
DIGITAL CIRCUIT SIMULATION SOFTWARE: DESIGN AND

IMPLEMENTATION

A DISSERTATION

Submitted in partial fulfillment of the
requirements for the award of the degree

of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

By

MUKESH KUMAR

L((7-E&DCI
NOIDA'

IIT Roorkee — ER&DCI, Noida
C-56/I, "Anusandhan Bhawan"

Sector 62, Noida - 201 307

FEBRUARY, 2003

LIBk~

Date No.......,.

`~`•

E 	LLPI r 41Np
• • Ot4oZ5

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation titled "DIGITAL

CIRCUIT SIMULATION SOFTWARE: DESIGN AND IMPLEMENTATION", in

partial fulfillment of the requirements for the award of the degree of Master of

Technology in Information Technology, submitted in IIT, Roorkee — ER&DCI

Campus, Noida, is 4n authentic record of my own work carried out during the period

from August 2002 to February, 2003 under the guidance of Dr. Poonam Rani Gupta,

Reader, Electronics Research and Development Centre of India, Noida.

The matter embodied in this dissertation has not been submitted by me for award

of any other degree of diploma.

Date:

Place: Noida 	 (Mukesh Kumar)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the

best of my knowledge and belief.

Date:

Place: Noida 	 G ide :

(Dr. oonam Rani Gupta)

Reader,

ER&DCI, Noida

y.1 	 CEISLiEICLLE

ACKNOWLEDGEMENT

The work presented in this report would not have been completed without the

guidance and support of many people. In first place, I would like to thank Prof. Prem

Vratt, Director, IIT Roorkee and Sh. R.K.Verma, Executive Director, ER&DCI, Noida.

I would also like to thank Prof. A.K.Awasthi, Dean PGS&R, UT Roorkee. I

would also like to thank Prof. R.P.Agrawal, Course Coordinator, M.Tech.(IT), 11T

Roorkee and Mr. V.N.Shukla, Course Coordinator, M.Tech.(IT), ER&DCI, Noida.

I would like to thank my guide, Dr. Poonam Rani Gupta, for her constant

support, incredible enthusiasm and encouragement. I am also grateful to Mr. Munish

Kumar, Project Engineer, ER&DCI, Noida for the cooperation extended by him in the

successful completion of this report.

Finally, I would like to extend my gratitude to all those persons who directly or

indirectly helped me in the process and contributed towards this work.

. 	 CVi

(Mukesh Kumar)

Enroll. No.: 019025

II

CONTENTS

CANDIDATE'S DECLARATION 	 (1)
ACKNOWLEDGEMENT 	 (ii)
ABSTRACT 	 1

1. INTRODUCTION 	 3
1.1 Overview 	 3
1.2 Objective 	 4

1.3 Scope 	 4
1.4 Organization of Dissertation 	 5

2. LITERATURE SURVEY ON OBJECT ORIENTED MODELING AND

SIMULATION 7

2.1 Object Oriented Approach 7
2.2 Object Oriented Methodology 9

2.2.1 	Analysis 9
2.2.2 	System Design 10
2.2.3 	Object Design 11
2.2.4 	Implementation 13
2.2.5 More about C++ 13

2.3 Logic Gates 18

2.4 Digital Circuits 18

2.4.1 	Asynchronous Logic 18
2.4.2 	Combinational Circuits 20
2.4.3 	Sequential Circuits 20
2.4.4 	Time Dependence 21

2.5 Timing Diagrams 21

3. DESIGN AND IMPLEMENTATION 	 23
3.1 Logic Gates 	 23

23

23

26

26

27

27
28

28
29

29

30

32
32

33
44

44

44

44

45

47

57

e

3.2 Input/Output

3.3 Sequential Elements

3.3.1 Flip- Flop

3.3.2 Counter-4

3.3.3 Shift Register

3.4 Combinational Elements
3.4.1 4-bit full Adder

3.4.2 4-bit Comparator

3.4.3 8-input line Multiplexer
3.4.4 8- output line Demultiplexer

3.4.5 3-8 line Decoder

3.4.6 Octal to Binary Encoder

3.4.7 Data Selector
3.5 Macros

3.6 Source Code Description and Data Dictionary

3.7 Generatedfiles

3.7.1 *.CRC Files

3.7.2 *.MAC Files
3.8 Timing Diagrams

3.8.1 Generation Of timing Diagrams

4. RESULT AND DISCUSSION
REFERENCES
Appendix A

11

ABSTRACT

Decoding the logic and speculating the output of any logical circuit

has always been a task of great importance for the students

learning digital circuits and circuit designers. This Project deals

with the design and implementation of circuit simulation software

that has an ability to simulate different types of combinational as

well as sequential logical circuits. This software provides a tool for

the students studying Electronics especially digital electronics to

clearly understand the logical behaviour of any digital circuit. It

also has a special feature of defining any circuit as a macro and

adding it to the library, which is already defined. Now, this macro

can be used several times within any complex digital circuit, thus

reducing a huge amount of extra work and time. Moreover, This

software also generates Timing waveforms for the different blocks

in the circuit. With the help of those timing diagrams, one can

better visualize the behaviour of any element within that circuit.

Overall, It has a lot of features that makes the life easier for circuit

design engineers and students studying digital electronics.

Chapter 1
INTRODUCTION

1.1 Overview

This Software is designed to efficiently run digital circuit simulations. It is not a

drafting program, i.e. it can't be used to draw nice circuit diagrams for digital

circuits. On the other hand, it is a design program, which helps in designing own

digital circuits and trying them out on the computer first.

This doesn't only cut down the time required for building a logical circuit; it

also makes the testing process easy and straightforward. Because, if after testing

the circuit on software and realizing it as hardware, if a bug occurred and the

hardware circuit didn't work. Then the error is somewhere in the connections or in

one of the ICs, but not in the logic, since the logic of the circuit is already been

tested on the computer, it also provides facility to observe the Timing Diagrams

(wave forms) of any part in the circuit. It also provides the feature of creating

Macros. A Macro is simply a new IC, which the user builds from scratch. Macro

could be added to library by simply drawing the circuit and assigning to it input

pins and output pins. Usually large digital circuit projects are designed by the

Divide and Conquer technique where they are broken down into smaller modules.

These modules could be converted in to macros, and finally collected them in a

single circuit.

