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ABSTRACT 

Neural networks (NNs), as artificial intelligence 

methods, have become very important in making stock market 

predictions. Much research on the applications of NNs for 

solving business problems have proven their advantages over 

statistical and other methods that do not include Al, although 

there is no optimal methodology for a certain problem. The 

system has been trained with the Standard & Poor (S&P) 500 

composite indexes of past twelfth years. It can be concluded 

from analysis that NNs are most implemented in forecasting 

stock prices, returns, and stock modeling, and the most 

frequent methodology is the Backpropagation algorithm. 

Inspite of many benefits, there are limitations that should be 

investigated. 

Stocks are commonly predicted on the basis of daily 

data, although some researchers use weekly and monthly data. 

Additionally, future research should focus on the examinations 

of other types of networks that were rarely applied, such as 

Hopfiled's, Kohonen's, etc. This data prediction can be used in 

weather forecasting also. End user for this data prediction, 

either the stockbroker or else who wants to predict the future 

record, based on the past data, but the key to all applications 

though, is how we present and enhance data, and working 

through parameter selection by trial and error. 
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Chapter 1 

INTRODUCTION 

Stock market prediction is believed to be a very difficult task. Huge amount of 

immeasurable and unknown variables, unknown relationships between those variables 

and relative small number of observations makes stock market prediction as a complex 

problem. At this moment, no fixed trading rule provides an everlasting profit from stock 

market. Since stock investment is a popular way to achieve a great amount of return in a 
short time period, many people like to find out a successful method to beat stock markets. 

Serious people will treat this complex prediction task in a scientific way because 

an efficient stock market prediction method is possible to gain several millions of money 

or more. Then they are very careful at the prediction algorithm construction and try to 

reduce faults as much as possible within the entire process. Around the financial world, 

many scientific stock market prediction methodologies are commonly used and they are 

derived by some different approaches. The first approach is to study economic and 

industrial conditions about organizations. Fundamental analysis is a popular method 

based on this approach. To cut the matter short, this methodology is to study 

organization's accounting information, such as revenues, earnings, debt ratio, return on 

equity and profit margins, to determine the underlying value and the future potential of 

organization, as the future trend about stock prices [13]. However, investors cannot 

obtain those figures easily or it can be said investors require costs for getting those kinds 

of information because some information is said to be confidential for view of 

organization. Another prediction approach is to study past organization stock prices and 

related data to determine the future stock prices. Technical and diagrammatic analyses 

are based on this approach. In addition, same data can treat as different ways, such as 

stock price time series and stock chart patterns. Therefore, financial experts have ever 

suggested many prediction indicators and patterns to try to achieve prediction task. As 

many experts usually use past stock price data to interpret the future trend of stock price, 

statistical approach becomes a popular forecasting methodology. Regression and time-

series analyses are typical methods. However, those methods assume linear model 
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property and stock prices always do not satisfy this property. Then it is difficult to 

achieve success on. stock market prediction by those methods. A new generation of 

methodologies, including neural networks, expert systems, chaos theory and genetic 

algorithms, have attracted attention for stock market prediction. In particular, neural 

network approach is being used extensively. Human brain consists of a huge number of 

neurons. Those neurons are connected by axons and they combine into a network called 

'biological' neural network. An 'artificial' neural network is a computational system 
simulating the activities and properties of a biological neural network. In simple words, 

an artificial neural network is a collection of artificial neurons, connected through links 

called connections. The aim of an artificial neural network is to achieve the ability of a 

biological neural network, that is, performing pattern recognition, classification, 

memorization and complex problem solving. Neural networks are generally regarded as 

'black boxes'. Since actual model structures are not known, raw data is submitted into 

neural networks and training process will be applied to the networks. Then the networks 

will have recognition ability for patterns at the same problem domain [4]. The aim of 

project is to construct stock market trading and to maximize the profit by applying neural 
network principle. 

1.1 	Objective 
The objective of project is to try to apply neural network approach to find out 

some patterns to appear increases or decreases of data for e.g. stock price levels and 
financial forecasting. 

1.2 Artificial Neural Systems 
In order to understand how an artificial neural network functions, we must 

understand the biological neural network first. The human brain is a vast communication 

network in which around 100 billion brains cells called neurons are interconnected to 

other neurons. Each neuron contains a soma, nucleus, axon, yet they don't play an 

important role in receiving and outputting electrical impulses. Each neuron has several 

dendrites, which connect to other neurons, and when a neuron fires (sending electrical 

impulse), a positive or negative charge is sent to other neurons. When a neuron receives 
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signals from other neurons, spatial and temporal summation occurs where spatial 

summation converts several weak signals into a large one, and temporal summation 

converts a series of weak signals from the same source into a large signal. The electrical 

impulse is then transmitted through axon to terminal buttons to other neurons. The axon 

hillock plays an important role because if the signal is not strong enough to pass through 

it, no signal will be transmitted. The terminal buttons shown on figure 1.1 are connected 

to other neurons or muscle cells. 

Axon hillock 

soma 	Axon 

f a;' 
D endfite 	 Nucleus 

buttons 
Schematic of biological neuron. 

Figure 1.1: Schematic of biological neuron 

The gap between the two neurons is called the synapse. The synapse also 

determines the "weight" of the signal transmitted. The more often a signal is sent through 

the synapse, the easier it is for the signal to be sent through. In theory, this is how humans 

memorize or recognize patterns; which is why when humans practice certain tasks 

continuously, they become more familiar or used to the tasks [18]. 

Because the neural network mimics the biological neural network, an ANN has to 

resemble essential parts of a BNN, such as neuron, axons, hillock and The output of each 

neuron in the figure 1.2 is the sum of all the inputs multiplying the weights plus the offset 

value and through a non-linear function 
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Axons Synapsas Dendrites Body 

X 	 ~ 

~. 	 .Non.trr~earity 

	

I puts 	Weights 	tya_ 
From Application of Neural Networks 

BEaA: 

Figure 1.2: Clearly demonstrates parts of a BNN in terms of ANN. 

1.3 Scope 
This data prediction can be used anywhere where we have past data and we want 

to know the future value. Like weather forecasting etc. The key to all applications 

though, is how we present and enhance data, and working through parameter selection by 

	

trial and error. 	 - 

1.4 Problem Definition 
Many strategies and methodologies were put forward for data prediction. 

However, no fixed trading rule provides everlasting profits. So I would like to use 

scientific methods. Around the financial world, fundamental and technical analyses are 

popular methods to determine when to buy or sell. The aim of fundamental analysis is to 

determine the future trends of data value by studying everything from the economy and 

industry conditions. Usually, revenues, earnings, debt ratio, return on equity, profit 

margins are used to determine an organization's underlying value and potential for future 

growth, as financial forecasting and its trend. However, investors cannot obtain the 

accurate figures anytime. They always estimate by organization's annual report and study 

the economy or industry conditions. Then it becomes a qualitative framework and the 

forecast accuracy cannot be evaluated in a scientific way. The aim of technical analysis is 

to determine by recognizing patterns on financial data or statistical indicators by past 
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financial data prices and volumes[ 15]. It is a quantitative methodology. Nowadays, plenty 

of indicators and patterns are recommended to apply to predict data. Analogue to 

fundamental analysis, distinct chartists always provide opposite views for the same 

financial, by different kinds of indicators or patterns. So an 'honest' strategy is required 

for most of investors and artificial neural network is a reasonable methodology to predict 

financial data because neural networks can be trained with raw data to product outputs or 

classify raw data without knowledge or understanding the model structure. Thus, in this 

project, I would like to study the data prediction using neural network. 

1.5 Organization of Dissertation 
We shall see below the brief description of the chapter in the Thesis Report. 

Chapter 2 Describe the Literature Survey for Data Prediction. 

