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ABSTRACT

Magnetotelluric (MT) method is a passive source method used to delineate the

subsurface conductivity structure of earth. Natural electromagnetic waves in the

frequency range 10−5 Hz - 104 Hz are used as source fields. The horizontal electric

and magnetic field components are measured at the earth’s surface and analyzed

to infer electrical resistivity distribution in the earth’s interior. The two orthogonal

horizontal electric field components are linearly related to the two horizontal magnetic

field components through appropriate transfer function (Cagniard [23],Tikhonov [142]).

The objective of the present study is to understand the mathematical, physical

and numerical aspect of 3D MT inversion leading to an efficient 3D inversion software,

3DINV FD, for magnetotelluric data. The estimation of model parameters from

the physical fields, measured on earth surface, is termed as an inverse modeling. In

magnetitelluric method, the earth is parameterized in terms of electrical resistivity

which is of special significance as it carries information about the lithology, pore

fluid, temperature and chemical variations. As the EM field is a non-linear function

of subsurface resistivity distribution, the inverse problem is also non linear in

nature. In the present work, the inverse problem is quasi-linearized and then solved

iteratively. The inverse problem is solved using Gauss-Newton with conjugate gradient

method. For each inversion iteration, a new forward problem, yielding the response

of current resistivity model and several pseudo forward problems, for Jacobian matrix

computations, are solved. Therefore, an efficient forward modeling algorithm is a

prerequisite for an inversion algorithm.

The mapping of model parameters to measured fields is known as a forward
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modeling. For generation of MT response, a boundary value problem is solved

analytically or numerically. However, for the problems involving complex geometries

one has to seek numerical solutions. Due to its simple mathematics and easy

implementation, staggered grid finite difference method (FDM) has been chosen

over other numerical techniques for solving the MT boundary value problem. The

FDM results in a matrix equation, which is then solved using Bi-Conjugate Gradient

Stabilized (BICGSTAB) with DILU preconditioner to compute the MT response.

The quasi-linearization of non-linear problem results in a matrix equation which

is solved using Conjugate Gradient (CG) method, a semi-iterative matrix solver that

dispenses with the necessity of explicit computation of Jacobian matrix. The initial

guess is made on the basis of observed anomaly and other a priori information.

The inversion algorithm 3DINV FD is the culmination of research that started

with the development of a primitive algorithm. The algorithm has been written in

FORTRAN 90 language and implemented on an Intel Core i7 3.6 Ghz machine with 4

Gbyte of RAM.

3DINV FD comprises 6887 lines having 44 subroutines and works in double

precision arithmetic. The main program has two basic modules - Forward and Inverse.

Its special efficiency features which result in cost effectiveness are - (i) Optimal

computational parameters for static divergence correction, (ii) BICGSTAB with DILU

preconditioner, which results in fast convergence, (iii)Gaussian noise addition to

synthetic data, (iv) Computation of multi frequency response in parallel using OpenMP,

(v) Use of logarithm of resistivity to ensure positive values of estimated parameters,

(vi)In-built computation of regularization parameter and (vii) CG matrix solver for

inverse problem. Besides being efficient, 3DINV FD is versatile on account of its
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features like (i) Inversion of field/synthetic data, (ii) Error free/erroneous synthetic

data and (iii) Inversion of profiling/sounding data.

For establishing the validity of forward modeling algorithm, the published results

of various models have been reproduced. The validity of the inversion algorithm

3DINV FD is established by inverting the synthetic data generated from different

models. To ensure the stability of the algorithm the inversion is performed after adding

the Gaussian noise to the synthetic data. Furthermore, to demonstrate the robustness

of the algorithm, the data generated from ModEM algorithm (Kelbert et al. [61])

has been inverted successfully. The synthetic experiments designed to understand

the effect of number of sites and their distribution on the inversion, suggest that

accurate resolution of the anomalous body data should be acquired along straight

profiles whenever possible. And the a priori information about the target body should

be taken into account for optimal site selection.

The results of various experiments and inversion of synthetic have established the

veracity of the algorithm and also amply displayed the capabilities of the inversion

algorithm. Also discussed, is the possible scope of future work in various directions for

its upgradation.
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Chapter 1

INTRODUCTION

1.1 Magnetotellurics

Magnetotellurics(MT) as a method of electromagnetic imaging of the Earth was

first introduced in 1950’s (Tikhonov [142], Cagniard [23]). The MT method is a

natural(passive) source method and uses the natural variation of the electric(telluric)

and magnetic fields over a wide range of periods as source. These fields are generated

in ionosphere and magnetosphere due to the interaction of solar winds and near-earth

plasma with the Earth’s magnetic field. More details about the MT sources are

discussed next.

1.1.1 Source

The electromagnetic fields used as source in MT method is generated mainly by two

major processes(Simpson and Bahr [123]):

1. The electromagnetic waves above 1 Hz are generated by thunderstorm activity.

The waveguide formed between the ionosphere and earth’s surface, partially

trap the electromagnetic waves generated by individual lightning strokes. These
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trapped waves can travel long distances and the lightning somewhere in the world

is enough to provide a continuous source at any location of the earth’s surface.

The measured field at the earth’s surface is a superposition of waves generated

from individual lightnings and as long as the measurements are far away from the

individual thunderstorms this superposition can be considered as a plane wave.

2. Solar wind consists of ionized particles flowing radially outward from the sun.

These ionized particles are deflected by the earth’s magnetic field at the outer

region of the magnetosphere and are guided around the earth to the far tail, along

the magnetic field lines. When moving around the earth they distort the earth’s

magnetic field and generate their own field. The variations of these external

magnetic fields can be measured at the earth’s surface. The typical frequencies

of these variations are from about 10−5 to 1 Hz.

Both of the above source mechanisms create small, but measurable, time-varying

electromagnetic signals. The problem is that the amplitudes of these signals vary

considerably, which means that data have to be acquired for hours or even days at one

MT site to ensure sufficient signal strength at all frequencies of interest.

1.1.2 Applications

As MT method uses fields over a wide frequency range from 10−5 to 104 Hz, the depth

of investigation ranges from 10 m to up to 200 km. Due to large depth of investigation

MT is used for a variety of applications, such as
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1. Deep crustal/mantle and geoelectric investigation

Magnetotellurics is widely used to study the deep crustal structure and its electric

properties in different regions of the world. Bhattacharya and Shalivahan [15] and

Shalivahan and Bhattacharya [122] resolved the crust–mantle Moho boundary

over the Eastern Indian (3.3 Gyr) and Slav (4.03 Gyr) cratons and observed

that upper mantle beneath these two cratons cannot be of pure olivine. Manglik

et al. [76], applying 1-D joint inversion to seismic and MT data from a segment

of the Kuppam- Palani geo-transect in the Southern Granulite Terrain (SGT)

suggested a velocity of 5.45 km/s for low velocity and electrically conducting

mid-crustal layer. The study also showed the presence of a 60 km thick sub-crustal

layer below which the resistivity decreases to about 100 Ω-m. Patro et al. [103]

observed that the basalt cover, below the flood basalts in the Deccan Volcanic

Province, have an average thickness of 400 m with the exception of central parts

of the profile where it reaches up to 700 m. The crust is in general highly

resistive, but several subvertical zones of enhanced conductivity were delineated

in the middle-to-lower crust. Patro and Egbert [104] delineated the extensive

areas of high conductivity in the lower crust beneath all of southeastern Oregon,

and beneath the Cascade Mountains, contrasting with very resistive crust in

Siletzia and the Columbia Embayment. Significant variations in upper mantle

conductivity were also observed, with the most conductive mantle beneath the

Washington backarc, and the most resistive corresponding to subducting oceanic

mantle. Patro and Harinarayana [105] reported that the MFT and MBT zones

are expressed by a conductive feature of about 10–40 Ω-m indicating, the presence

of Siwalik molasse sediments of Gangetic foreland basin. An anomalously high
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conductive (2–5 Ω-m) region in the crust in the depth range of 3–15 km was also

reported to the north of MBT. Arora et al. [3] observed that the Indus Tsangpo

Suture, as a sub-vertical conductive structure, dips northeast and merges with a

mid-crustal conductor. A north dipping zone of low resistivity was also reported

at the top of the underthrust Indian Plate.

In literature there are many other references available where MT method has been

used for studying the crustal structure of earth, e.g., Kumar and Manglik [63],

Rawat et al. [109], Tezkan [139], Brasse and Soyer [18], Brasse et al. [17], Lezaeta

et al. [68], Habibian et al. [47], Manglik and Verma [77], Berdichevsky et al. [14],

Bubnov et al. [22, 21], Gurk et al. [44], Lahti et al. [65], Hill et al. [53], and

Miglani et al. [84].

2. Geothermal studies

In Bakreshwar region of West Bengal geothermal study was done by Sinharay

et al. [124]. they reported two conductive zones of about 100 ohm-m and 15

ohm-m at a depth of about 8 km and 12 km respectively and thicknesses of

these two conductive zones are 2.3 km and 3.4 km respectively. Various other

researchers e.g., Cumming and Mackie [30], Heise et al. [51, 50], Jones et al. [57]

and Newman et al. [94] have also used MT for geothermal studies.

3. Environmental studies

Tezkan et al. [140] used the radio magnetotellurics and transient etectromagnetics

to study the waste deposit site in Cologne (Germany) and observed that due

to the highly conducting waste deposit only the top of the waste site ( -5 m)

and the lateral boundary of it could be resolved. By interpreting transient

electromagnetic data on the same profile, they reported the lower boundary of
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the waste deposit at a depth of 20 m. The industrial and domestic waste sites

in Hermsdorf and Mellendorf were investiagated by Tezkan et al. [141] using

radiomagnetotelluric method and they showed that the radiomagnetotelluric

technique is a powerful tool for waste site exploration.

4. Mineral exploration

3D MT inversion have been used in the field of oil and mineral exploration by

Farquharson and Craven [34], Tuncer et al. [145] and Türkoǧlu et al. [146].

1.2 Interpretation MT Data

The process of deducing the right message from the observed data is termed as

data interpretation, a word which aptly implies its indeterminate nature. With

reference to geophysics, the data interpretation is a two step procedure. The first step

involves quantitative interpretation where physical earth parameters are estimated from

observed data. This is followed by the second step, wherein, the obtained geophysical

model is translated in terms of meaningful geology and the success in the endeavor

depends upon a proper appreciation and balancing of all the physical and geological

factors.. Thus, the whole process of retrieving a reasonable geological structure from

observations is called geophysical data interpretation. For quantitative interpretation,

it is assumed that there is a specific physico-mathematical theory that relates the

model parameters (numerical values/statistics of the specific properties) to the data.

The mapping from model to measured fields based on relevant physical laws, a model

and a set of specific conditions relevant to the problem, is termed as ’direct’ or ’forward

problem’. In contrast, the mapping from measured data to the model parameters using

general principles is termed as ’inverse problem’. Thus, quantitative interpretation of
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data is an inverse problem and its solution is obtained through inverse theory.

Geophysical inverse problems are usually ill-posed and as such their solutions are

inherently non-unique (Backus and Gilbert [9], Tikhonov and Arsenin [143]). The

ill-posedness is caused by inadequate and insufficient data or sometimes by invalid

assumptions used in defining the solution space of possible models. The non-uniqueness

arises due to the existence of an infinite number of models which may explain the data

within the limits set by the accuracy of measurements. In addition, ill- conditioned

system having erroneous data lead to instability that is prone to get amplified during

inversion. The problem is further compounded by non-linearity that is inherent in

the mathematical relations describing the physical experiment. These problems are

regularized by replacing the ill-posed problem by an equivalent well- posed problem.

This replacement yields a stable, albeit approximate solution possessing essential

features of the exact solution.

The present study deals only with the first step of data interpretation, i.e.

quantitative interpretation. The literature of electromagnetic modeling can be

classified into two categories: (i) developments in forward modeling algorithm and

(ii) developments in inversion algorithm. The progress in the development of

three-dimensional(3D) MT forward modeling and inversion has significantly increased

in the last few decades. This progress is driven by the fact that there is ambiguity in

two-dimensional interpretation (Siripunvaraporn et al. [131], Ledo [66], Simpson and

Bahr [123] and Newman et al. [96]) and increasing number of 3D MT data acquisition.

A brief review of literature for these two classes is presented here.
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1.2.1 Forward Modelling

In forward modeling the physical properties of the model(conductivity distribution,

frequency, etc) is taken into consideration to compute the variations of the

electromagnetic fields on and in the earth model. There are three basic numerical

techniques which are commonly used for 3D MT forward modeling namely

1. Integral Equation Method (IEM)

In this method Maxwell’s equations are first reduced to second-kind Fredholm’s

integral equation. The main advantage of this method is that only anomalous

part is discretized. This method has been used for three-dimension modeling by

different developers (Hohmann [54], Wannamaker [152], Xiong and Tripp [160],

Avdeev et al. [7], Zhdanov et al. [169], Gribenko and Zhdanov [42] and Gribenko

et al. [41]). This reduces the size of matrix A but the matrix is dense and full.

It is a tedious task to solve this full matrix rather than sparse ones. Due to

non-availability of efficient algorithms for computation of Green’s functions in

other cases, the use of IEM is limited to confined targets buried in layered earth.

2. Finite Element Method (FEM)

It is believed that it can give accurate geometry because in the method EM fields

are decomposed into some basic functional (edge, nodal). Due to this fact the

structure of the matrix is complex and we have to make extra efforts to solve it.

This method had been implemented by different developers (Hohmann [54], Rodi

[111], Reddy et al. [110], Badea et al. [10], Mitsuhata and Uchida [86], Nam et al.

[90], Farquharson and Miensopust [35] and others). This method results in a

large complex and sparse system matrix.
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3. Finite Difference Method (FDM)

This method is commonly used for solving Maxwell’s equations. In this method

a rectangular grid is used, although we can use fixed or staggered grid. Complete

fixed grid solution for modeling was given by Weaver [157], who used triangular

grids using finite difference, but this makes the system matrix more complicated.

In fixed grid, E and H field values are defined at the same point. The staggered

grid proposed by Yee [162] is widely used for EM forward modeling, in which

electric field is calculated at the centre of the edge of the block and magnetic field

is calculated at the centre of the block or vice-versa. In case of staggered grid

the electric field components and the magnetic field components are continuous

on the edges and the faces of the homogeneous prisms respectively or vice-versa.

For 3D case, staggered grids yields more accurate results than obtained using

fixed grid. Various developers e.g. Mackie et al. [73, 74], Mackie and Madden

[72], Smith [133, 134], Wang and Fang [151], Newman and Alumbaugh [92], Sasaki

[118], Siripunvaraporn et al. [129], Fomenko and Mogi [37], Streich [135] and

Yan et al. [161] have implemented FDM using staggered grid for calculating

three-dimensional response. Mackie et al. [74] calculated H field values from

model and E field values was calculated using curl of H. FDM results in a large

complex, sparse and symmetric and non-hermitian system matrix. The main

advantage of FDM over FEM is its simplicity to implement and iterative solvers

for FDM are more efficient compared to those used for FEM.

For a more comprehensive study of three-dimension modeling from theory to

application reader is advised to refer Avdeev [4], Börner [16].
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1.2.1.1 Matrix Solver

Every numerical method transforms the forward problem to a linear system of equations

which are solved with the help of a matrix solver. For differential equation methods

(FEM and FDM), the iterative solvers are preferred over direct solver because these

solvers need less memory and computation time. Direct solvers may be efficient if

solutions for multiple righthand side vectors are needed for same system matrix like

in case of controlled-source electromagnetic (Streich [135]). However, in case of MT,

system matrix is different for each frequency. The iterative solvers based on Krylov

subspace method are widely used in MT forward modeling. These methods require

matrix-vector multiplication which is easy to compute particularly because differential

equation methods produce a very sparse system matrix. Since the system matrix

is complex and non-hermitian, for solving such a linear system, some of the popular

iterative solver are the generalised minimal residual (GMRES) (Saad and Schultz [115]),

quasiminimal residual (QMR) (Freund and Nachtigal [39]) and biconjugate gradient

stabilised (BICGSTAB) (Van der Vorst [149]).

These methods differ in both memory requirements, number of computations in each

iteration and robustness. GMRES is a well-known Arnoldi-based method proposed by

Saad and Schultz [115]. This method leads to a non-increasing sequence of residual

norms and, therefore, it always guarantees smooth and monotonically decreasing

convergence, which may not necessarily be fast enough. This method requires

one matrix-vector multiplication per iteration. The main disadvantage of GMRES

is its large storage requirement because the solver stores all previously-generated

Arnoldi vectors. To over come this issue some modification has been proposed

as restarted-GMRES and hybrid GMRES. QMR (Freund and Nachtigal [39]) and
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BICGSTAB (Van der Vorst [149]) are two Lanczos-based methods. These methods

require relatively less memory which does not very during iterations. The number of

iterations needed to converge for all three solvers may be approximately of the same

order, however, the amount of work per iteration differs. Whereas GMRES needs

one matrix-vector multiplication per iteration, QMR and BICGSTAB need two. The

QMR and BICGSTAB methods produce oscillatory behavior as far as residuals norm

is concerned. For more details about the method reader is advised to refer the book

of Saad [114]. Another important issue regarding the iterative solver is the condition

number of the system matrix which could be of the order of 109to1012 (Avdeev [4])

for case of EM modeling. In case of FD and FE the most popular preconditioners

are Jacobi, SSOR, incomplete LU decomposition (ILU) and multigrid. The right

choice of preconditioner is very essential for efficient computation. In fact the choice of

preconditioner is more critical than the iterative solver. The literature survey suggests

that the ILU preconditioner is most preferred in EM modeling and widely used by

developers.

1.2.2 Inversion

The 3D EM inverse problem is much more difficult to solve than the corresponding

forward problem because the inverse problem is ill-posed and non-linear in nature. And

due to the noisy and limited data, the inversion is a non-unique problem meaning that

multiple models can fit the observed data equally well. Furthermore, the solution of

inverse problem is very computation intensive as thousand of model parameters need

to be recovered. It would require many iterations to converge if at all it converges.

The inverse problem is regularized to make it stable. The inversion process is a
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set of mathematical formulations for obtaining the meaningful information about the

sub-surface structure from data. This is achieved by minimizing the misfit between

the data (synthetic or real) and the computed response. So, forward modeling is the

main part of inversion process and both these processes are interfaced by an iterative

process to obtain a conductivity model which, within specified error limits justifies the

data.

A pertinent question is why we need a 3D inversion code for MT data interpretation

because data can be acquired along the profile and can be interpreted using 2D inversion

algorithm. Considerable efforts have been made in the direction of interpreting the MT

profile data using 2D inversion codes. This approach requires that the dimensionality

analysis be carried out before performing the 2D inversion. A good review of 2D MT

inversion including modeling, dimensional analysis and interpretation is summarized

in Ogawa [97]. The dangers of interpreting the MT data which is recored over a 3D

structure using 2D inversion algorithm is that if the data is influenced by 3D structures,

2D inversion can lead to misleading interpretation. However, Ledo [66] proposed that

it is still possible to carry out 2D inversion on some modes (either TM or TE). Though

it is significantly influenced by the position of the 3D structure with respect to the

regional 2D strike direction. Becken et al. [12] suggested separation of data into TM

and TE modes using the vertical magnetic transfer function for 2D inversion with

synthetic data. However, in practice, these methods, such as Ledo’s analysis and mode

separation are not straight forward to justify, unless the 3D structures are already

known, which is indeed the objective of these exercises. Another reason to move on to

3D inversion is that due to logistic reason, acquiring the MT data along the straight

profile is not always possible. Therefore, in case the data is scattered through a corridor
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along a profile, the data need to be projected on the profile to be interpreted using 2D

inversion. The availability of efficient 3D inversion code allows the scattered data to

interpreted without adding any bias or position error to the observed data.

For the 3D inverse problem, the main algorithms used by various researchers

are Occam’s inversion (e.g., Constable et al. [29], Degroot-Hedlin and Constable

[31], Siripunvaraporn and Egbert [126, 128], Siripunvaraporn et al. [132, 130]),

Gauss-Newton (GN) method (e.g., Haber et al. [46], Sasaki [119, 120] and Gunther

et al. [43]), quasi-Newton (QN) method (e.g., Haber [45], Avdeev and Avdeeva [5]).

These methods require computation of the Jacobian (sensitivity) and the Hessian

or its approximation at each inversion iteration. This lead to a need of solving a

large and dense linear system of equation. The construction and storage of Jacobian

matrix is very difficult to handle in case of 3D inversion. The aleternative approach

is to bypass the formation of Jacobian, using the Gauss-Newton with conjugate

gradient (GN-CG)method (e.g., Mackie and Madden [72], Newman and Alumbaugh

[91], Gunther et al. [43], Siripunvaraporn and Egbert [127]). In this approach the

Jacobian matrix is employed only in the product with an arbitrary vector. This is

equivalent to solving two forward problems at each CG iteration. The method was

used by Mackie and Madden [72] to solve the 3D MT inverse problem. Newman and

Alumbaugh [91] used this approach to solve the cross-well EM data and Ellis et al.

