
DESIGN AND IMPLEMENTATION OF CLASS BASED
QUEUING IN PROXY SERVER

A DISSERTATION
Submitted in partial fulfilment of the

requirements for the award of the degree
of

MASTER OF TECHNOLOGY
in

INFORMATION TECHNOLOGY

By

GAURAV JAIN

LI.~R,'~'

U

• ER & DC/;,
NOIDA' `

I1T Roorkee-ER&DCI, Nokia
C-5611, "Anueandban Bhawan"

Sector 62, Noida•201 307

FEBRUARY, 2003

Enrolment No. 019017

2

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this dissertation titled "Design &

Implementation of Class Based Queuing in Proxy Server", in partial fulfillment of the

requirements for the award of the degree of Master of Technology in Information

Technology, submitted in IIT, Roorkee — ER&DCI Campus, Noida, is an authentic

record of my own work carried out during the period from August 2002 to February,

2003 under the guidance of Mr. B. K. Das, Scientist-C, Internet Division, N.I.C. New

Delhi and Mr. Munish kumar, Project Engineer, ER&DCI, Noida.

The matter embodied in this dissertation has not been submitted by me for award

of any other degree or diploma

Date : 2j foz~°3 	 c
Place: N o; d°~ 	 (Gaura Jain)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledged belief.

(r. unish Kumar)

Project Co-Guide

Project Engineer,

ER&DCI, Noida,

(Mr. B. K. Das)

Project Guide

Scientist-C,

Internet Division,

N.I.C., New Delhi.

Date: 21-01-03
	 Date: ;.I /O/ O3

Place: Noida 	 Place: New Delhi

ACKNOWLEDGEMENT

First of all I would like to pay my humble regards to Prof. Premvrath, Director IIT-

Roorkee, Mr. R K. Verma, Executive Director ER&DCI-Noida, Mr. H. M. Reddy,

Technical Director, Internet Division, N.I.C. New Delhi, for providing me with this

valuable opportunity to carry out this work. I am also very grateful to Dr. A. K. Awasthi,

Programme Director, M.Tech (I.T) & Dean PG S&R, IIT-Roorkee, Prof. R.P. Agarwal,

Course-Coordinator M.Tech (I.T.), IIT-Roorkee, Mr. V. N. Shukla, Course-Coordinator

M.Tech. (I.T.), ER&DCI-Noida for their support and help generously extended to me

without which this project could not have been completed in time.

I owe a special sense of gratitude to my honorable guide Mr. B. K. Das, Scientist C,

Internet Division N.I.C., New Delhi and my respected co-guide Mr. Munish Kumar,

Project Engineer, ER&DCI-Noida for their prodigious guidance, painstaking attitude and

giving reformative suggestions throughout my project

My sincere thanks are due to Dr. (Ms) P.R. Gupta, Reader, ER&DCI, Noida for the

encouragement and valuable suggestions she provided me during the course of my

project work.

Above all I would like to thank my family. My parents provided me a perfect

environment for my studies and supported me throughout. Finally, I would like to extend

my gratitude to all those persons who directly or indirectly helped me in the process and

contributed towards this work.

in)
no: 019017

CONTENTS

CANDIDATE'S DECLARATION 	 (i)

ACKNOWLEDGEMENT 	 (ii)

ABSTRACT 	 1

INTRODUCTION 	 3
1.1 Objective 	 3
1.2 Scope of thesis 	 4
1.3 Overview 	 4
1.4 Organization of the thesis 	 6

2. LITERATURE SURVEY 7
1.1 TCP/IP overview 7

1.1.1 	Link Layer 9
1.1.2 	Network Layer 10
1.1.3 	Transport Layer 12

1.2 IP Addressing 12
2.2.1 Address Classes 13

1.3 Subnetting 14
1.3.1 	Subnet Masking 14
1.3.2 	Private Subnets 15

2.4 QoS in Internet 15
2.5 Proxy Servers 16

2.5.1 Benifits of Proxy Server 17
2.5.2 Problems with Proxy Servers 18
2.5.3 Functions of Proxy Servers 18

3. ANALYSIS AND DESIGN 23
3.1 Class Based Queuing 23
3.2 Proxy Servers 25

3.2.1 	Squid Cache Server 26
3.3 Delay Pool in Squid • 26

3.3.1 	Working of delay pool 26
3.3.2 	Drawbacks of available delay pool 27

3.4 Design 27
3.4.1 	Earlier experiments 27
3.4.2 	Current modification 28

4 IMPLEMENTATION ASPECTS 	 31
4.1 Classification of Traffic in to Classes 	 31
4.2 Modification of source Code 	 34

4.2.1 Modification of file structs.h 	 35
4.2.2 Modification of file cache_cf.c 	 35
4.2.3 Modification of file delay_pools.c 	 36

5. RESULT AND DISCUSSION 	 39

6. CONCLUSION 	 43

REFERECNES 	 45

APPENDIX
A. Squid proxy/cache Server

ABSTRACT

Growth of Internet as a fundamental network has resulted in

very slow Internet access. This situation is further exacerbated

by a small number of users who use a disproportionate share of

the available bandwidth for file downloads, etc., starving other

users of bandwidth. Therefore some means of controlling and

managing the bandwidth available to users is necessary. We

can manage bandwidth by classifying traffic in to various

categories and allocating each class a portion of total available

bandwidth, thus we can restrict high bandwidth consuming

applications like movie, real audio, MP3 download to a limit,

as specified by network administrator. Most organization

provides web access to end users through cache/proxy servers.

As all web accesses are channeled through the cache server,

using the same server for bandwidth management is expedient.

Squid is a popular proxy and web cache server, which contain

a bandwidth management feature called "delay pools".

However the existing implementation of delay pools did not

provide satisfactory performance, as bandwidth allocations are

static and does not adept to varying usage patterns. Our

solution adjusts the bandwidth allocated to each class to

provide an optimum level of access to all users. During off-

peak hours, each class of application can use essentially the

full available bandwidth, while during peak hours it's

bandwidth is limited to min value as specified by network

administrator. Thus light interactive users get better

performance at the expense of heavy and non-interactive users.

Chapterl
INTRODUCTION

Internet access in National Informatics Center, like many other organizations, is

constrained by the cost of available bandwidth. Although the speeds of LANs are in the

order of a Gb/s, the high cost of Internet bandwidth often means that dozens of users

share few a Mb/s of bandwidth.

Providing enough bandwidth to satisfy all users is financially infeasible, so I approached

the problem from the angle that bandwidth is a fixed resource, which should be managed

to yield the maximum benefits. Some consider that the cost of bandwidth is dropping

rapidly, therefore this problem will only be temporary. However, observations are, that

although the cost of bandwidth is reducing. At the same time, the demand for bandwidth

is increasing. The net result has remained an insufficiency of bandwidth, and can be

expected to be so in the future.

1.1 Objective of Thesis
Mostly web access is provided through cache/proxy servers. As all web accesses

are channeled through the cache server, using the same server for bandwidth management

is expedient. For achieving the goal of providing fair access to all users, we have to:

• Shape traffic by the use of Class Based Queuing at proxy server, which in turn

requires classification of Internet traffic in to different classes based on some

"magic word" present in URL such as .mp3, .avi, .html, .jpeg etc. and allocate

each class a portion of total available bandwidth.

0 Secondly we have to derive a mechanism so that bandwidth allocated to each

class could vary according to changing usage pattern and provide a optimum level

of access to all the users.

As a result of which, during off-peak hours, each class of applications could use

essentially the full available bandwidth, while during peak hours they are limited to the

3

minimum level of bandwidth set by the network administrator. Thus light interactive

users get better performance at the expense of heavy and non-interactive users.

1.2 Scope

Design and Implementation of Class Based Queuing is a live project at National

Informatics Center — New Delhi, they are developing hardware for it by implementing it

in router, but I have implemented it in a proxy/cache server.

Tools for bandwidth management are required because Internet is decentralized in nature,

composed of multiple administrative domains with wide range of resource limitations, the

control of Internet resources involve the local decisions, thus measures for providing a

fair quantity of bandwidth for each application requires link shearing at users place only.

By implementing Class Based Queuing in proxy server we could prevent few users from

acquiring a unequal fraction of available bandwidth, and thus provide fair access to all

users.

1.3 Overview
On examining Internet bandwidth utilization, I found that there are two main classes of

users. One group comprises of heavy users of resources and typically has several open

browser windows with pages being rendered simultaneously and also may have one or

more file downloads in operation. The other group consists mainly of interactive users

who open one browser window and wait until it is fully rendered before proceeding

further. Even though the first group is numerically much smaller, they tend to utilize a far

larger share of the available bandwidth and leads to congestion in the network.

When bandwidth is precious (as it is always) and it is not possible to meet exact

bandwidth needs, traffic shaping procedure could be used by implementing a class based

queuing of outgoing Internet request, thus ensuring proper utilization of available

resources.

In most of the organizations, a proxy server is used to give access to network services;

this means that if you are sitting at networked computer that is connected to Internet via

proxy server, then when you start a web browser and point it to www.iitr.ac.in, then your

browser sends request to proxy server, proxy server retrieves the web page on your

behave and send it to your computer [I].

A major side-effect of this is that all web accesses have to go through the cache server

and this provides a focal point for monitoring and controlling how users utilize the

available resources.

We have decided to use squid proxy server because Squid is the only proxy server that

implements a bandwidth management mechanism called "Delay Pools", written by David

Luyer [3]. Using this delay pools, it is possible to limit Internet traffic in a reasonable

way, depending on so-called 'magic words', existing in any given URL for example, a

magic word could be '.mp3', '.exe' or '.avi', etc. Any distinct part of a URL (such as .avi)

can be defined as magic word.

With that, we can classify the in coming requests in to different classes and assign each

class a different delay pool thus a different bandwidth.

Thus we can tell squid to download certain kinds of files (like sound files) at a specified

speed (in our example, it will be about 5 Kbytes/s). If our LAN users download files at

the same time, they will be downloaded at about 5 Kbytes/s altogether, leaving remaining

bandwidth for web pages, e-mail, news, etc. Thus provides fair access to other users and

avoids conges ion in the line.

