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ABSTRACT 

Word Recognition using Artificial Neural Networks, 

implemented the back-propagation neural network for 

developing word recognition software. The goal is to adapt the 

parameters of the network so that it performs well for patterns 

from outside the training set. 

The word recognition software is made using Java2 and 

efficiently recognizes all alphanumeric characters which the 

user writes on the screen. The GUI for the software, developed 

using the Swing features provided in Java2, makes it highly 

ergonomic and purposeful. 

The software can also be extended for developing a vehicle 

number-plate recognition system, Signature Verification system 
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Chapter 1 

INTRODUCTION 

1.1 Background: 

Visual pattern recognition such as reading characters or recognizing 

shapes is an easy task for human beings, but presents significant difficulty 

when programming an information processor to do the same thing. Artificial 

neural networks are a method of computation that try to achieve human-like 

performance in the field of image and character recognition. Artificial neural 

network models are composed of many non-linear computational elements 

operating in parallel and arranged in patterns mimicking biological neurons. 

These models are very good at interpreting vague, noisy and incomplete input. 

Artificial neural networks are trained from experience. In supervised learning, 

we try to adapt an artificial neural network so that its actual outputs come 

close to some target outputs for a training set which contains a predefined 

number of patterns. The goal is to adapt the parameters of the network so that 

it performs well for patterns from outside the training set. One of the main 

uses of supervised learning today lies in pattern recognition. Basic 

backpropagation is currently one of the most popular methods for performing 

the supervised learning task. A backpropagation network usually consists of 

three (or sometimes fewer) layers of neurons: the input layer, the hidden layer, 

and the output layer. The fundamental idea behind backpropagation is that the 

error is propagated backward to earlier layers so that a gradient search 

algorithm can be applied. 

This thesis will discuss the basics behind the backpropagation neural 

networks. A practical implementation of backpropagation training algorithm 

to recognize handwritten characters and extended to recognize the word . The 

implementation is done using the Java programming language. Detailed 

design of the implementation is presented in chapter 5. [ 13] 
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1.2 Objective : 

The project is to develop a system capable of recognizing handwritten 

characters or symbols, inputted by the means of a mouse. The system provides 

means for training the input characters first, then there is a classification 

option where the patterns or symbols that have already been trained should be 

fed, in order to recognize it. There are full options for the users, like •  

1. To load a default set of patterns which is already present in the system, 

which can either be trained or the default training file can be loaded. After 

which the recognition takes place. 

2. To classify a line of text (to recognize individual words in a inputted line). 

3. Options to either load a pattern file, trained or untrained & finally the option 

to create new patterns by the user to train & classify (added feature). 

1.3 Scope: 

word recognition is the area in which Neural- networks are providing 

solutions . Some of these solution are beyond simply academic curiosities, 

like neural network based product can be used to recognize hand written 

character through he scanner. This application can be used in credit card 

application form, where characters can be stored in the database after 

recognition. 

Currently, the system is build to highlight characters below the certain 

percent probability of being right so that a user can manually fill in what the 

computer could not. 

The word recognition system is developed for recognizing the handwritten 

character inputted by mean of mouse. The system is trained for the capital 

letters only but it can trained for lower case letter. The system can classify up 

to 13 character word. The system can efficiently recognize the patterns 

inputted by the. user. Facility to load the created file and create a new pattern 

file is given. The user can train the network for newly created patterns in order 

to recognize it. 

The program has been tested with two sets of training patterns — letters 

and numbers. 
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1.4 Organization of Dissertation: 

Introductory chapter deals with the objective and scope of, the 
dissertation. The chapter concludes with the organization of the project. 

Chapter 2 deals with the review of the work done on the subject. It 

contains the overview of the Artificial Neural Network . It also shows the 

relationship with a biological neural network 

Chapter 3 explains famous neural network topology called a multi-

layer perceptron, to be trained with the Feed-forward Back-Propagation 

Network (BPN) algorithm. Finally it gives the existing solution to character 

recognition. 

In chapter 4 design and implementation aspects for the model is 

explained. 

In chapter 5 results and discussion are given. 

Finally, the dissertation has been concluded with the chapter 6 which brings 

out the recognition of various alphanumeric patterns. 
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Chapter 2 

LITERATURE SURVEY OF 
ARTIFICIAL NEURAL NETWORK 

2.1 Artificial Neural Network o 

An Artificial Neural Network (ANN) is an information . processing 

paradigmthat is inspired by the way biological nervous systems, such as the 

brain, process information. The key element of this paradigm is the novel 

structure of the information processing system. It is composed of a large 

number of highly interconnected processing elements (neurons) working in 

unison to solve specific problems. ANNs, like people, learn by example. An 

ANN is configured for a specific application, such as pattern recognition or 

data classification, through a learning process. Learning in biological systems 

involves adjustments to the synaptic connections that exist between the 

neurons. This is true of ANNs as well. Neural networks, with their remarkable 

ability to derive meaning from complicated or imprecise data, can be used to 

extract patterns and detect trends that are too complex to be noticed by either 

humans or other computer techniques. A trained neural network can be 

thought of as an "expert" in the category of information it has been given to 

analyze. This expert can then be used to provide projections given new 

situations of interest. Other advantages include: 

1. Adaptive learning: An ability to learn how to do tasks based on the data 

given for 

training or initial experience. 

2. Self-Organization: An ANN can create its own organization or 

representation of the 

information it receives during learning time. 

3. Real Time Operation: ANN computations may be carried out in parallel, 

and special 

hardware devices are being designed and manufactured which take 

advantage of this capability. 
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4. Fault Tolerance via Redundant Information Coding: Partial destruction 

of a network leads to the corresponding degradation of performance. 

