
DATA PREDICTION US]NG NEURAL NETWORK

A DISSERTATION

Submitted in partial fulfilment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

By

SANDEEP SINGH RAWAT

4 x

\ t r. ROO'

IIT Roorkee'ER&DCI, Noida
C-56/1, "Anusandhan Rhawan"

Sector 62, Noida-201 307

FEBRUARY, 2003

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation titled "DATA

PREDICTION USING NEURAL NETWORK", in partial fulfillment of the.

requirements for the award of the degree of Master of Technology in Information

Technology, submitted in UT, Roorkee — ER&DCI Campus, Noida, is an authentic

record of my own work carried out during the period from August 2002 to February,

2003 under the guidance of Mr. M. K. Bhattacharya, Senior Project Manager, Electronics

Research and Development Centre of India, Noida.

The matter embodied in this dissertation has not been submitted by me for award

of any other degree or diploma

Date: fl _ O'~ 26,13

Place: Noida 	 (Sandeep ingh Rawat)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the

best of my knowledge and belief.

Date: 	— da --2603
	

(Mr. M. K. Bhattacharya)

Place: Noida 	 Senior Project Manager

ER&DCI, Noida.

ACKNOWLEDGEMENT

The work presented in this report would not have been completed without the

guidance and support of many people. Firstly , I would like to thank Prof. Preen Vratt,

Director, UT Roorkee and Mr. R.K.Verma, Executive Director, ER&DCI, Noida. I would

like to thank Prof. A.K.Awasthi, Dean PGS&R, UT Roorkee. for providing good

environment. I am also grateful to Prof. R.P.Agrawal, Course Coordinator, M.Tech (IT),

IIT Roorkee and Mr. V.N.Shukla, Course Coordinator, M.Tech (IT), ER&DCI, Noida for

his support and guidance.

I would like to thank my guide, Mr. M.K.Bhattacharya, Senior Project Manager

ER&DCI for his constant support, incredible enthusiasm and encouragement. I am also

grateful to Mr. Munish Kumar, Project Engineer for the cooperation extended by him in

the successful completion of this report. I would also like to thank Ms. Vaishali Kale, for

his timely help and constant guidance.

Most of all I would like to thank my family. My parents provided me a perfect

environment for my studies and supported me throughout. Finally, I would like to extend

my gratitude to all those persons who directly or indirectly helped me in the process and

contributed towards this work.

IL
(Sand Sin Rawat)

Enrollment No. 019043

CONTENTS

CANDIDATE'S DECLARATION 	 (i)
ACKNOWLEDGEMENT 	 (ii)

ABSTRACT 	 1

1. INTRODUCTION 	 3
1.1 Objective 	 4
1.2 Artificial Neural Systems 	 4
1.3 Scope 	 6
1.4 Problem Definition 	 6
1.5 Organization of Dissertation 	 7

2. LITERATURE SURVEY FOR DATA PREDICTION 	 9

3. TRADING SCHEME 	 11
3.1 Mechanic Concepts 	 11
3.2 System Development Life Cycle 	 12

3.2.1 Investigation 	 12
3.2.2 Design 	 12
3.2.3 Implementation 	 12
3.2.4 Evaluation 	 13

4. ARTIFICIAL NEURAL NETWORKS 	 15
4.1 Single and Multi-layer Perceptrons 	 15
4.2 Backpropagation Neural Network 	 18
4.3 Learning and Training 	 20

5. DATA SELECTION 	 23

5.1 Choosing the Output and Objective 	 23

5.2 Choosing the Inputs 	 23

5.3 Preprocessing Data 	 24

5.3.1 Highlight Features 	 24

5.3.2 Transform 	 24

5.3.3 Scale and bias 	 24

5.3.4 Reduce Dimensionality 	 25

5.4 Highlight Features in the Data 	 26

5.4.1 Normalizing the Range
	 27

5.4.2 The target
	

27

6. DATA PREDICTION AND IMPLEMENTATION DETAILS

7. RESULTS AND DISCUSSIONS

7.1 Training and Test Results

7.2 Traditional Statistical Approach Pitfalls

7.2.1 Evaluate the right thing

7.2.2 Evaluation data

7.3 Benefits and limitations of neural network

7.3.1 Benefits

7.3.2 Limitations

8. CONCLUSION

REFERENCES

APPENDIX A: Training file

APPENDIX B: Test file

APPENDIX C: Blind test file

APPENDIX D: Weight file

APPENDIX E: Output file

29

35

- 35

38

38

39

40

40

41

43

45

ABSTRACT

Neural networks (NNs), as artificial intelligence

methods, have become very important in making stock market

predictions. Much research on the applications of NNs for

solving business problems have proven their advantages over

statistical and other methods that do not include Al, although

there is no optimal methodology for a certain problem. The

system has been trained with the Standard & Poor (S&P) 500

composite indexes of past twelfth years. It can be concluded

from analysis that NNs are most implemented in forecasting

stock prices, returns, and stock modeling, and the most

frequent methodology is the Backpropagation algorithm.

Inspite of many benefits, there are limitations that should be

investigated.

Stocks are commonly predicted on the basis of daily

data, although some researchers use weekly and monthly data.

Additionally, future research should focus on the examinations

of other types of networks that were rarely applied, such as

Hopfiled's, Kohonen's, etc. This data prediction can be used in

weather forecasting also. End user for this data prediction,

either the stockbroker or else who wants to predict the future

record, based on the past data, but the key to all applications

though, is how we present and enhance data, and working

through parameter selection by trial and error.

I

Chapter 1

INTRODUCTION

Stock market prediction is believed to be a very difficult task. Huge amount of

immeasurable and unknown variables, unknown relationships between those variables

and relative small number of observations makes stock market prediction as a complex

problem. At this moment, no fixed trading rule provides an everlasting profit from stock

market. Since stock investment is a popular way to achieve a great amount of return in a
short time period, many people like to find out a successful method to beat stock markets.

Serious people will treat this complex prediction task in a scientific way because

an efficient stock market prediction method is possible to gain several millions of money

or more. Then they are very careful at the prediction algorithm construction and try to

reduce faults as much as possible within the entire process. Around the financial world,

many scientific stock market prediction methodologies are commonly used and they are

derived by some different approaches. The first approach is to study economic and

industrial conditions about organizations. Fundamental analysis is a popular method

based on this approach. To cut the matter short, this methodology is to study

organization's accounting information, such as revenues, earnings, debt ratio, return on

equity and profit margins, to determine the underlying value and the future potential of

organization, as the future trend about stock prices [13]. However, investors cannot

obtain those figures easily or it can be said investors require costs for getting those kinds

of information because some information is said to be confidential for view of

organization. Another prediction approach is to study past organization stock prices and

related data to determine the future stock prices. Technical and diagrammatic analyses

are based on this approach. In addition, same data can treat as different ways, such as

stock price time series and stock chart patterns. Therefore, financial experts have ever

suggested many prediction indicators and patterns to try to achieve prediction task. As

many experts usually use past stock price data to interpret the future trend of stock price,

statistical approach becomes a popular forecasting methodology. Regression and time-

series analyses are typical methods. However, those methods assume linear model

3

property and stock prices always do not satisfy this property. Then it is difficult to

achieve success on. stock market prediction by those methods. A new generation of

methodologies, including neural networks, expert systems, chaos theory and genetic

algorithms, have attracted attention for stock market prediction. In particular, neural

network approach is being used extensively. Human brain consists of a huge number of

neurons. Those neurons are connected by axons and they combine into a network called

'biological' neural network. An 'artificial' neural network is a computational system
simulating the activities and properties of a biological neural network. In simple words,

an artificial neural network is a collection of artificial neurons, connected through links

called connections. The aim of an artificial neural network is to achieve the ability of a

biological neural network, that is, performing pattern recognition, classification,

memorization and complex problem solving. Neural networks are generally regarded as

'black boxes'. Since actual model structures are not known, raw data is submitted into

neural networks and training process will be applied to the networks. Then the networks

will have recognition ability for patterns at the same problem domain [4]. The aim of

project is to construct stock market trading and to maximize the profit by applying neural
network principle.

1.1 	Objective
The objective of project is to try to apply neural network approach to find out

some patterns to appear increases or decreases of data for e.g. stock price levels and
financial forecasting.