But major drawback with delay pool is that delay pools parameters are statically defined

in the Squid configuration file and cannot be changed dynamically to suit the changing

conditions in the network. i.e. if a portion of available bandwidth •to a class of

applications is not fully utilized then in that case it leads to the wastage of the precious

bandwidth allocated to that class.

Therefore I modified the freely available source code so that bandwidth allocated to each

application could be adjusted according to the varying usage pattern and an optimum

level of access could be provided to each user.

1.4 Organization of the Thesis
Chapter 2 Literature Survey gives a brief introduction about TCP/IP architecture, IP

addressing and address Subnetting. Along with this, I also discuss basic concepts of

proxy server along with their usages.

Chapter 3. Provides in-depth analysis of the problem posed before me along with design

of the solution proposed by me.

Chapter4 Discuss implementation aspects to transfer proposed solution in to machine-

readable code in Chapter 5 I have provided some of the results obtained with a brief

discussion about the results obtain.

Finally I conclude my thesis in chapter 6.

6

Chapter 2
LITERATURE SURVEY

Internet a worldwide network that is widely used to connect universities,

government offices, companies, and of late, private individuals, is successor of the

ARPANET.

APRANET was a research network sponsored by DoD (U.S. Department of

Defense). It eventually connected hundreds of universities and government installations

using leased telephone lines. When satellite and radio networks are added later, the

existing protocols had trouble internetworking with them, so new reference architecture

was needed. Thus the ability to connect multiple networks together in a seamless way

was one of the major design goals from the very beginning. The architecture later

becomes known as TCP/IP reference model, after it's two primary protocols, TCP

(Transmission Control Protocol) and IP (Internet Protocol).

Given the DoD's worry that some of it's precious hosts, routers, and internet work

gateways might get below to pieces at a moment's notice, another major goal was that the

network be able to service loss of subnet hardware, with existing conversation not being

broken off. In other words, DoD wanted connection to remain intact as long as the source

and destination machine were functioning, even if some of the machines or transmission

lines in between were suddenly put out of operation. Furthermore, a flexible architecture

was needed, since applications with divergent requirements were envisioned, ranging

from transferring files to real time speech transmission.

2.1 TCP/IP Overview
Before we examine each layer of TCP/IP, we should cover a few basic concepts. At its

most basic level, a computer network is simply a series of connections between

computers that allow them to communicate. The content, scope, size, speed, and

reliability of the network vary depending on its protocols and implementation. Protocols

are pre-established means of communication. The term TCP/IP (Transmission Control

Protocol/Internet Protocol) actually refers to a whole family of protocols, of which TCP

7

and IP are just two. Figure 2.1 contains the standard "stack" diagram of TCP/IP. Rather

than make protocols monolithic (which would mean ftp, telnet, and gopher would each

have a full network protocol implementation, including separate copies of kernel code for

the devices each protocol uses), the designers of TCP/IP broke the job of a full network

protocol suite into a number of tasks. Each Iayer corresponds to a different facet of

communication. Conceptually, it is useful to envision TCP/IP as a stack. In

implementations, programmers often blur the layers for increased performance.

Application 	I Telnet, FTP, RPC, etc.

Transport 	I TCP, UDP

Network 	I IP, ICMP, IGMP

Link 	I Network interface and device driver

Figure 2.1: The Layers of the TCP/IP Protocol Suite

The first, the link layer, is responsible for communicating with the actual network

hardware (e.g., the Ethernet card). Data it receives off the network wire it hands to the

network layer; data it receives from the network layer it puts on the network wire. This is

where device drivers for different interfaces reside.

The second, the network layer, is responsible for figuring out how to get data to its

destination. Making no guarantee about whether data will reach its destination, it just

decides where the data should be sent.

The third, the transport layer, provides data flows for the application layer. It is at the

transport layer where guarantees of reliability may be made.

The fourth, the application layer, is where users typically interact with the network. This

is where telnet, ftp, email, IRC, etc. reside.

Packets are the basic unit of transmission on the Internet. They contain both data and

header information. Simply put, headers generally consist of some combination of

checksums, protocol identifiers, destination and source addresses, and state information.

Each layer may add its own header information, so it can interpret the data the lower

layer is handing it. In Figure 2.2, we see a sample Ethernet frame. This is the product of a

packet that has gone from that application layer all the way to the link layer. Each layer

takes the previous layer's packet, viewing almost all of it as data, and puts its own header

on it.

Ether net Data

IP Data

TCP
Data

Destination Address Ethernet Header

(Link Layer)

IP Header

(Network Layer)

TCP Header

(Transport Layer)

Application Layer

Source Address

Length of Ethernet Frame

Misc. Protocol Data

Source IP Address

Destination IP Address

Source Port Number

Destination Port Number

Misc. Protocol Data

Operating System

Figure 2.2: A Sample Ethernet Frame

2.1.1 The Link Layer

The link layer is the simplest layer to understand. Composed of the network

hardware and the device drivers, the link layer is the lowest level of the protocol stack.

When receiving data from the network, it takes packets from the network wire, strips

away any link layer header information, and hands it off to the network layer. When

transmitting data onto the network, it takes packets from the network layer, sticks a link

layer header on them, and sends them out over the wire.

0

The benefit of separating out the hardware layer is that protocol implementers only have

to write the network layer once. Then they provide a common interface to the network

layer by writing different device drivers for each kind of network interface.

2.1.2 The Network Layer

This is where the Internet Protocol (1P) and the Internet Control Message Protocol

(ICMP), among others, reside. ICMP is used to provide network reliability information

by utilities like ping and trace-route. IP is used for almost all other Internet

communication. When sending packets, it is figures out how to get them to their

destination; when receiving packets, it figures out where they belong. Because it does not

worry about whether packets get to where they are going or whether they arrive in the

order sent, its job is greatly simplified. If a packet arrives with any problems (e.g.,

corruption), IP silently discards it. Upper layers are responsible for insuring reliable

reception of packets. We refer to IP's behavior as "stateless" or "connection less" because

the existence of previous or future packets is irrelevant when processing the current

packet. We could unplug the network wire, wait a minute, plug it back in, and IP would

never know the difference.

IP is able to get packets to their destinations because every network interface on the

Internet has a unique, numeric address. Oddly enough, these numbers are called IP

addresses. Notice, every interface has its own address. If a machine has multiple

interfaces (as is the case with a router), each one has its own IP address. The Internic is

responsible for assigning sets of addresses to organizations, thereby insuring uniqueness.

Because it's a pain to refer to machines with strings of numbers, the designers of TCP/IP

allowed network administrators to associate names with IP addresses. And so was born

the domain name system (DNS). It is a distributed database of IP addresses and their

natural language names, called host names. In fact one IP address can have multiple

names associated with it.

The steps IP takes to send a packet are simple: based on its IP address, figure out how to

get it there and send it on its way.

Deciding out how to get the packet there, routing, is the critical task for IP. Fortunately,

sender doesn't have to know how to get a packet all the way to reciever; it just needs to

10

figure out which local router is responsible for getting packets to receiver. A router

differs from a typical machine on the net because it has at least two network interfaces --

this allows it to connect to two or more networks. For a small organization, there will

typically be a local network (e.g., Ethernet) and then a leased-line link to the Internet.

The organization's router is connected to both the local network and the Internet link. All

packets bound for the Internet are sent to the router, which then puts it on the leased line,

bound for the next router.

Each router only needs to know about the routers to which it is connected. To determine

where a given packet will go next, machines on the Internet maintain routing tables. They

consist of three major items: addresses of routers, addresses they can handle, and the

interface to which they are connected. In the case of a machine on a local net , it probably

has three entries: one for the loop back interface (which allows a host to connect to

itself), one for the local network and a default entry.

The local network entry lets IP know that the machine is directly connected to a certain

set of IP addresses. Rather than try and route those packets, IP figures out the hardware

address of the Ethernet interface to which the IP address corresponds and sends the

packet there. With this entry, that machine is essentially the router, the addresses it can

handle are all the IP addresses on the local net, and the destination interface is an

Ethernet card on the local net.

The default entry says "for all other addresses, send it to this router." Instead of trying to

deliver a packet for a machine on foreign network to a machine on the local net, host

computer sends it to the routers interface, saying, "Here, I don't know where this goes,

you figure it out." The router then looks at its table, sees it doesn't have a direct

connection to concerned machine, and sends it to its default destination. And so the

process continues.

When receiving data, IP takes the packet from the link layer, checks for any blatant

corruption, and hands the packet to the proper process at the transport layer. If there is

any problem with the packet, IP silently discards it because it doesn't have to worry about

whether a packet reaches its destination.

2.1.3 The Transport Layer

There are two protocols at the transport layer: the Transmission Control Protocol

(TCP) and the User Data-gram Protocol (UDP). TCP provides end-to-end reliable

communication and UDP doesn't. UDP is as unreliable as IP, but allows people to write

user level software that creates its own packet formats, which is particularly helpful if

you want to write new protocols, don't have the kernel sources, and don't want the

overhead of TCP.

TCP creates a "virtual circuit" between two processes. It insures that packets are received

in the order they are sent and that lost packets are retransmitted. We won't go into the

details of how it works, but interactive programs like ftp and telnet use it.

So far we have discussed addressing on the host level -- how to identify a particular

machine. But once at a machine, we need a way to identify a particular service (e.g.,

mail). This is the function of ports -- identification numbers included with every UDP or

TCP packet. TCP/IP ports are not hardware-based. They are a just a way of labeling

packets. A process on a machine "listens" on a particular port. When the transport layer

receives a packet, it checks the port number and sends the data to the corresponding

process. When a process starts up, it registers a port number with the TCP/IP stack. Only

one process per protocol can listen on a given port. So while a process using UDP and

one using TCP can both listen on port l 11, two processes that both used TCP could not.

