
EMBEDDED SPELL CHECKER FOR
OPTICAL CHARACTER RECOGNITION SYSTEM FOR

INDIAN LANGUAGES (HINDI)

A DISSERTATION

Submitted in partial fulfilment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY

in

INFORMATION TECHNOLOGY

By

NAVEEN KUMAR JAVANT

AW No.........

ER & DC!
NOIDA

IIT Roorkee-ER&DCI, Noida
C-56/1, "Anusandhan Bhawan"

Sector 62, Noida-201307
FEBRUARY, 2003

~°
o~~

6~~~~~ -~ ~`C

CANDIDATE'S DECLARATION

This is to certify that the work, which is being presented in this dissertation, entitled

"EMBEDDED SPELL CHECKER FOR OPTICAL CHARACTER RECOGNITION

SYSTEM FOR INDIAN LANGUAGES", in partial fulfillment of the requirements for the

award of the degree of Master of Technology in Information Technology submitted in IIT,
Roorkee — ER&DCI Campus, Noida, is an authentic record of my own work carried out

from August 2002 to February 2003, under the supervision of Mr. V.N. Shukla, Director

(Special Applications), Electronics Research and Development Centre of India, Noida.

I have not submitted the matter embodied in this dissertation for the award of any

other degree.

Date: 2't) 02103

Place: Noida 	 (Nave-en Kumar Jayant)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best

of my knowledge and belief.

Date: 24102403
Place: Noida 	 Guide:

(r. V.N. Shukla)

Director, Special Applications,

ER&DCI, Noida

(i)

ACKNOWLEDGEMENT

I hereby take the privilege to express my deepest sense of gratitude for Prof.

Preen Vrath, Director, Indian Institute of Technology, Roorkee, and Mr. R.K.

Verma, Executive Director, ER&DCI, Noida for providing me with this valuable

opportunity to carry out this work. I am also very grateful to Prof. A.K. Awasthi,

Dean PGS&R IIT-Roorkee, our program coordinator and Prof. R.P. Agrawaf course

coordinator M.Tech (IT) IIT-Roorkee for providing the best of the facilities for the

completion of this work and constant encouragement towards the goal.

I would like to thank my guide, Mr. V.N. Shukla, Director Special

Applications, ER&DCI, Noida, for his guidance and invaluable suggestions during

the entire course of this work. He provided me continuous inspiration and support

throughout the course of this dissertation.

I am highly indebted to Mr. B.K. Sahu, Senior Project Engineer, and Mr.

Shailendra Jayant, Project Engineer, Natural Language Processing Laboratory,

ER&DCI, Noida, for without their constant support this work could not have been

completed. My sincere thanks are due to Dr. P.R. Gupta, Reader, ER&DCI, and

Noida for the continuous inspiration and support ,she provided me with throughout the

course of this dissertation. I am also grateful to Mr. Munish Kumar, Project Engineer,

and ER&DCI, Noida for the cooperation extended by him in the successful

completion of this work.

It is impossible to mention the names of all those persons who have been

involved, directly or indirectly, with this work and I extend my gratitude to all of

them. However, I feel, I owe special thanks to all my friends who have helped me

formulate my ideas and have been a constant support. I find myself short of words to

thank' my father, mother and brother who have always been by my side throughout my

life.

(Naveen Kumar Jayant)

Enrollment No: 019027

CONTENTS

CANDIDATE'S DECLARATION

ACKNOWLEDGEMENT

ABSTRACT

1. INTRODUCTION
1.1 Objective
1.2 Scope
1.3 Statement of work done
1.4 Organization of Dissertation

2. LITERATURE SURVEY
2.1 Optical Character Recognition
2.2 Commercial Applications
2.3 Devanagari Script

2.3.1 Notable Features
2.4 Indian Standard Code for Information Interchange (ISCII)

2.4.1 Nature Of Indian Alphabet
2.4.2 Structure of the ISCII code

3. THEORETICAL ASPECTS OF THE PROBLEM
3.1 OCR Error Correction
3.2 OCR Error Pattern of HINDI Text
3.3 Categorization of Errors
3.4 Converter
3.5 Dictionary Design

3.5.1 Minimum Distance Algorithm
3.5.2 Searched Procedure

4. IMPLEMENTATION ASPECTS
4.1 Working With Dictionary
4.2 Working with Converter
4.3 Working with Error Module

3
3
3
3
4

5
5
6
7
8
10
12

15

19
19
21
21
25
26
27
28

29
29
29
30-

5. RESULTS AND DISCUSSION 	 37
5.1 Results 	 37

5.2 Suggestions For Future work 	 43

6. CONCLUSION 	 45

REFERENCES 	 47

Appendix A: Layout of the Hindi OCR Software 	 49
Appendix B:. PC-IS CII Code Table 	 50
Appendix C: MFC Classes and method used in software 	 51

1

ABSTRACT

This work is an attempt to develop "Embedded

Spell Checker Module for Indian Language (Hindi)". The

spell checker module developed to identify various types of

errors and to correct them in Hindi text. The OCR

recognizes various types of errors, which commonly occur

in Devanagari. A special property of the present technique

is that the multiple errors in a single word can also be

corrected. The errors are detected and corrected in two

steps. In first step, detection of invalid Hindi patterns is

performed and in second step heuristically correction of the

word followed by the dictionary look-up for generation of

probable correct options is done.

This Spell Checker Module checks the various

errors on scanned text document. An Optical Character

Recognition System takes scanned image of a text

document as input and produces the document in Text

format. When the OCR provides the document, document

has some recognition errors. When the document is

provided to this Spell Checker module, this module scans

whole the document and recognizes the wrong word in the

given text and corrects each and every wrong word.

The software has been developed as one of the

modules of 'Chitraksharika', an Optical Character

Recognition system for Devanagari script being developed

at ER&DCI, Noida.

I

Chapter 1

INTRODUCTION

1.1 Objective

To design and develop an Embedded Spell Checker for Optical Character
Recognition System for Indian Languages (Hindi).

1.2 Scope

The embedded Spell Checker for the OCR System must be able to achieve the
following objectives:

(i) It should be able to recognize the error and try to correct them. These errors may be
categories in different ways

a) Recognition Error

b) Grammatical Error

(ii) In the Spell Checker if user does not want any change for the selected word than he

can ignore the word. Because the selected word could be correct but in the document it

shows incorrect. This feature should be in the module.

(iii) It should be able to display best four options for the selected wrong word and user

can choose any one option for the wrong word and that wrong word can be easily

replaced by the correct word. If user want more options than this feature should be in the

module.

(iv) If user want to insert the word in the dictionary than user can add the selected word

into user directory, so that in future selected text can not identify incorrect word for the

same word.

1.3 Statement of work done
The software is being developed as one of the modules of the Optical Character

Recognition (OCR) System for Indian Languages. When the OCR run over the scanned

page the characters do not recognize correctly and there are some recognition errors in

the word. The error module corrects those errors, which are incorrect and provide the

3

correct document to the user. The software is an attempt to provide the above features to

an OCR System for Indian Languages.

In this dissertation, we design a module, called Spell Checker Module, which

detect the errors on the document and make correction of the word followed by the

dictionary look-up for generation of probable correct options.

Some specific tasks which is carried out in this dissertation are as follows:

1. PC-ISCII to KrutiDev 010 Converter.

2. KrutiDev 010 to PC-ISCII Converter.

3. Detection of errors and generation of probable correct options for Hindi text.

1.4 Organization of Dissertation

The first chapter gave an overview of Spell Checker module and discussed the

problem to be solved. The second chapter describes the literature Survey for OCR for

Hindi Language, ISCII code. The third chapter carries out a detailed analysis of the

problem and discusses relevant theoretical issues, and discusses the various type of

error and features of spell checker. Chapter fourth presents the detailed design of the

proposed solution. In chapter fifth, results obtained from the software developed are

presented and discussed. Concludes the thesis in sixth chapter.

