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ABSTRACT

This work is an attempt to develop an efficient algorithm to
mine association rules. The problem of association rule
generation has recently gained considerable prominence in
the data mining community because of its use as a too! for
kﬁowledge discovery. Consequently, there has been a spurt
of research activity in the recent years surrounding this
prbblcm. | X

| Data mining is motivated by the decision support problem
faced by most large retail organizations. Progress in bar-
cédga - technology has made it possible for retail
organizations to collect and store massive amount of data,
referred to as the basket. data. A record in such data
typically consists of the transaction data and the items
bought in the transaction. Successful organizations view
such databases as important component of the marketing
strategy. They are interested in instituting information-
driven marketing process, managed by database
- technology, which enables mérketers to develop and
implement customized marketing programs and strategies.
An association rule identifies a combination of attribute or
items that occur together with greater frequency than might
. be expected if the values or items were independent of one-
another. Association rules find the relationship between the
different attributes in a transaction databaée. Such rules
track the patterns in transactions such as finding how the
presence of one attribute in the transaction affects the
presence of another and so forth,

An association rule is the expression of the form A=>B

where A and B are Boolean attributes and the symbol => is



called quantifier. The idea of an association rule is to
develop a systematic method by which a user can figure out |
how to infer the presence of some sets of attributes, given
the pfesence of other attributes in a transaction. Such
information is useful in making decision such as customer

targeting, shelving, and sales promotion.

T -

Here the main focus is on reducing number of candidate
item sets generated and number of database scans in the

process of association rules mining.



Chapter 1

Introduction

1.10verview
Data mining is nowadays one of the most active research topics in computer

science. It is now proven that many areas could benefit from it e.g. To increase the
number of items sold, for instance, by aﬁpropriat'ely arranging the products in the shelves
of a supermarket (they may, for example, be placed adjacent to each other in order to
invite even more customers to buy them together).

Association analysis is a major functionality of data mining. Many papers
_ -investigated on various methods for association rule mining, concept and theories. Most
of the current research on association analysis has two general goals: reduction of
candidate Itemsets and reduction of database scans. ‘

Typical algorithm for mining association rules is Apriori algorithm. This
-algorithm performs reasonably well when all maximal frequent item sets are short.
However performance drastically decreases when some of the maximal frequent item sets
are relatively long. So the attempt is to -mine association rules (frequent itern sets) by a

method that will efﬁéiently work for small as well as long item sets.

1.2 Problem Description

Given a set of transactions D, the problem of mining association rules is to

_ generate all association rules that have support and confidence greater than the user

specified minimum support (called min_supp) and minimum confidence (called
min_conf) respectively. _

‘Here is the formal statement of problem [5]: Let I={ij, i>...im} be a set of literals,

called items. Let D be a set of transactions, where each transaction T is a set of items

such that T is the subset of I. Associated with each transaction is a unique identifier,

célléd its TID A transaction T contains X, a set of some items in I, if X is the subset of T.

An association rule is an implication of the form X => Y, where X and Y are the proper

subset of I and no item is common in X and Y. The rule X => Y holds in the transaction



set D with confidence c, if c% of transactions in D that contain X also contain Y. The rule

X =>Y has support s in the transaction set D, if §% of transactions in D contain X U Y.

1.3 Problem Decomposition
The problem of discovering all association rules can be decomposed into two sub
problems: .
1. Find all sets of items (Itemsets) that have transaction support abo¥e minimum
support. The support for an itemset is the number of transactions that contain the
itemset. Itemsets with minimum support are called large Itemsets, and all others
small Itemsets.

- 2. Use the large Itemsets to generate the desired rules. The general idea is that if,
say, ABCD and AB are large Itemsets, then If conf >= mincqnf, theﬁ the rule
AB=>CD holds.

Actual aim of this work is to reduce the number of candidate itemsets generated

and to reduce the number of database scans in the process of association rules

mining.

1.4 Organizafidn of Report

The first chapter gave an overview of Association analysis and discussed the
problem to be solved. The second chapter presents the essence of the literature surveyed
and discusses relevant theoretical issues. The third chapter carriés out a detailed énalysis
of the problem, the solution for which is to be developed. Chapter> four presents the
detailed désign of the proposed solution follows this. Chapter five gives the
implementation of the solution. In chapter six, results obtained from the software

developed are presented and discussed. Finally, chapter eight concludes the work.



Chapter 2

Literature Survey

2.1 Data mining

Simply stated, data mining refers to extraction of interesting (non-trivial, implicit,
previously unknown and potentially useful) information or patterns from data in large
databases [2]. '

Automated data collection tools and matures database technology lead to
tremendous arnoi_lnts of data stored in databases, data warehouses and other information
repésitories. So we are drowning in data, but starving for knowledge!

Solution; Data warehousing and data mining

2.2 Data mining as knowledge discovery process
~ Figure 2.1 shows Data mining as knowledge discovery process [2]. The steps
involved are:
e [Learning the application domain: _
Relevant prior knowledge and goals of application
¢ Creating a target data set: data selection
e Data cleaning and preprocessing: (may take 60% of effort!)
To remove noise and inconsistent data
- Data integration - _
~ Where data relevant to the analysis task are retrieved from the database.
¢ Data reduction and transformation
Where data are transformed or consolidated into forms appropriate for mining by
performing sﬁmmary or aggregation operations, for instance.
. ® Choosing functions of data mining
Summarization, classification, regression, assbciation, clustering.
~ & Choosing the mining algorithm(s)

e Data mining:



Search for information/patterns of interest.

Pattern evaluation

To identify the truly interesting patterns representing knowledge based on some
Interestingness measures. ‘ |
Knowledge presentation

Visualization, transformation, removing redundant patterns, etc .

e Use of discovered knowledge

Database : Flat Files
Clearing and \ / <

Integration

Datjcl Warehouse

Selection and l : <4
e

Transformation

Transformed Data Warehouse

Data Mining l <« : ]
Pattefns
Evaluation and
‘Presentation l
Knowledge

Fig. 2.1: Data Mining as Knowledge Discovery Process



2.3 Data warehousing

Data warehousing is the process of constructing and using data warehouses [2].

Data warehouse can be defined in many different ways [2].

e A repository of multiple heterogeneous data sources organized under a unified
schema at a single site in order to facilitate management decision-making.

e A decision support database that is maintained .separately from the organization’s
operational database.

e Support information processing by providing a solid platform of consolidated,
historical data for analysis.

e “A data warehouse is a subject-orieﬁted, integrated, time-variant, and nonvolatile
collection of data in support of management’s decision-making process.”—W. H.

Inmon

2.4 Data Mining Functionalities

Data mining functionalities [2] are used to specify the kind of pattern to be
found in data mining task.

Data mining functionalities and the kinds of patterns they can discover are

described below.

2.4.1 Concept/Class Description: Characterization and discrimination

Data can be associated with cldss or concepts. For example, in a store “XYZ”,
classes of items for sale include computers and printers and concepts of customers
include bid spenders and budget spenders. It can be useful to describe individual classes
and concepts in summarized, concise and yet precise terms. Such description of a class
and concepts are called concept/class description. This description can be derived via
data characterization or data discrimination.

Data characterization is the process of summarizing the data of the class under
study. |

Data discrimination is the process of comparing target class with one or more

comparative classes.



2.4.2 Association Analysis
Association analysis is the discovery of association rules showing attribute-value
conditions that occur frequently together in a given set of data
Example:
Age (X, “20..29”) ~ income (X, “20..29K”) => buys (X, “PC”)
[Support = 2%, confidence = 60%]

2.4.3 Classification and Prediction
Classification is the process of finding models (functions) that describe and
distinguish classes or concepts for future prediction
E.g., classify countries based on climate, or classify cars based on gas mileage

Prediction is the process of Predicting some unknown or missing numerical values

2.4.4 Cluster analysis
 If class label is unknown, Group data to form new classes, e.g., cluster houses to
find distribution patterns.
| Clustering is based on the principle of maximizing the intra-class similarity and

. minimizing the interclass similarity.

2.4.5 Outlier Analysis

Outlier is a data object that does not comply with the general behavior of the data
It can be considered as noise or exception but is quite useful in fraud detection and rare

event analysis.

2.4.6 Evolution Analysis
Data evolution analysis describes and models regularities or trends for objects

whose behavior changes over time.