There are a number of ports that are reserved for standard services. For example, SMTP,

the mail protocol, is always on port 25, and telnet-data is always on port 23. We've

examined how ports work on the server end -- specific ports are reserved for set tasks. On

the initiator end, port assignment is dynamic. When a telnet client starts up, it gets a new

port number (e.g., 1066). This is the source port which client's TCP layer puts on every

packet. This allows the telnet daemon on server to responds to the correct telnet process

on client side. The combination of source/destination IP addresses and ports provides a

unique conversation identifier. Each conversation is called a flow.

2.2 IP Addressing
In order to deliver IP packet to a machine each machine on network has an IP

address. An IP address is a 32 bit binary number usually represented as 4 decimal values,

12

each representing 8 bits, in the range 0 to 255 (known as octets) separated by decimal

points. This is known as "dotted decimal" notation.

Example: 140.179.220.200

it is sometimes useful to view the values in their binary form.

140 .179 .220 .200

10001100.10110011.11011100.11001000

Every IP address consists of two parts, one identifying the network and one identifying

the node. The Class of the address and the subnet mask determine which part belongs to

the network address and which part belongs to the node address.

2.2.1 Address Classes

There are 5 different address classes. You can determine which class any IP

address is in by examining the first 4 bits of the IP address. 	 ~.

Class A addresses begin with Oxxx, or Ito 126 decimal.

Class B addresses begin with lOxx, or 128 to 191 decimal.

Class C addresses begin with I lOx, or 192 to 223 decimal.

Class D addresses begin with 1110, or 224 to 239 decimal.

Class E addresses begin with l l 1 1, or 240 to 254 decimal.

Addresses beginning with 01 11 11 11, or 127 decimal, are reserved for loop back and for

internal testing on a local machine. [You can test this: you should always be able to ping

127.0.0.1, which points to yourself] Class D addresses are reserved for multicasting.

Class E addresses are reserved for future use. They should not be used for host addresses.

Now we can see how the Class determines, by default, which part of the IP address

belongs to the network (N) and which part belongs to the node (n).

Class A -- NNNNNNNN.nnnnnnnn.nnnnnnn.nnnnnnn

Class B -- NNNNNNNN.NNNNNNNN.nnnnnnnn.nnnnnnnn

Class C -- NNNNNNNN.NNNNNNNN.NNNNNNNN.nnnnnnnn

13

becomes acceptable. This approach might involve upgrading the backbone to a high-

speed technology such as Gigabit Ethernet. If you have fairly light traffic in general,

more bandwidth may be all you need to ensure that applications receive the high priority

and low latency they require.

However, this simplistic strategy collapses if a network is even moderately busy. In a

complex environment - one that has a lot of data packets moving in many paths

throughout the network, or that has a mixture of data and real-time applications - you

could run into bottlenecks and congestion.

Also, simply adding bandwidth doesn't address the need to distinguish high-priority

traffic flows from lower-priority ones. In other words, all traffic is treated the same. In

the network realm, such egalitarianism is not good, because network traffic is, by its

nature, unpredictable. Further bandwidth is always costly, as demands for bandwidth are

increasing day by day.

A fairly new idea in the QoS realm is, to make the network itself more intelligent by

incorporating something called policy-based management. With this method, network

managers could define policies that spelled out what levels of service certain types of

traffic requires that is the reason why I have implemented class based queuing in proxy

server to have a proper bandwidth management.

2.5 Proxy Servers
A Proxy is someone who does something on behalf of another. For example, if

you cannot be present at an electoral vote, you can often nominate another person to

register your vote for you. This is a "real world" example of using a proxy.

Simply put, then, a proxy server is a computer that sits between your network and the

Internet, and deals with any requests for data from the Internet that users on your network

may make. This means that if you are sitting at a networked computer that is connected to

the Internet via a proxy server, then when you start your web browser and point it at

www.yahoo.com then your browser sends the request to the proxy server, the proxy

server retrieves the web page on your behalf, and then sends it to your computer

I: 	Client

Pro 95e 	 (4j
& Fii ew, t

Figure 2.3: Proxy server in network

This is a good thing for a couple of reasons. Firstly, it enables an organization to have

just one Internet connection, and secondly it makes it easier to manage how this

connection is used.

2.5.1 Benefits of a Proxy Server

If you connect to the Internet, there are a number of reasons you may want to use

a proxy server.

Security: If you configure a proxy server correctly you reduce the exposure of your

internal network to hackers without reducing your users access to the Internet.

Cost: The cost of having one big connection to the Internet via a proxy server is smaller

than having a modem on each desk and letting each user dial out as they please.

Administration: Are you worried about how your company uses the Internet? Need to

block certain sites? A proxy server allows you to monitor what sites people visit and how

much time they spend doing it, and while this is a thorny issue for some, it give you an

option to block sites you consider unsuitable.

• Caching: Some proxy servers offer the ability to "store" web pages as they are

accessed for later re-use. This means that your users see a boost in their web

browser performance.

17

• NAT: Ability to use a small amount of public IP addresses to make your network

visible to the outside world, regardless of the amount of workstations using

private IP addresses on your LAN via Network Address Translation (NAT)

2.5.2 Problems with Proxy Servers

• Training: Requires some knowledge to set up and maintain in peak condition.

While it is true that just about anyone can set up a proxy server, some knowledge

is required to get the best out of the server.

• Single point of failure: Running a proxy server gives your Internet usage a single

point of failure, if the proxy server fails all clients attached to it cannot use the

Internet until it is fixed.

• Planning: It can be difficult for someone inexperienced with proxy servers to

estimate specifications for a proxy server. Depending on what proxy server you

use, and what roles you have it perform, a proxy can be network, memory, disk

and processor intensive, in any combination of the above.

• Security: You need to know how to configure the operating system the proxy runs

on securely; in effect, by placing all your clients behind a proxy you are inviting

the outside world to concentrate any attacks on your network on your proxy

server.

• Remote users: Those who use laptops and work from home or hotel rooms, may

have trouble using the Internet via an dial up ISP because all their software is

configured to use your proxy server. Allowing these users to work with your

proxy server and dial into an ISP while on the road requires a bit of planning

2.5.3 Functions of Proxy Server

Caching

Caching attempts to increase performance for your users, and reduce the amount of traffic

flooding your Internet connection. A Cache stores web page components locally on the

proxy server, and when a user requests a page that is stored in the cache it can return the

page to there from the cached copy rather than requesting it from the Internet server.

:

each representing 8 bits, in the range 0 to 255 (known as octets) separated by decimal

points. This is known as "dotted decimal" notation.

Example: 140.179.220.200

It is sometimes useful to view the values in their binary form.

140 .179 .220 .200

10001 100.101 1001 1.1101 1100.1 1001000

Every IP address consists of two parts, one identifying the network and one identifying

the node. The Class of the address and the subnet mask determine which part belongs to

the network address and which part belongs to the node address.

2.2.1. Address Classes

There are 5 different address classes. You can determine which class any IP

address is in by examining the first 4 bits of the IP address.

Class A addresses begin with Oxxx, or Ito 126 decimal.

Class B addresses begin with l Oxx, or 128 to 191 decimal.

Class C addresses begin with 1 l Ox, or 192 to 223 decimal.

Class D addresses begin with 1 1 10, or 224 to 239 decimal.

Class E addresses begin with l 1 1 1, or 240 to 254 decimal.

Addresses beginning with 01111 1 11, or 127 decimal, are reserved for loop back and for

internal testing on a local machine. [You can test this: you should always be able to ping

127.0.0.1, which points to yourself] Class D addresses are reserved for multicasting.

Class E addresses are reserved for future use. They should not be used for host addresses.

Now we can see how the Class determines, by default, which part of the IP address

belongs to the network (N) and which part belongs to the node (n).

Class A -- NNNNNNNN.nnnnnnnn.nnnnnnn.nnnnnnn

Class B -- NNNNNNNN.NNNNNNNN.nnnnnnnn.nnnnnnnn

Class C -- NNNNNNNN.NNNNNNNN.NNNNNNNN.nnnnnnnn

13

In the example, 140.179.220.200 is a Class B address so by default the Network part of

the address (also known as the Network Address) is defined by the first two octets

(140.179.x.x) and the node part is defined by the last 2 octets (x.x.220.200).

In order to specify the network address for a given IP address, the node section is set to

all "O"s. In our example, 140.179.0.0 specifies the network address for 140.179.220.200.

When the node section is set to all "1 "s, it specifies a broadcast that is sent to all hosts on

the network. 140.179.255.255 specifies the example broadcast address. Note that this is

true regardless of the length of the node section.

There are some restrictions on IP address. Node addresses of all "0"s and all " 1 "s are

reserved for specifying the local network (when a host does not know it's network

address) and all hosts on the network (broadcast address), respectively. This also applies

to subnets. A subnet address cannot be all "0"s or all "l's. This also implies that a 1-bit

subnet mask is not allowed.

2.3 Subnetting
Subnetting an IP Network can be done for a variety of reasons, including

organization, use of different physical media (such as Ethernet, FDDI, WAN, etc.),

preservation of address space, and security. The most common reason is to control

network traffic. In an Ethernet network, all nodes on a segment see all the packets

transmitted by all the other nodes on that segment. Performance can be adversely affected

under heavy traffic loads, due to collisions and the resulting retransmissions. A router is

used to connect IP networks to minimize the amount of traffic each segment must

receive.

2.3.1 Subnet Masking

Applying a subnet mask to an IP address allows you to identify the network and

node parts of the address. The network bits are represented by the 1 s in the mask, and the

node bits are represented by the Os. Performing a bit-wise logical AND operation

between the IP address and the subnet mask results in the Network Address or Number.

Default subnet masks:

14

• Class A - 255.0.0.0 - 1 1111 111.00000000.00000000.00000000

• Class B - 255.255.0.0 - 1 1111111.1 11 11111.00000000.00000000

• Class C- 255.255.255.0 - 11 1 1 1 1 1 1.1 l 1 1 l 11 1.111 1 1 1 1 1.00000000

2.3.2 Private Subnets

There are three IP network addresses reserved for private networks. The addresses

are 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16. They can be used by anyone setting up

internal IP networks, such as a lab or home LAN behind a NAT or proxy server or a

router. It is always safe to use these because routers on the Internet will never forward

packets coming from these addresses.

