
WORD RECOGNITION USING NEURAL NETWORK

A DISSERTATION
Submitted in partial fulfilment of the

requirements for the award of the degree

of
MASTER OF TECHNOLOGY

in

INFORMATION TECHNOLOGY

b3,

By
	

\I r ROORY'~~

VAISHALI GOVINDRAO KALE

0A

ER t DC'I
NO! 1). 4

III Roerkee•ERADCI, Noida
C$6/1, "Anusandban Bhawae"

S.ctor 62 Noida-201 307
FEBRUARY, 2003

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation titled

"WORD RECOGNITION USING NEURAL NETWORK", in partial

fulfillment of the requirements for the award of the degree of Master of
Technology in Information Technology, submitted in IIT, Roorkee -

ER&DCI Campus, Noida, is an authentic record of my own work carried out

during the period from August, 2002 to February, 2003 under the guidance of

Mr. M. K. BHATTACHARYA , Senior Project Manager , Electronics

Research and Development Center of India, Noida.

The matter embodied in this dissertation has not been submitted by me for

award of any other degree or diploma

Date: 2(- C , 2

Place: Noida 	 (Vaishali G. Kale)

CERTIFICATE

This is to certify that the above statement made by the candidate is
correct to the best of my knowledge and belief.

Date: 2 6 0 (

Place: Noida

(Mr. M. K. Bhattacharya)

Senior Project Manager

ER&DCI, Noida

(i)

ACKNOWLEDGEMENT

The successful completion of this project " Word Recognition Using Neural

Network", is attributed to the great and indispensable help I have received

from different people of my institute.

I take this oppurtunity to thank Prof. Prem Vratt ,Director, IIT-Roorkee and

Shree.R.K.Verma ,Executive Director, ER&DCI, Noida, who were the back

bones of this M.Tech (IT) course.

Special thanks to Prof.A.K.Awasthi, Dean,PGS&R,IIT-Roorkee, for his kind

coordiantion and cooperation in running this course successfully.

I express my profound gratitude to Prof.R.P.Agrawal ,Course coordinator,

M.Tech(IT) and Mr.V.N.Shukla Director, Special. Applications, ER&DCI,

who contributed a lot to make this M.Tech course a grand success.

My sincere thanks to my project guide Mr.M.K.Bhattacharya, Senior

Project Manager, ER&DCI, for his proper guidance, excellent spirit of

coordination, his constructive criticisms and his help in formulation of this

project.

I extend my thanks to Mr.Munish Kumar and Dr.P.R.Gupta, staff

members, M.Tech(IT),ER&DCI for their proper guidance, help and support.

Above all, my heartfelt thanks to my family and friends,who offered moral

support while suffering from my neglect for the past two years.

(Vaishali G. kale)

CONTENTS

CANDIDATE'S DECLARATION 	 (i)

ACKNOWLEDGEMENT 	
(ii)

ABSTRACT 	 1

1 INTRODUCTION

1.1 Background 3
3

1.2 Objective
4

1.3 Scope 4
1.4 Organization of Dissertation 5

2 LITERATURE SURVEY OF ARTIFICIAL NEURAL NETWORK 7

2.1 Artificial Neural Network

2.2 Historical Background 9

2.3 The Biological Model 9

2.4 Firing rules
12

2.5 Single and Multi-layer Perceptrons 14

3 BACKPROPAGATION NEURAL NETWORK 17

3.1 Introduction To Backpropagation Neural Network 17

3.2 Backpropagation Training Algorithm 19

3.2.1 	Selection and Preparation of Training Data 20

3.2.2 Modification of the neuron connection weights
21

3.2.3 	Repetition
24

•3.2.4 	Running 25
3.2.5 	Hazards 25

3.3 Existing System 25
3.3.1 	Template Matching 26

4 DESIGN AND IMPLEMENTATION 	 27

4.1 Design Flowchart 	 28

4.2 Implementation Strategy 	 29

4.3 Algorithm: Backpropagation 	
30

5 RESULTS AND DISCUSSION 	 33

6 CONCLUSION 	 41

REFERENCES 	 43

APPENDIX A: USER MANUAL 	 45
APPENDIX B: GLOSSARY 	 49

(iv)

ABSTRACT

Word Recognition using Artificial Neural Networks,

implemented the back-propagation neural network for

developing word recognition software. The goal is to adapt the

parameters of the network so that it performs well for patterns

from outside the training set.

The word recognition software is made using Java2 and

efficiently recognizes all alphanumeric characters which the

user writes on the screen. The GUI for the software, developed

using the Swing features provided in Java2, makes it highly

ergonomic and purposeful.

The software can also be extended for developing a vehicle

number-plate recognition system, Signature Verification system

1

Chapter 1

INTRODUCTION

1.1 Background:

Visual pattern recognition such as reading characters or recognizing

shapes is an easy task for human beings, but presents significant difficulty

when programming an information processor to do the same thing. Artificial

neural networks are a method of computation that try to achieve human-like

performance in the field of image and character recognition. Artificial neural

network models are composed of many non-linear computational elements

operating in parallel and arranged in patterns mimicking biological neurons.

These models are very good at interpreting vague, noisy and incomplete input.

Artificial neural networks are trained from experience. In supervised learning,

we try to adapt an artificial neural network so that its actual outputs come

close to some target outputs for a training set which contains a predefined

number of patterns. The goal is to adapt the parameters of the network so that

it performs well for patterns from outside the training set. One of the main

uses of supervised learning today lies in pattern recognition. Basic

backpropagation is currently one of the most popular methods for performing

the supervised learning task. A backpropagation network usually consists of

three (or sometimes fewer) layers of neurons: the input layer, the hidden layer,

and the output layer. The fundamental idea behind backpropagation is that the

error is propagated backward to earlier layers so that a gradient search

algorithm can be applied.