4

Chapter 2

LITERATURE SURVEY

2.1 Optical Character Recognition
OCR stands for Optical Character Recognition. It is the process of converting

scanned images of machine printed or handwritten text (numerals, letters, and symbols),

into a computer process able format (such as ASCII). Optical character recognition

(OCR) is the translation of optically scanned bitmaps of printed or written text characters

into character codes, such as ASCII. This is an efficient way to turn hard-copy materials

into data files that can be edited and otherwise manipulated on a computer.

The OCR systems are useful for direct transfer of large data into the computer

with the help of scanner. The hard copy is fed into a scanner, the image file is then

analyzed and image processing is applied for transforming into ASCII file. Efforts are

underway to develop OCR for Hindi. The software system that recognizes characters

from a registered image can be divided into three operational steps: document analysis,

character recognition, and contextual processing

Document Analysis

Text is extracted from the document image is a process known as document

analysis. Reliable character segmentation and recognition depend upon both original

document quality and registered image quality. Prior to character recognition it is

necessary to isolate individual characters from the text image. Many OCR systems use

connected components for this process. For those connected components that represents

multiple or partial characters, more sophisticated algorithms are used.

Character Recognition

Two essential components in a character recognition algorithm are the feature

extractor and the classifier. Feature analysis determines the descriptors, or feature set,

used to describe all characters. Given a character image, the feature extractor derives the

5

features that the character possesses. The derived features are then used as input to the

character classifier.

Template matching, or matrix matching, is one of the most common classification

methods. In template matching, individual image pixels are used as features.

Classification is performed by comparing an input character image with a set of templates

(or, prototypes) from each character class. Each comparison results in a similarity

measure between the input character and the template. One measure increases the amount

of similarity when a pixel in the observed character is identical to the same pixel in the

template image. If the pixels differ the measure of similarity may be decreased. After all

templates have been compared with the observed character image, the character's identity

is assigned as the identity of the most similar template.

Contextual Processing

Contextual information can be used in recognition. The number of word choices

for a given field can be limited by knowing the content of another field. The result of

recognition can be post-processed to correct the recognition errors. One method used to

post process character recognition results is to apply a spelling checker to verify word

spelling.

2.2 Commercial Applications
Commercial OCR systems can largely be grouped into two categories: task-

specific readers and general purpose page readers. A task-specific reader handles only

specific document types. Some of the most common task-specific readers read bank

cheque, letter mail, forms or credit card slips. These readers usually utilize custom-made

image lift hardware that captures only a few predefined document regions. For example,

a bank check reader may just scan the courtesy amount field and a postal OCR system

may just scan the address block on a mail piece. Such systems emphasize high

throughput rates and low error rates. Applications such as letter mail reading have

throughput rates of 12 letters per second with error rates less than 2%. The character

recognizer in many of task-specific readers is able to recognize both handwritten and

machine-printed text.

r

Address Readers: The address reader in a postal mail sorter locates the destination

address block on a mail, piece and reads the ZIP Code in this address block.
Form Readers: A form reading system needs to discriminate between pre-printed form

instructions and filled-in data. The system is first trained with a blank form. The system

registers those areas on the form where the data should be printed. During the form

recognition phase, the system uses the spatial information obtained from training to scan

the regions that should be filled with data.

Cheque Readers: A cheque reader captures check images and recognizes courtesy

amounts and account information on the cheque.

Bill Processing Systems: A bill processing system is used to read payment slips, utility

bills and inventory documents. The system focuses on certain regions- on a document

where the expected information is located, e.g. account number and payment value.

Passport Readers: An automated. passport reader reads a traveler's name, date of birth,

and passport number on the passport and checks these against the database records that

contain information on fugitive felons and smugglers.

General-purpose page readers are designed to handle a broader range of

documents such as business letters, technical writings and newspapers. These systems

capture an image of a document page and separate the page into text regions and non-text

regions. Non-text regions such as graphics and line drawings are often saved separately

from the text and associated recognition results. Text regions are segmented into lines,

words, and characters and the characters are passed to the recognizer. Recognition results

are output in a format that can be post processed by application software. Most of these

page readers can read machine written text but only a few can read hand-printed

alphanumeric.

2.3 Devanagari Script

Origin: The Devanagari alphabet descended from the Brahmi script sometime

around the 11th century AD. Its name come from the Sanskrit deva' heavenly' + nagari

'script of the city'.

Devanagari is a compound word with two roots: deva means "immortal", and

nagari means "city". Literally, together they mean "city of immortals."

7

2.3.1 Notable Features
This is a syllabic alphabet in which consonants all have an inherent vowel. This

vowel can be muted with a special diacritic called a virama.

Vowels can be written as independent letters, or by using a variety of diacritical

marks, which are written above, below, before or after the consonant they belong to. This

feature is common to most of the alphabets of South and South East Asia.

When consonants occur together in clusters, special conjunct letters are used. The

symbols for the consonants other than the final one in the group are reduced and the

inherent vowel only applies to the final consonant.

Devanagari - A script that is used by over 300 million people all over the world.

It is the base script of many languages in India, such as Hindi and Sanskrit, and many

more languages throughout India and the world use variants of this script. From an OCR

point of view, Devanagari owes its complexity to its rich set of conjuncts. The richness of

this script deserves a more detailed explanation.

tI
2. 14t 	Ft ft ci4ii4q4 	41 ru 1irnt

3. . 	.. 	
3ffr4jTr 	'4

	

~pi's~ TAT 3 r14TfT T 	c 	!ft 3cJ
3T 3k c1Iii T 	151 	k 	 1T

I1 TMtI

Figure 2.1: Sample of Hindi text

A sample of text in Devanagari is shown in Figure 2.1 as is obvious from the

character structure, Devanagari has a wide range of glyphs and is a challenging subject

vis a vis the OCR of Devanagari documents. Add to that issues like fused characters, the

S

range of vowels and modifiers, degraded documents, and we have an excellent OCR

problem.

Devanagari is written from left to right along a horizontal line and its basic set of

symbols consists of 34 consonants and 18 vowels. The joining. of the horizontal bar,

characteristic of many of its symbols, makes Devanagari text appear suspended from an

imaginary line.- Called danda, a single or double vertical line was traditionally used to

indicate end of phrase or end of sentence. Also, there were no spaces between words. In

modern practice, inter word space and European punctuation prevails. Likewise, although

Devanagari has a native set of symbols for numerals, nowadays-Arabic numbers are

typically used.

In part, Devanagari owes its complexity to its rich set of conjuncts. Devanagari is

partly phonetic in the sense that a word written in it can only be pronounced in one way,

but not all possible pronunciations can be written perfectly. Devanagari has 34

consonants ("vyanjan"), and 12 vowels ("svar"). A syllable ("akshar") is formed by the

combination of zero or one or more consonants, - and one vowel.

A sample set of Devanagari characters is given below. These characters are non-

compound characters.

3T 31N3i3f&:

Figure 2.2 non-compound characters.

You may observe that some of the characters have Upper and lower modifiers. A

sample of such modifiers is shown below.

Figure 2.3 modifiers

The presence of such modifiers poses a huge challenge to Devanagari OCR. In

addition, Devanagari script also has compound characters. This creates further issues

with respect to character separation and identification. Examples of some compound

characters are below.

9

Figure 2.4 compound characters

Devanagari text can be represented in 2 popular ways - Transliteration and

Unicode formats. Both formats are widely used, though each makes its' own claim

towards having covered the whole Devanagari character set. A transliteration map is

shown below. Transliteration is used to convert English alphabets into Devanagari

characters. It is based upon phonetic translation.

