almost similar type of variation. First site factors increase then decrease in between 1Hz and 

5Hz then again increase and decrease in between 5Hz and 8 Hz. The first band (1-5 Hz) 

shows higher site amplification values than the second band (5-8 Hz) does in both areas. At 

10 Hz random high value is noted for both the areas. 

The site amplification for Sobla (Figure 7.1(o)) shows a characteristic similar to 

Pithoragarh except that unlike Pithoragh, sobla does not show any random high value at 10 

Hz. The site amplification for Mangti and Tejam (Figure 7.1(k) and Figure 7.1(p)) increase 

first and then overall nature become nearly invariables with frequency while Joljibi (Figure 

7.1(g)) shows overall increase except a low value notch at 7 Hz. Site amplification of Kapkot 

(Figure 7.1(r)) remains nearly constant except at 10 Hz frequency where it shows random 

high value. Berinag and Kamedi Devi (Figure 7.1(c) and (h)) are the two areas which show 

almost frequency independent site amplification characteristics. 
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Figure 7.2: Depth slices of quality factor contours at an interval of 3 km in the study region 

(Figure 6.2) marked by rectangle SPQR.  

 

 
Figure 7.3: A vertical section of quality factor variation along the white line in Figure 6.2. 

The colour scale is same as that of Figure 7.2. 
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7.7.2 Attenuation tomography 

The quality factor in the study region shows a variation from ~0 to ~2300, which 

indicates high level of heterogeneity of the subsurface under study. The surface value of 

quality factor as shown in Figure 7.2(a) clearly depicts a trend that can be correlated with the 

older folded cover sequence as shown in Figure 6.2. 

Two crystalline complexes in between Didihat and Dharchula can be correlated with 

the high values of quality factor (~650-700) shown in Figure 7.2 in between ~80-100 km (X 

axis) and ~40-60 km (Y axis). However the location of this low attenuating zone at surface is 

towards eastward with respect to the zones representing high velocity (Figure 6.8) at surface. 

 At a depth of 1.5 km from mean sea level the quality factors vary from near about 0 

to 1100 as shown in Figure 7.2(b). In most part of this depth slice the value of attenuation are 

restricted to 200 except at the region between~90-110 km (X axis) and ~20-30 km (Y axis) 

which may be due to extension of the quality factor distribution values shown by crystalline 

complexes. The southward shifting of this high zone of quality factor are confirmed from the 

vertical cross section quality factor presented Figure 7.3. The heterogeneity of the crust of 

Kumaon Himalaya increases from depth 6 km to a depth of 24 km. The contrast of quality 

factor is increases below depth 22 km which indicate that the lower crust is highly disturbed. 

This high contrasting quality factor can be correlated with the high activity of along the 

detachment plane.  

Two low Q zones can be observed from depth -4.5 km to 19.5 km. The orientation of 

these high attenuation zones at depth -4.5 km is north-east. This trend is gradually rotated 

with increasing depth in clockwise direction, and the same orientation becomes northwest 

and south east at depth -19.5 km. This is analogous to the velocity structure of the same 

region, where two low velocity zones are found to be rotated clockwise with increasing depth 

from +1.5 km to -7.5 km. 

To study depth wise variation of quality factor a 2D section along white line in Figure 

6.2 is shown in Figure 7.3. The zones marked by K, L and M show low values of Q, similar 

to the low values of velocity in Figure 6.7(a). The interval areas, either; between K and L and 

between L and M show high values of Q. These two high Q zones show the crystalline 

complexes near Didihat and Dharchula. This fact is also supported by high values of velocity 

structures in the same region. The middle crust (depth ~12-24 km) shows Q variation from 

~400 to ~1100 in most of the parts. Low Q zones are found in 10, 30 and 40 km distance 

along Y axis. 
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7.8 CONCLUSIONS 

The attenuation structure of the subsurface of the Kumaon Himalaya show fair 

contrasts at near surface but the same becomes very high along the detachment plane. The 

crystalline complexes near Didihat and Dharchula in the Kumaon Himalaya are resolved well 

in this study. The overturning nature of the formation presented in Figure 1.10 is supported 

by this study. Clockwise rotation of trends of low Q values is observed. This may be due to 

rotation and overturning of the layers beneath the Kumaon region. The high value of 

attenuation in this area may be due to the fact that the region under study falls in the 

subducting zone. Askot and Didihat are the two areas which show gradual increase in site 

amplifications with the increases of frequencies. This behavior is just opposite to that of 