Project shows the power of using OOP [1] in programming a modeling and

imulation project. OOP stands for Object Oriented Programming. There is no

one single clear definition of OOP, but the following definitions may help

clarify conception of OOP. OOP is a new revolutionary technique of modeling

software based on real-world objects, i.e. it is a programming style that mimics

the way all of us get things done. OOP in itself is not a programming language;

rather, it is a programming style that could be used with any of the programming

languages present today, to simplify the software life cycle of any project.

Loosely speaking, OOP refers to a new way of organizing programs into

objects that encapsulates data with a set of well-defined operations and that share

3

code with other objects in a predefined hierarchy by inheritance. Although OOP

techniques can be implemented in any programming language (C being a good

example), it is easier when the language has the features necessary to support

objects. OOP is a direct response to the complexity of modern applications,

complexity that has often made many programmers throw up their hands in

despair. Inheritance and encapsulation are extremely effective means for

managing complexity. Far 	more 	than 	structured programming, object

orientation imposes a rational order on software structures that, like a taxonomy

chart, imposes order without imposing limits. Add to that the promise of the

extendibility and reusability of existing code, and the whole thing begins to sound

almost too good to be true.

1.2 Objective

The Problem includes the design and Implementation of circuit simulation

software capable of simulating different type of combinational and sequential

circuits.

1.3 Scope

This Software is a very easy to use, but still very powerful, Digital Circuit

Simulation software. The students studying electronics, especially those studying

digital circuits, can utilize it.

Some of the major features of this software are

✓ An easy to use interactive menu driven User Interface.

✓ An easy to draw method, with an intelligent drawing mechanism.

✓ A predefined library of 37 digital elements.

✓ The ability of the user to create new digital elements known as Macros.

✓ Combinational, as well as Sequential, logical circuits support.

✓ Feedback Simulation and compensation.

✓ More than one circuit could draw and tested on the same board.

4

✓ Change parameters of elements while running.

✓ Create Timing Diagrams.

✓ Run with or without Timing Diagrams.

✓ The capability to open more than one circuit simultaneously.

✓ On-Line circuit save and load

✓ Detection of trivial circuit errors.

1.5 Organization of Dissertation
Chapter 1 gives the Overview, Objective and the scope of the project. Chapter 2

gives the literature survey, which discusses the basic fundamental terms and

approach used. Chapter 3 briefly presents the design and implementation part.

Chapter 4 gives the results and discussion.

5

Chapter 2

LITERATURE SURVEY ON OBJECT ORIENTED

MODELING AND SIMULATION

Object Oriented modeling and design is a new way of thinking about problems

using models organized around real world concepts. The Fundamental construct is

the object, which combines both data and behavior in a single entity. First an

analysis model is built to abstract essential aspects of the application domain

without regard for eventual implementation. This model contains objects found in

application domain, including a description of properties of the objects and their

behavior. Then design decisions are made and details are added to the model to

describe and optimize the implementation. The application domain objects form

the framework of the design model, but they are implemented in a programming

language, database or hardware.

2.1 Object Oriented Approach
The term " Object Oriented []] " means that software is organized as a

collection of discrete objects that incorporate both data structure and behavior.

This is in contrast to conventional programming in which data structure and

behavior are only loosely connected. Object Oriented generally include four

aspects: Identity, Classification, Polymorphism and Inheritance.

Identity means that data is quantized into discrete, distinguishable entities called

objects. A paragraph in a document, a window on my workstation, and the white

queen in a chess game are examples of objects. Objects can be concrete, such as

file in a file system, or conceptual, such as scheduling policy in a multiprocessing

operating system. Each object has its own inherent identity. In other words, two

objects are distinct even if all there attribute values (such as name and size) are

identical. In a real world, an object simple exists, but within a programming

language each object has a unique handle by which t can .be uniquely referenced.

The handle may be implemented in various ways, such as an address, array index,

7

or unique value of an attribute. Object references are uniform and independent of

the contents of the objects, permitting mixed collections of objects to be created,

such as file system directory that contains both files and sub directories.

Classification means that objects with the same data structure (attributes) and

behavior (operations) are grouped into a class. A Class is an abstraction that

describes properties important to an application and ignores the rest. Any choice

of classes is arbitrary and depends on application. Each class describes a possibly

infinite set of individual objects. Each object is said to be an instance of its class.

Each instance of the class has its own value for each attribute but shares the

attribute names and operations with other instance objects. An object contains an

implicit reference to its own class; it "knows what kind of thing it is."

Polymorphism means that the same operation may behave differently on different

classes. The move operation, for example, may behave differently on the window

and chess piece classes. An operation is an action or transformation that an object

performs or is subject to. A specific implementation of an operation by a certain

class is called a method. Since an object-oriented operator is polymorphic, it may

have more than one method implementing it. In the real world an operation is

simply an abstraction of an analogous behavior across different kind of objects.

Each object " knows how" to perform its own operations. In an object oriented

programming language, however, the language automatically selects the correct

method to implement an operation based on the name of the operation and the

class of the object being operated upon. The user of an operation needs not to be

aware of how many methods exist to implement a given polymorphic operation.

New classes can be added with out changing existing code, provided methods are

provided for each applicable operation on the new classes.

Inheritance is sharing of attributes and operations among classes based on the

hierarchy relationship. A class can be defined broadly and then refined into

successively finer subclasses. Each subclass incorporates, or inherits, all of the

properties of its super class and its own unique properties. The properties of the

super class need not to be repeated in each subclass for example; scrolling

window and fixed window are subclasses of window. Both subclasses inherit the

kS

properties of class window, such as a visible region on the screen. Scrolling

window adds a scroll bar and an offset. The ability to factor out common

properties of several classes into a common super class and to inherit the

properties from the super class can greatly reduce repetition within designs and

programs and is one of the main advantages of an object-oriented system.

2.2 Object Oriented Methodology

The Methodology [1] consists of building a model of an application domain and

then adding implementation details to it during the design of the system. The

methodology has the following stages:

2.2.1 Analysis
Starting from a statement of the problem, the model of the real-world situation

showing its important properties is build. The analysis model is concise, precise

abstraction of what the desired system must do, not how it will be done. The

objects in the model should be application domain concepts and not the computer

implementation such as data structures. The analysis model should not contain

any implementation decisions. The goal of analysis is to develop a model of what

the system will do. The model is expressed in terms of objects and relationships,

dynamic control flow, and functional transformations. The process of capturing

requirements and consulting with the requestor should continue throughout

analysis.

1. Write or obtain initial description of the problem.

2. Build an Object Model:

• Identify object classes

• Begin a data dictionary containing descriptions of classes, attributes,

and associations

• Add associations between classes.