[33] used this technique to invert airborne TEM synthetic data. Another approach

called nonlinear conjugate gradient (NLCG) was introduced at start of this century

to solve the 3D EM inverse problem (Newman and Alumbaugh [92], Rodi and Mackie

[112], Mackie and Watts [75] and Zhanxiang and Hu [163]). This method requires

computation of gradient rather than Jacobian. The motivation to use NLCG comes
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from the fact that it needs to solve one forward and one adjoint problem at each

NLCG iteration. Since then NLCG has been applied in many EM inversion codes. The

computation needed in an inversion iteration is less in case of NLCG in comparison to

Newton type algorithm, but it is offset by the fact that the convergence rate in case

of NLCG is close to linear whereas it is of the order of quadratic in case of Newton

type schemes. Rodi and Mackie [112] through the 2D MT data inversion reported that

the NLCG takes more time then Gauss-Newton method and preconditioned NLCG is

equivalent to Gauss-Newton as far as computation time is concerned. It is not yet

clear which approach is better for 3D EM inversion. With all these advancement the

solution of 3D EM problem is still very challenging task due to non-uniqueness and

unsuitability as reported by Newman et al. [96].

The regularization of the objective functional of EM inverse problem is another

important subject. The common practice is to seek smooth model parameters. In many

algorithms it is achieved by using the model covariance matrix as the finite difference

approximation to the Laplacian (52) operator (e.g., Constable et al. [29], Rodi and

Mackie [112], Newman and Alumbaugh [92] and others). The prior information such as

faults or oceans can be easily included in the regularization functional (Siripunvaraporn

and Egbert [126]). A detailed review of methods used for 3D EM inversion is available

in Avdeev [4] and Siripunvaraporn [125].

1.3 Thesis Organization

When the present study was launched in 2010, availability of few algorithms for

interpretation of 3D MT data led to the the conclusion that there is scope for further

development of 3D MT inversion algorithm. The objective of study is fulfilled with
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the development of an efficient software 3DINV FD which is capable of inverting

synthetic or real MT data. The thesis write up has been organized into eight chapters

briefly summarized below.

In the present chapter 1, literature review is presented.

In chapter 2, the mathematical formulation of forward problem is presented, which

covers a brief description of EM theory and ranges of electrical properties within

the earth. It also formulates a boundary value problem comprising the governing

partial differential equations and requisite boundary conditions. The basic theory of

magnetotellurics along with the computations of MT response functions is discussed.

The need for applying static divergence correction is also described.

In chapter 3, the characteristics of ill-posed EM inverse problem and some

techniques for its alleviation are presented. Besides the different methodologies for

solving inverse problem the quasi-linearized scheme for solution of inverse problem,

adopted in the present work, is also described.

In chapter 4, In order to successfully implement the FDM for solving forward and

inverse problems, the discrete governing equations, implementation of staggered grid,

structure of coefficient matrix, transformation matrices derived for response functions

and the computation required for bypassing the explicit construction and storage of

Jacobian matrix are discussed.

In chapter 5, the sequence of development with a critical review of various

primitive versions of the algorithm is discussed. Description of salient efficiency and

versatility features, structure, control and grid parameters, important subprograms of

the algorithm and flow chart of the algorithm are presented

In chapter 6, validation of the algorithm 3DINV FD is described by comparing its
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results with some published results. Steps taken to improve the efficiency are discussed.

In chapter 7, the inversion results of data sets derived from synthetic models are

presented. Details and results of synthetic experiment conducted to understand the

effect of number of observation points on the quality of inversion are discussed.

In chapter 8, we discuss further improvement steps that need be taken to make the

algorithm more accurate, efficient and versatile.

Finally, the Appendix A presents CSR storage scheme to store the system matrix.

The basic steps of matrix solvers (BICGSTAB and CG)used in the algorithm along

with the steps of DILU preconditioner are given in Appendix A. In Appendix B, sample

input and output files are presented.
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Chapter 2

FORMULATION OF

MAGNETOTELLURIC FORWARD

PROBLEM

2.1 Introduction

The geoelectromagnetic methods deal with the observation and analysis of

electromagnetic (EM) fields with a view to derive pertinent information about the

geoelectric structure of subsurface. The observed field can be viewed as a superposition

of the primary and secondary fields. Primary fields, generated by an external source,

induce secondary currents in the earth which, in turn, give rise to the secondary fields

and the inhomogeneities present in the real earth invariably disturb the pattern of

secondary currents and fields, leading to perturbation of the total EM fields. These

perturbed fields, measured on the earth’s surface, provide an insight into the resistivity

distribution within the earth. This helps in deciphering the electrical structure of the

earth and also in understanding the ongoing physical processes.
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The mechanism of perturbed fields can be understood only when the capability

of generating responses of arbitrary resistivity distributions is fully developed. The

computation of EM response of a given earth model, with prescribed resistivities, is

known as the forward problem of EM induction.

An exhaustive knowledge of EM theory, based on the fundamental Maxwell’s

equations, is essential for solving the forward problem. In literature there exists

a vast number of texts on EM theory differing in their emphasis on mathematical

background, computational aspects and applications. For completeness, a brief account

of electromagnetic theory is presented here.

2.2 Theory of Electromagnetic

The propagation and attenuation of EM fields is governed by Gauss’s law of electric

fields due to charges, Faraday’s law of induction, the law of non-existence of magnetic

monopole and Ampere’s law for magnetic induction due to current. Maxwell’s

equations are the concise mathematical statements of these laws that, assuming linear,

isotropic medium and an eiωt time-dependence, can be written as the following first

order partial differential equations

5 · D = qfree, (2.2.1)

5× E = −iωB, (2.2.2)

5 · B = 0, (2.2.3)

5× B = µJ + iωµD. (2.2.4)

Here, D, E, B and J are the vectors representing the electric displacement in

Coulombs/m2, the electric field in Volts/metre(m), the magnetic induction in Tesla
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and electric current density in Amperes/m2 respectively. Similarly, qfree, ω and µ

are the scalars representing free electric charge density in Coulombs/m3, the spectral

angular frequency in Hertz and the magnetic permeability in Henry/m. It can be easily

established that, for E and H having continuous first and second derivatives, equation

(2.2.3) can be derived from equation (2.2.2), while equation (2.2.1) can be derived from

equation (2.2.4). The displacement current term was added into the Ampere’s law by

Maxwell to guarantee the charge conservation. The conservation of electric charge law

(equation of continuity) in differential form can be written as

5 · J = −iωqfree. (2.2.5)

2.2.1 Constitutive Relations

As there are four vectors involved in the two vector Equations (2.2.2) and (2.2.4, we

require constitutive relations to express these equations in terms of two independent

EM vectors. These relations state the dependence of various vectors on the material

properties, the electrical conductivity (σ) and the dielectric permittivity (ε) as

J = σE (2.2.6)

and

D = εE. (2.2.7)

Here, σ in Siemens/m and ε in Farad/m are the second order tensors which may be

functions of position vector r and spectral angular frequency ω. A third constitutive

relation between magnetic flux density B and the magnetic field intensity H is

B = µH, (2.2.8)
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where H is in Amperes/m. Using equations 2.2.6, 2.2.7 and 2.2.8, Maxwell’s equations

in other form can be written as

5 · E =
qfree
ε
, (2.2.9)

5× E = −iωµH, (2.2.10)

5 · H = 0, (2.2.11)

5× H = σE + iωεE. (2.2.12)

The constitutive relations are not always linear or single-valued. For example,

σ and ε may be functions of E. In order to ascertain which of these functional

dependencies are of relevance in the context of the various EM methods, a discussion

of geoelectromagnetic properties follows.

2.3 Electromagnetic Properties of Earth

For an isotropic earth, the parameter tensors σ, ε and µ reduce to scalars and

are, in general, functions of position only. The only other functional dependence of

importance is with respect to frequency. In some studies, the dependence of resistivity

on temperature has been used to gather information about the thermal gradient in

earth. Several texts have discussed the electrical properties of rocks and minerals,

notable amongst these being Grant and West [40], Keller and Frischknecht [62] and

Ward and Fraser [156]. Here, a brief account of the ranges of σ, ε and µ widely

encountered in the earth, is presented.

The parameter electrical conductivity, σ, or its inverse, the electrical resistivity, ρ,

which is more popular in geophysical literature, has the widest range of all physical

parameters of earth (Figure 2.6.1). The resistivity varies in the range 10−8 - 1013Ωm
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for different rocks and minerals. This wide range results from the diverse physical

phenomena that contribute to the resistivity of rocks. In the upper crust, the ionic

conduction of electrolytes in the pores of rocks is the primary contributor to resistivity

of rocks, while in the lower crust and upper mantle the electronic mode of conduction is

the primary contributor. In the former case, if it is desired to account for electrode and

membrane polarization through a change in resistivity, it becomes frequency dependent

and complex in nature. For surface rocks, water present in pore spaces is the most

important factor controlling the resistivity. It has been shown that the anomaly caused

by a target, buried in a conducting host medium, gets enhanced as the contrast in the

resistivity values of the target and host medium increases. However, it asymptotically

reaches a maximum value, rendering the cases, where the resistivity contrast is greater

than 1000, indiscernible from each other. Hence, such cases can be modeled as if the

target is suspended in free space.

Figure 2.1: Resistivity of rocks.(Geophysics-424 Notes, University of Alberta)

The free space value of electric permittivity is ε0 = 10−9/36π Farad/m. With the

exception of water (ε/ε0 � 80), electric permittivity rarely varies by more than an
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order of magnitude. For most rocks and earth materials the typical value is ε ≈ 9ε0.

The primary contributions to ε are only due to the microscopic phenomena like the

lengthening of bonds between the atoms and the preferred orientation of molecules

along the direction of the field. However, if the macroscopic phenomena, like electrode

and membrane polarization, are accounted through permittivity, ε attains large values

and becomes frequency dependent.

The magnetic permeability µ in most geophysical situations equals its free space

value µ = 4π × 10−7 Henry/m. Only for the ferromagnetic minerals it goes upto 6µ0.

In the case of remanent magnetization studies, µ becomes non-linear and multivalued

due to the phenomenon of hysteresis.

2.4 Boundary Value Problem of Magnetotellurics

In MT the field variations can be studied by solving the Maxwell’s equations (2.2.10)

and (2.2.12). The solution can be achieved for E or H by transforming these equations

into a well posed MT Boundary Value Problem (BVP). For this purpose a right-handed

Cartesian coordinate system, with z direction being positive downward and air-earth

interface at z = 0, is considered. Furthermore, to obtain the induction equation in the

earth following assumptions are also made about the physical nature of earth:

1. A plane wave is propagating vertically downwards along the z-axis.

2. Earth is a linear and isotropic medium so that the change in output is

proportional to the change in input field and the physical variables σ, ε and

µ are scalars. In particular µ is assumed to be equal to µ0, its free space value,

throughout.
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3. Earth is a source free and passive medium.

4. The flat earth model is appropriate as only the EM fields with periods less than

1 day are to be studied.

5. Since the frequencies used are less than 105 Hz and the resistivities

commonly encountered in earth are less than 104 Ω-m, the free charge decays

instantaneously.

6. For frequencies less than 105 Hz, the displacement current term in Ampere’s law

is negligibly smaller than the conduction current term and is neglected.

In view of the all these assumption conservation of charge law equation 2.2.5 and

Maxwell’s equations (2.2.10, 2.2.12) respectively get simplified as

5 · J = 0, (2.4.1)

5× E = −iωµH, (2.4.2)

5× H = σE. (2.4.3)

The fields governed by these equations are termed quasi-static because inspite of the

field being time dependent, its variation is very slow and at any given instant of time

it behaves like a static field. Thus, for the quasi-static case, the two equations (2.4.2)

and (2.4.3) are sufficient to describe the complete behavior of EM fields.

The two steps for defining a BVP comprise development of the governing partial

differential equation and of the requisite boundary conditions for each of the field

vectors E and H.
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2.4.1 Governing Equation

To eliminate H, from equations (2.4.2) and (2.4.3), take curl of the equation (2.4.2)

and then use equation (2.4.3) to form the second order differential equation for E as

5×5× E + iωµ0σE = 0. (2.4.4)

Similarly, E can be eliminated from equations (2.4.2) and (2.4.3) by switching the roles

of equations (2.4.2) and (2.4.3), to get the equation satisfied by H as

5×(
1

σ
(5× H)) + iωµ0σH = 0. (2.4.5)

So, either of the two, equation (2.4.4) or equation (2.4.5) can used as the governing

equation for the MT boundary value problem. In the present work equation (2.4.4) is

used for computing electric fields and then magnetic fields are computed using equation

(2.4.2).

2.4.2 Primary and Secondary Formulation

To solve the governing differential equation (2.4.4) primary and secondary field

formulation is used. Hence, total electric field E is viewed as a superposition of the

primary and secondary fields as

E = Ep + Es . (2.4.6)

Here, subscripts ’p’ and ’s’ denote normal (primary) and anomalous (secondary) fields

respectively. The normal field is the response of a simplified model whose response can

be computed easily while the anomalous field is the response of the anomalous bodies

or inhomogeneities present in the simplified model. For example, as shown in Fig. 2.2,
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the 2-D model consisting of a buried body in a layered earth can be viewed as if a body

of anomalous conductivity is superimposed over the normal layered earth model.

Figure 2.2: Target buried in layered earth

The conductivity at a point, σ, is the sum of the layer conductivity, σp, and the

anomalous conductivity, σs, which is non-zero only in the body. Thus

σ = σp + σs . (2.4.7)

On substituting these superposition relations (2.4.6 and 2.4.7) in equation (2.4.4), the

equation can be partitioned into two equations for the primary and secondary electric

fields as

5×5× Ep + iωµ0σpEp = 0, (2.4.8)

5×5× Es + iωµ0σEs = −iωµ0σsEp. (2.4.9)

The primary source fields have their origin in the electric currents blowing in and

beyond the ionosphere which, in turn, arise from the complex interactions of solar

radiations and plasma flux with the earth’s magnetosphere and ionosphere. The

primary field, the external inducing field due to source, is horizontal and laterally
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uniform. As the source is treated as a plane wave incident normally on the earth, the

domain of study can be treated as source free and the effect of source is accounted

through the boundary conditions.

Finally, equations (2.4.8) and (2.4.9) are the governing differential equations of

the MT BVP. In order to complete the statement of a well posed MT BVP, the

necessary and sufficient boundary conditions for the equations (2.4.8) and (2.4.9) must

be specified.

2.5 Boundary Conditions

There are two types of boundary conditions first one is called ‘Interface Boundary

Condition’, and is defined at the interface where discontinuity in electrical properties

occurs within the domain of study and the second one is known as ‘Domain Boundary

Condition’, and is defined at the domain boundary. The former are either explicitly

applied or circumvented by defining appropriate smooth resistivity function at a point

on the interface of different regions. The domain boundary conditions explain the

asymptotic behaviour of field or its integrated effect on a boundary.

2.5.1 Interface Boundary Conditions

1. The tangential components of E are continuous, i.e.

n̂× (E1 − E2) = 0. (2.5.1)

Figure 2.3: Interface boundary condition for tangential component of E

2. The tangential components of H are discontinuous, the discontinuity being equal
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to the surface current density Js, i.e

n̂× (H1 −H2) = Js. (2.5.2)

Figure 2.4: Interface boundary condition for tangential component of H

3. The normal components of E are discontinuous, the discontinuity being equal to

the surface charge density qs/ε i.e

n̂ · (E1 − E2) = qs/ε. (2.5.3)

Figure 2.5: Interface boundary condition for perpendicular component of E

4. The normal components of H are continuous, i.e.

n̂ · (H1 −H2) = 0. (2.5.4)

Figure 2.6: Interface boundary condition for perpendicular component of H

In the presented work, the interface boundary conditions are circumvented by defining

the volume weighted average of conductivity at the grid points, where filed values are

computed.
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2.5.2 Domain Boundary Conditions

These boundary conditions are applied on the bounding surfaces of the domain. One

can apply either Drichilet or Neumann or mixed boundary conditions (BCs). Dirichlet

BC means that the EM field variable values are known at the boundary, while Neumann

BC means that the normal derivative of fields is known at the boundary. The mixed

BC means that a linear superposition of the field variable and its normal derivative is

known.

We would apply Drichilet boundary conditions at the four vertical side surfaces of

the solution domain. The bottom boundary surface is assumed to be underlain by a

perfectly conducting halfspace.

2.6 Response Functions

The solution of the BVP provides the electric field values. The obtained electric

field values can be transformed into magnetic field components by using appropriate

Maxwell’s equations. These field values recorded at the surface of the earth are the

observations/data for the inverse problem. Since observations do not directly reflect

the effect of changes in the physical property, i.e. electrical resistivity in a perceptible

manner, derived observables (response functions) are obtained from these. Although

these response functions do not give a direct functional relationship with the subsurface

resistivity, yet these do reflect the bulk information about the resistivity structure. The

explicit relations between several response functions and the field component values are

available in literature (Cagniard [23], Schmucker [121]).

The choice of response function is governed by the aim of study, whether the interest
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lies in lateral or vertical variation of resistivity. The spatial variation of resistivity

can be studied in two modes. First is profiling, where, for a given frequency, the

observations are taken at points along a profile. Second is sounding, where, for different

frequencies the observations are taken at a single point. Profiling gives information

about lateral variations while sounding gives the information about vertical variations

of resistivity. To discover lateral variations at different depth levels, soundings must

be performed at several points along a profile or alternatively profiling must be carried

out at different frequencies.

The details about these methods and their applications are available in standard

references like Kaufman and Keller [58], Berdichevskĭı et al. [13], Nabighian [88, 89]

and Vozoff [150].

The geoelectromagnetic methods use the natural earth’s magnetic field with time

periods ranging from fraction of a second to several years or the frequency ranging from

10−5 Hz to 104 Hz. The variations in the period ranging from 10 min to 24 hour are

particularly suited for mapping electrical inhomogeneities in earth’s crust and upper

mantle. The MT method employs the ratio of different field components as response

functions. These functions are independent of strength of the primary signal and are

dependent only on the electrical properties of the earth. In MT, the response function,

impedance, is the ratio of horizontal and mutually perpendicular electric and magnetic

field components.

2.6.1 MT Response Functions

The magnetotelluric method was first described by Tikhonov [142] and Cagniard [23]

independently. Using the assumption of a plane wave source, the ratio of observed
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horizontal electric field (Ex or Ey) and the orthogonal magnetic field component (Hy

or Hx), is called the impedance;

Z =
Ex

Hy

= −Ey

Hx

. (2.6.1)

The impedance values are used to define the commonly used MT response function as

apparent resistivity, which may be defined as the resistivity of equivalent fictitious half

space. The apparent resistivity, ρa, and the impedance phase, φ, are respectively given

by the relation

ρa =
1

ωµ0

|Z|2, (2.6.2)

and

φ = tan−1
{
Im(Z)

Re(Z)

}
. (2.6.3)

For a homogeneous half space, phase is always 45◦. For a conductive body in half space

phase is in the range 45◦ - 90◦, while for a resistive body it is in the range 0◦ - 45◦.

The variation of resistivity in the earth is rarely one-dimensional, therefore above

definition of apparent resistivity and phase has only limited utility. To describe higher

dimensionality or anisotropy, Cantwell [24] introduced a rank 2 impedance tensor (Z).