2.5 Frequent sets mining
Frequent item sets are the sets of items that have minimum support specified by
the user [2].
e A subset of a frequent item set must also be a frequent item set,
i.e., if {AB} is a frequent item set, both {A} and {B} should be a frequent item
sets.

e Frequent item sets are used to generate association rules.

2.6 Association Analysis
Finding association rules that represent correlation between items is called

association analysis or association rule mining [2].

2.6.1 Association Rules

- Association rules find the relation between the items in a database of sales
transactions. _

~ An assqciation rule identifies a combination of attribute or items that occur
together with greater frequency than might be expected if the values or items were
independent of one-another.

"~ The association rule is the expression of the form A => B where A and B are
Boolean attributes and the symbol => is called quantifier. Meaning of the association rule
A =>B is that Boolean attributes A anci B are associated in the way given by the
quantifier =>.

Boblean attributes A and B are conjunctions of literals. Figure 2.2 shows
-examples of literals are Sex (F), District (U.P) and Quality (bad). They are derived from
_attribﬁtes Sex, Distfict and Quality corresponding to columns in data matrix concerning
loans of the fictitious bank. - |

The Boolean attribute Sex (F) is true in a row of data matrix if there is the value F
in this row and in the column Sex. The Boolean attribute District (U.P) is true in the row
of data matrix if there is the value U.P in this row and in the column District. The
Boolean attribute Quality (bad) is true in the row of data matrix if there is the value.bad

in this row in the column Quality:



Id Sex Distfict Quality | Sex (F) | District (U.P) ‘Q:;éligz (b_aay B
1 M | u.p Géod f »False. | True False
2 M Gujarat Bad False Falise True
3 F Dell;i Bad | T rue False True
‘618(‘) M |UP Bad False True - True.
[ 6181 | F- | mpP Géod True False False

Fig 2.2: Transaction Data Base
- _Angxar_nlple' of association rule is, |
Sex"(F) & District (U.P) =>Quality (bad). 30%
It means that at least 30 per cent of clients — women living in U.P have the loan of bad

. quality.
2.6.2 Rule Measures: Support and Confidence

2.6.2.1 Support
| Support ‘s’, is the percentage of transactions in database D that contain AUB (i.e.
both A and B). This is taken to be the probability, P (AUB) [2]. That is,
_ ForruleA=$ B, - ‘
| " Support (A => B) =P (AUB)

Suppoft_count (AUB)

Support (A =>B) = -
' Support_count total

10



2.6.2.2 Confidence |
| ‘The rule A => B has confidence ‘c’ in the transaction set D if c is the percentage
of transactions in D containing A that also contain B. This is taken to be the conditional
probability, P (B/A) [2]. That is,
For rule A => B,
Confidence (A == B) =P (B/A)

| Support_count (AUB)
Confidence (A => B) =

Support_count A

Where support_count (AUB) is the number of transactions containing the itemsets
AUB, and support_count (A) is the number of transactions containing the itemset

A

Rules that satisfy both minimum support and minimum confidence are called strong
association rules.

Example: .
Min. support 50%
Min. confidence 50%

T on IDitars BbUghf Frequent Itemset Support
2000 |ABC ] - A -
1000 |AC BN o
5000 = |BEF | AC) o0k

Fig.2.3: Examplé: Support and Confidence
Forrule 4 = C,
Support = support ({AUC}) = 50%
Confidence = support ({ AUC})/support ({A}) = 66.6%

11



2.6.3 Types of Association Rules

There are various types of association rules [2] are present:

Boolean vs. quantitative associations

Based on the types of values handled

Boolean:

Buys (x, “SQL Server”) © Buys (x, “DM Book™) => Buys (x, “DB
Miner”) [0.2%, 60%]

Quantitative:

Age (x, “30...39”) ~ Income (x, “42...48K”") => Buys (x, “PC”) [1%,
75%] ‘ ‘

Single dimension vs. muitiple dimensional associations

Based on the dimension

Single Dimensional:
Buys (x, “diapers”) => Buys (X, “beers”) [0.5%, 60%]
Multidimensional:

Major (x, “CS”) » Takes (x, “DB”) => Grade (x, “A”) [1%, 75%)]

Multiple-level analysis

Based on the level of abstraction

Multilevel:
Age (X, 30...39) = Buys (X,” laptop computer”)
Single level:

Age (X, 30...39) => Buys (X,” computer”)

2.6.4 Basic Method of Association analysis

An important approach regarding association roles was proposed by Agrawal [5].

It is a two-phase approach as follows:

Generate all combinations of items that have fractional transaction support above

a certain user-defined threshold called min_supp. All such combinations are called large

itemsets.

Given an itemset S={I;, I,...Ix}, It can be used to generate at most k rules of the

type [S- {I;}] =>{l;}, for each r is the element of {1...k}. Once these rules have been

12



-generated, only those rules above a certain user-defined threshold called min_conf may
be retained.

In order to generate the large l-itemsets, an iterative approach is used to first
generate the set of large 1-itemset L), then the set of large itemsets L, and so on until for
some value of r the set L; is empty. At this stage the algorithm can be terminated. During
the kth iteration of this procedure, a set of candidates Cy is generated, by performing a (k-
2) join on the large itemsets Li.;. The itemsets in this set Ci are candidates for large
itemsets, and the final set of large itemsets L must be a subset of Cy. Each element of Cy
needs to be validated against the transaction database to see if it indeed belongs to L.
The validation of the candidate itemset Cy against the transaction database seems to be
bottleneck operation for the algorithm. This method requires multiple passes over a
transaction database, which may potentially be quite large. For evaluating itemsets with a
specific number of items, one pass is required over the transaction database. Thus, if the
large itemset with the maximum number of items has 9 items in it, then the method
requires 9 passes over the transaction database. This may result in substantial I/O times

for the algorithm.
2.6.4.1 Apriori Algorithm

2.6.4.1.1 The Apriori Principle

Any subset of a frequent itemset must be frequent [2]

i.e, if {AB} is a frequent itemset, both {A} and {B} should be a frequent itemset.

2.6.4.1.2. Key Steps

e Jteratively find frequent itemsets (the sets of items that have minimum
support) with cardinality from 1 to k (k-itemset).

- o Use the frequent itemsets to generate association rules.

2.6.4.1.3. Key Operations

There are two major operations in finding the frequent item sets:

13



e Join: joining Ly.; with itself generates Cy.
e Prune: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent:

k-itemset.

Apriori Example

Database Cl L1
Tid | Items Itemset | Support | Itemset | Support
100 | 1,34 » 1 p) 1 2
200 | 2,3,5 2 3 — |2 3
300 | 1,2,3,5 3 3 3 3 —
400 | 2,5 4 1 5 3
5 3
L2 - c2. c2
Itemset | Support Itemset | Support Itemset
{1,3} 2 1,2} 1 {1,2}
23 |2 « |13 2 3 |
{25y |3 231 |2 {1,5}
35 |2 2,55 |3 {2,3}
{35} |2 _
{2,5}
3,5
L3 (3.5}
C3 ‘| Itemset
{2,3,5}

L—p Itemset | Support | 3,
{2,3,5} [ 2 '

Fig.2.4: Apriori Example

14



2.6.4.1.4 Performance Evaluation
~ Here are the bottlenecks of Apriori algorithm:
e Huge candidate sets ‘
10* frequent 1-itemset will generate 10’ candidate 2-itemsets
- To discover a frequent pattern of size 100, e.g., {ai, a2... aj00}, one needs
to generate 2'®°~ 10%° candidates.
e Multiple scans of database

Needs (n +1) scans, n is the length of the longest pattern.

The performance of Apriori algorithm drastically decreases when any of the
maximal frequent itc;msets becomes longer, because a maximal frequent itemset of size 1
implies the presence of (21 — 2) additional frequent itemsets (its nontrivial subsets) as
well, such algorithms explicitly examine each of which. In data mining ap.plications-

where items are correlated, maximum frequent itemsets could be long. _

2.6.4.2 Enhancements Over Apriori Algorithm

After the initial algorithms proposed by Agrawal [10], other researchers have
extensively studied the problem and a number of fast variants have been proposed.
- Agrawal has discussed how the algorithm for finding large itemsets may be speed up
substantially by introducing a pruning approach, which reduces the size of the candidate
Cx. This algorithm uses the pruning trick that all subsets of a large itemset must also be
large. Thus, if some.(k-1)-subset of an itemset I, i.e. the subset of Cx does not belong to
L1, then that itemset can be pruned from further consideration. This process of pruning
eliminates the need for finding the support of the candidate itemset 1.