TT 	'I

ur

tr 7' If

Figure 2.5 Consonants and vowels

2.4 Indian Standard Code for Information Interchange (ISCII)
In 1991, the Bureau of Indian Standards adopted the Indian Standard Code for

Information Interchange (ISCII), the ISCII standard that was evolved by a standardization

committee, of which C-DAC was a member, under Department of Electronics during

1986-88. The ISCII document is available as IS 13194: 1991 from the BIS offices.

All GIST products are based on ISCII. Other than this, IBM for PC-DOS, Apple

for ILK has used it, and several companies are developing products and solutions based

on this representation. This has been made mandatory for the data being collected by

E

organizations like The Election Commission and for projects as Land Records Project

etc.

The ISCII code standard specifies a 7-bit code table, which can be used in 7 or 8-

bit ISO compatible environment. It allows English and Indian script alphabets to be used

simultaneously. It shall not be used in incompatible environments like that of IBM-PC,

and with computers which do not allow 8-bit characters, or which do not follow ISO code

extension techniques. It cannot be used in the 5-bit Baudot code used for

telecommunications.

The Bureau of Indian Standards adopted this Indian Standard after the Electronics

and Telecommunication Division Council have approved the draft finalized by the

Computer Media Sectional Committee.

This standard conforms to IS 10401:1982, "8-bit coded character set for

information interchange"(equivalent to ISO 4873). It is intended for use in all computer

and communication media which allow usage of 7 or 8 bit-character set - code extension

techniques".

In an 8-bit environment, the lower 128 characters are the same as defined in IS

10315:1982 (ISO 646 IRV) "7-bit coded character set for information interchange" also

known as ASCII character set. The top 128 characters cater to all the 10 Indian scripts

based on the ancient Brahmi script. In a 7-bit environment the control code SI can be

used for invocation of the ISCII code set, and control code SO can be used for reselection

of the ASCII code set.

An attribute mechanism has been provided for selection of different Indian script

font and display attributes. An Extension mechanism allows use of more characters along

with the ISCII code. These are only meant for the environment where no other alternative

selection mechanism is available. The 1SCII code table is a super-set of all the characters

required in the ten Brahmi-based Indian scripts. For convenience, the alphabet of the

official script Devanagari has been used in the standard.

In a 7-bit environment the control code SI can be used for invocation of the ISCII

code set, and control code SO can be used for reselection of the ASCII code set. The

official language of India, Hindi is written in the Devanagari script. Devanagari is also

used for writing Marathi and Sanskrit.

2.4.1 Nature of Indian Alphabet

All the Indian scripts have originated from the ancient Brahmi script, which is

phonetic in nature. The alphabet in each may vary, they all share a common phonetic

structure. The differences between scripts primarily are in their written forms, where

different combination rules get used.

The Consonants

Indian script consonants have an implicit + (a) vowel included in them. They have

been categorized according to their phonetic properties. There are 5 Vargs (Groups) and

non-Varg consonants. Each Varg contains 5 consonants, the last of which is a nasal one.

The first four consonants of each Varg, constitute the Primary and Secondary pair. The

second consonant of each pair is the aspirated counterpart

Primary Scisondary Naysqi
r̀ay r 	I 	T. TT Iq

ka kha Raj gha ha
varg2

ca e ha ja j ha n a

\r rg 3 7 T

la's tha cia d ha 11a

Varg.4 14 iT 7
tha da dha na

'.arg 5 ?I TF Iq TT

pa pha ha bha ma

non- Vary

7 -T ZT VT 	"f
va rH is va y 	a 	sa 	ha.

Note that the eons,onants vi (a.) (sa) arc pronounced. identically today,

12

Anuswar

Anuswar indicates a nasal consonant sound. When an Anuswar comes before a

consonant belonging to any of the 5 Vargs, then it represents the nasal consonant

belonging to the Varg. Before a non-Varg consonant however the answar represents a

Varg I aT=-a
atpka pa ikha ganga sangha

Varg 2 q=rff =
manca paIkhi panja si tjha

Varg 3' 	r= 4 3 rr=iT
ghanta kantha jhanda dliunaha

Varg 4 	c3 ~T 1=TILT
Santa pantha bandy gandha

Varg 5 	T TT=Y r= 	i
Santa pantha banda gandha

different nasal sound. Some Hindi examples:

Nasalization Sign: Chandrabindu

The R5 denotes nasalization of the preceding vowel (can be implicit :3t vowel within a consonant).
Example:
In Devanagari script it often gets subbtitutcd with Anuswar, as the latter is more convenient for %%Tit-
ing. In some words, however. Anuswar and Chandrabindu can girt diffi rent meanings. Hindi ex-

ampir: ft (Laugh), Pr (Swan).

Visarg

Comes after a vowel sound, and represents a sound similar to "h".

Vowels and Vowel signs (Matras)

There are separate symbols for all the vowels in Indian scripts which are

pronounced independently (either at the beginning of a word, or after a vowel sound).

The consonants in the Indian script themselves have an implicit vowel + (a). To indicate a

13

vowel sound other than the implicit one, a vowel-sign (Matra) is attached to the

consonant. Thus there are equivalent Matras for all the vowels, excepting the + vowel.

Roman a i t u u r c
Vowel •au
Matra .T fc a
Matra on 'W {Fr f I T ¶ ¶ T. t
Roman c ai e o o au n
Vo Wr. I Lt [i 3Tf 3Tf an air
Matra ;::T
Matra on AF T !7

Vowel Omission Sign: Halant

In Indian scripts consonants are assumed to have an implicit vowel + "a" within

them unless an explicit Matra (vowel-sign) is attached. Thus a special sign Halant is

needed for indicating that the consonant does not have the implicit + vowel in it.In

Ashok = •aivf 	t 3T

Northern languages, the Halant at the end of a word generally gets dropped, though the

ending still gets pronounced without a vowel. Example:

Conjuncts

Indian scripts contain numerous conjuncts, which essentially are clusters of up to

four consonants without the intervening implicit vowels. The shape of these conjuncts

can differ from those of the constituting consonants. These conjuncts are formed in the

ISCII code by putting the Halant character, between the constituent consonants.

Example: 	T%rq _
_

Diacritic Mark: Nukta

The Nukta is used for deriving 5 other consonants in the Devanagari and Punjabi

scripts, required for Urdu.

14

TI 	?1 	?T

Punctuation:

All punctuation marks used in Indian scripts are borrowed from English, except

for the full-stop, instead of which a Viram (J) is used in the Northern scripts. The Viram

is, however, being increasingly substituted by a gull-stop. A double Viram

(JJ) is also used in Sanskrit texts for indicating a verse ending.

Numerals

Many Indian scripts today use only the international numerals. Even in others, the

usage of international numerals instead of the original forms is increasing. Although the

Devanagari script has its own numerals, the official numeral system is the international

one.

2.4.2 Structure of the ISCU code
A common alphabet for all the Indian scripts is made possible by their common

origin from the same ancient Brahmi script. The ISCII code contains only the basic
y~+9

alphabet required by the Indian scripts. All the composite characters are formed through

combinations of these basic characters.

Vowels and Matras

The ISCII code contains separate vowels and Matras (Vowel signs). While a

vowel sign can be used independently, the Matra sign is valid only after a consonant.

Thus:

~*

 !