Chapter 3 This section presents a concept for building a trading scheme. A number of 

guidelines are suggested. 

Chapter 4 Describe the Artificial Neural Network to understand how an artificial neural 

network functions. 

Chapter 5 Describe the Data Selection, how preprocessing is done, which is very 

important in most of the neural network model. 

Chapter 6 Gives the Implementation Details, gives the functions which is used in the 

program also shows the data flow diagram. 

Chapter 7 Gives the Training and Testing Result and discusses the Benefits and 

limitations of Neural Network. 

Chapter 8 Includes the Conclusion and Future Scope. 
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Chapter 2 

LITERATURE SURVEY FOR DATA PREDICTION 

A famous principle called Efficient Market Hypothesis (EMH). In the weak form 

of EMH, current stock price has reflected all information about past prices. That is, past 

stock prices are not useful for forecasting future trend and the movements of stock prices 

are unpredictable. If EMH holds, nobody can gain benefit in the stock market and the 

stock market forecast performance will be not better than random guesses[l1]. Seiler et 

al. [ 12] performed some time series analysis for all stocks listed on New York Stock 

Exchange. They concluded stock prices are followed random walk model. Although 

EMH was held in many papers, many people proposed new methods to "beat" the stock 

market. Mathematicians used principles of statistics to predict stock prices. Time series is 

a traditional and reasonable methodology. Traditional statistic principle assumes the 

model is linear and normally distributed. As EMH holds, random walk model is 

identified which the next period stock price is just the current price plus an unpredictable 

white noise (sometimes with a positive or negative expected return). However, Aparicio 

et al. [1] stated that stock prices are not normally distributed. So classic statistic approach 

may not be applicable at chaotic financial market. Technical and diagrammatic analyses 

are popular prediction approaches to study past stock prices and related data to determine 

the future stock price trend. In practical, financial experts recommend many indicators. 

Moving average and relative strength index (RSI) are the most commonly used. The 

former one is based on a statistical topic called time series analysis and the latter one is 

not recommended by its discover. However, Jones [9] stated that rules for making 

decisions from charts are not unique. As many different patterns are used and patterns are 

difficult to be accurately recognized, the techniques are inconclusive. Many articles 

applied neural network approach to forecast stock market and had a good performance. A 

neural network paradigm called multi-layer perceptrons or Feedforward network is 

commonly used for many studies. Chenoweth et al. [2] built up stock prediction models 

applying buy-and-hold strategy, neural network and technical analysis knowledge 
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respectively. The best result among models was the system applying neural networks. 

Zekic [ 15] performed a survey for comparing effectiveness of different neural network 

approaches. 12 representative papers were chosen to analyze their problem domain, 

model and forecasting performance. The comparisons showed that stock market 

prediction using neural networks outperform other statistical models. Also, MLP with 

backpropagation training algorithm and data pre-processing performs good results. The 
correctness was about 70-100%. Multi-layer perceptrons look like a nice approach for 

stock market prediction by experiment results of many papers. However, de la Maza [4] 

criticized application of MLP for financial time series prediction. They reported sum-

squared-like errors were not good measures and they suggested Sharpe ratio as the 
measure for financial application, which the objective is to maximum investment profit. 
De Bodt et al. held similar paper [3] that they applied theories of statistics and suggested 
price returns as expected model outputs, not stock prices. Diagrammatic analysis is a 
commonly used technical analysis methodology. Its aim is to identify specific patterns to 

represent the future trend of stock prices. Since the pattern recognition is subjective, 

some researchers suggested an unsupervised neural network paradigm called self- 

organizing maps (SOM) to achieve this task. Kohonen [16] developed self-organizing 

map to transform an arbitrary dimensional input data into lower dimensional (one or two) 

graphs to represent similarity without specifying output classes. Kaski [ 10] stated SOM 

can be used to perform a K-means clustering application. Deboeck [5] demonstrated an 

application of mutual fund selection by applying appropriate data into a SOM. 

Experiment results showed that SOM classification could reduce labor effort at 
classification process, which is working by fund managers. Fu, Chung and Luk [8] used 

self-organizing maps to recognize stock time series patterns. Good results are obtained by 

time series from Hong Kong Hang Seng Index. 
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Chapter 3 

TRADING SCHEME 

This section presents a concept for building a trading scheme. A number of 

guidelines are suggested. In addition, to construct an efficient and effective trading 

scheme, systematic approaches are used and software development life cycle approach is 

recommended to use. 

3.1 Mechanic Concepts 
In order to yield a huge amount of profit and avoid risks from financial market, a 

scientific and systematic approach is recommended. Here some design rules were refined: 

The first rule is simplicity. As distinct financial experts recommended many different 

kinds of technical indicators, fundamental data and chart patterns, excess number of 

decision rules will lead to conflicts and common investors are difficult to judge by 

opposite decisions from different indicators. The second guideline is quantification. An 

ordinal and numerical measure can lead to many advantages. Obvious, mathematical 
knowledge can be applied for quantitative measurement. Another point is the forecast 

performance of quantitative methods can be evaluated easily by applying mathematics. 

After this, clarity is another keyword for a good trading scheme. The meaning is quite 

similar to that of simplicity but their focuses are different. Simplicity concentrates on the 

rules to make decision and clarity focuses on the result representation after decision 

making. The trading signals must be as simple as possible because this reduces efforts for 

system users to make trading decisions. Relative Strength Index (RSI) is an example to 

show the importance of clear signals. It is an oscillating indicator discovered by Wilder. 

It ranges from 0 to 100 and represents the status of stock. Large RSI value means the 

stock is overbought and small RSI value indicates the stock is oversold. By inspection, 

investors must buy stocks at RSI value is small and sell them at a large RSI value. 

However, different sets of values are recommended by different experts, e.g. 30/70, 

20/80, 30/80. This leads to confusion for investors that they cannot make decisions when 

the RSI value lies between 20 and 30, or between 70 and 80. Then faults will be made 
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easily and consequently investors become losers. Consequently, a good trading scheme 

only includes clear indicators for buying and selling. Another consideration for designing 

a trading scheme is robustness. A well-established trading scheme must adapt different 

conditions, such as time periods and financial markets. It is very important because the 

trading scheme must keep its profit making performance consistently over time. 

Otherwise, investors will face a risk of system unpredictability. In addition, lack of 

robustness makes investor to build different plans for different stocks and this increases 

their efforts [ 12]. 

3.2 System Development Life Cycle 
Similar to software development, trading scheme construction is also an 

engineering work and a systematic approach can achieve a qualified deliverable, i.e. 

effective and efficient trading scheme. To make it simpler, a four-phase model is 

introduced. This is linear sequential model see Figure 3.1. 

3.2.1 Investigation 
At the beginning, studies about financial markets must be held. The objectives of 

the trading scheme must be defined in a quantitative view. Also, data collection must be 

performed such as financial data like stock price sequences. After enough information is 

obtained and reviewed, a feasibility test may be conducted to make go or not-go decision. 

3.2.2 Design 
The objective of design is to construct a trading scheme design by the information 

gathered by the investigation stage. A trading scheme design may include several 

components, including 'input attributes, model architecture, operation procedures and 

trading signal interpretation. 

3.2.3 Implementation 
The aim of this stage is to translate the trading scheme design into a workable 

system. For computerized trading schemes, programming is the primary activity in the 
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implementation stage. If the system can be performed manually, the procedure must be 

well defined and structured for convenience at use. 

3.2.4 Evaluation 
Once the system is implemented, it can be tested. Two phases are included in 

evaluation stage: 'code' testing and performance evaluation. The former phase consists of 

validation and verification processes to guarantee the system is correctly implemented. 

