
IMPROVED ALGORITHM TO MINE ASSOCIATION
RULES

A DISSERTATION

Submitted in partial fulfilment of the

requirements for the award of the degree

of

MASTER OF TECHNOLOGY

in

INFORMATION TECHNOLOGY

By 	 tr T -

SAURABH GUPTA ~

Id R OORKB~

It x

a

ER 8c DC!
NO/DA

IIT Roorkee-ER&DCI, Noida
C-56/1, "Anusandhan Bhawan"

Sector 62, Noida-201 307
FEBRUARY, 2003

Enrolment No. 019047

CANDIDATE'S DECLARATION

This is to certify that the work, which is being presented in this dissertation,

entitled "IMPROVED ALGORITHM TO MINE ASSOCIATION RULES", in partial

fulfillment of the requirements for the award of the degree of Master of Technology in

Information Technology submitted in IIT, Roorkee — ER&DCI Campus, Noida, is an

authentic record of my own work carried out from August 2002 to February 2003, under

the supervision of Dr. P.R. GUPTA, Reader, Electronics Research and Development

Centre of India, Noida.

I have not submitted the matter embodied in this dissertation for the award of any

other degree.

Date:

Place: Noida 	 (Saurabh Gupta)

CERTIFICATE

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge and belief.

Date: -24• a - a~ 3

Place: Noida 	 (Dr. P.R. Gupta)

Reader,

ER&DCI, Noida

ii

ACKNOWLEDGEMENT

I hereby take the privilege express my deepest sense of gratitude for Dr. Prem

Vrath, Director, Indian Institute of Technology, Roorkee, and Mr. R.K. Verma,

Executive Director, ER&DCI, Noida for providing me with this valuable opportunity to

carry out this work. I am also very grateful to Dr. A.K. Awasthi, our programme

coordinator and Dr. R.P. Agrawal and Mr. V.N. Shukla, our course coordinators for

providing the best of the facilities for the completion of this work and constant

encouragement towards the goal.

I have no words to thank my guide, Dr. P.R. Gupta, Reader, ER&DCI, Noida for

his guidance and invaluable suggestions during the entire course of this work. She

provided me continuous inspiration and support throughout the course of this dissertation.

I am highly indebted to Dr. R.C. Joshi, Professor, IIT-Roorkee. to provide me

insight of data mining and warehousing. I am also thankful to Miss Durga Toshniwal,

Student P.H.D., and IIT-Roorkee, to provide me constant support throughout the entire

course of this work. I am also grateful to Mr. Munish Kumar for the cooperation

extended by him in the successful completion of this work.

It is impossible to mention the names of all those persons who have been

involved, directly or indirectly, with this work and I extend my gratitude to all of them.

However, I feel, I owe special thanks to all my friends who have helped me formulate my

ideas and have been a constant support. I find myself short of words to thank my father.

mother and brother who have always been by my side throughout my life.

(Saurabh Gupta)

019047

iii

Contents

CANDIDATE'S DECLARATION 	 (ii)

ACKNOWLEDGEMENT 	 (iii)

ABSTRACT 	 1
1. INTRODUCTION 	 3

1.1 Overview 	 3
1.2 Problem Description 	 3
1.3 Problem Decomposition 	 4
1.4 Organization of Report 	 4

2. LITERATURE SURVEY 5
2.1 Data Mining 5
2.2 Data Mining As Knowledge Discovery Process 5
2.3 Data Warehousing 7
2.4 Data Mining Functionalities 7

2.4.1 Concept/Class description: Characterization and 7
Discrimination

2.4.2 Association Analysis 8
2.4.3 Classification and Prediction 8
2.4.4 Cluster Analysis 8
2.4.5 Outlier Analysis 8
2.4.6 Evolution Analysis 8

2.5 Frequent Set Mining 9
2.6 Association Analysis 9

2.6.1 Association Rules 9
2.6.2 Rule Measures: Support And Confidence 10
2.6.2.1 Support 10
2.6.2.2 Confidence 11
2.6.3 Types Of Association Rules 12
2.6.4 Basic Methods of Association Analysis 12

2.6.4.1 Apriori Algorithm 13
2.6.4.1.1 The Apriori Principle 13
2.6.4.1.2 Key Steps 13
2.6.4.1.3 Key Operations 13
2.6.4.1.4 Performance Evaluation 15

2.6.4.2 Enhancements over Apriori Algorithm 15
2.6.4.2.1 AprioriTid Algorithm 16
2.6.4.2.2 Hash Based Algorithm 18
2.6.4.2.3 Partitioning Algorithm 20
2.6.4.2.4 Look Ahead Algorithm 20
2.6.4.2.5 Transaction Reduction Method 21

iv

2.6.4.2.6 AIS and SETM Algorithm 	 21
2.6.4.2.7 OCD Algorithm 	 21
2.6.4.2.8 DHP and Partition Algorithm 	 21
2.6.4.2.9 Sampling Algorithm 	 22
2.6.4.2.10 A-Random-MFS, DIC, and Max Clique Algos 22
2.6.4.2.11 Max Miner 	 23

3. HYBRID ALGORITHM 	 24
3.1 Frequent Itemset and Its Properties 	 25

3.1.1 The Maximum Frequent Set 	 25
3.1.2 Properties 	 26

3.2 Discovering Frequent Set 	 26
3.3 Hybrid Approach — A Collective Strength 	 28

4. SYSTEM DESIGN 	 33
4.1 Updating the TOPC Efficiently 	 35
4.2 New Candidate Generation Algorithm 	 36
4.3 New Preliminary Candidate Set Generation Algorithm 	 37

5. IMPLEMENTATION
	

38
5.1 Algorithm to Update the TOPC Efficiently 	 38
5.2 Recovery Procedure 	 38
5.3 New Candidate Generation Algorithm 	 39
5.4 The. Basic Hybrid — Search Algorithm 	 39
5.5 Join Procedure 	 40
5.6 Recovery Procedure 	 41
5.7 Apriori Procedure 	 41

6. RESULT 	 42

7. CONCLUDING REMARKS 	 56

REFERENCES 	 57

Appendix A: Pro C Commands Used In Project 	 60

Appendix B: Sample Database 	 62

u

ABSTRACT

This work is an attempt to develop an efficient algorithm to

mine association rules. The problem of association rule

generation has recently gained considerable prominence in

the data mining community because of its use as a tool for

knowledge discovery. Consequently, there has been a spurt

of research activity in the recent years surrounding this

problem.

Data mining is motivated by the decision support problem

faced by most large retail organizations. Progress in bar-

code technology has made it possible for retail

organizations to collect and store massive amount of data,

• referred to as the basket. data. A record in such data

typically consists of the transaction data and the items

bought in the transaction. Successful organizations view

such databases as important component of the marketing

strategy. They are interested in instituting information-

driven marketing process, managed by database

technology, which enables marketers to develop and

implement customized marketing programs and strategies.

An association rule identifies a combination of attribute or

items that occur together with greater frequency than might

be expected if the values or items were independent of one-

another. Association rules find the relationship between the

different attributes in a transaction database. Such rules

track the patterns in transactions such as finding how the

presence of one attribute in the transaction affects the

presence of another and so forth.

An association rule is the expression of the form A=>B

where A and B are Boolean attributes and the symbol => is

I

called quantifier. The idea of an association rule is to

develop a systematic method by which a user can figure out

how to infer the presence of some sets of attributes, given

the presence of other attributes in a transaction. Such

information is useful in making decision such as customer

targeting, shelving, and sales promotion.

• Here the main focus is on reducing number of candidate

item sets generated and number of database scans in the

process of association rules mining.

2

Chapter 1

Introduction

1.1 Overview
Data mining is nowadays one of the most active research topics in computer

science. It is now proven that many areas .could benefit from it e.g. To increase the

number of items sold, for instance, by appropriately arranging the products in the shelves

of a supermarket (they may, for example, be placed adjacent to each other in order to

invite even more customers to buy them together).

Association analysis is a major functionality of data mining. Many papers

investigated on various methods for association rule mining, concept and theories. Most

of the current research on association analysis has two general goals: reduction of

candidate Itemsets and reduction of database scans.

Typical algorithm for mining association rules is Apriori algorithm. This

algorithm performs reasonably well when all maximal frequent item sets are short.

However performance drastically decreases when some of the maximal frequent item sets

are relatively long. So the attempt is to mine association rules (frequent item sets) by a

method that will efficiently work for small as well as long item sets.

1.2 Problem Description
Given a set of transactions D, the problem of mining association rules is to

generate all association rules that have support and confidence greater than the user

specified minimum support (called min_supp) and minimum confidence (called
min _cont) respectively.

Here is the formal statement of problem [5]: Let I={ii, i2...im} be a set of literals,

called items. Let D be a set of transactions, where each transaction T is a set of items

such that T is the subset of I. Associated with each transaction is a unique identifier,

called its TID. A transaction T contains X, a set of some items in I, if X is the subset of T.

An association rule is an implication of the form X => Y, where X and Y are the proper

subset of I and no item is common in X and Y. The rule X => Y holds in the transaction

3

set D with confidence c, if c% of transactions in D that contain X also contain Y. The rule

X => Y has support s in the transaction set D, if s% of transactions in D contain X U Y.

1.3 Problem Decomposition
The problem of discovering all association rules can be decomposed into two sub

problems:

1. Find all sets of items (Itemsets) that have transaction support abate minimum

support. The support for an itemset is the number of transactions that contain the

itemset. Itemsets with minimum support are called large Itemsets, and all others

small Itemsets.