Vowel Modifiers

After a consonant, vowel or Matra character, a character can be used which

modifies the vowel sound and is called a "Vowel Modifier". This can be a Chandrabindu,

15

Anuswar or Visarg

Example:
N 	' a ti, 3M ç 3T ..: , ,3 r— (3TT z (:T

Halant

The implicit vowel in a consonant can be removed by addition of a Halant sign. In

the ISCII code conjuncts are formed by typing a Halant character between consonants. A

conjunct may consist of upto 4 consonants joined by Halants. Example:

Explicit Halant

A Halant is used between consonants to form conjuncts. But many times in

Sanskrit and Vedic texts, one may wish to show an Explicit Halant which would be

shown on the previous consonant, and which would prevent the consonant from joining

with the next one. Two consecutive Halants form an Explicit Halant. Example:

T>'C1GIT
10 rf`+ _ we c"nfb

zc 1c' =f zr.r,Lr. 	b =t

Soft Halant

A Soft Halant is formed by typing a Nukta character after a Halant. In Devanagari

the Soft Halant allows retention of the "half form" for the preceding consonant, and

prevents it from combining with the following consonant. Example:

8t - 	_ M7 	 VTctiQ- 	_ P7
T q TT f:1 	= fati 	W <:;. ,-~ ~r ft : 	= fir

Invisible Consonant INV

The INV (Invisible) code is used for formation of composite characters which

require consonantal base, but where the consonant itself oughtto be invisible. These may

be required only for some special display purposes. Example:

c1 IN~f 	INNr o—T =
Z IM' 	 = 4
INVii-i x; = : 	.IN\'(1= c;T

The Nukta Character

The Nukta consonants get formed by adding a Nukta character immediately after

the appropriate consonant. In the ISCII code the same Nukta character is thought of as an

operator to derive some of the lesser used Sanskrit characters which are not directly

available on the Inscript keyboard. A Nukta can be typed after a Halant to form a Soft

Halant.

Table 4: ISCII characters derived by appending a Nukta
Char Nukta Char Name

T' Consonant QA (Urdu)
a z Consonant KHHA (Urdu)
IT ?1 Consonant. GHI-IA (Urdu)

Consonant ?A (Urdu
Consonant Flapped DA

I Consonant Flapped DHA
TF TF Consonant FA (Urdu)

Vowel Rut (Sanskrit)
s s Vowel Sign RI! (Sanskrit)

Vowel Ll (Sanskrit)
trowel Sign LI (Sanskrit)

c- Vowel LU (Sanskrit)
di trowel Sign LII (Sanskrit)

x 31 Sign OM

s Vowel Stress Sign AVAGRAH
(Sanskrit)

17

Attribute Code (ATR)

The Attribute code, followed by a displayable ASCII character, defines a font

attribute applicable for the following characters. The mechanism is meant for use in that

medium where alternative font selection mechanism is not available.

Extension Code (EXT)

The Extension code, followed by an ISCII character, defines a new character

which can combine with the previous ISCII character. This provision has been primarily

made for supplementing Vedic signs along with the Devanagari text.

Numerals

In all the Indian scripts the international numerals are being used increasingly.

From the software viewpoint, usage of the same numerals as given in the ASCII set

allows proper handling of numerals by existing software. For display rendition purposes

however, it may be sometimes desirable to have separate Indian script numerals which

are given in the ISCII table. The ATR mechanism also allows display rendition of the

ASCII numerals in an Indian script form. The ISCII numerals should be used only when

it is not possible to use the ATR mechanism for selecting numerals in an Indian script.

is

Chapter 3

THEORETICAL ASPECTS OF THE PROBLEM

3.1 OCR Error Correction
OCR (Optical Character Recognition) error detection and Correction technique

for a highly inflectional Indian language. The technique is based on morphological

parsing where using two separate lexicons of root words and suffixes, the candidate root-

suffix pairs of each input string, are detected, their grammatical agreement is tested and

the root/suffix part in which the error has occurred is noted. The correction is made to the

corresponding error part of the input string by means of a fast dictionary access

technique. To do so, the information about the error patterns generated by the OCR

system is examined, and some alternative strings are generated for an erroneous word.

Among the alternative strings, those satisfying grammatical agreement in root and'suffix

are finally chosen as suggested words.

The problems of automatic error detection in words and automatic correction are

great research challenges. Finding solutions will be very important for text and code

editing, computer aided authoring, OCR, machine translation and natural language

processing (NLP), database retrieval and information retrieval interfaces,

Word errors belong to either of two distinct categories, namely, non-word errors

and Real word errors. Invalid words are non-words. By real word error, we mean a valid

but not intended word in a sentence, thus making the sentence syntactically or

semantically ill formed or incorrect. In both cases, the problem are to detect the word

error and either suggests correct alternatives or automatically replace it with the

appropriate valid word. The detection of real word errors needs higher-level knowledge

compared to the detection of non-word errors. For real word errors, it is often not

possible to separate the problem of error detection from that of correction.

Here we are concerned with non-word errors only. We assume that the document

subject to OCR system contains only valid words and that the sentences are syntactically

and semantically well formed. Of course, the OCR still can create real word errors, but as

will be shown later, such errors are rare.

19

We are concerned here error correction of Hindi, the most popular language in

India The complex character grapheme structure of Hindi script creates difficulty in error

detection and correction. There are 12 vowels and 34 consonants in the Hindi alphabet.

These are known as basic characters.

But the vowels, depending on their position in a word, take different shapes,

called modifiers. You may observe that some of the characters have upper and lower

modifiers. Vowel modifiers and their shapes when attached to a consonant. Moreover,

two or more basic character combine to form a new complex shaped character called a

compound character. Making recognition as well as error detection and correction more

difficult than, say that of Roman script.

Vowel modifiers

7 ITT " l U 7 1T 	'
pa pa pi pi pu pu pr pr pe pai po pau

Figure 3.1 Vowel modifiers

Compound character

Figure 3.2 Compound characters

Using a huge lexicon for error detection and correction is not a very practical

proposition. For speed and storage efficiency, it is necessary that the lexicon size be

reasonably small while tackling the large number of surface words using a clever suffix

handling approach. For this purpose, two lexicons are used in our system, one for the root

words and the other for the suffixes. Given a character string, first we look for matches in

the root word lexicon, and then we search in the suffix lexicon for suffix matches. When

properly done, this approach has an additional advantage in that it performs

morphological parsing of words, which is the first stage in any natural language

processing (NLP) task. We shall very briefly describe in section 5 how morphological

parsing is conducted. Moreover, the basic structure of the approach presented here is very

suitable for the design of spellcheckers in word processing applications for Hindi and

other Indian languages.

3.2 OCR Error Pattern of HINDI Text
A document image captured by flatbed scanner is subjected to initial processing,

such as skew correction and line, word and character segmentation. For convenience of

recognition, the basic, modified and compound characters are classified into separate

groups. A feature based tree classifier does basic and modified character recognition. A

decision is made at each node of the tree based on certain feature(s) from the feature set.

The compound characters are initially grouped into small subsets by a feature based tree

classifier. A run length based template-matching approach then recognizes characters in

each group. Characters, which are not recognized with the system, are marked by the

marker `?'. There are few errors, which are generally recognized in the document. We

have categorized them below.

3.3 Categorization of Errors
We have identified the different types of errors and categorized them as under.

• Matra error

• Exchange of matra with vowel error

• Nukta error

• Halant error

• Consonant Exchange error

• Splitting of word error

• Phonetic error

3.3.1 Matra error

In Hindi consonants do not indicate the consonant sounds only. They stand for a

particular consonant + vowel (3i). Thus (z) is not simply T but T. *II But if the simple

consonant without inherent () is to be expressed than (Halant () is to be put below

the letter. When some vowel other than this inherent (r) comes after a consonant than

Matra is tagged on to a consonant letter.

In Hindi-Writing putting the correct Matra on the consonant is a very common

error due to the phonetic similarity in the Matras. To correct Matraerrors we generate the

21

consonant pattern of the incorrect word , which is the Key for searching in the

Dictionary. Dictionary structure is designed in such a way that the word list having same

consonant pattern get selected in the single search step. On this word list, We apply the

"Minimal Distance Algorithm" (MDA) and the most suitable option is displayed for the

user. The "MDA" uses the following pairs of Matras, which has been identified based

on the phonetic similarity.