1.2 Artificial Neural Systems
In order to understand how an artificial neural network functions, we must

understand the biological neural network first. The human brain is a vast communication

network in which around 100 billion brains cells called neurons are interconnected to

other neurons. Each neuron contains a soma, nucleus, axon, yet they don't play an

important role in receiving and outputting electrical impulses. Each neuron has several

dendrites, which connect to other neurons, and when a neuron fires (sending electrical

impulse), a positive or negative charge is sent to other neurons. When a neuron receives

4

signals from other neurons, spatial and temporal summation occurs where spatial

summation converts several weak signals into a large one, and temporal summation

converts a series of weak signals from the same source into a large signal. The electrical

impulse is then transmitted through axon to terminal buttons to other neurons. The axon

hillock plays an important role because if the signal is not strong enough to pass through

it, no signal will be transmitted. The terminal buttons shown on figure 1.1 are connected

to other neurons or muscle cells.

Axon hillock

soma 	Axon

f a;'
D endfite 	 Nucleus

buttons
Schematic of biological neuron.

Figure 1.1: Schematic of biological neuron

The gap between the two neurons is called the synapse. The synapse also

determines the "weight" of the signal transmitted. The more often a signal is sent through

the synapse, the easier it is for the signal to be sent through. In theory, this is how humans

memorize or recognize patterns; which is why when humans practice certain tasks

continuously, they become more familiar or used to the tasks [18].

Because the neural network mimics the biological neural network, an ANN has to

resemble essential parts of a BNN, such as neuron, axons, hillock and The output of each

neuron in the figure 1.2 is the sum of all the inputs multiplying the weights plus the offset

value and through a non-linear function

9

Axons Synapsas Dendrites Body

X 	 ~

~. 	 .Non.trr~earity

	

I puts 	Weights 	tya_
From Application of Neural Networks

BEaA:

Figure 1.2: Clearly demonstrates parts of a BNN in terms of ANN.

1.3 Scope
This data prediction can be used anywhere where we have past data and we want

to know the future value. Like weather forecasting etc. The key to all applications

though, is how we present and enhance data, and working through parameter selection by

	

trial and error. 	 -

1.4 Problem Definition
Many strategies and methodologies were put forward for data prediction.

However, no fixed trading rule provides everlasting profits. So I would like to use

scientific methods. Around the financial world, fundamental and technical analyses are

popular methods to determine when to buy or sell. The aim of fundamental analysis is to

determine the future trends of data value by studying everything from the economy and

industry conditions. Usually, revenues, earnings, debt ratio, return on equity, profit

margins are used to determine an organization's underlying value and potential for future

growth, as financial forecasting and its trend. However, investors cannot obtain the

accurate figures anytime. They always estimate by organization's annual report and study

the economy or industry conditions. Then it becomes a qualitative framework and the

forecast accuracy cannot be evaluated in a scientific way. The aim of technical analysis is

to determine by recognizing patterns on financial data or statistical indicators by past

6

financial data prices and volumes[15]. It is a quantitative methodology. Nowadays, plenty

of indicators and patterns are recommended to apply to predict data. Analogue to

fundamental analysis, distinct chartists always provide opposite views for the same

financial, by different kinds of indicators or patterns. So an 'honest' strategy is required

for most of investors and artificial neural network is a reasonable methodology to predict

financial data because neural networks can be trained with raw data to product outputs or

classify raw data without knowledge or understanding the model structure. Thus, in this

project, I would like to study the data prediction using neural network.

1.5 Organization of Dissertation
We shall see below the brief description of the chapter in the Thesis Report.

Chapter 2 Describe the Literature Survey for Data Prediction.

Chapter 3 This section presents a concept for building a trading scheme. A number of

guidelines are suggested.

Chapter 4 Describe the Artificial Neural Network to understand how an artificial neural

network functions.

Chapter 5 Describe the Data Selection, how preprocessing is done, which is very

important in most of the neural network model.

Chapter 6 Gives the Implementation Details, gives the functions which is used in the

program also shows the data flow diagram.

Chapter 7 Gives the Training and Testing Result and discusses the Benefits and

limitations of Neural Network.

Chapter 8 Includes the Conclusion and Future Scope.

7

Chapter 2

LITERATURE SURVEY FOR DATA PREDICTION

A famous principle called Efficient Market Hypothesis (EMH). In the weak form

of EMH, current stock price has reflected all information about past prices. That is, past

stock prices are not useful for forecasting future trend and the movements of stock prices

are unpredictable. If EMH holds, nobody can gain benefit in the stock market and the

stock market forecast performance will be not better than random guesses[l1]. Seiler et

al. [12] performed some time series analysis for all stocks listed on New York Stock

Exchange. They concluded stock prices are followed random walk model. Although

EMH was held in many papers, many people proposed new methods to "beat" the stock

market. Mathematicians used principles of statistics to predict stock prices. Time series is

a traditional and reasonable methodology. Traditional statistic principle assumes the

model is linear and normally distributed. As EMH holds, random walk model is

identified which the next period stock price is just the current price plus an unpredictable

white noise (sometimes with a positive or negative expected return). However, Aparicio

et al. [1] stated that stock prices are not normally distributed. So classic statistic approach

may not be applicable at chaotic financial market. Technical and diagrammatic analyses

are popular prediction approaches to study past stock prices and related data to determine

the future stock price trend. In practical, financial experts recommend many indicators.

Moving average and relative strength index (RSI) are the most commonly used. The

former one is based on a statistical topic called time series analysis and the latter one is

not recommended by its discover. However, Jones [9] stated that rules for making

decisions from charts are not unique. As many different patterns are used and patterns are

difficult to be accurately recognized, the techniques are inconclusive. Many articles

applied neural network approach to forecast stock market and had a good performance. A

neural network paradigm called multi-layer perceptrons or Feedforward network is

commonly used for many studies. Chenoweth et al. [2] built up stock prediction models

applying buy-and-hold strategy, neural network and technical analysis knowledge

E

respectively. The best result among models was the system applying neural networks.

Zekic [15] performed a survey for comparing effectiveness of different neural network

approaches. 12 representative papers were chosen to analyze their problem domain,

model and forecasting performance. The comparisons showed that stock market

prediction using neural networks outperform other statistical models. Also, MLP with

backpropagation training algorithm and data pre-processing performs good results. The
correctness was about 70-100%. Multi-layer perceptrons look like a nice approach for

stock market prediction by experiment results of many papers. However, de la Maza [4]

criticized application of MLP for financial time series prediction. They reported sum-

squared-like errors were not good measures and they suggested Sharpe ratio as the
measure for financial application, which the objective is to maximum investment profit.
De Bodt et al. held similar paper [3] that they applied theories of statistics and suggested
price returns as expected model outputs, not stock prices. Diagrammatic analysis is a
commonly used technical analysis methodology. Its aim is to identify specific patterns to

represent the future trend of stock prices. Since the pattern recognition is subjective,

some researchers suggested an unsupervised neural network paradigm called self-

organizing maps (SOM) to achieve this task. Kohonen [16] developed self-organizing

map to transform an arbitrary dimensional input data into lower dimensional (one or two)

graphs to represent similarity without specifying output classes. Kaski [10] stated SOM

can be used to perform a K-means clustering application. Deboeck [5] demonstrated an

application of mutual fund selection by applying appropriate data into a SOM.

Experiment results showed that SOM classification could reduce labor effort at
classification process, which is working by fund managers. Fu, Chung and Luk [8] used

self-organizing maps to recognize stock time series patterns. Good results are obtained by

time series from Hong Kong Hang Seng Index.

10

Chapter 3

TRADING SCHEME

This section presents a concept for building a trading scheme. A number of

guidelines are suggested. In addition, to construct an efficient and effective trading

scheme, systematic approaches are used and software development life cycle approach is

recommended to use.

3.1 Mechanic Concepts
In order to yield a huge amount of profit and avoid risks from financial market, a

scientific and systematic approach is recommended. Here some design rules were refined:

The first rule is simplicity. As distinct financial experts recommended many different

kinds of technical indicators, fundamental data and chart patterns, excess number of

decision rules will lead to conflicts and common investors are difficult to judge by

opposite decisions from different indicators. The second guideline is quantification. An

ordinal and numerical measure can lead to many advantages. Obvious, mathematical
knowledge can be applied for quantitative measurement. Another point is the forecast

performance of quantitative methods can be evaluated easily by applying mathematics.