However, some network capabilities may be retained even with major 

network damage. Neural networks take a different approach to problem 

solving than that of conventional computers. Conventional computers use 

an algorithmic approach i.e. the computer follows a set of instructions in 

order to solve a problem. Unless the specific steps that the computer needs 

to follow are known the computer cannot solve the problem. That restricts 

the problem solving capability of conventional computers to problems that 

we already understand and know how to solve. But computers would be so 

much more useful if they could do things that we don"t exactly know how 

to do. 

Neural networks process information in a similar way the human brain does. 

The network is composed of a large number of highly interconnected 

processing elements (neurons) working in parallel to solve a specific problem. 

Neural networks learn by example. They cannot be programmed to perform a 

specific task. The examples must be selected carefully otherwise useful time 

is wasted or even worse the network might be functioning incorrectly. The 

disadvantage is that because the network finds out how to solve the problem 

by itself, its operation can be unpredictable. On the other hand, conventional 

computers use a cognitive approach to problem solving; the way the problem 

is to solved must be known and stated in small unambiguous instructions. 

These instructions are then converted to a high level language program and 

then into machine code that the computer can understand. These machines are 

totally predictable; if anything goes wrong is due to a software or hardware 

fault. Neural networks and conventional algorithmic computers are not in 

competition but complement each other. There are tasks are more suited to an 

algorithmic approach like arithmetic operations and tasks that are more suited.  
to neural networks. Even more, a large number of tasks, require systems that 

use a combination of the two approaches (normally a conventional computer is 

used to supervise the neural network) in order to perform at maximum 

efficiency. [ 14] 
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2.2 Historical Background: 

Neural network simulations appear to be a recent development. 

However, this field was established before the advent of computers, and has 

survived at least one major setback and several eras. Many important advances 

have been boosted by the use of inexpensive computer emulation. Following 

an initial period of enthusiasm, the field survived a period of frustration and 

disrepute. During this period when funding and professional support was 

minimal, important advances were made by relatively few researchers. These 

pioneers were able to develop convincing technology which surpassed the 

limitations identified by Minsky and Papert. Minsky and Papert, published a 

book (in 1969) in which they summed up a general feeling of frustration 

(against neural networks) among Researchers, and was thus accepted by most 

without further analysis. Currently, the neural network field enjoys a 

resurgence of interest and a corresponding increase in funding. The first 

artificial neuron was produced in 1943 by the neurophysiologist Warren 

McCulloch and the logician Walter Pits. But the technology available at that 

time did not allow them to do too much.[ 14] 

2.3 The Biological Model 

How the Human Brain Learns? 

Much is still unknown about how the brain trains itself to process 

information, so theories abound. In the human brain, a typical neuron collects 

signals from others through a host of fine structures called dendrites. The 

neuron sends out spikes of electrical activity through a long, thin stand known 

as an axon, which splits into thousands of branches. At the end of each branch, 

a structure called a synapse converts the activity from the axon into electrical 

effects that inhibit or excite activity from the axon into electrical effects that 

inhibit or excite activity in the connected neurons. When a neuron receives 

excitatory input that is sufficiently large compared with its inhibitory input, it 

sends a spike of electrical activity down its axon. Learning occurs by changing 
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the effectiveness of the synapses so that the influence of one neuron on 
another changes. [ 12] 

FIG 2.1 : Human Neuron 

From Human Neurons to Artificial Neurons: 

Sc. 11c.WIadc of an 
Xi 	W1 
	 Artificial Neuron 

X2 Wz 

net 
XN WN 	 Activation Output 

Inputs 4VcigIits 
	 tiuiction 

Bias 

FIG 2.2 The Neuron Model 

Just as there is a basic biological neuron, there is basic artificial 

neuron. Each neuron has a certain number of inputs, each of which have a 

weight assigned to them. These are denoted by input signals xl and set of real 

valued weights wi  in the figure. The weights simply are an indication of how 

'important' the incoming signal for that input is. The net value of the neuron is 

then calculated - the net is simply the weighted sum, the sum of all the inputs 

multiplied by their specific weight. This is also denoted by the activation 

level, Exiwi. Each neuron has its own unique threshold value, and it the net is 

greater than the threshold, the neuron fires (or outputs a 1), otherwise it stays 

quiet (outputs a 0). The threshold function f is used to compute the value of 

the output. The output is then fed into all the neurons it is connected to.[ 13 ] 
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In calculating the output of the neuron, the activation function may be 

in the form of a threshold function, in which the output of the neuron is +1 if a 

threshold level is reached and 0 otherwise. Squashing functions limit the linear 

output between a maximum and minimum value. These linear functions, 

however, do not take advantage of multi-layer networks . Hyperbolic tangents 

and the sigmoid functions are similar to real neural responses; however, the 

hyperbolic tangent is unbounded and hard to implement in hardware. In this 

project, the Sigmoid function is used because of its ability to produce 

continuous non-linear functions, which can be implemented in hardware in 

future research areas.[ 12] 

Sigmoid function is an exponential function which has as a most 

important characteristic the fact that, even if x assumes values next to the 

infinitely big or little, f(x) will assume a value between 0 and 1. The learning 

algorithm will adjust the weights of the connections between units so that the 

function translates values of x to a binary value, typically: f( x) > 0.9 : f(x) = 1 

, f(x) < 0.1 : f(x) = 0. 

Figure shows some commonly used activation functions. 

F(x) 

x 

Linear function 

F(x). 

x 

Squashing function Linear Threshold 

Hyperbolic Tangent 	Sigraoid Function 
FIG 2.3 ; various activation functions. 