This thesis will discuss the basics behind the backpropagation neural

networks. A practical implementation of backpropagation training algorithm

to recognize handwritten characters and extended to recognize the word . The

implementation is done using the Java programming language. Detailed

design of the implementation is presented in chapter 5. [13]

3

1.2 Objective :

The project is to develop a system capable of recognizing handwritten

characters or symbols, inputted by the means of a mouse. The system provides

means for training the input characters first, then there is a classification

option where the patterns or symbols that have already been trained should be

fed, in order to recognize it. There are full options for the users, like •

1. To load a default set of patterns which is already present in the system,

which can either be trained or the default training file can be loaded. After

which the recognition takes place.

2. To classify a line of text (to recognize individual words in a inputted line).

3. Options to either load a pattern file, trained or untrained & finally the option

to create new patterns by the user to train & classify (added feature).

1.3 Scope:

word recognition is the area in which Neural- networks are providing

solutions . Some of these solution are beyond simply academic curiosities,

like neural network based product can be used to recognize hand written

character through he scanner. This application can be used in credit card

application form, where characters can be stored in the database after

recognition.

Currently, the system is build to highlight characters below the certain

percent probability of being right so that a user can manually fill in what the

computer could not.

The word recognition system is developed for recognizing the handwritten

character inputted by mean of mouse. The system is trained for the capital

letters only but it can trained for lower case letter. The system can classify up

to 13 character word. The system can efficiently recognize the patterns

inputted by the. user. Facility to load the created file and create a new pattern

file is given. The user can train the network for newly created patterns in order

to recognize it.

The program has been tested with two sets of training patterns — letters

and numbers.

a]

1.4 Organization of Dissertation:

Introductory chapter deals with the objective and scope of, the
dissertation. The chapter concludes with the organization of the project.

Chapter 2 deals with the review of the work done on the subject. It

contains the overview of the Artificial Neural Network . It also shows the

relationship with a biological neural network

Chapter 3 explains famous neural network topology called a multi-

layer perceptron, to be trained with the Feed-forward Back-Propagation

Network (BPN) algorithm. Finally it gives the existing solution to character

recognition.

In chapter 4 design and implementation aspects for the model is

explained.

In chapter 5 results and discussion are given.

Finally, the dissertation has been concluded with the chapter 6 which brings

out the recognition of various alphanumeric patterns.

5

Chapter 2

LITERATURE SURVEY OF
ARTIFICIAL NEURAL NETWORK

2.1 Artificial Neural Network o

An Artificial Neural Network (ANN) is an information . processing

paradigmthat is inspired by the way biological nervous systems, such as the

brain, process information. The key element of this paradigm is the novel

structure of the information processing system. It is composed of a large

number of highly interconnected processing elements (neurons) working in

unison to solve specific problems. ANNs, like people, learn by example. An

ANN is configured for a specific application, such as pattern recognition or

data classification, through a learning process. Learning in biological systems

involves adjustments to the synaptic connections that exist between the

neurons. This is true of ANNs as well. Neural networks, with their remarkable

ability to derive meaning from complicated or imprecise data, can be used to

extract patterns and detect trends that are too complex to be noticed by either

humans or other computer techniques. A trained neural network can be

thought of as an "expert" in the category of information it has been given to

analyze. This expert can then be used to provide projections given new

situations of interest. Other advantages include:

1. Adaptive learning: An ability to learn how to do tasks based on the data

given for

training or initial experience.

2. Self-Organization: An ANN can create its own organization or

representation of the

information it receives during learning time.

3. Real Time Operation: ANN computations may be carried out in parallel,

and special

hardware devices are being designed and manufactured which take

advantage of this capability.

Vl

4. Fault Tolerance via Redundant Information Coding: Partial destruction

of a network leads to the corresponding degradation of performance.

However, some network capabilities may be retained even with major

network damage. Neural networks take a different approach to problem

solving than that of conventional computers. Conventional computers use

an algorithmic approach i.e. the computer follows a set of instructions in

order to solve a problem. Unless the specific steps that the computer needs

to follow are known the computer cannot solve the problem. That restricts

the problem solving capability of conventional computers to problems that

we already understand and know how to solve. But computers would be so

much more useful if they could do things that we don"t exactly know how

to do.

Neural networks process information in a similar way the human brain does.

The network is composed of a large number of highly interconnected

processing elements (neurons) working in parallel to solve a specific problem.

Neural networks learn by example. They cannot be programmed to perform a

specific task. The examples must be selected carefully otherwise useful time

is wasted or even worse the network might be functioning incorrectly. The

disadvantage is that because the network finds out how to solve the problem

by itself, its operation can be unpredictable. On the other hand, conventional

computers use a cognitive approach to problem solving; the way the problem

is to solved must be known and stated in small unambiguous instructions.

These instructions are then converted to a high level language program and

then into machine code that the computer can understand. These machines are

totally predictable; if anything goes wrong is due to a software or hardware

fault. Neural networks and conventional algorithmic computers are not in

competition but complement each other. There are tasks are more suited to an

algorithmic approach like arithmetic operations and tasks that are more suited.
to neural networks. Even more, a large number of tasks, require systems that

use a combination of the two approaches (normally a conventional computer is

used to supervise the neural network) in order to perform at maximum

efficiency. [14]

8 	-

2.2 Historical Background:

Neural network simulations appear to be a recent development.

However, this field was established before the advent of computers, and has

survived at least one major setback and several eras. Many important advances

have been boosted by the use of inexpensive computer emulation. Following

an initial period of enthusiasm, the field survived a period of frustration and

disrepute. During this period when funding and professional support was

minimal, important advances were made by relatively few researchers. These

pioneers were able to develop convincing technology which surpassed the

limitations identified by Minsky and Papert. Minsky and Papert, published a

book (in 1969) in which they summed up a general feeling of frustration

(against neural networks) among Researchers, and was thus accepted by most

without further analysis. Currently, the neural network field enjoys a

resurgence of interest and a corresponding increase in funding. The first

artificial neuron was produced in 1943 by the neurophysiologist Warren

McCulloch and the logician Walter Pits. But the technology available at that

time did not allow them to do too much.[14]

2.3 The Biological Model

How the Human Brain Learns?

