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ABSTRACT

 

 Jharia Coalfield (JCF) is known for one of the densest congregations of surface-

subsurface coal fires in the world. It has witnessed numerous severe accidents and continuous 

loss of valuable coal reserves due to uncontrolled coal fires. Coal fire affected areas are often 

inaccessible and here can be precisely investigated by remote sensing techniques. In the present 

study, suitable methods for mapping and monitoring of coal fires have been developed and 

surface-subsurface coal fires have been systematically analyzed. The attempts made here are 

mainly emphasized on developing a novel approach for thresholding and mapping of surface 

coal fires, and monitoring spatial dynamics of coal fires in JCF through time and space. 

Surface-subsurface coal fires are the typical characteristic of a coal mine area. Surface 

fires are common in coalfields where coal is exposed to sunlight for long durations of time. The 

heat energy emitted from these fires affects the signal recorded by sensors operating in the 

shortwave infrared regions of the electromagnetic spectrum. The Landsat TM/ETM+ band-7 is 

sensitive to solar reflected as well as emitted radiations from a target. The „maximum solar 

reflection threshold‟ method proposed in this study uses the highest spectral radiance that can 

be attributed to solar reflection as the conservative threshold to segregate the pixels with 

emitted component from those with reflected component of the EM energy. Investigations with 

Landsat TM/ETM+ data indicate a reflectance value of 0.23-0.25 as the most representative 

highest reflectance (threshold) in coal mining areas. The method apparently has the advantage 

as it is based on the reflectance characteristics of materials (sandstone-shale mixtures) typically 

found in coal mining areas and is applicable in wide range of geographical setting. 

To facilitate sustainable mining for industrial growth, temporal monitoring of coal fires 

has to be executed at regular interval. In the present approach, two ratio indices namely; 

„Normalized Difference Coal Index (NDCI)‟ and „Normalized Difference Coal-fire Index 

(NDCfI)‟ have been proposed to systematically map the coal seam fires using Advance 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The adopted methodology 

has been implemented in Jharia Coalfield. Statistical thresholding of indices precisely segregate 

the pixels attributed to surface coal fires (high intensity coal seam surface fire and low intensity 

smoldering surface fire) and shows that the surface coal fires closely follow the pattern of the 

excavated coal seams. Surface fires are distributed mainly in the eastern and south-eastern part 

of the study area with a cumulative coverage of 3.93 km
2
. Reliability of the obtained results has 
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been validated by computing an error matrix with overall accuracy of 87.7%. The adopted 

methodology precisely localized the surface coal fire affected areas and closely represents the 

actual scenario of surface coal fires in JCF. Beside its conservative and robust nature, the 

method introduced here is rapidly practicable and allows quick retrieval of surface coal fires.   

 Systematic investigation of actual scenario of coal fire is always been a critical issue for 

coal fire research community. ASTER provides data at high temporal and radiometric 

quantization level, and is unique in its ability to monitor the fluctuation in spatial extent of coal 

fire. Time series analysis of three consecutive sets of ASTER data evaluates the spatial 

dynamics and trend of coal fires propagation in Jharia. 

Results indicated that the magnitude of coal fires in JCF have been fluctuated with time 

from 2000 to 2009. The area located around the Shatabdi opencast, Barora, Sijua opencast, 

Godhar colliery, Kusunda, Bokapahari, Kujama and Lodna are under intense coal fire. From 

2000 to 2004, spatial extent of coal fire has shown a minor decrease of 6.74% and then shows a 

substantial increase of 11.93% between 2004 and 2009. 

Coal fires are quite persistent in western part of the JCF from 2000 to 2004. However, 

between 2004 and 2009, considerable decrease of 1.157 km
2
 of fire has been noticed in west 

and east Barora, Block II Project and Govindpur collieries located in western most part of the 

JCF.  

It has been noticed that the west-central part of the JCF comprising Katras, Sijua, 

Western Jharia-II and Kusunda collieries are most affected. Since 2004, spatial extent of the 

fire exclusively in Kusunda colliery is increased by 1.122 km
2
. This remarkable increase in 

spatial extent fire is due to the appearance of new surface fire site located south of Kusunda and 

north of Alkusha in 2009.  

In south-eastern part of the JCF, fire is quite persistent from 2004 to 2009. However, 

minor increases in Kustor, Bastacolla and Lodna collieries have been noticed from 2004 to 

2009.   

Surface fires in JCF are highly sporadic and exhibits minor fluctuation in spatial extent 

between 2000 and 2008. It has increased by 8.6% since 2000 to 2004 and then decreased by 

14.66% from 2004 to 2008, respectively. The increase in fire extent in 2008 has been marked 

by appearance of two new surface fires sites noticed near Kantapahari, in Katras colliery and 

north of Alkusha quarry in Katras colliery. 
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To evaluate the propagation of fire in JCF, coal fire maps of three consecutive years 

have been interpreted together with structural map on GIS platform. Systematic analysis of the 

obtained results reveals that the movement of fire is structurally controlled. Propagation of the 

fire has been well noticed in Kustor, Bastacolla and Lodna collieries. Fire appears to be moving 

toward Jharia. In 2009, it has been observed that the fire located east of Jharia, near Bokapahari 

(in Bastacolla colliery) is propagating towards NNW and fire located Jiyalgarh, Lodna is 

propagating northerly toward Jharia (in Lodna colliery). While fires located near Bokapahari 

and SE of Alkusha (in Kustor colliery) are propagating in south and SE direction heading 

toward Jharia. Both these fires have been observed to be moving along the strike of coal seam. 

Fire located SE of Alkusha (in Kustor colliery) may also under control of two NW-SE trending 

faults causing propagation of fire toward south and SE. 

Coal fires in JCF causes tons of coal loss by burning and actively contributed to the 

instability in the area from safety point of view. Problem of coal fire in Jharia has long back 

history and is still persisting. Local villages and inhabitants lying in the vicinity of Jharia 

township are on the verge of major devastation. Status of the fire is demanding some firm 

measures to control them. Systematic investigations of coal fires are essentially required to 

facilitate plan sustainable mining and safety measurements for industrial growth on long term 

basis in Jharia.  
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  CHAPTER 1 

INTRODUCTION

 

1.1 BACKGROUND 

Coal has significant contribution toward India‟s economic growth and feeds major 

percentage of industrial demand for energy production. Due to unavailability or inadequate 

supply of the other energy sources, coal is primarily used as fuel in the industries. More than 

73% of the country‟s energy supply comes from the consumption of coal that self explains the 

necessity of coal for industrial development. Coal mining in India has a long history of nearly 

more than a century. India is the world‟s third largest producer of the coal following China and 

United States and ranks fifth in global coal reserves. In last few decades, demands for energy 

supply have been exponentially increased with growing economic activities. In spite of having 

enormous quantity of coal, the country still lags to accomplish the energy production for both 

domestic and industrial demand. High domestic and industrial requirement makes India one of 

the world‟s largest consumers of coal (Figure 1.1).  

 

Figure 1.1 Demand and supply scenario of coal in India (ICC, 2012) 

More than 90% of the coal available in India is confined to the Gondwana coalfields. 

The Gondwana coal is sub-bituminous to bituminous range having 50-65% of fixed carbon. Out of 

the total available resources, 88% of the coal is of non-coking type (GSI, 2004). Rest of the 

12% coal is coking type that is exclusive contributed by Jharia Coalfield. Coking type of coal is 

an essential requirement of steel and cement industries. Limited availability of coking coal 
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indicates a huge gap between demand and indigenous supply. As a result, coking coal is now 

imported to meet the needs of industrial demand. Since 2004, the country‟s coal import has 

grown by 15% (till 2010-11). According to projections, country‟s coal import requirement will 

be more than 200 mt by the end of the 2016-17 (ICC, 2012). 

Coal is a natural occurring solid substance formed by the vegetal matter that has been 

subjected to a variety of geological processes and has thereby undergone remarkable changes in 

physical properties as well as in chemical composition. Coal is chiefly composed of carbon. It 

is an inherent property of coal to self-ignite and undergo spontaneous combustion (Feng et al., 

1973). Due to this fact, all known occurrences of high rank coal around the world are known to 

be invariably associated with the problem of ‘coal fires’. ‘Coal fire’ is a term used for the 

natural occurring fire within in-situ coal seam or in stored coal. Fire can be burning or 

smouldering in nature located at the ground or beneath the ground.Coal fire can cause severe 

environmental and economic problems worldwide (Stratcher, 2004). It reduces valuable coal 

reserves and leads to the emission of gases that diffuse out into the atmospheric. These gases 

are actively contributing green house effect to the atmosphere. The smoke and windblown ash 

can plague the areas and cause significant environmental changes around coal fire affected 

areas. Spontaneous burning not only induces deleterious effect on the human health but also 

poses serious threat to the local inhabitants residing around the area.     

To confront the exponential demands of energy supply for industrial growth, the 

haphazard coal mining activities are being intensely carried out in India especially by 

opencasts. Opencast activities reveal the burning coal seam to the exposed scenario and hence, 

accelerate combustion of coal in uncontrolled manner. Uncontrolled coal fires are highly 

dynamic and can propagate by feeding the coal seam. Fire in most cases also block the 

available coal resources and often make the area unapproachable causing tons of valuable coal 

loss every year. Thus, coal fires can be considered as a trio of social-economic and 

environmental problem that has worldwide influence at both local and global level.  

As a problem, coal fires have drawn the attention of researchers, managers, miners, 

local residents and news media alike since last two decades. The goal of the researches is to 

precisely analyze and quantify the aspects of coal fires for sustainable socio-economic growth 

and environmental monitoring. In view of Indian scenario, Jharia Coalfield (JCF), the sole 

inventory of the prime coking coal is severely affected by coal fires. Since two decades remote 

sensing techniques based coal fire studies have been significantly carried out for mapping and 
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quantification of coal fires. In the present approach, an attempt has been made to further 

explore the potential of remote sensing data and novel techniques to study the various aspects 

of coal fires in Jharia Coalfield, India.  

1.2 GLOBAL DISTRIBUTION OF COAL FIRES 

Coal fires are the common problems associated with high rank coal bearing regions 

known worldwide, particularly from China, USA, Australia and India (Figure 1.2, Stracher and 

Taylor 2004; Whitehouse and Mulyana 2004; Gangopadhyay and Lahiri 2005; Kuenzer et al., 

2007a; Kolker et al., 2009). In China, Xinjiang and Ningxia region located in the north-west 

and north-central part contain major coal reserves of the country. These reserves are of 

anthracite and bituminous type of coal forming the world densest congregation of the coal fires 

throughout the northern China. It has been estimated that these fires have consumed up to 200 

million tons of coal per year (Rosema et al. 1995; Dijk, 1996) and annually contribute 2-3% 

atmospheric CO2 to the environment (Zhang and Kroonenberg, 1996). In USA, coal production 

are mainly comes from Wyoming, West Virginia, Kentucky and Pennsylvania. Coal fire in 

USA was first reported during 1772 in Pennsylvania. Coal fires across Pennsylvania have 

destroyed floral and faunal habitats, induced land subsidence and yield acid rain in the state 

(Stracher and Taylor, 2004). In Australia, coal mines are not majorly affected by the 

spontaneous combustion. However, fires are mostly reported from opencast mines in many 

locations of Bowen basin and Hunter valley of New South Wales, Victoria and some parts of 

South Australia. Besides, from the world leading coal producing countries, coal fires are also 

known from Russia, Indonesia, Canada, Germany, South Africa and France. 

1.3 COAL FIRE IN INDIA 

In India, Jharia and Raniganj Coalfields located in the state of Jharkhand and West 

Bengal respectively are mainly affected by coal fires. These coal belts are the discrete sub-

basin of the E-W trending Damodar River valley basin. In Raniganj, coal fire affected areas are 

localized and under geological control (Guha and Kumar, 2012). Fire occurred in relatively 

small extent from few meters to tens of meters (Gangopadhyay et al., 2006; Guha et al., 2008). 

However, coal fires of large spatial extent have been prominently noticed in Jambad and 

Ramnagar opencast (Martha et al., 2005). In Jharia, devastation due to coal fires are more 

pronounced as it is the sole occurrence of coking type of coal. History, distribution and 

characteristics of coal fires in Jharia have been discussed in detail in Chapter 3.   
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Figure 1.2 Worldwide occurrences of coal fires
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1.4 SIGNIFICANCE OF THE COAL FIRE STUDIES 

 Coal fires have both local and global impact in different ways. Besides causing tons of 

coal loss every year, coal fires poses global threat by contributing harmful and toxic gases to 

the atmosphere. Coal fires degrade the vegetation land by removing moisture content of the 

soil. Burning coal seams at underground trigger land subsidence and damage infrastructure 

around the area. Thus, the detailed study and monitoring of coal fire is absolutely required due 

to its occurrence as major socio-economic and environmental problem. Significance of the coal 

fire studies in different areas are as follows:  

(a) Management and planning for sustainable coal mining: Uncontrolled coal fire block up 

tons of coal. Inaccessibility to the area facilitates the continuous burning of blocked coal 

for years and hence leads to the loss of valuable resource. Mapping of coal fires allow to 

demarcate the fire affected area for sustainable mining.  

(b) Coal fire related geo-hazards: Uncontrollable spread of underground fires causes 

volume reduction of the burning coal seam and triggers the overlying bed rocks to 

collapse. This abrupt collapsing is called coal fire induced „land subsidence‟. Land 

subsidence is the serious threat to the local inhabitants and mine workers. Coal fire 

affected areas are highly vulnerable to land subsidence. Precise mapping of the coal 

fires can help to mark the areas vulnerable to potential land subsidence.   

(c) Mitigation and rehabilitation: Dynamics of coal fires poses serious hazard to the local 

resident. Temporal monitoring of coal fires can help to decipher the propagation or 

movement direction of the underground coal fires. This would further facilitate to plan 

(i) proper mitigation measures for controlling coal fires and (ii) rehabilitation measures 

for local residents. 

1.5 SCOPE AND APPLICATION OF REMOTE SENSING IN COAL FIRE STUDIES 

The study of coal fires is a difficult problem as the fire areas are often inaccessible and 

therefore, remote sensing techniques could provide very useful inputs in fire studies. Recent 

advances in remote sensing data products (like availability of multispectral TIR data) and 

techniques (like sub-pixel estimation, data fusion techniques etc.) extended enormous scopes 

for further advancement in coal fire related research (Dozier, 1981; Vekerdy et al., 1999a; 

Eckmann et al., 2009; Zhang, X. et al., 1997; Zhang, X. et al., 1999). Data are available at 

repetitive pass and at low or free cost. Moreover, large spatial extent of data coverage can allow 

precise analysis and quantification of coal fires in less time. Coal seams burning underneath 
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generate thermal anomalies at the surface. These thermal anomalies are the surface expression 

representing existence and outline of the coal fires. The thermal anomalies can be detected by 

thermal infrared sensors onboard airborne and space borne platforms. It can be used as an 

indicator for mapping and monitoring of magnitude, intensity, amount of coal loss and 

dynamics of coal fires. Beside, remote sensing data have also been used in environmental 

impact assessment of coal mining and quantification of coal fire related emissions (Chatterjee 

et al., 1994; Gangopadhyay 2007; Gangopadhyay et al., 2008; Kolker et al., 2009; Dijk et al., 

2011).  

1.6 RESEARCH GAPS 

An extensive review of the literature reveals that the remote sensing techniques have 

wide range of application in monitoring thermal phenomenon such as, forest fires, volcano and 

coal fires etc. Study of these thermal processes was first started with aerial thermal scanner 

followed by advanced thermal imaging sensors (MODIS, ASTER, Landsat TM/ETM+, BIRD) 

operating today. In general, the prime motive of thermal remote sensing is to evaluate the 

temperature distribution and spatial extent of the hot feature. With time, different techniques 

for mapping have comes in light and potential of thermal remote sensing has been further 

enhanced to explore other related features associated with thermal phenomenon. Several 

research problems and gaps have been identified during literature survey that is given below in 

detail:  

(a) Accurate mapping of coal fires is pre-requisite of remote sensing based coal fire related 

studies. However, mapping of the coal fires carried out worldwide including India is 

restricted only to the delineation of subsurface fires. No study or research specifically 

on delineation of surface fire has been observed. 

(b) Thresholding is an eminent problem associated with mapping of coal fires. A threshold 

is the value assigned to an image to discriminate „anomalous region‟ from „non-

anomalous or background‟. A slight miscalculation in setting a threshold can give 

erroneous results. Several researchers have introduced different methods of thresholding 

of coal fires (see Chapter 2, Section 2.4.1). However, all methods have been found to be 

only operable in TIR data and hence, restricted only for mapping of subsurface coal 

fires. No method has been specifically found to threshold SWIR band for mapping of 

high intensity surface coal fires.   
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(c) Surface fires are high temperature phenomenon that can be potentially detectable in 

SWIR range. However, SWIR is affected by both thermal emission and reflection 

component. Separate retrieval of both emission and reflection is a very complicated 

process. Although, ASTER has six SWIR channels but it‟s potential to map high 

intensity surface fire have not been fully explored before.  

(d) Digital classification techniques have been widely used for mapping of various land 

cover classes. It requires precise selection of the spectral signatures to discriminate 

respective land cover classes. Fire is the processes of combustion of a matter (like coal 

or overburden dump) and there is no technique available for automatic classification of 

fires.  

(e) Temporal monitoring and mapping of the coal fire affected areas are necessary to help 

plan sustainable mining and industrial remediation on long term basis. In Jharia 

particularly, dynamics of coal fires have been evaluated in recent past (Chatterjee et al. 

2007; Martha et al., 2010). However, to decipher the change in spatial extent of coal 

fires affected areas and propagation of coal fires from 2000 to 2009 at colliery level 

have never been executed earlier.  

(f) Fresh mine dumps located in the vicinity of the large opencasts are also affected by very 

low intensity smoldering fire. Such dump fires are perceived automatically by coarse 

resolution TIR satellite datasets and often misinterpreted and mapped as „coal fire‟ in 

coal mining area. These „misinterpreted coal fires‟ have to be carefully analyzed and 

must not be considered „actual coal fire‟. 

1.7 OBJECTIVES 

 The main objective of the present research is to explore the potential of the short-wave 

and thermal remote sensing data (particularly ASTER) for precise mapping of surface-

subsurface coal fires in Jharia Coalfield, India. The attempt is mainly emphasized on 

developing a novel approach for thresholding and mapping of surface coal fires. Besides, time 

series ASTER datasets have been also used to access the spatial dynamics of coal fires in JCF 

between 2000 and 2009. The objectives of the research have been achieved by routine and 

advanced processing of remote sensing datasets. The specific objectives of the present research 

are as follows: 

(a) To propose a methodology of thresholding for delineation of „surface coal fires‟. 
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(b) To formulate new ratio indices for coal fire studies using ASTER satellite data and their 

implementation for mapping of surface coal fires in JCF. 

(c) Temporal monitoring and mapping of coal fires in JCF with special emphasis on coal 

fire dynamics from 2000 to 2009 at colliery level. 

1.8 SIGNIFICANCE AND INNOVATIONAL APPROACH OF THE RESEARCH 

A review of the literature reveals that the previous coal fire studies are mainly restricted 

to the mapping of subsurface coal fires. No significant study strictly focused on the surface coal 

fires has been carried out. Hence, for the present research, the objectives have been set to study 

of surface coal fire. In the present study, two novel approach have been significantly introduced 

for delineation and mapping of surface coal fires using SWIR data. In first objective, the 

„maximum solar reflection threshold‟ method has been proposed to set threshold for delineation 

of surface coal fire. Highest solar reflectance from fresh excavated dump is used as 

conservative threshold to isolate the pixels attributed to surface coal fires. To test the wider 

applicability of the technique adopted, the method has been also applied in different 

geographical setting. In second objective, spectral characteristics of the pixel attributed to 

surface fire have been analysed and two ratio indices have been formulated to discriminate the 

pixels attributed to surface coal fires. The approaches presented here significantly evaluate and 

improve the mapping of surface coal fire that may impart help in industrial management and 

planning.   

1.9 ORGANIZATION OF THE THESIS 

The thesis has been organized into eight chapters. An overview of the chapter wise 

distribution of the work is discussed below in detail:    

(a) Chapter 1 discussed the necessity and purpose for the conducting research, scope and 

utility of remote sensing to accomplish the research, identification of the research gaps, 

setting the objectives and innovational approach to achieve the objectives.  

(b) Chapter 2 discussed and summarizes the review on coal fire studies using remote 

sensing. This chapter gives the insight of coal fires, its causes and consequences 

followed by principle of thermal remote sensing and problem associated with coal fire 

studies. The chapter also discussed the potential of satellite data for mapping of coal 



9 
 

fires and quantification of coal related features with special emphasis on previous work 

in JCF.  

(c) Chapter 3 gives the introduction to the physical and geographical attributes of the study 

area with special emphasis on the field based observations in JCF. 

(d) Chapter 4 includes the details of the data used, pre-processing and processing of the 

remote sensing datasets. An overview of the methodology adopted in the present 

research has also portrayed in the present chapter.   

(e) Chapter 5 gives an introduction to a novel method for thresholding of SWIR band to 

delineate coalfield surface fires and also discussed applicability of this method to wide 

range of geographical setting.  

(f) Chapter 6 explain the formulation of ratio indices for mapping of surface coal fires. This 

chapter also deals with the estimation of spatial extent of high intensity and smouldering 

coal fires using obtained indices.  

(g) Chapter 7 discussed the fluctuation in spatial extent of coal fires from 2000 to 2009 at 

colliery level in JCF.   

(h) Chapter 8 presents the summary and conclusions for further studies. 
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  CHAPTER 2 

COAL FIRES STUDIES USING REMOTE SENSING: A 

REVIEW 

 

2.1 INTRODUCTION 

Coal fires are common problems associated with high rank coal bearing occurrences 

known worldwide and have great impact on both global and regional scale. Since last two 

decades, remote sensing techniques have been widely used for monitoring and mapping of coal 

fires. Over the years with recent advancement, the potentials and scope of satellite sensor 

techniques have been further extended to broad level in coal fire related studies. Regular and 

precise mapping of coal fires are important for sustainable industrial growth and environmental 

remediation on long term basis. In the present chapter a review of the literatures on coal fires 

have been discussed with special emphasis on recent researches around the world and in India. 

In this chapter, causes of coal fires and its social, economic and environmental consequences 

on both local and regional scale, principle and significance of the thermal remote sensing has 

been discussed. The focus has been primarily laid on to discuss the application and problem 

associated with thermal remote sensing data for coal fire studies. Besides, a brief discussion on 

the role of satellite sensor technology in monitoring and mapping of coal fires with reference to 

previous studies in Jharia Coalfield, India has been also given. 

2.1.1 Causes of coal fire 

Coal is highly combustible in nature and vulnerable to ignition by variety of processes. 

Spontaneous combustion of coal by self-ignition is the most obvious cause of the coal fires. In 

addition to the geological processes through time, anthropogenic activities are also the potential 

causes of coal fires. The causes of coal fires are briefly discussed below in details: 

2.1.1.1 Spontaneous combustion and self-ignition    

Self-ignition is the inherent property of coal. High rank (high degree of coalification), 

large particle size, large exposed surface area and low moisture content, coals are more prone 

to spontaneous combustion by self-ignition. It is initiated by the absorption of oxygen when a 

coal seams or coal dump is exposed to an open environment (Carras et al., 2009). Vents, cracks 
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or fractured rock surface above the coal seams act as a passage for oxygen influx that initiate 

oxidation in coal seams occurring beneath. With continuous absorption of oxygen at the coal 

surface, the oxidation reaction becomes strongly exothermic and temperature of the coal seams 

starts increasing.  

Coal + O2 → CO2 + H2O + Heat (393.5 KJ) 

When the heat evolved by the oxidation of coal reaches above the threshold 

temperature, self-ignition in the coal seam begins. The threshold temperature to start self-

ignition is about 50°C for lignites and 70-80°C for bituminous coals (Ackersberg, 2003). 

During the initial stage, the CO2 evolved during the oxidation of coal got no route to escape and 

hence, reversible reaction starts.  

2CO + O2 ← 2CO2 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Schematic diagram showing phenomenon of coal combustion 

During this reversible reaction, CO2 starts releasing carbon-monoxide and oxygen. This 

oxygen acts as fuel for spontaneous combustion of coal. With continuous burning, volume 

reduction of the underlying coal seams results in the development of linear cracks and fissures 

over the surface that provide passage for uninterrupted inflow of oxygen. Once coal fire starts 
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in a coal seam, it burns for a long time by spreading along the seam (Schmal, 1987) (Figure 

2.1). 

2.1.1.2 Igneous intrusion 

Igneous intrusions in coalfield basin are supposed to be the external ignition source that 

induced combustion in coal. Like in Jharia Coalfield, ignition of coal is also caused by dolerite 

and mica lamprophyre dykes and sills of Jurassic and tertiary age. The intrusions mainly occur 

at relatively greater depth and affect the central and eastern part of the JCF. Intrusion causes 

combustion of coal in the absence of the oxygen and induced baking effect in the affected 

section of the coal seam. However, combustion even in the absence of oxygen can cause 

reversible reaction to start and promote the process of self-ignition and spontaneous 

combustion. The process of combustion devolatized the affected part and transformed the entire 

seam section into „burnt brick‟ called Jhama (Sengupta, 1980). External ignition together with 

self ignition and spontaneous combustion forms world densest congregation of coal mine fires 

in JCF.  

2.1.1.3 Coal mining and indirect processes  

Unplanned excavation and mining activities in opencasts expose coal seams to an open 

environment. In an exposed scenario, spontaneous combustion of coal is facilitated by the 

accelerated influx of oxygen. With continuous burning, fire starts moves along the direction of 

dipping coal seams. Combustion reduces the volume of the coal seam and results in the 

overlying bed rock to collapse. Hence, a complex system of fractures is developed over the 

surface that allows the frequent supply of oxygen for spontaneous combustion.  

2.1.2 Consequences 

Uncontrolled coal fires have significant environmental and economic impact at both 

local and global level. Spontaneous combustion can occur either within the underground coal 

seam or in piles of stored coal and spoiled dumps on the surface. Spontaneous combustion of 

coal actively contributes to the loss of valuable coal resources, poses serious threat to the coal 

mining and surrounding infrastructure, induce severe environmental hazard and ecological 

disturbances in and around the affected area. These impact and consequences are briefly 

discussed below:  

 



14 
 

2.1.2.1 Socio-economic impact 

Uncontrolled coal fire occurring underground can block substantial reserves of valuable 

coal. It has been estimated that in JCF approximately 3 mt coal is lost every year due to coal 

fire (BCCL, 2008). Burning of coal seams not only consumes the coal but also induces 

inconveniences and difficulties in operating exploration, and fire controlling strategies in a coal 

mining area. Once ignited, fire propagates along the dip direction of the coal seam. While 

propagating, fire consumes the coal and causes volume reduction of the underlying coal seam. 

This results in the overlying bed rocks to collapse and induces unexpected sudden subsidence. 