An alternative used in networks for the sigmoid function is the 

Threshold function t. The output assumes just two values: -1 or 1. Some 

threshold functions have a binary output: 0 or 1. This function is less complex 

to compute when a network is implemented on a digital computer than the 
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sigmoid function, but it is not useful in a backpropagation algorithm. An 

example of a network that uses a threshold function is the Boltzmann machine. 
An artificial neuron is a,  device with many inputs and one output. The 

neuron has two modes of operation; the training mode and the using mode. In 

the training mode, the neuron can be trained to fire (or not), for particular 

input patterns. In the using mode, when a taught input pattern is detected at the 

input, its associated output becomes the current output. If the input pattern 

does not belong in the taught list of input patterns, the firing rule is used to 
determine whether to fire or not.[ 12] 

2.4 Firing Rules : 

The firing rule is an important concept in neural networks and accounts 

for their high flexibility. A firing rule determines how one calculates whether 

a neuron should fire for any input pattern. It relates to all the input patterns, 

not only the ones on which the node was trained. A simple firing rule can be 

implemented by using Hamming distance technique.The rule goes as follows: 

Take a collection of training patterns for a node, some of which cause it to fire 

(the 1-taught set of patterns) and others which prevent it from doing so (the 0-

taught set). Then the patterns not in the collection cause the node to fire if, on 

comparison, they have more input elements in common with the 'nearest' 

pattern in the 1-taught set than with the nearest' pattern in the 0-taught set. If 

there is a tie, then the pattern remains in the undefined state. 

For example, a 3-input neuron is taught to output 1 when the input (X1,X2 and 

X3) is 111 or 101 and to output 0 when the input is 000 or 001. Then, before 

applying the firing rule, the truth table is; 

X1:  0 0 0 0 1 1 1 1 

X2:  0 0 1 1 0 0 1 1 

X3:  0 1 0 1 0 1 0 1 
OUT: 0 0 0/1 0/1 0/1 1 0/1 1 

TABLE 2.1 : Truth Table before applying firing rule 
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As an example of the way the firing rule is applied, take the pattern 010. It 

differs from 000 in 1 element, from 001 in 2 elements, from 101 in 3 elements 

and from 111 in 2 elements. Therefore, the `nearest' pattern is 000 which 

belongs in the 0-taught set. Thus the firing rule requires -that the neuron 

should not fire when the input is 001. On the other hand, 011 is equally distant 

from two taught patterns that have different outputs and thus the output stays 

undefined (0/1). 

By applying the firing in every column the following truth table is obtained; 

Xl: 0 0 0 0 1 1 1 1 

- X2: 0 0 1 1 0 0 1 1 

X3: 0 1 0 1 0 1 0 1 

OUT: 0 0 0 0/1 0/1 1 1 1 

TABLE 2.2 : Truth Table after applying firing rule 

The difference between the two truth tables is called the generalization of the 

neuron. Therefore the firing rule gives the neuron a sense of similarity and 

enables it to respond 

'sensibly' to patterns not seen during training. The single artificial neurons can 

now be interconnected in many different ways leading to a variety of neural 

networks with different architectures, learning rules and abilities. [4] 

The most important ones are : 

• Feedforward networks, 

• Adaptive Resonance Theory (ART), 

• Hopfield nets, 

• Kohonen's self-organizing feature maps, 

• Radial Basis Functions (RBF), 

• Boltzmann-machines, 
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2.5 Single and Multi-layer Perceptrons : 

A perceptron is a simple neural network model introduced by Frank 

RosenBlatt in 1958, and is perhaps the most widely used ' term in neural 

networks. A single layer perceptron is used to classify an input vector into 

several classes. In a single layer perceptron, the input values and activation 

level of the perceptron are either —1 or 1; weights are real-valued (between 0 

and 1). The activation level is given by summing the weighted input values 

Exiw;. Perceptrons use a simple hard-limiting threshold function, where 

activation above a threshold results in an output value of 1, and —1 otherwise. 

Perceptron output = sign(Exiw;) 

= 1 if F'xiWw >= t 

= -1 if Exiwi <= t 

The perceptron uses a simple form of supervised learning. The way a 

perceptron learns to distinguish patterns is through modifying its weights to 

reduce error. The adjustment for the weight Aw; on the ith  component of the 

input vector is given by: 

Aw;  = cx; S 

where c = learning rate 

d = desired output 

S = (desired output) — (actual output) = d — sign(Exiwi) 

Single layer perceptrons can only solve problems where the solutions can be 

divided by a line (or hyperplane). The classes to be distinguished should be 

linearly separable. Therefore, a single layer perceptron cannot express non-
linear decisions like the XOR problem. 

Single-layer Perceptron 
Outputs- 

Multi-layer Perceptron 
Outputs 

 

 

Output layer 

Hidden layers 

Input layer 
Inputs 

nputs 
FIG 2.4 : Single-layer Perceptron and Multi-layer Perceptron 
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Multi-layer perceptrons are feed-forward nets with one or more layers of 

nodes between the input and output nodes. These additional layers contain 

hidden units or nodes that are not directly connected to both the inputs and 

outputs. Multi-layer perceptrons overcome many of the limitations of the 

single layer perceptrons. The capabilities of multi-layer perceptrons stem 

from the nonlinearities used within nodes. In multi-layer networks, when 

adjusting a weight anywhere in the network, one has to be able to tell what 

effect this will have on the overall effect of the network. To do this, one has 

to look at the derivative of the error function with respect to that weight. The 

hard-limiter function for the single-layer perceptron is non-continuous, thus 

non-differentiable. The most popular continuous activation function used 

within backpropagation nets is the sigmoid function or the logistic function 

given by the equation: 

f(net) = 1 / (1 + e *1et), where net = Exiwi  

As X (called the squashing parameter) gets large, the sigmoid function 

approaches a linear threshold function over {0, 1 }; as it gets closer to 1, it 

approaches a straight line. This activation function is non-linear, scaled and 

differentiable. 