After this, clarity is another keyword for a good trading scheme. The meaning is quite

similar to that of simplicity but their focuses are different. Simplicity concentrates on the

rules to make decision and clarity focuses on the result representation after decision

making. The trading signals must be as simple as possible because this reduces efforts for

system users to make trading decisions. Relative Strength Index (RSI) is an example to

show the importance of clear signals. It is an oscillating indicator discovered by Wilder.

It ranges from 0 to 100 and represents the status of stock. Large RSI value means the

stock is overbought and small RSI value indicates the stock is oversold. By inspection,

investors must buy stocks at RSI value is small and sell them at a large RSI value.

However, different sets of values are recommended by different experts, e.g. 30/70,

20/80, 30/80. This leads to confusion for investors that they cannot make decisions when

the RSI value lies between 20 and 30, or between 70 and 80. Then faults will be made

11

easily and consequently investors become losers. Consequently, a good trading scheme

only includes clear indicators for buying and selling. Another consideration for designing

a trading scheme is robustness. A well-established trading scheme must adapt different

conditions, such as time periods and financial markets. It is very important because the

trading scheme must keep its profit making performance consistently over time.

Otherwise, investors will face a risk of system unpredictability. In addition, lack of

robustness makes investor to build different plans for different stocks and this increases

their efforts [12].

3.2 System Development Life Cycle
Similar to software development, trading scheme construction is also an

engineering work and a systematic approach can achieve a qualified deliverable, i.e.

effective and efficient trading scheme. To make it simpler, a four-phase model is

introduced. This is linear sequential model see Figure 3.1.

3.2.1 Investigation
At the beginning, studies about financial markets must be held. The objectives of

the trading scheme must be defined in a quantitative view. Also, data collection must be

performed such as financial data like stock price sequences. After enough information is

obtained and reviewed, a feasibility test may be conducted to make go or not-go decision.

3.2.2 Design
The objective of design is to construct a trading scheme design by the information

gathered by the investigation stage. A trading scheme design may include several

components, including 'input attributes, model architecture, operation procedures and

trading signal interpretation.

3.2.3 Implementation
The aim of this stage is to translate the trading scheme design into a workable

system. For computerized trading schemes, programming is the primary activity in the

12

implementation stage. If the system can be performed manually, the procedure must be

well defined and structured for convenience at use.

3.2.4 Evaluation
Once the system is implemented, it can be tested. Two phases are included in

evaluation stage: 'code' testing and performance evaluation. The former phase consists of

validation and verification processes to guarantee the system is correctly implemented.

The later one is to fit some real data into the system to find out the system performance

and behaviors. So, evaluation criteria must be predefined.

Investigation 	 Design / Implementation 	 Evaluation

Figure 3.1: Linear Sequential Model

13

14

Chapter 4

ARTIFICIAL NEURAL NETWORK

A Neural Network is an interconnected assembly of simple processing elements,

units or nodes, whose functionality is loosely based on the animal neuron. The processing

ability of the network is stored in the inter-unit connection strengths, or weights, obtained

by a process of adaptation to, or learning from, a set of training patterns.

4.1 Single and Multi-layer Perceptrons
A perceptron is a simple neural network model introduced by Frank RosenBlatt in

1958.A single layer perceptron is used to classify an input vector into several classes. In

a single layer perceptron, the input values and activation level of the perceptron are either

—1 or 1; weights are real-valued (between 0 and 1). The activation level is given by

summing the weighted input values Ex;wi. Perceptrons use a simple hard-limiting

threshold function, where activation above a threshold results in an output value of 1, and

—1 otherwise.

Perceptron output = sign(Exiwi)

= 1 if Ex1w1 >= t

= -1 if Ex1w1 <= t

The perceptron uses a simple form of supervised learning. The way a perceptron

learns to distinguish patterns is through modifying its weights to reduce error. The

adjustment for the weight Ow; on the its' component of the input vector is given by:

Ow; = c x; 8

where c = learning rate

d = desired output

S = (desired output) — (actual output) = d — sign(Ex;w;)

Single layer perceptrons can only solve problems where the solutions can be

divided by a line (or hyperplane). The classes to be distinguished should be linearly

15

separable. Therefore, a single layer perceptron cannot express non-linear decisions like

the XOR problem. Single layer perceptron is shown in figure 4.1.

Outputs

Inputs

Figure 4.1: Single-layer Perceptron

Multi-layer perceptions are feed-forward nets with one or more layers of nodes

between the input and output nodes. These additional layers contain hidden units or

nodes that are not directly connected to both the inputs and outputs. Multi-layer

perceptions overcome many of the limitations of the single layer perceptions. Multi layer

perceptron is shown in figure 4.2. The capabilities of multi-layer perceptions stem from

the non-linearity used within nodes. In multi-layer networks, when adjusting a weight

anywhere in the network, one has to be able to tell what effect this will have on the

overall effect of the network. To do this, one has to look at the derivative of the error

function with respect to that weight.

Z

ti

outputs

Output layer

Hidden layers
Input layer

Inputs

Figure 4.2: Multi-layer Perceptron

The most popular continuous activation function used within backpropagation
nets is the sigmoid function or the logistic function given by the equation:

f(net) = 1 / (1 + e*1et), where net = Ex;wl

The shape of the sigmoid function is shown in the figure 4.3. As X (called the

squashing parameter) gets large, the sigmoid function approaches a linear threshold

_~

	

	.function-over—{0, 1-}—as i-t gets-closer too-,-it approaches a straight l-ine. T-his-activativn-

function is non-linear, scaled and differentiable.

17

f(X) = 1/(1+ e-")

Figure 4.3: Sigmoid Function

4.2 Backpropagation Neural Network
The backpropagation algorithm is perhaps the most widely used supervised

training algorithm for multilayered feedforward networks. The backpropagation training

algorithm is an iterative gradient algorithm designed to minimize the mean square error

between the actual output of a multilayer feedforward perception and the desired output.

In the backpropagation algorithm, a feedforward phase is first done on an input pattern to

calculate the net error. Then, the algorithm uses this computed output error to change the

weight values in the backward direction. The error is slowly propagated backwards

through the hidden layers - and hence its name. Errors in the output determine measures

of hidden layer output errors, which are used as a basis for adjustment of connection

weights between the input and hidden layers. Adjusting the two sets of weights between

the pairs of layers and recalculating the outputs is an iterative process that is carried on

until the errors fall below a tolerance level. Learning rate parameters scale the

adjustments to weights. A momentum parameters can also be used in scaling the

adjustments from a previous iteration and adding to the adjustments in the current

iteration. The feedforward backpropagation network maps the input vectors to output

vectors. It does not have feedback connections, but errors are backpropagated during

training. Pairs of input and output vectors are chosen to train the network first. Once

training is completed, the weights are set and the network can be used to find outputs for

new inputs. The dimension of the input vector determines the number of neurons in the

input layer, and the number of neurons in the outputs layer is determined by the

4

18

dimension of the outputs. If there are k neurons in the input layer and m neurons in the
output layer, then this network can make a mapping from k-dimensional space to m-

dimensional space. Mapping is depends on pair of patterns or vectors are used as
exemplars to train the network, which determine the network weights. Once trained, the
network gives you the image of new input vectors under this mapping.

The architecture of Feedforward backpropagation network is shown in Figure 4.4.

The number of neurons in the input layer and . output layer are determined by the

dimensions of the input and output patterns, respectively. There can be many hidden

layers. here illustrate with only one hidden layer. It is not easy to determine how many
neurons are needed for the hidden layer. Figure 4.4 show with five input neurons, three
neurons in the hidden layer, and five output neurons, with a few representative
connections.

W 12/ W 13 	W 14 / J' Field A(Output layer)

W11\ I / / W34 	W3

Field B(Hidden layer)
W2

W226 W31 \0 W41b W51~ W53
Field C(Input layer.)

Figure 4.4: Layout of a Feedforward Backpropagation Network

The network has three fields of neurons: one for input neurons, one for hidden
processing elements, and one for the output neurons. As already stated, connections are
for feed forward activity. There are connections from every neurons in field A to every
one in field B, and, in turn,, from every neuron in field B to every neuron in field C.