Uncontrolled subsidence poses serious threat to the urban and human settlements in and around 

the affected area. Subsidence causes severe mine accidents, damage the infrastructure and 

stimulates danger to life of local inhabitants residing proximity to the fire area (Prakash et al., 

2001). Lack of attention and limited financial support from the government and private sector 

deeply impact the social condition of the local residents. In JCF, due to poor socio-economic 

condition, local residents of several mining villages are also linked with small scale illegal 

mining activities. Precise mitigation and reclamation measures to reduce the consequences of 

this geo-hazard essentially require serious attention to raise the socio-economic condition of the 

affected area. 

2.1.2.2 Environmental hazard and ecological disturbance 

Coal fire causes severe environmental and ecological disturbance at both local and 

regional scale. Haphazard mining activities around the coal mine induce significant negative 

impact on the surrounding area. Mining operations cause deforestation and lowering of 

groundwater table. Coal seam fires occurring at subsurface level degrades the surface 

vegetation by removing the moisture content of the soil. Continuous heating also reduces the 

soil fertility by changing pH and chemical composition of the soil. Degradation of vegetation 

produces ecological disturbances around the area. Active coal fires lead to atmospheric 

pollution through the emission of diffused gases, such as sulphur dioxide (SO2), nitrogen 

oxides (NO), carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) (Rosema et al. 

1995; Kolker et al., 2009). Among these diffused gases, the contribution of CO2 and CH4 is 

significantly large. These gases actively contribute greenhouse effect to the surrounding 

environment and leads to global warming (Dijk van et al., 2011). The smoke and windblown 

ash also plague the areas around coal fires. Emission of these gaseous pollutants, particulate 

matters and toxic trace elements, such as arsenic, mercury and selenium also poses direct 
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hazard to human health. Fumerolic mineral formed along the gaseous vent and pits may also 

leached from encrusted surface to the water bodies and hence also cause indirect endangerment 

to the human health (Stracher et al., 2005). In recent years, significant efforts have been made 

on quantification of coal fires related emission on regional scale (Carras et al., 2009; Dijk et al., 

2011; Engle et al., 2011). However, precise quantification of gaseous emission on regional 

scale is difficult to access and magnitude of impact in global scenario is little. 

2.2 PRINCIPLE OF THERMAL REMOTE SENSING  

Any object above absolute zero (0 K or -273.15 °C) emits radiation in SWIR and TIR of 

the spectrum. The amount of energy emitted by an object is the function of its thermal state and 

can be speculated by its emission spectra. The emission spectra of an object vary across the 

electromagnetic spectrum. The relationship between the emission responses of an object at 

different wavelengths is well explicated by Planck‟s radiance function.  

In late 1800s, Planck derived the emission response curves across the different 

wavelengths for perfect black body at different temperature (Prakash and Gens, 2010; Figure 

2.2). The curves obtained have suggested that the maximum emission response of an object 

having temperature close to 300 K (Earth ambient temperature) can be detected within 8-10 µm 

spectrum range (TIR). Similarly, the objects having temperature close to 1000 K can be 

detected within 2-3 µm (SWIR) spectrum range.  

Likewise, the sensor onboard satellite platforms designed to operate within SWIR and 

TIR can measure the spectral emission response in respective spectral channel. Fires occurring 

at greater depth (subsurface coal fires) can produced the subtle thermal anomaly by increasing 

the ambient surface temperature range (300 K) up to 15°C (Prakash and Gens, 2010). This 

anomalous temperature can be potentially detectable within TIR range. High intensity surface 

fires in in-situ coal seams or in coal dumps having temperature over 1000 K can well suited for 

detectable within SWIR or NIR region of the spectrum. However, in nature, no object behaves 

like true black body (not perfect emitter or not perfect absorber). Thus, spectral emissivity (Ɛ) 

of the objects greatly varies from one other. It is the ratio of the amount of energy emitted by an 

object at certain temperature and wavelength to the amount of energy emitted by a black body 

at same temperature and wavelength. The emissivity of the most natural substances ranges from 

0.7-0.96.    
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Figure 2.2 Emission spectra of the blackbodies at different temperature. The solar radiance 

reflected from a surface of albedo 0.1, and the spectral position of SWIR and TIR bands are 

also shown in the figure. SWIR bands are sensitive to both solar reflected radiation and 

blackbody radiation emitted by high intensity fire whereas TIR bands is sensitive to spectral 

response by subsurface coal fires producing subtle thermal anomaly 

2.3 PROBLEMS ASSOCIATED WITH COAL FIRE STUDIES 

Remote sensing based coal fire studies mainly focused on the effective mapping and 

monitoring of coal fires (Zhang, X., 1998). However, remote sensing also has certain 

limitations in terms of available techniques and data specifics. The common problem associated 

with the remote sensing sensor is the influence of atmosphere. Gaseous emanation and 

particulate matter in the atmosphere cause haziness in the image and hence cause hindrance in 

remote sensing based observations. Cloud cover, if exists, also conceal the area under 

observation up to some extent. Prolong burning heat up the surrounding area by atmospheric 

convection. Seasonal heating from March to September in tropical-subtropical regions also 

restrict to use the satellite data acquired during these seasons. Due to this reason, images 

obtained during cold season i.e. from November to February are preferably used for monitoring 

thermal phenomenon. Limited availability and coarse spatial resolution of the TIR sensors also 
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restrict the thermal analysis of coal fire. Besides, thresholding of spectral response and 

characteristics of coal fires are some technical issues that renders the problems associated with 

coal fire studies.  

2.3.1 Thresholding of sensors response and extraction of thermal anomaly 

Thresholding of sensor response is an important task to delineate the thermal anomaly. 

The techniques of thresholding allow to set a value for extracting the sensor response of the 

object of interest from the image. A precise threshold demarcates the pixels attributed to the 

favorable object from the rest of the image that corresponds to background. The pixel values 

above the threshold value is considered to be „anomalous‟ and values below the threshold 

values are „background‟. In this way, the techniques of thresholding segment the image into 

binary output class and facilitate the further analysis of the anomalous class separately. 

Coal fires are very restricted in spatial extent and radiate high energy heat flux that 

cause subtle thermal anomaly at the surface. Thermal anomalies detected over the surface are 

the function of size (dimension), depth and intensity of the coal fire. Low thermal conductivity 

of the overlying bed rocks such as shale and sandstone also control the thermal anomaly 

obtained at the surface. Fire of even low intensity if occurring at shallow depth may produce 

detectable thermal anomalies on the surface than high intensity fire occurring at greater depth. 

However, as mentioned earlier that coal fire is a complex phenomenon and thermal response 

due to coal fires received at the satellite sensor is controlled by data specifics and 

characteristics of coal fires. Precise estimation of the threshold value to delineate thermal 

anomaly associated with underground coal fires is a difficult task. Coal fires occur as very 

complex systems in different geographical setting around the world. Hence, different workers 

have proposed different techniques of thresholding to delineate fire from remote sensing data as 

no single method works accurately in all conditions. 

In recent years, several algorithms and methods have been developed for thresholding 

and extract the coal fire related thermal anomalies from various remote sensing satellite data 

such as LANDSAT, ASTER, MODIS or NOAA-AVHRR. Among the various applicable 

methods of thresholding, density slicing technique based manual approach have been most 

widely used and applied in recent researches (Prakash et al., 1995b; 1997, Yang et al., 2005) 

for delineating coal fires. The technique involved to estimate a threshold digital number defined 

by the user based on „trial and error method‟ to discriminate the pixels attributed to fire from 

non-fire pixel or background pixels. In trial and error method, geographical locations of some 
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coal fires are observed in field and their corresponding location on the thermal images are 

demarcated on Landsat TM band 6. Then, several spatial linear profiles (thermal profiles) are 

drawn on Landsat TM band 6 data passing through the anomalous hot pixels. DN value of each 

pixel lying along the profile has been computed on pixel-by-pixel basis and plotted against the 

distance. The DN values corresponding to hot pixels are shown high peaks than normal 

background. For different profiles, maximum value of background pixel slightly varies. A 

reasonable value of the maximum background pixel together with user‟s field based knowledge 

is considered as threshold to delineate the pixels attributed to coal fire from non-fire ones. 

Prakash et al., (1997) successfully applied this technique and set a reasonable best threshold 

DN value to 137/138 in TM band 6 to delineate the subsurface coal fire areas from normal 

background. 

However, it is hardly possible that anomalous pixels area estimated using this technique 

match the fire outline derived from field surveys. The error may arises due to coarse resolution 

of TIR data, ignoring the atmospheric effects, non-uniform background temperature, ignoring 

lateral variation in spectral emissivity of the ground material (Zhang et al., 2004). Any 

misinterpretation in selecting a threshold may leads to the over or underestimation of spatial 

extent of coal fires. Hence, estimated threshold are corrected and checked frequently till it 

accurately discriminates the fire from non-fire area. 

Density slicing technique based on trial and error method for threshold estimation has 

been widely used as it is easy to apply and close to the real scenario. However, automated 

methods for detection of thermal anomaly have been also applied for mapping of coal fires. 

Prakash et al., (1999a), used statistical parameters to set the threshold at standard deviation of 

two ( +2σ) for discriminating coal fires, Rosema et al., (1999) identified the change in shape 

of the slope of histogram of the image and figure out its corresponding point in x-axis. Semi 

automated-automated algorithms have been recently proposed by Prakash and Vekerdy (2004) 

and Kuenzer et al., (2007c) for estimating threshold. The methods give more realistic 

information about the target which best meets the observed information derived from the field 

surveys. These methods automatically extract the thermally anomalous pixels from the non-

anomalous ones. In the simplest case, threshold may be selected by trial-and-error as possibly 

guided by field data (Figure 2.2a). Alternatively, the threshold may be derived using a 

statistical parameter, e.g. standard deviation (Figure 2.2b), or on the basis of change in the 

slope of frequency diagram implying a change in type of objects (Figure 2.2c), or on the basis 

of bi-(multi-) modal character of the frequency diagram (Figure 2.2d). 
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Prakash and Vekerdy (2004) applied semi-automated techniques on small subsets of 

TIR images based on statistical parameters for managing and extraction of surface and 

subsurface coal fires in the Ruqigou Coalfield in north-west China using CoalMan prototype 

GIS. This semi-automated technique provides flexibility in setting up threshold and 

automatically changes thethreshold DN based on the spatial variability of the subset window. It 

gives more realistic estimates of the fire area but coarser resolution thermal data (Landsat TM 

band 6) makes it difficult to determine the actual location of fire spots. Kuenzer et al., (2007c) 

employed „moving window algorithm‟ for separating thermally anomalous pixels from the 

normal background where raw satellite data occupying anomalous pixels were spatially subset 

into small windows of varying size. Histograms of each spatial subsets were statistically 

analyzed and threshold value was set at DN where first local minimum drop after the main 

maximum peak. DN values beyond first local minimum drop were considered as thermal 

anomalies. However, all pixels which declared as thermally anomalous using above approach 

may not represent coal fire. Such pixels were taken as „error‟ and rectified again using 

statistical analysis based on detailed field knowledge. This automated approach to delineate the 

thermal anomaly is worked well for detection and monitoring of unknown coal fire using 

remote sensing satellite data over a large area but have same limitations like other techniques 

due to spatial dependency of thermal data. 

2.3.2 Limitations of TIR remote sensing data 

TIR data have coarse spatial resolution and exhibit their own limitation in detecting 

thermal phenomenon like coal fires. Total thermal emission of a unit TIR pixel is the 

contribution of membership value of each end members of that pixel along with coal fire. 

Hence, the emissivity and radiant temperature of a pixel containing fire depends on the 

contribution of different component within the pixel. Temperature obtained from the satellite 

data represents overall temperature of the pixel called „pixel integrated land surface 

temperature‟ (LST) (Gupta, 2003). LST represents the average thermal flux emanating from 

both coal fire and non coal fire area. For example, in Landsat data, each TIR pixel constitutes 

an area of about 3600 m
2
 and it is hardly possible that whole pixel contains fire. Even a very 

high temperature surface fire of small spatial extent present in 60x60 m
2
 pixel can raise the 

pixel integrated LST of that pixel by few Kelvin against the normal background. Therefore, 

TIR can detect the anomalous hot pixel only if it contains fairly large coal fire body that is long 

enough to enhance the radiant temperature of that pixel than normal background. Coal fire 
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related anomalies are extremely weak anomalies and their surface manifestations are also 

intensely very low. 

These factors facilitate the detection and analysis of coal fire very difficult. Hence, it is 

suggested that the remote sensing based coal fire estimation is the function of the size of pixels 

and the user defined preselected background temperature value. 

TIR sensor receives the radiant energy response in proportion to its temperature (T) and 

emissivity (Ɛ) (Coll et al., 1994; Gillespie et al., 1998). Most natural substances show an 

emissivity value ranging from 0.7 to 0.97 (Prakash and Gens, 2010). Previous studies have used 

a constant emissivity of 0.95-0.96 to retrieve pixel integrated LST. Recent advancement in 

remote sensing techniques and availability of multispectral TIR sensors allow separate retrieval 

of land surface temperature and emissivity spectra. Gillespie et al., 1999 proposed temperature-

emissivity separation (TES) algorithm that can estimate the precise surface temperatures and 

corresponding emissivity values of given pixel. It is reported that TES can recover temperatures 

within about ±1.5 K and emissivity within about ±0.015.Surface temperature values derived 

using TES algorithm are more close to the ground truth for all classes (Schmugge et al., 2002; 

Coll et al., 2007; Gangopadhyay et al., 2012). However, satellite data with single TIR band like 

Landsat has to use constant emissivity or field derived emissivity to compute land surface 

temperature. 

2.4.3 Heat transfer and depth estimation of coal fire 

Underground coal seam fires are the highly complex multi-variable dependent system. 

Precise analysis of subsurface components of coal fires requires an interdisciplinary approach. 

Thermal anomaly obtained at the surface is key to all remote sensing based measurements. 

Such surface observations can be implemented to model the subsurface component of the coal 

fires using simplified approach and several assumptions.  

Depth estimation is an important component of subsurface coal fires studies. In recent 

years, different methods have been proposed to estimate the depth of coal fires. Saraf et al., 

(1995) proposed geometrical methodfor fire-depth estimation. Geometrical method involves (a) 

distance between surface thermal anomaly and exposed coal outcrop on the surface and (b) dip 

of the coal seam as input in trigonometric functions to determine the depth of coal fire.    
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Table 2.1 Brief review of the methods that have been implemented for thresholding remote sensing data to map coal fires 

Previous 

Methods 
Applied By Brief Description Advantages Limitations 

Density 

slicing 

technique 

based trial 

and error 

method 

Prakash et al., 

1995b; Prakash, 

1996; Prakash et 

al., 1997; 

Yang et al., 2005 

A threshold DN value is picked and 

set up for thresholding based on 

extensively defined field data (Fig. 

2.3(a)). 

Easy to apply and commonly 

used for delineating coal fires. 

Not strictly based on digital 

techniques for threshold 

estimation. 

Anomalous pixels area estimated 

may or may not match the fire outline 

derived from field surveys. 

Method is subjective. 

Has user-bias as it depends on users 

field knowledge and image analysis 

skills. 

Automated 

method based 

on statistical 

parameters 

Prakash et al., 

1999a 

Statistical parameters used to set the 

threshold. A standard deviation of two 

( +2σ) is commonly used for 

discriminating coal fires (Fig. 2.3(b)). 

Simplest automated method for 

threshold estimation. 

Data utilized should be 

radiometrically corrected. 

Histogram 

method 

Rosema et al., 1999 Change in shape of the slope of 

histogram is identified A hypothetical 

uniform histogram slope is projected. 

The point (value) on x-axis where this 

projected slope intersects is taken as 

threshold (Fig. 2.3(c)). 

Independent of radiometric 

information and statistical 

parameters. 

Careful analysis of histogram is 

required. 
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Moving 

window 

algorithm 

 

Kuenzer et al., 

2007c 

Histograms are statistically 

analyzed and threshold value is set 

at the DN value that represents the 

first local minimum drop after the 

main maximum DN peak (Fig. 

2.3(d)).  

Works well for detecting 

unknown coal fires and 

monitoring over a large area. 

Algorithm tested only locally in 

Northern China. Wider applicability 

not tested.   

Algorithm is sensitive and may 

generate more false alarms for coal 

fires. To reduce false alarms the 

detected fire areas may need to be 

reanalyzed and rectified using 

statistical analysis based on detailed 

field knowledge 

Semi 

automated 

methods 

Verkerdy and 

Genderen, 1999b; 

Prakash and 

Vekerdy, 2004 

Surface-subsurface coal fires 

extracted from the background 

based on statistical  parameters 

using CoalMan prototype GIS 

It provides flexibility in setting up 

threshold and automatically 

changes the threshold DN based 

on the spatial variability of the 

subset window.  

It gives more realistic estimates of 

the fire area. 

Coarser resolution thermal data 

makes it difficult to determine the 

actual location of fire spots.  
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Figure 2.3 Various methods for thresholding Landsat TM/ETM band 6 data for delineating 

thermal anomalies associated with subsurface fires. Threshold is set by (a) density slicing based 

on trial-and error (b) using statistical parameters (c) analyzing slope of the histogram (d) 

detecting the first minimum DN value dip after a major DN value maxima. (Adapted from 

Prakash and Gens, 2010). 

The method assumes that the thermal anomaly obtained on the surface is lying 

vertically above the burning coal seam and also requires desirable information from field 

surveys (Prakash and Gens, 2010). Geometrical method has been further improved by 

introducing geological component (stratigraphy and structural attributes) of the area to the 

model the depth of coal fires (Peng et al., 1997). 

Review of literature reveals that the depth estimation of coal fires in recent researches 

are mainly focused on the numerical simulation using finite element method under steady state 

condition. The simulations are generally based on the conductive heat flow model to determine 

the depth function (Mukherjee et al., 1991; Prakash et al., 1995a; Genderen et al., 1996; 

Cassells, 1997; Prakash and Berthelote, 2007) and dynamic behavior of the coal seam fire 
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(Wessling et al., 2008b) from the information available from remote sensing data. Depth 

estimation of underground coal seam fire is the function of intensity and magnitude of the 

energy transmission. Energy transport is strongly influenced by the hydraulic and mechanical 

processes (Wessling et al., 2008a, 2008b). In mining area, interaction of the underground coal 

seam fire with exhaust gases and overlying system of fractured rock facilitate the energy 

transport by free convection (Huang et al., 1991; Huang et al., 2000; Wolf and Bruining, 2007). 

Excessive mining activity further exposes the coal seams to mechanical and thermal processes 

to accelerate the convective transfer. Due to these parameters, modeling for depth estimation 

based on free convection is very complex.  

2.3.4 Coal mining induced variation in land use pattern and dynamics of coal fire 

Coal mining is closely associated with temporal variation in land use pattern (Kuenzer 

et al., 2004; Kuenzer et al., 2005). In any coal mining area, land use patterns are significantly 

affected by both anthropogenic and natural activities. Continuous demand of energy supply for 

industrial growth leads to the haphazard mining activities in coal bearing area. Mining activities 

frequently expanded in spatial extent with time to enhance the coal production and hence, in 

turn temporally changes the surrounding topography of the area. Open cast mining, dumping of 

excavated coal and frequent accumulation of mine dumps (overburden dumps) are some of the 

anthropogenic activities that causes frequent change in the land-use pattern. Natural 

phenomenon such as land subsidence, surface and subsurface coal fires indirectly influences 

the land-use. Opencast activities also unveil the shallow subsurface coal seam fires. Exposure 

to an open environment accelerate the propagation of coal fire that further affects the land-use 

land cover of the area like vegetation, infrastructure etc. Therefore, temporal variations in land-

use is closely associated with coal fire especially surface fire and cause hindrance in regular 

monitoring of surface coal fires around the affected area. 

As mentioned, coal fires are highly dynamic in nature and vary frequently in their 

spatial extent. A single coal fire map may not be useful for long term basis. Hence, precise 

planning and mitigation measurements require temporal monitoring of coal fires. Spatial 

dynamics of coal fires can be accessed by repetitive satellite data. However, due to technical 

limitations like accurate pixel by pixel geometric co-registration, unavailability of satellite data 

of same season and handling large datasets cause difficulties in retrieving coal fire dynamic. 
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2.4 MAPPING AND MONITORING OF COAL FIRE USING SATELLITE DATA 

Fires in coal fields are a common occurrence and have drawn the attention of 

researchers, managers, miners, local residents and news media alike due to the local and global 

threats they pose to the coal resource and the environment. Coal fires occur at the surface and 

underground and are reported from almost all coal bearing regions of the world, particularly 

from China, India, USA, Indonesia, Russia, South Africa and Australia (Walker, 1999; Stracher 

and Taylor, 2004; Whitehouse and Mulayana, 2004; Gangopadhyay et al., 2005; Kuenzer et al., 

2007a, b; Kolker et al., 2009). Remote sensing technology has been used for coal fires studies 

for nearly five decades. Earlier studies were restricted to the air borne methods of detecting 

coal fires. Airborne remote sensing provides greater spatial detail for mapping coal fires (Fisher 

and Kunth, 1968; Knuth et al., 1968; Rabchexsky, 1972; Ellyett and Fleming, 1974). Though 

earliest studies were relied on the use of aerial thermal scanners, studies in the last two decades 

have been focused on the use of data from satellite sensors such as  National Oceanic and 

Atmospheric Administrations Advanced Very High Resolution Radiometer (NOAA-AVHRR), 

Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat Thematic Mapper (TM) 

and Enhanced Thematic Mapper (ETM+), Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER), and experimental satellites such as the Bi-Spectral Infrared 

Detection (BIRD) (Mansor et al., 1994; Zhang and Kuenzer, 2007a, Zhang et al., 2007b; 

Prakash and Gupta, 1999a; Voigt et al., 2004; Zhang, X. et al., 2004a; Tetzlaff et al., 2005;  

Chatterjee et al., 2007; Gangopadhyay, 2007; Kuenzer et al., 2008; Quattrochi et al., 2009; 

Yaobao, 2010; Martha et al., 2010). Satellite remote sensing provides low-cost repeat data 

coverage over the fire areas that are very useful for fire monitoring. Multispectral data from 

satellite sensors such as the Landsat TM and ETM+, and ASTER have the additional advantage 

that they acquire data in both the thermal infrared (TIR) and the shortwave infrared (SWIR) 

parts of the spectrum. TIR data are used widely to delineate subtle surface thermal anomalies 

associated with underground coal fires, while SWIR data are used to isolate very high 

temperatures associated with surface fires (Dijk et al., 2004; Zhang et al., 2004).  

China has the extensive reserves of valuable coal and ranked first in coal production. 

Coal fires in such large reserves are quite persistent and dated back to Pleistocene age in China 

(Zhang, X. et al., 2004b). Spontaneous combustion of coal in China have drawn serious 

attention of the various research groups to study the various aspects and characteristics of coal 

fires especially in northern China (Gielisch and Kuenzer, 2003; Dijk et al., 2003). Since 1980, 

multispectral and thermal infrared air borne and space borne scanners have been widely used 

http://www.eoearth.org/article/Energy_profile_of_China
http://www.eoearth.org/article/Energy_profile_of_India
http://www.eoearth.org/article/Energy_profile_of_the_United_States
http://www.eoearth.org/article/Energy_profile_of_Indonesia
http://www.eoearth.org/article/Energy_profile_of_Australia
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for monitoring of coal fires. Landsat datasets (Landsat TM/ETM+) have been sufficiently 

applied for detecting large surface fires and shallow subsurface fires in northern China. Zhang 

X. et al., (1995) proposed a method to evaluate the capability of landsat-5 TM band 6 data for 

sub-pixel coal fire detection. Satellite data with a coarser spatial resolution (like NOAA-

AVHRR data) than that of Landsat-TM are rarely used for coal fire research. Due to low 

resolution, the temperature of the hot objects may not enough to exceed the pixel integrated 

LST than pixel integrated background temperature.  Hence, satellite data based detection and 

mapping of the underground coal fires are more precisely governed by Landsat or ASTER data 

using different techniques of thresholding (Zhang, J. et al., 2004; Tetzlaff, 2004; Kuenzer, 

2005; Yang et al., 2005). In recent years, advanced remote sensing techniques have been 

potentially applied in quantification of surface-subsurface fires and associated environmental 

problems (Guan, 1989; Dijk et al., 1994; Rosema et al., 1995; Genderen and Guan, 1997; Li-

Ding, 1999). With time, the coal fire researches have been further extended to study various 

aspects of coal fires using advance modelling techniques of numerical simulation to (Gao et al., 

2006; Chen et al., 2007) and quantification of coal fire related emissions (Kolker et al., 2009; 

Dijk et al., 2011; Gangopadhyay, 2007; Gangopadhyay et al., 2008). 

2.5 PREVIOUS STUDIES IN JHARIA COALFIELD (JCF), INDIA 

Mine fires in JCF have a long back history (Sinha, 1986). Coal fires in JCF have been 

well monitored from space using aerial scanner and satellite sensors since last two decades. 

Earlier coal fires related studies were restricted to the applicability of thermal scanner. Airborne 

thermal scanner produces inherent distortion in the scanned image but allow obtaining imagery 

with reasonable spatial and thermal resolution (Lillesand and Kiefer, 2000; Zhang, X. et al., 

2003). Thermal anomalies are the function of coal fires. These anomalies have been potentially 

detected over the thermal images derived from airborne or space borne thermal scanners to map 

surface-subsurface coal fires. With time, the remote sensing based coal fire studies in JCF are 

not limited to mapping but further expanded to different aspects of coal fires some of which are 

described below in details: 

2.5.1 Mapping and monitoring of coal fires in JCF 

In 1990‟s, airborne thermal images were first used to detect and monitoring surface-

subsurface coal mine fires in JCF (Bhattacharya et a. 1991, Bhattacharya and Reddy, 1994; 

Bhattacharya et al. 1996; NRSA, 1996). However, soon after the launch of Landsat-4 with 

Multispectral Scanning system (MSS) and thematic Mapper (TM) sensor aboard in 1982, 
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monitoring and mapping of coal fires was widely extended to an advance level. With 

availability of repetitive satellite data, coal fires in JCF were temporally monitored. Cracknell 

and Mansor (1992) analyzed the potential utility of Landsat-5 Thematic Mapper (TM) thermal 

infrared (band 6) and short wavelength infrared (bands 5 and 7) data for detecting and mapping 

of surface-subsurface coal fires in test site of JCF. The results obtained from the study was 

correlated with ground measurements and suggested that Landsat TM have significantly 

enabled the detection, mapping and quantifying of subsurface coal fires zones. Reddy et al. 

