CANDIDATE'S DECLARATION

I hereby declare that the work present in this dissertation entitled "**Train Cabin Fire Simulation** and Passenger Evacuation on FDS" is being submitted in partial fulfillment of the requirement for award of degree of Master of Technology in Chemical Engineering with specialization in Industrial Safety & Hazard Management (ISHM), is an authentic record of my own work carried out under the supervision of Dr.V.K.Agarwal, Professor and Head, Department of Chemical Engineering, Indian institute of Technology Roorkee.

Date: 15th June, 2014 Roorkee

Piyush Kumar Enroll. No.- 12516007

CERTIFICATE

This is certifying that the above statement made by the candidate is correct to the best of my knowledge.

Dr. V.K. Agarwal Professor and Head Department of Chemical Engineering Indian Institute of Technology Roorkee. Roorkee, Uttarakhand-247667, India

ACKNOWLEDGEMENT

First I would like to thank God for giving me the health, the patience and the blessing that I have received from the beginning to the end of the Master's study. Next, I would like to express my deepest gratitude to my supervisor **Dr. V.K Agarwal**, Head of Chemical Engineering Department at IIT Roorkee. It would not have been possible to accomplish this thesis work without his sincere help, guidance, and support.

I am also heartily thankful to **Umesh Kumar** (PhD Scholar) for his valuable suggestion and support in last one year.

I would like to thank the entire faculty of Chemical Engineering Department for their constant support throughout my course work.

I want to acknowledge my lab-mates **Bhaskar Mehto**, **Baljinder Kaur and Veronica** for their valuable contributions and support towards the success of this work.

I would like also to take this opportunity to thank all my friends for their valuable ideas. Last but not least, I would like to thank my father Shri **Mithlesh Kumar** for his endless support and blessings.

Date: 15th June, 2014 Roorkee Piyush Kumar Enroll. No.- 12516007

ABSTRACT

Train cabins are closed enough that if accidently fire takes place inside it, it brings great hazards and consequently leads to traveling passenger to get hurt or die. To prevent it, the prominent objective should be to develop a fire safety design which can make sure that passengers can safely escape from it in the case of accidental fire in it. Such model can be developed by numerical simulation of fire and evacuation processes of those conditions. This is done by utilizing Fire Dynamics Simulator (FDS), provided by the National Institute of Standards and Technology (NIST), is basically Computational Fluid Dynamics (CFD) software mainly for the fluid movement in the fire. In this present work, we have carried out simulation by FDS for the interior fire smoke spreading process, temperature distribution, visibility, effect of doors and windows open/close conditions, effects of air-condition running and evacuation plans when an accidental fire take place at the center and the door respectively inside a train compartment including effect of passenger load and heat release rate factors. As automobile seats are made of polyurethane, so a portion (0.5m × 0.5m) of seat has been used as fuel for combustion and evacuation time results have been reported for the above stated different fire conditions.

CONTENTS

CANDIDATE'S DECLARATION	[i]
ACKNOWLEDGEMENT	[ii]
ABSTRACT	[iii]
CONTENTS	[iv]
LIST OF TABLES	[vii]
LISTOF FIGURES	[viii]
NOMENCLATURE	[x]

CHAPTER 1	INTRODUCTION	1-2
CHAPTER 2	LITERATURE REVIEW	3-6
CHAPTER 3	MOTIVATION	7
CHAPTER 4	OBJECTIVES	8

9-13
9
9
9
9
9
10
10
10
10
11
11
11
12
•

CHAPTER 6	NUMERICAL METHODOLOGY	14-27
6.1 Geometry and mesh		14
6.1.1 Mesh information.		14
6.1.2 Train cabin inform	nation	14
6.2 Simulated condition		17
CHAPTER 7	RESULTS AND DISCUSSION	18-41
7.1 Simulation results at	t different fire location	
7.1.1 Temperature prof	ile	
7.1.2 Smoke spread		20
7.1.3 CO concentration	at left and right doors	21
7.1.4 Visibility		
7.2 Simulation result of	doors and windows open or not	
CASE I: Fire at the cent	er and doors and windows closed/open	24
CASE II: Fire at the right	nt end and doors and windows closed/open	25
7.3 Simulation result ab	out ACs ON/OFF conditions	
CASE III: Middle seat f	ire and ACs are ON/OFF	26
CASE IV: End seat fire	and ACs are ON/OFF	27
7.4 Simulation result of	evacuation	
7.4.1 Effects of Fire Loc	cation	
7.4.2 Effects of HRR		
7.4.3 Effects of Occupat	nt loading	

CHAPTER 8	CONCLUSION AND RECOOMENDATIONS	42
8.1Conclusion		42
8.2 Recommendations		42
CHAPTER 9	REFFRENCES	43-45

LIST OF TABLE

Table No.	Title	Page No.
Table 1	Mesh configuration	14
Table 2	Train Cabin information	14-15
Table 3	Fire condition to simulate	17
Table 4	Simulation results for scenarios S1, S2, S3, S4 and S5	28
Table 5	Evacuation results for scenarios S1, S2, S3 and S4 for HRR 0.3, 0.6 and 1.2 MW	37
Table 6	Evacuation results for scenarios S1, S2, S3 and S4 against passenger loading 0.5 and 1.0 person/m ²	39

