
COLLISION FREE PATH FINDING FOR
MOBILE ROBOTS

A DISSERTATION
Submitted in partial fulfillment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

RAMVATI PATHYA

'OF TEC/

~ 	v

a &DCI
O/DA

DEPARTMENT OF ELECTRONICS AND COMPUTER ENGINEERING
ER & DCI - IIT (ROORKEE) CAMPUS

NOIDA - 201301 (INDIA)
February, 2003

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation title

"COLLISION FREE PATH FINDING FOR MOBILE ROBOTS",

in partial fulfillment of the requirements for the award of the degree of Master of
Technology in Information Technology, submitted in IIT, Roorkee — ER&DCI

Campus, Noida, is an authentic record of my own work carried out during the period

from August 2002 to February, 2003 under the guidance of Mr. P.N. Astya, Software
Consultant, New Delhi.

The matter embodied in this dissertation has not been submitted by me for award

of any other degree of diploma

Date: 	2J L'2 C3 	 j{ e1
Place: Noida 	 (Ramvati Pathya)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the

best of my knowledge and belief.

Date: ?4

Place: Noida

Co-Guide : (Mush Kumar) 	Guide:

Project Engineer

ER&DCI, Noida.

Mr. P.N. Astya) tYa)
Software Engineer

Sky InfoTech Pvt Ltd.

New Delhi -16

• 1 	►

The %\ork presented in this rccport would not have been completed Without

the guidance and support of many people. In first place, I would like to thank my

guide, 	Mr. 1. N. Astva. for his constant support, incredible enthusiasm and

encouragement. I ani grateful to Mr. V. N. Shukla Course coordinator, ER&DCI

for his support and .tuidance. My sincere thanks are due to Mr. Munish Kumar

for the encouraie.nient and valuable suggestions he provided me with during the

course of my wort:

Most of all I \could like to thank my family. My parents provided me a

perfect environment for my studies and supported me throughout. Finally, I would

like to extend my gratitude to all those persons who directly or indirectly helped

me in the process and contributed towards this work.

(RAmvaVfiat11Ya)

CONTENTS 	-

CANDIDATE'S DECLARATION (I)

ACKNOWLEDGEMENT (ii)
ABSTRACT 01

1. 	INTRODUCTION 02

1.1 	Objective 02
1.2 	Scope 02
1.3 	Outline of Dissertation 03
1.4 	Organization of Dissertation 04

2. 	LITERATURE SURVEY 05
2.1 	Robot Characteristics 05

2.1.1 	Robot capability, components and intelligence 05
2.1.2 	Robot Classification 05
2.1.3 	Technical Approach 06

2.2 	Mobility 06
2.2.1 	Surfaces and Locomotion 06
2.2.2 	Control 07

2.3 	Robot Programming Languages 07
2.4 	Aspect of Path Planning 07

3. 	DESIGN AND ANALYSIS 09

3.1 	Problem Definition 	 09

3.2 	Classifications of Path Planning 	 10

3.2.1 Complete and Incomplete Information 	 10

3.2.2 Local and Global Path Planning 	 10

3.3 Quadtree Data Structure 	 10
3.3.1 Advantages of quadtree 	 11

3.3.2 Disadvantage of quadtree 	 11

3.4 	Space Efficiency of Quadtree 11_

3.4.1 	Best Case 12

3.4.2 	Worst Case 13

4. 	IMPLEMENTATION OF QUADTREE APPROACH 19

4.1 	Algorithm for Converting Rasters to Quadree 19

4.1.1 	Block Decomposition 19

4.1.2 	Processing of Image 21

4.1.3 	Neighbor Adding 22

4.2 	Quadtree Generation 25

5. 	IMPLEMENTATION OF NEIGHBOR FINDING TECHNIQUE 35

5.1 	Significance of Neighbor Finding Technique 35

5.2 	Neighbor Finding Algorithms for Quadtree 35

5.2.1 	World Map & Its Decomposition 36

5.2.2 	Representation of Children 37

5.2.3 	Adjacency Relation Table 39

5.2.4 	Reflection Relation Figure 39

5.2.5 	Neighbor Finding 40

6. 	RESULT AND CONCLUSION 43

6.1 	Result 43

6.2 	Conclusion 45

REFERENCES

APPENDIX-A

APPENDIX-B

ABSTRACT

The problem of automatic collision-free path planning is central to mobile

Robot applications. The basic problem of a mobile robot is that of navigation (moving

from one place to another) by the coordination of planning, sensing and control. In

any navigation- the desire is to reach a destination without getting lost anywhere. The

image of the region, which is full of obstacle, is scan converted and stored in the form

of quadtree. And then this quadtree is used to find a collision free path for a mobile

robot from any given source to any given destination. An approach to automatic path

planning based on a quadtree representation is presented. Hierarchical path--searching

methods are introduced, which make use of this multi-resolution representation, to

speed up the path planning process considerably. The applicability of this approach to

mobile robot path planning is discussed.

I

Chapter 1
INTRODUCTION

1.1 	Objective

The objective of the project is first to scan convert the image of the region

which is full of obstacle and store it in the form of quadtree. And then this quadtree is

used to find a collision free optimal path for a mobile Robot from any given source to

any given destination using Neighbor finding technique.

A flexible, intelligent robot is regarded as a general purpose machine system

that may include effectors, sensors, computers and auxiliary equipment and like a

human can perform a variety of tasks under unpredictable conditions. Development of

intelligent robots is essential for increasing the growth rate of today's robot

population in industry and elsewhere. Robotics research and development topics

include manipulation, end effectors, mobility, sensing, adaptive control, robot

programming languages and manufacture process planning.

1.2 Scope

Collision avoidance and robot path planning problems have emerged as a

potential domain of robotics research because of its indispensable requirements in the
field of manufacturing vis-a-vis material handling, such as picking-and-placing an

object, loading/unloading a component to/from a machine or storage bins. It could be

used in the hazardous places like coal mines, dense and deadly forest where humans

may not reach safely and easily. It could be used for fire fighting too. Indeed mobile

robots were and still are a very convenient and powerful support research in artificial

intelligence oriented Robotics. They possess the capacity to provide a variety of

problems at different levels of generality and difficulty in a large domain including

perception, decision making, communication etc which all have to be considered

within the scope of the specific constraints of Robotics as line computing, cost

consideration, operating ability and reliability.