The MT impedance tensor ’Z’ describes the linear relation between horizontal electric

and magnetic field components. Z can be written as Ex

Ey

 =


Zxx Zxy

Zyx Zyy


 Hx

Hy

 . (2.6.4)

The electric field components are calculated for a current system which flows in N-S

(first mode) or in E-W (second mode) direction. To obtain the same electric field

components, however, for another orientation of the current system, we can rotate

the model by 90◦, to construct the equations system (2.52) and solving it again for
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x (Weaver [157]). The need for computing the electric field components using two

orientations of the current system is based on the fact that the model responses in

3D MT are the full impedance tensor. Thus, to construct the full impedance tensor

we need two orientations of current system and hence, the equation (2.6.4) can be

rewritten as  Ex1 Ex2

Ey1 Ey2

 =


Zxx Zxy

Zyx Zyy


 Hx1 Hx2

Hy1 Hy2

 , (2.6.5)

where subscripts 1 and 2 indicate two polarizations respectively. Further, the complex

impedance tensor (Z) in equation (2.6.5) can be converted into apparent resistivity and

phase as

ρij =
1

ωµ0

|Zij|2, (2.6.6)

φij = tan−1{Im(Zij)/Re(Zij)}. (2.6.7)

2.7 Solution of Boundary Value Problem

The governing partial differential equations (2.4.8 and 2.4.9) along with the boundary

conditions define the complete MT BVP. Analytic solution of 3D MT problem does not

exist, hence, the problem is solved using numerical methods. Any numerical method

transforms the MT BVP to a system of linear equations (matrix equation) as

AEs = b, (2.7.1)

where A is the system matrix whose sparsity structure depends on the numerical

method used, Es is a vector containing unknown internal secondary electric fields, and

b is obtained from boundary conditions. Now, matrix equation (2.7.1) is solved using

iterative matrix solver method.
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2.7.1 Static Divergence Correction

The main problem while solving equation 2.7.1 is that at long periods, i.e., ω → 0 or

in the region where σ = 0, the condition of current conservation (5·E) is not satisfied

due to the computational round off errors in the iterative process. To this effect the

equation (2.7.2) is not satisfied.

iωµ05 ·(σEs) = 5 · (−iωµ0σsEp),

5 · (σEs) = − i

ωµ0

5 ·b. (2.7.2)

Thus, to get rid of this problem, following Smith [134] the gradient of an unknown

scalar φ is added to the iterative solution (En
s ) after nth iteration. Now, the corrected

electric field EC
s = En

s +5φ satisfy the equation

5 ·(σEC
s ) = − i

ωµ0

b. (2.7.3)

The unknown scalar φ is calculated by solving the scalar boundary value problem

5 ·(σ5 φ) = − i

ωµ0

5 ·b−5 · (σEn
s ), (2.7.4)

with the boundary condition φ|bound= 0.

2.8 Closure

The governing differential equations along with the boundary conditions define an EM

boundary value problem which is solved using some numerical technique. The solution

of this BVP provides the field values which do not contain direct information about

the resistivity structure of earth, therefore, response functions are derived from these

field values. The derived response functions are then used as data for inversion as
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discussed in Chapter 3. The complete details of numerical method implementation

while developing 3DINV FD algorithm are discussed in Chapter 4.
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Chapter 3

FORMULATION OF

MAGNETOTELLURIC INVERSE

PROBLEM

3.1 Introduction

Data inversion is an educated interpretation exercise where the ultimate goal is to

provide a mathematical framework to transform measured data from the data space

to the model space in order to estimate model parameters. Solving such inverse

problems arises in many branches of the medical, physical and geophysical sciences.

It is more objective than the quantitative data interpretation where interest is in a

model whose computed response fits the observed response. In geophysics, solving

the inverse problem is aimed to determine the structure of the earth. Depending on

which geophysical method is used, the structure of the earth can be explained by

the distribution of the electrical resistivity (geoelectric and electromagnetic methods),

acoustic velocity (seismic method), density (gravitational method), etc. These physical
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properties of the rocks give information of the geological formations, which define the

structure of the earth.

The aim of geophysical inversion is not only to deduce, from a given set of

observations, as much information about the earth system as possible, but also to

evaluate the quality of inference together with its level of confidence. For doing

parametric inversion, the system is defined in terms of the data and an operator. The

latter is described by physics of the problem and distribution of physical parameters

of the model. The inter-relationship of data and operator governs the system

characteristics.

For the case of MT methods, resistivity within the earth is a function ρ(x,y,z). As

a result, in general, infinite parameters are required to describe it precisely (Parker

[101]). The retrieval of general 3D variation of resistivity, from the 2-D data procured

over the air-earth surface, is not viable. Moreover, the observations will always be finite

in number, consequently, the MT inverse problem becomes a grossly underdetermined

one. This infers that there may exist an infinite number of models whose response will

match the observed data equally well. Such a case is termed as ’non-uniqueness’.

In practice, there is natural, observational and instrumental noise in the

observations. These noisy observations may lead to inconsistency and instability in

the system. The inconsistency arises as a result of incompatibility of the chosen model

with the noisy data set. For an inconsistent system, the exact solution does not exist.

The instability is a characteristic of the operator which gets highlighted in the presence

of erroneous data. Due to instability, small errors in data may lead to large errors in

estimated parameters. Therefore, the non-uniqueness, inconsistency and instability of

the inverse problem suggest that the system under study is a degenerate one.
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On every count, suggested by Hadamard [48] to define a well-posed problem, the MT

inverse problem is an ill-posed one due to insufficient and inaccurate data (Jackson [55]).

The goal of data inversion is to design algorithms which can mitigate this ill-posedness

and provide reasonable solution of such problems. Some of the techniques, used for

this purpose, are discussed here.

3.2 Mitigation of Ill-posedness

The exact solution of an ill-posed EM inverse problem does not exist. If it is so,

the next best step is to look for schemes which can provide an approximate solution

having essential features of the exact solution. In such schemes an attempt is made

to regularize the problem. For regularization the ill-posed problem is replaced by

an equivalent well-posed one which possesses a solution that can be treated as an

approximate but reasonable solution of the original problem. Techniques used for the

regularization are widely discussed in literature, particularly in the standard references

like Backus and Gilbert [9, 8], Sabatier [116], Parker and Whaler [102], Oldenburg

[98], Raiche [107], Meju [80], Oldenburg [99], Tarantola [138], Menke [81], Twomey

[147], Tikhonov and Arsenin [143], Parker [100], Newman and Hoversten [95], Zhdanov

[164], Newman and Boggs [93], Zhdanov [165] and Abubakar et al. [1]. A good review

of the techniques used for solving EM inverse problem is given by Sarkar et al. [117],

Avdeev [4], Abubakar et al. [2] and Siripunvaraporn [125].

Various schemes developed for solving ill-posed problem are, in general, introduced

in matrix notations. For a given problem, let n and p be the number of observations

and unknown parameters respectively. The inverse problem can be expressed in matrix
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form as

GP = D. (3.2.1)

Here, G is the n x p coefficient matrix which simulates physics of the problem, P is

the p x 1 unknown parameter vector and D is the n x 1 known observation vector.

The equation (3.2.1) can be interpreted as the mapping, by the matrix operator G, of

a p-dimensional parameter vector P to the n-dimensional data vector D. The solution

of this problem seeks the operator Ĝ−1 which would map the right hand side vector D

to an p-dimensional vector Pas

P = Ĝ−1D. (3.2.2)

The inverse problem can be solved when its inconsistency, non-uniqueness and

instability are controlled. These negative characteristics of the system may exist either

concurrently or one at a time. The means that can be employed to handle these features

are discussed one by one.

3.2.1 Inconsistency

The inconsistency present in a system is basically an interplay of the coefficient matrix

G and the data vector D. If the vector D can not be expressed as a linear superposition

of the column vectors of the matrix G then inconsistency arises. To handle it, all one

can do is to lower the acceptance level or quality of acceptable solution.

3.2.2 Non-uniqueness

The quality of inversion largely depends on parametrization, i.e. on the choice of model

parameters and the derived data needed to represent the model. The choice of model

is always made on the basis of a priori information. The a priori knowledge in EM
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data inversion is derived from the geological information or from the results of other

geophysical methods. This helps in better approximation of real earth models and, in

turn, in improved interpretation (Jackson [56], Whittall [159]). The non-uniqueness of

EM inverse problem can be rendered by restricting the complexity of earth models. A

class of simplified models, like a layered earth or the regular well shaped body, can be

used as an approximation of the real structures. The parametrization of real earth in

terms of finite dimensional models helps in reducing the non-uniqueness.

3.2.3 Instability

The instability in a system implies that small changes in data may lead to large changes

in parameter values. Basically, the root cause of instability is ill-conditioning of the

coefficient matrix. An ill-conditioned matrix has a large condition number, defined as

the ratio of the largest to smallest eigenvalue. It may be emphasized here that although

instability is inherent in the system, yet it is reflected only in the presence of errors in

computations and/or data.

In geoelectromagnetics, the equivalence is a commonly encountered problem for

layered earth models. Under equivalence, one can not determine the layer resistivity

and thickness independently, however, their product can accurately be estimated.

Due to this layer parameter coupling, the poor resolvability of individual parameters

leads to instability. However, the resolution of product itself, which represents a bulk

parameter, reduces both the non-uniqueness and instability.

Some of these measures of alleviating ill-posedness of the inverse problem have been

employed in the formulations of the 3D MT inverse problem presented here.
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3.3 Types of Inverse Problems

The rank, k, is defined as the maximum number of independent rows or columns of the

matrix. The system defined by equation (3.2.1) can be classified on the basis of rank

of the matrix G.

1. If the rank ’k’ is equal to the minimum of n and p, i.e.

k = min (n,p),

the system is called ’full ranked’.

2. If the rank ’k’ is less than the minimum of n and p, i.e.

k < min (n,p),

the system is called ’rank deficient’.

An alternative classification of the system (3.2.1) can be given in terms of the relative

values of m and n. The categorisation can be listed as

1. Evendetermined if n = p,

2. Overdetermined if n > p and

3. Underdetermined if n < p.

For a full ranked system the evendetermined, overdetermined and underdetermined

cases are termed as ’evendetermined’, ’perfectly overdetermined’ and ’perfectly

underdetermined’ respectively. Since the exact solution exists only for the perfectly

evendetermined case, one has to look for approximate solutions for the remaining cases.

For the perfectly overdetermined and underdetermined cases, operationally one has to

look for operators which can transform the rectangular coefficient matrix to a full
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ranked square one. Instead of listing the operational steps of various inverses, the

logical sequence of obtaining these inverses is presented here.

3.3.1 Least Square Inverse

A perfectly overdetermined system may suffer from inconsistency. The inconsistency

may be ascertained by determining the rank of augmented matrix [G | D], If it is

smaller than the rank of matrix G then the system is inconsistent. In such a case,

instead of looking for zero misfit, a minimum error solution is sought. The model

parameter vector, which minimizes the misfit between the model response and the

observations, is accepted as the desired solution. For this purpose, the norm, Φl of the

residual vector, r, is minimized. This minimization problem can be stated as

minimize Φl = rT r, (3.3.1)

where r = D−GP. (3.3.2)

The least square solution of equation (3.2.1), obtained by minimization of Φ, with

respect to the unknown vector P, can be written as

P = Ĝ−1l D, (3.3.3)

where Ĝ−1l = (GTG)−1GT . (3.3.4)

The operator Ĝl is termed as ‘Least Square Inverse’ of matrix G and the superscript

T and -1 stand for the matrix transpose and inverse operations respectively. Generally

the L2 norm is used as it results in a linear system of equations. Further, it produces

the best estimate when the error in data follows Gaussian distribution. It may be

emphasized again that the least square solution is a consequence of lowering the

acceptable level for accuracy of the solution.
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3.3.2 Minimum Norm Inverse

For the perfectly underdetermined system, the observations do not provide enough

information for unique determination of all the model parameters. As a result, an

infinity of solutions will exist for such a system. Therefore, some extraneous constraints

need be applied to seek a unique solution. For this purpose, the length Φm of the

solution vector x is commonly minimized, subject to the constraint that the solution

satisfies the matrix equation (3.2.1). This constrained minimization problem can be

stated as

minimize Φm = PTP, (3.3.5)

such that P staisfy, GP = D. (3.3.6)

The minimum norm solution is obtained as

P = Ĝ−1m D, (3.3.7)

where Ĝ−1m = GT (GGT )−1. (3.3.8)

The operator Ĝ−1m is the ’Minimum Norm Inverse’ of matrix G. For the constrained

minimization of the objective function, Φm, the Lagrange’s method of undetermined

multipliers is used. The obtained solution is unique with respect to the chosen objective

function.

3.3.3 Regularized Inverse

The above two solutions exist only for the full ranked systems for which the respective

coefficient matrix products, GTG and GGT , appearing in their definitions, are

non-singular.
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A rank deficient system is overdetermined or underdetermined, depending upon the

values of n and p. However, inherently it is underdetermined as k < p. As a result, the

inverse problem is neither completely overdetermined nor completely underdetermined.

It may be termed as a ’mixed determined’ problem for which one can neither seek the

least square nor the minimum norm solution. For its solution, a new objective function,

Φr is defined, which is a combination of the norms of misfit and solution vectors, This

regularized inverse problem is defined as

minimize Φr = εΦl + (1− ε)Φm i.e.,

Φr = ε(rT r) + (1− ε)(PTP). (3.3.9)

In equation (3.3.9), ε is a trade-off parameter that determines the relative weight

being given to minimization of misfit or solution vector norms. ε lies between 0 and

1, leading to the minimum norm and the least square solutions for the two extreme

values respectively. The objective function (3.10) can be rewritten as

Φrl = (rT r) + λ2(PTP), (3.3.10)

or

Φrm = υ2(rT r) + (PTP), (3.3.11)

where λ2 =
1− ε
ε

and υ2 =
ε

1− ε
.

Equation (3.2.1), when solved using either of these objective functions, provides a

solution for the overdetermined and underdetermined cases respectively, as

P = (GTG + λ2I)−1GTD, (3.3.12)

or

P = GT (GGT + υ2I)−1D. (3.3.13)
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In the above expressions the parameter λ or υ play the role of a damping factor

which prevents the unbounded oscillations in the solution. Therefore, the method

is also known as ’Damped Least Square’ or ’Damped Minimum Norm’ method. This

method was independently developed by Tikhonov, Phillips, Twomey and Marquardt

in early sixties and is popularly known as ’Ridge-regression’ or ’Marquardt method’

in geophysical literature with λ or υ being termed ’Marquardt parameter’ (Marquardt

[78]).

The ridge-regression method can also be used for full rank systems when the

coefficient matrix is ill-conditioned. The impact of small eigenvalues gets reduced

by the addition of Marquardt parameter λ or υ to these. The enhanced eigenvalues

result in improved stability.

3.3.4 Weighted Inverse

Some observations are, in general, more accurate than the others. This a priori

knowledge can be used in assigning weights to scale the observations accordingly.

The more accurate observations will be assigned higher weights in comparison to the

less accurate ones. The model parameters can be obtained by introducing weighting

matrices, Wr for misfit and Wm for solution respectively. The inverse of data error

co-variance matrix, whenever available, is the most widely used weighting matrix Wr.

If not available, one may employ a diagonal matrix with inverse of data errors as

the diagonal entries. The Wm is constructed on the basis of the smoothness or other

constraints imposed on the solution vector. The new objective functions, weighted
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misfit or weighted length, are respectively defined as

Φwl = rTWrr, (3.3.14)

or

Φwm = PTWmP. (3.3.15)

The solution corresponding to these objective functions, termed as the ’weighted least

square’ and the ’weighted minimum norm’, are given as

P = (GTWrG)−1GTWrD, (3.3.16)

and

P = WmGT (GWmGT )−1D. (3.3.17)

Analogous to the weighted least square and weighted minimum norm solutions for the

perfectly overdetermined and underdetermined cases, the weighting can also be applied

to the regularized inverse case. The solutions for these two cases, depending on the

values of n and p, will be

P = (GTWrG + λ2Wm)−1GTWrD, (3.3.18)

or

P = W−1
m GT (GW−1

m GT + λ2W−1
r )−1D. (3.3.19)

The special smoothness features desired in solution can be achieved by minimizing

the norm of higher order differences of x components. Higher the order of difference,

smoother the solution. The trade-off then is between smoothness and finer details of

the solution. For example, in Occam’s inversion, the norm of first order differences

are minimized (Constable et al. [29]). Tikhonov regularization provides the flexibility

that any a priori knowledge of system can also be translated in terms of a function and

45



used as a constraint. All these inverses are termed as ’generalized inverses’ of matrix

G (Rao and Mitra [108]). The approach adopted to solve the 3D MT inverse problem

in the present work is discussed next.

3.4 3D MT Inverse Problem Solution

The electric and magnetic field values, and therefore the response functions derived

from them, are non-linear functions of resistivity. Hence, the inverse problem, which

is evaluation of model resistivity parameters from a given set of observations, is a

non-linear problem. The most common and widespread inversion approaches can be

classified in two main categories:

1. Quasi-linearized inversion: A non linear function mapping the model parameters

from model space to data space (the forward modeling operator) is first linearized

before the inverse problem is solved.(Broyden [20], Zhdanov et al. [166], Lin et al.

[70], Li et al. [69])

2. Non linear inversion: The inverse problem is solved directly using the non

linear forward modelling operator.(McGillivray and Oldenburg [79], Commer and

Newman [27, 28], Kelbert et al. [60])

Each of the above inversion schemes can be solved in model or in data space. In

the present work, while developing the 3DINV FD algorithm we have adopted the

quasi-linearized inversion scheme in model space.
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3.4.1 3DINV FD Algorithm: Linearized Inversion in Model

Space

In MT we have some measured/synthetic data in form of horizontal and/or vertical

transfer functions or apparent resistivities and phases for which we find model

parameters (resistivities) that can explain the measured data. Before discussing the

mathematical formulations for the inversion process, a few notations are set that will

be used:

• The elements of data vector D are the ’n’ measured/synthetic data, i.e.

D = [d1, d2, d3, ......, dn]T .

The n-dimensional data vector resides in the data space.

• The model P we are seeking contains p model parameters and can be presented

as

P = [P1, P2, P3, ......, Pp]
T .

The p-dimensional model vector resides in the data space.

• Projecting a vector from model space to data space is accomplished by the forward

modeling operator F, which is function of P. The operator F(P) generates the

synthetic data. The model parameter vector P and the data vector D are related

to each other as:

F(P) = D + e.

We have approximated the original non-linear 3D MT inverse problem by a

linear one, using quasi-linearization of the actual problem. Towards this end, the
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field/response vector is expressed by its Taylor series around a parameter vector Pk as

F i(Pa) = F i(Pk) +

p∑
j=1

∂F i

∂P k
j

(P a
j − P k

j ) +
1

2

p∑
j=1

p∑
l=1

∂2F i

∂P k
j ∂P

k
l

(P a
j − P k

j )(P a
l − P k

l ) + ....

where i = 1, 2, 3, ..., n. (3.4.1)

Now, after writing equation (3.4.1) for all i, it can be written in matrix form as

F(Pa) = F(Pk) + Jk ·∆P +
1

2
∆̂P ·Hk · ∆̃P + ..... (3.4.2)

Here, Pa, Pk, Jk and Hk are the true/actual parameter vector, guess model parameter

vector, Jacobian and Hessian matrices respectively. As shown in equations (3.4.3 and

3.4.4), the elements of Jk and Hk are the first and second derivative of the calculated

data with respect to the model parameters respectively

Jk =



∂F 1(P k)

∂P k
1

∂F 1(P k)

∂P k
2

· · · ∂F 1(P k)

∂P k
p

∂F 2(P k)

∂P k
1

. . . · · · ...

... · · · . . .
...

∂F n(P k)

∂P k
1

· · · · · · ∂F n(P k)

∂P k
p


, (3.4.3)

Hk = diag{Hk
1,H

k
2, .....,H

k
n} where,

Hk
j =



∂2F j(P k)

∂2P k
1

∂2F j(P k)

∂P k
1 ∂P

k
2

· · · ∂2F j(P k)

∂P k
1 ∂P

k
p

∂2F j(P k)

∂P k
2 ∂P

k
1

. . . · · · ...

... · · · . . .
...

∂2F j(P k)

∂P k
p ∂P

k
1

· · · · · · ∂2F j(P k)

∂2P k
p


. (3.4.4)

For quasi - linearization, the guess model Pk is assumed to be sufficiently close to

the unknown true/actual parameter vector Pa, so that only the linear terms of the

parameter correction vector need be retained in the Taylor’s series expansion, which
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reduces equation (3.4.2) to

F(Pa) ≈ F(Pk) + Jk ·∆P, (3.4.5)

Jk ·∆P = ∆R, (3.4.6)

Adding Jk · (Pk −P0) on both sides, we get,

Jk · (Pk+1 −P0) = ∆R + Jk · (Pk −P0). (3.4.7)

Here, P0 is the prior model. The equation (3.4.7) is the mathematical representation

of our quasi - linearized inverse problem.

3.4.2 Optimization using Gauss-Newton with Conjugate

Gradient Method

Now, for solving the MT inverse problem in equation (3.4.7), the function to be

minimised is known as misfit-function, cost-function, objective function or penalty

function (Tikhonov and Arsenin [143]), ψ(P, λ), is defined as:

ψ(P, λ) = ψd(P) + λψm(P,P0), (3.4.8)

where ψd defined as the scaler product of weighted misfit between observed data

and predicted data, as given in the theory of Tikhonov, the penalty function has a

regularization (stabilizer) part ψm. There are many ways of defining this stabilizer

(see, for example, Farquharson and Oldenburg [36]). In the present work this

regularization functional is defined to obtain smooth models, hence misfit ψd and

regularization(stablizer) functional ψm are defined as

ψd(P) = (D− F[P])TC−1d (D− F[P]), (3.4.9)

ψm(P,P0) = (P−P0)TC−1m (P−P0). (3.4.10)
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Using equations (3.4.9),(3.4.10) in equation (3.4.8), objective function becomes

ψ(P, λ) = {(D− F[P])TC−1d (D− F[P])}+ λ{(P−P0)TC−1m (P−P0)}, (3.4.11)

where F[P] is the model response, the positive -definite matrix Cd is a diagonal matrix

with diagonal entries as variance of error in data,termed as data covariance matrix, Cm

is the model covariance matrix, and λ is the Lagrange multiplier or trade off parameter,

controlling the stabilizer part.