Subsequent work on the large itemset method has concentrated on the following
-aspects [4]: | |
1. Improving the I/O costs by reducing the numbér of passes over the transaction
database.
2. Improving the computational efficiency of the large itemset generation procedure.

3. Find the efficient parallel algorithm to mine association rules.

15



Here is a brief survey of the work done in each of the above categories.

2.6.4.2.1 AprioriTid Algorithm

The AprioriTid algorithm proposed by Agrawal and Srikant [5] has the additional
property that the database is not used at all for counting the support of candidate itemsets
after the first pass. Rather, an encoding of the candidate itemsets used in the previous
pass is employed for this purpose. In later passes, the size of this encoding can become
much smaller than the database, thus saving much reading effort.

The AprioriTid algorithm also uses the Apriori generation function (given in
previous section) to determine the candidate itemsets before the pass begins. The
interesting feature of this algorithm is that the database D is not used for counting support
after the first pass. Rather the set C,” is used for this purpose. Each member of the set Cy”
is of the form <TID, {Xy}>, where each Xj is a potentially large k-itemset present in the
transaction with identifier TID. For k=1, C\” corresponds to the database D, although
conceptually each item I is replaced by the itemset {I}. For k>1, the member of C\”
corresponding to transaction t is <t.TID, {c is the element of Cy | ¢ contained in t}>. If a
transaction does not contain any candidate k-itemset, then C;” will not have an entry for
this transaction. Thus, the number of entries in C;” may be smaller than the number of
transactions in the database, especially for large values of k. In addition, for large values
of k, each entry may be smaller than the corresponding transaction because very few
candidates may be contained in the transaction. However, for small values of k, each
entry may be larger than the corresponding transaction because an entry in Cy includes all

candidate k-itemsets contained in the transaction.

Consider the database given in Fig 2.5 and assume that minimum support is 2
transactions. Self-joining L, gives the candidate itemsets C,. Then the support of
candidates in C, is counted by iterating over the entries in C,” and generate C,”. The first
entry in C," is {{1}, {3}, {4}}, corresponding to transaction 100. The Ct corresponding
to this entry tis {{1, 3}}, because {1, 3} is a member of C, and both ({1, 3}-{1}) and
({1. 3}—{3}) are members of t.set of itemsets. Self-joining L, gives C;. Making a pass
over the data with C,” and C; generates C3”. Note that there is no entry in C;”for the

transactions with TIDs 100 and 400, since they do not contain any of the itemsets in Cs.

16




The candidate {2, 3, 5} in C; turns out to be large and is the only member of L3. When C,4

is generated using L3, it turns out to be empty, and so terminated.

database , c1 -
TID ltems TID Set of items ltemset support
100 134 100 | {{1}.{3}.{4}}
200 ? g g 5 200 | { {2}, {3}.{5}} gi §
300 12 300 | {{1}{2}. {3} {5}} {3} 3
400 400 | {{2}6}}) {4} 3
C2 c2" L2
temset TID Set of itemsets ftemset support
) {1 g} o0 | {{13}} {13} 2
— 02 200 | {23),125).135)) 23 | 2
o3 S0 | (112L{13){(15), 25} 3
25} {23}, {25}, {35}} {35} 2
(35} 400 | {{25}}
c3" L3
- C3
TID set of itemsets [temset support
Itemset 200 235 {235} 2
> 35 300 sts“

Fig2.5: AprioriTid Example [5]

In eé_rly passes Apriori performs better than AprioriTid algoritﬁm but after that
perfonhancé of AprioriTid drastically increases. As shown in Fig 2.6, For AprioriTid .
algorithm, in some initial passes the size of C” fnay be too large to fit in memory. Hence
use Apriori algorithm for these passes and switch to AprioriTid algorithm when it expects

that set C” will fit in memory at the end of pass.

17



. TIME
(sec)

14

12]

101

AprioriTid

Aricr

2.6.4.2.2 Hash-Based Algorithm

For efficiently finding large itemsets it was proposed by “Park” [4] [6]. It was

Fig2.6: Performance Comparison [5]

observed that most of the time is spent in evaluating and finding large 2-itemsets. The
algorithm of “Park™ attempts to improve this approach by providing a hash based
algorithm for quickly finding large 2-temsets. A hash based technique can be used to
reduce the size of the candidate k-itemset, Ci, for k>1. Consider database given in Figure
2.7, when scanning each transaction in the database to generate the frequent 1-itemset,
Ll, from the candidate 1-itemset in Cj, All the 2-itemsets can be generated for each

transaction. Hash them into the different buckets of a hash table structure, and increase

18



. the corresponding bucket count. A 2-itemset, whose corresponding bucket count in the
hash table is below the support threshold, cannot be frequent and thus should be removed
" from the éa_ndidate set. Such a hash table- based technique may substantially reduce the

number of the candidate k-itemsets examined (especially when k=2).

TID List of item IDs Hash function
: ' H (x, y)=((order of x)*10+(order of y mod 7))
T100 11,12, 5 '
T200 12, 14
T300 12,13
T400 1,12, 14
T500 11,13
T600 12,13
T700 1,13
T800 1n,12,13,15
T900 1,12, 13
Hash table H2 for candidate 2-itemset
bucket address 0 1 2 3 4 5 6
bucket count 2 2 4 2 2 4 4
bucket contents; {11.14} {115} 12,13} {12,14} {1215} Ry |}
{13 |5} {i1,15} {1213} {12 14} {12 15} {112} {113}
{12,13} {1.12}] {1113}
{1213} {1112} {113}

Fig.2.7: Hash table for Candidate 2-Itemsets [2]

Brin_ [4] proposed a method for large itemset generation, which reduces the
number of passes over the transaction database by counting some (k+1)-itemsets in
parallel with counting k-itemsets. In most previously proposed algorithms for finding
large itemsets, the support for a (k+1)-itémset was counted after k-itemsets have aiready
been generated. In this work, it was proposed that one could start counting a (k+1)-
itemset as soon as it was suspected that this itemset might be large. Thus, the algorithm

could start counting for (k+1)-itemsets much earlier than completing the coﬁnting of k-
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itemsets. The total number of passes required by this algorithm is usually much smaller

than the maximum size of a large itemset.

2.6.4.2.3 Partitioning Algorithm

Savasere [7] proposed an algorithm for finding large itemsets by dividing the
database into n partitions. The size of each partition is such that the set of transactions
can be maintained in main memory. Then, large itemsets are generated separately for
each partition. Let LP; be the set of large itemsets associated with the i'"" partition. Then, if
an itemset is large, then it must be the case that it must belong to at least one of LP; for i
is the element of {1...k}. Now, the support of the candidates U;*-,LP; can be counted in
order to find the large itemsets. This method requires just two passes over the transaction
database in order to find the large itemsets. The approach described above is highly
parallelizable, and has been used to generate large itemsets by assigning each partition to
a processor. At the end of the each iterétion of the large itemset method the processors
need to communicate with one another in order to find the global counts of the candidate
k-itemsets. Often, this communication process may impose a substantial bottleneck on
the running time of the algorithm. In other cases, the time taken by the individual
processors in order to generate the processor-specific large itemsets may be the
bottleneck. |

A common feature of most of the algorithms reviewed above and proposed in the
literature is that most such researches are variations on the “bottom-up theme” proposed
by the Apriori algorithm. For databases in which the itemsets may be long, these
algorithms may require substantial computational effort. Consider for example a database
in which the length of the longest itemset is 40. In this case, there are 2** subsets of this
single itemset, each of which would need to be validated against the transaétion database.
Thus, the success of the above algorithms critically relies on the fact that the lengths of

the frequent patterns in the database are typically short.

2.6.4.2.4 Look-Ahead Algorithm

Bayardo [8] has proposed an interesting algorithm for itemset generation very

recently. This algorithm uses clever “look-ahead” techniques in order to identify longer
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patterns earlier on. The subsets of these patterns can then be pruned from further
consideration. Initial computational results indicate that the algorithm can lead to

~ substantial performance improvements over the Apriori method.

2.6.4.2.5 Transaction Reduction Method
Transaction reduction method [2] is used to reduce the number of transactions. A
- transaction that does not contain any frequent k-itemset can’t have (k+1)-itemset,

hence can be pruned.

2.6.4.2.6 AIS and SETM Algorithms

The problem of association rule mining was first introduced in [5]. An algorithm
- called AIS was given for discovering the freqﬁent set. SETM algorithm [9] was later
~ designed to use only standard SQL commands to find the frequent set. The -Apriori
algorithm [10], described above, performs much better than AIS and SETM.