2

The main scope of this project includes:

❖ Quadtree representation of Iinage[1]

❖ Path planning using Neighbor finding technique[2]

❖ Obstacle avoidance

1.3 	Outline of Dissertation

The problem of automatic collision free path planning is central to mobile

robot applications. In this section we have presented the automatic path planning

using the quadtree. Region representation is an important aspect of image processing.

There has emerged a considerable amount of interest in the quadtrees. This is because

of its hierarchical nature, which puts itself into compact representation. It is quite

efficient for a number of traditional image processing operations such as computing

parameters, finding genus of an image, computing centroids and set properties.

The conventional path planning algorithms can be divided broadly into two

categories. The methods in first category make trivial (if any) changes to the

representations of the image map before planning a path. The Regular grid search fall

into this category. Though this method keep the representational cost to minimum,

it's applicability to mobile robot navigation is limited. The Regular grid approach

consists of subdividing an environment into discrete cells of a predefined shape (for

example squares) and size and then searching an undirected graph based on the

adjacency relationships between the cells and connecting the neighbors with four to

eight arcs. Apart from the fact that discretization of space allows for control over the

complexity of the path planning, it also proposes a flexible representation for

obstacles and cost maps, and eases implementation. This approach has the advantage

of being able to generate accurate paths, though are Efficient when environments

contain large areas of obstacle free regions. Its path planning cost and memory

requirements increases with its grid size, rather than with number of obstacles present.

The multi-resolution (quadtree) addresses the later problem.

The methods in the second category make elaborate representation changes to

convert to a representation, which .is easier to analysis before planning the path. Free

space methods, medical axis transform methods will come into this category. The

3

practical shortcoming of such methods is that path-planning cost is still very high,
because of the representation conversion process involved.

The quadtree (multi-resolution) approach is a compromise between these two

categories. The hierarchical nature of the quadtree data structure makes it a popular

choice for other approaches because; It is adaptive to the clutter of an environment.

As the image map being converted into a smaller number of nodes, the quadtree gains

a lot of computational saving. In this approach we have concentrated on two aspects.

A mobile robot will ordinarily negotiate any given path only once. This implies that it
is more important to develop a negotiable path quickly than it is to develop an

"optimal" path, which is usually a costly operation. A mobile robot should keep as
far away from obstacles as possible.

1.4 Organization of Dissertation .

This project finds the collision free path for the mobile robot. The first

chapter contains objective and scope of the dissertation under the heading of

introduction. The literature survey is included in the second chapter, which further

contains brief description, and the characteristics of mobile robot. Design and

Analysis part is described in chapter in the chapter 3. It also describes the data

structure and it's advantages and disadvantages. The chapter 4 describes

Implementation part of quadtree. It also explains the quadtree with example. The

chapter 5 includes path finding with example and its implementation. The Result and

Conclusion are contained in chapter 6. The appendix A contains the class and

methods of the quadtree. The appendix B contains list of all figures with their page
numbers.

4

Chapter 2

LITERATURE SURVEY

The objective is to survey the state-of-the-art of intelligent robots. The terms

"robot" and "artificial intelligence" classify the intelligent robots according to their

level of intelligence and a discussion is made about the various aspects of the

intelligent robots.

2.1 	Robot Characteristics

2.1.1 Robot capability, components and intelligence

A robot is a general purpose machine system that, like a human, can perform a

variety of different tasks under conditions that may not be known a priori. A robot

system may include any of the following major functional components:

a) Effectors- "arms," "hands," "legs," "feet;"

b) Sensors- 	contact, non-contact;

c) Computers - top controller, lower level controller (including

Communication channels);

d) Auxiliary equipment - tools, jigs, fixtures, tables, pallets, conveyors,

part feeders etc.

2.1.3 Robot Classification

Like human intelligence, robot intelligence is variable. This observation is

compatible with the Japanese classification of Industrial robots into five categories

a) A slave manipulator teleoperated by a human master;

b) A limited sequence manipulator (further classified into "hard-to- 	adjust" and

"easy-to-adjust" categories)

c) A teach-replay robot;

d) A computer controlled robot

e) An intelligent robot

5

2.1.2 Technical Approach

The technical approach to intelligent robot development should be based on

application of artificial intelligence (Al) techniques to robotics Under four
engineering constraints:

a) High reliability—the robot must be robust; if it fails, it should be able to detect the

error and recover from it or call for help;

b) High speed—the robot should be able to perform its functions as 	fast 9s

necessary.

c) Programmability—the robot should be flexible (able to perform a class of

different functions for a variety of tasks),easily trainable (for new tasks or

modification of old one's) and intelligent (able to perceive problems and solve
them);

d) Low cost—the cost of the robot should be low enough to justify its application.

2.2 Mobility

Robot mobility is needed for a wide variety of robot functions in unstructured

environment, such as mining, military operations and aid to the handicapped. Some

robot mobility are described below.

2.2.1 Surfaces and Locomotion

The mechanism for robot locomotion depends strongly upon the type of

surface the robot must be able to move on. Indoor surfaces include floors, ramps,

stairs, and cluttered environments. Outdoor surfaces include roads, Smooth ground,

terrain with holes and ditches and terrain with obstacles.

Robot locomotion is realized with wheels, tracks and legs. Wheels perform

well if the terrain is not rough and the traction is sufficient. Tracks perform well if the

terrain slope is not too high or no major obstacles are encountered.

Legged vehicles have been developed for robot mobility in rough terrain,

where wheels and tracks are useless. The major issues are stability, strength, speed
and control.

0

2.2.2 Control

A major research issue in the robot mobility is autonomous control, which

includes motor control, sensing, navigation, communication, obstacle avoidance, and

task performance

2.3 Robot Programming Languages

The main goal of using a robot language is to facilitate the programming of a

robot system for a new task or modification of an old one. To achieve this goal, a

robot language provides the user with high-level programming capabilities. These

capabilities are implemented by means of a language processor and a robot controller-

the processor accepts and checks the user statement and translates them into

commands for the controller; thecontroller then generates lower-level commands for

the corresponding device.