The later one is to fit some real data into the system to find out the system performance 

and behaviors. So, evaluation criteria must be predefined. 

Investigation 	 Design / Implementation 	 Evaluation 

Figure 3.1: Linear Sequential Model 
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Chapter 4 

ARTIFICIAL NEURAL NETWORK 

A Neural Network is an interconnected assembly of simple processing elements, 

units or nodes, whose functionality is loosely based on the animal neuron. The processing 

ability of the network is stored in the inter-unit connection strengths, or weights, obtained 

by a process of adaptation to, or learning from, a set of training patterns. 

4.1 Single and Multi-layer Perceptrons 
A perceptron is a simple neural network model introduced by Frank RosenBlatt in 

1958.A single layer perceptron is used to classify an input vector into several classes. In 

a single layer perceptron, the input values and activation level of the perceptron are either 

—1 or 1; weights are real-valued (between 0 and 1). The activation level is given by 

summing the weighted input values Ex;wi. Perceptrons use a simple hard-limiting 

threshold function, where activation above a threshold results in an output value of 1, and 

—1 otherwise. 

Perceptron output = sign(Exiwi) 

= 1 if Ex1w1 >= t 

= -1 if Ex1w1  <= t 

The perceptron uses a simple form of supervised learning. The way a perceptron 

learns to distinguish patterns is through modifying its weights to reduce error. The 

adjustment for the weight Ow; on the its' component of the input vector is given by: 

Ow; = c x; 8 

where c = learning rate 

d = desired output 

S = (desired output) — (actual output) = d — sign(Ex;w;) 

Single layer perceptrons can only solve problems where the solutions can be 

divided by a line (or hyperplane). The classes to be distinguished should be linearly 
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separable. Therefore, a single layer perceptron cannot express non-linear decisions like 

the XOR problem. Single layer perceptron is shown in figure 4.1. 

Outputs 

Inputs 

Figure 4.1: Single-layer Perceptron 

Multi-layer perceptions are feed-forward nets with one or more layers of nodes 

between the input and output nodes. These additional layers contain hidden units or 

nodes that are not directly connected to both the inputs and outputs. Multi-layer 

perceptions overcome many of the limitations of the single layer perceptions. Multi layer 

perceptron is shown in figure 4.2. The capabilities of multi-layer perceptions stem from 

the non-linearity used within nodes. In multi-layer networks, when adjusting a weight 

anywhere in the network, one has to be able to tell what effect this will have on the 

overall effect of the network. To do this, one has to look at the derivative of the error 

function with respect to that weight. 

Z 

ti 



outputs 

Output layer 

Hidden layers 
Input layer 

Inputs 

 

Figure 4.2: Multi-layer Perceptron 

The most popular continuous activation function used within backpropagation 
nets is the sigmoid function or the logistic function given by the equation: 

f(net) = 1 / (1 + e*1et), where net = Ex;wl 

The shape of the sigmoid function is shown in the figure 4.3. As X (called the 

squashing parameter) gets large, the sigmoid function approaches a linear threshold 

_~ 

	

	.function-over—{0, 1-}—as i-t gets-closer too-,-it approaches a straight l-ine. T-his-activativn- 

function is non-linear, scaled and differentiable. 
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f(X) = 1/(1+ e-") 

Figure 4.3: Sigmoid Function 

4.2 Backpropagation Neural Network 
The backpropagation algorithm is perhaps the most widely used supervised 

training algorithm for multilayered feedforward networks. The backpropagation training 

algorithm is an iterative gradient algorithm designed to minimize the mean square error 

between the actual output of a multilayer feedforward perception and the desired output. 

In the backpropagation algorithm, a feedforward phase is first done on an input pattern to 

calculate the net error. Then, the algorithm uses this computed output error to change the 

weight values in the backward direction. The error is slowly propagated backwards 

through the hidden layers - and hence its name. Errors in the output determine measures 

of hidden layer output errors, which are used as a basis for adjustment of connection 

weights between the input and hidden layers. Adjusting the two sets of weights between 

the pairs of layers and recalculating the outputs is an iterative process that is carried on 

until the errors fall below a tolerance level. Learning rate parameters scale the 

adjustments to weights. A momentum parameters can also be used in scaling the 

adjustments from a previous iteration and adding to the adjustments in the current 

iteration. The feedforward backpropagation network maps the input vectors to output 

vectors. It does not have feedback connections, but errors are backpropagated during 

training. Pairs of input and output vectors are chosen to train the network first. Once 

training is completed, the weights are set and the network can be used to find outputs for 

new inputs. The dimension of the input vector determines the number of neurons in the 

input layer, and the number of neurons in the outputs layer is determined by the 

4 
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dimension of the outputs. If there are k neurons in the input layer and m neurons in the 
output layer, then this network can make a mapping from k-dimensional space to m-

dimensional space. Mapping is depends on pair of patterns or vectors are used as 
exemplars to train the network, which determine the network weights. Once trained, the 
network gives you the image of new input vectors under this mapping. 

The architecture of Feedforward backpropagation network is shown in Figure 4.4. 

The number of neurons in the input layer and . output layer are determined by the 

dimensions of the input and output patterns, respectively. There can be many hidden 

layers. here illustrate with only one hidden layer. It is not easy to determine how many 
neurons are needed for the hidden layer. Figure 4.4 show with five input neurons, three 
neurons in the hidden layer, and five output neurons, with a few representative 
connections. 

W 12/ W 13 	W 14 / J' Field A(Output layer) 

W11\ I / / W34 	W3 

Field B(Hidden layer) 
W2 

W226 W31 \0 W41b W51~ W53 
Field C(Input layer.) 

Figure 4.4: Layout of a Feedforward Backpropagation Network 

The network has three fields of neurons: one for input neurons, one for hidden 
processing elements, and one for the output neurons. As already stated, connections are 
for feed forward activity. There are connections from every neurons in field A to every 
one in field B, and, in turn,, from every neuron in field B to every neuron in field C. 

Thus, there are two sets of weights, those figuring in the activation of hidden layer 
neurons, and those that help determine the output neuron activation. In training, all of 
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these weights are adjusted by considering cost function in terms of the error in the 

computed output pattern and the desired output pattern. 

The feedforward backpropagation network undergoes supervised training, with a 

finite number of pattern pairs consisting of an input pattern and a desired or target output 

pattern. An input pattern is presented at the input layer. The neurons here pass the pattern 

activation to the next layer neurons, which are in a hidden layer. The outputs of the 

hidden layer neurons are obtained by using perhaps a bias, and also a threshold function 

with the activation determined by the weights and the inputs. These hidden layer outputs 

become inputs to the output neurons, which process the inputs using an optional bias and 

a threshold function. The final output of the network is determined by the activation from 

the output layer. 

The computed pattern and the input pattern are compared, a function of this error 

for each component of the pattern is determined, and adjustment to weights of 

connections between the hidden layer and the output layer is computed. A similar 

computation, still based on the error in the output layer, is made for the connection 

weighs between the input and hidden layers. The procedure is repeated with each pattern 

pair assigned for training the network. Each pass through all the training patterns is called 

a cycle or an epoch. The process is then repeated as many cycles as needed until the error 

is within a prescribed tolerance. 

4.3 Learning and Training 
A neural network maps a set of inputs to a set of outputs. This nonlinear mapping 

can be thought of as a multidimensional mapping surface. The objective of learning is to 

mold the mapping surface according to a desired response, either with or without an 
explicit training process. 

A network can learn when training is used, or the network can also in the absence 

of training. The difference between supervised and unsupervised training is that, in 

supervised training, external prototypes are used as target output for specific 

inputs, and the network is given a learning algorithm to follow- and calculate new 

connection weights that bring the output closer to the target output. Unsupervised 

learning is the sort of learning that takes place without a teacher. Here learning algorithm 
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may be given but target outputs are not given. In, such a case, data input to the network 

gets clustered together; similar input stimuli cause similar responses. 