2.6.4.2.7 The OCD Algorithm
" It is worth adding, that concurrently with the Apriori algorithm, OCD algorithm

uses the same closure property to eliminate candidates [11].

2.6.4.2.8 DHP and Partition Algorithm

DHP algorithm [12} extended the Apriori algorithm by introducing a hash filter
- for counting the upper bound of the supp-(_)rt'of candidates in the next pass. Some
candidates can be pruned before reading the database in the next pass.

" Partition algorithm [13] proposed to divide the database into equal sized
partitions. Each partition is processed independéntly to produce a local frequent set for
that partition. After all local frequent sets are discovered, their union, the global
candidate set, forms a superset of the actual fréquent set. The database is then read again
to produce the actual support for the global candidate set. The éntire process takes only

two (read) passes.
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2.6.4.2.9 Sampling Algorithm _
Sampling Algorithm [14] proposed to consider first (small) samples of the
database and discover an approximate frequent set by using a standard bottom-up
approach -al,gorithm. The approximate frequent set is then verified against the entire
database. False frequent itemsets need to be removed and missing frequent itemsets need

to be recovered.

2.6.4.2.10 A-Random-MFS, DIC, and MaxClique Algorithms

A-Random-MFS algorithm [17] is a randomized algorithm for discovering the
maximum frequent set. A single run of the algorithm cannot guarantee correct results. A
complete algorithm requires repeatedly calling the randomized algorithm until no new
maximal frequent itemset can be found.

Dynamic itemset counting (DIC) algorithm [16] combines candidates of different
lengths info one pass. The database is divided into partitions of equal vsize. In each pass,
after the first I partitions are read, some itemsets containing up to I +1 items may become
candidates based on the database partitions read so far.

‘ MaxClique [17] used a hybrid traversal, which contains a look-ahead phase
followed by a pure bottom-up phase. The look-ahead phase consists of extending the
frequent 2-itemsets until the extended itemset becomes infrequent. After the look-ahead
. phase, an Apriori-like traversal is executed.

 One of the most important differencés between MaxClique and Hybrid approach
is that MaxClique only looks ahead at some long candidate itemsets during the
initialization stage (in the second pass). In contrast, the Hybrid algorithm repeatedly
maintains the upper bound of the frequent itemsets (TOPC) throughout the entire process.
The look-ahead candidate itemsets are dynamically adjusted based on all available
information discovered so far. In fact, the TOPC is the most accurate approximation one
can get while no additional knowledge of the data is available.

Another important difference is that MéxClique used a bottom-up approach to
calculate the look-ahead candidate itemsets. Conceptually, it keeps applying Apriori-gen
until no more candidates can be generated; In contrast, Hybrid approach uses a top-down

approach. It updates the TOPC only when a new infrequent itemset is discovered.
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Ignoring implementation details, MaxClique can be viewed as a spécial case of Hybrid

Search.

2.6.4.2.11 Max-Miner |
This work is inspired by Max-Miner algorithm. Max-Miner algorithm [8] was
recently proposed to discover the maximum-frequent set. This algorithm partitions the
| candidate set into groups with the same prefix. Like Hybrid Search, it looks ahead at
- some long candidate itemsets throughout the search. The main difference is the long
candidate itemsets that it examines. Max-Miner looks ahead at longest itemsets that can
be constructed from every group. A frequency heuristic is used to reorder the items such
that the most frquerit items appear in the most candidate groups.
After preliminary comparison witﬁ the Max-Miner from the algorithmic point of
view it is felt that Max-Miner and Hybrid Search could be corﬁplem,entary. One of the
possibilitiés_ is to run Max-Miner in the first few passes and switch to Hybrid Search for

the later passes.
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Chapter 3
- Hybrid Algorithm — A collective strength

Typical algofithms for mining frequent itemsets operate in a bottom-up, breadth-
first search direction. The computation starts from frequent 1-itemsets (the minimum
length frequent itemsets) and continues until all maximal (length) frequent itemsets are
found. During the execution, every frequént itemset is explicitly considered. Such
-algorithms perform well when all maximal frequent itemsets are short. However,
- performance drastically decreases when some of the maximal frequent itemsets are
rélatively long. This work is an attempt to develdp a new algorithm, which combines both
bottom-up and the top-down approach. o

The primary search direction is still bottom-up, but a restricted search is also
conducted in the top-down direction. This search is used only for maintaining and
..updating a new data structure, that is called TOPC. It is used to prune early candidates
that would be normally encountered in the bottom-up search. A very important
characteristic of the algorithm is that it does not require explicit examination of every
frequent itemset. Therefore the algorithm performs well even whén some maximal
'”frequ‘eﬁt itemsets are long. As its output, the algorithm produces the BOTC, i.e., the set
containing all maximal frequent itemsets, thus specifying immediately all frequent
itemsets. o '

' The improvement in performance can be up to several orders of magnitude,
compared to the Apriori algorithm.

The problem is formulated as follows: Given a large database of sets of items
(Répresenting markgt basket data, alarm sigﬁals, etc.), discover all frequent itemsets (sets
of 'items), where a frequent itemset is one that occurs in at léast a user-defined percentage
(niinimum support) of the database. Depending on the semantics attached to the inpuf
database, the frequent itemsets, and the term “occurs,” we get the key components of
different data mining problems such as the discovery of association rules.

The performance of Apriori algorithm drastically decreases when any of the
maximal frequent itemsets becomes longer, because a maximal frequent itemset of size |

implies the presence of (21-2) additional frequeni itemsets (its nontrivial subsets) as well,
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such algorithms explicitly examine each of which. In data mining applications where
~ items dre'-correlated, maximum frequent itemsets could be long.

‘Therefore, instead of examining all the frequent itemsets, an alternative approach
might be to “shortcut” the process and attempt to search for maximal frequent itemsets
“more directly,” as they immediately specify all frequent itemsets. -

The search for the maximum frequent set can proceed from the l-itemsets to n-
itemsets (bottom-up) or from the n-itemsets to l-itemsets (top-down). But Hybrid
approach searches for the TOPL from both bottom-up and top-down directions. It
performs well even when the maximal frequent itemsets are long.

The bottom-up search is similar to Apriori algorithm. However, the top-down
“search is differént. It is implemented efficiently by introducing an éuxil_iary data
. -structure, the TOlsC, as explained later. By incorporating the computation of the TOPC in
algorithm, it is pbssible to efficiently approach the TOPL from bdth top-down and
‘bottom-up directions. Unlike the bottom-up search that goes up one level in each pass,
the TOPC can help the computation “move down” many levels in the top-down direction
in one pass. o 7 ‘

_T'his Aalgofithm not only reduces the number of passes of reading the database but
also reduces the number of candidates (for whom support is counted). In such cases,
eliminating the éahdidates that are subsets of maximal frequent itemsets found in the
TOPC reduces both /O time and CPU time.

3.1 Frequent Itemset and its Properties

3.1.1 The Maximum Frequent Set
Among all the frequent itemsets, some will be maximal frequent itemsets: they
have no proper supersets that are themselves frequent. The TOPL is the set of all the
maximalif;equent itemsets. The problem of discovering the frequent set can be reduced to
| the problem of discovering the TOPL. The TOPL imxhediately specifies of frequent -
itemsets; these are precisely the non-empty subsets of its elements. The TOPL forms a

border between frequent and infrequent sets.
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3.1.2 Properties

Two properties can be used to classify some of the unclassified itemsets:

e Property 1: If an itemset is infrequent, all it supersets must be infrequent,
and they need not be examined further
e Property 2: If an itemset is frequent, all its subsets must be frequent, and

they need not be examined further

3.2 Discovering Frequent Itemsets

In general, it is possible to search for the maximal frequent itemsets either
bottom-up or top-down. If all maximal frequent itemsets are expected to be short (close
to 1 in size), it seems efficient to search for them bottom-up. If all maximal frequent
itemsets are expected to be long (close to » in size) it seems efficient to searbh for them
top-down.

Here a realization is sketched of the most commonly used approach of
discovering the frequent itemsets: a bottom-up approach. It consists of repeatedly
applying a pass, itself consisting of two steps. At the end of pass k& all frequent itemsets of
size k or less have been discovered. As the first step of pass (k +1), itemsets of size (k+1)
each having two frequent k-subsets with the same first (k —1) items are generated.
Itemsets that are supersets of infrequent itemsets are pruned (and discarded), as of course
they are infrequent (by property 1). The remaining itemsets form the set of candidates for
this pass. As the second step, the support of the candidates is computed (by reading the

database), and they are classified as either frequent or infrequent.