There are different commercially robot language is available like AML(IBM

Corporation), HELP (General Electric company) etc. An alternative approach is to

utilize the general programming capabilities of a high-level language(c, c++, pascal or

ADA) which could reduce the cost and enhance the portability of the robot software

as well as improve programming flexibility.

2.4 Aspect of Path Planning

The mobile robots were found to be appealing for various artificial

intelligence techniques. In these projects the emphasis was more on the decision-

making or motion planning and not so much on motion control. A definition of a

mobile robot can be derived from that of the classical robots: "A robot vehicle

capable of self propulsion and (re) programmed locomotion under automatic control

in order to perform a certain task. The keywords are that a robot is programmable to

execute a variety of tasks and that does so under automatic control (as opposed to

human control).There is large diversity of mobile robots. Fig-2.1. illustrates a division

based on vehicle characteristics.

7

Mobile robots

f

Guided 	non-guided
(AGV) 	(free rang inc~

N.

Air/space 	land 	underwater

 tracked 	v.,lheele.d

Fig. 2.1 The Division of Mobile Robot

The some of main subjects of research in the field of mobile robots today are:

•:• Path planning and trajectory planning.

❖ World modeling (environmental mapping)

•'• Position and course estimation(localization)

•• Obstacle avoidance

Chapter 3_

DESIGN AND ANALYSIS

3.1 Problem Definition
The basic problem of a mobile robot is that of navigation[]: moving from one

place to another by a coordination of planning, sensing and control. In any navigation

scheme the desire is to reach a destination without getting lost or crashing into

anything. Put simply the navigation problem is to find a path from start (S) to target

(T) and traverse it without collision.

Navigation may be decomposed into three sub-tasks: mapping and modeling

the environment; path planning and selection; and path following and collision

avoidance. The relationship between these tasks is'shown in fig 3.1

Task

Environmental map

Path planning
Adaptation

Pati following 	 t
Sensor- fusion

Motion 	collision 	Environmental

control 	avoidance sensing

Figure- 3.1 The relationship between different tasks

9

3.2 Classifications of Path Planning 	_

3.2.1 Complete and Incomplete Information

A path planning algorithm for a mobile robot has as input data two

coordinates_(the actual robot position start and the desired robot position target) and

must yield output a possible path between these points. Related to the priori

knowledge about the environment, in which the robot is supposed to travel, there are

two different cases:

1. The environment is completely known.

2. The environment is completely unknown.

The path planning algorithm for the former case are called path planning with

complete information, while for the latter, the problem of finding a path between a

start location and a target location is called path planning with incomplete information

or path planning with uncertainty.

3.2.2 Local and Global Path Planning

The path planning problem can be divided into global path planning and local

obstacle avoidance. Global path planning requires a pre—learned model of the domain,

which may be some what simplified description of the real world and might not

reflect recent changes in the environment. This global model must provide the

planning algorithm with a network of landmark points which are connected by simple

local movements.

A local navigation system carries out the steps in the global plan, maintaining

an estimate of the robot's position with respect to the global model and planning local

paths as needed to avoid unexpected obstacles.

3.3 Quadtree Data Structure

There are different ways to represent the spatial information using various

data structures. It has been proven that the efficiency of the different kinds of path

planning algorithm developed till present is closely related to the type of data

structures used to store the map.

In this work the quadtree data structure is chosen because of it's advantages

over others.

33.1 Advantages of quadtree 	 _

In Quadtree approach the region representation based on recursively

subdividing an image into quadrants until blocks are obtained that are either entirely

contained in the region or entirely disjoint from it. The advantages of this quadtree

data structure are:

1. It provides a variable resolution encoding of a region according to the sizes and

number of `maximal non-overlapping blocks' that are contained in it.

2. It provides topological relations involving block adjacency, connectedness and

borders are easily computable.

3. The quadtrees provides a relatively compact representation [1] for many regions.

3.3.2 Disadvantage of quadtree

The quadtrees are shift variant i.e., two identical regions differing only by a

translation in an image may have quite different quadtrees e.g., a 2"' by 2"' square

region may be represented by a single node or as many as 0 (2m) nodes depending

on its position in the image.

3.4 Space Efficiency of Quadtree

The quadtree of a 2" by 2" binary image is defined recursively as follows let

the root of the quadtree be associated with the entire image; the level of the root is n.

If the 2k by 2k block of the image associated with an arbitrary node at level k doesn't

consist of either all of l's or 0's, then subdivide the block into four 2~'-1 by 2k-'

quadrants and associate these sub blocks with four nodes designated as the four sons

of the given node; each son is defined to be at level k-1.

Each node in a quadtree contains six fields. Five fields contains pointers to a

node's father and four sons and the sixth field describes the block of the image

associate with the node-its value is black if the block contains only pixels in the

region (i.e., all l's), WHITE if the block contains no pixels in the region (i.e., all 0's)

or gray if it contains pixels of both types (0's and l's) thus all non leaf nodes are gray

and all leaf nodes are either BLACK or WHITE.

Let N be the total number of nodes in a quadtree, B the number of black

nodes, W be the number of white nodes and G th number of gray nodes. Thus

N=B+W+G.

The following relations are true for any quadtree:

N=4G+ 1= (4(B+W)-1/3),

B=3 G-W+1,

W=3 G-B+1,

G=(B+W-1)/3)

There are three different cases occurs i.e., best, worst, average[3] values for

the variables N,B,W and G for which will be computed as a function of n and m for a

quadtree representation of a 2" by 2" image in which a single rectilinearly ordered 2"

by 2°' region occurs. Each pixel will be referred by its matrix co-ordinates in the 2° by

2" input array. Thus the upper-left corner pixel has co-ordinates (0,0). The position of

the region in the array will be specified by the position of its upper left corner.

3.4.1 Best Case

The Best Case [3] occurs when the region can be represented by a single black

node at level m. As shown in the fig.3.2.1 this implies that there are no nodes at level

0 through m-1, four nodes at each of levels in through n-1 and one node at level n.