Chapter 3 

BACKPROPAGATION NEURAL NETWORK 

3.1 Introduction To Backpropagation Neural Network: 

The Backpropagation algorithm is perhaps the most widely used 

supervised training algorithm for multilayered feedforward networks. The 

backpropagation training algorithm is an iterative gradient algorithm designed 

to minimize the mean square error between the actual output of a multilayer 

feedforward perceptron and the desired output. 	In the backpropagation 

algorithm, a feedforward phase is first done on an input pattern to calculate the 

net error. Then, the algorithm uses this computed output error to change the 

weight values in the backward direction. The error is slowly propagated 

backwards through the hidden layers - and hence its name. 

The actual derivations for the different formulas used in the 

backpropagation algorithm come from the generalized delta rule. The delta 

rule is based on the idea of the error surface. The error surface represents 

cumulative error over a data set as a function of the network weights. Each 

-possible network weight configuration is represented by a point on this, error 

surface. By taking the partial derivative of the network error with respect to 

each weight we will learn a little about the direction the error of the network is 

moving. In fact, if we take the negative of this derivative (i.e. the rate change 

of the error as the value of the weight increases) and then proceed to add it to 

the weight, the error will decrease until it reaches a local minimum. The 

taking of these partial derivatives and then applying them to each of the 

weights, takes place starting from the output layer to 

hidden layer weights, then, from the hidden layer to input layer weights. A 

very simple way is to organize the neurons in several layers as shown in 

Figure 3.1 . 
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Neuron 

Weights 

VA 

Output layer 

Hidden layer 

Input layer 

X2 	X3 	X4 
	

Input patterns 

FIG 3.1 : Fully connected feedforward network with three layers 

This architecture is called a feedforward net, since neurons of one layer are 

only connected with neurons of the succeeding layer, without any recurrent 

connections. Normally these nets consist of one input layer, one or two hidden 

layers (called hidden, since they don't have a direct connection to the outside 

world) and one output layer. With such a net, input data are mapped from the 

n dimensional input space to an m-dimensional output space. This net now has 

to learn to produce a certain desired output for each input pattern presented at 

the input layer. 

The architecture shown in the fig below is called as the backpropagation net. 

—forward pas§4 
4- backward pass — 

cozuiectior s 
ututs -} 

p .  
input hidden output 
layer 	la3rer 	1..3r 

FIG 3.2 : Backpropagation Network 
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3.2 Backpropagation Training Algorithm : 

The following description tends to assume a pattern classification 

problem, since that is where the BP network has its greatest strength. 

However, you can use back-propagation for many other problems as well, 

including compression, prediction and digital signal processing. When you 

present your network with data and find that the output is not as desired, what 

will you do? The answer is , we will modify some connection weights. Since 

the network weights are initially random, it is likely that the initial output 

value will be very far from the desired output. We wish to improve the 

behavior of the network. Which connection weights must be modified, and by 

how much, to achieve this objective? To put it another way, how do you know 

which connection is responsible for the greatest contribution to the error in the 

output? Clearly, we must use an algorithm which efficiently modifies the 

different connection weights to minimize the errors at the output. This is a 

common problem in engineering; it is known as optimization. The famous 

LMS algorithm was developed to solve a similar problem, however the neural 

network is a more generic system and requires a more complex algorithm to 

adjust the many network parameters. One algorithm which has hugely 

contributed to neural network fame is the back-propagation algorithm. The 

principal advantages of back-propagation are simplicity and reasonable speed . 

Back-propagation is well suited to pattern recognition problems. The training 

algorithm for a BPN consists of the following steps: 

• Selection and Preparation of Training Data 

• Modification of the neuron connection weights 

• Repetition 

• Running 

• Hazards 
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3.2.1 Selection and Preparation of Training Data 

A neural network is useless if it only sees one example of a matching 
input/output pair. It cannot infer the characteristics of the input data for which 

you are looking for from only one example; rather, many examples are 

required. This is analogous to a child learning the difference between (say) 

different types of animals - the child will need to see several examples of each 

to be able to classify an arbitrary animal. If they are to successfully classify 

birds (as distinct from fish, reptiles etc.) they will need to see examples of 

sparrows, ducks, pelicans and others so that he or she can work out the 

common characteristics which distinguish a bird from other animals (such as 

feathers, beaks and so forth). It is also unlikely that a child would remember 

these differences after seeing them only once - many repetitions may be 

required until the information 'sinks in'. It is the same with neural networks. 

The best training procedure is to compile a wide range of examples (for more 

complex problems, more examples are required) which exhibit all the different 

characteristics you are interested in. It is important to select examples which 

do not have major dominant features which are of no interest to you, but are 

common to your input data anyway. One famous example is of the US Army 

'Artificial Intelligence' tank classifier. It was shown examples of Soviet tanks 

from many different distances and angles on a bright sunny day, and examples 

of US tanks on a cloudy day. Needless to. say it was great at classifying 

weather, but not so good at picking out enemy tanks. If possible, prior to 

training, add some noise or other randomness to your example (such as a 

random scaling factor). This helps to account for noise and natural variability 

in real data, and tends to produce a more reliable network. If you are using a 

standard unscaled sigmoid node transfer function, please note that the desired 

output must never be set to exactly 0 or 1! The reason is simple: whatever the 

inputs, the outputs of the nodes in the hidden layer are restricted to between 0 

and 1 (these values are the asymptotes of the function. To approach these 

values would require enormous weights and/or input values, and most 

importantly, they cannot be exceeded. By contrast, setting a desired output of 

(say) 0.9 allows the network to approach and ultimately reach this value from 

either side, or indeed to overshoot. This allows the network to converge 
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relatively quickly. It is unlikely to ever converge if the desired outputs are set 
too high or too low. Once again, it cannot be overemphasized: a neural 
network is only as good as the training data! Poor training data inevitably 
leads to an unreliable and unpredictable network. Having selected an example, 
we then present it to the network and generate an output. 