The optimization of cost function defined, in equation 3.4.11, is nonlinear

because model response is a nonlinear function of model parameters. We have

used the Gauss-Newton with conjugate gradient(GN-CG) iterative method for solving

optimization problem, which is based on quasi-linearization of the objective function.

For the (k + 1)th iteration, the forward response F[Pk+1] is expressed around the

parameters obtained in kth iteration by a Taylor series expansion and discarding the

second or higher order derivatives as,

F[Pk+1] = F[Pk + ∆P] = F[Pk] + Jk(Pk+1 −Pk), (3.4.12)

where the subscript k in the equation is the iteration number, Jk is the Jacobian matrix

defined in equation (3.4.22). By using equation (3.4.12) in (3.4.11), the cost function

becomes

ψ(Pk+1, λ) = (D′−Jk∆P)TC−1d (D′−Jk∆P)+λ(Pk +∆P−P0)TC−1m (Pk +∆P−P0),

(3.4.13)

where,

D′ = D− F[Pk], (3.4.14)

describes the misfit between observed/synthetic and calculated data and ∆P is given

by
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Pk+1 = Pk + ∆P. (3.4.15)

Now, the extremal stationary point (minimum or maximum) of the cost function

ψ(P, λ) can be found by taking the derivative of equation (3.4.13) with respect to

∆P, and setting the result equal to zero as

∂ψ(Pk + ∆P, λ)

∂∆P
=

∂

∂∆P
[(D′ − Jk∆P)TC−1d (D′ − Jk∆P)]

+
∂

∂∆P
[λ(Pk + ∆P−P0)TC−1m (Pk + ∆P−P0)] = 0

=
∂

∂∆P
[D′

T
C−1d D′ −D′

T
C−1d Jk∆P−∆PTJT

k C−1d D′

+ ∆PTJT
k C−1d Jk∆P ] +

∂

∂∆P
[λPT

k C−1m Pk + 2λ∆PTC−1m Pk

− 2λPT
k C−1m P0 − 2λ∆PTC−1m P0 + λ∆PTC−1m ∆P− λP0TC−1m P0] = 0

= 2JT
k C−1d Jk∆P− 2JT

k C−1d D′ + 2λC−1m [Pk −P0 + ∆P] = 0

≡ JT
k C−1d JkPk+1 − JT

k C−1d JkPk + λC−1m (Pk+1 −P0) = JT
k C−1d D′.

(3.4.16)

Now adding −JT
k C−1d JkP

0 on both sides, in equation (3.4.16) we get

JT
k C−1d Jk(Pk+1 −P0) + λC−1m (Pk+1 −P0) = JT

k C−1d {D
′ + Jk(Pk −P0)},

Pk+1 = (JT
k C−1d Jk + λC−1m )−1JT

k C−1d {D
′ + Jk(Pk −P0)}+ P0. (3.4.17)

The iterative sequence of normal equations (3.4.17) is simply a matrix equation and

is solved using iterative matrix solver to obtain the updated model parameters Pk+1,

which is used as the current model for next iteration. The equation (3.4.17) can be

written in matrix form as

Pk+1 −P0 = Ĝ−1r, (3.4.18)

where Ĝ = [JT
k C−1d Jk + λC−1m ], and

r = JT
k C−1d {D

′ + Jk(Pk −P0)}.
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From the inverse problem formulation, it is clear that the basic steps of each inversion

iteration are the solution of forward problem and the generation of Jacobian matrix.

Hence, for an efficient algorithm, saving in computational cost or storage in any of

these steps can significantly improve the algorithm.

3.4.3 Calculation of Jacobian

The direct calculation of Jacobian (J) using finite differences

Jij =
Fi[P1, ....., Pj + δPj, .....Pp]− Fi[P1, ....., Pj, .....Pp]

δPj

, (3.4.19)

requires solution of p+1 forward problems. In the approach for computing J, selection

of δPj is very critical for the numerical stability of the inverse problem. To avoid this

difficulty, J can be computed by differentiating the forward problem equation (2.7.1)

with respect to model parameter (P),we get

A
∂E

∂Pj

= − ∂A

∂Pj

E, (3.4.20)

AJj = Yj. (3.4.21)

Writing equation 3.4.21 for all Pj (j=1,2,...,p), we get

J = A−1Y, (3.4.22)

where Jj =
∂E

∂Pj

and Yj = − ∂A

∂Pj

E are the jth columns of matricies J and Y

respectively. However, for large problems, where, the number of parameters ’p’ is very

large, it becomes computationally very costly and requires large memory for storage.

The inverse problem solution can be speeded up significantly by avoiding the direct

computation of Jacobian.
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3.5 Closure

The solution of ill-posed MT inverse problem is obtained through regularization. The

non-linear 3D inverse problem is solved iteratively by quasi-linearization. Numerical

implementation of 3D forward and inverse problem in 3DINV FD algorithm, based

on finite difference method, is discussed next.
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Chapter 4

NUMERICAL IMPLEMENTATION OF

FINITE DIFFERENCE METHOD

4.1 Introduction

The MT data inversion algorithm efficiency crucially depends upon the accuracy and

efficiency with which one can solve the forward problem. This, in effect, means getting

solution of the boundary value problem. The analytical solution of the 3D partial

differential equations, derived from Maxwell’s equations does not exist. To overcome

this limitation, numerical methods are used for modeling of 3D MT problems.

The complex real earth can be modeled using any one of the available numerical

techniques that translate the partial differential equation into a matrix equation.

These numerical methods can be grouped into two broad classes - Integral Equation

Methods (lEMs) and Differential Equation Methods (DEMs). Both these classes have

identified merits and demerits in terms of their respective applicability. Preference of

one method over the other is dictated by the complexity of the model and the available

computational resources.
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In IEM, the integral operator is transformed, through quadrature formulae, to a

matrix operator. Here, only the anomalous region is modeled. This results in a small

but full coefficient matrix. In fact much of the earlier work in 3D modelling was done

using IEM only (Weidelt [158], Wannamaker et al. [153, 154], Eaton [32], Wannamaker

[152], Zhdanov and Fang [168] and Kaufman and Eaton [59]). However, inspite of these

positive features the use of IEM is restricted to the modeling of confined bodies in a

layered earth. It is so because this method is constrained by the necessity of efficient

computation of Green’s functions and the easily computable Green’s functions exist

only for the layered earth primary model.

The DEMs, Finite Element Method (FDM) or Finite Difference Method (FEM),

are popular in simulating arbitrarily shaped geometries. In these methods the whole

domain of study need be discretized. This results in a large but grossly sparse coefficient

matrices. Earlier, their use was limited because of paucity of efficient large matrix

solvers. Recent advances in iterative solution techniques have helped in establishing

their superiority over IEM. In FEM differential operator is reduced to a matrix operator

through a functional minimization. Moreover, FEM is very useful in solving problems

with complex geometries having curved boundaries (Coggon [25], Reddy et al. [110],

Wannamaker et al. [155], Travis and Chave [144], Livelybrooks [71] and Mogi [87]). The

differential operator is reduced to a matrix operator through difference approximation

in case of FDM. The mathematics of FDM is much simpler and easier to implement

than that of FEM. In geophysics, where the main emphasis is on the solution of inverse

problem, any inversion method would have limited resolution because of erroneous

observations. Therefore, it may not be economically viable to model refined curved

boundaries instead of the simple linear boundaries. Moreover, the matrix solvers for
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FDM are more efficient than those commonly used for FEM.

Besides the methods belonging to the above two classes, there exist some

Hybrid methods where positive features of IEM and DEM are amalgamated e.g.

Vachiratienchai et al. [148], Rung-Arunwan and Siripunvaraporn [113]. But these

methods are again applicable only to confined structures (Lee et al. [67]). The

comparative studies of different numerical modeling methods is also available in the

literature (Zhdanov et al. [167], Han et al. [49] among others).

Therefore, after looking in to merits and disadvantages of different numerical

methods, in the present work FDM is used to solve the forward problem defined by

equations (2.4.8) and (2.4.9).

4.2 Implementing Finite Difference Method

In FDM the derivatives of a function are replaced by the appropriate difference formula,

obtained from the Taylor series expansion of the function as

First order derivative approximation:

∂F (x, y, z)

∂x
' F (x+ ∆x, y, z)− F (x, y, z)

∆x
, (4.2.1)

Second order derivative approximation:

∂2F (x, y, z)

∂x2
' F (x+ ∆x, y, z)

∆x2
− 2F (x, y, z)

∆x2
+
F (x−∆x, y, z)

∆x2
. (4.2.2)

The detailed explanation of FDM is available in the standard text e.g. Forsythe and

Wasow [38], Hildebrand [52], Mitchell and Griffiths [85] and Taflove et al. [137].
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4.2.1 Staggered Grid

In order to implement the FDM for solving the forward problem defined by equations

(2.4.8 and 2.4.9), the modeling domain is disretized into cells/cuboids by straight grid

lines parallel to the three co-ordinate axes (X,Y,Z). In the present work, the staggered

grid is used for implementing the FDM. The staggered grid was first used in electrical

engineering problems by Yee [162], and now it is widely used in EM FDM modeling.

In staggered grid implementation, the components of E are defined at the center of cell

edges and components of H are defined at the center of cell faces as shown in Figure

(4.1).

Figure 4.1: Staggered grid used for implementing FDM

The advantage of implementing staggered grid over normal grid where all six field

components are defined at the nodes, is that inspite of computational roundoff errors

5·H is implicit zero. Thus the field computation is more accurate than those obtained

from normal grid.
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4.2.1.1 Grid Specifications

The number of cells in the grid are specified by nx, ny and nz in X, Y and Z directions

respectively. Conductivity of the cell (i,j,k) is represented as σ(i, j, k) and its volume

as vol(i,j,k) = a(i).b(j).c(k), where a(i), b(j) and c(k) are the distances between two

adjacent nodes in X, Y and Z directions respectively (Figure 4.2). The edges of the

cube are (x(i), x(i+1)), (y(j), y(j+1)) and (z(k), z(k+1)). The cell edge centers are

defined as xc(i), yc(j) and zc(k) with

xc(i) =
x(i+ 1) + x(i)

2
,

yc(j) =
y(j + 1) + y(j)

2
,

zc(k) =
z(ki+ 1) + z(k)

2
. (4.2.3)

Figure 4.2: Staggered grid used for implementing FDM
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4.2.2 Weighted Average Conductivity

While employing FDM to solve the problem, the spatial average of conductivity at

a node is required (Brewitt-Taylor and Weaver [19]). The average conductivities,

σx(i, j, k), σy(i, j, k) and σz(i, j, k) at the center of cell edges where electric field

components, Ex(i, j, k), Ey(i, j, k) and Ez(i, j, k) are defined respectively, are computed

as

σx(i, j, k) =
a(i)

4.volx(i, j, k)

[
b(j− 1)c(k− 1)σ(i, j− 1, k− 1) + b(j)c(k− 1)σ(i, j, k− 1)

+ b(j − 1)c(k)σ(i, j − 1, k) + b(j)c(k)σ(i, j, k)
]
,

σy(i, j, k) =
b(j)

4.voly(i, j, k)

[
a(i− 1)c(k − 1)σ(i− 1, j, k − 1) + a(i)c(k − 1)σ(i, j, k − 1)

+ a(i− 1)c(k)σ(i− 1, j, k) + a(i)c(k)σ(i, j, k)
]
,

σz(i, j, k) =
c(k)

4.volz(i, j, k)

[
a(i− 1)b(j − 1)σ(i− 1, j − 1, k) + a(i)b(j − 1)σ(i, j − 1, k)

+ a(i− 1)b(j)σ(i− 1, j, k) + a(i)b(j)σ(i, j, k)
]
. (4.2.4)

Here,

volx(i, j, k) = a(i)bh(j)ch(k),

voly(i, j, k) = ah(i)b(j)ch(k),

volz(i, j, k) = ah(i)bh(j)c(k), (4.2.5)

are volume of the prisms px, py and pz with conductivity σx, σy and σz (Figures 4.3,

4.4 and 4.5) respectively.
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Figure 4.4: Grid cells and associated spacing parameters. The red dotted prism is of

average conductivity σy(i, j, k)

Figure 4.3: Grid cells and associated spacing parameters. The red dotted prism is of

average conductivity σx(i, j, k)

61



Figure 4.5: Grid cells and associated spacing parameters. The red dotted prism is of

average conductivity σz(i, j, k)

4.2.3 Staggered Finite Difference Equation

The system equation (2.4.9) for electric field components Es
x,Es

y and Es
z approximated

using the finite differences, for (i,j,k) cell can be written as

[
a(i)ch(k)

b(j)
+
a(i)ch(k)

b(j − 1)
+
a(i)bh(j)

c(k)
+
a(i)bh(j)

c(k − 1)
+ ιωµ0σ

i,j,k
x volx(i, j, k)

]
Es

x(i, j, k)

+
a(i)ch(k)

b(j − 1)
Es

x(i, j − 1, k) +
a(i)ch(k)

b(j)
Es

x(i, j + 1, k) +
a(i)bh(j)

c(k − 1)
Es

x(i, j, k − 1)

+
a(i)bh(j)

c(k)
Es

x(i, j, k + 1) + ch(k)Es
y(i, j − 1, k)− ch(k)Es

y(i+ 1, j − 1, k)

− ch(k)Es
y(i, j, k) + ch(k)Es

y(i+ 1, j, k) + bh(j)Es
z(i, j, k − 1)− bh(j)Es

z(i+ 1, j, k − 1)

− bh(j)Es
z(i, j, k) + bh(j)Es

z(i+ 1, j, k) = −ιωµ0(σ
i,j,k
x − σp)volx(i, j, k)Ep

x(i, j, k),

(4.2.6)
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[
ah(i)b(j)

c(k)
+
ah(i)b(j)

c(k − 1)
+
b(j)ch(k)

a(i)
+
b(j)ch(k)

a(i− 1)
+ ιωµ0σ

i,j,k
y voly(i, j, k)

]
Es

y(i, j, k)

+
ah(i)b(j)

c(k − 1)
Es

y(i, j, k − 1) +
ah(i)b(j)

c(k)
Es

y(i, j, k + 1) +
b(j)ch(k)

a(i− 1)
Es

y(i− 1, j, k)

+
b(j)ch(k)

a(i)
Es

y(i+ 1, j, k) + ah(i)Es
z(i, j, k − 1)− ah(i)Es

z(i, j + 1, k − 1)

− ah(i)Es
z(i, j, k) + ah(i)Es

z(i, j + 1, k) + ch(k)Es
x(i− 1, j, k)− ch(k)Es

x(i− 1, j + 1, k)

− ch(k)Es
x(i, j, k) + ch(k)Es

x(i, j + 1, k) = −ιωµ0(σ
i,j,k
y − σp)voly(i, j, k)Ep

y(i, j, k),

(4.2.7)

[
bh(j)c(k)

a(i)
+
bh(j)c(k)

a(i− 1)
+
ah(i)c(k)

b(j)
+
ah(i)c(k)

b(j − 1)
+ ιωµ0σ

i,j,k
z volz(i, j, k)

]
Es

z(i, j, k)

+
bh(j)c(k)

a(i− 1)
Es

z(i− 1, j, k) +
bh(j)c(k)

a(i)
Es

z(i+ 1, j, k) +
ah(i)c(k)

b(j − 1)
Es

x(i, j − 1, k)

+
ah(i)c(k)

b(j)
Es

x(i, j + 1, k) + bh(j)Es
x(i− 1, j, k)− bh(j)Es

x(i− 1, j, k + 1)

− bh(j)Es
x(i, j, k) + bh(j)Es

x(i, j, k + 1) + ah(i)Es
y(i, j − 1, k)− ah(i)Es

y(i, j − 1, k)

− ah(i)Es
y(i, j, k) + ah(i)Es

y(i, j, k + 1) = −ιωµ0(σ
i,j,k
z − σp)volz(i, j, k)Ep

z (i, j, k).

(4.2.8)

Now, staggered finite difference (SFD) equations 4.2.6, 4.2.7 and 4.2.8 are written for

all non-trivial components of electric field.

4.2.3.1 System Matrix Description

After writing these FD approximation equations for all field components, these are

assembled in form of a matrix equation as

Es = A−1b. (4.2.9)

Here, Es is a vector containing unknown non-trivial electric field components, and b is

obtained from boundary conditions.There are numerous ways of arranging the algebraic

63



equations (4.2.6-4.2.8), whose coefficients constitute the matrix A. In the present work,

first Es
x and Es

y components are arranged first and then the Es
z components are arranged

(Figures 4.6 and 4.7) to constitute the system matrix. The system matrix is highly

sparse matrix (Figure 4.8), with maximum 13 nonzero elements in a row, and it is

stored in Compact Sparse Row (CSR) format. The total number of electric field

components determine the size of the system matrix. The number of non-trivial electric

field components are,

• non-trivial Es
x components = nx.nym.nzm,

• non-trivial Es
y components = nxm.ny.nzm,

• non-trivial Es
z components = nxm.nym.nz.

Here, nxm = (nx− 1), nym = (ny− 1) and nzm = (nz− 1). So, the system matrix is

of dimension (nef × nef), and nef is defined as

nef = nzm(nx.nym+ nxm.ny) + nxm.nym.nz

= nzm.nxy + nxm.nym.nz

4.2.4 Divergence Correction

As explained in chapter 2, to improve convergence at low frequencies, static divergence

correction is applied to the iterative solution. The SFD equations for calculating the
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Figure 4.6: Numbering scheme Ex and Ey components in system matrix A associated

with grid (3× 3× 4).

Figure 4.7: Numbering scheme Ez components in system matrix A associated with

grid (3× 3× 4).
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Figure 4.8: Structure of system matrix A associated with grid (4× 3× 4).

unknown scalar φ is obtained by approximating the derivatives in equation (2.7.4)

by the difference formula. The SFD equation for φ is

a1φ(i, j, k − 1) + a2φ(i− 1, j, k) + a3φ(i, j − 1, k)− a4φ(i, j, k) + a5φ(i, j + 1, k)+

a6φ(i+ 1, j, k) + a7φ(i, j, k + 1) = b1Ep(i, j, k)− b2Ep(i− 1, j, k) + b3Ep(i, j, k)−

b4Ep(i, j − 1, k)− c1Es
x(i, j, k) + c2Es

x(i− 1, j, k)− c3Es
y(i, j, k) + c4Es

y(i, j − 1, k)

− c5Es
z(i, j, k) + c6Es

z(i, j, k − 1).

(4.2.10)
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Here,

a1 =
ah(i)bh(j)σz(i, j, k − 1)

c(k − 1)
a2 =

bh(j)ch(k)σx(i− 1, j, k)

a(i− 1)

a3 =
ah(i)ch(k)σy(i, j − 1, k)

b(j − 1)
a5 =

ah(i)ch(k)σy(i, j + 1, k)

b(j)

a6 =
bh(j)ch(k)σx(i+ 1, j, k)

a(i)
a7 =

ah(i)bh(j)σz(i, j, k + 1)

c(k)

a4 = a1 + a2 + a3 + a5 + a6 + a7,

b1 = bh(j)ch(k)σa
x(i, j, k) b2 = bh(j)ch(k)σa

x(i− 1, j, k)

b3 = ah(i)ch(k)σa
y(i, j, k) b4 = ah(i)ch(k)σa

y(i, j − 1, k),

and

c1 = bh(j)ch(k)σx(i, j, k) c2 = bh(j)ch(k)σx(i− 1, j, k)

c3 = ah(i)ch(k)σy(i, j, k) c4 = ah(i)ch(k)σy(i, j − 1, k)

c5 = ah(i)bh(j)σz(i, j, k) c6 = ah(i)bh(j)σz(i, j, k − 1).

Writting equation (4.2.10) for all non-trivial (i,j,k), arranging them we get a matrix

equation system as

CΦ = d (4.2.11)

Now, equation (4.2.11) is solved to get value of Φ on all the nodes and from which 5φ

is computed at the center of cell edges, where electric field components are defined, to

correct the iterative solution.

4.2.5 Forward Matrix Solver

Now, to solve equation (4.2.9), iterative bi-conjugate gradient stabilized ’BICGSTAB’

method (Van der Vorst [149]) along with DILU preconditioner (Barrett et al. [11]) is
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implemented. Furthermore, to improve the efficiency, OpenMP platform is used to

compute the response of different frequencies in parallel.

