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ABSTRACT 

This work is an attempt to develop an efficient algorithm to 

mine association rules. The problem of association rule 

generation has recently gained considerable prominence in 

the data mining community because of its use as a tool for 

knowledge discovery. Consequently, there has been a spurt 

of research activity in the recent years surrounding this 

problem. 

Data mining is motivated by the decision support problem 

faced by most large retail organizations. Progress in bar-

code technology has made it possible for retail 

organizations to collect and store massive amount of data, 

• referred to as the basket. data. A record in such data 

typically consists of the transaction data and the items 

bought in the transaction. Successful organizations view 

such databases as important component of the marketing 

strategy. They are interested in instituting information-

driven marketing process, managed by database 

technology, which enables marketers to develop and 

implement customized marketing programs and strategies. 

An association rule identifies a combination of attribute or 

items that occur together with greater frequency than might 

be expected if the values or items were independent of one-

another. Association rules find the relationship between the 

different attributes in a transaction database. Such rules 

track the patterns in transactions such as finding how the 

presence of one attribute in the transaction affects the 

presence of another and so forth. 

An association rule is the expression of the form A=>B 

where A and B are Boolean attributes and the symbol => is 
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called quantifier. The idea of an association rule is to 

develop a systematic method by which a user can figure out 

how to infer the presence of some sets of attributes, given 

the presence of other attributes in a transaction. Such 

information is useful in making decision such as customer 

targeting, shelving, and sales promotion. 

• Here the main focus is on reducing number of candidate 

item sets generated and number of database scans in the 

process of association rules mining. 
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Chapter 1 

Introduction 

1.1 Overview 
Data mining is nowadays one of the most active research topics in computer 

science. It is now proven that many areas .could benefit from it e.g. To increase the 

number of items sold, for instance, by appropriately arranging the products in the shelves 

of a supermarket (they may, for example, be placed adjacent to each other in order to 

invite even more customers to buy them together). 

Association analysis is a major functionality of data mining. Many papers 

investigated on various methods for association rule mining, concept and theories. Most 

of the current research on association analysis has two general goals: reduction of 

candidate Itemsets and reduction of database scans. 

Typical algorithm for mining association rules is Apriori algorithm. This 

algorithm performs reasonably well when all maximal frequent item sets are short. 

However performance drastically decreases when some of the maximal frequent item sets 

are relatively long. So the attempt is to mine association rules (frequent item sets) by a 

method that will efficiently work for small as well as long item sets. 

1.2 Problem Description 
Given a set of transactions D, the problem of mining association rules is to 

generate all association rules that have support and confidence greater than the user 

specified minimum support (called min_supp) and minimum confidence (called 
min _cont) respectively. 

Here is the formal statement of problem [5]: Let I={ii, i2...im} be a set of literals, 

called items. Let D be a set of transactions, where each transaction T is a set of items 

such that T is the subset of I. Associated with each transaction is a unique identifier, 

called its TID. A transaction T contains X, a set of some items in I, if X is the subset of T. 

An association rule is an implication of the form X => Y, where X and Y are the proper 

subset of I and no item is common in X and Y. The rule X => Y holds in the transaction 
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set D with confidence c, if c% of transactions in D that contain X also contain Y. The rule 

X => Y has support s in the transaction set D, if s% of transactions in D contain X U Y. 

1.3 Problem Decomposition 
The problem of discovering all association rules can be decomposed into two sub 

problems: 

1. Find all sets of items (Itemsets) that have transaction support abate minimum 

support. The support for an itemset is the number of transactions that contain the 

itemset. Itemsets with minimum support are called large Itemsets, and all others 

small Itemsets. 

2. Use the large Itemsets to generate the desired rules. The general idea is that if, 

say, ABCD and AB are large Itemsets, then If conf >= minconf, then the rule 

AB=>CD holds. 

Actual aim of this work is to reduce the number of candidate itemsets generated 

and to reduce the number of database scans in the process of association rules 

mining. 

1.4 Organization of Report 

The first chapter gave an overview of Association analysis and discussed the 

problem to be solved. The second chapter presents the essence of the literature surveyed 

and discusses relevant theoretical issues. The third chapter carries out a detailed analysis 

of the problem, the solution for which is to be developed. Chapter four presents the 

detailed design of the proposed solution follows this. Chapter five gives the 

implementation of the solution. In chapter six, results obtained from the software 

developed are presented and discussed. Finally, chapter eight concludes the work. 
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Chapter 2 

Literature Survey 

2.1 Data mining 
Simply stated, data mining refers to extraction of interesting (non-trivial, implicit, 

previously unknown and potentially useful) information or patterns from data in large 

databases [2]. 

Automated data collection tools and matures database technology lead to 

tremendous amounts of data stored in databases, data warehouses and other information 

repositories. So we are drowning in data, but starving for knowledge! 

Solution: Data warehousing and data mining 

2.2 Data, mining as knowledge discovery process 
Figure 2.1 shows Data mining as knowledge discovery process [2]. The steps 

involved are: 

• Learning the application domain: 

Relevant prior knowledge and goals of application 

• Creating a target data set: data selection 

• Data cleaning and preprocessing: (may take 60% of effort!) 

To remove noise and inconsistent data 

• Data integration 

Where data relevant to the analysis task are retrieved from the database. 

• Data reduction and transformation 

Where data are transformed or consolidated into forms appropriate for mining by 

performing summary or aggregation operations, for instance. 

• Choosing functions of data mining 

Summarization, classification, regression, association, clustering. 

• Choosing the mining algorithm(s) 

• Data mining: 



Search for information/patterns of interest. 

• Pattern evaluation 

To identify the truly interesting patterns representing knowledge based on some 

interestingness measures. 

• Knowledge presentation 

Visualization, transformation, removing redundant patterns, etc 

• Use of discovered knowledge 

Database 

Clearing and 

Integration 

Flat Files 

/4 , . 

Selection and 

Transformation 

Data Mining 

Evaluation and 

Presentation 

Knowledge 

Fig. 2.1: Data Mining as Knowledge Discovery Process 
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2.3 Data warehousing 
Data warehousing is the process of constructing and using data warehouses [2]. 

Data warehouse can be defined in many different ways [2]. 

• A repository of multiple heterogeneous data sources organized under a unified 

schema at a single site in order to facilitate management decision-making. 

• A decision support database that is maintained separately from the organization's 

operational database. 

• Support information processing by providing a solid platform of consolidated, 

historical data for analysis. 

• "A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile 

collection of data in support of management's decision-making process."—W. H. 

Inmon 

.2.4 Data Mining Functionalities 
Data mining functionalities [2] are used to specify the kind of pattern to be 

found in data mining task. 

Data mining functionalities and the kinds of patterns they can discover are 

described below. 

2.4.1 Concept/Class Description: Characterization and discrimination 
Data can be associated with class or concepts. For example, in a store "XYZ", 

classes of items for sale include computers and printers and concepts of customers 

include bid spenders and budget spenders. It can be useful to describe individual classes 

and concepts in summarized, concise and yet precise terms. Such description of a class 

and concepts are called concept/class description. This description can be derived via 

data characterization or data discrimination. 

Data characterization is the process of summarizing the data of the class under 

study. 

Data discrimination is the process of comparing target class with one or more 

comparative classes. 



2.4.2 Association Analysis 
Association analysis is the discovery of association rules showing attribute-value 

conditions that occur frequently together in a given set of data 

Example: 

Age (X, "20..29") ^ income (X, "20..29K") _> buys (X, "PC") 

[Support = 2%, confidence = 60%] 

2.4.3 Classification and Prediction 
Classification is the process of finding models (functions) that describe and 

distinguish classes or concepts for future prediction 

E.g., classify countries based on climate, or classify cars based on gas mileage 

Prediction is the process of Predicting some unknown or missing numerical values 

2.4.4 Cluster analysis 
If class label is unknown, Group data to form new classes, e.g., cluster houses to 

find distribution patterns. 

Clustering is based on the principle of maximizing the intra-class similarity and 

minimizing the interclass similarity. 

2.4.5 Outlier Analysis 
Outlier is a data object that does not comply with the general behavior of the data 

It can be considered as noise or exception but is quite useful in fraud detection and rare 

event analysis. 

2.4.6 Evolution Analysis 
Data evolution analysis describes and models regularities or trends for objects 

whose behavior changes over time. 
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2.5 Frequent sets mining 
Frequent item sets are the sets of items that have minimum support specified by 

the user [2]: 

• A subset of a frequent item set must also be a frequent item set, 

i.e., if {AB} is a frequent item set, both {A} and {B} should be a frequent item 

sets. 

• Frequent item sets are used to generate association rules. 

2.6 Association Analysis 
Finding association rules that represent correlation between items is called 

association analysis or association rule mining [2]. 