• Add attributes for objects and links.

• Organize and simplify object classes using inheritance.

9

• Test access paths using scenarios and iterate the above steps as

necessary

• Group classes into modules, based on close coupling and related

function.

Object Model = object model diagram + data dictionary.

3. . Construct a Functional Model

• Identify input and output values.

• Use data flow diagrams as needed to show functional

dependencies.

• Describe what each function does.

• Identify constraints.

• Specify optimization criteria.

Functional Model = data flow diagrams + constraints.

4. Verify, iterate, and refine the models:

• Add key operations that were discovered during preparation of the

functional model to the object model. Do not show all operations

during analysis as this would clutter the objects model; just show

the most important operations.

• Verify that classes, associations, attributes, and operations are

consistent and complete at the chosen level of abstraction.

• Develop more detailed scenarios (including error conditions) as

variations on the basic scenarios

• Iterate the above steps as needed to complete the analysis.

2.2.2 System Design .

System design is the first basic stage in which the basic approach to solving

the problem is selected. During system design, the target system is organized into

sub systems based on both the analysis structure and the proposed architecture.

The architecture provides the context in which more detailed decisions are made

10

in later design stages. Figure 2.2 shows the Functional model of circuit simulation

software

Following decisions are to be made after system design:

✓ Organize the system into subsystems.

✓ Identify concurrency inherent in the problem.

✓ Allocate subsystems to processors and tasks.

✓ Choose an approach for management of data stores.

V 	Handle access to global resources.

✓ Choose the implementation of control in software.

V 	Handle boundary conditions.

V 	Set trade off priorities.

2.2.3 Object Design

Object design phase determines the full definition of the classes and associations

used in the implementation, as well as the interfaces and algorithms to implement

operations. Figure 2.1 shows the Object Model of the circuit simulation. The

object design phase adds internal objects for implementation and optimizes data

structures and algorithms. The objects discovered during analysis serve as a

skeleton of the design. In particular, the operations identified during analysis must

be expressed as algorithms, with complex operations decomposed into simpler

internal operations. The classes, attributes and associations from analysis must be

implemented as specific data structures. New objects classes must be introduced

to store intermediate results during program execution and to avoid the need for

recomputation.

During object design, following steps are to be carried out:

✓ Combine the models to obtain operations on classes.

• Find an operation for each process in the functional model.

• Define an operation for each event in the dynamic model,

depending on the implementation of control.

✓ Design algorithms to implement operations

• Choose algorithms that minimize the cost of implementing

operations.

• Select data structures appropriate to the algorithms.

• Define new internal classes and operations as necessary.

• Assign responsibility for operations that are not clearly associated

with a single class.

✓ Optimize access paths to data

• Add redundant associations to minimize access cost and maximize

convenience.

• Rearrange the computation for greater efficiency.

• Save derived values to avoid recomputation of complicated

expressions.

✓ Implement software control for external interactions.

✓ Adjust class structure to increase inheritance.

• Rearrange and adjust classes and operations to increase

inheritance.

• Abstract common behavior out of groups of classes.

• Use delegation to share behavior where inheritance is semantically

invalid.

✓ Design implementation of associations

• Analyze the traversal of associations.

• implement each association as a distinct object or by adding

object-valued attributes to one or both classes in the associations.

✓ Determine the exact representation of Object attributes.

✓ Package classes and associations into modules

12

2.2.4 implementation
The Object classes and relationship developed during object design are finally

translated into a particular language, database, or hardware implementation. For

the translation, language C++ is chosen because of its inherent property to support

Objects Oriented Programming. During implementation, Good software

engineering practice is followed to ensure that trace ability to the design is

straightforward and so that implemented system remains flexible and ektensible,

Implementations details and System Requirements:

Platform 	 : Windows 98/2000

Language 	: C++

The necessary system requirements are:

-IBM PC, XT, AT, or PS/2 (all models) or compatible.

-EGA, VGA, or MCGA display card or compatible,

-One 360K or higher diskette drive, or a fixed disk drive.

2.2.5 More about C++

C++ is a strongly typed language developed by Bjarne Stroustrup at AT&T Bell

laboratories. It was originally implemented as preprocessor that translates C++

into standard C. As a preprocessor, C++ introduced problems for symbolic

debuggers, but direct compilers are now available, and symbolic debuggers that

support objects with inheritance and dynamic binding are now available. C++ is a

hybrid language, in which some entities are objects and some are not. C++ is an

extension of the C language, implemented not only to add object-oriented

capabilities but also to redress some of the weakness of the C language. Many

added features are orthogonal to object oriented programming, such as inline

expansion of subroutines, overloading of functions, and function prototypes. It is

also designed to support OOP through its class data type, the concept of

overloading functions, operators and virtual functions. The class type with

overloaded functions and operators support Data Abstraction and Inheritance, the

virtual functions provide the mechanism for implementing Polymorphism. C++ is

one of the best languages (at the present time) that support OOP to its full extent.

13

C++ offers the programmer the base for realizing all his dreams through one of

the best-structured languages ever devised. The project itself is a Digital Circuit

Simulator that simplifies the design and testing of any small scale to medium

scale hardware project. Thus it is very suitable for emphasizing the powers of

OOP, where an AND-gate is realized as AND-object within the conceptual

supreme data abstraction programming level of OOP.

14

0

U

0

v ° li
P o

o

I) ___

U, a)

a)

H O

° 	H 	H ZW Z°

U Nd 	d 	~3 ~rx 	x~~ w c~o c 	~~i 	wcy4 ~ 	000a~aa

U m C

N a)
N

ai

~,

W~Ov~i 	L

HHH

y~ OH

a)

0

0

U
0
a)

cd

0

U

N
N
w

w

17

2.3 Logic Gates
Logic gates [2] are block of hardware that produces a logic-] or logic-0 output

signal if input logic requirements are satisfied. There are 8 basic logic gates.

Figure2.3 shows all the different types of logic gates with their truth tables.

2.4 	Digital circuits
Digital circuits [2] are collections of devices that perform logical operations on

two logical states, represented by voltage levels. Standard operations such as

AND, OR, INVERT, EQUIVALENT, etc. are performed by devices known as

gates. Groups of compatible gates can be combined to make yes/no decisions

based on the states of the inputs. For example, a simple warning light circuit

might check several switch settings and produce a single yes/no output. More

complicated circuits can be used to manipulate information in the form of decimal

digits, alphanumeric characters, or groups of yes/no inputs.