2. Use the large Itemsets to generate the desired rules. The general idea is that if,

say, ABCD and AB are large Itemsets, then If conf >= minconf, then the rule

AB=>CD holds.

Actual aim of this work is to reduce the number of candidate itemsets generated

and to reduce the number of database scans in the process of association rules

mining.

1.4 Organization of Report

The first chapter gave an overview of Association analysis and discussed the

problem to be solved. The second chapter presents the essence of the literature surveyed

and discusses relevant theoretical issues. The third chapter carries out a detailed analysis

of the problem, the solution for which is to be developed. Chapter four presents the

detailed design of the proposed solution follows this. Chapter five gives the

implementation of the solution. In chapter six, results obtained from the software

developed are presented and discussed. Finally, chapter eight concludes the work.

CI

Chapter 2

Literature Survey

2.1 Data mining
Simply stated, data mining refers to extraction of interesting (non-trivial, implicit,

previously unknown and potentially useful) information or patterns from data in large

databases [2].

Automated data collection tools and matures database technology lead to

tremendous amounts of data stored in databases, data warehouses and other information

repositories. So we are drowning in data, but starving for knowledge!

Solution: Data warehousing and data mining

2.2 Data, mining as knowledge discovery process
Figure 2.1 shows Data mining as knowledge discovery process [2]. The steps

involved are:

• Learning the application domain:

Relevant prior knowledge and goals of application

• Creating a target data set: data selection

• Data cleaning and preprocessing: (may take 60% of effort!)

To remove noise and inconsistent data

• Data integration

Where data relevant to the analysis task are retrieved from the database.

• Data reduction and transformation

Where data are transformed or consolidated into forms appropriate for mining by

performing summary or aggregation operations, for instance.

• Choosing functions of data mining

Summarization, classification, regression, association, clustering.

• Choosing the mining algorithm(s)

• Data mining:

Search for information/patterns of interest.

• Pattern evaluation

To identify the truly interesting patterns representing knowledge based on some

interestingness measures.

• Knowledge presentation

Visualization, transformation, removing redundant patterns, etc

• Use of discovered knowledge

Database

Clearing and

Integration

Flat Files

/4 , .

Selection and

Transformation

Data Mining

Evaluation and

Presentation

Knowledge

Fig. 2.1: Data Mining as Knowledge Discovery Process

0

2.3 Data warehousing
Data warehousing is the process of constructing and using data warehouses [2].

Data warehouse can be defined in many different ways [2].

• A repository of multiple heterogeneous data sources organized under a unified

schema at a single site in order to facilitate management decision-making.

• A decision support database that is maintained separately from the organization's

operational database.

• Support information processing by providing a solid platform of consolidated,

historical data for analysis.

• "A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile

collection of data in support of management's decision-making process."—W. H.

Inmon

.2.4 Data Mining Functionalities
Data mining functionalities [2] are used to specify the kind of pattern to be

found in data mining task.

Data mining functionalities and the kinds of patterns they can discover are

described below.

2.4.1 Concept/Class Description: Characterization and discrimination
Data can be associated with class or concepts. For example, in a store "XYZ",

classes of items for sale include computers and printers and concepts of customers

include bid spenders and budget spenders. It can be useful to describe individual classes

and concepts in summarized, concise and yet precise terms. Such description of a class

and concepts are called concept/class description. This description can be derived via

data characterization or data discrimination.

Data characterization is the process of summarizing the data of the class under

study.

Data discrimination is the process of comparing target class with one or more

comparative classes.

2.4.2 Association Analysis
Association analysis is the discovery of association rules showing attribute-value

conditions that occur frequently together in a given set of data

Example:

Age (X, "20..29") ^ income (X, "20..29K") _> buys (X, "PC")

[Support = 2%, confidence = 60%]

2.4.3 Classification and Prediction
Classification is the process of finding models (functions) that describe and

distinguish classes or concepts for future prediction

E.g., classify countries based on climate, or classify cars based on gas mileage

Prediction is the process of Predicting some unknown or missing numerical values

2.4.4 Cluster analysis
If class label is unknown, Group data to form new classes, e.g., cluster houses to

find distribution patterns.

Clustering is based on the principle of maximizing the intra-class similarity and

minimizing the interclass similarity.

2.4.5 Outlier Analysis
Outlier is a data object that does not comply with the general behavior of the data

It can be considered as noise or exception but is quite useful in fraud detection and rare

event analysis.

2.4.6 Evolution Analysis
Data evolution analysis describes and models regularities or trends for objects

whose behavior changes over time.

8

2.5 Frequent sets mining
Frequent item sets are the sets of items that have minimum support specified by

the user [2]:

• A subset of a frequent item set must also be a frequent item set,

i.e., if {AB} is a frequent item set, both {A} and {B} should be a frequent item

sets.

• Frequent item sets are used to generate association rules.

2.6 Association Analysis
Finding association rules that represent correlation between items is called

association analysis or association rule mining [2].

2.6.1 Association Rules
Association rules find the relation between the items in a database of sales

transactions.

An association rule identifies a combination of attribute or items that occur

together with greater frequency than might be expected if the values or items were

independent of one-another.

The association rule is the expression of the form A => B where A and B are

Boolean attributes and the symbol => is called quantifier. Meaning of the association rule

A =>B is that Boolean attributes A and B are associated in the way given by the

quantifier =>.

Boolean attributes A and B are conjunctions of literals. Figure 2.2 shows

examples of literals are Sex (F), District (U.P) and Quality (bad). They are derived from

attributes Sex, District and Quality corresponding to columns in data matrix concerning

loans of the fictitious bank.

The Boolean attribute Sex (F) is true in a row of data matrix if there is the value F

in this row and in the column Sex. The Boolean attribute District (U.P) is true in the row

of data matrix if there is the value U.P in this row and in the column District. The

Boolean attribute Quality (bad) is true in the row of data matrix if there is the value, bad

in this row in the column Quality:

0

Id Sex 	District Quality Sex (F) District (UP) Quality (bad)

1 M 	U.P Good False True False

2 	. M 	Gujarat Bad False False True

3 F 	Delhi Bad True False True

6180 M 	U.P Bad False True True.

6181 F 	M.P Good True False False

Fig 2.2: Transaction Data Base

An example- of association rule is,

Sex' (F) & District (UP) =>Quality (bad). 30%
It means that at least 30 per cent of clients — women living in U.P have the loan of bad

quality.

2.6.2 Rule Measures: Support and Confidence

2.6.2.1 Support
Support `s', is the percentage of transactions in database D that contain AUB (i.e.

both A and B). This is taken to be the probability, P (AUB) [2]. That is,

For rule A => B,

Support (A => B) = P (AUB)

Support_count (AUB)

Support (A => B) = 	---

Support_count total

10

2.6.2.2 Confidence

The rule A => B has confidence `c' in the transaction set D if c is the percentage

of transactions in D containing A that also contain B. This is taken to be the conditional

probability, P (B/A) [2]. That is,

For rule A => B,

Confidence (A => B) = P (B/A)

Support_count (AUB)

Confidence (A => B) =

Support_count A

Where support_count (AUB) is the number of transactions containing the itemsets

AUB, and support count (A) is the number of transactions containing the itemset

A.

Rules that satisfy both minimum support and minimum confidence are called strong

association rules.

Example:

Min. support 50%

Min. confidence 50%

Fig.2.3: Example: Support and Confidence

For rule A => C,

Support = support ({ AUC }) = 50%

Confidence = support ({AUC})/support ({A}) = 66.6%

11

2.6.3 Types of Association Rules
There are various types of association rules [2] are present:

Boolean vs. quantitative associations

Based on the types of values handled

0 Boolean:

Buys (x, "SQL Server") ^ Buys (x, "DM Book") _> Buys (x, "DB

Miner") [0.2%, 60%]

• Quantitative:

Age (x, "30...39") ^ Income (x, "42...48K") _> Buys (x, "PC") [1%,

75%]

Single dimension vs. multiple dimensional associations

Based on the dimension

• Single Dimensional:

Buys (x, "diapers") => Buys (x, "beers") [0.5%, 60%]

• Multidimensional:

Major (x, "CS") A Takes (x, "DB") _> Grade (x, "A") [1%, 75%]

Multiple-level analysis

Based on the level of abstraction

• Multilevel:

Age (X, 30...39) => Buys (X," laptop computer")

• Single level:

Age (X, 30...39) => Buys (X," computer")

2.6.4 Basic Method of Association analysis
An important approach regarding association roles was proposed by Agrawal [5].

It is a two-phase approach as follows:

Generate all combinations of items that have fractional transaction support above

a certain user-defined threshold called min supp. All such combinations are called large

itemsets.

Given an itemset S={11, I2...Ik}, It can be used to generate at most k rules of the

type [S- {Ir}] =>{I,}, for each r is the element of {1...k}. Once these rules have been

12

generated, only those rules above a certain user-defined threshold called min conf may

be retained.

In order to generate the large 1-itemsets, an iterative approach is used to first

generate the set of large 1-itemset L1, then the set of large itemsets L2, and so on until for

some value of r the set L, is empty. At this stage the algorithm can be terminated. During

the kth iteration of this procedure, a set of candidates Ck is generated, by performing a (k-

2) join on the large itemsets Lk.1. The itemsets in this set Ck are candidates for large

itemsets, and the final set of large itemsets Lk must be a subset of Ck. Each element of Ck

needs to be validated against the transaction database to see if it indeed belongs to Lk.