2.6.1 Association Rules 
Association rules find the relation between the items in a database of sales 

transactions. 

An association rule identifies a combination of attribute or items that occur 

together with greater frequency than might be expected if the values or items were 

independent of one-another. 

The association rule is the expression of the form A => B where A and B are 

Boolean attributes and the symbol => is called quantifier. Meaning of the association rule 

A =>B is that Boolean attributes A and B are associated in the way given by the 

quantifier =>. 

Boolean attributes A and B are conjunctions of literals. Figure 2.2 shows 

examples of literals are Sex (F), District (U.P) and Quality (bad). They are derived from 

attributes Sex, District and Quality corresponding to columns in data matrix concerning 

loans of the fictitious bank. 

The Boolean attribute Sex (F) is true in a row of data matrix if there is the value F 

in this row and in the column Sex. The Boolean attribute District (U.P) is true in the row 

of data matrix if there is the value U.P in this row and in the column District. The 

Boolean attribute Quality (bad) is true in the row of data matrix if there is the value, bad 

in this row in the column Quality: 
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Id Sex 	District Quality Sex (F) District (UP) Quality (bad) 

1 M 	U.P Good False True False 

2 	. M 	Gujarat Bad False False True 

3 F 	Delhi Bad True False True 

6180 M 	U.P Bad False True True. 

6181 F 	M.P Good True False False 

Fig 2.2: Transaction Data Base 

An example- of association rule is, 

Sex' (F) & District (UP) =>Quality (bad). 30% 
It means that at least 30 per cent of clients — women living in U.P have the loan of bad 

quality. 

2.6.2 Rule Measures: Support and Confidence 

2.6.2.1 Support 
Support `s', is the percentage of transactions in database D that contain AUB (i.e. 

both A and B). This is taken to be the probability, P (AUB) [2]. That is, 

For rule A => B, 

Support (A => B) = P (AUB) 

Support_count (AUB) 

Support (A => B) = 	------------------------------------------- 

Support_count total 
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2.6.2.2 Confidence 

The rule A => B has confidence `c' in the transaction set D if c is the percentage 

of transactions in D containing A that also contain B. This is taken to be the conditional 

probability, P (B/A) [2]. That is, 

For rule A => B, 

Confidence (A => B) = P (B/A) 

Support_count (AUB) 

Confidence (A => B) = 

Support_count A 

Where support_count (AUB) is the number of transactions containing the itemsets 

AUB, and support count (A) is the number of transactions containing the itemset 

A. 

Rules that satisfy both minimum support and minimum confidence are called strong 

association rules. 

Example: 

Min. support 50% 

Min. confidence 50% 

Fig.2.3: Example: Support and Confidence 

For rule A => C, 

Support = support ({ AUC }) = 50% 

Confidence = support ({AUC})/support ({A}) = 66.6% 

11 



2.6.3 Types of Association Rules 
There are various types of association rules [2] are present: 

Boolean vs. quantitative associations 

Based on the types of values handled 

0 Boolean: 

Buys (x, "SQL Server") ^ Buys (x, "DM Book") _> Buys (x, "DB 

Miner") [0.2%, 60%] 

• Quantitative: 

Age (x, "30...39") ^ Income (x, "42...48K") _> Buys (x, "PC") [1%, 

75%] 

Single dimension vs. multiple dimensional associations 

Based on the dimension 

• Single Dimensional: 

Buys (x, "diapers") => Buys (x, "beers") [0.5%, 60%] 

• Multidimensional: 

Major (x, "CS") A  Takes (x, "DB") _> Grade (x, "A") [1%, 75%] 

Multiple-level analysis 

Based on the level of abstraction 

• Multilevel: 

Age (X, 30...39) => Buys (X," laptop computer") 

• Single level: 

Age (X, 30...39) => Buys (X," computer") 

2.6.4 Basic Method of Association analysis 
An important approach regarding association roles was proposed by Agrawal [5]. 

It is a two-phase approach as follows: 

Generate all combinations of items that have fractional transaction support above 

a certain user-defined threshold called min supp. All such combinations are called large 

itemsets. 

Given an itemset S={11, I2...Ik}, It can be used to generate at most k rules of the 

type [S- {Ir}] =>{I,}, for each r is the element of {1...k}. Once these rules have been 
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generated, only those rules above a certain user-defined threshold called min conf may 

be retained. 

In order to generate the large 1-itemsets, an iterative approach is used to first 

generate the set of large 1-itemset L1, then the set of large itemsets L2, and so on until for 

some value of r the set L, is empty. At this stage the algorithm can be terminated. During 

the kth iteration of this procedure, a set of candidates Ck is generated, by performing a (k-

2) join on the large itemsets Lk.1. The itemsets in this set Ck are candidates for large 

itemsets, and the final set of large itemsets Lk must be a subset of Ck. Each element of Ck 

needs to be validated against the transaction database to see if it indeed belongs to Lk. 

The validation of the candidate itemset Ck against the transaction database seems to be 

bottleneck operation for the algorithm. This method requires multiple passes over a 

transaction database, which may potentially be quite large. For evaluating itemsets with a 

specific number of items, one pass is required over the transaction database. Thus, if the 

large itemset with the maximum number of items has 9 items in it, then the method 

requires 9 passes over the transaction database. This may result in substantial I/O times 

for the algorithm. 

2.6.4.1 Apriori Algorithm 

2.6.4.1.1 The Apriori Principle 
Any subset of a frequent itemset must be frequent [2] 

i.e., if {AB} is a frequent itemset, both {A} and {B} should be a frequent itemset. 

2.6.4.1.2. Key Steps 	 . 

• Iteratively find frequent itemsets (the sets of items that have minimum 

support) with cardinality from 1 to k (k-itemset). 

• Use the frequent itemsets to generate association rules. 

2.6.4.1.3. Key Operations 
There are two major operations in finding the frequent item sets: 

13 



• Join: joining Lk_I with itself generates Ck. 

• Prune: Any (k-1)-itemset that is not frequent cannot be a subset of a frequent• 

k-itemset. 

Apriori Example 

Database Cl Li 

L2 C2. C2 
Itemset 

{1,2} 

{1,3} 

• — {1,5} 

{2,3} 

{2,5} 

{3,5} 
L3 

C3 Itemset 

{2,3,5} Itemset 	Support 
2,3,5. 	2 

Fig.2.4: Apriori Example 

Tid Items 

100 1,3,4 

200 2,3,5 

300 1,2,3,5 

400 2,5 

Itemset Support 

1 2 

2 3 

3 3 

4 1 

5 3 

Itemset Support 

1 2 

2 3 

3 3 

5 3 

Itemset Support 

{1,3} 2 

{2,3} 2 

{2,5} 3 

{3,5} 2 

Itemset Support 

{1,2} 1 
{1,3} 2 
{ 1,5} 1 
{2,3} •2 
{2,5} 3 
{3,5} 2 

14 



2.6.4.1.4 Performance Evaluation 
Here are the bottlenecks of Apriori .algorithm: 

• Huge candidate sets 

104  frequent 1-itemset will generate 107  candidate 2-itemsets 
To discover a frequent pattern of size 100, e.g., {ai, a2... aioo}, one needs 

to generate 2100  1030  candidates. 

• Multiple scans of database 

Needs (n +1) scans, n is the length of the longest pattern. 

The performance of Apriori algorithm drastically decreases when any of the 

maximal frequent itemsets becomes longer, 'because a maximal frequent itemset of size 1 

implies the presence of (21 — 2) additional frequent itemsets (its nontrivial subsets) as 

well, such algorithms explicitly examine each of which. In data mining applications 

where items are correlated, maximum frequent itemsets could be long. 

2.6.4.2 Enhancements Over Apriori Algorithm 
After the initial algorithms proposed by Agrawal [101, other researchers have 

extensively studied the problem and a number of fast variants have been proposed. 

Agrawal has discussed how the algorithm for finding large itemsets may be speed up 

substantially by introducing a pruning approach, which reduces the size of the candidate 

Ck. This algorithm uses the pruning trick that all subsets of a large itemset must also be 

large. Thus, if some. (k-1)-subset of an itemset I, i.e. the subset of Ck does not belong to 

Lk_1, then that itemset can be pruned from further consideration. This process of pruning 

eliminates the need for finding the support of the candidate itemset I. 

Subsequent work on the large itemset method has concentrated on the following 

aspects [4] : 

1. Improving the I/O costs by reducing the number of passes over the transaction 

database. 

2. Improving the computational efficiency of the large itemset generation procedure. 

3. Find the efficient parallel algorithm to mine association rules. 
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Here is a brief survey of the work done in each of the above categories. 

2.6.4.2.1 AprioriTid Algorithm 

The AprioriTid algorithm proposed by Agrawal and Srikant [5] has the additional 

property that the database is not used at all for counting the support of candidate itemsets 

after the first pass. Rather, an encoding of the candidate itemsets used in the previous 

pass is employed for this purpose. In later passes, the size of this encoding can become 

much smaller than the database, thus saving much reading effort. 