Much is still unknown about how the brain trains itself to process

information, so theories abound. In the human brain, a typical neuron collects

signals from others through a host of fine structures called dendrites. The

neuron sends out spikes of electrical activity through a long, thin stand known

as an axon, which splits into thousands of branches. At the end of each branch,

a structure called a synapse converts the activity from the axon into electrical

effects that inhibit or excite activity from the axon into electrical effects that

inhibit or excite activity in the connected neurons. When a neuron receives

excitatory input that is sufficiently large compared with its inhibitory input, it

sends a spike of electrical activity down its axon. Learning occurs by changing

I

the effectiveness of the synapses so that the influence of one neuron on
another changes. [12]

FIG 2.1 : Human Neuron

From Human Neurons to Artificial Neurons:

Sc. 11c.WIadc of an
Xi 	W1
	 Artificial Neuron

X2 Wz

net
XN WN 	 Activation Output

Inputs 4VcigIits
	 tiuiction

Bias

FIG 2.2 The Neuron Model

Just as there is a basic biological neuron, there is basic artificial

neuron. Each neuron has a certain number of inputs, each of which have a

weight assigned to them. These are denoted by input signals xl and set of real

valued weights wi in the figure. The weights simply are an indication of how

'important' the incoming signal for that input is. The net value of the neuron is

then calculated - the net is simply the weighted sum, the sum of all the inputs

multiplied by their specific weight. This is also denoted by the activation

level, Exiwi. Each neuron has its own unique threshold value, and it the net is

greater than the threshold, the neuron fires (or outputs a 1), otherwise it stays

quiet (outputs a 0). The threshold function f is used to compute the value of

the output. The output is then fed into all the neurons it is connected to.[13]

10

In calculating the output of the neuron, the activation function may be

in the form of a threshold function, in which the output of the neuron is +1 if a

threshold level is reached and 0 otherwise. Squashing functions limit the linear

output between a maximum and minimum value. These linear functions,

however, do not take advantage of multi-layer networks . Hyperbolic tangents

and the sigmoid functions are similar to real neural responses; however, the

hyperbolic tangent is unbounded and hard to implement in hardware. In this

project, the Sigmoid function is used because of its ability to produce

continuous non-linear functions, which can be implemented in hardware in

future research areas.[12]

Sigmoid function is an exponential function which has as a most

important characteristic the fact that, even if x assumes values next to the

infinitely big or little, f(x) will assume a value between 0 and 1. The learning

algorithm will adjust the weights of the connections between units so that the

function translates values of x to a binary value, typically: f(x) > 0.9 : f(x) = 1

, f(x) < 0.1 : f(x) = 0.

Figure shows some commonly used activation functions.

F(x)

x

Linear function

F(x).

x

Squashing function Linear Threshold

Hyperbolic Tangent 	Sigraoid Function
FIG 2.3 ; various activation functions.

An alternative used in networks for the sigmoid function is the

Threshold function t. The output assumes just two values: -1 or 1. Some

threshold functions have a binary output: 0 or 1. This function is less complex

to compute when a network is implemented on a digital computer than the

11

sigmoid function, but it is not useful in a backpropagation algorithm. An

example of a network that uses a threshold function is the Boltzmann machine.
An artificial neuron is a, device with many inputs and one output. The

neuron has two modes of operation; the training mode and the using mode. In

the training mode, the neuron can be trained to fire (or not), for particular

input patterns. In the using mode, when a taught input pattern is detected at the

input, its associated output becomes the current output. If the input pattern

does not belong in the taught list of input patterns, the firing rule is used to
determine whether to fire or not.[12]

2.4 Firing Rules :

The firing rule is an important concept in neural networks and accounts

for their high flexibility. A firing rule determines how one calculates whether

a neuron should fire for any input pattern. It relates to all the input patterns,

not only the ones on which the node was trained. A simple firing rule can be

implemented by using Hamming distance technique.The rule goes as follows:

Take a collection of training patterns for a node, some of which cause it to fire

(the 1-taught set of patterns) and others which prevent it from doing so (the 0-

taught set). Then the patterns not in the collection cause the node to fire if, on

comparison, they have more input elements in common with the 'nearest'

pattern in the 1-taught set than with the nearest' pattern in the 0-taught set. If

there is a tie, then the pattern remains in the undefined state.

For example, a 3-input neuron is taught to output 1 when the input (X1,X2 and

X3) is 111 or 101 and to output 0 when the input is 000 or 001. Then, before

applying the firing rule, the truth table is;

X1: 0 0 0 0 1 1 1 1

X2: 0 0 1 1 0 0 1 1

X3: 0 1 0 1 0 1 0 1
OUT: 0 0 0/1 0/1 0/1 1 0/1 1

TABLE 2.1 : Truth Table before applying firing rule

12

As an example of the way the firing rule is applied, take the pattern 010. It

differs from 000 in 1 element, from 001 in 2 elements, from 101 in 3 elements

and from 111 in 2 elements. Therefore, the `nearest' pattern is 000 which

belongs in the 0-taught set. Thus the firing rule requires -that the neuron

should not fire when the input is 001. On the other hand, 011 is equally distant

from two taught patterns that have different outputs and thus the output stays

undefined (0/1).

By applying the firing in every column the following truth table is obtained;

Xl: 0 0 0 0 1 1 1 1

- X2: 0 0 1 1 0 0 1 1

X3: 0 1 0 1 0 1 0 1

OUT: 0 0 0 0/1 0/1 1 1 1

TABLE 2.2 : Truth Table after applying firing rule

The difference between the two truth tables is called the generalization of the

neuron. Therefore the firing rule gives the neuron a sense of similarity and

enables it to respond

'sensibly' to patterns not seen during training. The single artificial neurons can

now be interconnected in many different ways leading to a variety of neural

networks with different architectures, learning rules and abilities. [4]

The most important ones are :

• Feedforward networks,

• Adaptive Resonance Theory (ART),

• Hopfield nets,

• Kohonen's self-organizing feature maps,

• Radial Basis Functions (RBF),

• Boltzmann-machines,

13

2.5 Single and Multi-layer Perceptrons :

A perceptron is a simple neural network model introduced by Frank

RosenBlatt in 1958, and is perhaps the most widely used ' term in neural

networks. A single layer perceptron is used to classify an input vector into

several classes. In a single layer perceptron, the input values and activation

level of the perceptron are either —1 or 1; weights are real-valued (between 0

and 1). The activation level is given by summing the weighted input values

Exiw;. Perceptrons use a simple hard-limiting threshold function, where

activation above a threshold results in an output value of 1, and —1 otherwise.