LIST OF FIGURES

Figure No.	Title	Page No.
Figure 1	Driving force of the buoyant flow across the vent of the	10
	compartment fire	
Figure 2	The physical characteristics model of evacuation person	12
Figure 3	Model of the train cabin (a) Lateral View (b) Top View	16
Figure 4	Temperature rise when fire source is at (a) middle seat (b) right	18
	end seat	
Figure 5	Temperature profile at right end seat at t= 250s at (a) middle seat	19
	(b) right end seat	
Figure 6	Smoke profile at t= 120s at (a) middle seat (b) right end seat	20
Figure 7	CO concentration plot at left door for different locations of fire at	21
	t=250s	
Figure 8	Visibility profile at the middle seat at (a) t= 100s and (b) t=260s	22
Figure 9	Visibility profile at the right end seat at (a) t= 100s and (b)t= 260s	23
Figure 10	Smoke profile from the middle seat at $t = 200s$ when (a) all doors	24
	and windows are close (b) all doors and windows are opened	
Figure 11	Smoke profile at the right end seat at $t = 200s$ when (a) all doors	25
	and windows are close (b) all doors and windows are opened	
Figure 12	Temperature profile at the middle seat at t= 200s when (a) ACs	26
	are ON (b) ACs are OFF	
Figure 13	Temperature profile at the right end seat at t= 200s when (a) ACs	27
	are ON (b) ACs are OFF	
Figure 14	Evacuation profile at (a) t=10s, (b)t=30s, (c) t= 50s,(d) t=70s and	29
	(e) t=90s under S1	
Figure 15	Evacuation No. in safe time of t = 90s under S1	30
Figure 16	Evacuation No. in safe time of $t = 90s$ from different exit under	30
	S1	

Figure 17	Evacuation profile at (a) t=10s, (b)t=30s, (c) t= 50s,(d) t=70s and	31
	(e) t=90s under S2	
Figure 18	Evacuation No. in safe time of t = 90s under S2	32
Figure 19	Evacuation No. in safe time of $t = 90s$ from different exit under	32
	S2	
Figure 20	Evacuation profile at (a) t=10s, (b)t=30s, (c) t= 50s,(d) t=70s and	33
	(e) t=90s under S3	
Figure 21	Evacuation No. in safe time of t = 90s under S3	34
Figure 22	Evacuation No. in safe time of $t = 90s$ from different exit under	34
	S3	
Figure 23	Evacuation profile at (a) t=10s, (b)t=30s, (c) t= 50s,(d) t=70s and	35
	(e) t=90s under S4	
Figure 24	Evacuation No. in safe time of t = 90s under S4	36
Figure 25	Evacuation No. in safe time of $t = 90s$ from different exit under	36
	S4	
Figure 26	Relationship between heat release rate (HRR) and TET, WT,	38
	WT/TET. (a) HRR and TET & WT (b) HRR and WT/TET for S1	
Figure 27	Relationship between passenger loading and TET, WT, WT/TET.	40-41
	(a) Passenger loading and TET & WT for S1 (b) Passenger	
	loading and WT/TET for S1 c) Passenger loading and WT/TET	
	for S1	

NOMENCLATURE

 $\tilde{\rho}$ = filtered density, kg/m³ k = thermal conductivity, W/m K D_l = material diffusivity, m²/s \tilde{u}_i = Favre-filtered velocity m/s Y_l = Single mass concentration for component l \tilde{h} = enthalpy J/kg q^r = radiative heat flux $\frac{D\bar{p}}{Dt}$ = material derivative \widetilde{w} = Favre-filtered species source term $p_{0=}$ Pressure, Pa T= Temperature, K R= Gas constant M_l = Molecular weight of component *l*, kg/ mol v_{0_2} = stoichiometric coefficient of O₂ in the combustion reaction W_{O_2} = weight of O₂ used in combustion v_F = stoichiometric coefficient of fuel in the combustion reaction W_F = weight of fuel burned Y_F = mass fraction of fuel burned Y_{O_2} = mass fraction of oxygen used in combustion $Y_{0_2}^{\infty}$ = ambient mass fraction of oxygen Y_F^I = fuel mass fraction in fuel stream A = duct areah = enthalpy of the fluid in the duct. ΔP = fixed source of momentum (a fan or blower) L =length of the duct segment K = friction loss of the duct segment R_t = radius of the circle of the human body

 R_d = size from the center of the body to the outermost end of shoulders

[x]

 R_s = radius of the shoulder circle.

 $x_i(t) =$ position of the agent *i* at time t

 $f_i(t)$ = force exerted on the agent by the surroundings

 $m_i = mass$

 $\xi_i(t) =$ small random fluctuation force.

 v_t = travel speed, m/s

D= population density,(in number of persons/m2 of floor area)

 t_{trav} = the travel time,s

 t_{wait} = Waiting time.s