Thus N = 4(n-m)+1. Of these nodes, one gray node occurs at each of levels m+l

through n and three white nodes occurs at each of levels m through n-1. Thus B=1,

W=3(n-ni) and G=n-m.

This case occurs when ever the position (r,c) of the region is such that r mod

2°' = c mod 2°' = 0; thus only O(n-m) nodes are required when the region is any of 2"-

"'' positions in the image. At any other position G would increase since there would

now exist black nodes at levels less that m and there must be at least on gray node at

each level except the lowest in any quadtree, hence G >= n-m. We know n=4G+l;

thus there can be no position. of the region which results in a quadtree containing

fewer than 4n-m)+1 nodes.

12

Fig. 3.4.1. Best case position of a 2"' by 2"' region in a 2" by 2" binary image(a) Block

decomposition (b) Quadtree Representation

3.4.2 Worst Case

The worst case [3] occurs when the obstacle is presented as per the figure. In

this case the region is at position (r,c) such that r mod 2m = c mod 2" = 1 i.e., the

region is shifted to the right and down I pixel from the best case position. In this case

there is a border of level 0 black blocks along the left and top sides of the region.

Inside these two borders there is a row and column of level I black blocks; this filling

in along the left and top side continues until a single black block at level m-1 occurs.

Finally a band of black blocks at level 0 fills in the right and bottom borders of the

region. The map and quadtree structure is represented in the figure 3.4.2.

13

Fig 3.4.2. \Vorst case position of a 2' by 2' region. (a) Block decomposition of a 16

by 16 region at position (1,1). (b) Portion of the quadtree representation of (a).

14

3.3 DATA FLOW DIAGRAM

3.3.1 DFD 0 LEVEL OF PATH PLANNING SYSTEM

Location of 	Location of 	Location of Starting
Map 	I 	Obstacles 	and Goal position.

3.0

2.0 	 Accept &
Accept & 	—► 	Create 	 Validate start &
Validate 	 Map & 	 goal location
map 	 Obstacles
location

4.0 	 5.0

Quadtree 	 Regular Grid
Search 	j 	 Search

Optimal Path

Fig. 3.2

15

3.3.2 DFD 1 LEVEL OF PATH PLANNING SYSTEM

Fig. 3.3

16

3.3.3 DFD 2 LEVEL OF PATH PLANNING SYSTEM

Adjacency 	 Goal Node

Direction
I Reflect

Current
Node

4.3.0

Find
Neighbor

4.4.0

Find Path

Neighbour
Nodes

Child Type

4.3.1.0

Find Small
Neighbor

Check
Common
Side

4.4.1.0

Distance

Optimal
Path

Fig. 3.4

17

Chapter 4

IMPLEMENTATION OF QUADTREE APPROACH

4.1. Algorithm For Converting Rasters to Quadtrees

This algorithm[1] is used for obtaining in-core quadtree representation given

the row-by-row description of a binary image.The quadtree[1],[6] is a compact

hierarchical representation, there by facilitating search.

Assume that the image is a 2° x 2° array. Each row of the image is thus a bit

string of length 2" . The quadtree[l] is an approach to image representation best on

successive subdivision of the image into quadrants. In essence we repeatedly

subdivide the array into quadrants, sub quadrant, until we obtain blocks (possibly

single pixels) which consist of entirely of either 1's or 0's. This process is represented

by a tree of out-degree 4 in which the root node represent the entire array, the four

sons of the root node represents in order of the NW, NE, SW and SE quadrant and

the terminal node corresponds to those blocks of the array for which no further

subdivision is necessary.

4.1.1 Block Decomposition

The block decomposition is shown in the fig 4.1.1.

19

7T7 77 77
/3

?7
 5 ~j61 7

17 18 19 20 21 4

25 26 27 28 29 2

33 34 35 36 r37' 38 39 40

41 42 43 44 / 47 48

49 50 51 52 53 54 55 56

57 50 59 60 61 62 63 64

//4/107, 11

42/ 29 i3 /

F
5

G

E

H ii I

SAME.

Fig. (b)

Fig 4.1.1. An image, its maximal blocks, and the corresponding quadtree.

Blocks in the image are shaded (a) sample image (b) block decomposition

of the image in (a). (c) quadtree representation of the blocks in (b).

I

Fig. (c)

6 13 14 ` 8 15 	21 22 29 30

In general BLACK and WI-HTE square nodes represents blocks consisting

entirely of 1's and 0's respectively. Circular nodes, also term GRAY nodes, denote

non-terminal nodes.

4.1.2 Processing of Image

We assume that the image contains an even number of rows, if the image

contains an odd numbered rows, then it is presumed that one extra row of WHITE

has been added.

For a odd-numbered rows, the tree is constructed by processing the row from

left to right adding a node to the tree for each pixel. The example is given below

shows the construction of a quadtree corresponding to the first four pixels of the

binary image of figure-4.1.1.(a) (i.e. pixels 1,2,3 and 4). This is done by invoking a

procedure described below, called ADD-NEIGHBOR[5].As the quadtree constructed,

non-terminal node must be added. As the quadtree constructed, non-terrriinal node

must be added. Since we wish to have a valid quadtree after processing each pixel,

whenever we add a non-terminal node we also add, as is appropriated, 3 or 4 WHITE

nodes as its sons.

NW
■ r 	NW NE SW SE NW NE S SE

1 	1 	1 	 1 	2

NW

NW1/NEESVA SE
1 	2

NE

NW

N /NE SW~SE
1 	2

NW

SWap
NE

N SWd SE

S
S

NE /l\

2

NW

N r/NEf S

❑

`SE\O 3
/NE jSW\ St b 	NW~NE/ SW`

❑

SE N vNE JS
W\ SE

i 	 2i 	3 4

Fig. 4.1.2.(a, b, c, d, e. f, g, h, i) Intermediate trees in the process of obtaining a

quadtree for the first part of the first row in fig. 4.1.1(a).