Perceptron output = sign(Exiw;)

= 1 if F'xiWw >= t

= -1 if Exiwi <= t

The perceptron uses a simple form of supervised learning. The way a

perceptron learns to distinguish patterns is through modifying its weights to

reduce error. The adjustment for the weight Aw; on the ith component of the

input vector is given by:

Aw; = cx; S

where c = learning rate

d = desired output

S = (desired output) — (actual output) = d — sign(Exiwi)

Single layer perceptrons can only solve problems where the solutions can be

divided by a line (or hyperplane). The classes to be distinguished should be

linearly separable. Therefore, a single layer perceptron cannot express non-
linear decisions like the XOR problem.

Single-layer Perceptron
Outputs-

Multi-layer Perceptron
Outputs

Output layer

Hidden layers

Input layer
Inputs

nputs
FIG 2.4 : Single-layer Perceptron and Multi-layer Perceptron

14

Multi-layer perceptrons are feed-forward nets with one or more layers of

nodes between the input and output nodes. These additional layers contain

hidden units or nodes that are not directly connected to both the inputs and

outputs. Multi-layer perceptrons overcome many of the limitations of the

single layer perceptrons. The capabilities of multi-layer perceptrons stem

from the nonlinearities used within nodes. In multi-layer networks, when

adjusting a weight anywhere in the network, one has to be able to tell what

effect this will have on the overall effect of the network. To do this, one has

to look at the derivative of the error function with respect to that weight. The

hard-limiter function for the single-layer perceptron is non-continuous, thus

non-differentiable. The most popular continuous activation function used

within backpropagation nets is the sigmoid function or the logistic function

given by the equation:

f(net) = 1 / (1 + e *1et), where net = Exiwi

As X (called the squashing parameter) gets large, the sigmoid function

approaches a linear threshold function over {0, 1 }; as it gets closer to 1, it

approaches a straight line. This activation function is non-linear, scaled and

differentiable.

Chapter 3

BACKPROPAGATION NEURAL NETWORK

3.1 Introduction To Backpropagation Neural Network:

The Backpropagation algorithm is perhaps the most widely used

supervised training algorithm for multilayered feedforward networks. The

backpropagation training algorithm is an iterative gradient algorithm designed

to minimize the mean square error between the actual output of a multilayer

feedforward perceptron and the desired output. 	In the backpropagation

algorithm, a feedforward phase is first done on an input pattern to calculate the

net error. Then, the algorithm uses this computed output error to change the

weight values in the backward direction. The error is slowly propagated

backwards through the hidden layers - and hence its name.

The actual derivations for the different formulas used in the

backpropagation algorithm come from the generalized delta rule. The delta

rule is based on the idea of the error surface. The error surface represents

cumulative error over a data set as a function of the network weights. Each

-possible network weight configuration is represented by a point on this, error

surface. By taking the partial derivative of the network error with respect to

each weight we will learn a little about the direction the error of the network is

moving. In fact, if we take the negative of this derivative (i.e. the rate change

of the error as the value of the weight increases) and then proceed to add it to

the weight, the error will decrease until it reaches a local minimum. The

taking of these partial derivatives and then applying them to each of the

weights, takes place starting from the output layer to

hidden layer weights, then, from the hidden layer to input layer weights. A

very simple way is to organize the neurons in several layers as shown in

Figure 3.1 .

17

Neuron

Weights

VA

Output layer

Hidden layer

Input layer

X2 	X3 	X4
	

Input patterns

FIG 3.1 : Fully connected feedforward network with three layers

This architecture is called a feedforward net, since neurons of one layer are

only connected with neurons of the succeeding layer, without any recurrent

connections. Normally these nets consist of one input layer, one or two hidden

layers (called hidden, since they don't have a direct connection to the outside

world) and one output layer. With such a net, input data are mapped from the

n dimensional input space to an m-dimensional output space. This net now has

to learn to produce a certain desired output for each input pattern presented at

the input layer.

The architecture shown in the fig below is called as the backpropagation net.

—forward pas§4
4- backward pass —

cozuiectior s
ututs -}

p .
input hidden output
layer 	la3rer 	1..3r

FIG 3.2 : Backpropagation Network

iL

3.2 Backpropagation Training Algorithm :

The following description tends to assume a pattern classification

problem, since that is where the BP network has its greatest strength.

However, you can use back-propagation for many other problems as well,

including compression, prediction and digital signal processing. When you

present your network with data and find that the output is not as desired, what

will you do? The answer is , we will modify some connection weights. Since

the network weights are initially random, it is likely that the initial output

value will be very far from the desired output. We wish to improve the

behavior of the network. Which connection weights must be modified, and by

how much, to achieve this objective? To put it another way, how do you know

which connection is responsible for the greatest contribution to the error in the

output? Clearly, we must use an algorithm which efficiently modifies the

different connection weights to minimize the errors at the output. This is a

common problem in engineering; it is known as optimization. The famous

LMS algorithm was developed to solve a similar problem, however the neural

network is a more generic system and requires a more complex algorithm to

adjust the many network parameters. One algorithm which has hugely

contributed to neural network fame is the back-propagation algorithm. The

principal advantages of back-propagation are simplicity and reasonable speed .

Back-propagation is well suited to pattern recognition problems. The training

algorithm for a BPN consists of the following steps:

• Selection and Preparation of Training Data

• Modification of the neuron connection weights

• Repetition

• Running

• Hazards

19

3.2.1 Selection and Preparation of Training Data

A neural network is useless if it only sees one example of a matching
input/output pair. It cannot infer the characteristics of the input data for which

you are looking for from only one example; rather, many examples are

required. This is analogous to a child learning the difference between (say)

different types of animals - the child will need to see several examples of each

to be able to classify an arbitrary animal. If they are to successfully classify

birds (as distinct from fish, reptiles etc.) they will need to see examples of

sparrows, ducks, pelicans and others so that he or she can work out the

common characteristics which distinguish a bird from other animals (such as

feathers, beaks and so forth). It is also unlikely that a child would remember

these differences after seeing them only once - many repetitions may be

required until the information 'sinks in'. It is the same with neural networks.