2.4.1 Asynchronous Logic

Suppose There is a statement which can be true or false, perhaps representing the

Presence or absence of a particle, a light signal on or off, a voltage present or

absent, or any other binary possibility. For now, the physical meaning of the

statement can be ignored and it can be asked how one would decide the logical

truth or falsehood of combinations of such statements, a subject called

combinational logic. If higher truth-value of a statement or.a variable is denoted

by 1 and lower value by 0,it is called positive logic. But, if higher value is

denoted by 0 and lower value by 1, it is called negative logic. These basic

combinations, or similar ones, have been implemented in electronic circuitry,

where truth-values can be represented by different voltage levels. By combining

the basic operations, other complicated logical functions could be constructed.

There are two types of digital circuits, which are explained in the later

portion.

1. Combinational Digital Circuit 	2. Sequential digital Circuit

A B A•B
0 	0 	0

AND 	 0 	1 	0,
1 	0 	0
1 	1 	1

A 	B A+ B'
0 	0 	0

OR 	 0 	1 	1
1 	0 	1
1 	1 	1

AlA

NOT
1 	0

A I B A+B
0 I ol 1
ol 1 	1

NAND 	 i.Ioi 1
1 	I 	iJ 	0

A 	lB A + B)_
0 	10 F 1

NOR 	j3D 0 1 0
1 	lol 	0
1 	Ii I 0

AlB AOB_
ol ol 0

XOR 	
ol 111
ii 	aI 	1
ii 	ii 	0

0 	0 	1

XNOR 	
0 	1 	0
1 	0 	0
1 	1 	1

Figure2.3: Logic gates with their Truth Tables

19

2.4.2 Combinational Circuits

A Combinational circuit consists of input variables, logic gates and output

variables. The Logic gate accepts signals from the inputs and generates signals to

the outputs. This process transforms binary information from the given input data

to the required output data. Obviously, both input and output data are represented

by binary signals, i.e., they exist in two possible values, logic-0 and logic-l.

Output is solely dependent over the type of input present at that time. There is no

feedback present in these types of the circuit. Figure2.4 shows its block diagram.

1 Combinational
Logic

N input variables 	output variables Circuit

Figure 2.4: Block diagram of a combinational circuit.

2.4.3 Sequential Circuits

They consist of a combinational circuit to which memory elements are connected

to form a feedback path. The Memory Elements are the devices capable of storing

binary information within them. The binary information stored in the memory

elements at any given time defines the state of the sequential circuit. The

sequential circuit receives binary information from external inputs. These inputs

together with the present state of the memory elements, determine the binary

value at the output terminals. They also determine the condition for changing the

state in the memory elements. The block diagram in Figure 2.5 demonstrates that

the external output in the sequential circuit is a function of external inputs as well

as present state of the memory element. The next state of the memory elements is

also a function of external inputs and present state.

Inputs 	Combinational 	 Outputs
p 	 Circuit 	 Memory 	 p

Elements

Figure 2.5: Block Diagram of a sequential Circuit.

20

2.4.4 Time dependence

In certain systems timing may become critical. Gates require a finite amount of

time to change their output in response to a change in the input signals (gate

delay). In a complicated circuit it may happen that the inputs to a particular gate

have been processed through different numbers of preceding stages, and may not

arrive at the same time. This will cause the last gate to produce an electrically

correct but logically wrong output [3], at least transiently. In situations where this

causes problems it can be cured either by accurate matching of the signal delays,

or by clocking. The matching approach is used where the logic must handle

events in "real time", as required in a particle-counting experiment. The method is

to add delay as needed to insure that all possible signals require the same amount

of time to propagate through each stage in the system. Timed logic circuits are

sometimes called "combinational" or "asynchronous" logic, since they produce an

output as quickly as possible after a change in input. Such circuits arecobviously

very difficult to adjust if they are at all complex. The alternative to synchronous

logic is "synchronous" or "clocked" logic. In this scheme an additional input, the

clock, is provided at each logical stage. The circuits are designed to accept input

on, say, a low to high transition of the clock signal and to change output state on

the following high to low transition. This scheme always leads to valid inputs at

each successive stage as long as the clock period is longer than the longest

propagation delay in the system. The timing problem is then reduced to

distributing the clock signal synchronously to all stages, at the cost of a slower

response to the inputs.

2.5 Timing Diagram
A Timing diagram [3] is the logical waveform of the output of one of the

elements in the circuit, i.e. the timing diagram is a plot of the variation of the

value of the output of one of the elements in the circuit with respect to time. Since

this value could be either "Logic One Level" or "Logic Zero Level", therefore the

timing diagram haves a rectangular waveform nature.

21

Chapter 3

DESIGN AND IMPLEMENTATION

The Library of this simulation software gives an access to 37 predefined logical

design elements. It also lets one add Macros to the circuit, (Macros are elements

that can be designed and added to the predefined library of elements). Brief

Description of some of them is given below:

3.1 	Gates

This group contains all the elementary logical gates, like AND, OR, XOR, NOR,

NAND, NOT, BUFFER. Most of these gates are present in forms that can take

more than one input. Their symbols and truth tables are given in Figurel.

3.2 Input /Output (I/O)
This group contains Input and Output elements like Switch, Clock, Probe, LED,

Input-Pin and Output-Pin.

3.3 Sequential Elements
This group contains elements that are related to sequential circuits like RS-Flip-

Flop, 1K-Flip-Flop, T-Flip-Flop, D-Flip-Flop, Counter-4, and Shift-Register-4.

There description is as follow,

3.3.1 Flip-Flops
A Flip-Flop [4] is a digital circuit that can maintain a binary state indefinitely (as

long as power is delivered to the circuit) until directed by an input signal to switch

states. The major differences among various types of flip-flops are in the number

of inputs they posses and in the manner in which the inputs affect the binary state.

23

10
10
01
01
x x

SR I QQ

10
00
01

Q 	 00
11

R (reset)

S (set)

3.3.1.1 RS-Flip-flop

RS-Flip-Flop is an asynchronous sequential circuits with two outputs Q and Q

and two inputs set (S) and reset (R). Figure3.1 shows the logic diagram and Truth

Table of RS-Flip-flop.

Figure3.1: Logic Diagram & truth table of R-S Flip Flop

3.3.1.2 JK-Flip-flop

JK Flip-Flop is a refinement of RS Flip-Flop in that the indeterminate state of the

RS Flip-flop is defined in the JK Flip-Flop. Inputs J and K behave like inputs S

and R to set and clear the Flip-Flop (note that in JK Flip-Flop, the letter J is for set

and letter K is for Reset) Figure3.2 shows the logic diagram and Truth Table of

JK-Flip-flop.