Thus, there are two sets of weights, those figuring in the activation of hidden layer
neurons, and those that help determine the output neuron activation. In training, all of

19

these weights are adjusted by considering cost function in terms of the error in the

computed output pattern and the desired output pattern.

The feedforward backpropagation network undergoes supervised training, with a

finite number of pattern pairs consisting of an input pattern and a desired or target output

pattern. An input pattern is presented at the input layer. The neurons here pass the pattern

activation to the next layer neurons, which are in a hidden layer. The outputs of the

hidden layer neurons are obtained by using perhaps a bias, and also a threshold function

with the activation determined by the weights and the inputs. These hidden layer outputs

become inputs to the output neurons, which process the inputs using an optional bias and

a threshold function. The final output of the network is determined by the activation from

the output layer.

The computed pattern and the input pattern are compared, a function of this error

for each component of the pattern is determined, and adjustment to weights of

connections between the hidden layer and the output layer is computed. A similar

computation, still based on the error in the output layer, is made for the connection

weighs between the input and hidden layers. The procedure is repeated with each pattern

pair assigned for training the network. Each pass through all the training patterns is called

a cycle or an epoch. The process is then repeated as many cycles as needed until the error

is within a prescribed tolerance.

4.3 Learning and Training
A neural network maps a set of inputs to a set of outputs. This nonlinear mapping

can be thought of as a multidimensional mapping surface. The objective of learning is to

mold the mapping surface according to a desired response, either with or without an
explicit training process.

A network can learn when training is used, or the network can also in the absence

of training. The difference between supervised and unsupervised training is that, in

supervised training, external prototypes are used as target output for specific

inputs, and the network is given a learning algorithm to follow- and calculate new

connection weights that bring the output closer to the target output. Unsupervised

learning is the sort of learning that takes place without a teacher. Here learning algorithm

20

may be given but target outputs are not given. In, such a case, data input to the network

gets clustered together; similar input stimuli cause similar responses.

When a neural network model is developed and an appropriate learning algorithm

is proposed, it would be based on the theory supporting the model. The learning

equations are initially formulated in terms of differential equations. After solving the

differential equations, and using any initial conditions that are available, the algorithm

could be simplified to consist of an algebraic equation for the changes in the weights.

The delta rule is also known as the least mean squared error rule (LMS). We first

calculate the square of the errors between the target or desired values and computed

values, and then take the average to get the mean squared error. This quantity is to be

minimized. For this, realize that it is a function of the weights themselves, since the

computation of output uses them. The set of values of weights that minimizes the mean

squared error is what is needed for the next cycle of operation of the neural network. So

the delta rule, which is also the rule used first by Widrow and Hoff, in the context of

learning in neural networks, is stated as an equation defining the change in the weights to

be affected.

- 	Suppose we fix our attention to the weight on connection between the ith neuron

in one layer and jth neuron in the next layer. At time t, this weight is Wij(t). After one

cycle of operation, this weight becomes Wij(t+l). The difference between the two is

Wij(t+l) — Wij(t), and is denoted by AWij as:

AWij = 2AXi (desired output value — computed output value)j

Here, is the learning rate, which is positive and much smaller than 1, and Xi is the ith

component of the input vector.

The actual derivations for the different formulas used in the backpropagation

algorithm come from the generalized delta rule. The delta rule is based on the idea of the

error surface. The error surface represents cumulative error over a data set as a function

of the network weights. Each possible network weight configuration is represented by a

point on this error surface. By taking the partial derivative of the network error with

respect to each weight we will learn a little about the direction the error of the network is

moving. In fact, if we take the negative of this derivative (i.e.the rate change of the error

as the value of the weight increases) and then proceed to add it to the weight, the error

21

will decrease until it reaches a local minimum. The taking of these partial derivatives and

then applying them to each of the weights, takes place starting from the output layer to

hidden layer weights, then, from the hidden layer to input layer weights [18].

AA
22

Chapter 5

DATA SELECTION

5.1 Choosing the Output and Objective
Our objective is to forecast the S&P 500 ten weeks from now. The output we

choose is the change in the S&P 500 from the current week to 10 weeks from now as a
percentage of the current week's value.

5.2 Choosing the Inputs
The inputs to the network need to be weekly changes of indicators that have some

relevance to the company index. Here we choose a data set that represents the state of the

financial markets and the economy. The inputs chosen are listed as:

♦ Previous price action in the company index, including the close or final value

of the index.

♦ Breadth indicators for the stock market, including the number of advancing

issues and declining issues for the stocks in the New York Stock Exchange

(NYSE).

+ Other technical indicators, including the number of new highs and new lows

achieved in the week for NYSE market. This gives some indication about the

strength of an uptrend or downtrend.

♦ Interest rates, including short-term interest rates in the Three-Month Treasury

Bill Yield, and long-term rates in the 30-year Treasury Bond Yield.

The input and output layers are fixed by the number of inputs and outputs we are

using. In our case, the output is a single number, the expected change in the company

index 10 weeks from now. The input size will be dictated by the number of inputs we

have after preprocessing.

23

5.3 Preprocessing Data
Four substeps in the area of preprocessing [2]

♦ Highlight Features

♦ Transform

♦ Scale and bias

♦ Reduce Dimensionality

5.3.1 Highlighting Features in the Input Data
One should present the neural network, as much as possible, with an easy way to

find patterns in our data. For time series data, like stock market prices over time, one may

consider presenting quantities like rate of change as example. Other ways to highlight

data is to magnify certain occurrences. For example, if you consider Central bank

intervention as an important qualifier to foreign exchanges rates, then you may include as

an input to your network, a value of 1 or 0, to indicate the presence or lack of presence of

Central bank intervention.

5.3.2 Transform the data If Appropriate
For time series data, we may consider using a Fourier transform to move to the

frequency-phase plane. This will uncover periodic cyclic information of it exists. The

Fourier transform will decompose the input discrete data series into a series of frequency

spikes that measure the relevance of each frequency component. If the stock market

indeed follows the so-called January effect, where prices typically make a run up, then

you would expect a strong yearly component in the frequency spectrum.

5.3.3 Scale your Data
Neurons like to see data in a particular input range to be most effective, if we

present data like the S&P 500 that varies 200 to 550 will not be useful. We should choose

data that fit a range that does not saturate, or overwhelm the network neurons. Choosing

inputs from —1 to 1 or 0 to I is good idea.

24

to zero input will mean that the weight will not participate in learning. To avoid such

situations, we can add a constant bias to our data to move the data closer to 0.5, where the

neurons respond very well.

5.3.4 Reduce Dimensionality
We should try to eliminate inputs wherever possible. This will reduce the

dimensionality of the problem and make it easier for neural network to generalize.

Suppose that we have three inputs, x, y, z and one output, o. now suppose that we find

that all of our inputs are restricted only to one plane. We could redefine axes such that we

have x' and y' for the new plane and map your inputs to the new coordinates. This

changes the number of inputs to our problem to 2 instead of 3, without any loss of

information. Here we have so 22 fields in the raw data.

There are a couple of ways we can start preprocessing the data to reduce the

number of inputs.

♦ Use Advances/Declines ratio instead of each value separately.

♦ Use New Highs/New Lows ratio instead of each value separately.

Finally we have following fields: see table 5.1

1. Three-Month Treasury Bill Yield

2. 30-Year Treasury Bill Yield

3. NYSE Advancing/Declining issues

4. NYSE New Highs/New Lows

5. Company closing price

Presently we have data available for the period from January 1980 to December 1992.

25 	
Ate No........

U tP4 V •,nj- 	!