The AprioriTid algorithm also uses the Apriori generation function (given in 

previous section) to determine the candidate itemsets before the pass begins. The 

interesting feature of this algorithm is that the database D is not used for counting support 

after the first pass. Rather the set CL" is used for this purpose. Each member of the set CL" 

is of the form <TID, {XL}>, where each XL is a potentially large k-itemset present in the 

transaction with identifier TID. For k=1, CL" corresponds to the database D, although 

conceptually each item I is replaced by the itemset { I } . For k> 1, the member of CL" 

corresponding to transaction t is <t.TID, {c is the element of CL I c contained in t}>. If a 

transaction does not contain any candidate k-itemset, then CL" will not have an entry for 

this transaction. Thus, the number of entries in CL" may be smaller than the number of 

transactions in the database, especially for large values of k. In addition, for large values 

of k, each entry may be smaller than the corresponding transaction because very few 

candidates may be contained in the transaction. However, for small values of k, each 

entry may be larger than the corresponding transaction because an entry in CL includes all 

candidate k-itemsets contained in the transaction. 

Consider the database given in Fig 2.5 and assume that minimum support is 2 

transactions. Self-joining L, gives the candidate itemsets C2. Then the support of 

candidates in C2 is counted by iterating over the entries in C1" and generate C2". The first 

entry in C1" is { { 1 }, (3),  (4) }, corresponding to transaction 100. The Ct corresponding 

to this entry t is { { 1, 3)),  because ( 1, 3) is a member of C2 and both ({ 1, 3}—{1})  and 

((1, 3}—(3}) are members of t.set of itemsets. Self-joining L2 gives C3. Making a pass 

over the data with C2" and C3 generates C3". Note that there is no entry in C3"for the 

transactions with TIDs 100 and 400, since they do not contain any of the itemsets in C3. 



TID Items 

100 134 
200 235  
300 1 2 3 5 
400 25 

TID Set of items 

100 {{1},{3}.{4}} 
200 {{2},{3},{5}}  
300 { {1}, {2}, {3}, {5} } 
400 {(2},{5})  

Itemset support 

{1 } 2 
{2} 3 
{3}  3 
{4}  3 

--► —~ 

I2 

Itemset support 

{13} 2 
{2 3} 2 
{25} 3 
:{3 5} 2 

L3 

Itemset 	support 
{235} 	2 

The candidate {2, 3, 5} in C3 turns out to be large and is the only member of L3. When C4 

is generated using L3, it turns out to be empty, and so terminated. 

database 
	 Cl" 
	

L1 

C2° 

TID Set of itemsets 

100 {{13}} 
200 {(23){25},{35)} 
300 300 { (1 2}, (1 	3}, (1 ,5}, 

{23},{25},{35}} 
400 { {2 5} } 

C3" 

TID set of itemsets 

200 11235)) 
300 {{235}} 

C2 

Itemset 

{1 2} 

{2 3} 
{2 5} 
{3 5} 

C3 

Itemset 	---► 
{235} 

Fig2.5: AprioriTid Example 151 

In early passes Apriori performs better than AprioriTid algorithm but after that 

performance of AprioriTid drastically increases. As shown in Fig 2.6, For AprioriTid 

algorithm, in some initial passes the size of C" may be too large to fit in memory. Hence 

use Apriori algorithm for these passes and switch to AprioriTid algorithm when it expects 

that set C" will fit in memory at the end of pass. 
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14 	 AprioriTid 

12  

TIME 	10 
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Fig2.6: Performance Comparison [5] 

2.6.4.2.2 Hash-Based Algorithm 
For efficiently finding large itemsets it was proposed by "Park" [4] [6]. It was 

observed that most of the time is spent in evaluating and finding large 2-itemsets. The 

algorithm of "Park" attempts to improve this approach by providing a hash based 

algorithm for quickly finding large 2-temsets. A hash based technique can be used to 

reduce the size of the candidate k-itemset, Ck, for k> 1. Consider database given in Figure 

2.7, when scanning each transaction in the database to generate the frequent 1-itemset, 

L1, from the candidate 1-itemset in C1', All the 2-itemsets can be generated for each 

transaction. Hash them into the different buckets of a hash table structure, and increase 
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the corresponding bucket count. A 2-itemset, whose corresponding bucket count in the 

hash table is below the support threshold, cannot be frequent and thus should be removed 

from the candidate set. Such a hash table- based technique may substantially reduce the 

number of the candidate k-itemsets examined (especially when k=2). 

TID List of item IN 

T100 11,12,15 
T200 12, 14 
T300 12, 13 
T400 11.12,14 
T500 11,13 
T600 12, 13 
T700 11,13 
1600 11,12,13,16 
T900 11,12,13 

Hash function 
H (x, y)=((order of x)* 10+(order of y mod 7)) 

Hash table H2 for candidate 2-itemset 
bucket address 0 1 2 3 4 5 6 

bucket count 2 2 4 2 2 4 4 

bucket contents (11.14) (Ii 	IS) {12,13} {12,14} {12,15} {11,12} . 	(I1,13} 
(13,15) {11,15} {12,13} (12,14) {12,16} {11,12} {11,13} 

{12,13} {11,12}] (I1,13) 
(12,13) {11,12} {11,13} 

Fig.2.7: Hash table for Candidate 2-Itemsets [2] 

Brin [4] proposed a method for large itemset generation, which reduces the 

number of passes over the transaction database by counting some (k+l)-itemsets in 

parallel with counting k-itemsets. In most previously proposed algorithms for finding 

large itemsets, the support for a (k+l )-itemset was counted after k-itemsets have already 

been generated. In this work, it was proposed that one could start counting a (k+l )- 

itemset as soon as it was suspected that this itemset might be large. Thus, the algorithm 

could start counting for (k+l)-itemsets much earlier than completing the counting of k- 
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itemsets. The total number of passes required by this algorithm is usually much smaller 

than the maximum size of a large. itemset. 

2.6.4.2.3 Partitioning Algorithm 
Savasere [7] proposed an algorithm for finding large itemsets by dividing the 

database into n partitions. The size of each partition is such that the set of transactions 

can be maintained in main memory. Then, large itemsets are generated separately for 

each partition. Let LP; be the set of large itemsets associated with the ith  partition. Then, if 

an itemset is large, then it must be the case that it must belong to at least one of LP;  for i 

is the element of { l ...k}. Now, the support of the candidates U;k-1LP1. can be counted in 

order to find the large itemsets. This method requires just two passes over the transaction 

database in order to find the large itemsets. The approach described above is highly 

parallelizable, and has been used to generate large itemsets by assigning each partition to 

a processor. At the end of the each iteration of the large itemset method the processors 

need to communicate with one another in order to find the global counts of the candidate 

k-itemsets. Often, this communication process may impose a substantial bottleneck on 

the . running time of the algorithm. In other cases, the time taken by the individual 

processors in order to generate the processor-specific large itemsets may be the 

bottleneck. 

A common feature of most of the algorithms reviewed above and proposed in the 

literature is that most such researches are variations on the "bottom-up theme" proposed 

by the Apriori algorithm. For databases in which the itemsets may be long, these 

algorithms may require substantial computational effort. Consider for example a database 

in which the length of the longest itemset is 40. In this case, there are 24°  subsets of this 

single itemset, each of which would need to be validated against the transaction database. 

Thus, the success of the above algorithms critically relies on the fact that the lengths of 

the frequent patterns in the database are typically short. 

2.6.4.2.4 Look-Ahead Algorithm 
Bayardo [8] has proposed an interesting algorithm for itemset generation very 

recently. This algorithm uses clever "look-ahead" techniques in order to identify longer 
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patterns earlier on. The subsets of these patterns can then be pruned from further 

consideration. Initial computational results indicate that the algorithm can lead to 
substantial performance improvements over the Apriori method. 

2.6.4.2.5 Transaction Reduction Method 
Transaction reduction method [2] is used to reduce the number of transactions. A 
transaction that does not contain any frequent k-itemset can't have (k+l)-itemset, 

hence can be pruned. 

2.6.4.2.6 AIS and SETM Algorithms 
The problem of association rule mining was first introduced in [5]. An algorithm 

called AIS was given for discovering the frequent set. SETM algorithm [9] was later 

designed to use only standard SQL commands to find the frequent set. The Apriori 

algorithm [10], described above, performs much better than AIS and SETM. 

2.6.4.2.7 The OCD Algorithm 
It is worth adding, that concurrently with the Apriori algorithm, OCD algorithm 

uses the same closure property to eliminate candidates [1 1 ]. 