Example 1

Consider a database containing five distinct items, 1, 2, 3, 4, and 5. There are four
trarisactions in this database: {1,2,3,4,5}, ‘{1,3}, {1,2}, and {1,2,3,4}. The minimum
support is set to 0.5. Figure 3.1 shows an example of this bottom-up approach. All five 1-
itemsets ({13}, {2}, {3}, {4}, {5}) are candidates in the first pass. After the support
counting phase, the 1-itemset {5} is determined to be'infrequént. Property 1 need not

consider all the supersets of {5}. So the candidates for the second pass are {1,2}, {1,3},
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{14}, {2,3}, {2,4}, {3,4}. The same procedure repeats until all the maximal frequent

itemsets are obtained in this example, only one: {1,2,3,4}.

Bottom-up search

{1,2,3,4} : »
£1,2,3} {1,2,4} {1,3,4}y = {2,3,4}
{1,2} . £1,3} {2,3} | {1,4} {2,4} {3.4}

{l}A {2} 3y {4} {5}

Top-down search

' {1,2,3.4,5}
4/4// \

' {1,2,3,4} {1,2,3,5} {1245} . {1345} {2,3,4,5} :

{1,2,5} | {1",3,5} {1,4,5] {2,3,5} {2,4,5} {3,4,5}

/

{1,5} [2,5] - {3,5} {4,5}

‘.\‘{5}"/

Fig.3.1: One Way Search
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In this bottom-up approach, every frequent itemset must have been a candidate at

some pasé and is therefore also explicitly considered. When some maximal frequent

itemsets happen to be long, this method will be inefficient. In such a case, it might be

‘more efficient to search for the long maximal frequent itemsets using a top-down

approach.

| A top-down approach starts with the single n-itemset and decreases the size of the

candidates by one iﬁ every pass. When a k-itemset is determined to be infrequent, all of

its (k-1)-subsets will be examined in the next pass. However, if a k-itemset is frequent,

~ then all of its subsets must be frequent and need not be examined (by Property 2).

Example 2

Figure 3.1 shows example of two-way search. Consider the same database as the
prévious example. The S -itemset {1,2,3,4,5} is the only candidate in the first pass. After
‘the support counting phase, it is infrequent. The candidates for the second pass are all the
4-subsets of itemset {1,2,3,4,5}. In this example, itemset {1,2,3,4} is frequent and all the
others are infrequent. By Property 2, -all subsets of {1,2,3,4} are frequent (but not
maximal) and need not be examined. The same procedure repeats until all maximal
frequent itemsets are obtained (i.e., after all infrequent itemsets are visited). .

In this top-down approach, every.infrequent itemset is explicitly examined. As
shown in Figure given above, every infrequent itemset (itemset {5} and its supersets)
needs to be visited before the maximal frequent itemsets are obtained. Note that, in a
“pure” bottom-up approach, only Property 1 above is used to prune candidates. This is
the technique that Apriori algorithm uses to decrease the number of candidates. In a

- “pure” top-down approach, only Property 2 is used to prune candidates.

3.3 Iiy‘brid Approach- A Collective Strength

The aim of this work is to reduce the number of candidates and the

number of passes in the process of association rules mining

As discussed in the last section, the bottom-up approach is good for the case when
all maximal frequent itemsets are short and the top-down approach is good when all

maximal frequent itemsets are long. If some maximal frequent itemsets are long and
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so@e are short, then both one-way search approaches will not be efficient. To de’sigh an
algorithm that can efficiently discover both long and short maximal frequent itemsets,
one might think of simply running both bottom-up and top-down programs at the same
“time. It is possible to do much better than that. Recall that the bottom-up ‘approach
described above uses only Property 1 to reduce the number of candidates and the top-
~down approach uses only Property 2 to reduce the number of candidates. In Hybrid
_approach both top-down and the bottom-up searches are combined. That synergistically
relies on both prdperties to prune candidates. A key coniponent of the approach is the use
of information gathered in the search in one direction to prune more candidates during the
search in the other direction. If some maximal frequent itemset is found in the tdp-do’wn
direction, then this itemset can be used to eliminate (possibly many) candidates in the
bottom-up direction. The subsets of this frequent itemset can be pruned because they are
frequent (Property 2). Of course, if an infrequent itemset is foﬁnd in the bottom-up
direction, then it can be used to eliminate some candidates in the top-down direction
(Property 1). This “two-way search approach™ can fully make use of both properties and

thus speed up the search for the maximum frequent set.

Use property 1 to eliminate candidates in the top down search

Use property 2 to eliminate candidates in the bottom up direction

{1,2,3,4}

o

{1,2,3,4}

£1,3,4,5) {1.2,3,5) {1245} {2,3.4,5)

{1,2,3} {1,2,4} {1,3,4} {2,34 {1,2,5'} {1,3,5} {1.4,5} {2,3,5} {2.4,5} {3,4,5}

{12} {13} {14} {23} {24} {34} {15} {2,5} 3,5} {4,5} ,

AN A7

{1} {23 33 B - {5}

Fig.3.2: Two way Search
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Exa mple 3

Consider two way search example ngen above in Fig.3.2, In the first pass, all five
l—itehlsets are the candldates for the bottom-up search and the 5-itemset {1,2,3,4,5} is the
candidate for the top-down search. After thé support counting phase, infrequent itemset
{5} 1s discovered by the bottom-up search and this information is shared with the top-
down search. This infrequent itemset {5} not only allows the bottom-up search to
_ eliminate its supersets as candidates but also allows the top-down search to eliminate its
supersets as candidates in the second pass. In the second pass, the candidates for the
bottom-up search are {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}. Itemsets {1,5}, {2,5},
{3,5}, and {4,5} are not candidates, since they are supersets of {5}. The only candidate
for the top-down search in the second pass is {1,2,3,4}, since all the other 4-subsets of
{1,2,3.4 5} are supersets of {5}. After the second support counting phase, {1,2,3,4} is
discovered to be frequent by the top-down search. This information is shared with the
bottom-up search. All of its subsets are frequent and need not be examined. In this
example, itemsets {1,2,3}, {1,2,4}, {1,3,4}, and {2,3,4} will not be candidates for
bottom-up or top-down searches. After that, the pfogram can terminate; since there are no
‘candidates for either bottom-up or top-down searches. -

In this example, the number of candidates considered, was smaller than required
by either bottom-up or top-down search. In addition to this fewer passes are needed to
" read the database tﬁan either bottom-up or top-down searches. The “pure” bottom-up
approach would have taken four passes and the “pure” top-down approach would have
taken five passes for this database while Hybrld approach takes only two. In fact, this
- hybr1d approach w1ll always use at most as many passes as the minimum 10 of the passes
used by bottom-up approach and top-down approach. Reducing the number of candidates
is of critical importance for the efficiency of the frequent set discovery process, since the
cost of the entire process comes from reading the database (I/O time) to generate the
supports of candidates (CPU time) and the generation of new candidates (CPU time). The
support counting of the candidafes is the most expensive part. Therefore, the number of
candidates dominates the entire processing time. Reducing the number of candidates not

only can reduce the I/O time but also can reduce the CPU time, since fewer candidates
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need to be counted and generated. Therefore, it is important that Hybrid Search reduces
both the number of candidates and the number of passes. A realization of this two-way
search algorithm is discussed next. ,

The computation of Hybrid algorithm follows the bottom-up breadth-first search
approach. It is based on the Apriori and Max Miner algorithms, and for greatest ease of
exposition it is presented as a modification to the Apriori algorithm.

Briefly speaking, in each pass, in addition to counting supports of the candidates
in the bottom-up direction, the algorithm also counts supports of the itemsets in the top-
down search. This will help in pruning candidates, but will also require changes in
candidate generation, as explained later.

Consider a pass &, during which, in the bottbm—up direction, itemsets of size k are
to be classified. If, during the top-down direction some itemset that is an element of the
TOPC of cardinality greater than k is found to be frequent, then all its subsets of
cardinality £ can be pruned from the set of candidates considered in the bottom-up
direction in this pass. They, and their supersets will never be candidates throughout the
rest of the execution, potentially improving performance. But of course, as the maximum
frequent set is ultimately computed, they “will not be forgotten.”