(r) () () () (`"
And a special class (Matra No-Matra)

For Example, If incorrect word is

and generated correction option words are 	a q

Penalties for these words will be 	 2 	1 	respectively

Hence the option words display sequence will be

3.3.2 Exchange of matra with vowel error

This is a special kind of Matra error where the abbreviated form of vowel i.e. the

Matra is written in the actual form of the vowel due to the phonetic similarity. This sort

of error generally occurs due to the pronunciation difference caused by regional effect.

For Example:

Incorrect 	Correct

For such cases Matra & Vowels tuples are identified. Using these tuples the words

are generated and these generated words are searched in the dictionary to prove their

validity.

3.3.3 Nukta error

There are some loan words from Arabic, Persian, and Turkish which have

become very common in Hindi. These words can have Nukta consonants which are

22

formed by adding a special symbol Nukta (.) after the equivalent Hindi consonants. This

is a small set of consonants, which may carry a Nukta character immediately after them.

This Nukta error generally occurs either due to missing the Nukta on the required

consonant or unnecessarily putting the Nukta on the consonant or putting Nukta after the

consonant where Nukta can never occur.

These three types of Nukta errors are dealt by the following way.

a) Checking the Nukta consonant in the word.

b) Putting/Removing the Nukta from the consonant

c) Searching the generated words in the dictionary for the validity.

3.3.4 Halant Error

To represent the consonant without the inherent (3T) is expressed by putting the

Halant after the consonant. And two or more consonants with no vowel including the

inherent () between them can be combined together and thus form a conjunct A

conjunct may consist of up to 4 consonants joined by Halants.

for example Z + -\ + ZT = t 11

It is however, not usual to write a conjunct with the help of a Halant. This mark is

rarely used except the final consonant. Most of the consonant , when forming a conjunct,

omit a part of their original form. This time Halant is called soft Halant . But some

consonant are written explicitly putting the Halant, this time it is called Hard Halant.

It has been analysed that generally two types of a mistake occurs for this

character.

• Putting a Soft Halant instead of Hard Halant.

• Or missing the Halant at last as with some words of Sanskrit at the last

consonant.

To correct this error conjuncts have been identified for ISCII codes because

Dictionary data uses ISCII storage which is the basis of UNCODE.

23

3.3.5 Consonant Exchange error

This error occurs due to the exchange of adjacent characters in a word. This may

happen due to

a) Regional way of speaking

Example

	

Incorrect 	correct

	

T 	c T4

b)Wrong sequence of key depressions

	

Incorrect 	correct

U

These are handled by mutually exchanging the characters of the word. It has been

observed that this type of exchange does not occur with first and the last characters of the

word.

3.3.6 Splitting of word error

- 	For virtually all spelling error detection and correction techniques, word

boundaries are defined by white space characters. This fact turns out to be problematic

since a significant portion of text error involve running together one or more words or

splitting of the word. In this paper only splitting of the word error has been dealt with,

provided the splitted words in itself are not the valid words.

3.3.7 Phonetic error

This type of error occurs due to the placement of the phonetically similar

characters. To dealt with this error, a list of pairs for phonetically similar character have

been identified.

TT

24

Er u

Error correction is done just substituting the other character from the pairs.

Examples

Incorrect Correct

fi ~2T

JT ~

3.4 Converter
Although PC-ISCII has been declared as a standard, still developers of Hindi

Word-processors have not adopted it fully. The different vendors are using their own

proprietary storage formats (Font). This is done knowingly too, to avoid a User from

using any Word-processor of other vendor. Though it is a negative Approach of trade, it

is prevailing widely in the market. To make the spell-check Module able to work along

with different vendors, the font converters are also developed as a part of our project

work. These converters first convert a vendor's Proprietary font format to PC-ISCII and

after doing the spell check, the data is Converted back to ii►e vZir or's own font format.

As explained earlier, the dictionary is in the standardized PC-ISCII format. So; Before

applying the search module, the given text is converted into PC-ISCII Format. And after

the completion of search procedure & spell-checking, the options that are generated, are

reformatted back into the working context of the text, So, for each of the text format

(font), we are required two converters.

The converters, we have designed so far are-

- Kruti Dev 010 to PC-ISCII

25

• PC-ISCII to Kruti Dev 010

The concept behind the development of converters is the mapping that is applied

for the transformation of the, character in one font to another font. The mapping shows

how the different characters are• stored in the memory and what ' are their relative

sequences.

For example

In kruti Dev 010 the word is written as

rr -4T 7T

In PC-ISCII it is stored as

zrfgTT-JT

3.5 Dictionary Design

Data representation is crucial to the design of a dictionary. Some of the important

consideration in the design of a dictionary is storage requirement, search efficiency for

the words, and the complexity of the retrieval of related words. Here dictionary data is

organized on the basis of mode of writing the vowel with the consonant. The dictionary

stores all the inflectional variants of the words. The Devanagri script text is represented

in the form of ISCII. The ISCII code contains only the basic alphabets required by the

Indian scripts. All the composite characters are formed through combinations of these

characters.

In the said technique, the patterns have been generated from the valid words containing,

actual forms of the vowels & consonants for which basic ISCII code is available. All

These patterns are organized as key to the Hash Table and the words satisfying these

patterns are arranged horizontally as the value to the key of Hash Table. To implement

this structure Hash Function is used.

This technique of words organization has unique feature and very useful for handling

multiple character error in a single word. It also makes the searching process fast.

Dictionary is designed in such a way that it can take care of multiple Matra error

in a single word. This is limited to the Matra errors only.

26

Incorrect 	 Correct

3.5.1 Options Display sequence by Minimum Distance Algorithm (MDA)

MDA used for ranking of generated possible correct options for a given incorrect

word. The distance between two words is the number of editing operations required to

transform one of the words into the other multiplied by respective penalties. The allowed

editing operations are removal, insertion, and replacement of Matra or a Character.

Different edititing operations are classified into five different classes a, b, c, d and e and

they have penalties p i , P2, P3, p4 and ps respectively. Hence the following formula is

applied for calculation of total penalty on the generated option word with respect to the

incorrect word.

P =n1* pi+n2*p2 +. n3*p3 +n4*p4+n5*p5

Where

• P is the total penalty for generated word -option, with respect to incorrect

word.

• ni, n2, n3, n4, n5 are the editing operation counts for classes a, b, c, d, e

respectively

• p1, p2, p3, p4, p5 are the penalties for classes a, b, c, d, e respectively

• class `a' contains phonetically similar Matra pairs and editing operation is

assumed changing of Matra with other Matra of the same pair

• class `b' contains Matra and No-Matra pair, special class and editing operations

can be insertion and removal of Matra

• class `c' can have any phonetically dis-similar Matra pair and editing operations

can be insertion, deletion and exchange of Matra

• class d' can have any (character, character) and (character, No-character) pair

and editing operations can be insertion, deletion and exchange of character

27

• class `e' can have (Halant/Ref, blank) pair and editing operation can be insertion

and deletion

• Values for p1, p2, p3, p4, and p5 are assigned 1, 1, 2, 2 and 3 respectively.

Penalties on each generated option words are calculated with respect to the

incorrect word. Minimum of these Penalty counts will be Minimum Distance. Now

generated option words are displayed in the increasing order of penalties.

This technique takes care of not only for correction of errors resulting from

keyboard input but also for correction of phonetic spelling errors.

For example :

if incorrected word is

and generated correction option words are

rii
Penalties for these words will be

1 	3 	2 	3 respectively

Hence the option words display sequence will be 	 ~

3.5.2 Searched Procedure

In the first step as the input word arrives, it is first processed by the remove_matra

() function to remove all the matra, halant & nukta to get the corresponding without matra

word. On the basis of the without matra word thus obtained, the search procedure is fired

that can result into the following possibilities-

Here two cases can arise:

a) The Without — matra word does not match to any word (Without — matra

word) in the dictionary. This condition also shows that the desired word is not present

in the dictionary.

b) The Without — matra word matches to the word (Without — matra word) in

the dictionary. Here this line of the dictionary is picked up & is stored in array.