2.6.4.2.8 DHP and Partition Algorithm 
DHP algorithm [ 12] extended the Apriori algorithm by introducing a hash filter 

for counting the upper bound of the support of candidates in the next pass. Some 

candidates can be pruned before reading the database in the next pass. 

Partition algorithm [13] proposed to divide the database into equal sized 

partitions. Each partition is processed independently to produce a local frequent set for 

that partition. After all local frequent sets are discovered, their union, the global 
candidate set, forms a superset of the actual frequent set. The database is then read again 

to produce the actual support for the global candidate set. The entire process takes only 
two (read) passes. 
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2.6.4.2.9 Sampling Algorithm 
Sampling Algorithm [14] proposed to consider first (small) samples of the 

database and discover an approximate frequent set by using a standard bottom-up 

approach algorithm. The approximate frequent set is then verified against the entire 

database. False frequent itemsets need to be removed and missing frequent itemsets need 

to be recovered. 

2.6.4.2.10 A-Random-MFS, DIC, and MaxClique Algorithms 
A-'Random-MFS algorithm [17] is a randomized algorithm for discovering the 

maximum frequent set. A single run of the algorithm cannot guarantee correct results. A 

complete algorithm requires repeatedly calling the randomized algorithm until no new 

maximal frequent itemset can be found. 

Dynamic itemset counting (DIC) algorithm [16] combines candidates of different 

lengths into one pass. The database is divided into partitions of equal size. In each pass, 

after the first I partitions are read, some itemsets containing up to I +1 items may become 

candidates based on the database partitions read so far. 

MaxClique [17] used a hybrid traversal, which contains a look-ahead phase 

followed by a pure bottom-up phase. The look-ahead phase consists of extending the 

frequent 2-itemsets until the extended itemset becomes infrequent. After the look-ahead 

phase, an Apriori-like traversal is executed. 

One of the most important differences between MaxClique and Hybrid approach 

is that MaxClique only looks ahead at some long candidate itemsets during the 

initialization stage (in the second pass). In contrast, the Hybrid algorithm repeatedly 

maintains the upper bound of the frequent itemsets (TOPC) throughout the entire process. 

The look-ahead candidate itemsets are dynamically adjusted based on all available 

information discovered so far. In fact, the TOPC is the most accurate approximation one 

can get while no additional knowledge of the data is available. 

Another important difference is that MaxClique used a bottom-up approach to 

calculate the look-ahead candidate itemsets. Conceptually, it keeps applying Apriori-gen 

until no more candidates can be generated. In contrast, Hybrid approach uses a top-down 

approach. It updates the TOPC only when a new infrequent itemset is discovered. 
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Ignoring implementation details, MaxClique can be viewed as a special case of Hybrid 
Search. 

2.6.4.2.11 Max-Miner 
- 	This work is inspired by Max-Miner algorithm. Max-Miner algorithm [8] was 

recently proposed to discover the maximum frequent set. This algorithm partitions the 
candidate set into groups with the same prefix. Like Hybrid Search, it looks ahead at 

some long candidate itemsets throughout the search. The main difference is the long 

candidate itemsets that it examines. Max-Miner looks ahead at longest itemsets that can 

be constructed from every group. A frequency heuristic is used to reorder the items such 

that the most frequent items appear in the most candidate groups. 

After preliminary comparison with the Max-Miner from the algorithmic point of 

view it is felt that Max-Miner and Hybrid Search could be complementary. One of the 

possibilities is to run Max-Miner in the first few passes and switch to Hybrid Search for 

the later passes. 
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Chapter 3 

Hybrid Algorithm — A collective strength 

Typical algorithms for mining frequent itemsets operate in a bottom-up, breadth-

first search direction. The computation starts from frequent I -itemsets (the minimum 

length frequent itemsets) and continues until all maximal (length) frequent itemsets are 

found. During the execution, every frequent itemset is explicitly considered. Such 

algorithms perform well when all maximal frequent itemsets are short. However, 

performance drastically decreases when some of the maximal frequent itemsets are 

relatively long. This work is an attempt to develop a new algorithm, which combines both 

bottom-up and the top-down approach. 

The primary search direction is still bottom=up, but a restricted search is also 

conducted in the top-down direction. This search is used only for maintaining and 

. , updating a new data structure, that is called TOPC. It is used to prune early candidates 

that would be normally encountered in the bottom-up search. A very important 

characteristic of the algorithm is that it does not require explicit examination of every 

frequent itemset. Therefore the algorithm performs well even when some maximal 

frequent itemsets are long. As its output, the algorithm produces the BOTC, i.e., the set 

containing all maximal frequent itemsets, thus specifying immediately all frequent 

itemsets. 

The improvement in performance can be up to several orders of magnitude, 

compared to the Apriori algorithm. 

The problem is formulated as follows: Given a Iarge database of sets of items 

(Representing market basket data, alarm signals, etc.), discover all frequent itemsets (sets 

of items), where a frequent itemset is one that occurs in at least a user-defined percentage 

(minimum support) of the database. Depending on the semantics attached to the input 

database, the frequent itemsets, and the term "occurs," we get the key components of 

different data mining problems such as the discovery of association rules. 

The performance of Apriori algorithm drastically decreases when any of the 

maximal frequent itemsets becomes longer, because a maximal frequent itemset of size 1 

implies the presence of (21-2) additional frequent itemsets (its nontrivial subsets) as well, 
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such algorithms explicitly examine each of which. In data mining applications where 

items are correlated, maximum frequent itemsets could be long. 

Therefore, instead of examining all the frequent itemsets, an alternative approach 

might be to "shortcut" the process and attempt to search for maximal frequent itemsets 

"more directly," as they immediately specify all frequent itemsets. 

The search for the maximum frequent set can proceed from the 1-itemsets to n-
itemsets (bottom-up) or from the n-itemsets to 1-itemsets (top-down). But Hybrid 

approach searches for the TOPL from both bottom-up and top-down directions. It 

performs well even when the maximal frequent itemsets are long. 

The bottom-up search is similar to Apriori algorithm. However, the top-down 

search is different. It is implemented efficiently by introducing an auxiliary data 

structure, the TOPC, as explained later. By incorporating the computation of the TOPC in 

algorithm, it is possible to efficiently approach the TOPL from both top-down and 

bottom-up directions. Unlike the bottom-up search that goes up one level in each pass, 

the TOPC can help the computation "move down" many levels in the top-down direction 

in one pass. 

This algorithm not only reduces the number of passes of reading the database but 

also reduces the number of candidates (for whom support is counted). In such cases, 

eliminating the candidates that are subsets of maximal frequent itemsets found in the 

TOPC reduces both I/O time and CPU time. 

3.1 Frequent Itemset and its Properties 

3.1.1 The 'Maximum Frequent Set 
Among all the frequent itemsets, some will be maximal frequent itemsets: they 

have no proper supersets that are themselves frequent. The TOPL is the set of all the 

maximal frequent itemsets. The problem of discovering the frequent set can be reduced to 

the problem of discovering the TOPL. The TOPL immediately specifies of frequent 

itemsets; these are precisely the non-empty subsets of its elements. The TOPL forms a 

border between frequent and infrequent sets. 
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3.1.2 Properties 
Two properties can be used to classify some of the unclassified itemsets: 

• Property 1: If an itemset is infrequent, all it supersets must be infrequent, 

and they need not be examined further 

• Property 2: If an itemset is frequent, all its subsets must be frequent, and 

they need not be examined further 

3.2 Discovering Frequent Itemsets 
In general, it is possible to search for the maximal frequent itemsets either 

bottom-up or top-down. If all maximal frequent itemsets are expected to be short (close 

to 1 in size), it seems efficient to search for them bottom-up. If all maximal frequent 

itemsets are expected to be long (close to n in size) it seems efficient to search for them 

top-down. 

Here a realization is sketched of the most commonly used approach of 

discovering the frequent itemsets: a bottom-up approach. It consists of repeatedly 

applying a pass, itself consisting of two steps. At the end of pass k all frequent itemsets of 

size k or less have been discovered. As the first step of pass (k +1), itemsets of size (k +1) 

each having two frequent k-subsets with the same first (k —1) items are generated. 

Itemsets that are supersets of infrequent itemsets are pruned (and discarded), as of course 

they are infrequent (by property 1). The remaining itemsets form the set of candidates for 

this pass. As the second step, the support of the candidates is computed (by reading the 

database), and they are classified as either frequent or infrequent. 

Example 1 

Consider a database containing five distinct items, 1, 2, 3, 4, and 5. There are four 

transactions in this database: {1,2,3,4,5}, {1,3}, {1,2}, and {1,2,3,4}. The minimum 

support is set to 0.5. Figure 3.1 shows an example of this bottom-up approach. All five 1-

itemsets ({1}, {2}, {3}, {4}, {5}) are candidates in the first pass. After the support 

counting phase, the 1-itemset (51 is determined to be infrequent. Property 1 need not 

consider all, the supersets of {5}. So the candidates for the second pass are {1,2}, {1,3}, 
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{1,4}, {2,3}, {2,4}, {3,4}. The same procedure repeats until all the maximal frequent 

itemsets are obtained in this example, only one: { 1,2,3 ,4}. 