The best training procedure is to compile a wide range of examples (for more

complex problems, more examples are required) which exhibit all the different

characteristics you are interested in. It is important to select examples which

do not have major dominant features which are of no interest to you, but are

common to your input data anyway. One famous example is of the US Army

'Artificial Intelligence' tank classifier. It was shown examples of Soviet tanks

from many different distances and angles on a bright sunny day, and examples

of US tanks on a cloudy day. Needless to. say it was great at classifying

weather, but not so good at picking out enemy tanks. If possible, prior to

training, add some noise or other randomness to your example (such as a

random scaling factor). This helps to account for noise and natural variability

in real data, and tends to produce a more reliable network. If you are using a

standard unscaled sigmoid node transfer function, please note that the desired

output must never be set to exactly 0 or 1! The reason is simple: whatever the

inputs, the outputs of the nodes in the hidden layer are restricted to between 0

and 1 (these values are the asymptotes of the function. To approach these

values would require enormous weights and/or input values, and most

importantly, they cannot be exceeded. By contrast, setting a desired output of

(say) 0.9 allows the network to approach and ultimately reach this value from

either side, or indeed to overshoot. This allows the network to converge

20

relatively quickly. It is unlikely to ever converge if the desired outputs are set
too high or too low. Once again, it cannot be overemphasized: a neural
network is only as good as the training data! Poor training data inevitably
leads to an unreliable and unpredictable network. Having selected an example,
we then present it to the network and generate an output.

3.2.2 Modification of the neuron connection weights :

Consider the example in Figure designating (I1,I2), (Hl,H2), and (01, 02) as
the inputs, hidden layer outputs and output-layer outputs respectively,

wnii 	 wnii

FIG 3.3 : example (2,2,2) BPN
the outputs of Hidden Node 1 and 2 are given by

2

H i = sr, rrr 	Y I I 	. l 	-----------1
1=1

2
H 2

1=1
Where 	 1

S`. (x) = 	- ---------------------- 3 1+e
The output-layer outputs are given by

2
01 _ sc 	 o

M m •m 1 4
m =1

2
— 0 2

	

	 e 	----------------5
 H. m m2

m=1

21

Using 4 & 5
z 	2

0 = -7

M =1 	1 =7 1

2 	2
02 = sym 	 y. i

1
m=1 	I=1

° 	---6 Im W
.

~~

Wh W o
m m 2 	--------- 7

Now we can calculate the output given a particular set of inputs. This allows

us to calculate the Mean Squared Error (MSE) between the actual output and

the desired output for the given input in this training example. This is simply
the average of the squares of the difference between what we want and what

we got. Thus, our error function can be formally written as
2

	

E 	D
n=1

or, using (6) and (7),
2 	 2 	2

E _ 	D - sgin 	S9 ` 	. I wIm w °

	

n=1 	 m=1 	I =1

where Dn is the kth desired output.

For example in the following example, suppose we have in the

output 0.75 and 0.05 and the desired outputs 0.9 and 0.1.

The (true) MSE is now,

	

.2 	- 	 2
((0.9-0.75)) +(0.1 - 0.05) / 2

which is equal to 0.0125 Clearly, for any given training example, this value is

a function only of the weights of the network.

The gradient is fairly straightforward to calculate, due to the convenient fact

that the derivative of the sigmoid function can be expressed in terms of the

function itself:
-x

d 1 -e

dx 1 +e-x
_(1 - sg m (x))S nl (x) ------------ 10

22

The gradient is defined as the vector of partial derivatives of the multivariate

function with respect to each. of variable. Because the error is a function of the
network outputs, we first need to calculate a set of partial derivatives for each
output node with respect to each associated connection weight. This turns out
to be trivial, since all other variables but the one of interest are held constant
when we calculate the partial derivative. Thus, only one linear term is left in
the calculation of the partial derivative of the output, and leaving the

coefficient - which is just the corresponding input! So, we can write
0 	 2

kn k 	m
	 11

Q- n 	 mn k=1

Now, the gradient of the error function can be calculated .Note
2

S ° _ 	W o
k=1 mn

rDE _ D 2
	2

Wmn 	mn n=1

=2 (D n - O) $o sgm S , o
mn

2 (D n - O n) I - sgm(s°)) sgm(s°)) H m - ------

The new values for the network weights are calculated by multiplying the

negative gradient with a step size parameter (called the learning rate) and

adding the resultant vector to the vector of network weights attached to the

current layer. This change does not take place, however, until after the middle-

layer weights are updated as well, since this would corrupt the weight-update
procedure for the middle layer. Clearly, the error at the output will be affected

by the weights at the middle layer, too. However, the relationship is more
complicated. A new gradient is derived, but this time the output weights are

treated as constants rather than the hidden-layer weights. Now, the actual

output is a function of the weights attached to the middle layer only (and in a
generic network there are LM of those, for L input nodes and M middle-layer

nodes).

12

23

Fortunately, it is still a relatively simple expression.

2

Dr E = ((1 - Sgm(S h)) Sgm(S h)) 	n

W0 	I I 	----13

Ir 	
o=1

The middle weights are updated using the same procedure as for the output

layer, and the output layer weights are updated as well. This is a complete

training cycle for one piece of training data. It should be noted that the input

layer is really only a buffer to hold the input vector. Therefore, it has no

weights which need to be modified. However, in a more generic network, one

may have. more than one, hidden layer. Again, the update procedure is quite

similar. Once the modifications have been calculated, all weights (hidden and

output) may be updated.

Please note : The above description assumes a (2, 2, 2) network.

The only difference in the mathematics resulting from a larger network are

longer summations. All of the principles are the same. The training process is

analogous to the biological process of learning - the strength of individual

connections between the neurons increases or decreases as we learn.