(1993) used the short-wave infrared region (SWIR) to detect the high temperature surface fire 

and related geo-environmental features in JCF. Prakash (1996) exclusively carried out remote 

sensing-GIS based studies of coalmine fires in JCF. The study broadly describes the various 

aspects and characteristics of coal fires using Landsat MSS and TM data. Landsat TM band 6 

data was potentially used to detect the surface thermal anomaly associated with underground 

coal fires in JCF.  The area corresponds to underground coal fires was precisely mapped by 

selecting a threshold DN value by employing trial-and-error method using the density slicing 

technique (Prakash et al., 1995b). In JCF, surface fires are sporadic in nature and relatively 

small in spatial extent. TM-6 is useful for mapping subsurface fires and TM-5 and TM-7 are 

useful for mapping surface fires (Prakash et al., 1997). Underground fire removes the moisture 

content of the soil which degrades the vegetation over the surface and turned the corresponding 

area into dry barren land. The barren show higher reflectance when observed on Landsat TM 

band 3-4. The regions of higher reflectance are called as‟ reflectance aureoles‟ that act as 

indicators of underground coal fires (Gupta and Prakash, 1998). Prakash and Gupta (1999a) 

briefly reviewed the potential of shortwave infrared (SWIR) bands in estimating temperatures 

of high-temperature objects and computed sub-pixel area with corresponding sub-pixel 

temperature using dual band approach (Landsat TM band 5 and 7). Mapping of coal fires have 

been periodically executed in JCF to detect subsurface fire using both novel and traditional 

approaches (Gautam et al., 2008; Mishra et al., 2011; Pandey et al., 2011). 

2.5.2 Estimating depth of coal fires in JCF 

Evaluation of possibilities and limitations of airborne and space borne remote sensing 

data to estimate the depth of sub-surface coal fires is a critical issue in coal fire studies. 

Mukherjee et al., (1991) detected and delineated the depth of subsurface coalmine fires using 

an airborne multispectral scanner in JCF. The method was based on conductive heat flow 

mechanism and assuming linear heat flow from subsurface to surface under steady state 

condition. Prakash et al., (1995a) has further extended method and proposed a conceptual 
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approach for estimating depth of hot buried features by accounting assumed convective 

component of heat transfer. The method required a prior knowledge of the heat source (like 

temperature and time of initiation of fire) and two sets of thermal infrared (IR) data of different 

time instances for the same anomalous area to compute depth of the buried heat source. Saraf et 

al., (1995) formulated geometrical method and used Landsat TM thermal infrared data to 

pinpoint the subsurface fire locations. The depth of the coal fires was computed using field 

derived information and located coal outcrops on TM visible and near infrared channels 

(Section 2.4.3). 

2.5.3 Coal fire dynamics in JCF 

Chatterjee et al., (2006) addressed the retrieval of true spectral radiance from raw digital 

data using scene-specific calibration coefficients of the detectors and thermal emissivity of 

surface materials to obtain pixel-integrated kinetic temperature at each ground resolution cell of 

Landsat TM thermal IR data. The methods also involve field-based modeling to observe lateral 

propagation of coal fires in JCF. Chatterjee et al., (2007) made an attempt to study the coal fire 

dynamics of Jharia Coalfield during the 1990s from medium resolution satellite thermal IR data 

such as Landsat-5 TM and Landsat-7 ETM+ data. The dynamics of coal fire was addressed on 

the following two aspects: (i) changes in the spatial extent of fire-affected areas, and (ii) 

propagation of coal fire during the 1990s. The results show a marked decrease in the spatial 

extent of fire-affected areas during the 1990s. The propagation of coal fire was found to be 

more erratic than regular in nature and propagate mainly toward south from 1992-1996 and 

towards north till 2001. Further studies reveal that area affected by the coal fires have been 

significantly increased by 0.51 km
2 

from 2003 to 2006 (Martha et al., 2010). Mapping of coal 

fires suggests that the west-central and eastern part of the JCF is more affected by coal fires 

than the western part (Mishra et al., 2014).  

2.5.4 Detecting change in land use pattern and land cover studies in JCF 

Land use changes are closely associated with coal fires and intense mining activity in a 

coal mining area. Prakash and Gupta (1998) discussed different Landsat TM false colour 

composites of bands 4-3-2, 7-5-3 and 5-4-2 in R-G-B combination for identification of various 

land-use classes. The study also briefly described the time-sequential changes in land-use 

pattern of JCF from 1990 to 1994. It has been observed that since 1994, approximate 6.9% of 

the area around JCF has been occupied by mining-related activities that are potentially 

vulnerable to environmental degradation (Martha et al., 2010). 
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  CHAPTER 3 

STUDY AREA: JHARIA COALFIELD, INDIA

 

3.1 INTRODUCTION 

Jharia coalfield (JCF) in India is the prime contributor to the country‟s economic 

growth. It has a long mining history and is also famous for the „coalfield fire‟ that has been 

burning underground for nearly a century. This chapter briefly describes the formative aspects 

of the JCF and discusses its attributes in terms of the location, accessibility, physiography, 

climate and regional geological set up. Description also elaborates the mining history and 

current scenario of coal resources available in JCF.  

The present chapter portrays the significance of the study area and introduces the 

insight of „coalfield fire‟ as a substantial problem associated with it. The chapter has also laid 

emphasis on the description of field survey conducted to evaluate various aspects and 

characteristics of coal fires in JCF. Ground truth observation involves the collection of field 

data such as (a) thermal profiles measurements to obtain depth function of the coal fires and (b) 

field photographs showing panoramic view of the major land cover type and coal fire induced 

geomorphological features recognized in JCF. This chapter has been primarily focused on the 

description of the field observation that helps to establish a conceptual framework of the 

situation of coal fires in JCF discussed in the succeeding chapters.  

3.2 LOCATION AND ACCESSIBILITY 

Jharia coalfield (JCF) hosts the India‟s largest coal repository, located 260 km NW of 

Kolkata. The coalfield was named after the main mining centre situated around Jharia township 

in Dhanbad district of Jharkhand (Figure 3.1). The area is confined between latitude N 23° 38‟ 

to  23° 50‟ and longitude E 86° 08‟ to 86° 30‟ with an spatial coverage of 450 km
2
 situated at 

77m above mean sea level. JCF falls in parts of the Survey of India Toposheet No. 73I/05, 06, 

09 and 10. The area is well approachable by the dense mesh network of metalled roads and 

eastern railway lines. National highway-32, Purulia-Dhanbad road and Dumra-Gomoh road 

connects the Dhanbad district with other districts of Jharkhand. Dhanbad is the nearest rail head 

situated about 8 km north of Jharia (Figure 3.2). Other important localities of the area are 

Baghmara, Katras, Kusunda, Lodna and Sudamdih. These are well connected by local roads 

http://en.wikipedia.org/wiki/Mine_fire
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and state highways. The nearest air connectivity are from Birsa Munda Airport, Ranchi and 

Netaji Subhas Chandra Bose International Airport, Kolkata situated approximately 140 km and 

270 km, respectively, from Dhanbad. 

 

Figure 3.1 Location map ofJharia Coalfield, Dhanbad district, India 

http://en.wikipedia.org/wiki/Birsa_Munda_Airport
http://en.wikipedia.org/wiki/Ranchi
http://en.wikipedia.org/wiki/Netaji_Subhas_Chandra_Bose_International_Airport
http://en.wikipedia.org/wiki/Kolkata
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Figure 3.2: A synoptic view of the Jharia Coalfield showing accessibility to the major localities of the study area. The image is generated by draping a 

standard FCC with band combination 3-2-1 (= R-G-B where R is Near Infrared band, G and Red band, B is Green band) of ASTER image dated 5
th

 

February 2004 over the ASTER GDEM covering study area 
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3.3 PHYSIOGRAPHY AND CLIMATE 

Physiographically, JCF extends about 38 km in east-west and 20 km north-south along 

WNW-ESE trending longest running axis (Chandra, 1992). The area fall under the territory of 

JCF is mainly occupied by relatively flat topography forming dissected pediplains with minor 

but consistent decrease in slope from north to south. The evenness in topography is well 

evident by the representative elevation contours of the area. The highest and lowest elevation of 

the area ranges between 220 m to 180 m, respectively. The highest elevation in topography has 

been recorded around Baghmara area located in the westernmost part of the JCF. Whereas, 

areas such as Bhowrah, Jamadadoba, Sudamdih and Patherdih located in southern and south-

eastern part of the coalfield exhibit lowest topography forming relatively low ground. In Jharia, 

topographic variations are invariably associated with the mining activities. Majority of the 

opencasts and mine sites are located all along the northern fringe of the JCF. However, due to 

intense anthropogenic activity, the physiographic status of northern part of the JCF is highly 

dynamic that significantly changes from time to time. 

Jharia coalfield belongs to the Jharia basin, a sub-basin of the Damodar River valley 

basin. The area is mainly drained by easterly flowing Damodar River and its tributaries namely, 

Jamuniya nadi (river) and Katri nadi originating from thenorthern hills of Parasnath and Tundi 

areas, respectively (CGWB, 2009). The Damodar River is under the control of WNW-ESE 

trending fault forming southern boundary of the JCF. Drainage in western most part of the JCF 

is mainly governed by N-S trending Jamuniya Nadi and its tributary nala’s (small streams). 

Jamuniya nadi marks the western boundary of the JCF where it confluences with the Damodar 

River. Central portion of the JCF is drained by NW-SE and NE-SE trending Kudia nadi and 

Jirian nala, respectively. Both of these are the tributaries of NNE-SSW trending Katri nadi 

which joins the Damodar River at south-central part of the JCF. The Damodar together with its 

all tributaries forms dendritic drainage pattern (Figure 3.2). 

Western part of the JCF located around Baghmara is characterized by barren and 

uncultivable waste covers. The area falls under sub-tropical to semi-arid climatic zone with 

pleasant weather from the month of July to September and fairly cold winters during November 

to February touching minimum temperature of 8°C-10°C. It experiences extreme hot climate 

from April to June reaching to maximum temperature of 42°C-48°C. The JCF receive fairly 

enough rainfall due to coal dust, which attracts clouds and brings rainfall to the area (CGWB, 
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2009). The area receives moderate to fairly high rainfall by southwest monsoon from July to 

September with an average rainfall of 120-140 cm annually.  

3.4 REGIONAL GEOLOGICAL SET UP OF THE AREA 

Jharia basin is an integral part of the east-west trending discrete Damodar basin. It is 

WNW-ESE trending slightly elongated basin bounded by a major fault running parallel to the 

longest axis of the basin toward south. The basin is characterized by a series of numerous 

intrabasinal faults trending NW-SE to NNE-SSW (Chakraborty et al. 2003). The stratigraphic 

and structural features of the JCF are briefly described below. 

Figure 3.3 Geological map of Jharia Coalfield (CMPDIL, 1989) 

3.4.1 Lithostratigraphy and structure 

JCF comprises sedimentary litho-package belonging to Gondwana Supergroup of 

Permo-Carboniferous age. The package is composed of alternating sequence of sandstone and 

shale with interbedded coal seams of fluvial-lacustrine origin deposited in intra-cratonic 

archean gneissic basement. The sedimentary succession of the area is unconformably lying 

over the Archaean metamorphics. The succession comprises Talchir Formation at the base 
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successively followed upward by the Barakar, Barren Measures and Raniganj Formations. 

Talchir Formation is fluvio-glacial in origin and well exposed all along the margin of the JCF. 

Talchir Formation is followed upward by Barakar Formation by an erosion contact. Majority of 

the regional coal seams of the Jharia basin are restricted only to the Barakar Formation of lower 

Permian age. Barakar Formation is successive followed upward by Barren Measures which is 

devoid of any coal seam. Raniganj Formation of Upper Permian age forms the uppermost part 

of the JCF and occupies the south-western part of the Jharia sub-basin.A synoptic view of 

region geological set up of the JCF is shown in Figure 3.3. The detailed litho-stratigraphic 

succession of the Jharia Coalfield has been given in Table 3.1. 

Structurally, the area has been deformed considerably to form broad gentle syncline 

plunging toward west with axis trending toward ESE-WSW. The deformations have modified 

the coalfield to occupy the shape of ‘sickle’. The contortions facilitate the regional and local 

scale folding and faulting in the strata. However, the area does not show any evidence of major 

tectonic deformation except normal faulting of varying magnitude (Ghosh and Mukhopadhyay, 

1985). The lithounits exhibit regional east-west to NW-SE strike with shallow dip of about 3°-

8° toward south (Figure 3.4).  

Figure 3.4 Alternate bands of almost horizontal dipping sandstone and shale exposed due to 

mining near Sonardh, area, JCF 
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Table 3.1 Litho-straigraphic succession of the Jharia coalfield, India (Chandra, 1992) 

Age Formation Litho-type 
Maximum 

thickness 

Jurassic / Tertiary  Dolerite dykes  

Lower Jurassic  Mica lamprophyre dykes and sills  

Upper Permian Raniganj 
Fine grained feldspathic sandstones, shales 

with minor coal seams 
800 m 

Middle Permian 
Barren 

Measures 
Sandstone, shale and carbonaceous shale 730 m 

Lower Permian Barakar 
Medium to coarse grained feldspatic sandstone, 

shale, carbonaceous shale and coal seams 
1250 m 

Upper 

Carboniferous 
Talchir 

Boulder bed as base followed by fine grained 

sandstone and needle shale. 
245 m 

------------------------------------------------- Unconformity ------------------------------------------------ 

Archaean Metamorphics (gneisses, mica schist and amphibolites) 

3.4.2 Coal seams 

In Jharia, 49 coal seams have been recognized of which 26 seams are impersistent and 

locally mineable (Sengupta, 1980). Rests of the coal seams are regional in extent and mainly 

confined to the Barakar Formation except three regional coal seams that are lying with in 

Raniganj Formation of the Jharia basin. Coal seams in JCF have been grouped into 18 major 

seams (I-XVIII) with individual thickness of 2-18 m (Paul and Chatterjee, 2011). However, the 

thickness of the coal seam in Raniganj Formation is greatly varied and restricted to less than 2 

m in JCF (Chandra, 1992). Jharia coal belongs to medium to high volatile sub-bituminous to 

bituminous range coal containing 0.13% to 2.81% of moisture, 12.0% to 26.63% of ash, 6.93% 

to 28.40% of volatile matter and >60% of fixed carbon (Karmarkar et al., 2013). 

3.5 MINING HISTORY AND CURRENT SCENARIO 

Most of India's coal comes from Jharia. Qualitatively, Jharia coal mines produce 

bituminous coal and is India's most important storehouse of prime cooking coal that feeds 

major percentage of the industrial demands. The mining activities in these coalfields had started 

in 1894 and really got intensified in 1925. In Jharia, majority of coal resources are confined to 

the shallow depth (discussed in Section 3.6). Hence, because of significantly higher 
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productivity and less cost inputs, production of coal is majorly performed by opencast activities 

in JCF. Till 1970, there were many subsidiary coal mines in JCF where the exploration of the 

coal was dominantly operated by illegal mining sector. To stand up against the industrial crises 

happened during 1960‟s and illegal mining, all the subsidiary coal mines in India have been 

„nationalized‟ in 1971 to 1973 and enterprise into the administrative control of „Coal India 

Limited (CIL)‟. In Jharia, particularly, since 1973, the mining is operated in twelve 

administrative blocks by „Bharat Coking Coal Limited (BCCL)‟ a subsidiary of CIL (BCCL, 

2008). Presently, BCCL mainly conduct coal production by large opencast mining due to 

persistent problem of coal fire associated with it (Figure 3.5). In addition to BCCL, Tata Iron & 

Steel Company (TISCO) and Indian Iron & Steel Company (IISCO) also operate coal mining in 

JCF.  

Figure 3.5 Intense mining activity in the Moraidih opencast mine, Barora in the JCF  

3.6 INVENTORY OF COAL RESOURCE IN JCF 

JCF is potentially leading India‟s coal production as this coal field is the only 

contributor of the coking coal to meet the exponential demands of energy supply for industrial 

growth in the country. Out of the total 32,073.32 mt resource of coking coal available in India, 

the prime, medium and semi-coking types of coals are together contributed 5,313.06 mt, 

25,053.13 mt and 1,707.13 m, respectively (GSI, 2004). In JCF, total resources of both coking 

and non-coking coal are confined within the depth of 1200 m. Out of which 73.1% (14212.42 
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mt) of the resource is confined to 0-600 m depth. In addition, depth-wise breakup of the total 

resource of coking coal reveals that about 75.1% (4039.41 mt) of proved resource of coking 

coal exists up to 0-600 m depth level (GSI, 2004). Total resources of different types of coal 

available in JCF are shown in Table 3.2. 

Table 3.2 Total resources of different types of coal in Jharia coalfield, India (GSI, 2004)  

Type of coal Depth(m) Proved Indicated Inferred Total 

Prime Coking 0-600 4039.41 4.01 0.00 4043.42 

Prime Coking 600-1200 574.94 694.70 0.00 1269.64 

Total Prime Coking 0 - 1200 4614.35 698.71 0.00 5313.06 

Medium Coking 0-600 4064.18 2.82 0.00 4067.00 

Medium Coking 600-1200 296.30 1800.70 0.00 2097.00 

Total Medium Coking 0 - 1200 4360.48 1803.52 0.00 6164.00 

Non Coking 0-600 5606.74 495.26 0.00 6102.00 

Non Coking 600-1200 496.00 1355.00 0.00 1851.00 

Total Non Coking 0 - 1200 6102.74 1850.26 0.00 7953.00 

Total -- 15077.57 4352.49 0.00 19430.06 

Uniqueness of the JCF can be determined in such a way that it is the only sole 

repository of the prime coking coal in India. When comparing it with worldwide occurrences of 

the coal deposits, this coalfield is relatively very limited in spatial extent but characterized by 

multiple closely spaced composite coal seams of up to 12-14 m in thickness causing it 

commercially appealing for mining (Prakash et al., 2013). Due to this reason, this coalfield was 

haphazardly exploited by illegal mining activities before nationalization. Impracticable and 

uncontrolled mining activities in Jharia over last more than hundred years left exposed coal 

seams susceptible to fire and hence making it one of the densest congregations of the coalfield 

fire in the world. 

3.7 COAL FIRES IN JCF 

Indian coal mining has been one of the most disaster prone industries which have 

witnessed numerous severe accidents leading to repeated loss of life and energy resources. 

Jharia has a long mining history but is also famous for coalfield fire that has been burning 

underground for nearly a century (Munshi, 1995; Michalski et al. 1997). It has hosted 

maximum number of known coal fires among all coalfields in India. The first incidence of fire 

http://en.wikipedia.org/wiki/Mine_fire
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was reported from XIV seam of Bhowrah colliery in 1916 (BCCL, 2008). In 1972, it was 

estimated that, out of 158 known occurrences of coal fires in Indian coalfield, 96 are reported to 

occur in JCF (Sinha, 1986). Presently, coal fire has been reported to occur in all components of 

the coal mines including opencasts, underground mines and accumulated overburden coal 

dumps. In JCF, coal fire is occurring at both surface and shallow subsurface level. Fire is 

mainly confined to the coal seam X and XIV-XVIII and occurs up to maximum depth of 110-

130 m (Chandra, 1992). At present, nearly 67 active fire sites have been reported from 23 large 

underground and nine large open cast mines in JCF. Status of the fire in different coal seams of 

JCF has shown in Table 3.3. It has been estimated that about 37 mt of good quality prime 

coking coal has been destroyed and about 1864 mt of coal has been locked up due to these fires 

(BCCL, 2008). BCCL (2008) published the map showing coal fire distribution in JCF (Figure 

3.6). Fires is actively spreading over an area of app. 17.5 km
2
 and hence considered to be the 

potential source of disaster in and around the area. 

BCCL, the competent authority, has implemented several measures to control fire with 

some conventional methods in JCF. The efforts extinguished ten fires completely and frame 

nine fire sites at dormant stage (BCCL, 2008). Some common method practiced to control fire 

in JCF include total excavation and isolation by trenching, surface sealing by soil or dump, 

cooling by water of foam, gas injection and chemical treatment through borehole etc. 

(MINENVIS, 2001; Michalski, 2004; Figure 3.7).   

3.7.1 Characteristics of coal fires and associated geomorphic features observed in JCF 

The existences of surface and subsurface fires have both short and long term impacts on 

the environment. A typical coal mine area is apparently characterized by exposed coal seams, 

accumulated mine dumps and very importantly „surface-subsurface coal fires‟. In JCF, such 

features are sporadic in spatial extent and vary in dimension from few meters to tens of meters. 

Distribution and dynamics of surface-subsurface coal fires are strictly controlled by the geology 

and orientation of the coal seam. Different workers have classified coal fires into different 

categories depending up on their positions, mode of occurrences, intensity, magnitude and 

burning state or state of combustion (Genderen and Guan, 1997; Singh, 2013). As mentioned 

earlier, in JCF more than 75% of the coking coal seams occur at very shallow depth. High 

carbon content, composite thickness of the coal seams and their exposure to the open 

environment allow them to catch fire by spontaneous combustion. Unplanned mining activities 

and excavations in opencasts unveil the burning coal seams in Jharia.  
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Figure 3.6 Distribution of coal fires in Jharia Coalfield, India (BCCL, 2008) 
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Table 3.3 Status of the fire in coal seams distributed in different colliery block of Jharia coalfield, India (BCCL, 2008) 

S. No. Colliery Block Name of fire Total no. of fire Status of the fire 

1 
Barora 

(West and East Barora) 

Shatabdi V/VI/VII seam 
5 Active 

Phularitand X, XI, XII seam fire 

Damoda V, VI, VII seam fire - Dormant 

2 Block-II Project 

Block-II XII, XI/XII, X Spl. seam fire 1 Active 

Nudkhurkee X seam 
- Extinguished (Surface fire) 

Kessurgarh V/VI/VII seam 

3 Western Jharia-I and II Moonidih XVII seam - Extinguished (Underground fire) 

4 Govindpur 
Jogidih X seam 

- Extinguished (Surface fire) 
Kooridih X seam 

5 Katras 

Katras-Choitudih XIII, XIV, XV seam fire 

4 Active East Katras XI, XIII, XIV seam fire 

Gaslitand XVT, XVB seam fire 

Angarpathra XII, XI, X, IX Spl. seam fire - Extinguished (Underground fire) 

East Katras XIV seam 
 Extinguished (Surface fire) 

West Mudidih IX / X seam 

Mudidih fire - Dormant 
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6 Sijua 

SendraBansjora XIV, XIII, XII, XI, X seam fire 

11 Active 

Tetulmari IV, VI/VII seam fire 

Ekra XI to XIV seam fire 

Loyabad XV, XIV, XIII seam fire 

Kankanee XIII, XIV seam fire 

Bansdeopur XIV, XII seam fire 

Kendwadih XIII, XIV seam fire - Dormant 

7 Kusunda 

Kusunda XII, XI seam fire 

7 Active Bassuriya IX to XIV seam fire 

East Bassuriya V/VI, VIII seam fire 

8 Pootkee-Balihari 

Gopalichak XVI, XV, XIV, XIII, XII,XI seam fire 
6 Active 

Bhaga XV seam fire 

Pootkee XV seam fire - Extinguished (Underground fire) 

9 

 

 

 

Kustor 

 

 

 

Baniahar XV, XIVA, XIV seam fire 

12 Active 

Kustore  XI,XII, XIII,XIV, seam fire 

Alkusa XII, XIV seam fire 

Ena XI, XII,XIV, XV seam fire 

East Bhuggatdih XV, XIV seam fire 

Bhalgora XIV, XV seam fire 
- Dormant 

Simlabahal XIV seam fire 
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10 Bastacolla 
Kujama IX, X, XI, XII seam fire 

2  
Pure Jharia X seam fire 

11 Lodna 

N.S. Lodna XIII, XIIIA, XIV seam fire 

14 Active 

BhulanBararee XIII, XIV, VV, XVI seam fire 

North Tisra VII, VIII, IX, X seam fire 

South Tisra VII, VIII, IX, X seam fire 

Bagdigi  XV, XIV, XIA seam fire 

Joyrampur XI, XII, XIII seam fire 

Jeenagora IX, X, XI,XII seam fire 

12 Eastern Jharia 

Bhowra IX, X, XIII, XIV seam fire 

5 Active Sudamdih IX to XIV seam fire 

Patherdih IX to XIII seam fire 

Sudamdih XV seam - Extinguished (Underground fire) 

Amlabad XIV seam fire - Dormant 

Total number of fire 67  
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 Figure 3.7 Coal extraction in the Sijua opencast mine in the JCF. Dousing the fire with water, 

excavating the burning seam and using the unburnt coal are popular means of keeping the coal 

fire under control (Prakash et al., 2013) 

Depending up on their position, burning coal seams are more often categorized into the 

„surface coal seam fires‟ and „subsurface coal seam fires‟. Surface coal seam fires are 

characterized by the intense and complex system of linear cracks and fissures developed on the 

surface. The rock units overlying the surface fire are baked, fractured and crumbled. Along 

these fractures and cracks, certain fumarolic minerals like Salmiac (NH4Cl) are developed due 

to high temperature and gaseous influx (Zhang et al., 2004; Figure 3.8). In JCF, „subsurface 

fire‟ occurs at shallow depth of 30-50 m. These may represent as „shallow subsurface fires‟. 

They are characterized by linear trenches, cracks, cavities and oval pits etc. of varying 

dimensions as shown in Figure 3.9. Surface manifestation or impression of the „shallow 

subsurface fires‟ suggested that they may occur as disintegrated / discrete patches in the coal 

seams occurring at subsurface level. Fire not only exists in the in-situ coal seams but also 

occurs in the stored / piled coal or in overburden dumps. In-situ coal seam fire is characterized 

by their inherent association with opencasts, encroaching flames and baked overlying rock 
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units. Excavated overburden dumps may contain carbonaceous shale that may have also 

perceived fire in some cases (Figure 3.10). 

 

 

 

 

 

 

 

Figure 3.8 Development of fumarolic minerals around gaseous vents (Lodna area, JCF)  

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Development of broad linear crack of approximately 4 m in length and 5-15 cm in 

width. Degradation of vegetation is also visible. Such features are the surface manifestation of 

subsurface coal fire occurring underground (Bokapahari, JCF) 
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Figure 3.10 Massive overburden of waste mine material dumped in and around Alkusa colliery, 

JCF. The overburden dump also has a lot of carbonaceous material that can catch fire (Prakash 

et al., 2013) 

Subsurface coal fires can also be distinguished on the basis of their intensity which is a 

function of the depth of fire occurring at subsurface level. Field observations in JCF suggests 

that the coal fires may categorized into low intensity (when occurring at >40 m depth and 

having surface temperature less than 40°C), medium (when occurring between 20-40 m depth 

and having surface temperature less than 40°C-80°C) and high intensity (when occurring at <20 

m depth and having surface temperature more than 80°C) depending up on the depth fire from 

the surface (Section 3.7.2). Active and smoldering fire in coal field may be distinguished on the 

basis of state of burning. Active coal fires are characterized by intense burning with high 

flames and smoldering fires are characterized by slow burning with no flame. A brief overview 

of the classification and characteristics of coal fires as observed in JCF is portrayed in Table 

3.4. 