The validation of the candidate itemset Ck against the transaction database seems to be

bottleneck operation for the algorithm. This method requires multiple passes over a

transaction database, which may potentially be quite large. For evaluating itemsets with a

specific number of items, one pass is required over the transaction database. Thus, if the

large itemset with the maximum number of items has 9 items in it, then the method

requires 9 passes over the transaction database. This may result in substantial I/O times

for the algorithm.

2.6.4.1 Apriori Algorithm

2.6.4.1.1 The Apriori Principle
Any subset of a frequent itemset must be frequent [2]

i.e., if {AB} is a frequent itemset, both {A} and {B} should be a frequent itemset.

2.6.4.1.2. Key Steps 	 .

• Iteratively find frequent itemsets (the sets of items that have minimum

support) with cardinality from 1 to k (k-itemset).

• Use the frequent itemsets to generate association rules.

2.6.4.1.3. Key Operations
There are two major operations in finding the frequent item sets:

13

• Join: joining Lk_I with itself generates Ck.

• Prune: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent•

k-itemset.

Apriori Example

Database Cl Li

L2 C2. C2
Itemset

{1,2}

{1,3}

• — {1,5}

{2,3}

{2,5}

{3,5}
L3

C3 Itemset

{2,3,5} Itemset 	Support
2,3,5. 	2

Fig.2.4: Apriori Example

Tid Items

100 1,3,4

200 2,3,5

300 1,2,3,5

400 2,5

Itemset Support

1 2

2 3

3 3

4 1

5 3

Itemset Support

1 2

2 3

3 3

5 3

Itemset Support

{1,3} 2

{2,3} 2

{2,5} 3

{3,5} 2

Itemset Support

{1,2} 1
{1,3} 2
{ 1,5} 1
{2,3} •2
{2,5} 3
{3,5} 2

14

2.6.4.1.4 Performance Evaluation
Here are the bottlenecks of Apriori .algorithm:

• Huge candidate sets

104 frequent 1-itemset will generate 107 candidate 2-itemsets
To discover a frequent pattern of size 100, e.g., {ai, a2... aioo}, one needs

to generate 2100 1030 candidates.

• Multiple scans of database

Needs (n +1) scans, n is the length of the longest pattern.

The performance of Apriori algorithm drastically decreases when any of the

maximal frequent itemsets becomes longer, 'because a maximal frequent itemset of size 1

implies the presence of (21 — 2) additional frequent itemsets (its nontrivial subsets) as

well, such algorithms explicitly examine each of which. In data mining applications

where items are correlated, maximum frequent itemsets could be long.

2.6.4.2 Enhancements Over Apriori Algorithm
After the initial algorithms proposed by Agrawal [101, other researchers have

extensively studied the problem and a number of fast variants have been proposed.

Agrawal has discussed how the algorithm for finding large itemsets may be speed up

substantially by introducing a pruning approach, which reduces the size of the candidate

Ck. This algorithm uses the pruning trick that all subsets of a large itemset must also be

large. Thus, if some. (k-1)-subset of an itemset I, i.e. the subset of Ck does not belong to

Lk_1, then that itemset can be pruned from further consideration. This process of pruning

eliminates the need for finding the support of the candidate itemset I.

Subsequent work on the large itemset method has concentrated on the following

aspects [4] :

1. Improving the I/O costs by reducing the number of passes over the transaction

database.

2. Improving the computational efficiency of the large itemset generation procedure.

3. Find the efficient parallel algorithm to mine association rules.

15

Here is a brief survey of the work done in each of the above categories.

2.6.4.2.1 AprioriTid Algorithm

The AprioriTid algorithm proposed by Agrawal and Srikant [5] has the additional

property that the database is not used at all for counting the support of candidate itemsets

after the first pass. Rather, an encoding of the candidate itemsets used in the previous

pass is employed for this purpose. In later passes, the size of this encoding can become

much smaller than the database, thus saving much reading effort.

The AprioriTid algorithm also uses the Apriori generation function (given in

previous section) to determine the candidate itemsets before the pass begins. The

interesting feature of this algorithm is that the database D is not used for counting support

after the first pass. Rather the set CL" is used for this purpose. Each member of the set CL"

is of the form <TID, {XL}>, where each XL is a potentially large k-itemset present in the

transaction with identifier TID. For k=1, CL" corresponds to the database D, although

conceptually each item I is replaced by the itemset { I } . For k> 1, the member of CL"

corresponding to transaction t is <t.TID, {c is the element of CL I c contained in t}>. If a

transaction does not contain any candidate k-itemset, then CL" will not have an entry for

this transaction. Thus, the number of entries in CL" may be smaller than the number of

transactions in the database, especially for large values of k. In addition, for large values

of k, each entry may be smaller than the corresponding transaction because very few

candidates may be contained in the transaction. However, for small values of k, each

entry may be larger than the corresponding transaction because an entry in CL includes all

candidate k-itemsets contained in the transaction.

Consider the database given in Fig 2.5 and assume that minimum support is 2

transactions. Self-joining L, gives the candidate itemsets C2. Then the support of

candidates in C2 is counted by iterating over the entries in C1" and generate C2". The first

entry in C1" is { { 1 }, (3), (4) }, corresponding to transaction 100. The Ct corresponding

to this entry t is { { 1, 3)), because (1, 3) is a member of C2 and both ({ 1, 3}—{1}) and

((1, 3}—(3}) are members of t.set of itemsets. Self-joining L2 gives C3. Making a pass

over the data with C2" and C3 generates C3". Note that there is no entry in C3"for the

transactions with TIDs 100 and 400, since they do not contain any of the itemsets in C3.

TID Items

100 134
200 235
300 1 2 3 5
400 25

TID Set of items

100 {{1},{3}.{4}}
200 {{2},{3},{5}}
300 { {1}, {2}, {3}, {5} }
400 {(2},{5})

Itemset support

{1 } 2
{2} 3
{3} 3
{4} 3

--► —~

I2

Itemset support

{13} 2
{2 3} 2
{25} 3
:{3 5} 2

L3

Itemset 	support
{235} 	2

The candidate {2, 3, 5} in C3 turns out to be large and is the only member of L3. When C4

is generated using L3, it turns out to be empty, and so terminated.

database
	 Cl"
	

L1

C2°

TID Set of itemsets

100 {{13}}
200 {(23){25},{35)}
300 300 { (1 2}, (1 	3}, (1 ,5},

{23},{25},{35}}
400 { {2 5} }

C3"

TID set of itemsets

200 11235))
300 {{235}}

C2

Itemset

{1 2}

{2 3}
{2 5}
{3 5}

C3

Itemset 	---►
{235}

Fig2.5: AprioriTid Example 151

In early passes Apriori performs better than AprioriTid algorithm but after that

performance of AprioriTid drastically increases. As shown in Fig 2.6, For AprioriTid

algorithm, in some initial passes the size of C" may be too large to fit in memory. Hence

use Apriori algorithm for these passes and switch to AprioriTid algorithm when it expects

that set C" will fit in memory at the end of pass.

17

	

14 	 AprioriTid

12

TIME 	10
(sec)

8

6

4'
''•i

2

0

	

1 	2 	3 	4 	5 	6 	7

PASS #

Fig2.6: Performance Comparison [5]

2.6.4.2.2 Hash-Based Algorithm
For efficiently finding large itemsets it was proposed by "Park" [4] [6]. It was

observed that most of the time is spent in evaluating and finding large 2-itemsets. The

algorithm of "Park" attempts to improve this approach by providing a hash based

algorithm for quickly finding large 2-temsets. A hash based technique can be used to

reduce the size of the candidate k-itemset, Ck, for k> 1. Consider database given in Figure

2.7, when scanning each transaction in the database to generate the frequent 1-itemset,

L1, from the candidate 1-itemset in C1', All the 2-itemsets can be generated for each

transaction. Hash them into the different buckets of a hash table structure, and increase

18

the corresponding bucket count. A 2-itemset, whose corresponding bucket count in the

hash table is below the support threshold, cannot be frequent and thus should be removed

from the candidate set. Such a hash table- based technique may substantially reduce the

number of the candidate k-itemsets examined (especially when k=2).

TID List of item IN

T100 11,12,15
T200 12, 14
T300 12, 13
T400 11.12,14
T500 11,13
T600 12, 13
T700 11,13
1600 11,12,13,16
T900 11,12,13

Hash function
H (x, y)=((order of x)* 10+(order of y mod 7))

Hash table H2 for candidate 2-itemset
bucket address 0 1 2 3 4 5 6

bucket count 2 2 4 2 2 4 4

bucket contents (11.14) (Ii 	IS) {12,13} {12,14} {12,15} {11,12} . 	(I1,13}
(13,15) {11,15} {12,13} (12,14) {12,16} {11,12} {11,13}

{12,13} {11,12}] (I1,13)
(12,13) {11,12} {11,13}

Fig.2.7: Hash table for Candidate 2-Itemsets [2]

Brin [4] proposed a method for large itemset generation, which reduces the

number of passes over the transaction database by counting some (k+l)-itemsets in

parallel with counting k-itemsets. In most previously proposed algorithms for finding

large itemsets, the support for a (k+l)-itemset was counted after k-itemsets have already

been generated. In this work, it was proposed that one could start counting a (k+l)-

itemset as soon as it was suspected that this itemset might be large. Thus, the algorithm

could start counting for (k+l)-itemsets much earlier than completing the counting of k-

19

itemsets. The total number of passes required by this algorithm is usually much smaller

than the maximum size of a large. itemset.

