
SIMULATION OF ASYNCHRONOUS TRANSFER MODE (ATM)
NETWORKS FOR MULTIRATE ATM TRAFFIC APPLICATIONS

A DISSERTATION
Submitted in partial fulfilment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

4ctr
By

NEELESH YADAV

A

ER & DCI
NO/D,A

• UT Roorkee-ER&DCI, Noida
C^56/1, "Anusandhan Rhawan"

-Sector 62, Noida-201 307

fEE RUARY, 2003

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation" SIMULATION OF
ASYNCHRONOUS TRANSFER MODE (ATM) NETWORKS FOR MULTIRATE
ATM TRAFFIC APPLICATIONS ", in partial fulfillment of the requirements for the
award of the degree of Master of Technology in Information Technology, submitted in
IIT Roorkee—ER&DCI Campus, NOIDA, is an authentic record of my own work carried
out during the period from August, 2002 to February, 2003 under the guidance of
Dr. Moinuddin, Professor, Electrical Engineering Dept. at Faculty of Engineering, Jamia
Millia Islamia University New Delhi.

I have not submitted the matter embodied in this dissertation for award of any other
degree of diploma.

Date: 	ç9.3-

Place: .. nt t, o. ~►. . 	 (Neelesh Yadav)

CERTIFICATAE

This is to certify that the above statements made by the candidate are correct to the
best of my knowledge and belief.

Co-Guide 	2~' 	 Guide
(Mr. Muni 	umar) 	 (Dr. Mo nu di
Project Engineer, 	 Professor, Elect. Engg. Dept.,
ER&DCI-NOIDA 	 Faculty of Engg. & Tech.,

Jamia Millia Islamia,
New Delhi-1 10 025

(i)

ACKNOWLEDGEMENT

It gives me great pleasure to take this opportunity to thank and express my deep sense of
gratitude to Prof. Prem Vrat, Director, IIT Roorkee, Shri R.K.Verma, Executive Director,
ER&DCI, Noida for providing me with excellent acedemic environment to undergo my
dissertation. I would like to extend my thanks to Prof. A.K.Awasthi, Dean PGS&R and Prof.
R.P.Agarwal, Course Coordinator M.Tech.(IT), IIT Roorkee for providing all the required
facilities for my dissertation.

The work presented in this report would not have been completed without the excellent
guidance, flexibility and consistent support given by Mr. V.N. Shukla, Course coordinator
M.Tech. (IT) program.

At the submission of this dissertation work, I take the opportunity to express my deep
sense of gratitude and indebtedness to my guide, Prof. Moinuddin, Electrical Engg. Department,
Faculty of Engg., Jamia Millia Islamia University, New Delhi for his invaluable, tireless
guidance and constructive criticism throughout this dissertation. It is only due to his constant
motivation and moral support, I was able to pull through many difficult phases of the work and
bring it to a successful completion.

I am also grateful to Dr. P.R. Gupta, Reader and my Co-guide Mr. Munish Kumar,
Project Engineer, ER&DCI, Noida for the cooperation extended by them in the successful
completion of this report.

I would like to thank all my friends and well wishers, who helped me directly or
indirectly in the process and contributed towards this dissertation work.

Finally, I express my regards to my parents and my elder brother, who have been a
constant source of inspiration to me and provided me a perfect environment for my studies and
supported me throughout.

(Neelesh Yadav)

Enrolment No. - 019028

CONTENTS

CANDIDATE'S DECLARATION 	 (i)
ACKNOWELEDGEMENT 	 (ii)

ABSTRACT 	 I

1. INTRODUCTION 2

1.1 Overview 3

1.2 Objective 3

1.3 Scope 4

1.3 Organization of Dissertation 5

2. LITERATURE SURVEY OF ATM NETWORKS 7

2.1 Broadband Application 7

2.1.1 Asynchronous Transfer Mode 8

2.1.1.1 What is ATM 8

2.1.2 Basic Principles of ATM 10

2.1.3 ATM Cell Format 11

2.2 Overview of ATM Service or Traffic Classes 13

2.2.1 Constant bit rate 13

2.2.2 Real time VBR 14

2.2.3 Non-real time VBR 14

2.2.4 Unspecified bit rate 14

2.2.5 Available bit rate 15

2.3 Traffic Management in ATM Networks 16

2.4 Component description 17

2.4.1 Switch 17

2.4.2 Broadband Terminal Equipment 18

2.4.3 ATM application 18

2.4.4 Physical link 18

3. SIMULATION CONCEPT 21

3.1 Simulation Model 21

3.1.1 Discrete event simulation 21

3.1.2 Time-advance mechanisms 21
3.1.3 Components and Organization of a Discrete-Event

Simulation Model 22
3.2 	Description of Simulation components 23

3.2.1 Simulation Clock 23
3.2.2 ATM Switch 23
3.2.3 Broadband Terminal Equipment 26
3.2.4 ATM Application 27

3.2.5 Link Component 32
4. IMPLEMENTATION DETAILS 35

4.1 Simulation software Architecture 35
4.1.1 Display of simulation software 35

4.2.1.1 The Network window 36
4.2.1.2 The Text window 36

4.2.1.3 The control Panel 37
4.3 Brief description of data structure and routines used 39

4.3.1 Component Data Structures 40
4.3.2 Relationship of Data Structure 44

4.3.3 ATM Network-Related Issues 47

5. RESULTS AND DISCUSSION 53

6. CONCLUSION 63

REFREENCES 65

Appendix A: 	Format of SAVE file.

Appendix B: 	Format of SNAP file.

ABSTRACT

The introduction of the Asynchronous Transfer Mode

(ATM) is currently being propelled by the need for fast data

communication in public and private networks. ATM is the

switching and multiplexing technique employed for ISDN. In this

dissertation a simulation tool is developed for Asynchronous

Transfer Mode (ATM) networks to analyze the behavior of ATM

networks. The developed tool is a GUI based that gives the user

an interactive modeling environment. With this tool the user may

create different network topologies, control component

parameters, measure network activity, and log data from

simulation runs. In this simulator we include some components

which are necessary to formulate an ATM network like an ATM

switch, a Broadband Terminal Equipment (BTE), (may be an

ISDN node like Host computer, Workstation etc.), Some ATM

traffic Applications like CBR (Constant Bit Rate), VBR (Variable

Bit Rate), ABR (Available Bit Rate) and TCP/IP based traffic

etc., and Physical connection link to connect various components

like switch to BTE, switch to switch etc., this may be Optical

Fiber, Coaxial Cable or Copper wired.

This dissertation aims to study of the various kinds of

network configurations with ATM as a backbone and the results

of various parameters of network components like throughput,

delay, link utilization at various network configuration, size of

various ATM application queues, and some congestion related

parameters also.

I

Chapter 1

INTRODUCTION

1.1 Overview

In recent years we can watch a great deployment of computer networks, that

are widely used to transmit various kinds of information in many corporations,

institutions, organizations. Users and customers require faster, more robust and

more reliable services. Therefore network planners and engineers work hardly on

reducing network construction cost, while providing an acceptable level of

survivability. Loss of services and traffic in high-speed fiber systems due to

failures of network elements could cause a lot of damages and significant

revenue loss. The increase of bandwidth in optical transmission means that even

a failure of a single link will impact many services [161. Restoration methods

providing survivability has to be self-healing. Self-healing means, that the

network has the ability to reconfigure itself around failures such, that as little as

possible of traffic is lost I6'16~

ATM is one of the most promising networking technologies, that provides

high performance, the ability to carry many types of services (data, voice, video),

the ability to carry traffic over all kinds of networks, and Quality of Service

(QoS) guarantees, which facilitate new classes of applications such as

multimedia.

1.2 Objective

The objective of this dissertation is to design and develop an

Asynchronous Transfer Mode network simulator to provide a means for

researchers and network planners to analyze the behavior of ATM and other

networks without the expense of building a real network. This ATM simulator

gives the user an interactive modeling environment with a graphical user

interface. It helps the user to create different network topologies, control

3

component parameters, measure network activity, and log data from simulation

runs.

The system developed in this dissertation is capable to simulate the

behavior of an ATM network under the presence of excessive load to the

network through its all nodes, each representing an autonomous switch with

specific arrival random interval intensity. A switch takes time to manage a call

request in order to send it to the appropriate neighbor node. This time delay is

insignificant if the network link has simulated distance in terms of time required

for a call to pass through the link [5,6,11.

1.2 Scope

ATM network simulator is a tool to analyze the behavior of ATM

networks without the expense of building a real network. There are two major

uses for the simulator: as a tool for ATM network planning and as a tool for

ATM protocol performance analysis. As a planning tool, we can run this

simulator with various network configurations and traffic loads to obtain

data/parameters such as channel utilization and throughput. It can diagnose

about congestion control parameters with channel utilization of network.

Response are displayed directly on the screen or logged in a data file for further

processing.

As a protocol analysis tool, a researcher or protocol designer could

study the total system effect of a particular protocol. For example, one could

investigate the effectiveness of various flow control mechanisms for ATM

networks and addresses such issues as: mechanisms for fair bandwidth allocation

protocol overhead, bandwidth utilization, etc. In this simulation the tool has

designed in such a way that modules simulating components of an ATM network

can be easily changed, added, or deleted. Through this simulation the activities

can be recorded on a cell by cell basis for subsequent analysis.

1.4 Organization of Dissertation

Including this introductory chapter, which gives a brief description about

the objective and scope of this dissertation work, the dissertation report is

organized as follows:

The second chapter discusses about the literature survey of traffic management

of ATM network and congestion control in general. In this chapter we also

discuss the various ATM service class like VBR (Variable Bit Rate), CBR

(Constant Bit Rate), ABR (Available Bit Rate) etc.

The third chapter discusses about the concept of simulation in which we explain

the flow of simulation with necessary flow chart.

The fourth chapter explains the various implementation strategies of simulation.

In this chapter the operational feature and data structure used in various

components in the simulation software explained in detailed.

The fifth chapter discusses the various results of simulation with some

screenshots and some graphs of significant parameters of network performance.

The sixth and last chapter discusses the conclusion of this dissertation with future

scope of this simulation.

5

Chapter 2
LITERATURE SURVEY OF ATM NETWORKS

Due to the increased demand for communication services for voice, data,

video and multimedia application Broadband Integrated Services Digital

Networks (B-ISDN) have received increased attention in the past few years. It is

because ITU, formerly CCITT, modestly defines B-ISDN as a service requiring

transmission channels capable of supporting rates greater than the primary rate

(1.544 Mbps) of Integrated Services Digital Network.