- Similarly, when a new infrequent itemset is found in the bottom-up direction, the
algorithm will use it to update the TOPC. The subsets of the TOPC must not contain this
infrequent itemset. |

Fig 3.3 given below conceptually shows the combined two-way search. The
TOPC is initialized to contain a single element, the itemset of cardinality n cohtaining all
the elements of the database. As an exafnple of its utility, consider the first pass of the
bottom-up search. If some m 1-itemsets are infrequent after the first pass (after reading
the database once), the TOPC will have one element of cardinality n-m. Removing the m
infrequent items from the initial element of the TOPC generates this itemset. In this case,
the fop-down search goes down m levels in one pass. In general, unlike the search in the
bbttom-up direction; which goes up one level in one pass, the top-down search can go

down many levels in one pass.
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n- itemset
- Top down search may go down many

Levels in one pass

Top down
v Frequent itemset
- Frequent itemset
Frequent itemset
Frequent itemset
Bottom up search may go up only
A one level in one pass

Bottom up

ST

1-itemset

Fig.3.3: Working of Two Way Search

Notice that the bottom up and the top down searches do not proceed in a
symmetrical fashion. The reason is that by a general assumption there are no extremely
Iong frequent itemsets. If this assumption is not likely to hold, one can easily reverse the
roles of the searches in the two directions. By using the TOPC, it will be possible to
discover some maximal frequent itemsets in early passes. This early discovery of the
maximal frequent itemsets can reduce the number of candidates and the passes of reading
the database, which in turn can reduce the CPU time and I/O time. This is especially
significant when the maximal frequent itemsets discovered in the early passes are long.

To reduce the number of database scans, transaction having k items can be
removed. or marked, at the end of pass k. So the number of transactions are reduced for

further iterations.
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Chépter 4
System Design

- Having analyzed the problem and identified the pre-processing operations that are

required of the soﬁwére to be developed, the following solution is proposed:
 The software takes as input the name of attributes to be correlated and minimum
support. Then candidate itemsets are generated using Apriori algorithm or Hybrid
algorithm. Itemsets having ‘'support greater than minimum support are called frequent
itemsets. These ﬁeqﬁent itemsets are used to generate association rules, which are output
of the software. Database used in this software is designed in oracle, having transaction

IDs and items.

Figure 4.1 presents the diagrammatic representation of the design discussed

above:
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-Figure 4.1: Diagrammatic represehtation of the proposed design.
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To make Hybrid approach effective two issues are addressed: First, how to update
the TOPC efficiently? Second, once the subsets of the maximal frequent itemsets found
in the TOPC are removed, how to generate the correct candidate set for the subsequent

passes in the bottom-up direction?

4.1. Updating the TOPC Efficiently
Consider some itemset Y that has been “just” classified as infrequent. It will be a
subset of one or more itemsets in the TOPC, and it is required to update the TOPC such
| that it's subsets no longer contain Y. To update the TOPC, the following process will be
done for every superset of Y that is in the TOPC. Every such itemset (say X ) is replaced
by |Y | itemsets, each obtained by removing from X a single item (elément) of Y. Such
‘newly generated itemset is added to the TOPC only when it is not already a subset ‘of any

itemset in the TOPC.

{1,2,3...n}

/ ' by removing infrequent items from 7 to n

{1,2,3,4,5,6}

by mfrequent itemset {1 6}

{1,2,3,4,5} £2,3,4,5 6}

{1234} {1,23,5} {124,5} (13,45} {2345} by infrequent itemset {3,6} (24,56}
I E] y’ B} B > B} ) Y - {2)476}{235!6} {435! >,

(1.2} {13} (14} {1,5} (2.3} (2.4} (2.5} (3.4} (3:5} (4.5} (L6} (3,6} 2 6} {4,6} {5.6}

\ (y @ 6y W 5 / (6} /{:} o,

" Fig. 4.2: Hybrid Search
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Example 1

- Consider Hybrid search given in fig 4.2, suppose {{1,2,3,4,5,6}} is the current
(“old”) value of the TOPC and two new infrequent itemsets {1,6} and {3,6} are
discovered. Consider first the infrequent itemset {1,6}. Since the itemset {1,2,3,4,5,6}
(element of the TOPC) contains iterﬁs 1 and 6, one of its subsets will be {1,6}, by
removing item 1 from itemset 13.

‘From {1,2,3,4,5,6}, 2,3,4,5,6} is found, and by removihg item 6 from itemset
{1,2,3,4,5;6}, {1,2,3,4,5} is found. After considering itemset {1,6}, the TOPC becomes
'{{1,2,3,4,5}, {2,3,4,5,6}}. Itemset {3,6} is then used to update this TOPC. Siﬁce {3,6} is
a subset of {2,3.4,5,6}, two itemsets {2,3,4,5} and {2,4,5,6} are generated to replace
{2,3,4,5,6}. Itemset {2,3,4,5} is a subsef of itemset {1,2,3,4,5} in the new TOPC, and it
will not be added to the TOPC. Therefore, the TOPC becomes {{1,2,3,4,5}, {2,4,5,6}}.
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As discussed previously a preliminary candidate set will be generated after Athe» _
join procédure is called. In Hybrid algorithm, after a maximal frequent itemset is added to
the TOPL, all of its subsets in the frequent set (computed so far) will be removed. The
example shows that if the original join procedure of the Apriori-gen al gorithm is applied,
some of the needed itemsets could be missing from the preliminary candidate set.
Consider Fig 4.2 given above suppose that the original frequent itemset L3 is {{1,2,3},
{1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2.4,5}, {2,4,6}, {2,5,6},
- {3,4,5}, .{4,5,6}}. Assume itemset {1,2,3,4,5} in the TOPC is determined to be frequent.
Then all 3-itemsets of the original frequent set L3 will be removed from it by Hybrid
algorithm, excépf for {2,4,6}, {2,5,6}, and {4,5,6}. Since the Apriori-gen .algorithm uses
a (k - 1)-prefix test on the frequent set to geﬁerate new candidates, and no two itemsets in
the current frequent set {{2,4,6}, {2,5.6}, {4,5,6}} share a 2-prefix, no candidate will be
génerated by applying the join procedure on this frequent set. However, the correct
preliminary candidate set should be {{2,4,5,6}}. Based on the above observation, some

‘missing candidates need to be recovered. .
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4.3 New Preliminary Candidate Set Generation Procedure

In new preliminary candidate set generation procedure, the join procedure of the
Apriori-gen algorithm is first called to generate-a temporary candidate set, which might
be incomplete. In such a case, a recovery procedure will be called to recover the missing
candidates. All missing candidates can be obtained by restoring some itemsets to the
current frequent set. The restored itemsets are extracted from the TOPL of the current
pass, which implicitly maintains all frequent itemsets discovered so far. The first group of
itemsets that needs to be restored contains those k-itemsets that have the same (k-1)-
prefix as some itemset in the current frequent set. Consider then in pass k, an itemset X in
the TOPL>a_nd an itemset Y in the current frequent set such that [X] > . Suppose that the
first (k;l) items of ¥ are in X and the (k-1)™ item of ¥ is equal to the j™ item of X. The k-
- subsets of X is obtained that have the same (k-1)-prefix as Y by taking one item of X that
has an index greater than j and combining it with the first (k-1) .items of ¥, thus getting
one of these k-subsets. After these k-itemsets are found, candidates are recovered by

combining them with itemset Y.

. Example 2

Consider Hybrid search given in Fig 4.2, the TOPL is {{1,2,3,4,5}} and the
current frequent set is {{2,4,6}, {2,5,6}, {4,5,6}}. The only 3-subset of {{1,2,3,4,5}} that
needs to be restored for itemset {2,4,6} to generate a new candidate is {2,4,5}. This is
‘because it is the only subset of {{1,2,3,4,5}} that has the same length and the same 2-
preﬁx as itemset {2,4,6}. By combining {2,4,5} and {2,4,6}, missing candidate {2,4,5,6}
is recovered. No itémsets need to bg restored for itemsets {2,5,6} and {4,5,6}..

The second group of itemsets that need to be restored consists of those k—sﬁbsets
of the TOPL having the same (k-1)-prefix but having no' common superset in the TOPL..

A similar recovery procedure can be applied after they are restored.