2.4 QoS in Internet
The growth of Internet as a universal network raises several issues for both

enterprises IT departments and ISPs, not the least of which is how to guarantee that

applications will receive the service levels they require to perform adequately across the

network. For example, network managers might need a way to define a low level of

latency and packet loss to ensure that a large file or a business-critical traffic flow gets to

its destination on time and without delay. Or, they may need to ensure that a real-time

session such as voice or video over IP doesn't look choppy or out of sequence.

The problem with Internet is, IP that is used for transferring packet across network, is a

connectionless technology and does not guarantee bandwidth. Specifically, the protocol

will not, in itself, differentiate network traffic based on the type of flow to ensure that the

proper amount of bandwidth and prioritization level are defined for a particular type of

application.

Because current version IP i.e. IP-v4 does not inherently support the preferential

treatment of data traffic, it's up to network managers and service providers to make their

network components aware of applications and their various performance requirements.

Quality of Service (QoS) generally encompasses bandwidth allocation, prioritization, and

control over network latency for network applications. There are several ways to ensure

QoS, the easiest one is simply to throw bandwidth at the problem until service quality

15

becomes acceptable. This approach might involve upgrading the backbone to a high-

speed technology such as Gigabit Ethernet. If you have fairly light traffic in general,

more bandwidth may be all you need to ensure that applications receive the high priority

and low latency they require.

However, this simplistic strategy collapses if a network is even moderately busy. In a

complex environment - one that has a lot of data packets moving in many paths

throughout the network, or that has a mixture of data and real-time applications - you

could run into bottlenecks and congestion.

Also, simply adding bandwidth doesn't address the need to distinguish high-priority

traffic flows from lower-priority ones. In other words, all traffic is treated the same. In

the network realm, such egalitarianism is not good, because network traffic is, by its

nature, unpredictable. Further bandwidth is always costly, as demands for bandwidth are

increasing day by day.

A fairly new idea in the QoS realm is, to make the network itself more intelligent by

incorporating something called policy-based management. With this method, network

managers could define policies that spelled out what levels of service certain types of

traffic requires that is the reason why I have implemented class based queuing in proxy

server to have a proper bandwidth management.

2.5 Proxy Servers
A Proxy is someone who does something on behalf of another. For example, if

you cannot be present at an electoral vote, you can often nominate another person to

register your vote for you. This is a "real world" example of using a proxy.

Simply put, then, a proxy server is a computer that sits between your network and the

Internet, and deals with any requests for data from the Internet that users on your network

may make. This means that if you are sitting at a networked computer that is connected to

the Internet via a proxy server, then when you start your web browser and point it at

www.yahoo.com then your browser sends the request to the proxy server, the proxy

server retrieves the web page on your behalf, and then sends it to your computer

16

L. 4N

Figure 2.3: Proxy server in network

This is a good thing for a couple of reasons. Firstly, it enables an organization to have

just one Internet connection, and secondly it makes it easier to manage how this

connection is used.

2.5.1 Benefits of a Proxy Server

If you connect to the Internet, there are a number of reasons you may want to use

a proxy server.

Security: If you configure a proxy server correctly you reduce the exposure of your

internal network to hackers without reducing your users access to the Internet.

Cost: The cost of having one big connection to the Internet via a proxy server is smaller

than having a modem on each desk and letting each user dial out as they please.

Administration: Are you worried about how your company uses the Internet? Need to

block certain sites? A proxy server allows you to monitor what sites people visit and how

much time they spend doing it, and while this is a thorny issue for some, it give you an

option to block sites you consider unsuitable.

• Caching: Some proxy servers offer the ability to "store" web pages as they are

accessed for later re-use. This means that your users see a boost in their web

browser performance.

17

• NAT: Ability to use a small amount of public IP addresses to make your network

visible to the outside world, regardless of the amount of workstations using

private IP addresses on your LAN via Network Address Translation (NAT)

2.5.2 Problems with Proxy Servers

• Training: Requires some knowledge to set up and maintain in peak condition.

While it is true that just about anyone can set up a proxy server, some knowledge

is required to get the best out of the server.

• Single point of failure: Running a proxy server gives your Internet usage a single

point of failure, if the proxy server fails all clients attached to it cannot use the

Internet until it is fixed.

• Planning: It can be difficult for someone inexperienced with proxy servers to

estimate specifications for a proxy server. Depending on what proxy server you

use, and what roles you have it perform, a proxy can be network, memory, disk

and processor intensive, in any combination of the above.

• Security: You need to know how to configure the operating system the proxy runs

on securely; in effect, by placing all your clients behind a proxy you are inviting

the outside world to concentrate any attacks on your network on your proxy

server.

• Remote users: Those who use laptops and work from home or hotel rooms, may

have trouble using the Internet via an dial up ISP because all their software is

configured to use your proxy server. Allowing these users to work with your

proxy server and dial into an ISP while on the road requires a bit of planning

2.5.3 Functions of Proxy Server

Caching

Caching attempts to increase performance for your users, and reduce the amount of traffic

flooding your Internet connection. A Cache stores web page components locally on the

proxy server, and when a user requests a page that is stored in the cache it can return the

page to them from the cached copy rather than requesting it from the Internet server.

There are two types of caching you might see employed. If both are available, you should

use a combination of each of them in order to provide the best performance.

Firstly, we have passive caching, which all proxy servers that support caching will

support. This means that whenever your proxy server gets a user request a web page for

the first time the page components will be copied into cache ready in case someone asks

for that page again. This is most efficient when several people from your network visit

the same page and works quite well in education where a lecturer might ask everyone in a

class to visit a list of web sites as research.

Secondly, you may see some proxy servers that support active (or pre-emptive) caching.

Active caching allows the administrator to tell the proxy server to copy down certain

popular web pages into the cache at regular intervals, so that when the first user goes to

access the page it is already in the cache. You would probably use this to pre-load

popular web sites and search engines that your users commonly use as `portals' to the

web.

IP Packet Filtering

In order to provide security a proxy server can allow or disable very specific types of

network traffic. This is an important component of any system that connects an

organization's network to the Internet. Packet filtering consists of defining a set of filters

detailing exactly what types of traffic an interface allows to pass through it. You can set

different filters for incoming and outgoing traffic of the same type. It is also possible to

filter packets based on the Internet address they are coming from, for example, blocking

web sites you consider unsuitable for your organization.

Logging

All proxy servers should allow at least a rudimentary form of logging. All use of a proxy

server can be written to a log for later review, allowing to you see how your computer

users are using your Internet connection, time spent using the connection, what sites are

visited etc. Some proxy servers also collect log information about external connections,

allowing you to log any attacks on your proxy server from the Internet. Some of the

better proxy servers allow you to record this data in several ways. For example, some use

19

a database to enable you to analyze trends and produce reports on usage quite easily.

Sounds good but it can be a bear to wade through the data logging produces. Still it's nice

to know the information is there if you want it.

Network Address Translator (NAT)

Most proxy servers support some kind of NAT function, supporting at least in part the

RFC 1631 definition of a NAT router. NAT allows you to use any addressing system you

like internally and have your clients communication with external hosts pass through a

NAT enabled router and appear to of come from the legitimate IP address you have

assigned to the router or proxy server performing NAT. When the external host replies, it

sends it's reply to the one legitimate IP address it knows, the address of your NAT

enabled proxy server, which then forwards the reply back to your internal client.

NAT has two primary functions from our point of view here. Firstly, it reduces the

amount of public Internet address blocks an organization needs to connect everyone to

the Internet. Instead of one address for each client on your network, you only need one

for each proxy server that stands between your network and the Internet. As public

addresses are in short supply, this reduces the amount of address blocks you need to

purchase.

Secondly, NAT can increase security. If you are hiding behind a proxy server using NAT

then no one can see your computer's IP address on the Internet. If no one can see you

(and if you use private IP address ranges, reach you) via the proxy server then they can't

"hack" your network. Before allowing an external source to send information back to a

client on your internal network, NAT assesses whether an address/port mapping, either

static or dynamic, exists for the packet. If a mapping does not exist for the packet, the

NAT silently discards it.

This behavior protects the internal network from malicious users on the Internet. The

only way that Internet traffic is forwarded to the private network is either in response to

traffic initiated by a private network user that created a dynamic mapping or because a

static mapping exists so that Internet users can access specific resources on the private

network. (For example, with a web or email server.)

Of course, this does mean that you have to take a lot of care securing your proxy servers

and other external servers such as web and email, but it is easier to secure 10 controlled

servers than 10,000 uncontrolled desktop computers.

Socks Proxy

Many good proxy servers support a form of socks proxy. This allows applications that

run on clients behind the proxy server to talk to hosts on the Internet as if they were

directly connected to the Internet, without a proxy server in-between them.

22

Chapter 3
ANALYSIS AND DESIGN

In many organizations, the unavailability of sufficient bandwidth results in very

slow access to Internet This situation is further exacerbated by a small number of users

who use a disproportionate share of the available bandwidth for file download etc.,

starving other users for bandwidth. Therefore, to ensure reasonable and fail- levels of

access to all users, I decided to implement Class Based Queuing of out going Internet

traffic, preventing high bandwidth consuming applications from utilizing a

disproportionate proportion of the available resources.

3.1 Class Based Queuing
Class Based Queuing (CBQ) is a traffic management algorithm developed by the

Network Research Group at Lawrence Berkeley National Laboratory as an alternative to

traditional router-based technology [3]. Now in the public domain as an open technology,

CBQ is deployed by companies at the boundary of their WANs.

Network manager can use CBQ to easily classify traffic to meet business priorities and to

ensure each traffic class has the appropriate Quality of Service (QoS). CBQ integrate

easily with companies existing network policies to protect its network and provide IT

manager with more control over the network, thus reducing bandwidth cost.