2.1 Broadband Application
B-ISDN is conceived as an all-purpose digital network. This means B-ISDN

is required to support traffic requiring bandwidth ranging from a few Kbps to

several hundred Mbps second. Some traffic, such as interactive data and video,

are highly bursty while some traffic, such as file transfer, is rather continuous.

Besides, B-ISDN should support services with both constant and variable bit

rates, as well as connection-oriented and connectionless transfers. It is also

required to meet diverse services and performance requirements of multimedia

traffic. For instance, real-time voice requires real-time delivery through the

network, but the loss of small amounts of voice information is tolerable. On the

other hand, high throughput and strict error control are of primary requirements

in many data applications, while reasonable amount of delay is acceptable. Some

services, such as real-time video communications, require error-free transmission

as well as rapid transfer. Further . more, B-ISDN should not only support

multipurpose applications that we know of, but should also provide the

framework to support future applications that we do not fully understand, or even

know of, today. For example, some of the expected future services include High-

Definition Television and video/document retrieval services [121.

In order to achieve the successful deployment of B-ISDN, existing

technologies, such as circuit switching and packet switching, cannot be used. It is

because in circuit switching, the bandwidth consists of fixed-size channels and

the channel size cannot be changed easily. As B-ISDN is required to support a

wide variety of traffic with different speed, the scheduling of time slots becomes

intractable. In addition, the use of circuit switching results in the inefficient

utilization of network resources because the entire end-to-end circuit remains

dedicated to the user throughout the connection time, even the user does not use

it all the time. On the other hand, packet switching employs complex procedures

like window flow control and recovery of errored or lost packets. These complex

procedures usually implemented by using software, makes high-speed

communication difficult P4].

2.1.1 Asynchronous Transfer Mode (ATM)
Asynchronous Transfer Mode (ATM) has been proposed [CCITT-I.121]

as a target technology for overcoming the difficulties in the existing methods. It

is a particular packet-oriented and connection oriented transfer mode that uses

asynchronous time division multiplexing techniques.

2.1.1.1 What is ATM

ATM stands for "Asynchronous Transfer Mode". ITU-T[ITUT 1.113] defines

ATM as : "A transfer mode in which the information is organized into cells; it is

asynchronous in the sense that the recurrence of cells containing information is

not periodic." The above definition encompasses three basic terms, viz, transfer

mode; cell-based and asynchronous transfer U6I.

a) Transfer Mode
Transfer mode refers to the techniques used to transmit, switch and

multiplex information. In other words, transfer mode is the means of packaging,

sending and receiving information on the network. In current literature,

Asynchronous Transfer Mode (ATM) and Synchronous Transfer Mode (STM)

are the only two possible transfer modes. For others, circuit switching and packet

switching are the two basic transfer modes. In circuit switching information is

sent as bit streams, while in packet switching, information is sent as large frames.

ATM fits in between these two extremes because it uses a small-sized frame (53

bytes). By using a small size frame (precisely, a cell!), ATM retains the speed of

8

-circuit switching Why still offenng the fieXThthty of packet switching. This. is.

why ATM is also referred to as fast packet switching technology [16j

-b)- Cell-based Transfer
Information in ATM is "organized into cells", which means that lowest

unit of information, in ATM is- a cell.. A cel-i is a fixed. size of frame of 53- bytes,

with 5 bytes of header and 48 bytes of payload. The header carries information
require to switch cells-, while payload stains- the actual.. information., to-. be
exchanged [161.
c) Asynchronous Transfer

ATM is an Asynchronous Transfer Mode. There is considerable
-confusion. regarding the term "asynchronous". Usually, the terms, synchronous.
and asynchronous refer to the way data is transmitted. In synchronous mode, the
transmitter and receiver clocks- are synchronized and frames- are sent/received

periodically. In asynchronous mode, timing information is derived from the data
itself, and that transmitter is not compelled to send data periodically.

VPI; Virtual Path Identifier
Data 	 ► 	 VCI: Virtual Channel Identifier

ATM

Telephone
	 Multiplexer

Video

ATM Cell

I 	Payload, 	I VPt 	i 1)thet I

	

48 bytes 	•' (' 	Header 	•
5 bytes

Fig. 2.1 Cell-based Transfer

E

2.1.2 Basic Principles of ATM

• Information is sent in short fixed-length blocks called cells. Transmitting the

necessary number of cells per unit time provides the flexibility needed to

support variable transmission rates. Fixed-length cells can help simplify the

processing overhead at network switches. Using short cells can reduce

overhead and delay in packetization.

• ATM is a connection-oriented technique based on virtual circuit, in which a

path has to be established between the users before information can be

exchanged. This is done by the connection set-up procedure at the start and by

a clear-down procedure at the end. The order in which cells arrive is

guaranteed to be the same as the order in which they are transmitted. Each

connection has the assigned capacity, allocated according to the user's request,

subject to available capacity. The cell is switched according to the label in the

ATM header, called a virtual path identifier/virtual channel identifier

(VPI/VCI). These identifiers denote the routing address and are used in

multiplexing. At an ATM switch, the VPI/VCI value of an input is translated

into another set of VPI/VCI before the cell is transmitted to the down stream

node.

• The information field is transported transparently by the ATM network.

Flow control and error recoveries are performed on an end-to-end basis. Only

header error control in the cell header by cyclic redundancy check code is

done inside the network.

• Unlike traditional networks, ATM must provide guarantee to meet the

user's Quality of Service (QoS) in terms of cell loss ratio (CLR), cell transfer

delay (CTD) or/and cell delay variance (CDV).

10

ATM has the advantages of both circuit switching and packet switching. Firstly,

the advantage of self-routing switch in circuit switching allows high-speed

communication after connection setup. The simplification of functions within the

core network reduces the number of software-driven procedures. This overcomes

the disadvantage of packet switching but still allows an arbitrary amount of

bandwidth to be allocated to a connection. Network resources are consumed only

when cells are generated (i.e., when there is information to be transferred).

Therefore, network resources can be used efficiently. Owing to the flexibility

mentioned above, ATM has been accepted by ITU as the integrated access

method for B-ISDN. Additional bandwidth efficiency enhancement can be

achieved by proper buffering and statistically multiplexing at the cost of

introducing cell loss and cell delay [16]

2.1.3 ATM Cells Format
The ATM cell consists of a 5-octet header and a 48-octet information

field immediately following the header. Two cell formats, one for the user-

network interface (UNI) and the other for the network-network interface (NNI),

have been proposed. The UNI format is used between the user installation and

the first ATM exchange as well as within the users' owns network. The NNI

format is used between the ATM exchanges in the ATM network.

Cell (53 Byte)

Header Information

	

GFC VCUVPI Payload Type RES 	Cell Loss Header Checksum 	Payload
Field 	Identifier 	 Priority

4 bits 	24 bits 	2 bits 	1 bit 	1 bit 	8 bits 	48 bytes

Fig. 2.2-ATM cell format

• Generic Flow Control (GFC) field contains 4 bits at the UNI and can provide

flow control information towards the network.

11

• 24 bits of routing field (VPI/VCI) are available for routing at the UNI and 28

bits at the NNI.

• 3 bits of payload type (PT) field are used to provide an indication of whether
the cell payload contains user information or network information. According
to [CCITT-I.361], for example, PT = 000 represents user data cell without
experiencing congestion; while PT = 110 represents resource management
cell.

• Cell loss priority (CLP) field may be set by the user or service provider to
indicate lower-priority cells. Cells with the CLP bit set are at risk of being
discarded, during congestion.

• Header error control (HEC) field consists of 8 bits and is processed by the
physical layer to detect errors in the header. The error control covers the
entire cell header. The code used for this function is capable of either single-
bit error- correction, or multiple-bit error-detection.

• Payload field contains 48 bytes of user information. This may include

additional overhead bits added by the higher layers.
2.1.4 ATM protocol reference model

The ATM protocol reference model is based on standards developed by
the International Telecommunication Union (ITU). The protocol reference model
for ATM is divided into three layers: the physical layers, the ATM layer and the
ATM adaptation layer (AAL). The ATM layered network architecture is as

shown in following figure.
Applications

VOICE I I VIDEO I 	 DATA

ATM ADAPTATION LAYER

ATM LAYER

PHYSICAL LAYER

Fig. 2.3 Simple Layered Architecture of ATM network

12

Physical Layer: This layer defines a transport method for ATM cells between

two ATM entities. It has a medium-dependent sublayer (responsible for the

correct transmission and reception of bits on the physical medium) and a

transmission convergence sublayer (responsible for the mapping of the ATM cell

to the transmission system used).

ATM Layer: The ATM layer is a unique layer that carries all the different

classes of services supported by B-ISDN within a 53-byte cell. It mainly

performs switching and multiplexing functions.

ATM Adaptation Layer: The purpose of the ATM adaptation layer is to

provide a link between the services required by higher network layers and the

generic ATM cells used by the ATM layer. The AAL consists of a sublayer that

provides cell segmentation and reassembly to interface to the ATM layer and

also a more service specific convergence function to interface to the bearer

services being carried.

ATM networks are assumed to be capable of being flexible and doing

efficient allocation of bandwidth to a wide variety of traffic classes. The

description of various traffic classes (means ATM applications in my simulation

strategy) is as follows;

2.2 Overview of ATM Service or Traffic Classes
As mentioned previously, ATM is a networking protocol with the potential to

support applications with distinct tolerances for delay, jitter, and cell loss and

distinct requirements for bandwidth or throughput. To address these diversities

of needs, the ATM Forum has defined a family of service categories.

2.2.lConstant Bit Rate (CBR)

The CBR service class is intended for real-time applications, i.e., those

requiring tightly constrained delay and delay variation. This would be

appropriate for voice and video applications. With this type of service, the ATM

network contracts to deliver the requested bandwidth with low transfer delay,
low delay variation and low cell loss.The consistent availability of a fixed

quantity of bandwidth is considered appropriate for CBR service. In

13

establishment of a CBR connection, the user has to specify its required CLR,

PCR, CDV and PCR. Note that CLR may not be specified for cells with CLP = 1
[i61

2.2.2 Real-time Variable Bit Rate (VBR)
The real time VBR service class is intended for real-time applications, i.e.,

those requiring tightly constrained delay and delay variation, as would be
appropriate for voice and video applications. Sources are expected to transmit at

a rate, which varies with time. Equivalent the source can be described as bursty.
Real time VBR service may support statistical multiplexing of real-time sources,

or may provide a consistently guaranteed QoS. To establish a connection for
real-time VBR traffic, the user has to specify the required CLR, PCR, CTD,

CDV, SCR and BT [15,161

2.2.3 Non-real-time Variable Bit Rate, (VBR)
This service class is intended for non-real time applications, which have

bursty traffic characteristics. The application expects a bound on CTD for all the

cells. Non-real time VBR service supports statistical multiplexing of

connections. Similar to real-time VBR, non-real time VBR requires PCR, CLR,

CTD, SCR and BT. Note that CDV is unspecified and CLR is only specified for

CLP = I cells.