2.6.4.2.3 Partitioning Algorithm
Savasere [7] proposed an algorithm for finding large itemsets by dividing the

database into n partitions. The size of each partition is such that the set of transactions

can be maintained in main memory. Then, large itemsets are generated separately for

each partition. Let LP; be the set of large itemsets associated with the ith partition. Then, if

an itemset is large, then it must be the case that it must belong to at least one of LP; for i

is the element of { l ...k}. Now, the support of the candidates U;k-1LP1. can be counted in

order to find the large itemsets. This method requires just two passes over the transaction

database in order to find the large itemsets. The approach described above is highly

parallelizable, and has been used to generate large itemsets by assigning each partition to

a processor. At the end of the each iteration of the large itemset method the processors

need to communicate with one another in order to find the global counts of the candidate

k-itemsets. Often, this communication process may impose a substantial bottleneck on

the . running time of the algorithm. In other cases, the time taken by the individual

processors in order to generate the processor-specific large itemsets may be the

bottleneck.

A common feature of most of the algorithms reviewed above and proposed in the

literature is that most such researches are variations on the "bottom-up theme" proposed

by the Apriori algorithm. For databases in which the itemsets may be long, these

algorithms may require substantial computational effort. Consider for example a database

in which the length of the longest itemset is 40. In this case, there are 24° subsets of this

single itemset, each of which would need to be validated against the transaction database.

Thus, the success of the above algorithms critically relies on the fact that the lengths of

the frequent patterns in the database are typically short.

2.6.4.2.4 Look-Ahead Algorithm
Bayardo [8] has proposed an interesting algorithm for itemset generation very

recently. This algorithm uses clever "look-ahead" techniques in order to identify longer

20

patterns earlier on. The subsets of these patterns can then be pruned from further

consideration. Initial computational results indicate that the algorithm can lead to
substantial performance improvements over the Apriori method.

2.6.4.2.5 Transaction Reduction Method
Transaction reduction method [2] is used to reduce the number of transactions. A
transaction that does not contain any frequent k-itemset can't have (k+l)-itemset,

hence can be pruned.

2.6.4.2.6 AIS and SETM Algorithms
The problem of association rule mining was first introduced in [5]. An algorithm

called AIS was given for discovering the frequent set. SETM algorithm [9] was later

designed to use only standard SQL commands to find the frequent set. The Apriori

algorithm [10], described above, performs much better than AIS and SETM.

2.6.4.2.7 The OCD Algorithm
It is worth adding, that concurrently with the Apriori algorithm, OCD algorithm

uses the same closure property to eliminate candidates [1 1].

2.6.4.2.8 DHP and Partition Algorithm
DHP algorithm [12] extended the Apriori algorithm by introducing a hash filter

for counting the upper bound of the support of candidates in the next pass. Some

candidates can be pruned before reading the database in the next pass.

Partition algorithm [13] proposed to divide the database into equal sized

partitions. Each partition is processed independently to produce a local frequent set for

that partition. After all local frequent sets are discovered, their union, the global
candidate set, forms a superset of the actual frequent set. The database is then read again

to produce the actual support for the global candidate set. The entire process takes only
two (read) passes.

21

2.6.4.2.9 Sampling Algorithm
Sampling Algorithm [14] proposed to consider first (small) samples of the

database and discover an approximate frequent set by using a standard bottom-up

approach algorithm. The approximate frequent set is then verified against the entire

database. False frequent itemsets need to be removed and missing frequent itemsets need

to be recovered.

2.6.4.2.10 A-Random-MFS, DIC, and MaxClique Algorithms
A-'Random-MFS algorithm [17] is a randomized algorithm for discovering the

maximum frequent set. A single run of the algorithm cannot guarantee correct results. A

complete algorithm requires repeatedly calling the randomized algorithm until no new

maximal frequent itemset can be found.

Dynamic itemset counting (DIC) algorithm [16] combines candidates of different

lengths into one pass. The database is divided into partitions of equal size. In each pass,

after the first I partitions are read, some itemsets containing up to I +1 items may become

candidates based on the database partitions read so far.

MaxClique [17] used a hybrid traversal, which contains a look-ahead phase

followed by a pure bottom-up phase. The look-ahead phase consists of extending the

frequent 2-itemsets until the extended itemset becomes infrequent. After the look-ahead

phase, an Apriori-like traversal is executed.

One of the most important differences between MaxClique and Hybrid approach

is that MaxClique only looks ahead at some long candidate itemsets during the

initialization stage (in the second pass). In contrast, the Hybrid algorithm repeatedly

maintains the upper bound of the frequent itemsets (TOPC) throughout the entire process.

The look-ahead candidate itemsets are dynamically adjusted based on all available

information discovered so far. In fact, the TOPC is the most accurate approximation one

can get while no additional knowledge of the data is available.

Another important difference is that MaxClique used a bottom-up approach to

calculate the look-ahead candidate itemsets. Conceptually, it keeps applying Apriori-gen

until no more candidates can be generated. In contrast, Hybrid approach uses a top-down

approach. It updates the TOPC only when a new infrequent itemset is discovered.

22

Ignoring implementation details, MaxClique can be viewed as a special case of Hybrid
Search.

2.6.4.2.11 Max-Miner
- 	This work is inspired by Max-Miner algorithm. Max-Miner algorithm [8] was

recently proposed to discover the maximum frequent set. This algorithm partitions the
candidate set into groups with the same prefix. Like Hybrid Search, it looks ahead at

some long candidate itemsets throughout the search. The main difference is the long

candidate itemsets that it examines. Max-Miner looks ahead at longest itemsets that can

be constructed from every group. A frequency heuristic is used to reorder the items such

that the most frequent items appear in the most candidate groups.

After preliminary comparison with the Max-Miner from the algorithmic point of

view it is felt that Max-Miner and Hybrid Search could be complementary. One of the

possibilities is to run Max-Miner in the first few passes and switch to Hybrid Search for

the later passes.

23

Chapter 3

Hybrid Algorithm — A collective strength

Typical algorithms for mining frequent itemsets operate in a bottom-up, breadth-

first search direction. The computation starts from frequent I -itemsets (the minimum

length frequent itemsets) and continues until all maximal (length) frequent itemsets are

found. During the execution, every frequent itemset is explicitly considered. Such

algorithms perform well when all maximal frequent itemsets are short. However,

performance drastically decreases when some of the maximal frequent itemsets are

relatively long. This work is an attempt to develop a new algorithm, which combines both

bottom-up and the top-down approach.

The primary search direction is still bottom=up, but a restricted search is also

conducted in the top-down direction. This search is used only for maintaining and

. , updating a new data structure, that is called TOPC. It is used to prune early candidates

that would be normally encountered in the bottom-up search. A very important

characteristic of the algorithm is that it does not require explicit examination of every

frequent itemset. Therefore the algorithm performs well even when some maximal

frequent itemsets are long. As its output, the algorithm produces the BOTC, i.e., the set

containing all maximal frequent itemsets, thus specifying immediately all frequent

itemsets.

The improvement in performance can be up to several orders of magnitude,

compared to the Apriori algorithm.

The problem is formulated as follows: Given a Iarge database of sets of items

(Representing market basket data, alarm signals, etc.), discover all frequent itemsets (sets

of items), where a frequent itemset is one that occurs in at least a user-defined percentage

(minimum support) of the database. Depending on the semantics attached to the input

database, the frequent itemsets, and the term "occurs," we get the key components of

different data mining problems such as the discovery of association rules.

The performance of Apriori algorithm drastically decreases when any of the

maximal frequent itemsets becomes longer, because a maximal frequent itemset of size 1

implies the presence of (21-2) additional frequent itemsets (its nontrivial subsets) as well,

24

such algorithms explicitly examine each of which. In data mining applications where

items are correlated, maximum frequent itemsets could be long.

Therefore, instead of examining all the frequent itemsets, an alternative approach

might be to "shortcut" the process and attempt to search for maximal frequent itemsets

"more directly," as they immediately specify all frequent itemsets.

The search for the maximum frequent set can proceed from the 1-itemsets to n-
itemsets (bottom-up) or from the n-itemsets to 1-itemsets (top-down). But Hybrid

approach searches for the TOPL from both bottom-up and top-down directions. It

performs well even when the maximal frequent itemsets are long.

The bottom-up search is similar to Apriori algorithm. However, the top-down

search is different. It is implemented efficiently by introducing an auxiliary data

structure, the TOPC, as explained later. By incorporating the computation of the TOPC in

algorithm, it is possible to efficiently approach the TOPL from both top-down and

bottom-up directions. Unlike the bottom-up search that goes up one level in each pass,

the TOPC can help the computation "move down" many levels in the top-down direction

in one pass.

This algorithm not only reduces the number of passes of reading the database but

also reduces the number of candidates (for whom support is counted). In such cases,

eliminating the candidates that are subsets of maximal frequent itemsets found in the

TOPC reduces both I/O time and CPU time.

3.1 Frequent Itemset and its Properties

3.1.1 The 'Maximum Frequent Set
Among all the frequent itemsets, some will be maximal frequent itemsets: they

have no proper supersets that are themselves frequent. The TOPL is the set of all the

maximal frequent itemsets. The problem of discovering the frequent set can be reduced to

the problem of discovering the TOPL. The TOPL immediately specifies of frequent

itemsets; these are precisely the non-empty subsets of its elements. The TOPL forms a

border between frequent and infrequent sets.