Q J K I Q(t+l)

	

0 0 0
	

0
0 0 1
	

0

	

0 1 0
	

1
0 1 1

Q 	1 0 0

	

1 0 1
	

0
1 1 0 1
1 	1 	1
	

1
Figure 3.2: Logic diagram & Truth Table of JK-flip Flop

K

CP

J

24

3.3.1.3 T-Flip-flop

The T Flip-Flop is a single version of the JK Flip-Flop. The T Flip-Flop is

obtained from JK Flip-Flop if both the inputs are tied together. The designation T

comes from the ability of the Flip-Flop to "toggle", or changing state. Regardless

of the present state of the Flip-flop, it assumes the complement state when the

clock pulse occurs while input T is logic-l. Figure3.3 shows the logic diagram

and Truth Table of T-Flip-flop.

Q T Q(t+l)
Q

00 	0
01 	1
10 	0
1 1 0

Figure 3.3: Logic diagram & Truth Table of T-Flip-Flop

3.3.1.4 D-Flip-flop

The D Flip-Flop is a modification of the RS Flip-flop. The D input goes directly

to the S input, and its complement is applied to R input. The input is sampled

during the occurrence of the clock pulse. The D Flip-Flop receives the designation

from its ability to transfer "data" into a flip-flop. Figure 3.4 shows the logic

diagram and Truth Table of D-Flip-flop.

M

M

Q J I Q (t+l)
Q

00 	0
01 	1
10 	0
1 	1 	1

Q

Figure 3.4: Logic diagram & Truth Table of D-flip flop

25

3.3.2 Counter-4
Counter— 4 is sequential circuit that counts up to 16 clock pulses supplied to it

externally. Figure3.5 shows the block diagram of counter .4 denotes the number

of bits used to represent the count.

0 CLR 0
1 i 	o 	1
2n u 2
3 	t 3
lJ/l)

C
LOAD

Figure3.5:.Block Diagram of Counter-4

3.3.3 Shift Register
A Register [4] is a group of binary storage cells suitable of holding binary

information. A group of Flip-flops constitute a register, since each flip-flop is a

binary cell capable of holding one bit of information. An n-bit register has a group

of n Flip-flops and is capable of storing any binary information containing ri bits,

A Shift Register is a Register capable of shifting its binary information either to

left or to the right. The Logical configuration of a shift register consists of a chain

of flip-flops connected in cascade, with the output of one flip-flop connected to

the input of the next flip-flop. All flip-flops receive common clock pulses, which

causes shift from one stage to next. Figure 3.6 shows its logical circuit.

Serial Inpu

CP

Serial Output

Figure 3.6: Logical Diagram of Shift Register

26

S,, 	 S, 	 S2 	 S,

3.4 Combinational Elements

This group contains elements that are related to combinational circuits like O-

bit full Adder, 4-bit Comparator, 8-input line Multiplexer, 8 output line

Demultiplexer, Octal to binary Encoder, 3 to 8 line Decoder, and Data Selector.

There short description is as follows:

3.4.1 4 - bit full Adder

4-bit Binary parallel Adder is a Digital Function that adds up the two 4-bit binary

numbers in parallel. It's logic diagram and block diagram is shown in Figure3.7.

13., A, 	 133 A3 	 13, A2 	B, 	A,

1 1 	1 1 	1 1 	l l

Logical Diagram of 4-bit Full Adder

0 	C;,,
1
2A
3 	0

ADDER 1
0 	2
1 	3
2B
3

Cout 1

Figure 3.7: Block Diagram of 4-bit full Adder

27

3.4.2 4-bit Comparator

A Magnitude Comparator is a combinational circuit that compares two numbers,

A and B, and determines their relative magnitudes. The Outcome of the

comparison is specified by three binary variables that indicate whether A>B,

A=B, A<B. Figure3.8 shows block diagram of 4 bit comparator.

Figure 3.8: Block Diagram of 4-bit Comparator
3.4.3 8 input line Multiplexer

Multiplexing [5] means transmitting a large number of information units over a

smaller number of channels or lines. A Digital Multiplexer is a combinational

circuit that selects binary information from one of many input lines and directs it

to a single output line. The Selection of a particular input line is controlled by a

set of selection lines. Figure 3.9 shows the block diagram of 8 bit multiplexer.

0 Select

3 in 	out
4
5
6
7 MUX

Figure 3.9: Block Diagram of 8 Bit Multiplexer

2x

3.4.4 	8 — output line Demultiplexer

A Demultiplexer is a logic circuit that receives information on a single line and

transmits this information on one of 2" possible output lines. The Selection of

specific output line is controlled by the bit values of n selection lines. A Decoder

with an enable input is referred to as Demultiplexer. Figure 3.10 shows the block

diagram ofDemultiplexer with 8 output lines.

S 	0
e

01 	o2
le 	u 	3
2c 	t4

t 	5
6

DEMUX 	7

Figure 3.10: Demultiplexer with 8 output lines

3.4.5 3 to 8 line Decoder

A Decoder is a combinational circuit that converts binary information from n -

input lines to a maximum of 2" unique output lines. If the n-bit decoded

information has unused or don't care combinations, the decoder output will have

less than 2" outputs. Figure 3.11 shows the Truth table of 3 —to- 8-line decoder. A

3-to-8 line Decoder can be used for decoding any 3-bit code to provide eight

outputs, one for each element of the code.

Inputs 	 Outputs

X 	Y % 	I)„ 1)1 I)2 1)z I)4 DS IN D7

0 	0 0 1 0 () 0 0 0 0 	0

0 	0 1 0 1 0 0 0 0 0 	0

0 	10 0 0 1 0 0 0 0 	0

0 	1 1 0 0 0 1 0 0 0 	0

1 	0 0 0 0 0 0 1 0 0 	0

1 	0 1 0 0 0 0 0 1 0 	0

1 	1 0 0 0 0 0 0 0 1 	0

1 0 0 0 0 0 0 0 	1

Truth Table of 3-to-8-line decoder

n,

0 i 	o 2
In 	u 3
2 	t4

5
6

DECODER 7

Figure 3.11: Block Diagram of Decoder

3.4.6 Octal to Binary Encoder

An Encoder [5} is a digital function that produces a reverse operation from that of

a decoder. An encoder has 2" (or less) input lines and n output lines. The output

lines generate the binary code for the 2" input variables. Te Encoder assumes that

only one input line can be equal to I at any time; otherwise the circuit has no

30

meaning. Figure 3.12 shows Truth Table and block Diagram of octal to binary

Encoder.