~~ ~ • 1R OO

Date 3 MoTBills 30 yrTBonds NYSE

Adv./Dec

NYSE

NewH/NewL

Closing Price

1/4/80 12.11 9.64 4.209459 2.764706 106.52

1/11/80 11.94 9.73 1.649573 21.28571 109.92

1/18/80 11.9 9.8 0.881335 4.210526 111.07

1/25/80 12.19 9.93 0.793269 3.606061 113.61

2/1/80 12.04 10.2 1.16293 2.088235 115.12

2/8/80 12.09 10.48 1.338415 2.936508 117.95

2/15/80 12.31 10.96 0.338053 0.134615 115.41

2/22/80 13.16 11.25 0.32381 0.109091 115.04

2/29/80 13.7 12.14 1.676895 0.179245 113.66

3/7/80 15.14 12.1 0.282591 0 106.9

3/14/80 15.38 12.01 0.690286 0.011628 105.43

3/21/80 15.05 11.73 0.486267 0.027933 102.31

3/28/80 16.53 11.67 5.247191 0.011628 100.68

4/3/80 15.04 12.06 0.983562 0.0117647 102.15

4/11/80 14.42 11.81 1.565854 0.0310345 103.79

4/18/80 13.82 11.23 1.113287 0.146341 100.55

4/25/80 12.73 10.59 0.849807 0.473684 105.16

Table 5.1: A sample of a few lines looks the following data.

5.4 Highlight Features in the Data
For each of the five inputs, we want use a function to highlight rate of change

types of features. We will use the following function (Proposed by Junk) for this

purpose.

26

Where: input (t) is the input's current value and BA (t-n) is a five unit block

average of adjacent values centered around the value n periods ago.

Below table 5.2 after doing the block averages

Example: BA3MOBi11s for 1/18/80 = (3MoBills(1/4/80) + 3MoBills(1/11/80) +

3MoBills(1/18/80) + 3MoBills(1/25/80) + 3MoBills(2/l/80)) / 5.

Date ROC3

Mo

ROC3 Bond ROC3

AID

ROCS

H/L

ROC3SP

C

ROCIO

3Mo

ROC1O_B

nd

ROC1O_

AD

ROC10_

H/L

ROC10_

SP
1 /4/80

1/11/80

1(18/80

1/25/80

2(1/80

2/8/80 0.002238 0.030482 -0.13026 -0.39625 0.02924

2/15/80 0.011421 0.044406 -0.55021 -0.96132 0.008194

2/22/80 0.041716 0.045345 -0.47202 -0.91932 0.001776

2/29/80 0.0515 0.069415 0.358805 -0.81655 -0.00771

3/7/80 0.089209 0.047347 -0.54808 -1 -0.03839

3/14/80 0.073273 0.026671 -0.06859 -0.96598 -0.03814

3/21/80 0.038361 0.001622 -0.15328 -0.51357 -0.04203

3/28/80 0.065901 -0.00748 0.766981 .0.69879 -0.03816 0.15732 0.048069 0.502093 -0.99658 -0.04987

4/3180 -0.00397 0.005419 -0.26054 0.437052 -0.01753 0.111111 0.091996 -0.08449 -0.96616 -0.05278

4/11/80 -0.03377 -0.00438 0,008981 0.803743 0.001428 0.87235 0.069553 0.268589 -0.78638 -0.04964

4/18/80 -0.0503 -0.02712 -0.23431 0.208545 -0.01141 0.055848 0.030559 0.169062 -0.84766 -0.06888

4/25/80 -0.08093 -0.0498 -0.37721 0.58831 0.015764 0.002757 -0.01926 -0.06503 -0.39396 -0.04658

Table 5.2: Data after Highlight Feature

5.4.1 Normalizing the Range

We now have values in the original five data columns that have a very large

range. we have to reduce the range by some method. We use the following function:

New value = (old value - Mean) /(Maximum Range)

5.4.2 The target
The objective is that predicts the percentage change 10 weeks into the future.

We need to shift the S&P 500 10 weeks back, and then calculate the value as percentage

change as follows:

Result = 100 * ((S&P 10 weeks ahead) - (S&P this week)) / (S&P this week)

27

This gives the value that varies between -14.8 to and + 33.7. This is not in the

form we need yet. The output comes from a sigmoid function that is restricted to 0 to +1.

We first add 14.8 to all values and then scale them by a factor of 0.02. This will result in

a scaled target that varies from 0 to 1.
Scaled target = (result + 14.8) * 0.02

The final data file with the scaled target shown along with the scaled original six

columns of data is shown in below table 5.3.

DATE S_3MOBI

LL

S LNGB

ND

SAID S_H/L S_STC RESULT SCALE

TARGET

3/28/80 0.534853 -0.01616 0.765273 -0.07089 -0.51328 12.43544 0.544709

4/3/80 0.391308 0.055271 -0.06356 -0.07046 -0.49236 12.88302 0.55366

4/11/80 0.331578 0.009483 0.049635 -0.06969 -0.46901 9.89498 0.4939

4/18/80 0.273774 -0.09674 -0.03834 -0.07035 -0.51513 15.36549 0.60331

4/25/80 0.168365 -0.21396 -0.08956 -0.06903 -0.44951 11.71548 0.53031

Table 5.3: Normalized ranges for original columns and scaled target.

After getting the. output we need to un-normalize the data back to get the answer

in terms of the change in the S&P 500 index.

28

Chapter 6

DATA PREDICTION AND IMPLEMENTATION DETAILS

In this chapter, we shall make an attempt to implement neural nets. The model

that has been implemented as neural network for data prediction, which is based on

backpropagation algorithm.

Algorithm:

(1) Initialize weights and offsets:
Set all weights and node biases to small random values.

(2) Present input and desired outputs:
Present a continuous valued input vector x0, x1, ..., xN_1 and specify the

desired outputs do, dl, ... , dM_l. If the net is used as a classifier, then all desired

outputs are typically set to 0 except for that output corresponding to the class the

input is from, which is set to 1. The input could be new on each trial

(3) Calculate actual outputs:
Use the following formulas to calculate outputs 01, 02,..., OM_1 of every

neuron in the network.

O; = f(Ex;w; + b,)

f(y) = 1 / (1 +
Where x -~ input vector, w - weight vector denoting to weights linking the

neuron unit to the previous neuron layer, b -~ bias vector,), -~ squashing

parameter.

(4) Adapt weights:
Use a recursive algorithm starting at the output nodes and working back to

the first hidden layer. This has many sub-steps.

29

Step a: Compute the sum-squared error of the network.

Error = V2 Ei s outputs (di _ Oi)2

Step b: Calculate the error term of each neuron in the output layer,

Si = Oi (1 — Oi) (di — Oi)

Step c: Calculate the error term of each neuron in the hidden layer,

Si = Oi (1 — Oi) Ej 3 wij

where, j is the index of the nodes in the next layer to which i's

signals fan out.

Step d: Compute the weight deltas. 9 is the learning rate.

A low learning rate can ensure more• stable convergence. A high

learning rate can speed up convergence in some cases.

AWki = Ti sk xki

where wki is the weight from the hidden (or input) node k to node i.

Step e: Add the weight deltas to each of the weights

Wki(t±1) — wki(t) + Owki

where t denotes the iteration step.

(5) Repeat by going to step 2.

The following are definitions in the layer base class. Here number of inputs and

outputs are protected data members, which means that they can be accessed by

descendants of the class.
int num_inputs;

int num=outputs;

float *outputs;

float *inputs;

friend network;

A layer contains neurons and weights. The layer is responsible for calculating its

output (calc_outO) , and errors (calc_errorO) for each of its respective neurons. The input

class does not have any weights associated with it and therefor is a special case. It does

not need to provide any data members or function members related to errors or

30

backpropagation. The only purpose of the input layer is to store data to be forward

propagated to the next layer. With the output layer, there are a few more arrays present.

First for storing backpropagated errors. There is a weight array and finally, for storing the

expected values that initiates the error calculation process. The network class is used to

set up communication channels between layers and to feed and remove data from the

network. The network class performs the interconnection of layers by setting the pointer

of an input array of a given layer to the output array of a previous layer. The network

class is also responsible for setting the pointer of an output_error array to the back error

array of the next layer.

Adding momentum term sometimes results in much faster training is the addition

of a momentum term. The training law for backpropagation implemented as:

Weight change = Beta * output_error * input + Alpha * previous_weight_change

The momentum term is an attempt to try to keep the keep the weight change

process moving.

To enhance generalization ability introduces some noise in the inputs during

training. A random number is added to each input component of the input vector as it is

applied to the network. This is scaled by an overall noise factor, NF, which has a 0 to 1

range. We don't want noise at that time when we close to a solution and have reached a

satisfactory minimum. Another reason for using noise is to prevent memorization by the

network. We are effectively presenting a different input pattern with each cycle so it

becomes hard for the network to memorize patterns.