28

Chapter 4

IMPLEMENTATION ASPECTS

4.1 Working With Dictionary
Dictionary is the important part of this module. When the spell checker module is

run, initially this dictionary is loaded and the word is searched in the dictionary. The

words are in sorted form in the dictionary.

The root word, without matra word and its variants are stored in line. In the

dictionary information is stored in the ISCII form and when the word is searched it return

the variants corresponding to the root word.

The dictionary is maintained in such a way that it supports index sequential access

to the data stored therein. To fat retrieval of data, two- depth indexing is used....The first

level index tells the dictionary file & the initial position for the word. To be searched.

The second level index tells the no of lines (count) to check for the word to be searched.

The whole of the dictionary is implemented in the split form. The dictionary

(information) is split upon the basis of the first character that may be there in the ISCII

word.

4.2 Working with Converter
The font converters are also developed as a part of our project work. These

converters first convert a vendor's Proprietary font format to PC-ISCII and after doing

the spell check, the data is Converted back to the vendor's own font format. The

dictionary is in the standardized PC-ISCII format. So, before applying the search module,

the given text is converted into PC-ISCI1 Format. And after the completion of search

procedure & spell checking, the options that are generated are reformatted back into the

working context of the text.

The concept behind the development of converters is the mapping that is applied

for the transformation of the character in one font to another font. The mapping shows

how the different characters are stored in the memory and what are their relative

sequences.

29

Kruti Dev 010 to PC-ISCII

PC-ISCII to Kruti Dev 010

4.3 Working with Error Module
The functions, which are using in the spell checker module, are shown here. Each

function is described in details.

4.3.1 Consonant Errors

This type of error occurs by the misplacement of the letters in the words.

Example

1C C 'I

Search Criteria:

Generally in this type of error the first letter remains the same. Means, keeping

the first letter untouched, we calculate the permutations of the next three letters (max 3! =

6 words). Then we carry out the search procedure (in the file opened corresponding to the

first letter) to check out the validity, i.e. to see if the words are there in the dictionaty or

nc+. The valid words then can he placed in the option list.

Function : consonantErrorsO

4.3.2 Nukta Error

This type of error occurs due to misplacement or non-placement of the nukta (.)

characters in the word.

Example

T 	II1!

Search Criteria

There are only seven characters that can have nukta mark.

1). First find out the positions of the letters that can have nukta error.

30

2). Depending upon the letters found, say n, we fire n! Nukta correction

permutations and search for their validity. The valid words then can be represented in the

option list.

Function: nuktaErrorO

4.3.3 Upper_r_kar Error

This error occurs due to the misplacement of upper r_kar (C).

Example

SearchCriteia

1) First find out the position of upper_r_kar

2) Remove the upper r_ kar from the word and make the following two cases-

a). Put uppper_rkar on the character succeeding the original position and check

out for the validity.

b). Put u000ep_r_kar on the character preceding the original position and check

out for the validity.

Function: upperRKarError() 	 yL

4.3.4 Nmn r kar error Error

This type of error occurs due to the placement ofor... ft. In place of (.,)

and vice-versa.

Example

. * . + ~1

Search Criteria

Find out the position of / 	4)* in the word and replace it with (.) and

vice versa.

31

Function: mmnRKarErrorO

4.3.5 Mnv kar error Error

This error occurs due to placement of \ before or after T

Examples

................... 	"~

Search Criteria

1). Find out the positions of before or after T

2). Remove them in various permutations (max.3) and search for their validity.

Function: mnvRKarError()

4.3.6 Soft—halant—error Error

This error occurs due to placement of non-placement of soft halant- (+ .)

Example

	

................. 	q

Search Criteria

A letter having a matra can t have a soft halant

1). First check the letter with no matra.

2). Now make the permutations of the selected letters (except the last one) and

apply the soft halant to each of the permutations and check for validity.

Function: softHalantError()

4.3.7 Hard_halant error Error

This error occurs due to the presence of special character combination which

should be replaced by specific character.

Example

32

♦ ♦ . . • ` .
Search Criteria

1). Find out the letters without matra (except on the last one). Chose the first letter

from this list

2). Now put a halant () on this letter

3). After putting the halant, if the combination of this letter and the next

consecutive letter makes a new letter (as shown above) then it is replaced by the specific

character and is left intect and both of there letter are removed from the list if then are

present. Chose the next letter form the list and go to the step (2).

4). The new word is checked for validity.

Function: hard HalantErrorO

4.3.8 Halant_at_last error Error

This error occurs due to the presence or absence of halant (\) at the last character.

Example

1-1 .J
Search Criteria

I). If halant is present at the last character then remove it.

2). If halant is not is present at the last character then put it.

3). Check for the validity in each of the cases.

Function: halantAtLastError()

4.3.9 Explicit_halant_error Error

This error occurs due to placement or non-placement of soft halant(\\)

Example

. . S• . . . Se S*

Search Criteria

A letter having a matra can't have a explicit halant.

1). First check the letter with no matra.

33

2). Now make the permutations if the selected letter (except the last one and apply

the soft halant to each of the permutations and check for validity.

Function: Explicit_halant_error O

4.3.10 Ex_soft_error Error

This error occurs due to the interchange of the soft halant with explicit halant.

Example

ChICI0

Search Criteria-

Interchange the two halants and check for their validity.

Function: exSoftHalantError()

4.3.11 Matra Error

This error occurs due to placement of the wrong matras

Example

Search Criterion

Interchange the different matras according to the combinations and check for the

validity after each of the replacement.

Function: matraErrorO

4.3.12 Anuswar Anunasik Error

This type of error occurs due to the interchange and the presence or absence of

the anuswar(3R) and anunasik()

34

Search Criterion

Anunasik comes only upon the character, which have 3T and 	T Matra.

1)Interchange the anunasik to anusware.
2)Interchange the anuswar to anunasik only if anuswar come upon the character

which have 3T and 3T1 Matra.

3)Remove entirly.
4)Check the validity in each case.

Function: anuswarAnunasikErrorO

4.3.13 Double Matra Error
This type of error occurs due to the presence of double matra on a single letter
Example

c:;:j:; T 	T

Search Criterion
1) Find the character with double matra.
2) Remove the matra one by one and check for the validity.

Function: sameDoubleMatraError()

4.3.14 Phonetic Error
This type of error occurs due to placement of the phonetically wrong word.
Example

.................

Search Criterion
Interchange the different character according to the combinations and check for

the validity after each of the replacement.

Function: phoneticError()
4.3.14 Visarg Error

This error occurs due to the wrongly placement of the visarg in the end.

35

Example

:.........~ T

Search Criterion

If there is a visarg at the last character then remove it and put (Ti) Matra.

Function: visargError()

4.3.15 NMN1_R_KAR Error

This type of error occurs due to placement of 	.— in place of

Examples

.................

Search Criterion

Find out the position of of r
	

(\+ 	+ r)* in the word and replace it

with (G) and vice versa.

Function: nmn I RKarErrorO

36

Chapter 5

RESULTS AND DISCUSSION

5.1 Results
The results are shown in the following windows. Each window has a different

functionality. Here the document, which have different errors is opened and than spell

checker is run over the document and finally the document is produced which have no

error .In this figure 5.1, the starting windows is shows.

Figure 5.I:Starting Window

37

The document is selected by the user and open in the window. The document has

may errors, which have to be correct by using the spell checker

Figure 5.2:Document is to be opened in the window

38

In the figure 5.3, this window has following options. Each button have different

functions through user can make modification on the documentation.

Figure 5.3:Spell Checker Dialog Box

1. Ignore Button: If user does not want any change for the selected word than this

button is used for ignorance.