3.2.2 Modification of the neuron connection weights : 

Consider the example in Figure designating (I1,I2), (Hl,H2), and (01, 02) as 
the inputs, hidden layer outputs and output-layer outputs respectively, 

wnii 	 wnii 

FIG 3.3 : example (2,2,2) BPN 
the outputs of Hidden Node 1 and 2 are given by 

2 
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Where 	 1 

S`. (x) = 	-  ---------------------- 3 1+e 
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Using 4 & 5 
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2 	2 
02 = sym 	 y. i

1 
m=1 	I=1 

° 	---6 Im W
. 

~~ 

Wh W o 
m m 2 	--------- 7 

Now we can calculate the output given a particular set of inputs. This allows 

us to calculate the Mean Squared Error (MSE) between the actual output and 

the desired output for the given input in this training example. This is simply 
the average of the squares of the difference between what we want and what 

we got. Thus, our error function can be formally written as 
2 

	

E 	D 
n=1 

or, using (6) and (7), 
2 	 2 	2  

E _ 	D - sgin 	S9 ` 	. I wIm w ° 
 
 

	

n=1 	 m=1 	I =1 

where Dn is the kth desired output. 

For example in the following example, suppose we have in the 

output 0.75 and 0.05 and the desired outputs 0.9 and 0.1. 

The (true) MSE is now, 

	

.2 	- 	 2 
((0.9-0.75)) +(0.1 - 0.05) / 2 

which is equal to 0.0125 Clearly, for any given training example, this value is 

a function only of the weights of the network. 

The gradient is fairly straightforward to calculate, due to the convenient fact 

that the derivative of the sigmoid function can be expressed in terms of the 

function itself: 
-x 

d  1  -e 

dx 1 +e-x 
_(1 - sg m (x))S nl (x) ------------ 10 
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The gradient is defined as the vector of partial derivatives of the multivariate 

function with respect to each. of variable. Because the error is a function of the 
network outputs, we first need to calculate a set of partial derivatives for each 
output node with respect to each associated connection weight. This turns out 
to be trivial, since all other variables but the one of interest are held constant 
when we calculate the partial derivative. Thus, only one linear term is left in 
the calculation of the partial derivative of the output, and leaving the 

coefficient - which is just the corresponding input! So, we can write 
0 	 2 

kn k 	m 
	 11 

Q-  n 	 mn k=1 

Now, the gradient of the error function can be calculated .Note 
2 

S ° _ 	W o 
k=1 mn 

rDE  _ D 2 
	2 

Wmn 	mn n=1 

=2 (D n - O ) $o  sgm S , o 
mn 

2 (D n  - O n ) I - sgm(s°)) sgm(s°)) H m  - ------

The new values for the network weights are calculated by multiplying the 

negative gradient with a step size parameter (called the learning rate) and 

adding the resultant vector to the vector of network weights attached to the 

current layer. This change does not take place, however, until after the middle-

layer weights are updated as well, since this would corrupt the weight-update 
procedure for the middle layer. Clearly, the error at the output will be affected 

by the weights at the middle layer, too. However, the relationship is more 
complicated. A new gradient is derived, but this time the output weights are 

treated as constants rather than the hidden-layer weights. Now, the actual 

output is a function of the weights attached to the middle layer only (and in a 
generic network there are LM of those, for L input nodes and M middle-layer 

nodes). 

12 
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Fortunately, it is still a relatively simple expression. 

2 

Dr E  = ((1 - Sgm(S h  )) Sgm(S h)) 	n 
 

W0 	I I 	----13 

Ir 	
o=1 

The middle weights are updated using the same procedure as for the output 

layer, and the output layer weights are updated as well. This is a complete 

training cycle for one piece of training data. It should be noted that the input 

layer is really only a buffer to hold the input vector. Therefore, it has no 

weights which need to be modified. However, in a more generic network, one 

may have.  more than one, hidden layer. Again, the update procedure is quite 

similar. Once the modifications have been calculated, all weights (hidden and 

output) may be updated. 

Please note : The above description assumes a (2, 2, 2) network. 

The only difference in the mathematics resulting from a larger network are 

longer summations. All of the principles are the same. The training process is 

analogous to the biological process of learning - the strength of individual 

connections between the neurons increases or decreases as we learn. 

3.2.3 Repetition : 

Since we have only moved a small step towards the desired state of a 

minimized error, the above procedure must be repeated many times until the 

MSE drops below a specified value. When this happens, the network is 

performing satisfactorily, and this training session for this particular example 

has been completed. Once this occurs, randomly select another example, and 

repeat the procedure. Continue until you have used all of your examples many 

times ('many' may be anywhere between twenty or less and ten thousand or 

more, depending on the particular application, complexity of data and other 

parameters). 
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3.2.4 Running: 

Finally, the network should be ready for testing. While it is possible to 

test it with the data you have used for training, this isn't really telling you very 

much. Instead, get some real data which the network has never seen and 

present it at the input. Hopefully it should correctly classify, compress, or 

otherwise process (however you trained it!) the data in a satisfactory way. 