When a neural network model is developed and an appropriate learning algorithm 

is proposed, it would be based on the theory supporting the model. The learning 

equations are initially formulated in terms of differential equations. After solving the 

differential equations, and using any initial conditions that are available, the algorithm 

could be simplified to consist of an algebraic equation for the changes in the weights. 

The delta rule is also known as the least mean squared error rule (LMS). We first 

calculate the square of the errors between the target or desired values and computed 

values, and then take the average to get the mean squared error. This quantity is to be 

minimized. For this, realize that it is a function of the weights themselves, since the 

computation of output uses them. The set of values of weights that minimizes the mean 

squared error is what is needed for the next cycle of operation of the neural network. So 

the delta rule, which is also the rule used first by Widrow and Hoff, in the context of 

learning in neural networks, is stated as an equation defining the change in the weights to 

be affected. 

- 	Suppose we fix our attention to the weight on connection between the ith neuron 

in one layer and jth neuron in the next layer. At time t, this weight is Wij(t). After one 

cycle of operation, this weight becomes Wij(t+l). The difference between the two is 

Wij(t+l) — Wij(t), and is denoted by AWij as: 

AWij = 2AXi (desired output value — computed output value)j 

Here, is the learning rate, which is positive and much smaller than 1, and Xi is the ith 

component of the input vector. 

The actual derivations for the different formulas used in the backpropagation 

algorithm come from the generalized delta rule. The delta rule is based on the idea of the 

error surface. The error surface represents cumulative error over a data set as a function 

of the network weights. Each possible network weight configuration is represented by a 

point on this error surface. By taking the partial derivative of the network error with 

respect to each weight we will learn a little about the direction the error of the network is 

moving. In fact, if we take the negative of this derivative (i.e.the rate change of the error 

as the value of the weight increases) and then proceed to add it to the weight, the error 
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will decrease until it reaches a local minimum. The taking of these partial derivatives and 

then applying them to each of the weights, takes place starting from the output layer to 

hidden layer weights, then, from the hidden layer to input layer weights [18]. 

AA 
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Chapter 5 

DATA SELECTION 

5.1 Choosing the Output and Objective 
Our objective is to forecast the S&P 500 ten weeks from now. The output we 

choose is the change in the S&P 500 from the current week to 10 weeks from now as a 
percentage of the current week's value. 

5.2 Choosing the Inputs 
The inputs to the network need to be weekly changes of indicators that have some 

relevance to the company index. Here we choose a data set that represents the state of the 

financial markets and the economy. The inputs chosen are listed as: 

♦ Previous price action in the company index, including the close or final value 

of the index. 

♦ Breadth indicators for the stock market, including the number of advancing 

issues and declining issues for the stocks in the New York Stock Exchange 

(NYSE). 

+ Other technical indicators, including the number of new highs and new lows 

achieved in the week for NYSE market. This gives some indication about the 

strength of an uptrend or downtrend. 

♦ Interest rates, including short-term interest rates in the Three-Month Treasury 

Bill Yield, and long-term rates in the 30-year Treasury Bond Yield. 

The input and output layers are fixed by the number of inputs and outputs we are 

using. In our case, the output is a single number, the expected change in the company 

index 10 weeks from now. The input size will be dictated by the number of inputs we 

have after preprocessing. 
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5.3 Preprocessing Data 
Four substeps in the area of preprocessing [2] 

♦ Highlight Features 

♦ Transform 

♦ Scale and bias 

♦ Reduce Dimensionality 

5.3.1 Highlighting Features in the Input Data 
One should present the neural network, as much as possible, with an easy way to 

find patterns in our data. For time series data, like stock market prices over time, one may 

consider presenting quantities like rate of change as example. Other ways to highlight 

data is to magnify certain occurrences. For example, if you consider Central bank 

intervention as an important qualifier to foreign exchanges rates, then you may include as 

an input to your network, a value of 1 or 0, to indicate the presence or lack of presence of 

Central bank intervention. 

5.3.2 Transform the data If Appropriate 
For time series data, we may consider using a Fourier transform to move to the 

frequency-phase plane. This will uncover periodic cyclic information of it exists. The 

Fourier transform will decompose the input discrete data series into a series of frequency 

spikes that measure the relevance of each frequency component. If the stock market 

indeed follows the so-called January effect, where prices typically make a run up, then 

you would expect a strong yearly component in the frequency spectrum. 

5.3.3 Scale your Data 
Neurons like to see data in a particular input range to be most effective, if we 

present data like the S&P 500 that varies 200 to 550 will not be useful. We should choose 

data that fit a range that does not saturate, or overwhelm the network neurons. Choosing 

inputs from —1 to 1 or 0 to I is good idea. 
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to zero input will mean that the weight will not participate in learning. To avoid such 

situations, we can add a constant bias to our data to move the data closer to 0.5, where the 

neurons respond very well. 

5.3.4 Reduce Dimensionality 
We should try to eliminate inputs wherever possible. This will reduce the 

dimensionality of the problem and make it easier for neural network to generalize. 

Suppose that we have three inputs, x, y, z and one output, o. now suppose that we find 

that all of our inputs are restricted only to one plane. We could redefine axes such that we 

have x' and y' for the new plane and map your inputs to the new coordinates. This 

changes the number of inputs to our problem to 2 instead of 3, without any loss of 

information. Here we have so 22 fields in the raw data. 

There are a couple of ways we can start preprocessing the data to reduce the 

number of inputs. 

♦ Use Advances/Declines ratio instead of each value separately. 

♦ Use New Highs/New Lows ratio instead of each value separately. 

Finally we have following fields: see table 5.1 

1. Three-Month Treasury Bill Yield 

2. 30-Year Treasury Bill Yield 

3. NYSE Advancing/Declining issues 

4. NYSE New Highs/New Lows 

5. Company closing price 

Presently we have data available for the period from January 1980 to December 1992. 
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Date 3 MoTBills 30 yrTBonds NYSE 

Adv./Dec 

NYSE 

NewH/NewL 

Closing Price 

1/4/80 12.11 9.64 4.209459 2.764706 106.52 

1/11/80 11.94 9.73 1.649573 21.28571 109.92 

1/18/80 11.9 9.8 0.881335 4.210526 111.07 

1/25/80 12.19 9.93 0.793269 3.606061 113.61 

2/1/80 12.04 10.2 1.16293 2.088235 115.12 

2/8/80 12.09 10.48 1.338415 2.936508 117.95 

2/15/80 12.31 10.96 0.338053 0.134615 115.41 

2/22/80 13.16 11.25 0.32381 0.109091 115.04 

2/29/80 13.7 12.14 1.676895 0.179245 113.66 

3/7/80 15.14 12.1 0.282591 0 106.9 

3/14/80 15.38 12.01 0.690286 0.011628 105.43 

3/21/80 15.05 11.73 0.486267 0.027933 102.31 

3/28/80 16.53 11.67 5.247191 0.011628 100.68 

4/3/80 15.04 12.06 0.983562 0.0117647 102.15 

4/11/80 14.42 11.81 1.565854 0.0310345 103.79 

4/18/80 13.82 11.23 1.113287 0.146341 100.55 

4/25/80 12.73 10.59 0.849807 0.473684 105.16 

Table 5.1: A sample of a few lines looks the following data. 

5.4 Highlight Features in the Data 
For each of the five inputs, we want use a function to highlight rate of change 

types of features. We will use the following function (Proposed by Junk) for this 

purpose. 
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Where: input (t) is the input's current value and BA (t-n) is a five unit block 

average of adjacent values centered around the value n periods ago. 