Active coal fires are highly dynamic in spatial extent and have significantly modified 

the geomorphology of the area. These geomorphic features are the surface manifestation of the 

coal fire occurring underneath. Fire results in volume reduction of the underlying coal seam 

and leads to the development of intense system of linear cracks and fractures developed over 

the surface. With increasing intensity of burning, overlying bed rock is collapsed and form 

certain geomorphic features such as fractures, linear vent, pits etc. on the surface.   
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Table 3.4 Classification and characteristics of coal fires as observed in Jharia coalfield, India  

 

 

 

 

 

 

 

 

 

Coal fire 

 

 

 

 

 

 

 

 

Basis of classification Type of fire Characteristics of coal fires 

Position 

Surface coal seam fire 

Extremely high surface temperature. 

Sharp and distinct thermal anomaly across the surface. 

Manifested by intense and complex system of linear crack and fissures 

of varying dimension from few meters to tens of meters. 

Baked, fractured and crumbled overlying rock units. 

Development of fumarolic minerals along the cracks and fissures. 

Completely destroyed the infrastructure and formed rugged landscape.  

Evident by land subsidence.  

Surface is devoid of vegetation due to completely drying of soil 

moisture contents. 

Subsurface or shallow 

subsurface coal fire 

Low to moderate surface temperature. 

May missed some minor thermal anomalies whose temperature lies in 

closed association with background temperature. 

Sparse vegetation on the surface. 

Manifested by smoke emitting linear trenches, cracks, cavities and oval 

pits of varying dimensions developed on the surface. 

Linear trenches, cracks, cavities and oval pits occur as discrete or 

disintegrated patches on the surface. 
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Coal fire 

Mode of occurrence 

In-situ coal seam 

Visible and exposed only in longitudinal or bench section of an 

opencasts 

Coal seam burn with encroaching flames. 

Baked overlying rock units. 

In coal stock 
Excavated coal is heap up together. It may catch fire due to high carbon 

content of coal. 

In overburden dumps 

In freshly excavated material has been dumped in the vicinity of 

opencast. Overburden dump also has a lot of carbonaceous material that 

can also catch fire. 

Intensity, magnitude 

and depth 

Low intensity coal fire Occurring at depth of >40 m with surface temperature less than 40°C. 

Medium intensity coal fire 
Occurring between 20-40 m depth with surface temperature less than 

40°C-80°C. 

High intensity coal fires Occurring at depth of <20 m with surface temperature more than 80°C. 

State of combustion 

and burning 

Active fire 
Commonly observed in exposed in-situ coal seams. 

Coal is burn with encroaching flame.   

Smouldering fire 
Mainly in coal dump and subsurface coal seams. 

Slow burning with no flame. 
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These features have been well recognized in JCF. It has observed that collapsing of 

burning coal seams is closely associated with uncontrolled subsidence. Intensity of destruction 

can be well evident near, Bokapahari area in JCF where coal fires induce uncountable 

devastation by uncontrolled subsidence. Fire completely damaged the infrastructure (Figure 

3.11) in and around the area by propagating along the dip of the coal seams. Numerous 

sympathetic cracks and fractures have been developed parallel to the strike of the coal seams. 

These cracks are varying in dimension from 40-100 m in length and only few inches to feet in 

thickness. This intense system of fractures had transformed the area into a rugged landscape 

(Figure 3.12) and closely reflects the impact by very shallow subsurface or surface fire 

occurring at 10-12 m depth.      

Smoke emitting along the linear pits and oblong vents of varying dimensions are 

observed near Sijua area, JCF. Such features occur as discrete patches over the surface lying 

approximately 30 m above the burning coal seams. These features represent the characteristics 

of subsurface or shallow subsurface fire.    

 

 

 

 

 

 

 

 

 

Figure 3.11 Shallow subsurface coal fires cause uncontrolled subsidence. The destabilization of 

land also causes damage to existing infrastructures. Here, massive cracks can be seen running 

through a main wall in the remains of a house. The longer crack is about 2.5 cm wide in most 

places (Prakash et al., 2013) 
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Figure 3.12 Rugged landscapes in the Bokapahari area, JCF, due to mining and coal fire-

induced uncontrolled subsidence. The surface contains fissures of all dimensions. This 

photograph was taken looking south (Prakash et al., 2013) 

3.7.2 Temperature measurements and ground based observations in JCF 

 Thermal anomalies are the surface expression of existing coal fire and may be reflected 

in thermal profiles measurement across certain geomorphic features mentioned in Section 3.8.1. 

These surface expressions are controlled by the temperature, depth and size of fire occurring 

beneath and hence, considered to be the prime function for analysis of dynamics, intensity and 

extent of fire (Prakash and Gupta, 1999a; Rosema et al., 1999). However, temperature 

measurement in a coalfield is also a difficult task as the areas are often inaccessible due to 

uncontrolled nature of coal fires. During field survey, thermal data and information about other 

feature classes were collected for validation of the results obtained from satellite data (Figure 

3.13(a)-(c), Table 3.5). 
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Ground truth information of the coal fires in JCF was obtained from the field based 

observations using portable thermometer. Surface signals are actively contributed by the effect 

of solar heating. Due to this reason, field survey was conducted during the month of February 

and December, 2010 to enhance the compatibility for validation of the results obtained from 

satellite data and to minimize the probability of getting misleading results.  

Figure 3.13(a)-(c) Temperature measurements using a portable field thermometer in the field 

(a) showing 34°C temperature on the surface, (b) 131°C temperature of smoldering fire in the 

crack (c) 396°C temperature of a burning coal seam (measured from approximately 30 m 

distance) (Photo courtesy by Ms. Varinder Saini, December, 2012) 

 To observe the coal seam fire in an exposed scenario, the field work was exclusively 

carried out in Sijua area of JCF. An approximately 30 m thick complete lithological section 

exposed in an opencast site near Sijua Colliery, Tetulmari (N 23° 48‟ 21.1” / E 86° 19‟ 53.76‟‟) 

was selected for thermal profile measurement. A schematic diagram and corresponding field 

photographs displaying the synoptic view of the Sijua opencast in an exposed scenario is shown 

in Figure 3.14 (a) and (b), respectively. The site selected was underground mine initially but 

later turned into an opencast due to uncontrolled subsurface coal seam fire.  
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Table 3.5 Details of field observations carried out in Jharia Coalfield, India 

S. No. Site Latitude (N) Longitude (E) 

Surface temperature 

range (°C) 
Land cover type 

1 Bokapahari 23° 45' 9.2" 86° 25' 4.2" 43.6 - 71.2 

Area of intense shallow subsurface fire with sparse 

vegetation. Linear cracks have developed parallel 

to the strike of coal seams. 

Destruction of nearby infrastructure.   

2 Baghadih 23° 43' 50.2" 86° 24' 52.8" 22.7 - 39.5 Subsidence area with sparse vegetation. 

3 Lodna 23° 42' 58.0" 86° 25' 17.5" 42.8 - 122.1 

Overburden dump site. Anomalies are due to dump 

fire and subsurface fire with surface temperature 

ranges from 165.2°C - 332.4°C at places. 

4 Sudamdih 23° 40' 1.5" 86° 25' 19.8" 32.2 - 42.2 

Anomalies are due to subsurface fire. Open cracks 

and smoke emitting vents are well recognized 

around the area.  

5 Bhowra 23° 41' 2.3" 86° 23' 29.9" 41.5 - 76.8 

Overburden dump site. Anomalies are due to 

smoldering fire in dump. 

6 

Tetulmari, 

Sijua 
23° 48' 24.8" 86° 19' 57.8" 39.8 - 85.4 

Opencast mine. Anomalies are due to high intensity 

burning coal seam fire (217.0°C -254.5°C) exposed 

due to intense mining activity. Linear cracks, vents 

and sinkhole are developed on the surface.  
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7 Bansjora 23° 47' 41.8" 86° 20' 40.1" 24.3 - 26.4 Overburden dump site. 

8 Kankani 23° 46' 42.2" 86° 20' 45.1" 32.5 - 101.3 

Opencast mine. Minor thermal anomalies due deep 

subsurface fire.  

9 Dhansar 23° 46' 29.8" 86° 24' 33.2" 27.4 - 30.9 Overburden dump site. Sparse vegetation. 

10 Kusunda 23° 46' 57.2" 86° 23' 36.7" 32.5 - 59.0 

Overburden dump site. Minor anomalies due deep 

subsurface fire. Surface fire also observed in and 

around the area. 

11 Baseria 23° 47' 10.6" 86° 22' 30.2" 37.8 - 41.4 Overburden dump site. 

12 Kenduadih 23° 46' 18.7" 86° 22' 27.3" 26.6 - 28.7 Underground mine. No subsurface fire. 

13 

Alkusha, 

Kustore 
23° 45' 40.6" 86° 23' 26.3" 34.3 - 38.8 Overburden dump site. 

14 Karkenda 23° 46' 12.1" 86° 22' 14.7" 32.3 - 33.1 Opencast and overburden dump site. 

15 

Murlidih, 

Baghmara 
23° 43' 52.2" 86° 16' 22.2" 27.3 - 33.0 

Underground mine. Relatively dense vegetation at 

the surface. 

16 Phularitand 23° 46' 4.7" 86° 13' 53.7" 23.4 - 24.6 Opencast and overburden dump site. 

17 Sunardih 23° 47' 46.7" 86° 15' 45.6" 36.7 - 42.1 Abandoned mine. 

18 Barora 23° 47' 40.7" 86° 14' 46.7" 42.6 - 46.8 

Opencast mine. Surface fire in in-situ coal seam. 

Smoldering fire in dump. 
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Figure 3.14(a) Schematic diagram showing synoptic view of the exposed underground coal 

seam fire in an opencast (Sijua opencast, Tetulamari, JCF) 

 Two interbedded coal seams (VI and VII from the surface) of approximately 2 m in 

thickness were recognized at 9.98 m and 30.52 m depth within sandstone striking N70°E-

S70°W with 3°-5° very gentle dip toward SSE. Sandstone units above and below the coal seam 

VII are about 6.98 m and 18.54 m in thickness and capped by approx. 2 m thick pile of sandy 

soil at the top. Both coal seam VI and VII were observed under the intense and smoldering fire 

and showing temperature of more than >250°C and >80°C, respectively. Linear cracks, pits, 

vents and fracture system were intensely developed over the rock surface or terraces due to 

volume reduction of the underlying burning coal seam. Destruction due to underground coal 

fire is self evident around the area (Figure 3.15). Temperature measurements were taken at 

terraces T-4 (Figure 3.16, ground surface) and T-2 (Figure 3.17) using portable field 

thermometer and thermal profiles have been drawn to analyses the depth function of the 

thermal anomaly. 
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Figure 3.14(b) Corresponding field photographs of underground coal seam fire in 

Sijuaopencast, Tetulamari, JCF. Key: (i) and (ii) Burning coal seams (iii) Gas emanation from 

the tunnel opening complex system of fractured sandstone beds above the coal seam under fire 

(iv) Fragility of the landscape and the dangers of working in the area. The long, smoke-emitting 

linear cracks are clearly visible. (v) Gaseous emission from the vents developed at the surface 

due burning coal seam at underground 
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Figure 3.15 A view of a completely burnt outcrop of coal and collapsed strata in the Sijua opencast mine in the JCF. The destruction is self-evident. The 

horizontal field of view is about 80 m (Prakash et al., 2013) 
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Figure 3.16 Thermal profiles A-A‟ running across the gas emitting vents and pits developed 

along the strike of the coal seam at T-4 (terrace 4, ground surface) located south of Sijua 

opencast, Tetulmari, JCF 

 

Figure 3.17 Thermal profiles B-B‟ and C-C‟ running across the burning coal seam at T-2 

(terrace 2) of Sijua opencast, Tetulmari, JCF 
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 It has been observed that the surface anomaly obtained is the function of depth. For a 

fire existing at 30 m depth, background temperature may lie close to 30°-35°C (Figure 3.18(a), 

Profile A-A‟). But for a very shallow subsurface fire, it may be 50°-100°C (Figure 3.18(b) and 

(c), Profile B-B‟ and C-C‟). This was certainly due to decrease in the intensity of heat 

dissipated from the burning coal seam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18(a)-(c) Temperature distribution along profile A-A‟, B-B‟ and C-C‟ showing 

relation between background temperature and thermal anomalies obtained at T-4 and T-2 

(terrace 4 and 2) 
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3.8 CONCLUSION 

 In the present chapter, the attributes and mining scenario of the JCF have been 

discussed. Field work around JCF had been executed to observe the features associated with 

surface-subsurface coal fires. Area exposed around East Barora, Katras, Sijua, Kusunda, 

Kustor, Bokapahari, Bastacolla and Lodna collieries are significantly affected by fire. Surface 

or very shallow surface fires were precisely analyzed in JCF. The emphasis was mainly laid on 

to the collection of thermal data around Sijua and Bokapahari area. Observations suggest that 

the fires in coal seam occur as segregated patches and not extending in few meters to tens of 

meters in spatial extent. It has also been observed that the fire occurring at 10-12 m depth 

results in the development of fairly large elongated linear cracks on the surface. Coal fires 

occur at more than 30 m above the burning coal seams have been manifested only by small pits, 

cracks, sinkhole and likewise features. Magnitude of the burning coal seam, depth of the coal 

seam from the surface and intensity of the dissipated heat from it are the crucial factors that 

trigger the development of coal fire related features on the surface. Precise observation and 

recognition of such features may help to decipher the attributes of fire occurring beneath. 
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  CHAPTER 4 

DATA ACQUISITION, PROCESSING AND METHODOLOGY 

OVERVIEW 

 

4.1 INTRODUCTION 

This chapter gives an account of the different types of datasets used in the present study. 

The chapter provides an overview of processing of the satellite datasets and methodology 

adopted for the mapping of coal fires in Jharia Coalfield (JCF), India. The description of the 

datasets briefly discussed the specification details of the satellite data and their effectiveness 

being chosen in the present work. Processing of the satellite data is pre-requisite of remote 

sensing based studies. The chapter elaborates the processing techniques employed over the data 

for geometric and radiometric corrections and also discussed the quantitative method to 

calculate temperature distribution using sensor calibration. At last, a general overview of the 

methodology has also been portrayed. The aim of the chapter is to discuss how the datasets 

have been prepared for further analysis and interpretation as per the objective of the present 

work.  

Table 4.1 Type of the data used in the present study 

Remote sensing data Ancillary data Field data 

Landsat TM/ETM+ (six sets 

temporal images) 

Topographical maps of 1:50000 scale 

(73 I/1, 73 I/2, 73 I/5 and 73 I/6) 
GPS data 

ASTER (three sets of temporal 

images) 

Geological map Field Photographs 

Fire distribution map Geological data 

GoogleEarth
TM

 reference image 
Temperature 

measurement 
ASTER GDEM 

Other published records etc. 

4.2 DATA SOURCES 

In the present work, different types of the data have been procured and categorized into 

remote sensing data, ancillary data and field data (Table 4.1). Remote sensing data includes 

Landsat TM/ETM+ and ASTER images of the study area (Figure 4.1). Ancillary data used in 

the present work includes Survey of India (SOI) Toposheets nos. 73 I/1, 73 I/2, 73 I/5 and 73 

I/6 on 1:50,000 scale, geological and fire distribution maps from different agencies and other 
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published records etc. Field data includes collection of the information about geology, land use-

land cover and coal fires distribution around the area. However, emphasis has been mainly laid 

on to the temperature measurements and collection of field photographs of the coal fire related 

features. The data used in the present study have been further elaborated below in detail. 

Table 4.2 Specifications of the remote sensing data sets used in the present study (Chander et 

al., 2009; Abrams et al., 1999) 

Satellite / 

Sensors 

Spectral 

Bands  

Spectral 

interval (µm) 

Central 

wavelength (µm) 

Spatial 

Resolution 

Radiometric 

Resolution 

Landsat  

TM / ETM+ 

Band 1 0.452 - 0.514 0.483 

30 m 

8-bit 

Band 2 0.519 - 0.601 0.560 

Band 3 0.63 - 0.692 0.662 

Band 4 0.772 - 0.898 0.835 

Band 5 1.547 - 1.748 1.648 

Band 6 10.31 - 12.36 11.335 60 m 

Band 7 2.065 - 2.346 2.206 30 m 

Pan 0.515 - 0.896 0.706 15 m 

TERRA / 

ASTER 

Band 1 0.52 - 0.60 0.56  

15 m 

8-bit 

Band 2 0.63 - 0.69 0.66  

Band 3 0.76 - 0.86 0.81  

Band 4 1.60 - 1.70 1.65  

30 m 

Band 5 2.145 - 2.185 2.165  

Band 6 2.185 - 2.225 2.205  

Band 7 2.235 - 2.285 2.260  

Band 8 2.295 - 2.365 2.330  

Band 9 2.360 - 2.430 2.395  

Band 10 8.125 - 8.475 8.291  

90 m 12-bit 
Band 11 8.475 - 8.825 8.634 

Band 12 8.925 - 9.275 9.075  

Band 13 10.25 - 10.95 10.657 

Band 14 10.95 - 11.65 11.318 

4.2.1 Remote sensing data 

Coal fires are the thermal phenomenon and hence can be potentially detectable in the 

thermal infrared region (TIR) of the electromagnetic (EM) spectrum. Hence, the present study 

has been exclusively focused on the thermal remote sensing data. Landsat TM/ETM+ and 

ASTER have been significantly used in the recent past for detecting thermal response and 

discussed earlier in detail (see section 2.5). Wide applicability and potential of the Landsat 

TM/ETM+ and ASTER sensors to receive emission response have made an obvious choice of 



61 
 

using them for mapping of coal fires in JCF. Specifications details of Landsat TM/ETM+ and 

ASTER sensors have been shown in Table 4.2. Details of the remote sensing datasets are 

discussed below:  

Figure 4.1 An overlay of the rectified ASTER images (60 km swath, 3-2-1 FCC) with Landsat 

ETM+ (183 km swath, 4-3-2 FCC) image covering JCF. The target area is marked under 

yellow square 

4.2.1.1 Landsat data 

Landsat satellite provides the longest repetitive coverage of the earth observation 

through TM/ETM+ sensors. The Landsat TM/ETM+ sensors on-board Landsat TM and ETM+ 

have spatial resolution of 30 m and 60 m for reflective bands and emission band, respectively, 

with 12-bits quantization level. Landsat ETM+ also has a panchromatic (pan) band of 15 m 

resolution (Table 4.1). Day time data have significant contribution by solar heat flux and 

considered less advantageous over night-time data (Prakash et al., 1999b). Due to unavailability 
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of the night-time data, six sets of cloud free day-time systematically corrected (geometrically 

and radiometrically corrected) Level-1G images from 2000 to 2010 covering the proposed 

study area have been procured from USGS Global Visualization Viewer (GloVis) archive 

(http://glovis.usgs.gov/data_access). Beside, six Landsat data covering JCF, two sets have been 

also acquired covering Ruqigou Coalfield, Ningxia, China (discussed in Chapter 5). All images 

are geo-referenced to the Universal Transverse Mercator projection (UTM) system. The images 

acquired at predawn time between November to February months have been preferably selected 

(Table 4.3). In Indian subcontinent, these months are the coldest season and effect of the 

seasonal heating is considered to be minimum during this period. Moderate spatial resolution of 

Landsat thermal band and short revisit time potentially facilitate the temporal monitoring of fire 

in a coal fire affected area. 

Table 4.3 Details of the scene ID and acquisition time of the data used in the present study 

Study area ASTER scene ID Time Acquisition date 

Jharia Coal Field, 

India 

L71140044_04420001217 Day 17
th

 December 2000 

L71140044_04420011102 Day 02
nd

  November 2001 

L71140044_04420021207 Day 07
th

 December 2002 

L71140044_04420030329 Day 19
th

 March 2003 

L5140044_04420091202 Day 02
nd

 December 2009 

L5140044_04420100220 Day 20
th

 February 2010 

Ruqigou Coal Field, 

Ningxia, China 

L71129033_03320001017 Day 17
th

 October 2000 

L5129033_03320061010 Day 10
th

 October 2006 

Jharia Coal Field, 

India 

AST_L1A_003112420000

50737_04062003143049 
Day 24

th
 November 2000 

AST_L1A_003020520040

45511_02162007095936 
Day 05

th
 February 2004 

AST_L1A_003031920080

45415_04172009132739 
Day 19

th
 March 2008 

AST_L1A_003118200916

3246_11250009543938 
Day 

18
th

 November 2009 

(only VNIR and TIR 

datasets are available) 

4.2.1.2 ASTER Data 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

sensor is a collaborative campaign of NASA and Japan's Ministry of Economy. It is onboard 

the Terra satellite launched in December 1999 and has specifically designed to obtain 

information about emission and reflectance component of the surface features. Processed 

products of the ASTER datasets have been distributed by USGS Land Processes Distributed 

https://lpdaac.usgs.gov/data_access
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Active Archive Center (LP DAAC) archive. ASTER registers the spectral response in three 

VNIR, six SWIR and five TIR channels functioning in 0.52 μm to 0.86 μm, 1.60 μm to 2.43 

μm and 8.125μm to 11.65μm, respectively. The ASTER Level 1A data product is the raw 

unprocessed data. Level-1A data contain geometric and radiometric calibration coefficients. 

The ASTER Level-1B is the on demand at sensor registered radiance product that contains 

radiometrically calibrated and geometrically co-registered data produced by applying the 

radiometric calibration and geometric correction coefficients to the Level-1A (Abrams et al., 

2009).  

 Specification detail of the ASTER has potentially suggested its wider applicability to 

the earth observation. ASTER VNIR and SWIR are calibrated on 8-bits quantized level. As 

compared to the other available land imaging sensors, TIR dataset of the ASTER has high 

spectral, moderate spatial resolution and high radiometric resolution with 12-bit quantification 

level. Moreover, fairly high spatial resolution of VNIR data can also be used in association TIR 

data to obtained information about different feature class. Such uniqueness has shown the 

superior capability of the ASTER data over other available multispectral sensor for land surface 

studies especially monitoring thermal phenomenon like coal fires. Thus, for present work, three 

sets of Level-1A cloud free, day time ASTER data covering proposed study area dated 2000, 

2004 and 2008 have been acquired from the LP DAAC archive 

(https://lpdaac.usgs.gov/data_access) in HDF format (Table 4.3). Obtained datasets are 

geometrically co-registered and radiometrically corrected. Both Landsat TM/ETM+ and 

ASTER images have been further processed and applied in estimating temperature distribution 

of coal fires in JCF through time. 

4.2.2 Ancillary data 

Ancillary data used in the present work constitute topographical maps of 1:50000 scale 

published by Survey of India (SOI) during 1978. The topographical maps published by SOI 

were based on Everest Datum and Polyconic Projection system. The area attributed to JCF falls 

in toposheets nos. 73 I/1, 73 I/2, 73 I/5 and 73 I/6. All topographical maps were precisely 

scanned, georeferenced and reprojected in Geographical Latitude / Longitude Coordinate 

System with World Geodatic System 1984 (WGS 84) datum. The maps were subsequently 

mosaicked and target area was subset to create a base map of the study area. However, as 

mentioned earlier that in the present work geometrically corrected satellite data (L1G Landsat 

TM/ETM+ and L1A ASTER datasets) have been used. The produced base map is paired with 

https://lpdaac.usgs.gov/data_access
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handheld Global Positioning System (GPS) device, and used in field work for route planning 

and to obtained detailed information of the geographic location of the coal fires and other 

associated land cover features in JCF.   

The present work is also supplemented with various thematic maps such as geological 

map (CMPDIL, 1989), fire and colliery distribution maps (BCCL, 2008) of the JCF. The study 

and interpretation of these thematic maps can significantly help to establish a brief overview of 

the various aspects of the JCF (discussed in Chapter 3, Section 3.7). Besides, auxiliary data 

such as GoogleEarth
TM 

image and ASTER derived digital elevation model (DEM) of the JCF 

have been also used (discussed in Chapter 5, Section 5.5). These datasets together with limited 

field observation helped to support the analysis and interpretation of the present work. 

4.2.3 Field data 

Collection of field data is an essential component of the remote sensing based studies. 

Field based observations not only help to validate the results obtained from the analysis of 

satellite data but also provide a synoptic view of the problem like coal fires at ground level. 

During present work, two field campaigns were planned in and around JCF. The first field 

survey was a reconnaissance survey carried out during February 2010 to visualize the severity 

and mark the geographic locations of the coal fires affected areas in JCF. Detailed informations 

about other feature classes recognized in JCF were also collected during field work. 

Second survey was conducted during December 2010 emphasized mainly on to collect 

the temperature data for thermal profile measurements. During field surveys, two sites namely, 

Bokapahari and Sijua opencast, near Tetulmari area in JCF were found to be intensely affected 

by surface-subsurface coal fires. Photographs collected during the field work around 

Bokapahati area self explain the devastation due to coal fires. A complete depth wise vertical-

log of the in-situ coal seam fire was found exposed in the Sijua opencast. This site has been 

preferably selected for thermal profile measurements. Actual scenario and ground based 

observations of various aspects of the coal fires in JCF along with field photographs have been 

precisely discussed in Chapter 3, Section 3.7.  

4.3 SOFTWARE USED 

Processing of the satellite datasets have been done using available image processing 

software packages like ERDAS Imagine
TM 

9.3, 2010, ENVI
TM

 4.7, and ESRI ArcGIS 10. 

Landsat datasets have been exclusively processed using ERDAS Imagine
TM

. Reprojection of 
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the datasets, digital enhancement and other image processing operation has been carried out 

using „Data Preparation‟ and „Interpreter tool‟. Mathematical computations used in the present 

work have been specifically formulated and solved using „Moduler‟ tool given in ERDAS 

Imagine
TM

. Similarly, processing of ASTER datasets have been exclusively carried out using 

Basic Tools‟ given in ENVI
TM

. „Pre-processing‟ and „Band Math‟ operations have been used 

for necessary correction and processing of the ASTER data. Thematic maps used and portrayed 

in the present work have been prepared in ArcGIS. Other GIS based operations have also 

executed in ArcGIS. Besides, CorelDRAW Graphic Suite 13 and Microsoft Office Package 

have used for editing figures and manuscript. 

4.4 METHODOLOGY OVERVIEW 

The methodology scheme followed in this research involves acquisition and processing 

of the satellite data followed by analysis and interpretation of the data for coal fire related 

studies. The datasets have been processed as per the objectives of the research and described 

with relevant methodology flowcharts in succeeding chapters. However, a brief overview of the 

methodology adopted in the present work is as follows:  

(a) Extensive literature review on remote sensing and its application in coal fires related 

studies to identify research gaps and objectives with special reference to JCF.   

(b) Procurement of remote sensing and other ancillary datasets.  

(c) Pre-processing of remote sensing data involving co-registration of the images followed 

by the removal of atmospheric contribution to the measured radiant intensity of the 

image. 

(d) Conversion of corrected VNIR and SWIR data to surface reflectance and TIR data to 

temperature image.  

(e) Collection of field data (field photographs and temperature measurements for thermal 

profile) to observe the characteristics and actual scenario of coal fire in JCF.  