CBQ divides user traffic into a hierarchy of classes based on any combination of IP

addresses, protocols and application types [5]. A company's accounting department, for

example, may not need the same Internet access privileges as the engineering department.

Because every company is organized differently and has different policies and business

requirements, it is vital for traffic management technology to provide flexibility and

granularity in classifying traffic flows.

Priority level and borrowing privilege are two key attributes of Class Based Queuing.

Priority levels allow higher priority queues to be serviced first with in the limits of their

bandwidth allocation so that the delay for more sensitive real-time traffic classes is

reduced.

23

Borrowing is an explicit class-based queuing mechanism for distribution of excess

bandwidth. A class with borrowing privilege may initiate a borrowing request when it

needs more bandwidth.

If another class is not using it's full bandwidth, synchronization features indicate that

bandwidth is available. Borrowing bandwidth is granted to higher-priority classes before

lower-priority classes [4].

Queue 1 = 40

Queue 2 = 30 %

Scheduler 	 Port

Queue 3 = 20 %

Queue 4 = 10%

Figure 3.1: Internet traffic classified into different classes with each allocated a

portion of available bandwidth

By providing network manager with better control over user traffic, CBQ lets companies

meet the need of response-time-sensitivity applications, supports service-level agreement

and keeps inappropriate traffic off the network.

Because it operates at the IP network layer, CBQ provides the same benefits across any

Layer 2 technology and is equally effective with any IP protocol, such as TCP and User

Data-grain Protocol (UDP). It also operates with any client or server TCP/IP stack

variation, since it takes advantage of standard TCP/IP flows control mechanisms to

control end-to-end traffic [5].

I.n our case, according to the CBQ algorithm, I classified Internet traffic in to six classes,

and each class is allocated a portion of bandwidth, thus restricting the request rate of high

I

bandwidth consuming traffic such as multimedia downloads and providing a fair access

to applications like mail, news which consumes smaller amount of bandwidth. Thus

utilizing Internet bandwidth in an intelligent way.

3.2 Proxy Servers
In most of the organizations, a proxy server is used to give access to network

services indirectly. Proxy server acts as an intermediary between a workstation users and

the Internet thus all accesses to Internet are handled through the proxy server. There are

three main reasons for using proxy servers; to enhance security, to conserver IP address

and to reduce network bandwidth.

• The rationale for enhancing security through use of a proxy server is that only the

computer running the proxy server will access the Internet directly. Therefore it is

only that machine that is vulnerable to attacks from the Internet. And since

securing one machine is much simpler than securing all machines, security is

enhanced.

• Since IP-v6 is not yet implemented and still today it is a theoretical concept thus

IP are limited. Thus by the use of a proxy server we can save much precious IP

addressees as it is only proxy server that has routable IP address.

• Network bandwidth can be reduced by the caching requests. If several users

request the same page it will only need to be fetched once over the network.

Unfortunately not many pages are cacheable, since there are so much dynamic

pages out there. But it is usually possible to cache images

A major side-effect of this is that all web accesses have to go through the proxy server

and this provides a focal point for monitoring and controlling how users utilize the

available resources [1].

3.2.1 Squid Cache Server
Squid Internet Object Cache is one of the more popular proxy servers on the Internet for a

simple reason -- it's a free, open source code and easy-to-configure tool that cuts down on

25

•"i: ROOR$

Web traffic for large Internet sites. Thus I decided to use squid proxy server to implement

class based queuing and provide a fair Internet access to all of the users.

3.3 Delay Pool in Squid
The bandwidth management component in Squid is called "Delay Pools", written

by David Luyer [2]. Using this delay pools, it is possible to limit Internet traffic in a

reasonable way, depending on so-called 'magic words', existing in any given URL for

example, a magic word could be '.mp3', '.exe' or '.avi', etc. Any distinct part of a URL

(such as .avi) can be defined as magic word.

We can tell squid to download certain kinds of files (like sound files) at a specified speed

(in our example, it will be about 5 Kbytes/s). If our LAN users download files at the same

time, they will be downloaded at about 5 Kbytes/s altogether, leaving remaining

bandwidth for web pages, e-mail, news, etc. Thus provides a fair access to all the users by

preventing few users from using a disproportionate portion of available resources

3.3.1 Working of delay pool

Delay pool uses Token Bucket algorithm [2] for bandwidth management. Using

this program, we can manipulate the bandwidth available to each class of application by

changing two parameters:

• The max value and

• The restore value

The max value identifies the maximum size of the token bucket and the restore value is

the rate at which the tokens are issued into the bucket. When this feature is used, the

time-averaged bandwidth available to each class is limited by the rate at which tokens are

issued to the bucket (the restore rate). However, if the class has not requested any new

data for some time and has accumulated tokens in the bucket, when a new request is

submitted the data is delivered in a burst, up to the number of tokens in the bucket. In this

manner, we can limit bandwidth-consuming applications from filling all the available

bandwidth and provide fair access to all the users [6].

26

3.3.2 Drawbacks of available delay pool

When we deployed delay pools in the NIC network, we found that though it

functioned properly and enabled fair access to all class of applications, it had a major

weakness. The delay pools parameters are statically defined in the Squid configuration

file and cannot be changed dynamically to suit the changing conditions in the network.

Bandwidth usage patterns change considerably at different times of the day, and restore

value for a class applications that gives fair access to all classes during peak hours is

unduly restrictive during slack times, confining an class to a small bandwidth and

generally leaving a large proportion of the available bandwidth unused. Though it is

possible to vary the delay pool configuration by using time based controls this does not

respond to the actual demand at a given time and can be very cumbersome to implement

in even a moderately complex environment.

Since the Squid source code was available for modification, the most attractive solution

to this problem was to modify the delay-pools code to dynamically reconfigure the

parameters to share the available bandwidth fairly among the currently being used

applications, based on the principles of link-sharing described by Floyd and Jacobson [7].

3.4 Design
As we have decided to modify the freely available squid source code, we tried the

various implementations, and here we present them:

3.4.1 Earlier experiments

Before arriving at the present implementation, we tested several different

modifications and changes to the Squid code. Initially, we keep track each application's

usage independently and dynamically allocate each application a separate bandwidth

value up to a certain fixed ceiling. However, in this case the fairness criteria were

invalidated as heavy used classes were quickly assigned a Iarge amount of bandwidth, to

determinate lightly used class.

Later, we tried to keep track of the number of users and allocate bandwidth to each

application based on the number of active users. However, this also proved to be

inefficient, as it leads to a large portion of available bandwidth unused further not all

27

users connected to a particular class would be browsing the Internet at the same time.

Some would be reading data already rendered and others would be waiting for requests

delayed due to congestion in other parts of the Internet.

3.4.2 Current modification

The current algorithm that we have implemented [Figure — 3.2] trades

sophistication for simplicity and speed of execution. Speed of execution is a very

important factor as we dynamically evaluate and adjust the values once per second and an

inefficient algorithm would pose a heavy workload for the system running the program.

This algorithm comprises of two stages:

1. Allocation of bandwidth to class per delay pool

2. Transfer of unused bandwidth from one pool to another.

i. Allocation of bandwidth to a class

The algorithm uses the aggregate number of tokens in the delay pool as the

criteria for whether the class's link bandwidth is fully utilized or not. If the number of

tokens exceeds the cutoff value, indicating that there is some capacity being

underutilized, each individual class's bandwidth allocation is increased by a fraction

[presently 10% (max) of the aggregate delay pool size]. If the number of tokens is less

than the cutoff value, indicating that the requests are backing up and link bandwidth is

fully utilized, individual class's bandwidth allocation is reduced by a fraction. This is

shown in the flow chart below:

Usually the link bandwidth is used both for the restore rate (at which tokens are issued to •

the pool) and the maximum size of the pool. The aim of the algorithm is to keep the

number of tokens in the pool of a class as close to zero as possible. Practically, we have

set a cutoff value that is 16% of the maximum bucket size and when the available tokens

drop below this value the user's bandwidth is reduced. A value that is larger than zero is

used, as it is difficult to precisely control the number of tokens in the pool. Depending

upon the number of tokens in the aggregate delay pool, the bandwidth an individual user

receives can range between a small minimum value e.g. 100 Bytes per second, and

/:

	

No 	Tokens available
	Yes

in aggregate pool?

	

User data rate
	Yes 	Yes 	User data rate

	

at rain value?
	

at max value?

No
	 No

	

User data rate 	User data rate 	User data rate
is decreased 	is unchanged 	is increased

Figure 3.2: Dynamic delay pools algorithm

usually the link bandwidth is used both for the restore rate (at which tokens are issued to

the pool) and the maximum size of the pool. The aim of the algorithm is to keep the

number of tokens in the pool of a class as close to zero as possible. Practically, we have

set a cutoff value that is 16% of the maximum bucket size and when the available tokens

drop below this value the user's bandwidth is reduced. A value that is larger than zero is

used, as it is difficult to precisely control the number of tokens in the pool. Depending

upon the number of tokens in the aggregate delay pool, the bandwidth an individual user

receives can range between a small minimum value e.g. 100 Bytes per second, and the

total available bandwidth of the link. The small minimum value is set to ensure that even

at peak load times users get some access and practically this limit is not usually reached.

Setting the maximum value to the rate at which tokens are issued to the aggregate pool

ensures that even if there is only one application at that instant, users of that application

can use all available resources.

ii. Transferring bandwidth among delay pools
However, we found that when several delay pools operate on the same server,

some pools do not use all their allocated bandwidth while others are saturated.

29

The Squid code was therefore further modified to allow bandwidth assigned to a

particular delay pool, which is not being utilized, to be transferred to another delay pool

[Fig. 3.3]. This modification checks the level of tokens in each delay pool after adding

the token allocation available to that particular pool. If the level of tokens is greater than

the maximum allowable value, then the excess tokens are transferred to a buffer and if a

delay pool whose level of tokens is less than maximum permissible value is encountered,

the tokens in the buffer are used to "top up" the pool up to it's max value [or until the

tokens in the buffer are exhausted]. Accordingly, excess tokens that would be unutilized

by lightly loaded delay pools are distributed among the pools that are using their token

allocation fully. The maximum size of the buffer is set to a few seconds worth of tokens.