Inputs 	 Outputs

Do D, D2 D3 Dq D5 D6 D7 	X Y Z

1 	0 0 0 0 0 0 0 0 0 	0

0 	1 0 0 0 0 0 0 0 0 	1

0 	0 1 0 0 0 0 0 0 1 	0

0 	I) O 1 0 0 0 0 0 I

0 	0 0 0 1 0 0 0 1 0 	0

0 	0 0 0 0 1 0 0 1 0 	1

0 	0 0 0 0 0 I 0 1 1 	0

0 	0 0 0 0 0 0 1 1 1 	1

Truth Table of Octal to binary Encoder

fl

2
3 in out 0
4 	1
5 	2
6
7

ENCODER

Figure 3.12: Block Diagram of Encoder

31

3.4.7 Data selector

A Multiplexer is also known as a Data Selector, since it selects one of the many
information and steers to the output. This logic Circuit performs its functions with

the help of select lines available. Figure 3.13 shows its Block diagram.

0 DATA SELECT

3 	00
u 1.

0 	t2
1 	 .
2B
3

select

Figure 3.13: Block Diagram of Data Selector

3.5 Macros

Macros are user-defined elements that could be added to software's predefined

library. They are one of the most powerful features that this software present.

Macros are Modular. Therefore, They reduce the amount of work because they

can be used in the same circuit more than once.

32

3.6 Source Code Description and Data Dictionary

ACTIVITY.H

It defines the abstract class Activity; this is responsible of choosing the required

function to be activated.

ACTIVITY.CPP

It includes the code implementation for the members of the instance class

Activity.

ACTWIND.H

It defines the abstract class Activity Window. This is responsible for choosing the

required function to be activated from a menu.

ACTWIND.CPP

It includes the code implementation for the members of the abstract class Activity

Window.

BRDWIND.H

It defines the instance class Border-Window, which directly inherits from

Window. It is a variation of Window that contains a single or double border and

an optional shadow.

Border-Window have characteristics similar to Window add to that the capability

of storing the overlapped area during pop-up and restoring it during retrieval. It

also has a double or single border, an optional shadow, resizing and dragging

capabilities

Constructors

• BorderWindow(int x,int y,int length,int height,char attrib,Device*

baseWindow)

33

Constructs the BorderWindow and initializes its coordinates, size, baseWindow

with a default double border and shadow configuration. It also allocates enough

memory to pertain the overlapped area.

Public Members

• IsA : Returns an unique identifying quantity (borderWindowClass).

+ NameOf : Returns a pointer to the character string "BorderWindow".

• resize(Point newDimensions): Changes the dimensions and updates the

current window display.

• move(Point relative_displacement): Changes the anchor point of the

window by the given relative displacement and updates its displayed

position.

• show(): Pertains the overlapped area to the allocated buffer and displays

the BorderWindow in its current configuration.

• hideO: Retrieves the overlapped area from the allocated buffer implicitly

hiding the BorderWindow.

Inherited Members

• displayCH (x , y , no. , char ,attribute): Displays a certain f.char and

attribute horizontally.

• displayCV (x , y , no. , char ,attribute): Displays a certain char and

attribute vertically.

• cHAttribut (x , y , no. , attribute): Changes the attribute of a line

horizontally.

• cVAttribut (x , y , no. , attribute): Change the attribute of a line vertically.

• getText (x , y , length , height , buffer (int *)): Copies a text area to an

allocated part of the memory pointed to by the buffer pointer.

• putText (x , y , length , height , buffer (int *)): Returns a text from the

memory area pointed to by the buffer pointer.

• scroll :

0 [Up

34

o [Down

o [Right

o [Left

Scrolls a certain rectangular area of anchor point (x,y) and dimensions

(length, height) in the given direction.

• getDimension() : Returns the current dimension .

• writeStr(int x, int y, char attribute, char* string): Prints string in the

Window at location x,y with the given attribute.

• fill(int x,int y,int length,int height,char fillChar,char fillAttrib): Fills an

area of Window with anchor point x,y and dimensions

length, height with the given character or/and attribute.

• getBaseWindowO : Returns the current basePointer indicating which

output Screen is currently being used.

• putBaseWindow(Device* newDevice): Modifies the current basePointer

to a new one given in newDevice, so that the output area

and mechanism could be changed easily at any time.

Protected Members

• ShowOn: Flag indicating the current (shown/hidden) state of the window.

• Color: The window color.

• Background : Pointer to the allocated text buffer containing the pertairied

text.

• DoubleBorder : Flag indicating the current (double/single) border of the

window.

• Shadow: Flag that indicates the existence of a shadow.

BRDWIND.CPP

It includes the code implementation for the members of the instance class Border-

Window.

CBM. H

It defines the abstract class CBM. CBM is the Circuit Builder and modifier.

35

CB M. CPP

It includes the code implementation for the members of the abstract class CBM.

DESKTOP.H

It defines the instance class DeskTop. DeskTop inherits directly from

PrimerWindow. It constitutes the background surface of the desktop, all other

windows emerge from DeskTop or from a window already opened from within

the DeskTop.It could be thought of as the base of all activities and status

informing.

Constructors

• DeskTop(): Constructs the PrimerWindow and initializes the screen.

Public Members

• isAO: Returns an unique identifying quantity (primerWindowClass).

• nameOfO: Returns a pointer to the character string "PrimerWindow".

Inherited Members

• getKeyo : Returns the main Key confined to the PrimerWindow. Where

Key contains the scan code and ASCII code of the pressed

keyboard key.

• getCursorO: Returns the mouse's cursor current position.

• displayCH (x , y , no. , char ,attribute) : Displays a certain char and

attribute horizontally.

• displayCV (x , y , no. , char ,attribute): Displays a certain char and

attribute vertically.

• cHAttribut (x , y , no. , attribute): Changes the attribute of a line

horizontally .

• cVAttribut (x , y , no. , attribute): Change the attribute of a line vertically .

• getText (x , y , length , height , buffer (int *)): Copies a text area to an

allocated part of the memory pointed to by the buffer'pointer.

36

• putText (x , y , length height , buffer (int *)) : Returns a text from the

memory area pointed to by the buffer pointer.