2. More Button: If user want more options for a given word. This button is used and

user gets more options in the list.

3. Change Button: If user want to change the wrong word. By using this button he can

replace the wrong word to correct word.

4. Ignore all Button: if user want to ignore the selected word in the document. This

button is used. In the document this word considered as a correct word.

5. Add Button: if user want to insert the word in the dictionary. By using this button he

can insert the word in new dictionary called user dictionary.

6. Close Button: For closing the spell checker dialog box.

7. Options list: Here different options of the wrong word are shows in the list and user

can choose any one correct word from the list.

8. Wrong Word: Here wrong word of the document is shows in this box.

39

PT1r '1"1r~
=L:

The Document is opened in the window. Here there are many errors in the

document, which have to be corrected by using the spell checker.

Figure 5.4:Document is opened in the window

40

When spell checker is run over the document than wrong word is recognized.

Spell checker shows the options of the wrong word and user choose nay one correct word

and replace wrong word to the correct word.

Figure 5.5: Spel I checker has options of the wrong word

41

tr'IpT RI 	 ■ 1 T5F

Prt 	 + "_'BY.̀.'d).aiz;3~x`*.'krc,.1:..-,r.9'3'.....i'T&4{`3Atid%" °i+ 7.,.'%Zk..

Figure 5.6:Spell checkers has all the options after clicking the more button

42

Here an object of the dictionary is created by using this window. The dictionary

has 50,000 words, which have to Access in spell checker module. So that words is easily

assessable.

higure 5.7:Dictionary is created in this window .

5.2 Suggestions for future work

In this spell checker module grammatical errors have not been considered. In the next

phase a HINDI parser will be developed and incorporated to detect and correct

grammatical errors also.

43

44

Chapter 6
CONCLUSION

The results of Spell Checker show that mostly error is caused due to wrong

recognition of the word and Matras. We have shown in the Spell Checker Module that

Spell Checker is powerful enough to detect errors and to rank the correct word options.

Ranking of the generated-options will lead to more desired sequence if the Word

Frequency is also used.

In Spell Checker the word is considered to be incorrect,

• If it contains any invalid pattern which is not possible in Hindi words OR

• The word is not in the dictionary.

And the validity of correctness of the constructed options is checked with the help

of dictionary.

For example:

Which is a correct word but not in the dictionary and correction algorithm leads to

9 which is another correct word but present in the dictionary.

The module has been tested on incorrect words and contains 50,000 words in the

dictionary and in 80% of the cases the correct options are generated. The results also

show the expected words appear in first three options in most of the cases.

Sample Result table applied on 150 incorrect words.

Error Type Total

incorrect words

%of correct

option

generated

% of correct

option in first

03 positions

•Matra error 63 100% 85%

Exchange of matra with vowel

error

03 70% 100%

Nukta error 04 100% 100%

Halant error 10 65% 100%

45

Consonant Exchange error 10 70% 80%

One character missing error 15 100% 60%

Splitting of word error 13 40% 80%

Phonetic error 09 95% 100%

46

References

1. B.B. Chaudhuri and U. Pal, "An OCR system to read two Indian Language scripts:

Bangla and Devanagari (Hindi)", In Proc. 4th Int. Conf. On Document Analysis

and Recognition, Ulm, Vol. 2, pp. 1011-1015, 1997.

2. Veena Bansal and R.M.K. Sinha, On how to Describe Shapes of Devanagari

Characters and Use Them for Recognition, 5th International Conference on

Document Analysis and Recognition(ICDAR `99), 1999, Bangalore, India.

3. R.M.K. Sinha. and K.S. Singh A Programme for correction of single spelling

errors in Hindi words., Journal of Institution of Electronics and

Telecommunication Engineers, Vol. 30, No. 6, 1984, p. 249-251.

4. J.L. Peterson 1980. Computer programs for detecting and correcting spelling

errors. Commun. ACM 23, 12, (Dec.) 676-684.

5. R.M.K. Sinha,'Computer processing of Indian languages and scripts - potentialities

and problems', Jour. of Inst. Electron. & Telecom. Engrs., vol.30,no.6, 1984,pp.

133-49.

6. Veena Bansal and R.M.K. Sinha, Partitioning and Searching Dictionary for

Correction of Optically Read Devanagari Character Strings, Int. Jour. On

Document Analysis and Recognition, Vol. 4, 2002 pp 269-280 (Presented at 5th

International Conference on Document Analysis and Recognition 1999,

Bangalore, India.)

7. Indian Standard: Indian Script Code for Information Interchange — ISCII.

Electronics Information & Planning, Feb., 1992.

8. Microsoft Press," Microsoft Visual C++ MFC Library Reference(Visual C++ 5.0

Documentation Library", Vol 1., Part 1, [ISBN 1572315180].

9. Microsoft Press," Microsoft Visual C++ MFC Library Reference(Visual C++ 5.0

Documentation Library", Vol 2., Part 2, [ISBN 1572315199].

47

Appendix A

Layout of the Hindi OCR Software

The system flow of HINDI OCR is shown in figure al.

,I
................

Scanning 	 Iina a Einarieation

r------------------- ----------------------------- ---------- Optical Character Recognition Engine
I 	 ,
I 1

1 	FC 6C11 	 ~arnna- 	1 `t` 	Rc£1°^ 	 Viors! 	
~p7 caauon 	1 zsyf

E7~YDn 	 `~ K,v'~78C 7 Ytt° w

I 	 '
I 	 1

--------------------------------- 	 __- 	-_------I Document Analysis

Image 	.Table 	TextM

Rif 	 r 	z

Edifor 	>4 ,

Final Output

Figure a]: System flow of HINDI OCR

Appendix B

PC-ISCII Code Table

The PC-ISCII code is the version of ISCII code defined by Center for

Development of Advanced Computing (CDAC), Pune, for compatibility with IBM-PC 8-
bit character set. IBM-PC does not follow the ISO 8-bit code recommendation.

PC--ISCII CODE

x 8 9 A B CC D B. •F

Heat Dc 128 144 160 176 192 208 224 240

0 0 v► ATR E.XT

1. Ci ..fT T. f?

2 	2 	Q`.' 	.̀; 	 5'a 	C

3 	3 	aC 	Zed 	 .

4 	4 	ZTT 	=T 	wr 	 c

5 	5 	 Ef 	 8T 	c.1fi

6 	6 	j 	W 	ZT 	 ~T 	c_

7 	7 	 .19 	 ZY 	c Y

S 	8

9 	9 	 TNV

A 	10

B 	11t{ 	~[sT 	 lb

e 	12

D 	13

E 	14 	 z 	 t%

F 	15 	aT? 	 .3C

„tgAL L7B~4R♦ ure b2:PC-ISCII CODE
~ ~- ~°~~\+,

LC. 1~V •
, "..... ~ 	J

50

Appendix C

MFC CLASSES AND METHOD USED IN SOFTWARE

The MFC classes and method used in this software is:

C.1 CStringList
This class supports lists of CString objects. All comparisons are done by value,

meaning that the characters in the string are compared instead of the addresses of the strings.

When a CStringList object is deleted, or when its elements are removed, the CString objects

are deleted as appropriate.

C.1.1 Class Members Used in Software

CObList: :CObList
This constructor constructs an empty CObject pointer list. As the list grows, memory is
allocated in units of nBlockSize entries. If a memory allocation fails, a MemoryException is
thrown.

CObList(int nBlockSize = 10);

Parameters
nBlockSize

Specifies the memory-allocation granularity for extending the list.

CObList::GetHead
This method retrieves the CObject pointer that represents the head element of this list.
You must ensure that the list is not empty before calling GetHead. If the list is empty, then
the Debug version of the Microsoft Foundation Class Library asserts.

CObject*& GetHead();

Return Value
If the list is accessed directly or through a pointer to a CObList, then GetHead returns
a reference to a CObject pointer. This allows the function to be used on either side of
an assignment statement and thus allows the list entries to be modified.