Add tokens to
delay pool

Tokens in pool 	No
Yes exceed max value?

Add excess token,
to buffer

Yes j Excess tokens
available in buffer?

N'Jo. of tjjkeris more
than buffer site

+t tokens, frorii but
=et noo. of tokens
	 and 'tcp up"' pool

to buffer size

Figure 3.3: Token distribution [among pool] algorithm

30

Chapter 4
IMPLEMENTATION ASPECTS

For implementing Class Based Queuing in proxy server first of all we have to classify the

Internet traffic in to various classes and then assign a portion of bandwidth to each class

so as to provide a fair access to all the users. We also have to take in to account the

varying usage pattern and should vary bandwidth allocated accordingly so that there is a

optimum bandwidth utilization, and each user is provided a fairaccess.

4.1 Classification of traffic in to classes
For implementing Class Based Queuing in squid proxy server I have classified the

total traffic in to six classes based on the format of the file being transferred they are:

• Plain text files: they contains files with extension .html, .htm and .txt.

• Formatted document file: they contain files with extension .doc, .pdf and ps.

• Compressed and encoded files: they contain files with extension .arc, .aij, .bin,

.exe, .gz/.gzip, .hqz, .sit, .sea, .tar/.tar.gz/.tar.Z, .uu, .Z, .zip.

• Graphics files: they contain files with extension .gif, tiff, .jpg/.jpeg/.jfif.

• Sound files: they contain files with extension .au .aiff .mp3 .ra .way.

• Video files: they contain files with extension .avi, .mov/.movie, .mpg/.rnpeg, ..qt,

ram.

The next step in classifying the traffic in to different classes is to identify the class to

which a given request, from the client belongs to then putting that particular request in

it's appropriate class. For solution of the above problem I have taken help of access

control scheme present in the squid proxy server that, when ever a request comes from

client compares its URL with set of rules as defined by the network administrator and

then take appropriate action according to the rule set. For classifying the traffic in to six

classes I have defined the following rules:

31

acl plain url_regex —i .html . htm .txt

acl formatted url_regex —i .doc .pdf .ps

acl compressed url_regex —i .arc .arj .bin .gz .gzip .hqz .hqx .sit .tar .tar.gz .tar.Z .tarz .uu

.Z .zip

acl graphics url_regex —i .gif .tiff .jpg .jpeg .jfif

acl sound url_regex —i .au .aiff .mp3 .ra .wav

ad l video url_regex —i .avi .mov .movie .mpeg .qt .ram.

Thus I have put all the traffic that represents html and text file type in to one class and

represent it by a tag name plain. Here access element "url_regex" instruct squid proxy to

have URL regular pattern matching while key word "—i" makes the pattern checking case

insensitive.

By the use this tag name we can control access of the entire traffic that belongs to this

class for example if the next rule after putting desired traffic in a class is:

http_access deny plain

Then all the access to this particular file type will be denied by the proxy server and

client will receive access deny message. Similarly we can put access to the Internet traffic

of a particular class in delay pool, by specifying:

delay_access I allow plain

Here we instruct squid to have delayed access to all the traffic that belong to the class

plain and follow the rules as defined for the class number 1. Thus by using this method

we can classify Internet traffic in to six desired classes based on some "magic word"

present in their URL and then have access to such type of traffic through their respective

delay pools.

32

However after allowing delayed access to a particular class of internet traffic we should

also provide http access to that class because it is the primary access controlling

mechanism that prevent malicious and unwanted users from accessing the proxy server.

For specifying the delay classes we have to follow certain rules that are:

Firstly we have to specify how many delay pools we are using as in our case we are using

six delay pool so we have specified

delay_pools 6

Secondly we have to specify to which delay class a particular pools belongs as in my case

I am concerned with managing over all traffic and not the traffic of an individual

connected to the proxy server so I am using the class one delay pool for all the six traffic

categories. Thus I specified:

delay_class 11

delay_class 2 1

delay_class 3 1

delay_class 4 1

delay_class 5 1

delay_class 6 1

These rules specify that delay pool number one is of class I and so on.

Third step in defining rules for delay classes is to specify the restore rate of the tokens in

the bucket and the size of the bucket that is used to collect the tokens. Thus I have

specified:

dalay_parameters I restore 1 /(total bandwidth)

delay_parameters 2 restore2/(total bandwidth)

delay_parameters 3 restore3/(total bandwidth)

9191

delay_parameters 4 restore4/(total bandwidth)

dalay_parameters 5 restore5/(total bandwidth)

delay_parameters 6 restore6/(total bandwidth)

Here key word I after the rule tag delay_parameter specifies that the particular rule sets

are for delay pool number: 1. restorel, the restore rate of the tokens in the bucket is

supplied by the network administrator at the time when he opt for traffic shaping in the

interface provided by me to the software. As time average bandwidth for a class is the

rate at which tokens are added to the bucket, thus bandwidth of a class is limited to the

restore value, restorel. I have chosen the total bandwidth available, as size of the bucket

for each class. Because when there is any request traffic in a given class after a long ideal

period, data could be delivered in a bust up to the number of tokens present in the bucket,

as tokens are accumulating in the bucket.

Since the existing implementation of the delay pool did not provide the satisfactory

performance as bandwidth allocation are static and do not adopt to the varying usage

pattern. Therefore I decided to modify the available squid source code for improving its

performance.

4.2 Modification of source code
In the implementation of proposed algorithms for making delay pool dynamic involves

the modification of three files present in the, squid proxy/cache server source code, they

are:

• structs.h

• cache cf.c

• delay_pools.c

While the first two files undergo minor modification, but the last one that is major file for

the delay pool present in the squid proxy undergoes a major modifications. However

modification should be such that it should not affect the normal working of the delay pool

34

and should be bug free because squid source files are interrelated and we could not

compile a file separately to fix out the bugs.

4.2.1. Modification of the file structs.h

This file contains data structure, which contains the values supplied by the user

for allocated bandwidth (restore rate of the tokens) and maximum size of the bucket. As

we are varying the available bandwidth for a class according to the usage pattern

therefore we should have a variable which stores the minimum bandwidth allocated to a

class. As bandwidth is changing according to varying usage pattern, and if later, we

decide to reduce allocated bandwidth after increasing it we should know what is the

minimum value to which we can reduce bandwidth. Therefore I have introduced a new

variable named:

int restore_bps_orig;

It is of type integer and added in the structure "_delaySpec" which contains specification

about the delay pools.

4.2.2 Modification of the file cache cf.c

This file reads the values supplied by the network administrator from squid's

configuration file "squid.conf" and assign it to appropriate variable. Here in this file I

have assigned the newly introduced variable "restore_bps_orig" with the value supplied

by the user for restore rate of tokens in the bucket.

I have assigned the value of the restore rate of the tokens in the bucket to two variables,

namely "restore_bps" and "restore_bps_orig". As value of first variable can vary

according to varying usage pattern, and we could encounter a situation in which after

increasing bandwidth, we have to reduce it then in that situation we should know what is

the minimum value to which reduction is possible.

This file also acts as a parser, that is it checks whether the value supplied by the network

administrator are correct and according to the format as described in the configuration

35

file. If there is any discrepancy error is generated at the time of starting the proxy server.

To have a error free environment we have provide an interface to the software.

4.2.3 Modification of the file delay_pools.c

This file undergoes a large modification, as this is the main file from where the

operation of the delay pool is controlled. The main operations that are carried out in. this

file are:

When squid proxy is started it first of all identifies how many and of what class delay

pools are being used so allocate appropriate amount of memory for the related variables

needed to control the operation of delay pool. In next step it initializes the values of the

variables. In our case it allocate memory for six -class one, structures and initializes the

variable that contain size of the bucket, restore rate, original restore rate for each delay

pool number.

Whenever there is a request from the client it first of identify the client from it's IP

address and then tries to identify to which delay class a particular request belongs.' It than

requests delay bytes form that particular delay pool, however all the six delay pools are

updated every second to increment the restore bytes to the delay bucket, if number of

bytes increases the total size of the bucket the excess bytes are distracted.

Since the current implementation of delay pools does not take in to account the current

usage pattern therefore we have to modify function "delayPoolsUpdate", which updated

current aggregate of bucket holding the tokens. And introduced a new function

"delayPoolsRestoreUpdate" for updating the restore values of the tokens in the bucket,

for each pool.

In* the function "delayPoolsUpdateO"

I have introduced a new variable "excess_bytes" which takes in to account

excess bytes, transfers unused bytes from one pool to another. If for a particular pool the

number of bytes after adding the current aggregate bytes to increment from restore bytes

increases the maximum limit that a bucket could hold, then excess bytes are added to

variable "excess_bytes". On the other hand if number of bytes in a bucket are less than

36

the maximum limit then they are supplied from excess_bytes this helps in transferring

bandwidth among delay pools.

However I have put a limit to the tokens that excess_bytes could hold to avoid

excess_bytes from running out of memory.

I have put a limit excess_bytes to II times to that of total available bandwidth.

In function "del ayPoolRestoreUpdate()"

I have added this new function to vary restore bytes according to the usage

pattern. This function is executed whenever times limit from last restore value update

increases one second.

If for a particular pool, the number of tokens in the aggregate pool reaches below toggle

value that is set to one sixth of the total aggregate pool capacity, indicating that requests

are building up and link bandwidth is fully utilized, bandwidth allocated to a class is

reduced by 5%. This is achieved by multiplying restore_bps by 0.95.

However a limit is put on restore_bps so that allocated bandwidth does not reduce below

minimum allocated value as supplied by the network administrator.

On the other hand if current aggregate increases above toggle value bandwidth allocated

to a class is increased in proportion to the current aggregate on the bucket of the

particular delay pool, so that at a given time restore rate does not increase by more than

10%. The formula used for incrementing value is:

temp_restore_val = restore_bps * (l .0 + (current aggregate/max bucket capacity));

restore_bps = 0.9 * restore_bps + 0.1 * temp_restore_val;

However I have also put a limit in incrementing restore value so that it may not increase

above the total bandwidth available for the link.