3.2.3 Repetition :

Since we have only moved a small step towards the desired state of a

minimized error, the above procedure must be repeated many times until the

MSE drops below a specified value. When this happens, the network is

performing satisfactorily, and this training session for this particular example

has been completed. Once this occurs, randomly select another example, and

repeat the procedure. Continue until you have used all of your examples many

times ('many' may be anywhere between twenty or less and ten thousand or

more, depending on the particular application, complexity of data and other

parameters).

24

3.2.4 Running:

Finally, the network should be ready for testing. While it is possible to

test it with the data you have used for training, this isn't really telling you very

much. Instead, get some real data which the network has never seen and

present it at the input. Hopefully it should correctly classify, compress, or

otherwise process (however you trained it!) the data in a satisfactory way.

3.2.5 Hazards :

A consequence of the back-propagation algorithm is that there are

situations where it can get 'stuck'. Think of it as a marble dropped onto a steep

road full of potholes. The potholes are 'local minima' - they can trap the

algorithm and prevent it from descending further. In the event that this

happens, you can resize the network (add extra hidden-layer nodes or even

remove some) or try a different starting point (i.e. randomize the network

again). Some enhancements to the BP algorithm have been developed to get

around this - for example one approach adds a momentum term, which

essentially makes the marble heavier - so it can escape from small potholes.

Other approaches may use alternatives to the Mean Squared Error as a

measure of how well the network is performing. [9]

3.3 Existing System :

Before the age of the computer, there were many mathematical

problems that humans could not easily solve, or more precisely (and this

distinction is extremely important) humans were too slow in solving.

Computers enabled these often simple but slow and tedious tasks to be

performed quickly and accurately. The first problems solved with computers

were calculating equations to resolve important physical problems, and later

displaying a nice GUI, making word processors and so on. However, there are

many common tasks which are trivial for hum 	 'bout even

A-

25
	

1- R OOPi 	`"

any conscious effort) yet which are extremely difficult to formulate in a way
that a computer may easily solve.

These include:

• Signal processing such as (pattern recognition, voice, recognition, image

processing etc.)

• Compression

• Data reconstruction (e.g. classification where part of the data is missing)

• Data mining

• Data simplification

3.3.1 Template Matching:

Earlier techniques for pattern recognition's, include the technique of

Template Matching. In this technique the patterns are just matched together as

a human compare two structures with their exact features & characteristics

matching. Template Matching

are oversensitive to shift in position and distortions in shape of the stimulus

patterns, and it is necessary to normalize the position and the shape of stimulus

pattern beforehand. A good method for normalization have not been

developed yet. Therefor, the finding of an algorithm for character recognition

which can cope with shift in position and distortion has long been desired. In

this project, we implement an algorithm which gives an

important solution to this problem. The algorithm used here can be realized

with a multilayered network consisting of neuron like cells. It is organized by

supervised learning and acquires the ability for correct character recognition.

So, naturally, scientists, engineers and mathematicians tried to make an
intellectual abstraction which would enable a computer work in a similar way

to that in which the human brain works — a neural. network. [9]

26

Chapter 4

DESIGN AND IMPLEMENTATION

Word Recognition using Artificial Neural Networks, implemented the

back-propagation neural network for developing word recognition software.

The word recognition software is efficiently recognizes all alphanumeric

characters which the user writes on the screen. The user has to train the

network . Design flowchart is given in the section 4.1

Class Choice Frame which takes the input from the user, User

selection and File name, when the user select the Default Character Set it load

s the default file .which is the number file, selection of Classify Line Of Text

invoke the Input Document Frame ,which takes the input from the user that is

line of text. and given the extracted patterns

as output and finally the option for creating the or load the patterns is given ,

which invoke the class Modifiable Character Frame. Which create the new

pattern file *,ptrn

when the user clicks on he train button the Training Frame class is invoked it

either create or load the weight file as per the user selection, and creates the

training file *, ntwk. when the user select the classify option Classification

frame class is invoked,, which takes the input Training File , Parameter File

.and Test pattern . and gives the output whether the pattern is classified or not.

27

4.1 Design Flowchart 	
Start

Class : Choice Frame
1 Default Character Set
2 Classify Line Of Text
3 User Created Character Set.

Input:
User selection and File name.

Class:
Default Character Frame.

Input
Files:

Default .ptrn

Class:
Modifiable Character Frame.
Input :
User selection

1 Creating new character
2 Extending existing

character
Output:
Character file

--*.ptrn

Class:
Input Document Frame.

Input:
Line of text.

Output
Extracted character

Class:
Training Frame.

Input:
1 Creating new weight file
2 Load existing weight file

Output
Training File
---*. ntwk

Class
Classification frame:

Input:
1 Training File
2 Parameter File
3 Test pattern

Output:
Classified or Not Classified

Stop

4.2 Implementation Strategy:

To create an ANN through the means of software, object oriented

programming is required because a neuron resembles several components,and

OOP is the best choice due to its capability of creating objects that contains

different variables and methods. The first step is to create an object that

simulates the neuron. The object would contain several functions and variables

including weight (a random number generated when the neuron is created,

similar to the synapse in BNN), a non-linear function (to determine whether to

activate the neuron or not), a method that adds up all the inputs, and a

bias/offset value (optional) for the characterization of the neuron.

After the object is created, the next step is to create a network. A

typical ANN has three layers: input layer, hidden layer and output layer. The

input layer is the only layer that receives signals outside the network. The

signals are then sent to the hidden layer, which contains interconnected

neurons for pattern recognition and relevant information interpretation.

Afterwards, the signals are directed to the final layer for outputs. Usually a

more sophisticated neural network would contain several hidden layers and

feedback loops to make the network more efficient and to interpret the data

more accurately. Using figure 3.1 as a model, the network is like a big matrix.

However, it would be easier if the three layers were separated into three small

matrixes. Each small matrix will contain neurons and when signals are

inputted, the neurons will send inputs through the non-linear function to the

next neuron. Afterward, the weight of the neuron is increased or decreased.

29

4.3 Algorithm: Backpropagation

Given 	: A set of input-output vector pairs.
Compute : A set of weights for a three-layer network that maps inputs

onto Corresponding outputs.