2.2.4 Unspecified Bit Rate (UBR)
UBR is a best effort service intended for delay-tolerant or non-real time

applications, i.e., those which do not require tightly constrained delay and delay

variation, ATM attributes required in ABR connections PCR (Peak Cell Rate),
MCR (Minimum Cell Rate), CLR (Cell Loss Ratio) such as traditional computer

communications applications. Sources are expected to transmit non-continuous
bursts of cells. Because of this nature, UBR service can support a high degree of

statistical multiplexing among different sources. For each UBR virtual circuit,
PCR is specified, and while the network makes its best effort to deliver traffic

under that peak rate, no assurances are given as to delay or reliability [16]

14

2.2.5 Available Bit Rate (ABR)
The ABR traffic is used to fill in the bandwidth slack left by the

scheduled traffic that has guaranteed bandwidth and latency. The ABR service
thus eliminates the need of contract ne. ptiation between the connectionless
traffic sources and the network. Certain I applications are willing to live with the

ii - IT 1 .ITT Iii 	:li .

unreserved bandwidth. Therefore,' 4cteerTinistic traffic parameters are not
necessary. These applications can reduce . their rates of transmission when the
network is congested and asks them to, do sp, When the congestion is over, those
applications can increase their information transfer rates because there is extra
bandwidth available within the network. To support traffic from such sources in
an ATM network will require facilities different :from those for peak cell rate or
sustainable .cell -rate traffic . APR is an ATM Layer service. Generally, the
resources available for ABR connections may change subsequent to connection
.establishment. It is expected that a- user 1p1 adapts its traffic rate according to, the
control information will experience a low, cell loss;ratio. Cell Delay Variation is
not -controlled in this service. Therefore, ABR service is not intended to support
real-time applications. Besides, ABR traffic should have a rapid access to unused
network bandwidth at up to PCR, whençyer t ae network bandwidth is available.
PCR is the maximum cell rate that a source can transmit and it is negotiated
during .call establishment. MCR is a rate. negotiated' between the source and the
network(s) such that the actual cell rate oif i 4P1 source can never be less than
MCR. However, there is no obligation that tie sources must transmit at a rate is
made as to the cell loss ratio experienced by . connection, or as to the cell
transfer -delay -experienced by cells in the _con ectign. Therefore, UBR is only
suitable for those applications which do not -require tightly constrained delay and
delay variation. On the other hand, ABR can be used for any application for
which the user wants a more reliable service and critic data transfer. The ABR
service is inherently -closed loop. The source performs traffic dynamic shaping
based on the feedback it receives from the network. The network using dynamic
rate enforcement may enforce this behavior. A MCR is negotiated with the
network. If the MCR is non-zero, then it is assumed that resources are reserved

15

in network nodes to ensure that the feedback never causes the available cell rate

to fall below the MCR, and that the CLR guarantee is met of at least MCR. CLR

is minimized for sources that adjust cell flow in response to control information.

Note that the delay is not specified. The objective is that the network should not

excessively delay the admitted cells. On the establishment of an ABR

connection, the user has to specify to the network both a maximum required

bandwidth and a minimum usable bandwidth. The minimum value it the user

requested may be specified as zero. The bandwidth available from the network

may vary, but shall not become less than MCR. Notice that ABR is different

from the UBR. The UBR service class is also intended for delay-tolerant or non-

real-time applications. However, UBR service class offers no traffic related

service guarantees. Cells in the connection make as to the cell loss ratio

experienced by a connection, or as to the cell transfer delay no numeric

commitment experienced. Therefore, UBR is only suitable for those applications,

which do not require tightly constrained delay and delay variation. On the other

hand, ABR can be used for any application for which the user wants a more

reliable service and critical data transfer X11,12°13,161

2.3 Traffic Management and ATM Networks 111,161

Traffic management in communication networks deals with the

controlled use of network resources to prevent the network from becoming a

bottleneck. In particular, when network resources are allocated more

connections/traffic than they can effectively support, network performance for

users degrades. Therefore it is necessary to allocate and control the traffic so that

the network can operate at acceptable levels even at times when the offered load

to the network exceeds its capacity.

In circuit-switched networks, each connection is allocated a fixed amount

of bandwidth and a constant data rate in the network is provided to

communicating entities throughout the duration of the connection. A simple call

admission procedure is sufficient to control congestion in circuit-switched

16

networks since the dedicated bandwidth is always available for a connection and

there is no contention for resources once a channel is allocated.

On the other hand, traffic control is much more complex task in packet-

switched networks. In these networks, in simple terms there is a queue associated

with each link at every switching node in the network. As the arrival rate at a

link approaches its transmission rate, buffers start to overflow (i.e. packets that

arrive at a time the buffer is full are discarded). Dropped packets are eventually

retransmitted by an upstream node causing the traffic to further increase. As the

number of retransmission increases, more nodes become congested and more

packets are dropped. Eventually, the network can reach a catastrophic state in

which most of the packets in the network are retransmission.

In general, two types of traffic control are used in packet switched

networks, namely, flow control and congestion control. Flow control is

concerned with the regulation of the rate the sender transmits packets in order to

control the rate at which the destination receives data, so that it is not

overwhelmed. Congestion control on the other hand is the control of the network

traffic in global view of the network. Fundamentally, congestion occurs when the

users of. the network -collectively demand more resources than the network has to

offer.

2.4 Components Description
The following are brief descriptions of the major building blocks of the

simulated network.

2.4.1 Switch
This is the component used to switch or route cells over several virtual

channel links. When a switch accepts an incoming cell from a Physical link it

looks in its routing table to determine which outgoing link should send it. If the

outgoing link is busy, the switch will queue the cells destined for that link and

not send them until free cell slots are available for transmission. The user may

specify the processing delay time, maximum output queue size, and queue size

thresholds. The parameters that can be monitored for a switch include the

17

number of cells received, number of cells in an output queue, number of cells

dropped, and the status of connection busy/free.

2.4.2 Broadband Terminal Equipment (BTE)

This is a component to simulate a broadband ISDN node, e.g., host

computer, workstation, etc. A BTE component has one or more ATM

Applications on one side and a physical link on different standard rates. The user

also specifies the length of the link. The output parameter reported by the

simulator is link utilization in terms of the other side. Cells received from the

Application side are forwarded to the physical link; if the link is busy the cells go

into a queue. The user can specify the maximum output queue size. The

parameters that can be monitored are the number of cells in an output queue and

the number of cells dropped.

2.4.3 ATM Application
This is a component to emulate the behavior of an ATM application at

the end-point of a link. It can be considered as a traffic generator, either with a

constant or variable bit rate. The user specifies the bit rate for constant bit rate

(CBR) applications. For variable bit rate (VBR) applications the user sets the

burst length, interval between bursts, and the mean rate. For lower priority

traffic, the user may create an available bit rate (ABR) application. For all of the

application types, the user sets the start time and the number of megabytes to be

sent. Other application types that can be simulated include UBR (unspecified bit

rate) TCP/IP traffic applications also.

2.4.4 Physical Link
This component simulates the physical medium (Twisted Pair, Coaxial

Cable, Optical Fiber or Wireless) on which cells are transmitted. The user may

choose the link speed from a list of several bit rate (Mbits/s). The Distance is

important factor for selecting the particular physical link. So distance is one of

the parameters for physical link creation.

18

The data rate of a particular link may be different so we have to -define

the different data rates of various links. Some standard carrier links (those can be

used in ATM network) speed as follows [11,15,16

LINK NAME DATA TRANSMISSION -SPEED/RATE

1.STS-1 51.840 Mbps

2.STS-3C 155.520 Mbps

3.STS-12C 622.080 Mbps

4.STS-24-C -1244.1.60 Mbps

5.DS-3 44.736 Mbps

19

Chapter 3
SIMULATION CONCEPT

In order to simulate a system, it is needed to study the system in question

and to set an appropriate model of it. There are a variety of methods and

mechanisms to classify a system in order to create a model of it in an appropriate

way. This chapter will describe why we have chosen an event driven simulation

and how it works.

3.1 Simulation Model

In this ATM network simulation we are using five main components,

those perform and create the environment of an ATM network. Here we are

giving brief of every component's concept regarding its work in the simulator.

At first we are explaining the concept of simulation model with necessary flow

diagram.

3.1.1 Discrete Event Simulation

A discrete system is one for which the state variables change

instantaneously at separated points of time. A continuous system is one for

which the state variables change continuously with respect to time. So a network

system is obviously a discrete system, the incoming calls variates at separated

point of time.

At separated points in time arrive a number of calls to the system. These

points in time are the ones at which an Event occurs, where an event is defined as

an instantaneous occurrence that may change the state of the system. But an

event might be used to schedule an other event or the end of a simulation run at a

particular time or to schedule a decision about the system's operation at a

particular time and might not actually result in a change in the state of the

system. This is why an event might change the state of the system hI9°17]

3.1.2 Time-Advance Mechanism

Because of the dynamic nature of discrete-event simulation models, we

must keep track of the current value of simulated time as the simulation

21

proceeds, and we need also a mechanism to advance simulated time from one

value to another. We call the variable in a simulation model that gives the current

value of simulated time the simulation clock The unit of time for the simulation

clock is never stated explicitly for a given model, it's assumed to be in the same

units as the input parameters. That is as we set a dimension for the network each

incoming call have a given time unit when it occurs, how long time it will takes

in the network system, etc. Also, a relationship between simulated time and the

time needed to run a simulation on the computer does not exist [9,17j

3.1.3 Components and Organization of a Discrete-Event Simulation Model

There are a number of components and a logical organization for these

components that are common to a typical discrete-event simulation which uses

the next-event time-advance approach:

System state: The collection of state variables necessary to describe the system at

a particular time.

Simulation clock: A variable giving the current value of simulated time.

Event list: A list ordered according to event time stamps i.e. when each type of

event will occur.

Initialization routine: A subprogram to initialize the simulation model at time

zero.

Timing routine: A subprogram that determines the next event from the event list

and then advances the simulation clock to the time when that event is to occur.

Event routine: A subprogram that updates the system state when a event of

particular type occurs (there is one event routine for each event type).

Library routines: A set of subprograms used to generate random observations

from probability distributions that were determined as part of the simulation

model.

Report generator: A subprogram that computes estimates of the desired

measures, of performance and produces a report when. the simulation ends..