21

4.1.3 Neighbor Adding

We now describe ADD-NEIGHBOR[5] more formally. Adding a neighbor of

a node, say P, in a specified direction consist of traversing ancestor links until a

common ancestor of the two nodes is found. Once the common ancestor is found, we

descend along a path that retraces the previous path with the modification that each

step is a reflection of the corresponding step about the axis formed by the common

boundary between two nodes. For example when attempting to add the eastern

neighbor of node 3 (i.e., node 4) in figure 4.1.2(h), node X is the common ancestor

and the eastern edge of the block corresponding to node 3 is the common boundary.

Thus having ascended a north-west link to reach node X, reflection about the eastern

edge of node 3's block causes us to descend to the NE son of X. If a common

ancestor doesn't exist then a non-terminal node is added with its 3 remaining sons

being WI-IITE [example for Fig 4.1.2.(c) and (f)] once the common ancestor and 3

sons have been added, we once again descend along retrace path modified by

reflecting each step about the access formed by the boundary of the node whose

neighbor we seek. During this descend, a WHITE node is converted to a GRAY node

and four WHITE sons are added [e.g., Fig 4.1.2(g)]. As a final step, the terminal

node is. colored appropriately (e.g., Fig. 4.1.2(d) and (h)]. In example Fig.4.1.2.

(a),(b)-(d),(e)-(h) and (i) are snapshots of the quadtree construction process for the

nodes corresponding pixels 1,2,3 and 4 respectively of Fig.4.1.1(a).

Even-numbered rows required more work since merging may also take place.

In particular, a check for a possible merge must be performed at every even numbered

vertical position (i.e., every even-numbered pixel in a row) once a merge occurs, we

may have to check if another merge is possible. We wish to maintain the position in

the tree where the next pixel is to be added as well as the next row. Therefore, prior to

attempting a merge, a node corresponding to the next pixel in the image is added to

the quadtree [e.g., node 1] is added to the quadtree in Fig. 4.1.3 (which is given

below) prior to attempting to merge nodes 1,2,9 and 10 of Fig.4.1.1(a)]. Similarly we

precede the processing of each even-numbered row by adding to the quadtree a node

corresponding to the first pixel in the next row [e.g., the addition of the node 17 to the

tree of the Fig.4.1.3 prior to processing row 2 of Fig.4. 1.1(a).

22

2 9] U 	4 11 	17 	 5 	6 	 a E

Fig. 4.1.3. Quadtree prior to merging nodes 1,2,9 and 10

In this algorithm the execution time has a time complexity proportional to the

number of pixels in the image. This is obtained by examining the number of nodes

that are visited as the tree is constructed. In particular, the number of nodes visited by

the merging process is bounded by the number of pixels in the image. While the

remaining part of the tree construction process visit four times as many nodes as there

are pixels in the image. The algorithm is also space wise efficient in that merging is

attempted whenever possible. Thus, after processing each pixel in a given row the

resulting quadtree contains a minimum number of nodes. Then the algorithm is one

dimensional in the sense that it processes the image a row at time.

The example of the algorithm represented in Fig.4.1.1(a) and Fig.4. l .2(b) is

the corresponding block decomposition and Fig.4.1.1(c) is its quadtree representation.

Fig.4.1.2(a)-(i) shows the steps in the construction of the quadtree corresponding to

the first part of first row and Figs.4.1.4 and 4.1.5 shows the resulting trees after the

first and second rows have been processed.

23

A

- b
	13.14` 0 15 1

Fig. 4.1.4. Quadtree after processing the first row in Fig. 4.1.1.(a).

Fig. 4.1.5. Quadtree after processing the second row in Fig. 4.1.1.(a).

24

4.2 Quadtree Generation

The quadtree is a tree, in which each node in the tree will have four children

nodes. We can represent the given 2-dimensional inmate map into the form of

quadtree by recursive decomposition. Each node will represent a square block of the

given image Map. The size of the square block may be differed from node to node.

The nodes in The quadtree can be classified into three groups.

NORTH

WEST EAST

SOUTH

Fig-4.2.1 Representation of a simple 2D world map, in which gray area

representing obstacle region, and white core presenting obstacle free region

1. Free nodes.

2. obstacle nodes.

3. mixed nodes.

A free node is a node , which has no obstacles in the square region represented

by it. An obstacle node is a node ,whose square region is totally filled with obstacles.

A mixed node's square regions partially filled with obstac 	ample consider
the image map given in fig. 4.2.1.

25 	 f T ~R~.B/

In the decomposition of above 2-dimensional image map above It is divided

into four sub square regions(four children),namely NW, NE, SW, and SE according to

directions. The square region NW,SW are fully occupied with obstacle(gray region)

So they will come into "Obstacle mode" category. Square region NE is not

having any obstacle region in it. So it will be under" free node" category. The square

region SE is partially filled with obstacle and remaining spaces is an obstacle-free

region. So it will come under "mixed mode" category. The quad tree representation of

the above decomposition is shown in figure 4.2.2

NW 	NE 	SE 	SW

Fig 4.2.2 The decomposition of 2D World map in Fig 4.2.1 into quadtree

nodes.

The type of each node is represented by small box , with different fill pattern.

Grey fill for obstacle node , Empty fill for free node and hatched line fill for gray

node. The data structure needed for a node is represented as given below in

Programming language C syntax.

Struct node

node*pointer_ to_childl;

node*pointer_ to_child2;

node*pointer_ to_child3;

node*pointer to child4;

node* pointer_ to parent_ node;

int node status;

The first four fields are pointers for four children. The fifth field is a pointer to

the parent node The pointer to the parent node of root will be NULL. The pointers to

children for leaf nodes are also equal to NULL.

From the given 2-dimensional image map, we will generate the quadtree by

dividing the map into four equal sized square quadrants. For both free nodes, and

obstacles nodes there is no need to decompose to further. They will remain as leaves

of the quadtree. Each mixed node must be recursively, subdivided into four sub

quadrants, which form children of that node. This subdivision procedure is repeated

continuously until either of the conditions below is satisfied.

27

1. The node is either a free node or an obstacle node.

2. The size of the square region represented by the Square region represented by

the node's children is less than the size of the mobile Robot.