4.2.6 Transformation and Interpolation

After computing electric field E, we need to calculate the magnetic field H for

computing the different MT response functions. As described in Chapter 2, H is

calculated from the finite difference approximation of the equation (2.4.2) as

Hx(i, j, k) =
i

ωµ0

[Ez(i, j + 1, k)− Ez(i, j, k)

b(j)
− Ey(i, j, k + 1)− Ey(i, j, k)

c(k)

]
Hy(i, j, k) =

i

ωµ0

[Ex(i, j, k + 1)− Ex(i, j, k)

c(k)
− Ez(i+ 1, j, k)− Ez(i, j, k)

a(i)

]
(4.2.12)

As, these magnetic field values are defined at the center of cell faces, for calculating

their values at observation points/site location we first compute filed values in the first

two layers at air earth interface i.e. k = zair earth int and k = zair earth int+1. So, to

compute magnetic field we design a transformation matrix using equation (4.2.12) as

h = T′E (4.2.13)

where

• h is the vector containing horizontal components of magnetic field for two layers.

The dimension of h is (2nxy × 1), nxy = nx(ny − 1) + (nx− 1)ny,

• E is the vector containing all non-trivial electric field components. The dimension

of E is (nef × 1),

• T’ is the transformation matrix and its dimension is (2nxy × nef).

T’ is a highly sparse matrix with at most 4 non-zero elements in each row. So, only

the non-zero elements are stored in a (nxy3× 4)array and their corresponding position
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is also stored in a (nxy3 × 4)array. The non-zero elements and their column position

in a row are

For Hy:

T ′l,1 = − ι

ωµ0c(k)
, coll,1 = (k − 2)nxy + k

T ′l,2 =
ι

ωµ0c(k)
, coll,2 = (k − 1)nxy + k

T ′l,3 =
ι

ωµ0a(i)
, coll,3 = nzm.nxy + (k − 1)nxm.nym+ (j − 2).nxm+ i− 1

T ′l,4 = − ι

ωµ0a(i)
, coll,4 = nzm.nxy + (k − 1)nxm.nym+ (j − 2).nxm+ i

For Hx:

T ′l,1 =
ι

ωµ0c(k)
, coll,1 = (k − 2)nxy + k

T ′l,1 = − ι

ωµ0c(k)
, coll,2 = (k − 1)nxy + k

T ′l,1 = − ι

ωµ0b(j)
, coll,3 = nzm.nxy + (k − 1)nxm.nym+ (j − 1)nxm+ i− nxm

T ′l,1 =
ι

ωµ0b(j)
, coll,4 = nzm.nxy + (k − 1)nxm.nym+ (j − 1)nxm+ i

After computing the magnetic field at face center of the cells in two layers, its value

is extrapolated at the cell edge center where electric fields are defined. Both these

operations are combined for computation of magnetic field values at the edge center of

the grid block and are represented by matrix operator T.

In order to compute the field response at the observation points from the field

values at grid points, we have adopted bi-linear interpolation from Press et al. [106].

We have designed two interpolation matrices Ip1 for interpolating Ex and Hy, and Ip2

for interpolating Ey and Hx.
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4.3 Inverse Formulation

The non-linear MT problem, after quasi-linearization, is solved iteratively starting with

an initial guess model. In general, since the location and extent of the anomalous body

can be roughly guessed from the observed response, there is no need for inverting

the whole modeling domain. A good initial guess helps in faster convergence of the

iterative process. The data recorded at surface sites or the synthetically generated data,

constitute the observation vector. The parameter vector P consists of the resistivities

(ρ) of the cells enclosed in the inversion domain. The initial guess values are the

current value of ρi,j,k of the (i, j, k)th block. For numerical accuracy, instead of ρi,j,k,

its logarithm given below is considered as parameter,

Pl = log ρi,j,k = − log σi,j,k. (4.3.1)

It is more efficient to work with the logarithmic parameters because out of all the

model parameters, the ρ varies over the widest range. Using log ρ as the parameters,

not only scales this large variation in parameter values but also guarantees that the ρ

has only positive values.

In order to solve the inverse problem matrix equation (3.4.17), the Jacobian matrix

J need to be calculated using equation (3.4.22) which is rewritten as

J = A−1Y,

where Yl = −∂A

∂Pl

E is the lth column of matrix Y. So to construct matrix Y, we need

the differentiation of system matrix A with respect to the parameters.
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4.3.1 Matrix Solver for Inverse Problem

In the present work, we are inverting the impedance tensor Z, so we need the

corresponding Jacobian K. For the derived Jacobian K, the inverse problem defined in

equation (3.4.18) is rewritten as

Pk+1 −P0 = Ĝ−1r, (4.3.2)

where Ĝ = [KT
k C−1d Kk + λC−1m ], and

r = KT
k C−1d {D

′ + Kk(Pk −P0)}.

It may be stated here that equation (4.3.2) is valid for real matrices. But in

3DINV FD algorithm we are working with complex variables so, we have converted

our problem to one involving complex matrices following the work of Rodi and Mackie

[112], which is discussed next.

4.3.2 Real to Complex Algebra

Let D̂ be a complex vector such that elements of D are either real or imaginary part

of a unique element of D̂:

D = Re{T̂D̂}, (4.3.3)

where

T̂ij =



1, if pi = Re{p̂j}

−ι, if pi = Im{p̂j}

0, otherwise

So, the forward modeling operator F can be written as

F(P) = Re{T̂ ˆF(P)}, (4.3.4)

71



where F̂ is the complex forward modeling operator. Now, Jacobian K can also be

written as

K = Re{T̂K̂}, (4.3.5)

where, K̂ is the complex derived Jacobian.

4.3.3 Derivative of System Matrix

The derivative of a system matrix element is zero unless its expression contains ρ.

Since the conductivity of a (i,j,k) cell σ(i, j, k) contributes to 12 weighted average

conductivities, namely (σx(i, j, k), σx(i, j + 1, k), σx(i, j, k + 1), σx(i, j + 1, k + 1),

σy(i, j, k), σy(i+1, j, k), σy(i, j, k+1), σx(i+1, j, k), σz(i, j, k), σz(i+1, j, k), σz(i, j+1, k)

and σz(i + 1, j + 1, k)). As a result, the derivative of the A is a diagonal matrix with

12 nonzero elements and hence, the matrix Y of dimension (nef × p), is grossly sparse

with each column having at most 12 non-zero entries in row positions corresponding

to the non-zero element in Â = −∂A

∂Pl

. The derivative with respect to the logrithmic

parameter is defined as

∂

∂Pl

= − 1

ρi,j,k

∂

∂σi,j,k
. (4.3.6)

After differentiating with − log σi,j,k, all 12 non-zero elements along the diagonal of Â

have value

val =
iωµ0

4.ρi,j,k

[
a(i).b(j).c(k)

]
, (4.3.7)

and their position along the diagonal are

• For σx(i, j, k): n = (k + l − 3) · {nx · (ny − 1) + (nx − 1) · ny} + (i − 1).(2ny −

1) + (j − 1) + (m− 1) where l,m = 1, 2,
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• For σy(i, j, k): n = (k+ l− 3) · {nx · (ny− 1) + (nx− 1) ·ny}+ (i+m− 2).(2ny−

1) + (j − 1)− (ny − 1) where l,m = 1, 2,

• For σz(i, j, k): n = (k + nz − 2) · {nx · (ny − 1) + (nx− 1) · ny}+ (i− 1) + (j +

l − 3) · (nx− 1) + (m− 1) where l,m = 1, 2.

Now, matrix Y is computed as

Yl = −∂A

∂Pl

E (4.3.8)

To save space, instead of storing full sparse matrix Y, only the non zero elements

are stored and there position in the column of Y, are stored. As there are modes of

polarization, so two matrices Y1 and Y2 are constructed for each polarization mode.

During inversion we need the Jacobian corresponding to the response function which

is being inverted. The details for calculating derived Jacobian for Z is discussed here.

4.3.4 Derived Jacobian

The Jacobian computed from equation (3.4.22) is for the electric field E components.

The derived Jacobian K can be derived by considering that the first order perturbation

of Z are the result of perturbation to the computed EM fields (
∂E

∂P
,
∂B

∂P
), such that

∂Z

∂P
=

∂

∂P

(E

H

)
,

=
∂E

∂P
H−1 − Z

∂B

∂P
H−1 (4.3.9)

Now, consider ith observation point,H−1 is H i
x1 H i

x2

H i
y1 H i

y2


−1

=


H i

y2

D
−
H i

y1

D

−H
i
x2

D

H i
x1

D

 =

 H̄ i
1 H̄ i

3

H̄ i
2 H̄ i

4

 (4.3.10)

where, D = H i
x1H

i
y2 −H i

x2H
i
y1.
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So, equation (4.3.9 at ith observation point becomes,


∂Pj

Zi
xx ∂Pj

Zi
xy

∂Pj
Zi

yx ∂Pj
Zi

yy

 =

 ∂Pj
Ei

x1 ∂Pj
Ei

x2

∂Pj
Ei

y1 ∂Pj
Ei

y2


 H̄ i

1 H̄ i
3

H̄ i
2 H̄ i

4

−


Zi
xx Zi

xy

Zi
yx Zi

yy


 ∂Pj

H i
x1 ∂Pj

H i
x2

∂Pj
H i

y1 ∂Pj
H i

y2


 H̄ i

1 H̄ i
3

H̄ i
2 H̄ i

4

 . (4.3.11)

The calculated electric and magnetic fields can be interpolated at the observation point.

Thus, for ith observation point we can write

Ei
x1 = Ipi1 · E1, Ei

x2 = Ipi1 · E2, Ei
y1 = Ipi2 · E1, Ei

y2 = Ipi2 · E2,

H i
x1 = Ipi2 ·T · E1, H i

x2 = Ipi2 ·T · E2, H i
y1 = Ipi1 ·T · E1, H i

y2 = Ipi1 ·T · E1.

(4.3.12)

Using equations(4.3.11 and 4.3.12), we can write

∂Pj
Zi

xx = H̄ i
1

{
Ipi1 − Zi

xxIp
i
2T− Zi

xyIp
i
1T
}
∂mk

E1

+ H̄ i
2

{
Ipi1 − Zi

xxIp
i
2T− Zi

xyIp
i
1T
}
∂mk

E2. (4.3.13)

After writing equation (4.3.13) for all observation points and parameters, they can be

assembled in matrix form as

K1 = diag(H̄1) {Ip1 − diag(Zxx)Ip2T− diag(Zxy)Ip1T}A−1Y1

+ diag(H̄2) {Ip1 − diag(Zxx)Ip2T− diag(Zxy)Ip1T}A−1Y2. (4.3.14)
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Similarly writing for Zxy, ZyxandZyy

K2 = diag(H̄3) {Ip1 − diag(Zxx)Ip2T− diag(Zxy)Ip1T}A−1Y1

+ diag(H̄4) {Ip1 − diag(Zxx)Ip2T− diag(Zxy)Ip1T}A−1Y2, (4.3.15)

K3 = diag(H̄1) {Ip2 − diag(Zyx)Ip2T− diag(Zyy)Ip1T}A−1Y1

+ diag(H̄2) {Ip2 − diag(Zyx)Ip2T− diag(Zyy)Ip1T}A−1Y2, (4.3.16)

K4 = diag(H̄3) {Ip2 − diag(Zyx)Ip2T− diag(Zyy)Ip1T}A−1Y1

+ diag(H̄4) {Ip2 − diag(Zyx)Ip2T− diag(Zyy)Ip1T}A−1Y2. (4.3.17)

So, combining equations (4.3.14-4.3.17), the derived Jacobian K is written as

K(4nobs×p) =



K1

K2

K3

K4


=



L1
xx L2

xx

L1
xy L2

xy

L1
yx L2

yx

L1
yy L2

yy


(4nobs×2nef)

·

A−1 0

0 A−1


(2nef×2nef)

·

Y1

Y2


(2nef×p)

=



L1
xx

L1
xy

L1
yx

L1
yy


A−1Y1 +



L2
xx

L2
xy

L2
yx

L2
yy


A−1Y2

= L1A−1Y1 + L2A−1Y2 (4.3.18)

4.3.5 Bypassing Explicit Jacobian Computation

The matrix equation (4.3.2) is solved using CG method, and in CG method the matrix

Ĝ is only required in matrix vector product (Appendix A). This property of CG is

used to bypass the direct/explicit computation of Jacobian (K), as now matrix K is

75



only employed in the computation of quantities K · s and KT · t for particular vectors

s and t. It is evident from equations (4.3.5 and 4.3.18) that the required matrix-vector

products (Ks and KT t) can be computed as

Ks = Re{T̂K̂s}

= Re{T̂L1A−1Y1s + T̂L2A−1Y2s} (4.3.19)

KT t = Re{K̂T T̂T t}

= Re{K̂T t̄}

= Re{YT
1 A−1L1T t̄ + YT

2 A−1L2T t̄} (4.3.20)

where t̄ is the complex conjugate of vector t. It is evident from equations (4.3.19 and

4.3.20) that 4 pseudo forward problems are solved in 1 CG iteration to avoid the direct

computation of the Jacobian matrix.

4.4 Solution of Inverse Problem

During, the numerical implementation for solving the inverse problem, there are two

levels of iterations. The outer loop for quasi-linearizing the inverse problem, whereas

the inner loop is for the iterations of the CG used to obtain the corrected logarithmic

parameters. From, the obtained parameter vector P’, the updated resistivity of the

blocks in the inversion domain is obtained as

Pk+1 = P0 exp(P′). (4.4.1)

The use logarithmic parameters works well for large variations in the model parameter

resulting from larger dynamic range in the signals and hence, stabilizing the inversion

procedure. The updated parameter vector Pk+1 is used as initial guess for the next
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iteration. After each iteration in the outer loop the solution is checked for convergence.

The convergence of iterative process is determined by two criteria,

• The misfit between the updated model response and observed/synthetic data is

less than the desired tolerance level.

• The improvement in the parameter vector in successive iterations is not

significant.

Moreover, the inversion process stops when misfit after the current update is greater

than that of previous iteration or when the iteration number exceeds a given limit.

The obtained model is accepted as one of the possible solution of the inverse problem.

4.5 Closure

The FDM having simple mathematics and easy implementation is preferred over other

numerical methods for solving MT inverse problem. The forward problem is solved

using BICGSTAB method while CG method is used for solving inverse problem. The

algorithm 3DINV FD, where the different aspects of finite difference implementation

have been programmed in FORTRAN90, is discussed in Chapter 5.
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Chapter 5

DEVELOPMENT AND DETAILS OF

3DINV FD ALGORITHM

5.1 Introduction

The ultimate goal of any EM inversion algorithm is to find an optimum resistivity

model by employing a cost-effective technique. At the time when this study was

started there were only a few 3D EM inversion algorithms available, therefore, in

the present research work, an effort has been made to develop an efficient 3D MT data

inversion algorithm 3DINV FD, by numerically implementing the forward and inverse

formulations discussed in Chapter 4. The sequence of development, highlighting the

difficulties faced and the manner in which these were overcome, is presented below.

5.2 Sequence of Development

The present study was carried out over a period of about five years. Like any

major exercise, the algorithm 3DINV FD was also developed in various stages.For

understanding the discrete inversion, we started with the development of of a primitive
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2D algorithm for MT data inversion. and finally developed the 3D algorithm

3DINV FD. It may be stressed here that 2D algorithm development took only 30%

of the time spent on the development of 3DINV FD. During the course of time,

the different versions of inversion algorithm were developed. Some features of these

intermediate versions have survived in the final version, while others have been dropped

out. The outcome of this thorough and extensive research is an efficient 3D MT data

inversion algorithm, 3DINV FD.

5.2.1 2D Algorithm Version I

Initially, the 2D forward modeling algorithm for TE mode was developed using the same

methodology as was to be used in 3D case i.e. FDM. The Dirichlet boundary condition

was applied on the two vertical sides and at the bottom boundary and following

the work of Stuntebeck [136], Kumar [64] field continuation boundary conditions

were applied at the air-earth interface. Preconditioned BICGSTAB with Jacobi

preconditioner was used as matrix solver. The inversion algorithm was also developed

using the same methodology as was to be used in 3D i.e. quasi-linearized inversion. The

sensitivity matrix was computed explicitly by perturbing the parameters. Although,

this approach was computationally costly and required space for storage, the reason

for doing so was to develop a base algorithm to which further improvements can be

matched. For solving the matrix equation in inversion algorithm CG method was used.

Moreover, in this version the starting value of regularization parameter, λ, was selected

by hit and trial approach and then its value was decreased during the iterative process.
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5.2.2 2D Algorithm Version II

After the results of this algorithm were found satisfactory the process of making the

algorithm efficient started. To this end, the first improvement done in version-I was that

the selection of regularization parameter and its cooling during the iterative process

was done as proposed by Newman and Alumbaugh [91]. Moreover, the main objective

was to avoid explicit Jacobian matrix computation, and for achieving that we needed

the derivative of system matrix with respect to the parameters. So, in this version the

Jacobian matrix was constructed explicitly by differentiating the system matrix with

respect to the model parameters and then multiplying it by the electric field values.

The reason for doing so was to confirm that the derivative of the system matrix is

computed correctly. This is confirmed by matching the Jacobian computed using two

methods.

After establishing the correctness of derivative of system matrix, we developed the

2D TE mode inversion algorithm in which the Jacobian computations were bypassed

by using the CG method to our advantage.

5.2.3 Version III

After successfully developing the 2D inversion algorithm, as per the objective of this

research work, development of the 3D inversion algorithm was started. For this

purpose, the main ideas from the 2D algorithm were carried forward to the 3D forward

modeling algorithm. Boundary conditions used were same as used in 2D algorithm. But

instead of nodal grid, staggered grid were used in 3D algorithm. The first difficulty

faced in this algorithm was that, due to field continuation boundary conditions at

the air-earth interface, the forward modeling algorithm took long time for computing

81



the field responses because while implementing this boundary condition matrix vector

product is required and for 3D case this operation took most of the time and more

storage was required to store a full matrix of dimension (nxy × nxy) which is part

of the system matrix. Second difficulty faced was that the BICGSTAB along with

jacobi preconditioner was used for matrix equation solution and it showed very poor

convergence results.

So, to overcome these difficulties, the field continuation boundary condition was

dropped, and 7 layers were added in the air and Dirichlet boundary condition was

also applied to the top boundary. This resulted in large system matrix but a lot was

saved on computation time. Furthermore, the jacobi preconditioner was replaced by

ILU(0) preconditioner which also resulted in very fast convergence. For developing

3D inversion program, the algorithm successfully tested for 2D case was accordingly

implemented and successfully tested for noise free synthetic data.

5.2.4 Final Version

The final version of the inversion algorithm 3DINV FD was achieved after the ILU(0)

preconditioner was replaced by DILU preconditioner which is mathematically same as

ILU(0) (Barrett et al. [11]) but easy to implement and requires less computation time.

Moreover, the more efficiently forward problem is solved, it will result in a more efficient

inversion algorithm. So, various features of the algorithm to achieve this objective are

discussed below.
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5.3 Saleent Features of 3DINV FD Algorithm

The 3DINV FD algorithm has various features for improving its efficiency and

versatility. Since the algorithm has a compact modular structure, so to add further

features to the algorithm, a subroutine can be plugged in or removed easily without

affecting the remaining program. The special features result in a cost effective

algorithm providing good quality inversion. The various features, which enhance

versatility or efficiency, are discussed below

5.3.1 Source Term

The program is structured in such a way that first the computations are carried out in

terms of secondary fields. Later on, the primary fields are added to secondary fields,

for the total field computations. Therefore, in order to incorporate the source effect

only a subroutine, computing the response of primary layered earth model in presence

of source, is to be added replacing the existing output˙1d subroutine which computes

1-D primary field due to a plane wave source.

5.3.2 Optimal Parameters for Static Divergence Correction

The main feature of the forward modeling algorithm, controlling its convergence at low

frequency is ststic divergence correction. After rigorous testing on synthetic models,

the parameters for applying divergence correction are fixed to optimal values for fast

convergence.

83



5.3.3 Multi-frequency Response in Parallel

In the inversion algorithm 3DINV FD the forward problem for obtaining the response

for different frequencies and solving pseudo forward problems during CG iterations are

solved in parallel using the OpenMP parallel programming platform on shared memory

architecture.

5.3.4 Field and Synthetic Data

The inversion algorithm 3DINV FD can handle both field and synthetic data. For

synthetic models, first the forward response is generated, next, if desired, corrupted

with noise and then inverted. In order to simulate erroneous characteristic of real data,

the synthetic data is corrupted with Gaussian noise.

5.3.5 CG Method

The inverse matrix equation (4.3.2) is solved using the conjugate gradient method.