Main program: A subprogram that invokes the timing routine to determine the

next event and then transfers control to the corresponding event routine to update

22

the system state appropriately. The main program may also check for termination

and invoke the report generator when the simulation is over.

START

Initializing Routine

1.Set Simulation Clock
2.Initialize system state

statistical counter.
3.Initialize event list.

Initializing +
Invoke the Initialization
routine

I. Invoke the timing routine.
2.Invoke Event routine.

I .Determine the next
event, Say I.

2.Advance the simulation
clock.

Event routine

1.Update system state.
2.Update statistical counter
3.Generate future events

and add to event list.

Is Simulation
Over?

1.Compute results of every
parameter

2.Write report (log files).

Stop

Fig 3.1-Flow diagram of simulation program

23

3.2 Description of Simulation Components
Now we are explaining the various components of simulation tool, which

we simulated through C programming language.

3.2.1 Simulation Clock

The simulator is event driven. Components send each other events in order

to communicate and send cells through the network. The event manager in units

of ticks maintains simulator time. The time is maintained as an unsigned 32-bit

value. The simulator time represented by one tick can be changed by software

modification. For the present simulation, a tick represents 10 nanoseconds.

3.2.2 ATM Switch

The switch is the component that switches or routes cells over several

virtual channel links. A local routing table is provided for each switch. This table

contains a route number (that is read from incoming cell structure and is the

equivalent of the cell's virtual channel identifier), a next link entry, and a next

switch/next B-TE entry. Let's consider a cell arriving at the switch from a

physical link. At the next switching slot time, after some delay, the switch looks

in its local routing table to determine which outgoing link it should redirect the

cell to. At this point, if the link has an empty slot available, the switch puts the

cell on the link. If a link slot is not available, the cell awaits transmission in one

of the priority queues, namely, the CBR/VBR queue, the ABR queue or the UBR

queue, depending on the type of service provided by this virtual channel. Cells in

the CBR/VBR queue have priority over cells in the ABR queue, i.e., it is only

when the CBR/VBR queue is empty that the ABR traffic is sent, and cells in the

ABR queue have priority over cells in the UBR queue. If either queue exceeds a

High Threshold value set by the user, a congestion flag for that port is set to

True. The three queues must be below a Low Threshold value for the congestion

flag to be reset to False. The Output Queue Size (set by the user) determines the

available buffer space for each type of queue (CBR/VBR, ABR, or UBR). If any

queue exceeds the set limit, cells are dropped and this is recorded as a percentage

of the total number of cells received by the switch. Also, there is a per port cell

drop parameter recorded for each queue.

24

Name:

Delay to process a cell (sec):

Slot time (Mbits/sec):

Output queue size (cells):

High Threshold, Q cong. flag (cells):

Low Threshold, Q cong. flag (cells):

Logging every (n ticks) (e.g., 1, 100):

Cells received;

Cells in VBR Q to link n:

Cells dropped in V13R Q to link:

Cells in A13R Q to link n:

Cells dropped in ABR Q to link n:

Table 3.2.2.1 Switch Information Window

Description of Input/output parameters of Switch information window

shown in Table 3.2.2.1
In above information window the shaded cells are the output parameters

a) Name: Name of switch

b) Delay to process a cell: An increment of time after the arrival of a cell at the

switch places the cell on the outgoing link.

c) . Slot time: The rate at which cells are switched from an input port to an output

port. The program calculates the cell slot time from the bit rate entered. The

actual switching of a cell from input port to output port occurs at the

beginning of a slot period.

d) Output queue size: Available buffer space for a queue; the same value is used

for every queue in the switch. When a cell is ready for transmission but a slot

on that link is not available it waits in a queue at that port.

e) High Threshold, Q congestion flag: If the number of cells in any queue

exceeds this value the congestion flag is set.

25

f) Low Threshold, Q cong. flag (cells): The congestion flag is cleared when the

number of cells in all queues fall below this value.

g) Logging every (n clock ticks): If n is set to 1, data will be logged for a

parameter anytime there is a change in its value. Potentially, this could occur

at every tick. Since this may result in an extremely large data file, it may be

desirable to set n to a larger number. For example, if n = 100, logging will

occur only if a change occurred and 100 ticks had gone by since the last

logging activity.

h) Cells received: Total number of cells received by the switch.

i) Cells in xBR Q to link n: Cells awaiting transmission in a given priority

queue. There are two types of queues for each port - a CBR/VBR queue and

an ABR queue. Cells in the CBIUVBR queue have top priority; a cell from

the ABR queue will be sent only if the CBR/VBR queue is empty.

j) Cells dropped in xBR Q to link n: Cells dropped at a port when a queue

exceeds its maximum size.

3.2.3 Broadband Terminal Equipment (BTE)
The BTE component simulates a Broadband ISDN node, e.g., a host

computer, workstation, etc. A B-TE has one or more ATM Applications at the

user side and a physical link on the network side. Cells received from the

Application side are forwarded to the physical link. If no slot is available for

immediate transmission a cell queued in one of three queues, a VBR/CBR queue,

an ABR queue, or a UBR queue. The user can specify the maximum output

queue size; if either queue exceeds this limit cells will be dropped. The

parameters that can be monitored for a B-TE are the number of cells in an output

queue and the number of cells dropped at each queue. Also, the total number of

cells received from the network may be monitored. In this case, the cells are

enqueued in a special queue (called Input Queue) to control their transmission on

the network.

26

Name:

Max. o/p Queue size(cells):

Logging every (ticks) (e.g.,100,1000):

Cells received:

Cells in xBR Q to link n:

Cells dropped in xBR Q to link n:

Table 3.2.3.1 BTE parameters information window

Description of input/output parameters of Broadband Terminal Equipment:

a) Maximum Output Queue Size. Available buffer space for each type of queue.

b) Logging every n ticks. same as switch concept.

c) Cells Received. Total number of cells received by the B-TE.

d) Cells in xBR Q to link n. Cells awaiting transmission in a given priority

queue. There are two types of queues - a CBR/VBR queue and an ABR

queue. Cells in the CBR/VBR queue have top priority; a cell from the ABR

queue will be sent only if the CBR/VBR queue is empty.

e) Cells dropped in xBR Q to link n. Cells dropped at the network port when a

queue exceeds its maximum size.

3.2.4 ATM Applications

The ATM application at the end-point of a link is a traffic generator. The

traffic source emulated by this component may be a constant bit rate (CBR)

source or a variable bit rate (VBR) source. Either source type may generated at

one of three priority levels CBR/VBR level (highest priority) , the Available Bit

Rate (ABR) level where cells are sent on the transmission bandwidth that is

available after the higher level traffic has been sent, and the Unspecified Bit Rate

(UBR), the lowest priority traffic. For the CBR/VBR and ABR classes there are

two types of traffic generators:

27

(a) A constant rate traffic where the user specifies the bit rate. Cells will be

generated at the specified rate for the duration of the simulation.

(b) Variable Bit Rate -. This type of traffic has an ON-OFF source. Both the

burst period (ON) and the silence period (OFF) are drawn from an

exponential distribution. The user specifies the mean burst length, the mean

interval between bursts, and the bit rate at which cells are generated during

the ON period.

Another ATM Application type that can be simulated is a TCP/IP application.

This application can be used with either the ABR or UBR service.

(i) CBR (Constant Bit Rate)

Name:

Bit Rate (Mbits/sec):

Start time (usec):

Number of Mbits to be sent:

Other End Connection: Name

Table 3.2.4.1 CBR parameters information window

a) Bit Rate: The desired bit rate, which you want from CBR application.

b) Start time: This is the number of microseconds after the program starts that

the application will begin generating cells.

c) No. of Mbits to be sent: User will specify how many no. of Mbits he want to

sent.

d) Other end connection: Name of ATM application at other end.

28

(ii) VBR (Variable Bit Rate)

Name

Bit Rate (Mbits/s):

Mean Burst Length (secs):

Mean Interval Between Bursts(secs):

Start Time (secs):

Number of Mbits to be sent:

Other End Connection: Name

Table 3.4.2.2 VBR parameters information window

In this VBR application traffic is generated as an ON-OFF source. Cells are

generated at the specified bit rate during a burst. Mean burst length and mean

interval between bursts are user specified, but the actual periods of both are

drawn from an exponential distribution.

(iii) ABR (Available Bit Rate)

Name

Bit Rate: 0

Start time (sec): 0

Number of Mbits to be sent: 0

Other End Connection: Name

Table 3.4.2.3 ABR parameters information window

All parameters of ABR are same as CBRNBR applications, but this differ from

CBRIVBR in only the priority of application.

c) TCP/IP Application: The TCP/IP Application sends data in large packets.

These packets must be segmented to fit into the ATM cell structure before

being put on the network. A rather extensive set of parameters is provided

29

that gives the user flexibility in controlling and monitoring this type of

application.

Name:

Bit Rate (Mbits/sec):

Buffer Size (bytes):

Transmitter's State: FALSE

Start Time (sec):

Start Random Period (sec):

Transmission Size (bytes):

Number of bytes unsent:

Sender sequence number logging

Sender ACK sequence number logging

Receiver sequence number logging

Mean packet processing time (sec):

Packet processing time variation (sec):

TCP open time (sec):

TCP close time (Sec):

Connection Busy: FALSE

Packet input queue has 0 pits

Max segment size (octets):

Peer Receive Window size (octets):

Tahoe (0), Reno (1), standard (2): 0

Timer granu. in us (e.g. 100000,500000):

RTT (sees):

Forward Trip Time FIT (see):

Cwad in bytes:

Average throughput (bytes/sec):

RTO (current):

Retransmission percentage:

Other end connection: Name

Table 3.4,2.4 TCP/IP parameters information window

30

Input Parameters

Bit Rate: The bit rate for the cells on the ATM route.

Buffer Size: The size of the user's buffer, large enough to hold many packets, but

a fraction of the total transmission size.

Transmitter's State: A TRUE/FALSE control. If FALSE, no transmission will

take place, but the Application can still receive.

Random Start Period: If Start Time is negative, the value entered here is the

mean for a random start time.

Transmission Size: The total number of data bytes (payload) to be sent.

Mean Packet Processing Time: The mean delay to process the packet.

Packet Processing Time Variation: A computation based on a random

perturbation in the processing delay in the range [-Packet Processing Time

Variation, +Packet Processing Time Variation].

Maximum Segment Size: The maximum size of the TCP/IP packet, whether it is
being sent or being received.

My Receive Window Size:. This number determines how many packets are going

to be sent without waiting for an acknowledgment.

Timer granu: The TCP time granularity is the minimum time separating the

release of a TCP packet and the expiry of the associated timer. Most TCP

implementations use a coarse grained timer of 500 ms.