Bottom-up search 

{l,2,3,4} 

{1,2,3} 	{1,2,4} 

{1,2} 	{1,3} 	{2,3} 

{1} 	{2}  

{ 1,3,4} 	•{2,3,4} 

{1,4} 	{2,4} 	{3,4} 

{3} 	{4} 	 {5} 

Top-down search 

{ 1,2,3,4,5 ) 

{1,2,3,4} 	{1,2,3,5} 	{1,2,4,5}. . 	{1,3,4,5} 	{2,3,4,5} 

•{1,2,5} 	{1,3,5} 	{1,4,5] 	{2,3,5} 	{2,4,5} 	{3,4,5} 

{1,5} 	[2,5] 	{3,5} 	{4,5} 

{5} 

Fig.3.1: One Way Search 
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In this bottom-up approach, every frequent itemset must have been a candidate at 

some pass and is therefore also explicitly considered. When some maximal frequent 

itemsets happen to be long, this method will be inefficient. In such a case, it might be 

more efficient to search for the long maximal frequent itemsets using a top-down 

approach. 

A top-down approach starts with the single n-itemset and decreases the size of the 

candidates by one in every pass. When a k-itemset is determined to be infrequent, all of 

its (k-1)-subsets will be examined in the next pass. However, if a k-itemset is frequent, 

then all of its subsets must be frequent and need not be examined (by Property 2). 

Example 2 
Figure 3.1 shows example of two-way search. Consider the same database as the 

previous example. The 5 -itemset {1 ,2,3,4,5 } is the only candidate in the first pass. After 

the support counting phase, it is infrequent. The candidates for the second pass are all the 

4-subsets of itemset {1,2,3,4,5}. In this example, itemset {1,2,3,4} is frequent and all the 

others are infrequent. By Property 2, all subsets of { 1,2,3,4} are frequent (but not 

maximal) and need not be examined. The same procedure repeats until all maximal 

frequent itemsets are obtained (i.e., after all infrequent itemsets are visited). . 

In this top-down approach, every infrequent itemset is explicitly examined. As 

shown in Figure given above, every infrequent itemset (itemset {5} and its supersets) 

needs to be visited before the maximal frequent itemsets are obtained. Note that, in a 

"pure" bottom-up approach, only Property 1 above is used to prune candidates. This is 

the technique that Apriori algorithm uses to decrease the number of candidates. In a 

"pure" top-down approach, only Property 2 is used to prune candidates. 

3.3 Hybrid Approach- A Collective Strength 
The aim of this work is to reduce the number of candidates and the 

number of passes in the process of association rules mining 

As discussed in the last section, the bottom-up approach is good for the case when 

all maximal frequent itemsets are short and the top-down approach is good when all 

maximal frequent itemsets are long. If some maximal frequent itemsets are long and 
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some are short, then both one-way search approaches will not be efficient. To design an 

algorithm that can efficiently discover both long and short maximal frequent itemsets, 

one might think of simply running both bottom-up and top-down programs at the same 

time. It is possible to do much better than that. Recall that the bottom-up - approach 

described above uses only Property 1 to reduce the number of candidates and the top-

down approach uses only Property 2 to reduce the number of candidates. In Hybrid' 

approach both top-down and the bottom-up searches are combined. That synergistically 

relies on both properties to prune candidates. A key component of the approach is the use 

of information gathered in the search in one direction to prune more candidates during the 

search in the other direction. If some maximal frequent itemset is found in the top-down 

direction, then this itemset can be used to eliminate (possibly many) candidates in the 

bottom-up direction. The subsets of this frequent itemset can be pruned because they are 

frequent (Property 2). Of course, if an infrequent itemset is found in the bottom-up 

direction, then it can be used to eliminate some candidates in the top-down direction•

(Property 1). This "two-way search approach" can fully make use of both properties and 

thus speed up the search for the maximum frequent set. 

Use property 1 to eliminate candidates in the top down search 

Use property 2 to eliminate candidates in the bottom up direction 

{ 1,2,3,4} 

f 
{1,2,3,4} 	 {1,3,4,5} {1,2,3,5} {1,2,4,5} {2,3,4,5} 

{1,3,5} {1,4,5} (2,3,5) (2,4,5) {3,4,5} 

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}  

{1} {2} {3} {4} 	 {5} 

Fig.3.2: Two way Search 
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Example 3 
Consider two way search example given above in Fig.3.2, In the first pass, all five 

1-itemsets are the candidates for the bottom-up search and the 5-itemset (1 ,2,3,4,5} is the 

candidate for the top-down search. After the support counting phase, infrequent itemset 

{ 5 } is discovered by the bottom-up search and this information is shared with the top-

down search. This infrequent itemset { 5 } not only allows the bottom-up search to 

eliminate its supersets as candidates but also allows the top-down search to eliminate its 

supersets as candidates in the second pass. In the second pass, the candidates for the 

bottom-up search are {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}. Itemsets {1,5}, {2,5}, 

{3,5 }, and {4,5 } are not candidates, since they are supersets of (5 } . The only candidate 

for the top-down search in the second pass is {l,2,3,4}, since all the other 4-subsets of 

{ 1,2,3,4,5} are supersets of {5}. After the second support counting phase, { 1,2,3,4} is 

discovered to be frequent by the top-down search. This information is shared with the 

bottom-up search. All of its subsets are frequent and need not be examined. In this 

example, itemsets (1,2,3), { 1,2,4}, { 1,3,4}, and {2,3,4} will not be candidates for 

bottom-up or top-down searches. After that, the program can terminate, since there are no 

candidates for either bottom-up or top-down searches. 

In this example, the number of candidates considered, was smaller than required 

by either bottom-up or top-down search. In addition to this fewer passes are needed to 

read the database than either bottom-up or top-down searches. The "pure" bottom-up 

approach would have taken four passes and the "pure" top-down approach would have 

taken five passes for this database while Hybrid approach takes only two. In fact, this 

hybrid approach will always use at most as many passes as the minimum 10 of the passes 

used by bottom-up approach and top-down approach. Reducing the number of candidates 

is of critical importance for the efficiency of the frequent set discovery process,. since the 

cost of the entire process comes from reading the database (I/O time) to generate the 

supports of candidates (CPU time) and the generation of new candidates (CPU time). The 

support counting of the candidates is the most expensive part. Therefore, the number of 

candidates dominates the entire processing time. Reducing the number of candidates not 

only can reduce the I/O time but also can reduce the CPU time, since fewer candidates 



need to be counted and generated. Therefore, it is important that Hybrid Search reduces 

both the number of candidates and the number of passes. A realization of this two-way 

search algorithm is discussed next. 

The computation of Hybrid algorithm follows the bottom-up breadth-first search 

approach. It is based on the Apriori and Max Miner algorithms, and for greatest ease of 

exposition it is presented as a modification to the Apriori algorithm. 

Briefly speaking, in each pass, in addition to counting supports of the candidates 

in the bottom-up direction, the algorithm also counts supports of the itemsets in the top-

down search. This will help in pruning candidates, but will also require changes in 

candidate generation, as explained later. 

Consider a pass k, during which, in the bottom-up direction, itemsets of size k are 

to be classified. If, during the top-down direction some itemset that is an element of the 

TOPC of cardinality greater than k is found to be frequent, then all its subsets of 

cardinality k can be pruned from the set of candidates considered in the bottom-up 

direction in this pass. They, and their supersets will never be candidates throughout the 

rest of the execution, potentially improving performance. But of course, as the maximum 

frequent set is ultimately computed, they "will not be forgotten." 

Similarly, when a new infrequent itemset is found in the bottom-up direction, the 

algorithm will use it to update the TOPC. The subsets of the TOPC must not contain this 

infrequent-  itemset. 

Fig 3.3 given below conceptually shows the combined two-way search. The 

TOPC is initialized to contain a single element, the itemset of cardinality n containing all 

the elements of the database. As an example of its utility, consider the first pass of the 

bottom-up search. If some m 1-itemsets are infrequent after the first pass (after reading 

the database once), the TOPC will have one element of cardinality n-m. Removing the m 

infrequent items from the initial element of the TOPC generates this itemset. In this case, 

the top-down search goes down m levels in one pass. In general, unlike the search in the 

bottom-up direction, which goes up one level in one pass, the top-down search can go 

down many levels in one pass. 
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n- itemset 

Top down search may go down many 

Levels in one pass 

Top down 

Frequent itemset 
Frequent itemset 

Frequent itemset 

Frequent itemset 
Bottom up search may go up onl 

one level in one pass 

Bottom up 

1 -itemset 

Fig.3.3: Working of Two Way Search 

Notice that the bottom up and the top down searches do not proceed in a 

symmetrical fashion. The reason is that by a general assumption there are no extremely 

long frequent itemsets. If this assumption is not likely to hold, one can easily reverse the 

roles of the searches in the two directions. By using the TOPC, it will be possible to 

discover some maximal frequent itemsets in early passes. This early discovery of the 

maximal frequent itemsets can reduce the number of candidates and the passes of reading 

the database, which in turn can reduce the CPU time and I/O time. This is especially 

significant when the maximal frequent itemsets discovered in the early passes are long. 