Below table 5.2 after doing the block averages 

Example: BA3MOBi11s for 1/18/80 = (3MoBills(1/4/80) + 3MoBills(1/11/80) + 

3MoBills(1/18/80) + 3MoBills(1/25/80) + 3MoBills(2/l/80)) / 5. 

Date ROC3 

Mo 

ROC3 Bond ROC3 

AID 

ROCS 

H/L 

ROC3SP 

C 

ROCIO 

3Mo 

ROC1O_B 

nd 

ROC1O_ 

AD 

ROC10_ 

H/L 

ROC10_ 

SP 
1 /4/80 

1/11/80 

1(18/80 

1/25/80 

2(1/80 

2/8/80 0.002238 0.030482 -0.13026 -0.39625 0.02924 

2/15/80 0.011421 0.044406 -0.55021 -0.96132 0.008194 

2/22/80 0.041716 0.045345 -0.47202 -0.91932 0.001776 

2/29/80 0.0515 0.069415 0.358805 -0.81655 -0.00771 

3/7/80 0.089209 0.047347 -0.54808 -1 -0.03839 

3/14/80 0.073273 0.026671 -0.06859 -0.96598 -0.03814 

3/21/80 0.038361 0.001622 -0.15328 -0.51357 -0.04203 

3/28/80 0.065901 -0.00748 0.766981 .0.69879  -0.03816 0.15732 0.048069 0.502093 -0.99658 -0.04987 

4/3180 -0.00397 0.005419 -0.26054 0.437052 -0.01753 0.111111 0.091996 -0.08449 -0.96616 -0.05278 

4/11/80 -0.03377 -0.00438 0,008981 0.803743 0.001428 0.87235 0.069553 0.268589 -0.78638 -0.04964 

4/18/80 -0.0503 -0.02712 -0.23431 0.208545 -0.01141 0.055848 0.030559 0.169062 -0.84766 -0.06888 

4/25/80 -0.08093 -0.0498 -0.37721 0.58831 0.015764 0.002757 -0.01926 -0.06503 -0.39396 -0.04658 

Table 5.2: Data after Highlight Feature 

5.4.1 Normalizing the Range 

We now have values in the original five data columns that have a very large 

range. we have to reduce the range by some method. We use the following function: 

New value = (old value - Mean) /(Maximum Range) 

5.4.2 The target 
The objective is that predicts the percentage change 10 weeks into the future. 

We need to shift the S&P 500 10 weeks back, and then calculate the value as percentage 

change as follows: 

Result = 100 * ((S&P 10 weeks ahead) - (S&P this week)) / (S&P this week) 
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This gives the value that varies between -14.8 to and + 33.7. This is not in the 

form we need yet. The output comes from a sigmoid function that is restricted to 0 to +1. 

We first add 14.8 to all values and then scale them by a factor of 0.02. This will result in 

a scaled target that varies from 0 to 1. 
Scaled target = (result + 14.8) * 0.02 

The final data file with the scaled target shown along with the scaled original six 

columns of data is shown in below table 5.3. 

DATE S_3MOBI 

LL 

S LNGB 

ND 

SAID S_H/L S_STC RESULT SCALE 

TARGET 

3/28/80 0.534853 -0.01616 0.765273 -0.07089 -0.51328 12.43544 0.544709 

4/3/80 0.391308 0.055271 -0.06356 -0.07046 -0.49236 12.88302 0.55366 

4/11/80 0.331578 0.009483 0.049635 -0.06969 -0.46901 9.89498 0.4939 

4/18/80 0.273774 -0.09674 -0.03834 -0.07035 -0.51513 15.36549 0.60331 

4/25/80 0.168365 -0.21396 -0.08956 -0.06903 -0.44951 11.71548 0.53031 

Table 5.3: Normalized ranges for original columns and scaled target. 

After getting the. output we need to un-normalize the data back to get the answer 

in terms of the change in the S&P 500 index. 
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Chapter 6 

DATA PREDICTION AND IMPLEMENTATION DETAILS 

In this chapter, we shall make an attempt to implement neural nets. The model 

that has been implemented as neural network for data prediction, which is based on 

backpropagation algorithm. 

Algorithm: 

(1) Initialize weights and offsets: 
Set all weights and node biases to small random values. 

(2) Present input and desired outputs: 
Present a continuous valued input vector x0, x1, ..., xN_1 and specify the 

desired outputs do, dl, ... , dM_l. If the net is used as a classifier, then all desired 

outputs are typically set to 0 except for that output corresponding to the class the 

input is from, which is set to 1. The input could be new on each trial 

(3) Calculate actual outputs: 
Use the following formulas to calculate outputs 01, 02,..., OM_1 of every 

neuron in the network. 

O; = f(Ex;w; + b,) 

f(y) = 1 / (1 + 
Where x -~ input vector, w -  weight vector denoting to weights linking the 

neuron unit to the previous neuron layer, b -~ bias vector, ), -~ squashing 

parameter. 

(4) Adapt weights: 
Use a recursive algorithm starting at the output nodes and working back to 

the first hidden layer. This has many sub-steps. 
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Step a: Compute the sum-squared error of the network. 

Error = V2  Ei s outputs (di _ Oi)2  

Step b: Calculate the error term of each neuron in the output layer, 

Si  = Oi  (1 — Oi) (di — Oi) 

Step c: Calculate the error term of each neuron in the hidden layer, 

Si  = Oi (1 — Oi) Ej 3 wij 

where, j is the index of the nodes in the next layer to which i's 

signals fan out. 

Step d: Compute the weight deltas. 9 is the learning rate. 

A low learning rate can ensure more• stable convergence. A high 

learning rate can speed up convergence in some cases. 

AWki = Ti sk xki 

where wki is the weight from the hidden (or input) node k to node i. 

Step e: Add the weight deltas to each of the weights 

Wki(t±1) — wki(t) + Owki 

where t denotes the iteration step. 

(5) Repeat by going to step 2. 

The following are definitions in the layer base class. Here number of inputs and 

outputs are protected data members, which means that they can be accessed by 

descendants of the class. 
int num_inputs; 

int num=outputs; 

float *outputs; 

float *inputs; 

friend network; 

A layer contains neurons and weights. The layer is responsible for calculating its 

output (calc_outO) , and errors (calc_errorO) for each of its respective neurons. The input 

class does not have any weights associated with it and therefor is a special case. It does 

not need to provide any data members or function members related to errors or 
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backpropagation. The only purpose of the input layer is to store data to be forward 

propagated to the next layer. With the output layer, there are a few more arrays present. 

First for storing backpropagated errors. There is a weight array and finally, for storing the 

expected values that initiates the error calculation process. The network class is used to 

set up communication channels between layers and to feed and remove data from the 

network. The network class performs the interconnection of layers by setting the pointer 

of an input array of a given layer to the output array of a previous layer. The network 

class is also responsible for setting the pointer of an output_error array to the back error 

array of the next layer. 

Adding momentum term sometimes results in much faster training is the addition 

of a momentum term. The training law for backpropagation implemented as: 

Weight change = Beta * output_error * input + Alpha * previous_weight_change 

The momentum term is an attempt to try to keep the keep the weight change 

process moving. 

To enhance generalization ability introduces some noise in the inputs during 

training. A random number is added to each input component of the input vector as it is 

applied to the network. This is scaled by an overall noise factor, NF, which has a 0 to 1 

range. We don't want noise at that time when we close to a solution and have reached a 

satisfactory minimum. Another reason for using noise is to prevent memorization by the 

network. We are effectively presenting a different input pattern with each cycle so it 

becomes hard for the network to memorize patterns. 