(f) Pre-processing followed by the processing and analysis of the remote sensing data. 

(g) Based on the research gap, it has observed that there is no method of thresholding has 

been earlier proposed for delineation of surface coal fire. In the present study, a 

‘Maximum Reflectance Threshold Method’ has been proposed for delineation of 

surface coal fire. For this, temporal datasets of Landsat TM/ETM+ band 7 has been 

extracted and analyzed using several spatial profiles drawn over image subset. 

(h) Beside, a novel approach for mapping of surface coal fires using ASTER data has been 

also proposed in the present study. Spectral reflectance curves for various land cover 
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features have been drawn and two new normalized ratio indices namely, Normalized 

Difference Coal Index (NDCI) and Normalized Difference Coal fire Index (NDCfI) 

have been developed for delineation of the pixels attributed to surface coal fires. The 

approach has been implemented over JCF as test site for mapping of surface coal fire. 

(i) Utility of ASTER time series data for temporal monitoring and dynamics of coal fires in 

JCF has been also investigated during present work. To observe and evaluate the 

dynamics, coal fire distribution maps for three consecutive years have been prepared. 

Thermal anomalies due to coal fire have been delineated and mapped using precise 

thresholding of land surface temperature image. 

(j) Finally, interpretations of the results obtained have been carried out and conclusion 

about of the present scenario of coal fires in JCF has drawn. 

4.5 PRE-PROCESSING 

Pre-processing of the satellite data is the fundamental requirement of the remote sensing 

based studies. Pre-processing techniques remove the geometric and radiometric errors from the 

data for precise analysis of the images. In addition, pre-processing also constitute conversion of 

the data to physical parameters like reflectance and brightness temperature using sensors 

calibration. The steps followed during pre-processing are defined by the type of the data used. 

An overview of the steps followed in pre-processing of the data is shown in figure 4.2. 

4.5.1 Geometric correction and co-registration 

Digital images recorded by the sensors are generally comprises systematic or non-

systematic geometrical distortions. Systematic errors can be compensated by modifying sensors 

characteristics. Non-systematic distortions are caused by the altitude variation of sensors 

platform. These errors can be corrected by georeferencing or geo-registration using Ground 

Control Points (GCPs) where geographical coordinate of a point is assigned to the same point 

on the image. Georeferencing is the pre-requisite of the image processing and allows the 

interpretation of the data in same reference system. 

As mentioned in Section 4.2.1, here in the present study six sets of systematically 

corrected L1G Landsat and three sets of L1A ASTER data have been used. Each multi-spectral 

band of the individual Landsat or ASTER data are geometrically co-registered with each other. 

However, for temporal monitoring of land surface features like coal fires, such time series 
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datasets (Landsat or ASTER datasets) of different time and season must be precisely co-

registered with each other for better comparison and analysis.  

Topographical maps of the JCF were published during 1978. Due to intense mining 

activity, land cover features around JCF are highly uncertain and suspected to have been 

changed temporally. Hence, all Landsat datasets (Table 4.1) have been co-registered with 

reference to the geometrically corrected Landsat 2010 image (base image). For co-registration, 

first the spatial subsets of the images covering JCF have been extracted. Features like, railway 

crossings, road convergence or divergences, bridges or platform over river have been carefully 

observed and selected as control points. In each Landsat data, 37 well distributed GCPs have 

been picked out and applied for image to image registration using second-degree polynomial 

transformation. Accuracy of the transformation is defined by root mean square error (RMSE) 

which has obtained less than 0.23 of a pixel. Finally, co-registered Landsat datasets have been 

generated using nearest-neighborhood resampling method. Output maps have been reprojected 

in Geographical Latitude / Longitude Coordinate System with WGS 84 datum and resampled to 

30 m spatial resolution. 

Similarly, all ASTER datasets used in the present study have been also co-registered 

with reference to the geometrically corrected ASTER 2008 image (base image). The co-

registered ASTER datasets (SWIR and TIR data) have been resampled to 30 m spatial 

resolution for temporal monitoring of coal fires in JCF (discussed in Chapter 7). The accuracy 

of the co-registration has been visualized by swiping georeferenced images over corresponding 

reference base image (Landsat 2010 and ASTER 2008 images). A fair co-registration has been 

marked by precise spatial matching of the selected feature in all datasets.  

4.5.2 Radiometric corrections 

Signals received at the satellite sensors are affected by unwanted noise. These noises are 

induced by sensors sensitivity, topographic relief and atmospheric effects (absorption, 

scattering, path radiance, decrement of received light). These effects are needed to be removed 

from the data for the precise extraction of the true spectral response of the feature of interest. 

Absolute radiometric correction requires information of sensors calibration, topographical 

characteristics and atmospheric parameters (transmittance and upwelling radiance). Detailed 

description of the radiometric pre-processing of the datasets is given below. 
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Figure 4.2 Flowchart showing an overview of the methodology adopted for pre-processing of the remote sensing datasets 
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4.5.2.1 Sensors calibration and computation of spectral radiance 

Data values recorded by the sensors represent no physical connotations and hence, converted 

into spectral radiance value using sensors calibration for correcting sensor gain and offset. Calculation 

of at-sensor spectral radiance is the first step to convert image data from multiple sensors and 

platforms to a physically meaningful common radiometric scale (Chander et al. 2009). The process of 

converting image digital number (DN) values to radiance is same for both thermal and optical data. To 

allow comparison of the datasets, the satellite images have been first converted into at sensor spectral 

radiance image by sensor calibration. The general formula for converting Landsat (eq. 4.1 to 4.3) and 

ASTER data (eq. 4.4) are different.  

For Landsat data, spectral radiance at the sensor's aperture (Lλ) is given by,  

Lλ = Gainλ × DNλ + Biasλ       (4.1) 

where, Gainλ = calibration gain coefficient of sensor (W m
-2

sr
-1

μm
-1

) 

 DNλ = digital number of a pixel in particular band (counts) 

 Biasλ = calibration offset of sensor band (W m
-2

sr
-1

μm
-1

) 

The above equation can be expresses as Lλ that can be calculated easily using the following general 

formula (Chander et al. 2009): 

     Lλ =
 LMAX 𝛌−LMIN λ DN λ

DN MAX λ
+ LMIN λ                            (4.2) 

or 

    Lλ = Grescale x DNλ + Brescale                                               (4.3) 

Where, Grescale= 
 LMAX 𝛌−LMIN λ 

DN MAX λ
  

Brescale = LMIN λ  

Lλ = Spectral radiance at the sensor's aperture (W m
-2

 sr
-1

 μm
-1

) 

DNλ = Quantized calibrated pixel value in the band (counts) 

DNMAXλ = Highest DN value in the scale 

LMINλ = Spectral at-sensor radiance that is scaled to DNMINλ i.e. = 0 (W m
-2

 sr
-1

 μm
-1

) 

LMAXλ = Spectral at-sensor radiance that is scaled to DNMAXλ (W m
-2

 sr
-1

 μm
-1

) 
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Grescale = Band-specific rescaling gain factor (W m
-2

 sr
-1

 μm
-1 

DNλ
-1

) 

B rescale = Band-specific rescaling bias factor (W m
-2

 sr
-1

 μm
-1

) 

In the present research, only band 7 image of the Landsat TM/ETM+ time series data have 

been used. The sensor calibration to compute radiant intensity response of Landsat TM/ETM+ band 7 

is given in Table 4.4. 

Table 4.4 Details of gain and bias factors for Landsat TM/ETM+ band 7 to compute at-sensor spectral 

radiance (Chander et al., 2009) 

Landsat 

Sensor ID 

LMINλ 

(W m
-2

 sr
-1

 μm
-1

) 

LMAXλ 

(W m
-2

 sr
-1

 μm
-1

) 

Grescale 

(W m
-2

 sr
-1

 μm
-1 

DNλ
-1

) 

Brescale 

(W m
-2

 sr
-1

 μm
-1

) 

ETM+ Band 7 -0.35 16.54 0.066496 -0.42 

TM Band 7 -0.15 16.5 0.065551 -0.22 

ASTER data used in the present study is L1A data that is processed using radiometrically 

calibration coefficient to obtained scaled radiance. At-sensor spectral radiance for ASTER data can be 

obtained using following formula:   

Lλ = (DNλ – 1) x UCCλ                                                        (4.4) 

Where, Lλ is ASTER spectral radiance at the sensor‟s aperture measured in a band (λ) and UCCλ is the 

Unit Conversion Coefficient (W m
-2

 sr
-1

 µm
-1

) given in Table 4.5.Metadata file of each ASTER dataset 

indicated all ASTER data has been acquired in normal gain setting except band 1 and 2 that are of high 

gain. The maximum radiance allocated for ASTER VNIR, SWIR and TIR bands are bands are 

determined by quantization level of the data and have shown in Table 4.6.  

4.5.2.2 Atmospheric correction 

As mentioned earlier, the spectral radiance received at the satellite sensor is commonly affected 

by molecular scattering and atmospheric absorption. Atmospheric conditions have considerably varied 

seasonally and temporally. In the area like coalfield, intense mining activity and coal burning have 

significantly contributed aerosol and particulate matter to the atmosphere. Solar radiation have been 

scattered by these atmospheric particles. Hence, sensor not only received true radiance but also 

scattered radiance or „path radiance‟. Path radiance induced haziness in the image. Intensity of the path 

radiance is significantly varied with the wavelength. It is high for shorter wavelength and subsequently 

decreases with increasing wavelength. Thus, atmospheric error in the VNIR and SWIR bands are 
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mainly governed by additive path radiance. Atmospheric absorption of the spectral radiance due to 

water vapour in VNIR band is quite impersistent and has been ignored.  

Table 4.5 Unit conversion coefficient for ASTER data (Abrams et al., 1999) 

Band 
Unit Conversion Coefficient (W m

-2
 sr

-1
 µm

-1
) 

High gain Normal Gain Low Gain 1 Low gain 2 

1 0.676 1.688 2.25 

N/A 
2 0.708 1.415 1.89 

3N 0.423 0.862 1.15 

1.15 3B 0.423 0.862 

4 0.1087 0.2174 0.290 0.290 

5 0.0348 0.0696 0.0925 0.409 

6 0.0313 0.0625 0.0830 0.390 

7 0.0299 0.0597 0.0795 0.332 

8 0.0209 0.0417 0.0556 0.245 

9 0.0159 0.0318 0.0424 0.265 

10 

N/A 

0.006822 

N/A N/A 

11 0.006780 

12 0.006590 

13 0.005693 

14 0.005225 

Table 4.6 Maximum detectable radiances response for all ASTER bands in different gain settings 

(ASTER L1 data processing, Ver. 3.0) 

Band 
Maximum Radiance (W m

-2
 sr

-1
 µm

-1
) 

High gain Normal Gain Low Gain 1 Low gain 2 

1 170.8 427 569 

N/A 
2 179.0 358 477 

3N 106.8 218 290 

3B 106.8 218 290 

4 27.5 55.0 73.3 73.3 

5 8.8 17.6 23.4 103.5 

6 7.9 15.8 21.0 98.7 

7 7.55 15.1 20.1 83.8 

8 5.27 10.55 14.06 62.0 

9 4.02 8.04 10.72 67.0 

10 N/A 28.17 N/A N/A 

11 

 

27.75   

12 26.97 

13 23.30 

14 21.38 
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To compensate atmospheric error due to path radiance, „Dark Object Subtraction 

(DOS)‟method given in ENVI
TM

 4.7 has been applied to the images to obtain true radiance of ground 

features. The method involves the subtraction of radiance value of the darkest pixel from the data. The 

value of the darkest pixel should have zero. However, due to scattering, the dark pixels show „non-zero 

value‟. So, the maximum radiance value among the dark pixels has been considered as path radiance 

and subtracted from the at-sensor radiance image. In the present study, 2008 ASTER data has been 

specifically used for mapping and detection of surface coal fires (discussed in Chapter 6).While 

analysis, two dark pixels have been observed in 2008 ASTER SWIR bands (Figure 4.3). The path 

radiance value for 2008 ASTER SWIR band is determined (Table 4.7) and used in correcting the data 

using eq. 4.5: 

LλC = Lλ – LλP                               (4.5) 

Where, 

LλC = Atmosherically corrected radiance 

Lλ = At-sensor spectral radiance (uncorrected radiance)  

LλP = Path radiance per band. 

Table 4.7 Observed path radiance value in ASTER SWIR bands 

ASTER SWIR Bands (19
th

 March 2008) Path Radiance (LλP) (W m
-2

 sr
-1

 μm
-1

) 

B4 1.23 

B2 0.91 

B3 0.83 

B4 0.78 

B5 0.71 

B6 0.55 

As mentioned earlier that the magnitude of the atmospheric scattering decreases with higher 

wavelength. Hence, atmospheric errors in TIR data is chiefly govern by atmospheric absorption 

(Bartolucci et al., 1988; Barsi et al., 2005). Absorption in mainly induced by water molecules and 

decrease the radiant intensity of the emitted radiance received at the sensors. Atmospheric parameters 

for ASTER TIR bands have been derived from the metadata and corrected individually from the 

measured radiant intensity of each ASTER TIR band (Thome et al., 1998). Precise correction allows 

the evaluation of true emitted radiance received at the sensor.  
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Table 4.8 Specification and details of the physical parameters used to compute TOA spectral reflectance  

 

 

 

 

 

 

 

 

 

 

 

Study area Acquisition date Sensor ID 

Earth Sun Distance 

(d) (astronomical 

units) (Chander et 

al. 2009) 

ESUNλ(Mean Exoatmospheric 

Solar Irradiance) (W m
-2

 μm
-1

) 

(Chander et al. 2009) (Thome 

et al. 2001) 

Solar Elevation 

Angle (Degree) 

Jharia Coal 

Field, India 

17
th

 December 2000 ETM+ Band 7 0.98407 84.90 52.3793 

02
nd

  November 2001 ETM+ Band 7 0.99228 84.90 43.6863 

07
th

 December 2002 ETM+ Band 7 0.98519 84.90 51.4129 

19
th

 March 2003 ETM+ Band 7 0.99840 84.90 33.2352 

02
nd

 December 2009 TM Band 7 0.98592 83.44 50.3889 

20
th

 February 2010 TM Band 7 0.98877 83.44 44.4370 

Ruqigou Coal 

Field, Ningxia, 

China 

17
th

 October 2000 ETM+ Band 7 0.99662 84.90 38.6014 

10
th

 October 2006 TM Band 7 0.99861 83.44 41.3893 

Jharia Coal 

Field, India 
19

th
 March 2008 

Band 1 

0.99584 

1848 

32.443356 

Band 2 1549 

Band 3 1114 

Band 4 225.4 

Band 5 86.63 

Band 6 81.85 

Band 7 74.85 

Band 8 66.49 

Band 9 59.85 
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In the present approach, atmospheric correction of the ASTER TIR bands have been carried out 

using „Thermal Atm Correction‟ module given in „Preprocessing‟ tool of ENVI
TM

 4.7. The algorithm 

for „Thermal Atm Correction‟ is similar to the In-Scene Atmospheric Compensation (ISAC) algorithm. 

The algorithm performs the correction with assumptions of (a) considering uniform and single layer 

atmosphere over the data scene, (b) an occurrence of a near-near-blackbody surface within the scene 

and (c) no reflected downwelling radiance. 

Figure 4.3 A small subset of the ASTER 8-6-4 CIR composite of 2008 covering Sijua area, JCF. The 

anomalous pixels showing in bright yellow color are attributed to the surface fire. Two dark pixels 

(appearing green) have shown 0.55 radiance value. These are the pixels with no value but have shown 

a minor value of 0.55 which is due to path radiance induced by scattering 

The algorithm first determines the wavelength that most often exhibits the maximum brightness 

temperature. This wavelength is then used as the reference wavelength. Only spectra that have their 

brightest temperature at this wavelength are used to calculate the atmospheric compensation. At this 

point, for each wavelength, the reference blackbody radiance values are plotted against the measured 

radiances. A line is fitted to the highest points in these plotted data and the fit is weighted to assign 
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more weight to regions with denser sampling. The compensation for this band is then applied as the 

slope and offset derived from the linear regression of these data with their computed blackbody 

radiances at the reference wavelength. The „Thermal Atm Correction‟ module also provides an account 

of upwelling atmospheric radiance (LλP) and atmospheric transmission (τ) for individual ASTER TIR 

band. The upwelling atmospheric radiance and atmospheric transmission has been evaluated by the 

regression analysis of the scatter plot of radiance vs. approximated brightness temperature derived 

from using the Planck‟s function and assumed emissivity of 1 (ENVI User‟s Guide, 2009). 

As here, it has been observed that the ASTER band 13 (10.25-10.95 µm) has maximum 

atmospheric transmittance and minimum upwelling radiance among rest of the ASTER TIR bands 

(Figure 4.4). Hence, effective at-sensor spectral radiance of ASTER band 13 has been preferably 

chosen and further applied to calculate pixel wise distribution of radiant or brightness temperature of 

the area using eq.2. The generated thermal image has been used further for delineating subtle surface 

thermal anomaly associated with underground coal seam fires (discussed in Section 7.4). 

Figure 4.4 Atmospheric transmittance and minimum upwelling radiance profile of the ASTER 2009 

TIR bands 

4.5.2.3 Computation of spectral reflectance 

Spectral reflectance received at the sensor is the fraction of solar radiation reflected from the 

surface to the radiation incident on the surface. The quantity of the solar irradiance is the function of 

the topography of the surface. As mentioned in Chapter 3, Section 3.3, JCF exhibits relatively flat 

topography and topographic correction to the image can be safely ignored. However, to reduce scene-

to-scene variability, it is better to convert the corrected spectral radiance to top of atmosphere (TOA) 

reflectance as it removes the cosine effect of different solar zenith angles due to the time difference 

between data acquisitions. TOA reflectance compensates for different values of the exoatmospheric 
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solar irradiance arising from spectral band differences and it also corrects for the variation in the Earth-

Sun distance between different data acquisition dates (Chander et al., 2009). The above variations may 

have significant impact on image data. However, actual retrieval of land surface reflectance from the 

SWIR data is complicated because of integrated effect of both emission and reflectance response from 

the ground. The TOA reflectance of the Earth is computed by applying physical parameters using 

eq.4.6 (Chander et al., 2009): 

               ρλ =
 π.Lλ C .d2 

ESUN λ .cos θs
                                                      (4.6) 

Where, 

ρλ = Planetary TOA reflectance (unitless) 

π = Mathematical constant equal to ~3.14159 (unitless) 

LλC = Effective spectral radiance at the sensor's aperture (W m
-2

 sr
-1

 μm
-1

) 

d = Earth–Sun distance (astronomical units)  

ESUNλ = Mean exoatmospheric solar irradiance (W m
-2

 μm
-1

)  

θs = Solar zenith angle (degree) (equal to sine of the solar elevation angle)  

4.5.3 Computation of brightness temperature 

As mentioned in section 4.5.2.2, the effective at-sensor spectral radiance (LλC) can be further 

used to compute brightness temperature image. The brightness temperature image provide per pixel 

radiant temperature distribution of the area. According to Planck‟s radiance function, the temperature 

of black body is the function of the radiant intensity of the emitted radiance and can be computed using 

following formula (eq. 4.7, Gillespie et. al., 1999), 

     𝐵𝜆 =
𝐶1

𝜋𝜆 5  
1

𝑒
 

𝐶2
𝜆𝑇𝑏

−1 
                             (4.7) 

Where, 

B = blackbody radiance (W m
-2

 sr
-1

 μm
-1

)  

λ = wavelength (μm) 

C1 = 2πhc
2
 (3.74x10

-16
 W m

2
; 1st radiation constant) 

T = temperature (K) 

h = 6.63x10
-34

 W s
2
 (Planck's constant)  
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c = 2.99x10
8
 m s

-1
 (speed of light) 

C2 = hc/k (1.43876869×10
-2

 m K; 2
nd

 radiation constant) 

k = 1.38x10
-23

 W s K
-1

 (Boltzmann's constant) 

The above equation (eq. 4.7) can be reform as follows (eq. 4.8) by inverting Plank‟s radiance function 

(Gupta, 2003), 

      𝑇𝑏 =
𝐶2

𝜆
 

𝑙𝑛 
𝐶1

𝜋𝜆 5𝐵𝜆
+1 

                                       (4.8) 

Where, Bλ(T) is the measured radiant intensity response of a blackbody radiance obtained from a 

satellite sensor and it can be expresses as LλC that has been earlier calculated for ASTER TIR data (see 

section 4.5.2.2). C1/πλ
5
 and C2/λ (in eq. 4.8) are the coefficient determined by effective wavelength of 

a satellite sensor (Table 4.6) and can be expresses as K1 and K2 respectively (eq. 4.9). K1 and K2 

calculated for the ASTER SWIR and TIR are given in Table 4.9. These values of K1 and K2 are then 

used to calculate effective at sensor brightness temperature using the following formula: 

𝑇𝑏 =
𝐾2

𝑙𝑛 
𝐾1
𝐿𝜆

+1 
                                                   (4.9) 

Where, 

Tb = Effective at-sensor brightness temperature (K) 

K1 = Calibration constant 1 (W m
-2

 sr
-1

 μm
-1

) 

K2 = Calibration constant 2 (K) 

Lλ = Spectral radiance at the sensor's aperture (W m
-2

 sr
-1

 μm
-1

) 

ln = Natural logarithm 

4.5.3.1 Computation of emissivity and ‘pixel integrated land surface temperature (LST)’ 

Thermal emissivity of the common land cover features are ranges from 0.7-0.97 (Prakash and 

Gens, 2010). Satellite data derived emissivity has been previously used by several workers for 

temperature estimation of the coal fire (Chatterjee, 2006). Van de Griend and Owe (1993) derived an 

empirical relationship between NDVI and field based thermal emissivity values. However, emissivity 

image obtained from ASTER NDVI has 15 m spatial resolution that cannot be extrapolated for 

calculating temperature from low resolution TIR data.  
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As discussed, multispectral TIR bands have potentially exhibits emissivity information of the 

different land cover classes. The emissivity for different TIR bands can be evaluated using 

temperature-emissivity separation (TES) algorithm (Gillispie et al. 1998). ASTER multispectral TIR 

bands have effectively retrieved the pixel integrated „land surface temperature‟ and emissivity 

(Gillispie et al. 1999; Schmugge et al. 2002; Coll et al. 2007; Gangopadhya et al. 2012). In the present 

study, ASTER TIR band 13 emissivity has been used to derive LST estimates for temporal monitoring 

of surface-subsurface coal fires. Effective at-sensor brightness temperature computed above has been 

then converted into estimated kinetic temperature or „pixel integrated land surface temperature (LST)‟ 

using the following general formula (eq. 4.10), 

       Tk =
Tb

ε
1

4 
                                                            (4.10) 

Where, 

Tk = Kinetic temperature or land surface temperature (K)  

Tb = Effective at-sensor brightness temperature (K) 

ε = ASTER TIR band 13 emissivity  

Table 4.9 Calibration constants K1 and K2 for ASTER SWIR and TIR bands (ASTER L1B Manual 

Ver. 3.0) 

 

 

 

 

 

 

 

 

 

ASTER SWIR and TIR Bands K1 (W m
-2

 µm
 -1

) K2 (K) 

4 9738855.547 8719.810242 

5 2504022.009 6645.582864 

6 2284991.959 6525.028073 

7 2020158.52 6366.233142 

8 1734395.109 6174.972918 

9 1511471.827 6007.384927 

10 3040.136402 1735.337945 

11 2482.375199 1666.398761 

12 1935.060183 1585.420044 

13 866.468575 1350.069147 

14 641.326517 1271.221673 
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4.5.4 Removal of ‘false alarms’ 

Thermal anomalies obtained at LST image may constitute some „false alarms‟. These false 

alarms may generated due to heat source at industrial unit, high reflectance due to river sand, barren 

land etc. The high radiant intensity response due to such features have often perceived automatically 

by the TIR sensor. These may give error in mapping of coal fires. To compensate this problem, visual 

interpretation of ASTER VNIR (15 m spatial resolution) bands have been used to remove such false 

pixels. It has been estimated that the anomalous pixels attributed to the coal fire (whether in coal dump 

or coal seam) are closely associated with opencast mine. In JCF, no industrial heat source is available 

in the vicinity of the mining area. Seams are dipping southerly and if burning, can only produce very 

subtle thermal anomaly at the surface that may not be detected by moderate resolution ASTER TIR 

sensor (90 m). Hence, in the southern part of the JCF, anomalies are mainly due to high reflectance 

caused by barren land or river sand. These pixels have been carefully observed and subsequently 

removed from the LST images.   

4.6 PROCESSING  

Pre-processing techniques discussed above have been succeeded further by image processing 

for feature extraction. Processing techniques facilitate the interpretation of the image by digital 

enhancement, band combination, band ratioing, digital classifications, data computation, thresholding 

etc. to detect and extract the feature of interest from the image. The techniques followed in processing 

of the data used in the present study have been elaborated below in detail:    

4.6.1 Contrast stretching 

Contrast stretching induced digital enhancement of the grey image by linearly expanding 

digital values of the histogram into a new distribution. Contrast enhancement facilitates the precise 

recognition of the target feature by modifying the range of image tone. Coal fires appear as segregated 

patches of bright pixels over the grey scale image. Membership value of the fire in a pixel defines the 

brightness value of the pixel. Low membership value of a fire gives grey tone to the corresponding 

pixel. In this respect, contrast enhancement expands the narrow range of brightness values of the 

images and facilitates the interpretation of surface coal fire.  

4.6.2 Band combination 

Multispectral image allows the visualization and interpretation of the ground features in various 

band combinations. A band combination is a composite of three individual bands forming a color 
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composite image. The combination for composite image is user specified. However, a best 

combination can be defined by the spectral characteristic of the target of interest. The resulting 

composite image is called „false color composite (FCC)‟. In JCF, textural and spectral characteristics 

of the common land use / land cover features have been recognized in ASTER VNIR bands. Surface 

coal fires shows highest reflectance in SWIR bands and appears as pale to bright yellow patches on 8-

6-4 ASTER color composites.  

4.6.2.1 Textural and spectral characteristics of different ground features observed in JCF 

During field work, there were seven broad land use / land cover (LULC) classes recognized in 

the study area. On the basis of field observations, these classes have been described below in detail. 