To reduce the number of database scans, transaction having k items can be 

removed, or marked, at, the end of pass k. So the number of transactions are reduced for 

further iterations. 
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Chapter 4 

System Design 

Having analyzed the problem and identified the pre-processing operations that are 

required of the software to be developed, the following solution is proposed: 

The software takes as input the name of attributes to be correlated and minimum 

support. Then candidate itemsets are generated using Apriori algorithm or Hybrid 

algorithm. Itemsets having support greater than minimum support are called frequent 

itemsets. These frequent itemsets are used to generate association rules, which are output 

of the software. Database used in this software is designed in oracle, having transaction 

IDs and items. 

Figure 4.1 presents the diagrammatic representation of the design discussed 

above: 
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Figure 4.1: Diagrammatic representation of the proposed design. 

Input attribute names 	Minimum support 

Apriori 	 Hybrid 
Algorithm 	 Algorithm 

Find k-candidate itemsets If no item is infrequent in 
using join procedure bottom up direction find 

candidate itemsets in top 
down direction and find their 
support by reading database 

Find support of each 
candidate set using database 

Find candidate itemsets in 
bottom up direction and find 

Find frequent itemsets by their support by reading 
• comparing support of each database 

candidate set from minimum 
support and using prune 
procedure Recover candidate itemsets 

in bottom up direction 

Find association rules using 	 Prune candidates in 
frequent itemsets 	 bottom up direction 

K++ 	K++ 

Find frequent itemsets in If Apriori top down direction 

Find frequent itemsets in 
bottom up direction 

If Hybrid 
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To make Hybrid approach effective two issues are addressed: First, how to update 

the TOPC efficiently? Second, once the subsets of the maximal frequent itemsets found 
in the TOPC are removed, how to generate the correct candidate set for the subsequent 

passes in the bottom-up direction? 

4.1. Updating the TOPC Efficiently 
. Consider some itemset Y that has been "just" classified as infrequent. It will be a 

subset of one or more itemsets in the TOPC, and it is required to update the TOPC such 

that its subsets no longer contain Y. To update the TOPC, the following process will be 

done for every superset of Y that is in the TOPC. Every such itemset (say X) is replaced 

by tY I itemsets, each obtained by removing from X a single item (element) of Y. Such 

newly generated itemset is added to the TOPC only when it is not already a subset of any 

itemset in the TOPC. 

{1,2,3...n} 

 by removing infrequent items from 7 to n 

{I,2,3,4,5,6} 

• by infrequent itemset { 1,6} 

{1,2,3,4,5} 	 {2,3,4,5,6} 

{1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5} by infrequent itemset {3;6} 	(2,4,5,6}. 

1. 	
• 	 / N 

11 1 3) (1,2,4) (1,2,5) (1,3,S) [1,4,5) (2,3,4) (2,3,51 (2,4,5) (3,4,5) 	• 

{1;2} {1,3} {1,4} (1,5) {2,3} {2,4} {2,5} {3,4} {3,5} {4,5} (1,6) [3,6) 	(2,6) (4,6) {5,6} 

-  

{1 } {2} {3} {4} {5} 	 {6} 	(71... (n) 

Fig. 4.2: Hybrid Search 
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Example 1 

Consider Hybrid search given in fig 4.2, suppose {{1,2,3,4,5,6)j is the current 
("old") value of the TOPC and two new infrequent itemsets {1,6} and {3,6} are 

discovered. Consider first the infrequent itemset (1,6}. Since the itemset (1,2,3,4,5,6} 
(element of the TOPC) contains items 1 and 6, - one of its subsets will be {l,6}, by 

removing item 1 from itemset 13. 
From {l,2,3,4,5,6}, 2,3,4,5,6} is found, and by removing item 6 from itemset 

{l,2,3,4,5,6}, { 1,2,3,4,5} is found. After considering itemset { 1,6}, the TOPC becomes 

I{ 1,2,3,4,5 }, {2,3,4,5,6} } . Itemset {3,6} is then used to update this TOPC. Since {3,6} is 

a subset of {2,3,4,5,6}, two itemsets {2,3,4,5} and {2,4,5,6} are generated to replace 

{2,3,4,5,6}. Itemset {2,3,4,5} is a subset of itemset {1,2,3,4,5} in the new TOPC, and it 

will not be added to the TOPC. Therefore, the TOPC becomes {(1,2,3,4,51, (2,4,5,6)). 

4.2. New Candidate Generation Algorithms 

As discussed previously a preliminary candidate set will be generated after the 

join procedure is called. In Hybrid algorithm, after a maximal frequent itemset is added to 

the TOPL, all of its subsets in the frequent set (computed so far) will be removed. The 

example shows that if the original join procedure of the Apriori-gen algorithm is applied, 

some of the needed itemsets could be missing from the preliminary candidate set. 

Consider Fig 4.2 given above suppose that the original frequent itemset L3  is { { 1,2,3 }, 

{1,2,4}, {1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {2,4,6}, {2,5,6}, 

{3,4,5}, {4,5,6}}. Assume itemset (1,2,3,4,5} in the TOPC is determined to be frequent. 

Then all 3-itemsets of the original frequent set L3  will be removed from it by Hybrid 

algorithm, except for {2,4,6}, {2,5,6}, and {4,5,6}. Since the Apriori-gen algorithm uses 

a (k - 1)-prefix test on the frequent set to generate new candidates, and no two itemsets in 

the current frequent set { {2,4,6}, {2,5,6}, .{4,5,6} } share a 2-prefix, no candidate will be 

generated by applying the join procedure on this frequent set. However, the correct 

preliminary candidate set should be { {2,4,5,6} }. Based on the above observation, some 

missing candidates need to be recovered. 
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4.3 New Preliminary Candidate Set Generation Procedure 
In new preliminary candidate set generation procedure, the join procedure of the 

Apriori-gen algorithm is first called to generate a temporary candidate set, which might 
be incomplete. In such a case, a recovery procedure will be called to recover the missing 

candidates. All missing candidates can be obtained by restoring some itemsets to the 
current frequent set. The restored itemsets are extracted from the TOPL of the current 

pass, which implicitly maintains all frequent itemsets discovered so far. The first group of 

itemsets that needs to be restored contains those k-itemsets that have the same (k-1)-

prefix as some itemset in the current frequent set. Consider then in pass k, an itemset X in 
the TOPL and an itemset Y in the current frequent set such that RI > k. Suppose that the 

first (k-1) items of Y are in X and the (k-1)5` item of Y is equal to the j`h  item of X. The k-
subsets of X is obtained that have the same (k-1)-prefix as Y by taking one item of X that 

has an index greater.  than j and combining it with the first (k-1) items of Y, thus getting 
one of these k-subsets. After these k-itemsets are found, candidates are recovered by 

combining them with itemset Y 

_ Example 2 
Consider Hybrid search given in - Fig 4.2, the TOPL is {{l ,2,3,4,5  1,2,3,4,5)1 and the 

current frequent set is { {2,4,6}, {2,5,6}, {4,5,6)). The only 3-subset of J(1,2,3,4,5)} that 

needs to be restored for itemset {2,4,6} to generate a new candidate is {2,4,5}. This is 
because it is the only subset of { { 1,2,3,4,5 } } that has, the same length and the same 2-

prefix as itemset {2,4,6}. By combining {2,4,5} and {2,4,6}, missing candidate {2,4,5,6} 

is recovered. No itemsets need to be restored for itemsets {2,5,6} and {4,5,6}.. 

The second group of itemsets that need to be restored 'consists of those k-subsets 

of the TOPL having the same (k-1)-prefix but having no common superset in the TOPL. 