• scroll :

o [Up

o [Down

o [Right

o [Left

Scrolls a certain rectangular area of anchor point (x,y) and dimensions

(length,height) in the given direction.

• resize(Point newDimensions) : Changes the dimensions.

• getDimension(} : Returns the current dimension.

• move(Point relative_displacement): Changes the anchor point of the

window by the given relative displacement and updates its

displayed position.

• writeStr(int x, int y, char attribute, char* string): Prints string in the

Window at location x,y with the given attribute.

• fill(int x,i•nt y,int length,int height,char fillChar,char fillAttrib): Fills an

area of Window with anchor point x,y and dimensions length,

height with the given character or/and attribute.

• getBaseWindowO: Returns the current basePointer indicating which

output Screen is currently being used.

• putBaseWindow(Device* newDevice): Modifies the current basePointer

to a new one given in newDevice, so that the output area and

mechanism could be changed easily at any time.

Protected Members

• Cursor: The mouse's Cursor current position and status.

• Key: The keyboard's pressed key ASCII and scan code handling object.

37

DESKTOP. CPP

It includes the code implementation for the members of the instance class

DeskTop.

DEVICE.H

It defines the abstract base class Device. Device is the class at root of the desktop

hierarchy. Device is derived from the Object abstract base class defined in the

TC++ library.

Constructors

• Device(int Length,int Height): Sets the dimensions.

Destructors

• —Device(): Used for setting breakpoints during debugging.

Private Members

• Dimension : the dimension of the device.

DEVICE.CPP

It includes the code implementation for the members of the abstract base class

Device.

EDITLINE.H

It defines the instance class EditLine that directly inherits from window. EditLine

could be considered as an elementary editor. It could be used to get input from the

user in a comprehensive form allowing deletion, insertion and manipulation of the

input text. Creating an array of EditLine (with appropriate adjustments)

constitutes a basic editor. EditLine could be used any place where a text input is

expected from the user.

Constructors

• EditLine() : Constructs EditLine and initializes its coordinates, size and

base pointer, also creates a text buffer to hold the text being edited.

38

Destructors

• .EditLine() : Destructs the EditLine and frees the allocated memory buffer

created beforehand to contain the text being edited.

Public Members

• isAO: Returns an unique identifying quantity (editLineClass).

• nameOf() : Returns a pointer to the character string "EditLine".

• redraw(int redrawAlways) : Updates the portion of the string to be

displayed on the screen after checking if it is neccessary to update.

if redrawAlways is non-zero (i.e. true) it will redraw even though it

is un-necessary to update.

• read(char* defaultString) : Displays a portion of the defaultString and

waits to read further input from the user. This further input could

contain actual editing of the displayed defaultString or even

complete deletion of it and insertion of new text. In other words

this is the heart of EditLine where most of other EditLine's

member functions meet.

• scanKey(char ch, char cl) : Recognize whether the pressed key is a normal

character or an editing key and responds consequently. If it is an

editting key it analyzes it and call it's corresponding editting

functions. If the ESC key is pressed it returns a false flag.

• shiftRight(): Moves the cursor to the right and check bounds.

• shiftLeftO : Moves the cursor to the left and check bounds.

• insertChar(int& place,char character) : Inserts the given character at the

given place in the string.

• overWriteChar(int& place,char character) : Puts the given character over

the old character at the given place.

• deleteChar(int& place) : Deletes a character at the given place and pulls

the following group of characters.

39

• show() : RedrawOs the string for the first time. Overrides the inherited

show().

• getLengthO : Returns the length of the string buffer.

• getStringLength() : Returns the displayed string segment length. i.e. the

width of the EditLine window.

• getStringO : Returns the string pointer.

• putString(const char* string) : Puts a string in the allocated buffer.

• getPosition() : Returns the current cursor position.

• getAttribute(): Returns the current attribute.

• setAttribute(char newAttrib) : Changes the current attribute to a

newAttrib.

Inherited Members

• getDimensionO : Returns the current dimension.

• writeStr(int x, int y, char attribute, char* string) : Prints string in the

Window at location x,y with the given attribute.

• fill(int x,int y,int length,int height,char fillChar,char fillAttrib) ` Fills an

area of Window with anchor point x,y and dimensions length,

height with the given character or/and attribute.

• getBaseWindow() : Returns the current basePointer indicating which

output Screen is currently being used.

• putBaseWindow(Device* newDevice) : Modifies the current basePointer

to a new one given in newDevice, so that the output area and

mechanism could be changed easly at any time.

Protected Members

• String: Pointer to the allocated text buffer in the memory.

• StringLength : The length of the displayed part of the string, i.e. the width

of the EditLine window.

• Length : The length(size) of the allocated string buffer. This parameter is

overridden if a string with length greater than it is supplied.

40

• Start : The start position from within the string buffer for the segment to

be shown within the width of the EditLine window.

• Pos : The position of the cursor within the string.

• Attribute : The color of the EditLine's foreground and background.

EDITLINE. CPP

It includes the code implementation for the members of the instance class

EditLine.

OURLIST. H

It defines the class list.

OURLIST.CPP

It includes the code implementation for the members of instance class list.

SCREEN.H

It Defines the instance class Screen. Screen inherits from Device and is used to

define an Actual or Virtual screen. Screen is the base of the physical display

hierarchy. All member functions of screen dealing with display are implemented

via direct memory access to optimize the performance of the desktop package.

Constructors

• ScreenO: Initializes the actual screen according to the detected hardware.

• Screen(int Length,int Height,int Seg,int Ofs) : Used to create a user virtual

screen.

Private Members

• ScreenSeg : The segment of the screen memory address.

• ScreenOfs : The offset of the screen memory address.

SCREEN.CPP

III

It includes the code implementation for the members of the instance class Screen.

TIMING.H

It defines the TDElement class, it is the unit of time diagram. It also defines the

instance class TDManager. TDManager is responsible for the timing diagrams of

the circuit.

USERDEFS.H

It contains the "unique identifying quantity" definitions for all the user-defined

classes within the project.

VIE WPORT.H

It defines the instance class ViewPort, which directly inherits from

BorderWindow. It is a variation of BorderWindow that contains a single or

double border and an optional shadow. ViewPort have characteristics similar to

Window add to that the capability of storing the overlapped area during pop-up

and restoring it during retrieval. It also has a double or single border, an optional

shadow, resizing and dragging capabilities.