1. Let A be the number of units in the input layer, as determined by the length

of the training input vectors. Let C be the number of units in the output layer.

Now choose B, the number of units in the hidden layer. The input and hidden

layers each have an extra unit used for thresholding; therefore, the units in

these layers will sometimes be indexed by the ranges (0......,A and (0......,B).
We denote the activation levels of the units in the

input layer by xj , in the hidden layer by hj , and in the output layer by'of

Weights connecting the input layer to the hidden layer are denoted by wlij,

where the subscript i indexes the input units and j indexes the hidden units.

Likewise, weights connecting the hidden layer to the output layer are denoted

by w2ij, with i indexing to hidden units and j indexing output units.

2. Initialize the weights in the network. Each should be set randomly to a

number between -0.1 and 0.1.

wlij = random(-0. 1,0.1) for all i =0......A, j = 1.......B

w2ij = random(-O.1,0.1) for all i =0......B, j = 1.......C
3. Initialize the activation of the network. The values of these thresholding
units should never change.

x0=1.0

hO 1.0
4. Choose an input-output pair. Suppose the input vector is xi and the target

output vector is yi . Assign activation levels to the input units.

5. Propagate the activation's from the units in the input layer to the units in the

Iia = 	1 	 ~
1+e—ZB 0 w 17h . 	

fOJ all .j 1, ... ,C

hidden layer using the activation functions

Note that i ranges from 0 to A. wl Oj is the thresholding weight for hidden unit

j (its propensity to fire irrespective of it inputs).

xO is always 1.0.

30

6. Propagates the activation's from the units in the hidden layer to the units in

the output layer Again, the thresholding weight w20j for output unit j plays a

role in the weighted summation, hO is always 1.0.

1171 — 1
1+e— ,B ,aw2i h 	for all j = 1,..... ,C

i=Q J

7. Compute the errors of the units in the output layer denoted ä2j. Error are

based on the network's actual output (oj) and the target output (yi).

,for all j - I B

8. Compute the errors in the units in the hidden layer, denoted

c
Al = hr (1— h1) 52} xw2 j, afc r cell 	,_,13

9. Adjust the weights between the hidden layer and the output layer. The

learning rate denoted r; its functions is in the same as in perception learning.

A reasonable value of c is 0.35. ///is denoted by

11
Aw2U =ii.S21 hi for all i = 0,.....r , j I,.....0

10. Adjust the weights between the input layer and the hidden layer.

Aw 1 =i .c51J..h1 fog•all 	i 	Q,,...., ,~j 	1,......B

11. Go to step 4 and repeat. When all the inputs-output pairs have been

presented to the network, one epoch has been completed. Repeat steps 4 to 10

for as many epochs as desired. [2]

31

Chapter 5

RESULTS AND DISCUSSION

User Interface:

1. Choice frame.

I -tag

FIG: 5.1: Screen displaying Opening Menu

33

2. Default Patterns

FIG 5.2 : Default set of patterns

3. Mode select

MODE SELECT

NEW
TRAIN

LOAD
CLASSIFY

defaults

FIG 5.3 : The mode select frame

34

4. Training frame

Train Frame 	 A M

Start training 	trAunmq epochs: 	0

stoptraitrinp 	-urn squared error;

Reset network 	input nerrr, 	 26

Resat inputs 	.~ . 	,..,.•n' ,,, - 	20

FIG 5.4: The training frame.

5. Classify Frame.

Mgclassi(y Frame 	 AC]©1

clear

blur

i 	sharpen

FIG 5.5 : Classification Frame

35

6 Output frame:

r 'p'

VA - - -
FIG 5.6 : The Output Frame

7 Line Classify:

ALUM 	 JJ

px1

FIG 5.7 : Line Classification frame

36

8 Classified Patterns:

II"J

FIG 5.8 : The Classified Pattern

9 Custom patterns:

11!
(11-AK 	((1-AK 	(1l-AR 	i_ I FAk 	(:1 I-Al 	(:1 FAH 	11FAR 	(1 I-AK 	(J1-AR

® ©o©©©o j rI
CLEAR 	CLEAR 	CLEAR 	CLEAR 	CLEAR 	CLEAR 	CLEAR 	CLEAR 	CLEAR

®©©®

(1FAk 	U FAH 	(:IFAK 	(:I FAH 	(:l FAN 	(1 I-Am 	(1F-AK 	(.1 FAK

AIM) 	 PACK 	 wx1

FIG 5.9 : Default set of patterns

37

A program is written in Java to perform optical character recognition

using backpropagation neural networks. The program is working in the

following ways.

When the program starts, a main CHOICE screen is displayed. Where

the user can load the default letter file ,classify the line and can load or create

new pattern file. When the user clicks on DEFAULT button the next default

frame is displayed. click on NEXT button to get the MODE frame as shown

above. Where the options like Train Classify, New and Load are available.

When user clicks on train button training frame is displayed on the screen. To

train the network, click the "Start Training" button. As the training proceeds,

the number of learning cycles increases and the sum squared error decreases.

After a while, the sum squared error decreases to a low value (of <= 0.01).At

this point, press the "Stop Training" button. The network could be tested with

any user drawn symbol by drawing a symbol on the user input icon panel with

a mouse. There are 12 X 16 pixels in the icon panel. The left mouse button

will draw a pixel To see what the network thinks the user drew a picture of,

press the "test" button at the left of the icon panel, and see which of the lights

glows red. The "CLEAR" button can be used to clear the current user drawn

symbol to draw a new one. The "RESET" button resets the neural network, so

that training can be started again. To get the classification frame click on the

CLASSIFY LINE button on the CHOICE frame. on this frame the user can

test any word by drawing the symbols on the user input icon panel with a

mouse. To see the output click on the next button. The user has given the

option to create or to load the pattern files with the help of USE FILE button.

Currently, the program has been tested with two sets of training

patterns — letters and numbers. The target patterns and classified patterns are

shown in the next section.