A similar recovery procedure can be applied after they are restored. 
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Chapter 5 
Implementation 

The project will use Windows 9x/NT as the platform, C as programming language 

and Oracle Pro C as precompiler to access database. Some important procedures used in 

implementation are given below: 

5.1 Updating the TOPC Efficiently 
Algorithm: TOPC-gen procedure 

Input: Old TOPC and the infrequent set GARBAGEk found in pass k 

Output: New TOPC 

1. For all itemsets s, the element of GARBAGEk 

2. For all itemsets m, the element of TOPC 

3. Ifs is a subset of m 

4. TOPC = TOPC \ {m} 

5. For all items e, element of itemset s 

6. If {m \{e} } is not a subset of any itemset in the TOPC 

7. TOPC = TQPC U {m \ {e}} 

8. Return TOPC 

5.2 Recovery Procedure 
In new preliminary candidate set generation procedure, the join procedure of the 

Apriori-gen algorithm is first called to generate a temporary candidate set, which might 

be incomplete. In such a case, a recovery procedure will be called to recover the missing 

candidates. 

All missing candidates can be obtained by restoring some itemsets to the current 

frequent set. The restored itemsets are extracted from the TOPL of the current pass, 

which implicitly maintains all frequent itemsets discovered so far. 
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Algorithm: The recovery procedure 

Input: Ck+1 from join procedure, Lk;, and current TOPL 
Output: a complete candidate set Ck+1 

1. For all itemsets 1 in L~; 

2. For all itemsets m in TOPL 

3. If the first (k-1) items in I are also in m 

4. /* Suppose m.item j =l.item (k —1) */ 

5. For ifrom (j +1) to m 

6. Ck +1 = Ck+t U {{l.item 1, l.item 2,..., l.item k, m.item i } } 

5.3. New Candidate Generation Algorithm 
In summary, candidate generation process contains three steps as described 

below. 

Algorithm: New candidate generation procedure 

Input: Lk, current TOPC, and current TOPL 

Output: new candidate set Ck+1 

1. Call the join procedure as in the Apriori algorithm 

2. Call the recovery procedure if necessary 

3. Call the prune procedure 

5.4 The Basic Hybrid-Search Algorithm 
. Here is the complete algorithm, The Hybrid-Search Algorithm, which relies on 

the combined approach for determining the maximum frequent set. 

• Algorithm: The Hybrid-Search algorithm 

Input: a database and a user-defined minimum support 

Output: TOPL, which contains all maximal frequent itemsets, 
corresponding association rules 

1. Lo =0; k=1; Ci ={ {i}Ji is the element of I} 
2. TOPC = { { 12...n} }; TOPL = 0 

3. While Ck=O 
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4. Read database and count supports for Ck and TOPC. 

5. Remove frequent itemsets from TOPC and add- them to TOPL 

6. Lk= {frequent itemsets in Ck} \{subsets of TOPL} 

7. GARBAGE k = {infrequent itemsets in Ck} 

8. Call the TOPC-gen algorithm if GARBAGE;  =0 

9. Call the join procedure to generate Ck+1 

10. If any frequent itemset in Ck is removed in line 6 

11. Call recovery procedure to recover candidates to Ck+i 

12. Call new prune procedure to prune candidates in Ck+l 

13. k:=k+l 

14. End-while 

15. Return TOPL 

The TOPC is initialized to contain one itemset, which consists of all the database 

items. The TOPC is updated whenever new infrequent itemsets are found (line 8). If an 

itemset in the TOPC is found to be frequent, then its subsets will not participate in the 

subsequent support counting and candidate set generation steps. Line 6 will exclude those 

itemsets that are subsets of any itemset in the current TOPL, which contains the frequent 

itemsets found in the TOPC. If some itemsets in Lk are removed, the algorithm will call 

the recovery procedure to recover missing candidates (line 11). 

5.5 Join Procedure 

Algorithm: self-joining 

Input: Set of frequent itemsets Lk_1 

Output: Set of candidate itemsets Ck 

1. Select p.itemj, p.item2, ..., p.item,E_1, q.item,k_j 

From Lk_l  p, Lk_J q 

Where p.itemi=q.itemi,. , p.itemk_2=q.itemi;_2, p.itemk_I < 

q. item;_ 

2. Return Ck 



5.6 Prune Procedure 
Algorithm: pruning 

Input: Ck 

Output: Ck 

1. For all itemsets c in Ck do 

2. For all (k-1)-subsets s of c do 

If (s is not in Lk_1) then delete c from Ck 

3. Return Ck 

5.7 Apriori Procedure 
Algorithm: Apriori 

Input: Minimum support min_ support, Attributes to be correlated 

Output: Set of frequent itemsets Lk 

Ck: Candidate itemset of size k 

L;: {frequent items) 

1. For (k = 1; Lk !_0; k++) do begin 

2. Ck+i = candidates generated from Lk; 

3. For each transaction tin database do 

4. Increment the count of all candidates in Ck+i 

that are contained in t 

5. Lk+  f = candidates in Ck+J with min support 

End 

Return Uk Lk; 
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ASSOCIATION RULES MINER 

ENTER DATABASE NiNE: table 

USEP NAME- saurabh 

PFiSSUOiD:  xwwxxx 

USING DATABASE SlOPED IN MEMOPY 
 

ENTEP MINIMUM SUPPOPT: Z 



ATTRIBUTES IPE:  

0]. bread, 	 107. 'pastries,  
1]. butter, 	 111.,, pizza, , 	 r 

2]. milk, 	 12]. burger, 
3]. flavoured_milk, 	131. biscuits, 
4]. vegetables, 141. namkeen,  
5]. egg, 15]. 	j am, 
6]. cream, 16]. corn_flakes, •js 
7]. cheese, 17]. cold_drink, 
8]. ice_cream, ' 
9]. patties,  

ENTER ITEM NAMES TO BE CORRELATED: }j 

1! 



SELECT ALGO FOP ASSOCIATION PULES FIINING 

1. AARIORI ALGORITHU  • 

2. HYBRID ALGORITHM  • 

3. EXIT 
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FREQUENT 1 TEMSETg OF CARD 1MRL TY I AIRE : 

butter, 
milk, 
flavoured_m1lk, 
vegetables, 
egg. 
cream, 
cheese, 
ice cream, 
patties, 
pastries, 



FREQUENT ITEt1SFTS LOF CARD1NAL1TY 2 ARE 

butter,mi1k, 
butter,f1auoured milk, 
butter,egg, 	-  
butter ,cream, 
butter,cheese, 
butter,ice_cream, 
butter ,patties, 
butter,pastries, 
mi lk, f lauoured_m i 1k, 
milk,vegetables, 
milk,egg, 
milk, cream, 
milk,cheese, 
milk,ice_cream, 
milk,patties, 
milk,pastries, 
1'lauoured_milk,cream, 
flauoured_milk,ice_cream, 



ASSOCIATION RULES ARE:  

butter =>milk, 66.67x 
milk =>butter, 57.14'/. 
butter =>f lavoured_m i 1k, 66.67% 
flavoured milk =>buutter, 66.671 
butter =>egg, 33.33/ 
egg =>butter, 100.0OX 
butter =>cream, 50.00i 
cream =>butter, 75.00. 
butter =>cheese, 50.001 
cheese =>butter, 75.011x 
butter =>ice_cream, 50.001 
ice cream =>butter, 60.00x 
butter ->patties, 50.00 
patties =>butter, 60.(0% 
butter =>pastries, 66.67x 
pastries =>butter, 66.67'/. 
milk =>flauoured_milk, 57.142 
flavoured milk =>mi1k, 66.672 



CANT.... 

milk =>uegetables, 28.57x 
vegetables =>milk, 100.00 
milk =>egg, 28.571 
egg =>milk, 100.00x 
milk =>cream, 57.14% 
cream =>milk, 100.00% 
milk =>cheese, 42.861 
cheese =>milk, 75.001 
milk =>ice_cream, 57.14x 
ice_cream =>milk,. BO.00X 
milk =>patties, 57.14X 
patties =>milk, 80.00 
milk =>pastries, 57.14 
pastries =>milk, 66.6?x 
f lauoured_milk =>cre<am, 33.33x  
cream =>f 1. auoiired_milk, 50.00 
flauoured_milk =>ice_cream, 33.33X 
ice_cream =>flauoured_milk, 40.00/ 



FREQUENT ITEMSETS OF CARDINAL!TV 7 ARE: 

butter,rni Ik,eyg,crear,cheese ice—cream, patties, 
blttter,rc,il}, egg, cream, cheese, ice creari,pastries., 
butter m ilk egg cream cheese, patt ies, pastr ies, 
butter,miIk,egg,cream, ice crean,patties,pastries, 
butter,milk,egg,cheese, ice_cream,patties,pastries, 
butter,milk,creatti,cheese, ice credm,patt ies,pastries, 
butter ,egg,cream,cheese, ice cream,patties,pastr Les, 
milk, egg ,crean cheese ice_cream , patt ies ,pastries 