At the top of the program, there are two #define statements, which are used to set

the maximum number of layers that can be used, and the maximum number of training or

test vectors that can read into an 110 buffer. This is currently 100. We can increase the

size of the buffer for better speed at the cost of increased memory usage. Figure 6.1 show

that the flow of the program.

The following is a listing of the functions used in program along with a brief statement.

31

• void set training (const unsigned &) Sets the value of the private data member,

training; use 1 for training mode , and 0 for test mode.

• unsigned get_training_valueoGets the value of the training constant that gives the

mode in use.

• void get_layer_info () Gets information about the number of layers and layer sizes

from the user.

• void setup network 0 This routine sets up the connections between layers by

assigning pointers appropriately.

• void randomize weights () At the beginning of the training process, this routine is

used to randomize all of the weights in the network.

• void update weights (const float) As part of training, weights are updated according

to the learning law used in backpropagation.

• void write weights(FILE *) This routine is used to write weights to file.

• void read weights(FILE *) This routine is used to read weights into the network from

a file.

• void list weights() This routine can be used to list weights while a simulation is in

progress.

• void write_outputs(FILE *) This routine writes the outputs of the network to a file.

• void list _outputs() This routine can be used to list the outputs of the network while a

simulation is in progress.

• void list errors() Lists errors for all layers while a simulation is in progress.

• void forward_propO Performs the forward propagation.

• void backward_prop(float &) Performs the backward error propagation.

• int fill Iobuffer(FILE *) This routine fills the internal IO buffer with data from the
training or test data sets.

• void set up_pattern(int) This routine is used to set up one pattern from the JO buffer

for training.

• inline float squash(float input) This function performs the sigmoid function.

• inline float randomweight (unsigned unit) This routine returns a random weight

between —1 and 1; use 1 to initialize the generator, and 0 for all subsequent calls.

Start

Enter lfor
Training

mode or 0
for Test
mode

Enter Learning
Parameter (a) and

Enter Momentum Term (a)
and Noise Factor (NF)

No. Of iteration
(CvCle

Either read from 	 0
saved weight file

or randomized 	-~ Take randomized
weight

1

Enter the layer of your network

Give inputs to your network 	 Result

End

Figure 6.1: Flow Chart Showing the execution of program

33

34

Chapter 7

RESULTS AND DISCUSSION

7.1 Training and Testing Results
Much of the process of determining the best parameter for this application is trial

and error. We need to spend a great deal of time evaluating different options to find the

best fit for our problem. We have to literally create hundreds if not thousands of networks

either manually or automatically to search for the best solution. Many commercial neural

network programs use genetic algorithms to help to automatically arrive at an optimum

network. A genetic algorithm makes up possible solutions to a problem from a set of

starting genes. Analogous to biological evolution, the algorithm combines genetic

solutions with a predefined set of operators to create new generations of solutions, who

survive or perish depending on their ability to solve the problem. The key benefit of

genetic algorithms is the ability to traverse an enormous search space for a possibly

optimum solution.

The numbers of inputs are 15, and the number of outputs is 1. A total of three

layers are used with the middle layer of size 5. The optimum sizes and number of layers

is found by much trial and error. After each run, we can look at the error from the training

set and from the test set. We obtain the error for the test set by running the program in

Training mode for one cycle with weights loaded from the weight file. This approach has

been taken with five runs of the simulator for 500 cycles each.

The error gets lesser and lesser with each run up to run #4. For run#5, the training

set error decreases, but the test set error increases, indicating the onset of memorization.

Run#4 is used for the final network results, showing RMS error of 13.9% and training set

error of 6.9%. If we find the test set error does not decrease much, whereas the training

set error continues to make substantial progress, then this that memorization is starting to

set in (run#5 in table 7.1).

Kii

Run# Tolerance Beta Alpha NF Max

cycles

Cycles

run

Training

set error

Test 	set

error

1 0.001 0.5 0.001 0.0005 500 500 0.150938 0.25429

2 0.001 0.4 0.001 0.0005 500 500 0.114948 0.185828

3 0.001 0.3 0 0 500 500 0.0936422 0.148541

4 0.001 0.2 0 0 500 500 0.068976 0.139230

5 0.001 0.1 0 0 500 500 0.0621412 0.143430

Table 7.1: Summary of the results along with parameters used.

After training mode the output file shows

for input vector:

-0.198290 -0.061950 -0.092800 -0.047110 0.431060 -0.003910 0.000175 -0.171230

0.263442 0.006145 0.025126 0.004309 -0.094330 0.512339 0.007212

output vector is:

0.179065

expected output vector is:

0.174338

It is important to monitor the test set that are used, while we are training to make

sure that good, generalized learning is occurring versus memorization of overfitting the

data. In the table shown, the test set error continued to improve until run#5, where the test

set error degraded.

After test mode the output file shows the following data. Here some of the data

are shown because output file is too large.

for input vector:

-0.207920 -0.080260 -0.145350 -0.059460 0.419245 -0.008650 -0.005620 -0.358000

-0.228550 0.002479 0.025126 -0.000530 -0.349090 -0.053160 0.003975
output vector is:

for input vector:

36

-0.198290 -0.100410 -0.121130 -0.063570 0.387074 -0.001790 -0.009630 -0.228080

-0.466090 -0.006660 0.025126 -0.006030 -0.260190 -0.281140 -0.004120

output vector is:

0.202962

for input vector:
0.534853 -0.016160 0.765273 -0.070890 -0.513280 0.065901 -0.007480 0.766981 -

0.698790 -0.038160 0.009582 0.084069 0.502093 -0.996580 -0.049870

output vector is:

0.566802

for input vector:

-0.198290 -0.061950 -0.092800 -0.047110 0.431060 -0.003910 0.000175 -0.171230

0.263442 0.006145 0.025126 0.004309 -0.094330 0.512339 0.007212

output vector is:

0.179252

Now we need to un-normalize the data back to get the answer in terms of the change in

the S&P index.

Steps: 	 . a

1. Take the predicted scaled target value and calculate, the result value as

Result = (Scaled target/0.02) - 14.8

2. Take the result from above (which is the percentage change 10 weeks

from now) and calculate the projected value, Projected S&P 10 weeks

from now = (This week's S&P value) (1+ Result/100)

Example: In this case I got the Scaled target 0.551020 for the date 03/28/80(mm-dd-yy).

Then for un-normalize put the value in step 1, after calculating I got the Result = 12.75.

For calculating the projected value we put the result in step 2. Here I have taken the S&P.

closing price for the date 04-03-80, which is 102.15 and after 10 week which is 06-13-80

closing price is 115.31.so put the value in step 2, which follows:

37

Projected (04-03-80) S&P 10 weeks from now = (102.15) (1+ 12.75/100)

= 115.17
which is equivalent to (06-13-80) S&P projected value.

7.2 Traditional Statistical Approach Pitfalls

Proper evaluation is critical to a prediction system development. First, it has to

measure exactly the interesting effect, e.g. trading return, as opposed to prediction

accuracy. Second, it has to be sensitive enough as to distinguish often-minor gains. Third,
it has to convince that the gains are no merely a coincidence.

7.2.1 Evaluate the right thing
Financial forecasts are often developed to support semi-automated trading

(profitability), whereas the algorithms underlying those systems might have different
objective. Thus, it is important to test the system performing in the setting it is going to

be used, a trivial, but often missed notion. Also, the evaluation data should be of exactly

the same nature as planned for real-life application, e.g. index-futures trading performed

for index data used as a proxy for futures price, but real futures data degraded it. Some
problems with common evaluation strategies follow.

Accuracy — percentage of correct discrete (e.g. up/down) predictions; common measure

for discrete systems, e.g. ILP/decision trees. It values instances 'equally, disregarding both
instance's weight and accuracy for different cases, e.g. a system might get high score

predicting the numerous small changes whereas missing the big few. Actually, some of

the best-performing systems have lower accuracy than could be found for that data.

Square error — sum of squared deviations from actual outputs — is a common measure in

numerical prediction, e.g. ANN. It penalizes bigger deviations, however if sign is what

matters this might not be optimal, e.g. predicting -1 for -0.1 gets bigger penalty than

predicting +0.1, though the latter might trigger going long instead of short. Square error

minimization is often an intrinsic part of an algorithm such as ANN Backpropagation,

m

and changing it might be difficult. Still, many such predictors, e.g. trained on bootstrap

samples, can be validated according to the desired measure and the best picked.