Bageshwar and Muwaniareas which show gradual decrease of site amplifications with the 

increase of frequency. 
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8 

 

CONCLUSIONS 

 

 

 

 

 

The major conclusions of the works presented in this thesis are as follows: 

 

 In the present work ray tracing algorithm has been developed using spiral path search 

method in a parameterization where interfaces have been included in constant 

velocity voxels. Self-reflections within adjacent interfaces have been considered in 

the developed method. A FORTRAN code has been developed for this algorithm 

which was tested using several numerical experiments which satisfy the normal wave 

propagation theory. A gradient path search method to this algorithm has been added 

to improve the same. 

 

 An algorithm of Fast Marching Method has been derived by incorporating the 

concept of binary tree in the narrow band. This speed up the algorithm. The algorithm 

has been tested using several numerical models and found to satisfy general wave 

propagation principle. Two of the most important properties of FMM that are to 

compute head waves and first arrivals have been validated.   

 

 One improved version of MSFM method has been proposed. The method solves the 

eikonal equation by taking information of all 8 grid points in 2D and 26 grid points in 

3D. The proposed method is based on angular interpolation of directional derivatives 

and hence anisotropic grid structure has little effect on it. Several numerical 

experiments have been carried out and in all experiments the proposed method has 

been found to be better. 

 

 The Multiparameter inversion technique has been formulated in this work which is 

based on developed ray tracing algorithm. This inversion technique was design to 

simultaneously invert P- and S-phases to obtain at a time or separately, the 
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hypocenters with origin time, P-wave velocity, S-wave velocity and interface 

parameters. A FORTRAN code has been developed based on the same method. This 

method has been used extensively for practical studies. 

 

 Based on the improved FMM, a full 3D traveltime tomographic algorithm has been 

developed to implement the same in the present work. The algorithm was coded in 

FORTRAN. 

 

 An algorithm for 3D attenuation tomography in numerical domain has been 

developed to implement the same in the present work. The FORTRAN code based on 

the same algorithm was developed. 

 

 A total of 870 phases from a total of 116 earthquakes recorded in strong motion 

network in the Kumaon Himalaya, have been used in the developed multiparameter 

inversion method to simultaneously compute hypocenters of the earthquakes and one 

dimensional velocity model in Kumaon region. The located earthquakes and velocity 

model show several characteristics.  

 

 Epicenters of located earthquakes in the Kumaon Himalaya form a shape that is 

oriented along the Himalayan arc. This is supported by almost all studies including 

Monsalve et al. (2006), performed in the Himalayan terrain. Most of the epicenters 

form a group that lies between MCT and NAT in the areas of Baluakot, Dharchula 

and Joljibi. Another group of epicenters lie along the Munsiary Thrust in the north 

western side of Sobla. The number of epicenters along MCT is found to be fewer. 

Therefore, it is concluded that the MT is more active than MCT at present time.  

 

 Vertical projection of hypocenters shows that most of the earthquakes in the Kumaon 

Lesser Himalaya occur at shallow depths (~20 km). This is supported several studies 

including Mukhopadhyay and Sharma (2010) in the Garhwal and Kumaon Himalaya. 

The hypocenters are scattered in the lower crust and some of the earthquakes occur in 

the upper mantle. The occurrence of earthquakes at sub-Moho depths support the idea 

that the continental upper mantle deforms by brittle processes (Monsalve et al., 

2006).  
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 One dimensional velocity model depicts Indian Moho, which lie beneath the Kumaon 

region, at a depth of nearly 50 km from mean sea level. The depth of the Moho 

beneath the study region when tied with other studies forms a plane of MHT with 

strike and dip respectively, N27E and 4.6° northeastern. 

 

 Two sudden jumps of body wave velocity are observed at near about 10 km and 50 

km depths from mean sea level. At depth near about 10 km P-wave velocity change 

from ~5.7 km/s to ~6.1 km/s and S-wave velocity change from ~3.1 km/s to ~3.3 

km/s. At depth near about 50 km P-wave velocity change from ~6.9 km/s to ~8.3 

km/s and S-wave velocity change from ~4.1 km/s to ~3.7 km/s. The velocity contrast 

at ~10 km may indicate the boundary between upper crust and lower crust and the 

same at ~50 km may indicate the Indian Moho beneath Kumaon Lesser Himalaya. 