25

3.1.2 Properties
Two properties can be used to classify some of the unclassified itemsets:

• Property 1: If an itemset is infrequent, all it supersets must be infrequent,

and they need not be examined further

• Property 2: If an itemset is frequent, all its subsets must be frequent, and

they need not be examined further

3.2 Discovering Frequent Itemsets
In general, it is possible to search for the maximal frequent itemsets either

bottom-up or top-down. If all maximal frequent itemsets are expected to be short (close

to 1 in size), it seems efficient to search for them bottom-up. If all maximal frequent

itemsets are expected to be long (close to n in size) it seems efficient to search for them

top-down.

Here a realization is sketched of the most commonly used approach of

discovering the frequent itemsets: a bottom-up approach. It consists of repeatedly

applying a pass, itself consisting of two steps. At the end of pass k all frequent itemsets of

size k or less have been discovered. As the first step of pass (k +1), itemsets of size (k +1)

each having two frequent k-subsets with the same first (k —1) items are generated.

Itemsets that are supersets of infrequent itemsets are pruned (and discarded), as of course

they are infrequent (by property 1). The remaining itemsets form the set of candidates for

this pass. As the second step, the support of the candidates is computed (by reading the

database), and they are classified as either frequent or infrequent.

Example 1

Consider a database containing five distinct items, 1, 2, 3, 4, and 5. There are four

transactions in this database: {1,2,3,4,5}, {1,3}, {1,2}, and {1,2,3,4}. The minimum

support is set to 0.5. Figure 3.1 shows an example of this bottom-up approach. All five 1-

itemsets ({1}, {2}, {3}, {4}, {5}) are candidates in the first pass. After the support

counting phase, the 1-itemset (51 is determined to be infrequent. Property 1 need not

consider all, the supersets of {5}. So the candidates for the second pass are {1,2}, {1,3},

26

{1,4}, {2,3}, {2,4}, {3,4}. The same procedure repeats until all the maximal frequent

itemsets are obtained in this example, only one: { 1,2,3 ,4}.

Bottom-up search

{l,2,3,4}

{1,2,3} 	{1,2,4}

{1,2} 	{1,3} 	{2,3}

{1} 	{2}

{ 1,3,4} 	•{2,3,4}

{1,4} 	{2,4} 	{3,4}

{3} 	{4} 	 {5}

Top-down search

{ 1,2,3,4,5)

{1,2,3,4} 	{1,2,3,5} 	{1,2,4,5}. . 	{1,3,4,5} 	{2,3,4,5}

•{1,2,5} 	{1,3,5} 	{1,4,5] 	{2,3,5} 	{2,4,5} 	{3,4,5}

{1,5} 	[2,5] 	{3,5} 	{4,5}

{5}

Fig.3.1: One Way Search

27

In this bottom-up approach, every frequent itemset must have been a candidate at

some pass and is therefore also explicitly considered. When some maximal frequent

itemsets happen to be long, this method will be inefficient. In such a case, it might be

more efficient to search for the long maximal frequent itemsets using a top-down

approach.

A top-down approach starts with the single n-itemset and decreases the size of the

candidates by one in every pass. When a k-itemset is determined to be infrequent, all of

its (k-1)-subsets will be examined in the next pass. However, if a k-itemset is frequent,

then all of its subsets must be frequent and need not be examined (by Property 2).

Example 2
Figure 3.1 shows example of two-way search. Consider the same database as the

previous example. The 5 -itemset {1 ,2,3,4,5 } is the only candidate in the first pass. After

the support counting phase, it is infrequent. The candidates for the second pass are all the

4-subsets of itemset {1,2,3,4,5}. In this example, itemset {1,2,3,4} is frequent and all the

others are infrequent. By Property 2, all subsets of { 1,2,3,4} are frequent (but not

maximal) and need not be examined. The same procedure repeats until all maximal

frequent itemsets are obtained (i.e., after all infrequent itemsets are visited). .

In this top-down approach, every infrequent itemset is explicitly examined. As

shown in Figure given above, every infrequent itemset (itemset {5} and its supersets)

needs to be visited before the maximal frequent itemsets are obtained. Note that, in a

"pure" bottom-up approach, only Property 1 above is used to prune candidates. This is

the technique that Apriori algorithm uses to decrease the number of candidates. In a

"pure" top-down approach, only Property 2 is used to prune candidates.

3.3 Hybrid Approach- A Collective Strength
The aim of this work is to reduce the number of candidates and the

number of passes in the process of association rules mining

As discussed in the last section, the bottom-up approach is good for the case when

all maximal frequent itemsets are short and the top-down approach is good when all

maximal frequent itemsets are long. If some maximal frequent itemsets are long and

28

some are short, then both one-way search approaches will not be efficient. To design an

algorithm that can efficiently discover both long and short maximal frequent itemsets,

one might think of simply running both bottom-up and top-down programs at the same

time. It is possible to do much better than that. Recall that the bottom-up - approach

described above uses only Property 1 to reduce the number of candidates and the top-

down approach uses only Property 2 to reduce the number of candidates. In Hybrid'

approach both top-down and the bottom-up searches are combined. That synergistically

relies on both properties to prune candidates. A key component of the approach is the use

of information gathered in the search in one direction to prune more candidates during the

search in the other direction. If some maximal frequent itemset is found in the top-down

direction, then this itemset can be used to eliminate (possibly many) candidates in the

bottom-up direction. The subsets of this frequent itemset can be pruned because they are

frequent (Property 2). Of course, if an infrequent itemset is found in the bottom-up

direction, then it can be used to eliminate some candidates in the top-down direction•

(Property 1). This "two-way search approach" can fully make use of both properties and

thus speed up the search for the maximum frequent set.

Use property 1 to eliminate candidates in the top down search

Use property 2 to eliminate candidates in the bottom up direction

{ 1,2,3,4}

f
{1,2,3,4} 	 {1,3,4,5} {1,2,3,5} {1,2,4,5} {2,3,4,5}

{1,3,5} {1,4,5} (2,3,5) (2,4,5) {3,4,5}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1} {2} {3} {4} 	 {5}

Fig.3.2: Two way Search

29

Example 3
Consider two way search example given above in Fig.3.2, In the first pass, all five

1-itemsets are the candidates for the bottom-up search and the 5-itemset (1 ,2,3,4,5} is the

candidate for the top-down search. After the support counting phase, infrequent itemset

{ 5 } is discovered by the bottom-up search and this information is shared with the top-

down search. This infrequent itemset { 5 } not only allows the bottom-up search to

eliminate its supersets as candidates but also allows the top-down search to eliminate its

supersets as candidates in the second pass. In the second pass, the candidates for the

bottom-up search are {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}. Itemsets {1,5}, {2,5},

{3,5 }, and {4,5 } are not candidates, since they are supersets of (5 } . The only candidate

for the top-down search in the second pass is {l,2,3,4}, since all the other 4-subsets of

{ 1,2,3,4,5} are supersets of {5}. After the second support counting phase, { 1,2,3,4} is

discovered to be frequent by the top-down search. This information is shared with the

bottom-up search. All of its subsets are frequent and need not be examined. In this

example, itemsets (1,2,3), { 1,2,4}, { 1,3,4}, and {2,3,4} will not be candidates for

bottom-up or top-down searches. After that, the program can terminate, since there are no

candidates for either bottom-up or top-down searches.

In this example, the number of candidates considered, was smaller than required

by either bottom-up or top-down search. In addition to this fewer passes are needed to

read the database than either bottom-up or top-down searches. The "pure" bottom-up

approach would have taken four passes and the "pure" top-down approach would have

taken five passes for this database while Hybrid approach takes only two. In fact, this

hybrid approach will always use at most as many passes as the minimum 10 of the passes

used by bottom-up approach and top-down approach. Reducing the number of candidates

is of critical importance for the efficiency of the frequent set discovery process,. since the

cost of the entire process comes from reading the database (I/O time) to generate the

supports of candidates (CPU time) and the generation of new candidates (CPU time). The

support counting of the candidates is the most expensive part. Therefore, the number of

candidates dominates the entire processing time. Reducing the number of candidates not

only can reduce the I/O time but also can reduce the CPU time, since fewer candidates

need to be counted and generated. Therefore, it is important that Hybrid Search reduces

both the number of candidates and the number of passes. A realization of this two-way

search algorithm is discussed next.

The computation of Hybrid algorithm follows the bottom-up breadth-first search

approach. It is based on the Apriori and Max Miner algorithms, and for greatest ease of

exposition it is presented as a modification to the Apriori algorithm.

Briefly speaking, in each pass, in addition to counting supports of the candidates

in the bottom-up direction, the algorithm also counts supports of the itemsets in the top-

down search. This will help in pruning candidates, but will also require changes in

candidate generation, as explained later.

Consider a pass k, during which, in the bottom-up direction, itemsets of size k are

to be classified. If, during the top-down direction some itemset that is an element of the

TOPC of cardinality greater than k is found to be frequent, then all its subsets of

cardinality k can be pruned from the set of candidates considered in the bottom-up

direction in this pass. They, and their supersets will never be candidates throughout the

rest of the execution, potentially improving performance. But of course, as the maximum

frequent set is ultimately computed, they "will not be forgotten."

Similarly, when a new infrequent itemset is found in the bottom-up direction, the

algorithm will use it to update the TOPC. The subsets of the TOPC must not contain this

infrequent- itemset.

Fig 3.3 given below conceptually shows the combined two-way search. The

TOPC is initialized to contain a single element, the itemset of cardinality n containing all

the elements of the database. As an example of its utility, consider the first pass of the

bottom-up search. If some m 1-itemsets are infrequent after the first pass (after reading

the database once), the TOPC will have one element of cardinality n-m. Removing the m

infrequent items from the initial element of the TOPC generates this itemset. In this case,

the top-down search goes down m levels in one pass. In general, unlike the search in the

bottom-up direction, which goes up one level in one pass, the top-down search can go

down many levels in one pass.