Tahoe, Reno, Standard: Version of the TCP congestion avoidance and control

algorithm. Three possible values can be specified.

-0 corresponds to TCP-Tahoe

-1 corresponds to TCP-Reno

-2 corresponds to Standard TCP

Output Parameters

Number of Bytes Unsent: This is the number of bytes remaining from the total

specified under transmission size.

Packet input queue has n packets: This queue contains packets waiting for TCP

processing, both for transmission (before segmentation) and for reception (after

reassembly).

31

Peer Receive Window Size: This is the other-end companion to My Receive

Window Size.

RTT: Round Trip Time - time from packet sent to ACK received. This is set to a

default value at the beginning.

Transmission Size: Every TCP/IP packet has a sequence number, including the

ACK packets: The following three parameters let the user enable the logging of

these numbers as the packets are sent or received. Note that only the logging

function applies, no metering is possible.

Sender Sequence Number Logging

Sender ACK Sequence Number Logging

Receiver Sequence Number Logging.

TCP Open Time: The time that the first TCP packet was sent.

TCP Close Time: The end of the TCP transmission (all bytes have been sent).

Connection Busy: Activity flag for TCP processing; TRUE = busy, FALSE = not

busy.

3.2.5 Link Components
This component simulates the physical medium (copper wire or optical

fiber) on which cells are transmitted. The user may choose the link speed from a

list of several different standard rates. The user also specifies the length of the

link. The output parameter reported by the simulator is link utilization in terms of

bit rate (Mbits/s). The measurement of link rate is averaged over a period of 10

cells.

In general this simulator can simulate anything that can be modeled by a

network of components that send messages to one another. The components

schedule events for one another to cause things to happen. The model being

simulated and the action of the components are entirely determined by the code

controlling the components. In this simulation if want to add more components

then we can easily add new component due to the easy architecture of my

software data structure.

The simulator program includes a graphical user interface which

provides the user with a means to display the topology of the network, define the

32

parameters and connectivity of the network, log data, and to save and load the

network configuration. In addition to the user interface, the simulator has an

event manager, I/O routines, and various tools that can be used to build

components.

Link component Information window:

Name:

Link Speed (Mbits/sec): 0

STS-1 51.840 Mbits/sec

STS-3C 155.520 Mbits/sec

STS-12C 622.080 Mbits/sec

STS-24C 1244.160 Mbits/sec

DS-3 44.736 Mbits/sec

Distance (km):

Link Rate (Mbits/sec) to Switch n:

Link Rate (Mhits/sm) to 1 TI n

Table 3.2.5.1 Parameters information window of Link component

There are only two input parameters for a Physical link, link speed and distance.

The link speeds shown in the window are not selectable with the mouse; the

desired speed (in Mbits/s) must be typed into the text window. However, the bit

rate typed in need not be exact; the software will accept a round number near the

standard rate. The bit rates shown include overhead bits. The simulator maps the

entry into the correct payload rate when doing calculations for bits transmitted.

The link output parameter is link utilization (in each direction) in terms of bit

rate (Mbits/s).

33

Chapter 4
IMPLEMENTATION DETAILS

In this work, simulation software is developed to simulate an ATM

network for study of various kinds of network performance parameters. In this

chapter the implementation details with the architecture of simulation software

will discuss. Data structure and routines will also discuss with necessary

structure of simulated software program.

The simulation model used is the discrete event simulation method. So

simply this is a event driven simulation. Components send each other events in

order to communicate and send cells through the network. My simulator software

contains an event manager who provides a general facility to schedule and send

or "fire" an event. An event queue is maintained in which events are kept sorted

by time. To fire an event, the first event in the queue is removed, the global time

is set to the time of that event and any action scheduled to take place is

undertaken. Events can be scheduled at the current time in the future.

For the discrete event simulation of ATM network the following are simulated:

a) ATM Switch

b) BTE component

c) ATM Application

d) Physical link

4.1 Simulation Software Architecture

The simulation program written in. C Language (with X WINDOW

SYSTEM) and run under LINUX (version 7.3) operating system. For the

development of Graphical User Interface (GUI), I used X WINDOW SYSTEM

on C language.

4.1.1 Display of Simulation software

The display is composed of three major parts:

35

o A network window to display ATM network configurations. This window is

used both while creating the configurations and to show network activity

while the simulation is running.

o A text window for messages that will prompt the user, and to provide a place

for the user to input text or parameter values.

e A control panel that consists of a clock and several control buttons, such as

START, QUIT, PAUSE etc.

4.1.1.1 The Network Window

The entire area not otherwise occupied by clock and control buttons is the

Network Window. If the program is started with no configfile this area is blank.

The network is represented as a collection of components connected to each

other in the desired configurations. ATM switches and broadband terminals

(BTEs), are represented by rectangular boxes while ATM Applications are

represented by ellipses; both shapes contain the name of the component. ATM

switches and 	BTEs are interconnected by Physical Links. The Links are also

considered components and are identified by name, but they are represented on

the figure by straight lines. The connection between a B-TE and an ATM

Application is also represented by a line but is not considered a component, i.e.,

it is not a physical entity and has no associated parameters.

Other information is displayed in the Network Window as

required. When creating or modifying a component an information window

appears beside its symbol, displaying the component's parameters. When a

virtual connection is established between ATM applications a dotted line appears

denoting the path of the information flow. When a simulation is running, one or

more information window may appear on the screen to display information about

selected parameters.

4.1.1.2 The Text Window
The text window appears as a bar at the bottom of the screen. The text

window allows the program to present various messages to the user. In addition,

'f1

any keyboard input is displayed in the text window. The cursor does not need to

be in the text window when entering information with the keyboard. When

entering information using the keyboard, pressing "Enter" key without entering

any text will tell the program to accept a default value or to abort that operation.

4.1.1.3 The Control Panel
The control panel appears on the right hand portion of the screen. It

contains an analog clock, a digital clock, and an array of control buttons.

(a) Analog Clock
The analog clock indicates the passage of simulator time in a graphic

style. The intent is not a precise timer but to give the user an indication of how

busy the simulator is. A tick is a movement of 6 degrees around the circle. Each

tick of the big hand represents 1 millisecond. Each tick of the small hand

represents one revolution of the big hand (60 milliseconds).

(a) Digital Clock
The digital clock provides a display of current simulator time accurate to

the nearest 10 nanoseconds.

(a) Control Buttons
The following is a description of the functions of each control button. All

of the functions are initiated by clicking with the middle mouse button.

START 	Clicking on this button will start the simulation with

simulated time initialized to zero. The simulation can

be restarted as many times as we wishes; each click on

the button will initialized the simulation.

PAUSE/RUN This button toggles between two modes. When the

simulation is running the word PAUSE will be

displayed. Clicking on the button will then stop all

activity with all parameter and time information held in

37

place. With the simulation stopped, the button label

will change to RUN; clicking on it will cause the

simulation to resume running with current settings.

DELAY This button allows the user to 	slow down the

simulation by setting a delay between each event firing.

The text window will appear asking for the desired

delay(in microseconds).

KILL This button may be used to stop a simulation in

progress or to eliminate components. Clicking on the

KILL button while a simulation is in progress stops all

activity. If a simulation is not running, clicking on a

component after KILL has been clicked will delete that

component.

LOAD This button allows the user to 	load a network

configuration. The text window appears asking for the

name of the file to be loaded. Note that this erases

whatever configuration was being displayed on the

screen at the time.

SAVE The SAVE control button allows the user to save the

present configuration in a specially formatted text file

which is readable by the simulator at LOAD time. The

text window appears asking for a filename under which

to save the configuration.

SNAP . This is similar to SAVE, but in addition it saves the

present arrangement of information windows on the

display. The text window appears asking for a filename

under which to save the configuration. Present values

of the component's parameters are saved.

PRINT Prints out the network topology into a postscript file.

QUIT This is the normal exit from the simulator program.

Note that clicking on the QUIT button while in KILL

38

mode merely causes an exit from that mode; it does not

` 	 cause an exit from the program.

4.2 Brief Description of Data structure and routines used

• Components

The component is the basic building block of the simulator. There are

different classes of components; examples are switches, physical links, terminal

equipment, and ATM applications. Some classes allow different types within the

class in order to accommodate the simulation of a variety of implementations.

For example, an ATM application may generate traffic at a constant bit rate, or a

variable bit rate that is governed by some particular distribution function. Every

component consists of an action routine and a data structure. All components of

the same type share the same action routine; this routine is called for each event

that happens to a component. Each instance of a component has its own data

structure that is used to store information that characterizes the component plus

some standard information required by the simulator for every component.

• Classes and Types

Some component like ATM Application has a class and a type. A particular

class of component may contain several different types of components. The

following are the different classes of components currently defined and, in

parentheses, the way the names appear in the source file comptypes.h:

- ATM Applications (CONNECTION CLASS)

For now, the Link, Switch, and B-TE classes contain only one type each.

Respectively, they are (as defined in comptypes.c and comptypes.h):

- Physical Link (ATMLINK)

- ATM Switch (SWITCH)

The ATM Applications class contains many types; these are defined as follows:

• Constant Bit Rate- (CBRCONNECTION)

39

o VaiabIe Bit Rate -- (VBRCONNECTION)

e Available Bit Rate - (ABRCONNECTION)
o TCP/IP (UBR) - (TCPCONNECTION)

42.1 C 	sent Data Sthictures
Each instance of a component has a data structure that is used to store any

information needed by the component, as well as standard information needed by

the simulator for every component. Component structures are kept in a list; the
order of the list depends on the order of creation of the component Each

different type of component has its own structure which is defined in the header
I file for that type, but the beginiiing begin 	 of every component facture is the

same. This generic structure is as follows:

typedef stmt Component {
struct Component *co next, *co_prev; 	t Links to other components in list *l
short 	 c class; 	1* Class of component *1
short 	 co type; 	f* Type of component /
chat 	 co namef44}j 	*- Name to appear on screen
PFP 	 co action 	/ Main function, called with each event J
C€ IP_OBJECT 	c;€r_picture; 	1* Graphics object to be displayed on screen *,

Iist *co neighbors; 	 I# Points to a list of neighbors of this component
/* P netes -- data that will be displayed on ti a screen *1
short 	 co_menu cap; 	1* If true, then text window is up */
queue 	_paresm; 	f'r Vi le-lend queue of parameters *1

1* Any other info that a component needs to keep will vary /
} Component;

o P.arnetcrs
Any information about a component that needs to be displayed on the screen,

logged to disk, or saved in a configuration file must be stored in a parameter. A

parameter is a data structure that (besides storing a value) stores information
needed to display, save, or load the parameter. The information stored includes

pointers to functions to convert the parameter to and from a string; the name of

40

the parameter; and flags describing how to save and/or display the parameter.