Criteria for identifying these LULC classes on the Landsat TM/ETM+ 4-3-2 and ASTER 3-2-1 color 

infrared (CIR) composite based on the spectral and textural characteristics are shown in Table 4.10. 

a) Coal: Dark black color coal beds and dumps exhibiting very low reflectance are prominently 

observed and are well distributed in the entire JCF.  

b) Sparse vegetation: Sparse vegetation comprises of small bushes and shrubs. In the vicinity of 

the coal fire affected area, the sparse vegetation is mainly dry 

c) Dense vegetation: Dense vegetation is scarce and appears dense bushes and canopy. 

d) Water body: Water bodies found in the study area are natural stagnant water ponds with 

irregular outline. 

e) Barren land: Patches of land with rocky outcrop or devoid of vegetation. 

f) Settlement: Generally marked by the populated colonies, dense railway and road networks. 

g) Overburden dump: Bare and dumps of loose soil / rocks dumps after excavation are frequently 

found near the open cast mines; they exhibit somewhat wavy outline. 

h) Coal fire: Coal fire is a high temperature phenomenon. Textural and spectral attributes of the 

fire is depends on the occurrence and type of coal fire. Different spectral and textural response 

of the coal fire has been observed on the CIR composites of ASTER data and their 

characteristics for identification are discussed in Chapter 6. 
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Table 4.10 Spectral and textural characteristics of the various Land use / Land cover type observed in Landsat TM/ETM+ and ASTER datasets  

Land use / Land cover type Coal Vegetation Water bodies Barren land Settlement Overburden dump 

Textural characteristics  

(on standard FCC) 

Appears in form of 

exposed bedded 

layers in opencast 

and exist in close 

association with 

overburden dump  

Vegetation 

comprises of 

dense canopy of 

perennial wood 

plants, small 

bushes and shrubs 

Water bodies 

are natural 

stagnant small 

scale water 

ponds with 

irregular 

outline. 

Patches of 

rocky outcrop 

and devoid of 

vegetation, 

exhibits high 

reflectance 

Mainly 

characteriz

ed by 

blocky 

texture  

 

Freshly excavated 

mine wastes dumped 

in the vicinity of 

opencasts mainly 

characterized by loose 

soil and fragmented 

rock mass  

Dark black in 

VNIR 

Deep red to 

pinkish to light 

red  in VNIR 

Shades of blue. 

Very dark in 

SWIR and TIR 

Pale to faint 

white in 

visible region 

Light cyan 

to cyan in 

VNIR 

Shades of light grey 

with smooth wavy 

outline pattern.    

Detectable sensors response 

in different spectral channel 

Very low to low 

visible reflectance 

High NIR 

reflectance  

No or minor 

reflectance in 

SWIR 

High visible-

NIR 

reflectance  

Moderate 

visible 

reflectance 

High visible 

reflectance 
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4.6.3 Normalized indices and band ratioing 

Normalized indices and band ratio are also the technique of digital enhancement where the 

spectral contrast of a particular feature class has been enhanced. Band ratio involves the division of 

one band from another band. The selection of bands for ratio is defined by the distribution of the 

spectral reflectance values of a feature class in different spectral bands (spectral reflectance curve). 

Usually the bands with maximum and minimum spectral reflectance are preferably chosen for ratioing. 

Normalized difference ratio index is bit different from simple band ratio. It is the ratio of difference 

and sum of maximum and minimum reflectance of a particular feature class in specific spectral 

channels. In the present study normalized difference ratio indices have been used for mapping of 

surface coal fires and discussed in detail in Chapter 6. 

4.6.4 Thresholding 

Threshold determination is an important task in image processing, and is very useful to target 

recognition. A precise threshold is a spectral value or a range of value that can define the attributes of a 

specific feature. A slight error in the evaluation of threshold may give misleading results. In the 

present study, techniques and utility of thresholding have been discussed in detail in Chapter 2, Section 

2.4.1. Besides, a new method of thresholding for delineation of surface coal fires in JCF has been 

proposed and discussed in Chapter 5. 

4.7 SUMMARY 

The present chapter described the type, characteristics and specification detail of the remote 

sensing, ancillary and field data used in the present study. Remote sensing data constitute time series 

L1G Landsat TM/ETM+ and L1A ASTER data. Analysis of the remote sensing datasets is aided 

together with ancillary (thematic maps and GoogleEarth
TM

 imagery) and field data for interpretation. 

Prior to the analysis, all sets of the remote sensing data have been pre-processed for necessary 

corrections using sensors calibration. The effects of atmospheric contributions have been removed 

from the measured radiant intensity of the images. The obtained corrected VNIR and SWIR bands 

have been converted into reflectance image. The corrected TIR bands have been applied to compute 

brightness temperature image using Planck‟s radiance function. Brightness temperature image has 

been then further converted into pixel integrated „Land Surface Temperature‟ image using ASTER 

derived emissivity. Pre-processing of the satellite data has been followed by image processing. The 

type of the processing technique used is defined by the objective of the present work and it has 
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governed mainly by deciding band combinations, preparing normalized indices and applying precise 

threshold to the image.         
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   CHAPTER 5 

THRESHOLDING OF SWIR BAND TO DELINEATE 

COALFIELD SURFACE FIRES 

 

5.1 INTRODUCTION 

Surface fires are common in Coalfields where coal is being mined or exposed to 

sunlight for long durations. The heat energy emitted from these fires affects the signal recorded 

by the sensors operating in the shortwave infrared regions (SWIR) of the electromagnetic (EM) 

spectrum. SWIR bands hence, are sensitive to solar reflected radiation as well as emitted 

radiation from a target. With this theoretical background, an attempt has been made to propose 

a method based on maximum background reflectance for thresholding of Landsat TM/ETM+ 

band-7 operable in SWIR to segregate the pixels attributed to Coalfield surface fire. The 

‘Maximum Solar Reflection Threshold’ method proposed in the present approach uses the 

highest spectral radiance that can be attributed to solar reflection as the conservative threshold 

to segregate the pixels with emitted component from those with reflected component of the EM 

energy.  

The present chapter illustrates a brief overview of the methodology adopted for 

thresholding of Landsat TM/ETM+ band-7 to delineate the pixels having Coalfield surface 

fires. First, a spatial subset of the Coalfield under active surface fire was selected using visual 

interpretation of false colour composite of Landsat TM/ETM+ 7-5-3 band combination. Several 

spatial profiles passes through active „hot pixels‟ representing surface fires and barren material 

were prepared on temporal Landsat TM/ETM+ band-7 datasets. These profiles were analyzed 

and then compared. The results obtained from this method indicate that the maximum 

background reflectance evaluated is the most representative reflectance threshold to isolate the 

pixels of surface fire in a coal mining areas. The method has been systematically implemented 

over two different coal mine sites (in India and China) with different physiographic settings to 

test its broader applicability.   

At the end of the chapter, a comparison of considering digital number (DN) values and 

maximum background reflectance as threshold for both test sites has shown and advantages of 
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using „maximum background reflectance‟ as threshold to delineate Coalfield surface fire have 

been discussed.  

5.2 COALFIELD SURFACE FIRES: PROBLEM AND CONCEPTUAL APPROACH 

Landsat TM/ETM+ data have been widely used in coal mining and coal fire studies 

(Prakash et al., 2005; Saraf et al., 2005; Prakash et al., 1997; Zhang et al., 2004). These studies 

address a wide spectrum of related applications, including but not limited to mapping and 

monitoring the areal distribution of surface and underground coal fires (Zhang and Kuenzer, 

2007a; Zhang et al., 2007b), land cover and land use change detection (Prakash and Gupta, 

1998), effect of fires on local vegetation and soils (Gupta and Prakash, 1998), mutual 

relationship of the surface and subsurface fires (Prakash et al. 1997), fire temperature 

estimation (Gangopadhyay and Lahiri, 2005; Prakash et al., 2005; Gangopadhyay et al., 2005), 

depth estimation of subsurface fire (Saraf et al., 1995) and environmental impacts of coal fires 

(Chapter 2, Section 2.4 and 2.5 ).  

Multispectral data from satellite sensors, such as the Landsat TM/ ETM+ and ASTER, 

have the additional advantage that they acquire data in both the thermal infrared (TIR) and the 

shortwave infrared (SWIR) parts of the spectrum. The TIR data are used widely to delineate 

subtle surface thermal anomalies associated with underground coal fires (Deng et al., 2001), 

while SWIR data are used to isolate very high temperatures associated with surface fires 

(Prakash and Gupta, 1999a). Delineation of thermal anomalies associated with both 

underground and surface fires requires a certain threshold value be defined on the TIR and 

SWIR data, respectively, to classify the area under investigation as „fire area‟ or „non-fire area‟ 

(Prakash and Gens, 2010). 

This study focuses on day-time SWIR data processing and establishing a robust 

criterion for selecting a threshold to map surface coal fires, specifically using band-7 of the 

Landsat TM/ETM+ sensors. The focus on Landsat data is logical and significant as the Landsat 

series of satellites has provided the longest reliable uninterrupted archive of free or low-cost 

medium resolution satellite data and covers all the major coal fields in the world. 

 A review of the literature reveals that almost all the previous studies have dealt with 

TIR data (TM band-6) for thresholding of the sensor response to identify coal fire areas. No 

study recognized specifically involving TM/ETM+ SWIR bands in which thresholding have 

been implemented. Chapter 2, Section 2.4.1 gives a brief review of the methods that have been 
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implemented for thresholding of ETM+/TM band-6 (TIR) data by various researchers to isolate 

thermal anomaly of subsurface fires from the background (Prakash and Gens, 2010).  

As such, the TM/ETM+ band-7 responds to solar radiation reflected by background 

objects and also emitted radiation by fire. Therefore, it is important to threshold or segment the 

sensor response so that the response of the background objects can be segregated vis-a-vis the 

response of fire (hot objects) (Figure 5.1). This study specifically focuses on the TM/ETM+ 

band-7 for thresholding of spectral response. 

 

Figure 5.1 Blackbody emitted radiation curve for ambient earth temperature (300 K) and fire 

(1000 K). The solar radiance reflected from the surface of albedo 0.1 and the spectral position 

of Landsat TM-Band 7. Note that the Band 7 sensitive to both solar reflected radiation and 

blackbody radiation emitted by fire 
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5.3 METHODOLOGY 

As mentioned earlier that the data from repetitive passes of Landsat TM/ETM+ 

spanning a decade have been exclusively used for the analysis. This study has utilized several 

temporal coverages of Landsat TM/ETM+ band 7. This has facilitated a comparative study of 

the data sets in various months/seasons spread over a time from December 2000 to February 

2010. The methodology has been commenced with the acquisition of time series Landsat 

TM/ETM+ data subsequently followed by the extraction of band-7 and spatial subsetting of the 

study area. The datasets have been pre-processed using sensor calibrations as per the 

methodology discussed in Chapter 4, Section 4.5.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Schematic diagram showing the data processing and methodology adopted in the 

present work 
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Analysis of the datasets involves pixel-wise profile analysis of several spatial profile 

lines in a selected image followed by pixel wise analysis of a selected spatial profile in different 

temporal images. Auxiliary image datasets of ASTER and Google Earth
TM 

image together with 

field data have been used to support the analysis and interpretation. The overall processing 

scheme followed in the present approach is shown in Figure 5.2.  

5.4 THE ‘MAXIMUM REFLECTANCE THRESHOLD METHOD’ 

Opencast mining activities often lead to large exposures of fresh rock surfaces and 

production of bulk volume of mining wastes. The nature of soil and type of rock material is 

dependent on the geological characteristics of the underlying rocks. The mining wastes are the 

rock fragments of the host rocks and overlying soil material, piled up together in the vicinity of 

opencast mining area. In a coal-bearing sedimentary regime, these materials are commonly 

sandstone-shale surfaces and their chunks and fragments, often with no vegetation. 

The fresh rock surfaces and overburden dumps provide surfaces of highest ground 

reflectance in the area. However, the spectral radiance due to emitted radiation from surface 

fires is still higher in comparison to that from the ground reflectance. This study deals with 

finding a threshold to differentiate between the two. 

To determine the appropriate threshold for TM-7, first, several spatial profiles that pass 

through barren exposed materials and surface coal fires were selected on one Landsat TM scene 

using false colour composites composed of 4,3,2 and 7,5,3 band combinations. The spectral 

radiance values along these profiles were analysed on a pixel-by-pixel basis. In the next step, 

preselected spatial profiles were traced on all images of the temporal data stack. Again, spectral 

radiance values were analysed on a pixel-by-pixel basis for the spatial profile on each date 

image. This detailed analysis helped to determine the range of spectral radiance values and the 

corresponding maximum reflectance value associated with overburden dump material in the 

coal mining area. Auxiliary datasets such as the higher spatial resolution images of the study 

area available on GoogleEarth
TM

, ASTER-derived digital elevation models and limited field 

data together helped to support the analysis and interpretation. The spectral radiance 

corresponding to the maximum reflectance value found in the study area associated with the 

exposed material was then set as the threshold value and any value higher than this threshold 

value was attributed to the presence of surface fires. 

The above method was applied on selected parts of two coal fields with different 

geographic and climatic settings: (a) the Jharia Coalfield (JCF), India, that represents a tropical, 
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low altitude coal field occurring in relatively flat terrain with tropical monsoon dominated 

climate, and (b) the Ruqigou Coalfield (RCF), Ningxia, China, that represents a mid-latitude, 

high-altitude coal field occurring in an undulating terrain with semi-arid to arid climate. 

Calculation of at-sensor spectral radiance is the first step to convert image data from multiple 

sensors and platforms to a physically meaningful common radiometric scale (Gupta, 2003). The 

Landsat digital numbers (DN) were converted to spectral radiance and then to top of 

atmosphere (TOA) reflectance values (Chander et al., 2009). Spectral parameters and sensors 

calibration Landsat TM/ETM+ band 7 data used in the processing of the datasets is given in 

Table 5.1. 

Figure 5.3 The contour map of the Shatabdi coal mine area, Barora, JCF derived from the 30 m 

spatial resolution ASTER global Digital Elevation Model product. The contours reveal that the 

JCF is generally flat lying with elevations varying from approximately 190-220 m 
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Table 5.1 Specification and details of the Landsat TM/ETM+ band 7 data used in the present study and parameters for TOA reflectance computation 

Note: All Landsat datasets are systematically corrected L1G product.

Study area Landsat scene ID 
Acquisition 

date 

Sensor 

ID 

Earth Sun Distance (d) 

(astronomical units) 

Mean 

Exoatmospheric Solar 

Irradiance (ESUNλ) 

(W m
-2

 μm
-1

) 

Solar Elevation 

Angle (Degree) 

Jharia Coal Field, 

India 

L71140044_04420001217 17-12-2000 ETM+ 0.98407 84.90 52.3793 

L71140044_04420011102 02-11-2001 ETM+ 0.99228 84.90 43.6863 

L71140044_04420021207 07-12-2002 ETM+ 0.98519 84.90 51.4129 

L71140044_04420030329 29-03-2003 ETM+ 0.99840 84.90 33.2352 

L5140044_04420091202 02-12-2009 TM 0.98592 83.44 50.3889 

L5140044_04420100220 20-02-2010 TM 0.98877 83.44 44.4370 

Ruqigou Coal Field, 

Ningxia, China 

L71129033_03320001017 17-10-2000 ETM+ 0.99662 84.90 38.6014 

L5129033_03320061010 10-10-2006 TM 0.99861 83.44 41.3893 
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5.5 DATA ANALYSIS IN TEST SITE 1: JHARIA COALFIELD (JCF), INDIA 

5.5.1 Jharia Coalfield (JCF), India 

Physiographical and geological attributes of the Jharia Coalfield (JCF), India have been 

already discussed in Chapter 3. Shatabdi coal mine, Barora a site proposed for the present study 

is an integral part of the JCF confined between N 23° 47‟ 00” - N 23° 48‟ 00” and E 86° 13‟ 

40‟‟ - E 86° 15‟ 00‟‟ at 77 m above mean sea level (see Figure 3.1 in Chapter 3). Intense 

opencast activities in the Barora area unveil the shallow subsurface burning coal seam to an 

exposed scenario. Seams V/VI/VII in Shatabdi opencast are strongly affected by surface fires. 

Fire control measures in Shatabdi opencast are mainly deal by excavation and back filling 

methods (BCCL, 2008). Freshly excavated materials of the overlying rocks in Shatabdi coal 

mine are dump in the close vicinity of opencast.   

The elevation contours prepared from the ASTER DEM of JCF with pixel size 30 m are 

shown in Figure 5.3. The contours reveal that the area is relatively flat with only minor 

topographic variation ranging from 190 to 220 m. Field observations suggested that the area 

can be potentially used as a test site for applying methodology of the present work. 

Based on the spectral and textural characteristics on Landsat TM/ETM+ colour infrared 

(CIR 4-3-2) composites, various land-use/land-cover (LULC) classes were identified in the 

study area. These classes were also validated in the field. Spectral and textural characteristics of 

different ground features have been already discussed in Chapter 4 Section 4.2.6.1.  

Field investigations for temperature measurements of thermal anomalies, distribution of 

coal fires (both surface fires and subsurface fires) and land use/land cover changes associated 

with mining activities were carried out in the JCF during February and December 2010 and 

described in detail in Chapter 3, Section 3.7. For this particular study, the overburden dumps 

were specifically studied and were found to be composed of sandstone-shale fragments in 

various proportions, the highest reflective regions being devoid of vegetation. 

5.5.2 Data used in JCF 

In this study, six sets of Level 1G (geometrically and systematically corrected) cloud 

free Landsat TM-7 day time data from December 2000 to February 2010 were used to apply the 

proposed maximum reflectance threshold technique and delineate surface coal fires in the JCF. 
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All sets of Landsat data were obtained from the US Geological Survey Landsat archive 

(http://glovis.usgs.gov) and processed using ENVI
TM

 4.7 and ERDAS Imagine
TM

 10. General 

information about the dataset and other specifications have already discussed in Chapter 4, 

Section 4.2.1.1 and are given in Table 5.1. 

5.5.3 Analysis and interpretation in JCF 

Temporal datasets of Landsat TM/ETM+ band 7 from December 2000 to February 

2010 facilitated a decade-long comparative study accounting for season and inter-annual 

variations in surface reflectance and fire temperatures in the JCF. The JCF data were processed 

following the method described in detail in Section 5.3. Following are the data processing 

results and analyses. 

 

Figure 5.4 Location of spatial profiles A-A‟, B-B‟, C-C‟ and D-D‟ shown on a February 2010 

on standard color composite on JCF 
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5.5.3.1 Analysis of different spatial profiles in the same image 

For this study, field work in the JCF was carried out from December 2010 through 

January 2011. Selecting a Landsat scene closest to the field work time, several spatial profiles 

A-A‟, B-B‟, C-C‟ and D-D‟ were drawn crossing barren exposed materials on the February 

2010 image (Figure 5.4).  

Figure 5.5 shows (i) the location of profile D-D‟. on the February 2010 Landsat TM-7 

image; (ii) shows the pixel-wise DN values and computed spectral radiance values along the 

same profile D-D‟; (iii) shows the corresponding Google Earth
TM

 image; (iv) and (v) show field 

photographs of points a and b, marked in (iii), and show surface fire and overburden dump, 

respectively. For all the spatial profiles (A-A‟, B-B‟, C-C‟ and D-D‟), the DN values along the 

profile and their corresponding computed spectral radiance value are shown on the left along 

the Y-axis (Figure 5.6(a)-(d)).  

In this open-cast mine area, the various ground features of concern are coal bed, coal 

dump, water body, overburden dumps and surface fires. Out of these features, the overburden 

dump possesses the highest ground reflectance. Therefore, in various profiles, pixels 

corresponding to the overburden dumps were first sought and marked with the support from 

Google Earth
TM

, Landsat VNIR images and field data. These pixels have spectral radiance in 

the range of 4.2-4.8 Wm
-2

sr
-1

µm
-1

 corresponding to the reflectance values from 0.23 to 0.25. 

Spectral radiance higher than this must be undoubtedly due to the thermal emission from 

surface fires. 

5.5.3.2 Analysis of same spatial profile in the multi-temporal images 

A detailed pixel-wise analysis of the DN values and spectral radiance of the same 

spatial profile (D-D‟) was carried out in different temporal images. The DN values and spectral 

radiance along the profile D-D‟ in different temporal images (17 December 2000, 2 November 

2001, 7 December 2002, 29 March 2003, 2 December 2009 and 10 February 2010) are shown 

in Figure 5.7(a)-(f). Using the technique adopted for analysis in Figure 5.7, overburden dumps 

were sought and marked using the Landsat VNIR bands. Threshold in terms of DN values, 

spectral radiance and reflectance for different image datasets was established. The points or 

peaks corresponding to the maximum ground reflectance are marked in Figure 5.7(a)-(f). It is 

obvious that in general, the highest reflectance threshold is around 0.25, though in some seldom 

extreme cases it can be 0.27. 
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Figure 5.5 Methodology followed in the study is presented here using the JCF as an example. Key: 

(i) the location of the selected profile line D-D‟ on Landsat TM band-7 image of February 2010, (ii) 

DN values, spectral radiance and maximum reflectance along profile line D-D‟, (iii) surface fire 

location a and overburden dump location b, along the selected profile line are shown as a reference 

on a high spatial resolution Google Earth
TM

 background image, (iv) field photograph of a coal fire at 

location (iiia) and (v) field photograph of an overburden dump at location (iiib) 

5.6 DATA ANALYSIS IN TEST SITE 2: RUQIGOU COALFIELD (RCF), NINGXIA, 

CHINA 

5.6.1 Ruqigou Coalfield (RCF), Ningxia, China 

The Ruqigou Coalfield (RCF) is located in the northern part of the Helan mountains, 

approximately 100 km from Yinchuan city, capital of Ningxia Hui, autonomous region 

centered at approximately N 39° 04‟ and E 106° 08‟ (Figure 5.8). This Coalfield represents 

mid-latitude, high-altitude (1400-2640 m above sea level) and semi-arid to arid climate and 

shows large diurnal and seasonal temperature variations and a sparse vegetation cover 

dominated by dry desert shrubs. Both underground and open-cast mining practices have shaped 

the landscape of the area. 

The approximately 80 km
2
 RCF lies within a Jurassic syncline (Kuenzer et al., 2007b). 

It contains high rank coal, mostly anthracite. Like many other coal fields in China, the RCF 

coal was also deposited in a fluvial-lacustrine environment and is interbedded with mudstones, 

siltstones, sandstones and conglomerates in the Triassic Yanchang and Jurassic Zhiluo 

formations (Chen, 1997). Subsequent uplift and erosion of this basin exposed the coal. There 
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are about 10 major coal seams in the RCF of which three coal seams (locally numbered 1, 2 

and 3) are prominently exposed in the study area. 

5.6.2 Data used in RCF 

Two sets of Level 1G cloud-free Landsat TM-7 day time data of 10 October 2000 and 

17 October 2006 were selected for RCF (Table 5.1). A 5 m spatial resolution digital elevation 

model, derived using traditional photogrammetric techniques applied to aerial stereo-

photographs, provides spatial details of the uneven topography in the study area (Prakash et al., 

1999). 

5.6.3 Analysis and interpretation in RCF 

One of the objectives of this study was to determine a TM-7 threshold technique and 

threshold value that would have minimal dependencies on local conditions. Given the local 

extents of fires and exposed overburden rocks, variations in slope are insignificant to the 

analysis. Elevation and aspect can arguably influence the reflectance (Engle et al., 2011).  

In the RCF, almost all the fires are located on the South, SE and SW facing slopes as 

these areas are exposed to more sunlight and are more vulnerable to heating and combustion. 

To check the broadest applicability of the maximum reflectance threshold techniques, profiles 

were, therefore, selected at different elevations and slopes without carrying out any topographic 

normalization. The results and analyses of selected profiles are presented here. 

5.6.3.1 Analysis of different spatial profiles in the multi-temporal images the same image 

A false-colour composite generated by coding TM bands of 7-5-3 in red-green-blue, 

respectively for both images was used for identifying the locations of thermally radiant surface 

fire pixels. Three profiles (E-E‟, F-F‟ and G-G‟) were selected in the RCF. As the fire in this 

study area was active, the associated thermal anomaly shows a shift in pixel location on the 

2006 image with respect to 2000 image.   
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Figure 5.6(a)-(d) DN values, spectral radiance and maximum reflectance along profiles A-A‟, B-

B‟, C-C‟ and D-D‟ extracted from Landsat TM-7 image dated 20 February 2010 for the JCF. 

The maximum reflectance of approximately 0.25 (or 25% reflectance) along the profiles 

corresponds to a spectral radiance of 4.762 Wm
-2

sr
-1

mm
-1

 and appears as the threshold to 

separate the background reflective pixels vis-a`-vis the emissive fire pixels 

a 

b 

c 

d 
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Therefore, the profile lines used for comparison (Figure 5.9, E-E‟ and F-F‟ on the 17 

Oct. 2000 and 10 Oct. 2006 images, respectively) had to be shifted by a corresponding amount 

to carry out a meaningful comparison. These profiles were selected at a relatively lower altitude 

of 1867 m, compared to another profile line (G-G‟) which was selected at a higher elevation of 

2014 m. 

Following the above method of data interpretation and analysis, the pixel values 

corresponding to maximum surface reflectance were 0.246 and 0.244 for the profiles E-E‟ and 

F-F‟, respectively (Figure 5.9(a) and (b)), and 0.226 for the profile G-G‟ (Figure 5.9(c)). 

Although there is considerable difference in the altitude of profiles E-E‟ and G-G‟, the 

corresponding difference in the maximum reflectance threshold of the pixels is only a 

negligible 2%. 

 

 

Figure 5.7(a)-(f) Comparison of spectral radiance, spectral reflectance and corresponding 

DN values in the same profile (profile D-D‟) on different temporal images. The maximum 

reflectance value of generally 0.25 (0.27 in some extreme cases) can be used as a threshold 

for isolating the pixels with definitely „hot‟ (fire) material 

e 

f 
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Figure 5.8 Location map of Ruqigou Coalfield (RCF), China, and field photograph showing 

overdumps and overall topography of Ruqigou coal field (by Anupma Prakash) 

Peaks in the profiles corresponding to the maximum ground reflectance served as a 

basis for setting the threshold were analysed in terms of DN values, spectral radiance and 

reflectance for these two datasets (Figure 5.10). The maximum background reflectance for both 

the images was around 0.24-0.25 which is comparable to the maximum reflectance values 

determined for the JCF. 
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Figure 5.9(a)-(c) Comparison of percentage reflectance and corresponding DN values in 

profiles (E-E‟, F-F‟ and G-G‟) of two different images covering RCF. 

5.7 CONCLUSION 

A comparison of the threshold values observed in terms of DN value and maximum 

background reflectance percentage values for all datasets (including India and China) was 

carried out (Figure 5.10(a) and (b)). The threshold in terms of DN values varies from 62 to 93, 

whereas the same in terms of reflectance ranges from 0.23 to 0.27. Thus, as expected, there is a 

high variability when threshold is considered in terms of DN values; on the other hand, when 

the threshold is sought in terms of computed reflectance, there is a greater consistency and 

uniformity in various datasets irrespective of scene, topography, season or month. 
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Figure 5.10(a)-(b) Collective comparison of the threshold values observed in terms of (a) DN 

value and (b) reflectance percentage for all the profiles selected on JCF and RCF datasets. Note 

that the maximum DN value of the reflective background rock material ranges from 62 to 93 in 

different temporal images, whereas the computed reflectance of the same target material ranges 

from 0.22 to 0.27, with the average being around 0.25. This indicates that the computed 

reflectance value provides a better way for uniform thresholding. 