This particular choice of matrix solver is governed by the fact that CG method does

not need explicit computation of Jacobian matrix. All it needs is the product of this

matrix or its transpose with a vector. Moreover, for each CG inversion iteration the

pseudo forward problem is solved 4 times, in contrast to other matrix solvers where

it has to be solved as many times as the number of unknown parameters. So, till the

number of CG iterations is less than 1/4th the number of unknown parameters, the CG

will be more efficient than other methods.
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5.4 Details of Algorithm

The algorithm, 3DINV FD, employs FDM for solving forward and inverse problems.

The algorithm comprises 6887 lines and 44 subroutines. It works in double precision

arithmetic. In order to avoid stack overflows, it uses dynamic memory allocation and

the memory is freed by deallocating the arrays if not required further in the program.

The description and features of algorithm are highlighted in the Figure 5.1.

Total 9 inupt/output (I/O) units are opened in the program. The parameters and

data controls are read from the 4 different input files. The remaining 5 output files are

used for different outputs which are helpful in analyzing the results. Sample I/O files

are given in Appendix B.

5.5 Structure of Algorithm

The main program of the inversion algorithm 3DINV FD provides the infrastructure

and the run controls. In the main program input and output files are opened and

two basic subroutines (frwrd modlng and inversion) are called depending on the

control parameter ’problem counter’. The main program gets the control parameters

by calling the subroutine frwrd input and then decides to which subroutine it should

get directed to. The control parameters are read in frwrd input namely ’response

counter’ and ’problem counter. The possible values of these parameters and their

purpose are listed in Table 5.1. Flow chart of the main program is given in Figure 5.2.
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Basic Algorithm Statistics

3DINV FD : 6887 Lines

Main program : 146 Lines

Subroutines : 6741 Lines (# 44)

Methodology

• Finite Difference Method.

• Quasi-Linear Inversion.

• Conjugate Gradient matrix solver for inverse problem.

Forward Modeling Features

• Optimal parameters for static divergence correction.

• BICGSTAB with DILU preconditioner.

• Gaussian noise addition to synthetic data.

• Multi frequency response computation in parallel.

Inversion Features

• In-built computation of regularization parameter.

• Computation and storage of sensitivity matrix not required.

• Logarithmic parameters.

• Synthetic/Field data Inversion

Figure 5.1: 3D MT inversion algorithm 3DINV FD in nutshell
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Figure 5.2: Flow chart of main program

87



Table 5.1: Control parameters description

Parameter Controls Values Description

response counter
Response

Function

1 Invert off-diagonal Z

2 Invert full Z

problem counter Problem Type

-1 Only Forward Modeling

0 Forward Modeling and Inversion

1 Only Inversion

matvec mul flag
Matrix Vector

Multiplication

1 Multiply a matrix with a vector

2 Multiply matrix transpose with vector

polarization flag
Two Current

Polarizations

1 Calculations for one polarization

2 Calculations for other polarization

5.5.1 Subroutines in 3DINV FD

In the development of 3DINV FD all 44 subroutines, categorized as forward

subroutines or inversion subroutines according to the module in which these are called,

are developed by us. All the subroutines are discussed below one by one. Grid

parameters and other parameters required during run time used in different subroutines

are described in Table 5.2.

Table 5.2: Grid parameters and other run-time control parameters

Parameter Description

nx Number of blocks in X-direction

ny Number of blocks in Y-direction

Continued on next page
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Table 5.2 - continued from previous page

nz Number of blocks in Z-direction

nxy=nx(ny-1)+(nx-1)ny Number of Ex and Ey components in one plane

nef=nxy(nz-1)+

(nx-1)(ny-1)nz

Total number of non-trivial elctric field components in

modeling domain

ix Running index of blocks in X-direction

iy Running index of blocks in Y-direction

iz Running index of blocks in Z-direction

nt Number of time periods

nobs Number of site locations

nobspt Total number of data

nbl Total number of blocks in inversion domain

bicg tol Tolerances level for forward problem

inv iter Maximum number of inversion iterations

eps Threshold value for misfit

lambda Regularization parameter

5.5.1.1 Forward Modeling Subroutines

The subroutines which are called from the subroutine response, which is called for

synthetic model response computation in frwrd modlng or during the solution of

pseudo forward problem are termed as forward subroutines. For synthetic response

computation, the model specifications and other parameters are read in the subroutine

frwrd input. The tree structure of various subroutines, called in response, is shown

in Figure 5.3. Few important forward subroutines are briefly described here.
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Subroutine frwrd input is called in the main program to read information

about control parameters ’problem˙counter’ and ’response˙counter’ from file ’inp˙frwrd’.

Depending on the value of ’problem˙counter’, it also contain information about the

synthetic model i.e. time periods, grid lines and resistivity structure information, using

which synthetic data is obtained for inversion. After reading model information, the

resistivity array reg is constructed which contains resistivity of every block in modeling

domain. The number of observation points and their coordinate values are read from

file ’site˙coordinates’.

Subroutine response computes the model response for frequency values read in

subroutine frwrd input. First, subroutine construct sigma is called for computing

volume weighted average conductivity at points where field values are to be calculated

using equations (4.2.4). Then in a Do loop over number of frequencies, model

response computations are performed. The subroutine weight is called to construct

the system matrix A only for first frequency using equations (4.2.6 - 4.2.8), for rest

of the frequencies only diagonal terms are computed and stored. Next, subroutine

div weight is called to construct the matrix C defined in equation (4.2.11). As

matrix C is independent of frequency, this subroutine is also called only once. Then

in subroutine output 1d 1-D boundary field is computed which will be used for

computing secondary field and then finally added to secondary field to compute total

electric field.

For each frequency, secondary field is computed for two polarizations. For this

purpose in an inner Do loop over polarization inside the frequency loop, first of

all subroutine righthandvec is called, in which righthand side vector b defined

in equation (4.2.9, is constructed. Then forward problem is solved using Krylov’s
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subspace iterative method BICGSTAB by calling subroutine bicgstab. As explained

in Chapter 3, for faster convergence at low frequencies, iterative solution after every

few BICGSTAB iteration must be corrected by applying static divergence correction.

For implementing divergence correction, first subroutine div righthand is called

to construct vector d defined in equation (4.2.11). The subroutine div solver is called

to solve the matrix equation using CG method, to obtain the values of scalar Φ at

grid nodes. Next, subroutine div correction is called to calculate 5Φ and correct the

iterative solution. Finally, primary field is added to secondary field to compute total

electric field values at staggered grid points.

In order to compute MT response functions, i.e. impedance Z, apparent

resistivity ρa and phase φ, we calculate magnetic field values by calling

subroutine output3d mfield and then the response functions are calculated at

site locations in subroutine output3d response.If the observation points do not

coincide with staggered grid points then the response is interpolated by calling

bilin interpolate matrix and inpv in subroutine output3d response. The flow

chart of subroutine response is shown in Figure 5.4.

For completeness, a table of various subroutines, with their purpose, the subroutines

they are called from and subroutines they call is given in Table 5.3.

Table 5.3: Description of various forward subroutines.

Subroutine Purpose Called in Calls

construct

sigma

Weighted conductivity at

edge center

response ×

weight System matrix formation response ×

Continued on next page
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Table 5.3 continued from previous page

output 1d Computation of primary

field

response ×

righthandvec1 For polarization 1 compute

vector b

response ×

righthandvec2 For polarization 1 compute

vector b

response ×

bicgstab Matrix solver for forward

problem

response preconditioner

3d, ae1

div weight Construct matrix for

divergence correction

response ×

div righthand1 Formation right hand side

for divergence correction

response ×

div solver Divergence matrix equation

solver (CG)

k matvec mul,

kt matvec mul

div

preconditioner,

div matvec

div correction Correct iterative solution by

adding Gradient of scalar

response,

k matvec mul,

kt matvec mul

×

Continued on next page
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Table 5.3 continued from previous page

output3d

mfield

Compute H at edge center

of blocks

response transformation

matrix,

t nodes mat,

transformation

matv, t nodes

matv

output3d

response

Compute Z, ρa and φ at site

locations

response bilin

interpolate

matrix, inpv

preconditioner

3d

Preconditioning of ill -

conditioned system matrix

bicgstab ×

ae1 Matrix vector product

during matrix solver

bicgstab ×

div

preconditioner

Preconditioning of ill -

conditioned matrix C

div solver ×

div matvec Matrix vector product

during matrix equation

solution

div solver ×

transformation

matrix

Construct matrix for E to

H transformation at face

center

output3d

mfield

×

Continued on next page
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Table 5.3 continued from previous page

t nodes mat Construct matrix for

calculating H at edge

center

output3d

mfield

×

transformation

matv

Compute H at face center output3d

mfield,

l matvec mul,

lt matvec mul

×

t nodes matv Compute H at edge center output3d

mfield,

l matvec mul,

lt matvec mul

×

bilin

interpolate

matrix

Construct interpolation

matrices

output3d

response

×

inpv Product of interpolation

matrix with a vector

output3d

response,

l matvec mul,

lt matvec mul

×

5.5.1.2 Inversion Subroutines

The inversion subroutines are called in subroutine inversion which is called for

computation of inverse problem solution. For reading the input data from file inv inp,

pertaining to the initial guess model, the inversion domain geometry and other inversion

parameters, the subroutine inversion input is called. The misfit between the observed
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Figure 5.3: Tree structure of forward subroutines
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Figure 5.4: Flow chart of response subroutine
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and predicted response is expressed in terms of root mean square (rms) error and

the convergence is checked. The tree structure of subprograms used in subroutine

inversion is given in Figure 5.5. The important inversion subprograms are also

discussed in brief.

In subroutine inversion input first the parameters of the initial guess model,

on the basis of observed response, are read. Next, the iteration and convergence

parameters, ’inv iter’, ’eps’ and ’cg itmax’ and ’cg tol’ are read for inversion and the CG

iterations respectively. The inversion domain is chosen to encompass the anomaly. The

left and right corner coordinates of inversion domain in X- direction ’xlc’, ’xrc’, in Y-

direction ’ylc’ and ’yrc’ and the top and bottom corner coordinates in Z- direction ’zuc’

and ’zdc’ are read. The rho0, the initial guess of resistivity, within the inhomogeneity

is read. For field problem, field data is read from file data.

After reading input data, for determining the running index in X,Y and Z direction

(ibl, ibr, jbl, jbr, zbu and zbd) for identifying the inversion domain and the number of

parameters ’nbl’ in inversion domain, subroutine invdom is called. Then, subroutine

model covariance is called to construct the roughness matrix, which will be used

while solving equation (4.3.2).

For each inversion iteration, first the model responses are computed for all

frequencies in parallel by calling the subroutine response. Subroutine rhsmat is

called for computation of the matrix Y using equation (4.3.8) which is the product of

field vector with the system matrix derivative with respect to resistivity parameters

and is needed for avoiding the explicit Jacobian construction for Jacobian based

computations.

Subroutine conjugate gradient solves the inverse matrix equation (4.3.2) using
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conjugate gradient matrix solver which is implemented through splitting of real and

imaginary parts. The main steps of this subroutine calculate the product of matrix Ĝ

with arbitrary vectors converting real computations to complex as explained in Chapter

4 by calling subroutine cg matmul.

In subroutine cg matmul, first the product of matrix K with the given input vector

is computed by calling subroutine k matvec mul then the product of inverse of data

covariance matrix C−1d with the output vector is computed and the resulting vector

is multiplied by matrix KT in the subroutine kt matvec mul. Then, this vector is

added to the vector obtained by multiplying λC−1m with the given input vector and the

final result is returned to the calling subroutine.

The subroutine k matvec mul computes the product of matrix K with a vector

using the equation (4.3.19). To perform this task a number of subroutines are

called, subroutines rhsv1 and rhsv2 are called to multiply vector with matrices

Y1 and Y1 respectively. Subroutine jacobian solver is called to solve the pseudo

forward problems using BICGSTAB method and divergence correction is also applied.

Subroutine l matvec mul is called to multiply vector with matricies L1 and L2. Same

subroutines are also called in subroutine kt matvec mul after setting the value of

matvec mul flag to 2. This value of matvec mul flag signifies that transpose of a

matrix is multiplied by a vector.

The flow chart of subroutine inversion is given in Figure 5.6 and for completeness

a brief description of inversion subprograms, along with their purpose(s), subroutines

they are called in and subroutines they call, is given in Table 5.4.
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Figure 5.5: Tree structure of inversion subroutines
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Figure 5.6: Flow chart of inversion modeling subroutine
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Table 5.4: Description of various inversion subroutines.

Subroutine Purpose Called in Calls

invdom Define inversion domain

index

inversion ×

model

covariance

Construct model covariance

matrix

inversion ×

response Compute response of

updated models

inversion See Table 5.3

rhsmat Construct matrix Y inversion ×

conjugate

gradient

Matrix solver for inverse

problem

inversion cg matmul

cg matmul Running index of blocks in

Y-direction

conjugate

gradient

k matvec mul,

kt matvec mul

rhsv1 Number of time periods k matvec mul,

kt matvec mul

×

rhsv2 Number of site locations k matvec mul,

kt matvec mul

×

jacobian bicg

solver

Total number of data k matvec mul,

kt matvec mul

×

t nodes matv See Table 5.3 l matvec mul,

lt matvec mul

×

inpv See Table 5.3 l matvec mul,

lt matvec mul

×

Continued on next page

101



Table 5.4 continued from previous page

div righthand2 Total number of blocks in

inversion domain

k matvec mul,

kt matvec mul

×

div solver Tolerances level for forward

problem

k matvec mul,

kt matvec mul

×

div correction Maximum number of

inversion iterations

k matvec mul,

kt matvec mul

×

l matvec mul Threshold value for misfit k matvec mul ×

lt matvec mul Regularization parameter kt matvec mul ×

transformation

matv

See Table 5.3 l matvec mul,

lt matvec mul

×

k matvec mul Running index of blocks in

Z-direction

cg matmul rhsv1, rhsv2,

jacobian bicg

solver,

div righthand2,

div solver,

div correction,

l matvec mul

kt matvec mul Total number non-trivial

elctric field components in

modeling domain

cg matmul -Do-
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5.6 Closure

Since algorithm 3DINV FD is based on quasi-linearization it needs judicious choice

of convergence criterion. In its present version, the inversion domain should encompass

all the in-homogeneities. As a result the algorithm is found to be more efficient for

confined anomalous body.

The developed inversion algorithm 3DINV FD for 3D MT data is the final result of

this research work. Its validity and applicability are tested through various theoretical

exercises designed especially for this purpose. The validation exercises and results are

discussed in Chapter 6 and Chapter 7.
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Chapter 6

FORWARD MODELING ALGORITHM

OPTIMIZATION AND VALIDATION

6.1 Introduction

Once the development of the software is completed, it is essential to validate its

accuracy and then work towards improving its efficiency. The accuracy of 3DINV FD

is validated by comparing its result with the published results and to improve the

efficiency of the forward modeling algorithm and hence, the inversion algorithm, thr

computational parameters for divergence correction are optimally chosen after testing

on synthetically designed experiments. Comparison of results for validation and

findings of experiments designed to improve the efficiency of 3DINV FD algorithm

are discussed here.

6.2 Validation of 3DINV FD

The 3DINV FD inversion algorithm is based on quasi-linearization approach and

hence, it requires the solution of forward problem a number of times in one inversion

iteration. Therefore, to establish the accuracy of the developed software, forward
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modeling algorithm has to be validated first.

6.2.1 Forward Algorithm Validation

The best check to establish the accuracy of any newly developed algorithm is the

reproduction of results available in literature. The developed forward modeling

algorithm is validated on different standard models.

6.2.1.1 Single Block Model

The first model to validate the algorithm is taken from COMMEMI paper (Zhdanov

et al. [167]). In COMMEMI paper the results of different algorithms based on Finite

Difference, Finite Element and Integral Equation Methods are compiled together. The

model 3D-1(B) of COMMEMI paper is reproduced in Figure 6.1.

Figure 6.1: Single Block Model

The model 3D-1(B) consists of a rectangular conducting block embedded in a

homogeneous half-space. The resistivity of the block is 0.5 Ω-m while that of the

half space is 100 Ω-m and is placed at a depth of 250 m below the earth surface. The

block is elongated along Y axis (ly = 5 km) and its dimensions are 1 km, 10 km and 2
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km along X,Y and Z axis respectively. The response is calculated for time period 10

sec along two profiles. The profile 1 is along the X axis at X = 0 km and stations along

this profile are at Y = 0, 2.5, 3.75, 5, 6.25, 7.5 and 10 km and the profile 2 is along

the Y axis at Y = 0 km and stations along this profile are at X = 0, 0.25, 0.5, 0.75, 1,

1.5, 2 and 4 km. The comparison of ρxy and ρyx along the two profiles with the results

provided in COMMEMI paper are shown in Figures 6.2a - 6.2d.

6.2.1.2 Two Block Model

The second model (3D-2) for validating the developed algorithm is also chosen from

COMMEMI paper. This standard model was used by various researchers (Wannamaker

[152], Mackie et al. [74], Avdeev et al. [6], Siripunvaraporn et al. [129]) to validate their

algorithms. The model consists of two rectangular blocks, of which one is conducting

and other is resistive, in the upper layer of a three-layer model (Figure 6.3). The

resistivities of the layers are 10Ω-m, 100Ω-m and 0.1Ω-m and the dimensions and

resistivities of the embedded blocks are given in Table 6.1. The response is computed

Table 6.1: Dimensions and resistivities of the anomalous bodies in 3D-2 model.

x (km) y (km) z (km) resistivity (Ω-m)

block 1 -20 to 20 -20 to 0 0 to 10 1(ρ1)

block 2 -20 to 20 0 to 20 0 to 10 100 (ρ2)

for time period 100 sec along three profiles A, B and C (Figure.6.3b). The results

(responses) of 3DINV FD algorithm are compared with the results of Siripunvaraporn

et al. [129], the numerical values of the responses for the algorithm of Siripunvaraporn
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(a) ρxy along profile 1 (b) ρyx along profile 1

(c) ρxy along profile 2 (d) ρyx along profile 2

Figure 6.2: Comparison of 3DINV FD and published results in COMMEMI paper

(Zhdanov et al. [167]) for model 3D-1(B). Abbreviations: FD = finite difference

method, IE = integral equation method, D = direct solution, S = stationary field

approximation, I = iterative solution.
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et al. [129] are obtained by discretizing the plots given in the paper. The comparison

of apparent resistivity and phase along three profiles is shown in Figures 6.4 - 6.9

(a) (b)

Figure 6.3: (a)Cross-section view of the synthetic model and (b)Profiles where data

are generated.

Figure 6.4: Comparison of apparent resistivities in Zxy and Zyx modes between results

from 3DINV FD algorithm and Siripunvaraporn et al. [129] along profile A.
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Figure 6.5: Comparison of apparent resistivities in Zxy and Zyx modes between results

from 3DINV FD algorithm and Siripunvaraporn et al. [129] along profile B.

Figure 6.6: Comparison of apparent resistivities in Zxy and Zyx modes between results

from 3DINV FD algorithm and Siripunvaraporn et al. [129] along profile C.
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Figure 6.7: Comparison of phase in Zxy and Zyx modes between results from

3DINV FD algorithm and Siripunvaraporn et al. [129] along profile A.

Figure 6.8: Comparison of phase in Zxy and Zyx modes between results from

3DINV FD algorithm and Siripunvaraporn et al. [129] along profile B.
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Figure 6.9: Comparison of phase in Zxy and Zyx modes between results from

3DINV FD algorithm and Siripunvaraporn et al. [129] along profile C.

6.2.1.3 Dublin Test Model 1

The third model chosen for validating the forward algorithm is taken from Miensopust

et al. [83]. This model termed as Dublin Test Model 1 (DTM1), was proposed in MT 3D

Inversion Workshop 2008 and was aimed at comparison of results of different modeling

codes. The model consists of three blocks of different resistivities in an homogeneous

half-space of resistivity 100 Ω-m. The dimensions and the resistivities of the blocks

Table 6.2: Dimensions and resistivities of the anomalous bodies in DTM1.

x (km) y (km) z (km) resistivity (Ω-m)

block 1 -20 to 20 -2.5 to 2.5 5 to 20 10 (ρ1)

block 2 -15 to 0 -2.5 to 22.5 20 to 25 1 (ρ2)

block 3 0 to 15 -22.5 to 2.5 20 to 50 10,000 (ρ3)

are given in Table 6.2. In Figure 6.10, the sketches of the cross-section and plan view of

112



(a) (b)

Figure 6.10: Plan and cross-section view of Dublin test model (ρ1 = 10 Ω m,ρ2 = 1 Ω

m,ρ3 = 10000 Ω m).

the model are shown. The response is computed for 4 time periods (1 s, 10 s, 100 s and

1000 s) at 59 observations points located on 4 profiles, 3 profiles (A, B and C) parallel

to Y axis at X = -15 km, X = 0 km and X = 15 km and each having 16 equally spaced

observation points with 5 km spacing (from Y = -37.5 km to Y = 37.5 km) and the

4th profile (D) parallel to X axis at Y = 0 km has 11 equally spaced observation points

with 5 km spacing (from X = -25 km to X = 25 km). For validating the algorithm,

the numerical values of the responses from different algorithms are downloaded from

Miensopust and Jones [82]. In Figures 6.11 to 6.14 the ρxy and ρyx obtained from

3DINV FD and published results for time period 100 sec along all 4 profiles and

the relative error with respect to the published results are shown and similarly the

comparison of results along profile X2 for all periods is shown in Figures 6.15 to 6.18.