Constructors

• ViewPort(int x,int y,int length,int height,char attrib,Device* baseWindow)

Constructs the ViewPort and initializes its coordinates, size,

baseWindow with a default double border and shadow

configuration. It also allocates enough memory to pertain the

overlapped area.

Destructor

• —ViewPort: Destructs the ViewPort and releases the pre-allocated buffer

area.

Private Members

42

• ShowOn : Flag indicating the current (shown/hidden) state of the

window.

• Color: The window color.

• Background : Pointer to the allocated text buffer containing the pertained

text.

• DoubleBorder : Flag indicating the current (double/single) border of the

window.

• Shadow: Flag that indicates the existance of a shadow.

• ShowOn : Flag indicating the current (shown/hidden) state of the

►. I•.

• Color: The window color.

VIEWPORT.CPP

It includes the code implementation for the members of the instance class

ViewPort.

WINDOW.H

It defines the instance class Window. Window inherits directly from Device and

is the base of the logical display hierarchy. It uses the code implementation of

Screen via base pointer after checking and validating the input parameters.

Inherently, it allows recursion (i.e. a window inside a window and so on). It is the

logical counterpart of Screen.

Constructors

• Window(int x relative, int y relative,int length,int height, Device*) :

Constructs the Window, and initialises its coordinates, size and

base pointer (by base pointer it is meant that Device logical

descendant "Screen" which Window use in physically accessing

the display area).

Private Members

43

• BaseWindow : Points to the base Device (e.g. Screen, Window, etc..)

which the current window uses for physical code implementation.

• RelPoint : The relative position of the anchor point of the current window

from the anchor point of its base device.

WINDOW.CPP

It includes the code implementation for the members of the instance class

Window.

3.7 Generated files

There are mainly two files, which are generated by this software.

3.7.1 *.CRC files

These are circuit files. Whenever, A new circuit is being created and stored, it get

stored on the disk with this default extension.

3.7.2 *.MAC files
These are macro files that can be used as a building block for designing a circuit,

or even in creating bigger macros. Note that *.CRC files and *.MAC files having

the same name are the same circuits but in circuit and macro forms respectively.

Whenever, A new circuit is stored as a macro, it get stored on the disk with this

default extension.

3.8 Timing Diagrams

A Timing diagram is the logical waveform of the output of one of the elements

in the circuit, i.e. the timing diagram is a plot of the variation of the value of the

output of one of the elements in the circuit with respect to time. Since this value

could be either "Logic One Level" or "Logic Zero Level", therefore the timing

diagrams have a rectangular waveform nature.

44

3.8.1 Generation of Timing Diagrams

This software has a Timing Diagrams Editor. 'Timing diagram entries could be

added or removed to the Timing Diagram List which software scans periodically

while running to display the entries init on the Timing Diagrams Display. What

actually happens inside it is that it scans the Timing Diagrams List every USTS (

Unit Simulation time slot), and while scanning it, it updates the Timing Diagrams

Display. The scaling of the Timing Diagrams Display is relative to the USTS,

where the smallest unit on the Timing Diagrams Display is the USTS itself.

Hence the speed of flow of timing diagrams depend on the number of USTS

which it process per second, and consequently on the speed of simulation which

could be controlled by pressing 'F' for "Faster" and 'S for "Slower".

45

Chapter 4
RESULTS AND DISCUSSION

This circuit simulation software is working properly. Some of the basic circuits

are already tested whose Screenshots are given here. Some of the features that

forms a basis for its extension and further work to carry over it to make it more

sophisticated and user friendly.

✓ Mouse Support.

✓ Macro Frame Editing.

✓ Drafting Support.

✓ Printing Support.

47

ccccccccccc .

r

ccc;cc-cccçç-çr
1

i-i

jircvt ti:: Ii

iEdit 	1

REFERENCES:

[1] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,

William Lorensen. Object Oriented Modeling and Design, Ninth Edition,

Eastern Economy Edition, 2000. 	 .

[2] Albert Paul Malvino, Donald P. Leach. 	Digital Principles and

Applications, fourth Edition, Tata Mc-Graw Hill Edition, May 2000.

[3] Ronald J. Tocci, Neal Widmer. Digital Systems — Principles and

Applications, Sixth Edition, Eastern Economy Edition, August 2001.

[4) 	M. Morris Mano, Digital Logic and Computer Design,

[51 	M. Morris .Mano, Digital Design, Eastern Economy Edition, September

2000

57

APPENDIX A

List of Hot-Keys and their Description:

• <LEFT>, <RIGHT>, <UP>, <DOWN> cursor keys: Press these keys to

travel up, down, left and right within the text. Fast word movement can be

achieved by pressing down the <CTRL> key.

• <Home>: Pressing this key moves the cursor immediately to the start of

the string.

<End>: Pressing this key moves the cursor immediately to the end of the

string.

• <Delete>: Pressing this key deletes the character under the cursor, and

pulls the remaining string.

• <Backspace>: Pressing this key deletes the character to the left of the

cursor, and pulls the remaining string.

• <Esc>: Pressing this key abandons the input operation.

• <Enter>: Pressing this key accepts the input operation.

<'0 ' >: Pressing this key open up an already existing circuit.

• <'N ' >: Pressing this key open up a new circuit.

E—'>-Pressing this -ke iThoii up a new window for editing the

circuit.

• <'X ' >: Pressing this key will open up a new circuit

• < ` M '>: Pressing this key will save the active circuit as a macro.

• <'C ' >: Pressing this key closes the existing circuit.

< Q ' >: Pressing this key closes the main window and returns to

windows.

• <'U ' >: Pressing this key turns the status of pen to UP

• <'D'>: Pressing this key turns the status of pen to DOWN.

• <'E' >: Pressing this key turns the status of pen to ERASE.

• <'Z ' >: Pressing this key will trace this line and delete it.

• < ` L ' >: Press this key when it is required to Add, Move, Remove or

Change the parameters of one of the logical elements within the logical

circuit.

• <'T `>: Pressing this key gives an access to the Timing Diagrams Editing

Panel.

• <'R'>: Pressing this key starts running the circuit simulation.

• <'L' >: Pressing this key gives an access to Element menu.

• < `A' >: Pressing this gives an access to library elements to add them on

worksheet.

59

' 	< ` C ' >: Pressing this key gives an access to combinational logic
elements.

' 	< ` R ' >: Pressing this key removes the selected element from the
worksheet.

' 	< ` P ' >: Pressing this key open up a window to change the element
parameter.

, i .AL

6()

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	References
	Appendix