- Chapter 5
Implementation '

The project will use Windows 9x/NT as the platform, C as programming language
and Oracle Pro C as precompiler to access database. Some important procedures used in

implementation are given below:

5.1-Updating the TOPC Efficiently |
Algorithm: TOPC-gen procedure
Input: Old TOPC and the infrequent set GARBAGE; found in pass k
Output: New TOPC '
. For all itemsets s, the element of GARBAGE}
. For all itemsets m, the element of TOPC
. If s is a subset of m
. TOPC = TOPC \ {m}
. For all items e, element of itemset s |
-If {m\{e}} is not a subset of any itemset in the TOPC
. TOPC=TOPC U {m\ {e}}
. Return TOPC

0 N N L AW -

5.2 Recovery Procedure

In ﬁgw preliminary candidate set generation procedure, the join procedure of the
Apriori-gen algorithm is first called to generate a temporary candidate set, which might
be incomplete. In such a case, a recovery procedure will be called to recover the missing
candidates. | |

All missing candidates can be obtained by-restoring some itemsets to the current
frequent set. The restored itemsets are extracted from the TOPL of the current pass,

which implicitly maintains all frequent itemsets discovered so far.
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Algorithm: The recovery procedure

Input: Cy+; from join procedure, Ly, and current TOPL
Output: a complete candidate set Cy+) .

1. For all itemsets 1 in Ly

2. For all itemsets m in TOPL

3. If the first (k-1) items in ] are also in m

4. /* Suppose m.item j = Litem ( k —-1) */

5.Forifrom (j+1)tom

6. Cy+1 = Cx+1 U {{Litem 1, Litem 2,..., Litem k, m.item i }}

5.3 New Candidate Generation Algorithm
- In summary, candidate generation process contains three steps as described

below.

Algorithm: New candidate generation procedure

Input: Li, current TOPC, and current TOPL

QOutput: new candidate set Cy;

1. Call the join procedure as in the Apriori algorithm

2. Call the recovery procédure if necessary

3. Call the prune procedure

5.4 The Basic Hybrid-Search Algorithm
~ Here is the complete algorithm, The Hybrid-Search Algorithm, which relies on

the combined approach for determining the maximum frequent set.

Algorithm: The Hybrid-Search algorithm

Input: a database and a user-defined minimum support

Output: TOPL, which contains all maximal frequent itemsets, -
corresponding association rules

1. Lo =0; k=1; C, ={{i}]i is the element of I}

2. TOPC = {{12...n}}; TOPL =Q

3. While C=0
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4. Read database and count supports for Cy, and TOPC.
5. Remove frequent itemsets from TOPC and add them to TOPL
6. Li= {frequent itemsets in Ci} \{subsets of TOPL}

7. GARBAGE k = {infrequent itemsets in Cy}

8. Call the TOPC-gen algorithm if GARBAGE;, =0

9. Call the join procedure to generate Cy+1

10. If any frequent itemset in Cy is removed in line 6

11. Call recovery procedure to recover candidates to Cy+|
12. Call new prune procedure to prune candidates in Cy+,
13. k:=k+1

14. End-while

15. Return TOPL

The TOPC is initialized to contain one itemset, which consists of all the database
_items.‘ The TOPC is updated whenever new infrequent itemsets are found (line 8). If an
itemset in the TOPC is found to be frequent, then its subsets will not participate in the
subsequent support counting and candidate set generation steps. Line 6 will exclude those
itemsets that are subsets of any itemset in the current TOPL, which contains the frequent
itemsets found in the TOPC. If some itemsets in Ly are removed, the algorithm will call

the recovery procedure to recover missing candidates (line 11).

5.5 Join Procedure
Algorithm: self-joining
Input: Set of frequent itemsets Ly
Output: Set of candidate itemsets Cy. .
1. Select p.item,, p.item;, ..., p.itemy.;, q.item;.;
FromL;;p, Li;q A
Where p.item|=q.itém1,. , p.temy,=q.itemy,, p.itemg; <
q.itemy.|
2. Return Ck
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5.6 Prune Procedure
| | Algorithm: pruning
Input: C;
Output: C;
1. For all itemsets c in C; do
2. For all (k-1)-subsets s of ¢ do
If (s is not in L;_;) then delete ¢ from C;
3. Retum Cx

5.7 Apriori Procedure
Algorithm: Apriori }

Input: Minimum support min_support, Attributes to be correlated

Output: Set of frequent itemsets Ly
C,: Candidate itemset of size k
Li: {frequent items}
1. For (k= 1; L; '=0; k++) do begin
2. Cpsr = candida_tgs generated from Ly;
3. For each transaction f in database do

4. Increment the count of all candidates in Cg.;

that are contained in ¢
5. L4+, = candidates in Cy+; with min_support
End

Return vy Ly
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| Chapter 6
Results and Their Interpretation

e e O e - n it oty + s e S s
o R ke R o e et Y e Ko e = & S M e ———

ON RULES MINER

R
-. , J. i ' i :..‘

ENTER DATABASE NAME: <table
USER NAME: saurabh

PASSUORD:  sexsaerse
) USING DATABASE STORED IN MEMORY

ENTER MINIMUM SUPPORT: 2

I,..—.»-m.._.-m-. R S o lirepmpeb e vl v vl e v e g e w me w5

Fig 6.1: Screen to take user input database name and minimum support
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ATTRIBUTES ARE:

. bread, . 'pasxrigs,

butter, . .. pizza,

milk, burgér, i

flavoured_milk, . biscuits, ’
1‘

vegetables, 1. namkeen, ’ i

eag, jam, ’ . , , ‘ 3

cream, . corn_flakes, R ‘ 2

cheese, ) . cold_drink, ;

ice_cream,

. patties,

1

4

!

i

1

, |
v e e . i
ENTER ITEM NAMES TO BE CORRELATED: ‘ -7 i }
H

i1

i
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Fig 6.2: Screen to list attributes and take user input attributes
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FREQUENT lTEﬂSETS UF CARDINARLITY 1 ARE:

butter,

milk,
flavoured_milk,
vegetables,
eqy.,

cream,

cheese,
ice_cream,
patties,
pastries,

Fig 6.4: Frequent item sets of cardinality 1 generated by Apriori algorithm
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SPRISKI

FREQUENT ITEMSETS UF CARDINALITY 2 ARE:

butter,milk,

butter,f lavoured_milk,
butter,eqy,
butter,creamn,
butter,cheese,

butter, ice_crean,
butter,patties,
butter,pastries,
milk,{ lavoured milk,
milk,vegetables,
nilk,eqgy,

milk,crean,
milk,cheese,

milk, ice_cream,
nmilk,patties,
milk,pastries,
flavoured_milk,crean,
f lavoured_milk, ice_crean,

Fig 6.5: Screen to show frequent item sets of cardinality 2 generated by Apriori
‘ algorithm '
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ASSOCIATION RULES ARE:

butter =>milk, 66.67/

milk =>butter, 57.14/

butter =>flavoured_milk, 66.67/"
flavoured_milk =>butter, 66.67«
butter =>eqy, 33.33x%

egg =>butter, 1006.007

butter =>cream, 50.00x

cream =>butter, 75.00%

butter =>cheese, 50.060»

cheese =>butter, 75.00«

butter =>ice_cream, 50,00«
ice_cream =>butter, 60.00x
butter =>patties, 50.00x
patties =>butter, 60.00

hutter =>pastries, 66.67~
pastries =>butter, 66.67

milk =>flavoured_milk, 57.14x

f lavoured milk =>milk, 66.67

T Ly Ty R
e

Fig 6.6: Screen to show association rules generated by Apriori algorithm
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SN -

CONT. ...

milk =>vegetables, 28.57«
vegetables =>milk, 100.060x
milk =>egqg, 28.57«

egy =>milk, 100.00x

milk =>ecream, 57.14%

creanm =>milk, 100.00x

milk =>cheese, 42.86x
cheese =>milk, 75.00x

milk =>ice_cream, 57.14x
ice_cream =>milk,. B80.00x
milk =>patties, 57.14»
patties =>milk, 80.00x
milk =>pastries, 57.14~
pastries =»milk, 66.67~
flavoured_milk =>cream, 33
creanm =>{ lavoured_nilk, 50
flavoured_milk =>ice_crean,
ice_cream =>f lavoured_milk,

Fig 6.7: Association rules continued
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FREQUENT ITEMSETS OF CARDINALITY ? ARE:

butter,milk,egy,cream,cheese, ice_cream,patties,
butter,nilk,eqy,crean,cheese, ice_crean,pastries,
butter,milk,egg,cream,cheese,patties,pastries,
butter,milk,eyg,crean, ice_crean,patties,pastries,
butter,milk,eqgy,.cheese, ice_crean,patties,pastries,
butter,milk,crean,cheese, ice_creanm,patties,pastries,
butter,egy,crean,cheese, ice_crean,patties,pastries,
milk,eqgy.cream,cheese, ice_crean,patties,pastries,