37

Thus new control flow diagram will look like:

Allocate memory for
appropriate delay pools.

Initialize value of variables
max_bandwidth
restore_bps
restore_bps_orig

No 	 Is
	 Yes

Request
for data

No

Identify client and the class
to which request belongs.

Is Token 	 YP~
present in

bucket

Reduce No. of delay bytes
from delay pool bucket

Update current aggregate of
bucket taking in to account
excess tokens

Update restore value of
tokens in bucket

Is new
Value less

than toggle

Yes

No
Reduce value by 5% keeping in
mind that it does not reduce
below the minimum limit set.

Wait till appropriate no. of
tokens are there Increase the restore value by fraction

proportional to number of tokens in
aggregate pool keeping in mind that it
does not increase above total bandwidth

Chapter 4
RESULTS AND DISCUSSION

Here I present the output from the log file generated by the delay pool.

1. When delay pools are created

delayInitDelayPool : Pool No. 1, Aggregate = 1000
delayInitDelayPool : Pool No. 2, Aggregate = 1000
delayInitDelayPooI : Pool No. 3, Aggregate = 1000
delayInitDelayPool : Pool No. 4, Aggregate = 1000
delayInitDelayPool : Pool No. 5, Aggregate = 1000
delaylnitDelayPool : Pool No. 6, Aggregate = 1000

Here six delay pools are initialized with there corresponding initial bucket aggregate.

2. When delay pools are updated

Delay Pool 1 Update: Excess_bytes =0, Aggregate=2000, Max_bytes= 10000, incr= l
Delay Pool 2 Update: Excess_bytes =0, Aggregate=2000, Max_bytes= 10000, incr = l
Delay Pool 3 Update: Excess_bytes =0, Aggregate=2000, Max_bytes= 10000, incr=l
Delay Pool 4 Update: Excess_bytes =0, Aggregate=2000, Max_bytes= 10000, incr=1
Delay Pool 5 Update: Excess_bytes =0, Aggregate=2000, Max_bytes =10000, incr=l
Delay Pool 6 Update: Excess_bytes =0, Aggregate=2000, Max_bytes= 10000, incr= l

Restore Calc: Class No.=1 Max_Bytes=10000, Current Val=2000, Old Restore=1000,
New Restore=l 100, Orig Restore= 1000

Restore Calc: Class No.=2 Max_Bytes=10000, Current Val=2000, Old Restore=1000,
New Restore=1100, Orig Restore= 1000

Restore Calc: Class No.=3 Max_Bytes=10000, Current Val=2000, Old Restore= 1000,
New Restore= 1100, Orig Restore= 1000

Restore Calc: Class No.=4 Max_Bytes=10000, Current Val=2000, Old Restore=1000.
New Restore=1100, Orig Restore=1000

Restore Calc: Class No.=5 Max_Bytes=10000, Current Val=2000, Old Restore=1000,
New Restore= 1100, Orig Restore= 1000

Restore Calc: Class No.=6 Max_Bytes=10000, Current Va1=2000, Old Restore= 1000,
New Restore=1100, Orig Restore= 1000

Here Delay Pool Update represents the updating of current aggregate of a pool:

39

Max_Bytes are the maximum number of bytes a pool could hold and incr is the time

duration in seconds after which delay pool is updated. Excess_Bytes are used for

transferring bandwidth among pools.

Restore Cale represents updating of restore rate at which tokens are added to delay pool.

Current Val is current aggregate of delay pool bucket, Old Restore is restore rate before

delay pool update and New Restore is after update (which has increased by 10010). Orig

Restore is, minimum value of bandwidth supplied by network administrator for a given

class.

3. When there is data request

DelayBytesln: Class Num 1, Old Aggregate=2000, Qty In=879, New Aggregate=l 121
DelayBytesIn: Class Num 1, Old Aggregate=1121, Qty In=879, New Aggregate=242

Delay Pool I Update: Excess_bytes =0, Aggregate=1 342, Max_bytes= 10000, incr=l
Delay Pool 2 Update: Excess_bytes =0, Aggregate=3 100, Max_bytes= l 10000, incr =l
Delay Pool 3 Update: Excess_bytes =0, Aggregate=3 100, Max_bytes= 10000, incr=1
Delay Pool 4 Update: Excess_bytes =0, Aggregate=3100, Max_bytes= 10000, incr=1
Delay Pool 5 Update: Excess_bytes =0, Aggregate=3 100, Max_bytes= 10000, incr=l
Delay Pool 6 Update: Excess_bytes =0, Aggregate=3 100, Max_bytes= 10000, incr=l

Restore Cale: Class No.=1 Max_Bytes=10000, Current Val=1342, Old Restore=l 100,
New Restore=1100, Orig Restore=1000

Restore Cale: Class No.=2 Max_Bytes=10000, Current Val=3 100, Old Restore=l 100,
New Restore= l 100, Orig Restore= 1000

Restore Cale: Class No.=3 Max_Bytes=10000, Current Val=3 100, Old Restore=l 100,
New Restore=1100, Orig Restore= 1000

Restore Cale: Class No.=4 Max_Bytes=10000, Current Val=3100, Old Restore=l 100,
New Restore=1100, Orig Restore=1000

Restore Cale: Class No.=5 Max_Bytes=10000, Current Val=3 100, Old Restore=l 100,
New Restore=1100, Orig Restore= 1000

Restore Cale: Class No.=6 Max_Bytes=10000, Current Val=3 100, Old Restore= 1100,
New Restore=1100, Orig Restore=1000

Here we observe that there is no increase in restore rate of class number one because

bandwidth allocated to class is fully utilized. If however there is no utilization of

bandwidth allocated to other classes' bandwidth allocated to class one will increase by

the use of excess bytes but it will take a little bit of time.

DelayBytesln: Class Num 1, Old Aggregate=100000, Qty In=879, New Aggregate=9121
DelayBytesln: Class Num 1, Old Aggregate=9121, Qty In=879, New Aggregate=8242

Delay Pool I Update: Excess_bytes= 10000, Aggregate=10000, Max-bytes= 10000,
incr=1
Delay Pool 2 Update: Excess_bytes= 18242, Aggregate= 10000, Max_bytes= 10000,
incr=l
Delay Pool 3 Update: Excess_bytes= 28242, Aggregate= 10000, Max_bytes= 10000,
incr=l
Delay Pool 4 Update: Excess_bytes= 38242, Aggregate=10000, Max_bytes= 10000,
incr =l
Delay Pool 5 Update: Excess_bytes= 48242, Aggregate=] 0000, Max_bytes= 10000,
incr=1
Delay Pool 6 Update: Excess_bytes= 58242, Aggregate= 10000, Max_bytes= 10000,
incr=l

Restore Calc: Class No.=1 Max_Bytes=10000, Current Val=10000, Old Restore=10000,
New Restore= 10000, Orig Restore= 1000

Restore Calc: Class No.=2 Max_Bytes=10000, Current Val=10000, Old Restore=10000,
New Restore= 10000, Orig Restore= 1000

Restore Calc: Class No.=3 Max_Bytes=10000, Current Val=10000, Old Restore= 10000,
New Restore= 10000, Orig Restore= 1000

Restore Calc: Class No.=4 Max_Bytes=10000, Current Val=10000, Old Restore=] 0000,
New Restore= 10000, Orig Restore= 1000

Restore Calc: Class No.=5 Max_Bytes=10000, Current Val=10000, Old Restore= 10000,
New Restore= 10000, Orig Restore= 1000

Restore Calc: Class No.=6 Max_Bytes=10000, Current Val=10000, Old Restore=10000,
New Restore= 10000, Orig Restore= 1000

Here we observe that bandwidth is transferred by excess bytes and class one utilizes full

bandwidth. We also see that restore rate does not increase above maximum bandwidth

available.

4. When access to certain site id denied

When network administrator denies access to certain web site, client will receive an error

message as shown in the snap shot taken from the window.

41

• File Edit View Favorites Tools He " Address it http:I1puacinernas.cDmI 	 AGo

	

-• 	Stop 	Refresh Home , Search Favorites History 	Mail 	Print 	Edit 	Messenger

Links C Cs: Customize Links

	

~ Hotmail ~ 	 ~_J Internet Stall] Microsoft J Windows]Free Hotmait 	Windows Media

ERROR
The requested URL could not be retrieved

While trying to retrieve the URL: hrt,) faryrci-t~~ rn s..,

The follot,\~ing error was encountered:

. Access Denied.

Access control configuration prevents your request from being allowed at this time. Please contact your
service provider if you feel this is incorrect.

Your cache administrator is orebmastei .

This Squid has been modified by Gaurav Jain as Dissertation project in National Informatics Center -
New Delhi

.........
icc~ Dons 	 .. • - i 	i 	InterneS...

Start o t 	j~ i 	' ,J JERAOR: The request. 	 12:32 PH

42

CONCLUSION

I have implemented Class Based Queuing i n proxy server for handling various

categories of Internet traffic, so as to over come slow Internet access speed.

Squid is the only cache/proxy server that has a bandwidth management feature called

"delay pool". However, the existing implementation of delay pools did not provide

satisfactory performance as bandwidth allocation are static and do not adapt to varying

usage pattern.

Our solution adjust the bandwidth allocation dynamically, thus bandwidth allocated could

vary between the total link bandwidth available and a minimum value supplied by the

network administrator. Providing optimal access to all the users.

Although the current system allows bandwidth allocated to a single server to be

distributed nearly optimally, we still face the situation of some caches on our network not

using their bandwidth allocation while others are overloaded. I propose to extend the

system to allow bandwidth to be exchanged among a set of caches. So that unused

bandwidth from lightly loaded cache could be transferred to one that is heavily loaded.