3.2.5 Hazards : 

A consequence of the back-propagation algorithm is that there are 

situations where it can get 'stuck'. Think of it as a marble dropped onto a steep 

road full of potholes. The potholes are 'local minima' - they can trap the 

algorithm and prevent it from descending further. In the event that this 

happens, you can resize the network (add extra hidden-layer nodes or even 

remove some) or try a different starting point (i.e. randomize the network 

again). Some enhancements to the BP algorithm have been developed to get 

around this - for example one approach adds a momentum term, which 

essentially makes the marble heavier - so it can escape from small potholes. 

Other approaches may use alternatives to the Mean Squared Error as a 

measure of how well the network is performing. [9] 

3.3 Existing System : 

Before the age of the computer, there were many mathematical 

problems that humans could not easily solve, or more precisely (and this 

distinction is extremely important) humans were too slow in solving. 

Computers enabled these often simple but slow and tedious tasks to be 

performed quickly and accurately. The first problems solved with computers 

were calculating equations to resolve important physical problems, and later 

displaying a nice GUI, making word processors and so on. However, there are 

many common tasks which are trivial for hum 	 'bout even 

A- 
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any conscious effort) yet which are extremely difficult to formulate in a way 
that a computer may easily solve. 

These include: 

• Signal processing such as (pattern recognition, voice, recognition, image 

processing etc.) 

• Compression 

• Data reconstruction (e.g. classification where part of the data is missing) 

• Data mining 

• Data simplification 

3.3.1 Template Matching: 

Earlier techniques for pattern recognition's, include the technique of 

Template Matching. In this technique the patterns are just matched together as 

a human compare two structures with their exact features & characteristics 

matching. Template Matching 

are oversensitive to shift in position and distortions in shape of the stimulus 

patterns, and it is necessary to normalize the position and the shape of stimulus 

pattern beforehand. A good method for normalization have not been 

developed yet. Therefor, the finding of an algorithm for character recognition 

which can cope with shift in position and distortion has long been desired. In 

this project, we implement an algorithm which gives an 

important solution to this problem. The algorithm used here can be realized 

with a multilayered network consisting of neuron like cells. It is organized by 

supervised learning and acquires the ability for correct character recognition. 

So, naturally, scientists, engineers and mathematicians tried to make an 
intellectual abstraction which would enable a computer work in a similar way 

to that in which the human brain works — a neural. network. [9] 
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Chapter 4 

DESIGN AND IMPLEMENTATION 

Word Recognition using Artificial Neural Networks, implemented the 

back-propagation neural network for developing word recognition software. 

The word recognition software is efficiently recognizes all alphanumeric 

characters which the user writes on the screen. The user has to train the 

network . Design flowchart is given in the section 4.1 

Class Choice Frame which takes the input from the user, User 

selection and File name, when the user select the Default Character Set it load 

s the default file .which is the number file, selection of Classify Line Of Text 

invoke the Input Document Frame ,which takes the input from the user that is 

line of text. and given the extracted patterns 

as output and finally the option for creating the or load the patterns is given , 

which invoke the class Modifiable Character Frame. Which create the new 

pattern file *,ptrn 

when the user clicks on he train button the Training Frame class is invoked it 

either create or load the weight file as per the user selection, and creates the 

training file *, ntwk. when the user select the classify option Classification 

frame class is invoked,, which takes the input Training File , Parameter File 

.and Test pattern . and gives the output whether the pattern is classified or not. 
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4.1 Design Flowchart 	
Start 

Class : Choice Frame 
1 Default Character Set 
2 Classify Line Of Text 
3 User Created Character Set. 

Input: 
User selection and File name. 

Class: 
Default Character Frame. 

Input 
Files: 

Default .ptrn 

Class: 
Modifiable Character Frame. 
Input : 
User selection 

1 Creating new character 
2 Extending existing 

character 
Output: 
Character file 

--*.ptrn 

Class: 
Input Document Frame. 

Input: 
Line of text. 

Output 
Extracted character 

Class: 
Training Frame. 

Input: 
1 Creating new weight file 
2 Load existing weight file 

Output 
Training File 
---*. ntwk 

Class 
Classification frame: 

Input: 
1 Training File 
2 Parameter File 
3 Test pattern 

Output: 
Classified or Not Classified 

Stop 



4.2 Implementation Strategy: 

To create an ANN through the means of software, object oriented 

programming is required because a neuron resembles several components,and 

OOP is the best choice due to its capability of creating objects that contains 

different variables and methods. The first step is to create an object that 

simulates the neuron. The object would contain several functions and variables 

including weight (a random number generated when the neuron is created, 

similar to the synapse in BNN), a non-linear function (to determine whether to 

activate the neuron or not), a method that adds up all the inputs, and a 

bias/offset value (optional) for the characterization of the neuron. 

After the object is created, the next step is to create a network. A 

typical ANN has three layers: input layer, hidden layer and output layer. The 

input layer is the only layer that receives signals outside the network. The 

signals are then sent to the hidden layer, which contains interconnected 

neurons for pattern recognition and relevant information interpretation. 

Afterwards, the signals are directed to the final layer for outputs. Usually a 

more sophisticated neural network would contain several hidden layers and 

feedback loops to make the network more efficient and to interpret the data 

more accurately. Using figure 3.1 as a model, the network is like a big matrix. 

However, it would be easier if the three layers were separated into three small 

matrixes. Each small matrix will contain neurons and when signals are 

inputted, the neurons will send inputs through the non-linear function to the 

next neuron. Afterward, the weight of the neuron is increased or decreased. 
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4.3 Algorithm: Backpropagation 

Given 	: A set of input-output vector pairs. 
Compute : A set of weights for a three-layer network that maps inputs 

onto Corresponding outputs. 