The relative error is upto 5% and is within the acceptable range.
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Figure 6.11: Comparison of Apparent resistivities in Zxy and Zyx modes for time

period 100 sec along profile A.

Figure 6.12: Comparison of Apparent resistivities in Zxy and Zyx modes for time

period 100 sec along profile B.
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Figure 6.13: Comparison of Apparent resistivities in Zxy and Zyx modes for time

period 100 sec along profile C.

Figure 6.14: Comparison of Apparent resistivities in Zxy and Zyx modes for time

period 100 sec along profile D.
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Figure 6.15: Comparison of Apparent resistivities in Zxy and Zyx modes for time

period 1 sec along profile B.

Figure 6.16: Comparison of Apparent resistivities in Zxy and Zyx modes for time

period 10 sec along profile B.
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Figure 6.17: Comparison of Apparent resistivities in Zxy and Zyx modes for time

period 100 sec along profile B.

Figure 6.18: Comparison of Apparent resistivities in Zxy and Zyx modes for time

period 1000 sec along profile B.
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6.3 Algorithm Optimization

After the accuracy of the forward modeling algorithm is established by comparing its

response with the published results, the next task was to improve the efficiency of the

algorithm. As the 3DINV FD algorithm is based on quasi-linearization approach,

hence, during the inversion process hundreds of forward problems are solved making

it computationally expensive and solution of forward problems constitutes the major

part of the total computational time of the inversion algorithm.

So, the efficiency of the inverse algorithm depends on two major factors, the first

being the efficient implementation of computations involving sensitivity matrix and

other, is how efficiently the forward problem is solved. The first objective is achieved

by bypassing the explicit sensitivity matrix computation as explained in Chapter 5

and the efficiency of the forward modeling algorithm is improved by implementing the

following

• Choosing the optimal computational parameters for applying static divergence

correction.

• Parallel computation of forward problems for multi-frequency case.

6.3.1 Optimal Computational Parameters for Divergence

Correction

The main feature of forward modeling that controls its convergence at low frequencies

is the divergence correction. And the efficiency of the forward modeling algorithm

can be adversely effected if it is not applied properly. The efficient implementation of

divergence correction is dependent on two parameters, namely,
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1. Upto what accuracy divergence problem is to be solved for obtaining the scalar

Φ .

2. After how many BICGSTAB iterations, the iterative solution needs be corrected

by applying static divergence correction.

The optimal value of these parameters is fixed after rigorous testing on different models.

The experiment designed for this specific purpose and the observation of the experiment

is discussed next.

6.3.1.1 Experiment Design

The experiment for finding the optimal values of computational parameters pertaining

to the divergence correction is divided into four cases as:

A. The iterative solution is corrected using divergence correction after every 20

BICGSTAB iterations and the divergence problem is solved seeking accuracy

of the order of 10−2, 10−3, 10−4 and 10−5 in different runs. The computation time

for each run is then compared to find the combination, which results in minimum

computation time.

B. The iterative solution is corrected using divergence correction after every 30

iterations and rest of the details are same as explained in case A.

C. The iterative solution is corrected using divergence correction after every 40

iterations and rest of the details are same as explained in case A.

D. The iterative solution is corrected using divergence correction after every 50

iterations and rest of the details are same as explained in case A.
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After finding the minimum computation time for each case, the optimal computational

parameters are fixed by choosing the combination which results in minimum

computation time among themselves. This experiment is carried out for different

models and the results for two models are presented here.

1. Conducting Block Model

This model consists of a single conducting body of resistivity 1 Ω-m buried in

a homogeneous half space of resistivity 100 Ω-m. The lateral dimension of the

body is -12 km to 12 km in X and Y directions and the its thickness is 5 km.

The body is buried at a depth of 0.1 km below the earth surface. The diagram

of the model is given in Figure 6.19. Now, the response is computed for two time

periods (100 sec, 1000 sec) and the computation time for all 4 cases is shown in

Figure 6.20a - 6.20d and the comparison among minimum computation time of

each case is shown in Figure 6.20e. From Figure 6.20e it is clear that the optimal

computation time is taken in solving the forward problem when the divergence

correction is applied after 40 BICGSTAB iterations and divergence problem is

solved seeking an accuracy of 10−3.

Figure 6.19: Plan and cross-section view of the model.

120



(a) (b)

(c) (d)

(e)

Figure 6.20: Computation time comparison
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2. Dublin Test Model 1

The same experiment is carried out for DTM1 (Figure 6.10), solving the forward

problem for two time periods (100 sec and 1000 sec). The comparison of

computation time for each case is shown in Figure 6.21a - 6.21e.

From the analysis of these tests conducted on different models, it is concluded that

for optimal computation time for forward problem the divergence problem should be

solved upto an accuracy 10−3 and be applied after every 40 BiCGSTAB iterations.

6.3.2 Parallel Programming

To improve the efficiency of the 3DINV FD algorithm, OpenMP application

programming interface (API) is used for parallelizing the algorithm. There are two

reasons for this choice, first is the availability of shared memory computer and second is

its simplicity to implement on such hardware. Now a days personal computers/laptops

have multi-core processor with shared memory architecture, so one can take full

advantage of all the available cores while running this code even on these system.

The parallel computing can be very efficiently implemented if a task can be divided

into many small tasks and each one can be done independently. As, in the developed

algorithm, the most computationally costly part is the solution of forward problem for

computing predicted response for multiple frequencies and solution of pseudo forward

problem in CG iterations during the product of the Jacobian matrix (or its transpose)

with an arbitrary vector for multiple frequencies. So, the loop which runs over number

of time periods is parallelized while solving these forward and pseudo-forward problems.

To demonstrate the gain, in regards to computation time, that we are getting by
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(a) (b)

(c) (d)

(e)

Figure 6.21: Computation time comparison
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parallelizing the algorithm, Table 6.3 lists the time taken while computing the

forward response for COMMEMI model 3D-2 for 8 time periods (case 1: all 8 time

periods are taken 100 sec, case 2: .1 sec, .5 sec, 1 sec, 5 sec, 10 sec, 50 sec, 100 sec

and 500 sec). It may be noted here that the gain in case 2 is less compared to case 1

Table 6.3: Comparison between computation time of serial and parallel code

Time Period (sec) Serial Time (sec) Parallel Time (sec)

Case 1 100 953.5 213.8

Case 2 .1,.5,1,5,10,50,100,500 621.7 180.4

is expected, as the processors doing computation for low time period/high frequency

will be sitting ideal waiting for the processors doing high time period computation to

finish their task.
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Chapter 7

3D MT INVERSION RESULTS

7.1 Introduction

The accuracy and efficiency of forward modeling code having been established, we

employ it as an engine for the inversion in 3D inversion algorithm 3DINV FD. In

this chapter we establish how our 3D inversion algorithm using Gauss-Newton with

conjugate gradient method, performs in practice on synthetic but realistic numerical

examples. Furthermore, in Subsection 7.2.3 we demonstrate the robustness of the

algorithm by successfully inverting the synthetic data generated by ModEM algorithm

(Kelbert et al. [61]). After testing the algorithm on different synthetic data sets,

synthetic experiments conducted to study the effect of number or sites and their

distribution on the inversion result are also discussed in this chapter.

7.2 Inversion Results

To test the developed inversion program, inversion of different synthetic models is

performed. All computations are carried out on an Intel Core i7 3.6 GHz machine

with 4 Gbyte of RAM, as a result any modern day common PC can reproduce these
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computations. The inversion of different data sets is discussed next.

7.2.1 Synthetic Data Set 1

First we consider the model (Figure 7.1), consisting of a single conductive body of 1

Ωm embedded in 100 Ωm half space. The block is buried at a depth of 250 m below

the earth surface and its dimensions are 24 km, 34 km and 5 km along X,Y and Z axis

respectively. The response is calculated at 81 sites (Figure 7.2) located on 9 profiles

parallel to Y axis separated by 4km (from y = -16 km to Y = 16 km ). Each profile

has 9 sites separated by 4 km (from X = -16 km to X = 16 km), by solving the forward

problem on 60 × 60 × 30 (+7 air layers) grid . The full complex impedance tensor

(Zxx,Zxy,Zyx and Zyy) for five periods (0.1,1,10,100 and 1000s) is inverted after adding

2% random Gaussian noise in the data. 39 × 39 × 21 (+7 air layers) grid is used

during inversion, which is different from the one used for data generation. The data

covariance is taken to be 2% of |ZxyZyx|1/2. The initial guess model used for inversion

is a 50 Ωm halfspce, which is also used as the base model, m0 for inversion.

Figure 7.1: Cross-section and plan view of the simple synthetic model used for testing

inversion algorithm.

During the inversion, the selection of regularization parameter, λ, and its cooling

during the iterative process was done in a manner similar to the idea of Newman
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and Alumbaugh [91]. The inversion process converged to the desired misfit in eight

iterations. Each iteration took about 25 min, for a total of 3.2 hours for eight iterations.

The model recovered after inversion is shown in Figure 7.3. Figure 7.3a shows the

cross-section view through the conductive body at X = 0 m while the plan views at

100 m depth, 1 km depth and 5 km depth are shown in Figures 7.3b - 7.3d. From

Figure 7.3 it is evident that the the conductivity, shape and position of the anomalous

body is recovered by the inversion algorithm. It is clear that the shape is not perfect

near the edges, which is mainly due to the limited number of sites. Moreover, the

bottom of the conductive block is well resolved which is the intrinsic difficulty of MT

inversion, and is not a limitation of our algorithm, e.g., see Siripunvaraporn and Egbert

[126], Newman and Alumbaugh [92] or Siripunvaraporn et al. [130], among others.

Figure 7.2: Distribution of sites for data generation.
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(a) YZ plan at X = 0 m. (b) XY plan at Z = 100 m.

(c) XY plan at Z = 1000 m. (d) XY plan at Z = 5000 m.

Figure 7.3: Inversion result of fitting the synthetic data generated from single block

model (Figure 7.1).

7.2.2 Synthetic Data Set 2

We also tested the inversion algorith on a more complex model called COMMEMI 3D-2

model (Figure 6.3a), used in different modeling and inversion papers (Wannamaker

[152], Mackie et al. [74], Avdeev et al. [6], Siripunvaraporn et al. [130], Avdeev and

Avdeeva [5], among others). This model consists of two adjacent anomalous bodies

in the top layer of three-layered earth. The response is calculated at 40 sites (Figure

7.4) located on 8 profiles parallel to Y axis at y = -28, -21, -13, -4, 4, 13, 21 and 28
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km . Each profile has 5 sites separated by 14 km (from X = -28 km to X = 28 km).

A 48 × 68 × 21 (+7 air layers) grid was used for solving the forward problem. The

full complex impedance tensor (Zxx,Zxy,Zyx and Zyy) for five periods (0.1,1,10,100 and

1000s) is inverted after adding 2% random Gaussian noise in the data. 39 × 39 × 21

(+7 air layers) grid is used during inversion, which is different from the one used for

data generation. The initial guess model and the base model, m0 used for inversion is a

50 Ωm halfspce. The inversion process converged to the desired misfit in six iterations.

Each iteration took about 15 min, for a total of 1.5 hours for six iterations. The model

recovered after inversion is shown in Figure 7.5. Figure 7.5a shows the cross-section

view through the conductive body at X = 0 m while the plan views at the surface,

1 km depth and 6 km depth are shown in Figures 7.5c - 7.5d. From Figure 7.5 it is

evident that the the conductivity, position of both the resistive and conductive body

is recovered by the inversion algorithm but similar to case I the shape is not perfect

near the edges.

Figure 7.4: Distribution of sites for data generation.
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(a) YZ plan at X = 0 m. (b) XY plan at Z = 0 m.

(c) XY plan at Z = 1000 m. (d) XY plan at Z = 6000 m.

Figure 7.5: Inversion result of fitting the synthetic data generated from two block

model.

7.2.3 Synthetic Data set 3

Colton and Kress [26] coined the term ”inverse crime” to denote the act of using the

same algorithm for generating the synthetic data and in inversion and observed that

it should be avoided as this leads to trivial inversion. So, to ensure the robustness and

versatility of the developed algorithm, the inversion is performed for data generated

from ModEM algorithm (Kelbert et al. [61]). For 5 periods (0.1,1,10,100 and 1000s)

data is generated for the single conducting block model used in case I. Full impedance

tensor is inverted after adding 2% random Gaussian noise to the data. The inversion
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recovers the conductive body from the background. For comparison the YZ plans at

X=0 m of the models recovered by inverting the data generated from our algorithm

and from ModEM are shown in Figures 7.6a and 7.6b respectively.

(a) (b)

Figure 7.6: Cross-section view across the conductive block at X = 0 m of inversion

results of fitting synthetic data generated from (a): algorithm developed in present

work, (b): ModEM algorithm (Kelbert et al. [61]).

7.3 Synthetic Experiment

After the robustness and efficiency of the 3D inversion algorithm has been tested by

running the program on different synthetic data sets, 2 synthetic experiments are

designed to gain insight on the effect of number of sites and their distribution on the

final result of inversion. These experiments are conducted on a simple conductive block

model (Figure 7.1) used for testing the algorithm. For 5 time periods (0.1,1,10,100 and

1000 sec), the complex impedance tensor (Zxx, Zxy, Zyx and Zyy) after adding 2%

random Gaussian noise is inverted. The inversion is started from a half space of 50 Ωm

resistivity.
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7.3.1 Experiment 1: Effect of number of sites

The experiment for analyzing the effect of number of sites on inversion is divided

into four cases as:

A. The data is generated on 81 sites (Figure 7.2) located on 9 profiles parallel to

Y axis separated by 4km (from y = -16 km to Y = 16 km ). Each profile has

9 sites separated by 4 km (from X = -16 km to X = 16 km). The inversion

result of this data set (Figure 7.3) is termed as ”full data set inversion (FDI)

result”.

B. In this case, the data is generated on 45 sites (Figure 7.7) located on 5 profiles

parallel to Y axis separated by 4km (from y = -8 km to Y = 8 km ) and

each profile has 9 sites separated by 4 km (from X = -16 km to X = 16

km). The plan view at different depths of the inverted model along with the

corresponding relative misfit in the model parameters with respect to the

FDI result is shown in Figure 7.8.

C. Next, the data is generated on 27 sites (Figure 7.9) located on 3 profiles

parallel to Y axis separated by 4km (from y = -4 km to Y = 4 km ). Each

profile has 9 sites separated by 4 km (from X = -16 km to X = 16 km). The

plan view of the inverted model and the corresponding relative misfit in the

model parameters with respect to the FDI result is shown in Figure 7.10.

D. Finally, the data is generated on 9 sites (Figure 7.11) separated by 4 km

(from X = -16 km to X = 16 km), located on 1 profile parallel to Y axis at Y

= 0 km. The plan view of the inverted model along with the corresponding

relative misfit in the model parameters with respect to the FDI result is

shown in Figure 7.12.
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Figure 7.7: Location of observation sites where data is recorded.

Figure 7.8: Left column:Plan view at different depths of the inverted model for 5

profile case. Right column: Relative misfit in resolved parameters with respect to

the FDI results.
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Figure 7.9: Location of observation sites where data is recorded.

Figure 7.10: Left column:Plan view at different depths of the inverted model for

3 profile case. Right column: Relative misfit in resolved parameters with respect

to the FDI results.
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Figure 7.11: Location of observation sites where data is recorded.

Figure 7.12: Left column:Plan view at different depths of the inverted model for

single profile case. Right column: Relative misfit in resolved parameters with

respect to the FDI results.
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7.3.2 Experiment 2: Effect of distribution of sites

In real world, acquiring MT data along a profile may not be possible always because

of many reasons such as rough terrain, presence of water body or inaccessibility by

road. So, to overcome these limitations the MT data is acquired at sites which are

located within a corridor about the profile line. Now, in order to analyze the effect of

site locations on inversion, the positions of all 81 sites (Figure 7.2) are perturbed using

normalized Gaussian distribution limiting to ±2 km in both X and Y direction about

the profile line and the experiment designed for this purpose is categorized into four

cases as:

A. The data is generated on 81 sites whose position is perturbed about the respective

9 profile lines parallel to Y axis separated by 4km (from y = -16 km to Y = 16

km ) as shown in Figure 7.13. The inversion result of this data set is termed

as ”perturbed full data set inversion (PFDI) result”. The plan view at different

depths of the inverted model along with the corresponding relative misfit in the

model parameters with respect to the FDI result is shown in Figure 7.14.

B. In this case, the data is recorded on 45 sites which are perturbed about the

respective 5 profile lines parallel to Y axis separated by 4km (from y = -8 km

to Y = 8 km ) as shown in Figure 7.15. The plan view at different depths of

the inverted model along with the corresponding relative misfit in the model

parameters with respect to the PFDI result and FDI result is shown in Figure

7.16.

C. Next, the data is recorded on 27 sites which are perturbed about the respective

3 profile lines parallel to Y axis separated by 4km (from y = -4 km to Y = 4
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km )as shown in Figure 7.17. The plan view at different depths of the inverted

model along with the corresponding relative misfit in the model parameters with

respect to the PFDI result and FDI result is shown in Figure 7.18.

D. Finally, the data is recorded on 9 sites which are perturbed about the profile line

parallel to Y axis at Y = 0 km as shown in Figure 7.19. The plan view at different

depths of the inverted model along with the corresponding relative misfit in the

model parameters with respect to the PFDI result and FDI result is shown in

Figure 7.20.

The outcome of these experiments are on expected line. From Figures 7.8 - 7.12, it

is evident that the lateral extent of anomalous body is resolved from the background

within the data coverage area and decreasing the number of profile do not effect the

depth resolution as it is dependent on the time period used for data generation. The

relative misfit in parameters shown in Figures 7.14 - 7.20, shows that the conductivity

of the anomalous body is recovered well where data site density is better, resulting in

the distortion of the shape of the anomalous body. These experiments suggest that for

good quality inversion the data should be recorded in straight profiles if allowed by the

geology of the area. The prior information about the geology of the area from other

studies, will help in optimal sites selection.
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Figure 7.13: Location of observation sites where data is recorded.

Figure 7.14: Left column:Plan view at different depths of the inverted model for 9

perturbed profile case. Right column: Relative misfit in resolved parameters with

respect to the FDI results.
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Figure 7.15: Location of observation sites where data is recorded.

Figure 7.16: Left column:Plan view at different depths of the inverted model for 5

perturbed profile case. Relative misfit in resolved parameters with respect to the

PFDI results (middle column) and FDI results (right column).
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Figure 7.17: Location of observation sites where data is recorded.

Figure 7.18: Left column:Plan view at different depths of the inverted model for 3

perturbed profile case. Relative misfit in resolved parameters with respect to the

PFDI results (middle column) and FDI results (right column).
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Figure 7.19: Location of observation sites where data is recorded.

Figure 7.20: Left column:Plan view at different depths of the inverted model for

one perturbed profile case. Relative misfit in resolved parameters with respect to

the PFDI results (middle column) and FDI results (right column).
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Chapter 8

CONCLUSION AND FUTURE SCOPE

3D MT inversion is a very large scale and computationally extensive task. Therefor,

there are only few 3D MT inversion programs/codes available and most of these are not

free. To the best of my knowledge, WSINV3DMT code of Siripunvaraporn et al. [130]

and ModEM code of Kelbert et al. [61] are available for academic use. WSINV3DMT

code is base on data space Occam’s inversion and the NLCG method is employed in

ModEM code. As advised in Avdeev [4] and Siripunvaraporn [125], to improve the

3D MT inversion, new codes must be developed using different approaches and made

available to others to test and use. To this end, the work on this thesis started with

an objective of developing an efficient algorithm of 3D magnetotelluric data inversion.

It is well known that an efficient modeling algorithm is a prerequisite for developing

a competent inversion algorithm for data interpretation. The work presented herein

is description and discussion related with the development of an efficient 3D modeling

algorithm based on finite difference method and employing same to develop the 3D

inversion algorithm using Gauss-Newton with conjugate gradient method.
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8.1 Conclusion

The algorithms, 3DFWD FD and 3DINV FD, developed in this thesis, are

efficient and reliable softwares respectively for forward modeling and inversion of

3D magnetotelluric data. The forward problem is solved using staggered grid finite

difference method, where BICGSTAB is used as a matrix solver and to improve the

convergence at lower frequency the divergence correction is applied. The inversion

algorithm is developed using Gauss-Newton with conjugate gradient method.