The complete example for generating the quadtree for a given 2-Dimensional

image map given below.The image Map is given in figure-4.2.3

IIIIE EMBEEME1©E®
NEMMEN®EMMMEEMME
iEEEUmmElEEIIIluuumI
UEEUEUIUUULUUE

UUUUUIIIIUUUUELJUUU
oo ©oo ©oU®o ®000w
uuuuuiimurniuuuuuu

EKEIIEJ
©EEMMM 1E EIEIEEE

EEUEUE

B F G

H I

J 37 38 N O

39 40

L M 57 58 Q

59 60

Fig 4.2.3. Representation of a 2D world map ,in which gray area representing

obstacle region , and white color area representing obstacle free region 1.A region,

2. binary array 3. maximal blocks.

28

The gray area in the figure are obstacle regions. For simplicity we have

considered the square obstacle regions only. In the first stage of its decomposition

the image map is divided into four square regions of equal size as shown below The

image map itself is the root of the quadtree The name given to it is A.

NW child 'B' 	 NE child 'C'

SW child 'D'
	 SE child 'E'

Fig-4.2.4: The decomposition of the 2D world map represented in Fig-4.2.3.

In the above decomposition the child 'E' has no obstacle in its, square region

.So it is a free node and will not be decomposed further. It will remain as a leaf node

of the quad tree. The remaining children 'B , 'C', and 'D' are having some free space

and some obstacle region, they will come under mixed nodes. The quadtree developed

up to this stage is as follows, the small square box under the each node is representing

the status of the node. The white box is free node. The gray box represent the obstacle

node. The box with hashed lines represents the mixed node.

29

III

------ / \ 	-..
vy ~-

/ \
V1 	NE 	SE

cc~ 0

V/4 _ _ _

Fig-4.2.5. Quadtree representation of the decomposition.
They have to be decomposed further and the decomposition is shown in the Fid-4.2.6.

NW NE
	

NW NE
	NW NE

dir _U_

rH
SW SE
	SW SE

	SW SE

30

I1 LI LII LIEILI

NODE `B' 	 NODE `C' 	 NODE `D'

Fig-42.6. The second stage decomposition of the 2D world map given in Fig-4.2.3

As per the node status the nodes 'F' and 'G' are mixed nodes and will be

expanded further.

NW NE 	 NW NE

rn
rn
SW SE 	 SW SE

31

NW NE SE SW NW NE SE SW

0 0 0 0 0

Fig-4.2.7 Further decomposition f remaining mixed nodes.

At this stage all nodes are either obstacle nodes or free nodes. There are mixed nodes

left unexpanded. This is satisfying the first condition of the two, mentioned earlier we will

stop the quadtree generation process here. The total quadtree generated in this process is

shown in Fig-4.2.8.

We can observe from the fig 4.2.8, that all leaf nodes are either free nodes or obstacle

nodes. A small box under each node represents node status. At this stage the process of

generating the quadtree is completed.

32

Fig-4.2.8.: 	Quadtree representation of the total world map given in Fig-4.2.3

33

Chapter 5

IMPLEMENTATION OF NEIGHBOR FINDING TECHNIQUE

5.1 Significance of Neighbor Finding Technique

There are different methods for moving between adjacent blocks in the

quadtree. Different transitions can be made between blocks of equal size and blocks

of different size, where the destination block is either of larger or smaller size than the

source block. Such block are term neighbors. There can also be possible to traverse

along the diagonal as well as horizontal and vertical direction. The importance of

these methods lies in their being corner stone of many of the quadtree algorithms,

since they are basically tree traversal with a "visit" at each node. The significance of

our method, Neighbor finding [2], lies in the fact that they don't use co-ordinate

information, knowledge of the size of the image, or storage in excess of that imposed

by the nature of quadtree data structure.

5.2 Neighbor Finding Algorithms for Quadtree

In the quadtree approach the image representation base on the successive sub-

division of the image into the quadrants. It is represented by a tree of outdegree 4 in

which the root represents a block and the four sons represent in order the NW, NE,

SW and SE quandrants. We assume that each node is stored as a record containing six

fields. The first five fields contains pointers to the node's father and its four sons,

which corresponds to the four quadrants. The example is given below, is shown in

the Fig.5.2.1.

35

D E West 	 East

A B

C
F G

5.2.1 World Map And its Decomposition

South

Fig 5.2.1. 2D World map

The neighbors of node D are B, E, F, and C regions in North, East, South and

West. In our approach we are not taking the corner neighborhood (D and G are corner

neighbors) because of possibility of absence of path between corner neighbors. For

Example

Fid-5.2.2: Simple decomposed 2D world map.

In the fig 5.2.2 shown above, assume the robot is in the square region 'A', and

the goal to be reached is in the square region 'D'. If we take corner neighbor into

account the regions A and D will be neighbors. But there is no path to move into the

region D from the region A, since regions B and C are occupied with the obstacles.

This is the reason we are neglecting corner neighbors.

36

5.2.2 Representation of Children

As mentioned in the previous section, for a mixed node, we will get four

immediate children in four directions. These are called as 'NW','NE','SE' and 'SW',
Which are represented below.

North

NW 	NE

West 	 East

SW 	SE

South

Fig-5.2.3. Representation of children used in Algorithm.

If 'P is a node and 'I' is a Quadrant, then these fields are referenced as
FATHER(P) and SON (P,I) respectively. We can determine the specific quadrant in

which a node P lies relative to its father by the use of function SONTYPE(P),which
has the value of I, if

SON(FATHER(P),I)=P

For example assume the figure shown above is a node named P, and the child node
and the child node in the NW direction is named as Q. Then
FATHER (Q)=P

SON (P,NW)=Q

SONTYPE (P)=NW

While generating the Quadtree we have stored the "node status" in every node.
The integer values stored for the node status are

37

Node status =O=WHITE if node is a free node

Node status =1=BLACK if node is an obstacle node

Node status =2=GRAY if node is a mixed node

The four boundaries of a node's square region is called with names N,E,S and

W for north, east, south and west directions respectively. We define the following

predicates and functions, which will be used in the subsequent algorithm.

i) ADJ (B,I) is true if and only if the quadrant I is adjacent to the boundary B of

the node's block.