Trained Patterns And Classified Patterns :

Trained Patterns :

Set 1

l u L 	r 	E FE~ fd 	1 EFL 1 r 	
• • t f (~S F c (• E E~ E 	F _Ff Fr EE•2 EE ~E

rb

.EaF 	E ~• ~fE€F' 	E~~F'

Set 2

U II _ _

_ E

Classified Patterns :

Set 1

©®o
Set 2

39

CONCLUSION

The BPN network designed in this project has the ability to recognize
stimulus patterns without affecting by shift in position not by a small
distortion in shape of input pattern. It also has a function of organization,
which processes by means of "Learning with a Teacher" (Supervised

Learning). If sets of input patterns are repeatedly presented to it, it gradually

acquires the ability to recognize these patterns. The performance of the

network has been demonstrated by simulating on a computer.
The design of information processing proposed in this project is of

great me not only as an inference upon the mechanism of brain but also to the

field of Engineering. One of the largest and longstanding difficulty is in
designing a pattern recognizing machine has been the problem how to cope

with the shift in position and the distortion in the shape of the input patterns.

The network designed in this project gives a partial solution to this difficulty.

41

REFERENCES

1. James A. Anderson " An Introduction To Neural Networks " PHI 1998.
2 Elaine Rich And Kevin Knight, "Artificial Intelligence" TMH, 1991.
3 Google search available at

"http://www.shef.ac.uk/psychology/gurney/notes/index.html"

4 Google search available at

"http://www.emsl.pnl.gov:2080/proj/neuron/neural/what.html
5 Google search available at

"http://www.willamette.edu[-gorrfclasses/cs449/intro .html

6 Google search available at

"http://www.fags.org/faqs/ai-faq/neural-nets/part 1-6"

7 Google search available at "http://www.generation5.org"
8 Google search available at

"http://www.mathworks.com/access/helpdesk/help/toolbox/nnet/a gloss.sh
tml"

9 Google search available at

"http://ieee.uow.edu.au/—danieUsoftware/libneuraUBPN tutorialBPN Eng
lish/BPN EnglishBPN English.html"

10 Google search available at

"http: //psychology.about. com/gi/dynamic/offsite.htm?site=http%3A%2F%

2Fwww.dacs .dtic .mil%2Ftechs%2Fneural%2Fneural ToC.html",
11 Google search available at

"www.cedar.buffalo.edu/Haehwap/papers/thesis.pdf "

12 Google search available at

"http://claymore.engineer.gvsu.edu/eod/software/software-162.html"

13 Dr. Roger S. Gaborski, " Introduction to Artificial Intelligence."

14 James A. Freeman and David M. Skapura ," Neural Networks"

43

APPENDIX A

USER MANUAL

A.1 For Choice Frame

Buttons:

Default button is used to load the default letter file

Classify Line : to classify the line of character.

Use File : Activate the NEW and LOAD buttons.

New : To create new pattern file

Load : To load stored pattern fl le.

Go Button : To start the user defined task

A.2 For Default Pattern Frame.

This is the default letter file .

A.3 For Mode Select Frame

Buttons

Train : to get the training frame.

Classify : To get the classification frame.

New : To get the new file

FAQ
Load : To load the already created pattern file.

45

A.4 For Training Frame

Buttons :

Start Training : To start training.

Stop Training: To stop training.

m Reset network
I

Reset Network Reset" button resets the neural network, so that
training can be started again.

Reset Input Reset" button resets the neural network, so that
training can be started again.

Text Fields :

• Training epochs 	: refer Appendix C

• Sum Squared Error : refer Appendix C

• Input Neuron : the number of neurons in the input layer. This field
is set to 26

• Hidden Neuron : the number of neurons in the hidden layer, set to
20.

A.5 For Classify Frame:

Buttons

Clear : used to clear the current user drawn symbol to draw a
new one

Blur

Sharpen to sharpen the pattern

Test To see what the network thinks the user drew a picture of,
press the "test" button

A.6 For Line Classify Frame

Button :

Next : to get the classification frame where the classified patterns
are shown.

A.7 For Classified Patterns Frame •

Shows the classified pattern inputted by the user

A.8 For Custom Frame

Buttons:

UD 	I

Add to add the patterns

K.:
Pack to pack the patterns.

NEXT

Next :when the user clicks on next mode select frame is
displayed for further operation.,

47

APPENDIX B

• bias - A neuron parameter that is summed with the neuron's weighted
inputs and passed through the neuron's transfer function to generate the
neuron's output.

• classification - An association of an input vector with a particular target
vector.

• connection - A one-way link between neurons in a network

• epoch - The presentation of the set of training (input and/or target) vectors
to a network and the calculation of new weights and biases. Note that
training vectors can be presented one at a time or all together in a batch

• error vector - The difference between a network's output vector in
response to an input vector and an associated target, output vector
generalization - An attribute of a network whose output.for a new input
vector tends to be close to outputs for similar input vectors in its training
set

• gradient descent - The process of making changes to weights and biases,
where the changes are proportional to the derivatives of network error with
respect to those weights and biases. This is done to minimize network
error.

• learning - The process by which weights and biases are adjusted to
achieve some desired network behavior.

• learning rate - A training parameter that controls the size of weight and
bias changes during learning.

• mean square error function - The performance function that calculates
the average squared -error between the network outputs a and the target
outputs t.

• momentum - A technique often used to make it less likely for a
backpropagation networks to get caught in a shallow minima

• squashing function - A monotonic increasing function that takes input
values between

- infinity and + infinity and returns values in a finite interval.

• weight matrix - A matrix containing connection strengths from a layer's
inputs to its neurons. The element wi,~ of a weight matrix W refers to the
connection strength from inputj to neuron i.

• local minimum - The minimum of a function over a limited range of input
values. A local minimum may not be the global minimum.

• log-sigmoid transfer function - A squashing function of the form shown
below that maps the input to the interval (0,1). (The toolbox function is
logsig.)

• local minimum - The minimum of a function over a limited range of input
values. A local minimum may not be the global minimum.

• log-sigmoid transfer function - A squashing function of the form shown
below that maps the input to the interval (0,1).

(n) 	1 + e -n

- jL LlllR,~

\II 2'. R 00 -

50

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Conclusion
	References
	Appendix