At the top of the program, there are two #define statements, which are used to set 

the maximum number of layers that can be used, and the maximum number of training or 

test vectors that can read into an 110 buffer. This is currently 100. We can increase the 

size of the buffer for better speed at the cost of increased memory usage. Figure 6.1 show 

that the flow of the program. 

The following is a listing of the functions used in program along with a brief statement. 

31 



• void set training (const unsigned &) Sets the value of the private data member, 

training; use 1 for training mode , and 0 for test mode. 

• unsigned get_training_valueoGets the value of the training constant that gives the 

mode in use. 

• void get_layer_info () Gets information about the number of layers and layer sizes 

from the user. 

• void setup network 0 This routine sets up the connections between layers by 

assigning pointers appropriately. 

• void randomize weights () At the beginning of the training process, this routine is 

used to randomize all of the weights in the network. 

• void update weights (const float) As part of training, weights are updated according 

to the learning law used in backpropagation. 

• void write weights(FILE *) This routine is used to write weights to file. 

• void read weights(FILE *) This routine is used to read weights into the network from 

a file. 

• void list weights() This routine can be used to list weights while a simulation is in 

progress. 

• void write_outputs(FILE *) This routine writes the outputs of the network to a file. 

• void list _outputs() This routine can be used to list the outputs of the network while a 

simulation is in progress. 

• void list errors() Lists errors for all layers while a simulation is in progress. 

• void forward_propO Performs the forward propagation. 

• void backward_prop(float &) Performs the backward error propagation. 

• int fill Iobuffer(FILE *) This routine fills the internal IO buffer with data from the 
training or test data sets. 

• void set up_pattern(int) This routine is used to set up one pattern from the JO buffer 

for training. 

• inline float squash(float input) This function performs the sigmoid function. 



• inline float randomweight (unsigned unit) This routine returns a random weight 

between —1 and 1; use 1 to initialize the generator, and 0 for all subsequent calls. 

Start 

Enter lfor 
Training 

mode or 0 
for Test 
mode 

Enter Learning 
Parameter (a) and 

Enter Momentum Term (a) 
and Noise Factor (NF) 

No. Of iteration 
(CvCle 

Either read from 	 0 
saved weight file 

or randomized 	-~ Take randomized 
weight 

1 

Enter the layer of your network 

Give inputs to your network 	 Result 

End 

Figure 6.1: Flow Chart Showing the execution of program 
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Chapter 7 

RESULTS AND DISCUSSION 

7.1 Training and Testing Results 
Much of the process of determining the best parameter for this application is trial 

and error. We need to spend a great deal of time evaluating different options to find the 

best fit for our problem. We have to literally create hundreds if not thousands of networks 

either manually or automatically to search for the best solution. Many commercial neural 

network programs use genetic algorithms to help to automatically arrive at an optimum 

network. A genetic algorithm makes up possible solutions to a problem from a set of 

starting genes. Analogous to biological evolution, the algorithm combines genetic 

solutions with a predefined set of operators to create new generations of solutions, who 

survive or perish depending on their ability to solve the problem. The key benefit of 

genetic algorithms is the ability to traverse an enormous search space for a possibly 

optimum solution. 

The numbers of inputs are 15, and the number of outputs is 1. A total of three 

layers are used with the middle layer of size 5. The optimum sizes and number of layers 

is found by much trial and error. After each run, we can look at the error from the training 

set and from the test set. We obtain the error for the test set by running the program in 

Training mode for one cycle with weights loaded from the weight file. This approach has 

been taken with five runs of the simulator for 500 cycles each. 

The error gets lesser and lesser with each run up to run #4. For run#5, the training 

set error decreases, but the test set error increases, indicating the onset of memorization. 

Run#4 is used for the final network results, showing RMS error of 13.9% and training set 

error of 6.9%. If we find the test set error does not decrease much, whereas the training 

set error continues to make substantial progress, then this that memorization is starting to 

set in (run#5 in table 7.1). 
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Run# Tolerance Beta Alpha NF Max 

cycles 

Cycles 

run 

Training 

set error 

Test 	set 

error 

1 0.001 0.5 0.001 0.0005 500 500 0.150938 0.25429 

2 0.001 0.4 0.001 0.0005 500 500 0.114948 0.185828 

3 0.001 0.3 0 0 500 500 0.0936422 0.148541 

4 0.001 0.2 0 0 500 500 0.068976 0.139230 

5 0.001 0.1 0 0 500 500 0.0621412 0.143430 

Table 7.1: Summary of the results along with parameters used. 

After training mode the output file shows 

for input vector: 

-0.198290 -0.061950 -0.092800 -0.047110 0.431060 -0.003910 0.000175 -0.171230 

0.263442 0.006145 0.025126 0.004309 -0.094330 0.512339 0.007212 

output vector is: 

0.179065 

expected output vector is: 

0.174338 

It is important to monitor the test set that are used, while we are training to make 

sure that good, generalized learning is occurring versus memorization of overfitting the 

data. In the table shown, the test set error continued to improve until run#5, where the test 

set error degraded. 

After test mode the output file shows the following data. Here some of the data 

are shown because output file is too large. 

for input vector: 

-0.207920 -0.080260 -0.145350 -0.059460 0.419245 -0.008650 -0.005620 -0.358000 

-0.228550 0.002479 0.025126 -0.000530 -0.349090 -0.053160 0.003975 
output vector is: 

for input vector: 
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-0.198290 -0.100410 -0.121130 -0.063570 0.387074 -0.001790 -0.009630 -0.228080 

-0.466090 -0.006660 0.025126 -0.006030 -0.260190 -0.281140 -0.004120 

output vector is: 

0.202962 

for input vector: 
0.534853 -0.016160 0.765273 -0.070890 -0.513280 0.065901 -0.007480 0.766981 - 

0.698790 -0.038160 0.009582 0.084069 0.502093 -0.996580 -0.049870 

output vector is: 

0.566802 

for input vector: 

-0.198290 -0.061950 -0.092800 -0.047110 0.431060 -0.003910 0.000175 -0.171230 

0.263442 0.006145 0.025126 0.004309 -0.094330 0.512339 0.007212 

output vector is: 

0.179252 

Now we need to un-normalize the data back to get the answer in terms of the change in 

the S&P index. 

Steps: 	 . a 

1. Take the predicted scaled target value and calculate, the result value as 

Result = (Scaled target/0.02) - 14.8 

2. Take the result from above ( which is the percentage change 10 weeks 

from now) and calculate the projected value, Projected S&P 10 weeks 

from now = (This week's S&P value) (1+ Result/100) 

Example: In this case I got the Scaled target 0.551020 for the date 03/28/80(mm-dd-yy). 

Then for un-normalize put the value in step 1, after calculating I got the Result = 12.75. 

For calculating the projected value we put the result in step 2. Here I have taken the S&P. 

closing price for the date 04-03-80, which is 102.15 and after 10 week which is 06-13-80 

closing price is 115.31.so put the value in step 2, which follows: 
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Projected (04-03-80) S&P 10 weeks from now = (102.15) (1+ 12.75/100) 

= 115.17 
which is equivalent to (06-13-80) S&P projected value. 

7.2 Traditional Statistical Approach Pitfalls 

Proper evaluation is critical to a prediction system development. First, it has to 

measure exactly the interesting effect, e.g. trading return, as opposed to prediction 

accuracy. Second, it has to be sensitive enough as to distinguish often-minor gains. Third, 
it has to convince that the gains are no merely a coincidence. 

7.2.1 Evaluate the right thing 
Financial forecasts are often developed to support semi-automated trading 

(profitability), whereas the algorithms underlying those systems might have different 
objective. Thus, it is important to test the system performing in the setting it is going to 

be used, a trivial, but often missed notion. Also, the evaluation data should be of exactly 

the same nature as planned for real-life application, e.g. index-futures trading performed 

for index data used as a proxy for futures price, but real futures data degraded it. Some 
problems with common evaluation strategies follow. 