 

 



104 
 

The results obtained from the above analysis clearly indicate that the maximum 

background reflectance computed in the coal field area is rather scene independent and ranges 

around 25%, although, in some cases, it can go up to 0.27. The 0.25-0.27 reflectance threshold 

appears to work well for tropical as well as temperate regions and may be considered as a 

reasonable threshold for isolating fire pixels using this type of SWIR data. 

In this study, no corrections for atmosphere have been implemented for the simple 

reason that in the SWIR part of EM spectrum, the effect of atmosphere is quite minimal and we 

are working with data in an atmospheric window. Furthermore, relative reflectance values in 

spatial profiles to select highest reflectance value are considered as the threshold, practically, 

the effect of atmosphere would again tend to be evened out. Nevertheless, using this concept, a 

rigorous atmospheric correction can lead to numerical values of threshold that may be globally 

applicable.  

Reflectance data can also vary with sun-earth satellite geometry and, as such, latitude, 

topographic slope and aspect are important. However, here maximum reflectance is considered 

as threshold, and, therefore, feel that this reflectance value will not increase any further with 

changes in local viewing geometry. Furthermore, taking this highest reflectance value as the 

threshold has one limitation that in some instances, possibly when the sun-earth-satellite 

geometry is not conducive, it is likely that the reflectance values from some fire areas are lower 

and may be missed. In this sense, this technique is a bit more conservative but arguably more 

reliable for fire delineation. 

Despite its conservative nature, the maximum reflectance threshold technique for SWIR 

data described above provides a practical way to segregate pixels with definitely fire, has the 

advantage that it is based on physical processes controlling reflectance of typical material types 

found in coal mining areas and appears applicable in a wide range of geographic settings, and 

the method should be repeatable without introducing a user-bias.  
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  CHAPTER 6 

MAPPING OF COAL MINE SURFACE FIRE

 

6.1 INTRODUCTION 

Coal is directly related to the production of energy. To confront the exponential 

demands of energy supply for industrial growth, the haphazard coal mining activities are being 

intensely carried out worldwide. Coal mining is closely associated with temporal variation in 

land use pattern that are affected by both anthropogenic and natural activities. Open cast 

mining, dumping of coal and frequent accumulation of mine dumps (overburden dumps) are 

some of the anthropogenic activities that causes frequent change in the land-use around a coal 

mining area. Unplanned mining activities and excavations in open casts unveil the burning coal 

seams. „Surface-subsurface coal fires‟ are the typical characteristic of a coal mine area. Such 

features are sporadic in spatial extent and vary in dimension from few meters to tens of meters. 

Mapping of coal fire is the pre-requisite for coal fire related studies. To facilitate plan 

sustainable mining for industrial growth, temporal monitoring of coal fires has to be executed 

at regular interval.  

The present chapter illustrates a brief overview of a novel methodology adopted for 

immediate localization of coal mine surface fires. The methodology first involves the analysis 

of spectral reflectance curve of different land cover classes recognized in the study area. Bands 

with maximum and minimum spectral reflectance have been selected to obtain ratio indices for 

different classes. Obtained Indices have been further interpreted to discriminate the coal and 

discussed the association of surface fire with exposed coal bed. In the present approach, two 

ratio indices namely; Normalized Difference Coal Index (NDCI) and Normalized Difference 

Coal Index (NDCfI) have been derived to systematically map the coal fires using Advance 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The adopted methodology 

has been systematically implemented in JCF.  
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6.3 THEORETICAL BACKGROUND AND CONCEPTUAL APPROACH 

Coal mining areas are generally characterized by seven major land cover classes such as 

vegetation, water bodies, settlement, barren land, coal, overburden dump and fire. Traditional 

field survey methods for mapping of spatial distribution of land cover classes are time 

consuming and acquired in a generalized manner for the whole area. Temperature measurement 

is also a difficult task as the areas are often inaccessible due to uncontrolled coal fires. 

Moreover, field surveys cannot be executed frequently and considered unfeasible from 

economic point of view. Satellite data have potential advantage over traditional field survey 

methods. Advanced mapping techniques using remote sensing methods provide useful inputs in 

analyzing coal mine related features. 

Automatic classification techniques to discriminate the various land cover types have 

been effectively used in recent past (Prakash and Gupta, 1998b; Zha et al., 2003; Kenzer et al., 

2007). However, mapping based on automatic classification techniques needs careful selection 

of the spectral signatures of the closely associated feature classes. Limited availability of the 

spectral channels operating in different regions of the electromagnetic spectrum also poses 

difficulty in retrieving signatures of different classes. Also, low spatial resolution of thermal 

infrared region (TIR) datasets and sensors response in short wave infrared region (SWIR) to 

both emission and reflection by fire also restrict thermal analysis of the coal fire. Localized 

high intensity surface fire and very low intensity surface fire in fresh mine dumps are closely 

located in the vicinity of open cast areas. Such dump fires are perceived automatically by TIR 

satellite datasets and often misinterpreted as „coal fire‟ in coal mining area.   

 To deal with the aforesaid problems, systematic analysis of the spectral characteristics 

of different land cover classes in coal mine area has been carried out. In this respect, two 

spectral indices have been obtained using Advance Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) by applying simple band ratio technique and normalized 

difference method. ASTER has six and five channels operating in short-wave and thermal 

infrared region of the spectrum. These channels can be potentially applied in analyzing 

temperature related phenomenon (discussed in Chapter 2, Section 2.2). The approach presented 

here is rapidly practicable and less time consuming to delineate coal fire based on their variable 

spectral and textural characteristics (Table 6.1). 
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Table 6.1 Textural and spectral characteristics of the coal fires observed on the ASTER CIR composite 

 

 

 

 

 

 

 

 

Land use / Land cover type 

Coal fires 

Dump fire Coal seam fire 

Overburden 

dump fire 
Mined coal dump fire In situ coal seam fire 

Buried subsurface 

coal seam fire 

Textural characteristics 

No or Small 

sporadic fire 

Scattered and irregular in nature. 

Lies in close association with 

freshly exposed in situ coal seam 

Linear / segregated fire Clustered fire 

Appears as pale to bright yellow patches on 8-6-4 of ASTER color composites 

Detectable sensors response in 

different spectral channel 

High visible 

reflectance and 

no or very low 

thermal 

emission 

Low visible reflectance and 

low thermal emission 

Very low visible 

reflectance and high 

thermal emission 

High surface 

reflectance and 

moderate to high 

thermal emission 

No TIR + minor 

SWIR anomaly 

Minor TIR 

anomaly  

High 

SWIR 

anomaly 

Saturation 

or high TIR 

anomaly 

High TIR anomaly 
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At sensor spectral reflectance 

Thresholding of NDCI and NDCfI 

Coal mine surface fire map 

Coal seams Coal fires 

Subsetting study area and extracting VNIR and SWIR 

datasetsband-7 

 

6.4 METHODOLOGY OVERVIEW  

An overview of the methodology scheme and data analysis followed in the present study is 

presented in Figure6.2. It involves acquisition of satellite data, processing, analysis 

(computation and thresholding of spectral indices) and interpretation of the results obtained 

from spatial distribution of coal fires. The datasets have been preprocessed as per the 

methodology and techniques discussed in Chapter 4, Section 4.5. Calibrated radiance data 

(VNIR and SWIR datasets) has been converted into spectral reflectance (ρ) by inputting 

required parameters (Table 4.8) in eq.4.6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Schematic diagram showing the data processing and methodology adopted in the 

present work 
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Figure 6.2 Spectral reflectance curves of common land cover classes recognized over CIR composite of ASTER data covering JCF, India 
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The methodology has been systematically implemented in JCF as test site. The area is 

almost flat with minor topographic variation and hence, more likely to have unaffected from 

topographic effects. Spectral characteristics of the different land cover classes in coal mine area 

have been carefully analyzed and their respective spectral reflectance curves have been plotted 

(Figure 6.2). Finally, spectral indices have been generated using simple normalized difference 

technique for coal fire related studies. 

6.4 Computation of spectral indices 

Normalized index is the ratio of difference and sum of maximum and minimum spectral 

reflectance of a particular feature class in specific spectral channels. Exposed coal seams, mine 

dumps, barren land, vegetation, water bodies and settlements are commonly observed in a coal 

mine area (Prakash and Gupta, 1998b). Normalized index to discriminate barren land/bareness 

(Zhao and Chen, 2005), built-up area (Zha et al., 2003), vegetation and water bodies (Gao, 

1996) have been well studied using Landsat TM/ETM+ images. Excavated coal seams and 

fresh mined dumps are closely associated with surface fire. To demonstrate the association of 

surface fire with exposed coal bed, two indices have been proposed in the present study. The 

obtained indices have been precisely threshold by statistical analysis of their histogram for 

mapping of surface coal fires. 

6.4.1 Normalized Difference Coal Index (NDCI) 

Spectral reflectance of the coal observed in Figure 6.2 indicate that coal exhibits 

maximum drop in reflectance values from band 1 (ρB1) Band 2 (ρB2). However, a major 

difference in spectra of coal has also been observed in B8 to B7. But as B8 and B7 belongs to 

short wave infrared region (SWIR) of the spectrum that have significant contribution to 

reflectance and emission due to fire, these bands have not been taken into consideration for 

discriminating coal. Spectral characteristics of the vegetation and water bodies are closely 

associated with B1 and B2 (Figure 6.2). Both of these classes have been mixed up together with 

the pixels attributed to coal in the index obtained using B1 and B2. To separate the pixels 

attributed to the coal from the pixels assigned to vegetation and water, NDVI (B3 and B2) and 

NDWI (B1 and B4) have been calculated. Thresholds have been set between 0-1.0 to both 

NDVI and NDWI and pixels attributed to vegetation and water bodies have been segregated. 

To discriminate coal, finally a normalized difference index has been calculated using B1 and 

B2 and pixels attributed to the vegetation (Pv) and water bodies (Pw) have been precisely 
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masked from it (eq. 6.1). A threshold value has been set at 0.1-1.0 to the index (NDCI) and coal 

is precisely discriminated.  

                                                   𝐍𝐃𝐂𝐈 =  
𝝆𝐁𝟏 − 𝝆𝐁𝟐

𝝆𝐁𝟏 + 𝝆𝐁𝟐
 −  Pv + 𝐏𝐰                                       6.1  

6.4.2 Normalized Difference Coal fire Index (NDCfI) 

Mapping of coal fires are the fundamental requisite for coal fire related studies. Sensors 

response in SWIR and TIR have been potentially applied in recent past for delineating thermal 

anomalies and mapping of coal fires (Saraf et al., 1995; Prakash and Gupta, 1999a; Rosema et 

al., 1999; Chatterjee, 2006; Kuenzer et al., 2007c; Raju et al., 2012). Field surveys carried out 

in JCF reveal that the impracticable and haphazard mining activities in open casts exposed the 

uncontrolled subsurface coal seam fire to surface coal seam fire. Such subsurface coal seam fire 

that appeared as low intensity smoldering surface fire (Figure 3.13(b)) and high intensity 

exposed surface coal seam fire (Figure 3.13(c)) are highly localized in and around open cast 

areas. Both these fires are high intensity thermal phenomenon and can be potentially detected 

in ASTER 8-6-4 CIR composite based on their textural and spectral characteristics (Figure 6.3). 

It has been observed that the spectral reflectance value of the pixels attributed to the fire (hot 

object) exhibits maximum and minimum intensity response in B8 and B4, respectively, in short 

wave infrared region of the spectrum (Figure 6.2). To delineate the surface coal fire a 

normalized difference Coal fire Index (NDCfI) has been obtained using B8 and B4 (eq. 6.2). 

Frequency distribution curve of the obtained NDCfI (Figure 6.4(a)) has been carefully 

analyzed. Thresholds have been set at 0.137-0.208 (starting of the toe of the histogram) and 

0.208-1.0 (major break in toe) for discriminating the low intensity surface fire and high 

intensity surface coal seam fire (Figure 6.4(b)). 

                                                           𝐍𝐃𝐂𝐟𝐈 =  
𝝆𝐁𝟖 − 𝝆𝐁𝟒

𝝆𝐁𝟖 + 𝝆𝐁𝟒
                                                      (6.2) 
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Figure 6.3 ASTER SWIR image of Jharia Coalfield, India showing surface coal fires sites that 

are appears as bright yellow patches on CIR composite on 8-6-4 band combinations.Key: (i) 

Shatabdi opencast, Barora (N 23° 47' 40.68"/E 86° 14' 46.68”), (ii) Sijua opencast (N 23° 48' 

9.80"/E 86° 19' 28.05"), (iii) Kusunda (N 23° 46' 1.11"/E 86° 23' 53.83"), (iv) Bokapahari (N 

23° 45' 10.25"/E 86° 25' 3.38"), (v) Kujama (N 23° 44' 2.38"/E 86° 26' 8.20"), and (vi) 

Sudamdih (N 23° 39' 14.7"/E 86° 26' 56.6") 
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Figure 6.4(a) Frequency distribution curve of NDCfI 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4(b) Zoomed portion of Figure 6.4(a). Thresholds have been set at 0.137-0.208 

(starting from the toe of histogram) and 0.208-1.0 (major break in toe) for discriminating low 

intensity smoldering and high intensity surface coal seam fires, respectively 
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Figure 6.5 Surface coal fire map of JCF (2008) prepared from NDCfI. Low intensity smoldering (yellow) and high intensity coal seam fires are 

represented in yellow and red over 3-2-1 ASTER CIR composite. Surface temperature obtained during field based observations in February, 2010 area is 

also shown 
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Table 6.2 Error matrix generated for the land cover classes produced from ASTER ratio indices 

 

 

 

 

 

 

 

Classified value Reference / Truth value 

Total 
User's 

Accuracy (%) Class name Surface fire Vegetation Water Coal Barren land 
Overburden 

dump 
Settlement 

Surface fire 12 0 0 0 0 0 0 12 100 

Vegetation 0 14 0 0 0 0 0 14 100 

Water 0 0 16 2 0 0 0 18 88.9 

Coal 0 0 0 13 0 0 1 14 92.8 

Barren land 0 0 0 0 12 0 0 12 100 

Overburden dump 3 0 0 0 0 10 1 14 71.4 

Settlement 0 1 0 0 1 3 9 14 64.3 

Total 15 15 16 15 13 13 11 98  

Producer's 

accuracy (%) 

80 93.3 100 86.7 92.3 76.9 81.8  87.7 
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6.5 RESULTS AND INTERPRETATION     

It has been observed that the precise thresholding of NDCI and NDCfI have distinctly 

segregated the coal seams associated with low intensity smoldering (yellow) and high surface 

intensity coal seam fires (red) in JCF (Figure 6.5). The obtained results reveal that the areas fall 

under the domains of Shatabdi opencast, Barora (N 23° 47' 40.68"/E 86° 14' 46.68”), 

Kantapahari (N 23° 48' 5.0"/E 86° 19' 6.0”), Sijua (Bansjora) opencast (N 23° 48' 9.80"/E 86° 

19' 28.05"), Kusunda (N 23° 46' 1.11"/E 86° 23' 53.83"), Bokapahari (N 23° 45' 10.25"/E 86° 

25' 3.38"), Kujama (N 23° 44' 2.38"/E 86° 26' 8.20"), Bhowra (N 23° 41' 58.4"/E 86° 23' 36.6") 

and Sudamdih (N 23° 39' 14.7"/E 86° 26' 56.6") are strictly under the high intensity surface 

fire. The fires are distributed mainly in eastern and SE part of the coal field with cumulative 

areal coverage of approximately 3.93 km
2
. Field observations carried out in JCF shows that the 

surface temperatures of the smoldering and high intensity surface fires range from 42.6°C to 

131°C and 217.0°C - 396.0°C, respectively (Table 3.5, see Chapter 3, Section 3.7.2). It has 

been observed that the low intensity surface fires (yellow) closely follow the pattern of 

excavated coal layers. These are nothing but very shallow to shallow subsurface fire with 

approximate spatial distribution of 3.7 km
2
. Exposed burning coal seams with high radiant 

intensity are classified as high intensity fire (red) and occupy area coverage of 0.23 km
2
. 

6.6 VALIDATION AND ACCURACY ASSESSMENT 

To obtain the ground truth information of different land cover classes, a field survey has 

been carried out around JCF using GPS and portable thermometer during February, 2011 

(Table 6.2). Reliability of the results was validated by computing an error matrix. An error 

matrix was generated by comparing test pixels (reference values) in the classified image with 

their corresponding location in the field. As land cover classes in JCF are highly dynamic in 

nature, it would be difficult to use field verified ground reference locations for the test pixels. 

In the present approach, 98 evenly distributed reference points have been selected on the 

ASTER data using visual interpretation and user‟s knowledge about the area, and different land 

covers have been classified with an overall accuracy of 87.7 % (Table 6.2). 

Spectral characteristics of overburden dump and settlements are closely associated with 

each other. Based on the accuracy assessment, it has been observed that the pixels attributed to 

overburden dump and settlement are difficult to discriminate. The user would only able to 

segregate these classes with 64.3 % and 71.4 % accuracy (user‟s accuracy) and only classify
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76.9 % and 81.8 % of all the pixels attributed to overburden dump and settlement. All the 

pixels attributed to surface fire are effectively segregated by NDCfI. However, discrepancy 

appears in producer‟s accuracy due to close association of fire in freshly excavated dumps lying 

in the vicinity of opencasts. Similarly, only 86.7 % of the entire coal pixel are classified as coal 

due difficulty in discrimination between coal and water.  

6.7 CONCLUSION 

Industrial and economic growth has an exponential relationship with sustainable 

production of coal. To facilitate the plan sustainable mining and socio-economic management 

for industrial growth, temporal monitoring of coal fires has to be executed at regular interval. 

Coal fires have actively influenced the land-use pattern of coal mine area. Although, automated 

techniques for mapping land cover types and coal fires have been effectively used but still 

found to be time consuming and considered infrequent to apply temporally. In the present 

study, the spectral differences between different land cover types have been observed and two 

new ratio indices namely, „Normalized Difference Coal Index (NDCI)‟ and „Normalized 

Difference Coal fire Index (NDCfI)‟ have been made using ASTER data for accurate mapping 

and localization of surface fire in coal mine area. Obtained Indices have been further 

interpreted to discriminate the coal and demonstrate the association of surface fire with exposed 

coal bed. From thresholding of spectral indices it has been clearly observed that the surface 

fires (i.e., both low intensity smoldering and high intensity fire) are located all around JCF and 

closely follows the pattern of excavated coal seams. Eastern and south-eastern part of the JCF 

covering areas around Barora, Kantapahari, Sijua (Bansjora), Kusunda, Kujama and 

Bokapahari are mainly affected by surface coal fires. Although, the methodology adopted in the 

present study is conservative and robust in nature but could have been frequent apply for quick 

retrieval and precise monitoring of coal fire at specific temporal intervals. 
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  CHAPTER 7 

TEMPORAL MONITORING AND DYNAMICS OF COAL FIRE 

IN JCF

 

7.1 INTRODUCTION 

Remote sensing techniques have been widely contributed in analyzing thermal 

phenomenon. It is cost effective, less time consuming and datasets available temporally for 

time series analysis. ASTER provides moderate spatial resolution data at high radiometric and 

temporal resolutions that holds great potential for effective mapping and monitoring of coal 

fires occurring worldwide (Wang, 2002; Tetzlaff, 2004; Martha et al., 2010). Utility of ASTER 

data for coal fire related studies have been discussed in details in the earlier chapters. But, even 

a moderate resolution satellite data like ASTER has certain limitation in monitoring thermal 

phenomenon like coal fires (Chapter 2, Section 2.3). Coal fires vary in dimension and occurring 

discrete patches over the surface. It can be only detected by the satellite sensor if its magnitude 

and intensity is large enough to enhance the per pixel radiant response than background. Large 

fires may cause the saturation of pixels. However, it is rarely possible to have such large fire in 

a coal mining area that can saturate ASTER TIR pixels. High radiometric and temporal 

resolution of ASTER TIR data also allows to detect even minor fluctuations in land surface 

temperature at regular interval. Such uniqueness facilitates the users to utilize ASTER data as 

obvious choice for mapping and monitoring of thermal phenomenon.   

Coal fire is the trio of socio-economic and environmental problem. Jharia Coalfield 

(JCF) in India is one of the densest congregations of coal fires. Coal fires in JCF are highly 

dynamic in nature. Rigorous mining activities and uncontrolled coal seam fires cause temporal 

variation in land use pattern around JCF (Prakash and Gupta, 1998; Chatterjee et al., 2007; 

Singh and Singh, 2009; Martha et al., 2010). Dynamics of coal fires poses serious threat to the 

local resident. Hence, detailed study and monitoring dynamics of coal fire is absolutely 

required for planning of sustainable coal mining and associated geo-hazards. Temporal 

monitoring of coal fires can help to decipher the propagation or movement direction of the 

underground coal fires. This would further facilitate to plan proper mitigation measures for 

controlling coal fires and rehabilitation of local residents.  
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In the present chapter, the prevalent and existing thermal anomaly extraction technique 

has been employed for temporal monitoring and qualitative analysis of coal fires in JCF. 

Relative pros and cons of extraction technique in view of their suitability for detailed mapping 

of the coal fires have been discussed earlier (Chapter 2, Section 2.3.1). Here, three sets of 

ASTER data from 2000 to 2009 have been used and temporal fluctuations in the spatial extent 

of coal fires in JCF have been precisely measured. All datasets have been integrated together 

and analyzed on GIS framework. Coal fires have been visualized in association with their 

geographical attributes in meaningful way. GIS can serve as an excellent decision-making tool 

in a coal-mining operation and for planning fire fighting operations (Prakash and Gens, 2010). 

In the present approach, three consecutive temporal maps showing changes in fire location have 

been prepared and spatial dynamics of coal fire in JCF for different periods from 2000 to 2009 

have been studied.  

7.2 METHODOLOGY OVERVIEW AND DATA ANALYSIS 

An overview of the methodology scheme followed in the present study is shown in 

figure 7.1. It involves acquisition, processing, analysis and interpretation of the satellite 

datasets for precise estimation of coal fire through time. Data from repetitive passes of ASTER 

(SWIR and TIR) spanning almost a decade have been used for the analysis (Table 4.3). In the 

present study, ASTER datasets of three consecutive years 2000, 2004 and 2009 have been used 

for delineating coal fire. ASTER SWIR data since April 2008 are not useable 

(https://lpdaac.usgs.gov). Hence, for detecting high intensity surface fire ASTER SWIR 2000, 

2004 and 2008 data is used. Datasets have been preprocessed as per the methodology and 

techniques discussed in Chapter 4, Section 4.5. Calibrated radiance emitted from the „hot 

ground features‟ in form of thermal anomalies have been effectively measured by the onboard 

satellite sensors. Measured radiant energy release has been subsequently used to obtain per 

pixel radiant temperature of the area from the Planck‟s function. Radiant temperature has been 

further utilized to compute pixel-wise temperature distributions of „Land surface temperature 

(LST)‟ using ASTER band 13 emissivity derived from TES algorithm (Chapter 4, Section 

4.5.3.1). Precise thresholding of the LST have been employed finally to delineate thermal 

anomaly and mapping of coal fires in JCF. In the present approach ASTER band 9 (SWIR) and 

band 13 (TIR) have been used for mapping of surface and subsurface coal fires in JCF. 
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Figure 7.1 Schematic diagram showing the data processing and methodology adopted for mapping and monitoring of coal fires in JCF 
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7.3 DETECTING THERMAL ANOMALY AND TEMPERATURE DISTRIBUTION 

DUE TO COAL FIRE  

Thresholding of sensors response for delineating thermal anomalies are the important 

aspect of thermal remote sensing. Several methods have been already carried out in recent past 

for thresholding of subtle surface thermal anomaly associated with underground coal seam fire 

using TIR data (Chapter 2, Section 2.3.1). In the present approach, the histogram showing 

temperature distribution curve of pixel integrated LST is carefully analyzed to set threshold for 

discriminating coal fire from non-fire area in JCF. Any value higher than selected threshold is 

attributed to the coal fires. These anomalous areas have been subsequently validated by field 

based observations carried out in JCF. Field observation has been also carried out at colliery 

level in JCF details of which have been discussed in Chapter 3, Section 3.7. In such a way, 

spatial distribution of surface-subsurface coal fire has been determined using SWIR and TIR 

datasets. Finally, a temperature distribution map for three year (2000, 2004 and 2009) is 

produced and potential variation in spatial extent of the surface-subsurface coal fire has been 

detected at temporal interval in JCF.  

7.4 DETECTION OF COAL FIRES IN JCF THROUGH TIME 

The present study has been carried out with an approach to evaluate the distribution of 

coal through time and space. For better observance at colliery level, whole JCF has been 

divided into three different blocks (block 1, 2 and 3) that have been subsequently subdivided 

into different colliery (Figure 7.2). Results obtained have been further studied and spatial 

distribution of the coal fire is assessed through 2000 to 2009 at colliery level. 

7.4.1 Spatial and Temporal Distribution of Surface Coal Fire  

Surface fires are relatively high temperature phenomenon of relatively local extent 

(Prakash and Gupta, 1999a). These can be fairly recognized on the basis of their variable 

spectral and textural characteristics as observed on the CIR composites of ASTER SWIR bands 

(Table 6.1). Different bands have different temperature sensitivity. Temperature sensitivity 

increases with the decrease in wavelength. Very high thermal phenomenon can be detectable 

with in bands operating within shorter wavelength region. ASTER SWIR band 9 operates in 

2.36-2.43 µm range at normal gain setting and has the capability to detect pixel integrated 

temperature ranges between 66°C-222°C. In the present study, the pixels with highest radiance 
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response have been carefully analyzed in SWIR band 9 and no saturated pixel (pixel with DN 

value of 255) was identified. Hence, ASTER SWIR band 9 has been preferably chosen to map 

coal mine surface fires since 2000, 2004 to 2008 (Figure 7.3). 

 It has been observed that high intensity surface coal fires are the exposed shallow 

subsurface coal seam fire. In 2000, majority of the surface fire is located WSW and SE of 

Baghmara, Block II Project colliery, east Barora colliery (Shatabdi opencast), Gondudih quarry 

near Sijua and Kusunda collieries, all along Alkusha-Kusunda-Kustor quarry located SE of 

kenduadih and near Bhagatdih. Spatial extent of the fire in Block II Project colliery and east 

Barora colliery was increased from 2000 to 2004. In 2004, a new fire was sighted near east of 

Godhar (Kusunda block) covering an area of 0.01 km
2
. Two highly intense zone of fire located 

near Bokapahari and NE of Lodna was significantly noticed from 2000 to 2004 in Bastacolla 

colliery (Figure 7.6, Table 7.1). 