31

n- itemset

Top down search may go down many

Levels in one pass

Top down

Frequent itemset
Frequent itemset

Frequent itemset

Frequent itemset
Bottom up search may go up onl

one level in one pass

Bottom up

1 -itemset

Fig.3.3: Working of Two Way Search

Notice that the bottom up and the top down searches do not proceed in a

symmetrical fashion. The reason is that by a general assumption there are no extremely

long frequent itemsets. If this assumption is not likely to hold, one can easily reverse the

roles of the searches in the two directions. By using the TOPC, it will be possible to

discover some maximal frequent itemsets in early passes. This early discovery of the

maximal frequent itemsets can reduce the number of candidates and the passes of reading

the database, which in turn can reduce the CPU time and I/O time. This is especially

significant when the maximal frequent itemsets discovered in the early passes are long.

To reduce the number of database scans, transaction having k items can be

removed, or marked, at, the end of pass k. So the number of transactions are reduced for

further iterations.

32

Chapter 4

System Design

Having analyzed the problem and identified the pre-processing operations that are

required of the software to be developed, the following solution is proposed:

The software takes as input the name of attributes to be correlated and minimum

support. Then candidate itemsets are generated using Apriori algorithm or Hybrid

algorithm. Itemsets having support greater than minimum support are called frequent

itemsets. These frequent itemsets are used to generate association rules, which are output

of the software. Database used in this software is designed in oracle, having transaction

IDs and items.

Figure 4.1 presents the diagrammatic representation of the design discussed

above:

33

Figure 4.1: Diagrammatic representation of the proposed design.

Input attribute names 	Minimum support

Apriori 	 Hybrid
Algorithm 	 Algorithm

Find k-candidate itemsets If no item is infrequent in
using join procedure bottom up direction find

candidate itemsets in top
down direction and find their
support by reading database

Find support of each
candidate set using database

Find candidate itemsets in
bottom up direction and find

Find frequent itemsets by their support by reading
• comparing support of each database

candidate set from minimum
support and using prune
procedure Recover candidate itemsets

in bottom up direction

Find association rules using 	 Prune candidates in
frequent itemsets 	 bottom up direction

K++ 	K++

Find frequent itemsets in If Apriori top down direction

Find frequent itemsets in
bottom up direction

If Hybrid

Output34

To make Hybrid approach effective two issues are addressed: First, how to update

the TOPC efficiently? Second, once the subsets of the maximal frequent itemsets found
in the TOPC are removed, how to generate the correct candidate set for the subsequent

passes in the bottom-up direction?

4.1. Updating the TOPC Efficiently
. Consider some itemset Y that has been "just" classified as infrequent. It will be a

subset of one or more itemsets in the TOPC, and it is required to update the TOPC such

that its subsets no longer contain Y. To update the TOPC, the following process will be

done for every superset of Y that is in the TOPC. Every such itemset (say X) is replaced

by tY I itemsets, each obtained by removing from X a single item (element) of Y. Such

newly generated itemset is added to the TOPC only when it is not already a subset of any

itemset in the TOPC.

{1,2,3...n}

 by removing infrequent items from 7 to n

{I,2,3,4,5,6}

• by infrequent itemset { 1,6}

{1,2,3,4,5} 	 {2,3,4,5,6}

{1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5} by infrequent itemset {3;6} 	(2,4,5,6}.

1. 	
• 	 / N

11 1 3) (1,2,4) (1,2,5) (1,3,S) [1,4,5) (2,3,4) (2,3,51 (2,4,5) (3,4,5) 	•

{1;2} {1,3} {1,4} (1,5) {2,3} {2,4} {2,5} {3,4} {3,5} {4,5} (1,6) [3,6) 	(2,6) (4,6) {5,6}

-

{1 } {2} {3} {4} {5} 	 {6} 	(71... (n)

Fig. 4.2: Hybrid Search

35,

Example 1

Consider Hybrid search given in fig 4.2, suppose {{1,2,3,4,5,6)j is the current
("old") value of the TOPC and two new infrequent itemsets {1,6} and {3,6} are

discovered. Consider first the infrequent itemset (1,6}. Since the itemset (1,2,3,4,5,6}
(element of the TOPC) contains items 1 and 6, - one of its subsets will be {l,6}, by

removing item 1 from itemset 13.
From {l,2,3,4,5,6}, 2,3,4,5,6} is found, and by removing item 6 from itemset

{l,2,3,4,5,6}, { 1,2,3,4,5} is found. After considering itemset { 1,6}, the TOPC becomes

I{ 1,2,3,4,5 }, {2,3,4,5,6} } . Itemset {3,6} is then used to update this TOPC. Since {3,6} is

a subset of {2,3,4,5,6}, two itemsets {2,3,4,5} and {2,4,5,6} are generated to replace

{2,3,4,5,6}. Itemset {2,3,4,5} is a subset of itemset {1,2,3,4,5} in the new TOPC, and it

will not be added to the TOPC. Therefore, the TOPC becomes {(1,2,3,4,51, (2,4,5,6)).

4.2. New Candidate Generation Algorithms

As discussed previously a preliminary candidate set will be generated after the

join procedure is called. In Hybrid algorithm, after a maximal frequent itemset is added to

the TOPL, all of its subsets in the frequent set (computed so far) will be removed. The

example shows that if the original join procedure of the Apriori-gen algorithm is applied,

some of the needed itemsets could be missing from the preliminary candidate set.

Consider Fig 4.2 given above suppose that the original frequent itemset L3 is { { 1,2,3 },

{1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {2,4,6}, {2,5,6},

{3,4,5}, {4,5,6}}. Assume itemset (1,2,3,4,5} in the TOPC is determined to be frequent.

Then all 3-itemsets of the original frequent set L3 will be removed from it by Hybrid

algorithm, except for {2,4,6}, {2,5,6}, and {4,5,6}. Since the Apriori-gen algorithm uses

a (k - 1)-prefix test on the frequent set to generate new candidates, and no two itemsets in

the current frequent set { {2,4,6}, {2,5,6}, .{4,5,6} } share a 2-prefix, no candidate will be

generated by applying the join procedure on this frequent set. However, the correct

preliminary candidate set should be { {2,4,5,6} }. Based on the above observation, some

missing candidates need to be recovered.

36

4.3 New Preliminary Candidate Set Generation Procedure
In new preliminary candidate set generation procedure, the join procedure of the

Apriori-gen algorithm is first called to generate a temporary candidate set, which might
be incomplete. In such a case, a recovery procedure will be called to recover the missing

candidates. All missing candidates can be obtained by restoring some itemsets to the
current frequent set. The restored itemsets are extracted from the TOPL of the current

pass, which implicitly maintains all frequent itemsets discovered so far. The first group of

itemsets that needs to be restored contains those k-itemsets that have the same (k-1)-

prefix as some itemset in the current frequent set. Consider then in pass k, an itemset X in
the TOPL and an itemset Y in the current frequent set such that RI > k. Suppose that the

first (k-1) items of Y are in X and the (k-1)5` item of Y is equal to the j`h item of X. The k-
subsets of X is obtained that have the same (k-1)-prefix as Y by taking one item of X that

has an index greater. than j and combining it with the first (k-1) items of Y, thus getting
one of these k-subsets. After these k-itemsets are found, candidates are recovered by

combining them with itemset Y

_ Example 2
Consider Hybrid search given in - Fig 4.2, the TOPL is {{l ,2,3,4,5 1,2,3,4,5)1 and the

current frequent set is { {2,4,6}, {2,5,6}, {4,5,6)). The only 3-subset of J(1,2,3,4,5)} that

needs to be restored for itemset {2,4,6} to generate a new candidate is {2,4,5}. This is
because it is the only subset of { { 1,2,3,4,5 } } that has, the same length and the same 2-

prefix as itemset {2,4,6}. By combining {2,4,5} and {2,4,6}, missing candidate {2,4,5,6}

is recovered. No itemsets need to be restored for itemsets {2,5,6} and {4,5,6}..

The second group of itemsets that need to be restored 'consists of those k-subsets

of the TOPL having the same (k-1)-prefix but having no common superset in the TOPL.

A similar recovery procedure can be applied after they are restored.

3

Chapter 5
Implementation

The project will use Windows 9x/NT as the platform, C as programming language

and Oracle Pro C as precompiler to access database. Some important procedures used in

implementation are given below:

5.1 Updating the TOPC Efficiently
Algorithm: TOPC-gen procedure

Input: Old TOPC and the infrequent set GARBAGEk found in pass k

Output: New TOPC

1. For all itemsets s, the element of GARBAGEk

2. For all itemsets m, the element of TOPC

3. Ifs is a subset of m

4. TOPC = TOPC \ {m}

5. For all items e, element of itemset s

6. If {m \{e} } is not a subset of any itemset in the TOPC

7. TOPC = TQPC U {m \ {e}}

8. Return TOPC

5.2 Recovery Procedure
In new preliminary candidate set generation procedure, the join procedure of the

Apriori-gen algorithm is first called to generate a temporary candidate set, which might

be incomplete. In such a case, a recovery procedure will be called to recover the missing

candidates.

All missing candidates can be obtained by restoring some itemsets to the current

frequent set. The restored itemsets are extracted from the TOPL of the current pass,

which implicitly maintains all frequent itemsets discovered so far.