1. Let A be the number of units in the input layer, as determined by the length 

of the training input vectors. Let C be the number of units in the output layer. 

Now choose B, the number of units in the hidden layer. The input and hidden 

layers each have an extra unit used for thresholding; therefore, the units in 

these layers will sometimes be indexed by the ranges (0......,A and (0......,B). 
We denote the activation levels of the units in the 

input layer by xj , in the hidden layer by hj , and in the output layer by'of 

Weights connecting the input layer to the hidden layer are denoted by wlij, 

where the subscript i indexes the input units and j indexes the hidden units. 

Likewise, weights connecting the hidden layer to the output layer are denoted 

by w2ij, with i indexing to hidden units and j indexing output units. 

2. Initialize the weights in the network. Each should be set randomly to a 

number between -0.1 and 0.1. 

wlij = random(-0. 1,0.1) for all i =0......A, j = 1.......B 

w2ij = random(-O.1,0.1) for all i =0......B, j = 1.......C 
3. Initialize the activation of the network. The values of these thresholding 
units should never change. 

x0=1.0 

hO 1.0 
4. Choose an input-output pair. Suppose the input vector is xi and the target 

output vector is yi . Assign activation levels to the input units. 

5. Propagate the activation's from the units in the input layer to the units in the 

Iia = 	1 	 ~ 
1+e—ZB 0 w 17h . 	

fOJ all .j 1, ... ,C 

hidden layer using the activation functions 

Note that i ranges from 0 to A. wl Oj is the thresholding weight for hidden unit 

j (its propensity to fire irrespective of it inputs). 

xO is always 1.0. 
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6. Propagates the activation's from the units in the hidden layer to the units in 

the output layer Again, the thresholding weight w20j for output unit j plays a 

role in the weighted summation, hO is always 1.0. 

1171 — 1 
1+e— ,B ,aw2i h 	for all j = 1,..... ,C 

i=Q J 

7. Compute the errors of the units in the output layer denoted ä2j. Error are 

based on the network's actual output (oj) and the target output (yi). 

,for all j - I .... B 

8. Compute the errors in the units in the hidden layer, denoted 

c 
Al = hr (1— h1) 52} xw2 j, afc r cell 	, ...._,13 

9. Adjust the weights between the hidden layer and the output layer. The 

learning rate denoted r; its functions is in the same as in perception learning. 

A reasonable value of c is 0.35. ///is denoted by 

11 
Aw2U =ii.S21 hi for all i = 0,.....r , j I,.....0 

10. Adjust the weights between the input layer and the hidden layer. 

Aw 1 =i .c51J..h1 fog•all 	i 	Q,,...., ,~j 	1,......B 

11. Go to step 4 and repeat. When all the inputs-output pairs have been 

presented to the network, one epoch has been completed. Repeat steps 4 to 10 

for as many epochs as desired. [2] 
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Chapter 5 

RESULTS AND DISCUSSION 

User Interface: 

1. Choice frame. 

I -tag 

FIG: 5.1: Screen displaying Opening Menu 
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2. Default Patterns 

FIG 5.2 : Default set of patterns 

3. Mode select 

MODE SELECT 

NEW 
TRAIN 

LOAD 
CLASSIFY 

defaults 

FIG 5.3 : The mode select frame 
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4. Training frame 

Train Frame 	 A M 

Start training 	trAunmq epochs: 	0 

stoptraitrinp 	-urn squared error; 

Reset network 	input nerrr, 	 26 

Resat inputs 	.~ . 	,..,.•n' ,,, - 	20 

FIG 5.4: The training frame. 

5. Classify Frame. 

Mgclassi(y Frame 	 AC]©1 

clear 

blur 

i 	sharpen 

FIG 5.5 : Classification Frame 
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6 Output frame: 

r 'p' 

VA - - - 
FIG 5.6 : The Output Frame 

7 Line Classify: 

ALUM 	 JJ 

px1 

FIG 5.7 : Line Classification frame 
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8 Classified Patterns: 

II"J  

FIG 5.8 : The Classified Pattern 

9 Custom patterns: 

11! 
(11-AK 	((1-AK 	(1l-AR 	i_ I FAk 	(:1 I-Al 	(:1 FAH 	11FAR 	(1 I-AK 	(J1-AR 

® ©o©©©o j rI 
CLEAR 	CLEAR 	CLEAR 	CLEAR 	CLEAR 	CLEAR 	CLEAR 	CLEAR 	CLEAR 

®©©® 

(1FAk 	U FAH 	(:IFAK 	(:I FAH 	(:l FAN 	(1 I-Am 	(1F-AK 	(.1 FAK 

AIM) 	 PACK 	 wx1 

FIG 5.9 : Default set of patterns 
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A program is written in Java to perform optical character recognition 

using backpropagation neural networks. The program is working in the 

following ways. 

When the program starts, a main CHOICE screen is displayed. Where 

the user can load the default letter file ,classify the line and can load or create 

new pattern file. When the user clicks on DEFAULT button the next default 

frame is displayed. click on NEXT button to get the MODE frame as shown 

above. Where the options like Train Classify, New and Load are available. 

When user clicks on train button training frame is displayed on the screen. To 

train the network, click the "Start Training" button. As the training proceeds, 

the number of learning cycles increases and the sum squared error decreases. 