In 2008, intense mining activities in Katras and Kusunda collieries exposed the very 

shallow subsurface fires occurring beneath. Fire in WSW of Baghmara was vanished and 

existed only in SE of Baghmara (Block II Project colliery) during 2008. Two major fires were 

spotted near Kantapahari and north of Alkusha quarry in Katras colliery covering an area of 

0.032 and 0.048 km
2
,
 
respectively. Surface fires have been also observed near Lodna-Tisra-

Bhulanbarai area and NW of Bhowrah-Patherdih area in Lodna and Eastern Jharia collieries, 

respectively. Spatial extent of the surface fire area has been significantly increased in Kusunda 

colliery from 2000 to 2008. In East Barora colliery (Shatabdi opencast) surface fire is quite 

persistent and increased in spatial extent from 0.019 to 0.064 km
2
 during 2000 to 2008 (Table 

7.1).    

7.4.2 Spatial and Temporal Distribution of Subsurface Coal Fire   

ASTER TIR data can detect the minor difference in spectral response and has been 

potentially used for temporal monitoring of coal fires in JCF. In the present study, coal fire map 

for three subsequent years has been produced and the status of coal fires has been observed 

through time and space. ASTER derived coal fire map of the JCF during 2009 is shown in 

figure 7.4.  
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7.4.2.1 Coal fire in Block 1 

 In Block 1, fluctuations in spatial extent of fire have been observed in East 

Barora and Govindpur collieries from 0.677, 0.907 to 0.727 km
2
 and 0.266, 0.474 and 

0.294 km
2

, respectively through 2000, 2004 to 2009 (Figure 7.5(a)-(b)). However, in 

Block II Project colliery, fire has been significantly decreased from 1.355 to 0.362 km
2
. 

Area affected by fire in Block 1 has been slightly varied from 2.468 to 2.54 km
2
 through 

2000 to 2004 and decreased to 1.383 km
2
 in 2008.  

7.4.2.2 Coal fire in Block 2  

 In Block 2, coal fires are mainly noticed in Katras, Sijua and Kusunda collieries. 

In 2000, fire existed only in Sijua and Kusunda collieries covering an area of 0.492 and 

0.244 km
2 

which have been decreased to 0.129 and 0.049 km
2

, respectively, in 2004 

(Figure 7.5(c)-(e)). A significant increase in areal extent of fire has been noticed in 2008 

where fire covers an area of 0.689 and 1.171 km
2 

located all around Alkusha-Kusunda-

Kustor area near SE of Kenduadih in Sijua and near Bhagatdih in Kusunda collieries, 

respectively. Kusunda colliery is the most affected by fire which has shown a 

significant increase from 0.496 to 1.171 km
2
 through 2004 to 2009, respectively (Figure 

7.5(c)-(e)).  

7.4.2.3 Coal fire in Block 3 

 As mentioned, Block 3 is the most affected part of JCF. Intense mining activities 

have been precisely noticed and fire is quite persistent all around these Kustor, Lodna 

and Bastacolla collieries. However, fluctuations in spatial extent of fires have been 

noticed through 2000 to 2009 (Figure 7.5(f)-(h)). In Eastern Jharia colliery, spatial 

extent of fire has been significantly decreased in west of Bhowrah from 0.341 to 0.090 

during 2000 to 2009. Block 3 has been significantly affected by the coal fire through 

2000 to 2009 with a persistent spatial extent of 2.5 km
2 

(Table 7.2).  
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Figure 7.2 Subdivision of JCF into three different blocks (Block 1, 2 and 3) and their subsequently colliery 



126 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 ASTER derived surface coal fire map showing spatial extent of high intensity coal mine fire in JCF during 2008. Colliery Result 

shows that the East Barora, Sijua, Kusunda, Kustor, Bastacolla, Lodna are the most affected collieries. Red and yellow represents the pixel 

integrated LST derived from ASTER 2008 data. 
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Figure 7.4 ASTER derived coal fire map of JCF (2009). Red and yellow represents the pixel integrated LST derived from ASTER 2009 band 13 

data. Surface temperature obtained during field based observations in February, 2010 area is also shown. 
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7.5 DYNAMICS OF COAL FIRE THROUGH TIME AND SPACE   

 Results obtained from the coal fire mapping in JCF reveals that the surface fires are 

highly sporadic in nature and occurred as discrete patches in majority of the places (Figure 7.6). 

Surface fires in JCF exhibits minor fluctuations in magnitude from 2000 to 2008 at colliery 

level (Table 7.1). In 2008, two new surface fires have been noticed near Kantapahari, in Katras 

colliery and north of Alkusha quarry in Katras colliery. Fire in Gondudih quarry, near Sijua 

Bansjora in Sijua and Kusunda collieries has diminished after 2000. Spatial extent of the 

surface fire in JCF has been increased by 8.6% since 2000 to 2004 and then decreased by 

14.66% from 2004 to 2008, respectively. 

 Majority of the area falls under the domains of Shatabdi opencast, Barora (N 23° 47' 

40.68"/E 86° 14' 46.68”), Sijua opencast (N 23° 48' 9.80"/E 86° 19' 28.05"), Godhar colliery, 

Kusunda (N 23° 46' 1.11"/E 86° 23' 53.83"), Bokapahari (N 23° 45' 10.25"/E 86° 25' 3.38"), 

Kujama (N 23° 44' 2.38"/E 86° 26' 8.20") are strictly under intense fire with cumulative areal 

coverage of 5.93, 5.53 and 6.19 km
2
 in 2000, 2004 and 2009, respectively, (Figure 7.7, Table 

7.2). Since 2000 to 2004, a minor decrease (6.74%) in coal fire has been observed. However, 

2009 is apparently marked by a substantial increase in coal fire area by 11.93%. In Block 1, fire 

area in all collieries has been decreased by 45.55% (1.157 km
2
) from 2004 to 2009. A new fire 

site with a spatial extent of 1.171 km
2
 has been noticed around Alkusha-Kusunda-Kustor area 

in Kusunda colliery. Katras, Sijua and Kusunda collieries of Block 2 are most affected and 

marked by a significant increase in fire area through 2004 to 2009. During the same period, an 

increase in fire area by 0.31 and 0.226 km
2
 has been also noticed in Kustor and Bastacolla 

collieries of Block 3. 

7.5.1 Structural Control of the Coal Fire Propagation 

 Jharia basin is structurally highly deformed. The area is marked by an intense system of 

faults and folded coal seams. Movement of the fire is estimated to be under structural control 

and has been well observed in the area around Kustor-Bastacolla-Lodna collieries. Coal fires 

are quite persistent in these three collieries. Temporal monitoring of coal fires (Figure 7.8) 

shows that the fire is significantly approaching toward Jharia township from NW to SE 

directions. Fire located east of Jharia (in Bastacolla colliery) and Jiyalgarh, Lodna (in Lodna 

colliery) is propagating into NNW and north direction toward Jharia, respectively, along the 

strike of the coal seam. Besides, fire located near Bokapahari and SE of Alkusha, near 
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Bhagatdih (in Kustor colliery) are propagating in south and SE direction heading toward Jharia 

(Figure 7.8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 Fluctuation in spatial extent of coal fires in some important collieries of JCF from 

2000 to 2009 



130 
 

 

Table 7.1 Spatial extent of surface coal fire in different blocks at colliery level in JCF from 2000 to 2008. „NF‟ stands for „no fire‟ in the colliery. 

Negative sign represent the decrease in surface fire area through time.  

Spatial extent of surface coal fire in different blocks at colliery level from 2000 to 2008 

Block Name Colliery Name 

Area of 

colliery        

(in km
2
) 

Surface fire area  

(in km
2
) 

Decrease / increase in 

the surface fire area 

from 2000 to 2004 

Decrease / increase in 

the surface fire area 

from 2004 to 2008 2000 2004 2008 

Block 1 

West Barora 5.81 NF NF 0.000 NF NF 

Block II Project 9.36 0.055 0.013 0.000 -0.042 -0.013 

East Barora 20.05 0.019 0.077 0.064 0.058 -0.013 

Govindpur 21.79 NF 0.012 NF 0.012 NF 

Western Jharia-I 33.7 NF NF NF NF NF 

Total area under surface fire in Block 1 90.72 0.074 0.090 0.064 0.016 -0.025 

Block 2 

Katras 14.41 NF 0.002 0.032 0.002 0.030 

Sijua 17.21 0.009 0.014 0.005 0.005 -0.009 

Western Jharia-II 21.57 NF 0.003 NF 0.003 NF 

Pootkee Balihari 16.19 0.003 0.006 0.002 0.004 -0.005 

Kusunda 14.31 0.016 0.010 0.048 -0.007 0.039 

Total area under surface fire in Block 2 83.69 0.028 0.035 0.087 0.007 0.052 

Block 3 

Kustor 13.47 0.062 0.095 0.053 0.033 -0.042 

Bastacolla 13.45 0.096 0.068 0.025 -0.028 -0.043 

Lodna 18.62 0.038 0.039 0.052 0.001 0.013 

Eastern Jharia 19.29 0.016 0.014 0.009 -0.003 -0.005 

Total area under surface fire in Block 3 64.84 0.212 0.216 0.140 0.004 -0.076 

Total area under surface fire in JCF 239.25 0.314 0.341 0.291 0.027 -0.050 
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Table 7.2 Spatial extent of coal fire in different blocks at colliery level in JCF from 2000 to 2009. „NF‟ stands for „no fire‟ in the colliery at 

respected year. Negative sign represent decrease in the coal fire area through time.  

Spatial extent of coal fire estimated by ASTER TIR datasets in different blocks at colliery level from 2000 to 2009 

Block Name Colliery Name 

Area of 

colliery  

(in km
2
) 

Coal fire area (in km
2
) Decrease / increase 

in the coal fire area 

from 2000 to 2004 

Decrease / increase 

in the coal fire area 

from 2004 to 2009 
2000 2004 2009 

Block 1 

West Barora 5.81 0.170 0.151 0.000 -0.019 -0.151 

Block II Project 9.36 1.355 0.992 0.362 -0.363 -0.630 

East Barora 20.05 0.677 0.907 0.727 0.230 -0.180 

Govindpur 21.79 0.266 0.474 0.294 0.208 -0.180 

Western Jharia-I 33.7 NF 0.016 NF 0.016 NF 

Total area under coal fire in Block 1 90.72 2.468 2.540 1.383 0.072 -1.157 

Block 2 

Katras 14.41 0.162 0.274 0.345 0.113 0.071 

Sijua 17.21 0.492 0.129 0.689 -0.364 0.561 

Western Jharia-II 21.57 0.023 0.022 0.106 -0.001 0.084 

Pootkee Balihari 16.19 0.040 0.022 0.041 -0.018 0.019 

Kusunda 14.31 0.244 0.049 1.171 -0.195 1.122 

Total area under coal fire in Block 2 83.69 0.961 0.496 2.352 -0.465 1.857 

Block 3 

Kustor 13.47 0.334 0.266 0.575 -0.068 0.310 

Bastacolla 13.45 0.907 0.517 0.744 -0.389 0.226 

Lodna 18.62 0.919 1.268 1.044 0.350 -0.224 

Eastern Jharia 19.29 0.341 0.445 0.090 0.104 -0.355 

Total area under coal fire in Block 3 64.84 2.500 2.497 2.453 -0.003 -0.044 

Total area under coal fire in JCF 239.25 5.93 5.53 6.19 -0.400 0.660 
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Figure 7.6 Colliery-wise distribution of spatial extent of coal mine surface coal fires in JCF during 2000 to 2008 
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Figure 7.7 Colliery-wise distribution of spatial extent of coal fires in JCF during 2000 to 2008 
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7.6 CONCLUSION 

Systematic investigation of actual scenario of coal fire is always been a critical issue for 

coal fire research community. Coal fires in JCF causes tones of coal loss by burning and 

actively contributed to the instability in the area from safety point of view. Systematic 

investigations of coal fires are essentially required to facilitate sustainable mining and safety 

management in Jharia, In the present approach, three sets of ASTER data have been used for 

quick retrieval of status of coal fires in JCF through time.  

Coal fire in Jharia is highly dynamic in nature. It has been noticed that the magnitude of 

fire in JCF has been fluctuated with cumulative areal coverage of 5.93, 5.53 and 6.19 km
2
 from 

2000, 2004 to 2009, respectively (Figure 7.9(a)-(b)). Spatial extents of coal fires in JCF are 

quite persistent in Block 1 and 3 since 2000 to 2004. From 2004 to 2009, considerable decrease 

of 1.157 km
2
 in the magnitude of fire has been noticed in the collieries (west and east Barora, 

Block II Project and Govindpur) located western most part (Block 1) of the JCF. It is observed 

that the west-central part (Block 2) of the JCF comprising Katras, Sijua, Western Jharia-II and 

Kusunda collieries are most affected and marked by a significant increase in fire area of 1.857 

km
2 

from 2004 to 2009. This remarkable increase in spatial extent fire is due to the appearance 

of new fire site located south of Kusunda and north of Alkusha in 2009. Since 2004, spatial 

extent of the fire exclusively in Kusunda colliery is increased by 1.122 km
2
. Fire is quite 

persistent with minor increase in Kustor, Bastacolla and Lodna collieries located south and 

south-eastern part (Block 3) of the JCF.   

Local heating and volume reduction due to the burning coal seam results in the development of 

fracture and crack system on the overlying bed rock. Aided together with the conjugate system 

of faults, excessive mining activity further exposes the coal seams to oxygen influx that 

accelerate the fire movement. Structural control of the dynamics of coal fire has been also 

evident in coal fire map of 2004 and 2009. Propagation of the fire has been well spotted in 

Kustor, Bastacolla and Lodna collieries. Coal fires were quite persistent in these three collieries 

and fire appears to be moving toward Jharia. In 2009, it has been observed that the fires located 

near east of Jharia (in Bastacolla colliery) and Jiyalgarh, Lodna (in Lodna colliery) are 

propagating in NNW and north direction toward Jharia, respectively. Besides, fires located near 

Bokapahari and SE of Alkusha (in Kustor colliery) are propagating in south and SE direction 

heading toward Jharia. Both these fire have been observed to be moving along the strike of coal 
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seam. Fire located SE of Alkusha (in Kustor colliery) may also under control of two NW-SE 

trending faults causing propagation of fire toward south and SE.  

Figure 7.8 Dynamics of coal fire in Kusunda-Kustor-Bastacolla-Lodana collieries in JCF. Map 

shows that the fires located near east of Jharia (in Bastacolla colliery) and Jiyalgarh, Lodna (in 

Lodna colliery) are propagating in NNW and north direction toward Jharia, respectively. 

Besides, fires located near Bokapahari and SE of Alkusha (in Kustor colliery) are propagating 

in south and SE direction heading toward Jharia  
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Figure 7.9(a)-(b) Fluctuation in the magnitude of surface and subsurface coal fire in JCF from 

2000 to 2008 and 2000 to 2009, respectively 

Problem of coal fire is still persisting in JCF. Local villages and inhabitants lying in the 

vicinity of Jharia township are on the verge of major devastation. Status of the fire is 

demanding some firm measures to control them. Although, the methodology adopted in the 

present study is conservative and robust in nature but it would provide precise evaluation and 

monitoring of coal fire through time and space. 
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  CHAPTER 8 

SUMMARY AND CONCLUSIONS

 

Indian coal mines, particularly the Jharia Coalfield is one of the most disaster prone 

industries which has witnessed numerous severe accidents leading to repeated loss of life and 

valuable energy resources. Because of holding high rank coal of sub-bituminous to bituminous 

range, this coalfield has now became one of the densest congregations of surface-subsurface 

coal fires in the world. To analyze these surface-subsurface coal fires, systematic studies have 

been carried out in the present research by developing suitable methods for mapping and 

monitoring of coal fires using remote sensing techniques. The attempts made here are mainly 

emphasized on developing a novel approach for thresholding and mapping of surface coal fires, 

and monitoring spatial dynamics of coal fires in JCF between 2000 and 2009. The datasets 

utilized in the present approach constitute time series L1G Landsat TM/ETM+ and L1A 

ASTER data. All datasets have been first pre-processed for necessary corrections using sensors 

calibration and then analyzed together with ancillary and field data as per the objectives of the 

present research.  

Surface fires are common in coalfields. Such features are sporadic in nature and vary in 

spatial extent from few meters to tens of meters. These high intensity surface fires can be 

potentially detectable in SWIR bands. However in the absence of any specific method for 

thresholding of SWIR data, mapping of surface fires have not been targeted earlier. In the 

present approach, an innovative technique named „The maximum solar reflection threshold‟ 

method has been proposed to segregate the pixels attributed to the surface fires. The method 

uses the highest spectral radiance that can be attributed to solar reflection as the conservative 

threshold to segregate the pixels emitted component from those with reflected component of 

the EM energy. The method has been applied on Landsat TM/ETM+ band 7 datasets to isolate 

the fire pixels. Investigating the maximum solar reflection on barren exposures in different coal 

mining areas indicated that a reflectance value of 0.23 to 0.25 was the most representative 

reflectance threshold in coal mining areas. A comparison of the threshold values observed in 

terms of DN value and maximum background reflectance percentage values for all datasets of 

different geographical setting (India and China) was carried out. The threshold in terms of DN 

values varies from 62 to 93, whereas the same in terms of reflectance ranges from 0.23 to 0.27. 

Thus, there is a high variability when threshold is considered in terms of DN values; on the 
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other hand, when the threshold is sought in terms of computed reflectance, there is a greater 

consistency and uniformity in various datasets irrespective of scene, topography, season or 

month. The results obtained from the analysis clearly indicate that the 0.25-0.27 reflectance 

threshold appears to work well for tropical as well as temperate regions and may be considered 

as a reasonable threshold for isolating fire pixels using this type of SWIR data. 

Despite its conservative nature, the maximum reflectance threshold technique for SWIR 

data provides a practical way to segregate pixels with definitely fire, has the advantage that it is 

based on physical processes controlling reflectance of typical material types found in coal 

mining areas and appears applicable in a wide range of geographic settings, and the method 

should be repeatable without introducing a user-bias.  

Surface coal mine fires are highly dynamic in nature and invariably associated with land 

use pattern around the coal mine area. To facilitate plan sustainable mining and socio-economic 

management, temporal monitoring of coal fires has to be executed at regular interval. In the 

present approach, a novel methodology have been introduced that may implemented frequently 

to access the status of surface coal fires. Methodology involves the formulation of two new 

ratio indices namely, „Normalized Difference Coal Index (NDCI)‟ and „Normalized Difference 

Coal fire Index (NDCfI)‟ based on the spectral differences between different land cover types 

derived using ASTER data. The methodology has been systematically implemented in JCF as 

test site for accurate mapping and localization of surface fire. The obtained Indices have been 

further interpreted to discriminate the coal and demonstrate the association of surface fire with 

exposed coal bed.  

Precise thresholding of the NDCI and NDCfI distinctly segregate the coal seams 

associated with the pixels attributed to low intensity smoldering fires and high intensity coal 

seam surface fires. The outcome of the surface fires assessment map indicated that the surface 

fires closely follow the pattern of the excavated coal seams and distributed mainly in eastern 

and SE part of the coal field with cumulative areal coverage of approximately 3.93 km
2
. Out of 

this cumulative coverage of 3.93 km
2
, a major portion of approximately 3.7 km

2 
is covered by 

low intensity smoldering surface fires. Field observations reveal that these low intensity 

smoldering fires are nothing but very shallow to shallow subsurface fire. Areas fall around the 

domain of Barora, Kantapahari, Sijua (Bansjora), Kusunda, Kujama and Bokapahari are strictly 

under high intensity surface coal fires represented by exposed burning coal seams and occupy 

spatial coverage of 0.23 km
2
.  
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The obtained surface fire map closely represents the real scenario of surface coal fires in 

JCF. Although, the discussed methodology is conservative and robust in nature but could have 

been frequent apply for quick retrieval and precise monitoring of coal fire at specific temporal 

intervals. The methodology adopted will surely help in better categorization and localization of 

surface coal fires affected areas of the JCF. 

Coal fires in JCF cause tons of coal loss every year in JCF. Fire once started can 

propagate along the coal seams. While moving, fires consume the underground coal seams and 

actively contribute instability in the area by sudden subsidence. Due to this reason, systematic 

investigation and quantification of actual scenario of coal seam is always been a critical issue 

for coal fire research community. Recent advancement in specifications and availability of 

satellite data at high temporal resolution allow to evaluate the spatial dynamics and trend of 

coal fire propagation. Such investigation can be assess by time series analysis that may help to 

execute sustainable mining activity in a coal mine area. Hence, in the present study, three sets 

of ASTER time series data have been used for evaluation of coal fires in JCF through time.  

Coal fire maps of the three consecutive years suggested that the fires in Jharia are highly 

dynamic in nature. In JCF, areas around Shatabdi opencast, Barora, Sijua opencast, Godhar 

colliery, Kusunda, Bokapahari, Kujama and Lodna are strictly under intense fire with 

cumulative coverage of 5.93, 5.53 and 6.19 km
2
 in 2000, 2004 and 2009, respectively. Since 

2000 to 2004, a minor decrease (6.74%) in coal fire has been observed. However, 2009 coal 

fire area is apparently marked by a substantial increase of 11.93%.   

It has been noticed that the magnitude of fire in JCF has been fluctuated with time from 

2000 to 2009. Spatial extents of coal fires in JCF are quite persistent in Block 1 and 3 since 

2000 to 2004. From 2004 to 2009, coal fires located in the western most part of the JCF has 

been significantly decreased by 1.157 km
2
 in west and east Barora, Block II Project and 

Govindpur collieries located in Block 1. It is observed that the west-central part (Block 2) of 

the JCF comprising Katras, Sijua, Western Jharia-II and Kusunda collieries are most affected. 

During the same period i.e. from 2004 to 2009, a major fire site has appeared in south of 

Kusunda and north of Alkusha that significantly increases the spatial extent of coal fire in 

Block 2 by 1.857 km
2
. Spatial extent of the fire in Block 3 is quite persistent through 2000 to 

2009. However, a minor increase fire in Kustor, Bastacolla and Lodna collieries located south 

and south-eastern part (Block 3) of the JCF has been precisely noticed.   
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Using GIS, coal fire maps of three consecutive years (2000 to 2009) have been overlay 

together with structural data to assess the systematic analysis of coal fire propagation in JCF. 

Structural control of the coal fire dynamics has been well evaluated in Kustor, Bastacolla and 

Lodna collieries of JCF. Fire appears to be moving toward Jharia. In 2009, it has been observed 

that the fires located near east of Jharia (in Bastacolla colliery) and Jiyalgarh, Lodna (in Lodna 

colliery) are propagating in NNW and north direction toward Jharia, respectively. Besides, fires 

located near Bokapahari and SE of Alkusha (in Kustor colliery) are propagating in south and 

SE direction heading toward Jharia 

ASTER derived results showed that the remote sensing is a relatively cost-effective and 

high-frequency tool to observed regional mapping and monitoring of coal fires. Satellite 

derived data of 2009 has been subsequently validated by the field observations carried out in 

JCF during February and December 2010. Field surveys suggested that the area exposed around 

East Barora, Katras, Sijua, Kusunda, Kustor, Bokapahari, Bastacolla and Lodna collieries are 

significantly affected by coal fire. Precise observation and recognition of coal fire help to 

support the investigation and results obtained from satellite data. 

8.1 LIMITATION OF THE STUDY 

(a) Thermal anomalies generated at the surface are the function of depth and spatial extent 

of fire. Heat generated by high intensity fire occurring at great depth may not high 

enough to produce thermal anomaly at the surface similarly small but high intensity 

surface fire can saturate the low spatial resolution TIR pixel. Thus, precise mapping of 

coal fires require careful selection of accurate threshold temperature „value‟. Thermal 

images of different seasons require different threshold to map coal fires. Statistical 

method of thresholding can effectively delineate the fire from non-fire area. However, 

better results can be obtained when threshold is set using field based informations.  

(b) The proposed „Maximum reflectance threshold‟ method is conservative and may lead to 

the missing out some small sub-pixel fires whose emitted spectral radiance is in the 

same range as the background solar reflected radiance. 

(c) Mine dumps located in the vicinity of the large opencasts are affected by very low 

intensity smoldering fire. Such dump fires are perceived automatically by coarse 

resolution TIR satellite datasets, and often misinterpreted and mapped as „coal fire‟ in 
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coal mining area. These „misinterpreted coal fires‟ have to be carefully analyzed and 

must not be considered „actual coal fire‟. 

(d) SWIR bands have significant contribution of solar heat flux and, sensitive to both solar 

reflected radiation and blackbody radiation emitted by fire. Separate retrieval of the 

spectral response of solar heating and emission component recorded in SWIR channel is 

highly complicated. Radiant intensity response of SWIR data may produce unevenly 

distributed thermal data that would have resulted in uncertainty obtained in temperature 

image. Hence, SWIR data has not been significantly used for coal fire related studies.  

(e) Land use pattern are invariably associated with coal mine activity and changes 

frequently due to intense mining. Rigorous mining activities expose the shallow 

subsurface fires to the surface. At places, surface-subsurface fires may control or sealed 

by several methods. Thus, date and season of the data acquired and field work should 

have been plan precisely for better validation of the results.  

(f) Coal fire affected areas are often inaccessibly. Surface fire sites at places exhibits 

temperature of more than 400°C. Moreover, surface fires are also closely associated 

with the zone of subsidence. Due safety related issues, it would be highly dangerous to 

go closer to the fire zone for field based measurements. Hence, the field based 

measurements are mainly the close approximation of coal fires.    

8.3 RECOMMENDATIONS AND SCOPE FOR FUTURE WORK 

(a) Data obtain from field surveys are the essential component of the coal fire related 

studies. Without understanding of the actual scenario of the coal fires in field, precise 

evaluation and quantification of coal fires cannot be estimated. It would be advised to 

plan ground based observation at the locations where characteristics of coal fires can be 

fully explored.  

(b) Coal fires are highly complex multivariable dependent system. With recent 

advancement in the available technologies, the coal fire related researches are needs to 

be progress with interdisciplinary approach. To better infer the dynamics of coal fires at 

subsurface level, the techniques of numerical modeling may have consider. Model of 

subsurface heat flow and temperature distribution due to coal fire can be simulated with 

suitable inputs from mechanical processes, geological data and thermal borehole log 

etc. Such information can accurately evaluate the dynamics of coal fires more close to 
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the reality. However, detailed study of coal fire using integrated approach is beyond the 

scope of remote sensing.  

(c) Land subsidence zone are closely related to the thermal anomalies. Land subsidence 

studies have been well observed using DInSAR technique in many parts of the world. 

Hence, it would also be advisable to carry out land subsidence related studies in the 

JCF.  

Problem of coal fire is still persisting in JCF. Local villages and inhabitants lying in the 

vicinity of Jharia township are on the verge of major devastation. Status of the fire is 

demanding some firm measures to control them. Maps and techniques proposed in the present 

research help in the better understanding of the coal fires and in disaster monitoring and 

management. The methodology adopted in the present study is conservative and robust in 

nature but it would provide precise evaluation and monitoring of coal fire through time and 

space. This may helps in planned sustainable mining for industrial growth and environmental 

remediation on a long term basis. 
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