43

REFERENCES

1. Robert Moir; Proxy Servers for beginners, from
www.robertnioir.co.uk/security/fogO00000000 18. h tm l

2. Squid Documentation from
www.squid.nlanr.net

3. Ashley Stephenson; A Class by itself: Class-based queuing can provide simplified
quality-of-service guarantees for high-bandwidth networks, from
http://www.currentissues.telephonyonline.com/ar/tolecome_class_itself_classbased

4. Class-based Queuing variant Leads to Dynamic bandwidth Allocation, from
http://www.itworld.com/nl/sup_mgr/O5132002/

5. Blurnenffld Steven M.; Class-based queuing, from
http://www.broadeastengineering.com/ar/broadcasting_classbased_queuing

6. Bandwidth Limiting HOWTO, from
http://squid-docs. sourceforge. net/latest/html/

7. Sally Floyd and Vam Jacobson; Link-shearing and Resource Management Model for
Packet Network, IEEE/ACM Transaction on Networking, Vol. 3 No. 4, August 1995

8. Tanenbaum Andrew S.; Computer Networks, Third Edition, Prentice-Hall India..,oco

9. Corner Douglas E.; Internetworking with TCP/IP, Volume 1, Third Edition, Prentice-
Hall India. Zooy

10. Ashley Stephenson; A Class by itself: Class-based queuing can provide simplified
quality-of-service guarantees for high-bandwidth networks, from
http://www.currentissues.telephonyonline.com/ar/telecome_class_itself classbased

11. Schultz Briarn; Class-based queuing divvies bandwidth, from
http://www.nwfussion.com/news/tech/0612tech.html

12. Class-based Queuing variant Leads to Dynamic bandwidth Allocation, from
http://www.itworld.com/nl/sup_mgr/O5l 32002/

APPENDIX - A

APPENDIX - A

A.1 Squid Proxy/Cache Server
Squid is the result of efforts by numerous individuals from the Internet community. Many

organizations have provided support for squid's development. Squid is copyrighted by

Regents of University of California. Squid incorporates software development. This

means, program is free software so we can redistribute it and/or modify it under the terms

of the GNU General Public License as published by Free Software Foundation.

More than a mere proxy, the Squid Internet Object Cache is one of the more popular

proxy servers on the Internet for a simple reason -- it's a free and easy-to-configure tool

that cuts down on Web traffic for large Internet sites.

Squid is software that caches Internet data. It does this by accepting requests for objects

that people want to download and handling their requests in their place. In other words, if

a person wants to download a web page, they ask squid to get the page for them. Squid

then connects to the remote server (for example http://www.squid-cache'.org/) and

requests the page. It then transparently streams the data through itself to the client

machine, but at the same time keeps a copy. The next time someone wants that page;

squid simply reads it off disk, transferring the data to the client machine almost

immediately.

A.2 Concept behind Internet caching
Some questions should come to mind as to how useful caching can be, and when

objects should and should not be cached. It is totally inappropriate to cache (for example)

credit card numbers, the results of scripts executed on remote servers, sites that change

often (like www.timesofindia.com) or even sites that simply don't want to be cached.

Squid handles these circumstances elegantly (but needs the remote sites to work

according to the standards, of course). Executable cgi-bin scripts are not cached, pages

that return the correct headers are cached for limited periods of time, and you can specify

extra rules as to what, and what not, to cache, and for how long to cache it.

1

A.3 Systems supported by Squid
Squid runs on most versions of Unix and OS/2 It is known to work on:

AIX, Digital Unix, FreeBSD, HP-UX, Irix, Linux, NetBSD, Nextstep, SCO, Solaris

A.4 Hardware requirements
Caching stresses certain hardware subsystems more than other. Although the key

to good cache performance is good overall system performance, the following list is

arranged in order of decreasing importance:

Disk random seek time

• Amount of system memory

• Sustained disk throughput

• CPU power

Seek time is one of the most important considerations if your cache is going to be loaded.

The smaller these value the better: it is the average time that the disk's heads take to move

from a random track to another (in milliseconds). Having the world's fastest drive is not

useful, though, if it holds a tiny amount of data. To cache effectively you need disks that

can hold a significant amount of downloaded data, but that are fast enough to not slow

your cache to a crawl.
Squid keeps an in-memory table of objects in RAM. Because of the way that Squid

checks i f objects are i n the file s tore, fast access to the table is very important. Squid

slows down dramatically when parts of the table are in swap.

Each object stored on disk uses about 75 bytes (approx.) of RAM in the index. The

average size of an object on the Internet is about 13kb, so if you have a gigabyte of disk

space you will probably store around about 80,000 objects. At 75 bytes of RAM per

object, 80,000 objects require about six megabytes of RAM. If you have 8gigs of disk

you will need 48Mb of RAM just for the object index. It is important to note that this

excludes memory for your operating system, the Squid binary, memory for in-transit

objects and spare RAM for disk cache.

11

Squid is not generally CPU intensive. On startup Squid can use a lot of CPU while it

works out what is in the cache, and a slow CPU can slow down access to the cache for

the first few minutes upon startup, but later a Pentium 133 machine generally runs pretty

idle, while receiving 7 T CP requests a second. Also multiprocessor machine generally

doesn't increase speed dramatically as only certain portions of the Squid code are

threaded.

A.5 Supported Protocols
Squid supports the following incoming protocol request types (when the proxy requests

are sent in HTTP format)

• Hyper Text Transfer Protocol (HTTP), which is the specification that the WWW

is based on.

• File Transfer Protocol (FTP)

• Gopher — it isn't much used any more.

• Secure Socket Layer - which is used for secure online transactions.

As squid can also be part of Internet caching hierarchy i.e. you don't have to cache

Internet content, which another computer participating in hierarchy has already cached.

So beside these protocols squid also supports:

• Internet Cache Protocol (ICP). ICP is used to find out if a specific object is in

another cache's store.

• Cache Digests. This protocol is used to retrieve an index o f o bj ects in another

cache's store. When a cache receives a request for an object it does not have, it

checks this index to determine which cache does have the object..

• Simple Network Management Protocol (SNMP). Common SNMP tools can be

used to retrieve information about your cache.

A.6 Directory structure
Squid normally creates a few directories. They are normally as follows:

111

/usr/local/squid

/bin

/cache

/etc

/logs/

/src

/bin contains the squid program itself, as well as programs like ftpget, which are used by

squid to perform various functions.

The /cache/ directory is where the actual cache data is stored. It contains directories along

the lines of /00/ /01/ /02/ and /03/ which contain more d irectories, and e ventually the

actual data of the cache. Storing the data in multiple directories means that getting to files

in large caches is still fast, since your operating system can take a long time to read a

directory with 10 000 files in it.

/etc/ contains the squid.conf file, which is the only squid configuration file.

The /logs/ directory can also get large, especially if you have siblings, as they will query

you with each connection, which could double the log size. Note that there is a file called

/log/ in the cache directory, but you can't delete or remove it. It is an index to the

/usr/local/squid/cache/ directories described above.

/src/ generally contains the source to the version of squid you are running

A.7 Squid's log files
Squid (in it's default configuration) makes 4 log files.

• /usr/local/squid/logs/access. log

• /usr/local/squid/logs/cache. log

• /usr/local/squid/logs/store. log

• /usr/local/squid/cache/log

The first three of these log files can be safely be cycled. Although the file in the cache

directory i s called a 1 og, it is a ctually a n index o f e ach o bj ect a n d isk (when s quid is

started it reads this file, rather than reading each and every object in the cache), and

cannot thus be cycled, though it does get smaller if you send squid a kill command.

iv

• access.log — Contains entries that describe each time the cache has been hit or missed

when a client requests HTTP content. Along with that information is the identity of

the host making the request (IP address) and the content they are requesting. We can

use this information to find out when content is being used from cache and when the

remote server must be accessed to obtain the content. Here is what some of the access

result codes mean:

1. TCP_DENIED: Squid denied access from the request.

2. TCP_HIT: Cache contained a valid copy of object.

3. TCP_IMS_HIT: A fresh version of the requested object was still in cache when

the client asked if the content had changed.

4. TCP_IMS MISS: An If-Modified-Since request was issued by the client foe a

stale object.

5. TCP_MEM_HIT: Memory contained a valid copy of the object.

6. TCP_MISS: Cache did not contain the object.

7. TCP_NEGATIVE_HIT: The object was negatively cached, meaning that an error

was returned (such as the file not being found) when the object requested.

8. TCP REF_FAIL HIT: A stale object was returned from the cache because of a

failed request to validate the object.

9. TCP_REFRESH_HIT: A stale copy of the object was in cache, but a request to

the server return information that the object has not been modified.

10. TCP REFRESH_MISS: A stale cache object was replaced by new, updated

content.

11. TCP_SWAPFAIL: An object could not be accessed from the cache, despite the

belief that the object should have been there.

• cache.log — Contains valuable information about squid configuration when the squid

demon starts up. We can se how much memory is available (Max Mem), how much

swap space (Max Swap), the location of cache directory, the type of connection being

accepted (HTTP, ICP, and SNMP), and the port on which connections are being

v

accepted. We can also see a lot of information about the cached objects (such as how

many are loaded, expired, or canceled).

• store.log: Contains entities that show when the content is being swapped out from

memory to the cache (SWAPOUT), swapped back into the memory from the cache

(SWAPIN), or released from the cache (RELEASE). You can see where the content

come from originally and where it is being place in the cache. Time is logged in this

file in raw UNIX time (in milliseconds).

A.8 Tools in Squid
squid.conf file has number of options that can be adjusted to control the

operation of squid proxy server:

• Network options: which specifies various port numbers on which a squid server

receives and sends request.

• Options that affect the neighbor selection for caching purposes.

• Options that affect the cache size.

• Options that specifies log file pathnames and cache directories.

• Options that control the access to various users and servers.

• Different delay pool parameters.

• Certain administrative parameters

• Options for external support programs.

-AL L.IBI ~~

ALC No.........

ROOR

vi

	Title
	Abstract
	Chapter 1
	Chapter2
	Chapter 3
	Chapter 4
	Conclusion
	References
	Appendix