38

Algorithm: The recovery procedure

Input: Ck+1 from join procedure, Lk;, and current TOPL
Output: a complete candidate set Ck+1

1. For all itemsets 1 in L~;

2. For all itemsets m in TOPL

3. If the first (k-1) items in I are also in m

4. /* Suppose m.item j =l.item (k —1) */

5. For ifrom (j +1) to m

6. Ck +1 = Ck+t U {{l.item 1, l.item 2,..., l.item k, m.item i } }

5.3. New Candidate Generation Algorithm
In summary, candidate generation process contains three steps as described

below.

Algorithm: New candidate generation procedure

Input: Lk, current TOPC, and current TOPL

Output: new candidate set Ck+1

1. Call the join procedure as in the Apriori algorithm

2. Call the recovery procedure if necessary

3. Call the prune procedure

5.4 The Basic Hybrid-Search Algorithm
. Here is the complete algorithm, The Hybrid-Search Algorithm, which relies on

the combined approach for determining the maximum frequent set.

• Algorithm: The Hybrid-Search algorithm

Input: a database and a user-defined minimum support

Output: TOPL, which contains all maximal frequent itemsets,
corresponding association rules

1. Lo =0; k=1; Ci ={ {i}Ji is the element of I}
2. TOPC = { { 12...n} }; TOPL = 0

3. While Ck=O

39

4. Read database and count supports for Ck and TOPC.

5. Remove frequent itemsets from TOPC and add- them to TOPL

6. Lk= {frequent itemsets in Ck} \{subsets of TOPL}

7. GARBAGE k = {infrequent itemsets in Ck}

8. Call the TOPC-gen algorithm if GARBAGE; =0

9. Call the join procedure to generate Ck+1

10. If any frequent itemset in Ck is removed in line 6

11. Call recovery procedure to recover candidates to Ck+i

12. Call new prune procedure to prune candidates in Ck+l

13. k:=k+l

14. End-while

15. Return TOPL

The TOPC is initialized to contain one itemset, which consists of all the database

items. The TOPC is updated whenever new infrequent itemsets are found (line 8). If an

itemset in the TOPC is found to be frequent, then its subsets will not participate in the

subsequent support counting and candidate set generation steps. Line 6 will exclude those

itemsets that are subsets of any itemset in the current TOPL, which contains the frequent

itemsets found in the TOPC. If some itemsets in Lk are removed, the algorithm will call

the recovery procedure to recover missing candidates (line 11).

5.5 Join Procedure

Algorithm: self-joining

Input: Set of frequent itemsets Lk_1

Output: Set of candidate itemsets Ck

1. Select p.itemj, p.item2, ..., p.item,E_1, q.item,k_j

From Lk_l p, Lk_J q

Where p.itemi=q.itemi,. , p.itemk_2=q.itemi;_2, p.itemk_I <

q. item;_

2. Return Ck

5.6 Prune Procedure
Algorithm: pruning

Input: Ck

Output: Ck

1. For all itemsets c in Ck do

2. For all (k-1)-subsets s of c do

If (s is not in Lk_1) then delete c from Ck

3. Return Ck

5.7 Apriori Procedure
Algorithm: Apriori

Input: Minimum support min_ support, Attributes to be correlated

Output: Set of frequent itemsets Lk

Ck: Candidate itemset of size k

L;: {frequent items)

1. For (k = 1; Lk !_0; k++) do begin

2. Ck+i = candidates generated from Lk;

3. For each transaction tin database do

4. Increment the count of all candidates in Ck+i

that are contained in t

5. Lk+ f = candidates in Ck+J with min support

End

Return Uk Lk;

41

ASSOCIATION RULES MINER

ENTER DATABASE NiNE: table

USEP NAME- saurabh

PFiSSUOiD: xwwxxx

USING DATABASE SlOPED IN MEMOPY

ENTEP MINIMUM SUPPOPT: Z

ATTRIBUTES IPE:

0]. bread, 	 107. 'pastries,
1]. butter, 	 111.,, pizza, , 	 r

2]. milk, 	 12]. burger,
3]. flavoured_milk, 	131. biscuits,
4]. vegetables, 141. namkeen,
5]. egg, 15]. 	j am,
6]. cream, 16]. corn_flakes, •js
7]. cheese, 17]. cold_drink,
8]. ice_cream, '
9]. patties,

ENTER ITEM NAMES TO BE CORRELATED: }j

1!

SELECT ALGO FOP ASSOCIATION PULES FIINING

1. AARIORI ALGORITHU •

2. HYBRID ALGORITHM •

3. EXIT

31

FREQUENT 1 TEMSETg OF CARD 1MRL TY I AIRE :

butter,
milk,
flavoured_m1lk,
vegetables,
egg.
cream,
cheese,
ice cream,
patties,
pastries,

FREQUENT ITEt1SFTS LOF CARD1NAL1TY 2 ARE

butter,mi1k,
butter,f1auoured milk,
butter,egg, 	-
butter ,cream,
butter,cheese,
butter,ice_cream,
butter ,patties,
butter,pastries,
mi lk, f lauoured_m i 1k,
milk,vegetables,
milk,egg,
milk, cream,
milk,cheese,
milk,ice_cream,
milk,patties,
milk,pastries,
1'lauoured_milk,cream,
flauoured_milk,ice_cream,

ASSOCIATION RULES ARE:

butter =>milk, 66.67x
milk =>butter, 57.14'/.
butter =>f lavoured_m i 1k, 66.67%
flavoured milk =>buutter, 66.671
butter =>egg, 33.33/
egg =>butter, 100.0OX
butter =>cream, 50.00i
cream =>butter, 75.00.
butter =>cheese, 50.001
cheese =>butter, 75.011x
butter =>ice_cream, 50.001
ice cream =>butter, 60.00x
butter ->patties, 50.00
patties =>butter, 60.(0%
butter =>pastries, 66.67x
pastries =>butter, 66.67'/.
milk =>flauoured_milk, 57.142
flavoured milk =>mi1k, 66.672

CANT....

milk =>uegetables, 28.57x
vegetables =>milk, 100.00
milk =>egg, 28.571
egg =>milk, 100.00x
milk =>cream, 57.14%
cream =>milk, 100.00%
milk =>cheese, 42.861
cheese =>milk, 75.001
milk =>ice_cream, 57.14x
ice_cream =>milk,. BO.00X
milk =>patties, 57.14X
patties =>milk, 80.00
milk =>pastries, 57.14
pastries =>milk, 66.6?x
f lauoured_milk =>cre<am, 33.33x
cream =>f 1. auoiired_milk, 50.00
flauoured_milk =>ice_cream, 33.33X
ice_cream =>flauoured_milk, 40.00/

FREQUENT ITEMSETS OF CARDINAL!TV 7 ARE:

butter,rni Ik,eyg,crear,cheese ice—cream, patties,
blttter,rc,il}, egg, cream, cheese, ice creari,pastries.,
butter m ilk egg cream cheese, patt ies, pastr ies,
butter,miIk,egg,cream, ice crean,patties,pastries,
butter,milk,egg,cheese, ice_cream,patties,pastries,
butter,milk,creatti,cheese, ice credm,patt ies,pastries,
butter ,egg,cream,cheese, ice cream,patties,pastr Les,
milk, egg ,crean cheese ice_cream , patt ies ,pastries

HSSUClATlUN RULES ARE:

butter =>milk,egg,cream,cheese,ice_cream,patties, 33.3::Jz
milk =>butter,egg,cream,clieese,ice_cream,patties, Z8.57x
egg =>butter,milk,cream,cheese,ice_cream,patties, 100.00
cream =>butter,milk,eyg,clheese,ice_cream,patties, 50.00z
cheese =>butter,milk.egg,cream.ice_cream,patties, 50.00z
ice_cream =>butter,milk,egg,cream,cheese,patties, 40.00
patties =>butter,milk,egg,cream,cheese,ice cream, 40.00x
butter =>milk,egy,cream,cheese,ice_cream,pastries, 33.33x
milk =>butter,egy,cream,cheese.ice_cream,pastries, 28.5?z
egg =>butter,milk,cream,cheese,ice_cream,pastries, 100.00x
cream =>butter,nilk,eyg,cheese,ice cream,pastries, 50.00x
cheese =>butter,milk,egg,cream, ice_cream ,pastries, 50.00i
ice_cream =>butter,milk,egg,cream,cheese,pastries, 40.00•x.
pastries =>butter,milk,egy,cream,cheese, ice _ cream, 33.33%
butter =>milk,egg,cream,cheese,patties,pastries, 33.33x
milk =>butter,egg,cream,cheese,patties,pastries, 28.5?x
egg =>butter,milk,cream,cheese,patties,pastries, 100.00x
cream =>butter,milk,egg,cheese,patties,pastries, 50.00x

Fig 6.10: Screen to show performance of Apriori algorithm

51

FREQUENT ITEMSETS EE:

bittter,ni1k.egg,creamcheese, ire_cream.pattics,pastries,
mh1kuege1db1es,
milk)f!auoured_milk,cream, ice_cream,ptttiesptstries,