The Param structure is defined in component.h; it is listed below.

typedef struct _Param {

struct •Param 	*p_next, *p_prev; /* So that these can be put in a queue */

char 	 p name[40]; 	/* Name of this parameter for display */

PFP 	 p_ make _text; /* Makes a string containing the current value */

PFP 	 p_make_short text;/* As above, but only the value, no text */

PFI 	 p_input; 	/* Routine to input this parameter */

GRAF_OBJECT p_my_picture;

int 	 p_log;
struct {

int i;

mt vpi;

double d;

caddy t p;

/* The graphics object to display this */

/* Integer associated with this param for logging */
/* Structure to store data in */

/* Commonly used value types */

/* Only need to use one of these types */

struct { 	 /* Structure describing parameter value (if needed) */
caddr_t p;

int vpi;
int i;

} pi;

tick _t sample; 	/* Keeps track of time parameter value was updated */

} u; 	 /* This structure is used and maintained by the simulator */

} Param

A component may have as many parameters as needed. They are stored in a

doubly linked list pointed to by co_params. The I/O routines iterate through this

list to display the parameters as described below. The action routine may

reference the parameters any way it wants. In addition to the linked parameter

list, there is a set of pointers in the component that point to the individual

parameters. As the parameter is initialized and added to the list, the pointer is set

to point to it. Then the action routine can use a named variable to refer to the

parameter rather than trying to search through the list.

41

The actual value of a parameter is stored in a structure at the end of the Param

structure. Currently, the structure has room for an integer, a double, or a pointer.

A new value type can be added just by changing the definition of the structure.

This value is not used by any part of the simulator except for the action routine

of the component that contains the parameter. The 110 routines read and change

the value only by calling one of the functions pointed to in the parameter

structure. A parameter is initialized by calling param_inito with arguments

containing values for various fields in the parameter structure. The values for the

arguments calc val, make text, make short text, and input are pointers to

predefined functions in subr.c, which consists of a set of routines that calculate

the parameter's value, display it, etc., for a variety of types of the parameter, such

as int, double, boolean and more. The following is a listing of the param_initO

routine.
Param *

param_init(c, name, calc_val, make text, make short text, input, display_type, flags, scale)

Component *c; 	 /* Pointer to the component */

char *name; 	 /* Name of parameter */

PFD talc val; 	 /* Function to update the parameter value for display */

PFP make text,make short text; /* Function to convert value to a string */

PFI input; 	 /* Function to read input string and convert into param

value. */

int flags; 	 /* How to display -- look below for details */

The names of arguments listed below correspond to fields in the parameter,

which in most cases have the same name, beginning with the prefix p_. For

example, the argument calc_val is for p_calc_val, flags is for p_flags, etc.

p_make_text Used to generate text for parameter display, this element returns a

pointer to a string. The string is expected to contain some meaningful,

humanreadable representation (i.e., with some sort of label) of the value of the

parameter.

42

p_make short text Also returns a pointer to a string, but the string contains

only the value of the parameter (no labels). Used primarily for logging data to

disk.

p_input Points to a function that will read an input string from either the

keyboard or from a file. This routine will convert the string to an appropriate

value and store it into the parameter. This is used for the initialization of values

that affect the operation of the component, and that can vary from one instance

of the component to another. For example, hosts have a "Processing delay"

parameter that is the time needed to process a cell.

p_flags 	Contains flags that control the display. The constants (masks) are

defined in the file simx.h with the following names:

InputMask When set, the simulator will call the function pointed to by p_input.

Parameters that have this flag set will also have their values saved (using the

p_make__short text routine) when the configuration of the simulator is saved.

CanHaveLogMask If the parameter has this flag set, the user can cause the

parameter values to be written to a file on the disk as the values change. To

update screen displays or to cause data to be logged to a disk file, the action

routine for the parameter must call log_param(c,p) every time the value

changes. The variables c and p are pointers to the component and parameter,

respectively. (The log_param() function is found in the log.c file.)

• Neighbors

Neighbors are stored as a list of Neighbor structures; this list is pointed to

from component structures. Each neighbor structure contains a pointer to the

neighboring component, a queue in which to store cells (if needed), a busy flag,

and a pointer to a parameter to display anything that might be associated with

the neighbor. The definition of the Neighbor structure is listed below; it can be

also be found in component.h.
typedef struct_Neighbor {
struct Neighbor

*n_next, *n_prev; 	/* Links for the list *l

Component 	*n_c; /* Pointer to the neighboring component */

43

/* The next values will vary from network to network, and from component to component. For
example, only switches and hosts have queues in the current application. */
queue 	*n_pq; /* Queue of packets to be sent */
short 	n busy; /* True if neighbor is busy */
double 	n_prev_sample; 	/* Previous sample time used for utilization
calculation in links */
Param
Param
Param
list
caddr_t
) Neighbor;

*n_p•

*n_pp;
*n_ppp;

*n_vpi
n_data;

/* Index of parameter to display whatever */
/* Index of parameter to display whatever */

When a neighbor is added, the component must create and initialize a neighbor

structure, and put it on its neighbors list. If there is some piece of information

associated with the neighbor that must be displayed, a parameter structure must

be allocated, initialized appropriately, and added to the queue of parameters in

the component structure. See the function b_neighborO in bte.c for an example

of usage. The following is defined in subr.c and can be used when writing a new

routine to give it the capability to add neighbors.
Neighbor *
add neighbor(c, neighc, max_num neighbors, num_classes)

Component *c; 	/* Comp to add neighbor to */
Component *neighc; 	/* New neighbor */
int max numneighbors; /* Max number neighbors allowed (0= infinite) */
int num_classes; 	/* How many classes follow */

4.2.2 Relationship of Data Structures

As stated in the preceding sections, the component data structure contains the

doubly-linked parameter list and a set of pointers that point to the individual

components. When a neighbor is added, the component creates a neighbor

structure and puts it on its neighbors list. Each neighbor structure then contains a

pointer to a neighboring component. When all of the components in the network

44

are created and linked together then "list—of components" will be completed and

will include all elements in a network topology, e.g., link1, swl 1, switch2,

ABR2, etc.,

• Events

The simulator is event driven. The event queue is a queue of events kept sorted

by time. To fire an event, the first event in the queue is removed, the global time

is set to the time of that event, and the action routine pointed to in the event

structure is called. When the user clicks on the START button, each component

is sent a reset command followed by a start command, then the simulator enters a

loop. The loop processes any X events, updates the display, then fires all the

events at the head of the event queue that have the same time.

• Command Set (EV CLASS_CMD)

All components must accept the following commands. The component need

not actually use the command but should respond in an orderly and

predictable way when the command is received. When used in an action

routine, the action routine should return NULL if an error occurs during a

command, and something that is non-NULL otherwise.

• EV CREATE Create a new instance of a component. The comp variable

must be NULL, arg points to the name of the new component, and the action

routine returns either a pointer to a new data structure or NULL for error. The

action routine must allocate the correct amount of memory for the new

component's data structure, create its (empty) neighbor list, create the queue

of parameters, create any cell queues, etc. This command must also initialize

all the private data in the component as necessary. The only information that

need not be initialized are any parameters with the InputMask flag set. The

simulator as specified in the Parameters section of this document will

initialize them.

• EV DEL Delete an instance of component. This command will detach the

component from any neighbors it has, free any storage associated with the

45

component, including its data structure, and perform any other necessary

clean-up.

o EV RESET Reset the state of the component and clear out any cell queues,

forget about any cells being processed, etc. When the START button of the

simulator is hit, EV_RESET is called first for all components and then

EV START.

o EV START Start operations for example, start a cell generator sending

cells. For many components, this will be a no-op.

o EV NEIGHBOR Attach another component as a new neighbor. The

component to be made a neighbor is pointed to by arg. A component should

only allow legal neighbors. For example, an ATM Application will not allow

an ATM Switch to be attached as a neighbor the ATM Application can only

be connected to a B-TE (Broadband-ISDN Terminal).

o EV UNEIGHBOR Remove the neighbor pointed to by arg from the list of

neighbors, and free any memory used to keep track of the neighbor (such as a

cell queue and the neighbor structure itself). If there is a parameter associated

with this neighbor, it must be removed from the queue of parameters and

freed. This is a no-op if the component is not a neighbor.

o EV LEGAL NEXT HOPS arg points to an I list that contains a virtual

channel connection being constructed (not including comp). The list contains

only the components in the path so far, comp is the component being

considered as the next step in the connection. The action routine must return a

new list of the components that are legal in the path after comp. The X

routines know that a component of type ATM Application must be at the

beginning of a virtual channel. When the user picks an ATM Application, the

X routine calls that component action routine with this command to find out

which components are allowed to be next on the path. As the user picks more

components, the process continues until he picks another ATM Application to

end the path.

• EV MAKE ROUTE This command is a no-op for some components like

physical links. ATM Applications and B-TEs use it to store the route number

46

in the VCI field of their component structures. The ATM Switch component

creates a local routing table and stores the previous and next component and

the VCI number of the route.

4.2.3 ATM Network-Related Issues

a) ATM Cell Definition

Since the simulator is designed to simulate ATM networks, a cell data type

has been defined. A cell constitutes a very important data type in the simulator

because it contains the route number needed for routing by ATM switches. A cell

is a data structure, defined in the file cell.h. The structure may contain different

elements to tailor the cell for different applications, but must always contain the

route number. For switching or routing purposes, an ATM switch reads off the

route number found in the cell, then looks up its routing table to forward the cell

via the next link to the next switch (or to the next B-TE if at the end of a

connection).

The cell data structure is not constrained to be any particular format. If we are

only modifying some existing components we should not remove any elements

from the structure, but if we are writing a set of components from scratch, a cell

can contain anything.

The following is a simple example of a cell structure:

typedef struct Cell { /* Define cell structure */

struct _Cell *cell next; /* Pointer for use by the queue the cells will be stored in */

VPI vpi; /* Route number (virtual path identifier) */

PTI pti; /* Payload type identifier */

struct cell_payload } /* Structure for the payload portion */

Packet *tcp_ip_info; /* The payload will */

AAL5_Trailer len; /* be any one of */

RM rm; /* these three types */

} u; /* Structure */

} Cell

47

An event may include a cell, and most simulation do so. Normally, cells are

transmitted from one component to another by having the transmitting

component call a routine (ev_enqueue) which creates a new event and places it

in a queue to be fired at the appropriate time. The receiving component must be

able to process the event in order to receive the cell. This process is explained in

more detail in the Events sectionof this document.