Accuracy — percentage of correct discrete (e.g. up/down) predictions; common measure 

for discrete systems, e.g. ILP/decision trees. It values instances 'equally, disregarding both 
instance's weight and accuracy for different cases, e.g. a system might get high score 

predicting the numerous small changes whereas missing the big few. Actually, some of 

the best-performing systems have lower accuracy than could be found for that data. 

Square error — sum of squared deviations from actual outputs — is a common measure in 

numerical prediction, e.g. ANN. It penalizes bigger deviations, however if sign is what 

matters this might not be optimal, e.g. predicting -1 for -0.1 gets bigger penalty than 

predicting +0.1, though the latter might trigger going long instead of short. Square error 

minimization is often an intrinsic part of an algorithm such as ANN Backpropagation, 
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and changing it might be difficult. Still, many such predictors, e.g. trained on bootstrap 

samples, can be validated according to the desired measure and the best picked. 

Reliability — predictor's confidence in it's forecast — is equally important and difficult to 

develop as the predictor itself. A predictor will not always be confident — it should be 

able to express this to the trading counterpart, human or not. e.g. by an output 

'undecided'. No trade on dubious predictions is beneficial in many ways: lower errors, 

commissions, and exposure. Reliability can be assessed by comparing many predictions 

coming from an ensemble, as well as done in one step and multiple step fashion. 

Performance measure should incorporate the predictor and the (trading) model it is going 

to benefit. Some points: Commissions need to be incorporated — many trading 

'opportunities' exactly disappear with commissions. Risk/variability — what is the value 

of even high return strategy if in the process .one gets bankrupt? Data difficult to obtain in 

real time, e.g. volume, might mislead historic data simulation [13]. 

7.2.2 Evaluation data 
It should include different regimes, markets, even data errors, and be plentiful. 

Dividing test data into segments helps to spot performance irregularities (For different 

regimes). Overfitting a system to data is a real danger. Dividing data into disjoint sets is 

the first precaution: training, validation for tuning, and test set for performance 

estimation. A pitfall may be that the sets are not as separated as seem, e.g. predicting 

returns 5 days ahead, a set may end at day D, but that instance may contains return for 

day D+5 falling into a next set. Thus data preparation and splitting should be careful. 

Another pitfall is using the test set more than once. Here, 1 out of 20 trials is 95% above 

average, 1 out of 100, 99% above etc. In multiple test, significance calculation must 

factor that in, e.g. if 10 tests are run and the best appears 99.9% significant, it really is 

99.9%10 = 99%. Multiple use can be avoided, for the ultimate test, by taking data that 

was not available earlier. Another possibility is to test on similar, not tuned for, data — 

without any tweaking until better results, only with predefined adjustments for the new 

data, e.g. switching the detrending preprocessing on. 
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Non/Parametric tests, most statistical tests have preconditions. They often involve 

assumptions about sample independence and distributions — unfulfilled leading to 

unfounded conclusions. Independence is tricky to achieve, e.g. predictors trained on 

overlapping data are not independent. If the sampling distribution is unknown, as it 

usually is, it takes least 3.0, better 100, observations for normal distribution statistics. 

If the sample is smaller than 100, non/parametric test are preferable, with less scope for 

assumption errors. The backside is they have less discriminatory power — for the same 

sample size. A predictor should significantly win (non/parametric) comparisons with 

naive predictors: 

1) Majority predictor outputs the commonest value all the time, for stocks it could be 

the dominant up move, translating into the buy and hold strategy. 

2) Repeat previous predictor for the next value issues the (sign of the) previous one. 

Sanity checks involve common sense. Prediction errors along the series should not reveal 

any structure, unless the predictor missed something. Do predictions on surrogate 

(permuted) series discover something? If valid, this is the bottom line for comparison 

with prediction on the original series. 

7.3 Benefits and limitations of Neural Network 

7.3.1 Benefits 
Most of the benefits in the articles depend on the problem domain and the NN 

methodology used. A common contribution of NN applications is in their ability to deal 

with uncertain and robust data. Therefore, NN can be efficiently used in stock markets, to 

predict either stock prices or stock returns. It can be seen from a comparative analysis 

that the Backpropagation algorithm has the ability to predict with greater accuracy than 

other NN algorithms, no matter which data model was used. The variety of data models 

that exist in the papers could also be considered a benefit, since it shows NNs flexibility 

and efficiency in situations when certain data are not available. It has been proven that 

NN outperform classical forecasting and statistical methods, such as multiple regression 
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analysis and discriminant analysis. When joined together, several NNs are able to predict 

values very accurately, because they can concentrate on different characteristics of data 

sets important for calculating the output. Analysis also shows the great possibilities of 

NN methodology in various combinations with other methods, such as expert systems. 

The combination of the NN calculating ability based on heuristics and the ability of 

expert systems to process the rules for making a decision and to explain the results can be 

a very effective intelligent support in various problem domains [13]. 

7.3.2 Limitations 
Some of the NN limitations are: 

(1) NNs require very large number of previous cases 

(2) "The best" network architecture (topology) is still unknown 

(3) For more complicated networks, reliability of results may decrease 

(4) Statistical relevance of the results is needed 

(5) A more careful data design is needed. 

The first limitation is connected to the availability of data, and some researchers 

have already proven that it is possible to collect large data sets for the effective stock 

market predictions. The limitation still exists for the problems that do not have much 

previous data, e.g. new founded companies. The second limitation still does not have a 

visible solution in the near future. Although the efforts of the researchers are focused on 

performing numerous tests of various topologies and different data models, the results are 

still very dependent on particular cases. The third limitation, concerning to the reliability 

of results, requires further experiments with various network architectures to be 

overcome. The problem with evaluating NN reliability is connected with the next 

limitation, the need for more complex statistical relevance of the results. Finally, the 

variety of data models shows that data design is not systematically analyzed. Almost 

every author uses a different data model, sometimes without following any particular 

acknowledged modeling approach for the specific problem. There are some other 

limitations, concerning the problems of evaluation and implementation of NN, that 

should be discussed in order to improve NN applications [13]. 

41 



42 



Chapter 8 

CONCLUSION 

Large number of research is done and implemented by companies that are not 

published in scientific indexes analyzed. It can be concluded that: 

(1) NNs are efficiency methods in the area of stock market predictions, but there is no 

"recipe" that matches certain methodologies with certain problems. 

(2) NNs are most implemented in forecasting stock prices and returns, although stock 

modeling is very promising problem domain of its application. 

(3) Most frequent methodology is the Backpropagation algorithm, but the importance of 

integration of NN with other artificial intelligence methods is emphasized by many 

authors. 

(4) Benefits of NN are in their ability to predict accurately even in situations with 

uncertain data, and the possible combinations with other methods. 

(5) End user must know all the concept of NN because the key to all applications though, 

is how we present and enhance data, and working through parameter selection by trial 

and error. 

Limitations have to do with insufficient reliability tests, data design, and the 

inability to identify the optimal topology for a certain problem domain. 

Finally, almost all emphasize the integration of NNs with other methods of 

artificial intelligence as one of the best solutions for improving the limitations. Since NNs 

are relatively new methods and still not adequately examined, they open up many 

possibilities for combining their methods with new technologies, such as intelligent 

agents, Active X, and others. Those technologies could help in intelligent collecting of 

data that includes searching, selecting, and designing the large input patterns. 