After a while, the sum squared error decreases to a low value (of <= 0.01).At 

this point, press the "Stop Training" button. The network could be tested with 

any user drawn symbol by drawing a symbol on the user input icon panel with 

a mouse. There are 12 X 16 pixels in the icon panel. The left mouse button 

will draw a pixel To see what the network thinks the user drew a picture of, 

press the "test" button at the left of the icon panel, and see which of the lights 

glows red. The "CLEAR" button can be used to clear the current user drawn 

symbol to draw a new one. The "RESET" button resets the neural network, so 

that training can be started again. To get the classification frame click on the 

CLASSIFY LINE button on the CHOICE frame. on this frame the user can 

test any word by drawing the symbols on the user input icon panel with a 

mouse. To see the output click on the next button. The user has given the 

option to create or to load the pattern files with the help of USE FILE button. 

Currently, the program has been tested with two sets of training 

patterns — letters and numbers. The target patterns and classified patterns are 

shown in the next section. 



Trained Patterns And Classified Patterns : 

Trained Patterns : 

Set 1 

l u L 	r 	E FE~ fd 	1 EFL 1 r 	
• • t f (~S  F  c (  • E E~ E 	F _Ff Fr EE•2 EE ~E 

rb  

.EaF 	E ~• ~fE€F' 	E~~F' 

Set 2 

U II _ _ 

_ E 

Classified Patterns : 

Set 1 

©®o 
Set 2 
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CONCLUSION 

The BPN network designed in this project has the ability to recognize 
stimulus patterns without affecting by shift in position not by a small 
distortion in shape of input pattern. It also has a function of organization, 
which processes by means of "Learning with a Teacher" (Supervised 

Learning). If sets of input patterns are repeatedly presented to it, it gradually 

acquires the ability to recognize these patterns. The performance of the 

network has been demonstrated by simulating on a computer. 
The design of information processing proposed in this project is of 

great me not only as an inference upon the mechanism of brain but also to the 

field of Engineering. One of the largest and longstanding difficulty is in 
designing a pattern recognizing machine has been the problem how to cope 

with the shift in position and the distortion in the shape of the input patterns. 

The network designed in this project gives a partial solution to this difficulty. 
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APPENDIX A 

USER MANUAL 

A.1 For Choice Frame 

Buttons: 

Default button is used to load the default letter file 

Classify Line : to classify the line of character. 

Use File : Activate the NEW and LOAD buttons. 

New : To create new pattern file 

Load : To load stored pattern fl le. 

Go Button : To start the user defined task 

A.2 For Default Pattern Frame. 

This is the default letter file . 

A.3 For Mode Select Frame 

Buttons 

Train : to get the training frame. 

Classify : To get the classification frame. 

New : To get the new file 

FAQ 
Load : To load the already created pattern file. 
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A.4 For Training Frame 

Buttons : 

Start Training : To start training. 

Stop Training: To stop training. 

m   Reset network 
I 

 

Reset Network Reset" button resets the neural network, so that 
training can be started again. 

Reset Input Reset" button resets the neural network, so that 
training can be started again. 

Text Fields : 

• Training epochs 	: refer Appendix C 

• Sum Squared Error : refer Appendix C 

• Input Neuron : the number of neurons in the input layer. This field 
is set to 26 

• Hidden Neuron : the number of neurons in the hidden layer, set to 
20. 

A.5 For Classify Frame: 

Buttons 

Clear : used to clear the current user drawn symbol to draw a 
new one 

Blur 

Sharpen to sharpen the pattern 

Test To see what the network thinks the user drew a picture of, 
press the "test" button 



A.6 For Line Classify Frame 

Button : 

Next : to get the classification frame where the classified patterns 
are shown. 

A.7 For Classified Patterns Frame • 

Shows the classified pattern inputted by the user 

A.8 For Custom Frame 

Buttons: 

UD 	I 

Add to add the patterns 

K.:  
Pack to pack the patterns. 

NEXT  

Next :when the user clicks on next mode select frame is 
displayed for further operation., 
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APPENDIX B 

• bias - A neuron parameter that is summed with the neuron's weighted 
inputs and passed through the neuron's transfer function to generate the 
neuron's output. 

• classification - An association of an input vector with a particular target 
vector. 

• connection - A one-way link between neurons in a network 

• epoch - The presentation of the set of training (input and/or target) vectors 
to a network and the calculation of new weights and biases. Note that 
training vectors can be presented one at a time or all together in a batch 

• error vector - The difference between a network's output vector in 
response to an input vector and an associated target, output vector 
generalization - An attribute of a network whose output.for a new input 
vector tends to be close to outputs for similar input vectors in its training 
set 

• gradient descent - The process of making changes to weights and biases, 
where the changes are proportional to the derivatives of network error with 
respect to those weights and biases. This is done to minimize network 
error. 

• learning - The process by which weights and biases are adjusted to 
achieve some desired network behavior. 

• learning rate - A training parameter that controls the size of weight and 
bias changes during learning. 

• mean square error function - The performance function that calculates 
the average squared -error between the network outputs a and the target 
outputs t. 

• momentum - A technique often used to make it less likely for a 
backpropagation networks to get caught in a shallow minima 

• squashing function - A monotonic increasing function that takes input 
values between 

- infinity and + infinity and returns values in a finite interval. 



• weight matrix - A matrix containing connection strengths from a layer's 
inputs to its neurons. The element wi,~ of a weight matrix W refers to the 
connection strength from inputj to neuron i. 

• local minimum - The minimum of a function over a limited range of input 
values. A local minimum may not be the global minimum. 

• log-sigmoid transfer function - A squashing function of the form shown 
below that maps the input to the interval (0,1). (The toolbox function is 
logsig.) 

• local minimum - The minimum of a function over a limited range of input 
values. A local minimum may not be the global minimum. 

• log-sigmoid transfer function - A squashing function of the form shown 
below that maps the input to the interval (0,1). 

(n) 	1 + e -n 

- jL LlllR,~ 

\II 2'. R 00 - 
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