Reliability — predictor's confidence in it's forecast — is equally important and difficult to

develop as the predictor itself. A predictor will not always be confident — it should be

able to express this to the trading counterpart, human or not. e.g. by an output

'undecided'. No trade on dubious predictions is beneficial in many ways: lower errors,

commissions, and exposure. Reliability can be assessed by comparing many predictions

coming from an ensemble, as well as done in one step and multiple step fashion.

Performance measure should incorporate the predictor and the (trading) model it is going

to benefit. Some points: Commissions need to be incorporated — many trading

'opportunities' exactly disappear with commissions. Risk/variability — what is the value

of even high return strategy if in the process .one gets bankrupt? Data difficult to obtain in

real time, e.g. volume, might mislead historic data simulation [13].

7.2.2 Evaluation data
It should include different regimes, markets, even data errors, and be plentiful.

Dividing test data into segments helps to spot performance irregularities (For different

regimes). Overfitting a system to data is a real danger. Dividing data into disjoint sets is

the first precaution: training, validation for tuning, and test set for performance

estimation. A pitfall may be that the sets are not as separated as seem, e.g. predicting

returns 5 days ahead, a set may end at day D, but that instance may contains return for

day D+5 falling into a next set. Thus data preparation and splitting should be careful.

Another pitfall is using the test set more than once. Here, 1 out of 20 trials is 95% above

average, 1 out of 100, 99% above etc. In multiple test, significance calculation must

factor that in, e.g. if 10 tests are run and the best appears 99.9% significant, it really is

99.9%10 = 99%. Multiple use can be avoided, for the ultimate test, by taking data that

was not available earlier. Another possibility is to test on similar, not tuned for, data —

without any tweaking until better results, only with predefined adjustments for the new

data, e.g. switching the detrending preprocessing on.

39

Non/Parametric tests, most statistical tests have preconditions. They often involve

assumptions about sample independence and distributions — unfulfilled leading to

unfounded conclusions. Independence is tricky to achieve, e.g. predictors trained on

overlapping data are not independent. If the sampling distribution is unknown, as it

usually is, it takes least 3.0, better 100, observations for normal distribution statistics.

If the sample is smaller than 100, non/parametric test are preferable, with less scope for

assumption errors. The backside is they have less discriminatory power — for the same

sample size. A predictor should significantly win (non/parametric) comparisons with

naive predictors:

1) Majority predictor outputs the commonest value all the time, for stocks it could be

the dominant up move, translating into the buy and hold strategy.

2) Repeat previous predictor for the next value issues the (sign of the) previous one.

Sanity checks involve common sense. Prediction errors along the series should not reveal

any structure, unless the predictor missed something. Do predictions on surrogate

(permuted) series discover something? If valid, this is the bottom line for comparison

with prediction on the original series.

7.3 Benefits and limitations of Neural Network

7.3.1 Benefits
Most of the benefits in the articles depend on the problem domain and the NN

methodology used. A common contribution of NN applications is in their ability to deal

with uncertain and robust data. Therefore, NN can be efficiently used in stock markets, to

predict either stock prices or stock returns. It can be seen from a comparative analysis

that the Backpropagation algorithm has the ability to predict with greater accuracy than

other NN algorithms, no matter which data model was used. The variety of data models

that exist in the papers could also be considered a benefit, since it shows NNs flexibility

and efficiency in situations when certain data are not available. It has been proven that

NN outperform classical forecasting and statistical methods, such as multiple regression

40

analysis and discriminant analysis. When joined together, several NNs are able to predict

values very accurately, because they can concentrate on different characteristics of data

sets important for calculating the output. Analysis also shows the great possibilities of

NN methodology in various combinations with other methods, such as expert systems.

The combination of the NN calculating ability based on heuristics and the ability of

expert systems to process the rules for making a decision and to explain the results can be

a very effective intelligent support in various problem domains [13].

7.3.2 Limitations
Some of the NN limitations are:

(1) NNs require very large number of previous cases

(2) "The best" network architecture (topology) is still unknown

(3) For more complicated networks, reliability of results may decrease

(4) Statistical relevance of the results is needed

(5) A more careful data design is needed.

The first limitation is connected to the availability of data, and some researchers

have already proven that it is possible to collect large data sets for the effective stock

market predictions. The limitation still exists for the problems that do not have much

previous data, e.g. new founded companies. The second limitation still does not have a

visible solution in the near future. Although the efforts of the researchers are focused on

performing numerous tests of various topologies and different data models, the results are

still very dependent on particular cases. The third limitation, concerning to the reliability

of results, requires further experiments with various network architectures to be

overcome. The problem with evaluating NN reliability is connected with the next

limitation, the need for more complex statistical relevance of the results. Finally, the

variety of data models shows that data design is not systematically analyzed. Almost

every author uses a different data model, sometimes without following any particular

acknowledged modeling approach for the specific problem. There are some other

limitations, concerning the problems of evaluation and implementation of NN, that

should be discussed in order to improve NN applications [13].

41

42

Chapter 8

CONCLUSION

Large number of research is done and implemented by companies that are not

published in scientific indexes analyzed. It can be concluded that:

(1) NNs are efficiency methods in the area of stock market predictions, but there is no

"recipe" that matches certain methodologies with certain problems.

(2) NNs are most implemented in forecasting stock prices and returns, although stock

modeling is very promising problem domain of its application.

(3) Most frequent methodology is the Backpropagation algorithm, but the importance of

integration of NN with other artificial intelligence methods is emphasized by many

authors.

(4) Benefits of NN are in their ability to predict accurately even in situations with

uncertain data, and the possible combinations with other methods.

(5) End user must know all the concept of NN because the key to all applications though,

is how we present and enhance data, and working through parameter selection by trial

and error.

Limitations have to do with insufficient reliability tests, data design, and the

inability to identify the optimal topology for a certain problem domain.

Finally, almost all emphasize the integration of NNs with other methods of

artificial intelligence as one of the best solutions for improving the limitations. Since NNs

are relatively new methods and still not adequately examined, they open up many

possibilities for combining their methods with new technologies, such as intelligent

agents, Active X, and others. Those technologies could help in intelligent collecting of

data that includes searching, selecting, and designing the large input patterns.

Furthermore, with its intelligent user interfaces, those methods could improve the

explanation of NNs results and their communication with user. NNs researchers improve

their limitations daily and that is the valuable contribution to their practical importance in

the future.

43

44

REFERENCES

1. Aparicio, F. M. and Estrada, J. "Empirical Distributions of Stock Returns:

European Securities Markets, 1990-95".

2. Chenoweth; T., Obradovic, Z. and Lee, S., "Embedding Technical Analysis into

Neural Network Based Trading Systems." Applied Artificial Intelligence, vol. 10

1996.

3. De Bodt, E., Rynkiewicz, J. and Cottrell, M. (2001) "Some known facts about

financial data." European Symposium on Artificial Neural Networks 2001

proceedings, Bruges (Belgium), April 2001.

4. De la Maza, M. and Yuret, D."A critique of the standard neural application to

financial time series analysis". The Magazine of Artificial Intelligence in Finance,

1995.

5. Deboeck, G. J. "Financial Applications of Self-Organizing Maps". Neural

Network World, Vol. 8,1998.

6. Deboeck, G. J. "Self-Organizing Maps Facilitate Knowledge Discovery in

Finance." Financial Engineering News, January 1999.

7. Elaine Rich & Kevin Knight, Artificial Intelligence, TMH 1991

8. Fu, T. C., Chung, F. L., Ng, V. and Luk, R. (2001) "Pattern Discovery from Stock

Time Series Using Self-Organizing Maps." Workshop Notes of KDD2001
Workshop on Temporal Data Mining, Aug., 2001.

9. Jones, C. P. Investments: Analysis and Management, 6th edition. John Wiley &

Sons, New York 1998.

10. Kaski, S."Data Exploration using Self-organizing Maps." Acta Polytechnica

Scandinavica, Mathematics, Computing and Management in Engineering Series,

March 1997.