The efficiency of the forward modelling algorithm and hence the inversion algorithm

is improved by using the optimal parameters for divergence correction. The

experiments conducted for choosing these parameters conclude that

• the divergence problem to be solved upto an accuracy of 10−3 and

• the divergence correction to be applied after every 40 iterations of BICGSTAB

to correct the iterative solution,

for optimum computation time. To reduce the computation time furthermore, OpenMP

is used for computing response of different frequencies in parallel.

After testing the inversion algorithm on different synthetic data set, to ensure the

versatility and robustness of the algorithm the inversion of synthetic data generated

from ModEM code is performed and these results shows that inversion algorithm

recovers the model effectively. The synthetic experiments performed in the present

work to determine the effect of number of sites and their distribution on inversion

conclude that

1. inversion with reduced number of profiles recovers the anomalous structure’s

shape and conductivity within the data range and
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2. inversion with perturbed site locations along and across profiles recovers the

anomalous structure’s conductivity but its shape is distorted.

8.2 Scope for Further Research

The present thesis has turned out to be an exploratory effort during which two computer

program 3DFWD FD and 3DINV FD have been developed with an aim to enable

quantitative interpretation of 3D MT data. However, for better understanding of the

complex nature of the EM inverse problem, there exists significant scope for further

development, which may possibly be carried out on the following lines :

• Implementation of auto grid generator which employs the skin depth criterion in

the forward modeling algorithm.

• At the bottom of the modeling domain, perfectly conducting boundary condition

is employed in the algorithm. This constraint forces one to take bottom at

sufficient distance so that the tangential electric field will be zero at the domain

boundary, resulting in a large modeling domain. Implementation of integral

boundary condition at the bottom boundary of the domain .

• The algorithm can be modified for the computation of responses in case of

controlled source EM methods simply by replacing the present primary field

response computation subprogram with one corresponding to the given EM

source.

• Present algorithm works for isotropic medium and it can be modified in

subsequent versions for anisotropic medium.
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• Due to the constraints of computing resources, OpenMP is used for parallel

computaions. For more efficient computations, adaptation of the code for parallel

programming on distributed memory environment using MPI is recommended.

146



Appendix A

Basic steps of BICGSTAB method
to solve matrix equation Ax = b

x0 is an intial guess, r0 = b-Ax0

Choose r̃: r̃ = r0

for i = 1,2,...

ρi−1 = r̃T ri−1

if ρi−1 = 0, method fails

if i = 1

pi = ri−1

else

βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)

pi = ri−1 + βi−1(pi−1 − ωi−1vi−1)

endif

Solve p̂ from Kp̂ = pi

vi = Ap̂

αi = ρi−1/r̃Tvi

s = ri−1-αi vi

if ||s|| small enough then

xi = xi−1 + αip̂, quit

Solve ŝ from Kŝ = s

t = Aŝ

ωi = tT s/tT t

xi = xi−1 + αip̂ + ωiŝ

if xi is accurate enough then quit

ri = s− ωit

for continuation it is necessary that ωi 6= 0

end
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Basic steps of CG method
to solve matrix equation Ax = b

x0 is an intial guess, r0 = b-Ax0

for i = 1,2,...

ρi−1 = rTi−1ri−1

if i = 1

pi = ri−1

else

βi−1 = (ρi−1/ρi−2)

pi = ri−1 + βi−1pi−1

endif

vi = Api

αi = ρi−1/pT
i vi

xi = xi−1 + αipi

ri = ri−1 − αivi

if xi is accurate enough then quit

end
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DILU Preconditioner

Splitting the coefficient matrix into its diagonal, lower triangular and upper

triangular parts as

A = LA + DA + UA,

the preconditioner can be written as

K = (D + LA)D−1(D + UA),

where D is the diagonal matrix containing the pivots generated as described below..

Let S be the nonzero set {(i, j) : aij 6= 0}

for i = 1, 2, ...

set dii = aii

for i = 1, 2, ...

set dii = 1/dii

for j = i+ 1, i+ 2, ...

if (i, j) ∈ S and (j, i) ∈ S then

set djj = djj − ajidiiaij

endif

end

end

end
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Appendix B

Documentation on input requirements of the algorithm

3DINV FD

nt : number of time periods for response computation

nx : number of cells in X direction

ny : number of cells in Y direction

nt : number of cells in Z direction

nl : number of layers in host layered earth

np : number of anomalous bodies

ixa, ixb : anomalous body edge position in X direction

iya, iyb : anomalous body edge position in Y direction

iza, izb : anomalous body edge position in Z direction

itmax : number of BICGSTAB iterations after which divergence

correction is applied

xlc,xrc : inversion domain boundary inX direction

ylc,yrc : inversion domain boundary inY direction

zucc, zdc : inversion domain boundary inZ direction

eps : desired tolerance value
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FRWRD_INP.dat 

 

  5                               !nt : total number of time-period 

  0.1         !time-period values 

  1.0 

  10. 

  100. 

  1000.                            

  1000        !scale 

 

*** Synthetic model grid details: 

  55         !nx : no of cells in x direction                       

-544000 

-288000 

-160000 

-96000 

-64000 

-48000 

-36000 

-32000 

-28000 

-24000 

-20000 

-18000 

-16750 

-15500 

-14250 

-13000 

-12000 

-10500 

-9250 

-8625 

-8000 

-7375 

-6750 

-5500 

-4250 

-3000 

-1750 

-500 

 500 

 1750 

 3000 

 4250 

 5500 

 6750 

 7375 

 8000 

 8625 

 9250 

 10500 

 12000 

 13000 

 14250 

 15500 

 16750 

 18000 

 20000 

 24000 

 28000 

 32000 

 36000 

 48000 
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 64000 

 96000 

 160000 

 288000 

 544000      

  55      !ny : no of cells in y direction 

-544000 

-288000 

-160000 

-96000 

-64000 

-48000 

-36000 

-32000 

-28000 

-24000 

-20000 

-18000 

-16750 

-15500 

-14250 

-13000 

-12000 

-10500 

-9250 

-8625 

-8000 

-7375 

-6750 

-5500 

-4250 

-3000 

-1750 

-500 

 500 

 1750 

 3000 

 4250 

 5500 

 6750 

 7375 

 8000 

 8625 

 9250 

 10500 

 12000 

 13000 

 14250 

 15500 

 16750 

 18000 

 20000 

 24000 

 28000 

 32000 

 36000 

 48000 

 64000 

 96000 

 160000 

 288000 

 544000 
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  36      !nz : no of cells in z direction 

-1000000                           

-100000 

-10000 

-2400 

-1000 

-200 

-50 

 0 

 50 

 100 

 318 

 552 

 856 

 1000 

 1766 

 2434 

 3303 

 4433 

 5100 

 5901 

 7810 

 10292 

 13518 

 17712 

 23165 

 30253 

 39467 

 51446 

 67019 

 87263 

 113580 

 147793 

 192270 

 250089 

 325255 

 422970 

 550000 

 

  *** Synthetic model resistivity structure details: 

  1.0E+12     !rho_air 

  1            !nl 

  100.0                             !rho0 

  550000.0     !depth1 

  1                                 !np 

  1.0                               !rho1 

  -12000. 12000. -12000. 12000. 100. 5100.  !ixa, ixb, iya, iyb, iza, izb 

 

  *** Convergence estimation parameters 

  1600                            !bicg_itmax 

  40         !itmax 

  1.0E-06                         !bicg_tol 

  1.0E-16                         !bicg_stol 

 

  *** Counter for data generation: 

  1     !response_counter (1: full impedance 2: off diagonal elements) 

 

  *** Counter for problem  

  0      !problem_counter (-1:only forward modeling 0:both 1:only version) 
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INV_INP.dat 

  5                                !nt : total number of time-period 

  0.1          !time-period values 

  1.0 

  10. 

  100. 

  1000.         

   

*** Guess model grid details:                  

  38         !nx : no of cells in x direction                       

  -520000 

  -263000 

  -135000 

  -71000 

  -39000 

  -23000 

  -19000 

  -16000 

  -14000 

  -12000 

  -10000 

  -8000 

  -7000 

  -6000 

  -5000 

  -4000 

  -3000 

  -2000 

  -1000 

   0 

   1000 

   2000 

   3000 

   4000 

   5000 

   6000 

   7000 

   8000 

   10000 

   12000 

   14000 

   16000 

   19000 

   23000 

   39000 

   71000 

   135000 

   263000 

   520000    

  38      !ny : no of cells in y direction 

  -520000 

  -263000 

  -135000 

  -71000 

  -39000 

  -23000 

  -19000 

  -16000 

  -14000 

  -12000 

  -10000 

  -8000 

  -7000 
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  -6000 

  -5000 

  -4000 

  -3000 

  -2000 

  -1000 

   0 

   1000 

   2000 

   3000 

   4000 

   5000 

   6000 

   7000 

   8000 

   10000 

   12000 

   14000 

   16000 

   19000 

   23000 

   39000 

   71000 

   135000 

   263000 

   520000   

  27      !nz : no of cells in z direction 

  -1000000                         

  -100000 

  -10000 

  -2400 

  -400 

  -100 

   0 

   100 

   250 

   500 

   1000 

   1500 

   2200 

   3000 

   4000 

   5000 

   7000 

   9000 

   11000 

   13000 

   15000 

   19000 

   27000 

   43000 

   75000 

   139000 

   267000 

   520000 

 

  *** Inversion domain 

   -43000            !xlc 

    43000        !xrc 

   -43000            !ylc 

    43000      !yrc 

    0      !zuc 

    43000     !zdc 
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  *** Guess model resistivity structure details: 

  1.0E+12     !rho_air 

  1       !nl 

  100.0              !rho0 

  520000.0     !depth1 

  1                  !np 

  50.                !rho1 

  -43000. 43000. -43000. 43000. 0. 43000.    !ixa,ixb,iya,iyb,iza,izb 

 

  *** Run time parameters 

  20                 !inv_iter  

  1.5              !eps  

  20       !cg_itmax 

  1.0E-02            !cg_tol  

  0.1 200.0        !rhomin,rhomax 
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81      ! No of sites where data is recorded 

-16  -16     ! Site position in km 

-12  -16 

-8  -16 

-4  -16 

 0  -16 

 4  -16 

 8  -16 

 12  -16 

 16  -16 

-16  -12 

-12  -12 

-8  -12 

-4  -12 

 0  -12 

 4  -12 

 8  -12 

 12  -12 

 16  -12 

-16  -8 

-12  -8 

-8  -8 

-4  -8 

 0  -8 

 4  -8 

 8  -8 

 12  -8 

 16  -8  

-16  -4 

-12  -4 

-8  -4 

-4  -4 

 0  -4 

 4  -4 

 8  -4 

 12  -4 

 16  -4 

-16   0 

-12   0 

-8   0 

-4   0 

 0   0 

 4   0 

 8   0 

 12   0 

 16   0 

-16   4 

-12   4 

-8   4 

-4   4 

 0   4 

 4   4 

 8   4 

 12   4 

 16   4 

-16   8 

-12   8 

-8   8 

-4   8 

 0   8 

 4   8 

 8   8 

 12   8 

 16   8 

-16   12 

-12   12 

-8   12 

-4   12 

 0   12 

 4   12 

 8   12 

 12   12 

 16   12 

-16   16 

-12   16 

-8   16 

-4   16 

 0   16 

 4   16 

 8   16 

 12   16 

 16   16 
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                                     Synthetic Model Response 

                                     ------------------------ 

 Zxx: 

          x_obs           y_obs          Re(Zxx)        Im(Zxx)          RHO_xx          PH_xx 

      -1.60000E+04    -1.60000E+04     5.61829E-05     7.77224E-05     1.16485E-04     5.41381E+01 

      -1.20000E+04    -1.60000E+04    -4.62524E-05     2.64350E-04     9.12147E-04    -8.00756E+01 

      -8.00000E+03    -1.60000E+04     3.12110E-06    -2.53391E-05     8.25532E-06    -8.29781E+01 

      -4.00000E+03    -1.60000E+04     2.53532E-05     3.15666E-05     2.07612E-05     5.12298E+01 

       0.00000E+00    -1.60000E+04     9.89314E-06    -2.58168E-06     1.32400E-06    -1.46256E+01 

       4.00000E+03    -1.60000E+04    -3.22268E-05    -9.13269E-06     1.42099E-05     1.58221E+01 

       8.00000E+03    -1.60000E+04     2.77678E-07    -4.95807E-06     3.12317E-07    -8.67945E+01 

       1.20000E+04    -1.60000E+04     2.22923E-05    -2.45743E-04     7.71136E-04    -8.48167E+01 

       1.60000E+04    -1.60000E+04    -5.14269E-05    -1.07673E-04     1.80330E-04     6.44699E+01 

      -1.60000E+04    -1.20000E+04    -8.84094E-05     4.95189E-04     3.20464E-03    -7.98773E+01 

      -1.20000E+04    -1.20000E+04    -1.04119E-02    -9.14381E-04     1.38360E+00     5.01886E+00 

      -8.00000E+03    -1.20000E+04     7.20705E-06    -5.10168E-06     9.87486E-07    -3.52937E+01 

      -4.00000E+03    -1.20000E+04    -2.64596E-06    -9.98909E-06     1.35242E-06     7.51640E+01 

       0.00000E+00    -1.20000E+04    -6.64823E-08    -2.87876E-07     1.10557E-09     7.69961E+01 

       4.00000E+03    -1.20000E+04     2.00044E-06     1.03569E-05     1.40921E-06     7.90679E+01 

       8.00000E+03    -1.20000E+04    -2.15334E-06     3.14830E-06     1.84261E-07    -5.56290E+01 

       1.20000E+04    -1.20000E+04     1.04032E-02     9.04738E-04     1.38108E+00     4.97034E+00 

       1.60000E+04    -1.20000E+04     6.77552E-05    -5.01002E-04     3.23713E-03    -8.22981E+01 

      -1.60000E+04    -8.00000E+03     1.00883E-04     8.88775E-05     2.28942E-04     4.13800E+01 

      -1.20000E+04    -8.00000E+03    -1.82458E-04     3.38264E-04     1.87081E-03    -6.16579E+01 

      -8.00000E+03    -8.00000E+03     8.69730E-07     9.69891E-07     2.14943E-08     4.81165E+01 

      -4.00000E+03    -8.00000E+03    -1.30822E-06    -2.18401E-06     8.20871E-08     5.90784E+01 

       0.00000E+00    -8.00000E+03     3.42247E-06     5.00693E-07     1.51526E-07     8.32308E+00 

       4.00000E+03    -8.00000E+03     1.09946E-06     2.77612E-06     1.12918E-07     6.83943E+01 

       8.00000E+03    -8.00000E+03    -9.59014E-07    -1.20894E-06     3.01588E-08     5.15761E+01 

       1.20000E+04    -8.00000E+03     1.77189E-04    -3.18428E-04     1.68183E-03    -6.09063E+01 

       1.60000E+04    -8.00000E+03    -4.19059E-05    -1.02514E-04     1.55341E-04     6.77661E+01 

      -1.60000E+04    -4.00000E+03     1.21918E-05     2.87534E-05     1.23536E-05     6.70225E+01 

      -1.20000E+04    -4.00000E+03    -3.44875E-06     2.78376E-05     9.96527E-06    -8.29377E+01 

      -8.00000E+03    -4.00000E+03     1.46856E-06    -2.05624E-06     8.08643E-08    -5.44657E+01 

      -4.00000E+03    -4.00000E+03     3.07608E-06    -9.29489E-07     1.30783E-07    -1.68130E+01 

       0.00000E+00    -4.00000E+03    -6.65649E-06     1.84478E-06     6.04281E-07    -1.54901E+01 

       4.00000E+03    -4.00000E+03     2.66074E-06     2.57946E-06     1.73932E-07     4.41114E+01 

       8.00000E+03    -4.00000E+03    -2.41192E-06     1.36053E-06     9.71218E-08    -2.94267E+01 

       1.20000E+04    -4.00000E+03     2.05378E-06    -2.64208E-05     8.89443E-06    -8.55551E+01 

       1.60000E+04    -4.00000E+03     1.77360E-05    -1.42296E-05     6.54846E-06    -3.87401E+01 

      -1.60000E+04     0.00000E+00    -2.47165E-05    -2.06422E-05     1.31339E-05     3.98673E+01 

      -1.20000E+04     0.00000E+00     3.28391E-06     1.90633E-06     1.82608E-07     3.01355E+01 

      -8.00000E+03     0.00000E+00    -4.90161E-08     2.46752E-06     7.71442E-08    -8.88620E+01 

      -4.00000E+03     0.00000E+00    -2.58004E-06    -2.85993E-06     1.87897E-07     4.79454E+01 

       0.00000E+00     0.00000E+00     5.69721E-06     2.27070E-06     4.76391E-07     2.17305E+01 

       4.00000E+03     0.00000E+00    -4.08229E-06    -2.92170E-06     3.19180E-07     3.55913E+01 

       8.00000E+03     0.00000E+00     5.33711E-07     2.82183E-06     1.04456E-07     7.92898E+01 

       1.20000E+04     0.00000E+00     4.88878E-06    -3.16519E-07     3.03968E-07    -3.70439E+00 

       1.60000E+04     0.00000E+00    -3.15509E-05    -1.42107E-05     1.51653E-05     2.42471E+01 

      -1.60000E+04     4.00000E+03     2.44933E-05    -1.82983E-06     7.64050E-06    -4.27249E+00 

      -1.20000E+04     4.00000E+03    -1.56371E-06    -3.04347E-05     1.17623E-05     8.70588E+01 

      -8.00000E+03     4.00000E+03    -2.35753E-06     5.67233E-07     7.44673E-08    -1.35285E+01 

      -4.00000E+03     4.00000E+03     2.33810E-06     3.16855E-06     1.96391E-07     5.35760E+01 

       0.00000E+00     4.00000E+03    -8.65198E-06     1.78336E-06     9.88351E-07    -1.16468E+01 

       4.00000E+03     4.00000E+03     4.49941E-06    -6.65798E-07     2.62016E-07    -8.41724E+00 

       8.00000E+03     4.00000E+03     4.92797E-07    -2.98021E-06     1.15563E-07    -8.06107E+01 

       1.20000E+04     4.00000E+03    -8.28784E-06     2.64561E-05     9.73460E-06    -7.26059E+01 

       1.60000E+04     4.00000E+03     2.47167E-05     2.66328E-05     1.67208E-05     4.71370E+01 

      -1.60000E+04     8.00000E+03    -6.10689E-05    -9.19859E-05     1.54399E-04     5.64201E+01 

      -1.20000E+04     8.00000E+03     1.80030E-04    -3.20031E-04     1.70765E-03    -6.06406E+01 

      -8.00000E+03     8.00000E+03     1.92635E-06    -2.02634E-06     9.90017E-08    -4.64491E+01 

      -4.00000E+03     8.00000E+03     8.56886E-09     2.42579E-06     7.45283E-08     8.97976E+01 

       0.00000E+00     8.00000E+03     6.03947E-06    -4.28429E-07     4.64289E-07    -4.05765E+00 

       4.00000E+03     8.00000E+03    -5.68463E-07    -2.52907E-06     8.51013E-08     7.73321E+01 

       8.00000E+03     8.00000E+03     2.70954E-06     7.74443E-07     1.00578E-07     1.59511E+01 

       1.20000E+04     8.00000E+03    -1.72230E-04     3.35035E-04     1.79733E-03    -6.27938E+01 

       1.60000E+04     8.00000E+03     7.70766E-05     9.44997E-05     1.88343E-04     5.07984E+01 

      -1.60000E+04     1.20000E+04     6.39063E-05    -5.03431E-04     3.26161E-03    -8.27655E+01 

      -1.20000E+04     1.20000E+04     1.04017E-02     9.09522E-04     1.38079E+00     4.99722E+00 

      -8.00000E+03     1.20000E+04    -5.51035E-06     9.90138E-07     3.96981E-07    -1.01866E+01 

      -4.00000E+03     1.20000E+04     2.34165E-06     1.09865E-05     1.59818E-06     7.79681E+01 

       0.00000E+00     1.20000E+04     2.70207E-06    -7.28505E-07     9.91924E-08    -1.50887E+01 

       4.00000E+03     1.20000E+04    -2.88035E-06    -1.04923E-05     1.49936E-06     7.46493E+01 

       8.00000E+03     1.20000E+04     4.33296E-06    -7.59497E-06     9.68353E-07    -6.02951E+01 

       1.20000E+04     1.20000E+04    -1.04064E-02    -9.14509E-04     1.38214E+00     5.02223E+00 

       1.60000E+04     1.20000E+04    -9.70096E-05     5.00420E-04     3.29080E-03    -7.90289E+01       
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