 

 A method of tomography using the proposed MPFMM has been developed which has 

been used to obtain 2D and 3D tomography images of velocity structure beneath the 

Kumaon Himalaya. In 2D tomography both P and S phases have been considered 

from a total of 98 earthquakes. A total of 373 phases of first arrival P waves have 

been used for determination of P wave velocity structure while a total of 497 first 

arrival S phases have been used for determination of S wave velocity structure. In 3D 

tomography only shear wave velocity structure has been obtained using 405 first 

arrival S phases from 98 earthquakes. 

 

 2D vertical body wave velocity images have been obtained from Lohaghat to 

northwestern side of Sobla, along a plane that strikes N26E. The 2D velocity 

variation describes the complexity of this region. 2D Velocity models for body waves 

show the extensive disturbances of crust due to underthrusting of Indian plate beneath 

the Eurasian plate. The Conrad discontinuity that separates the upper crust from 

lower crust seems to lie around 12 km depth below msl. The depth to the Moho in 

this region seems to lie at a depth of 50-52 km below msl which complements similar 

founding using receiver function analysis in western Lesser Himalaya by Hazarika et 

al. (2013). The P wave velocity of upper crust in most of the portion in the section, 

vary from 4.2 km/s to 5.6 km/s and the same in lower crust vary from 5.6 km/s to 

slightly more than 7.8 km/s. The S wave velocity of upper crust in most of the portion 

in the section, vary from 2.9 km/s to 3.3 km/s and the same in lower crust vary from 

3.3 km/s to slightly more than 4.4 km/s. The outcrops of crystalline complexes in 
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Lesser Himalaya near Thal and Dharchula respectively are well resolved in 2D 

velocity section specially in P wave velocity section. 

 

  A 3D shear wave velocity structure up-to a depth of 33 km beneath the Kumaon 

region has been obtained using the data and developed methodology of tomography 

using MPFMM. Within the resolved part, the obtained velocity structure clearly 

resolved the outcrops of crystalline complexes present in the study region. 

Alternating zones of low and high velocities are observed with increasing depth in the 

upper crust. This may be due to the overturning nature of the crustal layers beneath 

the Kumaon Himalaya. 

 

 Site amplification for all the station locations have been obtained and found some 

important characteristics. Askot and Didihat are the two areas which show gradual 

increase in site amplifications with the increases of frequencies, and Bageshwar and 

Muwani are two areas which show gradual decrease of site amplifications with the 

increase of frequency. Berinag and Kamedi Devi are the two areas which show 

almost frequency independent site amplification characteristics. 

 

 3D Attenuation tomography has been performed up-to a depth of 33 km using the 

developed tomography method in the Kumaon Himalaya to study attenuating 

characteristic of the region. The quality factor Q shows variation from near about 0 to 

2300 beneath this region. The crystalline complexes are resolved with high values of 

quality factor (~650-700) compared to neighbouring region which shows Q variation 

from ~0 to ~200. 

 

  Both velocity and Q structure show probable rotation of low velocity and Q 

clockwise in the upper crust, therefore it may be concluded that the crustal layers 

were overturned and rotated simultaneously in the process of orogeny. 

 

The Kumaon region of Uttarakhand falls in the Lesser Himalayan belt. The region is 

highly mountainous and difficult to reach many places. The subsurface structures beneath 

this region are highly complex and have overturned and rotated layers. To resolve these 

layers properly, 3D tomography is required to be obtained with large quantity of data. 

However, using proposed multiparameter inversion scheme the same objective can be 
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fulfilled to some extent. But in this case quantity of data required is almost same as that of 

3D tomography and quantity of data is always a problem in the Kumaon Himalaya. 

Inversion schemes used in the study is damped least square inversion which is good 

because it does not differentiates underdetermined and overdetermined problems and give 

reasonable results in linearizable problems. However, a global inversion technique such as 

Genetic algorithm is an alternative choice specially in a highly nonlinear problem.  
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