HSSUClATlUN RULES ARE: 

butter =>milk,egg,cream,cheese,ice_cream,patties, 33.3::Jz 
milk =>butter,egg,cream,clieese,ice_cream,patties, Z8.57x 
egg =>butter,milk,cream,cheese,ice_cream,patties, 100.00 
cream =>butter,milk,eyg,clheese,ice_cream,patties, 50.00z 
cheese =>butter,milk.egg,cream.ice_cream,patties, 50.00z 
ice_cream =>butter,milk,egg,cream,cheese,patties, 40.00 
patties =>butter,milk,egg,cream,cheese,ice cream, 40.00x 
butter =>milk,egy,cream,cheese,ice_cream,pastries, 33.33x 
milk =>butter,egy,cream,cheese.ice_cream,pastries, 28.5?z 
egg =>butter,milk,cream,cheese,ice_cream,pastries, 100.00x 
cream =>butter,nilk,eyg,cheese,ice cream,pastries, 50.00x 
cheese =>butter,milk,egg,cream, ice_cream ,pastries, 50.00i 
ice_cream =>butter,milk,egg,cream,cheese,pastries, 40.00•x. 
pastries =>butter,milk,egy,cream,cheese, ice _ cream, 33.33% 
butter =>milk,egg,cream,cheese,patties,pastries, 33.33x 
milk =>butter,egg,cream,cheese,patties,pastries, 28.5?x 
egg =>butter,milk,cream,cheese,patties,pastries, 100.00x 
cream =>butter,milk,egg,cheese,patties,pastries, 50.00x 



Fig 6.10: Screen to show performance of Apriori algorithm 
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FREQUENT ITEMSETS EE: 

bittter,ni1k.egg,creamcheese, ire_cream.pattics,pastries, 
mh1kuege1db1es, 
milk)f!auoured_milk,cream, ice_cream,ptttiesptstries, 



ASSOCIATION RULES ARE: 

butter =>milk,egg,cream,cheese, ice_c'ream,patties,pastries, 
milk =>but-ter,egg,cr'eam,cheese, ice_ cream,patties,pastries, 
egg =>butter,milk,cream,clyeese,ice_cream,pat ies,pastries, 
cream =>butter,milk,egg,cheese,ice_cream,patties,pastries, 
cheese =>butter,milk,egg,cream, ice_cream,patties,pastries, 
ice-cream =>butter.milk,egg,cream,ctheese,patties,pastries, 
patties =>butter,milk,egg,cream,clheese,ice_cream,pastries, 
pastries =>butter,m}k,egg,cream,cheese.,ice_cream,patties, 
milk =>vegetables, Z8.57% 
vegetables =>milk, 100.001 
butter,milk,=>egg,cre.am,c}Neese, ice_ cream,patties,pastries, 
mil.k,egg,=>cream,ctieese,ice_cream,pa-tties,pastries,butter, 
egg,cream,=>cheese, ice _cream,patties,pastri,es,butter,milk, 
cream,cheese,=>ice_cream,patties,pastries,butter,miIk, egg, 
cheese, ice cream,=>patties,pas.tries,butter,milk.,egg,cream, 
ice_cream,patties,=>pastries,butter,milk,egg,cream,c}}eese, 
patties,pastries,=>butter,milk,e.gy,cream,cheese, ice _ cream, 
pastries,butter,=>milk,egg,cream,cheese,ice_cream,patties, 

33.331 
Z8. S7 
100.00% 
50.00/ 
50.00x 
40.001 
40.00'/. 
33.331 

50.00x 
100.00 
100.00X „  
50.001 
100.00/ 
100.00 
50.00:: 
100.00/ 
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Fig 6.13: Graph shows dependence between no. of large frequent item sets and 
candidate item sets generated 
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Data 
base 	 Apriori 
scans 	 Hybrid 

Number of candidate itemsets 

Fig 6.14: Graph shows relation between no. of data base scans and no. of candidate 
itemsets 
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Chapter 7 
Concluding Remarks 

An efficient way to discover the maximum frequent set can be very useful in various data 
mining problems, such as the discovery of the association rules. The maximum frequent 

set provides a unique representation of all the frequent itemsets. In many situations, it 

suffices to discover the maximum frequent set, and once it is known, all the required 

frequent subsets can be easily generated. 
This work presents an algorithm that can efficiently discover the maximum 

frequent set. Hybrid-Search algorithm could reduce both the number of times the 

database is read and the number of candidates considered. 
Experiments show that the improvement of using this approach can be very 

significant, . especially when some maximal frequent itemsets are long. A popular 

assumption is that the maximal frequent itemsets are usually very short and therefore the 

computation of all (and not just maximal) frequent itemsets is feasible. Such.  assumption 

on maximal frequent itemsets does not need to be true in important applications. Hybrid 

algorithm may be useful in these applications such as the problem of discovering patters 

in price changes of individual stocks in a stock market. Prices of individual stocks are 
frequently quite correlated with each other. Therefore, the discovered patterns may 

contain many items (stocks) and the frequent itemsets are long. 

The number of data base scans are reduced significantly, it depends upon the size 
of memory. 
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Appendix A 

Pro C Commands Used In Project  

To Declare The Variables 

EXEC SQL begin declare section; 

variable types and names; 
EXEC SQL end declare section; 

To Handle Errors 
EXEC SQL WHENEVER SQLERROR DO sgl_error("error message"); 

To Connect From Oracle 

EXEC SQL 1 begin declare section; 

char * username; 

EXEC SQL end declare section; 

EXEC SQL CONNECT :username ; 

To Display Attribute's Name 

EXEC SQL DECLARE contents CURSOR FOR 

select column name from user tab columns where table name="table"; 
exec sql begin declare section; 

varchar name[17]; 

exec sql end declare section; 

exec sql open contents; 

exec sql whenever not found do break; 



TID PIZZA BURGER PASTRIES PATTIES CORN FLAKES JAM 
1 1 1 0 1 1 0 
2 1 1 0 0 1 0 
3 1 1 0 1 1 0 
4 1 0 0 0 1 0 
5 1 0 0 0 0 0 
6 0 0 1 0 0 1 
7 0 0 1 1 0 1 
8 0 1 0 1 0 1 
9 0 1 0 1 0 0 
10 0 1 0 1 0 0 

L L1R R` 

\ 
rl r. R 
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Appendix A 

Pro C Commands Used In Project 

To Declare The Variables 

EXEC SQL begin declare section; 

variable types and names; 

EXEC SQL end declare section; 

To Handle Errors 
EXEC SQL WHENEVER SQLERROR DO sgl_error("error message"); 

To Connect From Oracle 

EXEC SQL 1 begin declare section; 
char *username; 

EXEC SQL end declare section; 

EXEC SQL CONNECT :username ; 

To Display Attribute's Name 

EXEC SQL DECLARE contents CURSOR FOR 
• select column name from user tab_columns where table_name="table"; 

exec sql begin declare section; 

varchar name[17]; 

exec sql end declare section; 

exec sql open contents; 

exec sql whenever not found do break; 



for(;;) 

{ 
exec sql fetch contents into :name; 

dbms_output.put_line(j Iname); 
} 

exec sql close contents; 

exec sql commit work release; 

To Find The Support Of Attributes 

EXEC SQL DECLARE count CURSOR FOR 

select tid 

from "table" 

where 

for(int y=0;y<tempc->length;y++) 

:tempc->candidate[y]= 1; 

exec sql open count; 

exec sql whenever not found do break; 

for(;;) 

{ 

exec sql fetch count into :tid; 

:tempc->support++; 

} 

exec sql close count; 

exec sql commit work release; 
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Appendix B 
Sample Database 

TID BREAD BUTTER BISCUITS ICE CREAM MILK EGG 
1 0 0 0 1 1 0 
2 1 1 0 1 1 0 
3 1 1 0 1 1 0 
4 1 1 0 1 0 0 
5 0 0 0 1 0 1 
6 1 0 0 1 0 1 
7 0 0 1 1 1 1 
81 1 	.1 0 1 1 
9 0 1 1 0 1 1 
10 1 1 1 0 0 1 

TID VEGITABLES CREAM CHEESE FLAV_ 
MILK 

NAMKEEN COLD_DRI 
NKS 

1 1 1 1 1 0 1• 
2 1 1 1 1 0 1 
3 1 1 1 1 0 1 
4 1 0 1 1 0 0 
5 1 0 1 1 0 0 
61 0 0 1 1 	- 0 
7 1 0 0 1 0 0 
8 0 0 0 0 0 1 
9. 0 0 1 0 0 1 
10 0 0 1 0 0 1 
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TID PIZZA BURGER PASTRIES PATTIES CORN FLAKES JAM 
1 1 1 0 1 1 0 
2 1 1 0 0 1 0 
3 1 1 0 1 1 0 
4 1 0 0 0 1 0 
5 1 0 0 0 0 0 
6 0 0 1 0 0 1 
7 0 0 1 1 0 1 
8 0 1 0 1 0 1 
9 0 1 0 1 0 0 
10 0 1 0 1 0 0 

XL LI3R 
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