A module to handle the allocation and deallocation of cells is provided in the

package. The module keeps track of all the cells, so that when the simulator is

reset all cells can be freed in one step. cell_allocd returns a new cell, cell_freeo
frees a cell, and cell free allo frees all cells. The simulator obeys the

convention that all components must dispose of all cells that they receive in one

way or another. In other words, a component that receives a cell must either call

cell freed on the cell or send the cell to someone else, but not both.

Furthermore, a component that sends a cell to someone else should no longer

refer to that cell. If it wants to save the cell for some reason (if the cell might be

retransmitted, for example), the component must call cell allocO and make a

copy of the cell.

b) Setting Up the ATM Virtual Channel

The simulator implements static connections. An ATM channel begins

and ends with a component of the type ATM APPLICATION. A particular

Application can have a route to only one other Application. When the user clicks

on an ATM Application that is at the other end of the virtual channel (this is

done while making the route), the routing table at each ATM Switch is updated

and information about the next link and the next ATM Switch found on the path

is stored. The file route.c contains a couple of functions to manipulate

connections. To determine where to route a cell next, the function
Route info *

rt lookup(some arguments)
1* */

48

can be called from an ATM Switch action routine: this should return the next

link and next switch. The routing process starts when 100 within IO.c calls
make_ route_ event_handler(bevent) which is found in routes;c The routing

process involves creating a route list, which is a list of components.. When
finally the user clicks on a component of type ATM APPLICATION which is

at the end of a route, all switches found in route list call their respective

action_routines to update their local routing modules.

c) Tools
Lists and Queues: Lists (doubly-linked lists) and queues (singly-linked lists) are
used extensively throughout the simulator: Lists and queues contain variables to
store the current, maximum and minimum length of the list/queue. A list has the

following structure:
typedef struct list {
1 elt *1 head;
1 elt *1 tail;
int 1_len
int 1_max;
int 1_m m;

/* list header */
/* first element in list */
/* last element in list */
/* number of a lethents in queue */
/* maximum length */
/* riminiturri length */

} list;

An element in the list, l elt, has the following structure:
typedef struct 1 elt { 	 /* list element */
struct l elt *le next, *le_prev; 	/* Links */
caddr_t le_data;
} 1_elt;

Because both lists that were efficient and lists that were flexible were needed

there are two kinds of lists. One kind requires that the item being placed on the
list contain the pointers needed to link it into the list: This means that no extra
memory is needed to put the new item into the list. However, this also means that

the item being placed on the list must include room for one or two pointers at the

beginning, and it can only be on one list at a time. Since the item itself contains
the pointers, the pointers for the first list will be overwritten when it is placed on

49

a second list. This type of list we have chosen to call an le list (or a qe queue).

The le stands, for list element, and it means that the items being placed in the list

already have the pointers for a list element built in. As an example, the global list

of components is an le list and the component structure contains two pointers

(the structure elements co_next and co_prev).

The other kind of list allocates a small area of memory in which to store the

pointers every time a new element is added to a list. This means that adding and

removing items from the list is slower, but any type of data structure (even ones

that don't have pointers at the beginning) can be placed on any number of lists

any number of times. This type of list is called an I list (or a q queue).

Functions (and macros) that start with le and qe are the faster routines, and the

ones that start with 1 and q_ are the more general ones. (With one exception:

1 createO serves both types of list.) In the arguments to the functions, 1 and q

indicate a list and a queue, respectively, and any other arguments are elements on

which to operate. Here is a summary of the available list and queue commands:

1 created Create a new, empty list and return it. Returns NULL

on error.

1{e}_addh(1, elt) Add elt to the head of the list 1. The le version does

not return anything (it is a macro); the 1 type returns

NULL on error (couldn't allocate memory to hold the

pointers), non-NULL otherwise.

1{e}_addt(l, elt) As above, but add elt to the tail of the list 1.

1{e}_remh(1) Remove the item at the head of the list and return it.

1{e}_remt(1) Remove the item at the tail of the list and return it.

1{e}_adda(1, prey, new) Add new to the list after prey, which must already be

in the list. Again, the le is a macro that doesn't return

anything, and 1_addaO returns NULL on error.

l{e}_dei(I, elt) Delete elt from the list 1.

1 find(1; elt) Search for elt in the list. Returns a pointer to the 1_elt

that contains elt. An 1 elt is the structure that contains

ORAL LI 4

Acc. No......... 	30
Date, jam' ~.

the pointers used to add something to an 1 list. See

list.h for the definition.

lq_de1ete(1)

	

	 This function works for both lists and queues. It also

works for both flavors of each, although the effect is

slightly different. For le lists, Iq_deleteo frees the list

and the elements that were stored in the list. For 1

lists, the function does not free the items stored in the

list, just the list and associated extra garbage.
lq_clear(1)

	

	 As with lq_deleteO, this function works for both lists

and queues.This function removes all the items from a

list or queue. If it is a le list or qe queue, the memory

for the items is also freed, otherwise they are merely

removed from the list or queue.

The following functions perform the same actions on queues as the similarly-

named functions for lists:

q_createo

q{e}_addh(q, elt)

q{e}_addt(q, elt)

q{e}_adda(q, prey, new)
q{e}_del(q, elt)

q_find(q, elt)

Finally, queues have the following operations of their own:

q{e}_deq(q) 	Removes and returns the item at the head of the queue.
ge_find(q, qe) 	Looks for the item qe in the queue. Returns qe if found,
NULL otherwise.

ge_dela(q, prey) Removes the element after prey in q.

51

Chapter 5

RESULTS AND DISCUSSION

So far the simulation model, working procedure and implementation

details of the ATM network with various ATM traffic application have been

discussed. After running the simulation we examine the data-log files of various

network configurations (or topology) in the ATM network.

In this chapter, performance of various parameters in various ATM traffic

applications is studied. Also the propagation delay, buffer size, and traffic

characteristics such as average arrival rate, utilization of link and throughput (in

case of UBR TCP/IP application) studied through simulation. Moreover, a

performance comparison between the different ATM traffic application w.r.t.

time and other parameters mentioned is drawn.

After running the simulation program we analyzed so may parameters of

various components of the network through their log files, and we draw some

graphs between some parameters, like end-to-end delay in a different traffic

scheme w.r.t. time, then we saw that the various ATM traffic scheme have

different delay for same kind of network topology and same configuration.

The screen snapshots of simulation software at runtime are also included in this

chapter.

53

Fig. 5.1 Screenshot of the simulation program with an ATM n/w configuration

Description of Screenshot: In this screen shot the ellipse shaped components are

the ATM traffic Applications like CBR, VBR, ABR, TCP/IP etc. The dark

rectangle shaped boxes are the broadband terminal equipment, and light color

rectangle are the switch The lines drawn between ATM application to BTE

components and BTE component to ATM switch are the Physical Links

component. The every link connected from a B-TE to a switch has a name

associated to it. In right hand corner the analog clock is there and below that the

digital clock is also there.

The light and dark dashed thick lines are the ROUTES of one ATM

application to another ATM application. In right hand lower corner there are a

control toolbox for operating the simulation software with different kinds of

operation as we already explain in chapter four.

54

ATM Hetwork Simulator eveIopeti try UFELESH YADAV.M.Tech.(IT)

Bit Rate (Hbits/): 140

1t.r t time (uc): 0

Number of IlBitz,, to he ocot; 1000

0tEr End Connection cbr

Bj Bot i(MbitsfL

Start, icc 	fi

Bit Et 0 2 bit' 	190

Stfi 	 p4td 0

Murb 	oItz th bc 1ot4 flr)1) 0

Qthr'Ed orcb 	 '1

btc5

A~l
Bit Rate. (Mbitc/s): 150

Mean &nt. Lejigth o3eco); 10

Moon Interval Between Th1rto

Start titie (woece): 0

Mirnbr, of Mits to b 	prit 	000

Other End Connection

bt&3

tcpl

Figure 5.3-Screenshot of network with SWITCH information window

In this screenshot the information window of the switch2 is present In which we

can see so many parameters of the switch2 with its current value. We can see

some parameters of this switch like the delay to process a cell, switching slot

time, output queue size, High and low threshold, cell received in so many queues

like VBR/CBR and ABR etc.

56

• Topology of two simulated network configuration

Fig.5.4 A simple ATM network configuration with all application.

TCP)--I BTE

TCP)-l- BTE

BTE

TCP 	BTE

SW I- 1 SW

Fig. 5.5 A UBR TCP/IP based network configuration

57

End to End Delay Vs Offered load

v

20 	30 	40 	so 	60 	70 	30 	90 	100
Offered load (in % of the fink speed)

Fig. 5.6 End to End Delay Vs Offered load for CBR, VBR, ABR traffic

The above graph shows the end-to-end delay of CBR, VBR and ABR ATM

services/traffic application for the same offered load in a particular ATM network

configuration. Here we saw that the delay is maximum in case of ABR traffic.

But in case of VBR traffic this is minimum. This indicate that if our application is

real time and we want minimum delay in cell transmission then VBR is suitable

for those kind of application so that the Cells can be generated at the specified bit

rate during a burst. The CBR traffic delay is nearer to VBR delay but in case of

CBR the delay is mainly depend on the specified bit rate. For some bit rate the

delay may be less in CBR traffic, may be high in VBR traffic

58

U.'

• Some results regarding UBR-TCP/LP application with congestion related
issue.

One of the main problem protocols such as TCP, that use packet loss as a

congestion indication is that congestion is only handled when it is already too

late. The results depicted in following fig.5.6 and 5.7 show the link

utilization achieved with Tahoe-TCP, Reno-TCP and Standard-TCP over a

time period of one minute.

Link Utilization for TCP Tahoe, Reno AND Standard
(with buffer size 128 kbyte and 256 kbyte)

Switch Buffer-128 kbyte 	 Switch Buffe.r-256 kbyte

0 10 20 30 40 50 60
Time (sec)

0L

i
i
i

t

0.6 	'

04

0.2

0

Tahoe-TCP
............•.. Reno-TCP
------ Stnd.-TCP

V 	J U GV .)U +tJ .7V UV

Time (see)

Fig.-5.7 Link utilization for Tahoe-TCP, Reno-TCP and Standard-TCP with a

propagation delay of 40 msec.

59

0.2

0

1 -

0.8 j 	s r j

0.6
d

0.4 	(jJ
Ii i

• 0.2
I.

0

Tahoe-TCP
-=------------- Reno-TCP
- - - - - - Stnd. TCP

Link Utilization for TCP Tahoe, Reno AND Standard
(with buffer size 512 kbyte and 1024 kbyte)

Switch Buffet=-512 kbyte 	 Switch Buffer=l 024 kbyte

0 10 20 .0 40 50 60 	0 10 20 30 40 50 60
Time (sec) 	 Time (see)

Fig.-5.8 Link utilization for Tahoe-TCP, Reno-TCP and Standard-TCP with a

propagation delay of 220 msec.