For Example, ADJ (W, NW)=TRUE.

ADJ (W, NE)=FALSE

ii) REFLECT(B,I)yields the SONTYPE value of the block of equal size that is

adjacent to the side B of a block'having SONTYPE value I.

For Example,

REFLECT (E, NW)=NE and

REFLECT (N, SW)=NW

REFLECT gives the mirror image of the node I in the direction B.

For the world map is given as below:

i) The mirror image of child SW in N (north) direction is NW.

ii) The mirror image of child SW in E (east) direction SE.

These relations are represented into tables in fig.5.2.4(a) and Fig.5.2.4(b)

38

5.2.3 Adjacency Relation Table

ADJ (S,Q)

Quadrant 'Q'

NW NE SW SE

Side `S'

N T T F F

E F T F T

S F F T T

W T F T F

Fig.5.2.4(a) Adjacency Relation

5.2.4 Reflection Relation Table

REFLECT (S,Q)

Quadrant 'Q'

NW NE 	SW SE

Side `S'

N SW SE NW NE

E NE NW SE SW

S SW SE NW NE

W NE NW SE SW

Fig 5.2.4(b) Reflection Relation.

These diagrams shows predicate relations used in the neighbor finding

algorithms.

39

5.2.4 Neighbor Finding

For Quadtree corresponding to a 2" x 2' array, the root is at level 'n', and that a

node at level 'I', is at distance 'n-I' from the root of the tree. In other words, for a node

at level 'I' we must ascend 'n-I' FATHER links to reach the root of the tree.

Node procedure GTEQUAL_ADJ_NEIGHBOR(P,D);

/* Locate a neighbor of a node Pin horizontal or vertical direction D. If such a node

does not exists, then return NULL.*/

begin

Value node P;

Value direction D;

Node Q;

If not NULL(FATHER(P)) and ADJ(D,SONTYPE(P))

then

/*Find common ancestor */

Q f--GTEQUAL_ADJ_NEIGHB OR(FATHER(P),D)

else Q~FATHER (P);

/*Follow the reflected path to locate neighbor */

return (if not NULL (Q) and node status (q)=GRAY

then

SON (Q, REFLECT (D, SONTYPE(P)))

else Q)

end

This algorithm will return a neighbor of greater or equal size. This is done by

first finding the common ancestor. Next we retrace the path while making mirror

image moves about an axis formed by the common boundary between the blocks

associated with the nodes. The common ancestor is simple to determine. For example,

to find an eastern neighbor the common ancestor is the first ancestor node, which is

reached via its NW or SW son.

The procedure is shown in the fig 5.2.5.

40

N E
C) . NE N54n'7.f

u
~+

Y
154n5r

}

B F
NE

E

3

C7

Fig, 5.2.5: Finding the neighbor of node A using a mirror image path from

common ancestor (block-decomposition).

41

C

	

NW,, --' 	i
NE 1

(
4 	 _
 _ SE

3) 	SW

E
N \\

NE 	 L)
g 	 F

E ~ti ~` 	N

A

Fig 5.2.6: Finding the neighbor of node A using a mirror image path from

common ancestor (Tree decomposition).

In the Fig-5.2.5 the eastern neighbor of the node A is G. It is located by

ascending the tree until the common ancestor D is found, from the Fig. 5.2.6. This

requires going through a NE link to B, a NE link to C, and a NW link to reach D. The

node G is now reached by backtracking along the previous path with appropriate

mirror image moves. This requires descending a NE link to reach E and NW link to

reach F and a NW link to reach G.

42

Chapter 6

RESULT AND CONCLUSION

6.1 Results

A simple example of a path obtained by Multiresolution (Quadtree

Approach) path planning as we discussed earlier in previous chapters Algorithm has

been shown in the Fig. 6.1. (Block Traversal), Fig 6.2 (Optimal Path formed by

Multiresolution approach).

INPUT FOR START AND GOAL LOCATION

set goal x-location 	: 90
set goal y-location 	: 380
set starting x-location : 240
set starting y-location : 90

Fig.6.1 Block Representation of Path Formed by Quadtree Approach

43

Fig 6.2 Path formed by Multi-Resolution (quadtree) Approach.

44

6.2 Conclusion

Compared to the other path-planning algorithm, path planning cost for the

quadtree-based search will be substantially lower because the number of nodes to be

searched in Quadtree-based approach is considerably smaller. A hierarchy of different

levels of description of the space that is available with quadtrees enables us to search

for the path close to obstacles only when necessary. Comer clipping, inflexible paths

are eliminated by considering only neighbors in horizontal and vertical directions.

The path produced by the quadtree algorithm, although not "optimal", is a

"negotiable" path which can be computed quickly. Apart from this, the hierarchical

nature of the representation gives many advantages in path planning. For example, we

can easily constrain the path to satisfy certain conditions, such as specification of

minimal clearance of the path.

Though the generated path is collision free, but it is inferior to the exact

optimal path that a robot can travel from the starting point to goal point in the given

environment.

6.3 	Further Scope

Mobile robots operating in vast outdoor unstructured environment often only

have incomplete maps and must deal with new objects found during traversal. Path

planning in such sparsely occupied regions must be incremental to accommodate new

information and must use efficient representation. A path plan can be Implemented

when the environment is not known ahead of time, but rather is discovered as the

robot moves around. The planning can also be extended to 3-D map by using oct-
trees.

45

REFERENCES

1. H. Saret, "An Algorithm for converting rasters to quadtrees," IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 3, pp. 93-95. 1981.

2. H. Samet, "Neighbor finding techniques for images represented by 	quadtrees,
"Computer Graphics and Image Processing, vol. 18, p.p. 37-57,1982.

3. Charles R. Dyer, "The Space Efficiency of Quadtrees", Computer Graphics and

Image Processing, vol. 19, p.p. 335-348, 1982.

4. David Nitzan, "Development of Intelligent Robots" IEEE journal of Robotics and

Automation, vol. RA-1, No. 1, p.p. 3-12, 1985.

5. James L. Crowley, "Navigation for an intelligent Mobile Robot", IEEE journal of

Robotics and Automation, vol. RA-1, No. 1, p.p. 31-40, 1985.