Fig 6.8: frequent item sets of cardinality 7 generated by Apriori algorithm
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ASSUCIATIUN RULES ARE:

butter =>milk,eqy,cream,cheese, ice_crean,pattie

nilk butter,eqq,cream,cheese, ice ram, patt ; A o - 2
eqy =>butter,milk,cream,cheese, ice_crean,patties 100 .00
cream =>butter,milk,eyyg,cheese, ice_crean,patties, s
cheese =>butter,milk,eqgy,cream, ice_crean,patties, 50.00x
ice cream >butter,milk,eyy,crean,cheese,patties, 40.00x
patties =>butter,milk,eqyy,cream,cheese, ice_cream, 40.00~
butter =>milk,eqyy,cream,cheese, ice_crean,pastries % 5
milk =>butter,egy,cream,cheese, ice_crean,pastries 28 .59
eyyg =>butter,milk,cream,cheese, ice_crean,pastries 100 .00~
crean =>butter,milk,eyqyqyg,cheese, ice_crean,pastries 50.00x
cheese =>butter,milk,eqgy,cream, ice_crean,pastries, 50.007
ice_cream =>butter,milk,eqgy,cream,cheese,pastries, 40.00x
pastries =>butter,milk,eqgy,crean,cheese,ice_cream, 33.334
butter =>milk,eyy,cream,cheese,patties,pastries 33.337
milk =>butter,eqy,cream,cheese,patties,pastries 28.577
eyy =>butter,milk,cream,cheese,patties,pastries 100 .00~
cream =>butter,milk,eqq,cheese,patties,pastries 50.00x

Fig 6.9: Association rules generated by Apriori algorithm
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TOTAL NO OF CANDIDATE ITEMSETS GENERATED:--306

TOTAL UNIT OF MEMORY:--598

Fig 6.10: Screen to show performance of Apriori algorithm
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FREQUENT ITEMSETS ARE:

butter,nilk,eyy,cream,cheese, ice_crean,patties,pastries,
milk,veyetables,
nilk,f lavoured_milk,cream, ice_crean,patties,pastries,

Fig 6.11: Most frequent item sets generated by Hybrid algorithm
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ASSOCIATION RULES ARE:

butter =>milk,eqgy,cream,cheese, ice_cream,patties,pastries,
milk =>butter,egq,cream,cheese, ice_cream,patties,pastries,
egyg =>butter,milk,cream,cheese, ice_cream,patties,pastries,
cream =>butter,milk,eyq,cheese,ice_cream,patties,pastries,

cheese =>butter.milk,eyyg,cream,ice_cream,patties,pastries,

ice_crean =>butter,milk,eqq,cream,cheese,patties,pastries,
patties =>butter,milk,egqg,cream,cheese, ice_crean,pastries,
pastries =>butter,milk,egqg,cream,cheese, ice_cream,patties,
milk =>vegetables, 28.57«

vegetables =>milk, 160.06x
butter,milk,=>egy,crean,cheese, ice_crean,patties,pastries,
milk,eqgq,=>creamn,cheese, ice_crean,patties,pastries,butter,
egq,cream, =>cheese, ice_crean,patties,pastries,butter,milk,
creanm,cheese, =>ice_cream,patties,pastries,butter,milk,eyy,
cheese, ice_crean,=>patties,pastries,butter,nilk,eqy,cream,
ice_crean,patties,=>pastries,butter,nilk,eqq,crean,cheese,
patties,pastries,=>butter,nilk,eqyy,crean,cheese, ice_crean,
pastries,butter,=>nilk,eqy,crean,cheese, ice_crean,patties,

33.33~
28 .57~
100,00~
56.00x
50.00x
40 .00
40.00x
33.33«

| 50.00% " -

160.00%
100003
50.00x
100.00%
100.60x
56.00%
160003

Fig 6.12: Association rules generated by Hybrid algorithm
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Fig 6.13: Graph shows dependence between no. of large frequent item sets and

candidate item sets generated
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, Chapter 7
Concluding Remarks

An efﬁciént way to discover the maximum frequent set can be very useful in various data
mining problems, such as the discovery of the association rules. The maximum frequent
set provides a unique representation of all the frequent itemsets. In many situations, it
suffices to discover the maximum frequent set, and once it is known, all the required
frequent subsets can be easily generated. |
_  This work presents an algorithm that can efficiently discover the maximum
frequent set. Hybrid—Search algorithm could reduce both the number of times the
database is read and the number of candidates considered. _

Experiments show that the improvement of using this approach can be very
significant, . especially when some maximal frequent itemsets are long. A popular
assumption is that the maximal frequent itemsets are usually very short and therefore the
computation of all (and not just maximal) frequent itemsets is feasible. Such assumption
on maximal frequent itemsets does not need to be true in important applications. Hybrid
algorithm may be useful in these applications such as the problem of discovering patters
in price changes of individual stocks in a stock market. Prices of individual stocks are
frequently quite correlated with each other. Therefore, the discovered patterns may
contain many items (stocks) and the frequent itemsets are long.

The number of data base scans are reduced siéniﬁcantly, it depends upon the size

of memory.
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Appendix A

Pro C Commands Used In Project

To Declare The Variables

EXEC SQL begin declare section;
variable types and names;
EXEC SQL end declare section;

| To Héndle Errors _
EXEC SQL WHENEVER SQLERROR DO sql_error("error message");

To Conne-ct From Oracle

EXEC SQL | begin declare section;
char *username; |
EXEC SQL end declare section;

EXEC SQL CONNECT :username ;
To Display Attribute’s Name

EXEC SQL DECLARE contents CURSOR FOR

select column_name from user_tab_columns where table name="table";
exec sql begin declare section;

varchar name[17];

exec sql end declare section;

exec sql open contents;

exec sql whenever not found do break;
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TID | PIZZA | BURGER | PASTRIES | PATTIES CORN_FLAKES |JAM
1 1 1 0 1 1 0
2 1 1 0 0 1 0
3 1 1 0 1 1 0
4 1 0 0 0 1 0
5 1 0 0 0 0 0
6 0 0 1 0 0 1
7 0 0 1 1 0 1
8 0 1 0 1 0 1
9 0 1 0 1 0 0
10 |0 1 0 1 0 0
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_ Appendix A
Pro C Commands Used In Project

To Declare The Variables

EXEC SQL begin declare section;
variable types and names;
EXEC SQL end declare section;

" To Handle Errors . _
EXEC SQL WHENEVER SQLERROR DO sql_error("error message");

To Connéct From Oracle

EXEC SQL 1 begin declare section;
char *username; -

EXEC SQL end declare section;
EXEC SQL CONNECT :username ;
To Display Attribute’s Name

EXEC SQL DECLARE contents CURSOR FOR

‘select column_name from user_tab_columns where table_name="table";
exec sql begin declare section;

varchar name[17];

exec sql end declare section;

exec sql open contents;

exec sql whenever not found do break;
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for(;;)

{
exec sql fetch contents into :name;
dbms_output.put_line(jjname);

}

exec sql close contents;

exec sql commit work release;
To Find The Support Of Attributes

EXEC SQL DECLARE count CURSOR FOR
select tid '
from "table"

where
'for(iht y=0;y<tempc->length;y++)
:témpc->candidate [y]=1;

exec sql open count;

exec sql whenever not found do break;
for(;;)

{

exec sql fetch count into ;tid;
:tempc->support++;

}

exec sql close count;

exec sql commit work release;
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Appendix B

EGG

NKS

ICE_CREAM | MILK

NAMKEEN COLD_DRI

FLAV
MILK

Sample Database

CREAM | CHEESE

10

[ TID [ BREAD BUTTER | BISCUITS

| TID | VEGITABLES

10
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TID | PIZZA | BURGER | PASTRIES | PATTIES CORN_FLAKES |JAM
1 1 1 0 1 1 0
2 1 1 0 0 1 0
3 1 1 0 1 1 0
4 1 0 0 0 1 0
5 1 0 0 0 0 0
6 0 0 1 0 0 1
7 0 0 1 1 0 1
8 0 1 0 1 0 1
9 0 1 0 1 0 0
10 |0 1 0 1 0 0
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