ASSOCIATION RULES ARE:

butter =>milk,egg,cream,cheese, ice_c'ream,patties,pastries,
milk =>but-ter,egg,cr'eam,cheese, ice_ cream,patties,pastries,
egg =>butter,milk,cream,clyeese,ice_cream,pat ies,pastries,
cream =>butter,milk,egg,cheese,ice_cream,patties,pastries,
cheese =>butter,milk,egg,cream, ice_cream,patties,pastries,
ice-cream =>butter.milk,egg,cream,ctheese,patties,pastries,
patties =>butter,milk,egg,cream,clheese,ice_cream,pastries,
pastries =>butter,m}k,egg,cream,cheese.,ice_cream,patties,
milk =>vegetables, Z8.57%
vegetables =>milk, 100.001
butter,milk,=>egg,cre.am,c}Neese, ice_ cream,patties,pastries,
mil.k,egg,=>cream,ctieese,ice_cream,pa-tties,pastries,butter,
egg,cream,=>cheese, ice _cream,patties,pastri,es,butter,milk,
cream,cheese,=>ice_cream,patties,pastries,butter,miIk, egg,
cheese, ice cream,=>patties,pas.tries,butter,milk.,egg,cream,
ice_cream,patties,=>pastries,butter,milk,egg,cream,c}}eese,
patties,pastries,=>butter,milk,e.gy,cream,cheese, ice _ cream,
pastries,butter,=>milk,egg,cream,cheese,ice_cream,patties,

33.331
Z8. S7
100.00%
50.00/
50.00x
40.001
40.00'/.
33.331

50.00x
100.00
100.00X „
50.001
100.00/
100.00
50.00::
100.00/

440

400
Candidate 	 Apriori

itemsets 360 	 Hybrid

320

280

240

200

160

120

80

40

0 1 	2 34 56 7 8 9 10 11 12 13

Cardinality of frequent itemset

Fig 6.13: Graph shows dependence between no. of large frequent item sets and
candidate item sets generated

54

Data
base 	 Apriori
scans 	 Hybrid

Number of candidate itemsets

Fig 6.14: Graph shows relation between no. of data base scans and no. of candidate
itemsets

55

Chapter 7
Concluding Remarks

An efficient way to discover the maximum frequent set can be very useful in various data
mining problems, such as the discovery of the association rules. The maximum frequent

set provides a unique representation of all the frequent itemsets. In many situations, it

suffices to discover the maximum frequent set, and once it is known, all the required

frequent subsets can be easily generated.
This work presents an algorithm that can efficiently discover the maximum

frequent set. Hybrid-Search algorithm could reduce both the number of times the

database is read and the number of candidates considered.
Experiments show that the improvement of using this approach can be very

significant, . especially when some maximal frequent itemsets are long. A popular

assumption is that the maximal frequent itemsets are usually very short and therefore the

computation of all (and not just maximal) frequent itemsets is feasible. Such. assumption

on maximal frequent itemsets does not need to be true in important applications. Hybrid

algorithm may be useful in these applications such as the problem of discovering patters

in price changes of individual stocks in a stock market. Prices of individual stocks are
frequently quite correlated with each other. Therefore, the discovered patterns may

contain many items (stocks) and the frequent itemsets are long.

The number of data base scans are reduced significantly, it depends upon the size
of memory.

56

References

1. Agrawal R., Imielinski T., and Swami A. "Mining association rules between sets of

items in very large databases ". Proceedings of the ACM SIGMOD Conference on

Management of data, pages 207-216, 1993.

2. Jiawei Han and Michaline Camber. "Data Mining Concepts and Techniques", Simon

Fraser University, 2000.

3. Park J. S., Chen M. S., and Yu P. S. "An Effective Hash-based Algorithm for Mining

Association Rules." Proceedings of the ACM-SIGMOD Conference on Management of
Data, 1995. Extended version appears as: "Using a Hash-based Method with Transaction

Trimming for Mining Association Rules." IEEE Trans-actions ob Knowledge and Data

Engineering, Volume 9, no 5, September 1997, pages 813-825.

4. Charu C. Aggarwal and Philip S. Yu. "Mining Large Itemsets for Association Rules".

IBM T. J. Watson Research Center.

5. Rakesh Agrawal and Ramakrishnan Srikant."Fast algorithm for mining association

rules". IBM Research report RJ9839, June 1994, IBM Almaden Research Center, san

Jose, CA.

6. Park J. S., Chen M. S., and Yu P. S. "An Effective Hash-based Algorithm for Mining

Association Rules ". Proceedings of the ACM-SIGMOD Conference on Management of

Data, 1995. Extended version appears as: "Using a Hash-based Method with Transaction

Trimming for Mining Association Rules." IEEE Trans-actions ob Knowledge and Data
Engineering, Volume 9, no 5, September 1997, pages 813-825.

57

7. Savasere A., Omiecinski E., and Navathe S. B. "An efficient algorithm for mining

association rules in large databases." Proceedings of the 21st International Conference on
Very Large Databases, 1995.

8. Bayardo R. J. "Efficiently Mining Long Patterns from Databases." Unpublished
Research Report.

9. M. Houtsma acid A. Swami. Set-oriented mining of association rules. Research Report
RJ 9567, IBM Almaden Research Center, Oct. 1993.

10. Agrawal R., and Srikant R. "Fast Algorithms for Mining Association Rules in Large

Databases." Proceedings of the 20th International Conference on Very Large Data base,
pages 478-499, 1994.

11. H. Mannila, H. Toivonen, and A. Verkamo. Improved methods for finding

association rules. In Proc. AAAI Workshop on Knowledge Discovery, July 1994.

12. J. Park, M. Chen, and P. Yu. An effective hash-based algorithm for mining

association rules. In Proc. ACM-SIGMOD, May 1995.

13. A. Sarasere, E. Omiecinsky, and S. Navathe.Anefficient algorithm for mining

association rules.in large databases. In Proc. 21st VLDB, Sept. 1995.

14. H. Toivonen. Sampling large databases for association rules. In Proc. 22nd VLDB,
Sept. 1996.

15. D. Gunopulos, H. Mannila, and S. Saluja. Discovering all most specific sentences by
randomized algorithm. In Proc. 13th ICDT, Jan. 1997.

16. S. Brin, R. Motwani, J. Ullman, and S.. Tsur. Dynamic itemset counting and

implication rules for market basket data. In Proc. SIGMOD, May 1997.

58

17. M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery

of association rules. In Proc. 3rd KDD, Aug. 1997.

59

Appendix A

Pro C Commands Used In Project

To Declare The Variables

EXEC SQL begin declare section;

variable types and names;
EXEC SQL end declare section;

To Handle Errors
EXEC SQL WHENEVER SQLERROR DO sgl_error("error message");

To Connect From Oracle

EXEC SQL 1 begin declare section;

char * username;

EXEC SQL end declare section;

EXEC SQL CONNECT :username ;

To Display Attribute's Name

EXEC SQL DECLARE contents CURSOR FOR

select column name from user tab columns where table name="table";
exec sql begin declare section;

varchar name[17];

exec sql end declare section;

exec sql open contents;

exec sql whenever not found do break;

TID PIZZA BURGER PASTRIES PATTIES CORN FLAKES JAM
1 1 1 0 1 1 0
2 1 1 0 0 1 0
3 1 1 0 1 1 0
4 1 0 0 0 1 0
5 1 0 0 0 0 0
6 0 0 1 0 0 1
7 0 0 1 1 0 1
8 0 1 0 1 0 1
9 0 1 0 1 0 0
10 0 1 0 1 0 0

L L1R R`

\
rl r. R

63

Appendix A

Pro C Commands Used In Project

To Declare The Variables

EXEC SQL begin declare section;

variable types and names;

EXEC SQL end declare section;

To Handle Errors
EXEC SQL WHENEVER SQLERROR DO sgl_error("error message");

To Connect From Oracle

EXEC SQL 1 begin declare section;
char *username;

EXEC SQL end declare section;

EXEC SQL CONNECT :username ;

To Display Attribute's Name

EXEC SQL DECLARE contents CURSOR FOR
• select column name from user tab_columns where table_name="table";

exec sql begin declare section;

varchar name[17];

exec sql end declare section;

exec sql open contents;

exec sql whenever not found do break;

for(;;)

{
exec sql fetch contents into :name;

dbms_output.put_line(j Iname);
}

exec sql close contents;

exec sql commit work release;

To Find The Support Of Attributes

EXEC SQL DECLARE count CURSOR FOR

select tid

from "table"

where

for(int y=0;y<tempc->length;y++)

:tempc->candidate[y]= 1;

exec sql open count;

exec sql whenever not found do break;

for(;;)

{

exec sql fetch count into :tid;

:tempc->support++;

}

exec sql close count;

exec sql commit work release;

61

Appendix B
Sample Database

TID BREAD BUTTER BISCUITS ICE CREAM MILK EGG
1 0 0 0 1 1 0
2 1 1 0 1 1 0
3 1 1 0 1 1 0
4 1 1 0 1 0 0
5 0 0 0 1 0 1
6 1 0 0 1 0 1
7 0 0 1 1 1 1
81 1 	.1 0 1 1
9 0 1 1 0 1 1
10 1 1 1 0 0 1

TID VEGITABLES CREAM CHEESE FLAV_
MILK

NAMKEEN COLD_DRI
NKS

1 1 1 1 1 0 1•
2 1 1 1 1 0 1
3 1 1 1 1 0 1
4 1 0 1 1 0 0
5 1 0 1 1 0 0
61 0 0 1 1 	- 0
7 1 0 0 1 0 0
8 0 0 0 0 0 1
9. 0 0 1 0 0 1
10 0 0 1 0 0 1

62

TID PIZZA BURGER PASTRIES PATTIES CORN FLAKES JAM
1 1 1 0 1 1 0
2 1 1 0 0 1 0
3 1 1 0 1 1 0
4 1 0 0 0 1 0
5 1 0 0 0 0 0
6 0 0 1 0 0 1
7 0 0 1 1 0 1
8 0 1 0 1 0 1
9 0 1 0 1 0 0
10 0 1 0 1 0 0

XL LI3R

' 	o3'

63

	Title
	Abstract
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Untitled