11. Pistolese, C. Using Technical Analysis, Revise Edition. Probus, Chicago 1994.

12. Seiler, M. J. and Rom, W. "A Historical Analysis of Market Efficiency: Do

Historical Returns Follow a Random Walk?" Journal of Financial And Strategic

Decisions, Vol. 10 1997.

45

	

" 13. 	Swingler, K. "Financial prediction: Some pointers, pitfalls and common errors."

Neural Computing and Applications, Vol. 4 1996.

14. Yao, J. T., Tan, C. L. and Poh, H. L. "Neural Networks for Technical Analysis: a

Study on KLCL" International Journal of Theoretical and Applied Finance, Vol. 2

1999.

15. Zekic, M. (1998) "Neural Network Applications in Stock Market Predictions. A

Methodology Analysis."

16. Kohonen, T. (2001) Self-organizing Maps, 3rd edition. Springer, New York.

17. http://www.soi.city.ac.uk/—livantes/DATA/DataFinancial.html

18. Dr. Roger S Gaborski, Research Paper: Introduction to Artificial Intelligence, July

2001

APPENDIX A

Shows the training file, which is input plus the expected output. Here 1St

fifteen fields are inputs and sixteen filed is expected field. Here only few inputs are

given because training file is too large.

0.534853 -0.01616 0.765273 -0.07089 -0.51328

0.065901 -0.00748 0.766981 -0.69879 -0.03816

0.009582 0.084069 0.502093 -0.99658 -0.04987

0.544709

0.391308 0.055271 -0.06356 -0.07046 -0.49236

-0.00397 0.005419 -0.26054 0.437052 -0.01753

0.008478 0,091996 -0.08449 -0.96611 -0.05278

0.55366

0.331578 0.009483 0.049635 -0.06969 -0.46901

-0.03377 -0.00438 0.008981 0.803743 0.001428

0.011763 0.069553 0.268589 -0.78638 -0.04964

0.4939

0.273774 -0.09674 -0.03834 -0.07035 -0.51513

-0.0503 -0.02712 -0.23431 0.208545 -0.01141

0.010664 0.030559 0.169062 -0.84766 -0.06888

0.60331

0.168765 -0.21396 -0.08956 -0.06903 -0.44951

-0.08093 -0.0498 -0.37721 0.58831 0.015764

0.009566 -0.01926 -0.06503 -0.39396 -0.04658

0.53031

-0.01813 -0.2451 -0.0317 -0.06345 -0.44353

-0.14697 -0.04805 -0.25956 0.795146 0.014968

0.008472 -0.0443 0.183309 0.468658 -0.03743

0.528241

APPENDIX B

Shows the test file, which contains the input. Here only few inputs are given

because test file is too large.

-0.20792 -0.08026 -0.14535 -0.05946 0.419245 -0.00865

-0.00562 -0.358 -0.22855 0.002479 0.025126 -0.00053

-0.34909 -0.05316 0.003975

-0.19829 -0.10041 -0.12113 -0.06357 0.387074 -0.00179

-0.00963 -0.22808 -0.46609 -0.00666 0.025126 -0.00603

-0.26019 -0.28114 -0.00412

-0.2031 -0.09674 -0.15712 -0.06887 0.344085 -0.0032

-0.00593 -0.35262 -0.82344 -0.01638 0.02 -0.00443

-0.41118 -0.72318 -0.01502

-0.18287 -0.09125 -0.00139 -0.07065 0.278462 0.009225

-0.00257 0.201525 -0.97209 -0.02849 0.016431 -0.00336

0.155841 -0.95153 -0.02719

-0.18673 -0.0766 -0.10979 -0.07025 0.270491 0.006569

0.002298 -0.02104 -0.85708 -0.02238 0.011407 -0.00062

-0.11894 -0.84148 -0.02785

-0.17806 -0.05828 0.532249 -0.06966 0.295686 0.010179

0.007397 0.683779 -0.54675 -0.00976 0.006432 0.002629

0.619579 -0.46275 -0.02083

-0.17131 -0.0363 0.148156 -0.06722 0.320313 0.010545

0.011551 0.174271 0.228072 0.001138 0.001506 0.006267

0.275451 -0.57734 -0.0177

-0.16746 -0.01982 -0.13201 -0.0705 0.250704 0.009615

0.012339 -0.46621 -0.5711 -0.0115 0.029283 0.008745

-0.30682 -0.95299 -0.03446

-0.15493 0.003989 0.253694 -0.0672 0.32074 0.012535

0.014206 0.195437 0.487841 0.008363 0.029283 0.015167

0.410297 -0.68825 -0.02108

APPENDIX C

Shows the blind test data.

-0.20792 -0.08026 -0.14535 -0.05946 0.419245 -0.00865

-0.00562 -0.358 -0.22855 0.002479 0.025126 -0.00053

-0.34909 -0.05316 0.003975

-0.19829 -0.10041 -0.12113 -0.06357 0.387074 -0.00179

-0.00963 -0.22808 -0.46609 -0.00666 0.025126 -0.00603

-0.26019 -0.28114 -0.00412

-0.2031 -0.09674 -0.15712 -0.06887 0.344085 -0.00326

-0.00593 -0.35262 -0.82344 -0.01638 0.02 -0.00443

-0.41118 -0.72318 -0.01502

-0.18287 -0.09125 -0.00139 -0.07065 0.278462 0.009225

-0.00257 0.201525 -0.97209 -0.02849 0.016431 -0.00336

0.155841 -0.95153 -0.02719

-0.18673 -0.0766 -0.10979 -0.07025 0.270491 0.006569

0.002298 -0.02104 -0.85708 -0.02238 0.011407 -0.00062

-0.11894 -0.84148 -0.02785

-0.17806 -0.05828 0.532249 -0.06966 0.295686 0.010179

0.007397 0.683779 -0.54675 -0.00976 0.006432 0.002629

0.619579 -0.46275 -0.02083

-0.17131 -0.0363 0.148156 -0.06722 0.320313 0.010545

0.011551 0.174271 0.228072 0.001138 0001506 0.006267

0.275451 -0.57734 -0.0177

APPENDIX D

Shows the weight file.

1 -14.788936 -23.214375 7.410563 2.342502 6.208565

1 -1.495994 0.073311 6.112903 -7.998254 4.467839

1 5.144179 3.322052 0.913615 -1.913263 -1.645980

1 0.942062 -0.017056 0.429377 3.644783 -0.047803

1 4.951530 5.664355 9.940310 0.947816 7.236715

1 5.216183 12.293064 4.796335 -1.135227 3.514790

1 10.004666 3.738953 6.464227 -0.903403 -0.364508

11.1611173.658407-0.9915952.1049300.194777

1 -0.558064 -0.322594 1.101481 0.055280 0.823635

1 -11.754412 6.081999 0.016447 0.421185 0.439200

1 7.767948 -12.617767 -4.839843 -1.803454 5.027760

1 -0.251463 0.286134 3.102932 -0.288077 -2.275205

1 -1.353341 -2.198585 0.337839 3.307456 0.583523

1 -1.648586 -2.483641 3.405509 0.646407 2.132873

1 10.865354 -1.654573 -0.245387 -3.177217 5.383827

2 -11.801553

2 11.343361

2 3.372332

20.518942

2 -5.035735

APPENDIX E

After the test mode the output file looks like this, here are some of the data.

for input vector:

-0.207920 -0.080260 -0.145350 -0.059460 0.419245 -0.008650 	-0.005620

-0.358000 -0.228550 0.002479 0.025126 -0.000530 -0.349090 -0.053160

0.003975

output vector is:

0.208678

for input vector:

-0.198290 -0.100410 -0.121130

-0.228080 -0.466090 -0.006660

-0.004120

output vector is:

0.202962

for input vector:

0.534853 -0.016160 0.765273

0.766981 -0.698790 -0.038160

-0.049870

output vector is:

0.566802

-0.063570 0.387074 -0.001790 -0.009630

0.025126 -0.006030 -0.260190 -0.281140

-0.070890 -0.513280 0.065901 -0.007480

0.009582 0.084069 0.502093 -0.996580

for input vector:

-0.198290 - -0.061950 -0.092800 -0.047110

-0.171230 0.263442 0.006145 0.025126

0.007212

output vector is:

0.179252

0.431060 -0.003910 0.000175

0.004309 -0.094330 0.512339

I~' ROOR' -

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	References
	Appendix