6. H. Samet, "An overview of quadtrees, oct-trees, and related Hierarchical Data

structures", NATO ASI Series, vol. F40, 1988.

7. S.Ghoshray, K.K.Yen, "A comprehensive robot collision avoidance scheme by two

dimensional geometric modeling" in proc. Of the 1996. IEEE Int. conf On Robotics

and Automation, minne polis, USA, 1996.

8. Danny Z Chen, Robert J. Szczerba and John J. Uhran. Jr, "A 	Framed-Quadtree

approach for determining Euclidean shortest paths in a 2-D environment". IEEE

Transactions on Robotics and Automation, vol. 13. No. 5. P.p. 668-680, 1997.

9. A,ex Yahja, Anthony Stentz, Sanjiv Singh, and Barry L. Brummit, 	"Framed-

Quadtree Path Planning for Mobile Robots Operating in Sparse Environments." In

proceedings, IEEE Conference on Robotics and Automation(ICRA), Leuven,

Belgium, May 1998.

10. www.dao.nrc.ca/abstracts/pasztor2.tex.html

11. Computer Graphics by Foley.

Appendix A

A.1 Data Structure of Quadtree

The data structure of quadtree is described as follows

struct node

{ 	int x l ;

intyl;

int x2;

int y2;

int finished;

node *childl;

node*child2;

node*child3;

node*child4;

node*parent;

short status;

int visited; }

Where (xl, yl) and (x2, y2) are the co-ordinates of top-left and bottom-

right corner of a quadrant. The childl, child2, child3 and child4 fields of

the node represent four quadrants of the region. Parent field of a node

stores pointer to its parent. The status field can have three values BLACK

(For obstacle), WHITE (for free region), PARTIAL(for mixed region).

The finished field of a node store 0 or 1 depending on whether that needs

further expansion or not respectively.

A.2 Quadtree Class

The class for quadtree is decided and is as follows.

class quadtree

{ 	node *root;

public:

quadtree(void);

void develope_tree(node* n);

node *return_root(void);

void set current_ node(node*n,int x,int y);

void set_goal_node(node*n,int x,int y);

node * find_neighbo ur(node *p ,int direction);

void cleanup(node* n);

• 	Names of the methods are reflecting their usage.

• The routines for initialization of quadtree is written. It is given
below

quadtree: : quadtree()

root=new node;
root->x 1=80;
root->y 1=80;
root->x2=400;
root->y2=400;
root->child 1 =NULL;
root->child2=NULL;
root->child3=NULL;
root->child4=NULL;
root->parent=NULL;
root->finished=0;

}
• The region of obstacle is converted in to raster and then it is stored

in the quadtree.

A.4 Neighbor Finding Routine
• The routine for fmding the neighbor, using the adjacency

matrix[2], is based on following algorithm.

Node procedure GTEQUAL_ADJ_NEIGHBOR(P,D);
/* Locate a neighbor of a node P in horizontal or vertical direction D. If such a
node does not exists, then return NULL.*/
begin

Value node P; Value direction D;
Node Q;
If not NULL(FATHER(P)) and ADJ(D,SONTYPE(P))
then
/*Find common ancestor */

Qi— GTEQUAL_ADJ NEIGHBOR(FATHER(P),D)

else Q ♦—FATHER (P);
/*Follow the reflected path to locate neighbor */
return (if not NULL (Q) and node status (q)=GRAY
then
SON (Q, REFLECT (D, SONTYPE(P)))
else Q;

end

Appendix B
LIST OF FIGURES

FIG. NO. DESCRIPTION PAGE.NO
2.1 The Division of Mobile Robot 8
3.1 The relationship between different tasks 9
3.2 DFD 0 level of path planning system 11
3.3 DFD 1 level of path planning system 12
3.4 DFD 2 level of path planning system 13
3.4.1 Best case position of a 2m by 2m region in a 2° by 2n binary 13

image (a) Block decomposition (b) Quadtree Representation
3.4.2 Worst 	case 	position 	of a 	2m 	by 	2' 	region.(a) 	Block 14

decomposition of a 16 by 16 region at position (1,1). (b)
Portion of the quadtree

4.1 .1 An image, its maximal blocks, and the 20
Corresponding quadtree.

4.1.2 Intermediate trees in the process of obtaining a 	quadtree for 21
the first part of the first row in 	fig. 4.1.1 (a).

4.1.3 Quadtree prior to merging nodes 1,2,9 and 10 23
4.1.4 Quadtree after processing the first row in Fig. 4.1.1.(a) 24
4.1.5 Quadtree after processing the second row in Fig. 4.1.1.(a) 24
4.2.1 Representation of a simple 2D world map, in which gray area 25

representing 	obstacle 	region, 	and 	white 	core 	presenting
obstacle free region

4.2.2 The decomposition of 2D World map in Fig 4.2.1 	into 26
quadtree nodes.

4.2.3 Representation 	of 	a 	2D 	world 	map 	in 	which 	gray 28
area representing obstacle region , and white color area
representing obstacle free region.

	

4.2.4 	The decomposition of map represented in Fig 42.3. 	29

	

4.2.5 	Quad tree representation of the decomposition They have to 30
decompose further and the decomposition is shown in the Fig-
4.2.6.

FIG.NO. DESCRIPTION PAGE.NO
4.2.6 The second stage decomposition of the 2D world map given in 31

Fig-4.2.3

4.2.7 Further decomposition of remaining mixed nodes 32

4.28 Quadtree representation of the total world map given in fig- 33
4.2.3

5.2.1 2D World map 36

5.2.2 Simple decomposed 2D world map 36

5.2.3 Representation of children used in Algorithm 37

5.2.4 Predicate relations used in the neighbor finding algorithms 39

5.2.E Finding the neighbor of node A using a mirror image path 39
from common ancestor

5.2.6 Finding the neighbor of node A using a mirror image path 42
from common ancestor(tree representation)

6.1 Block Representation of Path Formed by Quadtree Approach 43

6.2 Path formed by Multi-resolution (quadtree) Approach 44

	Title
	abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