Propagation delay Buffer length Tahoe TCP Reno TCP Stnd. TCP
...............................

128 kbytes
........................._......._._.............................._.._.._._..__.....----.._.._..........................._..._._...._.._-..._.._.._---............................._.._.

94% 96% 98%
40 mesc

256 kbytes 97% 97% 98%

kbytes 80
%.................._...._

%0
...................... _................._

87 88%
220 mess

512 	
...................

1024 kbytes 81% 92% 93%

Table 5.1- Link utilization reached using Tahoe, Reno, Standard TCP with different

switch buffer sizes and different round trip delays.

As expected, using Reno-TCP, results in general in higher throughput than that

achieved with Tahoe-TCP. The result achieved with Standard TCP resembles to a

great extent those achieved for Reno-TCP. The throughput improvements are

especially evident for the WAN case. Due to the long round trip delay the

recovery from packet losses takes more time increasing thereby the idle time of

the sources and leading to the oscillating behavior that can be seen in Fig. 5.7.

Effective Throughput for 10 VCs , Buffer=10000 cells

Buffer 10000 cells
100

90

60
i

70
0.

60

50

4o

30

20

10

O 0 	 100 	 200 	 300
Time (msoc)

Fig.5.9 Effective throughput of Virtual Circuit in network configuration of Fig.5.6

Effective Throughput for 10 VCs Buffer = 10000 cells

25_0

5.0

7.0

Fig. 5.10 TCP effective throughput of Virtual circuit in Network configuration of Fig.5.7

Above two graphs shows the effective throughput of VCs (virtual circuits) in

simulated ATM network configurations of fig. 5.6 and 5.7 respectively. The

61

throughput of fig.-5.10 indicates that the rise in throughput is continuos

incremental due to the less no. of cell loss. In this graph the no. of virtual circuits

is less as compared to next graph shown in fig.-5.10. We observed that with per

VC accounting, increasing throughput so that each VC gets a little more than its

fair buffer share can actually overall fairness. The reason is that when the cells

from the faster VCs are discarded, the cells from slower VCs have more

opportunities to occupy the buffer.

As a concluding remarks of results parameters related to TCP UBR with

other traffic like CBR, VBR and ABR the following two results observed.

• When congestion is moderate and no buffer overflow occurs at the ATM

switches, TCP/IP UBR has similar performance as ABR. However, compared

with ABR, the good performance of TCP/IP UBR comes at the expanse of

larger switch buffer size.

• TCP over UBR may not be able to provide fair bandwidth allocations among

TCP sessions even with simple peer-to-peer configuration in a LAN

environment, especially when the networks are very congested. Furthermore,

TCP over UBR may experience the "beat-down" problem while TCP over

ABR does not.

62

Chapter 6
CONCLUSION AND FUTURE WORKS

In this dissertation efforts have been put on developing a simulation tool

of ATM network with different traffic or service schemes like CBR, VBR, ABR

and TCP/IP UBR based traffic. The performance of throughput, delay, link

utilization, bandwidth (buffer) utilization etc have been shown by some graphs

and discussed. After analyzing the various results of network we saw that the

some significant parameters like delay, throughput, and buffer utilization is in

permissible limit of a standard ATM network.

As a future expansion of this ATM simulation tool we can add so many

other components like; different ATM application, like CBR MPEG connection,

ABR TCP/IP connection, ABR Self similar traffic connection etc. And if we

want more and more precise results of various network component parameters

like delay, link utilization, buffer allocation, throughput rate of virtual circuits,

protocol overhead etc, then we can use Rate based ATM Switch and Rate based

Broadband Terminal Equipment (BTE), in which we can add so many

parameters like various congestion control schemes, Peak Cell Rate (PCR),

Minimum Cell Rate (MCR), Tagged Cell Rate, Available Cell Rate (ACR),

collision detection and avoidance algorithm based more parameters. We also can

considered the ABR and UBR service with early packet discard (EPD) schemes

for supporting data application in ATM networks. In addition we can also add

some mechanism for hybrid fiber coaxial network to support this ATM network

simulation tool, so that we can also study the various other activity of hybrid

fiber network that is generally used for cable TV distribution.

63

64

REFERENCES

I. F.Bonomi and K.W.Fendick. "The rate-based flow control framework for the

available bit rate ATM service". IEEE Network,9(2):25-39,March-April

1995.

2. Hongqing Li, Kai-Yeung Siu, Hong-Yi Tzeng. "TCP Performance over ABR

and UBR Service in ATM". IPCCC'96 March 1996.

3. R. Sanchez,"Virtual ATM ' Switch Driver for ATM on

Linux".http://www.ittc.ukans.edu/ rsanchez/software/vswitch.html.

4. Sean B House, Shyam Murthy, Douglas Niehaus, "Proportional Time

Simulation of ATM Networks". Information & Telecommunication

Technology Department of Electrical Engineering and Computer University

of Kansas.

5. Dorgham Sisalem, Henning Schulzrinne. "Congestion control in TCP:

Performance of binary congestion notification enhanced TCP Compared to

Reno & Tahoe TCP".Oct.1995,CEC R2116 TOMQAT.

6. Krzysztof Walkowiak , Andrzej Kasprzak, Wladyslaw Budynkiewicz.

"Simulation of virtual path routing in survivable ATM Network".

Proceedings of ASIS 1998, Ostrava, 1998, p.p. 229-234.

7. Jorg Abarca pereda. "Simulation of an ATM based PNNI switch system".

Master's thesis report, Royal institute of technology, Sweden, September

1997.

8. George S. Fishman, "Principles of Discrete event simulation": Wiley

Interscience publication, 1988.

9. Youlu Zheng, Shakil akhatar, "Networks for computer scientists and

engineers". Oxford University press, 2002.

10. Nabajyoti Barakakati, "X Window system programming", second edition.

Prentice hall of India, 2001.

11. Rainer Handel, Manfred N Huber, "ATM networks, concepts protocols

applications". Pearson education Asia, 2002.

X,

12. A.S.Tanenbaum, "Computer Networks" 3 d̀ edition, PHI India, December

VEJ

13. Martin, J., and J.Leben, "Asynchronous transfer mode: ATM Architecture

and Implementation". Englewood Cliffs, NJ: Prentice Hall, 2000.

14. Stalling William, "Data and computer communications", PHI, Fourth edition,

1994 Alberto Leon-Garcia, Indra Widjaja, "Communication Network", Tata

McGraw Hill, 2000.

15. Alberto Leon-Garcia, Indra Widjaja, "Communication Network", Tata

McGraw Hill, 2000p.p. .

16. Sumit Kasera, Pankaj Sethi, "ATM Networks-Concepts and Protocols", Tata

McGraw Hill, 2001.

17. Simulation Modeling & Analysis, Averill M. Law, W. David Kelton,

McGraw Hill Int., second edition, 1991.

18. Website of ATM FORUM, www.atmforum.com.

66

Appendix A:

Format of SAVE file.

The SAVE file conserves information about the components, including their screen position, the
values of their input parameters, their interconnection with neighboring components, and the
established routes (virtual circuits). Note that it does not preserve values of output parameters or
data logging instructions.

The listing below is an example of a SAVE file. There are three distinct types of
information in the file - component descriptions, linkages, and route definitions. The component
descriptions come first. The first line of each description begins with the keyword component,
followed by the component's name in single quotes, then the component type in capital letters, and
finally the x and y coordinates of the screen position of the component. The lines immediately
following are a listing of the input parameters and their values. Any text on a line after a pound sign

) is a comment; the comment identifies the parameter.
Following all the component descriptions are the linkages. Each line of this group begins

with the keyword neighborl, followed by a component's name in single quotes, and then either a
physical link name or another component name in single quotes. In the example, 'switch!' has two
physical links attached, while the B-TE named 'host l' is connected to the ATM Application named
'tcp l'. The last group of lines in the file is the route listing. Each line begins with the keyword
roulel, which is followed by the names of all components. in the route. Each component name is in
quotes. The component list always begins and ends with an ATM Application component.

Sample SAVE file:
component'switchl' SWITCH 417 341
param 'switch!' # switch
param 0 	# Delay to process a cell (Sec): 0
param 155 	# Switching Slot time (Mbit/s): 155
param 10000 # Output q_size: 10000
param 550 	# High Threshold for Q Congestion Flag: 550
param 450 	# Low Threshold for Q Congestion Flag: 450
param 1 	# Logging every (ticks) (e.g., 1, 100): 1
component 'host 1' BTE 331 452
param'hosti' # hostlparam 50 # Max Output Queue Size: 50

Appendix B:

Format of SNAP file
The SNAP file contains all the configuration information of a SAVE file plus additional.

information that reveals the status of the simulated network at a particular point in time, i.e., when a
"snapshot" of the simulation has been made. At the top of the file are two lines starting with the
pound sign (#). The first line records the seed used for that particular simulation run. (This line will
not be loaded or used if the file is used as a configuration file.) The second line records the time (in
ticks) when the snapshot was taken.
Seed 776093072

Time of snapshot (ticks) 0
component'switchl' SWITCH 417 341
infowindowparam 'switch P 32 0 # switchI
param 0 12 0 # Delay to process a cell (Sec): 0
param 155 12 0 # Switching Slot time (Mbit/s): 155
param 10000 12 0 # Output c~size : 10000
param 550 12 0 # High Threshold for Q Congestion Flag: 550
param 450 12 0 # Low Threshold for Q Congestion Flag: 450
param 1 12 0 # Logging every (ticks) (e.g. 1, 100): 1
pflags 4 #Cells Received: 0
pflags 4#Cell Drop %: 0
pflags 4#Cells in VBR Q to linkl: 0
pflags 4 If Cells dropped in VBR Q to link 1: 0
pflags 4 #Cells in ABR Q to linkl: 0
pflags 4#Cells Dropped in ABR Q to link 1: 0
pflags 1 #Congestion for Link link 1: FALSE
pflags 4#Cells in VBR Q to link2: 0
pflags 4#Cells dropped in VBR Q to link2: 0
component 'host2' BTE 562 460
param 'host2' 32 0 # host2
param 50 12 0 If Max Output Queue Size: 50
param 1 12 0 If Logging every (ticks) (e.g. 1, 100): 1
pflags 4 562 424 159 93 #Cells Received: 0
pflags 4 #Cells in VBR Q to link2: 0
pflags 4 #Cells dropped in VBR Q to link2: 0

/,ORAL Ujg4~~̀

* 	A: a N
D~~c

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	References
	Appendix