Furthermore, with its intelligent user interfaces, those methods could improve the 

explanation of NNs results and their communication with user. NNs researchers improve 

their limitations daily and that is the valuable contribution to their practical importance in 

the future. 
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APPENDIX A 

Shows the training file, which is input plus the expected output. Here 1St 

fifteen fields are inputs and sixteen filed is expected field. Here only few inputs are 

given because training file is too large. 

0.534853 -0.01616 0.765273 -0.07089 -0.51328 

0.065901 -0.00748 0.766981 -0.69879 -0.03816 

0.009582 0.084069 0.502093 -0.99658 -0.04987 

0.544709 

0.391308 0.055271 -0.06356 -0.07046 -0.49236 

-0.00397 0.005419 -0.26054 0.437052 -0.01753 

0.008478 0,091996 -0.08449 -0.96611 -0.05278 

0.55366 

0.331578 0.009483 0.049635 -0.06969 -0.46901 

-0.03377 -0.00438 0.008981 0.803743 0.001428 

0.011763 0.069553 0.268589 -0.78638 -0.04964 

0.4939 

0.273774 -0.09674 -0.03834 -0.07035 -0.51513 

-0.0503 -0.02712 -0.23431 0.208545 -0.01141 

0.010664 0.030559 0.169062 -0.84766 -0.06888 

0.60331 

0.168765 -0.21396 -0.08956 -0.06903 -0.44951 

-0.08093 -0.0498 -0.37721 0.58831 0.015764 

0.009566 -0.01926 -0.06503 -0.39396 -0.04658 

0.53031 

-0.01813 -0.2451 -0.0317 -0.06345 -0.44353 

-0.14697 -0.04805 -0.25956 0.795146 0.014968 

0.008472 -0.0443 0.183309 0.468658 -0.03743 

0.528241 



APPENDIX B 

Shows the test file, which contains the input. Here only few inputs are given 

because test file is too large. 

-0.20792 -0.08026 -0.14535 -0.05946 0.419245 -0.00865 

-0.00562 -0.358 -0.22855 0.002479 0.025126 -0.00053 

-0.34909 -0.05316 0.003975 

-0.19829 -0.10041 -0.12113 -0.06357 0.387074 -0.00179 

-0.00963 -0.22808 -0.46609 -0.00666 0.025126 -0.00603 

-0.26019 -0.28114 -0.00412 

-0.2031 -0.09674 -0.15712 -0.06887 0.344085 -0.0032 

-0.00593 -0.35262 -0.82344 -0.01638 0.02 -0.00443 

-0.41118 -0.72318 -0.01502 

-0.18287 -0.09125 -0.00139 -0.07065 0.278462 0.009225 

-0.00257 0.201525 -0.97209 -0.02849 0.016431 -0.00336 

0.155841 -0.95153 -0.02719 

-0.18673 -0.0766 -0.10979 -0.07025 0.270491 0.006569 

0.002298 -0.02104 -0.85708 -0.02238 0.011407 -0.00062 

-0.11894 -0.84148 -0.02785 

-0.17806 -0.05828 0.532249 -0.06966 0.295686 0.010179 

0.007397 0.683779 -0.54675 -0.00976 0.006432 0.002629 

0.619579 -0.46275 -0.02083 

-0.17131 -0.0363 0.148156 -0.06722 0.320313 0.010545 

0.011551 0.174271 0.228072 0.001138 0.001506 0.006267 

0.275451 -0.57734 -0.0177 

-0.16746 -0.01982 -0.13201 -0.0705 0.250704 0.009615 

0.012339 -0.46621 -0.5711 -0.0115 0.029283 0.008745 

-0.30682 -0.95299 -0.03446 

-0.15493 0.003989 0.253694 -0.0672 0.32074 0.012535 

0.014206 0.195437 0.487841 0.008363 0.029283 0.015167 

0.410297 -0.68825 -0.02108 



APPENDIX C 

Shows the blind test data. 

-0.20792 -0.08026 -0.14535 -0.05946 0.419245 -0.00865 

-0.00562 -0.358 -0.22855 0.002479 0.025126 -0.00053 

-0.34909 -0.05316 0.003975 

-0.19829 -0.10041 -0.12113 -0.06357 0.387074 -0.00179 

-0.00963 -0.22808 -0.46609 -0.00666 0.025126 -0.00603 

-0.26019 -0.28114 -0.00412 

-0.2031 -0.09674 -0.15712 -0.06887 0.344085 -0.00326 

-0.00593 -0.35262 -0.82344 -0.01638 0.02 -0.00443 

-0.41118 -0.72318 -0.01502 

-0.18287 -0.09125 -0.00139 -0.07065 0.278462 0.009225 

-0.00257 0.201525 -0.97209 -0.02849 0.016431 -0.00336 

0.155841 -0.95153 -0.02719 

-0.18673 -0.0766 -0.10979 -0.07025 0.270491 0.006569 

0.002298 -0.02104 -0.85708 -0.02238 0.011407 -0.00062 

-0.11894 -0.84148 -0.02785 

-0.17806 -0.05828 0.532249 -0.06966 0.295686 0.010179 

0.007397 0.683779 -0.54675 -0.00976 0.006432 0.002629 

0.619579 -0.46275 -0.02083 

-0.17131 -0.0363 0.148156 -0.06722 0.320313 0.010545 

0.011551 0.174271 0.228072 0.001138 0001506 0.006267 

0.275451 -0.57734 -0.0177 



APPENDIX D 

Shows the weight file. 

1 -14.788936 -23.214375 7.410563 2.342502 6.208565 

1 -1.495994 0.073311 6.112903 -7.998254 4.467839 

1 5.144179 3.322052 0.913615 -1.913263 -1.645980 

1 0.942062 -0.017056 0.429377 3.644783 -0.047803 

1 4.951530 5.664355 9.940310 0.947816 7.236715 

1 5.216183 12.293064 4.796335 -1.135227 3.514790 

1 10.004666 3.738953 6.464227 -0.903403 -0.364508 

11.1611173.658407-0.9915952.1049300.194777  

1 -0.558064 -0.322594 1.101481 0.055280 0.823635 

1 -11.754412 6.081999 0.016447 0.421185 0.439200 

1 7.767948 -12.617767 -4.839843 -1.803454 5.027760 

1 -0.251463 0.286134 3.102932 -0.288077 -2.275205 

1 -1.353341 -2.198585 0.337839 3.307456 0.583523 

1 -1.648586 -2.483641 3.405509 0.646407 2.132873 

1 10.865354 -1.654573 -0.245387 -3.177217 5.383827 

2 -11.801553 

2 11.343361 

2 3.372332 

20.518942 

2 -5.035735 



APPENDIX E 

After the test mode the output file looks like this, here are some of the data. 

for input vector: 

-0.207920 -0.080260 -0.145350 -0.059460 0.419245 -0.008650 	-0.005620 

-0.358000 -0.228550 0.002479 0.025126 -0.000530 -0.349090 -0.053160 

0.003975 

output vector is: 

0.208678 

for input vector: 

-0.198290 -0.100410 -0.121130 

-0.228080 -0.466090 -0.006660 

-0.004120 

output vector is: 

0.202962 

for input vector: 

0.534853 -0.016160 0.765273 

0.766981 -0.698790 -0.038160 

-0.049870 

output vector is: 

0.566802 

-0.063570 0.387074 -0.001790 -0.009630 

0.025126 -0.006030 -0.260190 -0.281140 

-0.070890 -0.513280 0.065901 -0.007480 

0.009582 0.084069 0.502093 -0.996580 

for input vector: 

-0.198290 - -0.061950 -0.092800 -0.047110 

-0.171230 0.263442 0.006145 0.025126 

0.007212 

output vector is: 

0.179252 

0.431060 -0.003910 0.000175 

0.004309 -0.094330 0.512339 

I~' ROOR' - 
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