CObList::AddHead

51

This method adds a new element to the head of this list. The list can be empty before the
operation.

POSITION AddHead(CObject* newElement);

Parameters
newElement
Specifies the CObject pointer to be added to this list.

Return Value
Returns the POSITION value of the newly inserted element.

CObList::AddTail
This method adds a new element to the tail of this list. The list can be empty before the
operation.

POSITION AddTail(CObject* newElement);

Parameters
newElement
Specifies the CObject pointer to be added to this list.

Return Value
Returns the POSITION value of the newly inserted element.

CObList::RemoveAll
This method removes all of the elements from this list and frees the associated CObList
memory. No error is generated if the list is already empty. When you remove elements from
a CObList, you remove the object pointers from the list. It is your responsibility to delete the
objects themselves.

void RemoveAll();

CObList::GetHeadPosition
This method retrieves the position of the head element of this list.

POSITION GetHeadPosition()const;

Return Value
A POSITION value that can be used for iteration or object pointer retrieval; it is
NULL if the list is empty.

CObList:: GetNext

52

This method retrieves the list element identified by rPosition, and then sets rPosition to the
POSITION value of the next entry in the list. You can use GetNext in a forward iteration
loop if you establish the initial position with a call to GetHeadPosition or Find.

CObject* GetNext(POSITION& rPosition) const;

Parameters
rPosition
Specifies a reference to a POSITION value returned by a previous GetNext,
GetHeadPosition, or other method call.

Return Value
If the list is accessed through a pointer to a const CObList, then GetHead returns a
CObject pointer. This allows the function to be used only on the right side of an
assignment statement and thus protects the list from modification.

CObList:: GetAt

This method retrieves the CObject pointer associated with a specified position. A variable of
type POSITION is a key for the list. It is not the same as an index, and you cannot operate on
a POSITION value yourself. You must ensure that your POSITION value represents a valid
position in the list. If it is invalid, then the Debug version of MFC for Windows CE asserts.

CObject* GetAt(POSITION position) const;

Parameters
position

Specifies a POSITION value returned by a previous GetHeadPosition or Find
method call.

Return Value
If the list is accessed through a pointer to a const CObList, then GetHead returns a
CObject pointer. This allows the function to be used only on the right side of an
assignment statement and thus protects the list from modification.

CObList: :Find

This method searches the list sequentially for the first CObject pointer that matches the
specified CObject pointer. Note that the pointer values are compared, not the contents of the
objects.

POSITION Find(CObject* search Value, POSITION startAfter = NULL) const;

Parameters
search Value

Specifies the object pointer to be found in this list.

53

startAfter
Specifies the start position for the search.

Return Value
A POSITION value that can be used for iteration or object pointer retrieval; it is
NULL if the object is not found.

CObList::GetCount
This method retrieves the number of elements in this list.

int GetCount()const;

Return Value
An integer value containing the element count.

CObList::IsEmpty
This method determines whether this list contains no elements.

BOOL IsEmpty() const;

Return Value
Nonzero if this list is empty; otherwise, it is zero.

C.2 CString
CString does not have a base class. A CString object consists of a variable-length

sequence of characters. CString provides functions and operators using a syntax similar to

that of Basic. Concatenation and comparison operators, together with simplified memory

management, make CString objects easier to use than ordinary character arrays.

C.2.1 CString Class Member Used in Software.

CString::GetLength

int GetLength() const;

Return Value
A count of the bytes in the string.

54

Remarks
Call this member function to get a count of the bytes in this CString object. The count
does not include a null terminator.

CString::Empty
void Empty();

Remarks
Makes this CString object an empty string and frees memory as appropriate.

CString:: GetAt
TCHAR GetAt(int nIndex) const;

Return Value
-A TCHAR containing the character at the specified position in the string.

Parameters
nlndex

Zero-based index of the character in the CString object. The nIndex parameter
must be greater than or equal to 0 and less than the value returned by
GetLength.

Remarks
The GetAt member function returns a single character specified by an index

number.

CString: :Left
CString Left(int nCount) const;

Return Value
A CString object containing a copy of the specified range of characters.

Parameters
nCount

The number of characters to extract from this CString object.

Remarks
Extracts the first (that is, leftmost) nCount characters from this CString object and
returns a copy of the extracted substring. If nCount exceeds the string length, then the
entire string is extracted.

CString: :Right

55

Z

CString Right(int nCount) const;

Return Value
A CString object that contains a copy of the specified range of characters.

Parameters
nCount

The number of characters to extract from this CString object.

Remarks
Extracts the last (that is, rightmost) nCount characters from this CString object and
returns a copy of the extracted substring. If nCount exceeds the string length, then the
entire string is extracted.

CString: :TrimLeft
void TrimLeft();

Remarks
Call the version of this member function trim leading whitespace characters from the
string. TrimLeft removes newline, space, and tab characters.

CString::TrimRight
void TrimRitht();

Remarks
Call the version of this member function trim leading whitespace characters from the
string. TrimLeft removes newline, space, and tab characters.

CString::FindOneOf

int FindOneOf(LPCTSTR 1pszCharSet) const;

Return Value
The zero-based index of the first character in this string that is also in 1pszCharSet; —1
if there is no match.

Parameters
1pszCharSet

String containing characters for matching.
Remarks

Searches this string for the first character that matches any character contained in
1pszCharSet.

C.3 CComboBox

56

A combo box consists of a list box combined with either a static control or edit

control. The list-box portion of the control may be displayed at all times or may only drop

down when the user selects the drop-down arrow next to the control.

The currently selected item (if any) in the list box is displayed in the static or edit

control. In addition, if the combo box has the drop-down list style, the user can type the

.initial character of one of the items in the list, and the list box, if visible, will highlight the

next item with that initial character.

C.3.1 CComboBox Class Member Used in Software

CComboBox::GetCount
int GetCount() const;

Return Value
The number of items. The returned count is one greater than the index value of the
last item (the index is zero-based).

Remarks
Call this member function to retrieve the number of items in the list-box portion of a
combo box.

CComboBox::DeleteString
int DeleteString(UINT nIndex);

Return Value
If the return value is greater than or equal to 0, then it is a count of the strings
remaining in the list.

Parameters
nlndex

Specifies the index to the string that is to be deleted.

Remarks
Deletes a string in the list box of a combo box.

CComboBox::InsertString
• int InsertString(int nlndex, LPCTSTR 1pszString);

Return Value

57

The zero-based index of the position at which the string was inserted. The return
value is CB ERR if an error occurs.

Parameters
nIndex

Contains the zero-based index to the position in the list box that will receive
the string. If this parameter is —1, the string is added to the end of the list.

IpszString
Points to the null-terminated string that is to be inserted.

Remarks
Inserts a string into the list box of a combo box 	4'~A~ ~rB ~~' g 	 G 	 ._L. 	I► \

Acc No.........

CComboBox::ResetContent 	 .̀ i
f~' void ResetContent(); 	 - ROOK ~$

Remarks
Removes all items from the list box and edit control of a combo box.

CComboBox::SelectString

int SelectString(int nStartAfter, LPCTSTR 1pszString);

Return Value
The zero-based index of the selected item if the string was found.

Parameters
nStartAfter

Contains the zero-based index of the item before the first item to be searched.
When the search reaches the bottom of the list box, it continues from the top
of the list box back to the item specified by nStartAfter. If-1, the entire list
box is searched from the beginning.

1pszString
Points to the null-terminated string that contains the prefix to search for. The
search is case independent, so this string can contain any combination of
uppercase and lowercase letters.

Remarks
Searches for a string in the list box of a combo box, and if the string is found, selects
the string in the list box and copies it to the edit control.
A string is selected only if its initial characters (from the starting point) match the
characters in the prefix string.

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

